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Abstract

Background: Disruption of the default-mode network (DMN) in healthy elders

has been reported in many studies. Methods: In a group of 51 participants (25

young, 26 elder) we examined DMN connectivity in subjects’ native space. In

the native space method, subject-specific regional masks (obtained indepen-

dently for each subject) are used to extract regional fMRI times series. This

approach substitutes the spatial normalization and subsequent smoothing used

in prevailing methods, affords more accurate spatial localization, and provides

the power to examine connectivity separately in the two hemispheres instead of

averaging regions across hemispheres. Results: The native space method yielded

new findings which were not detectable by the prevailing methods. The most

reliable and robust disruption in elders’ DMN connectivity were found between

supramarginal gyrus and superior-frontal cortex in the right hemisphere only.

The mean correlation between these two regions in young participants was

about 0.5, and dropped significantly to 0.04 in elders (P = 2.1 9 10�5). In

addition, the magnitude of functional connectivity between these regions in the

right hemisphere correlated with memory (P = 0.05) and general fluid ability

(P = 0.01) in elder participants and with speed of processing in young partici-

pants (P = 0.008). These relationships were not observed in the left hemisphere.

Conclusion: These findings suggest that analysis of DMN connectivity in sub-

jects’ native space can improve localization and power and that it is important

to examine connectivity separately in each hemisphere.

Introduction

The existence of coherent blood-oxygen-level-dependent

(BOLD) signal in the lower frequencies among different

brain regions at rest is commonly reported (Raichle

2009). The most well-known set of brain regions with

coherent signal is referred to as the default-mode network

(DMN) (Raichle 2011; Seibert and Brewer 2011). Age-

related disruption in the coherence among these oscillat-

ing DMN brain regions has been reported in the absence

of any disease (Andrews-Hanna et al. 2007). There have

also been attempts to relate reduction in the strength of

DMN functional connectivity with neurodegenerative dis-

eases (Mevel et al. 2011; Wu et al. 2011; Seibert et al.

2012), and some have reported a relationship between the

DMN connectivity and deposition of beta-amyloid

(Persson and Nyberg 2006; Hedden et al. 2009). These

observations increase interest in the study of age-related

changes in the integrity of the DMN.

In this study, we investigated age-related changes in

functional connectivity of the DMN by analyzing the

resting-state BOLD fMRI data in subjects’ native space

instead of standardized atlas space. The native space

approach substitutes for spatial normalization. Spatial

normalization is the conventional method for warping all

subjects in a study into a standard space and facilitates

the use of predefine regions-of-interest (ROI) mask from

the utilized brain atlas instead of the subjects own regio-

nal mask. It is implemented by registering each subject’s

brain to a canonical template brain. Spatial normalization
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is a key step for studies doing voxel-wise, across-subject

comparisons. A long-standing problem in functional neu-

roimaging studies of aging is that the large age-related

changes in brain morphology make it difficult to coregis-

ter brains (Yassa and Stark 2009; Seibert and Brewer

2011). Although spatial normalization is intended to fit

all brain images to a standardized space, the assumption

that any voxel represents the same brain location for

every subject is typically untrue. To illustrate the extent

of the problem caused by spatial normalization, we used

FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) to extract

hippocampus and precuneus binary masks for the 51 sub-

jects included in this study. We then used statistical para-

metric mapping (SPM8, Wellcome Department of

Cognitive Neurology) to perform spatial normalization.

The 51 spatially normalized masks were summed and

overlaid on top of the MNI152 atlas. Figure 1A and C

display these summed mask images, which we call an

“overlay map” of the regions. The voxel values inside

these overlay maps show how many subjects have their

hippocampus/precuneus regions in that particular loca-

tion. For instance, if the voxel value in the overlay map of

the hippocampus is 51, then this voxel belongs to hippo-

campus in all the subjects after spatial normalization.

Lower values indicate that fewer subjects have the same

region in that voxel. As shown in Figure 1A and C, the

overlay maps of the aforementioned two regions extend

far beyond their borders (the red curve shows the border

of two regions in the atlas) even after spatial normaliza-

tion. This simple example clearly demonstrates the poor

performance of the prevailing spatial normalization

method for fMRI data analysis in aging research.

It is common to apply a strong spatial smoothing on

the fMRI data in order to compensate for the inaccuracy

in spatial normalization. Even though smoothing reduces

the rate of false positives, it also reduces the likelihood of

detecting true positive. Nonetheless, in studies comparing

young and old brains, even strong smoothing cannot

compensate for the error introduced by spatial normaliza-

tion due to the extent of the atrophied elders’ brain. For

instance, Figure 2A shows a 63-year-old healthy female

participant’s brain in our data set, illustrating atrophy

exceeding the kernel size of any smoothing filter used in

fMRI analysis. Another potential problem of spatial

(A) (B)

(C) (D)

Figure 1. Color-coded overlay maps of (A) hippocampus and (C) precuneus regions on MNI152 brain atlas after statistical parametric mapping

(SPM)8 spatial normalization. Color-coded overlay maps of (B) hippocampus and (D) precuneus regions on MNI152 brain atlas after region-based

alignment. In red is the border of precuneus and hippocampus as defined in the atlas.
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smoothing is that it makes it more difficult to segregate

regions that are located close to each other. For instance,

regions close to the middle hemispheric plane (i.e., left

and right posterior cingulate) have to be treated as a sin-

gle region. In fact, in the prevailing method of functional

connectivity analysis with spatial normalization, it is a

common practice to place the seed exactly on the middle

plane and average all voxels’ signal within a sphere cen-

tered by that seed. This subsequently forces interhemi-

spheric averaging in the analysis of resting-state BOLD

fMRI data. In addition, a recent study (Smith et al. 2011)

showed that time series in atlas-based seed ROI’s derived

after spatial normalization and not from native space data

are extremely damaging to the DMN estimations.

To address these issues, we analyzed fMRI data in sub-

jects’ native space, which substitutes the spatial normali-

zation and subsequent smoothing. Analyzing fMRI data

in subjects’ native space requires a highly accurate

method for reliably identifying neuroanatomical regions

in fMRI image for every subject in the study, often

referred to as fMRI localization (Gholipour et al. 2007).

Direct fMRI localization is challenging as the overall brain

structures are not clearly visible in fMRI scans. Instead,

one can use the accompanying T1 image for the localiza-

tion purpose and then transfer the localization data to the

fMRI image. A structural T1 is typically acquired immedi-

ately before/after the functional fMRI data acquisition. In

addition, the T1 image is often acquired in the same

scanner and space of the fMRI data, which facilitate their

intermodal coregistration. In this study, we took advan-

tage of FreeSurfer’s parcellation and segmentation (Fischl

et al. 2002, 2004) to accurately locate ROI in the subject’s

native space. Then we transferred the FreeSurfer regional

mask to fMRI space and obtained a single averaged rest-

ing-state BOLD signal in every region. This method

enables us to compare regional connectivity in young and

elder brains without requiring the problematic prepro-

cessing steps of spatial normalization and smoothing. It

also provides higher statistical power because location-

specific signals are more accurately captured.

A similar method for analysis of resting-state BOLD

fMRI data in surface space has been reported previously

(Seibert and Brewer 2011). In that study, FreeSurfer was

used to identify ROIs in native surface space on the cor-

tex, whereas in the proposed method here we used the

volumetric mask of each ROI (both for cortical and sub-

cortical regions) to extract the regional signal.

We used the additional power afforded by this method

to examine age-related changes in DMN connectivity in

each hemisphere separately rather than the prevailing

approach of averaging ROIs across hemispheres. Further-

more, we investigated whether this disruption is truly

bilateral in nature or has unilateral characteristics. To

investigate the effects of interhemispheric averaging, we

repeated the native space analysis by averaging both

hemispheres’ regional time series in the analysis of rest-

ing-state BOLD fMRI data.

We compared the results of the proposed native space

method to those obtained using the commonly adopted

approach of spatial normalization and smoothing. Finally,

in the DMN regions that are found to be significantly dif-

ferent between age groups, we examined the relationship

between the strength of their functional connectivity and

cognitive performance.

Method

Subjects

Twenty-five young healthy participants (11 M, 14 F,

mean age: 25.36 years, SD age: 2.74 years), and 26-year-

old healthy participants (12 M, 14 F, mean age:

65.11 years, SD age: 2.98 years) were recruited through

random market mailing from within 10 miles of the

Columbia University Medical Center. This recruitment

approach is intended to obviate cohort effects that might

(A) (B)

Figure 2. The typical atrophy in a healthy 63-year-old female participant’s brain in a T1 scan, (A) FreeSurfer extracted cortical and subcortical ROI

borders overlaid on the T1 scan; (B) FMRI reference image overlaid on (A) after intermodal registration using FLIRT. The dura-matter line and the

ventriculars illustrate the accuracy of this registration. ROI, regions of interest; FLIRT, FMRIB’s linear image registration tool.
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be present by using convenience samples. All 51 subjects

were right handed and did not differ regarding their

level of education (young: 15.5 � 2.06 years old: 15.27

� 3.04 years). As can be seen, an extensive effort was

made to make the two age groups comparable in their

education, method of recruitment, geographical area of

residence, male-to-female ratio, and within-group age dis-

tribution. Participants were screened to exclude individu-

als with a history of neurologic or psychiatric conditions

and those using psychoactive medications. All subjects

were compensated for participation. Informed consent

was obtained prior to testing under supervision of the

Columbia University Medical Center Institutional Review

Board.

Neuropsychological examination

A battery of neuropsychological tests was administered to

all participants. Tests that putatively assess the following

domains were selected; memory: three measures of imme-

diate verbal memory from the selective reminding test

(SRT; Buschke and Fuld 1974). Speed of processing: the

digit symbol subtest from the Wechsler Adult Intelligence

Scale–Version 3 (WAIS-3; Wechsler 1997), Trail Making

Test A (Lezak et al. 2004), and the Stroop color naming

condition (Golden 1975). General fluid ability: matrix rea-

soning, letter-number sequencing, and block design sub-

tests from the WAIS-3. Vocabulary: the vocabulary subtest

from the WAIS-3, Wechsler Test of Adult Reading

(Wechsler 2001), and American National Adult Reading

Test (Grober and Sliwinski 1991).

These Neuropsychological variables were reduced

through confirmatory factor analysis (CFA) on a larger

sample of 188 participants in neuroimaging studies in our

laboratory. CFA was utilized to obtain the factor scores for

the aforementioned cognitive domains. The a priori four-

factor model of memory, speed of processing, general fluid

ability, and vocabulary yielded acceptable fit statistics: root

mean square error of approximation = 0.05, comparative

fit index = 0.99; Tucker-Lewis index = 0.98. All indicator

task loadings on their respective cognitive factors were at

or above 0.68. Factor scores were outputted from Mplus

Version 6.12 (Muthen and Muthen 1998).

Data acquisition

Structural images were acquired using a 3.0 Tesla magnetic

resonance scanner (Philips, Andover, MA). Structural

image were obtained with T1-weighted turbo field echo

(FE) high-resolution image with echo time (TE) = 2.98

msec; repetition time (TR) = 6.57 msec; flip angle = 8°;
256 9 256 matrix; in-plane voxel size = 1.0 9 1.0 mm;

slice thickness = 1.0 mm (no gap); 165 slices.

Functional images were acquired using the same 3.0

Tesla magnetic resonance scanner with a FE echo planar

imaging (FE-EPI) sequence (TE/TR = 20/2000 msec; flip

angle = 72°; 112 9 112 matrix; in-plane voxel

size = 2.0 9 2.0 mm; slice thickness = 3.0 mm [no gap];

37 transverse slices per volume), 6:1 Philips interleaved,

in ascending order. Participants were scanned for

9.5 min, with instructions to rest, to keep their eyes open

for the duration of the scan, not to think of any one

thing in particular, and not to fall asleep.

MRI data reconstruction

Each subject’s structural T1 scans were reconstructed

using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

The accuracy of FreeSurfer’s subcortical segmentation and

cortical parcellation (Fischl et al. 2002, 2004) was

reported to be comparable to manual labeling. Each sub-

ject’s white and gray matter boundaries as well as gray

matter and cerebral spinal fluid boundaries were visually

inspected slice by slice, manual control points were added

in the case of any visible discrepancy, and reconstruction

was repeated until we reached satisfactory results within

every subject. The subcortical structure borders were plot-

ted by freeview visualization tools (part of FreeSurfer

package) and compared against the brain regions. In case

of discrepancy, they were corrected manually. A separate

mask was generated for each and every segmented sub-

cortical region and parcellated cortical region. These

masks were transferred to the T1 native space using near-

est-neighbor interpolation. The transformation matrix

was obtained by registering the subject’s head from Free-

Surfer space to native space by FMRIB software library

(FSL) linear registration tool (http://fsl.fmrib.ox.ac.uk/fsl/

flirt/) with 6 degree of freedom (df), rigid-body, 256 bins

normalized mutual information cost function, and trilin-

ear interpolation. Quality check was performed by over-

laying the masks on top of the T1 image in the subject’s

native space. No discrepancy was found at this stage.

Resting BOLD fMRI preprocessing

The 6:1 slice interleaving of Philips scanner was corrected

using Sinc interpolation using SPM8 software package.

Our MRI protocol did not include bias field map acquisi-

tion, thus we could not correct for B0 field inhomogene-

ity correction. However, correlations in temporal signals

are not altered with the mean of the signals, therefore the

effect of B0 field inhomogeneity in the absence of spatial

smoothing is negligible. It should be emphasized that spa-

tial smoothing is not required in fMRI data analysis in

native space. However, this does not rule out the effect of

B0 field inhomogeneity in the intermodal registration of
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fMRI and T1 scans. This will be discussed next in the

next section.

There have been many reports of motion-induced cor-

relation between ROIs in resting-state BOLD fMRI data

(Birn et al. 2006; Power et al. 2012; Van Dijk et al. 2012;

Carp 2013), so extra caution was taken in this study to

deal with this issue (see Fig. 3). We used mcflirt (motion

correction tools in the FSL package [Jenkinson et al.

2012]) to register all the volumes to a reference image

(Jenkinson et al. 2002). The reference image was gener-

ated by registering (6 df, 256 bins mutual information,

and Sinc interpolation) all volumes to the middle volume

and averaging them. We made sure that the selected mid-

dle volume was free of artifacts and motion by examining

the derivative of the transformation parameters around

that volume. We then used the method described in

Power et al. (2012) to calculate frame-wise displacement

(FD) from the six motion parameters and root mean

square difference (RMSD) of the bold percentage signal

in the consecutive volumes for every subject. To be more

conservative, we lowered the threshold of our RMSD to

0.3%. (It was originally suggested to be 0.5%.) RMSD

was computed on the motion-corrected volumes before

temporal filtering. The contaminated volumes were

detected by the criteria FD > 0.5 mm or RMSD > 0.3%.

Identified contaminated volumes were replaced with new

volumes generated by linear interpolation of adjacent

volumes. Volume replacement was done before band-pass

filtering (Carp 2013).

The motion-corrected signals were passed through a

band-pass filter with the cut-off frequencies of 0.01 and

0.08 Hz. This band-pass filter has three functions: First, it

is an antialiasing filter to remove aliasing due to 0.5 Hz

sampling of the BOLD signal; second, it eliminates the

higher frequency (>0.1 Hz) fluctuations of the BOLD

signal that are mainly a reflection of respiration signal

modulated by heartbeat signal; third, it removes the high-

power low-frequency noise (the power spectrum of the

noise is related to the frequency by 1/f factor). We used

flsmaths–bptf to do the filtering in this study (Jenkinson

et al. 2012). After filtering, the first few volumes were dis-

carded due to the lag of the digital filter. Anecdotal obser-

vations in our division showed that digital filter lags

(almost the same as the order of the filter) often induce

minor correlations between the signals.

Finally, we residualized the motion-corrected, scrubbed,

and temporally filtered volumes by regressing out the FD,

RMSD, left and right hemisphere white matter, and lat-

eral ventricular signals (Birn et al. 2006). We expected

that volume scrubbing would effectively remove sudden

but large movements of the head and that subsequent re-

sidualization would further remove the effect of steady

but small motion of the head often found in older sub-

jects due to respiration or tremor.

FMRI analysis in native space

Figure 3 presents the flowchart of the processes in our

native space method. T1 image segmentation and parcel-

lation were done by FreeSurfer. The FreeSurfer segmenta-

tion and parcellation results were then transferred to the

subject’s native space. A separate mask was generated for

every segmented subcortical and parcellated cortical

region for each subject.

Intermodal, intrasubject, rigid-body registration of

fMRI reference image and T1 scan is a challenging task.

We examined three intermodal registration methods,

FMRIB’s linear image registration tool (FLIRT) (Jenkin-

son et al. 2012), boundary-based registration (BBR)

(Greve and Fischl 2009), and advanced normalization

tools (ANTS) (Avants et al. 2011), for 10 randomly

selected subjects in our data set. Visual inspection showed

that the results of FLIRT and BBR algorithms are very

similar and outperform ANTS. Even though BBR algo-

rithm claims to be robust to B0 field inhomogeneity

(Greve and Fischl 2009), FLIRT performance was slightly

better than BBR in registering the two modalities. We

used the same reference image generated for motion

correction to register the structural T1 image to fMRI

space using FLIRT with 6 df, 256 bins normalized mutual

Figure 3. Flowchart of the fMRI data analysis in subject’s native space. The thick triple line shows the flow of the fMRI data.
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information, and trilinear interpolation (Jenkinson and

Smith 2001). The results of this intermodal registration

were examined visually for all 51 subjects in our data set

using Freeview visualization tools, overlaying fMRI refer-

ence image, and delineated T1 scan. Figure 2B illustrates

a sample result of our intermodal registration. As can be

seen in the figure, FreeSurfer’s extracted region’s borders

facilitate this visual inspection. This time-consuming pro-

cess of visual inspection also examined the effect of EPI

spatial distortion and B0 field inhomogeneity after inter-

modal registration. Even though this visual inspection did

not reveal any major intermodal registration inaccuracy,

it was a crucial step in our project as our data do not

include the reverse polarity acquisition which is often

used for spatial distortion correction. Using the computed

transformation matrix and FreeSurfer’s generated masks

in the subject’s native space, the regional fMRI data were

extracted from each subject’s data. At this stage, the

extracted regional fMRI data are in each subject’s native

space and stored separately for each subject and ROI.

Only one interpolation was used in the entire process of

localization by combining the transformation parame-

ters for all three realignments: (1) motion correction,

(2) FreeSurfer to T1, and (3) T1 to averaged reference

image in fMRI space. This minimizes the effect of nearest-

neighbor interpolation errors in the final outcome.

Ten regions of DMN were considered in this study and

have been repeatedly reported in the literature (Andrews-

Hanna et al. 2007; Buckner and Vincent 2007; Buckner

et al. 2008; Raichle 2011). The names of the neuro-

anatomical regions in DMN and their abbreviations are

as follows: hippocampus (Hi), entorhinal cortex (En),

inferior parietal lobule (IP), isthmus of the cingulate (IC),

medial orbitofrontal cortex (MOF), parahippocampal

gyrus (PHi), posterior cingulate (PoC), precuneus (PCu),

superior-frontal gyrus (SF), and supramarginal gyrus

(SM). Once the ten regional fMRI images were extracted

separately for each subject, temporal BOLD signal was

calculated for each region by averaging all voxels inside

the region.

For comparison purpose, we complemented the native

space analysis with the prevailing spatial normalization

and smoothing in SPM8 software package, whereas the

rest of the processing pipeline remained the same. We

used the MNI152 as the standard template and smoothing

was done by a Gaussian kernel of full width at half maxi-

mum (FWHM) equal to 6 mm. The same DMN region

masks in MNI152 template space were used to extract the

10 regional time series for every subject after spatial nor-

malization and smoothing.

To examine the effect of averaging the left and right

hemispheres (Vincent et al. 2006; Andrews-Hanna et al.

2007; Buckner et al. 2008; Hedden et al. 2009), analyses

were repeated after averaging the left and right temporal

signal for every corresponding neuroanatomical region.

Statistical analysis

Once the averaged signal of each region was obtained,

Fisher Z-transformed correlation coefficients were com-

puted for each possible pair of neuroanatomical regions

included in the DMN. These analyses were done sepa-

rately for each hemisphere. In total, we computed 29

(10 9 9/2) = 90 pair-wise interregional correlation coeffi-

cients for each subject. The group mean was computed

for each interregional pair, and two-sample T-tests were

performed to detect age group mean differences in inter-

regional functional connectivity. Significant differences

between the young and elder groups’ DMN functional

connectivity were determined before (P < 0.05) and after

Bonferroni correction (P < 0.05/90). To investigate the

unilateral age effect on brain hemispheres, a regression

analysis was carried out with age, hemisphere, and their

interaction term as independent variables, and the func-

tional connectivity as the dependent variable.

Correlation with cognition

Linear regression was used to examine the relationships

between the cognitive factor scores and the magnitude of

functional connectivity, focusing on the DMN regions

where connectivity was significantly different across the

age groups. This linear model was independently fitted

for young and elder groups to investigate this relationship

separately in each group. We also added age as an inde-

pendent variable in our linear model to remove any pos-

sible within-group age effect.

Results

Figure 1 demonstrates a qualitative assessment of the

localization accuracy achieved by native space method.

Although prevailing method of spatial normalization in

SPM8 extends the overlay maps of the hippocampus and

precuneus regions far beyond their border (Fig. 1A and

C), the native space method constrains the overlay maps

to the border of the two regions (Fig. 1B and D). Fig-

ures 4 and 5 illustrate the pair-wise Fisher Z-transformed

correlations of the DMN regions in boxplot format for

left and right hemispheres, respectively. Each subplot in

Figures 4 and 5 shows the intrahemispheric correlations

of each neuroanatomical region with the remaining nine

regions in DMN. The title of each subplot gives the neu-

roanatomical region name. In these boxplots, the box

extends from the lower to upper quartile values of the

data, with a line at the median. The whiskers extend from

148 ª 2013 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

Unilateral Disruptions in the Default Network Q. R. Razlighi et al.



the box to show the range of the data when the outlier

points are excluded. Outlier points are those that fall out-

side 1.5 times the interquartile range (0.25–0.75 quartile).

The black dots show the means of the groups, the single

asterisk is indicative of significant difference with

0.00056 < P < 0.05, and the double asterisks is the indic-

ative of significance level after Bonferroni correction

P < 0.00056. Figure 6 summarizes both Figures 4 and 5

into a single cross-correlogram. The right and left hemi-

sphere DMN interregional correlation means are shown

in upper and lower triangles, respectively. Each diamond

is divided into two parts, which display the mean correla-

tion of young and elder groups for its two crossing

regions. Again, double asterisks indicate significant

differences that survive the Bonferroni correction

(P < 0.00056), whereas single asterisks indicate significant

differences in an uncorrected T-test (0.00056 < P < 0.05)

that do not survive the Bonferroni correction. Figure 6

makes it easier to see the differences in the group mean

values through a color-coded graph. There are seven in-

terregional correlations in the DMN that showed a signif-

icant difference between young and elder groups: four in

the left hemisphere; (PHi, SM), (PHi, PoC), (PHi, IC),

and (PoC, SF), and three in the right hemisphere; (PHi,

SM), (IP, MOF), and (SM, SF). However, only the age-

related difference in functional connectivity between SM

and SF in the right hemisphere remained significant after

Bonferroni correction (P = 0.000021). Five of the differ-

ences reflect an increase in functional connectivity in

elders, whereas two pairs (one in right hemisphere; [SM,

SF], and one in left hemisphere; [PoC, SF]) show a

decrease in the functional connectivity in elders. Only

one interregion (PHi, SM) connectivity was significantly

different bilaterally (in both hemispheres), whereas the

rest of the findings are unilateral (i.e., are found only in

one hemisphere) including the one significant finding that

survived Bonferroni correction.

A regression analysis investigating the correlation

between SM and SF indicated significant hemisphere

(P = 0.04) and Age 9 Hemisphere interaction terms

(P = 0.03). This indicates a significant difference between

age effect on connectivity in the two hemispheres.

Figure 4. Pair-wise Fisher Z-transformed correlations of the default network regions in boxplot format for left hemispheres. The box extends

from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data

when the outlier points are excluded. Outlier points are those that fall outside 1.5 times the interquartile range (0.25–0.75 quartile). The black

dots show the means of the groups, the single asterisk is the indicative of significance difference with 0.00056 < P < 0.05, and the double

asterisks is the indicative of significance level after Bonferroni correction P < 0.00056.
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Figure 5. Pair-wise Z-transformed correlations of the default network regions in boxplot format for right hemispheres. The box extends from the

lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data when the

outlier points are excluded. Outlier points are those that fall outside 1.5 times the interquartile range (0.25–0.75 quartile). The black dots show

the means of the groups, the single asterisk is the indicative of significance difference with 0.00056 < P < 0.05, and the double asterisks is the

indicative of significance level after Bonferroni correction P < 0.00056.

Figure 6. Color-coded cross-correlograms for correlation means of 10 FreeSurfer extracted ROIs for 51 subjects in study. Significant age-related

disruptions in default network are marked by asterisks. Right/left hemisphere correlations means are in the upper/lower triangular. Left: results

from our native space technique that uses subject-specific ROI extractions via FreeSurfer; right: results using traditional SPM8 voxel-wise

coregistration and spatial normalization. ROI, regions of interest; SPM, statistical parametric mapping.
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Comparison with SPM8

For comparison with the native space method, we also

calculated mean correlation between nodes of the DMN

for young and elders after processing using the prevailing

method of fMRI analysis performed by SMP8. All aspects

of the data analysis for these two processes were identical;

only the SPM8 spatial normalization and smoothing was

replaced with native space analysis in our study. The

results of the prevailing method by SPM8 are also sum-

marized in Figure 6, which presents a color-coded cross-

correlogram. It is clear from Figure 6 that the overall

mean correlation between the DMN nodes was higher

when using the native space method.

Using SPM8-based spatial normalization, we found

three interregional correlations in the DMN that were sig-

nificantly different between young and elder groups: one

in the left hemisphere (Hi, MOF); and two in the right

hemisphere; (PoC, SM) and (PoC, IP). However, none of

correlations survived Bonferroni correction (P < 0.00056).

All three differences were unilateral and reflected a

decrease in functional connectivity in elders. Most inter-

estingly, none of the findings with SPM8 spatial normali-

zation coincides with the findings in native space.

However, the significant decrease noted by this method in

the left hemisphere between (Hi, MOF) was also margin-

ally significant in native space analysis (P = 0.06).

Interhemispheric averaging

Figure 7 illustrates the effect of interhemispheric averag-

ing on the detection of age-related differences in the rest-

ing-state BOLD fMRI regional activation. As seen in this

figure, interhemispheric averaging has multiple effects on

the correlation statistics. This is better illustrated in the

cross-correlogram in Figure 8. Comparing Figures 6 and

8 clearly shows that interhemispheric averaging increases

the overall correlation mean significantly in both groups.

However, there exist a few cases where averaging reduces

the mean correlation (e.g., IP and SM). In general, when

the mean correlations in the left or the right hemispheres

are close to zero, averaging tends to inflate those

Figure 7. Pair-wise Z-transformed correlations of the default network regions in boxplot format for averaged right and left hemispheres. The box

extends from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of

the data when the outlier points are excluded. Outlier points are those that fall outside 1.5 times the interquartile range (0.25–0.75 quartile). The

black dots show the means of the groups, the single asterisk is the indicative of significance difference with 0.00056 < P < 0.05, and the double

asterisks is the indicative of significance level after Bonferroni correction P < 0.00056.
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correlations. One can roughly observe the following rela-

tionship: the higher the interhemispheric correlation, the

smaller the effect of the averaging. Nine significant

(P < 0.05) age-related changes were detected in the aver-

aged signals: (En, PCu), (En, PoC), (En, MOF), (En, IC),

(Hi, SF), (IP, SF), (IP, PCu), (IC, SF), and (IC, PCu).

None survive after Bonferroni correction. Among these

findings, five pairs showed a decrease in functional con-

nectivity and four showed an increase in functional con-

nectivity in elders. None of the nine detected significant

changes was found without averaging left and right sig-

nals. However, two of them ([Hi, SF]; P = 0.07, and [IP,

PCu]; P = 0.08) were marginally significant in the right

hemisphere. The remaining seven significant findings were

not found in left or right hemisphere using native space

method or the prevailing method by SPM8 in which

interhemispheric averaging was not performed.

The results of the native space method showed a single

pair of regions (Phi, SM) whose functional connectivity

significantly increased with age in both hemispheres. After

interhemispheric averaging, however, this age-dependent

change in functional connectivity was not found. A more

important consequence was that the highly significant

age-related difference in connectivity between supramar-

ginal and superior-frontal regions, which was detected

only in the right hemisphere prior to averaging, was lost

by averaging the signals.

Correlation with cognition

Using linear regression models, we examined the relation-

ship between functional connectivity and cognition across

the seven regional pairs that were found to be altered sig-

nificantly by age. These analyses were performed sepa-

rately in the young and elder groups. Connectivity in

only one of the seven region pairs with significant

age-related DMN functional connectivity disruption (su-

pramarginal and superior-frontal on the right hemi-

sphere) was correlated with cognitive performance;

connectivity in the remaining six significant findings was

not found to be related to any of the cognitive domains’

factor scores in the young or old subject groups. It is

interesting to note that the age-related disruption in func-

tional connectivity between SM and SF in the right hemi-

sphere was also the only finding that survived Bonferroni

correction (P < 0.00056). In the elder participants, the

magnitude of functional connectivity of the SM and SF in

the right hemisphere was correlated with better memory

(P = 0.050) and general fluid ability (P = 0.013), but not

with speed of processing (P = 0.182) or vocabulary

(P = 0.192). In young participants, the magnitude of

functional connectivity between SM and SF regions in

right hemisphere was related to better speed of processing

(P = 0.008), but not to memory (P = 0.274), general fluid

ability (P = 0.173), or vocabulary (P = 0.772). Functional

connectivity between the same regions in the left hemi-

sphere was not related to cognition in either age group.

Results of the correlation between SM and SF functional

connectivity and cognitive performance are summarized

in Figure 9. We excluded vocabulary for this figure as we

did not find it to be correlated with any of our significant

connectivity findings.

Discussion

In this study, we explored age-related disruption in the

functional connectivity among 10 neuroanatomical regions

consistently reported as part of the DMN (Buckner et al.

2008; Raichle 2011; Seibert and Brewer 2011). The main

goals of this study were to detect any differences in the

functional connectivity of the DMN by age group using a

new native space approach, explore hemisphere-specific

connectivity, and relate DMN regions with age-dependent

functional connectivity change to cognitive performance.

In studies comparing young and elders, the already chal-

lenging issue of spatial normalization becomes even more

problematic due to the atrophied brains in older adults,

rendering the nonlinear registration step more difficult.

To address this issue, we substituted the nonlinear regis-

tration and smoothing steps by analyzing the fMRI data in

the subjects’ native space. We used the structural T1 image

acquired at the same time as the fMRI data to perform the

localization by reconstructing the T1 image through Free-

Surfer. FreeSurfer’s regional masks were then used to

extract the regional fMRI image from the whole-brain

fMRI data. Spatial averaging of the fMRI data was

performed within each region to get a single time series

(signal) for each region. This approach increases power

because it ensures that brain regions under examination

Figure 8. Right/left hemisphere averaged cross-correlograms for

correlation mean of default network regions for 51 subjects in the

study. Significant disruptions in default network are marked by

asterisks.
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are identical for each subject. The spatial averaging of vox-

els’ data within a region should not be considered equiva-

lent to spatial smoothing. Spatial smoothing is a weighted

averaging of an area in the size of the smoothing filter’s

kernel (FWHM = 6–8 mm) regardless of the spatial loca-

tion. Spatial smoothing thus often blends the signals from

different tissue types (white matter, gray matter, and

cerebro-spinal fluid) which has a drastically damaging

effect on results as is demonstrated in a recent study

(Smith et al. 2011). However, spatial averaging within a

region in the proposed native space method only com-

bines the signals from voxels that are carefully delineated

and are supposed to belong to only one tissue type.

We demonstrated that the native space method was

able to detect age-related differences in the integrity of

the DMN across regions reported in studies that used the

prevailing spatial coregistration method on data from

larger groups of subjects (Andrews-Hanna et al. 2007).

Previous studies using standard analytic techniques with

sample sizes comparable to this study could not detect

these differences (Bluhm et al. 2008; Beason-Held et al.

2009; Koch et al. 2010).

A similar method was proposed by Seibert and Brewer

(2011) which is based on the native surface of the brain

cortex rather than native volumes. In the native surface

method, the vertices in the center of the gray matter of

the cortex were considered as seed points, whereas in this

work we averaged all voxels inside the ROI to obtain the

regional time series. One advantage of our proposed

method is that it is easily extendable to subcortical

regions, whereas for native surface method this becomes

challenging. However, a comprehensive comparison of

the two methods is necessary to be able to thoroughly

evaluate the relative effectiveness of the two methods.

As shown in Figures 4–6, we found seven significant

age-related differences in the functional connectivity of

DMN regions. After Bonferroni correction, only one sig-

nificant difference remained: Connectivity between SM

and SF regions in the right hemisphere. Interestingly, this

age-related difference in connectivity was not noted in the

(A) (B) (C)

(D) (E) (F)

Figure 9. Relationship between right and left hemisphere functional connectivity between supramarginal gyrus and superior-frontal cortex on the

right (A–C) and left (D–F) hemisphere and cognitive domains’ factor scores: memory (A and D), speed of processing (B and E), general fluid ability

(C and F).
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left hemisphere. This may suggest that the disruption in

the default network by age might be more of a unilateral

process than a bilateral one. Some task-based fMRI stud-

ies have already reported hemispheric asymmetry alter-

ation of brain activity by age during the task performance

(Cabeza 2002), and resting-state cerebral blood flow (Lu

et al. 2011). However, to the best of our knowledge it has

not been reported for DMN using resting-state BOLD

fMRI data.

We also compared our results with those obtained

using the prevailing method in SMP8, which involves the

typical spatial normalization by coregistering to MNI152

template and utilizing a set of predefined regional mask

as the ROI across all the subjects in the study. However,

utilization of data-driven atlases has gained popularity in

recent years. They generate group-specific templates, and

then a single standard space is derived from those tem-

plates. Spatial normalization in this case is done in two

steps, first nonlinear registration to group-specific tem-

plate and then to the standard space template. This can

certainly improve the accuracy of the nonlinear registra-

tion. However, utilization of highly accurate nonlinear

registration for spatial normalization is hampered by

overfitting problem. That is why most of the existing soft-

ware packages (SPM, analysis of functional neuroimages,

FSL, etc.) use a mild or moderate level of nonlinear regis-

tration in their spatial normalization. In either case, com-

paring the effectiveness of our approach to normalization

with different atlas (data-driven or standard) is beyond

the scope of this study, as our native space method totally

eliminates the need for spatial normalization.

The standard method produced three significant find-

ings that did not survive Bonferroni correction and did

not agree with any of the findings obtained with the new

native space method. Only the change between one region

pair (Hi, MOF) was found to be marginally significant in

the same hemisphere (left) in the native space analysis.

Figure 6 also shows that spatial smoothing reduces the

overall mean of the pair-wise correlations between the

DMN nodes. The fact that we did not detect any signifi-

cant changes after Bonferroni correction in elders’ DMN

functional connectivity using SPM8 should not be sur-

prising as many existing studies of age-related change in

DMN have also failed to detect this difference (Bluhm

et al. 2008; Beason-Held et al. 2009; Koch et al. 2010).

Erroneous spatial normalization accompanied by strong

spatial smoothing can simply cause a blending effect

across regions which can deteriorate the contrast of the

interregional functional connectivity between two groups.

There are growing numbers of studies that consider the

decline in functional connectivity in DMN as biomarker/

hallmark of age-related cognitive decline. However, as it

is acknowledged in Hafkemeijer et al. (2012), it is very

much possible that the age-related decline in the func-

tional connectivity of the elders’ DMN could be due to

their significant brain atrophy. This is the issue addressed

by our native space method. In the native space method,

only gray matter voxels are considered in the analysis.

These voxels are detected for each subject independently.

That is why there is no blending of tissue types or spatial

smoothing involved in this method. None of the existing

work detects voxel location with such great accuracy.

Another study (Damoiseaux et al. 2008) attempted to

account for between-age-group morphological variations

by adding the averaged gray-matter volume of all the

default network regions as an independent variable in

their statistical analysis. The problem associated with this

approach is that the variation in the subjects’ brain size

even within groups is significantly high. This issue is

often addressed by normalizing the gray-matter volume

with intracranial volume. However, Damoiseaux et al.

(2008) dealt with this problem by affine transferring the

subjects’ brains into a standard space. In other words, the

subjects’ brain volumes were increased/decreased to

match to the size of the standard brain (which possibly

removed the effect of atrophy) and then the averaged gray

matter was computed. This would be much more com-

pelling if it is done in native space.

It has been common practice to average the left and

right hemispheres’ resting-state BOLD fMRI data to

achieve higher statistical power in the correlation values

(Vincent et al. 2006; Andrews-Hanna et al. 2007). We

directly examined the effect of interhemispheric averaging.

We averaged the corresponding regional time series in left

and right hemispheres in our data and reported the

results in Figures 7 and 8. Interhemispheric averaging

produced nine interregional pairs in DMN, whose func-

tional connectivity differed significantly by age, but none

of these findings survived Bonferroni correction. These

observed significant findings were not detected in the

individual hemispheres by both the native space method

and the prevailing method by SMP8. Importantly, the sig-

nificant age-related change in functional connectivity

between SF and SM in the right hemisphere was lost by

interhemispheric averaging. In cases where mean func-

tional connectivity is small, interhemispheric averaging

tended to increase the functional connectivity. However,

there are also some regions (e.g., IP and SM) for

which measured functional connectivity was reduced by

interhemispheric averaging. These results suggest that in-

terhemispheric averaging has a mixed effect (Razlighi et

al. 2013). Our findings also suggest that the disruption in

the DMN is distinct for each hemisphere, and averaging

across hemispheres may obscure important information.

We also examined the relationship between the magni-

tude of functional connectivity and cognitive performance
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on four factors (memory, speed of processing, general fluid

ability, and vocabulary) in regions where age-related dif-

ferences in connectivity were noted. Connectivity between

SM and SF was correlated with cognition in both groups;

however, the cognitive domains that correlated with the

magnitude of functional connectivity in that region dif-

fered for the young and elder groups. Although the nat-

ure of the relationship between functional connectivity

and cognition in this age-sensitive region requires further

study to fully understand the associations, the correlation

with cognition suggests that connectivity between these

two regions may have functional significance.

Beside DMN, there are other resting-state networks

that are reported in the literature (Raichle 2011) such as

dorsal attention network, executive control network, etc.

We also used our native space method to examine any

age-related changes in the pair-wise functional connectivi-

ties between main nodes of these networks. However,

none of the findings survived Bonferroni correction.

Another important consideration in measuring func-

tional connectivity with Pearson correlation coefficients is

effect size. This has often been ignored in the literature.

As we are quantifying functional connectivity by comput-

ing the Pearson correlation coefficient between two BOLD

signals with 285 times points, a simple T-test might not

be sufficient to make a meaningful conclusion on data

with very small correlation (<0.2). The effect size also

plays an important role and needs to be considered in

drawing any statistical inference. The effect size in the

functional connectivity between SM and SF in this study

was about 0.5, which was larger than the effect sizes for

remaining six findings that did not survive Bonferroni

correction. It is evident from Figure 6 that the prevailing

method of spatial normalization and smoothing reduces

the effect size significantly. In fact, six of eight significant

age-related DMN connectivity changes reported in

Andrews-Hanna et al. (2007) have effect size smaller than

0.2. The large effect size in our significant findings on the

right hemisphere can be considered as additional evidence

that age-related disruption in resting-state BOLD fMRI

functional connectivity is a unilateral phenomenon in the

human brain.

The proposed native space method uses an fMRI local-

ization algorithm which is based on gross morphological

features of the brain; however, we should emphasize that

functional units/nodes or cytoarchitecture in the brain do

not necessarily match morphological features such as

sulci and gyri. In addition, cytoarchitecture is highly vari-

able between individuals. Thus, the proposed native space

method should be considered as one step forward toward

perfecting intersubject alignment, but by no mean will it

completely remove all uncertainties. In addition, the exis-

tence of EPI distortion in fMRI image and our lack of

reverse polarity acquisition to correct for it forced us to

visually inspect the accuracy of intermodal registration in

all 51 subjects in the data set. As the regional time series

are obtained by averaging all voxels within a region, an

inaccuracy of up to a voxel size was tolerated in this

work without having a significant impact on the final

results.

Analysis of the fMRI data in subjects’ native space has

a very high level of spatial correspondence accuracy in

comparison with approaches that use spatial normaliza-

tion into common space, but it is forced into a set of pre-

defined regions motivated by the neuroanatomy of the

human brain. Nonetheless, the method is extendable to

any different set of brain regions. For this study, we used

FreeSurfers’ predefined cortical and subcortical regions.

Localization accuracy of native space method directly

depends on the accuracy of the underlying T1 image seg-

mentation. Thus, any inaccuracy in the underlying T1

image segmentation will directly affect the localization

accuracy in the native space. Even though FreeSurfer seg-

mentation was reported to be comparable to manual seg-

mentation (which is the silver standard in the field), an

extra effort was made to check the accuracy of the under-

lying segmentation. We manually double-checked the

FreeSurfer’s results for any possible error, and corrections

were made when needed.

By analyzing the resting-state BOLD fMRI data in sub-

jects’ native space, we achieved a higher between-subject

localization accuracy which increased our statistical power

to detect alterations in DMN connectivity in each hemi-

sphere independently. Such advantages made the detec-

tion of significant unilateral disruption in the connectivity

of DMN possible. The prevailing method of spatial nor-

malization and smoothing failed to find such effect under

the same conditions. In addition, the commonly accepted

practice of interhemispheric averaging not only prevents

analysis of two hemispheres independently, it also

appeared to be a separate source of inaccuracy and seems

to be problematic in practice. Our unilateral significant

finding between supramarginal gyrus and superior-frontal

cortex survived Bonferroni correction, had a large effect

size, and correlated with cognitive performance. These

observations support the hypothesis of unilateral disrup-

tion of DMN; however, replication of these findings with

a larger number of samples is needed to further validate

this hypothesis.

Acknowledgment

This work was supported by NIA R01 AG026158, K01

AG044467, and T32 AG000261. We thank Nikhil Chandra

and Deirdre O’Shea for their help in data collection, MRI

data reconstruction, and correction.

ª 2013 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. 155

Q. R. Razlighi et al. Unilateral Disruptions in the Default Network



Conflict of Interest

None declared.

References

Andrews-Hanna, J. R., A. Z. Snyder, J. L. Vincent, C. Lustig,

D. Head, M. E. Raichle, et al. 2007. Disruption of large-scale

brain systems in advanced aging. Neuron 56:924–935.

Avants, B. B., N. J. Tustison, G. Song, P. A. Cook, A. Klein,

and J. C. Gee. 2011. A reproducible evaluation of ANTs

similarity metric performance in brain image registration.

Neuroimage 54:2033–2044.

Beason-Held, L. L., M. A. Kraut, and S. M. Resnick. 2009.

Stability of default-mode network activity in the aging brain.

Brain Imaging Behav. 3:123–131.

Birn, R. M., J. B. Diamond, M. A. Smith, and P. A. Bandettini.

2006. Separating respiratory-variation-related fluctuations

from neuronal-activity-related fluctuations in fMRI.

Neuroimage 31:1536–1548.

Bluhm, R., E. Osuch, R. Lanius, and K. Boksman. 2008.

Default mode network connectivity: effects of age, sex, and

analytic approach. Neuroreport 19:887–891.

Buckner, R. L., and J. L. Vincent. 2007. Unrest at rest: default

activity and spontaneous network correlations. Neuroimage

37:1091–1096; discussion 1097–9.

Buckner, R. L., J. R. Andrews-Hanna, and D. L. Schacter.

2008. The brain’s default network: anatomy, function, and

relevance to disease. Ann. N. Y. Acad. Sci. 1124:1–38.

Buschke, H., and P. A. Fuld. 1974. Evaluating storage,

retention and retrieval in disordered memory and learning.

Neurology 24:1725.

Cabeza, R. 2002. Hemispheric asymmetry reduction in older

adults: the HAROLD model. Psychol. Aging 17:85–100.

Carp, J. 2013. Optimizing the order of operations for

movement scrubbing: comment on Power et al. Neuroimage

76:436–438.

Damoiseaux, J. S., C. F. Beckmann, E. J. S. Arigita, F. Barkhof,

P. Scheltens, C. J. Stam, et al. 2008. Reduced resting-state

brain activity in the “default network” in normal aging.

Cereb. Cortex (New York, N.Y.: 1991) 18:1856–1864.

Fischl, B., D. H. Salat, E. Busa, M. Albert, M. Dieterich, and

C. Haselgrove. 2002. Whole brain segmentation: automated

labeling of neuroanatomical structures in the human brain.

Neuron 33:341–355.

Fischl, B., A. Van Der Kouwe, C. Destrieux, E. Halgren,

F. S�egonne, D. H. Salat, et al. 2004. Automatically parcellating

the human cerebral cortex. Cereb. Cortex 14:11–22.

Gholipour, A., N. Kehtarnavaz, R. Briggs, M. Devous, and

K. Gopinath. 2007. Brain functional localization: a survey of

image registration techniques. IEEE Trans. Med. Imaging

26:427–451.

Golden, C. J. 1975. A group version of the stroop color and

word test. J. Pers. Assess. 39:386–388.

Greve, D. N., and B. Fischl. 2009. Accurate and robust brain

image alignment using boundary-based registration.

Neuroimage 48:63–72.

Grober, E., and M. Sliwinski. 1991. Development and

validation of a model for estimating premorbid verbal

intelligence in the elderly. J. Clin. Exp. Neuropsychol.

13:933–949.

Hafkemeijer, A., J. van der Grond, and S. A. R. B. Rombouts.

2012. Imaging the default mode network in aging and

dementia. Biochim. Biophys. Acta 1822:431–441.

Hedden, T., K. R. A. Van Dijk, J. A. Becker, A. Mehta, R. A.

Sperling, K. A. Johnson, et al. 2009. Disruption of

functional connectivity in clinically normal older adults

harboring amyloid burden. J. Neurosci. 29:12686–12694.

Jenkinson, M., and S. Smith. 2001. A global optimisation

method for robust affine registration of brain images. Med.

Image Anal. 5:143–156.

Jenkinson, M., P. Bannister, M. Brady, and S. Smith. 2002.

Improved optimization for the robust and accurate linear

registration and motion correction of brain images.

Neuroimage 17:825–841.

Jenkinson, M., C. F. Beckmann, T. E. J. Behrens, M. W.

Woolrich, and S. M. Smith. 2012. FSL. Neuroimage 62:782–

790.

Koch, W., S. Teipel, S. Mueller, K. Buerger, A. L. W. Bokde,

H. Hampel, et al. 2010. Effects of aging on default mode

network activity in resting state fMRI: does the method of

analysis matter? Neuroimage 51:280–287.

Lezak, M. D., D. B. Howieson, and D. W. Loring. 2004.

Neuropsychological assessment. 4th ed. Oxford Univ. Press,

New York, NY.

Lu, H., F. Xu, K. M. Rodrigue, K. M. Kennedy, Y. Cheng,

B. Flicker, et al. 2011. Alterations in cerebral metabolic rate

and blood supply across the adult lifespan. Cereb. Cortex

(New York, N.Y.: 1991) 21:1426–1434.

Mevel, K., G. Ch�etelat, F. Eustache, and B. Desgranges. 2011.

The default mode network in healthy aging and Alzheimer’s

disease. Int. J. Alzheimers Dis. 2011:535816.

Muthen, L., and B. Muthen. 1998. Mplus user’s guide. Muthen

& Muthen, Los Angeles.

Persson, J., and L. Nyberg. 2006. Altered brain activity in

healthy seniors: what does it mean? Prog. Brain Res. 157:45–

56.

Power, J. D., K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and

S. E. Petersen. 2012. Spurious but systematic correlations in

functional connectivity MRI networks arise from subject

motion. Neuroimage 59:2142–2154.

Raichle, M. E. 2009. A brief history of human brain mapping.

Trends Neurosci. 32:118–126.

Raichle, M. E. 2011. The restless brain. Brain Connect. 1:3–12.

Razlighi, Q. R., J. Steffener, C. Habeck, A. Laine, and Y. Stern.

2013. Resting state inter and intra hemispheric human brain

functional connectivity. Pp. 6522–6525 in IEEE Conference

156 ª 2013 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

Unilateral Disruptions in the Default Network Q. R. Razlighi et al.



Proceeding for Engineering in Medicine and Biology Society

(EMBC).

Seibert, T. M., and J. B. Brewer. 2011. Default network

correlations analyzed on native surfaces. J. Neurosci.

Methods 198:301–311.

Seibert, T. M., D. S. A. Majid, A. R. Aron, J. Corey-Bloom, and

J. B. Brewer. 2012. Stability of resting fMRI interregional

correlations analyzed in subject-native space: a one-year

longitudinal study in healthy adults and premanifest

Huntington’s disease. Neuroimage 59:2452–2463.

Smith, S. M., K. L. Miller, G. Salimi-Khorshidi, M. Webster,

C. F. Beckmann, T. E. Nichols, et al. 2011. Network

modelling methods for FMRI. Neuroimage 54:875–891.

Van Dijk, K. R. A., M. R. Sabuncu, and R. L. Buckner. 2012.

The influence of head motion on intrinsic functional

connectivity MRI. Neuroimage 59:431–438.

Vincent, J. L., A. Z. Snyder, M. D. Fox, B. J. Shannon, J. R.

Andrews, M. E. Raichle, et al. 2006. Coherent spontaneous

activity identifies a hippocampal-parietal memory network.

J. Neurophysiol. 96:3517–3531.

Wechsler, D. 1997. Wechsler adult intelligence scale—third

edition intelligence. The Psychological Corporation, New

York.

Wechsler, D. 2001. The Wechsler Test of Adult Reading

(WTAR): test manual. The Psychological Corporation, San

Antonio.

Wu, X., R. Li, A. S. Fleisher, E. M. Reiman, X. Guan, Y.

Zhang, et al. 2011. Altered default mode network

connectivity in Alzheimer’s disease–a resting functional MRI

and Bayesian network study. Hum. Brain Mapp. 32:1868–

1881.

Yassa, M. A., and C. E. L. Stark. 2009. A quantitative

evaluation of cross-participant registration techniques for

MRI studies of the medial temporal lobe. Neuroimage

44:319–327.

ª 2013 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. 157

Q. R. Razlighi et al. Unilateral Disruptions in the Default Network


