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Analyses of large test batteries administered to individuals ranging from young to old have consistently yielded a
set of latent variables representing reference abilities (RAs) that capture the majority of the variance in age-
related cognitive change: Episodic Memory, Fluid Reasoning, Perceptual Processing Speed, and Vocabulary. In a
previous paper (Stern et al., 2014), we introduced the Reference Ability Neural Network Study, which adminis-
ters 12 cognitive neuroimaging tasks (3 for each RA) to healthy adults age 20–80 in order to derive unique neural
networks underlying these 4 RAs and investigate how these networks may be affected by aging.
We used a multivariate approach, linear indicator regression, to derive a unique covariance pattern or Reference
Ability Neural Network (RANN) for each of the 4 RAs. The RANNs were derived from the neural task data of 64
younger adults of age 30 and below. We then prospectively applied the RANNs to fMRI data from the remaining
sample of 227 adults of age 31 and above in order to classify each subject-taskmap into one of the 4 possible ref-
erence domains. Overall classification accuracy across subjects in the sample age 31 and above was 0.80 ± 0.18.
Classification accuracy by RA domainwas also good, but variable; memory: 0.72 ± 0.32; reasoning: 0.75 ± 0.35;
speed: 0.79 ± 0.31; vocabulary: 0.94 ± 0.16. Classification accuracy was not associated with cross-sectional age,
suggesting that these networks, and their specificity to the respective reference domain, might remain intact
throughout the age range. Higher mean brain volume was correlated with increased overall classification
accuracy; better overall performance on the tasks in the scanner was also associatedwith classification accuracy.
For the RANN network scores, we observed for each RANN that a higher score was associated with a higher cor-
responding classification accuracy for that reference ability. Despite the absence of behavioral performance infor-
mation in the derivation of these networks, we also observed some brain–behavioral correlations, notably for the
fluid-reasoning network whose network score correlated with performance on thememory and fluid-reasoning
tasks. While age did not influence the expression of this RANN, the slope of the association between network
score andfluid-reasoning performancewas negatively associatedwith higher ages. These results provide support
for the hypothesis that a set of specific, age-invariant neural networks underlies these four RAs, and that these
networks maintain their cognitive specificity and level of intensity across age.
Activation common to all 12 tasks was identified as another activation pattern resulting from a mean-contrast
Partial-Least-Squares technique. This common pattern did show associations with age and some subject demo-
graphics for some of the reference domains, lending support to the overall conclusion that aspects of neural pro-
cessing that are specific to any cognitive reference ability stay constant across age,while aspects that are common
to all reference abilities differ across age.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Analyses of large test batteries administered to individuals ranging
from young to old, have consistently yielded latent variables, or refer-
ence abilities (RAs) that capture the majority of the variance in age-
).
related cognitive change. Salthouse et al. have identified four domains:
episodic memory, fluid reasoning, perceptual speed, and vocabulary
(Salthouse, 2005, 2009; Salthouse et al., 2008). Based on these findings,
Salthouse et al. have argued that a productive and efficient approach to
cognitive aging research is to try to understand how aging impacts
performance of this small set of RAs, rather than on specific tasks
(Salthouse and Ferrer-Caja, 2003). Similarly, for cognitive neuroimaging
research in aging the emphasis on age-related differences in a set of
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broad neural networks underlying the reference abilities for the four
cognitive domains would be more productive than a piecemeal ap-
proach focusing on separate individual tasks without consideration of
commonalities between these tasks. This would allow us to more reli-
ably explore the neural basis of aging's influence on key cognitive abili-
ties. The Reference Ability Neural Network (RANN) Study is designed to
identify networks of brain activity uniquely associated with perfor-
mance across adulthood of each of the four reference abilities described
above. In the RANN study, 12 tasks, three from each domain, that have
reliably been associated with the corresponding RA, are administered
to subjects in the scanner. Using analytic approaches that parallel
those used to derive latent variables from cognitive psychometric
data, we aim to determine whether four spatial fMRI networks can be
derived that serve as the neural substrate for the latent cognitive struc-
ture of the reference abilities.

In a previous report (Stern et al., 2014) we introduced the RANN
study and presented details of its acquisition and analysis procedures.
We described an analysis intended to provide an initial representation
of actual RANNs for each ability. We used a general linear model ap-
proach to summarize each subject's activation for each task into a single
contrast.We then used amultivariate technique, linear indicator regres-
sion analysis, to derive four unique linear combinations of Principal
Components (PC) of imaging data, one for each RA.We then investigat-
ed the ability of these constructed patterns to predict the reference do-
main using the activation of individual subjects for each task in held-out
data. Median accuracy rates for associating component task activation
with its corresponding reference ability were quite good: memory:
76%; reasoning: 82%; speed: 79%; vocabulary: 71%. We took this as an
indication that it will be possible to identify unique networks associated
with each reference ability.

Here we report an extension of this analysis in a larger group of par-
ticipants. In our original report, we attempted to identify networks
unique to each ability using data from subjects of all ages. Since the
RANN study is intended to understand the sources of age-related cogni-
tive change, it would be important to identify RANNs in younger people,
and then investigate how these networks change as a function of aging.
In the current study, we again used linear indicator regression analysis
to derive a unique spatial covariance pattern (from a set of Principal
Components) for each reference ability, but this analysis focused only
on 64 individuals age 30 and below. We then investigated whether ex-
pression of these covariance patterns could successfully predict the ref-
erence domain associated with the activation of individual subjects and
tasks in participants age 31 to 80. To the extent that these patterns are
consistently expressed across age, this association should remain stable.
However, a worsening in the ability to categorize abilities for older par-
ticipantsmight indicate some age-related change. To the extent that we
observed differences in classification accuracy, we planned to investi-
gate the basis of these differences taking several approaches. Here we
assessed whether classification accuracy 1) was lower for higher age
for specific reference abilities or specific individuals, 2) was associated
with the degree to which these patternswere expressed, and 3)was as-
sociatedwith observed age differences inmean cortical volume, cortical
thickness and white-matter hyper-intensity burden. In addition to the
activation particular to each reference domain, we also identified a
common activation pattern in the derivation sample of participants
aged 20–30. Brain-behavioral correlations and correlation with demo-
graphics was also assessed in the validation sample of participants
aged 31 and above.

Material and Methods

Subjects

291 healthy adults were included in these analyses. All subjects are
native English speakers, strongly right-handed, and have at least a
fourth grade reading level. Subjects were screened for MRI
contraindications and hearing or visual impairment that would impede
testing. Subjects were free of medical or psychiatric conditions that
could affect cognition. Careful screening ensured that the elder subjects
did not meet criteria for dementia or Mild Cognitive Impairment (MCI).
A score greater than 130 was required on the Mattis Dementia Rating
Scale (Mattis, 1988). Further, performance was required to be within
age-adjusted normal limits on a list-learning test, and participants
were required to have no orminimal complaints on a functional impair-
ment questionnaire (Blessed et al., 1968).

Procedure

All subjects completed screening for dementia orMCI prior to partic-
ipating in the remainder of the study. They participated in two 2-hour
scanning sessions. Six tasks were administered in each session in the
context of fMRI studies. One session presented three Vocabulary tasks
and three Perceptual Speed tasks interspersed in a fixed order: Syno-
nyms, Digit-Symbol, Antonyms, Letter Comparison, Picture Naming,
and Pattern Comparison; and the other session presented three Episodic
Memory tasks and three Fluid Reasoning tasks, also interspersed in a
fixed order: Logical Memory, Paper Folding, Word Order Recognition,
Matrix Reasoning, Paired Associates, Letter Sets. The order of taskswith-
in session was not varied, but the order of the two sessions was
counterbalanced across subjects, with equal numbers having each
order. The activation tasks were supplemented with other imaging pro-
cedures described below. At a separate session subjects completed a
battery of neuropsychological tests as well as a set of questionnaires.
These will not be discussed in the current report.

Stimulus presentation
Task stimuli were back-projected onto a screen located at the foot of

theMRI bed using an LCD projector. Participants viewed the screen via a
mirror system located in the head coil and, if needed, had vision
corrected to normal using MR compatible glasses (manufactured by
SafeVision, LLC. Webster Groves, MO). Responses were made on a
LUMItouch response system (Photon Control Company). Task adminis-
tration and collection of reaction time (RT) and accuracy data were con-
trolled by EPrime (v2.08) running on a PC computer. Task onset was
electronically synchronized with the MRI acquisition computer.

Reference Ability tasks
In the scanner, participants performed a battery of twelve computer-

ized tasks based on the cognitive tasks that have been used to derive the
RAs addressed in this report. Prior to the scan session, computerized
training was administered for the six tasks included in that session. At
the completion of training for each task, participants had the option of
repeating the training. The tasks are described in detail in (Stern et al.,
2014). For all tasks, except picture naming, responses were differential
button presses. During training, responses were made on the computer
keyboard and during scans theyweremade on the LUMItouch response
system.

In the remainder of themanuscript, we will use the following short-
handnotation for the reference abilities: episodicmemory—MEM,fluid
reasoning— FLUID, perceptual processing speed — SPEED, and vocabu-
lary — VOCAB.

Vocabulary Tests. The primary dependent variable for all VOCAB tasks is
the proportion of correct items.

Synonyms (Salthouse, 1993). Subjects have to match a given word to
its synonym, or to the wordmost similar inmeaning. The probe word is
presented in all capital letters at the top of the screen, and four num-
bered choices are presented below.

Antonyms (Salthouse, 1993). Participants match a given word to its
antonym, or to the word most different in meaning.
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Picture Naming. Subjects have to verbally name pictures, adapted
from the picture naming task of the WJ-R Psycho-Educational battery
(Salthouse, 1998; Woodcock et al., 1989).

Perceptual Speed Tests. The primary dependent variable for all SPEED
tasks is RT.

Digit Symbol. A code table is presented on the top of the screen,
consisting of numbers one through nine, each paired with an associated
symbol. Below the code table an individual number/symbol pair is pre-
sented. Subjects are asked to indicate whether the individual pair is the
same as that in the code table using a differential button press. Subjects
are instructed to respond as quickly and accurately as possible.

Letter Comparison (Salthouse and Babcock, 1991). In this task, two
strings of letters, each consisting of three to five letters, are presented
alongside one another. Subjects indicate whether the strings are the
same or different using a differential button press.

Pattern Comparison (Salthouse and Babcock, 1991). Two figures
consisting of varying numbers of lines connecting at different angles
are presented alongside one another. Subjects indicate whether the
figures were the same or different by a differential button press.

Fluid Reasoning Tests. The primary dependent variable for FLUID tasks is
proportion of correct trials completed.

Paper Folding (Ekstrom et al., 1976). Subjects select a pattern of holes
(from five options) that would result from a sequence of folds in a piece
of paper, through which a hole is then punched. The sequence is given
on the top of the screen, and the five options are given in a row
below. Response consisted of pressing 1 of 5 buttons corresponding to
the chosen solution.

Matrix Reasoning (adapted from (Raven, 1962)). Subjects are given a
matrix that is divided into nine cells, in which the figure in the bottom
right cell is missing. Below the matrix, they are given eight figure
choices, and they are instructed to evaluate which of the figures
would best complete the missing cell.

Letter Sets (Ekstrom et al., 1976). Subjects are presentedwith five sets
of letters, where four out of the five sets have a common rule (i.e. have
no vowels), with one of the sets not following this rule. Subjects are
instructed to select the unique set.

Episodic Memory Tests. Note that for the MEM tasks, both the study and
test phases were imaged and cannot be separated. The primary depen-
dent variable for the memory tests is proportion of correctly answered
questions.

Logical Memory. Stories are presented on the computer screen. The
subject is asked to answer detailed multiple-choice questions about
the story, with four possible answer choices.

Word Order Recognition. A list of twelve words is presented one at a
time on the screen, and subjects are instructed to remember the order in
which thewords are presented. Following theword list they are given a
probe word at the top of the screen, and four additional word choices
below. They are instructed to choose out of the four options the word
that immediately followed the word given above.

Paired Associates. Pairs of words are presented, one at a time, on the
screen, and subjects are instructed to remember the pairs. Following the
pairs, they were given a probe word at the top of the screen and four
additional word choices below. Subjects were asked to choose the
word that was originally paired with the probe word.

Image acquisition procedures
All MR images were acquired on a 3.0T Philips Achieva Magnet.

There were two 2-hour MR imaging sessions to accommodate the
twelve fMRI tasks as well as the additional imaging modalities. At
each session, first a scout, T1-weighted image was acquired to deter-
mine patient position. All scans used a 240 mm field of view. For the
EPI acquisition, the parameters were: TE/TR (ms) 20/2000; Flip Angle
72 degrees; In-plane resolution (voxels) 112x112; Slice thickness/gap
(mm) 3/0; Slices 41. In addition, MPRAGE, FLAIR, DTI, ASL and a 7-
minute resting BOLD scan were acquired. A neuroradiologist reviewed
each subject's scans. Any significant findings were conveyed to the
subject's primary care physician.

Behavioral performance variables
Behavioral performance was recorded while subjects executed the

tasks in the scanner. To ensure that we included data only from in-
stances where subjects were performing the task, we eliminated data
from any task where the participant's performance was at chance or
lower. For the SPEED tasks, we required accuracy of 75% or greater be-
cause the focus was on the speed of performance as represented by re-
action time. Z-scores were computed for all twelve behavioral variables
based on the entire study group. For the SPEED tasks, the behavioral Z-
scoreswere reversed in sign, such that an increasing value of the behav-
ioral Z-score implied better performance.

A small portion of scans (78 scans = 2.7% of the number of finally
used scans) did not have information about behavioral performance re-
corded due to technical difficulties.Wedecided to include these scans in
the analysis. Thedanger of type-II error, i.e. “washingout” true effects by
including null observations, in our estimation, outweighed the danger
of type-I error. For any brain-behavioral correlations and computations,
these scans were left out.

Image analysis pre-processing procedures

Structural neuroimaging. Each subject's structural T1 scans were recon-
structed using FreeSurfer v5.1 (http://surfer.nmr.mgh.harvard.edu/).
The accuracy of FreeSurfer's subcortical segmentation and cortical
parcellation (Fischl et al., 2002, 2004) has been reported to be compara-
ble tomanual labeling. Each subject's white and graymatter boundaries
aswell as graymatter and cerebral spinal fluid boundaries were visually
inspected slice by slice, manual control points were added in the case of
any visible discrepancy, and reconstruction was repeated until we
reached satisfactory results within every subject. The subcortical struc-
ture borders were plotted by FreeView visualization tools and com-
pared against the actual brain regions. In case of discrepancy, they
were correctedmanually. Finally, we computedmean values for 68 cor-
tical regions of interests (ROIs) for cortical thickness and cortical vol-
ume for each participant to be used in group-level analyses.

White-matter hyper-intensities were obtained from FLAIR images
according to the protocol outlined by Brickman et al. (2011).

Functional neuroimaging. Each individual's 12 fMRI scans were pre-
processed in the same manner using the FSL software package (Smith
et al., 2004). The processing of the functional imaging data involved
the following basic steps: 1) within-subject histogram computation
for each subject volume to identify noise (FEAT); 2) subject-motion cor-
rection (MCFLIRT); 3) slice-timing correction; 4) brain-mask creation
from first volume in subject's fMRI data; 5) high-pass filtering (T =
128 sec); 6) pre-whitening; 7) General-Linear-Model (GLM) estimation
with equally temporally filtered regressors and double-gamma hemo-
dynamic response functions; 8) registration of functional and structural
images with subsequent normalization into MNI space (FNIRT).

GLM for each subject and each task consisted of block-based time-
series analysis for SPEED, MEM, and VOCAB tasks and event-related
modeling for FLUID tasks (to separate out correct and incorrect trials)
using FEAT in FSL. For group analysis, contrary to the usual voxel-wise
FSL practice, we obtained standardized contrast images for every
subject and task to perform group-level multivariate analysis (next
section). Contrast images captured all brain activation pertinent to all
cognitive processes present in the task in a broad contrast of “task
performance vs fixation cross”; there was no separation of stimulus
presentation and behavioral response in our task design, which would
have been prohibitive in terms of complexity and time.

http://surfer.nmr.mgh.harvard.edu/
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Derivation of RANNs with linear-indicator regression in participants up to
age 30

This analysis intended to use a multivariate approach to derive 4
RANNs that were best associated with the 3 tasks in each RA. We used
a linear-indicator regression approach (Hastie et al., 2009). This
approach decomposes activation in each task to a set of PCs and then
derives the optimal combination of PCs that discriminates between
the 3 tasks in a RA and the other 9 tasks. By design, this analysis was re-
stricted to 64 participants up to 30 years in age. These 64 participants
accounted for 593 subject-and-task parametric maps.

First, a Principal Components Analysis was run on the 593maps, and
the individual pattern scores, or Subject Scaling Factors (SSF), for the
first 200 PCs were obtained by an inner product of all 200 PCs with
the 593 maps. Concretely, the pattern score matrix SSF is computed
with the following multiplication,

SSF i; kð Þ ¼ Y :; ið ÞtV :; kð Þ

where i denotes the subject-task index and runs from 1 to 593, Y(:,i)
represents one activation map, i.e. the ith column in matrix Y, and k in-
dicates the PC index, running from 1 to 200. V(:,k) is this the kth column
in thematrix of Principal Components, V. Bothmatrices Y andV have as
many rows as voxels in the brain. Selected columns of the array SSF
were then used as independent variables in a subsequent linear-
indicator regression (Hastie et al., 2009) to predict an indicator matrix
I. I had 593 rows and 4 columns, and places a value of 1 in the appropri-
ate column depending on the RA domain that the task-map belongs to
and was indexed by the row position. Summing over all entries in I re-
covers the total number of maps in the analysis: 593. The regression
equation can be written as

I ¼ SSF :;1 : kð Þ 1½ � Β þ error

where SSF(:,1:k) is the array of pattern scores for the first k PCs, and 1
denotes an intercept term. B is an array of regression weights of format
(k +1) × 4. The corresponding 4 RANNs were constructed by applying
the regression weights to the PCs according to

RANN ¼ V :;1 : kð Þ Β :;1 : 4ð Þ

To select an optimal set of PCs, i.e. the best number k of included PCs,
we used a goodness-of-fit measure, the AIC criterion (Burnham and
Anderson, 2002), computed for each of the 4 dependent variables in
the indicator matrix to arrive at an average value for each set of PCs.
AIC picks an optimal bias-variance tradeoff and minimizes the residual
sum of squares, while keeping the number of parameters in the model
at a minimum.We picked k according to the AIC criterion, i.e. we varied
k from 1 to 200, running the linear-indicator regression each time, and
chose k such that AICwasminimal. For the case that several very similar
local minima in the AIC curve were present, we decided beforehand to
take the setwith theminimumnumber of PCs, to keep the variance con-
tribution in the data as large as possible.

Once k was determined, we performed the linear-indicator regres-
sion for the full sample and computed the RANNs. To determine the ro-
bustness of RANN voxel-loadings, we performed a semi-parametric
bootstrap resampling procedure (Efron and Tibshirani, 1998) with 500
iterations, which resampled from the full 593 scans with replacement,
each time performing the derivation of the RANNs. The variability of
the voxel loadings in the bootstrap resampling procedure around the
point estimate values can be approximated as a Z value at voxel location
i according to the formula

Z ið Þ ¼ RANN ið Þ = bootstrap−STD ið Þ

Robust loadings fulfill |Z| N 3 and are visualized in the four RANN
images.
Investigating the ability of RANNS to Predict RA domains in
participants N age 30

Next, we investigated the ability of the RANNs derived in this
younger group to predict the underlying RA domain for any individual
subject's activation from the subjects aged 31–80.

For any scan y, a prediction of the reference label can be made
according to

L ¼ yV :;1 : kð Þ’ 1½ � Β:
L is 1 x 4 row vector and contains the degree to which the scan loads

onto each RANN, while V and B have already been determined from the
younger subjects' data. The biggest loading determines the predicted
reference-domain label. Themetric chosen for quantifying classification
performance was mean prediction accuracy, computed as the propor-
tion of hits for each reference ability. Overall classification accuracy, as
well as classification accuracy for each ability was calculated.

We then explored potential correlates of classification accuracy by
correlating it with structural, performance and demographic covariates.

Computing subject expression of the RANNs
For every one of the 291 participants, the 4 expression scores were

calculated by computing the inner product of each RANNwith its corre-
sponding task maps (up to 3) for that participant, and averaging the
expression values across tasks. For instance, if we assume that a partic-
ipant has all 3 task maps for the MEM domain available (i.e. Logical
Memory, Word Order and Pairs Associates) and these 3 maps are as-
sembled in a matrix Y that has as many rows as voxels, and 3 columns,
and theMEM–RANN is represented by a column vector, v, we can com-
pute a 3-row expression vector according to the inner product

Y’v

with a subsequent average across all 3 tasks, to arrive at a single score.
This is done in analogous fashion for the other reference domains as
well. If only 2 of the 3 tasks of a reference domain are present, the aver-
age is performed across the subset of 2 tasks. If only one task is available,
no averaging is necessary. If no task is present for this reference domain
in this participant, no score can be computed and the participant is left
out of any brain-behavioral correlations.

Derivation of common task-activation pattern in participants up to age 30
Sincemany cognitive processes related to stimulus presentation and

behavioral response are likely to be common to all 12 tasks with sub-
stantial variance contributions and possible age effects, we decided to
derive a common activation pattern as well. The derivation sample
from which this common activation pattern was derived was the
same as in Section 2.2.6, i.e. all 593 task-activation maps of participants
between the ages of 20 and 30. A simple mean-contrast Partial Least
Squares (PLS) routine (McIntosh et al., 1996; McIntosh and Lobaugh,
2004) was employed, i.e. 12 mean-contrast maps were computed, one
per task, and then submitted to a PCA. The first Principal Component
was taken as the point estimate of the common activation pattern.
Robustness of voxel loadings was again assessed with a bootstrap
procedure (Efron and Tibshirani, 1998) with 500 iterations.

Pattern scores of the common pattern are computed in a manner
identical to the approach outlined in Section 2.2.8, and result in one
score per participant per reference domain. Brain–behavioral correla-
tions are likewise performed in an identical manner to 2.2.8.

Beyond these brain–behavioral correlations, we can also obtain pat-
tern scores separately for each task, and ask whether tasks that belong
to the same reference domain show a higher common-pattern-score
correlation than tasks belong to different reference domains. We have
4 x 3 = 12 pairings of tasks within reference domain, and 6 x 9 = 54
pairings between reference domains. The average difference in Fisher-
Z correlation can be used as a statistic to ascertain convergent and
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discriminant validity, i.e. tasks belonging to the same reference domain
should display high correlation, while tasks belonging to different
domains should display low correlation, making the overall difference

ΔZ ¼ Z withinð Þ–Z betweenð Þ

as large as possible. ΔZ can be used as a statistic in a permutation test—
(1) to ascertain construct validity per se, and (2) to compare the two age
groups, and check whether the older participants show a lower value of
ΔZ, interpretable as ‘dedifferentiation’ in the deployment of the com-
mon activation pattern. For (1) generation of the null distribution im-
plies a permutation of reference-domain labels of the 12 tasks; for
(2) the null distribution is generated by permuting participants be-
tween the derivation and validation sample.

Age-specific derivation of common pattern
In addition to ascertaining how the common pattern derived in

young people manifests in middle-aged and older adults, we can per-
form the pattern derivation for each age decade separately via the
mean-contrast PLS analysis steps outlined in the previous section.

For each pattern we can read off the percentage variance accounted
for (%VAF) simply by the magnitude of the first Eigen value, and check
whether %VAF shows any association with age. Further, we can also
compute the spatial correlation coefficients (Fisher-Z) between the
common patterns of different age decades. Themaximal age gap is 5 de-
cades, with one correlation coefficient between decades 2 and 7. For an
age gap of 4 decades, we have 2 correlation coefficients: the correlation
betweendecades 2 and 6, and betweendecades 3 and 7.We can average
all available correlation coefficients for all 5 age gaps and plot the
strength of the correlation against the age gap.

For the relationships between %VAF and age, as well as spatial corre-
lation and age gap, we can perform inferential tests of linear trendswith
permutation tests of 1,000 iterations, for which participants will be ran-
domly shuffled between age decades. For the resulting %VAF and spatial
correlation of the ensuing null patterns we will compute the linear
trend again to generate null distributions. Two-tailed tests will check
whether the point estimate linear trends in both %VAF and spatial
correlation fall in the tail of the null distributions, and approximate
the p-level as the fraction of iterations causing more extreme slope
parameters as in the point estimate.

Results

Subject Demographics

Demographic features of the study participants are summarized in
Table 1.

Scanning statistics are shown in Fig. 1. We allowed incomplete data
sets and utilized every admissible scan in our analysis. For the 291 par-
ticipants, there were 3,137 parametric task maps. Applying stringent
screens and demanding above-chanceperformance in the scanner elim-
inated 193 maps (~6%), leaving 2,944 task-subject maps for analysis.
Table 1
Participant demographics and brain measures.

Age 20–29 Age 30–39

N 60 53
Sex 20 M, 40 F 19 M, 34 F
Education (years) 15.7 ± 2.1 16.3 ± 2.6
DRS total 140.1 ± 2.5 139.8 ± 2.6
AmNART IQ 113.0 ± 7.7 110.9 ± 9.0
WMH 1.47 ± 1.46 1.40 ± 1.43
Mean cortical ROI volume 7,520 ± 687 7,105 ± 621
Mean cortical ROI thickness 2.70 ± 0.10 2.65 ± 0.09
Linear-indicator regression analysis

RANN Derivation
Linear-indicator regression analysis was used to derive 4 separate

spatial covariance patterns associated specifically with each of the four
RAs in participants of age 30 or below. The first 91 PCs were chosen to
construct the four RANN patterns because they yielded the global min-
imum of the Akaike Information Criterion. The four RANNs are illustrat-
ed in Fig. 2 and described in Tables 2–5.

Classification accuracy in participants in age ranges 20–30 and 31–80
Since our RANNs were derived in the subsample of participants of

age 30 and younger, we separated this derivation sample from the val-
idation sample of ages 31–80. We computed overall classification accu-
racy, and classification accuracy broken down by reference domain for
derivation and validation samples separately. In the derivation sample
the overall classification accuracy was 0.93, while being lower, as ex-
pected, in the validation sample at 0.81. The relationship between actual
vs predicted RA is presented in Table 6. The accuracy for specific abilities
in the derivation sample was as follows: MEM hit rate was 0.88; FLUID
hit rate was 0.93; SPEED hit rate 0.91; VOCAB hit rate 0.98. Again, the
accuracies for specific abilities in the validation sample were lower,
but still very good: MEM hit rate was 0.72; FLUID hit rate was 0.78;
SPEED hit rate 0.79; VOCAB hit rate 0.94. The full confusion matrices
of the RANN application in both derivation and validation samples are
shown in Table 6.

We also calculated classification accuracy for each individual
participant in both derivation and validation samples in order to exam-
ine the distribution of accuracy across the age range and compile
descriptive statistics across subjects. Overall classification accuracy
across subjects in the validation samples (age 31–80) was 0.80 ±
0.18; broken down by reference domain, we have: MEM = 0.72 ±
0.32; FLUID = 0.75 ± 0.35; SPEED = 0.79 ± 0.31; VOCAB = 0.94 ±
0.17. Classification accuracy by decade is illustrated in Fig. 3. There is
no trend for reduced classification accuracy with higher ages. In addi-
tion, a one-sample T-test for the difference from chance performance
(=0.25 accuracy) was highly significant for all decades (p ~ e−17), in-
dicating that classification accuracy remained good in each decade.

The classification accuracy in the derivation sample (age 20–30)
was, as expected, substantially higher: overall accuracy = 0.92 ±
0.11; MEM = 0.88 ± 0.25; FLUID = 0.91 ± 0.24; SPEED = 0.92 ±
0.17; VOCAB = 0.98 ± 0.14 (no figure shown).

Correlates of classification accuracy
We next assessed correlates of classification accuracy only for the

participants in the validation sample of age 31 or greater. Both overall
classification accuracy and classification accuracy for individual refer-
ence abilities were considered. Table 7 summarizes the correlation coef-
ficients and p-values of bivariate relationship between classification
accuracy and a variety of demographic, cognitive, and neural measures.

There was no significant relationship with age for any of the classifi-
cation accuracy measures. Education was not associated with better
classification accuracy. Higher NART IQwas associatedwith better over-
all classification and for MEM. Higher DRS score was associated with
Age 40–49 Age 50–59 Age 60–69 Age 70–79

41 49 45 43
23 M, 18 F 25 M, 24 F 24 M, 21 F 21 M, 22 F
15.9 ± 2.6 15.8 ± 2.1 16.2 ± 2.6 17.6 ± 2.5
139.4 ± 2.8 140.4 ± 3.1 139.7 ± 2.9 139.3 ± 2.9
115.4 ± 8.3 115.2 ± 8.9 117.5 ± 9.9 121.4 ± 6.5
1.02 ± 0.73 1.47 ± 1.49 3.21 ± 4.13 3.37 ± 3.17
7,183 ± 716 6,903 ± 663 6,507 ± 575 6,465 ± 570
2.65 ± 0.09 2.59 ± 0.09 2.51 ± 0.10 2.49 ± 0.11
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Fig. 1. Left panel: histogram and cumulative distribution of subject numbers displayed by the number of tasks that were completed. Only 117 subjects had all 12 tasks completed as can
been seen from the frequency distribution (black color), thus insistence on completeness would have cut down on the available data substantially. 215 subjects had at least 10 tasks com-
pleted as can be seen from the cumulative distribution (gray color). Right panel: number of subjects for each of the 12 tasks. The least populated task was ‘Letter Comparison’ with 220
subjects, the most populated task was ‘Letter Sets’. We checked whether missingness was associated with age, years of education, gender or DRS score, but found no significant
relationship.
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better overall classification accuracy and for MEM and SPEED. Mean
cortical thickness was not significantly related to classification accu-
racy. Higher mean brain volume was correlated with better overall
classification accuracy, and for MEM and FLUID. Higher expression
of all RANN networks but VOCAB was associated with better overall
classification accuracy. Higher expression of any particular RANN
was strongly associated with the corresponding classification accu-
racy for that reference ability. The SPEED and VOCAB-RANNs though,
seemed to interfere with each other's domain classification, and
RANN pattern scores were negatively associated with each other's
classification accuracy.

More interestingly, classification accuracies were further positively
correlated with participants' behavioral task performance in the scan-
ner. Overall classification accuracy was associated with overall perfor-
mance, and with performance in each task except for the SPEED
Fig. 2. Illustration of areaswith robust voxel loadings for all RANNs for each ability and for the co
in activation are represented in red, while those with covarying decreases in activation are rep
domain. FLUID classification accuracy was related to overall perfor-
mance, MEM and FLUID performance. SPEED classification accuracy
was related to overall performance, as well as MEM and VOCAB
performance.
Correlates of RANN Expression
We also assessed correlates of RANN expression, quantified with

RANN pattern scores, across all participants. The correlation and p-
values for these bivariate correlations are summarized in Table 8.
There was no correlation of the expression of any RANN pattern score
with age, years of education, cortical thickness or white-matter hyper-
intensity burden. Mean gray matter volume was correlated with
expression of the MEM- and FLUID-RANN in the expected direction:
higher mean volume was associated with higher expression. Verbal
mmonactivation pattern obtained frommean-contrast PLS. Areaswith covarying increases
resented in blue. Only areas surviving bootstrap procedures are presented.



Table 2
Areas of activation (positive loadings) and de-activation (negative loadings) for MEM-
RANN, obtained with bootstrap resampling procedure. |Z| N 3, cluster size (CS) N50.

X Y Z CS Z AAL label

Positive Loadings
−6 −69 24 645 8.7408 Calcarine_L
−3 −54 36 645 5.7274 Precuneus_L
−9 −60 12 645 5.4053 Calcarine_L
6 −63 24 645 5.1229 Precuneus_R
9 −54 12 645 4.9055 Calcarine_R
−6 −48 6 645 4.859 Calcarine_L
−9 −66 0 645 3.1422 Lingual_L
42 −24 57 360 6.0478 Postcentral_R
30 −24 75 360 5.2408 Precentral_R
57 −18 54 360 4.6555 Postcentral_R
27 −12 66 360 4.1101 Precentral_R
−33 −81 39 130 5.2768 Occipital_Mid_L
−45 −57 33 130 4.0188 Angular_L
−39 −69 42 130 4.0106 Angular_L
−48 −60 21 130 3.2431 Temporal_Mid_L

Negative Loadings
−36 −27 51 227 −6.4731 Postcentral_L
−45 −18 54 227 −5.9614 Postcentral_L
−36 −24 66 227 −4.0501 Precentral_L
−18 −30 54 227 −3.6212 No AAL label
15 −54 −18 225 −6.2719 Cerebellum_4_5_R
6 −63 −21 225 −5.7648 Vermis_6
21 −45 −24 225 −5.047 Cerebellum_4_5_R
0 −51 −21 225 −3.8268 Vermis_4_5
30 −42 42 73 −4.5135 No AAL label
48 −48 54 73 −4.176 Parietal_Inf_R
45 −42 42 73 −3.7673 SupraMarginal_R
33 21 9 56 −5.6581 Insula_R
51 18 6 56 −3.3929 Frontal_Inf_Oper_R
30 24 −3 56 −3.371 Insula_R
33 24 27 54 −4.5347 Frontal_Inf_Tri_R
36 15 42 54 −3.8232 Frontal_Mid_R
30 12 30 54 −3.1608 Frontal_Inf_Oper_R
45 3 24 51 −3.844 Frontal_Inf_Oper_R
42 18 21 51 −3.4584 No AAL label

Table 3
Areas of activation (positive loadings) and de-activation (negative loadings) for FLUID-
RANN, obtained with bootstrap resampling procedure. |Z| N 3, cluster size (CS) N50.

−X Y Z CS Z AAL label

Positive Loadings
36 −36 39 189 4.8296 No AAL label
45 −48 54 189 4.2708 Parietal_Inf_R
51 −33 48 189 3.6827 SupraMarginal_R
54 −51 39 189 3.4209 Parietal_Inf_R
6 −18 12 89 4.3411 Thalamus_R
18 −27 12 89 4.0694 Thalamus_R
15 −12 18 89 3.2021 Thalamus_R
12 −69 −3 51 4.1808 Lingual_R

Negative Loadings
15 −87 −9 224 −7.3552 Lingual_R
18 −96 6 224 −6.4772 Occipital_Sup_R
39 −78 −12 224 −5.0322 Occipital_Inf_R
27 −93 18 224 −4.5458 Occipital_Mid_R
33 −90 −6 224 −3.7444 Occipital_Inf_R
−21 −93 9 186 −5.2011 Occipital_Mid_L
−18 −87 −9 186 −5.0613 Lingual_L
−12 −96 −3 186 −4.9686 Calcarine_L
−33 −90 6 186 −4.4834 Occipital_Mid_L
−33 −78 −15 186 −4.4726 Fusiform_L
−6 −84 6 186 −3.7696 Calcarine_L
−27 −78 21 186 −3.5347 Occipital_Mid_L
−27 −93 21 186 −3.4097 Occipital_Mid_L
−3 9 9 151 −5.0304 No AAL label
9 18 0 151 −3.9943 Caudate_R
−12 24 0 151 −3.8638 Caudate_L
6 6 0 151 −3.7273 Caudate_R

Table 4
Areas of activation (positive loadings) and de-activation (negative loadings) for SPEED-
RANN, obtained with bootstrap resampling procedure. |Z| N 3, cluster size (CS) N50.

X Y Z CS Z AAL label

Positive Loadings
−42 −21 54 390 7.244 Postcentral_L
−42 −9 48 390 3.792 Postcentral_L
−36 −39 51 390 3.399 Parietal_Inf_L
−15 27 −6 172 4.615 Caudate_L
−6 6 0 172 4.556 No AAL label
−24 15 −6 172 3.919 Putamen_L
−3 18 0 172 3.872 Caudate_L
12 24 −6 172 3.864 Caudate_R
18 12 −6 172 3.643 Putamen_R
12 −81 0 143 6.061 Lingual_R
−9 −87 0 143 6.015 Calcarine_L
3 −81 15 143 3.778 Calcarine_L
30 −60 51 79 4.711 Parietal_Sup_R
36 −45 48 79 4.207 Parietal_Inf_R
24 −69 45 79 3.890 Occipital_Sup_R

Negative Loadings
−48 15 36 324 −5.005 Frontal_Inf_Oper_L
−48 33 12 324 −4.908 Frontal_Inf_Tri_L
−54 15 6 324 −4.631 Frontal_Inf_Oper_L
−54 12 18 324 −4.219 Frontal_Inf_Oper_L
−42 21 −3 324 −3.758 Frontal_Inf_Orb_L
42 −24 54 145 −6.511 Postcentral_R
24 −30 60 145 −4.568 Postcentral_R
45 −30 69 145 −3.448 Postcentral_R
33 −30 69 145 −3.342 Postcentral_R
42 −15 33 145 −3.309 Postcentral_R
21 −42 15 70 −4.379 No AAL label
30 −54 12 70 −4.213 Calcarine_R
−3 21 54 51 −4.987 Supp_Motor_Area_L
−3 24 42 51 −3.530 Frontal_Sup_Medial_L
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intelligence (NARTIQ) was negatively correlated with the VOCAB-RANN
score.

With regard to the relationship between a RANNand performance of
the respective reference ability, only FLUID correlated significantly with
expression of the FLUID-RANN; the correlation between network ex-
pression score and performance for MEM was marginal. There was a
negative correlation between RANN expression and performance in
the VOCAB domain, but on closer inspection this negative correlation
was found to be caused by one influential data point, and thus cannot
be considered robust. Several cross-domain correlations were noted:
expression of the SPEED-RANN was positively correlated with MEM
and VOCAB performance, and FLUID-RANNwas also positively correlat-
ed with MEM.

While age did not influence the expression of the FLUID-RANN in
participants age 31 and above, the natural question arises whether the
brain-behavioral relationship between the FLUID-RANN expression
and performance is moderated by age. Using the FLUID-RANN score,
Table 5
Areas of activation (positive loadings) and de-activation (negative loadings) for VOCAB-
RANN, obtained with bootstrap resampling procedure. |Z| N 3, cluster size (CS) N50.

X Y Z CS Z AAL label

Positive Loadings
−51 −9 33 138 5.0676 Postcentral_L
−42 −18 36 138 4.7497 Postcentral_L
48 −12 36 96 5.388 Postcentral_R
57 −6 45 96 3.5301 Precentral_R

Negative Loadings
0 −72 33 410 −5.1818 Cuneus_L
−15 −66 21 410 −5.0642 Cuneus_L
9 −63 24 410 −4.3016 Precuneus_R
0 −54 51 410 −4.0942 Precuneus_L
6 −54 12 410 −3.9938 Calcarine_R
−12 −72 45 410 −3.7944 Parietal_Sup_L



Table 6
Across-subjects confusionmatrix of RA label prediction in participants age 31–80 (valida-
tion sample) and in participants age 20–30 (derivation sample). The overall accuracy of
classification was 0.81 in the age range 31–80, and 0.93 in the age range 20–30.

Predicted (age 31–80)

Actual MEM FLUID SPEED VOCAB
MEM 0.72 0.07 0.03 0.18
FLUID 0.08 0.78 0.05 0.09
SPEED 0.01 0.02 0.79 0.18
VOCAB 0.02 0 0.04 0.94

Predicted (age 20–30)
MEM 0.88 0.03 0.03 0.06
FLUID 0.01 0.93 0.04 0.02
SPEED 0 0 0.91 0.09
VOCAB 0.01 0 0.01 0.98
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age and their interaction to predict FLUID performance indeed yields a
significant interaction at p = 0.0059. We also broke participants into
age decades (3–7) and plotted 10,000 bootstrap simulations of the
brain-behavioral correlation for each decade (Fig. 4). Decreasing linear
age trends were computed for each sample, the one-tailed p-level of
these age trends was revealed to be p = 0.0064. The relationship to
meangray-matter orMEMperformance did not reveal any formal inter-
action with age (results not shown).

Common activation pattern
A common activation pattern was derived in the derivation sample

(ages 20–30). Topographic loadings are available in Fig. 2, and Supple-
mentary Table S1. As expected, areas of activation were largely congru-
ent with previous reports of the dorsal-attentional or task-positive
network, while the negative loadings were strongly reminiscent of the
default-mode network (Elton and Gao, 2015; Raichle, 2015).

In contrast to the RANNs, expression of the common activation pat-
tern in the different reference domains showed associations with age:
the pattern score was positively correlated with age for MEM and
SPEED (andmarginally with VOCAB), while being negatively correlated
with age for the FLUID domain.

The common-pattern score in the SPEED domain also correlated
positively with years of education and VOCAB performance, while cor-
relating negatively with the DRS score. For none of the reference do-
mains did the common pattern score correlate with the respective
performance variable.
Fig. 3. Classification accuracy suggests very good generalization of RANNs beyond the der-
ivation sample. A one-sample T-test for the difference from randomperformance (indicat-
ed by line at accuracy = 0.25) is highly significant for all decades (3–7) at p = 10e−21.
In addition to these somewhat difficult-to-reconcile findings,we can
askwhether good convergent and discriminant validity ismanifested by
the pattern score, as outlined in Section 2.2.9: does usage of the com-
mon pattern appear more similar in tasks chosen from the same refer-
ence domain? This appears to be the case: the validity statistic ΔZ
which captures the difference in pattern-score correlation for tasks of
the same vs. different reference domains yields point estimates of
ΔZ= 0.27 andΔZ= 0.32, for the derivation and validation samples, re-
spectively. Permutation tests were performed to assess statistical signif-
icance in each sample. Both samples' ΔZ values were highly significant
at p b 0.0001. For an age-related comparison between samples, we per-
formed another permutation test, this time permuting participants be-
tween the samples, rather than randomizing the reference-label
assignments. This comparison did not reveal any difference between
the samples (p = 0.77), suggesting that the cognitive specificity of the
common-pattern deployment is unchanged between age groups.

Closer visual inspection of the 12 x 12 correlation matrices for both
samples in Fig. 5 shows generally good convergent and discriminant va-
lidity for all reference domains, with some exceptions: (1) discriminant
validity between SPEED and VOCAB domains is poor in both derivation
and validation samples as some task pairings of SPEED and VOCAB tasks
yield unduly high correlations; (2) convergent validity for theMEM and
VOCAB domains in the derivation sample of younger participants is
somewhat reduced asWordOrder and Picture Naming tasks do not cor-
relate highly with the other two tasks in their respective domains,
thereby breaking domain convergence. As the formal age comparison
confirms, though, there are no appreciable differences in overall con-
struct validity between the derivation and validation sample.

Lastly,we re-derived the common activation pattern for each decade
separately, tracking the variance accounted for by the pattern as well as
the spatial similarity between patterns as a function of age gap.

Fig. 6 reveals how %VAF behaves a function of age decade. A rough
linear age trend with an undershoot and overshoot by decade 3 and 4,
respectively, is visible. The spatial correlation between patterns of dif-
ferent age decades shows a linear declinewith the age gap, as expected.

Permutation tests of 1,000 iterations gave two-tailed p-levels that
are statistically significant and confirmed the increasing linear trend of
%VAF with age decade (p = 0.0130), and the decreasing linear trend
of spatial-pattern similarity with the age gap in decades (p b 0.001).
Discussion

The Reference Ability Neural Network (RANN) Study is designed to
identify networks of brain activity uniquely associated with perfor-
mance of each of the four reference abilities across adulthood, and
then to explore potential influences on these RANNs that might in
turn help explain age-related changes in performance. This paper con-
tributes to this goal by exploring how the neural substrates underlying
each of these abilities is distinct, and how biological aspects of aging
may influence the integrity and distinctiveness of these processes.

In a previous study, on a smaller subset of the participants consid-
ered here, we used indicator regression analysis to derived four unique
activation patterns, one for each of the four reference abilities. In that
analysis, 174 subjects of all ages were included. In held out data we
were able to show that given the relative expression of the four activa-
tion patterns in individuals' fMRI data fromone of the 12 tasks, we could
quite accurately identify the underlying reference ability. Here we ex-
tended this analysis by reasoning that the specific network underlying
every reference ability should be most intact in individuals at young
age. Thus, this is the optimal age range in which to identify these net-
works. Further, this would allow us to determine whether these net-
works remain intact across age. There is reason to believe that this
might not be the case: various aspects of age-related brain changes
could likely damage the integrity of the brain networks. Further, the
de-differentiation hypothesis would predict that specificity of the



Table 7
Relationship of several variables to the classification accuracy of reference-domain labels in participants age 31 and above, based on the networks derived in participants age 20–30. Both
overall classification accuracy and classification accuracy for individual reference domains are considered. Correlation coefficients and p-values are listed. Bolded cells are statistically sig-
nificant at p ≤ 0.05.

Classification Accuracy for RA label

Predictors Overall MEM FLUID SPEED VOCAB

Age R = 0.03; p = 0.62 R = 0.02; p = 0.73 R = −0.10; p = 0.15 R = −0.06; p = 0.41 R = 0.02; p = 0.80 Subject demographics
Structural brain measuresEducation R = 0.12; p = 0.06 R = 0.07; p = 0.30 R = 0.11; p = 0.09 R = 0.12; p = 0.07 R = −0.08; p = 0.20

NARTIQ R = 0.21; p = 0.002 R = 0.04; p = 0.52 R = 0.10; p = 0.16 R = 0.24; p = 0.001 R = 0.01; p = 0.84
DRS Score R = 0.18; p = 0.007 R = 0.13; p = 0.07 R = 0.15; p = 0.03 R = 0.21; p = 0.003 R = −0.05; p = 0.47
Mean Volume R = 0.19; p = 0.006 R = 0.15; p = 0.04 R = 0.26; p = 0.0003 R = 0.08; p = 0.28 R = 0.0003; p = 0.99
Mean Thickness R = 0.01; p = 0.87 R = −0.04; p = 0.53 R = 0.13; p = 0.06 R = 0.005; p = 0.94 R = −0.07; p = 0.33
WMH R = 0.10; P = 0.17 R = 0.06; p = 0.45 R = 0.03; p = 0.70 R = 0.08; p = 0.26 R = 0.01; p = 0.84
Common pattern R = 0.09; p = 0.41 R = −0.10; p = 0.33 R = 0.10; p = 0.36 R = 0.13; p = 0.21 R = 0.10; p = 0.33 fMRI Pattern scores
MEM-RANN R = 0.44; p b 0.0001 R = 0.68; p b 0.0001 R = 0.02; p = 0.70 R = 0.19; p = 0.01 R = −0.06; p = 0.47
FLUID-RANN R = 0.33; p b 0.0001 R = 0.04; p = 0.53 R = 0.58; p b 0.001 R = 0.07; p = 0.32 R = −0.06; p = 0.41
SPEED-RANN R = 0.32; p b 0.0001 R = 0.02; p = 0.71 R = 0.12; p = 0.10 R = 0.56; p b 0.0001 R = −0.20; p = 0.003
VOCAB-RANN R = −0.02; p = 0.77 R = −0.04; p = 0.43 R = 0.09; p = 0.19 R = −0.30; p b 0.0001 R = 0.49; p b 0.0001
MEM-Perf R = 0.23; p = 0.0007 R = 0.11; p = 0.12 R = 0.26; p = 0.0001 R = 0.19; p = 0.008; R = −0.02; p = 0.70 Behavioral performance scores
FLUID-Perf R = 0.27; P b 0.0001 R = 0.11; p = 0.11 R = 0.31; p b 0.0001 R = 0.18; p = 0.01 R = −0.04; p = 0.56
SPEED-Perf R = 0.12; p = 0.08 R = −0.15; p = 0.03 R = 0.09; p = 0.24 R = −0.13; p = 0.06 R = 0.02; p = 0.77
VOCAB-Perf R = 0.20; p = 0.002 R = 0.02; p = 0.70 R = 0.12; p = 0.09 R = 0.21; p = 0.002 R = 0.09; p = 0.17
Overall Perf R = 0.35; p b 0.0001 R = 0.13; p = 0.06 R = 0.30; p b 0.0001 R = 0.28; p b 0.0001 R = 0.05; p = 0.17
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estimation underlying any particular reference ability might be reduced
with aging.

Therefore in the current studywe again conducted a linear-indicator
regression analysis but limited it to the 64 study participants age 20 to
30.Within this groupwewere able to derive patterns thatwere unique-
ly associatedwith each of the four reference abilities.Wewere now able
to apply these candidate RANNs to data from adults age 31 and above. It
is important to note that the data from the older subjects had no part in
the derivation of these new RANNs.

The results of the current study are varied and complex; in the next
few paragraphs we provide a broad synthesis of the most salient
points of Tables 7–9, omitting any special mention of several significant
brain–behavioral cross-domain correlations that appeared. Table 7 lists
all findings pertaining to the classification accuracy of the reference
label (MEM, FLUID, SPEED, VOCAB) in the validation sample of partici-
pants aged 31 and above. The first key finding was that the RANNs de-
rived from the younger group identified the underlying reference
ability from task related activation with great accuracy in the older sub-
jects. Further, classification accuracy did not decline with age across
participants. This suggests that unique networks associated with each
reference ability as identified in young people are maintained with
aging. This argues for a relative maintenance of specific neural network
for each ability with age, and to some degree argues against the de-
differentiation hypothesis. In full disclosure, we emphasize that we
presented one of many possible analytic frameworks, only using task
design information for the derivation and validity test of our RANNs.
To us, this strategy presented itself as the simplest and most obvious
Table 8
Bivariate relationships of RANN scores to demographic and performance variables. The RANNw
ticipants age 31 and above. Correlation coefficients and p-levels are listed. Bolded cells indicate s
VOCAB performance, but this inverse correlationwas forced by anoverly influential data point,w
robust.

MEM-RANN FLUID-RA

Age R = 0.05;p = 0.42 R = −0.1
Years of education R = 0.06;p = 0.36 R = 0.09;
NARTIQ R = 0.04;p = 0.55 R = −0.0
DRS R = 0.11;p = 0.13 R = 0.07;
Mean gray matter volume R = 0.14;p = 0.05 R = 0.17;
Mean gray matter thickness R = −0.03;p = 0.71 R = 0.01;
WMH R = 0.001; p = 0.99 R = −0.0
MEM performance R = 0.06;p = 0.40 R = 0.17;
FLUID performance R = 0.11;p = 0.11 R = 0.22;
SPEED performance R = −0.17;p = 0.01 R = −0.0
VOCAB performance R = 0.06;p = 0.42 R = −0.0
one to pursue. Of course, more elaborate strategies that simultaneously
use behavioral performance constraints are conceivable too. The invari-
ance across age observed for the RANNs derived in our ‘minimalist’
framework might not, and indeed is unlikely to, persist for these elabo-
rate strategies since bringing more constraints to bear on the data is
likely to boost particular sample dependencies. Thus, age-related
changes might be found concerning both usage and topographic com-
position of networks that can classify the type of cognitive process and
at the same time give a full account of behavioral performance.

In exploring the covariates that were associated with classification
accuracy, we found that classification accuracy was reduced in people
with lower brain volume, consistent with the idea that age-related
brain changes may impact the integrity of these networks. Similarly,
classification accuracy was related to verbal intelligence and the DRS
in the same direction.

In addition, classification accuracy was associated with RANN
network scores across participants in the validation sample, which
was expected and demonstrated the consistency of our analysis
framework. This was noted both for overall classification accuracy
across all RANNs, and any specific reference ability's hit rate which
was closely associated with its corresponding RANN pattern score.
Interestingly, there were even associations between behavioral per-
formance and classification accuracy, most notably for fluid reason-
ing, but also between overall classification accuracy and overall
performance. This is remarkable since behavioral performance did
not enter in any way into the derivation step of the RANN networks
in the derivation sample.
ere derived from participants aged 20–30, while the relationships shown below are in par-
tatistical significance at p ≤ 0.05. The VOCAB-RANN pattern score correlated inverselywith
hose removal voids statistical significance. All other reported significant correlationswere

NN SPEED-RANN VOCAB-RANN

3;p = 0.06 R = −0.07;p = 0.32 R = −0.09;p = 0.16
p = 0.17 R = 0.13;p = 0.07 R = −0.09;p = 0.17
1; p = 0.85 R = 0.14;p = 0.06 R = −0.20;p = 0.01
p = 0.35 R = 0.15;p = 0.04 R = −0.12;p = 0.08
p = 0.02 R = 0.08;p = 0.25 R = 0.11;p = 0.11
p = 0.91 R = 0.06;p = 0.37 R = −0.01;p = 0.81
6; p = 0.37 R = 0.04; p = 0.53 R = −0.03;p = 0.67
p = 0.01 R = 0.19;p = 0.01 R = 0.19;p = 0.008
p = 0.001 R = 0.09;p = 0.21 R = 0.21;p = 0.09
7;p = 0.33 R = 0.07;p = 0.35 R = −0.07;p = 0.35
6;p = 0.36 R = 0.14;p = 0.05 R = 0.13;p = 0.05



Fig. 4. 10,000 bootstrap samples of the brain-behavioral correlation (=Fisher-Z) between
the FLUID-RANN network-score and FLUID performance, broken down by age decade. A
decreasing linear trend can be observed. The one-tailed p-level obtained from the
10,000 samples is p = 0.0064.
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In Table 8 we explored whether the degree of expression of each
RANN was associated with demographic variables, neural measures
and behavioral performance. The table shows no associations with age
for any of the networks, but there are associations withmean brain vol-
ume and DRS score in a positive direction for some of the networks
with one major exception: expression of the VOCAB-RANN correlated
robustly with verbal intelligence in a negative direction. Since demo-
graphic information, similarly to behavioral performance, was absent
in the network-derivation step, such a negative correlation is entirely
possible: apparently, participants of superior verbal intelligence need
to employ the VOCAB-RANN to a lesser degree.

We also probed for correlations between behavioral performance
and RANNnetwork expression. Similarly to the relationshipwith demo-
graphic information, it is possible that inter-individual differences in
performance at any age could be related to network scores, even though
performance information was not utilized for network derivation and
network expression remained constant across age. Since Pearson
correlation, against common belief, does not possess the mathematical
Fig. 5. Fisher-Z correlation matrices for the pattern score of the common activation in 12 tasks
panel)) and the validation sample (ages 31–80, right panel). Both groups show good overall co
domains showhigher correlation than tasks belonging to different reference domains. One exce
ples. A comparison of ΔZ between samples failed to show any significant difference (p = 0.77
property of transitivity, an association between network scores and be-
havioral performance cannot be excluded on account of different behav-
ior of both variables with respect to age. It was therefore interesting to
find that for at least one ability, fluid reasoning, there was a significant
relationship between network expression and behavioral performance.
In addition, the relationship between RANN pattern score and perfor-
mance for MEM was at borderline significance. These observations
hint at aspects of network expression that are responsible for inter-
individual differences in performance. Further, we noted that the two
RANNS whose expression was associated with behavioral performance
were also sensitive to differential graymatter volume. The FLUID-RANN
additionally showed an interaction with age in influencing behavioral
performance: with increasing participant age, the association between
FLUID-RANN scores and behavioral performance became weaker.
This suggests that, while still appropriate for neurally based classifica-
tion of the type of cognitive process the subject is engaged in, with
advancing age the FLUID-RANN cannot give a satisfactory account of be-
havioral performance any longer: additional, possibly compensatory,
components of brain activation might come into play. Despite the age-
invariance of the FLUID-RANN itself, its emergent brain-behavior
relationship is not age invariant.

In addition to the RANNs which best achieve discrimination of the
reference abilities from each other, we also identified the neural sub-
strate of common aspects of task processing. In addition to the specific
reference abilities, shared variance across all tasks dwarfs the specific ef-
fects and needs to be taken into consideration aswell, also since itmight
reveal meaningful associations with age. To do so, we derived one com-
monpattern of activation present in all 12 tasks in thederivation sample
of participants aged 20–30. Topographically, this pattern involved re-
gions of activation and de-activation reminiscent of the task-positive
network (Elton and Gao, 2015) and default-mode network (Raichle,
2015), respectively. In the validation sample (age 31–80), expression
of this network during performance of any reference domain's tasks
was not correlated with the respective behavioral performance, al-
though it did show associations to age (Table 9): pattern expression
was positively associated with age in the MEM and SPEED tasks (and
marginally in the VOCAB tasks), while being negatively associated
with age for the FLUID tasks.

This lack of invariance across age in the common pattern score
thoughwas complemented by the persistence across age of the specific-
ity of pattern employment with respective to the reference domains:
both derivation and validation samples showed convergent and
, displayed separately for the derivation sample of younger participants (ages 20–30, left
nvergent and discriminant validity (p b 0.0001), i.e. tasks belonging to the same reference
ption are the SPEED and VOCAB domainswhich lack good discriminant ability in both sam-
).



Fig. 6. The left panel shows the %VAF of the common activation pattern as a function of age decade. The right panel shows the average spatial correlation between the common patterns in
different age decades as a function of the gap between the age decades. Permutation tests reveal that %VAF shows a significant increasing linear trendwith age decade and that the spatial
correlation shows a decreasing trend with the age gap.
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discriminant validity of pattern usage with respect to the reference do-
mains in that pairs of tasks chosen from the same reference domain in
general had a higher pattern-score correlation than pairs of tasks chosen
from different reference domains (with the exception of the lack of dis-
criminant validity between SPEED and VOCAB domains). This construct
validity did not manifest any difference between younger and older
group, i.e. pattern usage did not evidence any ‘de-differentiation’ for
the participants of higher age: their usage of the common activation
pattern was as specific to the reference ability probed in the scanner
as in their younger peers.

While the common activation pattern derived in young showed a
similar specificity to cognitive domain in older participants, we found
that when the common activation pattern was derived for each age
decade separately the percentage variance accounted for by each age-
specific common pattern increased significantly with the age decade,
i.e. task processing aspects common to all tasks were more dominant
than domain-specific aspects for older the participants.

Each of the four RANN patterns consists of a unique set of brain re-
gions whose brain activation discriminate each ability from the others.
Of the regions that show high loadings in the perceptual speed RA in
Table 5, the left postcentral gyrus and the left inferior parietal cortex
were significant in an automated meta-analysis over 114 studies con-
ducted byNeurosynth for visuomotor tasks (Yarkoni et al., 2011), show-
ing that these two regions were consistently reported by previous
studies to be associated with visuomotor tasks. Bilateral activation
was found in the dorsal striatum (Caudate and Putamen) which have
an essential role in motor coordination (DeLong, 2000). The other re-
gions, bilateral visual cortices and the left precental gyrus, represent
Table 9
Bivariate relationships of scores of the common activation pattern for a particular reference dom
pattern was derived from participants aged 20–30, while the relationships shown below are in
indicate statistical significance at p ≤ 0.05.

Common pattern score MEM domain FLUID dom

Age R = 0.18; p = 0.01 R = −0.1
Years of education R = 0.07; p = 0.34 R = −0.0
NARTIQ R = −0.01; p = 0.92 R = −0.1
DRS R = −0.12; p = 0.14 R = −0.1
Mean gray matter volume R = 0.07; p = 0.38 R = 0.10;
Mean gray matter thickness R = −0.11;p = 0.15 R = 0.13;
WMH R = −0.02; p = 0.77 R = 0.04;
MEM performance R = −0.01; p = 0.86 R = 0.008
FLUID performance R = 0.004; p = 0.95 R = −0.0
SPEED performance R = −0.10; p = 0.20 R = −0.1
VOCAB performance R = 0.06; p = 0.44 R = −0.1
important input and output processes. For the MEM-RANN, automated
meta-analysis was also conducted on 270 studies using Neurosynth.
Five of the regions with high positive loadings, including two of the
highest z values (the left Calcarine and the left middle Occipital
gyrus), were consistently reported by previous studies on episodic
memory. Regionswith high loadings in the right Precentral are involved
in motor planning. Fluid reasoning RANN showed high loadings in the
right Inferior Parietal area, which coincides with one of the regions
from an automated meta-analysis over 142 studies conducted by
Neurosynth for reasoning. Inferior Parietal lobule has been associated
with Raven's matrix reasoning in normal controls (Yamada et al.,
2012), which is also one of the fluid reasoning tasks administered in
the current test battery. Lastly, for Vocabulary RANN, positive loadings
were found in bilateral pre and post central gyri, parts of which were
also significant in Neurosynth's automatedmeta-analysis of 152 studies
for naming.

It is important to stress that only the regions that allow for maximal
discrimination of one RA from the other 3 would load highly on the
RANN pattern derived here. Regions that are common even among
two of the RANNs would have low loadings in the patterns. Also, as
mentioned in the Methods sections, our first-level modeling did not
allow for any fine-grained separation of stimulus presentation and
behavioral responses, so we have to rely on our group-level RANN der-
ivation to capture only cognitive processes pertinent to the RA in ques-
tion, with assignment of generic stimulus-presentation effects to the
common activation pattern. This vagueness motivates inclusion of
behavioral-performance information in future updates of our analytic
framework.
ain to demographic andperformance variables of the same reference domain. The common
participants age 31 and above. Correlation coefficients and p-levels are listed. Bolded cells

ain SPEED domain VOCAB domain

7; p = 0.03 R = 0.26; p = 0.0005 R = 0.14; p = 0.06
3; p = 0.67 R = 0.15; p = 0.05 R = 0.04; p = 0.64
3; p = 0.13 R = 0.06; p = 0.45 R = −0.02; p = 0.76
0; p = 0.23 R = −0.18; p = 0.03 R = −0.14; p = 0.08
p = 0.22 R = 0.09; p = 0.26 R = 0.11; p = 0.15
p = 0.09 R = −0.11; p = 0.17 R = −0.06; p = 0.42
p = 0.65 R = 0.01; p = 0.91 R = −0.02; p = 0.82
; p = 0.91 R = 0.04; p = 0.58 R = 0.03; p = 0.75
9; p = 0.25 R = −0.04; p = 0.58 R = −0.02; p = 0.81
7; p = 0.03 R = −0.07; p = 0.40 R = −0.05; p = 0.48
4; p = 0.09 R = 0.16; p = 0.04 R = 0.01; p = 0.86
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For example, hippocampus is not among the regions with the
highest loadings in the MEM-pattern, suggesting that activation in the
hippocampus was found in more than one RA, but not necessarily in
every RA (which would guarantee capture in the common pattern). It
is likely that hippocampal activation was found in matrix reasoning,
one of the tasks for FLUID. (Pihlajamaki et al., 2004) reported hippocam-
pal activation in a task involving presentation of objects in different
spatial configurations as well as presentation of novel objects. Matrix
reasoning shares someof the processeswith this task due to the similar-
ity in the nature of the task demand such as detection of objects in
different spatial configurations across the matrix of cells.

While these findings strengthen our confidence that there is a spe-
cific RANN associated with each reference ability, we do not consider
those derived here as our final representation of the RANNs. Our hope
is that the final RANNs will not only meet the criteria of being specific
to each reference ability, but that their expressionwill also be associated
with task performance. Further, with enough data support, RANNs spe-
cific to each age decade can be derived, which allows a more thorough
assessment of age-related changes in the topographic composition as
well. In this vein, the current finding of age invariance in the classifica-
tion performance has no implications for the age-relationships of topo-
graphic composition and brain–behavioral correlations of networks
derived with an approach that integrates behavioral performance and
uses the complete data set. As another note of caution, we cannot rule
out the phenomenon of ‘super normal’ elders which, in contrast to the
population at large, might have boosted the level of network scores
for the elders in our sample: despite our efforts at avoiding recruitment
biases, the group of participants above age 60who successfully enrolled
in the study ended up possessing higher verbal intelligence and more
years education than its younger peer group (Table 1). Thus we cannot
exclude the possibility of a healthy survivor effect in our older groups.
The RANN scores did show associationswith brain volume in several in-
stances, although this extended to participants in middle age, without
any age-related changes in this association. Also keeping in mind the
cross-sectional study design, the association of RANN scores with
brain volume thus cannot be unequivocally attributed to the effects of
aging. Further, white-matter hyper-intensities, often taken as the
clearest indication of aging in the brain, with a near perfect absence in
younger people, were not associated with any of the findings resulting
from our RANN analysis. This would argue against a possible distortion
of findings by ‘super normal’ elders which artificially induce age-
invariant effects.

In summary, current findings demonstrate that there are distinct
neural networks underlying each of the four reference abilities, that
these networks remain intact with aging, and that on an individual
basis, these networks are specifically and appropriately recruited in re-
sponse to the nature of the task. Our hope is that more definitive repre-
sentations of these RANNswill put us in a position to better understand
the neural processes that help maintain cognitive function with aging,
and also the age-related neural or biological changes thatmay influence
the expression of these networks with aging and result in poor perfor-
mance in some elders.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.10.077.
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