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The extent of task-related fMRI activation can vary as a function of task difficulty. Also the
efficiency or capacity of the brain networks underlying task performance can change with
aging. We asked whether the expression of a network underlying task performance would
differ as a function of task demand in old and young individuals. 26 younger and 23 older
healthy adults performed a delayed item recognition task that used the response signal
method to parametrically manipulate the extrinsic difficulty of the task by imposing five
different deadlines for recognition response. Both age groups showed a speed–accuracy
trade-off, but the younger group achieved greater discriminability at the longer deadlines.
We identified a spatial pattern of fMRI activation during the probe phase whose expression
increased as the response deadline shortened and the task became more difficult. This pat-
tern was expressed to a greater degree by the old group at the long deadlines, when the task
was easiest. By contrast, this pattern was expressed to a greater degree by the younger
group at the short deadlines, when the task was hardest. This suggests reduced efficiency
and capacity of this network in older subjects. These findings suggest that neuroimaging
studies comparing task-related activation across groups with different cognitive abilities
must be interpreted in light of the relative difficulty of the task for each group.
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1. Introduction

Functional imaging studies often seek to understand how
groups differ in the neural processing associated with task
performance. For example, we can ask whether young and
older individuals use the same or different brain networks
when performing a task. While this might appear to be a
straightforward question, it is actually quite difficult to an-
swer because the degree to which a particular brain area or
network is used or activated can vary across individuals as a
S Box 16, New York, NY 1
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function of the relative difficulty of the task for each person.
Even within a single individual, manipulation of task difficul-
ty can be associated with increased (Braver et al., 1997;
Carlson et al., 1998; Gould et al., 2003; Habeck et al., 2005), de-
creased (Sunaert et al., 2000) or parabolically varying (Callicott
et al., 1999) activation of particular brain areas. This could lead
to inconsistent results in the literature, where sometimes el-
ders show more or less activation than younger subjects in a
brain area. If relative task difficulty is not controlled, differ-
ences in the degree of activation cannot be interpreted
0032, USA. Fax: +1 212 342 1838.
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appropriately. Even when considering patterns of activation
across brain regions, consideration of task difficulty is cru-
cial. For example, if elders show activation in a particular
brain area while younger subjects do not, this could simply
be because the task is not sufficiently demanding for the
younger group to drive activation of that area above the
threshold for detecting it.

In this paper, we used a task where the difficulty could be
manipulated parametrically across five difficulty levels, and
explored the effects of this manipulation on the degree of ex-
pression of a brain network associated with task performance
in young and old participants. We were particularly interested
in evaluating age differences in the utilization of this network
as a function of task difficulty. While this study contrasted
network utilization in young and old, the issue we examined
here has important implications for any imaging study that
contrasts groups with differing cognitive abilities. Further,
the issue considered is relevant to studies that examine individ-
ual differences within a single group, such as healthy young in-
dividuals. Without exploring activation across a range of task
demand, the networks of brain areas underlying task perfor-
mance might not be fully characterized.

Change in task-related activation as a function of task dif-
ficulty may be partially explained by the concepts of network
efficiency and capacity. Our operational definitions of these
concepts with regard to task-related network expression are
as follows. A more efficient brain network will require less ac-
tivation than an inefficient one in order to produce compara-
ble levels of performance. We would expect that differences
in efficiency would most likely be noted at lower levels of
task demand. In contrast, compared to a lower-capacity net-
work, a higher-capacity network will show greater expression
at higher levels of task demand. Consistent with these ideas,
previous studies comparing young and old healthy adults
have noted instances where the two groups use the same
brain networks during specific components of task perfor-
mance but show differences in either network efficiency or
capacity. We and others have found that, in some cases,
younger individuals recruit a network to a lesser degree than
older individuals although the younger individuals perform
better on the task, suggesting lower network efficiency in the
older group (Mattay et al., 2002; Zarahn et al., 2007). In other
instances, typically with more difficult tasks, we have found
that younger individuals recruit a given network to a greater
degree than elderly individuals, consistent with the idea that
a higher network capacity allows young individuals to per-
form more successfully at levels of higher task demand
(Holtzer et al., 2009). Together, these studies suggest that el-
ders might recruit a network to a greater degree than young
individuals at low demand, but to a lesser degree than young
individuals at high demand. To our knowledge this pattern
of differential activation of a brain network as a function of
task demand has never been demonstrated in a single task.

In this fMRI study, younger and older participants per-
formed a delayed item recognition task (DIR) in which they
studied two nonsense shapes. Following a 5000 ms delay,
they were presented with a single probe shape and were
asked to indicate whether it matched one of the two studied
shapes. We manipulated the extrinsic difficulty of the task
by varying the probe duration and eliciting the recognition
response promptly after termination of the probe. This tech-
nique, known as the response-signal method (RSM), varies
the duration of the retrieval process and usually results in a
speed–accuracy trade-off (Reed, 1973). This manipulation
allowed us to parametrically vary task difficulty across 5
probe-durations such that discriminability (assessed with dL

(Snodgrass and Corwin, 1998)) ranged from close to random
to maximal. When processing time is systematically varied
to affect recognition memory discriminability, mathematical
modeling can describe this speed–accuracy trade-off (i.e. the
increase in dL as response deadlines become longer) in terms
of a three parameter compound bounded exponential curve
(Hintzman and Curran, 1994). The fit parameters that define
this curve quantitatively describe three characteristics of
working memory. The curve's x-intercept (i.e. the response
time at which dL is no longer 0) represents the time at which
retained information first becomes available to guide recogni-
tion memory decisions beyond random guessing. The rate of
change of the curve's slope as response time increases repre-
sents the rate at which information becomes available for deci-
sion making. The curve's asymptote represents the maximum
level of accuracy that can be attained and thus the maximum
amount of mnemonic information an individual can process
without time constraints. In these ways, the x-intercept and
rate parameters describe how efficientlyWM retrieves informa-
tion, and the asymptote parameter describes WM capacity. We
therefore predicted that younger subjects would have both a
smaller x-intercept andmore rapid slope – indicating greater ef-
ficiency, and a higher asymptote – indicating greater capacity.

We attempted to identify a brain network expressed by
both young and old participants that showed a systematic
change of expression as task demand increases. Once such a
network was identified, we could then ask whether there
were differences in the expression of this network in old and
young as a function of task demand. Because standard univar-
iate voxel-wise analyses, such as the general linear model as
implemented in SPM, rely on comparisons of signal strength
in each voxel, it is quite possible that the task difficulty issue
can produce differences in regional activation as well. There
could be portions of a network that are activated to a lesser
degree by young than old when a task is easy, this could pro-
duce significantly different signal strengths at some portion of
the network, leading to the erroneous conclusion that the
older subjects are using this brain area while the younger
are not. These observations suggest that it might be useful
to look for relative expression of patterns of activation as op-
posed to using a univariate voxel-based approach. Further,
we were specifically interested in expression of networks as
opposed to task-related activation at any one point in the
brain. We therefore used a method of analysis, multivariate
linear modeling (MLM), that summarizes group mean task-
related activation across the brain in the form of spatial pat-
terns of covarying activation. This approach allowed us to
identify a brain network that showed a systematic change of
expression as task demand increases and then to quantify
the degree to which any given spatial pattern was expressed
by each individual subject and group at each level of task
demand.

We hypothesized that at low levels of task difficulty older
participants would show greater expression of this network
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than younger participants, while at the highest levels of task de-
mand the network would be expressed to a greater degree by
younger participants. At the same time,wehypothesized the be-
havioral data would indicate that, compared to older subjects,
the young subjects would have greater efficiency (assessed by
the x-intercept or rate parameters of the Hintzman model) and
greater capacity (as assessed by the asymptote parameter).
2. Results

2.1. Behavior

Demographic characteristics, and screening and neuropsy-
chological test performance are summarized in Table 1.

Two analyses assessed whether subjects were meeting
task demands. Because the RSM requires rapid response as
soon as the mask appears, it is important to assess whether
this occurred, and whether there were differences in meeting
this task demand by the young and old individuals. Similarly,
we wanted to know whether the proportion of trials on which
subjects failed to respondwas comparable in the 2 groups. We
used repeated measures ANOVA to analyze reaction time (RT)
from the mask onset as a function of age group and probe du-
ration. We similarly analyzed the proportion of trials on
which subjects timed out (pTO), defining time-outs as trials
with no response recorded during the mask. Figs. 2A and B
show the relationships between RT and probe duration and
between pTO and probe duration, respectively. Results of the
RT analysis indicated no effect of age group on RT, F(1, 47)=
1.41, ns, nor any interaction between age group and probe du-
ration, F(4, 188)=0.92, ns. However, RT did vary as a function of
probe duration, F(4, 188)=269.44, p<.001, such that subjects
had slightly longer RTs for the shorter probes. This variability
in RT across conditions indicates that we did not control per-
fectly for total processing time. Because our SATmodel is fit to
functions of dL with respect to total processing time (probe
duration+RT), analysis of the fit parameters accounts for the
differences in RT across conditions. The lack of group differ-
ences in RT or of a Group×probe duration interaction indi-
cates that our response signal procedure was equally
successful in young and older subjects.

ANOVAof pTO showed that both age groups' pTO varied as a
function of probe duration, F(4, 188)=93.55, p<.001. However,
there was no difference in pTO by age group, F(1, 47)=3.47,
p<.07, nor a probe duration×age group interaction, F(4, 188)=
Table 1 – Demographics and test performance in the old
and young groups. Values are mean±standard deviation.

Old Young

N 23 26
Age 64.96±2.82 25.88±2.90
Gender 13f/10 m 17f/9 m
Education 16.17±1.80 16.38±1.36
Mattis DRS 141.22±2.81 141.50±2.83
NART IQ 120.77±5.90 115.38±6.58
Vocabulary (AS) 13.13±2.28 11.31±2.15
SRT total recall 56.16±8.00 60.17±5.70
0.44, ns. The effects of probe duration on pTO demonstrate the
experiment's imperfect control of processing time. Post hoc re-
view of the data found responses recorded on TO trials during
the ITIs following these trials. That is, participants rarely failed
to respond but rathermade the occasional responsewith laten-
cy greater than themask duration. Again, it is notable that there
were no differences across age groups in pTO.

In a previous study, we evaluated the speed–accuracy
trade-off between total processing time (probe-duration plus
reaction time) and discriminability (dL) in 2 ways. First we ex-
amined the dL values at each probe duration for each subject
and we modeled the data using a three-parameter bounded
exponential curve (Hintzman and Curran, 1994). We found
that the latter approach was more efficient for summarizing
the features of the speed–accuracy trade-off. For clarity of pre-
sentation, Fig. 3 presents both the mean dL values and these
modeled functions in the young and old groups, but we
chose to conduct further analyses using only the model func-
tions. There was no difference in the model fit for young and
old: the residual-sum-of-squares of the fit of DL against total
response time (= duration+reaction time) was computed,
and then subjected to a permutation t-test; the two groups
did not differ (p=0.54).

As explained above, the modeling procedure yields esti-
mates of three parameters: x-intercept and rate—whichwe re-
late to efficiency, and asymptote, which we relate to capacity.
The two groups did not differ on the x-intercept (beta=0.076,
p=0.45) as evaluated using a nonparametric repeated measure
ANOVA. However, they did differ significantly for the rate pa-
rameter (beta=0.467, p=0.038),1 and for the asymptote parame-
ter (beta=−0.127, p=0.03). These results suggest that the
younger group had greater efficiency, based on the rate param-
eter, and higher capacity for information processing, based on
the asymptote parameter.

2.2. Functional imaging

The effect of interest for our fMRI analysis was the log linear
change of fMRI signal with respect to response deadline for
probe presentation in the young and older groups. Multivariate
linear modeling (MLM) (Worsley et al., 1997; Zarahn et al., 2005)
was used to determine if the group-mean effects of interest
could be expressed as combinations of one or more latent spa-
tial variables, or networks. A sequential latent root testing pro-
cedure determined the number of true (i.e., significant) spatial
patterns underlying the effects of interest. The latent root
tests from the MLM analysis determined that there were two
significant spatial patterns: pattern 1: F(1079, 21929)=4.3085,
p<0.0001; pattern 2: F(539, 14648)=1.2096, p=0.001. The two pat-
terns are illustrated in Fig. 4, and the most prominent positive
and negative components of the patterns are listed in Table 2.
The first pattern, which was common to young and old,
accounted for 86%of the variance in the outcomemeasure (con-
trast) of interest.

Expression of pattern 1 increased in an exponential fashion
as task demand increased (i.e. as the response deadline became
1 For this comparison, we eliminated two elders whose asymp-
tote was minimal, thereby creating an artificially high rate for
them.



Fig. 1 – Schematic of the delayed item recognition task. Two nonsense shapes were presented for 3000 ms, followed by a
5000 ms delay. A single probe shape was then presented for 125, 250, 500, 1000 or 2000 ms, followed by a mask. This mask,
which was presented for 500 ms, served as a signal for the participant to indicate whether the probe shape matched one of the
two studied shapes.
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shorter) for listed areas with positive weightings and decreased
with increasing task demands in listed areas with negative
weightings. We calculated expression of pattern 1 at each of
the five response deadlines for both the young and old subjects.
As can be seen in Fig. 5, both groups showed increased expres-
sion of the pattern (i.e. of the positive components of the pat-
tern) as the response deadline became shorter. Note that
because of the way the change in pattern expression was mod-
eled in theanalysis, the increase inpattern expressionwith task
demand is actually logarithmic, mirroring the logarithmic
changes in behavior with increased task demand. Moreover, at
the longer response deadlines (i.e. when the task was the easi-
est) pattern expressionwas greater in the old subjects. This sug-
gests greater efficiency in the young than the older participants,
since they expressed this pattern to a lesser degree while per-
forming better at the task (i.e. when the task was easiest). At
the short response deadlines (i.e. when the task the hardest)
pattern expression was greater in the young subjects. This sug-
gests greater capacity in young compared to older subjects as
they expressed the pattern to a greater extentwhen the task be-
came more demanding. Within the context of a 2-way ANOVA
(Group, response deadline, and group by deadline interaction)
Fig. 2 – Data for reaction time and proportion of time-out trials a
adults (solid lines) and 23 older adults (dotted lines). Error bars r
which has 4 degrees of freedom, we performed a hypothesis-
driven 1 degree of freedom planned contrast. By converting
the planned contrast to a t-test we could apply a unidirectional
hypothesis with greater power. A t-test of the planned hypoth-
esis that aging reduced both efficiency and capacity revealed a
significant response deadline by group interaction, confirming
this hypothesis (t=1.88, p 1 tailed <0.04). This interaction indi-
cates a significant difference in slopes of the change in network
expression as a function of probe duration. This entails a more
limited range of expression values by the group with the lower
slope, i.e., the aged group. Because this first pattern accounted
for the great majority of the variance of interest, it is the major
focus of interest in the Discussion section.

The expression of pattern 2 was also calculated at each of
the five response deadlines. As can be seen in Fig. 5, there
was a strong group by deadline interaction (F=71.2, p<0.001).
In this case, expression of areas with positive weightings
was highest for the old subjects at the shortest probes and
lowest at the longest probes. In contrast, expression of areas
with positive weightings was lowest for the young subjects
at the shortest probes and highest at the longest probes. The
crossover interaction for pattern 2 differs from that seen in
s a function of probe duration. Data are shown for 26 young
epresent standard errors.

image of Fig.�2


Fig. 3 – A and B. Proportion of hits (A) and false alarms (B) at each probe duration in the young and old groups. C and D.
Calculated (C) and modeled (D) speed–accuracy trade-off functions on the delayed item recognition task in the young and old
groups. Data are shown for 26 young adults (solid lines) and 23 older adults (dotted lines). Error bars represent standard errors.
dL=discriminability. Net reaction time is the sum of probe duration and reaction time from the onset of the response signal.
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pattern 1 because it captures what young and old are doing
differently. Because a spatial pattern consists of both positive-
ly and negatively weighted areas, this crossover interaction
indicates that when the task was harder certain areas were
used more by young and others by old, while this differential
utilization was reversed when the task was easier. This sec-
ond spatial pattern accounted for a much smaller percentage
of the variance, suggesting that the primary neural mecha-
nisms underlying coping with increasing task difficulty were
more similar than dissimilar in the two groups.
3. Discussion

In this study,we systematically varied task demandwithin sub-
jects by imposing five different response deadlines. The behav-
ioral data indicated that there was a speed–accuracy trade-off,
in which discriminability declined as response deadlines were
shortened. UsingHintzman andCurran's approach tomodeling
the speed–accuracy curves (Hintzman and Curran, 1994), we
found that elders had a slower increase in discriminability (dL)
as response times increased, suggesting reduced efficiency in
how working memory retrieves information as more time for
response is allowed. They also had a lower asymptote of dL, in-
dicating reduced working memory capacity even when given
sufficient time tomake a response. These findings complement
those of a previously reported behavioral study. In that study of
a different set of youngandolder participants,we also found as-
ymptote lower in the older than the younger group, indicating
lower capacity, while the x-intercept parameter did not differ
across groups (Kumar et al., 2008). In that study we also found
a higher rate in the young subjects, suggesting greater efficien-
cy. The current functional imaging data indicated that we
could identify a spatial pattern (pattern 1) that was expressed
during the probe phase by both young and old subjects such
that both groups showed increased expression of this spatial
pattern as the response deadline became shorter. In the context
of the behavioral data, this finding suggests that this network is
used to a greater degree as task demand increases. Interesting-
ly, increased expression of this pattern was curvilinear across
response demand, paralleling the decrease in dL.

We also noted an age by response deadline interaction in the
utilization of pattern 1, such that the spatial pattern or network
was used to a greater degree by older subjects at lower task de-
mand (i.e. at longer deadlines) while it was used to a greater de-
gree by younger subjects at greater task demand (i.e. at shorter

image of Fig.�3


Fig. 4 – The two significant spatial patterns. The figure illustrates the top 3rd percentile of the absolute value scaled voxel
weights (contained in clusters ≥50 voxels) in order to present only the brain regions most associated with the spatial pattern.
The red scale represents the absolute value of the positive scaled voxel weights, and the blue scale represents the absolute
value of the negative scaled voxel weights. A. First Spatial Pattern: In this pattern, voxels with positive weights show increased
activation with increased demand in old and young, while voxels with negative weights show decreased activation with
increased demand in old and young. B. Second Spatial Pattern. In this pattern, voxels with positive weights show increased
activation with increased demand in the older group, but decreased activation in the younger group. Conversely, voxels with
negative weights show decreased activation with increased demand in the old, but increased activation in the young.
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deadlines). This finding is in agreementwith our theoretical pre-
dictions. We reasoned that at the longer response deadlines,
when the task had less demand, it would be relatively easier
for the younger than the older group. In network terms this rel-
ative difference in task difficulty would be reflected in the
inefficiency in the elders of the network associated with task
performance. Therefore, task-related activation would be lower
in young compared to old individuals at low task demand. We
also reasoned that at the highest demand, i.e. the shortest dead-
lines, the younger participants would perform better than the

image of Fig.�4


Table 2 – Areas most associated with the 2 spatial patterns
identified by the MLM analyses. Formally, all brain areas
participate to some degree in any spatial pattern. Listed
areas are areas in the top 3rd percentile of the absolute
value scaled voxel weights (contained in clusters ≥50
voxels). Bolded lines are cluster maxima. Non-bolded lines
are maxima within for sub-clusters.

Region BA MNI
coordinates

Cluster
size

x y z

Pattern 1
Positive weightings
R Insula 34 22 0 248
L Thalamus −6 −24 −2 304
R Red nucleus 6 −26 −4
R Insula 58 −40 16 125
R Inferior frontal gyrus 9 48 8 30 763
R Middle frontal gyrus 46 42 16 26
R Inferior frontal gyrus 45 40 22 18
R Lingual gyrus 19 30 −66 −6 933
R Middle occipital gyrus 19 26 −84 14
R Middle occipital gyrus 18 22 −90 6
L Lingual gyrus 19 −28 −76 −6 996
L Middle occipital gyrus 19 −28 −88 6
L Lingual gyrus 17 −16 −88 −4
L Medial frontal gyrus 6 −4 −8 58 404
R Superior frontal gyrus 6 8 8 54
L Insula −40 −28 20 59
L Precentral gyrus 6 −50 0 36 239
L Middle frontal gyrus 9 −36 10 28
L Inferior frontal gyrus 9 −46 2 24

Negative weightings
R Precuneus 7 4 −62 60 112
L Precuneus 7 −6 −64 60
R Paracentral lobule 5 6 −52 64

Pattern 2
Positive weightings
R Medial frontal gyrus 10 8 64 10 343
L Medial frontal gyrus 10 −14 52 0
L Superior frontal gyrus 10 −20 62 −2
L Putamen −24 6 −6 83
R Middle frontal gyrus 9 28 42 42 59

Negative weightings
L Fusiform gyrus 37 −46 −52 −14 263
L Inferior occipital gyrus 19 −38 −76 −10
L Fusiform gyrus 19 −38 −68 −12
L Inferior frontal gyrus 47 −44 18 0 266
R Subthalamic nucleus 16 −14 −8 628
R Parahippocampal gyrus 27 12 −38 0
L Claustrum −22 20 20 198
R Inferior occipital gyrus 19 44 −72 −12 749
L Declive −2 −62 −18
R Fusiform gyrus 19 38 −66 −12
R Cingulate gyrus 24 10 −10 30 156
L Thalamus −14 −32 2 57
R Middle frontal gyrus 8 50 16 46 50
R Parahippocampal gyrus 30 26 −48 0 138
L Hippocampus −24 −42 4 60
L Middle frontal gyrus 9 −50 24 36 107
L Middle frontal gyrus 9 −44 32 34
L Middle frontal gyrus 9 −54 14 38
L Lentiform nucleus −20 −14 −2 59
L Subthalamic nucleus −12 −10 −8
R Cingulate gyrus 32 16 12 26 51
R Inferior parietal lobule 40 44 −38 52 50

Table 2 (continued)

Region BA MNI
coordinates

Cluster
size

x y z

L Inferior parietal lobule 40 −42 −36 48 57
L Inferior parietal lobule 40 −36 −36 42
L Inferior parietal lobule 40 −52 −48 48 56
L Culmen −14 −50 −20 70
R Postcentral gyrus 2 48 −26 44 54
R Postcentral gyrus 3 38 −24 44
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elders because of greater network capacity. Therefore network
expression would be greater in younger than older participants
at high task demand.

What is the function of this network? The brain regions com-
prising the spatial pattern compare favorably with statistically
generated “clusters” of brain regions, defined by their tendency
to appear consistently across different published reports, noted
in a meta-analysis of simple and executive working memory
storage studies conducted by Wager and Smith(2006). The large
right inferior frontal cluster in the present study, including BA re-
gions 6, 9 and 13,is amajor constituent ofWager and Smith's ac-
tivation clusters 4 and 11, while the left homologue regions are
included in clusters 1 and 2. Posterior activations in the right
and left lingual, fusiform and middle occipital gyri are included
in activation clusters 5, 6 and10. In contrast toWager andSmith's
findings, activations of the inferior parietal cortices, such as those
found in activation clusters 7 and 8were not found in the current
study. While the precuneus is a constituent of activation cluster
7, its negativeweighting andmoremidline location in the current
network suggest a different functional association, potentially
acting to down-regulate executive-oriented processing. Evidence
for this is the presence of a midline precuneus activation cluster
in contrasts emphasizing working memory updating and order-
ing. Regions present in Wager and Smith's network but absent
from thenetwork reportedhere include dorsal and central frontal
regions (i.e. primary motor and somatosensory regions) and cor-
responding basal ganglia or cerebellar regions that together
might suggest that thenetwork plays a role in the response selec-
tion and execution processes that occur during the task's probe
phase.

The concordance between the Wager and Smith network
and the present network 1 emphasizes the mnemonic nature
of the task. That is, while our manipulation of processing time
during the probe phase effectively may be viewed as a limita-
tion on the perceptual processing time of the probe stimulus,
the consequence is the mnemonic decision required during
the probe phase is altered. Similarly, the brain network that
varies with probe duration is similar to that found in a wide
variety of memory tasks, and includes perceptual areas that
presumably constitute the input to a visually mediated re-
entrant network. It is important to note that our analysis
method selects regions that vary with the probe-duration ma-
nipulation, and produces a network distinct from a contrast
that captures all probe-period activity such as has been pub-
lished in our prior work (Habeck et al., 2005). Notably missing
from the present network (as noted above), but present in the
probe duration network and the Wager and Smith meta-



Fig. 5 – Mean expression of the two spatial patterns at each probe deadline in the young (solid lines) and old groups (dotted
lines). Mean expression encompasses all voxels participating in the spatial pattern, not just those illustrated in Fig. 4.
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analysis, is the output regions such as M1 and basal ganglia
regions. Presumably these regions are very active during the
probe phase, but because the activity is equal for all probe
durations, i.e. sufficient to elicit one correct mnemonic decision
response, they are excluded from the present network.

It has long been clear that manipulation of task demand
can produce different levels of activation even within the
same task. In reviewing these studies, one must keep in
mind that task demand can be manipulated in different
ways and that results might differ based on the nature of
those manipulations. Still some common themes emerge
across studies. Many studies have noted that increasing task
difficulty results in increasing activation in the same brain re-
gions activated by the task at lower difficulties. In other
words, as the same task gets harder, the same brain networks
must work “harder” (Gould et al., 2003). While increasing task
load often leads to parallel increases in activity within already
utilized brain networks, higher task load has also been shown
to generate activation within additional, novel brain regions
(Drager et al., 2004; Grady et al., 1996; Rypma and D'Esposito,
1999).
This recruitment of new networks has often been regarded
as a compensatory response to higher demand. However this
issue can lead to confusion when comparing groups of differ-
ent capacities, such as young and old, or individuals with and
without Alzheimer's disease or psychiatric conditions. For ex-
ample, many studies have also demonstrated differential
task-related activation in old and young as a function of task
difficulty, typically by varying memory load (Mattay et al.,
2006; Morcom et al., 2007; Rypma et al., 2007). In an imaging
study of AD patents (Stern et al., 2000), we noted: “More exten-
sive recruitment of brain areas during task performance has
been noted in AD patients than in age-matched controls and
has been interpreted as patients' attempts to compensate for
disease by using alternate cognitive processes. However, stud-
ies of healthy individuals demonstrate similar alterations in
activation as tasks are made more difficult. Because most
tasks are more difficult for AD patients than healthy elders,
it is important to determine whether observed changes in ac-
tivation in AD simply represent modulation in the use of nor-
mal networks.” We therefore suggested that it was important
to match demand across each subject in each group to reduce

image of Fig.�5
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the chance that simple load-related changes in activation
would be mistaken for recruitment of new, compensatory
brain areas.

Reuter-Lorenz and Cappell (2008) and Reuter-Lorenz and
Mikels (2006) have suggested the Compensation-Related Utili-
zation of Neural Circuits Hypothesis (CRUNCH). According to
this hypothesis, processing inefficiencies cause the aging
brain to recruitmore neural resources to achieve computational
output equivalent to that of a younger brain. Because older
adults tend to engagemore neural resources than young adults
at low levels of task demand, they have fewer resources avail-
able to meet the processing requirements of more demanding
tasks. In essence this viewposits that brainnetworks are less ef-
ficient with aging. We have preferred to address this issue in
terms of potential changes in both efficiency and capacity,
where efficiency can bemeasured as some index of network ex-
pression to performance, while capacity is themaximal level of
network expression (Holtzer et al., 2009; Stern, 2009; Stern et al.,
2003; Zarahnet al., 2007). This formulation accounts for the pos-
sibility that reduced efficiency does not necessarily predict re-
duced capacity. An ancillary issue is that we prefer not to label
increased activation associatedwith reduced efficiency as com-
pensatory. Our preference is to reserve the term compensation
for situations when an impaired group uses a brain network
that is not typically used by an intact group in order tomaintain
or improve performance. Thus, we suggested that differential
network expression as a function of efficiency and capacity be
labeled “neural reserve,”while the recruitmentofnewnetworks
be labeled “neural compensation” (Stern, 2009; Stern et al.,
2005).

There have been various methods used in functional imag-
ing studies to address the issue of differential task difficulty
across groups. In the context of comparing young and older
participants, many studies have ensured that overall task per-
formance is comparable in the two groups before conducting
further analyses. However, this method does not ensure com-
parable task difficulty across each subject and may limit the
representation of the aged sample group by eliminating po-
tential participants who perform more poorly than the youn-
ger group. In several studies we used an alternate approach:
we titrated task difficulty in individual subjects by varying
the study list size in serial learning task such that each subject
performed at a fixed accuracy level (e.g. Stern et al., 2000;
Stern et al., 2005). The logic of this approach was to attempt
to ensure that the task was equally challenging for each subject,
such that any subsequent group differences in activation could
be assumed to be related to actual differences in processing as
opposed to different task demand across the groups. However,
this approach hasweaknesses aswell. Itmight ensure compara-
ble performance on onemeasure of behavior (in this case recog-
nition accuracy), but it cannot ensure comparable performance
on all aspects of performance (e.g. reaction time). It also resulted
in other differences in the structure of the task across subjects,
particularly the number of trials per block. Finally, this approach
makes implicit assumptions about relative efficiency and capac-
ity of underlying networks that cannot be directly examined
within that paradigm.However, the idea ofmatchingacross sub-
jects for task difficulty does have validity: a recent paper using a
DIR working memory task demonstrated that activation differ-
ences between younger and older adults disappeared when
task difficulty was made subjectively comparable (Schneider-
Garces et al., 2009).

The alternate approachwe use here is to parametrically vary
task difficultywithin subjects. Several groupshaveutilized aDIR
working memory task in which the number of items to be re-
membered was systematically varied, most typically a letter
task with 1, 3 or 6 letters to be encoded (D'Esposito et al., 2000;
Rypma and D'Esposito, 1999). Our group has taken a similar ap-
proach with the nonverbal stimuli used in the current study
(Holtzer et al., 2009). Here we extended this method to paramet-
rically vary task difficulty by keeping the number of items to be
processed constant but systematically varying the time allowed
for response. The advantage of the response signalmethodused
in the current study is that it makes it possible to include a large
range of task demand. In both young and old, we found that a
single spatial pattern of task-related activation accounted for
load-related performance across the full range of task difficulty.
Thus, within the defined contrast of load-related activation, the
first identified spatial pattern accounted for 86% of the variance
in the fMRI signal. Interestingly, the level of expression of the
spatial pattern paralleled the modeled behavioral performance
in that expression of the pattern increased logarithmically
with task difficulty. We conclude that this pattern represents
the primary neural implementation of task difficulty in the con-
text of this DIR task.

Other groups have also reported differential activation be-
tween young and old as a function of task demand. For exam-
ple, similar results have also been noted using different forms
of analysis that examined arrays of brain areas (Cappell et al.,
2010; Carp et al., 2010; Nagel et al., 2011). The present results
are consistent with these previous studies in that we demon-
strated lowered efficiency of network expression in the elders.
In addition, both thebehavioral and imaging data are consistent
with not just age-related differences in efficiency, but also in ca-
pacity. That is, themaximal level of recruitmentwas lower than
that of elders. The Hintzmanmodel we used for the behavioral
data incorporates 3 components, two of which are roughly
equivalent to the efficiency and capacity. Similarly, when eval-
uating network response to task difficulty it may be important
to evaluate efficiency and capacity separately. Attention to
these two concepts may help better explain group or individual
differences in task-related activation.

It is important to consider the observation that differential
expression of pattern 1 was not directly predictive of perfor-
mance. Therefore we must be cautious when relating ob-
served activation to observed performance. Our working
definition of efficiency is network expression per unit of per-
formance. Because at the longer probe times the network
was expressed to a greater degree by the elders even though
they are performing worse we conclude that, on the average,
the network is less efficient in the elders. Similarly, our work-
ing definition of capacity is simply the highest level that a net-
work can be expressed. Therefore we conclude that the young
group has greater network capacity and infer that this may be
related to the greater capacity noted in their behavioral per-
formance as indicated by a higher asymptote.

The analyses of the fMRI data also noted a second spatial
pattern that was differentially expressed by young and old.
This pattern, which accounted for a very small percentage of
the imaging data of interest, incorporates the aspects of task
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processing that differed in the two groups. By the definitions
we have previously offered (Stern, 2009; Stern et al., 2005),
the elders' use of this pattern may represent neural compen-
sation in that it could reflect the recruitment of additional re-
sources not needed by the younger participants. This second
spatial pattern accounted for a much smaller percentage of
the variance, suggesting that the primary neural mechanisms
underlying coping with increasing task difficulty were more
similar than dissimilar in the two groups. The second spatial
pattern included two major components. First, midline BA 10
is positively weighted, and so increased in activation with
task difficulty in the elder participants, and decreased in acti-
vation with task difficulty in young participants. Second, lin-
gual and fusiform gyri areas are negatively weighted and so
decreased in activation with task difficulty in the elder partic-
ipants, and increased in activation with task difficulty in
young participants. Third, cluster in the left inferior and mid-
dle frontal gyri, the inferior parietal lobe followed a similar
pattern. The lingual and fusiform areas are also components
of the first network and are generally associated with complex
visual processing, while BA 10 is not a constituent of the first
network, nor is it an area closely associated with simplemain-
tenance in Wager and Smith's meta-analysis (Wager and
Smith, 2006). However, it is close to the centroid of cluster
8 in their meta-analysis. This cluster was typically expressed
in contrasts involving executive function aspects of working
memory tasks. This suggests that network 2 might reflect a
greater reliance by elder participants on executive processes
in the more difficult task conditions. The other regions are
not part of the first network but are components of working
memory networks found in other tasks. As such activation
of these regions may reflect adoption of memory strategies
or processes optimal for other tasks, but compensatory and
of secondary utility for the current task.

Because we used a speed–accuracy trade-off (SAT) paradigm,
it is important to place this study within the context of other
behavioral and imaging studies that have investigated SAT. The
literature is relatively consistent in showing that older adults
are less willing than young to trade accuracy for speed even
when they are explicitly instructed to do so (Salthouse, 1979;
Smith and Brewer, 1995; Strayer et al., 1987). This conservative
response bias is thought by some to suggest a reiterative mental
checking of older adults' computations prior to responding. This
may be considered an age-related change in the “top down” con-
trol of task processing. However, in the present study we took
great pains to impose “bottom up” control: we imposed the
speed at which the task was performed by using a response sig-
nal. As demonstrated in Fig. 2, RT from the onset of the response
signal (i.e. the mask) remained relatively comparable at each re-
sponse deadline, and, more importantly, RT at each deadline
was comparable in the young and older subjects. In addition,
the proportion of “time outs,” or late responses, was comparable
in the two groups. We were therefore successful in imposing re-
sponse speed in a bottom up manner, resulting in systematic
changes in performance accuracy as the response deadlines be-
came shorter. This allows us to directly compare the behavioral
and neural characteristics associated with increased demand
with greater confidence that age-related performance differences
are not due to a conservative response bias in the older group.
Similarly, the current imaging data may not be directly
comparable to other imaging studies of SAT (Bogacz et al., 2010;
Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al., 2008)
where top down control was the focus of study.

Other considerations relate to the basic nature of the opera-
tions underlying task performance given the response signal
methods utilized here. Our intention was to parametrically ma-
nipulate task demand. However itmight be argued that thema-
nipulation is purely perceptual, i.e. howmuch time the observer
has to perceive the recognition probe. In that case themanipula-
tion may not be a parametric one, where difficulty of the task is
graded across the entire range of response times, but actual
might change from a perceptual to a memory task as response
times increase. In response to this idea, it is important to keep
in mind that our manipulation occurred at probe. Participants
had sufficient time to study and encode the two shapes. The
RSM does not simply vary the perceptual difficulty of the figures
at probe. That would require introducing some form of system-
atic degradation of the presentation of the figures. Rather it var-
ies the amount of time allowed to view the figures prior to
making a decision. This manipulation systematically assesses
the processes underlying the decision-making at probe. The re-
sponse signal method and the modeling approaches used here
are designed to assess a long-studiedmodel ofmemory retrieval
which specifically posits a single process that can be explicated
by manipulating the amount of time available to make the re-
trieval decision in order to generate a speed–accuracy trade-off
function. This model recognizes that perceiving the figures is
an important component recognition memory, but integrates
this aspect of the task with all of the other processes that
occur when a subject makes a recognition decision. Varying
the response time systematically influences the information
available to the recognition process. By its nature, this involves
both the amount of sensory input and the ability and time to
engage the processes required to match the stimuli to the
information in the memory store. Other aspects of the findings
also argue simply interpreting behavioral and imaging findings
as a function of perceptual disruption. First, both here and in
an earlier paper (Kumar et al., 2008), the resulting data met the
assumptions of the Hintzman and Curran modeling approach.
This long-studied model of memory retrieval specifically posits
a single process that can be explicated by manipulating the
amount of time available to make the retrieval decision in
order to generate a speed–accuracy trade-off function.
Second, purely perceptual components of a DIR have
traditionally been manipulated using a different paradigm,
which directly degrades the probe (e.g. Rakitin, in press).
Finally, expression of pattern of 1 is not consistent with an
explanation of the findings in terms of age differences in
sensory processes. In both groups, expression of network 1
increased logarithmically as probe duration decreased, i.e.
with increased demand. The perceptual explanation for our
observed probe duration by age interaction in increased
expression cannot explain why elders' expression of network
1 was higher at the longer intervals since their perceptual
abilities always remain poorer.

Still, we cannot be sure that the shapes were encoded
equally well for both age groups and it is possible that some
aspects of age differences in performance are due to perceptu-
al (data limited) components rather than memory compo-
nents per se. This issue would have to be resolved in a
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future study that used different stimuli sets normed for the
two groups in terms of perceptual speed and accuracy.

An additional issue related to our use of the response sig-
nal method is that it does not assess working memory ca-
pacity in the same way that manipulating set size does.
Working memory capacity is typically measured by how
much information can be retained in working memory
whereas the current study assesses the capacity for retrieval
from working memory. Nonetheless, given effectively un-
limited time (in the longest probe condition) we are effec-
tively measuring what was stored in memory. There are
two alternatives that can't be distinguished with this exper-
iment: 1. storage capacity is limited, or 2. retrieval capacity is
limited in aging.

For both identified brain networks, between subject vari-
ability in network expression increased with task demand.
Similar variability increases were also noted in behavioral
performance with increased task demand. Variability in per-
formance (Wegesin and Stern, 2004) and network expression
(Garrett et al., 2010) are important outcome parameters, and
will be explored in further analyses.

Finally, the analyses here focus solely on the probe phase
of the DIR task. We focused on the probe phase because that
is where the key manipulation occurred. Up to the probe
phase all trials are exactly the same: two stimuli presented
and a retention period, and thus there is no difficulty manip-
ulation. Future analyses might explore whether processing
differences in the stimulus or retention phase might account
for differential performance at probe. Still, the key feature of
performance at probe is the mnemonic processes involved
with comparing the probe to the stored stimuli that are pre-
sented during the encoding phase.

In sum, the current findings suggest that great caution
must be used when interpreting differences in degree of ac-
tivation between young and old groups. Within a single task
we have demonstrated that manipulation of task difficulty
can produce either higher or lower relative activation in
young and old. Because standard univariate voxel wise ana-
lyses, such as the general linear model as implemented in
SPM, rely on comparisons of signal strength in each voxel,
it is quite possible that this task difficulty issue can produce
differences in regional activation as well. There could be
portions of a network that are activated to a lesser degree
by young than old when a task is easy, this could produce
significantly different signal strengths at some portion of
the network, leading to the erroneous conclusion that the
older subjects are using this brain area while the younger
are not. These observations suggest that it might be useful
to look for relative expression of patterns of activation as
opposed to using a univariate voxel-based approach. Fur-
ther, our findings suggest that it might be more useful to
look at task-related activation across a range of task diffi-
culties in order to better characterize differential network
utilization across groups. Finally, consideration of both net-
work efficiency and capacity is important. These findings
are relevant for interpretation of any study that compares
groups where the underlying efficiency or capacity of net-
work expression might differ. This certainly encompasses
any study of a control versus a disease group, such as stud-
ies of people with psychiatric or neurological diseases.
4. Experimental procedures

4.1. Participants

Twenty-six healthy young adults between ages 20 and 30,
and 23 healthy older adults between ages 60 and 70 partici-
pated in this study. In order to ensure comparability of re-
cruitment methodology across the younger and older
subjects, all participants were recruited via random market
mailing. Using a commercial service, letters were mailed to
a randomly selected group of 5000 young and 5000 old indi-
viduals living within 10 miles of the Columbia University
Medical Center. These letters briefly described the study
and the inclusion criteria. An enclosed form expressing in-
terest in participating was returned by 580 individuals (367
young, 213 old). Of these, 148 were excluded before telephone
screening, 140 were unreachable by phone, and 292 were
screened (197 young, 95 old). Of the 292 people screened,
162 were eligible for the study (114 young, 48 old) and 29
young and 34 old subjects were invited to the medical center
to participate. Some subjects did not meet inclusion/exclu-
sion criteria upon in-person screening (1 young, 4 old) or
had difficulty learning the activation task (3 old), and 6 sub-
jects' data were excluded because of artifacts in the fMRI
data, claustrophobia, or equipment failure (2 young, 4 old),
yielding 26 younger and 23 older subjects for the present
analyses.

All participants were right-handed, spoke English, and had
normal or corrected-to-normal vision. Participants had no
past or current medical, neurological, or psychiatric disorders,
were not being treated with psychoactive drugs, and were
screened to ensure the absence of dementia. Given the age
range of participants, subjects had to score 133 or higher on
the Mattis Dementia Rating Scale (Mattis, 1976) to be included
in the study. A more intensive neuropsychological evaluation
was also administered, and results were reviewed to ensure
that no elderly subjects with dementia or mild cognitive im-
pairment (MCI) were included. Informed consent was
obtained from all participants in accordance with the proce-
dures of Columbia University Medical Center.

4.2. Cognitive screening and testing

Participants also completed the vocabulary sub-test of the re-
vised Wechsler Adult Intelligence Scale — Revised (Wechsler,
1981) and the American version of the National Adult Reading
Test (Grober and Sliwinski, 1991), as measures of IQ. The Se-
lective Reminding Test (Buschke and Fuld, 1974) was adminis-
tered to assess episodic memory.

4.3. Activation task

The activation DIR task used the response signal method to
manipulate the extrinsic difficulty of the task by varying the
probe-duration and eliciting a recognition response promptly
after termination of the probe. It has been described in detail
in a previous paper reporting behavioral data from a different
set of subjects (Kumar et al., 2008). Each DIR trial consisted of
encoding, retention, and probe phases. The task used non-
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verbal stimuli which consisted of computer-generated, complex
closed-curve shapes intended to limit the extent of phonologic
processing (for further details see Holtzer et al., 2004). We had
used these shapes as stimuli for a DIR a previous study that ex-
plored a standard load manipulation (i.e. studying 1, 2 or 3
shapes) in old and young (Holtzer et al., 2009). We selected a
set size 2 in this study because it waswithin thememory capac-
ity of older adults.

The encoding phase presented two shape stimuli for 3 s,
followed by a 5 second retention interval during which the
computer screen was blank. Subjects then saw a single probe
item that either matched one of the stimuli from the study
set (true positive) or was completely different from both of
them (true negative). The probe item was presented for 125,
250, 500, 1000, or 2000 ms, and was followed immediately by
a 500 ms mask (gray square), during which subjects were
instructed to respond. Subjects responded during the mask
by indicating whether the probe stimulus matched either of
the memory stimuli via computer key-press (“x” button or “.”
button) or LUMItouch button (R or L hand). Assignment of re-
sponse keys to the true positive and true negative conditions
was counterbalanced across participants within each age
group. Participants were instructed to place greater emphasis
on speed than accuracy in responding and to guess rather
than delay their response on trials when they felt unsure.
The intent of this design is to hold RT constant across the re-
sponse deadlines, causing discriminability to vary. The task
was programmed and run using PsyScope v1.2.5 software
(Cohen et al., 1993) on a Macintosh G-3 iBook computer.

4.4. Apparatus

Training and the first 2 blocks of the task itself were complet-
ed in a well-lit room, where the subject was approximately
25 in. from a 12-inch LCD color monitor. Subjects entered re-
sponses on the computer keyboard. The last 3 blocks of the
task were conducted in the MRI scanner. For these blocks,
task stimuli were back-projected onto a screen located at the
foot of the MRI bed using an LCD projector. Subjects viewed
the screen via a mirror system located in the head coil. Re-
sponses were made on a LUMItouch response system (Photon
Control Company). Task onset was electronically synchro-
nized with the MRI acquisition computer.

4.5. Procedure

Pre-training was administered to ensure that subjects could
meet the demands of the DIR experiment. Pre-training con-
sisted of a two-alternative forced-choice (2-AFC) object dis-
crimination task, divided into 10-trial blocks. In each trial of
the pre-training 2-AFC task, participants were presented
with one shape out of a fixed set of two abstract shapes (de-
scribed below), followed by the same mask used in the DIR.
To reduce the task's memory demands, the same set of 2
shapes was used across all the pre-training trials and blocks.
The single shape was presented for a variable duration (simi-
lar to the DIR probe item, described below) and during the
mask subjects had to identify which of the two shapes they
had previously seen via computer key-press. After each re-
sponse they received speed and accuracy feedback. If the
participant responded before or after the mask, the feedback
read “Sorry, response made too soon…” or “Sorry, time ran
out…” respectively. If the subject responded during the
mask, the feedback read either “Correct!” or “Fast enough,
but wrong,” depending on response accuracy. At the end of
each block, a summary displayed the number of trials on
which the subject responded both on time and correctly.

Participants completed at least five blocks of the 2-AFC
task and continued until they were able to respond accurately
during the mask on at least 9 out of 10 trials within a block.
Subjects who could not meet this criterion after 50 blocks
were excluded from the study. All but 1 participant met
criteria.

The DIR itself consisted of 11 blocks of thirty trials each
(see description in “activation task” section above), divided
into 3 training phases and 1 test phase. In training phase 1
(two blocks), subjects received feedback after each trial about
their speed and their accuracy. At the end of each block, a
summary displayed the number of trials on which the subject
responded both correctly and on time, as well as the number
of trials when the subject responded on time regardless of
choice accuracy. Training phase 2 (three blocks) provided
only speed feedback after each trial, and the summary for
each block displayed only the number of on-time responses.
In training phase 3 (one block), no feedback was provided. Par-
ticipants then completed five test blocks with no feedback,
the results of which we used for statistical analysis. Two of
these blocks were completed out of the scanner and 3 were
completed in the scanner.

In training, the mask was followed by a 250 ms delay and a
1750 ms feedback display. Training phase 1 provided speed
and accuracy feedback identical to the feedback in the 2-AFC
task. Training phase 2 provided only speed feedback, so the
display for any on-time response read “ON TIME” regardless
of choice accuracy; the display for early or late responses
was the same as in the 2-AFC task.

Each DIR block consisted of thirty trials. The crossing of
two probe types (positive where the probe matched one of
the studied shapes; and negative where the probe did not
match) and 5 probe-durations yielded 10 conditions, which
were repeated three times within a block. Analyses included
five testing phase blocks so that from each participant we
obtained a total of 15 trials for each of the 10 conditions.

Within each block of 30 trials there were 70 blank, 2000 ms
intervals randomly interspersed. When added to the mini-
mum 3 s ITI preceding each trial, these intervals resulted in
a mean inter-trial interval (ITI) of 9119 ms (SD=5265 ms).
This design element staggered the timing of trial presentation
so that subjects could not anticipate the onset of the next trial.
The exact duration of the ITI was determined to maximize
statistical power for the fMRI analyses (Dale, 1999).

Visual stimuli were selected from a set of 420 computer-
generated closed-curve shapes (Holtzer et al., 2004). These
shapes were abstract and did not correspond to or intuitively
relate to real words or objects (see Fig. 1). The mean pixel
ratio of the shapes (white) to the background (black) provided
an estimate of their complexity, which was comparable among
encoding andprobe stimuliwithin a single trial. Positive andneg-
ative trials were also matched for complexity, and the overall
complexity of the shapes was counterbalanced across all five
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probe-durations. At most, each individual shape appeared
once across the three training phases, and once within the
testing phase. Within training 228 shapes appeared twice,
and in testing 120 shapes appeared twice. However, each
combination of three shapes within a single trial (two encod-
ing stimuli plus one probe stimulus) was unique across the
entire experiment. Additionally, no shape occupied the
same position (e.g., left side of the encoding stimulus) more
than once.

4.6. Statistical analysis for behavioral data

The response signal method was intended to elicit a relatively
comparable reaction time (RT) across probe durations. We
used a repeated-measures analysis of variance (ANOVA) to
analyze RT (measured from the onset of the mask) with
probe duration (five-level) as the within-subjects variable
and age group (two-level) as the between-subjects factor. We
conducted a similar analysis for the proportion of time-out tri-
als (pTO), defined as the number of trials on which subjects
did not respond during the mask, divided by 15 (the total
number of trials per condition).

Proficiency at the task was calculated in terms of the
discriminability measure dL, given by the formula dL=ln{[H
(1−FA)] / [(1−H) FA]} where H=hits (correct true-positive probe
trials), FA=false alarms (incorrect true-negative probe trials),
and ln is the natural logarithm function (Snodgrass and
Corwin, 1998). Thus by definition our key measure of proficien-
cy incorporated all trials in which there was a response, wheth-
er responses were correct or incorrect. We modeled the speed–
accuracy trade-off (SAT) between discriminability and total
processing time (probe-duration plus reaction time) using a
three-parameter bounded exponential curve (Hintzman and
Curran, 1994). Each such curve is defined in terms of its x-
intercept, asymptote, and rate, using the compound equation:
For x≤x-intercept, dL=0; for x>x-intercept, dL=asymptote* {1
−exp[−rate* (probe-duration− intercept)]}, where x is the total
processing time. The curve's x-intercept represents (in ms) the
time at which retained information first becomes available to
guide recognition memory decisions beyond random guessing.
The curve's asymptote represents (in dL) the maximum level
of accuracy that can be attained and thus the maximum
amount of mnemonic information an individual can process
without time constraints. The rate of change of the curve's
slope represents (in dL/ms) the rate at which information be-
comes available for decision making. In these ways, the x-
intercept and rate parameters describe how efficiently working
memory retrieves information, and the asymptote parameter
describes working memory capacity.

We derived best-fit curves for each individual's perfor-
mance in three steps: First, for each age group and at each
probe-duration, we calculated the between-subject mean dL

and the between-subject mean total processing time, generat-
ing a SAT function for each age group. Second, we fitted a
three-parameter best-fit curve to these group-average SAT
functions. We completed this step simultaneously for both
age groups to identify a set of fit parameters that optimizes
both best-fit curves at once (six parameters altogether, three
for each group curve). Third, we fitted similar curves to each
individual's SAT function: Using the intercepts, asymptotes,
and slopes of the group-average best-fit curves (from step
two) as starting points, we carried out a simple gradient de-
scent procedure to estimate the parameter values for each
individual's best-fit curve (step three), minimizing the residu-
al to each subject's data for each fit parameter. Each subject's
unique parameter values served as the dependent variables in
our statistical analysis.

For each of the three fit parameters (intercept, asymptote,
and rate), we built a general linear model (GLM) that tested
their relationship with age group. Because we used group-
average fit parameters to begin to estimate each individual's
fit parameters, our GLMs violated the assumption of indepen-
dent errors, and so we could not rely on standard parametric
assumptions to determine the probabilities associated with
test statistics. Instead, we employed a non-parametric permu-
tation procedure to generate the null-hypothesis distribution
of regression weights from the data itself (Kumar et al.,
2008). Because we had directional hypotheses based on a pre-
vious experiment using this paradigm (Kumar et al., 2008), we
employed one-way tests of significance.

4.7. fMRI data acquisition

During the performance of each block of each DIR task,
207 T2⁎-weighted images, which are BOLD images (Kwong et
al., 1992; Ogawa et al., 1993) were acquired with an Intera
1.5 T Phillips MR scanner equipped with a standard quadra-
ture head coil, using a gradient echo echo-planar (GE-EPI) se-
quence [TE/TR=50 ms/3000 ms; flip angle=90 degrees; 64×64
matrix, in-plane voxel size=3.124 mm×3.124 mm; slice thick-
ness=8 mm (no gap); 17 trans-axial slices per volume]. Four
additional GE-EPI excitations were performed before the task
began, at the beginning of each run, to allow transversemagneti-
zation immediately after radio-frequency excitation to approach
its steady-state value; the image data for these excitations were
discarded. A T1-weighted spoiled gradient image was acquired
from each subject for spatial normalization purposes (TE/
TR=3ms/25ms; flip angle=45°, 256×256 matrix; in-plane voxel
size=0.781mm×0.781mm; slice thickness=1.5 mm [no gap];
124 trans-axial slices per volume).

4.8. fMRI statistical analysis

All image pre-processing and analysis were implemented
using the SPM5 program (Wellcome Department of Cognitive
Neurology) and other code written in MATLAB 7.8 (Math-
works, Natick MA). The following steps were taken in turn
for each subject's GE-EPI dataset: data were temporally shifted
to correct for the order of slice acquisition, using the first slice
acquired in the TR as the reference; all GE-EPI images were
realigned to the first volume of the first session; the high-
resolution T1-weighted (structural) image was co-registered to
the first EPI volume using mutual information (Ashburner,
2009); the co-registered high-resolution image was then used to
determine the linear and non-linear parameters for transforma-
tion into a Talairach standard space defined by the Montreal
Neurologic Institute (MNI) template brain supplied with the
software; this transformation was then applied to the GE-
EPI data, which were re-sliced using sinc-interpolation
to 2 mm×2 mm×2 mm voxel sizes; images were spatially
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smoothed with an isotropic Gaussian kernel, full-width-at-
half-maximum=8 mm.

The fMRI data time-series analysis comprised two levels of
voxel-wise GLMs (Holmes and Friston, 1998). The first-level
GLM yields summary measures used in second-level group
wise analysis, which affords statistical inference at the popu-
lation level. In the first-level GLM, the GE-EPI time-series data
were modeled with regressors representing the expected
BOLD fMRI response (implicitly, relative to the blank intervals)
to the DIR trial components: memory set presentation, reten-
tion delay, and probe presentation/response. All task compo-
nents were modeled separately. Memory set presentation
and retention delay were each modeled with a single regres-
sor. For both the probe and mask components of the task
each crossing of probe-duration and true positive/true nega-
tive factors were separately modeled. The regressors were
constructed by convolution of a rectangular function of
width defined by the design, to represent each trial compo-
nent (Zarahn et al., 2000) and an assumed BOLD impulse re-
sponse function (as per the default in SPM5).

The current analyses focused only on the probe phase.
There were thus 5 contrast estimate images calculated per
subject: (1 trial component)×(5 response deadlines). The
resulting images were used as the dependent data in a
second-level, voxel-wise GLM (Holmes and Friston, 1998) and
subjected to analysis using Multivariate Linear Modeling
(MLM). This second-level GLM thus modeled 5 repeated mea-
sures per subject per voxel, with a design matrix representing
one between-subjects factor (age) and 1 repeatedmeasure fac-
tors (response deadline). The search region for the second
level analysis was limited with amask image that represented
the intersection of useable data from all subjects and a gray
matter prior probability greater than 0.25 defined from the
prior probability images supplied with the SPM5 program
(this eliminated the ventricles and surrounding white matter
from the search volume).

Based on our interest in neural responses that increased
with response deadline, we specified the effects of interest
to comprise (separately representing elder and young) the
log linear change of fMRI signal with respect to response
deadline for probe presentation. That is, we modeled linearly
the change in activation as the response deadlines length-
ened. Because the values of the deadlines were log spaced,
this corresponds to modeling a logarithmic curve. The result-
ing contrast value corresponds to the exponent of the fitted
power function. In essence, we assumed that change in acti-
vation across deadlines takes the same shape as the change
in behavior (dL) which was logarithmic (see Fig. 3). Effects
were averaged over probe type (i.e., true positive and true neg-
ative trial types), thus making the effective number of trials
per subject per response deadline equal to 18 (or close to 18
when subjects emitted some no response trials). Note that
both trials with correct and incorrect responses were included
in the analysis, since we were interested in the activation cor-
responding to change in DL.

There were two effects of interest, or contrasts in our mul-
tivariate group level analyses: the slope of log linear change in
activation associated with probe duration in young and older
adults. MLM (Worsley et al., 1997; Zarahn et al., 2005) was
used to determine if the group-mean effects of interest could
be expressed as combinations of one or more latent spatial
variables, or networks. This involves a singular-value decom-
position (SVD) on the set of two de-correlated (i.e., whitened)
effects of interests. This whitening removes any correlation
between these two contrasts that might have been imposed
by the processing steps (Zarahn et al., 2006). The SVD analyzes
the whitened mean contrast images into an equal number of
new latent spatial patterns with associated sets of scaling pa-
rameters called singular values. An original whitened mean
contrast image can be reconstituted as a linear combination
of the new latent spatial patterns times one set of singular
values associated with that contrast. The variance among
the original effects of interest accounted for by each latent
spatial variable is equal to the square of the variable's singular
value (normalized by the number of voxels) divided by the
sum of all the patterns' squared singular values.

A sequential latent root testing procedure determined the
number of true (i.e., significant) spatial patterns underlying
the effects of interest. Two tests were carried out, each of
which assessed the null hypothesis that the additional spatial
variance associated with the kth latent spatial variable is not
significant compared to the aggregate variance contributed
by variables 1 … k−1. We specified the false positive rate of
all sequential latent root tests to be α=.05. The latent root
testing in the MLM analysis could thus detect zero, one, or
two significant latent patterns. No significant latent patterns
would indicate that there is no spatial pattern of activation
detectable above Gaussian noise. If one or two patterns are
found, interpretation is dependent on the groupmean expres-
sion of the patterns.

The distribution of a spatial pattern is illustrated by the
voxel weights of the latent pattern (i.e. the degree that voxel
participates in that pattern), scaled by the singular value of
the pattern. The higher the scaled weight for a voxel the
more prominent this voxel is in the spatial pattern that it is
associated with that pattern. Since such values can be calcu-
lated for every voxel, we threshold the absolute value of the
scaled weights at a fixed percentile in order to present only
the more prominent brain regions. Thus, significant latent
spatial patterns are presented thresholded for descriptive pur-
poses in all tables and figures at the top 3rd percentile and a
cluster size of 50 voxels. Using cluster maxima, likely neuro-
anatomic labels are provided via use of the Talairach Daemon
(Lancaster et al., 2000).

The signs of voxel values in a latent spatial pattern and
their corresponding expression across subjects are only
meaningful in their product (i.e., the signs of each in isolation
may be thought of as completely arbitrary): one multiplies the
latent spatial pattern by its expression to yield the contribu-
tion from a particular latent spatial pattern to the net activa-
tion at each voxel (Worsley et al., 1997). Pattern expression
can be positive or negative, and each subject can express the
pattern to a different degree.

Once calculated, the spatial patterns were multiplied voxel-
wise by the participant specific contrast maps which were en-
tered into the MLM analysis and then summed to calculate
each participant's network expression for each probe-duration
resulting in 5 expression scores per individual (Zarahn et al.,
2007). These network expression scores serve as measures de-
scribing the degree to which each participant used, or
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expressed, a significant spatial pattern. We used a repeated
measures ANOVA to evaluate change in expression of the iden-
tified network across the probe durations. The group×probe du-
ration interaction tested whether this change differed across
the two groups. Because we had a unidirectional hypothesis
that network expressionwould be lower in the younger subjects
at low demand (longer probe durations) and higher at high de-
mand (shorter probe durations) we tested this interaction with
a hypothesis-driven 1 degree of freedom planned contrast.
Acknowledgments

This work was supported by NIARO1-AG026158. The funding
agency had no role in study design; in the collection, analysis
and interpretation of data; in the writing of the report; or in
the decision to submit the paper for publication.
R E F E R E N C E S

Ashburner, J., 2009. In: Filippi, M. (Ed.), Preparing fMRI data for
statistical analysis. : fMRI Techniques and Protocols., 41.
Humana Press, pp. 151–178.

Bogacz, R., Wagenmakers, E.J., Forstmann, B.U., Nieuwenhuis, S.,
2010. The neural basis of the speed–accuracy tradeoff. Trends
Neurosci. 33, 10–6.

Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E., Noll,
D.C., 1997. A parametric study of prefrontal cortex involvement
in human working memory. NeuroImage 5, 49–62.

Buschke, H., Fuld, P.A., 1974. Evaluating storage, retention, and
retrieval in disordered memory and learning. Neurology 24,
1019–1025.

Callicott, J.H., Mattay, V.S., Bertolino, A., Finn, K., Coppola, R.,
Frank, J.A., Goldberg, T.E., Weinberger, D.R., 1999. Physiological
characteristics of capacity constraints in working memory as
revealed by functional MRI. Cerebral Cortex 9, 20–26.

Cappell, K.A., Gmeindl, L., Reuter-Lorenz, P.A., 2010. Age
differences in prefontal recruitment during verbal working
memory maintenance depend on memory load. Cortex. 46,
462–473.

Carlson, S., Martinkauppi, S., Rama, P., Salli, E., Korvenoja, A.,
Aronen, H.J., 1998. Distribution of cortical activation during
visuospatial n-back tasks as revealed by functional magnetic
resonance imaging. Cerebral Cortex 8, 743–752.

Carp, J., Gmeindl, L., Reuter-Lorenz, P.A., 2010. Age differences in
the neural representation of working memory revealed by
multi-voxel pattern analysis. Frontiers in Human
Neuroscience 4.

Cohen, J., MacWhinney, B., Flatt, M., Provost, J., 1993. PsyScope: a
new graphic interactive environment for designing psychology
experiments. Behavioral Research Methods, Instruments &
Computers. 25, 257–271.

Dale, A.M., 1999. Optimal experimental design for event-related
fMRI. Human Brain Mapping 8, 109–114.

D'Esposito, M., Ballard, D., Zarahn, E., Aguirre, G.K., 2000. The role of
prefrontal cortex in sensory memory andmotor preparation: an
event-related fMRI study. NeuroImage 11, 400–408.

Drager, B., Jansen, A., Bruchmann, S., Forster, A.F., Pleger, B.,
Zwitserlood, P., Knecht, S., 2004. How does the brain
accommodate to increased task difficulty in word finding? A
functional MRI study. NeuroImage 23, 1152–1160.

Forstmann, B.U., Dutilh, G., Brown, S., Neumann, J., von Cramon,
D.Y., Ridderinkhof, K.R., Wagenmakers, E.J., 2008. Striatum and
pre-SMA facilitate decision-making under time pressure.
Proceedings of the National Academy of Sciences of the
United States of America 105, 17538–17542.

Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2010.
Blood oxygen level-dependent signal variability is more than
just noise. Journal of Neuroscience 30, 4914–4921.

Gould, R.L., Brown, R.G., Owen, A.M., ffytche, D.H., Howard, R.J.,
2003. fMRI BOLD response to increasing task difficulty during
successful paired associates learning. NeuroImage 20,
1006–1019.

Grady, C.L., Horwitz, B., Pietrini, P., Mentis, M.J., Ungerleiter, L.,
Rapoport, S.I., Haxby, J., 1996. The effect of task difficulty on
cerebral blood flow during perceptual matching of faces.
Human Brain Mapping 4, 227–239.

Grober, E., Sliwinski, M., 1991. Development and validation of a
model for estimating premorbid verbal intelligence in the
elderly. Journal of Clinical and Experimental Neuropsychology
13, 933–949.

Habeck, C., Rakitin, B.C., Moeller, J., Scarmeas, N., Zarahn, E.,
Brown, T., Stern, Y., 2005. An event-related fMRI study of the
neural networks underlying the encoding, maintenance, and
retrieval phase in a delayed-match-to-sample task. Brain
Research. Cognitive Brain Research 23, 207–220.

Hintzman, D.L., Curran, T., 1994. Retrieval dynamics of
recognition and frequency judgments: evidence for separate
processes of familiarity and recall. Journal of Memory and
Language 33, 1–18.

Holmes, A., Friston, K., 1998. Generalisability, random effects and
population inference. NeuroImage 7, S754.

Holtzer, R., Stern, Y., Rakitin, B.C., 2004. Age-related differences in
executive control of working memory. Memory & Cognition 32,
1333–1345.

Holtzer, R., Rakitin, B.C., Steffener, J., Flynn, J., Kumar, A., Stern, Y.,
2009. Age effects on load-dependent brain activations in
working memory for novel material. Brain Research 1249,
148–161.

Ivanoff, J., Branning, P., Marois, R., 2008. fMRI evidence for a dual
process account of the speed–accuracy tradeoff in
decision-making. PloS One 3, e2635.

Kumar, A., Rakitin, B.C., Nambisan, R., Habeck, C., Stern, Y., 2008.
The response-signal method reveals age-related changes in
object working memory. Psychology and Aging 23, 315–329.

Kwong, K.K., Beliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff,
R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S.,
Turner, R., Cheng, H.M., Brady, T.J., Rosen, B.R., 1992. Dynamic
magnetic resonance imaging of human brain activity during
primary sensory stimulation. Proceedings of the National
Academy of Sciences 89, 5675–5679.

Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S.,
Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.,
2000. Automated Talairach Atlas labels for functional brain
mapping. Human Brain Mapping 10, 120–131.

Mattay, V.S., Fera, F., Tessitore, A., Hariri, A.R., Das, S., Callicott, J.H.,
Weinberger, D.R., 2002. Neurophysiological correlates of
age-related changes in human motor function. Neurology 58,
630–635.

Mattay, V.S., Fera, F., Tessitore, A., Hariri, A.R., Berman, K.F., Das,
S., Meyer-Lindenberg, A., Goldberg, T.E., Callicott, J.H.,
Weinberger, D.R., 2006. Neurophysiological correlates of
age-related changes in working memory capacity.
Neuroscience Letters 392, 32–37.

Mattis, S., 1976. Mental status examination for organic mental
syndrome in the elderly patient. Vol. In: Bellak, L., Karasu, T.B.
(Eds.), Geriatric Psychiatry. Grune & Stratton, New York,
pp. 77–121.

Morcom, A.M., Li, J., Rugg, M.D., 2007. Age effects on the neural
correlates of episodic retrieval: increased cortical
recruitment with matched performance. Cerebral Cortex 17,
2491–2506.



145B R A I N R E S E A R C H 1 4 3 5 ( 2 0 1 2 ) 1 3 0 – 1 4 5
Nagel, I.E., Preuschhof, C., Li, S.C., Nyberg, L., Backman, L.,
Lindenberger, U., Heekeren, H.R., 2011. Load modulation of
BOLD response and connectivity predicts working memory
performance in younger and older adults. Journal of Cognitive
Neuroscience 23, 2030–2045.

Ogawa, S., Menon, R.S., Tank, D.W., Kim, S.G., Merkle, H.,
Ellermann, J.M., Ugurbil, K., 1993. Functional brain mapping by
blood oxygenation level-dependent contrast magnetic
resonance imaging. A comparison of signal characteristics
with a biophysical model. Biophysical Journal 64, 803–812.

Rakitin, B.C., Tucker, A.M., Basner, R.C., Stern, Y., in press. The
effects of stimulus degradation after 48 hours of sleep
deprivation. Sleep.

Reed, A.V., 1973. Speed–accuracy trade-off in recognitionmemory.
Science 181, 574–576.

Reuter-Lorenz, P.A., Cappell, K.A., 2008. Neurocognitive aging and
the compensation hypothesis. Current Directions in
Psychological Science 17, 177–182.

Reuter-Lorenz, P.A., Mikels, J.A., 2006. The aging brain:
implications of enduring plasticity for behavioral and cultural
change. Vol. In: Baltes, P.B., Reuter-Lorenz, P.A., Roesler, F.
(Eds.), Lifespan Development and the Brain: The Perspective of
Biocultural Co-Constructivism. Cambridge University Press,
New York, pp. 255–276.

Rypma, B., D'Esposito, M., 1999. The roles of prefrontal brain
regions in components of working memory: effects of memory
load and individual differences. Psychology 96, 6558–6563.

Rypma, B., Eldreth, D.A., Rebbechi, D., 2007. Age-related
differences in activation–performance relations in
delayed-response tasks: a multiple component analysis.
Cortex 43, 65–76.

Salthouse, T., 1979. Adult age and the speed–accuracy trade-off.
Ergonomics 22, 811–821.

Schneider-Garces, N.J., Gordon, B.A., Brumback-Peltz, C.R., Shin, E.,
Lee, Y., Sutton, B.P., Maclin, E.L., Gratton, G., Fabiani, M., 2009.
Span, CRUNCH, and beyond: working memory capacity and the
aging brain. Journal of Cognitive Neuroscience 22, 655–669.

Smith, G.A., Brewer, N., 1995. Slowness and age: speed–accuracy
mechanisms. Psychology and Aging 10, 238–247.

Snodgrass, J.G., Corwin, J., 1998. Pragmatics of measuring
recognition memory: application to dementia and amnesia.
Journal of Experimental Psychology. General 117, 34–50.

Stern, Y., 2009. Cognitive reserve. Neuropsychologia 47, 2015–2028.
Stern, Y., Moeller, J.R., Anderson, K.E., Luber, B., Zubin, N.,

Dimauro, A., Park, A., Campbell, C.E., Marder, K., Van Heertum,
R.L., Sackeim, H.A., 2000. Different brain networks mediate
task performance in normal aging and AD: defining
compensation. Neurology 55, 1291–1297.

Stern, Y., Zarahn, E., Hilton, H.J., Delapaz, R., Flynn, J., Rakitin, B.,
2003. Exploring the neural basis of cognitive reserve. Journal of
Clinical and Experimental Neuropsychology 5, 691–701.

Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K.E.,
Hilton, H.J., Flynn, J., Sackeim, H., Van Heertum, R., 2005. Brain
networks associated with cognitive reserve in healthy young
and old adults. Cerebral Cortex 15, 394–402.

Strayer, D.L., Wickens, C.D., Braune, R., 1987. Adult age differences
in the speed and capacity of information processing: 2. An
electrophysiological approach. Psychology and Aging 2,
99–110.

Sunaert, S., Van Hecke, P., Marchal, G., Orban, G.A., 2000. Attention
to speed of motion, speed discrimination, and task difficulty:
an fMRI study. NeuroImage 11, 612–623.

van Veen, V., Krug, M.K., Carter, C.S., 2008. The neural and
computational basis of controlled speed–accuracy tradeoff
during task performance. Journal of Cognitive Neuroscience
20, 1952–1965.

Wager, T.D., Smith, E.E., 2006. Neuroimaging studies of working
memory: a meta-analysis. Cognitive, Affective, & Behavioral
Neuroscience 3, 255–274.

Wechsler, D., 1981. . Vol.Wechsler Adult Intelligence Scale— Revised.
The Psychological Corporation, New York, NY.

Wegesin, D.J., Stern, Y., 2004. Inter- and intraindividual variability
in recognition memory: effects of aging and estrogen use.
Neuropsychology 18, 646–657.

Worsley, K.J., Poline, J.B., Friston, K.J., Evans, A.C., 1997.
Characterizing the response of PET and fMRI data using
multivariate linear models. NeuroImage 6, 305–319.

Zarahn, E., Aguirre, G.K., D'Esposito, M., 2000. Replication and
further studies of neural mechanisms of spatial mnemonic
processing in humans. Cognitive Brain Research 9, 1–17.

Zarahn, E., Rakitin, B., Abela, D., Flynn, J., Stern, Y., 2005. Positive
evidence against human hippocampal involvement in working
memory maintenance of familiar stimuli. Cerebral Cortex 15,
303–316.

Zarahn, E., Rakitin, B.C., Abela, D., Flynn, J., Stern, Y., 2006. Distinct
spatial patterns of brain activity associated with memory
storage and search. NeuroImage 33, 794–804.

Zarahn, E., Rakitin, B., Abela, D., Flynn, J., Stern, Y., 2007.
Age-related changes in brain activation during a delayed item
recognition task. Neurobiology of Aging 28, 784–798.


	Task difficulty modulates young–old differences in network expression
	1. Introduction
	2. Results
	2.1. Behavior
	2.2. Functional imaging

	3. Discussion
	4. Experimental procedures
	4.1. Participants
	4.2. Cognitive screening and testing
	4.3. Activation task
	4.4. Apparatus
	4.5. Procedure
	4.6. Statistical analysis for behavioral data
	4.7. fMRI data acquisition
	4.8. fMRI statistical analysis

	Acknowledgments
	References


