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Subjects (n 5 40) performed a delayed item recognition task for
visually presented letters with three set sizes (1, 3 or 6 letters).
Accuracy was close to ceiling at all set sizes, so we took set size
as a proxy for WM load (i.e. the amount of information being
maintained in WM). Functional magnetic resonance imaging (fMRI)
signal associated with the delay period increased in a nearly linear
fashion with WM load in the left inferior frontal gyrus/anterior
insula (possibly Broca’s area, BA 44/45), right anterior insula,
bilateral caudate, bilateral precentral gyrus (BA 6), bilateral middle
frontal gyrus (BA 9/46), bilateral inferior parietal lobule (with foci
in both BA 39 and 40), left superior parietal lobule (BA 7), medial
frontal gyrus (BA 6), anterior cingulate gyrus (BA 32) and bilateral
superior frontal gyrus (BA 8). These results lend support to the idea
that at least some of the cortical mechanisms of WM maintenance,
potentially rehearsal, exhibit a scaling with WM load. In contrast,
the delay-related fMRI signal in hippocampus followed an inverted
U-shape, being greatest during the intermediate level of WM load,
with relatively lower values at the lowest and highest levels of WM
load. This pattern of delay-related fMRI activity, orthogonal to WM
load, is seemingly not consonant with a role for hippocampus in
WM maintenance of phonologically codable stimuli. This finding
could possibly be related more to the general familiarity of the letter
stimuli than their phonological codability per se.
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Introduction

As assessed with delayed response and delayed-match-to-sample

tasks, prefrontal cortex (PFC) seems to play a necessary role in

working memory (WM) maintenance in non-human primates

(Goldman and Rosvold, 1970; Bauer and Fuster, 1976; Passing-

ham, 1985; Funahashi et al., 1993; Quintana and Fuster, 1993).

However, there is currently debate over the extent to which

human PFC, in particular, dorsolateral PFC (DLPFC/BA 9 and 46)

is necessary for WM maintenance. While the results of some

neuropsychological studies have been interpreted as support-

ing a necessary role for PFC in WMmaintenance (Freedman and

Oscar-Berman, 1986; Verin et al., 1993), others have been

interpreted as implying that human DLPFC is only necessary for

monitoring of information within working memory or atten-

tional processing that is critical when competing information or

interference is present (Malmo, 1942; D’Esposito and Postle,

1999; Petrides, 2000), and not maintenance per se.

The delay period of a delayed-(non)match-to-sample (or

delayed item recognition) task is the trial phase during which

subjects must maintain information about a previously presen-

ted stimulus in order to perform at above chance levels. Both

dorsolateral and ventrolateral PFC in humans have been repor-

ted to show sustained neurophysiological activity during the

delay period (Courtney et al., 1997; Manoach et al., 1997; Postle

and D’Esposito, 1999; Rypma and D’Esposito, 1999; D’Esposito

et al., 2000; Jha and McCarthy, 2000; Zarahn et al., 2000;

Veltman et al., 2003). Furthermore, the delay period neuro-

physiological activity in parts of dorsolateral and ventrolateral

PFC has been reported to be monotonically related to experi-

mental factors thought to selectively vary WM load, i.e. the

amount of information ostensibly being stored in WM (Manoach

et al., 1997; Glahn et al., 2002; Rypma et al., 2002; Veltman et al.,

2003). The PFC is not unique in this regard, as similar WM load

dependence of brain activity has also been reported for other

areas, including parietal cortex (Manoach et al., 1997; Veltman

et al., 2003). However, not all neuroimaging data unambigu-

ously support a role for DLPFC in WM maintenance. For

example, Postle et al. (1999) observed evidence for WM

manipulation sensitivity in DLPFC in 5/5 subjects. In contrast,

WM load sensitivity in DLPFC was observed in only 2/5 subjects,

while evidence for WM load sensitivity in left perisylvian cortex

was seen in 5/5 subjects, suggesting that DLPFC is only weakly

involved in pure WM maintenance (Postle et al., 1999). Simi-

larly, another study, while supporting a role for DLPFC in WM

maintenance, suggested a larger role for this cortical region in

manipulation of information within WM (D’Esposito et al.,

1999). Rypma and colleagues interpreted their result of a cor-

relation in DLPFC betweenWM load and fMRI signal attributable

to the delay period of a delayed item recognition task as an

indication that DLPFC plays a role in strategic memory organi-

zation (as opposed to WM maintenance). Based on neuro-

imaging data, Owen et al. (1996) theorized that DLPFC is

engaged only when WM manipulation is required. There have

been multiple studies showing activation of DLPFC during the

performance of n-back tasks (Braver et al., 1997; Druzgal and

D’Esposito, 2001; Glahn et al., 2002; Veltman et al., 2003), in

which WM manipulation and maintenance demands are con-

founded. So, while there is little doubt that WM manipulation is

associated with DLPFC activation in humans, there is arguably

less certainty in the field about whether this brain region is also

involved in the construct of pure WM maintenance.

In the current study, our aim was to characterize the multi-

plicity and nature of the spatial patterns of WM maintenance-

associated brain activity that are modulated by WM load.

Towards this end, neurophysiological responses temporally

associated with the delay period of a delayed item recognition

task for visually presented letters were measured with blood-

oxygenation-level-dependent functional magnetic resonance

imaging (BOLD fMRI). Measurement of the fMRI response

attributable to the delay period should have provided a highly

enriched measurement of neural activity associated with WM
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maintenance (Fuster et al., 1982). Set size (our intended

manipulation of WM load; see below for rationale) was varied

across trials. As the task stimuli were visually presented, and

there was no articulatory interference during the delay, the task

was thought to primarily tap phonological WM (Baddeley,

1986), and to not require manipulation or monitoring of

information (D’Esposito et al., 1999). As the delay period was

only 7 s, maintenance of the trial-unique information was not

thought to require long-term memory [LTM] (Drachman and

Arbit, 1966; Cave and Squire, 1992; Alvarez et al., 1994).

It can be argued that a monotonic relationship between

the degree of engagement of a given cognitive process and the

intensity of neurophysiological activity in a brain region is

strong inductive evidence of their being mechanistically related

(Braver et al., 1997; Beauchamp et al., 2001). If one hypothet-

ically manipulates WM load, one would by definition vary the

degree of engagement of WMmaintenance. Hence, a correlation

between WM load and the intensity of delay period neurophys-

iologic activity [as measured with fMRI (Logothetis et al., 2001)]

in some brain region would support that this activity is

somehow related to WM maintenance. But, as WM load (at

least as we define the term here) is simply a description of the

degree of engagement of the cognitive process of WM mainte-

nance, it cannot be manipulated directly. One might think that

by simply increasing set size, one is necessarily varyingWM load.

This need not be so as delayed item recognition accuracy might

decrease as set size increases such that the total amount of

information maintained in WM (i.e. WM load) remains constant

across different set sizes. For example, this would certainly be

expected once one exceeds the buffer capacity of WM (Cowan,

2001; Vogel et al., 2001). However, as the amount of informa-

tion that must be maintained in WM to achieve a given level of

delayed item recognition accuracy is proportional to set size,

a constant level of accuracy across set sizes would be consistent

with a positive relationship between set size and WM load. Our

logic in relating set-size to WM load, then, is the following: if

delayed item recognition accuracy is relatively constant across

set sizes (an assumption which we test), then one can take set

size as a proxy for WM load.

Regarding the existence of WM load-related brain activity

patterns, one hypothesis is that there is only a single WM

load-related spatial pattern, and the expression of this pattern

increases monotonically with WM load. As discussed above, this

result would be consistent with the brain areas represented

strongly in this single pattern being mechanistically related to,

and perhaps mediating, WMmaintenance. From past results, this

single spatial pattern would be expected to weight heavily

bilateral DLPFC, left inferior PFC and bilateral parietal cortices

(Manoach et al., 1997; Rypma et al., 1999; Veltman et al., 2003).

A broad, competing hypothesis is that the relationship between

WM load and delay period fMRI activity manifests more than one

spatial pattern in the brain. A second pattern would suggest

either (i) the existence of multiple WM maintenance-related

systems with different load sensitivities or (ii) the presence of

WM irrelevant brain activity that is nevertheless spuriously

dependent on WM load. If delay period fMRI signal were

orthogonal to WM load in the second component, then expla-

nation (ii) (i.e. that areas in which this component is dominant

are not involved in WM maintenance) would seem to be the

most parsimonious and plausible. This is because, by the

definition of WM load, the expression of this second component

would then be orthogonal to the engagement of WM mainten-

ance. In passing, we note that it is not a paradox to conceive of

one variable being dependent on, yet orthogonal to, another

(e.g. consider the relationship of the functions x2 and x on the

interval [–1,1]).

The multiplicity of the spatial patterns relating WM load and

delay period fMRI activity was assessed via the application of the

multivariate linear modeling (MLM) theory of Worsley and

colleagues, a statistical method involving singular value decom-

position (SVD) of a Number of voxels 3 Number of effects of

interest data matrix (Worsley et al., 1997). Like standard

statistical parametric mapping (SPM), MLM involves voxel-wise

application of the general linear model, but instead of statis-

tically testing for effects of interest (e.g. a relationship with WM

load) at each voxel, the statistical testing assesses the existence

of any such effects simultaneously at all voxels. Thus, in the

presence of spatially distributed effects, MLM will tend to have

superior detection power compared with SPM voxel-wise

testing (Worsley et al., 1995). Furthermore, MLM decomposes

the effects of interest into mutually orthogonal spatial patterns,

and statistically assesses the number of true spatial patterns.

Thus, a second advantage of MLM over pure reliance on voxel-

wise testing is that MLM affords explicit testing of hypotheses

concerning the number of spatial patterns required to sum-

marize the effects of interest. It is for these two reasons (having

superior power and allowing us to test the competing hypo-

theses concerning the number of WM load-related spatial

patterns) that we chose MLM over the more standard SPM

approach. A disadvantage of MLM compared with SPM is that

the latter provides formal, statistical tests of spatial localization,

while the former does not. However, MLM does provide de-

scriptive localization results in the form of spatial patterns.

Region-of-interest (ROI) approaches also provide formal

spatial localization, albeit at a coarser scale than voxel-wise

tests. A ROI approach was not used as the primary method

because we wished to detect WM load dependence during the

delay period without making strong assumptions about pre-

cisely where or at what spatial scale such effects might exist.

Also, we wished to determine the number of spatial patterns

associated with WM load dependence, information that stan-

dard ROI methods do not provide. However, we did use ROI

methodology in post hoc analyses to see if we could disconfirm

our primary findings obtained from MLM.

Materials and Methods

Subjects
Forty healthy, young subjects (30 male and 10 female; mean age ± SD =
25.1 ± 3.9; mean years of education = 15.6 ± 1.5; all right handed),

recruited from the Columbia University student population, participated

in experiment 1. All subjects supplied informed consent. Volunteers

were screened for psychiatric and neurologic illness via a questionnaire.

Behavioral Task
The behavioral task used was a delayed item recognition task for letters

(Sternberg, 1966). Each trial lasted a total 16 s. Subjects were instructed

to respond as accurately as possible. No feedback about their perfor-

mance was given during the scanning session. The sequence of events

within a delayed item recognition trial was as follows (Fig. 1): first, a 3 s

presentation of a blank screen marked the beginning of the trial. Then,

an array of one, three or six capital letters (the number of letters being

the set size) was presented for 3 s, the subjects having been instructed

to encode these letters. The geometry of the stimuli was a 2 3 3 array,

regardless of set size, with asterisks acting as non-letter placeholders for

set sizes 1 and 3 (Fig. 1). With the offset of the letter array, subjects were

instructed to focus their gaze on the blank screen and hold the stimulus
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items in mind for a 7 s maintenance interval (i.e. the delay period).

Finally, a probe letter (lowercase, centered in the field of view) appeared

for 3 s. In response to the probe, subjects indicated by a button press

whether or not the probe matched a letter in the study array (right

index finger button press to indicate ‘yes’, left index finger button press

to indicate ‘no’.)

Each experimental block contained 10 trials at each of the three set

sizes, with five true negative and five true positive probes per set size.

BOLD fMRI data were acquired for three experimental blocks per

subject, yielding a total of 30 experimental trials per set size per

subject. Blank trials (presentation of a blank screen for 2 s, requiring

no behavioral output) were pseudo-randomly interspersed between

delayed item recognition trials to both provide a baseline condition

for positive control purposes and reduce the likelihood of neuro-

physiological responses predictive of the beginning of trials. The

pseudo-randomization of these blank trials was via a random-without-

replacement scheme (thus, more than one blank trial could occur

sequentially, leading to an effectively jittered inter-trial interval), with

a total of 70 blank trials per block. The presentation of delayed item

recognition trials of different set sizes was also pseudo-randomly

sequenced via a random-without-replacement scheme. The duration

of each block was 620 s. There were approximate one-minute breaks

between blocks.

Subjects were trained on seven blocks of delayed item recognition

trials on the evening prior to the acquisition of fMRI data, the first six

of which were administered with feedback. The training session was

conducted to reduce task-related skill learning during the course of

fMRI scanning.

fMRI Data Acquisition
During the performance of each block of the delayed item recognition

task, 207 T2*-weighted images, which are BOLD images (Kwong et al.,

1992; Ogawa et al., 1993), were acquired with an Intera 1.5 T Phillips

MR scanner equipped with a standard quadrature head coil, using a

gradient echo echo-planar (GE-EPI) sequence [TE = 50 ms; TR = 3000 ms;

flip angle = 90�; 64 3 64 matrix, in-plane voxel size = 3.124 mm 3

3.124 mm; slice thickness = 8 mm (no gap); 17 trans-axial slices per

volume]. Four additional GE-EPI excitations were performed before the

task began, at the beginning of each run, to allow transverse magneti-

zation immediately after radio-frequency excitation to approach its

steady-state value; the image data for these excitations were purposely

discarded. A T2-weighted, fast spin echo structural image was also

acquired from each subject for spatial normalization purposes [TE =
100 ms; TR = 2000 ms; flip angle = 90�, 256 3 256 matrix; in-plane voxel

size = 0.781 mm 3 0.781 mm; slice thickness = 8 mm (no gap); 17 trans-

axial slices per volume].

Task stimuli were back-projected onto a screen located at the foot of

the MRI bed using an LCD projector. Subjects viewed the screen via

a mirror system located in the head coil. Responses were made on

a LUMItouch response system (Photon Control Company). Task onset

was electronically synchronized with the MRI acquisition computer.

Task administration and data collection (reaction time and accuracy)

were controlled using PsyScope (Cohen et al., 1993).

fMRI Data Pre-processing
All image pre-processing and analysis was done using the SPM99

program (Wellcome Department of Cognitive Neurology) and other

code written in MATLAB 5.3 (Mathworks, Natick, MA). The following

steps were taken in turn for each subject’s GE-EPI dataset: Data were

corrected for the order of slice acquisition, using the first slice acquired

in the TR as the reference. All GE-EPI images were realigned to the first

volume of the first session. The T2-weighted structural image was then

co-registered to the first EPI volume using the mutual information co-

registration algorithm implemented in SPM99. This co-registered high-

resolution image was then used to determine parameters (7 3 8 3 7

non-linear basis functions) for transformation into a Talairach standard

space (Talairach and Tournoux, 1988) defined by the Montreal Neuro-

logic Institute (MNI) template brain supplied with SPM99. This trans-

formation was then applied to the GE-EPI data, which were re-sliced

using sinc-interpolation to 2 mm 3 2 mm 3 2 mm.

fMRI Statistical Analysis

Time-series Modeling

The fMRI data analysis comprised two levels of voxel-wise general linear

models (GLMs; Holmes and Friston, 1998). In the first-level GLM, the GE-

EPI time-series were simultaneously modeled with regressors repre-

senting the expected BOLD fMRI response (implicitly, relative to the

inter-trial interval baseline) to the delayed item recognition trial

components of stimulus presentation, delay period, and probe pre-

sentation/response, separately for each set size. The regressors were

constructed by convolutions of an indicator sequence (i.e. a train of

discrete-time delta functions) representing delayed item recognition

trial component onsets, an assumed BOLD impulse response function

(as represented by default in SPM99) and a rectangular function of

duration dictated by the duration of the relevant trial component

(Zarahn, 2000). This led to nine predictors of interest at this GLM stage.

Each of these nine parameter estimate images produced per subject

were then intensity normalized (via voxel-wise division by the time-

series mean) and spatially smoothed with an isotropic Gaussian kernel

(full-width-at-half-maximum = 8 mm). The resulting images were used

as the dependent data in a second-level, voxel-wise GLM (Holmes and

Friston, 1998) and subjected to MLM (Worsley et al., 1997). While

images corresponding to all conditions (i.e. all set sizes and all trial

components) acted as dependent variables in the second-level model,

only results concerning the delay period are presented in this paper.

The effect of these additional dependent variables was to increase the

error degrees of freedom at each voxel (m).
This fMRI time-series modeling framework (Zarahn, 2000) is similar

to that described in an earlier report that used shifted impulse response

functions as regressors (Zarahn et al., 1997), except that the current

approach assumes the durations of the neural responses temporally

associated with each trial component; this extra assumption affords

greater accuracy in attributing components of the fMRI response to the

various trial components. An assumption of both approaches is linearity

and time-invariance of the system that transforms neural activity to fMRI

signal (Logothetis et al., 2001). For a full discussion of the assumptions

of these related methods, see Zarahn (2000). It is important to stress

that neither this nor any other time-series modeling method can extract

unbiased estimates of the neural response amplitude associated with

any component of the trial (including the delay component) from fMRI

data in an ‘assumption-free’ manner. However, given that the key

assumptions stated above are reasonably satisfied, this method will yield

nearly unbiased estimates of the neural response amplitudes associated

with each trial component.

Sequential Latent Root Testing

In MLM, an SVD is performed on the de-correlated/whitened effects of

interest, followed by sequential latent root testing (with a controlled at

a desired level) to assess the number of latent spatial patterns of effects

(Worsley et al., 1997). SVD decomposes a (data)matrix into components

such that the first component explains the greatest amount of variance;

Figure 1. The delayed item recognition task is schematized.

Cerebral Cortex March 2005, V 15 N 3 305



the second explains the greatest amount of variance after accounting for

the first, and so on. Each SVD component has an associated singular value

(or equivalently, an eigenvalue, which is the square of the singular value),

a number that indicates how much variance the component explains

relative to noise. To statistically assess the number of true spatial patterns,

a sequential latent root testing procedure (involving F-statistics) is used

to compare these singular values to the magnitude of the unexplained

data variability (Worsley et al., 1997).

F-statistic Degrees of Freedom for Sequential Latent Root Testing

For the assumptions and theoretical background of sequential latent

root testing, see Worsley et al. (Worsley et al., 1997). Both the

numerator and denominator degrees of freedom for the sequential

latent root testing F-statistics are much larger than what are commonly

seen in the behavioral sciences or neuroimaging. In part, this is because

both numerator and denominator degrees of freedom depend on the so-

called ‘effective spatial degrees of freedom’ (d) which is proportional to

the volume of the imaging dataset and inversely proportional to the

spatial smoothness of the errors (Worsley et al., 1997); the estimated d =
424.5 in our dataset. For the test for the existence of one or more spatial

components, the numerator degrees of freedom = d 3 the number of

effects of interest, and the denominator degrees of freedom = d 3 m –

(d – 1) 3 (4 3 the number of effects of interest + 2 3 m)/(the number of

effects of interest + 2). The degrees of freedom for tests for the

existence of additional components (i.e. beyond one) have related

formulae (Worsley et al., 1997). The repeated measures covariance

matrix was estimated at each voxel, and the spatial average of these

estimates was used as the known observation error covariance matrix.

The value of m was estimated to be 164.9 from this matrix (Worsley and

Friston, 1995), which is substantially less than the number of observa-

tions per voxel minus the rank of the design matrix (= 40 3 9 – 9 = 351);

this is because of the correlation in the repeated measures (Worsley and

Friston, 1995).

A potential basis for confusion regarding MLM is the source of

covariance that one is examining. There are three components of

covariance in the effects of interest at the second-level. These comprise

(i) the spatial auto-covariance of the GLM errors (potentially emanating

from various mechanisms, including image processing, but ultimately

assumed to be well modeled by a Gaussian point spread function); (ii)

the covariance between the estimation errors of the different effects of

interest (caused by the structures of the contrasts defining the effects of

interest, the structures of the first-level and second-level design

matrices, and fMRI time-series auto-covariance); and (iii) the determin-

istic/systematic similarity between the true spatial patterns of the

effects of interest. It is only this third component which is relevant to

MLM; MLM accounts implicitly for the other two covariance sources.

Representations of SVD Components

Each SVD component can be visualized in two related ways. One is as

a plot relating delay period fMRI signal to set size (set size possibly being

a valid proxy for WM load, depending on how accuracy varies with set

size). The second is as a spatial pattern (i.e. brain image) whose

expression is modulated by set size in the way described by the

corresponding delay period fMRI signal versus set size plot. These two

representations providequalitativedescriptions of thedetectedpatterns.

In the context of this report, the effects of interest in the MLM lie in

the 2-dimensional contrast space spanned by the difference in delay

period fMRI signal amplitude between (i) 1 letter and 3 letters, and (ii) 3

letters and 6 letters. Thus, the number of effects of interest = 2, and so

the maximum number of true set size-related components was two (the

minimum number always being zero). The sequential latent root test

controlled a at 0.05. Note that as MLM concerns statistical inference on

the number of patterns of effects, it assesses spatially omnibus null

hypotheses, as opposed to assessing the map-wise significance of effects

at each voxel. As the spatial patterns (scaled by their corresponding

singular values) resulting from this approach are t-maps (Worsley et al.,

1997), they were thresholded for descriptive purposes at a t value

(�z value as m > 100) of 4 and a cluster size of 100 voxels.

Likely cytoarchitectonic labels for local maxima in these thresholded

patterns were obtained using MSU software (Positron Emission Tomog-

raphy Lab of the Institute of the Human Brain, St.Petersburg, Russia;

http://www.ihb.spb.ru/~pet_lab/MSU/MSUMain.html).

Results

Behavior

As expected (Sternberg, 1966), mean reaction time was affected

by set size [F(2,78) = 106.2, P < 0.0001], with the relationship

being close to linear (R = 0.98), with a slope of 59 ms/letter (Fig.

2). Though this phenomenon might be somehow related to the

nature of maintenance during the delay period (Jou, 2001), the

comparison of the probe item with the elements of the initial

stimulus set must occur after the delay period.

Accuracy on the delayed item recognition task was very high

across set sizes [percent correct averaged across set sizes =
97.4%; d9 (Green, 1988) averaged across set sizes = 3.35]. There

was no effect of set size on accuracy as assessed with either

percent correct [F(2,78) = 1.24,P = 0.30] ord9 [F(2,78) = 1.17,P =
0.32]. From the logic explicated in the Introduction, this implies

that WM load increased with set size. Given this result, we take

set size as a proxy for WM load, and so use the term ‘WM load’ in

place of ‘set size’ when describing the neuroimaging data.

WM Load-related Patterns of Delay Period fMRI Signal

There were two significant patterns of delay period fMRI signal

with respect to WM load [test for one or more components:

F(849,34239) = 2.89, P < 0.0001; test for two components:

F(425,22881) = 1.95, P < 0.0001]. The eigenvalues (which are

directly related to the F-statistics; Worsley et al., 1997) for the

first and second patterns were 3.88 and 1.97, respectively

(under the null hypothesis, the eigenvalues are approximately

unity). Thus, after accounting for noise (by subtracting 1 from

each eigenvalue), the first pattern accounted for approximately

twice as much WM load-related variance in the brain as the

second. The first component was nearly linear with WM load

(R = 0.99; this correlation coefficient is presented descriptively,

and should not be interpreted statistically), while the second

component was nearly orthogonal to WM load (R = 0.02; Fig. 3).

This need not have been the case; even though different

components from the same SVD would have to be orthogonal

to each other (in the space of the SVD), it was mathematically

possible that both could have been correlated up to an R value

of 0.71 (= 0.51/2) with WM load.

Figure 2. The relationship of reaction time (RT) to set size is plotted. The error bars
reflect standard errors of the means from a regression model that included a subject
factor and a categorical WM load factor. The line is a least squares fit.
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The first component, which correlates with WM load, was

expressed strongly in parts of the left inferior frontal gyrus/

anterior insula (possibly Broca’s area, BA 44/45), right anterior

insula, bilateral caudate, bilateral precentral gyrus (BA 6), bi-

lateral middle frontal gyrus [i.e. dorsolateral prefrontal cortex

(DLPFC); BA 9/46], bilateral inferior parietal lobule (IPL; BA 39

and 40), left superior parietal lobule (BA 7), medial frontal gyrus

(BA 6), anterior cingulate gyrus (BA 32) and bilateral superior

frontal gyrus (area 8). Many of these areas have been implicated

in WM function in previous neuroimaging studies (Braver et al.,

1997; Manoach et al., 1997; Courtney et al., 1998; Jha and

McCarthy, 2000; Glahn et al., 2002; Rypma et al., 2002; Veltman

et al., 2003). In contrast, the second component, whose

expression was orthogonal to WM load, was expressed strongly

in medial temporal lobe structures, most so in bilateral hippo-

campal loci. There was no substantial expression of this second

component in PFC or parietal cortices. Expressions of the two

patterns are shown rendered on a brain representative of the

MNI space in Figure 4. Selected coronal slices of the spatial

patterns are shown in Figure 5.

We wished to assess if the WM load relationships of the

identified spatial patterns accurately reflect the delay period

fMRI responses at individual brain locations. To do this, we

plotted (separately for each hemisphere; Fig. 6) the delay period

fMRI response amplitude relative to the implicit baseline of the

experiment (see Materials and Methods) within individual

voxels of DLPFC, IPL and hippocampus showing the highest

spatial expressions of their respective dominant patterns (i.e.

pattern 1 for DLPFC and IPL, and pattern 2 for hippocampus).

The data at each location are necessarily composed of

a weighted sum of the two patterns, and theoretically do not

have to exactly match their dominant patterns. But, it is evident

from comparison of Figures 3 and 6 that the relationship

between WM load and delay period fMRI signal at each of the

locations (in both hemispheres) is very similar to their re-

spective, dominant patterns.

Figure 6 is suggestive of a region (DLPFC/IPL) 3 hemisphere

interaction. Though uncorrected P-values are not valid when

selecting an analysis to perform based on the appearance of

data, we subjected these data to various ANOVAs for descriptive

purposes (thus the term ‘significant’ is meaningful in these

results only nominally). Averaged across loads, there was

a significant region3hemisphere interaction [F(1,39) = 35.52,

P < 0.0001], such that the difference (DLPFC -- IPL) in delay

period signal between the selected DLPFC and IPL voxels was

positive in the right hemisphere and negative in the left

hemisphere. However, neither the WM load (reduced to a 1 df

linear trend)3 region3hemisphere [F(1,39) = 0.91, P = 0.35] nor
the WM load3region interactions in either the right [F(1,39) =
1.47, P = 0.23] or left [F(1,39) = 0.003, P = 0.96] hemispheres

were significant. Finally, there was no WM load 3 hemisphere

interaction [F(1,39) = 1.34, P = 0.25]. The significant region 3

hemisphere interaction (for data collapsed across WM loads) is

suggestive not of a hemispheric asymmetry in the regional

patterns of WM load-related processing, but rather of a hemi-

spheric difference in the relative ways DLPFC and IPL are

involved with WM-load independent processing. More theoret-

ical work is required to generate hypotheses concerning

the relationship between WM load-dependent and WM load-

independent neurophysiological activity. In contrast, the null

Figure 3. The expressions of the two significant WM load-related spatial patterns are
plotted. Solid diamonds: first component; hollow diamonds: second component;
thinner line: least squares fit of WM load to component 1; thicker line: least squares fit
of WM load to component 2. The scale of the y-axis is unitless, as the expression
vectors have been normalized to unit magnitude. The mean expression across WM
load is necessarily zero for both patterns, as this aspect of the data did not lie in the
contrast space of interest.

Figure 4. A three-dimensional brain rendering of the two significant WM load-related
spatial patterns (scaled to transform the pattern weights to t-values) is shown. The
underlying structural image is the representative ‘single-subject’ rendered brain image
provided with SPM99. Positive weights of the first spatial pattern (i.e. the one that
monotonically increases with respect to WM load) are shown in red. Positive weights
of the second spatial pattern, which is nearly orthogonal to WM load, are shown in
green. For display purposes, these spatial patterns have been thresholded at t 5 4,
and a cluster size of 100 voxels (0.8 cm3). The intensity of color on the brain surface is
the integral, along a path normal to the brain surface, of t-values which have been
exponentially decayed (space constant5 14 mm) based on their depth from the brain
surface.
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results for all interactions involving WM load suggest that there

are very similar delay period WM load dependencies in DLPFC

and IPL, as well as across hemispheres. Taken strongly, these

null resultsmight be inconsistentwith a lateralization (as regards

these two regions) of WM-load dependent function for phono-

logical material (Vallar et al., 1991), and would also not support

that DLPFC is more involved in WM processing than IPL. How-

ever, another caveatof theseparticular results is that theyconcern

particular voxels that were selected as having high expression of

a pattern related toWM load, and so do not represent an unbiased

sample of their parent neuroanatomical regions.

An additional observation from Figure 6 is that in the

hippocampal voxel of interest of the right hemisphere, the

delay period fMRI responses for set sizes 1 and 6 were

significantly less than that observed during baseline, while the

fMRI response at set size 3 was not significantly different from

baseline. The delay period signal of the analogous voxel in the

left hippocampus was significantly greater than baseline at size

3, but not significantly different from baseline when averaged

across WM loads. The values relative to baseline are not an

artifact or biasing effect of the method used to extract these

patterns, which had nothing to do per se with the offsets of the

delay period fMRI responses relative to baseline. This trend of

non-positive delay period values in hippocampus is broadly

consistent with the absence of WM-related hippocampal activ-

ity in the results of many whole-brain imaging studies (Courtney

et al., 1996, 1997; Smith et al., 1996; Braver et al., 1997; Cohen

et al., 1997; Rypma et al., 1999).

Generalization Test of Ranganath and D’Esposito

Ranganath and D’Esposito (2001) reported delay period fMRI

signal change (relative to an inter-trial interval baseline) in the

hippocampus bilaterally (fig. 2 from that report) in the context

of a delayed item recognition task for trial-unique, novel faces.

The fMRI pulse sequences, voxel sizes, and spatial smoothing

kernels are similar between that study and ours. We examined

the delay period fMRI signal values (relative to inter-trial interval

baseline) in our data at the two hippocampal coordinates (in

MNI space) reported by those authors. At uncorrected signifi-

cance levels, neither of the coordinates manifested a delay

period fMRI signal greater than baseline at any of the WM loads

(Fig. 7). However, the right hippocampal coordinate did have

significantly negative values at set sizes 1 and 6.

Post hoc Hippocampal ROI Analysis

Finally, to see if the hippocampal voxels strongly expressing the

second component were somehow contradictory to the re-

sponse of the hippocampus as a whole, we examined the delay

period fMRI responses averaged over a hippocampal ROI (Fig.

8a), as defined anatomically by one of the authors (E.Z.) on the

representative single subject T1-weighted MRI supplied with

SPM99 (Fig. 8b). A hemisphere by WM load, repeated measures

ANOVA (sphericity test for WM load factor: Mauchley’s W =
0.98, P = 0.67) detected an effect of WM load [F(2,78) = 6.41, P =
0.003]. It can be seen from Figure 8a that the relationship with

WM load has the appearance of a negative U-shaped component

Figure 5. Coronal slices through the spatial patterns of the two significant WM load-
related components of delay period fMRI signal are shown. The patterns were
thresholded using the same conventions as in Figure 4. The y-positions (in mm in MNI
standard brain space) of the coronal slices are indicated to the left of each row, and
were selected to illustrate the double dissociation of prefrontal and hippocampal
component expressions.

Figure 6. Delay period fMRI signals at selected local maxima of spatial pattern
expression, are plotted as a function of WM load. The dominant pattern for dorsolateral
prefrontal cortex (DLPFC) and inferior parietal lobule (IPL) is pattern 1, and for
hippocampus (Hipp) is pattern 2. The MNI space coordinates (in mm) of these
locations are (a) L Hipp [�24 �22 �10], L DLPFC [�38 28 24], L IPL [�36 �50 42];
and (b) R Hipp [28�28�10], R DLPFC [38 42 28] , R IPL [36�44 38]. The error bars
indicate standard errors computed across subjects.
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in both hemispheres; indeed, the quadratic WM load com-

ponent was significant [F(1,39) = 8.78, P = 0.005]. There was

also an effect of hemisphere [F(1,39) = 5.24, P = 0.03], but no

WM load by hemisphere interaction [F(2,78) = 0.61, P = 0.55].

Thus, the negative U-shaped response to WM load was present

in the hippocampus as a whole, and there was no detectable

difference in its expression between hemispheres.

Of course, given that we chose to analyze the hippocampal

ROI based on the observation that certain parts of the hippo-

campus were identified by MLM as having a relationship with

WM load, these WM load ANOVA P-values for the hippocampal

ROI are not strictly valid. Hence, we interpret these ROI-level

findings at a descriptive level, and would only have considered

a negative result as providing strong information. Thus, that

there was a (nominally) significant quadratic effect is interpre-

ted by us as simply a failure to disconfirm a general hippocampal

negative U-shaped response to WM load, as opposed to pro-

viding strong, independent support for such an effect over and

above the MLM results.

Averaged across loads, the delay period signal was not

significantly different from 0 for either left [t(39) = –0.41, two-

tailed P = 0.68], right [t(39) = –1.89, two-tailed P = 0.07] or

bilateral hippocampal ROIs [t(39) = –1.23, two-tailed P = 0.22].

This confirms the finding, presented earlier for selected hippo-

campal voxels, of no positive delay period fMRI response in

hippocampus when averaging over WM loads.

Discussion

Here we reported the existence of two WM load-related spatial

patterns identified through the use of MLM, a method not

common employed in neuroimaging analysis. As a preamble to

providing further interpretation of this finding, we will first

describe how MLM results can be considered in the context of

the far more typical statistical approach of SPM. Some of these

points were mentioned previously, but bear repetition. Also, we

want to make clear two superficial modifications in our imple-

mentation of MLM relative to the source paper (Worsley et al.,

1997).

MLM Interpretation

Like SPM, MLM involves voxel-wise estimation of GLM param-

eters. Also in common with typical SPM analyses (Friston et al.,

1995; Worsley et al., 1996), the correlations between the errors

in different voxels are assumed to be caused by a Gaussian point

spread function. In both SPM and MLM, one defines a number of

effects of interest-dimensional contrast space (where in the

trivial case, the number of effects of interest = 1). In typical (i.e.

voxel-wise testing; Friston et al., 1996) SPM, the standard null

hypothesis (i.e. that the effects of interest all equal zero) is then

statistically assessed at each voxel by applying an appropriate

threshold to the SPM{F} (or equivalently, to the SPM{t} if the

number of effects of interest = 1). In MLM, however, voxel-wise

significance tests are not per se performed. Instead, one

statistically tests the number of latent spatial patterns in the

effects of interest. The minimum number of components is 0;

the maximum is the number of effects of interest. A finding of

one or more components formally rejects the spatially omnibus

null hypothesis. Thus, both SPM and MLM are based on exactly

the same GLM effects and share the same global null hypothesis.

But while SPM affords statistical inference about the effects of

interest at each voxel, MLM tests for effects of interest at

a spatially omnibus level. Thus, SPM affords formal statistical

spatial localization; MLM does not.

Figure 7. Delay period fMRI signals at the MNI coordinates closest to those reported
by Ranganath and D’Esposito (2001) as manifesting positive delay period activity
relative to baseline are plotted as a function of WM load; the coordinates lie in left and
right hippocampus, respectively. Our voxel coordinates differ from those reported by
Ranganath and D’Esposito by 1 mm in the y-dimension as our voxels were (nominally,
after processing) 2 mm thick, thus centering the MNI coordinates of our voxels on
multiples of 2 mm. This should cause no appreciable discrepancy given the degree of
spatial smoothness of both of our datasets.

a

b

Figure 8. (a) Delay period fMRI signals, spatially averaged over left and right
hippocampal ROIs, respectively, are plotted as a function of WM load. (b) Anatomically
defined hippocampal ROIs (left and right) that were used to generate the data in (a) are
illustrated as an overlay on the representative MNI brain supplied with SPM99. The ROI
is indicated by brighter gray scale values. Each slice corresponds to a different z
coordinate in MNI space.
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Assuming a positive result with MLM, the number of signifi-

cant components can range from 1 to number of effects of

interest. This number informs as to the spatial structure of the

effects of interest. For example, in the current study, there were

two effects of interest: the difference in delay period fMRI signal

amplitude between (i) 1 letter and 3 letters, and (ii) 3 letters and

6 letters. MLM detected two components. This means that the

(true) spatial patterns associated with (i) and (ii) are not

identical.

The implementation of MLM in the current paper is super-

ficially different from that in the source paper (Worsley et al.,

1997). First, the source paper applied MLM to a first-level (i.e.

fMRI time-series) GLM, not across-subject data in a second-level

model (Holmes and Friston, 1998). But like any statistical model,

MLM is valid as long as its assumptions are satisfied. To wit, the

applied Gaussian spatial smoothing is typically assumed to

dominate the error spatial covariance structure in both single-

subject and group SPM analyses (Holmes and Friston, 1998). The

within-voxel (i.e. repeated measures) covariance matrix here

was estimated from the entire dataset (Materials and Methods);

Monte Carlo simulations supported that MLM theory performs

quite well at controlling the sequential latent root test false

positive rate when this matrix is estimated and m is large (data

not shown). There is evidence that the distribution (condi-

tioned on subject) of voxel-wise, time-series errors in fMRI data

are nearly Gaussian (Aguirre et al., 1998), and we feel it is

reasonable to tentatively presume that this extends to across-

subject effects as well. Also, our use of a relatively large number

of subjects should make parametric statistical inference robust

to modest violations of normality (Kirk, 1982). We therefore

posit that the assumptions of the MLMwere sufficiently satisfied

in our implementation. Finally, the Worsley et al. (1997) paper

did not explicitly present how to implement MLM using

arbitrary contrasts; instead the contrasts comprising the effects

of interest were single parameters of the GLM. The theoretical

generalization of MLM to using arbitrary contrasts, instead of

being restricted to individual GLM parameters, is almost imme-

diate from the framework presented by Worsley and colleagues.

We feel that the MLM methodology of Worsley et al. is

a powerful and natural extension of the GLM framework for

structural and functional neuroimaging data. We feel its main

theoretical strength is the explicit testing of hypotheses con-

cerning similarities/differences of spatial patterns of effects.

MLM also enjoys a high sensitivity to reasonable effect sizes, and,

according to the simulations of Worsley et al. and our group

(data not shown), it controls specificity very close to desired

levels.

Dominant WM Load Effects are Monotonic

The delay period, WM load-related component explaining the

most variance in brain activity was monotonic (and more

precisely, very well described as linear) with WM load. One

might presuppose that this monotonicity is related directly to

the nearly linear relationship of reaction time to set size. This

widely observed relationship is consistent with both a serial,

exhaustive comparison of the probe letter with each letter in

the original set (Sternberg, 1966) or with limited capacity,

parallel search (Townsend, 1990). Regardless, a linear depen-

dence of the duration of this memory search process on set size

could not be used to causally explain the approximately linear

dependence of delay period fMRI activity onWM load in the first

SVD component. This is because the memory search must occur

after the delay period, once the probe letter has been presented.

Though it is beyond the scope of this report, neural correlates of

memory search can be investigated by assessing WM load

dependence during the probe presentation period.

The monotonic relationship of delay period fMRI signal with

WM load in PFC, premotor and parietal cortices suggests that the

intensity of synaptic processing in these areas (Logothetis et al.,

2001) is proportional to WM load, informing as to neural

mechanisms of WM maintenance. Parietal cortex and PFC are

reciprocally anatomically connected (Divac et al., 1977; Petrides

and Pandya, 1999), and in the non-human primate seem to be

involved in a mutually dependent neural circuit during the delay

period of delayed response tasks (Chafee and Goldman-Rakic,

2000; Quintana et al., 1989). Thus, from a neurophysiological

perspective, it is not a priori unreasonable that delay period

activities in both regions have a similar relationship to WM load.

Electrophysiological studies in humans suggest that phase

locking of neural oscillations to the components of the task play

a role in cortical WM processing (Raghavachari et al., 2001;

Rizzuto et al., 2003). The mechanistic relationship between

delay period fMRI activity (as measured in studies like the

current one) and sustained neural spiking measured at the

single cell level in non-human primates during WM tasks seems

relatively clear, or at least highly plausible (Logothetis et al.,

2001). In contrast, the relationship between fMRI signal pre-

sumably related to WM maintenance and the oscillatory phe-

nomena cited above needs elucidation. This will require data

from electrophysiological studies in humans examining the

effect of WM load in a WM maintenance context, as opposed to

WM tasks that involve the putative processes of manipulation

and monitoring (McEvoy et al., 1998).

Maintenance of phonological information in WM is thought

by some (Warrington and Shallice, 1969; Vallar and Baddeley,

1984; Baddeley et al., 2002) to involve an articulatory loop

comprising subvocal rehearsal and phonological store sub-

systems (but see Nairne, 2002). Broca’s area is thought to be

involved in subvocal rehearsal, and the left supramarginal gyrus

is thought to be involved in phonological storage (Paulesu et al.,

1993). Thus, one might hypothesize that some of the WM load

sensitive areas (the region in the vicinity of Broca’s area and the

left inferior parietal lobule/supramarginal gyrus in particular)

are directly involved in the articulatory loop. While it is not

immediately clear to us if the current theoretical account of the

articulatory loop would predict greater neural activity per unit

time with greater WM phonological storage loads (Cowan et al.,

2003), these current results would be consistent that idea.

Another possibility is that, as WM load sensitivity in DLPFC and

other areas has also been observed for non-verbal materials

(Glahn et al., 2002), perhaps some of the brain areas manifesting

the first component engage in material-independent attentional

processes (Postle and D’Esposito, 1999) that nevertheless scale

with WM load. Also, one should be careful to generalize what is

seen for a given delay duration (7 s in the current task) to longer

delays, as Jha and McCarthy (2000) reported activity in PFC that

was sustained throughout very long delay intervals (up to 24 s),

but sensitivity to the amount of information in WM was only

found in the early part of the delay. This suggests that perhaps

pure WM maintenance, which might occur after a period of

several seconds of consolidation, is not load dependent (Jha and

McCarthy, 2000).

It is fairly well established that in non-human primates, DLPFC

is necessary for even the simplest WM maintenance tasks

310 Hippocampal Activity and WM Load d Zarahn et al.



(Goldman and Rosvold, 1970; Bauer and Fuster, 1976; Passing-

ham, 1985; Funahashi et al., 1993; Quintana and Fuster, 1993).

However, the precise role of PFC in WM processing in humans

continues to be an area of great interest and disagreement. A

meta-analysis of lesion data in humans led D’Esposito and Postle

(1999) to conclude that while DLPFC might be necessary for

delayed response tasks (which in their parlance included

delayed-match-to-sample and delayed-nonmatch-to-sample

tasks), it is not necessary for simple span tasks (forward digit

span and block/Corsi span). These authors made an a priori

distinction between the theoretical WM processes tapped by

span tasks and delayed response tasks, with span tasks pre-

sumably relying more on storage and delayed response tasks

relying more on rehearsal/maintenance. Therefore, they con-

cluded that DLPFC in humans is necessary for rehearsal/

maintenance, but not for storage, which they deduced was

mediated by more posterior cortical regions. The delay period

of a delayed item recognition task would require both storage

and rehearsal according to standard models of WM mainte-

nance, in which the stored trace is intermittently refreshed by

rehearsal (Nairne, 2002).

Based on their interpretation of their meta-analytic findings,

D’Esposito and Postle (1999) hypothesized that left ventrolat-

eral PFC, but not left or right DLPFC, is necessary for verbal

delayed response performance. To the extent that a delayed

item recognition task for letters corresponds to a verbal delayed

response task, either the linear DLPFC response to WM load we

observed does not reflect necessity for task performance (while

perhaps the homologous relationship in the left ventrolateral

PFC locus does), or this result is at odds with their hypothesis.

Moreover, ignoring their particular prediction concerning lo-

calization within PFC of verbal delayed response task mediation,

if one assumes that the degree of rehearsal (i.e. the subvocal

articulation rate) scales with WM load, then our results in PFC

are consistent with D’Esposito and Postle’s hypothesis concern-

ing the role of PFC in WM (i.e. that it mediates rehearsal).

However, if only storage, and not rehearsal, scales with WM

load, then our results would be inconsistent with that general

hypothesis. We could not find any data in the literature that

speaks to dependence of rehearsal rate on WM load.

Based on neuroimaging evidence, some have argued that

processing in human DLPFC is related less to WM maintenance

and more (D’Esposito et al., 1999; Postle et al., 1999; Rypma

et al., 1999; Glahn et al., 2002) or exclusively (Owen et al., 1996,

1999) to manipulation/organization of information within WM.

Still, DLPFC WM load sensitivity has been reported for pure

maintenance tasks, presumably relying on phonological storage

and rehearsal, such as the one used in the current study

(Manoach et al., 1997; D’Esposito et al., 1999; Rypma et al.,

1999, 2002; Veltman et al., 2003), and recent data suggest that

very similar if not identical PFC regions are involved in both WM

maintenance and manipulation (Veltman et al., 2003).

Similar to our current study, Rypma et al. (2002) examined

fMRI signal associated with different phases of a delayed item

recognition task in which set size was varied from 1 to 8 letters,

and reported a positive relationship between set size and delay

period activation in DLPFC. They did not observe such an effect

in their earlier studies (Rypma and D’Esposito, 1999, 2000), in

which they instead noted a relationship of set size to stimulus

encoding period activation in DLPFC (a result which itself was

not replicated in their 2002 study). They attributed these

across-study differences post hoc potentially to their using set

sizes of only 2 and 6 in their earlier studies (Rypma and

D’Esposito, 1999, 2000), but no particular argument was put

forward to mechanistically explain why or how this would have

changed the results in the manner observed. They also sug-

gested that subjects were using a different strategy to perform

the current task in their 2002 study compared with their earlier

studies. But it is not clear whether they meant that the subjects

from the two studies were drawn from different populations, or

if their task was somehow sufficiently different (now including

a greater array of set sizes and an expansion of the set size range

to include 7 and 8 letters) to engender a strategy different from

that used in their earlier studies. Nevertheless, the results of

their 2002 study were used to draw the same conclusion as the

one drawn from their earlier studies, namely that DLPFC plays

a role in strategic memory organization. Another possible

interpretation of their 2002 result is that DLPFC processing

related to set-size variation simply reflects scaling of processes

related to WM maintenance, such as rehearsal or perhaps even

storage [(even though the latter would go against the hypo-

thesis of D’Esposito and Postle (1999)]. But again, this is not to

say that processing in DLPFC is in every task context related

only to WM maintenance (D’Esposito et al., 1999; Owen et al.,

1999; Postle et al., 1999).

At the moment, it is probably most accurate to say that there

is no consensus as to the precise role of PFC in WM in humans,

and that two broad, competing hypotheses prevail: (i) a WM

maintenance role for ventrolateral PFC and a monitoring/

manipulation role for DLPFC (D’Esposito et al., 1999; Owen

et al., 1999; Postle et al., 1999; Rypma et al., 2002); and (ii)

a critical role of DLPFC in both maintenance and manipulation

(Manoach et al., 1997; Jha and McCarthy, 2000; Zarahn et al.,

2000; Veltman et al., 2003). Possible explanations for the failure

to have reached a consensus are the theoretical differences in

information provided by lesion and neuroimaging studies, the

perhaps underdetermined nature of the constructs of ‘mainte-

nance’ and ‘manipulation’, and the seeming high inter-study

variability in both the lesion and neuroimaging literatures.

WM Load Effects in Hippocampus

A second WM load-related component was detected whose

strongest expression was in hippocampus. The hippocampus

and other medial temporal lobe (MTL) structures seem to be

essential for the encoding of new information into LTM. In

particular, both the hippocampus (Alvarez et al., 1995) and the

perirhinal/parahippocampal cortex (Zola-Morgan et al., 1989)

appear to be necessary for the formation of new LTM traces. In

contrast, there is evidence that in humans and non-human

primates, these MTL structures are not always necessary for

remembering information on the time scale of seconds, i.e. are

not necessary for WM maintenance (Sidman et al., 1968;

Wickelgren, 1968; Zola-Morgan and Squire, 1985; Cave and

Squire, 1992; Alvarez et al., 1994; Leonard et al., 1995; Mayes

et al., 2002). However, there is controversy over this point as

other data (Holdstock et al., 1995; Owen et al., 1995; Buffalo

et al., 1998; Squire et al., 1988; Baxter and Murray, 2001) or

analysis approaches (Ringo, 1991) are suggestive of a necessary

role of MTL in WMmaintenance. In terms of neural engagement

of hippocampus during WM maintenance, most tests of delay

period fMRI activity have not yielded positive results in hippo-

campus or other MTL structures (see e.g. Cabeza et al., 2002,

table 1). However, an influential study by Ranganath and

D’Esposito (2001) demonstrated sustained neurophysiological
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activity in anterior hippocampus during the delay period of

a WM task for novel faces. The amplitude of this delay period

activity was modulated by the novelty of the face stimuli, leading

the authors to hypothesize that the hippocampus is involved in

WM processing for novel stimuli.

In the current study, the critical property of the WM load-

related component expressed strongly in MTL is that it is

orthogonal to WM load. That is, delay period fMRI signal in these

regions did not remain constant across WM loads. Instead, delay

period MTL signal manifested a pronounced inverted U-shape

with respect to WM load. While a region displaying a constant

level of neurophysiologic activity across WM loads could still

ostensibly be consistent with a critical role in WM processing

(i.e. a role that is simply independent of WM load), a pattern of

delay period signal that is dependent on, yet orthogonal to, WM

load would make a role in WM maintenance less plausible.

However, one alternative explanation is that, counter to our

logic, WM load was itself orthogonal to set size (instead of being

linearly related to it). That is, the amount of information

maintained in WM would, for some reason, increase from set

size 1 to set size 3, but then decrease from set size 3 to set size 6.

For this to be true, our basic understanding of the amount of

information being held in WM must be fundamentally in error.

For example, one could conceive, albeit with difficulty, of an

information chunking process such that a set size of 6 and a set

size of 1 lead to the same WM load, while set size 3 is not

chunked as efficiently as either set sizes 1 or 6; but this would be

inimical to the extant data relating set size and WM capacity

(Cowan, 2001). Nevertheless, if WM load was indeed orthogonal

to set size, our data would be consistent for a role of hippo-

campus in WM. Such a premise would also complicate the

interpretation of the first component, whose expression was

linear with set size.

Another alternative explanation is that a qualitatively differ-

ent cognitive process mediates delayed item recognition per-

formance for low (say, up to set size 3) and higher set sizes, and

perhaps hippocampus is involved in only the low load mecha-

nism. This would imply the invalidity of a unitary phonological

WM maintenance process, and seemingly require a paradigm

shift. We are not aware of psychological data that would support

such a qualitative difference in delayed item recognition

processing at set size 3 and set size 6 when rehearsal is allowed

(Sternberg, 1966; Cowan, 2001).

If one entertains the premise that the hippocampus is not

involved in WM maintenance, one should speculate as to why

there would be any set-size dependence in an area not related to

WM per se. One hypothesis in this regard is that WM-irrelevant

encoding of information into LTM occurred in this task context

as a joint function of available attentional resources (i.e. what

remains of attentional resources after the appropriate allocation

of said resources to the primary task of rehearsal) and the

amount of information available to encode. Again, the critical

idea here is that this encoding would be irrelevant to delayed

item recognition performance. Perhaps this function peaked in

this delayed item recognition task at a set size close to 3 (with

set size 1 having too little information to encode and set size 6

having a deficiency in available attentional resources after

allocation of the necessary attention to the primary task of

rehearsal). This type of model is testable by having subjects

perform a delayed item recognition task with trial unique

stimuli. Subjects can then be subsequently tested for recogni-

tion memory for these stimuli. This hypothesis would predict

that the d9 for recognition would be lower for stimuli presented

in the highest set size condition (even though delayed item

recognition accuracy would be expected to remain constant

across these set sizes). Letter stimuli are not suited for this type

of experiment due to their small number (which would

unreasonably limit the number of trials that could be adminis-

tered). A conceivable alternative stimulus class might be pic-

tures of common objects. The concomitant neuroimaging

finding would have to be tested using the new stimuli, as the

relationship might be expected to be different for different

stimulus classes.

Hippocampal Necessity for Memory over Brief Delays

As mentioned above, there is a contention in the literature

concerning whether hippocampus is necessary for WM main-

tenance (or more conservatively, whether hippocampus is

necessary for memory over brief delays, as stated in this fashion

one doesn’t presuppose the existence of separate WM and LTM

systems). Here we will review some of the evidence that is

suggestive of hippocampal necessity for memory over brief

delays.

Baxter and Murray (2001) showed in a meta-analysis of data

from the macaque that there was no evidence for a delay

duration-dependence of the effect of hippocampal lesion on

delayed-nonmatch-to-sample performance, which is consistent

with a similar role of the hippocampus in memory at all delays.

However, the shortest delay duration in that meta-analysis was

15 s, and other work has shown that memory performance in

the hippocampally lesioned macaque is normal at briefer delays

(Zola-Morgan and Squire, 1985; Overman et al., 1990; Alvarez

et al., 1994). Thus, though this meta-analysis is important in that

it suggests that hippocampal lesions in macaque monkeys cause

similar memory deficits at all delays of >15 s, it does not

directly counter the idea that hippocampal integrity is not

critical for performance at briefer delays.

A different meta-analysis (this one not restricted to hippo-

campal lesions) of the interaction of lesion presence and delay

duration on delayed-nonmatch-to-sample accuracy in monkeys

was performed by Ringo (1991), who transformed the originally

reported percentage correct values to d9 values (Green, 1988).

The rationale for using d9 is that it is an interval measure, while

percentage correct is not. His meta-analytic finding was no

interaction of lesion presence with delay duration on memory

performance (see fig. 2 from that report). As a corollary of this

finding, he concluded that there is no support for a distinction

between short-term memory (here, synonymous with WM

maintenance) and long-term memory systems. Though we feel

that Ringo’s methods are sound, there are some important

details of his design and results that lead to a different in-

terpretation. Results from three studies (Zola-Morgan et al.,

1982; Malamut et al., 1984; Zola-Morgan and Squire, 1985)

corresponding to the effects of hippocampal lesion on memory

performance at brief delays (<10 s), though presented in

tabular form (Tables 3 and 5 from that report), were not

included in the ultimate summary (Fig. 2 from that report)

owing to Ringo’s meta-analytic methodology. These were the

only data points presented that involved hippocampal lesions

with such brief delays. These data (as presented by Ringo) are

recapitulated in Figure 9, and are evidently in support of

a substantially weaker effect of hippocampal lesions at delays

of <10 s as compared with delays of > 10 s. Such a pattern of

results is consistent with the existence of a memory system in

312 Hippocampal Activity and WM Load d Zarahn et al.



the monkey that is not critically dependent on hippocampal

integrity and which can mediate delayed-nonmatch-to-sample

performance for delay durations of up to ~10 s. A similar re-

interpretation of Ringo’s meta-analysis has been made by

Alvarez-Royo et al. (1992), who also stressed the importance

of only using data from experiments in which different delay

durations are mixed within the same testing blocks when

assessing lesion presence by delay duration interactions.

In humans, the complexity/novelty of the stimuli to be

remembered seems to be an important factor in determining

the role of the hippocampus in memory over brief delays.

Buffalo et al. (1998) reported that patients whose lesions

included bilateral damage to the hippocampus demonstrated

impairment in recognition memory for complex visual stimuli

with delays of>6 s, with spared performance at a delay duration

of 2 s. On the one hand, that performance was normal at 2 s

would seem to rule out that hippocampus is necessary for very

brief delays. On the other, the impaired performance at 6 s

suggests that non-hippocampal-dependent mnemonic mainte-

nance of complex visual stimuli is sufficient for only a very few

seconds, perhaps because phonological or other possible man-

ners of rehearsal might not be effective for such stimuli.

Holdstock et al. (1995) reported impaired performance of

delayed-match-to-sample using abstract visual stimuli in am-

nesic subjects, even at a delay of 2 s.More thanhalf of the amnesic

sample comprised patients with Korsakoff’s syndrome, whose

neuropathology involves not only the medial temporal lobe

(Sullivan and Marsh, 2003), but also the mamillary bodies,

anterior thalamic nuclei, mediodorsal thalamic nuclei and PFC

(Harper and Corbett, 1990; Visser et al., 1999; Harding et al.,

2000). Nevertheless, this result is suggestive of a role for

hippocampus in memory over brief delays for novel visual

stimuli. Owen et al. (1995) reported a deficit in delayed-match-

to-sample accuracy using abstract patterns in amygdalo-

hippocampectomy patients even with no delay, but no deficit

in simultaneous-match-to-sample accuracy (ruling out a purely

perceptual impairment). These studies all support a role for

hippocampus in recognition memory at brief delays (i.e. <10 s)

for complex/novel visual stimuli.

Squire and colleagues reported a deficit at all delays (the

briefest being 5 s) in delayed-nonmatch-to-sample performance

in a sample of amnesics (that included five patients with

Korsakoff’s syndrome and three who experienced anoxic or

ischemic episodes, to which the hippocampus is particularly

susceptible) using highly discriminable, generally familiar ob-

jects (Squire et al., 1988). Though the patients were able to

reach a performance criterion (which was close to control

group accuracy levels) during training trials using a 5 s delay,

their performance subsequently declined during the main block

of trials, even for those with a 5 s delay. On the face of it, this

result suggests that the hippocampus in humans is necessary

not only for memory over brief delays for complex/novel stimuli

(Holdstock et al., 1995; Owen et al., 1995; Buffalo et al., 1998),

but also for familiar objects. But, critically, some of these trials

had a distractor task during the delay (so-called ‘filled’ delays).

Additional experiments showed that on blocks of trials in which

there were no filled delays, amnesic subject performance was

indistinguishable from control group performance at the 5 s

delay and declined relative to control levels with increasing

delay duration (Squire et al., 1988). Other studies have reported

that the hippocampus in humans is not necessary for immediate

recall of other familiar (letter) stimuli (Drachman and Arbit,

1966; Cave and Squire, 1992). This supports that, in the absence

of a perceived possibility of distraction, memory for familiar

objects over brief delays is not dependent on hippocampal

integrity.

In summary, in the monkey and human, there is evidence for

a memory system that is not dependent on the integrity of the

hippocampus which can maintain mnemonic representations of

familiar stimuli for delays of up to ~10 s. In contrast, there is

support in humans for the dependence of memory over briefer

delays on the hippocampus when the stimuli to be remembered

are complex and/or novel. Our neuroimaging results and those

of Ranganath and D’Esposito are consistent with this synthesis

from the lesion literature (Ranganath and D’Esposito, 2001).

Is the Hippocampus Activated above Baseline during WM
Maintenance?

The main hypothesis of this study concerned the identity and

number of spatial patterns of delay period brain activity

associated with WM load. However, there is another, perhaps

simpler, hypothesis we were able to incidentally test: whether

hippocampus is engaged above baseline levels during the delay

period. When the estimated fMRI signal intensities (relative to

the inter-trial interval baseline) associated with the delay period

from the voxels most strongly expressing the second compo-

nent were examined, they tended to be close to zero averaged

across WM loads (while following an inverted U-shape with

respect to WM load) in both hemispheres. Similar results were

obtained in hippocampal ROIs. This is consistent with the

hippocampus not generally reported as being activated during

WM processing (Courtney et al., 1996, 1997; Smith et al., 1996;

Braver et al., 1997; Cohen et al., 1997; Rypma et al., 1999).

However, Ranganath and D’Esposito (2001) reported delay

period fMRI signal increases over an inter-trial interval baseline in

the right anterior hippocampus in the context of a WM task for

novel faces (with a set size of 1 face). These authors also showed

that whenmore familiar faces were used, the hippocampal delay

Figure 9. Meta-analytic data presented by Ringo (1991) are plotted, illustrating the
delay duration-dependence of the effect of hippocampal lesion on delayed-nonmatch-
to-sample performance. The symbols denote the studies presented by Ringo from
which the data were obtained: Solid circles: Malamut et al. (1984); hollow squares:
Zola-Morgan et al. (1982); solid triangles: Zola-Morgan and Squire (1985). As is
evident, the data from the different laboratories were not all acquired at the same
delay durations. The x-axis (delay duration) is log-scaled.
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period activation was attenuated. We did not detect any positive

delay period fMRI response relative to baseline in our data (at any

WM load) at the two hippocampal MNI coordinates reported in

that study. Indeed, there were sub-baseline responses at set sizes

1 and 6 at their right hippocampal coordinate. This finding is

consistent with their hypothesis that the hippocampus is in-

volved during memory over brief delays only for sufficiently

novel stimuli. Unfortunately, our data can only speak weakly to

their hypothesis because our design did not involve any novel

stimuli that would have allowed the critical test for a positive

delay period response in hippocampus.

To investigate the hippocampal delay period question fur-

ther, we examined the neuroimaging studies cited by Ranganath

and D’Esposito as supporting the idea that hippocampal activity

(implicitly, relative to some sort of baseline) is associated with

WM maintenance. We concluded that some of these cited

results were less forcefully behind the hypothesis of WM

maintenance-related activity in the hippocampus than one

might have expected. One of these cited studies concluded

the following from their PET data acquired during a delayed

alternation task (a task thought to tap WM): ‘the activity

observed in the right anterior hippocampus during the perfor-

mance of alternation tasks does not appear to reflect the active

maintenance of information over the delay, but instead reflects

a more transient function’ (Curtis et al., 2000). Another study

reported left hippocampus as being more activated during WM

trials with 15 s delays compared with trials with 5 s delays

(Elliott and Dolan, 1999). However, the hippocampus was not

activated when comparing WM trials to a fixation baseline in

that study, complicating interpretation of the effect of delay

duration (Elliott and Dolan, 1999).

So, is hippocampus activated during the delay of WM main-

tenance tasks? Our results using highly familiar letter stimuli

speak against this hypothesis (except perhaps at intermediate

WM loads in certain parts of the left hippocampus) and, again,

most studies have not reported it (Courtney et al., 1996, 1997;

Smith et al., 1996; Braver et al., 1997; Cohen et al., 1997; Rypma

et al., 1999), or have yielded ambiguous results in this regard

(Elliott and Dolan, 1999). Then again, most studies have used

familiar stimuli. The results of Ranganath and D’Esposito suggest

that stimulus novelty is a factor in determining whether or not

the hippocampus is engaged during brief memory delays.

Moreover, the neuropsychological literature supports that the

hippocampus in humans is necessary for memory of novel

stimuli over brief delays (Holdstock et al., 1995; Owen et al.,

1995; Buffalo et al., 1998). But if the hippocampus is involved in

memory over brief delays for novel stimuli, then what would be

the implications for the construct of WM? That is, would this

suggest a qualitative difference in WM processing for novel

versus more familiar stimuli, or would it perhaps mean that, for

novel stimuli, the cognitive processes underlying WM tasks and

LTM tasks are more unified than some current models represent

them (Nairne, 2002)? Should we say that ‘the hippocampus is

involved in WM maintenance of novel stimuli’, or perhaps that

‘LTM mechanisms are required for even brief delays for novel

stimuli’? Is the hippocampus a ‘double agent’, sometimes

working in the service of WM, and sometimes LTM, its function

dependent on context? Does the visuo-spatial scratch pad of the

WM model of Baddeley (1992) involve the function of the

hippocampus for sufficiently complex or novel stimuli?

Some models of memory (Nairne, 2002) posit a much weaker

(or even non-existent) distinction between memory systems

than that adopted in this paper (i.e. WMmaintenance and LTM).

But the neuropsychological and lesion literature we reviewed

above supports some systems distinction for familiar stimuli, at

least as concerns the role of the hippocampus. In the context of

the current study, when we synthesize the lack of consistent

positive delay period activity in the hippocampus with the

pattern of delay period response that is orthogonal to WM load,

we obtain a somewhat compelling vote against the complete

unification of WM and LTM systems. Based on these findings,

future neuroimaging work that factorially manipulates set size,

stimulus novelty, and delay duration would seem to be required

to further clarify the role of the hippocampus in WM main-

tenance, and possibly the construct of WM maintenance itself.

Moreover, a direct test of the stimulus novelty by delay duration

interaction in patients with hippocampal damage would be

constructive.

Conclusion

In the context of a delayed item recognition task for letters with

a 7 s delay, a pattern of delay period fMRI response amplitude

that was linear with set-size was expressed strongly in areas

including left inferior frontal gyrus, bilateral DLPFC, and bi-

lateral inferior parietal cortex, supporting previous findings that

these areas engage in processing underlying WM maintenance

(which could include storage and/or rehearsal processes). A

second pattern of delay period fMRI response that was de-

pendent on, yet orthogonal to, WM load was expressed most

strongly in hippocampus bilaterally. We interpret this result as

suggesting that hippocampal function is irrelevant to memory-

based performance for phonologically codable (and perhaps,

more generally, familiar) stimuli over brief delays. Given the

virtually uncontested necessity of the hippocampus for explicit

memory over longer delays, these results support at least

a partial distinction of human memory into LTM and WM

systems.

Notes

Address correspondence to Eric Zarahn, Cognitive Neuroscience Di-

vision, Taub Institute, P & S Box 16, 630 West 168th Street, Columbia

University, New York, NY 10032, USA. Email: ez84@columbia.edu.
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