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This  functional  neuroimaging  (fMRI)  study  examined  the neural  networks  (spatial  patterns  of covary-
ing  neural  activity)  associated  with  the  speed-accuracy  tradeoff  (SAT)  in  younger  adults.  The  response
signal  method  was  used  to  systematically  increase  probe  duration  (125, 250,  500,  1000  and  2000  ms)  in
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a  nonverbal  delayed-item  recognition  task.  A  covariance-based  multivariate  approach  identified  three
networks  that  varied  with  probe  duration—indicating  that  the  SAT  is  driven  by three  distributed  neural
networks.

© 2011 Elsevier B.V. All rights reserved.
The ability to weigh the consequences of responding quickly
gainst the consequences of responding accurately is an important
omponent of both animal and human decision-making [1,2]. The
peed-accuracy tradeoff (SAT) refers to the common observation
hat accuracy decreases when the pressure to respond quickly is
mphasized, while response time increases when the pressure to
espond accurately is emphasized [3].  In other words, an increase
n accuracy is associated with an increase in response time, and vice
ersa. Contemporary decision-making models assume that follow-
ng stimulus presentation, baseline neural activity increases until
t reaches a decision threshold and, consequently, the SAT depends
pon the distance between baseline neural activity and the deci-
ion threshold, and the rate at which information regarding the
ecision accumulates [1,4,5].  Although the SAT is central to many
ontemporary models of decision making, the neural mechanisms
ssociated with the SAT remain poorly understood. To date, only
hree functional neuroimaging (fMRI) studies have examined the
eural mechanisms associated with the SAT [6–8]. These studies

ndicated that neural activity in the pre-supplementary motor area
pre-SMA; BA 6) and striatum, rather than in the sensory or pri-
ary motor cortices increased when individuals were instructed
o emphasize speed compared to when individuals were instructed
o emphasize accuracy. These three studies also suggested that the

∗ Corresponding author. Tel.: +1 212 342 1350; fax: +1 212 342 1838.
E-mail address: ys11@columbia.edu (Y. Stern).

1 Both authors contributed equally to this manuscript.

166-4328/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.bbr.2011.06.004
increased neural activity observed in the pre-SMA and striatum
during speed emphasis reflected an increase in baseline neural
activity rather than a decrease in (or a lowering of) the decision
threshold.Unlike the SAT studies reviewed above—which contrast
response time, accuracy and neural activity during instructed speed
emphasis with that during instructed accuracy emphasis—the cur-
rent fMRI study used the Response Signal Method (RSM) [9] to
systematically vary response speed in a bottom-up manner in
order to address the question: is the SAT driven by one or sev-
eral neural mechanisms? [1]. The RSM was specifically developed
to examine aspects of the SAT that cannot be attributed to top-
down control [9] and has been the focus of a large number of SAT
studies [e.g. 3,9–13,14–18]. The RSM permits the experimenter to
impose a SAT by explicitly signaling the end of the retrieval pro-
cess with the offset of the probe. Prompt recognition responses are
then acquired following a number of different probe durations (i.e.
response speeds). The presence of a SAT in this context is desig-
nated by increased accuracy following longer probe durations and
decreased accuracy following shorter probe durations. SAT func-
tions can also be generated by plotting recognition performance
as function of total processing time: response time plus probe
duration–as response speed is typically not completely controlled
across probe durations. The current fMRI study used the RSM to
systematically vary response speed in a delayed item recognition

(DIR) task to determine if the SAT is driven by one or several neural
mechanisms.

During each trial in this DIR task, 26 young individuals (M
age = 25.88) were presented with two  abstract shapes for 3000 ms.

dx.doi.org/10.1016/j.bbr.2011.06.004
http://www.sciencedirect.com/science/journal/01664328
http://www.elsevier.com/locate/bbr
mailto:ys11@columbia.edu
dx.doi.org/10.1016/j.bbr.2011.06.004
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ig. 1. (a) Response time as a function of probe shape duration. (b) Discriminability
s  a function of probe shape duration.

fter a 5000 ms  retention period, individuals were presented with
 probe shape and asked to decide whether or not it matched one
f the two previously presented shapes. The duration of the probe
hape was systematically varied (125, 250, 500, 1000 or 2000 ms.)
nd participants were trained to elicit a recognition response fol-
owing presentation of the probe shape at the onset of a 500 ms
ray mask. Individuals were trained to emphasize speed, and to
uess rather than delay their responses if unsure. This DIR task
onsisted of 11 blocks of 30 trials each, divided into three train-
ng phases and one test phase. Within each block, 70 blanks that
asted for 2000 ms  were also randomly interspersed. When added
o the minimum inter-trial interval (ITI) of three seconds, the mean
TI was 9119 ms.  These design features are known to maximize the
tatistical power in fMRI analyses [19,20] (see [12] for a detailed
escription of this DIR task). Note that the young sample included

n the current study was obtained from a larger study specifically
imed to determine whether the expression of networks associated
ith performance on this DIR task differ as a function of response

peed in younger and older adults [21]. The analytic approach used
n the current study differed as well (see below).

Response time (RT) and accuracy were analyzed in two sepa-
ate repeated-measures ANOVAs with probe shape duration (125,
50, 500, 1000 and 2000 ms)  as the within-subject factor. RT was
easured from the onset of the mask (i.e. excluding the systematic

ariation in response time that was enforced by different probe
hape durations) and accuracy was measured in terms of discrim-
nability, assessed with dL = ln{[H(1 − FA)]/[(1 − H) FA)]}; where

 = hits, FA = false alarms, and ln is the natural logarithm func-
ion [22]. RT increased with decreasing probe shape duration, F (4,
00) = 148.41, p < 001 (see Fig. 1a), suggesting that response times
ere not completely controlled by our RSM manipulation. More
mportantly, for the current purposes, dL increased with increasing
robe shape duration, F (4, 100) = 15.53, p < 001 (see Fig. 1b), con-
istent with the presence of a SAT. Note also that unlike the larger
tudy [21] from which the current sample was obtained—which
 Research 224 (2011) 397– 402

modeled the SAT between total processing time (probe shape
duration and reaction time) and discriminability (dL) with a three-
parameter bound exponential curve (intercept, asymptote and
rate) in younger and older adults)—the current study examined
discriminability (dL) simply to confirm the presence of a SAT in
younger adults.

All BOLD (T2*-weighted) images [23,24] were acquired
during the DIR task with an Intera 1.5 T Phillips MR  scan-
ner equipped with a standard quadrature head coil and
a GE-EPI sequence of TE/TR = 50 ms/3000 ms;  flip angle = 90◦;
64 × 64 matrix, in-plane voxel size = 3.124 × 3.124 mm;  slice thick-
ness = 8 mm (no gap); 17 trans-axial slices per volume. Four
additional GE-EPI excitations were performed before each run
to allow transverse magnetization immediately after radio-
frequency excitation to approach its steady-state value; the
image data for these excitations were discarded. A T1-weighted
spoiled gradient image was also acquired from each participant
(TE/TR = 3 ms/25 ms;  flip angle = 45◦, 256 × 256 matrix; in plane
voxel size = 0.781 mm  × 0.781 mm;  slice thickness = 1.5 mm  [no
gap]; 124 trans-axial slices per volume).

Image pre-processing and analysis were implemented with
SPM5 (Wellcome Department of Cognitive Neurology) and custom-
written MATLAB 7.8 code (Mathworks, Natick, MA). For each
participant’s EPI dataset: data were temporally shifted to correct
for the order of slice acquisition, using the first slice acquired in the
TR as the reference and then realigned to the first volume of the
first session. The high-resolution T1-weighted (structural) image
was co-registered to the first EPI volume using mutual informa-
tion [25]. The co-registered structural image was used to determine
the linear and non-linear parameters for transformation defined by
the Montreal Neurologic Institute template brain supplied with the
software. This transformation was then applied to the EPI data and
re-sliced using sinc-interpolation to 2 mm × 2 mm × 2 mm voxel
sizes. Finally, images were spatially smoothed with an isotropic
Gaussian kernel, full-width-at-half-maximum = 8 mm.

The fMRI data time-series analysis consisted of two levels
of voxel-wise General Linear Models (GLMs) [26]. The first-level
GLM yielded the summary measures used in second-level group-
wise analysis (beta images), which affords statistical inference at
the population level. In the first-level GLM, the EPI time-series
data were modeled with regressors representing the expected
BOLD response (implicitly, relative to blanks) to the DIR com-
ponents: shape presentation, retention period, and probe shape
duration/response. Shape presentation and retention period were
each modeled with a single regressor. For the probe shape duration
and response/mask, each crossing of probe-duration and true posi-
tive/true negative factors were separately modeled. The regressors
were constructed by convolution of a rectangular function of width
defined by the design, to represent each trial component [27] and
the double-Gamma model of the BOLD response function. Resulting
contrast images for the five probe durations combined with their
respective response masks were used in the second-level group
GLM analyses.

Group-level imaging analyses focused on identifying spa-
tially covarying sets of brain regions whose neural activity
increase and/or decrease as a function of probe shape duration. A
covariance-based analytic approach—Multivariate Linear Modeling
(MLM)  [28,29]—was used to test for the presence of spatial pat-
terns of covarying neural activity that are activated at each level
of probe shape duration. Moreover, the MLM  approach directly
tests whether one or more of these patterns are elicited at dif-
ferent points across the SAT function, i.e. whether one or several

neural mechanisms underlies the SAT. Note also that the num-
ber of spatial patterns that can be identified with this analytic
approach is determined by the dimensionality of the F-contrasts.
The current contrasts of interests have a dimensionality of five
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Fig. 2. (a) Mean expression of Pattern 1 as a function probe shape duration, and the primary brain regions associated with this pattern. (b) Mean expression of Pattern 2 as
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 function probe shape duration, and the primary brain regions associated with th
rimary brain regions associated with this pattern.

one for each probe shape duration) and therefore the largest
umber of significant spatial patterns is five. The MLM  analysis
erformed a principle components eigendecomposition on the spa-
ially whitened mean images for the five probe shape durations.
ignificance of a spatial pattern was assessed using sequential
atent root tests and an alpha < .05. Three significant spatial pat-
erns were found (Pattern 1: F(2978, 17010) = 3.2068, p < 0.0001;
attern 2: F(2383, 15879) = 1.6399, p < 0.0001; Pattern 3: F(1787,
4295) = 1.2455, p < 0.0001). For interpretation of brain regions,
rom each significant spatial pattern the top 2% of the values and
lusters greater than 20 voxels in size were retained and are shown
n Fig. 2 and listed in Table 1. Finally, note that this analytic approach
iffers markedly from the analytic approach used in the larger
tudy from which this sample was obtained [21] whose contrasts
f interest have a dimensionality of two (one for each age group)
nd therefore the largest number of significant spatial patterns that
ould be identified in that study was two.

Mean expression of Pattern 1 decreased with increasing probe

hape duration, but remained positive across all five levels (see
ig. 2a). Pattern expression measures the extent to which each
ubject expresses the pattern, at each level of probe shape dura-
ion. Positive pattern expression across all levels suggests that the
ern. (c) Mean expression of Pattern 3 as a function probe shape duration, and the

pattern is expressed in the same direction. Thus, this neural net-
work is involved to a greater extent when probe shape durations
are short (more speed emphasis) and to a lesser extent when probe
shape durations are long (less speed emphasis). The regions with
the highest values in Pattern 1 include the Inferior frontal gyrus (BA
9/47), the Middle frontal gyrus (BA 46), the precentral gyrus (BA 6),
the Inferior parietal lobule (BA 40), bilateral Lingual gyrus (BA 18)
and Fusiform gyrus (BA 19). In contrast with previous fMRI studies
of the SAT [6–8], the pre-SMA was not a component of this neural
network that likely activates for speeded responses. Instead, motor
preparatory (the SMA  and pre-motor) areas is a main component
of this network. However, in line with one previous fMRI study
of the SAT [8],  the dorsolateral prefrontal cortex (DLPFC; BA 9/47,
46), is also a component of this neural network that likely activates
for speeded responses. Moreover, the identification of this spatial
pattern implies interplay between these frontal/prefrontal regions,
visual association cortices (BA 18, 19) and the inferior parietal lob-
ule (BA 40). Visual association cortices and the inferior parietal

lobule have been specifically linked to simple storage of non-verbal
information in working memory tasks such as the DIR task [30].

In contrast to Pattern 1, Patterns 2 and 3 were expressed in
opposing directions with increasing probe shape duration, cross-
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Table 1
Brain regions associated with each significant spatial pattern. The top 2% of the values clusters greater than 20 voxels in size were retained.

Regions Laterality BA MNI  Z # voxels

Pattern 1 positive activation
SMA L 6 −2, −8, 56 7.58 102
Postcentral gyrus/inferior parietal lobule L 2/40 −44, −30, 40 7.17 134
Cingulate gyrus R 32 10, 16, 38 6.61 20
Inferior frontal/precentral gyrus L 6/9 −42, 8, 24 7.24 283
Superior temporal gyrus R 42 58, −44, 16 8.05 158
Inferior/middle frontal gyrus R 9/46/47 32, 26, 2 10.21 1143
Inferior frontal gyrus/insula L 13/47 −30, 24, −2 8.65 279
Thalamus L/R na −4, −26, −6 8.37 419
Fusiform/lingual gyrus R 18/19/37 34, −66, −8 8.41 313
Fusiform gyrus/temporal lobe L 18/19/37 −34, −54, −14 7.48 56

Pattern 2 positive activation
Precuneus L/R 7 4, −46, 66 5.45 91
Inferior parietal lobule R 40 46, −60, 42 5.95 336
Middle frontal gyrus R 8 28, 18, 38 4.82 42
Superior temporal/supramarginal gyrus L 39/40 −40, −56, 32 6.99 927
Caudate L na −20, 20, 14 6.56 325
Caudate R na 18, 18, 14 5.09 211
Superior frontal gyrus R 10 14, 66, 12 5.28 62
Putamen L na −26, −4, 10 4.91 110
Putamen R na 32, −16, 0 4.92 154
Inferior/middle frontal gyrus L/R 10 42, 52, 4 5.46 113
Inferior frontal gyrus/insula L 47 −54, 18, −2 6.43 30
Middle occipital gyrus L 19 −54, −62, −12 4.76 21
Hippocampus L na −18, −10, −16 4.65 55
Cerebellum L/R na −2, −84, −18 5.57 163
Cerebellum R na 38, −78, −24 6.71 48

Pattern 2 negative activation
Lingual gyrus R 18/19 30, −76, −10 5.02 87

Pattern 3 positive activation
Superior frontal gyrus R 8 24, 38, 48 4.06 48
Angular gyrus R 39 50, −70, 32 4.09 37
Superior temporal gyrus L 39 −48, −58, 22 4.39 334
Insula  L 13 −38, −34, 18 4.67 168
Insula  R 13 48, −38, 16 3.92 47
Superior temporal gyrus R 22 48, −4, 4 4.21 44
Superior temporal gyrus L 41 −44, −32, 0 3.95 23

Pattern 3 negative activation
Pre-SMA R 6 14, 16, 64 4.12 74
Precuneus R 7 6, −64, 58 3.57 76
Superior parietal lobule R 7 28, −64, 58 4.49 265
Superior parietal lobule L 7 −24, −68, 56 4.86 103
Inferior parietal lobule R 40 52, −38, 54 4.93 378
Inferior parietal lobule L 40 −40, −52, 50 5.57 726
Medial frontal gyrus R 8 2, 28, 44 3.67 27
Middle frontal gyrus R 8/9 50, 28, 36 2.89 52
Middle frontal gyrus L 46 −46, 38, 26 4.27 74
Cingulate gyrus L 23 0, −14, 26 4.33 91
Caudate tail R na 18, −26, 18 3.55 28
Superior temporal gyrus R 38 50, 14, −10 4.44 39
Fusiform gyrus R 19/37 44, −72, −16 4.00 106
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ng from negative to positive and vice versa, respectively. Pattern
xpression values can be positive or negative and brain areas
n a pattern can have positive and negative weightings. The
egions with positive weightings were activated for positive pat-
ern expression values and deactivated for negative expression
alues, and the converse is true for the regions in the negative side
f the pattern (analogous to the multiplication rule of positive and
egative values).

Pattern 2 increased from −0.21 at the shortest probe duration
o +0.04 for the longest probe duration (see Fig. 2b). The regions
n the positive side of Pattern 2 included the Inferior frontal gyrus

BA 10), the Precuneus (BA 7), the Inferior parietal lobule (BA 40),
he Hippocampus, the Putamen, and parts of the Cerebellum. These
egions were deactivated during shorter probe durations, but the
xpression was increased across the levels until the regions were
7 −46, −70, −12 3.77 47

weakly activated at the longest probe shape duration. Thus, the
positive side of this neural network was  deactivated when probe
shape durations were short (more speed emphasis) and activated
when probe shape durations were long (less speed emphasis). This
suggests that pattern 2 represents a neural network more tied to
accuracy rather than to speeded responses. The inferior frontal
gyrus has been specifically linked to manipulation of information
in working memory tasks such as the DIR task, while the precuneus
has been linked to executive control processes in general [30]. The
hippocampus plays a critical role in long-term memory formation
but has also been linked to spatial processing such as the construc-

tion of mental images [31–33].  The negative side of Pattern 2 only
included the Lingual gyrus (BA 18/19) and was activated for the
four shortest probe durations but decreased expression until it was
deactivated at the longest probe duration. Like Pattern 1, this spatial
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attern implies that interplay between different brain regions likely
nderlie the SAT—in this case: frontal/prefrontal, medial-temporal,
nd occipital regions.

Pattern 3 expression means followed the opposite trend from
attern 2 expression means: positive expression at the two  short-
st probe durations, decreasing to negative expression values at
he three longest probe durations (see Fig. 2c). Specifically, the
xpression means for Pattern 2 decreased from +0.15 at the shortest
robe shape duration to −0.05 for the longest probe shape duration
see Fig. 2c). The regions in the positive side of Pattern 3 included
he Superior temporal gyrus (BA 22/39) and the Insula (BA 13),
nd were activated during the two shortest probe durations and
eactivated during the three longest probe shape durations. The
egions in the negative side of Pattern 3 include the Middle frontal
yrus (BA 8/9), the Pre-SMA (BA 6), Superior parietal lobule (BA
), Inferior parietal lobule (BA 40), the Precuneus (BA7), and the
usiform gyrus (BA 19). These regions were deactivated during the
wo shortest probe durations and activated during the three longest
robe shape durations. The Pre-SMA have been specifically linked
o speeded responses in previous fMRI studies of the SAT [6–8], but
n the current study it appears to be linked to accurate rather than
peeded responses. The middle frontal gyrus have been specifically
inked to updating (adding and deleting information) in working

emory tasks such as the N back task and the DIR task, while
he superior parietal lobule and the precuneus have been linked
o executive functions in general [30,34]. The identification of this
patial pattern also implies that interplay between different brain
egions likely underlie the SAT—in this case: frontal/prefrontal,
edial–temporal, parietal, and occipital.
In sum, the current study used the RSM to systematically

ary response speed and address the question: Is the SAT driven
y one or several neural mechanisms? A covariance-based MLM
pproach identified three distributed neural networks that varied
s a function of probe shape duration, indicating that the SAT (when
anipulated in this bottom-up manner) is driven by three neural
echanisms that are highly distributed across brain regions. The

rst neural network included the SMA, the DLPFC, visual associa-
ion cortices, and the inferior parietal lobule. This neural network is
inked to speeded responses because it was more activated during
hort probe durations than during long probe durations. In con-
rast to previous fMRI studies of the SAT, this speeded response
etwork did not include the pre-SMA [6–8], most likely because
ur RSM paradigm minimized top-down influence on speed to

 greater extent than previous paradigms. In other words, while
articipants in previous studies were instructed to vary their per-
ormance in favor of speed or accuracy during specific blocks or
rials, participants had no advance knowledge of response time (i.e.
robe duration) from trial to trial in the current study. The second
eural network is linked to accurate responses, as it was primar-

ly deactivated during short probe durations but activated during
ong probe durations. The inferior frontal gyrus, the precuneus, and
he hippocampus were the main components of this neural net-
ork, and implies that this network is linked to accuracy by actively
anipulating the previously presented shapes and constructing
ental images that can later be stored, or transferred, to long term
emory [31–33].  One component (including the superior tempo-

al gyrus and the insula) of the third neural network was active
uring the short probe shape durations and deactivated during
he long probe shape durations while another component (includ-
ng the pre-SMA and the middle frontal gyrus) of the third neural
etwork was deactivated during the short probe durations and acti-
ated during the long probe shape durations. In other words, one

omponent activated for speeded responses while the other com-
onent deactivated for accurate responses. The latter involved the
re-SMA and the middle frontal gyrus, implying that this portion of
etwork three may  be involved in updating information across tri-

[

[
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als [30]. Taken together, this covariance-based analytic approach to
fMRI data suggest that the SAT is driven by three highly distributed
neural mechanisms that are differentially activated, deactivated, or
both activated and deactivated, as a function of increasing response
speed with the response signal method.
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