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Abstract
As clinical and cognitive neurosciences mature, the need for sophisticated neuroimaging analysis
becomes more apparent. Multivariate analysis techniques have recently received increasing attention
because they have attractive features that cannot be easily realized by the more commonly used
univariate, voxel-wise, techniques. Multivariate approaches evaluate correlation/covariance of
activation across brain regions, rather than proceeding on a voxel-by-voxel basis. Thus, their results
can be more easily interpreted as a signature of neural networks. Univariate approaches, in contrast,
cannot directly address functional connectivity in the brain. Apart from this conceptual difference,
the covariance approach can also result in greater statistical power when compared with univariate
techniques, which are forced to employ very stringent, and often overly conservative, corrections for
voxel-wise multiple comparisons. Multivariate techniques also lend themselves much better to
prospective application of results from the analysis of one dataset to entirely new datasets. We provide
two examples that illustrate different uses of multivariate techniques in cognitive and clinical
neuroscience. We hope this contribution helps facilitate wider dissemination of these techniques in
the research community.
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INTRODUCTION
Brain imaging in the clinical and basic neuroscience has recently paid more attention to
multivariate analytic techniques that aim to uncover the operation of neural networks (for an

Correspondence should be addressed to Christian Habeck, 630 West 168th Street, P&S Box 16, New York, NY, 10032. Email:
ch629@columbia.edu; Telephone: 212-305-0945; Fax: 212-342-1838.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Clin Neurosci Res. Author manuscript; available in PMC 2008 November 1.

Published in final edited form as:
Clin Neurosci Res. 2007 November ; 6(6): 381–390.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161458634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


incomplete review of landmark articles see (1–4)). Despite widespread interest in functional
connectivity and the interaction between different brain areas, it is somewhat surprising that
multivariate approaches have not yet quite enjoyed the success and the widespread usage of
massively univariate techniques. The reasons for this deficiency mainly pertain to the increased
demands in mathematical and conceptual literacy on the user and the absence of a canonical
software package similar to Statistical Parametric Mapping (SPM). More than univariate
techniques, multivariate techniques take into account the total variance structure of the data
and are likely to reflect activity due to the experimental manipulation or disease process of
interest as well as processes not under control of the experimenter. The major sources of
variance might not necessarily break down in manner that lends itself to easy interpretation in
terms of experimental or clinical design variables. The user has to learn to appreciate this when
it happens, not as a reason for giving up and dismissing covariance analysis as useless, but as
an opportunity to understand the data set better and possibly inform the design of an updated
experiment in the future.

Despite these difficulties, it is worth stressing that multivariate techniques have many attractive
features that cannot be easily realized by voxel-wise techniques. In particular, they evaluate
correlation of activation across brain regions, rather than proceeding on a voxel-by-voxel basis.
Thus, their results can be more easily interpreted as a signature of neural networks. Univariate
approaches, on the other hand, cannot directly address functional connectivity in the brain. The
multivariate approach can also result in greater statistical power when compared with
univariate techniques, which are forced to employ very stringent, and often overly
conservative, corrections for voxel-wise multiple comparisons. Multivariate techniques also
lend themselves much better to prospective application of results from the analysis of one
dataset to entirely new datasets, thereby aiding the test of reproducibility of results - a topic
that, likewise, has not received sufficient attention in neuroimaging research so far.

This paper provides a hands-on account of some of these features. Results that were previously
obtained from an experimental study of verbal working memory with fMRI (7) and from a
cross-sectional study of Alzheimer's disease with H2

15O-PET (5) are applied prospectively to
a replication data set. Furthermore, a comparison with a massively univariate analysis is
undertaken. These themes should prove instructive for both novices and veterans of the
multivariate approach.

METHODS
PCA primer

We give a brief mathematical sketch for people unfamiliar with covariance analysis and the
idea of dimensionality reduction. Without employing matrix algebra, we denote the data array
to be analyzed as Y(s, x), with the index s symbolizing tasks and subjects, while x stands for
the voxel location in the brain.

The goal of any multivariate decomposition is to separate task/subject from voxel indices in
the following series:

The data array has been decomposed into a series of terms of diminishing variance contribution.
The terms are made up of task- and subject-dependent subject scaling factors, SSFi, and voxel-
dependent principal component topographies, i.e. brain images, vi. Usually only the first few
(typically < a third of the number of subjects) terms are retained to represent the data. For
instance, if we decide (by some criterion that is not talked about here) that we want to retain
the first two terms, we have two principal component images, v1(x) and v2(x), which are fixed
across subjects and tasks, and two sets of subject scaling factors, SSF1(s) and SSF2(s), that are
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varying across subjects and tasks. These latter two sets of numbers can be used for further
analysis and correlation with clinical and experimental variables. The goal of dimensionality
reduction thus becomes obvious: rather than keeping track of subject- and task-dependent
numbers at every voxel location, we only have two subject- and task-dependent variables to
deal with.

Application to an fMRI study of verbal working memory (7)
The first demonstration of spatial covariance analysis concerns a study of verbal working
memory in basic neuroscience (7). The goal of the study was the identification of a neural
network whose subject expression levels correlated with memory load.

Subject information
Derivation sample—40 healthy young subjects, between the ages of 20 and 35 years (age
= 25.02 ± 3.68 years), participated in an event-related functional magnetic resonance imaging
(efMRI) paradigm of a delayed-match-to-sample (DMS) task. All subjects were right-handed
and carefully screened to insure that they had no history of medical, psychiatric, neurological,
or sleep disorders. All subjects passed substance abuse screening tests. Subjects were
supervised at all times, and polysomnographic monitoring confirmed that they remained awake
during the sleep deprivation period.

Informed consent, as approved by the Internal Review Board of the College of Physicians and
Surgeons of Columbia University, was obtained prior to study participation and after the nature
and risks of the study were explained. Subjects were paid for their participation in the study.

Replication sample—Eighteen healthy elderly subjects (age = 74.13 ± 7.27 years)
underwent the same behavioral and scanning protocol as the young subjects.

Delayed-match-to-sample task
The Delayed-Match-To-Sample task was a variant of the Sternberg task (8,9). The sequence
of trial events was the following (figure 1): first, during the stimulus period of the task, an array
of one, three or six capital letters were presented for three seconds ("stimulus phase"). With
the offset of the visual stimulus, subjects were instructed to focus on the blank screen and hold
the stimulus items in mind for a seven-second retention interval ("retention phase"). Finally,
a probe appeared for three seconds ("probe phase"), which was a lowercase letter centered in
the field of view. In response to the probe, subjects indicated by a button press whether or not
the probe matched a letter in study array. (Left index finger indicated "Yes", right index finger
indicated "No".)

Details about the event-related design of the task have been described in detail elsewhere (6,
7), and are thus not presented again in the current account.

fMRI Acquisition and Processing
Functional images were acquired using a 1.5 Tesla magnetic resonance scanner (General
Electric) retrofitted for echoplanar imaging. A gradient echo EPI sequence [TE=50 ms; TR=3
sec; flip angle = 90°] and a standard quadrature head coil was used to acquire T2* weighted
images with an in-plane resolution of 3.124 mm×3.124 mm (64×64 matrix; 20 cm² field of
view). Based on T1 “scout” images, 8 mm transaxial slices (15–17) were acquired. Following
the fMRI runs, a high (in-plane) resolution T2 image at the same slice locations used in the
fMRI run was acquired using a fast spin echo sequence [TE=105 ms; TR=2500 ms; 256 × 256
matrix; 20 cm² field of view].
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All image processing and analysis was done using the SPM99 program (Wellcome Department
of Cognitive Neurology, London, UK) and other code written in Matlab 5.3 (Mathworks,
Natick, MA). FMRI time series were corrected for order of slice acquisition. All functional
volumes in a given subject were realigned to the first volume from the first run of each study.
The T2 anatomical image was then co-registered to the first functional volume, using the mutual
information co-registration algorithm implemented in SPM99. This co-registered structural
image was then used in determining non-linear spatial normalization (7 × 8 × 7 nonlinear basis
functions) parameters for a transformation into a Talairach standard space defined by the
Montreal Neurological Institute template brain applied with SPM99. These normalization
parameters were then applied to the functional data (using SINC-interpolation to reslice the
images to 2mm × 2mm × 2mm).

First-level data analysis
The fMRI responses to the three separate temporal components of the task, in each of three
set-size conditions, were fit to separate sets of predictor variables (10). This was done in the
same fashion irrespective of the number of items in the stimulus array. A constant intercept
which was convolved with a canonical hemodynamic response waveform (a sum of two gamma
functions, as specified in the SPM99 program) was used as a predictor variable for the fMRI
time series in stimulus and probe phases, whereas a first-order Fourier basis set convolved with
the canonical hemodynamic response function was used during the retention phase (11). The
band-pass filtered (low pass by a Gaussian with a FWHM of 4 sec and a high pass cutoff of
14.5 mHz) fMRI time series at each voxel were regressed onto these predictor variables. A
first order autoregressive autocorrelation model was fit to the residuals to make statistical
inference more robust to the intrinsic temporal autocorrelation structure (12).

At every voxel in the image, user-defined contrasts assessed the amplitudes (normalized
regression coefficients) of the components of the event-related responses that matched the
canonical hemodynamic response waveform. This method of time-series modeling and contrast
estimation at each voxel reduces the number of images to one per subject per condition, and
thus makes a multivariate analysis feasible. To account for gain differences between fMRI
sessions, activation values were normalized by their voxel averages. The resulting images were
smoothed using an isotropic Gaussian kernel (FWHM = 8 mm) and used as the data in the
subsequent analysis.

Multivariate analysis
Ordinal Trend Canonical Variates Analysis (OrT CVA) (4) was performed on the data, using
the first-level contrast maps, i.e. one per subject per memory-load level. This analysis contains
the core step of applying principal components analysis (PCA) to the data matrix that has been
transformed using a matrix representing the experimental design (2,3). OrT CVA was designed
to identify a covariance pattern in MR signal across all voxels, the expression of which
increases as many subjects as possible across memory load. The property of consistent change
of pattern expression across task conditions on a subject-by-subject, rather than just on a subject
mean, basis is called an "ordinal trend". For our inferential statistics, a permutation test was
performed in which the task assignment was broken within-subjects and the complete analysis
was performed on the permuted data set 500 times. The test statistic for the permutation test
was the repeated-measures F-statistic ('rm-F') of the activation pattern's subject expression
across memory-load levels(1/3/6). P-levels can thus be attached to the point-estimate value of
rm-F observed in the unpermuted subject sample.

Activation patterns resulting from multivariate analysis assign different weights to all voxels
included in the analysis, depending on the salience of their covariance contribution. Whether
a voxel weight is reliably different from zero is assessed by a bootstrap estimation procedure
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(13). Denoting the point estimate of a voxel weight as w and the standard deviation resulting
from the bootstrap resampling procedure as sw, we can compute the inverse coefficient of
variation, which should obey a standard normal distribution and can therefore interpreted as a
Z-score, i.e.

Sufficiently small variability of a voxel weight around its point estimate value in the resampling
processes results in a Z value of large magnitude and indicates a reliable contribution to the
covariance pattern. One-tailed p-levels of 0.01, 0.001, for instance, imply Z thresholds of 2.33,
3.09, respectively. It is important to realize that bootstrap resampling is intended to give a
visual depiction of the covariance pattern, similar to voxel-wise t-test in SPM. However, for
the computation of subject-scaling factors the use of the actual point estimate of the covariance
pattern is important, as all regions contribute, even if they were not deemed reliable in the
bootstrap test. The Z-map obtained from the bootstrap test is never used for any purpose other
than visual depiction in a brain image.

Once an activation pattern was identified that systematically increased in expression as a
function of memory load, we examined the correlation between individual subjects' change in
network expression from the lowest (1 letter) to the highest (6 letters) memory load and change
in their scores on the task performance measures. Further, this activation pattern can also be
forward-applied to any other scan, regardless whether it came from the derivation data set or
not, according to the inner product rule. Let ai be the activation pattern to be applied and si
stands for the target scan, both with the voxel index i. The level of expression can then be
obtained as the sum of the products ai × si over all voxel positions.

Univariate analysis
We also performed massively univariate analysis, again using the first-level contrast maps as
before. First we tried to mimic the OrT CVA purpose, by performing a voxel-wise mean-
contrast analysis, i.e. seeing whether in the derivation sample we could find a significant mean
trend in the maintenance data across memory-load levels at the uncorrected p-level of 0.001.
We also performed brain-behavioral correlations in a voxel-wise manner, i.e. we tested which
voxels had activation values that correlated with a behavioral outcome measures. Again, we
chose an uncorrected p-level of 0.001 in order not to make it too difficult for our univariate
analysis to produce results.

RESULTS
Behavioral Performance

We give a brief summary of the behavioral-performance results, although they will not be used
further for the purposes of this report. Outcomes measures were (within-subject) mean reaction
times as well as (within-subject) coefficients of variation (CV) in reaction time.

Reaction times showed a load-dependent increase: RT(1)=847 ± 170 ms, RT(3)=1015 ± 202
ms, RT(6)=1148 ± 227 ms (H–F corrected rm-F2,78=106.18, p<0.0001), variability in reaction
time was biggest for the 3-item array: CV RT(1)=0.305 ± 0.117, CV RT(3)=0.348 ± 0.085 ms,
CV RT(6)=0.299 ± 0.092 (H–F corrected rm-F2,78=4.01, p<0.05). Recognition accuracies
stayed constant across memory load: P(1)=98 ± 3 %, P(3)=97 ± 5 %, P(6)=97 ± 4 % (H–F
corrected rm-F2,78=1.61, p=0.20). The fraction of non-response trials stayed constant and
negligible too, NR(1)=1 ± 4 %, NR(3)=1 ± 2 %, NR(3)=1 ± 2 % (H–F corrected rm-F2,78=0.78,
p=0.39).
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fMRI Data
OrT CVA was applied to all task phases and the results are discussed with interpretations in
detail in the original report (7); for the current review, we concentrated on the maintenance
phase only.

Our analysis produced significant results: a linear combination of the first 2 principal
components produced by OrT CVA displayed ordinal trend properties (permutation test: rm-
F=38.66, p<0.001), suggesting an unambiguous memory load-related neural correlate of
rehearsal. The pattern accounted for 11% of the variance of the raw data (=untransformed by
any design matrix). Brain regions that concomitantly decreased in activation (as ascertained
by the bootstrap test) for the majority of subjects were found mainly in lateral PFC (BA 9,44),
the parietal lobe (BA 7,40), anterior cingulate (BA 32), and cerebellum. Decreasing activation
was found in the occipito-temporal lobe (BA 19,39,22), insula (BA 13) as well as the medial
prefrontal cortex (BA 9,10) and limbic areas (BA 24,33).

We then tested whether individuals' pattern expression correlated with individuals' behavioral
performance or neuropsychological measures recorded outsider the scanner. The correlation
with the memory-load related increase in reaction times was very Neural networks in modest,
albeit statistically significant (R²=0.12, p<0.05) and positive, meaning the more subject
increased their expression of the load-related pattern, the more they slowed down from load
levels 1 to 6. There was also a significant negative correlation with IQ as estimated by the
American version of the National Adult Reading Test (R²=0.15, p<0.05).

Thus, the more subjects increased their expression of the load-related network, the lower their
NARTIQ, and the slower they responded to the probe at test. NARTIQ and the load-related
reaction time increase themselves though were not correlated (R²=0.02, p=0.3816).
Apparently, the covariance pattern obtained during maintenance captures a necessary aspect
of neural processing that, while displaying a relationship with behavioral outcomes, is not
advantageous for task performance. Greater utilization of the covariance pattern did not result
in better, but worse performance. Also, subjects who employed the covariance pattern more
had lower NARTIQ. It may be that better-performing subjects change their strategies (hence
changing the constellation of activated regions) with increasing memory loads. Readers who
are interested in a more detailed discussion of the results of all task phases are referred to the
original article (7).

Forward application to elderly replication sample
Forward application of the covariance pattern to the elderly replication sample preserves the
ordinal trend (rm-F=24.52, p<0.0001). Apparently, the elderly subjects also necessarily
employ the areas for memory-load related rehearsal in the same fashion as the young subjects.
Correlations with NARTIQ Neural and reaction times were not significant. The pattern
accounted for 8% of the variance of the raw scans.

For further inspection, we subjected the raw scans of the older subjects to a principal
components analysis (without any prior transformation by a design matrix), and forward-apply
the load-related covariance pattern obtained from the young subjects to this new set of principal
components. The resulting loadings show that the load-related patterns mostly strong loads
onto principal components 1–4, with the biggest loading on component 2. This and the lower
total variance-contribution of 8% indicates that the covariance pattern underlying load-related
maintenance in the young subjects is still operational in the elderly, but that other subject-
related variance components are superimposed, hampering the clean identification of the load-
related effect. After all, there were 40 young subjects in the derivation sample, but the
construction of the load-related pattern only required the inclusion of the first two principal
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components, indicating very good concentration of task-related variance, but this is not the
case in the elderly.

This exercise illustrates the convenient feature of forward application in spatial covariance
analysis: we could still detect the load-related pattern as operating in the elderly subjects, even
though the variance accounted for was relatively low. Since the inferential judgment only
concerns the subject-expression values resulting from the forward application, in our case a
permutation test with the repeated-measures F-score as the test statistic, the variance accounted
for by the forward-applied pattern itself is not important. This allows the verification that a
pattern is still present through the correlation with experimental and clinical variables, while
identification of the pattern in the new data set would be impossible on account of diminished
variance contributions. Specifically, in the replication sample of elderly subjects the load-
related activation patterns identified in the young is still present, but subject outliers would
make its identification in a fresh analysis impossible.

Comparison with univariate analysis
The last section demonstrates one convenient feature of spatial covariance analysis, but it did
not tell us how spatial covariance analysis directly compares to univariate analysis. The
practical and worthwhile question many researchers have in mind is whether both techniques
would highlight the same brain regions. We did not seek the easy way out and resort to the
mathematical disclaimer that both methods analyze different aspects of the neural signal –
univariate methods strictly look at first-order moments, whereas covariance techniques look
at second-order moments and are therefore not beholden to the requirement of identical brain
maps.

We tried to mirror the results of the OrT CVA with the corresponding univariate analyses. We
first searched for voxels that showed a significant mean trend across memory-load levels. Then
we used the activation differences between memory-load levels 6 and 1 and searched for voxels
that showed a correlation with (1) the corresponding reaction time difference, (2) NARTIQ.
These analyses all used uncorrected p-levels of 0.001.

The results do not lend themselves to a parsimonious interpretation in the way that the
multivariate analysis did. The mean-trend analysis across subjects and task conditions revealed
a subset of areas of the ordinal-trend covariance patterns that also have good face-validity on
the basis of the extant literature (14–16), particularly right dorsolateral prefrontal cortex (BA
9), Broca's area, left BA 44, and left inferior parietal cortex (BA 40) have been shown to
increase their activation during retention with increasing memory load, whereas medial
prefrontal cortex (BA 10) has been shown to de-activate with increasing task difficulty in a
number of tasks, hinting at a possible shifting of resources (17). The univariate and multivariate
correlates of increasing memory load are thus consistent with one another, keeping in mind
that the univariate analysis fails to identify a number of areas that surfaced in the multivariate
analysis.

The areas exhibiting mean-trend activation changes across memory load unfortunately did
not correlate with any of the behavioral variables the multivariate analysis identified – as a by-
product without using the behavioral information in the first place. Worse, no pair of the three
univariate analyses showed any overlapping areas; every analysis produced its own unique
parametric brain map.

In summary we can thus say that, although there might not be any agreement yet as to a "gold
standard" for the results of complex experimental paradigms of higher cognition, we could
observe some consistencies between the areas highlighted in the OrT CVA covariance patterns
and the corresponding univariate mean-contrast analysis. However, the additional univariate
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analyses that probed the voxel-wise correlation between activation and behavioral variables
resulted in a proliferation of different sets of areas depending on the dependent variable used
in the univariate correlational analysis. In the OrT CVA approach, on the other hand, utilizing
correlation between different voxels helps in pinpointing a unitary set of co-activating areas
whose aggregate behavior can account for both design-related monotonic changes across task-
conditions as well as behavioral variables. Univariate voxel-wise analyses apparently destroy
this unity.

Application to an H215O PET study of Alzheimer's disease (5)
Our second example of spatial covariance concerns resting PET scans capturing regional
cerebral blood flow (rCBF); no design matrix had to be applied to aid the identification of any
task-related effects in the data. We used principal components analysis purely in a cross-
sectional sense to discriminate between patient and healthy-control groups, thereby identifying
a disease-related covariance pattern.

Subject information
Seventeen subjects with mild Alzheimer's disease (AD; 11 male and 6 female), 23 with minimal
to mild cognitive impairment but no dementia (CI) (15 male and 8 female) and 16 healthy
elderly subjects (8 male and 8 female) met criteria for entry into the study. AD and minimal
to mild cognitively impaired (MMCI) subjects were recruited from outpatients who presented
to the Alzheimer’s Disease Research Center at Columbia University.

AD subjects met DSM-III-R criteria for dementia and NINCDS-ADRDA criteria for probable
AD (18). Only AD subjects rated as Clinical Dementia Rating (CDR)=1 (19) were used in this
study. Other causes of dementia were excluded with appropriate laboratory tests.

The MMCI subjects were participating in a longitudinal study, the details of which are
described elsewhere (20,21). Inclusion criteria were designed to recruit subjects with diagnoses
ranging from "nondemented with minimal cognitive impairment" (CDR of 0) or "questionably
demented" (CDR of .5) (19). These inclusion criteria were more liberal than in other studies
of mild cognitive impairment (22–24) because we intended to enroll a relatively broad group
of subjects who presented with cognitive complaints and fell between the "normal" and
"dementia" categories, whose cognitive deficits were ranging from minimal to mild severity.

Both AD patients and the MMCI subjects underwent extensive neuropsychological evaluation.
For more detailed information about this and the AD and MMCI criteria, readers are referred
to the original publication (5). Potential healthy elderly subjects were carefully screened to
exclude those with dementia or cognitive impairment, as well as other neurological,
psychiatric, or severe medical disorders.

PET Acquisition and Processing
H2

15O resting PET scans were acquired. A bolus of 30 mCi H2
15O was injected intravenously.

Scan acquisition was triggered by the detection of a threshold level of true counts from the
camera. Employing a Siemens EXACT 47 PET camera (Knoxville, TN, USA), two 30-s scan
frames were acquired in two-dimensional mode, which were subsequently averaged to yield a
single image per subject. After measured attenuation correction (15-min transmission scan)
and reconstruction by filtered back projection, image resolution was 4.6 mm full width at half
maximum (FWHM). Arterial blood sampling was not conducted; thus, only non-quantitative
count images (and not absolute rCBF measures) could be obtained, subsequently leading to
the discovery of relative, and not absolute, flow changes as a function of disease status in the
group-level analysis.
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The image of each subject was spatially transformed to the PET Montreal Neurological Institute
brain space template included with SPM99 program (Wellcome Department of Neurology,
London, UK). The spatially transformed images were smoothed with an isotropic Gaussian
kernel (FWHM = 12 mm).

Multivariate data analysis
To identify network-correlates of early dementia, we employed an analysis technique that
originated from the Scaled Subprofile Model (SSM), a covariance-analysis method (1,25) that
has been used previously in resting imaging studies of normal aging and a variety of
neurological diseases (26–29). SSM involved a principal components analysis of the scans
from the control and AD groups, and captured the major sources of between- and within-group
variation, producing a series of principal components (PCs).

To identify a covariance pattern that best discriminated AD patients from controls, each
subject’s expression (SSF) of a selected set of PCs was entered into a linear regression model
as the independent variable. Group membership (AD versus controls) was the dependent
variable. This regression results in a linear combination of the PCs that best discriminated the
2 groups. This linear combination of the PCs can itself be conceived of as signifying a ‘pattern’
or ‘network’. We used Akaike’s information criterion (30) to determine how many PCs should
be included in the regression in order to achieve optimal bias-variance trade-off. The set of
PCs that yielded the lowest value in Akaike’s information criterion was selected the predictor
set in the regression model. We restricted the set of PCs to a cumulative one out of the first
few PCs, explaining at least 75% of the variance.

For the estimation of the robust regional weights in the covariance pattern, we again reported
to the bootstrap resampling procedure (13) explained earlier, performing our analysis several
hundred times on the resampled data to produce a Z-map.

Forward application to MMCI subjects
The AD–related covariance pattern obtained in the cross-section group discrimination between
AD subjects and controls was forward–applied to the MMCI group. Resulting SSFs were
correlated with clinical outcome measures for additional validation.

Blinded clinical reads and univariate analysis
AD–control group discrimination was first attempted via expert clinical reading of PET scans
by a dementia neurology specialist with 10 years of experience in brain SPECT and PET
evaluation who was blinded to all clinical information. A dichotomous rating for the presence
or absence of the classic AD-related temporoparietal-frontal hypometabolism pattern with
sparing of cerebellum, basal ganglia and sensorimotor cortex was generated. This was followed
by a rating of high and low levels of confidence in the presence of the normal or AD pattern.

For the univariate analyses, the PET images were intensity-normalized by their average
perirolandic count values. We used the average rCBF values of a region of interest
corresponding to primary sensorimotor cortex as the intensity normalization factor because
this region is typically spared in AD. To effect this, a single perirolandic region of interest,
constant for all subjects, was defined on the MNI template brain (using MEDX; Sensor
Systems, Inc, Sterling, VA). In each subject, the average PET count value in this region of
interest was determined in the spatially normalized PET image (before spatial smoothing). This
value was used to divide the image values of the PET image of that subject. We reasoned that
intensity normalization should reduce inter-subject scaling noise without “washing out”
spatially coherent effects of AD pathology. After normalization, voxel-wise t statistics for
between group (AD vs. controls, AD vs. CI and CI vs. controls) comparisons were computed

Habeck and Stern Page 9

Clin Neurosci Res. Author manuscript; available in PMC 2008 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



using procedures in SPM99. The false positive rate was controlled at p = 0.05 per map via
Bonferroni correction for the number of resolution elements (RESELS) across which
regressions were calculated. Comparisons on a cluster level were also performed using height
thresholds corresponding to uncorrected P-values of 0.001.

RESULTS
Group discrimination

Our covariance analysis successfully identified a disease-related covariance pattern in the first
4 PCs, whereas both clinical reading attempts and univariate analysis failed.

Although the pattern accounted for only 6% of the variance on the data, indicating unfavorable
signal-to-noise characteristics, it could discriminate between the groups with 76% sensitivity
and 81% specificity. Positive loadings (indicating concomitant increased flow) were noted in
bilateral insula, lingual gyri and cuneus; left fusiform and superior occipital gyri; and right
parahippocampal gyrus and pulvinar. Negative loadings (indicating concomitant decreased
flow) were noted in bilateral inferior parietal lobule and cingulate; and left middle frontal,
inferior frontal, precentral and supramarginal gyri (cf figure 4 and check original publication
(5)).

Forward application to cognitively impaired subjects
We next applied the disease-related pattern to the group of minimally to mildly cognitively
impaired people for additional validation. Our expectation was that subject expression in this
replication sample should correlate with clinical and neuropsychological performance
variables with the correct directionality: people exhibiting worse performance should express
the AD-pattern to a higher degree. Expression of the pattern was higher in the 9 CI subjects
with CDR = 0.5 as compared to the 14 CI subjects with CDR = 0 (p<0.01; also cf figure 4).
Thus, CI subjects with greater functional deficits expressed the pattern more like the AD group,
while those CI subjects without functional deficits expressed the pattern more like the healthy
elderly control group. Because of slight age differences between the two CI groups, we
controlled for age in a supplementary analysis: the results were unchanged.

Next we checked correlation of pattern expression and neuropsychological performance in the
MMCI group: greater pattern expression did account for worse performance on the Selective
Reminding Test (R²=0.25, p<0.05) and the modified Mini Mental Status Examination
(R²=0.20, p<0.05) (uncorrected for 8 computations).

Because sufficient follow-up information was available from the time the PET scans were
performed, we also investigated whether baseline expression of the AD-related pattern could
predict disease progression in the MMCI subjects (31). We first investigated whether the
baseline expression of the AD-related CBF pattern in the MMCI subjects could predict their
conversion to AD status (CDR=1). For this we conducted a logistic regression with the binary
outcome measure of dementia status (1/0) as the dependent variable and baseline pattern
expression as the independent variable. 6/23 of the MMCI subjects progressed to dementia.
We performed a median split of the baseline expression levels of the AD-related CBF pattern,
dichotomizing the independent variable. The median for the subject expression of the AD-
related pattern was 23.40; this value corresponds to a sensitivity of 76% and a specificity of
81% in the AD-Normal discrimination that produced the covariance pattern originally. We
conducted a logistic regression with this dichotomized independent variable and obtained a
regression weight of β=1.727±1.198 (p=0.15), translating to an odds ratio of 5.625, meaning
a more than five-fold increased risk of becoming demented in subjects with the higher baseline
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expression of the AD-related pattern. While this logistic regression did not reach statistical
significance, it suggests an effect size that will clearly be detectable with a higher sample size.

We also investigated whether the subject expression of the AD-related covariance pattern at
baseline had any predictive power with regard to subsequent functional and neuropsychological
decline in the 23 MMCI patients. Follow-up neuropsychological evaluation of these subjects
was done roughly every 6 months from 1.98 to 7.07 years. The relation between baseline SSF
and cognitive decline was evaluated with a generalized equation estimation (GEE) model
(32). This statistical method takes into account the multiple visits per subject and the fact that
the characteristics of a single individual over time are likely to be correlated with one another.
The repeated measures for each subject are treated as a cluster. A second advantage of GEE is
that it takes into account the status or changing value of each covariate at each visit.

We chose the Selective Reminding Test (SRT) Delayed Recall score (33) as the dependent
variable. The GEE model included two independent variables, time (test interval measured in
years) and the baseline expression of the covariance pattern, as well as the interaction term of
time by subject baseline expression. Decreasing SRT scores indicate increasing disease
severity, prompting the expectation of a negative regression weight of the years of follow-up
(as time goes on, the disease becomes worse), and possibly a negative regression weight of
initial baseline expression of the AD-related pattern (the higher the baseline expression, the
worse the disease). The interaction term tests for differential change over time as a function of
the initial expression of the AD-related covariance pattern. We also hypothesized a negative
regression weight of the interaction term between years of follow-up and baseline pattern
expression: i.e. as time goes on, people with higher baseline expression of the pattern will show
a more rapid decrease in the SRT score.

The results of the GEE analysis were as follows. The SRT Delayed Recall score improved
significantly over time, β=1.685±0.421, p<0.0001, which is a bit surprising. Apparently, as a
group, the MMCI group enjoyed a learning effect with repeated testing. However, there was
a significant interaction between time and baseline expression of the AD-related CBF pattern
with a negative regression weight β=−0.071±0.019, p<0.0001. Per unit of increased baseline
expression of the AD-related CBF pattern, MMCI subjects improved 0.071 points less on the
SRT Delayed Recall test.

Overall, these results of the forward application to the MMCI replication sample provide good
support for the use of the AD-related CBF pattern as a prognostic and diagnostic tool (31).

DISCUSSION
We close our report with a discussion of our results and connect it to a few general comments
and observations, some of which have emerged from our extensive experience with univariate
and multivariate analytic techniques. Covariance techniques have been around for some time
and have been applied with good success now for more than a decade (see for instance (1,2,
26,34)); but they only recently have attracted increasing attention in the neuroscience
community. We hope our article can contribute to making them more palatable to the
community at large and re-iterate their attractive feature form our point of view.

We presented two examples that utilized covariance analysis in slightly different ways: one
was a cognitive-neuroscience fMRI paradigm employing a standard DMS task to investigate
verbal working memory (7), the second was a clinical PET study of Alzheimer's in a cross-
sectional comparison (5). In both cases valuable insights could be supplied that surpassed the
results of mass-univariate analyses. For our first example, covariance provided a parsimonious
account of the neural correlates of necessary memory-load related rehearsal, and showed how
it related to behavioral performance and NARTIQ. The parallel univariate analyses were not

Habeck and Stern Page 11

Clin Neurosci Res. Author manuscript; available in PMC 2008 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



successful in accounting for task-and subject effects simultaneously; instead every dependent
variable produced its own set of non-overlapping brain images. This is clearly unsatisfactory
for good model- and theory-building, and presents the analyst with a plethora of choices after
the fact.

In the example of the clinical PET study of Alzheimer's disease, no results were produced by
the univariate analysis at all, hinting at better sensitivity of multivariate compared with
univariate techniques. Obviously, which of the two is better applicable to the data set under
consideration depends on the effect of interest itself. One can conceive of a continuum with
best suitability for both types of analytic techniques at either end: for truly focal effects in the
data, involving only one circumscribed brain region, univariate techniques might indeed be
more powerful than multivariate ones which risk committing a type-II error on account of the
effect's diminished variance contribution. For a truly distributed effect, involving subtle signal
differences that are widely dispersed in the brain, the multivariate approach is likely to be
superior, since stringent false-positive corrections (like Bonferroni etc.) risk "correcting away"
the true positives.

But even in the gray zone between the two ends of the spectrum where clear-cut superiority of
one approach over the other is a priori plausible, we have found consistently that a multivariate
analysis provides further benefits. The data sets presented in this report are representative of
the to-be-expected quality of brain-scan data in terms of signal-to-noise characteristics and
experimental control. Particularly in clinical studies, these parameters are not up to the
experimenter's choice anyway. In absence of any special knowledge that posits preferential
treatments for a selected set of brain areas, we have found that multivariate approaches
consistently provide more information than univariate approaches. Even their failure is usually
instructive and performs a better job at quality control than their univariate cousins. This virtue
of utilizing the brain-wide activation signal in a more complete way than univariate analysis
occasionally presents challenges to the novice and delivers a break-down of variance
components that is not easily interpretable in terms of the theory that informed the experimental
design in the first place.

We would encourage the researcher to persist nevertheless, and venture that a complete account
of the data with undesirable results is still superior to palatable results that were obtained from
a highly selective analysis process that only focused on data from a few brain regions, while
neglecting the remainder information gathered. In this sense, we find the terms "exploratory"
and ";hypothesis-led" misleading. In practice, every neuroimaging analysis will be somewhere
in between, i.e. trying to validate prior notions about brain functions, while still analyzing the
acquired data above and beyond these notions with the goal of finding fresh insights that can
inform the model-building process.

After making this general remark, we also want to defend multivariate approaches against the
oft-leveled charge that they are purely exploratory, or that they "will always find something
no matter what" (actual quote of a reviewer). To our knowledge, all recent multivariate
techniques, whether based on principal or independent components analysis, have clearly
formulated inferential frameworks. Stringent methods exist to ascertain whether their findings
came about as a result of type-I errors or not. Some of the inferential frameworks employ non-
parametric resampling algorithms, which are occasionally regarded by some researchers as a
matter of bad taste, but we find such disdain illogical. Modern computers are powerful enough
to offer very efficient and fast computation of p-levels for any test statistic of choice. In this
light, the insistence on closed-formula solutions, which are dependent on untested assumptions
about distribution characteristics of the data, does not make sense.
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A further defense against the charges of unprincipled "data dredging" is the convenient feature
of forward application: both examples in this report used this feature extensively for further
validation. Clearly, with multivariate techniques one is not confined to just rely on p-levels
that come out of the inferential framework, but can go further and put these to the test in
replication experiments; this is possible in a manner that is much less dependent on the details
of experimental design and drawing of regions-of-interests than for univariate analyses.

Multivariate analytic techniques are thus a worthy pursuit as this report (and others in this
special issue) has argued. Much work remains to be done to facilitate dissemination in the
community at large: a first step would be easier-to-use software packages, didactic reports,
tutorials and conference workshops. It is our contention that the efforts to bring this about will
benefit neuroscience in the long term.
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Figure 1.
Schematic sketch of delayed-match-to-sample paradigm of the Sternberg variant.
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Figure 2.
Summary of the characteristics relating to subject expression across memory-load levels (1/3/6/
letters) and topographic composition of the load-related covariance pattern, isolated from the
maintenance phase of the DMS task in young people. Left: subject expression of the pattern
in the elderly replication sample. Monotonically increasing expression is apparent on a subject-
by-subject basis (rm-F=24.52, p<0.0001). Middle: subject expression of the covariance pattern
in the original derivation sample of young subjects. The ordinal trend is also clearly visible
here (rm-F=38.66, p<0.001). Right: Surface rendering of brain regions in the activation pattern,
as ascertained by the bootstrap resampling procedure (p<0.01). Red color denotes brain regions
whose activation associated with the pattern increases as a function of memory load; green
color denotes regions whose activation decreases.
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Figure 3.
Voxel-wise univariate results from the data of the maintenance phase of the derivation sample
of young subjects, conducted in parallel to the multivariate findings. Left: mean trend of load-
related activation across memory load. Middle: correlation of the 6–1 differences in activation
with NARTIQ. In both maps, red color denotes positive values and green color denotes negative
values. Right: correlation of 6-1 difference in activation with corresponding difference in RT,
only a negative correlation was found. All maps were thresholded at uncorrected p<0.001.
There is no overlap between any two maps.
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Figure 4.
Summary of the characteristics relating to subject expression and topographic composition of
the AD-related covariance pattern, obtained from the cross-sectional comparison of AD
subjects and healthy controls. Left: subject expression of the pattern in all subjects, both from
the replication as well as derivation samples. Middle: subject expression of the covariance
pattern in the original derivation sample of young subjects. One can discern a mean increase
in subject expression across disease severity, from healthy controls (CONTROLS), over
minimally cognitively impaired (CI: CDR=0), mildly cognitively impaired (CI: CDR=0.5), to
AD (CDR=1). Right: Surface rendering of brain regions in the covariance pattern, as
ascertained by the bootstrap resampling procedure (p<0.01). Red color denotes brain regions
whose associated relative rCBF is increased as a function of disease status; green color denotes
regions whose relative rCBF is decreased.

Habeck and Stern Page 18

Clin Neurosci Res. Author manuscript; available in PMC 2008 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


