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We performed univariate and multivariate discriminant analysis of
FDG–PET scans to evaluate their ability to identify Alzheimer's
disease (AD). FDG–PET scans came from two sources: 17 AD patients
and 33 healthy elderly controls were scanned at the University of
Michigan; 102 early AD patients and 20 healthy elderly controls were
scanned at the Technical University of Munich, Germany. We selected a
derivation sample of 20 AD patients and 20 healthy controls matched on
age with the remainder divided into 5 replication samples. The
sensitivity and specificity of diagnostic AD-markers and threshold
criteria from the derivation sample were determined in the replication
samples. Although both univariate and multivariate analyses produced
markers with high classification accuracy in the derivation sample, the
multivariate marker's diagnostic performance in the replication samples
was superior. Further, supplementary analysis showed its performance
to be unaffected by the loss of key regions. Multivariate measures of AD
utilize the covariance structure of imaging data and provide comple-
mentary, clinically relevant information that may be superior to uni-
variate measures.
Published by Elsevier Inc.

Introduction

The prevalence of Alzheimer’s disease (AD) is increasing ra-
pidly, and a large-scale research effort is devoted to understanding,
characterizing and curing the disease to avoid its financial and social
burden as the population ages. One theme of this research has been to
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identify diagnostic biomarkers through neuroimaging that enable
early detection of the disease, even before the full clinical symptoms
of AD have become manifest. Neuroimaging has identified a wide
array of biomarkers that can differentiate AD patients from healthy
control subjects such as volume loss measured with morphometry
(e.g., Bozzali et al., 2006; Chetelat et al., 2005; Teipel et al., 2005;
Thomann et al., 2006), cerebral blood flow (e.g., Kasama et al.,
2005; Nakano et al., 2006; Trollor et al., 2005), glucose metabolism
(Burdette et al., 1996; Chetelat et al., 2003b; Foster et al., 2007;
Herholz et al., 2002; Higdon et al., 2004) and beta-amyloid depo-
sition (e.g., Engler et al., 2006; Nichols et al., 2006). Often these
analyses target specific locations (entorhinal cortex, hippocampus,
prefrontal cortex, amygdala, etc.) that are known to be implicated in
the natural history of the disease. If proceeding on a brain-wide level,
researchers usually employ univariate analysis that voxel-by-voxel
contrasts the particular imaging signal of choice between healthy
controls and AD patients.

In this article, we report on the derivation and prospective ap-
plication of multivariate biomarkers obtained from two different
clinical populations, scanned with 18F-fluorodeoxyglucose positron
emission tomography (FDG–PET). Multivariate analytic techniques
aimed at identifying diagnostic neural networks have been applied
less frequently than univariate ones, particularly in Alzheimer’s
disease. There have been recent successful applications of neural
network techniques using back propagation (Warkentin et al., 2004)
and Bayesian non-linear analysis of structural MRI data from MCI
subjects (Davatzikos et al., 2006). Further, a default-mode resting
network, identified with independent components analysis from
normal elders, has been shown to be abnormal in AD subjects
(Greicius et al., 2004) and could therefore serve as a sensitive
biomarker. Apart from these analyses, there recently has been work
from our (Devanand et al., 2006; Scarmeas et al., 2004) and other
laboratories (Huang et al., 2007; Kerrouche et al., 2006) utilizing
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principal components analysis (PCA) for the detection of dementia.
Our aim was to build on our and other groups’ successful usage of
PCA for the detection of neurodegenerative diseases. PCA has a
long history with successful replications and prospective applica-
tions of diagnostic PET patterns in Parkinson’s disease (e.g., Carbon
et al., 2004; Eidelberg et al., 1991; Eidelberg et al., 1997; Trost et al.,
2002; Trost et al., 2006), and even in normal aging (e.g., Alexander
et al., 2006; Brickman et al., 2007; Eidelberg et al., 1997; Moeller
et al., 1996).

We extended the PCA -approach to the FDG–PET data from two
clinical populations and analyzed the spatially correlated metabo-
lism as a function of disease status. Despite the absence of precise
mechanistic knowledge about spatially correlated changes brought
about by Alzheimer’s disease, we reason that such correlation of
the imaging signal is plausible when considering spatially spread-
ing disease pathology that induces regionally correlated changes in
blood flow or metabolism. For instance, deposition of neurofibril-
lary plaques and tangles spread in a pattern that is the reverse of
cortical myelination (Braak et al., 1998; Delieu and Keady, 1996;
Pearson, 1996). Thus, any accompanying reduction in glucose level
can be expected to manifest a spreading spatial pattern as well. This
means that, even when there is no spatial correlation induced by any
form of long-range connectivity that ‘communicates’ pathologic
changes between distant regions, spatial covariance might be able to
identify covariance patterns that can signal the disease onset. Fur-
ther, even a relatively isolated pathologic change can induce a pattern
of metabolic change across a larger area.

We previously performed a cross-sectional comparison of nor-
mal healthy controls and subjects with early AD (Scarmeas et al.,
2004) and using single photon emission computed tomography
(SPECT) identified correlated changes in blood flow as a function
of disease status, while univariate analysis and visual interpretation
both failed to detect any differences as a function of disease status.
Furthermore, the AD-related covariance pattern that we obtained
from contrasting early AD subjects and healthy controls passed
several independent plausibility tests: (1) when prospectively ap-
plied to an independent sample of MCI subjects, the magnitude of
the pattern expression correlated with the correct directionality
with several neuropsychological variables, i.e. the more the MCI
subjects expressed the AD-related patterns, the worse they per-
formed. (2) Further, subject expression of the AD-pattern in the
MCI subjects could also predict future decline in subjects’ neuro-
psychological scores (Devanand et al., 2006): the more subjects
expressed theAD-related pattern at baseline, the faster they declined.
These findings give a brief glimpse of the potential of multivariate
analytic approaches.

In addition to conceptual and neuroscientific plausibility, multi-
variate analyses also have enhanced statistical power to detect non-
focal changes in imaging signal. This is intuitively obvious when
keeping in mind that a bran scan consists of the order of 104 to 105

image elements (voxels). Performing a multivariate analysis is akin
to finding the major source of variance of the data in this high-
dimensional space along which there is a significant group- or
condition-related difference in expression of the brain scans. If
such major source of variance is not identified with a PCA first, a
voxel-by-voxel comparison of the group- or condition-related dif-
ference might risk losing significance, since now many indepen-
dent comparisons have to be performed leading to a multiplication
of the p-level by the number of voxels, which is a very stringent
threshold that might result in ‘correcting away’ true effects of
interest in the data.
Methods

Subject and image acquisition

FDG–PET scans were obtained from two scanning sites: the
Technical University of Munich and the University of Michigan.
Details of subject recruitment and image preprocessing analysis
will be given for both centers separately.

Munich sample
Patients with AD and healthy controls without memory com-

plaints (=spouses of AD patients), who where all examined between
2001 and 2003 at the centre for cognitive disorders of the technical
university of Munich were identified in an electronic database. All
study participants were administered with an IV bolus of 370 mBq
18F-FDG at rest 30 min prior to PET scanning. Scans were per-
formed under standard resting conditions with the patient’s eyes
closed in dimmed ambient light. Exactly the same scanning protocol
was applied to every subject. Imaging was performed on a Siemens
ECAT/EXACT HR + PET scanner (CTI, Knoxville, TN). A se-
quence of three frames (10 min, 5 min, and 5 min) was started [3-
dimensional (3D) mode, total axial field of view of 15.52 cm] and
later combined into a single frame. Patients were positioned with the
canthomeatal line parallel to the detector rings to obtain transaxial
images parallel to the intercommissural line. Attenuation correction
was performed using a transmission scan. Data were corrected for
random, dead time and scatter, and images were reconstructed
by filtered back-projection with a Hamm filter (cut-off frequency
0.5 cycles/projection element) resulting in 63 slices in a 128×128
pixel matrix (pixel size 2.06 mm) and interplane separation of
2.425 mm. The clinical diagnosis was established by an experienced
psychiatrist according to National Institute of Neurological and
Communicative Diseases and Stroke/Alzheimer’s Disease and Re-
lated Disorders Association (NINCDS-ADRDA) criteria for AD
(McKhann et al., 1984) and revised Mayo criteria for MCI (Winblad
et al., 2004). The neuropsychological evaluation was based on the
Consortium to Establish a Registry for Alzheimer’s Disease neu-
ropsychological assessment battery (CERAD-NAB) (Berg et al.,
1988), which incorporates the Mini-Mental-State Examination (Fol-
stein et al., 1975). Overall severity of dementia was rated with the
Clinical Dementia Rating scale (CDR) (Rubin et al., 1993). Only
patients with questionable (CDR=0.5) or mild dementia (CDR=1)
were included. The healthy controls underwent functional brain
imaging according to the same routine protocol. Patients were ex-
cluded who fulfilled diagnostic criteria of neurodegenerative causes
for dementia other than AD, such as Lewy body disease (McKeith
et al., 1996), frontotemporal lobar degeneration (Neary et al., 1998),
or Parkinson’s disease (Hughes et al., 1992). Patients were also
excluded if they had significant cerebrovascular lesions on their
structural brain scans, relevant functional psychiatric disorders such
as major depression, or a history of traumatic brain injury, stroke,
cerebral tumors, epilepsy, or alcohol abuse. All consecutive indi-
viduals who fulfilled the inclusion and exclusion criteria were en-
tered into the study. Written informed consent forms were available
for all patients. The ethics committee of the technical university of
Munich approved of the scanning of the healthy control group.

All study participants were administered with an IV bolus of
370 mBq 18F-FDG at rest 30 min prior to PET scanning. Scans
were performed under standard resting conditions, with the partici-
pants’ eyes closed in dimmed ambient light on a Siemens 951 R/31
scanner (CTI). Exactly the same scanning protocol was applied in



Table 2
Descriptive statistics of all subject groups

Michigan AD Michigan HE Munich AD Munich HE

N 17 33 102 25
Age, years 65.5±13.9 67.5±7.8 69.3±9.9 58.2±10.8
MMSE 16.0±6.3 N/A 22.8±3.2 N/A

MMSE was not available in all subjects.
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every case. A sequence of three 10-min frames was acquired and
later combined into a single frame. The acquisitions were performed
in 2D mode with a total axial field of view of 10.5 cm and no
interplane dead space. Patients were positioned with the cantho-
meatal line parallel to the detector rings to obtain transaxial images
parallel to the intercommissural line. Attenuation correction was
performed using a transmission scan from the end of the session.
Corrections for random, dead time, and scatter were performed after
data acquirement, and images were reconstructed by filtered back-
projection with a Hamm filter (cut-off frequency 0.5 cycles/projec-
tion element), resulting in 47 slices in a 128×128 pixel matrix (pixel
size 2.0 mm) and interplane separation of 3.447 mm (Drzezga et al.,
2005).

Michigan sample
Patients received an FDG–PET study on the ECAT EXACT

scanner at the University of Michigan between December 1993 and
February 2001 and subsequently received a postmortem examina-
tion documenting a histopathological diagnosis of AD, uncompli-
cated by other pathology such as stroke or significant numbers of
cortical Lewy bodies. Only individuals with retrievable parametric
PET images that included most of the brain in the field of view
were considered. In distinction to other similar series from this
center (Foster et al., 2007; Higdon et al., 2004), only studies from a
single scanner comparable to that used in Munich were included. A
total of 17 individuals (10 men and 7 women; mean±SD age at
scan, 65.5±13.9 years; age range, 33–82 years) were identified
who had been evaluated by dementia-specialist neurologists at the
Michigan Alzheimer’s Disease Research Center. During their cli-
nical evaluation, NINCDS-ADRDA criteria were met in 16 for
probable AD in one possible AD. MMSE score at the time of scan is
available for 13 of these individuals (mean±SD, 16.0±6.3; range,
2–24). (These individuals with MMSE scores were 8 men and 5
women; mean± age at scan 67.3±13.7; range, 33–82.) All met NIA-
Reagan neuropathological criteria for either high (12 cases) or in-
termediate (5 cases) likelihood of AD (NIA and Reagan Institute
Working Group, 1997). Cortical Lewy bodies meeting neuropatho-
logical criteria for dementia with Lewy bodies also were present in 6
of the AD subjects (McKeith et al., 1996). Although not evident on
structural brain imaging or clinical examination when they were
scanned, 5 patients had vascular pathology at autopsy. A large, acute
cerebral infarct caused the death of two subjects and a massive acute
intracerebral hemorrhage in another. Two additional patients had
small lacunar infarcts of indeterminate age. For comparison, we used
data from 33 normal individuals (19men and 14women; mean± age
at scan, 68.5±8.2 years; range, 58–91 years) who were scanned
Table 1
Scanner parameters for Munich (left column) and Michigan (right column)

Characteristic Siemens/CTI
ECAT/Exact HR+

Siemens/CTI
ECAT/Exact 47

Detector Bismuth germanium oxide
Mode/image planes 3D/63 2D or 3D/47
Acquisition matrix 128×128
XY pixel dimension (mm) 2.0 1.91
In-plane×axial

resolution (mm)
4.4×4.1 8.0×5.0

Slice thickness (mm) 2.46 3.375
File format ECAT 7 CTI-6 or 7
contemporaneously and had served as control subjects for a several
other research studies.

Subjects were scanned using an ECAT EXACT 47-image plane
PET scanner with bismuth germanium oxide detectors (CTI). A
transmission scan with a 68Ga/68Ge pin source was obtained for
attenuation correction. Emission scans were acquired in 2D or 3D
mode. The scanner has a total axial field of view of 16.2 cm and no
interplane dead space. PETstudies were performed with the subjects
at rest with eyes closed and ears unplugged, comfortably lying in a
darkened and quiet room. All subjects fasted for at least 4 h before
PETscanning and had a normal blood glucose level at the time of the
scan. Thirty minutes after injection of approximately 370 MBq 18F-
FDG, a sequence of three 10-min frames was acquired and later
summed into a single frame. Images were reconstructed by filtered
back projection with a Hanning filter (cutoff frequency at 0.5 cycles/
projection element). The dimensions of the reconstructed PET
images were 128×128 with XY pixel dimensions of 1.91 mm. The
in-plane resolution was 8.0 mm and axial resolution was 5.0 mm.
There was an interslice distance of 3.375 mm without any gap
between slices (Table 1).

In the Munich sample, age and MMSE was available for all MCI
and AD patients, but only age was available for healthy elderly
controls. In theMichigan sample, age andMMSEwas only available
for the AD subjects, with 4 people out of 17 AD patients missing
their MMSE information. We summarized all the information avail-
able for all sub samples of subjects in Table 2.

Image processing

All PET images were spatially normalized and smoothed at
FWHM=12mm, andmasked according the canonical SPM-supplied
probabilistic gray matter mask. Voxels with a gray matter probability
bigger than 50% were retained in the analysis. This resulted in 125
regional resolution elements (RESELs), each one containing 1475
voxels. Further, since no absolute quantification of FDG–PET signal
was undertaken with the image acquisition, all images were nor-
malized (by division through their individual whole-brain means) to
yield an average unit value. For this averaging calculation, only the
voxels within the probabilistic gray-matter mask were included.
Thus, only statements about relativemetabolic level can be made. In
particular, increased relative metabolism in Alzheimer’s patients
compared to control subjects is now possible and unsurprising, even
if absolute metabolism might be lower.

PCA approach

We give a brief mathematical sketch for those unfamiliar with
covariance analysis and the idea of dimensionality reduction. We
denote the data array to be analyzed as Y(s, x), with the index s
symbolizing subjects, while x stands for the 3D voxel location in
the brain.
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The goal of any multivariate decomposition is to separate subject
from voxel indices in the following series:

Y s; xð Þ ¼ SSF1 sð Þv1 xð Þ þ SSF2 sð Þv2 xð Þ þ SSF3 sð Þv3 xð Þ þ : : :

The data array has been decomposed into a series of terms of
diminishing variance contribution. The terms aremade up of subject-
dependent subject scaling factors, SSFi, and voxel-dependent prin-
cipal component topographies, i.e. brain images, vi.

1 Usually, only
the first few (typically less than a third of the number of subjects)
terms are retained to represent the data. For instance, if we decide
(by some hitherto unspecified criterion) that we want to retain the
first two terms, we have two principal component images, v1(x)
and v2(x), which are fixed across subjects and tasks, and two sets of
subject scaling factors, SSF1(s) and SSF2(s), that are varying across
subjects. These latter two sets of numbers can be used for further
analysis and correlation with clinical and experimental variables.
[In the current study, we used clinical status (1=AD/0=healthy) as
the dependent variable in this linear regression.] The goal of
dimensionality reduction thus becomes clear: rather than keeping
track of subject- and task-dependent numbers at every voxel loca-
tion, we only have two subject- and task-dependent variables to
deal with.

Derivation of AD-related pattern

To identify network-correlates of early dementia and age, we
employed the Scaled SubprofileModel (SSM), a covariance-analysis
method (Alexander et al., 1999; Moeller et al., 1987) that has been
used previously in resting imaging studies of normal aging and a
variety of neurological diseases (Alexander et al., 1999; Hutchinson
et al., 2000; Moeller et al., 1996; Nakamura et al., 2001). This
analysis was applied to the FDG–PET images acquired for AD and
control subjects. SSM captures the major sources of between- and
within-group variation in these images and produces a series of
principal components (PCs). Using Akaike’s information criterion
for the goodness-of-fit estimation (Burnham and Anderson, 2002),
the optimal number of PCs were identified that should be included as
predictors in a linear regression using group membership (AD vs.
control) as the outcome measure. The best-fitting linear combination
of these PCs will define an AD-related covariance pattern, while
accounting for most of the CBF variance in all subjects. We
summarize the steps of this algorithm in detail; no room was left for
arbitrary decisions on the part of the analyst. Because of the age-
discrepancy documented above, age was carefully matched by
picking a subset of 20 subjects of both AD and controls groups who
did not differ in age.

1. The realigned, spatially transformed and smoothed FDG–PET
images from both the AD patients and healthy elderly subjects
were simultaneously included in a Principal Components Ana-
lysis, which capture the major sources of between- and within-
groups variation, producing a series of principal components.
Voxels participating in each PC may have either a positive or
a negative loading. Voxels with positive loadings can be con-
ceived as exhibiting concomitant increased signal and those
with negative loadings can be conceived as exhibiting conco-
1 We emphasize that the subject-dependent scaling factors are not to be
confused with any other scaling operation that is performed as a corrective
measure prior to any group-level data analysis.
mitant decreased signal. These loadings are fixed and the same
for all subjects.

2. The expression of each PC for each subject was quantified by a
subject-scaling factor (SSF). A higher SSF value indicates more
prominent concomitantly increased signal of the voxels with
positive loadings and more prominent concomitantly decreased
signal of the voxels with negative loadings. Therefore, the SSFs
express the degree of subjects' expression of the fixed PC.

3. To identify a covariance pattern that best discriminates AD pa-
tients from controls, each subject's expression of the specified
PCs derived from Step 1 will be entered into a linear regression
model as the independent variable. Group membership (AD
versus controls) will be the dependent variable. This regression
results in a linear combination of the PCs that best discriminated
the 2 groups. This linear combination of the PCs can itself be
conceived of as signifying a ‘pattern’ or ‘network’. We used
Akaike's information criterion (Burnham and Anderson, 2002)
to determine how many PCs should be included in the regression
in order to achieve optimal bias–variance trade-off. The set of
PCs that yields the lowest value in Akaike's information criterion
will be selected as predictors in the regression model. We re-
stricted the set of PCs to a cumulative one out of the first few PCs
that explain at least 75% of the variance. Thismeans, for instance,
if 6 PCs account for 75% of the variance, we would check the
following 6 sets for their value of the Akaike criterion (AIC) in
the group discrimination: PC1, PC1–2, PC1–3, PC1–4, PC1–5,
PC1–6. The set that yields the lowest value of AIC will be
selected for construction of the discriminant pattern.

Bootstrap estimation of stability of regional weights in covariance
pattern

Patterns resulting from any multivariate analysis assign different
weights to all voxels included in the analysis, depending on the
salience of their covariance contribution. Positive voxel weights
indicate a positive correlation between the subject expression value
and the associated regional glucose metabolism, whereas negative
weights indicate a negative correlation. This means that as the ex-
pression of a pattern increases, activation in the positively weighted
regions increases as well, whereas activation in the negatively
weighted regions decreases. Whether a voxel weight is reliably
different from zero is assessed by a bootstrap estimation procedure
(Efron and Tibshirani, 1994). This procedure entails performing the
complete computation listed above (Steps 1–3) several hundred
times (~500) on data that were resampled with replacement from the
pool of AD patients and controls. Denoting the point estimate of
a voxel weight as w and the standard deviation around w resulting
from the bootstrap resampling procedure as sw, we can compute a
Z-score according to z=w/sw. Sufficiently small variability of a
voxel weight around its point estimate value in the resampling
processes results in Z-value of large magnitude, and indicates a
reliable contribution to the covariance pattern. As the threshold
criterion, we chose |z|N3.36; under the assumptions of a standard-
normal distribution, i.e. z~N(0,1), this corresponds to a one-tailed
probability of 0.05 with a multiple-comparisons correction for 125
RESELs (resulting from our smoothing and masking steps ex-
plained above). To aid in clarification, we mention here that the
bootstrap estimation procedure and the ensuing Z-map are used for
visualization purposes only. For any supplementary analysis dis-
cussed in this paper, the point estimate of the covariance pattern
itself was used for any prospective application.
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Univariate analysis

Similar to the multivariate analysis for the production of the AD-
related covariance pattern, we also conducted a univariate contrast
between healthy elderly controls and AD subjects. 20 scans from
both AD subjects and healthy elderly controls were subjected to a
voxel-wise T-test. The threshold for significance was adjusted by the
number RESELs (125) to a yield a corrected two-tailed p-level of
0.05 and came out as T=3.87.

Prospective application to replication samples

To test how well univariate and multivariate group-differences
between AD patients and controls generalize to a more representa-
tive pool of subjects, we split our pool of subjects into a derivation
sample, employed in both our univariate and multivariate analysis to
identify AD-related group differences first, and several replication
samples. The AD-related differences identified from the derivation
sample were then tested in all replication samples as well: expression
of the AD-related covariance pattern was tested for its diagnostic
ability as well as relative FDG level at any voxel locations that
showed significant AD-related effects in the derivation sample. The
subject expression of the AD-related pattern in the replication sam-
ple was obtained as follows: for every subject in a replication
sample, the subject’s scan was multiplied with the loadings of the
covariance pattern in a voxel-wise manner; the resulting product
image was then summed over all voxel locations to yield the level of
subject expression as a single number.

For the derivation sample, we picked up 20 Munich AD-patients
(out of a total of 102) and 20 Munich controls that were age-
matched. The remaining 82 Munich AD-patients were split into 3
samples of 20 subjects, and 1 sample of 22 subjects. No additional
control subjects were available, so that these 4 replication samples
could only test the sensitivity, but not the specificity, of the derived
AD-markers independently. A fifth replication sample was provided
by the Michigan subjects (17 ADs/33 controls), which provided a
test of both specificity and sensitivity of the AD-markers.

To simulate the realistic context of a clinical application of both
AD-markers on a subject-by-subject basis, we used the threshold
criteria in the replication samples for which theAD-markers gave the
optimal sensitivity and specificity values in the derivation sample.
Just relying on the area under the ROC-curve is not enough, since
this statistic summarizes the discriminability across the range of all
possible values of the threshold criterion and cannot be computed for
just one human subject in isolation, without any reference to other
human subjects. Further, it is unaffected by uniform shifts in the
value of the AD-marker, regardless of the magnitude of the shift.
This means in particular that in spite of impressive ROC-curves that
result from the prospective application of the AD-markers in the
replication samples, the values for sensitivity and specificity at the
thresholds chosen in the derivation sample might not be as im-
pressive. This is the crucial test whether the AD-marker is useful in a
clinical context where a diagnosis has to be offered based on its
absolute value in single subjects.

Results

Clinical evaluation

Subject information other than disease statuswas only available in
form of years of age and Mini-Mental Status Examination (MMSE),
but not for every person in the sample. In theMunich sample, age and
MMSE was available for all MCI and AD patients, but only age
was available for healthy elderly controls. In the Michigan sample,
MMSEwas only available for theAD subjects, with 4 peoplemissing
their MMSE information. We therefore restricted our comparisons to
the AD portions of both samples. Two-sample t-tests revealed no
differences in age ( p=0.18), but a significant difference in MMSE
(Michigan: 16.0±6.3,Munich: 22.8±3.2, pb0.0001), indicating that
the ADpatients from theMichigan sample aremore advanced in their
disease course than the Munich patients.

Derivation of AD-related pattern

As mentioned in the previous section, for the derivation of the
AD-related pattern, we matched 20 subjects of both patient and
control groups on age on themean, before employing our covariance
analysis. Age was now not significantly different as a function of
disease-status any longer (AD derivation group: 62.0±9.3; healthy
elderly derivation group: 62.0±9.0). The first 2 principal compo-
nents accounted for 29% of the variance in the data. Using these
principal components, we constructed a single pattern whose subject
expression distinguished between subjects and controls success-
fully. We then performed the bootstrap resampling procedure de-
scribed before to arrive at a Z-map, sampling with replacement from
the all subjects in the derivation sample. Robust regional weights,
i.e. Z-values that surpass the threshold |Z|N3.36, in the covariance
pattern were listed in Table 3; robust positive weights indicating an
increase in PET signal in the AD relative to the control subjects were
mainly found in frontal lobe areas. Negative weights, indicating a
decrease in signal in the AD groups vs. controls, were found in
parietal, temporal and prefrontal areas.We emphasize again that these
are relative changes; no absolute quantification was possible.

Table 4 summarizes the performance characteristics of the AD-
related pattern in all derivation and replication samples. The threshold
for optimal sensitivity and specificity of the group discrimination in
the derivation was deemed to be −10.0. For the prospective appli-
cation in the replication samples, subjects were therefore diagnosed as
AD when they expressed the covariance pattern to a degree N−10.0.

One can appreciate from Table 4 that the successful group dis-
crimination achieved by the AD-related pattern in the derivation
sample generalizes to all replication samples as well. The specificity
values are fixed for all Munich samples at 0.95 since the same 20
control subjects were used in all samples with the same decision
threshold (−10), but the sensitivity fluctuated in the range [0.85,1].
Reassuringly, sensitivity and ROC-area values were not highest for
the derivation sample itself, underscoring the generalizability of the
results beyond the derivation sample. Even in the Michigan sample,
whose data were acquired on a different scanner with a different
protocol, theMunich-derivedAD-pattern has good diagnostic ability.

We also tested the association between expression of AD-related
pattern and age in all replication samples; since there were clear age
differences between control subjects andADpatients in all 4Munich
replication samples, we restricted our correlational analysis to the
AD patients only in the Munich replication samples. A significant
negative correlation between age and AD-pattern expression was
found in replication sample 1 (R2=0.40, pb0.005), but otherwise no
correlations reached significance ( pN0.3 in replication samples 2, 3,
and 4). For the Michigan sample, age was comparable in both
patients and controls, so the correlation between AD-pattern expres-
sion and age was computed for all 50 subjects; again, no significant
correlation was obtained (R2=0.05, p=0.16). Thus, apart from a



Table 3
MNI coordinates and listings of local Z-maxima farther than 8 mm apart, used to construct the covariance pattern indicating their weighting for either increased
and decreased glucose uptake relative to the mean in the Alzheimer's groups as compared to the control subjects

X Y Z Laterality/lobe Structure Brodmann label Z

Positive weights=relatively increased FDG signal in AD
18 −4 −8 R Sub-lobar Lentiform nucleus Medial globus pallidus 9.8539
58 2 10 R Frontal lobe Precentral gyrus Brodmann area 6 9.8216
34 −4 −22 R Limbic lobe Parahippocampal gyrus Brodmann area 36 7.4967
−64 −12 16 L Parietal lobe Postcentral gyrus Brodmann area 43 5.7304
−44 −4 14 L Sub-lobar Insula Brodmann area 13 5.3955
−36 −2 12 L Sub-lobar Insula Brodmann area 13 5.1361
2 −40 68 R Frontal lobe Paracentral lobule Brodmann area 4 5.6647
−6 −30 58 R Frontal lobe Medial frontal gyrus Brodmann area 6 4.1707
40 −28 44 R Parietal lobe Postcentral gyrus Brodmann area 2 3.9627
−14 18 −14 L Frontal lobe Subcallosal gyrus Brodmann area 47 3.8058
−48 −20 36 L Parietal lobe Postcentral gyrus Brodmann area 3 3.571
−28 −10 10 L Sub-lobar Lentiform nucleus Putamen 3.5399
−50 −24 0 L Temporal lobe Superior temporal gyrus Brodmann area 21 3.5134

Negative weights=relatively decreased FDG signal in AD
50 −62 26 R Temporal lobe Superior temporal gyrus Brodmann area 39 14.1039
40 −68 48 R Parietal lobe Inferior parietal lobule Brodmann area 7 8.1061
−4 −38 42 L Limbic lobe Cingulate gyrus Brodmann area 31 10.6563
10 −54 36 L Parietal lobe Precuneus Brodmann area 7 8.5122
−50 −58 38 L Parietal lobe Inferior parietal lobule Brodmann area 40 10.4684
−58 −48 36 L Parietal lobe Supramarginal gyrus Brodmann area 40 9.9976
−44 −60 16 L Temporal lobe Superior temporal gyrus Brodmann area 39 9.5121
−44 10 46 L Frontal lobe Middle frontal gyrus Brodmann area 8 7.9338
42 10 32 R Frontal lobe Inferior frontal gyrus Brodmann area 9 7.881
44 8 46 R Frontal lobe Middle frontal gyrus Brodmann area 8 7.565
−54 −48 −16 L Temporal lobe Inferior temporal gyrus Brodmann area 20 4.8012
−64 −42 −4 L Temporal lobe Middle temporal gyrus Brodmann area 21 4.3843
44 22 −6 R Frontal lobe Inferior frontal gyrus Brodmann area 47 3.7552
−10 4 10 L Sub-lobar Caudate Caudate Body 3.6025
−28 54 12 L Frontal lobe Middle frontal gyrus Brodmann area 10 3.4568
−34 46 14 L Frontal lobe Middle frontal gyrus Brodmann area 10 3.4463

The areas listed have a Z-value |Z|N3.36 corresponding to a one-tailed p-value of 0.05, corrected for the number of regional resolution elements (125). Only
nearest gray matter areas were listed. The location of the most positive loading [−28 −50 −32], was not in any gray matter region and is not listed below.
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negative correlation between pattern expression and age in Munich
replication sample 1, which defies a straightforward explanation on
account of the sign of the correlation, we have no indication that our
AD-related pattern was influenced by age.

Univariate analysis

We also conducted a univariate contrast using values in a single
region of interest in the derivation sample, and then mirrored the
forward application of the AD-related pattern to all replication
Table 4
Descriptive statistics of the subject strengths of AD subjects (“AD”) and healthy e
derived from the Munich derivation sample in all Munich samples and in the Mic

N (AD)/N (HE) Age (AD)/A

Munich derivation sample 20/20 62.0±9.3/6
1st replication Munich sample 20/20 69.2±10.4/
2nd replication Munich sample 20/20 70.7±8.9/6
3rd replication Munich sample 20/20 70.6±9.2/6
4th replication Munich sample 22/20 73.5±8.5/6
Michigan replication sample 17/33 65.5±13.9/

All but one Munich samples contain the same healthy elderly control subjects, whil
for all Munich samples. Sensitivity for all samples was calculated using the optim
prospective application, rather than optimizing the threshold for each sample anew
samples, by checking the group separation at the location of the
largest T-value in the derivation sample. The right parietotemporal
area (MNI: [50 −58 30]) showed the largest separation between the
groups, with a decreased relative cerebral glucose level in the AD
subjects. There were no areas of increased relative metabolic signal
in the AD subjects. We tabulated all areas showing a significant
difference between groups in Table 5.

We then interrogated the ability of the parietotemporal area’s
FDG–PETsignal to discriminate between patients and control in the
derivation sample and all replication samples. We chose an optimal
lderly controls (“HE”) and expression of the AD-related covariance pattern
higan sample

ge (HE) Sensitivity Specificity ROC area

2.0±9.0 0.90 0.95 0.96
62.0±9.0 1 0.95 0.97
2.0±9.0 0.85 0.95 0.92
2.0±9.0 1 0.95 0.97
2.0±9.0 0.91 0.95 0.87
68.5±7.6 0.80 1 0.90

e differing in the AD subjects. The specificity is thus fixed at the same value
al threshold (−10) from the Munich derivation sample to simulate genuine
.



Table 5
MNI coordinates and listing of brain areas showing significant differences in FDG uptake relative to mean values between the groups in the derivation sample as
identified by the univariate comparisons

X X Z Laterality/Lobe Structure BA label T

50 −58 30 R Temporal Lobe Superior Temporal Gyrus Brodmann area 39 8.02
38 −70 50 R Parietal Lobe Superior Parietal Lobule Brodmann area 7 6.45
−52 −56 32 L Parietal Lobe Supramarginal Gyrus Brodmann area 40 7.81
−50 −58 42 L Parietal Lobe Inferior Parietal Lobule Brodmann area 40 7.62
−46 −62 20 L Temporal Lobe Superior Temporal Gyrus Brodmann area 39 7.56
−4 −46 38 L Limbic Lobe Cingulate Gyrus Brodmann area 31 7.56
6 −50 36 R Parietal Lobe Precuneus Brodmann area 31 7.29
4 −70 40 R Parietal Lobe Precuneus Brodmann area 7 5.99
−44 14 46 L Frontal Lobe Middle Frontal Gyrus Brodmann area 8 6.40
−28 20 52 L Frontal Lobe Middle Frontal Gyrus Brodmann area 8 5.85
−44 12 32 L Frontal Lobe Middle Frontal Gyrus Brodmann area 9 5.66
−62 −38 −8 L Temporal Lobe Middle Temporal Gyrus Brodmann area 21 5.35
−56 −50 −14 L Temporal Lobe Middle Temporal Gyrus Brodmann area 37 5.10
−52 −34 −24 L Temporal Lobe Fusiform Gyrus Brodmann area 20 4.16
44 16 48 R Frontal Lobe Middle Frontal Gyrus Brodmann area 8 4.92
30 20 52 R Frontal Lobe Middle Frontal Gyrus Brodmann area 8 4.83
62 −38 −18 R Temporal Lobe Middle Temporal Gyrus Brodmann area 21 4.81

Displayed are local T-maxima farther than 8 mm apart with at pb0.05, after multiple-comparison correction for the number of resolution elements (125) and the
T-threshold chosen was |T| =3.87. There were no areas of increased relative FDG level in the AD subjects. Only nearest gray matter areas were listed.
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threshold of 1.05 as the criterion with the best sensitivity and spe-
cificity value, yielding a value of 0.95 for both. For the application in
the replication samples, the diagnostic algorithm therefore was as
follows: inspect the signal value at the parietotemporal location; if it
is less than 1.05 the average whole-brain signal value the subject is
diagnosed as AD, otherwise deemed normal. Table 6 lists sensitivity,
specificity, T-value of the healthy–AD contrast, and ROC area as-
sociatedwith the parietotemporal location. Specificity for allMunich
replication samples was again fixed at 0.95, since the same control
subjects were used.

Fig. 1 graphically summarizes the information displayed inTables 2
and 4, and enables a visual comparison of multivariate and uni-
variate markers. Fig. 2 shows the discrimination performance of
both biomarkers in the Munich derivation sample. One can appre-
ciate that both univariate and multivariate biomarkers achieve good
discriminability across all samples. This manifests itself in superior
T-contrasts and ROC-areas. Notably, the displayed ROC-curves for
the derivation sample look almost identical. However, of real clinical
relevance are sensitivity and specificity values at the decision
threshold chosen from the derivation sample, since T-contrasts and
ROC-areas are summary statistics whose computation requires a
multitude of subjects in the replication sample. This obviates their
Table 6
Descriptive statistics of subject strengths of AD subjects (“AD”) and healthy elderly
of maximum contrast in the Healthy – AD contrast for the Munich derivation sam

N(AD)/N(HE) Sensitivity

Munich Derivation sample 20/20 0.95
1st replication Munich sample 20/20 0.90
2nd replication Munich sample 20/20 0.80
3rd replication Munich sample 20/20 0.55
4th replication Munich sample 22/20 0.59
Michigan replication sample 17/33 1.0

Again, all Munich samples contain the same healthy elderly control subjects, while d
all Munich samples. Sensitivity for all samples was calculated using the optima
prospective application on a subject-by-subject basis, rather than optimizing the th
use for a more realistic subject-by-subject application. Further,
similarly to a simple correlation coefficient, they are invariant with
respect to arbitrary, but uniform, shifts in the AD-marker value,
which is also unsatisfactory.

When comparing the univariate and multivariate AD-marker on
the more rigorous performance criterion of sensitivity and speci-
ficity of diagnosis at the fixed threshold level obtained from the
derivation sample, we can see that the multivariate marker does
substantially better than the univariate one. One can see this in
particular for replication samples 3 and 4. For these samples, the
discriminability between patients and controls was somewhat di-
minished, but the sensitivity at a threshold of 1.05 suffered more
and only yielded poor values of 0.55 and 0.59, respectively. In
these samples, the multivariate marker performed much better with
sensitivities of 1.0 and 0.91, respectively. Expression of the AD-
related covariance pattern is hardly affected by overly high signal
values at location [50 −58 30].

For the Michigan sample, on the other hand, we can see that,
despite very good T-contrast, ROC-area and sensitivity at threshold
1.05, the univariate marker has poor specificity (0.67). Obviously,
AD patients have lower signal values at location [50 −58 30] than
controls, but everybody’s value seems to be depressed— and many
controls (“HE”) and PET signal at the parietal location [50 −58 30], the area
ple

Specificity T-value (Healthy – AD) ROC area

0.95 8.02 0.97
0.95 8.12 0.93
0.95 6.19 0.92
0.95 4.17 0.82
0.95 4.03 0.78
0.67 9.16 0.98

iffering in the AD subjects. The specificity is thus fixed at the same value for
l threshold (1.05) from the Munich derivation sample to simulate genuine
reshold for each sample anew.



Fig. 1. Illustration of the ROC characteristics of multivariate and univariate group discrimination of AD subjects from normal controls. Left column: ROC-curve
for the group discrimination in the derivation sample, using the multivariate (top) and univariate (bottom) biomarker: the ROC-curve looks very good and
virtually identical for both markers. Right column: sensitivity/specificity values for the derivation and all replication samples, at the optimum criterion thresholds
obtained for the markers in the derivation sample. For the univariate marker (bottom), which was the normalized signal value at location [50 −58 30], every value
below the threshold 1.05 classified as AD; for the multivariate marker (top), which was the subject expression of the AD-related covariance pattern obtained from
the derivation sample, every value above −10 was classified as AD. Marked on the x-axis are all 6 samples used. ‘1’=Munich derivation sample, ‘2’ –
‘5’=Munich replication samples; ‘6’=Michigan replication sample. One can appreciate visually that the multivariate AD-marker has better average sensitivity
than the univariate marker, i.e. generalizes with better robustness from the derivation to the replication samples.
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controls therefore fall below the threshold 1.05, resulting in a large
fraction (0.33) of false positives. Again, for the multivariate marker
this is less of a problem, and despite nominally poorer discrimi-
nability as evidenced in T-contrast and ROC-area, the sensitivity
and specificity at threshold=−10.0 is reasonable at 0.80 and 1.0,
respectively.

Supplementary analyses to test the robustness of the multivariate
AD-marker in derivation sample

As mentioned before, the multivariate marker is less subject to
the corrupting influence of individual brain regions. To illuminate
this further, we performed several additional manipulations to test
the robustness of the multivariate AD-marker in comparison with
the univariate marker.

1. We cut out the parietotemporal area showing the greatest uni-
variate contrast (MNI: [50 −58 30]), by setting all signal values
in the (10 mm)3 cube centered on this coordinate to zero in the
derivation sample. We also cut out the (10 mm)3 neighborhoods
of the positive and negative maximum Z-values in the AD-
related covariance pattern, (MNI: [−28 −50 −32] and [50 −62
26], respectively). (To avoid confusion, we mention here that the
location of maximum positive loading in the covariance pattern,
MNI: [−28 −50 −32], was not in gray matter tissue and was
subsequently not listed in Table 3. For the purpose of supple-
mentary analysis, this made no difference however.) Projecting
the covariance pattern into these modified data in the derivation
sample, the ROC characteristics of the group discrimination in
pattern expression were unchanged. The subject expression
values obtained with the modified pattern are very similar to the
ones obtained with the original pattern: the average relative
difference between both sets of expression values is 3%, the
correlation between the two sets is perfect to the fourth decimal
place, i.e. discrepancies are less than 0.0001. This demonstrates
how multivariate analysis takes into account the interregional
correlation structure in the data, and is thus not critically de-
pendent on the inclusion of any particular brain region and can
withstand dropping out even the most salient areas in the uni-
variate and multivariate AD-markers.

2. From the Munich-AD subject pool, we chose the 20 least im-
paired subjects to simulate a prospective application of AD-
markers to patients with very early AD. (This sample still shows a
significant age difference between AD subjects and controls,
which is the reason we did no use it to derive the AD-pattern
itself.) The 20 subjects' MMSE statuses were quite high: 18 of
the subjects had MMSE=26, 1 had MMSE=27 and the remain-
ing 1 hadMMSE=28. Employing our univariate AD-marker, we
still find an impressive ROC area of 0.87 for the group discri-
mination between these high-MMSE individuals and the control
subjects from the derivation sample, and a T-value of 4.88;
however, sensitivity of the AD-diagnosis at the earlier chosen



Fig. 2. Demonstration of group discrimination performance between AD
patients (‘AD’) and healthy elderly controls (‘HE’), for both multivariate and
univariate methods in the Munich derivation sample. Top: multivariate
analysis, bottom: univariate analysis, taking normalized signal values at the
voxel of maximum T-contrast, MNI: [50 −58 30]. The horizontal lines in
both plots mark the decision thresholds adopted for the AD diagnosis. The
diagnostic algorithm tried to optimize diagnostic sensitivity (=fraction of
AD patients correctly classified as AD) while incurring a maximal false-
positive rate of 0.05 (=1 in twenty healthy elderly controls). The threshold
criterion for AD diagnosis was a pattern expression larger than −10 for the
multivariate marker (top) and a relative FDG signal of less than 1.05 at
location [50 −58 30] for the univariate marker (bottom). These threshold
criteria were applied in the same manner to all replication samples, to
simulate a realistic context of clinical application patient-by-patient.

Table 7
Derivation of univariate and multivariate biomarkers, using all Munich AD
samples in separate analyses

HE–AD
comparison

Univariate maximum T,
MNI coordinates

Multivariate maximum Z,
MNI coordinates

Derivation
sample

8.02, MNI=[50 −58 30] 14.10, MNI=[50 −62 26]

Replication
sample 1

10.09, MNI=[54 −62 34] 11.44, MNI=[52 −58 42]

Replication
sample 2

9.41, MNI=[10 −42 40] 5.92, MNI=[−46 −74 36]

Replication
sample 3

11.70, MNI=[−50 −52 48] 13.43, MNI=[−56 −58 38]

Replication
sample 4

6.45, MNI=[2 −30 40] 8.11, MNI=[−46 −46 44]

The left columns show which sample was used. Maximum negative T values
for univariate comparison (middle column) as well as maximum negative Z
values for the multivariate comparison (right column), indicating relatively
decreased blood flow in the AD patients, are shown with their MNI
coordinates.
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threshold (=1) was markedly decreased at 0.5. Subject expres-
sion of our AD-related multivariate pattern, on the other hand,
fared much better: the ROC-area was 0.95, and sensitivity at the
earlier chosen threshold (=−10) was 0.85.

3. So far, we have only investigated the diagnostic performance of
both markers in the replication samples, neglecting the issue
of how the topographic composition of the markers themselves
changes when different derivation samples are used. Both Z-maps
obtained from our semi-parametric bootstrap procedure as well as
the T-maps for the univariate comparison are obviously suscep-
tible to sampling error and change when differentAD subjects are
selected for the derivation of the disease marker. We have do-
cumented this dependence in Tables 7 and 8. To construct these
tables, we substituted the derivation sample of Munich AD
subjects with each of the 4 Munich replication samples, and
conducted 4 additional analyses to derive both univariate and
multivariate markers again. For brevity, we refrained from opti-
mizing decision thresholds or recording ROC-characteristics. The
following analysis was restricted to the brain regions that were
identified as significant in both T- and Z-maps. Table 7 shows the
global maximum of T- and Z-maps for all 5 analyses performed.

To provide a more global measure we also recorded howmany of
the voxels that surpassed the significance threshold in the analysis
using the derivation sample also came up as significant in these
additional analyses (see Table 8). The results were reported as a
percentage. Further, we also reported the number of new voxels that
‘popped in’ in the additional analysis, as a fraction of all voxels that
made the significant threshold in the additional analyses. For an
analysis to produce similar results to the derivation sample, the first
fraction should thus be close to 100%, while the second fraction
should be as small as possible.

Although the results of Tables 6 and 7 are purely descriptive, they
convey a sense of how heavily the sample selection influences the
final regional composition of the AD-markers. The global maxima
shift around and occasional switch laterality, while presumably pre-
serving the gross anatomical structure of their location. However, for
replication samples 2 and 4, the global maxima shift dramatically,
particular for the univariate T-maximum. From Table 7, one can
appreciate that the number of super threshold voxels shows similar
discordances, affecting the multivariate disease-marker in particular.
The major take-home message from these additional derivations is
that caution is warranted when localizing the neural correlates of AD
to particular brain areas with millimeter precision. Fluctuations due
to sampling limitations have a big influence (and might be con-
founded further by pre-processing choices of spatial normalization
and co-registration as well).

However, we like to reiterate that, despite its variability in the
regional composition, our multivariate marker still provides superior
diagnostic classification beyond the derivation sample. The signal-
averaging computation that arrives at the pattern expression of a
covariance pattern is more robust than the individual contributing
voxel weights, which fluctuate.

Too provide the most accurate univariate and multivariate neural
correlates of AD, we formed conjunction masks that identified
voxels that were statistically significant in all 5 T- and Z-maps. We
then averaged T- and Z-values at these voxel locations. Reassuringly,
the mean T- and Z- maps have very similar global and local maxima:
the area of biggest relative AD-related increase in FDG signal was



Table 8
Columns 1 and 3 show the fraction of voxels in the derivation sample-
derived AD-marker that also were detected in the additional analyses

HE–AD
comparison

Fraction of
derivation
sample voxels
that came
up again
(Tb−3.87)

Fraction
of new
additional
voxels
(Tb−3.87)

Fraction of
derivation
sample voxels
that came
up again
(Zb−3.36)

Fraction
of new
additional
voxels
(Zb−3.36)

Derivation
sample

100% N/A 100% N/A

Replication
sample 1

75% 31% 65% 21%

Replication
sample 2

36% 11% 23% 19%

Replication
sample 3

83% 26% 76% 20%

Replication
sample 4

60% 21% 24% 41%

Columns 2 and 4 show the fraction of voxels detected in the additional
analyses that were not part of the original AD-markers.

2 Normalization to different reference regions, like the Pons, might
achieve better univariate group discrimination (observation by N. Foster).
We will explore this more thoroughly in a future report.
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found in the right anterior dentate of the cerebellum with only a
(22+22)1/2=2.8mmdiscrepancy:MNI (T-maximum)=[18−56−26];
MNI (Z-maximum)=[20 −54 −26]. For the areas of relative AD-
related decrease, this was similar with absolute maxima in the left
inferior parietal lobule (BA 40); MNI (T-maximum)=[−50 −54 46];
MNI (Z-maximum)=[−50 −58 42]. The second-highest local max-
ima were found in the posterior cingulate gyrus (BA 31) (MNI(T)=
[−6 −44 36]; MNI(Z)=[−2 −38 40]). For the remaining 3rd region,
we have a slight discrepancy with the univariate marker shifting its
activation ventrally to toward the parietotemporal junction: MNI(T)=
[54 −60 36] (angular gyrus, BA 39); MNI(Z)=[46 −64 48] (inferior
parietal lobule, BA 40). (For all these locations, nearest gray matter
locations were reported.)

We can summarize both univariate and multivariate markers to
have significant contributions in cerebellar, parietal, temporal and
posterior cingulate regions. However, we stress again that for the
multivariate marker and its expression’s success as a diagnostic
marker, the correlative relationships between all included voxels are
diagnostically important, not just the super threshold ones.

Discussion

We examined the efficacy of multivariate and univariate analytic
methods for the diagnosis of early Alzheimer’s disease. To provide a
more realistic context, we divided the data into a derivation sample
and several replication samples. This, however, cannot compensate
for any biases in the non-random recruitment that might prevent
generalization to the population at large. The derivation sample was
used to identify (a) an AD-related covariance pattern with our
multivariate analysis, and (b) a brain area in which our univariate
analysis shows AD subjects to have the biggest mean deficit in their
relative regional cerebral glucose level, compared to the healthy
elderly controls. Findings (a) and (b) were then checked prospec-
tively in the derivation sample by in (a) forward-application of the
AD-related covariance pattern to the scans of the derivation sample,
and in (b) inspection of the relative regional cerebral glucose level at
the MNI coordinate of the biggest group-contrast in the derivation
sample. For the prospective application, the threshold adopted for
the best ROC characteristics in the derivation sample were retained
and not determined for each replication sample anew.Motivation for
this stringent criterion was clinicopractical realism: for a useful
neuroimaging marker for AD, application to any new patient with an
accurate diagnosis and prediction of discourse is the ultimate goal,
without any reference to any other patients. This means that not only
a suitable marker has to be supplied, providing a dimension along
which AD patients differ maximally from healthy elderly controls,
but also a threshold criterion for this marker which enables the
diagnosis of AD on a subject-by-subject basis.

A survey of the performance of both multivariate and univariate
neuroimaging marker showed that they are both quite successful in
the sense of yielding impressive ROC-areas, not only in the deri-
vation sample, but in the replication samples as well. The sensitivity
of the multivariate marker, however, is noticeably better with a range
[0.85,1], whereas the univariate marker occasionally suffers from
false negatives with a range [0.55,1].

Limitations of the recorded clinical information in our subject
samples prevent us from exploring the differences between our
multivariate and univariate AD-markers much further. We can only
add some considerations that demonstrate that the multivariate AD-
marker might be simultaneously more sensitive as well as more
robust than the univariate marker. When recalling that multivariate
analysis uses the entire spatial covariance structure of the data, this
is not surprising. We performed several supplementary analyses to
illustrate this fact: (1) we cut out the parietotemporal area showing
the greatest univariate contrast (MNI: [50 −58 30]), by setting all
FDG values in the (10 mm)3 cube centered on this coordinate to
zero in the derivation sample; we similarly cut out the most salient
areas in the AD-related covariance pattern (MNI: [−28 −50 −32]
and [50 −62 26], respectively). When projecting our AD-related
covariance pattern into these modified data, the ROC character-
istics of the group discrimination in pattern expression were un-
changed. (2) From the Munich-AD subject pool, we chose the 20
least impaired subjects to simulate a prospective application of
AD-markers to patients with very early AD. Our univariate marker
still found an impressive ROC area of 0.87 for the group discri-
mination between these high-MMSE individuals and the control
subjects from the derivation sample, and a T-value of 4.88; how-
ever, sensitivity of the AD-diagnosis at the earlier chosen threshold
(=1.05) was markedly decreased at 0.5. Subject expression of our
AD-related multivariate pattern, on the other hand, fared much
better: the ROC-area was 0.95, and sensitivity at the earlier chosen
threshold (=−10) was 0.85.

These results support the notion that multivariate analysis might
be more sensitive than univariate analysis for the early diagnosis of
AD early, possibly even before the clinical manifestation of typical
symptoms, by utilizing the spatial covariance structure in the data
from whole brain recordings.2 The multivariate techniques do not
necessarily rely on underlying “networks” of pathology. If the
origins of AD-related glucose level changes are focal, and spread
with disease severity, multivariate analysis will probably be more
sensitive than univariate analysis as long as atrophy does not cause
areas to drop out entirely without any variance contribution, forcing
completely new spatial correlative relationships in the data. For the
early stage of the disease, when accurate diagnosis is most impor-
tant, this is unlikely, and disease-related changes in glucose level can
be captured along a single dimension (changes in “degree”), before
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this dimension breaks down during later disease stages (changes in
“kind”). In particular, this implies in the early disease stage that
longitudinally increasing disease-severity within a subject is inter-
changeable with increasing disease severity across subjects in a
cross-sectional sense. The same AD-related covariance pattern
should capture these two changes, and should yield an increasing
subject expression, regardless of longitudinally or cross-sectionally
increasing disease severity. It is conceivable that a sufficient amount
of this diagnostic information could be captured by a simplified
univariate–multivariate approach of first localizing several key
regions in a univariate analysis, with a subsequent linear combina-
tion of these areas’ signal values to optimize ROC-characteristics for
the AD diagnosis. The benefits of such an approach will be inves-
tigated more thoroughly in a future report.

We were able to identify disease-related dimension in form of a
covariance pattern; however, this does not imply that our AD-marker
captures the only disease-related dimension: a recent FDG-PET
investigation of healthy again, vascular dementia andAD (Kerrouche
et al., 2006) pinpointed two dimensions: one that differentiated
demented from healthy people in general, and another one that
perfectly distinguished all three populations form each other. Further
fine-tuning of our marker with additional neuropsychological test–
performance data (which itself is multidimensional) to achieve the
best possible ROC-characteristics is also possible and represents one
of our future research goals.

Our supplementary analysis (3) gave pause for some concern
for the goal of precisely mapping the neural correlates of AD-
progression. The regional composition of both univariate as well as
multivariate disease markers varied substantially as a function of
the AD sample selected. Thus trying to glean some insight about
the etiology of AD from the brain regions identified might require
substantially greater subject numbers than used in our derivations
(~20 patients/20 controls). Both T- and Z-maps were highly vari-
able as a function of the AD sample used in the derivation. This
variability, however, did not hamper the diagnostic performance of
the multivariate marker beyond the derivation sample, since it is the
subject expression of the covariance pattern comprising all voxels
that is used for the diagnostic classification. As demonstrated in
supplementary analysis (1), pattern expression is stable even when
the brain regions of largest significance in the Z-map are removed.
Further, we can surmise that even a substantial amount of noise on
the individual voxel weights will leave the pattern expression rela-
tively intact, while changing the number and location of the super
threshold voxels in the bootstrap Z-map.

Despite this caveat about regional fluctuations for small sample
sizes, we can say that both multivariate and univariate disease-
markers converged on similar regions when we combined the results
of our main derivation sample with all 4 supplementary analyses.
Regions that showed a relative increase in FDG were found in the
cerebellum, hinting that this structure is relatively preserved in early
Alzheimer’s disease, while other areas are decreasing. Regions that
showed a relative decrease in FDG were found in bilateral parietal
and temporal regions (BA 39, 40) and the posterior cingulate gyrus
(BA 31).

These regions have been described before and are hardly sur-
prising. For instance, a recent study H2

15O–PET study of Mild Cog-
nitive Impairment (Huang et al., 2007) that performed cross-sectional
covariance analyses similar to the one in the current article, also
identified cerebellum as an areas of relative increase, and bilateral
parietal and posterior cingulate areas as relatively decreasing in signal
intensity when comparing both severely progressing and stable MCI
subpopulations to healthy controls. As in our study, mediotemporal
regions were not identified in this cross-sectional comparison, they
only contributed in the longitudinal analysis of the progressing MCI
population (Huang et al., 2007). The involvement of mediotemporal
lobe areas in the metabolic correlates of early Alzheimer’s has not
been established unanimously: apart from Huang et al., several pre-
vious studies also failed to find any supporting evidence (Chetelat
et al., 2003a; Ishii et al., 1998; Jagust et al., 2002; Minoshima et al.,
1999). [One study (de Leon et al., 2001) found evidence in favor of
hippocampal involvement.]

These results could be explained by the fact that neurofibrillary
tangles in the ento- and perirhinal cortices cause a lesion of these
areas’ projections to the posterior cingulate with a subsequent
metabolic deficit in the latter, while leaving the metabolism in the
cell bodies medial temporal lobe intact. This possibility was verified
in an animal model using baboons (Meguro et al., 1999) and could
be one candidate mechanism to explain the disjuncture between
structure and metabolism observed in early Alzheimer’s disease.

In conclusion, we have shown in the current study that FDG–
PET imaging combined with multivariate analysis shows some
promise as systems-level biomarker for Alzheimer’s disease, and
might enable early detection of the disease before a clear clinical
presentation. It is maybe important to point out what we are not
claiming:

1. We are not claiming to have found a ‘mechanism’ biomarker.
AD-related FDG–PET patterns are unlikely by themselves to
provide more insight about the etiology of Alzheimer's disease.
We are making no such claim and recognize fully that we are
capturing downstream effects of the disease that are manifesting
at the systems' level. This disclaimer, however, casts no asper-
sions on the efficacy of the covariance pattern as a diagnostic
tool.

2. We are not claiming that the specificity of AD-related covariance
pattern to Alzheimer's disease has been confirmed yet. In fact,
this remains our own research program for the immediate future.
The virtue of our approach lies in its reliance on completely
standard imaging and analytic technology – without the need for
expensive molecular markers or ligands. We showed that AD
could be captured with good sensitivity and specificity relative
to healthy subjects – taking the clinical judgment, which might
be imperfect itself, as the gold standard. We further have to
investigate the specificity with respect to other neurodegenera-
tive diseases.

The last point illuminates the wider trade-off that is present for
the development of biomarkers in general: one the one end of the
continuum we can visualize reductionist strategies that target in-
dividual diseases with specially tailored molecular compounds. The
development of these compounds might be costly and occasionally
fraught with failure, but the successfully ensuing biomarkers are
specific to the disease under consideration. Our approach is at the
other end of the continuum: we are using widely available imaging
and analytic technology, but have to verify our derived systems’-
level biomarker is specific to Alzheimer’s disease. This specificity is
not achieved by a reductionist strategy of honing in on particular
molecules, but by the multivariate strategy of simultaneously ana-
lyzing the brain-wide correlation structure of blood flow or metab-
olism, and finding a disease-specific distributed pattern – not only
when healthy elderly controls are present, but when data from other
neurodegenerative disease are admixed too (Kerrouche et al., 2006).
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Following from there, we hope to test whether our covariance pattern
can also serve as an outcome biomarker, i.e., can signal successful
treatment through a reduction over time in people who respond well
to any treatment.
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