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Abstract
Although the brain/behavior correlation is one of the premises of cognitive neuroscience, there is still no consensus about
the relationship between brain measures and cognitive function, and only little is known about the effect of age on this
relationship. We investigated the age-associated variations on the spatial patterns of cortical thickness correlates of four
cognitive domains. We showed that the spatial distribution of the cortical thickness correlates of each cognitive domain is
distinctive and depicts varying age-association differences across the adult lifespan. Specifically, the present study provides
evidence that distinct cognitive domains are associated with unique structural patterns in three adulthood periods: Early,
middle, and late adulthood. These findings suggest a dynamic interaction between multiple neural substrates supporting
each cognitive domain across the adult lifespan.
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Introduction
One of the ultimate goals of studying the brain is to understand
how it gives rise to behavior. The extensive body of research
from both the cognitive neuroscience and neuropsychology
fields has revealed various neural correlates underlying a broad
range of human behavior and cognitive performance. These
findings have led us to postulate and predict behavioral out-
comes in the face of biological constraints such as aging and
age-related neurodegenerative diseases. Characterizing matur-
ational or age-related differences across areas of the human
brain, therefore, is necessary to help clarify the neural mechan-
isms underlying the differences in cognitive functions through-
out the adult lifespan. Accordingly, several studies in humans
have shown that aging is strongly associated with morpho-
logical differences in cortical and subcortical structures (Raz
et al. 2005; Raz and Rodrigue 2006; Fjell et al. 2009). However,
regional variation of brain aging is notable; some regions show
accelerated decreases with age, while other regions undergo

decelerated atrophy with age or remain the same across the
lifespan (Storsve et al. 2014; Fjell et al. 2015). Even the shape of
nonlinearity of age-associated differences in gray matter vol-
ume seems to be quite diverse across brain regions (Walhovd
et al. 2011). Taken together, age-related morphological altera-
tions appear to undergo regionally specific patterns.

The relationship between age-related morphological differ-
ences and cognition, however, remains equivocal. Studies have
either found a positive, negative, or no relationship between
gray matter volume and performance in the context of aging
(Van Petten et al. 2004). Often, significant correlations between
cortical thickness and cognition do not survive after controlling
for age (Kochunov et al. 2010), suggesting no direct correlation
between brain structure and cognitive performance, although it
is plausible that age may possess common variance in both the
brain and cognition, and that such commonality differentially
associated with different cognitive domains may account for
the majority of variance. These varying results seem
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incompatible with the basic premise of studying the brain, as
well as with several models of cognitive aging, most notably,
the frontal aging hypothesis (Raz et al. 1998). While the explan-
ation for these inconsistent results is unknown, we present sev-
eral possibilities that may help explain, at least in part, these
mixed findings. One possibility may stem from the fact that
studies often use a single cognitive task to extract the neural
substrates for a cognitive domain. This is based on the assump-
tion that individual cognitive tasks tapping into the same cogni-
tive domain should present exactly the same neural correlates.
A second possibility is that previous studies examining the
brain structure and cognition relationship relied on rather gross
measures of brain structure such as frontal lobe volume.
Considering the extensive findings of functional dissociations
within the prefrontal cortex, and the involvement of distributed
networks across the brain underlying a specific cognitive pro-
cess (e.g., fronto-parietal cortices in the service of cognitive con-
trol), characterizing the brain–cognition relations requires finer
structural measures while encompassing the broad areas of the
brain. Third, some studies report significant interactions
between age group and cortical thickness in predicting cogni-
tion, suggesting that the relationship between cortical thickness
and cognition is stronger in older than in younger adults
(Burzynska et al. 2012). This observation raises the possibility
that brain–behavior correlations may not remain the same
across the lifespan. Lastly, it is important to consider that the
relationship between age-related morphological alterations and
cognition may differ across different cognitive domains, which
may also account, in part, for the varying observations across
studies.

In this study, we aimed to test these possibilities to fully elu-
cidate the brain morphology and cognition relationship across
the lifespan using 416 participants that went through magnetic
resonance imaging (MRI) and a comprehensive neuropsycho-
logical examination. First, we conducted a series of multivariate
analyses to identify the cognitive domains (i.e., latent variables)
underlying multiple cognitive tests and a similar analysis on
thickness measures of the cortical mantle. Cortical thickness
measures were quantified using surface-based segmentation
procedures on high-resolution T1-weighted magnetic reson-
ance images, which enabled us to examine brain morphology
on a fine grain level (on the order of one millimeter over 327 684
separate vertices). We hypothesized that the spatial topography
of cortical thickness correlating with performance on a particu-
lar cognitive task would be more similar to that correlating
with another task if both tasks were associated with the same
underlying cognitive construct. This would indicate that the
topographic similarity and discriminability of cortical thickness
patterns recapitulate the structure revealed by latent cognitive
constructs. Once the latent cognitive constructs were substan-
tiated with the task associated cortical thickness maps, a
unique cortical thickness map was generated for each cogni-
tive domain as its structural substrate. We then tested whether
the obtained cortical thickness map associated with each cog-
nitive domain remained the same across the different age
groups throughout the lifespan: Behavioral studies have found
selective vulnerability of cognitive processes to the aging pro-
cess; for example, fluid abilities decreases with age, while crys-
talized knowledge is relatively preserved with age (Grady and
Craik 2000). Therefore, we hypothesized that: first, neural sub-
strates of different abilities would differ within each age-group,
and second, each cognitive ability would present a different
thickness–cognition association pattern across the life span.
This would suggest that the neural mechanism underlying

cognitive differences and the associated plasticity across the
different ages throughout the life span differs for each cogni-
tive domain.

Materials and Methods
Participants

The data for this study were drawn from three different previ-
ous and ongoing studies in our division. However, both the
neuropsychological examination protocol and scanner acquisi-
tion parameters were carefully monitored throughout the years
to prevent any significant change or modifications. All imaging
data were acquired from the same scanner. Market mailing
was used within a 50 mile radius of Columbia University
Medical Center (CUMC) in New York City, to recruit 416 healthy,
non-demented volunteers ranging in age from 20 to 80. This
recruitment approach is intended to obviate cohort effects that
might be present by using convenience samples. All partici-
pants were compensated for participation. Informed consent
was obtained prior to testing under supervision of the CUMC
Institutional Review Board. All participants were required to be
native English speakers, strongly right-handed, and have at
least a fourth grade reading level. Participants were screened
for MRI contraindications and hearing or visual impairment
that would impede testing. Participants were free of medical or
psychiatric conditions that could affect cognition. Participants
were also disqualified from participation if they had: myocar-
dial infarction any heart disease, brain disorder such as stroke,
tumor, infection, epilepsy, multiple sclerosis, degenerative dis-
eases, head injury (loss of consciousness >5min), mental
retardation, seizure, Parkinson’s disease, Huntington’s disease,
normal pressure hydrocephalus, essential/familial tremor,
down syndrome, HIV Infection or AIDS diagnosis, learning dis-
ability/dyslexia, and ADHD or ADD. In addition, uncontrolled
hypertension, uncontrolled diabetes mellitus, uncontrolled thy-
roid or other endocrine disease, uncorrectable vision, color
blindness, uncorrectable hearing and implant, pregnancy, lac-
tating, cancer within last 5 years, renal insufficiency, untreated
neurosyphillis, any alcohol and drug abuse within last 12
month, recent non-skin neoplastic disease or melanoma, active
hepatic disease, insulin dependent diabetes, any history of
psychosis or ECT, recent (past 5 years) major depressive, bipo-
lar, or anxiety disorder were also excluded from the study.
Careful screening ensured that the elder participants did not
meet criteria for dementia or Mild Cognitive Impairment. A
score greater than 130 was required on the Mattis Dementia
Rating Scale (Mattis 1988). In addition, performance was
required to be within age-adjusted normal limits on a list-
learning test, and participants were required to have no or min-
imal complaints on a functional impairment questionnaire
(Blessed et al. 1968).

A neuroradiologist reviewed each participant’s structural
T1-weighted scan and confirmed that there are no clinically
significant findings for any of the participants. Any significant
findings are conveyed to the participant’s primary-care
physician.

Neuropsychological Examination

Every participant enrolled in the study was administered the
same neuropsychological battery in the following fixed order:
the Mattis Dementia Rating Scale (Mattis 1988), Wechsler Adult
Intelligence Scale (WAIS-III), Letter-Number Sequencing
(Wechsler 1997), American National Adult Reading Test (Grober
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and Sliwinski 1991), Selective Reminding Test immediate recall
(SRT) (Buschke and Fuld 1974), WAIS-III Matrix Reasoning
(Wechsler 1997), SRT delayed recall and delayed recognition
(Buschke and Fuld 1974), WAIS-III Digit-Symbol (Wechsler
1997), Trail-Making Test (Reitan 1978), Controlled Word
Association (C-F-L) and Category Fluency (animals) (Benton and
Hamsher 1989), Stroop Word Color Test (Golden 1975),
Wechsler Test of Adult Reading (Wechsler 2001), WAIS-III
Vocabulary (Wechsler 1997), and WAIS-III Block Design
(Wechsler 1997).

Table 1 lists the indices of the above neuropsychological
exams that were used in our analysis. It also lists the descrip-
tive statistics as well as the number of participants that com-
pleted each test. Only raw scores were used and no
transformation was applied to the data prior to our analysis.
There were less than 5% missing data in each test, except for
the WAIS-III Vocabulary in which there were 10% of the partici-
pants missing. Missing data in each test were replaced with the
median performance of the participants in the same age dec-
ade in all of our exploratory factor analysis. Full information
maximum likelihood method (a more robust technique for
dealing with missing data) is used for imputing the missing

data in the final confirmatory factor analysis. Removing partici-
pants with any missing data did not change the factor struc-
tures but slightly lowered the goodness of fit and gave equal
loadings up to two decimal points.

Structural Imaging Data Acquisition

Participants underwent a T1-weighted magnetization-prepared
rapid gradient-echo (MPRAGE) scan, acquired on a 3.0 Tesla
Philips Achieva MRI scanner. These scans were acquired with
TE/TR of 3/6.5ms and Flip Angle of 8 degrees, in-plane reso-
lution of 256 × 256, field of view of 25.4 × 25.4 cm, and 165–180
slices in axial direction with slice-thickness/gap of 1/0mm.

Structural Image Data Processing

The T1-weighted MPRAGE scans were reconstructed using
FreeSurfer (v5.1.0) (http://surfer.nmr.mgh.harvard.edu/), an
automated segmentation and cortical parcellation software
package (Fischl et al. 2002, 2004). Even though FreeSurfer is a
completely automatic segmentation tool, it is strongly sug-
gested to visually inspect the reconstructed images for any
inaccuracy in the boarders of white and gray-matter as well as
gray-matter and cerebrospinal fluid (CSF). In the case of dis-
crepancy, manual editing of the white and gray matter borders
was conducted per the FreeSurfer manual editing guidelines
(http://surfer.nmr.mgh.harvard.edu/fswiki/RecommendedReco
nstruction). Please note that manual correction in FreeSurfer
does not imply direct intervention to affect the final results.
Instead, final results are always the output of FreeSurfer recon-
struction. FreeSurfer uses the inserted control points as a
guideline to improve its parcellation accuracy. All participants’
cortical surfaces were visually inspected/corrected by a single
technician (third author). These visual inspections were part of
our division’s general pipeline for processing neuroimaging data.
This operator was blind to the demographic of the participants at
the time of inspecting and correcting the segmentations.

A second level of quality control was performed with a sep-
arate operator (first author) by overlaying the borders of the
parcellated cortical and sub-cortical regions on top of the ori-
ginal input structural image. In the case of any detected
inaccuracy the segmented scan was returned for re-run and
correction. The second operator was not involved in the pro-
cess of manually editing the images in order to ensure
consistency.

For a randomly selected 50 participants, FreeSurfer’s test–
retest reliability on repeated T1-weighted scans was 94.71%, as
quantified by the Pearson correlation coefficient. Even though a
single technician inspected all the scans, we used another
trained technician to reprocess fifty randomly selected partici-
pants’ scans and our inter-rater reliability was 99.72% whereas
the intra-rater reliability of our technician was 99.73%.

We used the BrainWash application which is a part of the
Art software package (https://www.nitrc.org/projects/art) to
compute our measure of intracranial volume (ICV) (Ardekani
et al. 1995). Brainwash uses a multi-atlas training technique to
perform skull-stripping and its accuracy is higher than the esti-
mated ICV given in the FreeSurfer package (Buckner et al. 2004).

A vertex-wise cortical thickness map of each participant
was then resampled into a standard space (fsaverage), and
smoothed by a 2D Gaussian kernel (FWHB = 10mm).

Exploratory Factor Analysis: Neuropsychological Tests

Statistical analysis mostly used in-house-developed Python
code. Factor and cluster analysis were performed in R using the

Table 1 Descriptive statistics for neuropsychological performance

na meanb sd min max

WAIS3matRAWc 401 17.26 5.46 3 26
WAISRvocRAWd 377 53.05 11.51 15 70
SRTtote 412 51.86 10.1 17 72
SRTltsf 412 46.16 14.97 0 72
SRTltrg 412 43.52 15.45 0 72
SRTcltrh 412 35.97 17.42 0 72
SRTlasti 412 10.07 1.9 3 12
SRTdelRCLj 407 8.66 2.7 0 19
TMTAtimek 412 28.17 11.9 9.12 104.45
TMTBtimel 408 72.32 44.85 2.53 300
STRPcRAWm 407 72.33 13.99 41 117
STRPcwRAWn 407 42.28 12.19 9 79
WAIS3letnumRAWo 412 11.8 3.32 4 21
CFLrawp 410 42.67 12.33 12 82
ANMLrawq 409 22.49 6.32 2 70
WTARrawr 404 38.77 9.48 8 54
WAISRdgtsymRAWs 411 54.58 14.89 16 93
BLKrawt 396 40.73 13.75 11 68
AMNARTerru 408 13.64 9.33 0 43

aThe number of participants completed for each individual test.
bAverage raw test scores.
cWAIS-III: Matrix Reasoning, Raw Score.
dWAIS-III: Vocabulary, Raw Score.
eSelective Reminding Test: Total Correct.
fSelective Reminding Test: Long-Term Storage.
gSelective Reminding Test: Long-Term Retrieval.
hSelective Reminding Test: Consistent Long-Term Retrieval.
iSelective Reminding Test: Total words recalled on last trial.
jSelective Reminding Test: Delayed Recall.
kTrail-Making Test A: Time.
lTrail-Making Test B: Time.
mSTROOP: Color, Raw Score.
nSTROOP: Color-Word, Raw Score.
oWAIS-III: Letter-Number Sequencing, Raw Score.
pVerbal Fluency: Controlled Oral Word Association, Raw Score.
qVerbal Fluency - Categories: Animals, Total Correct, Raw Score.
rWechsler Test of Adult Reading: Raw Score.
sWAIS-III: Digit Symbol, Raw Score.
tWAIS-III: Blocks Subtest, Raw Score.
uNorth American National Adult Reading Test: Errors.
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psych (Revelle 2010) and lavaan (Rosseel 2012) package and con-
firmed with SAS (http://www.sas.com/presscenter/guidelines.
html).

We first performed a parallel analysis (Ledesma et al. 2007) to
determine the number of factors in our neuropsychological tasks.
The resultant scree plot (Supplementary Fig. S2a) showed the
inflection point at four factors in our neuropsychological data.
However, we also examined the structure, loadings and statistical
fit parameters of the three and five factor models. Supplementary
Table S1 shows the detail of the structure, loadings, and fit statis-
tics for three exploratory principal axis factor (PAF) analyses on
neuropsychological data with three, four and five factor models.
The three factor model combines the speed of processing and
fluid reasoning factors into one single factor, whereas the five fac-
tor model extracts another factor representing speed of process-
ing. Overall, fit statistics and loadings suggested that a four factor
model was a better fit to our neuropsychological data, thus, we
continued the study with four factors.

To examine the robustness of the extracted factor structure
independent of any age effects, we performed the same PAF ana-
lyses after residualizing all of the neuropsychological task per-
formance with age. If the factor structure changes with age, then
it will not be valid for different age groups and therefore, necessi-
tates fitting separate PAF models for each age range.
Supplementary Fig. S3 shows the structure of the PAF with and
without residualizing age from all cognitive tasks performance.
As seen in Supplementary Figure S3 the structure of the factors is
not age-dependent; however, this does not mean that the factor
scores themselves are age independent. In the next section, we
discuss how each cognitive domain changes significantly with
age even though the factor structures are independent of age.

Cortical Thickness Maps

Statistical analysis was mostly done using in-house-developed
Python code. Exploratory cluster analysis was performed in R,
and cluster-wise multiple comparison correction was per-
formed using the FreeSurfer software package (Hagler et al.
2006).

The primary goal of this analysis is to test spatial conver-
gence and divergence of cortical thickness maps that predict
neuropsychological task performance depending on whether
neuropsychological tests belong to the same or different cogni-
tive constructs. To achieve this aim we first obtained a cortical
thickness parametric map that correlates with each neuro-
psychological task performance. Using a multiple linear regres-
sion model, cortical thickness was set as the dependent
variable and neuropsychological task scores along with age,
gender and ICV were set as the independent variables.
Equation (1) shows this linear modeling,

β β β β β ε= + + + + +
( )

Thickness Age Gender ICV TaskScores

1
0 1 2 3 4

This multiple linear regression model was independently fit-
ted to the thickness data at each vertex on the surface of the
cerebral cortex (there are about 150 thousand vertices in each
hemisphere). Performing a set of independent multiple regres-
sion analysis produced a separate parametric map of cortical
thickness for each neuropsychological task. The extent of each
cortical thickness parametric map was given by the collection
of vertices where the thickness values were significantly
(p < 0.05, uncorrected for multiple comparisons) correlated with

the associated task scores. Expression of the cortical thickness
map was given by the β4 values at those significant vertices.

Clustering of Cortical Thickness Maps

To assess the spatial similarity of two cortical thickness para-
metric maps it is necessary to compare both the extent and
expression of the two maps. This was done by obtaining the
Pearson correlation coefficient between the β4 coefficients
across all vertices that were significantly correlated with the
neuropsychological tasks (p-values < 0.05). Computing a correla-
tion across the entire cerebral cortex would be meaningless
since some of the tasks are only associated with small regions
(3–5%) in the cortex. Therefore, masking out the vertices that
were not correlated with any of the two cognitive tasks elimi-
nates the effect of the regions that are irrelevant to either of the
tasks. Computing the Pearson correlation coefficient between
the β4 coefficients of the significant vertices (instead of comput-
ing a purely regional overlap) takes into account the difference
in expression of those regions as well. Using this spatial similar-
ity measure we obtained a spatial correlation matrix (which is
distinct from the cognitive correlation matrix) with each elem-
ent representing the spatial similarity of a pair of cortical thick-
ness maps associated with each pair of the cognitive tasks. We
then performed Ward’s exploratory cluster analysis (Ward 1963)
on the spatial correlation matrix to determine which groups of
cognitive tasks have more similar cortical thickness maps while
also having a substantial spatial dissimilarity with the rest of
the maps. Ward’s exploratory cluster analysis simply groups
the thickness maps that are more similar using sum of square
differences. The convergence and divergence of the cluster
analysis indicate whether or not there is any group of tasks that
have associated cortical thickness maps that are more spatially
similar than the rest of the maps. The number of clusters
reflects the number of groups of tasks that can have spatially
distinct cortical thickness maps. This can also be examined
with the same parallel analysis that we used for neuropsycho-
logical data. The structure of the cluster analysis shows
whether or not the tasks that are loaded onto the same cogni-
tive domain factors have associated cortical thickness maps
which then form a cluster in the analysis.

Confirmatory Factor Analysis on Neuropsychological
Tests and Cortical Thickness Maps

Once we have demonstrated that the same factor structure
obtained by performing exploratory factor analysis on the
behavioral data can be extracted from exploratory cluster analy-
sis of their associated cortical thickness spatial similarities, we
need to obtain the final factor structure that not only fits to both
correlation matrices but also yields to the known rules and mea-
surements of an optimal confirmatory factor structure. Using
this final factor structure, we can identify the cortical regions in
which the corresponding thickness values are significantly corre-
lated with each cognitive domain following the adjustment for
age, gender, and ICV. Before doing this, we derived our final cog-
nitive domain factor structure using the confirmatory factor ana-
lysis with the simplest structure rule and modification index.
Using the results of the exploratory PAF analysis on neuro-
psychological data we selected three tasks for each cognitive
domain that had the highest loadings. To make the simplest fac-
tor structure we also eliminated the tasks that had a significant
loading (standardized loading > 0.3) on more than one cognitive
domain factor. Subsequently, we examined the modification
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index of each of the remaining variables to see whether or not
including the variable will improve the fit statistics. Finally, we
performed a confirmatory PAF analysis to get the new loadings
for our final cognitive domain factor scores. Using the final cog-
nitive domain factors extracted from the confirmatory factor
analysis we obtained the cortical thickness maps associated
with each of the cognitive domain factor scores. These associa-
tions were assessed adjusting for age, sex, and ICV using the
same linear multiple regression model explained in equation (1).
We then identified the clusters of vertices that are large enough
to survive our multiple comparison corrections using the
cluster-wise thresholding method (Hagler et al. 2006). Even
though we expected to observe some overlap between the
regions that predict each cognitive domain factor, there were
many remaining significant and distinct regions that were only
associated with one factor. The phenotyping of the regions and
their relationship with each cognitive domain are essential in
understanding this correlational association and may shed some
light on the neural mechanisms that underlie each cognitive
domain.

Age Effect

Finally we tested whether there are age differences in the cor-
tical thickness maps associated with each cognitive domain. In
other words, we tested not only whether the cortical thickness
maps of the cognitive domains are spatially distinct, also
whether they show varying age-associated relationships with
each cognitive domain across different ages cross-sectionally in
the context of aging. It is noteworthy that both factor structures
and cortical thickness maps were obtained when age was con-
trolled for as a covariate. To do this, we first stratified partici-
pants into three groups: young (20–40 years), mid-age (40–60),
and old (60–80 years). Then we re-computed the cortical thick-
ness maps associated with all four cognitive domains in each
age group accounting for age, gender, and ICV again (equation 1).
Any difference in the extent or expression of the obtained cor-
tical thickness maps for age groups was considered as age-
related alteration in the brain–cognition relationship.
Overlaying cortical thickness maps associated with young, mid-
age, and old groups shows the regions that uniquely predict
cognitive domain performance in each age group as well as the
regions that are common between two or three age groups.
Furthermore, in order to investigate the age-related differences
in the cortical thickness maps of each cognitive domain with
finer temporal resolution we also created a sliding window con-
taining 100 participants which moved from the youngest par-
ticipant to eldest with steps of 20 participants at a time. The
sliding window containing 100 participants covered all 416 age-

sorted participants from 20 years to 80 years with step-size of 20
participants at a time. At each step we computed the cortical
thickness map associated with each cognitive domain and gen-
erated a video clip of significant (p < 0.01, uncorrected) cortical
vertices which show changes with increased age. These videos
illustrate the pattern of age-related alteration of the thickness
maps of each cognitive domain factor. To be able to quantify
these videos and perform statistical inference, we counted the
number of vertices that significantly predict the cognitive
domain factor scores at each step of the sliding window.
Plotting the number of significant vertices that predict each cog-
nitive domain shows the pattern of age-related alterations in
the thickness-cognition relationship. However, these plots do
not show the correspondence between the significant vertices
at each step. In other words, just because the numbers of sig-
nificant vertices are the same at two steps of the sliding window
does not indicate that those vertices belong to the same region.
In order to investigate whether or not the significant vertices at
each step of the sliding window are from the same region or
not, we generated three masks for the significant vertices that
we have obtained for the three age-groups. We then counted
only the number of significant vertices inside each mask and
plotted the pattern of age-related alteration for each of the
masked areas.

Next, using a permutation test we also tested whether or
not each cognitive-domain had a significantly distinctive pat-
tern of age-related differences. We performed a permutation
test to show that the age-related differences in the number of
significant vertices are significantly different from random fluc-
tuation. By permuting the participants’ cognitive ability and
computing the number of significant vertices and repeating it
500 times we generated the null distribution of the number of
vertices that can randomly become significant for each step of
the sliding window. The generated null distribution produces
the probability of having a certain number of significant verti-
ces at each step of the sliding window and gives us a basis for
statistical inference about the significance of our findings.

Results
Characteristics of Participants

Participant demographics are organized by age decades and dis-
played in Table 2. Gender distribution did not differ significantly
across age decades (p > 0.05). For education, only mean differ-
ences between age decades 1 and 6 remained significant after
multiple comparisons correction (p < 0.0005, corrected). We feel
that our restrictive recruiting process is the main cause behind
the high education level in our older participants. On our self-
reported health status questionnaire 96% of our old participants

Table 2 Participant’s demographics by age decades

Decades age range (year) Number of participants Age mean ± STD (years) Gendera Male/Female Educationb Mean ± STD (years)

1: 19–30 101 25.74 ± 2.60 39/62 15.57 ± 2.01
2: 30–40 56 34.55 ± 2.97 20/36 16.52 ± 2.50
3: 40–50 39 45.61 ± 2.56 22/17 15.67 ± 2.70
4: 50–60 49 54.26 ± 3.03 24/25 15.90 ± 2.09
5: 60–70 115 64.78 ± 2.59 55/60 15.98 ± 2.73
6: 70–81 56 73.72 ± 2.64 24/32 17.30 ± 2.46

aχ2 = 6.3772, df = 5, p = 0.27.
bOmnibus one-way ANOVA revealed significant differences between mean education level of the age decades (F = 7.52, p = 0.006). Subsequent pairwise t-tests showed

significant difference in mean education between these age decades: (1,2), (1,6), (3,6), (4,6), and (5,6). With multiple comparisons correction, only difference between

age decades 1 and 6 remained significant (p < 0.0005, corrected).
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reported their health status as good or excellent. Only about
18% of our old participants reported taking medication for
hypertension, 14% for diabetes, and 7% for high cholesterol.

Neuropsychological Test Performance: Raw Test Scores

Performance in most neuropsychological tests showed a signifi-
cant drop (p < 0.005) with advancing age except for CFLraw,
which showed no age-related difference, and vocabulary tests,
which showed better performance with age (AMNARTerr:
p < 0.005, WAISRVocRAW: p < 0.005, and WTARraw: p < 0.05).
Results are shown in Table 1 and Supplementary Fig. S1. In this
figure, the black line and stars illustrate the slope and signifi-
cance of changes between two consecutive age decades whereas
cyan dashed line and stars at the end illustrate the slope and sig-
nificance of change across the entire adult life span (single star:
p < 0.05, double star: p < 0.01, and triple star: p < 0.005).

Identification of Age-Independent Cognitive Domains:
Speed of Processing, Vocabulary, Fluid Reasoning, and
Episodic Memory

In order to assess cognitive domain structures summarizing
individual neuropsychological tests, we conducted exploratory
(PAF) analysis on 19 neuropsychological test scores. Guided by
previous studies (Salthouse and Ferrer-Caja 2003; Salthouse
2009), we fitted our data to a four factor model followed by
three and five factor models as alternative models. According
to Bayesian information criteria the data was well fitted with a
four factor model (χ2 = 74.68, df = 101, TLI = 0.808, CFI = 0.96,
RMSEA = 0.147, BIC = 299) as depicted in Supplementary
Table S1. In addition, the parallel analysis results illustrated in
Supplementary Fig. S2a also confirmed the existence of four
factors in our neuropsychological data. When we repeated PAF
analysis on the age-residualized cognitive data (Supplementary
Fig. S3), the results indicated the same factor structure as the
original one. This indicates that the factor structure remains
invariant across age and can be used for all participants across
the entire adulthood lifespan. Figure 1a shows the correlation
matrix for all of our neuropsychological tests in numbers and
heat-map color code. For illustration purposes, this cognition
correlation matrix was organized in the order of neuropsycho-
logical tests based on exploratory PAF analysis results so that
the number of factors can be seen from this matrix. Figure 1b
shows the simple structure of our exploratory factor analysis.

Cortical Thickness Correlates of Neuropsychological
Tests Recapitulate the Same Cognitive Domains

One of the primary aims of the study was to assess whether
there are commonalities as well as distinctiveness of cortical
thickness patterns in association with cognitive domains
extracted from individual neuropsychological tests. Figure 1c
shows the cortical thickness t-statistic maps associated with
each neuropsychological test on a semi-inflated cortical surface
after accounting for age, gender, and ICV (thresholded at
p < 0.05, uncorrected). The similarity between these cortical
thickness maps was determined by Pearson correlation coeffi-
cient between β coefficients of vertices that were significantly
correlated with at least one of the neuropsychological tests
(p < 0.05). Figure 1d illustrates the computed spatial correlation
matrix in numbers as well as heat-map color code. The order of
tests is the same as shown in Fig. 1a so that the cognition cor-
relation matrix of Fig. 1a can be easily compared with that of

Fig. 1d. From visual inspection, clustering of the tasks’ cortical
thickness similarity was clearly seen for episodic memory,
vocabulary, and speed of processing domains, while clustering
of cortical thickness similarity for fluid reasoning was relatively
weaker.

As a formal quantification, an exploratory cluster analysis was
performed on the spatial correlation matrix (see Supplementary
Fig. S2b for parallel analysis). Figure 1e shows the structure of the
cluster analysis. All cortical thickness patterns associated with
neuropsychological tests cluster onto the same cognitive domain
as determined in the exploratory PAF analysis on neuropsycho-
logical tests, except for CFLraw, ANIMALraw, and
WAIS3letnumRAW. This might be due to the fact that perfor-
mances on these three tests were not strongly associated with a
single cognitive domain as seen in the exploratory factor analysis
on cognitive tests. Overall, cortical thickness patterns
associated with each individual neuropsychological test recapitu-
lated the four cognitive domains. Figure 1f illustrates the final
confirmatory factor structure that was built based on a the sim-
plest structure rule in combinationwith themodification index. It
also shows that both the cognitive correlation matrix (χ2 = 166,
df = 59, TLI = 0.96, CFI = 0.97, RMSEA = 0.066, BIC = 38 066) and the
spatial correlation matrix (χ2 = 577, df = 59, TLI = 0.81, CFI = 0.85,
RMSEA = 0.145, BIC = 12 481) have good fit statistics for this con-
firmatory factor. For the remaining analyses, we used this factor
structure to extract our four cognitive domain scores.

Age-Related Differences in Four Distinctive Cognitive
Domain Scores and Global Cortical Thickness

Although the factor structure of each cognitive domain
remained unchanged with age (i.e., the membership of each
neuropsychological test to each cognitive domain did not
change with age; Supplementary Fig. S3), we examined whether
and how factor scores of each cognitive domain change with
age. Violin plots in Fig. 2 shows the differences in four cognitive
domain scores across age decades. Among the four cognitive
domains identified here, speed of processing (β = −0.03,
r2 = 0.37), fluid reasoning (β = −0.02, r2 = 0.21), and episodic
memory (β = −0.03, r2 = 0.26) were negatively associated with
age, whereas vocabulary (β = +0.01, r2 = 0.04) performance
remained stable or slightly increased with advanced age.
Subject-wise mean cortical thickness across the cortical sur-
faces of both hemispheres declined linearly with increased age
as well (β = −0.004, r2 = 0.39).

Association Between Cognitive Domain Scores and
Cortical Thickness Collapsing Across all Age Ranges

Figure 3 shows the pattern and degree of association between
cortical thickness and each cognitive domain (p < 0.01, without
multiple comparison correction). For speed of processing, better
performance was associated with greater thickness in wide-
spread regions including the primary motor cortex bilaterally,
temporoparietal cortex bilaterally, medial orbital cortex, posterior
cingulate/precuneus, and temporal pole bilaterally. For fluid rea-
soning, higher performance was associated with thicker cortex
bilaterally across the primary sensorimotor cortex, inferior frontal
cortex, insular cortex, lateral occipital cortex, medial orbital
frontal cortex, and posterior cingulate/precuneus. For vocabulary,
the spatial topography of thickness and performance was highly
similar to that of fluid reasoning, in particular in the primary sen-
sorimotor and insular cortices bilaterally. For episodic memory,
the spatial extent of the topography relating thickness to
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performance was relatively restricted: Higher performance was
related to a thicker cortex, bilaterally, in the primary sensory
motor cortex, temporoparietal cortex, and lingual gyrus.

Figure 4 shows the four cortical thickness maps (p < 0.05,
with cluster-wise multiple comparison correction) overlaid on
top of each other to visualize the degree of spatial overlaps and
unique associations with cognition. As illustrated, some regions
such as sensorimotor and visual association cortices are com-
monly associated with more than one cognitive domain.

Age-Dependent Differences in the Cortical Thickness
and Cognition Relationship Follow Distinctive
Variations Across Cognitive Domains

In addition to the cortical thickness and cognition relationship
across all age ranges, we assessed the cortical thickness and
cognition relationship by different age groups to further delin-
eate the effect of age on the brain to cognition relationship.
Figure 5 shows the results of stratifying our participants into
three age groups (young, mid-age, and old) and re-computing
the cortical thickness maps for each cognitive domain (maps

thresholded at p < 0.05, with cluster-wise multiple comparison
correction). As seen in Fig. 5 and Supplementary Fig. S4, we
found substantial age-related differences in the cortical thick-
ness patterns associated with each cognitive domain. In add-
ition, the time course of age-related alterations in the brain to
cognition relationship was unique for each cognitive domain.
Speed of processing was correlated with large cortical regions
in the young and old groups but not in the mid-age group. The
opposite pattern was revealed for episodic memory in the
young and old age ranges; no cortical region was associated
with memory performance, while in the mid-age range there
was a set of regions that correlated with memory performance.
Video 1 provides an illustration of these unique time courses of
changes in the brain and cognition relationship across four cog-
nitive domains in finer temporal resolution using the sliding
window technique.

To quantify the age-related differences in the cortical thick-
ness and cognition relationship in finer age bins, as shown in
Video 1, we performed permutation tests to show whether or
not the observed age-related differences in the brain and cogni-
tion relationship were due to random fluctuations (a mean

Figure 1. Cognitive factor structure recapitulated by spatial similarity matrix of associated cortical thickness maps. (a) Correlation matrix obtained from neuropsycho-

logical test scores in a number and heat-map color code. (b) Structure of four factors obtained by exploratory PAF analysis of the cognitive data for loadings higher

than 0.3 (fit statistics are given in Supplementary Fig. S3). (c) Cortical thickness maps (masked by uncorrected significance level of p < 0.05) associated with each

neuropsychological test when age, gender and ICV are taken into account. (d) Spatial similarity matrix in a number and heat-map color code in which the elements

reflect pair-wise spatial similarity of the cortical thickness maps obtained in part c. Spatial similarity is measured by Pearson correlation coefficient between beta

coefficient of the significant vertices. (e) Exploratory cluster analysis performed on the spatial similarity matrix. (f) Final factor structure obtained from neuropsycho-

logical data, validated with their cortical thickness maps and fine-tuned with modification index and simplest rule. The two side arrows indicated the fit statistics of

the neuropsychological correlation matrix and the spatial similarity matrix on the final factor structure using confirmatory factor analysis.
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value would be 0) or were significantly different from zero.
Figure 6 shows the time course of changes in the brain and cog-
nition relationship as quantified by the number of significant
vertices predicting each cognitive domain. The thickest curve
in each cognitive domain plot shows the total number of sig-
nificant vertices predicting the associated cognitive domain
scores. The vertices showing a significant relationship of cor-
tical thickness with each cognitive domain in young partici-
pants do not show a similar relationship with older age. On the
other hand, the vertices showing a significant relationship with
cognitive performance in older adults are not engaged to the
same degree in young adults. These age-related spatiotemporal
relationships with cognitive performance were observed for all
cognitive domains, but less pronounced for the episodic mem-
ory domain. It is worth noting that each cognitive domain had
a unique spatiotemporal relationship with cortical thickness
across the lifespan. The shaded area in all four figures is the
95% confidence interval for the generated null distribution of
the significant vertices when the participants’ performances
were randomly permuted, confirming that the spatiotemporal
relationship between thickness and cognition varies across the
lifespan.

Discussion
Using a large sample of participants spanning the entire adult
life span, we examined the brain and cognition relationship

across different cognitive domains. We first replicated previous
findings by identifying distinctive cognitive factors drawn from
multiple individual tests. Novel findings are: (1) topographic
patterns of cortical thickness recapitulate the cognitive struc-
tures by showing increased similarity across within-domain
network patterns compared with between-domain network
patterns; (2) convergent and divergent patterns of cortical
thickness subserve distinctive cognitive domains; and (3) vary-
ing age-associated differences in spatial patterns of thickness-
cognition associations across different domains spanning the
age range of the adult lifespan.

To date, there have been no studies testing whether topo-
graphical similarities and discriminability of neural patterns of
cortical thickness recapitulate the latent cognitive constructs that
underlie similar and different cognitive processes. Using multi-
variate analyses applied tomultiple individual tests, we identified
four cognitive constructs that represent different cognitive
domains. Similar latent structures emerged in cortical thickness
patterns, with greater within-domain similarity than between-
domain similarity. These findings provide strong evidence sup-
porting the functional significance of cortical thickness as neural
substrates of cognition, as reported by others (Narr et al. 2007;
Tamnes et al. 2010; Karama et al. 2011; Menary et al. 2013)

Collapsing across all ages, convergent patterns across cogni-
tive domains were notable in the somatosensory and visual
association cortices, which may reflect the common require-
ments for performance of all tests in all cognitive domains (i.e.,

Figure 2. Age-related differences in four cognitive domain scores and overall mean cortical thickness. Black lines indicate differences between means of the two con-

secutive decades and yellow stars show the level of their significance (single: p < 0.05, double: p < 0.01, triple: p < 0.005). Cyan dashed line shows the overall linear

trend of age-related change and cyan stars show the level of their significance (single: p < 0.05, double: p < 0.01, triple: p < 0.005).

8 | Cerebral Cortex



finger responses and visual stimuli processing). Higher-level
association cortices showed more divergent patterns across
four cognitive domains: Right rostral middle frontal and right
lateral orbitofrontal cortices were associated with fluid reason-
ing, right supramarginal gyrus were associated with speed of
processing, and bilateral cuneus and precuneus cortices were
associated with vocabulary. Performance in episodic memory
was associated with thickness of the right fusiform gyrus and
right somatosensory cortex. These results are consistent with
findings in the literature showing brain region and function
relationships, such as the frontal cortex involvement in execu-
tive functions (Schretlen et al. 2000), parietal cortex in working
memory (Owen et al. 2005), occipitotemporal cortex in vocabu-
lary (Plessen et al. 2014; Szwed et al. 2014), and the thickness of
right fusiform gyrus in memory performance (Engvig et al.
2010). While supporting previous findings, our results
further suggest that latent neural constructs as captured by
topographic patterns of cortical thickness recapitulate the
underlying cognitive structures, which does not vary with age.

It is well recognized that some cognitive functions are more
vulnerable to aging than others (Grady and Craik 2000;
Salthouse and Ferrer-Caja 2003). Older adults have greater diffi-
culty in episodic memory and cognitive tasks involving a higher
level of attention and cognitive control, while vocabulary and
semantic memory are well preserved with increasing age.

Figure 3. Cortical thickness maps associated with each cognitive domain score. The expressions are t statistics and non-significant vertices (uncorrected p < 0.01) are

masked out. There were no or few negative relationships between domain scores and cortical thickness. None of the negative relationships survived after correcting

for multiple comparisons.

Figure 4. Overlap between the four cortical thickness maps associated with four

cognitive domain scores. The maps are corrected for cluster-wise multiple com-

parisons (p < 0.05). The colors identify each cognitive domain mask and illus-

trate which cognitive domains overlap at each vertex. Level of significance is

not presented in this figure.
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Although these age-related differences in cognitive functions
may, in part, stem from factors that are not directly related to
cognitive tasks, such as age-varying practice effects and envir-
onmental factors (e.g., time of day), age-related differences in
cognitive functions have been found to be dominant even
when these variables are adjusted for (Anderson et al. 2014;
Salthouse 2014). The present results showing worse perform-
ance in cognitive domains of processing speed, fluid reasoning,
and episodic memory, but preserved vocabulary, in the elders
are consistent with the findings in the cognitive aging literature
(Grady and Craik 2000). The equivalence of the factor structures
in exploratory factor analyses with and without age-
residualization further indicates that the factor structure is
preserved across the adult lifespan, although the factor scores
differ with age.

Based upon age-related atrophy in brain morphological
measures, it can be easily inferred that these age-related mor-
phological differences may account for age-related cognitive
performance. One study showed that when brain morpho-
logical measures were directly related to cognitive performance
during aging, the regions that significantly correlated with cog-
nitive performance were not as extensive as those showing
age-related atrophy (Oh et al. 2013). Furthermore, the brain
morphology and cognition relationship in aging seems to vary
across studies (Van Petten 2004; Burzynska et al. 2012). These

findings raise several possibilities regarding the brain morph-
ology and cognition relationship during aging. One is that the
brain morphology and cognition relationship may not be linear.
Our results strongly support this possibility.

The most striking findings from the present study are that
the spatial topography of regions showing a relationship with
cognitive performance varies in a distinctive manner across
different cognitive domains across different age groups
throughout the lifespan. For speed of processing and fluid rea-
soning, larger areas of the brain correlated with cognitive per-
formance in the young and old groups, while fewer regions
were associated with cognitive performance in the mid-age
group. On the other hand, for episodic memory, the pattern of
relationship was the opposite. The extent of cortical areas
involved in vocabulary remained similar across different age
groups. Our results, therefore, highlight that the association
between specific brain regions and distinct cognitive abilities is
not homogeneous across different age ranges. Given that most
studies that have examined age-related changes in the brain
and cognition relationship have utilized participants in young
and old groups, representing extremes of age range, or only
older adult, it remained unknown how the brain and cognition
relationship evolves across the lifespan. Our findings provide
evidence that the neuromorphological correlates associated
with cognition are not uniform over the course of the adult

Figure 5. Overlap between the cortical thickness maps associated with each cognitive domain score for each stratified age range. The maps are corrected for cluster-

wise multiple comparisons correction (p < 0.05). The colors identify age group masks and illustrate which age group masks overlap at each vertex. Level of signifi-

cance was not presented in this figure.
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Figure 6. The age-dependence of the cortical thickness–cognition relationship illustrated by the number of significant vertices predicting each cognitive domain score

at difference steps of the sliding window, with and without masking out the regions that are shown to be significant at each age group. Positive numbers indicate a

dominantly positive association between cortical thickness and cognition whereas negative numbers show a dominantly negative association between cortical thick-

ness and cognition. A black solid-bold curve shows the total number of significant vertices (uncorrected p < 0.05) predicting each cognitive domain at each step of the

sliding window. A blue dash-line curve shows the number of significant vertices within the regions where thickness significantly predicted young participants per-

formance (shown in Fig. 5. Red/green dashed-line curves show the number of significant vertices within the regions where thickness significantly predicted old/mid-

age participants’ performance (shown in Fig. 5). A magenta bold-solid line shows the mean of the number of vertices predicting cognition when participants are per-

muted at each step of the sliding window; the yellow color shaded area depicts 95% confidence interval.

Brain Cognition Correlation Across Lifespan Razlighi et al. | 11



lifespan. These findings are in contrast to our recent findings in
brain activation measures in which brain activation networks
that were derived in young participants without reference to
behavioral performance seem to maintain their task-specific
brain activation patterns in middle-aged and older participants
(Habeck et al. 2015). Therefore, it is possible that brain activation
and morphological measures may complement each other to
explain age-related cognitive differences, as implicated by other
studies (Hedden et al. 2014). Our findings also suggest that each
cognitive domain may have a different causal pathway that
affects the thickness–cognition relationship at different ages.

Another potential explanation for our findings is that during
young age the natural variability in cortical thickness in part
underlies individual variability in performance. Age-related
pathological factors may affect different regions across the life-
span, thus altering these brain behavior associations. Even
though this hypothesis would explain the age-related differ-
ences in spatial patterns of cortical thickness associated with
speed of processing and fluid reasoning, it fails to explain the
age-related differences in spatial patterns of cortical thickness
associated with episodic memory and vocabulary. Those find-
ings suggest that other brain changes, not studied here, have
their own variable changes across the life course and interact
with cortical thickness to partially determine behavior.

When there are differences in the thickness–cognition rela-
tionship at each age group, it is a common practice to introduce
an age and cognition interaction to investigate such an effect.
However, our secondary analyses demonstrated that adding
the interaction term into the equation (1) did not reveal most of
the findings that were present in our age stratified analysis.
This might be because age-related alterations in the thickness–
cognition relationship are extremely complex and non-linear,
as depicted in Supplementary Video 1 and Fig. 6. Given that
adding an interaction term only accounts for linear interactions
in the thickness data, the residual complexity will still remain
unexplained. Using much finer temporal resolution, our results
on the brain morphology and cognition relationships provide
strong evidence for the age-related variations in the brain and
cognition relationship throughout the lifespan. We also exam-
ined the possible non-linear age effect (quadratic, square, and
logarithmic) on cortical thickness throughout the entire cortex
and used Bayesian information criteria to evaluate the good-
ness of fit. Except for a small region in the anterior tip of the
right lateral occipital cortex, all remaining vertices lost their
goodness of fit (measured by Bayesian information criteria) by
including any of the aforementioned non-linear terms, indicat-
ing that the linear model fit was suitable in explaining our data.

Thickness of cortical gray matter measured by T1-weighted
MRI is a macroscopic measure which is considered to roughly
estimate the number of neurons, dendritic arborization and
spines, synapses, and glial cells (la Fougere et al. 2011). Vertex-
wise volume of the cortical gray matter and the area of the cor-
tical surface as well as gyrification index have also recently
been considered as macroscopic neuroanatomical measure-
ments of the brain morphology. Repeating our analysis to com-
pute the neural correlates of the four cognitive domains using
vertex-wise cortical area and local gyrification index revealed
no significant relationship with any of the four cognitive
domains, see Supplementary Fig. S5a. However, vertex-wise
cortical volumes showed an association only with a subset of
the regions reported in Fig. 3 albeit with much lower level of
significance, see Supplementary Fig. S5b. One might predict
such results due to the fact that the definition of area on each
vertex is rather arbitrary and is completely determined by the

out-facing voxels’ orientations and subsequent processes (e.g.
smoothing and topographical defect removal), whereas thick-
ness has a concrete definition at each vertex (the shortest phys-
ical distance between the white/gray mater border and gray/
CSF border). However, it should be emphasized that regional
area may be more meaningful than vertex-wise area since the
borders of each region are defined based on concrete neuroana-
tomical landmarks. The results for cortical volume are also un-
surprising since vertex-wise based cortical volumes are the
product of the associated thickness and area. Gyrification index
on the other hand taps into a completely different morpho-
logical measurement that often cannot be measured by area or
thickness. This measure is extremely smooth throughout the
cortical mantel and consequently it would require an unusually
large area to survive the cluster-wise multiple comparisons cor-
rection. That is why none of its association with cognition
remained significant after correcting for multiple comparisons.

Microscopic studies of the aging brain support morphomet-
ric changes in these neuroanatomical measures. Morphological
differences and changes in association with increasing age,
however, also occur in white matter structures in the form of
reduced white matter integrity and increased white matter
hyperintensities (Raz and Rodrigue 2006). Many studies using
functional MRI have found age-related functional changes
while participants are engaged in cognitive tasks or during the
resting period, leading to several cognitive aging models
(Cabeza 2002; Reuter-Lorenz and Cappell 2008; Stern 2009;
Reuter-Lorenz and Park 2014). Therefore, changes in different
brain markers may collectively contribute to age-related cogni-
tive differences across the adult lifespan, although the dynam-
ics of contributions by each brain marker across the lifespan
are currently unclear. Future studies are needed to more clearly
understand the associations across multiple brain markers
throughout the course of the adult lifespan.

Since two of the datasets used in our analysis were drawn
from studies that recruited only from two decades (young: 20–
30 years and old: 60–70 years), it was not possible to have an
equal number of participants in each age range. We either had
to balance the number of participants and accept the unequal
age-range or stick to the equal age-range and tolerate the
unequal number of participants in each age group. We choose
the latter because the focus was on age categorization. This
makes out mid-age group to have about 30% less participants
than the young and old groups (about 100 participants versus
150 participants in young and old group). This unbalanced
number of participants may raise the possibility that our find-
ings for cortical thickness correlate of speed of processing and
fluid reasoning are due to disparate statistical power in each
age group. While we acknowledge that such a possibility exists,
we need to emphasize that for memory exactly the opposite
order was observed and only the mid-age group (with less stat-
istical power) showed a significant relationship. In addition, it
should be noted that significantly different regions’ cortical
thickness were associated with cognition at each age group,
which strongly lowers the possibility of the findings being
result of differences in statistical power.

Our recruitment targeted only cognitively intact a subjects.
We believe that this resulted in our old group being signifi-
cantly healthier and more educated than any normative sam-
ple of the population. This group of unusually healthy older
subjects might preclude detection of effects that might other-
wise be apparent in other normative samples; therefore, extra
caution needs to be taken when comparing our results for old
subjects with other studies.
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Our study is based on cross-sectional data, which may be
subject to confounding factors such as cohort effects (Schaie
et al. 2005). Salthouse (2013), however, showed that between-
cohort differences are as large as within-cohort age-related dif-
ferences in cognition across ages. Therefore, it is very unlikely
that age-related differences in cognition observed in our study
are due solely to generational differences. Nevertheless, we feel
the findings of this study, in particular the age-related differ-
ences in the cortical-thickness and cognition relationship,
needs to be interpreted cautiously since aging is a within-
individual process and cannot be fully characterized with
cross-sectional data. Another concern that may arise is
whether examining similarity and discriminability of the
network-patterns derived from univariate correlations of cogni-
tive outcome measures is valid as an independent demonstra-
tion of plausibility. It could be argued that it may simply be
expected that cortical thickness patterns would mirror the cog-
nitive outcomes. However, this concern falls prey to the com-
mon fallacy of transitivity of correlations: That is, two variables
that are correlated are not constrained in the manner in which
they relate to a third variable. In other words, even though
cognitive variables A and B are correlated (e.g., Digit-Symbol
and Stroop tests), nothing follows for the correlation of the
structural correlates of A and B (across vertices). An unequal
number of participants across age decades may potentially
comprise differential statistical power across different
age ranges. However, the differential spatiotemporal patterns
that were present across all four cognitive domains do not sup-
port this possibility. In addition, our separate analyses equating
the number of participants across all age decades resulted
in the same pattern of spatiotemporal changes. Nevertheless,
the present findings of the brain and cognition relationship
need a validation with longitudinal data to draw the final
conclusions.

In this study, we report novel findings on age-related dif-
ferences in the relationship between brain morphology and
cognition across the adult lifespan. These differences are
observed throughout the course of the adult lifespan and the
patterns of these differences vary across different cognitive
domains. These differences cannot be accounted for by differ-
ent neural substrates associated with individual cognitive
tests, because the patterns of cortical thickness revealed in
the present study preserve the similarity and dissimilarity of
cognitive structures underlying individual cognitive tests. This
age-related variability in the brain–cognition relationship
detected through the lifespan approach, therefore, provides us
an invaluable insight that could not have been achieved by
examining only extreme age groups. These findings also sup-
port the idea of constant neural plasticity occurring through-
out the lifespan. Furthermore, our findings highlight that the
brain morphology and cognition relationship is remarkably
dynamic and complex than previously considered even before
“old” age is reached.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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