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Abstract: Advancing age results in altered cognitive and neuroimaging-derived markers of neural integrity.
Whether cognitive changes are the result of variations in brain measures remains unclear and relating the
two across the lifespan poses a unique set of problems. It must be determined whether statistical associations
between cognitive and brain measures truly exist and are not epiphenomenal due solely to their shared rela-
tionships with age. The purpose of this study was to determine whether cerebral blood flow (CBF) and gray
matter volume (GMV) measures make unique and better predictions of cognition than age alone. Multivari-
ate analyses identified brain-wide covariance patterns from 35 healthy young and 23 healthy older adults
using MRI-derived measures of CBF and GMV related to three cognitive composite scores (i.e., memory, fluid
ability, and speed/attention). These brain-cognitive relationships were consistent across the age range, and
not the result of epiphenomenal associations with age and each imaging modality provided its own unique
information. The CBF and GMV patterns each accounted for unique aspects of cognition and accounted for
nearly all the age-related variance in the cognitive composite scores. The findings suggest that measures
derived from multiple imaging modalities explain larger amounts of variance in cognition providing a more
complete understanding of the aging brain. Hum Brain Mapp 34:3267–3279, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Advancing age is associated with concurrent changes in
cognition, cerebral blood flow (CBF) and gray matter vol-
ume (GMV), but causal relationships among the three
have not been fully established. Age-related differences in
cognition include the domains of memory, fluid ability,
and processing speed [Salthouse, 1996, 2004]. Age-related
cognitive changes accompany age-related alterations of
CBF, as measured regionally and globally by positron
emission tomograhy (PET) and magnetic resonance imag-
ing (MRI) [Buijs et al., 1998; Chen et al., 2011; Duara et al.,
1984; Hagstadius and Risberg, 1989; Marchal et al., 1992;
Martin et al., 1991; Pantano et al., 1984; Parkes et al., 2004],
but there has been limited investigation of direct
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relationships between age-related CBF and cognitive
changes in healthy individuals [Bertsch et al., 2009; Duara
et al., 1984; Heo et al., 2010; Rabbitt et al., 2006]. The recent
work by Bertsch et al. [2009] demonstrated negative associ-
ations between CBF and task performance among both
young and older adults.

The relationship between age and GMV, globally and
regionally, has received much broader investigation (for
reviews see Raz and Rodrigue [2006]; Sowell et al., [2004]).
For instance, age-related GMV changes are associated with
cognitive performance across multiple domains [Brickman
et al., 2007; Gong et al., 2005; Kaup et al., 2011; Reuben
et al., 2011; Salthouse, 2011; Schretlen et al., 2000; Taki
et al., 2011; Zimmerman et al., 2006]. A recent review of the
structural correlates of cognition across that lifespan dem-
onstrated that the direction of these changes is in dispute
[Kaup et al., 2011]. Most studies demonstrated positive
relationships between GMV and cognitive performance:
larger brain volume associated with better cognitive per-
formance. However, there were also findings of negative
relationships and null results. Furthermore, this review
found that relationships between structure and cognition
remained stable across the lifespan, supporting the concept
of neural reserve [Stern, 2009; Stern et al., 2005].

The purpose of this study was to examine the degree to
which cognitive changes across the lifespan are explained
by age and brain-wide covariance patterns of CBF and
GMV. Before addressing this aim, it is important to estab-
lish that any identified brain-cognitive relationship truly
exists and does not reflect the alternative possibility that it
is the result of an epiphenomenal association between the
measures, that is, a secondary result, due to their shared
relationships with age [Salthouse and Ferrer-Caja, 2003].
One question is whether relationships between neural
(CBF and GMV) and cognitive measures are age-depend-
ent or age-independent? In addition, do the brain meas-
ures have unique associations with cognition? These
questions were addressed using guidelines and criteria
put forth by Kraemer et al. [2001] and Salthouse [2011].

One approach of finding brain correlates of cognition
uses multivariate techniques to identify brain-wide neural-
cognitive patterns [Alexander et al., 1999]. From this class
of techniques, we used the multivariate covariance
approach called scaled subprofile modeling (SSM) [Moeller
et al., 1987]. This method successfully derived structural
and functional patterns related to aging [Alexander et al.,
2006; Bergfield et al., 2010; Brickman et al., 2007; Moeller
et al., 1996] and to performance on cognitive measures
across the lifespan [Alexander et al., 1999]. Focusing on
brain-wide MRI measures of CBF and GMV, we identified
separate covariance patterns associated with three cogni-
tive domains: memory, fluid ability, and speed/attention
across healthy young and older adults. Identification of co-
variance patterns, as opposed to identification of individ-
ual regions provides a potential brain-wide reproducible
metric [Brickman et al., 2008] that may assist in dissociat-
ing normal age-related cognitive changes from pathologi-

cal aging [Bergfield et al., 2010; Spetsieris and Eidelberg,
2011]. This approach provides one summary measure per
covariance pattern, per individual, for use in subsequent
statistical analyses.

We hypothesized that CBF and GMV pattern expres-
sions have age-dependent and age-independent relation-
ships with cognition and that these relationships are not
epiphenomenal due to strong, but independent, relation-
ships of the brain and cognitive measures with age group.
Furthermore, although there is evidence for a causal rela-
tionship between CBF and GMV [Fierstra et al., 2010],
there is also evidence of dissociations between age-related
changes in CBF and GMV [Chen et al., 2011]. We therefore
hypothesized that CBF and GMV measures will each have
their own unique predictive relationships with the cogni-
tive measures. We used commonality analyses to summa-
rize results by parsing the unique and common variance
in cognitive measures associated with age, CBF, and GMV
[McPhee and Seibold, 1979; Zientek and Thompson, 2006].
These analyses determined whether CBF, GMV, or their
combination accounted for the most amount of variance in
cognition and whether they are stronger correlates of cog-
nition than age alone.

MATERIALS AND METHODS

Study Sample

Data came from ongoing neuroimaging studies of nor-
mal aging conducted within the Cognitive Neuroscience
Division of the Taub Institute at Columbia University. Par-
ticipants were recruited through random market mailings
to individuals living within 10 miles of the medical center
campus in northern Manhattan. All MRI acquisition and
cognitive testing were performed during a single visit. Ini-
tial participant groups included 35 healthy young and 26
healthy older adults, but data from three older subjects
were not used due to scan artifact in their arterial spin la-
beled (ASL)/CBF images. Thus, the final sample comprises
35 young adults (mean age � S.D. ¼ 24.34 � 3.19; 14M/
21F) and 23 older adults (mean age � S.D. ¼ 66.39 � 4.11;
9M/14F) who were similar in education (Young mean �
S.D. ¼ 15.74 � 1.63; Older mean � S.D. ¼ 16.17 � 1.82;
P > 0.05). Participants were screened with medical, neuro-
logical, psychiatric, and neuropsychological evaluations to
ensure that they had no neurological or psychiatric disease
or cognitive impairment. The screening procedure
included a detailed interview that excluded individuals
with a self-reported history of major-or unstable medical
illness, hypertension, significant neurological history (e.g.,
epilepsy, brain tumor, and stroke), history of brain trauma
with a loss of consciousness for greater than 5 min, history
of diagnosis of an Axis I psychiatric disorder [American
Psychiatric Association, 1994]. Individuals taking psycho-
tropic medications were also excluded. Older participants
were evaluated for dementia with the Mattis Dementia
Rating Scale [Mattis, 1988] and those scoring below 135
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were excluded. Performance on subsequent neuropsycho-
logical testing was further used to rule out dementia or
mild cognitive impairment. Individuals with well-man-
aged diabetes were eligible for participation. Written
informed consent approved by the local ethics committee
of Columbia University was obtained from all participants.

Cognitive Measures

Based on previous work from our laboratory, three cog-
nitive composite scores were created for memory, speed/
attention, and fluid ability as derived from confirmatory
factor analyses of multiple cognitive tests per cognitive do-
main [Siedlecki et al., 2009].

Memory

Memory was defined as the latent construct score of
three subscores of the selective reminding task (SRT—total,
delayed recall, and delayed recognition; [Buschke and
Fuld, 1974]). For this task, participants were read a list of
12 words and were asked to recall the words after each of
six trials. After each recall attempt, participants were
reminded of the words they failed to recall. SRT-total is
the total number of recalled words for all trials and has a
maximum score of 72. SRT-delayed recall refers to the
number of correctly recalled words after a 15-min delay.
SRT-delayed recognition refers to the number of correctly
recognized words when each of the 12 words is presented
with three distracters.

Speed/attention

Speed/attention was defined as a construct of the
Wechsler adult intelligence scale-revised (WAIS-R; [Wechs-
ler, 1981]) digit symbol subtest and the trail making test
[Reitan and Wolfson, 1993]. The digit symbol test involves
writing the symbol corresponding to each single-digit in a
list of numbers using a key at the top of the test form as
quickly as possible. The time to complete the Trails A
(numbers only) from the trail making test was used.

Fluid ability

Fluid ability generally refers to novel problem solving
and tests of abstract reasoning. The Raven’s matrix reason-
ing tests tend to have the highest loadings on this con-
struct, while a number of studies have found that fluid
ability has strong relationships to WCST [Salthouse, 2005]
and to working memory, including the letter number
sequencing [Salthouse, 2005; Salthouse and Pink, 2008].
Fluid ability was defined as a construct comprising the
WAIS-III [Wechsler, 1997] letter number sequencing subt-
est and the matrix reasoning test [Raven, 1962]. The letter
number sequencing test involves participants repeating
verbally presented lists of intermixed letters and numbers
in alphabetical and numerical order. The list lengths

increase with each subsequent trial. The matrix reasoning
subtest requires participants to determine which pattern in
a set of eight possible patterns best completes a missing
cell of a matrix.

MRI Data Acquisition

All scanning took place on a 1.5 Tesla Philips Intera MRI
scanner. CBF was calculated from an arterial spin labeling
MRI sequence and GMV from a T1-weighted sequence.
Spin-echo continuous ASL (SE-CASL) was acquired while
subjects were instructed to rest quietly with eyes open. The
specific parameters included: labeling duration ¼ 2,000 ms,
postlabeling delay (PLD) ¼ 800 ms, echo time/repetition
time ¼ 35 ms/5,000 ms, flip angle ¼ 90�; 64 � 58 acquisi-
tion matrix; in-plane resolution ¼ 3.4 mm � 3.4 mm; slice
thickness ¼ 7.4 mm; gap ¼ 1.5 mm; 15 transaxial slices per
volume. Slices were acquired in ascending mode (inferior
to superior) with a slice acquisition time of 64 ms resulting
in an effective PLD range of 800–1,760 ms. The total CBF
image pairs were 30 per participant.

Labeling induced the flow-driven adiabatic inversion of
the water spins with a block-shaped radio-frequency pulse
2,000 ms long and 3.5 lT amplitude applied in the pres-
ence of a z-gradient 2.5 mT/m [Alsop and Detre, 1998].
Off-resonance effects were corrected for with an amplitude
modulated (sinusoidal, 250 Hz) radio-frequency pulse of
the same power and gradient as applied prior for collec-
tion of the control image [Alsop and Detre, 1998]. The
labeling plane was positioned 40 mm inferior to the lower
edge of the imaging volume.

T1-weighted MP-RAGE images were acquired (echo
time/repetition time ¼ 3 ms/25 ms; flip angle ¼ 45�; 107
slices; 256 � 256 grid; FOV ¼ 230 mm � 230 mm � 186
mm).

Image Processing

Study specific normalization template

Structural images from a randomly selected subsample
of 26 young adults and all 26 elders with high quality
structural images were used in template creation. The sub-
sample of young adults ensured that the template was not
biased toward either age group. Although the final analy-
ses used 23 of the older adults, the template derivation
used structural data from 26, the maximal number of older
participants. The T1-weighted images were segmented into
four probability classes: gray matter, white matter, cere-
brospinal fluid (CSF), and other tissues using the unified
segmentation routines in SPM5 (Wellcome Department of
Cognitive Neurology) [Ashburner and Friston, 2000, 2005;
Good et al., 2001]. Initially, the segmented images
remained in native space, and then a 12 parameter linear
affine transformation was calculated to transform all the
original native images to standard space defined by the
Montreal Neurological Institute. This transformation was
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applied to the gray matter, white matter, and CSF proba-
bility images. A mean image within each tissue class and
across both age groups was calculated to create probability
maps for each of the three tissue classes. These three prior
probability maps constitute the study specific normaliza-
tion template.

Gray matter volume

The T1-weighted anatomical images were first segmented
into three tissue types: gray matter, white matter, and CSF,
using the unified segmentation routines in SPM5 (Well-
come Department of Cognitive Neurology) [Ashburner and
Friston, 2000, 2005; Good et al., 2001] and the study-specific
normalization template described above. This procedure
uses a single generative model to correct for image inten-
sity nonuniformity (bias), registration with tissue class pri-
ors, and tissue classification. The result is a classification
for each voxel based on the probability that it belongs to
each tissue type. Each image segment therefore contains
measures of tissue densities in each voxel location. The
images were spatially normalized to the study specific nor-
malization template using 12 degrees of freedom affine
transforms and nonlinear warping. Once warped, the
images were modulated using the Jacobian determinant,
which converts the density images into measures of abso-
lute volume at each voxel location [Good et al., 2001]. The
resultant modulated, spatially normalized gray matter
probability maps were spatially smoothed with an isomet-
ric Gaussian smoothing kernel of 8 mm3 at its full-width at
half-maximum (FWHM) to result in GMV maps.

Cerebral blood flow

ASL images were processed using the ‘‘ASLtbx’’ toolbox
from the laboratory of Dr. John Detre [Wang et al., 2008].
Using the recommended preprocessing analysis stream,
the following steps were performed: (1) image pairs (label
and control) were separately realigned to the mean of the
control images, (2) the mean of the control images was
used to calculate the coregistration parameters required to
bring the CBF images into the same space as each partici-
pant’s high-resolution anatomical image, (3) masked to
exclude all locations outside the brain using a mask
derived from the high-resolution anatomical image using
the brain extraction tool [Smith, 2002], (4) spatially
smoothed using a Gaussian kernel of 8 mm3 at its FWHM,
(5) CBF images for each label/control pair were calculated
using the simplified two-compartment model [Alsop and
Detre, 1996; Wang et al., 2002] using simple subtraction
between the image pairs [Aguirre et al., 2005], (6) image
pairs were investigated to eliminate global spikes which
may result from spatial location offset due to head motion
as defined by the ASLtbx, (7) mean CBF across all image
pairs not excluded in the previous step was calculated,
and (8) all CBF images were spatially normalized to the
study specific template.

Statistical Analyses

Scaled subprofile modeling

Multivariate analyses were performed to identify brain
patterns of CBF and GMV related to each cognitive measure
using the SSM approach implemented in the principal com-
ponents analysis (PCA) toolbox (http://groups.google.-
com/group/gcva) [Habeck et al., 2005; Habeck and Stern,
2007]. The analyses were conducted separately for each of
the two brain measures and each of the three cognitive
measures. All images were first masked using a group level
gray matter mask including only voxels with a greater than
20% probability of being gray matter. The resultant masked
images from all participants in each image modality were
subjected to SSM analyses.

Briefly, a PCA is performed on the data after the subject
means were subtracted from each voxel without further
transforms, producing a series of principal component
images and their respective subject scaling factors (SSF).
These scaling factors reflect the degree to which each indi-
vidual expressed each component image. The covariance
patterns relating CBF and GMV to the cognitive data for
all three domains were calculated by regressing the opti-
mal collection of SSF’s taken from the first 12 principle
components, using the Akaike information criterion crite-
ria [Burnham and Anderson, 2002] against the cognitive
scores in separate multiple regression models. The stability
of the voxels within the resultant covariance patterns were
tested using 1,000 bootstrap resamples. Voxels with boot-
strap estimates of |Z| > 1.96, P (two-tailed) < .025, were
considered significant network nodes. This analysis pro-
vided localization of the key ‘‘nodes’’ of the covariance
pattern [Habeck et al., 2005]. For display purposes only, a
cluster extent threshold of 50 voxels was used.

Criterion models

1. Are brain measures truly related to cognition or are
the brain and cognitive variables related to each other
due to their strong correlations with age?
A series of regression models was calculated with
each cognitive composite score serving as a separate
dependent variable. The independent variables were
the individual expressions of the brain patterns
entered first and age group entered in a second step.

2. Are relationships between the neural measures (CBF
and GMV) and the cognitive measures age dependent
or age independent?
An ANOVA model for each cognitive measure and each
brain measure was calculated with the cognitive com-
posite score serving as the dependent variable. The in-
dependent variables were age group, expression of a
brain pattern, and their interaction. A significant inter-
action term indicates that expression of the brain pattern
significantly differs between the age groups suggesting
that it is not representative of both age groups.
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3. Do CBF and GMV each account for unique aspects of
cognition?
To test whether CBF and GMV capture independent
aspects of cognition, three ANOVA models were used
using each of the cognitive composite scores as de-
pendent measures and age group, CBF and GMV as
the independent measures. Support for expression of
both CBF and GMV patterns accounting for unique
aspects of cognition is demonstrated by both brain
measures being significant in the models.

Commonality analysis

Commonality analysis is a procedure that decomposes
variance to determine the unique and nonunique relation-
ships between independent and dependent variables
[McPhee and Seibold, 1979; Seibold and McPhee, 1978;
Zientek and Thompson, 2006]. The variables of interest
include the cognitive variables (C) as the dependent meas-
ures and age (A), individual expression of the CBF pattern
related to the cognitive measure (CBF), individual expres-
sion of the GMV pattern related to the cognitive measure
(GMV) as independent variables. The calculations are as
follows:

UA ¼ R2ðA;CBF;GMVÞ � R2ðCBF;GMVÞ

UCBF ¼ R2ðA;CBF;GMVÞ � R2ðA;GMVÞ

UGM ¼ R2ðA;CBF;GMVÞ � R2ðA;CBFÞ

CA;CBF ¼ R2ðA;GMVÞ þ R2ðCBF;GMVÞ
�r2ðGMVÞ � R2ðA;CBF;GMVÞ

CA;GMV ¼ R2ðA;CBFÞ þ R2ðCBF;GMVÞ
�r2ðCBFÞ � R2ðA;CBF;GMVÞ

CCBF;GMV ¼ R2ðA;CBFÞ þ R2ðA;GMVÞ
�r2ðAÞ � R2ðA;CBF;GMVÞ

CA;CBF;GMV ¼ R2ðA;CBF;GMVÞ þ r2ðAÞ þ r2ðCBFÞ
þr2ðGMVÞ � R2ðA;CBFÞ � R2ðA;GMVÞ � R2ðCBF;GMVÞ:

The variables in parentheses correspond to the independ-
ent variables used to predict the dependent variable; Ui

represents unique variance of the dependent variable
accounted for by variable i; Ci,j is the variance in the de-
pendent variable that is common to both variables i and j;

R2(X,Y,Z) represents the total variance accounted for in
the dependent variable by the three independent measures
(X,Y,Z) using multiple regression; r2(X) represents the
squared correlation between the dependent variable and
the independent variable: X. These measures are summar-
ized in the Venn diagram shown in Figure 1A.

RESULTS

Cognitive Scores

The correlation coefficients between the cognitive com-
posite scores and each variable comprising the scores are
shown in Table I.

SSM Analyses

The SSM analyses identified a pattern of CBF and GMV
associated with each cognitive composite score. Expression
of the identified brain patterns was significantly related to
the cognitive composite scores. In all cases, the brain pat-
terns accounted for more variance in cognitive composite
scores than age group, see Table II. Scatter plots of the
cognitive scores and the predicted scores by both CBF and
GMV covariance patterns are shown in Figure 2. It is im-
portant to emphasize that covariance patterns are derived
using all voxels within the brain and Figure 3 highlights
brain areas that most reliably contribute to the patterns.
The similarity of the covariance patterns was measured
using spatial correlation, Supporting Information Table SI.

Memory Covariance Pattern

The CBF and GMV brain patterns of memory are dis-
played in Figure 3A, B and the voxel locations of the key
nodes of the networks are in Supporting Information
Tables SII and SIII. Expression of the CBF pattern
accounted for 44.4% of the variance in the memory scores,
expression of the GMV pattern accounted for 36.9%, and
age accounted for 32.1%.

Speed/Attention Covariance Pattern

The CBF and GMV brain patterns of speed/attention are
displayed in Figure 3C, D, and the voxel locations of the
key nodes of the networks are in Supporting Information
Tables SIV and SV. Expression of the CBF pattern
accounted for 24.7% of the variance in the speed/attention
scores, expression of the GMV pattern accounted for 30.5%
and age accounted for 24.3%.

Fluid Ability Covariance Pattern

The CBF and GMV brain patterns of fluid ability are dis-
played in Figure 3E, F, and the voxel locations of the key
nodes of the networks are in Supporting Information

r Brain-Cognition Relationships and Age r

r 3271 r



Tables SVI and SVII. Expression of the CBF pattern
accounted for 35.8% of the variance in the fluid ability
scores, expression of the GMV pattern accounted for 32.1%
and age accounted for 21.1%.

Criterion Models Results

Criterion 1: Brain patterns significantly related to the
cognitive composite scores were identified. Testing a series
of regression models indicated that the relationships
between expression of the brain patterns and the respec-
tive cognitive composite scores remained significant after
age group was entered into the models, Tables II–IV. This
finding provides support that the relationship between
expression of the brain patterns and the cognitive compos-
ite scores is not an artifactual result due to strong correla-
tions with age group.

Criterion 2: The relationships between the neural (CBF
and GMV) covariance patterns and the cognitive measures
were age independent as demonstrated by nonsignificant
interaction terms in all ANOVA models, Tables II–IV.

Criterion 3: The two brain measures each accounted for
unique aspects of cognition. Expression of the CBF and

GMV covariance patterns each accounted for large, unique
aspects of the memory and fluid ability. For the speed/
attention score only the GMV brain measure was signifi-
cant, Table V. Tests of the interactions between age group
and the neural measures were nonsignificant for all six
combinations of neural and cognitive measures, Support-
ing Information Table SVIII.

Commonality Analysis

Commonality analyses used the percent variance
accounted for (R2) from the analyses presented in Tables
II, III, and V to summarize and extend the above results.
In addition, the calculations required the R2 values for
regression models of memory, fluid ability, and speed/
attention including the respective CBF and GMV predic-
tors (R2(CBF,GMV)), these values were 0.498, 0.442 and
0.350, respectively.

For the memory composite score, see Figure 1B, the
CBF, GMV, and age group variables accounted for 50.0%
of the total variance and age group accounted for only
0.2% unique variance. For the speed/attention composite
score, see Figure 1C, the CBF GMV and age group

Figure 1.

Venn diagrams summarizing commonality results. (A) General four variable Venn diagram where

labels correspond to the (U)nique and (C)ommon variance components of the cognitive variable

as calculated in the text. Results for the (B) memory composite score, (C) speed/attention com-

posite score, and (D) the fluid ability composite score. Values under each Venn diagram corre-

spond to the total variance accounted for in the respective cognitive measure.
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variables accounted for 35.2% of the total variance and age
group accounted for only 0.2% unique variance. For the
fluid ability composite score, see Figure 1D, the CBF,
GMV, and age group variables accounted for 45.9% of the
total variance and age group accounted for only 1.7%
unique variance. Notably, for fluid ability, there are nega-
tive variance values suggesting that one of the variables
acted as a ‘‘suppressor’’ variable, as discussed below. An
alternate presentation of the commonality results using bar
graphs of relative variance accounted for is included in
Supporting Information materials, Supporting Information
Figures S1–S3.

DISCUSSION

We identified CBF and GMV covariance patterns related
to (associated with) performance on three cognitive com-
posite scores. These covariance patterns accounted for age
group-dependent and independent variance in the cogni-
tive scores. We found that the relationship between the co-
variance patterns and cognition was similar across the age
groups. Finally, the CBF and GMV brain patterns each
accounted for their own significantly large, unique aspects
of the memory and fluid ability cognitive scores.

This work identified patterns of CBF and GMV whose
relationships to cognitive scores were invariant across the
age groups. Advancing age moves individuals along this
continuum without significantly altering the relationship as

previously shown in the literature [Kaup et al., 2011]. Our
findings are similar to demonstrations that cognitive tests
scores steadily decline across the lifespan with configural
and metric invariance [Siedlecki et al., 2008].Therefore, rela-
tionships between the different neuropsychological test

TABLE II. Analysis of variance results for the memory

score

Memory R2 F(d.f.) g2 P

Model I 0.44
CBF 44.76 (1,56) 0.66 0.000

Model II 0.45
CBF 16.96 (1,55) 0.49 0.000
Age Group 0.138 (1,55) 0.04 0.712

Model III 0.47
CBF 13.075 (1,54) 0.39 0.001
Age Group 2.068 (1,54) 0.19 0.156
CBF � age group 2.026 (1,54) 0.19 0.160

Model I 0.37
GMV 32.75 (1,56) 0.61 0.000

Model II 0.38
GMV 9.67 (1,55) 0.39 0.003
Age Group 1.26 (1,55) 0.15 0.266

Model III 0.40
GMV 8.43 (1,54) 0.37 0.005
Age group 1.31(1,54) 0.15 0.257
GMV � age group 1.21(1,54) 0.15 0.276

TABLE I. Means (S.D.) of cognitive variables and the correlations between the components and the three factors

Young mean (S.D.) Elder mean (S.D.)

Correlation Coefficients

Memory Fluid Speed/Attn

Memory
SRT total recall 60.60 (5.87) 53.35 (8.58) 0.878 0.440 0.431
SRT delayed recall 10.94 (1.35) 8.61 (2.35) 0.914 0.483 0.505
SRT delayed recognition 12.00 (0.00) 11.78 (0.60) 0.674 0.484 0.401

Fluid ability
WAIS-3 letter-number 13.86 (2.86) 11.83 (3.21) 0.480 0.897 0.479
WAIS-3 Matrix 20.86 (3.93) 15.57 (5.84) 0.525 0.897 0.475

Speed
WAIS-R digit symbol 67.51 (10.07) 55.04 (13.02) 0.591 0.595 0.781
Trail making Test A 26.94 (13.85) 34.00 (9.44) �0.250T �0.236T �0.781

Cognitive factors
Memory 15.68 (0.53) 14.61 (1.20) —
Fluid ability 4.60 (0.75) 3.70 (1.10) 0.560 —
Speed 2.03 (0.92) 1.05 (0.81) 0.538 0.532 —

Covariance patterns
CBF (Mem) 15.66 (0.34) 14.64 (0.56) 0.667 0.542 0.524
GMV (Mem) 15.61 (0.35) 14.71 (0.51) 0.607 0.475 0.526
CBF (fluid) 4.56 (0.34) 3.76 (0.59) 0.593 0.599 0.490
GMV (fluid) 4.57 (0.36) 3.74 (0.43) 0.467 0.567 0.358
CBF (speed) 1.90 (0.31) 1.24 (0.47) 0.532 0.437 0.498

GMV (speed) 1.95 (0.34) 1.17 (0.47) 0.581 0.416 0.553

Age group �0.524 �0.447 �0.484

Note. All group mean differences were significant at P< 0.05. All correlation coefficients are significant at P < 0.001, except for the two
marked with (x)T. Numbers in bold are within cognitive-construct values.
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scores and between the test scores and age do not change
[Salthouse, 2004]. Brain measures show similar results
across the lifespan. In healthy individuals, global GMV
slowly decreases across a large age range [Fotenos et al.,
2005], with no age-related increase in this rate of change.
The same gradual decline across the lifespan is shown with
measures of CBF [Lu et al., 2011].

Interpretation of the individual brain areas comprising
the CBF and GMV covariance patterns must be tempered
by the consideration that it is the entire spatial pattern that
is used to calculate the relationships between the brain
measures and the cognitive scores. The directionality of
the voxel-wise loadings within the patterns, represents the
deviation of that region from the combined young and el-
der mean (see Spetsieris and Eidelberg [2011] for detailed
discussions of these topics). In positively labeled regions,
increased relative blood flow or volume is related to
higher cognitive scores while negatively labeled regions,
decreased relative blood flow or volume, are associated

with higher cognitive score. Although it is difficult to com-
pare the covariance patterns to results from univariate
analyses, aspects of our identified neural-cognitive rela-
tionships have been previously identified in the literature.

In one study, examining the association between CBF
and cognition in aging resting CBF measures within all
brain lobes was related to selective attention in young
adults and tonic alertness in the older adults [Bertsch
et al., 2009]. Our finding of a relationship between CBF in
the putamen and speed is similar to that of Berentand col-
leagues, who used the digit symbol task, which is one
measure comprising our speed factor [Berent et al., 1988].
Our finding of CBF within the hippocampus related to the
memory factor is also in line with work by Bangen et al.
[2009]. Global measures of CBF and brain volume have
also been linked to age-related cognitive changes [Rabbitt
et al., 2006]. Rabbit and colleagues found that global CBF
was related to cognitive speed but neither global CBF nor
global brain volume was related to fluid ability. The

Figure 2.

Scatter plots of the three cognitive scores and their predicted values using the individual expres-

sions of the CBF (top row) and GMV (bottom row) covariance patterns. The lines in each plot

represent the no-change reference, the point of perfect prediction. Scatterplots (A) and (D)

show that four older adults appear to have outlying memory scores. Excluding these four individ-

uals did not alter any of the significant findings described below; therefore, all results include the

entire study sample.
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authors postulated that their use of global measures
masked regional relationships [Rabbitt et al., 2006]. This
thesis is supported by our findings of CBF and GMV brain
patterns associated with fluid ability.

Recent work by Taki et al. [2011] identified cognitive
measures related to GMV within the bilateral temporal
gyri and the hippocampus. In a study by Gong et al.
[2005] fluid ability was related to GMV within the medial

Figure 3.

Neural covariance patterns of the cognitive composite scores as

derived across all participants. Voxels labeled red represent

regions that strongly co-vary and have relatively greater values

within the respective network. Voxels labeled blue represent

regions that strongly co-vary and have relatively lower values

within the respective network. (A) CBF pattern related to the

memory composite score is characterized by relative increased

CBF in the cerebellum and middle orbital frontal lobe associated

with relative decreased blood flow in the hippocampus, temporal

cortex, and postcentral gyrus. (B) GMV pattern related to the

memory composite score includes relative increased GMV in the

temporal cortex, caudate, and medial prefrontal cortex and is

associated with relative decreased volume within the thalamus,

cerebellum, and fusiform regions. (C) CBF pattern related to the

speed/attention composite score is characterized by relative

increased CBF in middle and superior frontal regions, calcarine

sulcus, parietal, and cerebellar regions, with relative decreased

CBF in the putamen, temporal gyri, and occipital cortex. (D)

Gray matter pattern related to the speed/attention composite

score includes relative increased GMV in temporal regions, pre-

frontal, and parietal regions and caudate with relative decreased

volume within the cerebellum, fusiform, and hippocampal regions.

(E) CBF pattern related to the fluid ability composite score is

characterized by relative increased CBF within prefrontal cortical

areas and the anterior cingulate with relative decreased blood

flow within the temporal gyri putamen and precentral regions.

(F) Gray matter pattern related to the fluid ability composite

score includes relative increased GMV within temporal gyri and

prefrontal cortical regions with relative decreased volume within

the thalamus, temporal, cuneus, and occipital regions.
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PFC, similar to this study. Meanwhile fluid ability, but not
memory, was related to hippocampal GMV in another
study from our group [Reuben et al., 2011]. Although the
hippocampus was not a strong node in our GMV-fluid
ability covariance pattern, the hippocampus was a strong
node in the GMV-memory pattern. This discrepancy could
result from the differences in sample sizes between these
two studies (76 vs. 58 for our study) or more likely result
from the fact that SSM methods collectively identify
regions related to the cognitive scores. Therefore, while
the GMV of the hippocampus may have an independent

relationship with fluid ability [Reuben et al., 2011] its rela-
tionship with memory is in conjunction with many other
brain regions. Although there are many other studies relat-
ing cognition and GMV, a comprehensive review by Raz
and Rodrigue discuss that the overall findings in the litera-
ture are weak. Furthermore, questions about whether age-
related differences in GMV precede changes in CBF, or the
reverse, are in need of further study [Raz and Rodrigue,
2006].

A limitation of this work is the lack of external valida-
tion of the patterns through forward application to new
study samples. It will be important to replicate these find-
ings in an independent sample by forward applying the
derived brain patterns [Bergfield et al., 2010; Brickman
et al., 2008; Spetsieris and Eidelberg, 2011]. Forward appli-
cation can rank an individual based on where they fall on
each of the brain-cognitive relationships. Such rankings
can then be included as additional biomarkers in assessing
someone’s aging process.

The benefit of using an established set of criteria
[Kraemer et al., 2001] before making any conclusions about
neural-cognitive relations is that it is systematic and pro-
vides clear understanding of the relationships among age,
markers of neural functioning, and cognition. These crite-
ria, when combined with recommendations suggested by
Van Petten [2004] related to aging and neuropsychology
hypotheses, may help shed light on disparate neural-mem-
ory findings in the literature.

Visual inspection of the covariance patterns suggests
limited spatial overlap between the CBF and GMV pat-
terns (see Fig. 3). Despite this, expression of the CBF and
GMV brain patterns shared large amounts of variance
with each other for the memory, speed/attention, and
fluid ability cognitive composite scores (31.5%, 20.2%, and
23.7%, respectively). Furthermore, expression of the brain
patterns correlated with all three cognitive domains, not
only the domain they were derived from (see Table I).
This lack of complete specificity of the brain patterns is
not surprising for two main reasons. The patterns were

TABLE IV. Analysis of variance results for the speed/

attention score

Speed R2 F(d.f.) g P

Model I 0.25
CBF 18.44 (1,56) 0.50 0.000

Model II 0.29
CBF 4.33 (1,55) 0.27 0.042
Age Group 3.31 (1,55) 0.24 0.074

Model III 0.30
CBF 3.64 (1,54) 0.25 0.062
Age Group 1.66 (1,54) 0.17 0.202
CBF � age group 0.637 (1,54) 0.11 0.428

Model I 0.31
GMV 24.73 (1,56) 0.56 0.000

Model II 0.32
GMV 7.27 (1,55) 0.35 0.009
Age Group 1.43 (1,55) 0.16 0.237

Model III 0.33
GMV 6.59 (1,54) 0.33 0.013
Age Group 1.43 (1,54) 0.16 0.237
GMV � age group 0.73 (1,54) 0.11 0.396

TABLE III. Analysis of variance results for the fluid

ability score

Fluid R2 F(d.f.) g P

Model I 0.36
CBF 31.26 (1,56) 0.60 0.000

Model II 0.36
CBF 14.15 (1,55) 0.45 0.000
Age group 0.48 (1,55) 0.09 0.489

Model III 0.38
CBF 10.45 (1,54) 0.40 0.002
Age group 1.21 (1,54) 0.15 0.276
CBF � age group 1.03 (1,54) 0.14 0.314

Model I 0.32
GMV 26.47 (1,56) 0.56 0.000

Model II 0.32
GMV 10.01 (1,55) 0.39 0.003
Age group 0.19 (1,55) 0.06 0.662

Model III 0.33
GMV 10.22 (1,54) 0.40 0.002
Age group 0.94 (1,54) 0.13 0.339
GMV � age group 0.84 (1,54) 0.122 0.363

TABLE V. ANOVA models testing whether the brain

patterns are overlapping proxies for cognition

R2 F(d.f.) g P

Memory 0.51
Age group 0.81 (1,54) 0.12 0.372
CBF 13.38 (1,54) 0.45 0.001
GMV 6.55 (1,54) 0.33 0.013

Fluid 0.46
Age group 1.46 (1,54) 0.16 0.232
CBF 13.29 (1,54) 0.45 0.001
GMV 9.26 (1,54) 0.39 0.004

Speed 0.35
Age group 0.18 (1,54) 0.05 0.669
CBF 2.43 (1,54) 0.21 0.125
GMV 5.22 (1,54) 0.30 0.026
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derived with the effect of age group in the cognitive scores
and the cognitive scores themselves were intercorrelated.
Therefore, the derived brain patterns all capture the age
effect and the intercorrelations resulting in some common-
ality of the brain patterns.

The use of two brain measures proved advantageous
over either measure alone. The results indicate that the
multiple modality neuroimaging approach provides a
more complete picture of the aging brain and its impact
on cognition. Furthermore, the two brain measures
account for nearly all the age group-related variance in the
cognitive scores, and for large amount of additional var-
iance: 18% for memory, 24.8% for fluid ability, and 10.9%
for speed/attention as calculated by summing the inde-
pendent and combined effects of CBF and GMV in Figure
1. It is important to point out however that this work used
discrete age groups and not a continuum across the adult
life. This leaves open the possibility that the actual neural-
cognitive relationships are nonlinear through adulthood
[Heo et al., 2010] as opposed to linear, as tested in this
work. Future work will overcome this limitation by includ-
ing a more complete sampling of ages and test for forward
applicability of these covariance patterns [Bergfield et al.,
2010; Brickman et al., 2008; Spetsieris and Eidelberg, 2011].

In addition, this study used a rather small sample. This
relatively small sample may be the reason for the nonsigni-
ficant P-value when testing the relation between speed and
CBF in the presence of age group and the interaction effect
see Model III, Table IV. The moderate effect size (g ¼ 0.251)
suggests that this analysis is underpowered and requires a
sample size of 127 to reach significance of a ¼ 0.05 and b ¼
0.80 (calculated using G*Power3 [Faul et al., 2007]). An
additional limitation of this work is the exclusive focus on
gray matter. Large bodies of work exist focusing on age-
related alterations in white matter pathology [Brickman
et al., 2006, 2011; Gunning-Dixon and Raz, 2003; Rabbitt
et al., 2007] and integrity [Charlton et al., 2008; Gold et al.,
2008; Madden et al., 2009; Zahr et al., 2009] and their impact
on cognition. It is possible that white matter measures
could explain additional variance in our cognitive meas-
ures. Future work will incorporate similar measures for
investigation of white matter effects on cognition within the
context of joint investigation of CBF and GMV.

It is important to point out that we did not investigate
the neural mediation of the effects of aging on cognition
nor mediation between the brain measures [Vaidya et al.,
2007]. Such approaches test whether age-related cognitive
variability is the causal result of the brain measures.
Rather, we identified patterns of neural CBF and GMV
related to cognitive performance that are not proxies of
age group and not the result of epiphenomenal associa-
tions due to shared relationships with age group.
Although mediation analyses would use brain measures as
mechanistic proxies for aging, we identified neural corre-
lates of specific cognitive measures. Traditional mediation
analyses [Baron and Kenny, 1986; Shrout and Bolger, 2002]
would not be appropriate in the current analyses based on

statistical circularity. Our neural correlates of cognition
were defined using the cognitive measures; therefore, our
procedure was to determine if there existed a neural-cog-
nitive relationship. Use of the identified neural-cognitive
relationship in subsequent mediation analyses, within the
same data set, would be circular [Kriegeskorte et al., 2009;
Vul et al., 2009]. The data driven nature and lack of a pri-
ori regional assumptions however make the results from
this work prime targets for selection of ROIs in future
work and formal tests of neural mediation.

Although the commonality analyses display the strength
of the relationships between variables, they can also poten-
tially identify the presence of negative amounts of variance
accounted for, as was the case for the fluid ability measure.
Negative values represent suppression effects between the
regressors in the model that result when an independent
variable (in this case age group) correlates more highly
with other independent variables in the model (in this case
CBF and GMV) than the dependent variable (fluid ability)
[Conger and Jackson, 1972; McPhee and Seibold, 1979].
Such findings point to the need for careful testing and inter-
pretation of neural-cognitive relationships as influenced by
the complex processes underlying advancing age.

We identified covariance patterns of CBF and GMV that
predicted composite cognitive scores from three domains.
These brain patterns accounted for nearly all the age
group related variance in the cognitive measures. Addi-
tionally, expression of the CBF and GMV brain patterns
each accounted for additional age group-independent var-
iance in the cognitive scores. The identified neural-cogni-
tive relationships were invariant across the age groups
and the combination of the GMV and CBF patterns made
better predictors of cognition than age group or either
measure alone. Finally, this carefully designed analytic
framework ensures that the identified neural-cognitive
relationships truly exist and are not the result of epipheno-
menal associations with age group.
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