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ABSTRACT

Probabilistic forecasts of weekly and week 3–4 averages of precipitation are constructed using extended

logistic regression (ELR) applied to three models (ECMWF, NCEP, and CMA) from the Subseasonal-to-

Seasonal (S2S) project. Individual and multimodel ensemble (MME) forecasts are verified over the common

period 1999–2010. The regression parameters are fitted separately at each grid point and lead time for the

three ensemble prediction system (EPS) reforecasts with starts during January–March and July–September.

The ELR produces tercile category probabilities for each model that are then averaged with equal weighting.

The resulting MME forecasts are characterized by good reliability but low sharpness. A clear benefit of

multimodel ensembling is to largely remove negative skill scores present in individual forecasts. The forecast

skill of weekly averages is higher in winter than summer and decreases with lead time, with steep decreases

after one and two weeks. Week 3–4 forecasts have more skill along the U.S. East Coast and the southwestern

United States in winter, as well as over west/central U.S. regions and the intra-American sea/east Pacific

during summer. Skill is also enhanced when the regression parameters are fit using spatially smoothed ob-

servations and forecasts. The skill of week 3–4 precipitation outlooks has amodest, but statistically significant,

relation with ENSO and the MJO, particularly in winter over the southwestern United States.

1. Introduction

Predictions on subseasonal time scales, between

medium-range weather (up to 2 weeks) and seasonal

climate (from 3 to 6 months) forecasts, have recently

received increasing interest owing to modeling advances

(Vitart 2014) and a better understanding of climate

phenomena on these time scales, particularly the MJO

(Zhang 2013). Sources of predictability at subseasonal

time scales include the inertia of sea surface tempera-

ture (SST) anomalies, the MJO (Waliser et al. 2003;

Waliser 2011; Neena et al. 2014), but also stratospheric

processes including the QBO (Baldwin and Dunkerton

2001; Scaife and Knight 2008; Yoo and Son 2016),

memory in soil moisture (Koster et al. 2010), snow cover

(Lin and Wu 2011), and sea ice (Holland et al. 2011).

Based on experience from probabilistic seasonal cli-

mate and medium-range forecasting, calibration of

model probabilities is expected to be necessary to

account for model deficiencies and produce reliable

forecasts (Goddard et al. 2001; Wilks 2002; Tippett et al.

2007). In comparison to seasonal hindcasts (reforecasts),

submonthly hindcasts are often characterized by shorter

length with fewer ensemble members, which represent

additional challenges. While the value of the model

output statistics (MOS) approach to improve weather

probabilistic forecasts has been demonstrated (Hamill

et al. 2004), no analysis has been yet done at subseasonal

time scales. There is also a need to investigate to what

extent skill can be enhanced by multimodel ensemble

(MME) techniques, as has been demonstrated for sea-

sonal (Robertson et al. 2004) and medium-range

(Hamill 2012) forecasting.

Extended logistic regression (ELR), as used here,

includes the quantile threshold along with the ensemble

mean as predictor and produces mutually consistent

quantile probabilities that sum to one (Wilks 2009;

Wilks and Hamill 2007). In this respect, this study

presents a first attempt to produce weekly and week 3–4

MME precipitation tercile probability forecasts. ELR isCorresponding author: N. Vigaud, nicolas.vigaud@gmail.com
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applied at each grid point to the individual model fore-

casts, which are subsequently averaged together with

equal weighting. The data and methods are presented in

section 2 together with diagnostics related to the re-

gression model setup for weekly varying precipitation

tercile categories. The skill of forecasts initialized during

January–March (JFM, winter) and July–September

(JAS, summer) seasons are examined over a North

American continental domain in section 3, first at

weekly resolution. Improvements to skill through

considering a week 3–4 outlook (instead of weeks 3 and

4 separately) and spatial smoothing of the regression

model input are then discussed alongside their skill re-

lationships to ENSO and the MJO. A summary and

conclusions are presented in section 4.

2. Data and methods

a. Observation and model datasets

Daily precipitation fields from the European Centre

for Medium-Range Weather Forecasts (ECMWF), Na-

tional Centers for Environmental Prediction (NCEP),

and the China Meteorological Administration (CMA)

forecasts for week 1, week 2, week 3, and week 4 leads

of the reforecasts (i.e., the periods from [d 1 1, d 1 7]

to [d 1 22, d 1 28] for a forecast issued on day d) were

obtained from the Subseasonal-to-Seasonal (S2S) data-

base (Vitart et al. 2017) through the IRI Data Library

(IRIDL) portal. These ensemble prediction systems

(EPSs) have different native resolutions (from 125km at

the equator with 40 vertical levels for CMA to 16/32km

and 91 vertical levels for ECMWF) and are archived

on a common 1.58 grid in the S2S database. The number

of ensemble members (51 for ECMWF, 4 for CMA and

NCEP) and reforecasts length (between 44- and 60-day

lead from the NCEP CFSv2 to CMA) depend on the

modeling center as indicated in Table 1; see Vitart et al.

(2017) for further details. In particular, ECMWF is the

only model for which reforecasts are generated on the

fly twice a week (11 members every Monday and

Thursday), while those from NCEP and CMA are gen-

erated four times daily from fixed model versions. We

consider here weekly accumulated precipitation from

ECMWF reforecasts that are generated for Monday

starts from June 2015 to March 2016 and NCEP and

CMA four-member daily reforecasts sampled from

their respective 1999–2010 and 1994–2014 periods of is-

suance. The common period when all three EPS refor-

ecasts are available is 1999–2010, and that period is used

in our analysis. Subsequently, S2S data were spatially

interpolated onto the GPCP 18 horizontal grid before

the forecasted probabilities obtained from the three

individual models are averaged to form MME tercile

precipitation forecasts from which the skill of starts dur-

ing the winter and summer seasons is assessed over the

continental North America (i.e., land points between 208
and 508N).

The Global Precipitation Climatology Project (GPCP)

version 1.2 (Huffman et al. 2001; Huffman and Bolvin

2012) daily precipitation estimates on a 18 grid, available
from October 1996 to October 2015, are used as obser-

vational data for the calibration and verification of the

reforecasts over the 1999–2010 period of analysis.

b. Extended logistic regression model

Distributional regressions are well suited to probability

forecasting (i.e., when the predictand is a probability of

cumulative exceedance rather than ameasurable physical

quantity), allowing the conditional distribution of a re-

sponse variable to be derived given a set of explanatory

predictors. In this context, logistic regression can be ex-

tended to produce the cumulative probability p of not

exceeding the quantile q such as

p5PrfV# qg ,

by including an additional explanatory variable g(q),

which is a function of the quantile q as follows:

ln

�
p

12p

�
5 f (x

ens
)1 g(q) , (1)

where f and g are linear functions of the EPS ensemble

mean xens and quantile q, respectively. A cube-root

transformation of the precipitation amounts used in

the regression model did not improve skill (cf. Hamill

2012). Because of the limited number of ensemble

members available from the S2S reforecasts (4 members

daily for CFS and CMA and 11 members twice weekly

for ECMWF), the more familiar approach of estimating

the forecast probabilities by counting how many mem-

bers exceed a certain threshold leads to large errors. In

the seasonal forecasting context, Tippett et al. (2007)

TABLE 1. ECMWF, NCEP, and CMA forecasts attributes as

archived in the S2S database at ECMWF.

Attributes ECMWF NCEP CMA

Time range Day 0–46 Day 0–44 Day 0–60

Resolution Tco639/319 L91 T126L64 T106L40

Ensemble size 51 16 4

Frequency Two per week Daily Daily

Reforecasts (RFC) On the fly Fix Fix

RFC length Past 20 yr 1999–2010 1994–2014

RFC frequency Two per week Daily Daily

RFC size 11 4 4
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have shown that regressionmodels outperform counting

estimates, especially for small ensemble size. The defi-

nition in Eq. (1) leads to mutually consistent individual

threshold probabilities (Wilks and Hamill 2007; Wilks

2009) as shown in section 2c. Ultimately, these allow

flexible choice of threshold probabilities according to

user’s needs (Barnston and Tippett 2014). Extended

logistic regression (referred to simply as regression in

the following) is here used to produce precipitation

tercile (q 5 1/3 and q 5 2/3) category probabilities re-

ferred to as ‘‘forecasts’’ in the following.

The observed climatological tercile categories corre-

sponding to the 33rd and 67th percentiles of the GPCP

weekly accumulated precipitation estimates are defined

separately at each grid point for each start within the

JFM (4 January–28March,Monday start dates) and JAS

(6 July–28 September, Monday start dates) seasons (i.e.,

12 starts per season) and each lead (week 1–4)

following a leave-one-year-out approach. Next, 1) the

regression parameters are estimated separately for each

model, grid point, calendar start date, and lead using all

years except the one being forecast (leave-one-out cross

validation), 2) the tercile probabilities of the left out

year are forecast, and 3) MME probabilities are con-

structed by simple averaging of the three individual

forecast probabilities.

c. Regression model setup

For forecasts of weekly averages, the climatological

observed tercile categories are computed using 11-yr

data periods following the leave-one-year-out method-

ology discussed above and 3-week windows formed by

the forecast target week and a week either side. Wider

windows were found to degrade the skill of the cross-

validated forecasts contrasting with the findings ofWilks

(2009). A ‘‘dry mask’’ is used, and forecasts are only

produced when and where the 33rd percentile is non-

zero. The MME probabilities are computed by simple

averaging regardless of ensemble size.

In addition to weekly precipitation averages, we also

considered forecasts for the week 3–4 target period

(from d 1 15 to d 1 28 for forecasts issued on day d).

This corresponds to a 2-week target at 2-week lead (Zhu

et al. 2014). The tercile categories were derived using

6-week windows, including the 2-week target formed by

week 3 and 4 leads and two weeks on either side, for

which diagnostics are provided, while wider windows did

not improve forecast skill.

Figure 1 shows an example of the ELR-based proba-

bilities computed from ECMWF hindcasts for 3–9 Au-

gust 1999, fitted using a 3-week window centered on the

3 August week and starts within the 2000–10 period at

the grid point (13.58N, 91.58W) just off the Guatemala

Pacific coast, where there is some skill in summer.

Regressions are based on observed terciles of GPCP

observations over this 3-week window (27 July–

17 August). Forecasted probabilities of nonexceedance

of the 0.33 and 0.67 quantiles obtained from Eq. (1)

for different values of the ensemble mean weekly ac-

cumulated precipitation forecasts (x axis) are charac-

terized by parallel lines for different leads (week 1–4) in

agreement with the regression formulated in Eq. (1)

yielding logically consistent sets of forecasts, in the sense

that cumulative probabilities for smaller predictand

thresholds do not exceed those for larger thresholds

(Wilks 2009).

GPCP observations along with forecasts from the

three individual models and their average are shown in

the Fig. 2 for week 1 forecasts made during JAS 1999 at

this grid point. Once weekly terciles are defined (under

cross validation), the regressionmodel is then trained on

the same pool of weeks (i.e., 11 years of 3-week windows

centered on the target week) by fitting regression

equations at each point, lead, and start separately for

each model. The regression coefficients thus obtained

are then used to produce weekly precipitation forecasts,

as shown for week 1 from ECMWF, NCEP, and CMA

weekly starts during the JAS 1999 season in Figs. 2b, 2e,

and 2c, respectively. Overall, the individual category

forecasts display highest weekly probabilities that are

consistent to varying degrees with observed tercile cat-

egories (Fig. 2d). Forecasts from ECMWF are more

skillful compared to those from NCEP and CMA. Fi-

nally, the forecasts from the three models are averaged

with equal weighting to produce MME forecasts over

the 12-week period (Fig. 2f).

d. Skill metrics

The skill of tercile precipitation forecasts obtained

from the above regression model is evaluated using two

statistical metrics. First, reliability diagrams are plotted

to evaluate reliability, resolution, and sharpness (Wilks

1995; Hamill 1997) and are computed by pooling all land

points over North America between 208 and 508N. In

addition, ranked probability skill scores (RPSS) (Weigel

et al. 2007) complement the above diagnostics and

quantify to which extent the predictions are improved

upon climatological probabilities.

e. Significance testing

In section 3, RPSS computed only for starts during

specific phases of the MJO (1 1 8 and 4 1 5) are tested

for statistical significance at each grid point using Monte

Carlo simulations based on random draws from the en-

tire pool of forecasts in JAS and JFM separately. Sta-

tistical significance at the 5% level is assessed by
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comparing the 95th percentile RPSS values to that of

those from specified MJO phases. Correlations are also

tested using Monte Carlo simulations to assess the sig-

nificance of the relationships between week 3–4 MME

RPSS averaged over continental North America but

also synthetized using a principal components analysis

(PCA), and both observed Niño-3.4 index and MJO

measured by Real-time Multivariate MJO 1 (RMM1)

and RMM2 indices from Wheeler and Hendon (2004),

as well as their best linear combination. Additional

correlations are computed with the square of each index

to examine skill associations with index amplitude.

3. Results

a. Weekly averages

Reliability diagrams for weekly ECMWF forecasts

from all starts during the JFM seasons are displayed in

Figs. 3a–c, with those from JAS starts in Figs. 3d–f.

These exhibit reasonable skill for week 1 for both sea-

sons in terms of reliability and resolution, as shown by

the blue curves close to the diagonal and distant from

the climatological 0.33 horizontal line (i.e., zero reso-

lution line, not plotted) respectively. Corresponding

histograms for week 1 ECMWF forecasts are spread

FIG. 1. (top) Extended logistic regressions plotted for ECMWF hindcasts issued 3 Aug 1999 at (13.58N, 91.58W)

and fitted using 3-week windows over 11 yr for tercile definition and training. Forecasted probabilities of non-

exceedance of the 0.33 (thin lines) and 0.67 (thick lines) quantiles computed from Eq. (1) for different values of the

ensemble mean weekly accumulated precipitation forecasts (x axis, in mm) are shown by parallel lines at different

leads (week 1–4) yielding to logically consistent sets of forecasts. (bottom) The distribution of ECMWF ensemble

meanweekly rainfall over the 1999–2010 period at this grid point is plotted as bins centered on integermultiple of 10

for the respective leads.
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across all bins, except for the normal category, charac-

terizing high sharpness. As lead time increases, forecast

issuance frequencies are centered around climatology

(0.33; i.e., fourth bin). For the below- and above-normal

terciles, distributions are also skewed toward equal odds

with increasing leads, consistent with decreasing slopes

from week 1 and week 2 onward when reliability and

resolution sharply drop. Week 2 forecasts are charac-

terized by higher skill in winter than summer, while little

skill is visible in either season in week 3 and 4. NCEP

and CMA forecasts exhibit qualitatively similar results

(not shown) but are less skillful than ECMWF.

MME forecasts are characterized by slightly greater

slopes for week 2 leads in particular, indicating in-

creased reliability and resolution compared to individ-

ual models. Similar to individual model forecasts,

sharpness remains low, while skill also decreases with

increasing leads and fromwinter to summer (Fig. 4). The

week 3 and week 4 MME forecasts show only small

deviations from equal odds, and those lack reliability as

displayed by even lower slopes than for ECMWF at

similar leads (Fig. 3).

Maps of RPSS for individual models and their MME

are shown in Figs. 5 and 6 for JFM and JAS starts, re-

spectively. All three models and theMME show similar,

positiveRPSS values for week 1 forecasts starting during

JFM (Fig. 5), with maximum scores over land located

toward the northwestern and eastern United States.

Areas north of 308N and south of 258N exhibit high skill

over the Pacific, while most skillful predictions are be-

tween 208 and 358N and north of 408N over the Atlantic.

In week 2, these regions are still characterized by larger

RPSS but with much lower magnitude. RPSS values for

week 3 and week 4 forecasts are near zero or negative

everywhere. Multimodel combination results in a

marked increase in the RPSS of week 1 and week 2

forecasts almost everywhere compared to the most

skillful individual models (ECMWF). The greatest

benefit of multimodel ensembling is that it largely re-

moves negative skill values. There are broad regions of

positive skill in week 2 over the southwestern and

eastern United States; over oceans there is skill north of

308N and south of 258N in the Pacific and north of 258N
in the Atlantic. From week 3, positive skill only remains

over northeast regions of the Gulf of Mexico and along

the U.S. East Coast where marginal skill remains in

week 4. For starts within the JAS season, Fig. 6 shows

skill during week 1 over northern and southern regions

of the continental domain while it is maximum south of

248N and north of 408N in the Pacific, as well as over the

intra-American seas and along the U.S. East Coast in

the Atlantic. However, not much skill is found at longer

FIG. 2. Point statistics at (13.58N, 91.58W) showing (a) the mean GPCP cumulated precipitation for each week of the JAS 1999 season

(x axis; i.e., from 6 Jul to 28 Sep), together with the low/high terciles (blue/red) computed from 3-week windows centered on the target week,

and (d) associated GPCP weekly tercile probabilities; that is, above-normal (‘‘A’’), normal (‘‘N’’), and below-normal (‘‘B’’) categories.

After training out-of-sample (11 yr) forecasted weekly tercile probabilities are issued for (b) ECMWF, (e) NCEP, and (c) CMA hindcasts,

which are pooled together with equal weighting to produce (f) a multimodel ensemble (MME) weekly tercile precipitation forecasts.
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FIG. 3. Reliability diagrams for the below-normal, normal, and above-normal categories from ECMWF forecasts with starts in

(a)–(c) JFM and (d)–(f) JAS with color coding based on week leads. The frequencies with which each category is forecasted are indicated as

bins centered on an integer multiple of 0.10 in histograms plotted under the respective tercile category diagram. The bins are projected

along the same x axis (forecast probabilities from 0 to 1) and scaled from 0% to 100%. Note that only bins with more than 1% of the total

number of forecasts in each category are plotted in the relative diagrams for each lead. Diagrams are computed for all points over

continental North America between 208 and 508N latitudes.
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FIG. 4. Reliability diagrams for the below- and above-normal categories from the MME of ECMWF,

NCEP, and CMA forecasts with starts in (a),(b) JFM and (c),(d) JAS with color coding based on week leads.

The frequencies with which each category is forecasted are indicated as bins centered on an integermultiple of

0.10 in histograms plotted under the respective tercile category diagram.The bins are projected along the same

x axis (forecast probabilities from 0 to 1) and scaled from0% to 100%.Note that only bins withmore than 1%

of the total number of forecasts in each category are plotted in the relative diagrams for each lead. Diagrams

are computed for all points over continental North America between 208 and 508N latitudes.
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leads except in week 2 over the tropical Pacific and Ca-

ribbean basin. Consequently, the skill of the MME is low

after week 1. Overall, the skill of the individual forecasts

and their MME is lower in summer than winter, agreeing

with the reliability diagrams in Figs. 3 and 4.

b. Week 3–4 outlooks

Figure 7 shows reliability diagrams for the below-

(Fig. 7a) and above-normal (Fig. 7b) categories for

2-week, week 3–4, outlooks, from the individual models

and their resulting MME with starts in JFM. Sharpness

remains low but week 3–4 outlooks are characterized by

greater slopes compared to weekly forecasts during this

season (Figs. 3 and 4, top panels), indicating better re-

liability and resolution. The gain in reliability and res-

olution from multimodel ensembling is substantially

increased (greater slopes) for week 3–4 compared to

weekly averages. JAS starts exhibit similar results but

with lower skill (not shown) agreeing with weekly

forecasts.

In an attempt to further improve the skill, the input

gridpoint observations and forecasts were spatially

smoothed before fitting the regression model with a

bisquare weight function (Garcia 2010) using three

points around each location in both latitude and longi-

tude. However, spatial smoothing of both observation

and forecasts leads to marginal improvements in overall

sharpness, reliability, and resolution (not shown).

Maps of RPSS for raw and smoothed week 3–4 MME

outlooks are shown in Fig. 8 for starts during the JFM

(Figs. 8a,c) and JAS (Figs. 8b,d) seasons. Raw week 3–4

MME outlooks display more skill compared to weekly

forecasts (Figs. 5m–p and 6m–p) along the U.S. East

Coast and southwestern United States in JFM, and the

west/central United States and the intra-American sea

(IAS)/eastern Pacific in JAS. These translate into

broader areas of skill for the smoothed week 3–4 out-

looks. Note that both the raw and smoothed week 3–4

forecasts are verified against the same raw observations

(i.e., unsmoothed) for a fair comparison.

c. Modulation of skill by ENSO and the MJO

Table 2 presents the temporal correlations between

the RPSS of week 3–4 MME outlooks and the observed

FIG. 5. RPSS for (a)–(d) ECMWF, (e)–(h) NCEP, and (i)–(l) CMA tercile precipitation forecasts as well as (m)–(p) their MME for starts

during the JFM season. The different columns correspond to different leads from 1 to 4 weeks.
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Niño-3.4 index as well as the MJO indices, RMM1 and

RMM2, of Wheeler and Hendon (2004) and their best

linear combination. Mean RPSS averaged over the

continental North America between 208 and 508N is

significantly correlated with ENSO andMJORMM2 for

both raw and smoothed forecasts with starts during

JFM. The best linear combination of MJO RMM1 and

RMM2 exhibits relationships of the same magnitude as

RMM2. In contrast, a significant relationship is found

between RPSS and Niño-3.4 for starts during JAS but

none with the MJO. Relationships to the Niño-3.4
modulus are not significant (second row for each seasons

in Table 2), suggesting that ENSO polarity is important

in regards to skill. The index and RPSS time series are

plotted for the JFM season in Fig. 9. Interestingly, pe-

riods of higher week 3–4 RPSS appear to coincide with

positive anomalies in Niño-3.4 and/orMJORMM2. This

further indicates skill increase during positive phases of

ENSO in agreement with the prevalence of coherent

patterns such as the tropical Northern Hemisphere

(TNH) (Barnston and Livezey 1987), concomitant with

northwest–southeast tilted negative height anomalies

over the North Pacific (Robertson and Ghill 1999) and

more southerly and zonal storm tracks (Monteverdi

and Null 1998) in winter during El Niño events, thus

translating into precipitation anomalies over the western

United States. Additional skill relationships to MJO

RMM2 are consistent with MJO-induced modulations

of the atmospheric river or ‘‘pineapple express,’’ leading

to winter precipitation anomalies in the southwestern

United States (Zhang 2013).

To investigate the skill of week 3–4 outlooks further, a

PCA is applied to week 3–4 MME RPSS (total values;

the mean is not removed) over continental North

America between 208 and 508N, at weekly resolution

and for the JFM and JAS seasons separately. This ap-

proach allows us to examine if the regional structure of

skill can be decomposed in geographically coherent

patterns of variability. As shown in Figs. 10a and 10b, the

spatial correlations typical of the first principal compo-

nents (PCs) are mainly related to skill in the south-

western United States, where scores with highest

magnitude contrast with opposite and less significant

relationships in the northwestern United States in both

FIG. 6. As in Fig. 5, but for starts during the JAS season.
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seasons, but also Florida to a lesser extend in JFM, all

coinciding with regions of highest skill in week 3–4

outlooks (Fig. 8). Despite the small fraction of total

variance explained (7% and 5% in JFM and JAS), RPSS

PC1 is significantly correlated with mean RPSS over

continental North America up to 20.25 and 20.48 in

JFM and JAS, respectively, for the rawweekly forecasts,

and 20.42 and 20.57 for the smoothed week 3–4 out-

looks, suggesting that a significant amount of mean

RPSS variability is represented by RPSS PC1 in both

seasons. In JFM, the associated pattern characterized by

maximum scores over the southwestern United States/

Mexico alongside opposite and less significant loadings

to the northwestern/eastern United States, is similar to

the correlation maps between weekly GPCP pre-

cipitation and both observed Niño-3.4 and MJO RMM2

indices (Figs. 10c and 10g). Overall this suggests that

skill is related to tropical forcing particularly toward the

southwesternUnited States consistent with ElNiño- and
MJO-induced modulations of storm tracks and western

U.S. winter precipitation (Monteverdi and Null 1998;

Robertson and Ghill 1999; Zhang 2013). Less significant

relationships with the indices are seen in JAS.

Both raw and smoothedRPSS PC1s exhibit significant

correlations with ENSO in JFM (Table 3), agreeing with

the significant correlations between week 3–4 mean

RPSS and Niño-3.4 (Table 2) and indicating that skill

depends on ENSO, particularly in the southwestern

United States/Mexico (Fig. 10a) alongside opposite and

less significant relationships in the northwestern/eastern

United States. The predictability of week 3–4 pre-

cipitation appears to be significantly related to ENSO

particularly during winter, when PC1 opposite loadings

in the southwestern and northwestern/eastern United

States resemble correlation patterns between weekly

precipitation and Niño-3.4 (Fig. 10c). Significant cor-

relations between RPSS PC1s and Niño-3.4 modulus

are less than half the magnitude of those obtained for

Niño-3.4 index, further illustrating that ENSO polarity

is a determinant ingredient for skillful regional pre-

dictions. In JFM for instance, negative correlations

between Niño-3.4 and RPSS PC1 (Table 3) suggest

increased skill in the southwestern United States/

Mexico during El Niño while it is decreased during La

Niña events, but the reverse to the northwestern/

eastern United States.

FIG. 7. Week 3–4 reliability diagrams for the below- and above-normal categories from ECMWF (black), NCEP

(red), and CMA (green) forecasts with starts in JFM together with their multimodel ensemble (MME, in blue). The

frequencies with which each category is forecasted are indicated as bins centered on an integer multiple of 0.10 in

histograms plotted under the respective tercile category diagram for each forecast in their respective colors. The

bins are projected along the same x axis (forecast probabilities from 0 to 1) and scaled from 0% to 100%. Note that

only bins with more than 1% of the total number of forecasts in each category are plotted. Diagrams are computed

for all points over continental North America between 208 and 508N latitudes.
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Table 3 displays significant relationships between the

observed MJO and RPSS PC1s in both seasons with

highest correlations in JFM, indicating that the skill of

week 3–4 outlooks is also significantly correlated with

the phase of the MJO, particularly in winter when the

loadings of PC1 over the southwestern United States

bear strong similarities to correlation patterns between

weekly precipitation and MJO RMM2 (Fig. 10g). RPSS

PC1 correlations with the modulus of both RMM2 and

the best combination of RMMs are significant in the case

of smoothed forecasts with winter starts but about half

the magnitude of those with MJO indices. These suggest

potential skill associations to MJO polarity recalling

those obtained for Niño-3.4 and might partly reflect

known correlations between ENSO and MJO activity.

Regressing out one signal from the other lowers the

relationships with PC1; however, these remain signifi-

cant (not shown). No spatially coherent structure is

identified from RPSS composites conditioned on ENSO

phases (not shown), perhaps owing to the small number

of El Niño and La Niña events that can be sampled from

the rather short 1999–2010 period of analysis.

Additional insights into MJO relationships to pre-

dictability and skill are given in Fig. 11, showing the

RPSS of smoothed forecasts with starts during MJO

phases 11 8 and 41 5, when convection is respectively

increased and decreased over the Western Hemisphere/

Africa (Wheeler andHendon 2004; Ventrice et al. 2011).

FIG. 8. RPSS for (a),(b) raw and (c),(d) smoothed week 3–4 outlooks from the MME of ECMWF, NCEP, and

CMA tercile precipitation forecasts for all starts during the JFM and JAS seasons. Raw and smoothed forecasts are

both verified against raw observation data (i.e., unsmoothed).

TABLE 2. Correlations between JFM and JAS week 3–4 MMERPSS mean averaged over continental North America between 208 and
508N latitudes and observed Niño-3.4 index (second column), MJO measured by the RMM1 (third column) and RMM2 (fourth column)

indices of Wheeler and Hendon (2004), and their best linear combination (fifth column). The second line for each season corresponds to

correlations with themodulus of each signal taken as the square of their respective time series. Scores for smoothedweek 3–4MMERPSS

are in parentheses and those significant at 95% level of significance using Monte Carlo simulations are indicated with an asterisk.

Week 3–4 MME RPSS Niño-3.4 RMM1 RMM2 MJO

JFM mean 0.15* (0.25*) 0.02 (0.01) 0.14* (0.15*) 0.14* (0.15*)

20.02 (20.09) 0.01 (20.02) 20.02 (20.01) 0.01 (0.03)

JAS mean 0.16* (0.18*) 0.07 (0.07) 0.03 (0.03) 0.07 (0.07)

20.12 (20.13) 0.03 (20.02) 0.10 (0.11) 0.12 (0.03)

OCTOBER 2017 V IGAUD ET AL . 3923



Even if the 12 years of hindcasts available are limiting

regarding statistical significance, the skill of smoothed

week 3–4 outlooks over the U.S. East Coast in JFM

(Figs. 11a and 11b) could be related to skillful pre-

dictions for starts duringMJOphases 11 8, while skill in

the southwestern United States could be drawn from

skillful forecasts during MJO phases 4 1 5, as shown by

scores significant at 95% level of significance locally

using Monte Carlo simulations described in section 2e.

These results illustrate the relationship evidenced be-

tween the MJO and week 3–4 RPSS PC1 (Table 3) with

maximum correlations over the southwestern United

States including also Florida (Figs. 10a and 10b). In JAS,

the skill of week 3–4 outlooks over the west/central

United States and IAS/east Pacific could be similarly

related to significant skillful predictions for starts during

MJO phases 11 8 and 41 5, respectively. Even if there

is a huge range in how far the MJO would propagate

from start dates, part of the skill of week 3–4 outlooks

could be drawn fromMJO predictability over the region.

During MJO phase 5 in winter, for instance, Becker et al.

(2011) emphasized a northward shift of the jet stream

leading to fewer storms along the U.S. East Coast, while

the pineapple express conveyor belt, transporting mois-

ture from the tropical Pacific to the U.S. West Coast, is

strengthened and yields to snow increase over the Sierra

Nevada (Zhang 2013). Skillful predictions during the

above MJO phases could thus be related to modulations

of the jet stream and atmospheric rivers affecting east and

west U.S. precipitation respectively.

4. Discussion and conclusions

The skill of weekly (week 1–4) and week 3–4 forecasts

precipitation tercile probabilities has been examined for

S2S forecasts. Probabilities are constructed by applying

extended logistic regression to ECMWF, NCEP, and

CMA reforecasts over the common period of 1999–

2010. A MME forecast is formed by averaging the in-

dividual model probabilities. The regression model can

be considered as a reduced form of quantile regression

in which the quantile q is one of the predictors, and it is

particularly well suited for predicting a probability

rather than a measurable physical quantity. As shown in

Wilks (2009), this method consequently yields logically

consistent sets of forecasts (Fig. 1). Terciles are defined

using, for each start and lead, a 3-week window centered

on the target week; the regression model is then trained

using the same pool of weeks (Fig. 2). Cross validation

(the year being forecast is left out) is used both in the

definition of tercile categories and the estimation of

regression parameters. To accommodate with the dis-

continuity between zero rain and rainy events in the

observed precipitation PDFs, forecasts are only made

for weeks where and when the lower tercile is nonzero.

The resulting weekly precipitation tercile forecasts for

starts within the JFM and JAS seasons are characterized

by low sharpness and decreasing skill with lead times.

After weeks 1 and 2, reliability and resolution sharply

drop over a broader continental North America domain

for individual models (Fig. 3) as well as for their MME

(Fig. 4). Predictions are more skillful in winter than

summer; however, skill remains low after week 2 as re-

flected by RPSS in Figs. 5 and 6.

To improve skill and because it is sensible to increase

the averaging window with increasing lead, week 3–4

forecasts are also considered. The terciles’ definition

has been adapted using 6-week windows centered on

the 2-week target formed by week 3 and 4 leads in line

with the concept of seamless predictions (Zhu et al.

2014). The regression model is subsequently trained on

the same pool of weeks defined separately for each

FIG. 9. Raw JFM week 3–4 MME RPSS averaged over continental North America between

208 and 508N latitudes (bars) together with observed Niño-3.4 index (blue) andMJOmeasured

by theRMM1 (green) andRMM2 (red) indices ofWheeler andHendon (2004). Corresponding

correlations can be found in Table 2.
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FIG. 10. (top) Spatial correlation patterns of raw week 3–4 multimodel ensemble (MME)RPSS leading principal

component (PC1) for starts during the (a) JFM and (b) JAS seasons. (bottom three rows) Correlations between

GPCP weekly precipitation and (c),(d) observed weekly Niño-3.4 index and (e),(f) RMM1 and (g),(h) RMM2

indices of Wheeler and Hendon (2004) for all starts in JFM and JAS, respectively. Only scores significant at 95%

level of significance using Monte Carlo simulations are plotted.
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start and week 3 leads in an out-of-sample manner.

The forecasts obtained are still characterized by low

sharpness but resolution and reliability are increased,

with more gain for theMMEwhen compared to weekly

forecasts at week 3 and 4 leads separately (Fig. 7, top

panels). Spatial smoothing of observation and forecast

data used to fit the regression model does not lead to

better sharpness nor reliability and resolution (not

shown), but increases the extent of skillful areas for

both winter and summer forecasts, as shown by RPSS

in Figs. 8c,d. Raw and smoothed week 3–4 outlooks are

more skillful along the U.S. East Coast and south-

western United States in JFM and the west/central

United States and the IAS/eastern Pacific in JAS

compared to week 3 and week 4 forecasts.

Relationships between skill and large-scale signals

such as ENSO and the MJO (Tables 2–3 and Fig. 9) are

examined by applying a PCA to week 3–4 MME RPSS

for starts during the JFM and JAS seasons separately

(Figs. 10a and 10b). In winter, the pattern of the leading

PC is related to skill over the southwestern United

States and bears similarities to the correlations between

weekly precipitation and both Niño-3.4 and MJO

RMM2 indices over North America (Fig. 10). This

leading PC is in fact significantly correlated with RPSS

averaged over continental North America and ENSO

for both seasons, consistent with the forecast relation-

ships to ENSO noted by DelSole et al. (2017), but also

the MJO and most particularly RMM2 for winter starts

(Table 3). However, increased RPSS for starts only

TABLE 3. As in Table 2, but for week 3–4 MME RPSS PC1.

Week 3–4 MME RPSS Niño-3.4 RMM1 RMM2 MJO

JFM PC1 20.45* (20.36*) 20.13 (20.05) 20.28* (20.29*) 0.32* (0.30*)

0.19* (0.16*) 20.11 (20.06) 20.08 (20.15*) 20.13 (20.19*)

JAS PC1 0.02 (20.04) 0.15* (20.01) 20.18* (20.21*) 0.26* (0.21*)

0.13 (0.14) 0.04 (0.06) 20.05 (20.04) 20.02 (0.04)

FIG. 11. RPSS for smoothed week 3–4 outlooks from the MME of ECMWF, NCEP, and CMA tercile pre-

cipitation forecasts with starts duringMJOphases (a),(c) 11 8 and (b),(d) 41 5 in JFM and JAS. Contours indicate

significant scores at 95% level of significance using Monte Carlo simulations.
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during MJO phases 11 8 and 41 5 within the JFM and

JAS seasons (Fig. 11) further suggest that some of the

skill is drawn fromMJO predictability over the region in

association to its modulations of the jet stream and at-

mospheric river affecting U.S. East Coast storms and

western U.S. precipitation, respectively (Becker et al.

2011; Zhang 2013). Despite the fact that skill remains

low, opportunities of skillful predictions can be in-

creased, as shown with both ENSO and specific MJO

phases over the broader NorthAmerican sector domain,

and these need to be exploited further in future studies

alongside those arising from other large-scale signals

impacting local climate.
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