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Abstract 
 

Using gestures and body movements for thinking and learning 
 

Jing Zhao 
 
 

Gestures have been found to be helpful to people in many cognitive and daily activities, 

such as speaking, counting, learning, and problem solving. However, different gestures 

benefit people to different degrees, and people use gestures in different ways to assist 

thinking and learning.  From an embodied cognition perspective, gesture is seen as a 

simulated action. Therefore, to further understand the mechanisms of gesture’s effects on 

thinking will directly help us harness embodied cognition theories to guide teaching and 

learning. In the literature, it is widely known that gesture not only reflects thinking, but 

also actively promotes thinking and learning. However, the mechanisms that account for 

gesture’s effects on cognition remained obscure to us. 

To better understand how different types of gestures benefit thinking and learning, Study 

1 was conducted with 31 participants to investigate how teaching big (n=15) and small 

gestures (n=16) as a problem solving strategy influenced the actual gesture use and 

performance. The results suggested that the small gesture might possibly be a more 

effective gesture, because people who were taught small and used small gestures had the 

highest accuracy percentage on the primary task. However, using the small gesture did 

not significantly lower cognitive load compared to using the big gesture. 

Based on these findings, Study 2 was conducted with 100 adults to further investigate 

how teaching different types of gestures influenced learners’ gesture use, performance, 

learning, and cognitive load. In this study, the participants were randomly assigned to 

three groups, where they were taught to solve a molecular structure problem using small 



	

(n=25), big (n=50), or no gestures (n=25). Then they were left in a quiet room to solve 15 

molecule questions independently. Their answers and time spent on each question were 

recorded. A dual-task paradigm was used as an objective measure of cognitive load, and a 

NASA Questionnaire was used as a subjective measure of cognitive load. At the end, 

participants were asked to answer some transfer questions. Throughout the study, all 

participants’ gestures and body movements were recorded by two cameras. 

The findings from the two studies suggested that teaching different types of gestures had 

some influence on people’s gesture use, performance, learning, and cognitive load. 

Specifically, small gestures taught as a problem-solving strategy were adopted more 

easily and more effectively used than big gestures and body movements. Questions that 

were answered through small gestures seemed to have a slightly higher accuracy 

percentage, but were not necessarily related to lowered cognitive load. The study also 

found that when people were taught gesture as a problem solving strategy and then asked 

to use it, they took some time at the very beginning to try and practice, and then gradually 

transitioned to using no gestures. In both studies, their thinking time, gesture time, 

gesturing density decreased gradually, without sacrificing accuracy. These findings 

contributed to both embodied cognition theories and gesture literature, and also shed light 

on instructional design in an educational setting.
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Chapter I  Introduction 
 

A. How gesture as a simulated action promotes thinking  
 
Literature in embodied cognition has shown that human cognition is grounded and embodied, 

and action plays central roles in cognition and learning. Therefore, actions that are compatible 

with perception can promote thinking. At the same time, gesture, as a form of simulated action, 

can reflect and promote thinking and learning in a similar way. This line of theories suggests that 

embodiment, by enacting experience through our body, is supposed to promote thinking and 

learning. This point of view has been supported by a growing body of research demonstrating 

that incorporating bodily movements and gestures into instruction can promote thinking and 

learning (e.g., Alibali & Nathan, 2012; Glenberg, Gutierrez, Levin, Japuntich, & Kaschak, 2004; 

Goldin-Meadow, Cook, & Mitchell, 2009). Furthermore, studies with new technologies and user 

interfaces that recognize natural bodily movements (i.e., gestures, bodily movements) seemed to 

even suggest that the richer the perceptual experience is, the better the learning result will be. For 

example, Johnson-Glenberg, Birchfield, Tolentino, and Koziupa (2014) showed that allowing 

students to manipulate a virtual molecule using a trackable wand in an immersive and highly 

interactive platform consistently led to greater learning gains, compared to learning in a regular 

classroom setting. Johnson‐Glenberg, Birchfield, and Usyal (2009) reported that a multimodal 

and immersive learning environment that incorporated multiple modalities (motion, sound, and 

graphics) could also lead to better learning and retention in geology as well.  In a more recent 

paper, Johnson-Glenberg et al. (2014) proposed a taxonomy of embodiment, claiming that a 

higher level of embodiment is likely to bring a more efficacious learning result. Therefore, we 



	 2 

could predict that a higher level of embodiment (e.g., a larger scale of body movements) will be 

associated with better learning than a lower level of embodiment (e.g., small-scale gestures). 

Gesture can be seen as a kind of action, thus has the potential to promote learning. In the gesture 

literature, it has been widely agreed that gesture can promote thinking and learning in many 

cognitive activities. However, gesture’s effect on cognitive load seemed to be a bit more 

controversial. One point of view is that while gesture serves to lighten working memory load like 

diagrams, this role is not the primary reason that gesture promotes learning. In a recent study by 

Jamalian, Giardino, and Tversky (2013b), they found participants’ proportion of time spent on 

gesturing during studying materials did not increase, as memory load increased from light to 

heavy. Based on it, they conjured that gesture’s role in offloading memory appeared to be less 

important than its other features like creating embodied representations. Another point of view 

even argued that gesture may impose cognitive load. In a study by Mol, Krahmer, Maes, and 

Swerts (2009), they proposed that many gestures produced by speakers were for communicative 

purposes, so speakers needed to put cognitive effort into producing gestures. They reported that 

in a communicative setting, when a narration task was not very demanding, a speaker produced a 

lot of gestures. However, when the narration task became more demanding and cost more load, 

the amount of gestures decreased. Beyond that, Warburton, Wilson, Lynch, and Cuykendall 

(2013)’s study also challenged this gesture-lightens-load explanation by proposing that the size 

of gesture influenced cognitive load. By instructing experienced dancers to learn and practice a 

dance routine either by reduced body movement (“marking”) or by full-scale body movement 

(dancing “full out”), they found that dancers who practiced with the “marking” method 

performed much better than those who practiced in a “full out” way. Therefore, they 

hypothesized that large-scale body movement itself might impose its own cognitive difficulties 
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and resulted in reducing the cognitive benefits of movement. If we think along this line of 

theories, we would predict that big-scale bodily movement is associated with less effective 

learning, compared to small-scale hand gestures.  

 
 

B. Overview of the dissertation 
 
The dissertation is organized into four chapters.  Chapter II is a literature review on grounded 

cognition theories, its application in the field of education, and how gesture as a simulated action 

promotes thinking and learning. It started with a review on the history of embodied cognition 

theories and actions’ central role in human cognition. Then, I reviewed two theoretical 

frameworks that support the application of embodied cognition theories in classroom instruction. 

Finally, I dove deeper into the gesture literature and discussed how and when gesture could 

promote thinking and learning as a simulated action and a form of embodiment. 

Chapter III presents Study 1. In Study 1, I investigated how teaching different types of gestures 

influenced people’s spontaneous gesture, how people’s use of gestures changed over time 

throughout the experiment, and how using big and small gestures influenced people’s 

performance and cognitive load.  

Chapter IV presents Study 2. Based on findings from Study 1, I investigated how teaching small, 

big, and no gestures influenced people own gesture use, how using small, big, mixed, and no 

gestures influenced people’s performance and cognitive load, how people’s gesturing behavior 

changed over time, and how they influenced people’s performance in transfer questions.  
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In the final chapter, I included discussions on theoretical contributions, practical implications, 

and limitations of the studies. The dissertation concluded with possible directions for future 

research. 
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Chapter II Literature Review 
 
The literature review is organized into three sections. The first section reviews the background of 

the grounded cognition theories, including how grounded cognition is different from traditional 

views of cognition, the diverse foci of embodied cognition theory, and empirical evidence 

demonstrating how perception, action, and mental simulation work together in forming human 

cognition. The second section goes more specific to review literature on how the embodied 

cognition research and theory are applied in a specific field, education.  It begins by reviewing 

two frameworks that support this application, and provides empirical evidence on how physical 

action and simulated action promote thinking and learning. The third section hones in on how 

gesture, which is a simulated action and a form of embodiment, connects with a wide range of 

cognition activities. It also discussed how gesture promotes thinking and learning. 

 

A. Perception, action, and embodied cognition 
 
The grounded cognition theory proposes that human perception is grounded in action and 

perception. Within the grounded cognition theory, researchers have focused on different aspects 

of it. A growing body of studies has provided empirical evidence supporting this view. 

1. Cognition is grounded and embodied.  
 
Traditional views of cognition assumed that all knowledge is processed in our mind as arbitrary, 

abstract, and amodal symbols (Glenberg et al., 2004). However, this view was challenged in the 

past forty years. Increasingly more evidence has provided support to the perspective that 

cognition is grounded and embodied. They provided support to the view that human cognition is 

based on the interaction among bodily state, situated action, and the environment. Therefore, to 
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develop a full understanding of something, we needed to construct a modal simulation of it in 

our mind (Black, Segal, Vitale, & Fadjo, 2012).  

a)  Bodily state, situated action, and the environment interact with a 
modal simulation to build human cognition 

 
Where does knowledge reside? Humanity’s efforts to understand the world itself and its 

knowledge can be traced back to the time when humans took the first step in an attempt to 

understand learning and thinking. Till today, the question of how knowledge is acquired and 

stored in the brain remains to be one that is still open to debates and discoveries.   

Contemporary research in psychology and human cognition has provided increasingly more 

support to the new perspective of grounded cognition, both theoretically and empirically. 

In the past, traditional views of cognition assumed that all knowledge is represented as amodal 

symbols, which are processed in a semantic memory system in our brain. The propositional 

symbols serve as the basis for the spectrum of our cognitive processes from perception to 

thoughts.  Since 1980s, this point of view was challenged by grounded cognition researchers 

from various fields, including linguistics, computer science, philosophy, artificial intelligence, 

and cognitive science (Barsalou, 1999, 2008; Glenberg et al., 2004). They questioned the 

traditional view of cognition for lacking support in empirical evidence, and for its insufficient 

explanation on how cognition interfaces with perception and action (Barsalou, 2008). One 

example is that Searle (1980) proposed the Chinese Room Problem, and argued that simple 

processing of pure symbols would not lead to knowledge and learning. 

Rather than explaining cognition in an amodal system, grounded cognition researchers proposed 

that modal representation is actually central to human cognition (e.g.Barsalou, 1999; Decety & 
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Grèzes, 2006; Goldman, 2006). They believe that when experience occurs (e.g., seeing a horse), 

our brain captures the information of the horse across modalities (e.g., how it looks, smells, and 

neighs, how it gallops, the environment it is in, and how we feel when we ride it, etc.,), integrates 

the information, and stores it as multimodal representations in memory. Later, when the 

information needs to be retrieved, a simulation of the horse will be activated in our brain, and we 

will have access of all the perception, action, and introspection information we gathered before. 

Grounded cognition researchers, in this way, united cognition with human perception, action, 

and introspection. Cognitive linguistics theories took this point even further and argued even the 

abstract concepts could be grounded metaphorically in our experience as well. They brought up 

extensive evidence across daily language and literature to show that people widely use concrete 

metaphors to talk about abstract ideas (e.g., Love is a journey; using up for good, positive 

experiences, and down for bad, negative ones) (Gibbs, 1994; Lakoff & Johnson, 1980, 1999; 

Turner, 1996).  

In general, contrary from traditional views on cognition, proponents of grounded cognition hold 

that processing of pure symbols to build cognition is quite questionable. Bodily state, situated 

action, modal simulation, and even the environment interact to build human cognition. 

b) Diverse foci in grounded cognition theories 
 
Although proponents of grounded cognition all reject to see human brain as a processor of 

abstract symbols, and believe that human’s minds must be understood in the context of its 

relationship to a physical body and/or an interactive world, there remains a wide range of 

diversity in the term of ground cognition, especially on what aspects of it is the most central 

(Gibbs, 2006; Wilson, 2002). In a comprehensive review, Barsalou (2008) in particular, used the 

term of grounded cognition to emphasize that cognition actually could be grounded in multiple 
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sources, including bodily state, situated action, social interaction, and the environment. At the 

same time, he also pointed out that the grounded cognition literature has different foci on each of 

these sources.   

Situated action is considered one of these foci. As early as 1979, Gibson (1979a) explained from 

an ecological approach that visual perception is a situated activity. In this line, literature claimed 

that all actions are situated and cognition emerges from the interaction of brain, body, and 

environments (Chiel & Beer, 1997; Clark, 1997; Pfeifer & Scheier, 2001; Steels & Brooks, 1995; 

Thelen & Smith, 1996). Other researchers laid emphasis on social interaction theories. They 

proposed that when we try to perceive and understand other people’s mind, we represent what’s 

going on in others’ mind by using a simulation in our own (Cattaneo & Rizzolatti, 2009; 

Goldman, 2006). Still many other aspects of the grounded cognition theory focused on the role 

of simulation particularly. They believe that when we interact with the world, a simulation is 

built upon our perceptual, motor, and introspection state. It is the presence of this simulation 

mechanism, as a means to represent information that allows us to develop an understanding of 

the world and draw inferences (Barsalou, 1999; Decety & Grèzes, 2006; Goldman, 2006; 

Kosslyn, 1980). Apparently, even more accounts of grounded cognition began to focus on the 

human body, as widespread evidence has shown mutual connections between bodily state and 

cognition (Barsalou, Niedenthal, Barbey, & Ruppert, 2003; Lakoff & Johnson, 1980; Smith, 

2005).  

In particular, Barsalou (2008) used the term embodied cognition to emphasize the dynamic 

interactions between human body and the physical world. Gibbs (2006) and Shapiro (2007) also 

used this term widely to emphasize the importance of the interaction between physical body and 
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the world. Therefore, for the rest of the paper, I will use embodied cognition when discussing the 

role human body plays in cognition and learning. 

c) Modal simulation in perception and action 
 
Embodied cognition has received wide empirical support, which suggests that mental simulations 

that are grounded in perception and action are essential in human cognition process. Below are 

some examples demonstrating the relation between action and a variety of perception models 

(i.e., visual, auditory, olfactory, gustatory and somatosensory). They have shown that action and 

perception are connected with modal simulations in our mind. 

Among the various perception models, the visual perception model is the most widely studied 

one. It can be traced back to Kosslyn’s mental imagery theories (Kosslyn, 1980, 1994). 

Embodied cognition researchers found that visual perception of an object can activate people’s 

actions on it. When people see an object, a simulation of potential situated action on the objects 

will be activated so that people can be prepared to act on it. For instance, Tucker and Ellis (1998) 

reported a study showing that simply seeing a graspable object with a handle (e.g., a saucepan) 

can activate corresponding hand actions on it. Human are not sensitive to the objects, but could 

be sensitive even to the orientation of objects. Symes, Ellis, and Tucker (2007) reported that the 

angle of an object can facilitate spatially compatible responses. Moreover, our motor-based 

knowledge of how an object can be utilized also can come into play when we see things. Gerlach, 

Law, and Paulson (2002) reported that easily manipulated objects such as fruits, vegetables, and 

articles of clothing activated brain’s motor areas more strongly than animals and nonmanipulable 

man-made objects. Interestingly, these simulations of objects can still occur even when the 

object itself is invisible to human, like when their names are shown as text (Tucker & Ellis, 2004; 

Zwaan, Van Der Stoep, Guadalupe, & Bouwmeester, 2012).  
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Human perception can influence action, but actions can also influence perception. In a series of 

studies, Proffitt (2006) reported that perceived steepness of a hill and perceived geographical 

distance could be influenced by actions and the state of the human body (e.g., wearing a heavy 

backpack or feeling tired). When people were tired or in a poor health condition, they felt the 

hills were steeper and the distance was longer. When people felt better, the hills became not that 

steep and the distance shorter. Franklin and Tversky (1990) also proposed that our perceived 

environment is shaped by the structure of our body. They found that when people were standing 

upright, locating objects along the head/feet axis was the easiest, followed by front/back and then 

by left/right. When people were in a reclining posture, the front/back was the easiest and were 

followed by head/feet and then left/right. This is because human body is symmetric along the 

left/right axis but perceived asymmetry with respect to the ground. Therefore, locating objects 

along the left/right axis is the most difficult when the environmental and bodily cues are 

relatively lacking. As Dewey (1896) said, “The motor response determines the stimulus, just as 

truly as sensory stimulus determines movement”(p.4). 

The connection between perception and action can be found in human auditory system as well. 

Halpern, Zatorre, Bouffard, and Johnson (2004) reported that when making judgments about 

heard timbres, fMRI showed activation in people’s primary and secondary auditory areas. 

Haueisen and Knösche (2001) found that listening to piano pieces can involuntarily trigger the 

respective finger movements of pianists. These movements, however, were not found for non-

pianists who lacked the association between the auditory perception and the actions producing 

the music. In another study, Repp and Knoblich (2004) found that pianists, in order to recognize 

their own playing from auditory recordings, created a simulation of their own motor actions. This 

simulation helped them to match the anticipated and perceived action effects. In the domain of 
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language, Pulvermüller et al. (2006) reported that when processing language, hearing syllables 

spoken not only activated the superior temporal cortex in the brain, but also the lips and tongue 

movements that produced them. Neurobiological models have provided additional support by 

claiming the connections between speech perception and its production mechanisms as well (Fry, 

1966; Fuster, 2003; Pulvermüller, 1999).  

The effects between perception and action are not limited to the visual and auditory domains. 

Research has found that perception of stimuli can activate many other brain areas too. For 

example, reading odor-related words (e.g., garlic, cinnamon, jasmine) can elicit activation in 

the primary olfactory cortex (González et al., 2006). Viewing pictures of appetizing foods 

can activate gustatory processing areas (Simmons, Martin, & Barsalou, 2005). Deficits in one’s 

motor and somatosensory systems can make it difficult for people to judge weights when 

observing others lifting them (Bosbach, Cole, Prinz, & Knoblich, 2005).  

The above empirical evidence all support the theory that property information is distributed in 

our brain’s modality-specific areas. People process different information in different modals and 

represent the information by their perceptual simulations. Therefore, in verification tasks (e.g., Is 

face a property of gorilla?) when simulated perception information was accessed and activated, 

variables like property size were found to affect people’s verification time and error (Solomon & 

Barsalou, 2004). Across modalities, when people switch simulation from one modality to another, 

a switch cost could incur (Marques, 2006; Pecher, Zeelenberg, & Barsalou, 2003, 2004; Spence, 

Nicholls, & Driver, 2001). For instance, Pecher et al. (2003) reported that when participants were 

asked to verify if an object (e.g., a lawn mower) had a certain property (e.g., loud), if the 

perceptual dimension switched between tasks, it took them more time to respond.  
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2. Action plays central roles in cognition and learning 
 
Compared with the term grounded cognition, embodied cognition lays more emphasis on the 

dynamic interactions between the human body and the physical world. This view also implies 

that actions play an important role in human perception and cognition (Barsalou, 2008). The 

following reviews empirical evidence on how action influences cognition and learning.  

a) Action and perception have mutual effect on each other 
 
 
Actions can have direct influence on how we perceive the world even since the time when we 

were infants. Campos, Bertenthal, and Kermoian (1992) reported that actions can change 

perceptions of infants who were younger than one-year old. In their study, they found that seven-

month-old babies who already experienced crawling refused to cross over a visual cliff and 

showed signs of fear (i.e., accelerated heart rate) when placed at the edge of it. However, babies 

of the same age but having not been crawling yet did not show these signs of fear. They went 

further to make pre-crawling babies stand in a “walker” so that they can push with their feet and 

receive some self-generated motion. They found that these motor experiences allowed by the 

walker changed babies perception of the visual cliff, and made them fear. However, babies of the 

same age but having not received the experience from the walker still did not show fear at the 

visual cliff (Bertenthal, Campos, & Kermoian, 1994). This evidence showed that it is the 

developed motion, instead of age, that changed infants’ perception of the world. 

Action can also influence people’s text comprehension. In an early study by Klatzky, Pellegrino, 

McCloskey, and Doherty (1989), priming a certain hand shape (e.g., pinch, poke, clench, and 

palm) was found to facilitate people’s judgments about whether a phrase is sensible (e.g., 
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“crumple a newspaper”) or not (e.g., “crumple a window”). This showed that the influence of 

action can be found even for abstract and metaphorical concepts as well (Wilson & Gibbs, 2007). 

b) The action-compatibility effect 
 
Studies in the context of embodied cognition not only reported the mutual effect between action 

and perception, but also a more robust congruent effect between the two, called action-

compatibility effect (ACE). Many studies have shown that congruence between action and 

perception could make information processing easier, compared to incongruence. For example, 

Wexler, Kosslyn, and Berthoz (1998) reported that in mental rotation tasks, people were faster 

and more accurate when they concurrently perform a manual rotation in the same direction as the 

required mental rotation. Furthermore, a change in the speed of motor rotation can affect the 

speed of mental rotation correspondingly. Similarly, Wohlschläger and Wohlschläger (1998) 

reported that the spontaneous use of rotational hand movements resulted in shorter response 

times; and that compatible hand rotational directions facilitated mental rotation, whereas 

incompatible directions inhibited it. 

This action-compatibility effect can be found in language comprehension as well. Glenberg and 

Kaschak (2002) asked subjects to judge whether sentences were sensible by making a response 

that required moving toward or away from their bodies. They reported that subjects found it 

easier to make a sensible judgment when the action implied in the sentence was in the same 

direction (e.g., to making an action moving away from the body when the sentence is “Close the 

drawer.”) than in an opposite direction. They found this effect still presented in sentences 

describing the transfer of abstract entities as well, like “Liz told you the story.” Wilson and 

Gibbs (2007) reported that both producing and imagining an appropriate body movement prior to 

reading a sentence containing compatible metaphorical phrases (e.g., “Grasp a concept”) can 
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facilitate comprehension of it. This effect can be found between one’s action and emotive state 

too.  Barsalou et al. (2003) reported that participants made faster responses when asked to 

indicate liking by pulling a lever towards their body, than those who were asked to indicate 

liking by pushing the lever away.  Therefore, Solomon and Barsalou (2001) suggest that 

concepts are grounded in sensory-motor simulations. 

The section above reviewed the literature in the perspective of grounded cognition, and discussed 

the connection between human perception, action, and cognition. In the next section, I will move 

on to talk about how embodied cognition theories are applied to the field of education to 

augment thinking and learning. 

 

B. Embodied Cognition as an Instructional Approach 
 
How can we apply the embodied cognition theories into pedagogy?  How embodied cognition 

can be applied to augment thinking and learning? What’s gesture’s role in classroom teaching 

and instructional design? When does gesturing promote learning and when does it not? As the 

theory of embodied cognition evolves, these and many other questions have begun to draw 

researchers’ attention when considering their applications.  

Educators and researchers have recognized the value of actions and movements in teaching and 

learning a long time ago. Dewey (1938) raises that each child is active, inquisitive, and wants to 

explore. Thus, instructors should integrate learning with experiences that are meaningful and 

useful to them and allow students to “learn by doing”. Montessori (Montessori & Carter, 1936) 

also highlight that physical activity is an essential factor in children’s intellectual growth, and 
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state that “through movement we come in contact with external reality, and it is through these 

contacts that we eventually acquire even abstract ideas.”  

1. Theoretical framework that supports the application of embodied 
cognition theories into classroom instruction 

 
Researchers of embodied cognition have proposed different theoretical frameworks explaining 

how embodied cognition perspectives can provide insights into cognition and learning. In this 

section, I will first discuss two of them in detail, because these two have been supported by a rich 

body of empirical evidence. 

a) The Indexical Hypothesis  
 
The first framework is the Indexical Hypothesis (IH) developed by Glenberg and Robertson 

(1999, 2000). The IH postulates that there are three steps when we convert text to meaning, 

which are indexing, affordance, and mesh (Glenberg, 2008, p. 45). When we try to understand a 

sentence such as “Art flicked the snake off the porch using the chair,” we will go through the 

three steps one by one. First, the indexing process happens so that we can map the words (e.g., 

“art”) and phrases (e.g., “the chair”) to either objects in the environment or perceptual symbols 

that we are familiar with. Then, in our mind, affordances (see Gibson, 1979a) are derived from 

the indexed objects or perceptual symbols, so that we understand what can be done with the 

objects (e.g., the chair can be sit on, or be lifted as a weapon to flick away a snake), depending 

on our bodily state. For example, the affordance of a chair is different for an adult and a child. 

An adult can use the chair in a lot of different ways, such as sitting, standing on, or even lifting 

to use as a weapon. However, for a child, a chair may be used to sit on or to hide behind, but it 

would not be lifted up to use as a weapon. Third, grammatical knowledge will be used to mesh 

the affordances into a coherent set of actions, under the guidance of syntactic constructions. In 



	 16 

the example, we will then understand that it is the subject, “chair”, that causes the motion of the 

object, “snake”, to go to a location, “off the porch”.  

Glenberg and colleagues tested this Indexical Hypothesis in a series of studies. In one study, 

Glenberg et al. (2004) asked elementary school children to play with toy objects that were 

referred to in text (e.g., a barn, a tractor, and a horse, in a text about a farm) to simulate the 

actions described in the text. They found that children who manipulated text referents after 

reading a sentence performed better in memory tasks. In a following study, they asked the 

children to only imagine manipulating the toys. They found that the imagined manipulation 

strategy were as effective as physical manipulation, and it was even maintained when tested on 

new texts several days later. In another study, Glenberg, Brown, and Levin (2007) applied this 

strategy in a small group setting, where children took turns reading the sentence aloud and were 

then asked to manipulate the objects. They found physical manipulation had a positive effect on 

students’ reading performance when executed in small groups, and that watching others 

manipulate objects was as effective as manipulating on their own.  Similar findings were 

reported with Native American students who had learning difficulties as well (Marley, Levin, & 

Glenberg, 2007). This series of findings was further generalized to virtual images. Glenberg, 

Goldberg, and Zhu (2011) reported that manipulating images of text referents on a computer 

screen benefited children as much as manipulating real toys, when it was used as an instructional 

strategy to promote reading skills. This facilitative effect could be found even one week later.  

b) The Imaginary Worlds 
 
Another framework is Black (2007)’s Imaginary World framework. Black’s Imaginary World 

was inspired by the concept of Story World (Black & Bower, 1980), which proposes that a Story 

World is a level of memory representation that the story text refers to. It includes the symbols, 
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relationship, and the propositional content of the story (Carnap, 1956). Black (2007) stated that 

the same idea was echoed by a series of proposals, including the mental model proposals by 

Johnson-Laird (1983) and Gentner and Stevens (1983), and the situation model proposal by Van 

Dijk and Kintsch (1983). The Story World involves the visual and spatial imagery of the story, 

and allows people to imagine the different possibilities the story could play out. Black (2007) 

shifted the terminology Story World to Imaginary World to extend its application to content 

beyond stories. His Imaginary World explains a more general cognitive mechanism. He proposes 

that learners can construct a mental representation of learning materials, and this representation 

functions like a simulation that is essential for a full understanding.  

A series of studies by Black and colleagues has demonstrated the application of the Imaginary 

World in education. Under the guidance of this framework, Hachey, Tsuei, and Black (2001) and 

Tsuei and Black (2004) reported teaching functional relations and formal system diagramming to 

middle school students through a Mars Colonies project. They found that although formal system 

diagraming had been proven to be too difficult for precollege students, their approach worked 

well for these middle school students. The students who were taught to think in Imaginary World 

learned to diagram dynamic earth science phenomena and were able to transfer these concepts 

and skills in later designs. Kuhn, Black, Keselman, and Kaplan (2000) reported another study in 

which scientific reasoning skills were taught to middle school students. In their Imaginary World, 

which was assisted by a computer simulation, students were able to conduct “thought 

experiments” by isolating variables one at a time. After several weeks, both their scientific 

inquiry skills and understanding of the content materials were improved. Another example is the 

Reflective Agent Learning Environment developed by Bai, Black, and Vitale (2006) . To play in 

this environment, students needed to teach a computer agent by building concept maps and 
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system diagrams. Based on students’ input, the agent then provided feedback on its thoughts on 

how the virtual world worked and how the virtual world itself was supposed to work. Students 

learned from teaching the agent, and reflected on the contrast between their imaginary worlds 

and the agent’s worlds.  

In the same line, Fadjo (2012) proposed the Instructional Embodiment Conceptual Framework. 

He suggested that under the instructional embodiment, there are two primary levels: physical 

embodiment and imagined embodiment. Under physical embodiment, there are four forms: 

direct, surrogate, augmented, and gestural embodiment; under the imaged embodiment, there are 

two forms: explicit and implicit embodiment. Students first construct an Imaginary World space 

through physical or imaged activities on the learning content, and then through the sixed 

proposed forms of embodiment, an embodied experience can be incorporated into a traditional, 

formal instructional environment. He also provided evidence showing that physical embodied 

and imaged embodied activities can help students construct Imaginary Worlds that can promote 

the development of computational thinking skills and abstract concepts. 

Applications of the embodied cognition theories in instructional design were further discussed in 

Black et al. (2012), where the authors proposed that “there are three steps involved in a grounded 

cognition approach to learning something: (1) Have an embodied experience, (2) Learn to 

imagine that embodied experience, and (3) Imagine the experience when learning from symbolic 

materials.” Black et al. (2012) also listed several examples using the embodied learning 

environment to promote learning. One example involves teaching elementary school students 

number sense and addition rules. It is hypothesized that addition is a discrete mental activity, and 

is thus congruent with discrete, pointing gestures, and number estimation is a continuous mental 

activity, and is thus congruent with continuous gestures. Therefore a gestural interface that elicits 
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gestures congruent with these respective learning tasks will likely benefit learning. Studies with 

preschool children showed that a well-designed haptic activity on a gestural-controlled interface 

can elicit “effective” gestures to promote learning. The gestures were “effective” in that they 

were congruent with their respective learning task (i.e., discrete or continuous). Therefore, they 

facilitated better use of learning strategies and resulted in better performance. Another example 

involves teaching the conception of shapes. In this study, elementary school children played in a 

video game environment, where they had to construct polygons with different features to help 

the agent navigate an obstacle course. The study found that children who represented crucial 

properties that determined polygon class (e.g., congruency, parallelism, and right angle) with 

gestures performed significantly better than who did not. They were also better at overlooking 

irrelevant properties in favor of class-defining properties. This “hand metaphor” was considered 

to be the key to provide a spatial-grounding experience to promote learning. A third study 

showed that this embodied experience not only benefited the learning of concrete concept, but it 

can also promote the learning of abstract concept, such as in computational skills and 

mathematical thinking. Fadjo (2012) reported that students who experienced direct physical 

embodied activities and were instructed to explicitly practice imagining them in their mind 

showed the best learning results. 

Black et al. (2012) pointed out that unlike other pedagogical frameworks where it is the 

instructor’s responsibility to model and embody, instructional embodiment found ways to 

“engage the student in a sequence or system of movement, imagination, and exploration.”  

2. Physical and simulated actions influence learning 
 
Since action plays a central role in human cognition, specific actions such as physical 

manipulation, imaged manipulation, and activities through haptic channel on physical and 



	 20 

simulated objects, are supposed to influence thinking and learning as well. Researchers have 

attempted different ways to involve action and movements to promote teaching and learning.  

Here are some examples on the application of embodied cognition theories to thinking and 

learning. Early embodied cognition researchers Lakoff and Núñez (2000) proposed that 

children’s mathematical concepts should be developed through metaphors rooted in perception 

and action. Based on that, Siegler and Ramani (2008) reported that having children play board 

games with consecutively numbered, linearly arranged and equally sized squares can improve 

their knowledge of numerical magnitudes. Martin and Schwartz (2005) also showed that 

physically manipulating pie wedges and tiles can facilitate children’s ability to develop a correct 

interpretation of fractions, and this physical experience yielded better performance in further 

transfer tasks. Bara, Gentaz, Colé, and Sprenger-Charolles (2004) demonstrated that 

incorporating a visuo-haptic and haptic exploration of letters (i.e., having children explore letters 

with their fingers and run their index finger along its outline in a fixed order corresponding to its 

writing) helped children develop phonemic awareness, knowledge of letters, letter-sound 

correspondence, and alphabetic principle usage. Glenberg et al. (2004) found that having 

children manipulate toy objects referred to in a text (e.g., a barn, a tractor, a horse, in a text about 

a farm) helped children map worlds and phrases into real world objects and experiences, and 

therefore facilitated derivation of meaning. This manipulation resulted in better memory and 

comprehension. The benefit of physical movement is not limited to learning about concrete 

materials, but they can benefit learning abstract content as well. Fadjo (2012) reported that 

students who acted out coding scripts with their bodies were able to write more lines of code and 

more complex scripts, and were better at implementing computational thinking skills, comparing 

to students taught with traditional methods.  
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Moreover, the benefit of action can still be seen even when the manipulation did not occur with 

real objects. It can be found with images on a computer screen or imagined images. Glenberg 

and colleagues completed a series of studies showing that compared with manipulation of real 

objects, both manipulation in imagination and manipulation on a computer screen yielded as 

effective results (Glenberg et al., 2011; Glenberg et al., 2004). Han and Black (2011) reported 

that usage of a haptic-augmented simulation about gear rotation can improve students’ learning 

of physics. Their results indicated that when solving physics problems about how input force on 

one gear can cause output force in an adjacent gear, students who learned by playing with a 

joystick that enabled actual feeling of arm movements and were shown an in-time simulation on 

the screen demonstrating the force the gears received with gear rotation speed, learned much 

better than those who learned with equivalent but non-haptic simulations. Jang (2010) examined 

the facilitative effects of actions in a virtual-reality program that aimed to teach the complex 

internal anatomical structure. It is found that students who manipulated the images of anatomical 

structures in a 3-D Virtual Reality environment outperformed their peers who only viewed the 

manipulation.  

 

C. Gestures as a form of embodiment promotes learning 
 
Gesture is movement in the air, but is also a concrete and important form of embodiment. This 

section reviewed evidence demonstrating that gesture, as a specific form of embodied simulation, 

promotes cognition and learning. 

Many theories have proposed that perception elicits and primes actions (Gibson, 1979b; Sperry, 

1952). Based on these theories and empirical evidence, Hostetter and Alibali (2008) posit that 



	 22 

gesture can be seen as manifestation of the simulation resulted from human perception and action. 

They also propose a Gesture as Simulated Action (GSA) Framework, which asserts that 

“gestures emerge from the perceptual and motor simulations that underlie embodied language 

and mental imagery”. They explain that in this framework, in line with embodied cognition 

theories, the interaction between perception and action is central to human cognition. As agreed 

by many researchers, the interaction is mutual: perception can determine potential action, just as 

action can determine what can be perceived. By simulating perception and action, language and 

mental imagery are processed. When the strength of activation of the simulation becomes 

sufficiently strong to spread to one’s motor areas and surpass one’s inhibition to express, gesture 

will emerge and be realized as an overt movement.  

McNeill (1992) classifies gesture movements into four major categories: iconic, metaphoric, beat, 

and deictic gestures. Iconic gestures bear a close formal relationship to the semantic content of 

speech it accompanies. The gesture and its accompanying speech often refer to the same event 

and are partially overlapping. Usually looking at the speech or the iconic gestures alone would 

not reveal a complete picture of the speaker’s memory and mental representation of the scene. 

An example of this type of gesture is: when describing people bending a tree back to the ground, 

a speaker may use a gesture that appears to be gripping something and pulling it backwards. 

Metaphoric gestures, similarly, are pictorial as well, but present an abstract idea instead of a 

concrete object or event. For example, a speaker may use a gesture to represent “hollow words” 

or “a deep book” as if a word is a container and a book has vertical dimension (Reddy, 1979). 

Beat gestures are hand movements that are like beating musical time. Regardless of the content it 

accompanies, beating gestures always stay in the same form (McNeill & Levy, 1982), and move 

along with the rhythmical pulsation of speech. Cohesive gestures, which can come in the form of 
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iconic, metaphoric, or pointing gestures, are the ones serving to “tie together thematically related 

but temporally separated parts of the discourse.” For example, a speaker may make a hand 

movement to inform the listener to go back to the main story line. Lastly, the deictic gestures are 

gestures in pointing form. Pointing gestures can aim at a physical place or an abstract concept. 

For example, a speaker may point at a space when asking “where did you come from before?” 

Each type of gesture has effects on cognition and learning in their own ways. 

1. Using gesture in cognitive activities 
 
As an important form of embodiment, gesture is ubiquitous in daily activities. People across all 

cultures (Feyereisen & De Lannoy, 1991) and ages (Iverson & Goldin-Meadow, 1998a) use 

gesture -- even those who have been blind from birth and have never seen other people gesturing 

use some gestures (Iverson & Goldin-Meadow, 1998b). Individuals gesture when they are by 

themselves, in the darkness, or talking on the telephone (Bavelas, Gerwing, Sutton, & Prevost, 

2008). Of course, gesture is used by people in a lot of cognitive activities.  

A very commonly seen gesture is the “co-speech gesture”. An early work by Feyereisen and De 

Lannoy (1991) stated that “the use of (co-speech) gesture was thought to represent a former, 

‘natural’ state of language.” Kendon (1986) and McNeill (1985) proposed that gesture and 

speech both relate to mental representations in thinking. More recently, Hostetter and Alibali 

(2008) proposed a Gesture as Simulated Action Framework. They pointed out that “gestures are 

not simply an epi-phennomenon of active mental images”, and that gesture actually facilitates 

speech. They mentioned that there are three theories explaining this facilitative effect. One 

theory is the image maintenance theory (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 

2001), stating that gesture activates visuo-spatial information in working memory to prevent 

them from decaying too quickly. Wesp et al. (2001) provided support to this view by showing 
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that speakers gestured more when describing paintings from memory than from their physical 

presence. Another theory is the lexical access hypothesis (Krauss, Chen, & Chawla, 1996; 

Krauss, Chen, & Gotfexnum, 2000). This hypothesis posits that gesture facilitates the retrieval of 

lexical items for spatial and motor ideas. Morsella and Krauss (2004) provided support to this 

theory by showing that gesture can directly affect spatial memory and lexical retrieval. In their 

studies, they found people gestured more when describing visual objects from memory, and 

when the objects were difficult to remember and encode verbally. Notably, people also gestured 

when describing a visually accessible object, but restriction on gesture produced dysfluent 

speech even when spatial memory was untaxed. A third theory is the information packaging 

hypothesis proposed by Kita (2000). This hypothesis suggests that gesture is involved in the 

conceptual planning stage. It helps speakers organize (“package”) spatial information into units 

that are suitable to verbalize. To support this hypothesis, Melinger and Kita (2007) showed that 

speakers produced more gestures at moments of relatively high conceptual load (e.g., when they 

were asked to describe a picture with higher complexity). Hostetter, Alibali, and Kita (2007) also 

showed that when people talked about visual patterns that were more difficult to conceptualize, 

they also gestured more.  Morrel-Samuels and Krauss (1992), similarly, provided evidence 

suggesting that when describing less familiar information, speakers may need to explore 

alternative ways to package information. Therefore, the onset of speech may be delayed and 

occur later than the onset of gesture. Still another theory is the growth point theory by McNeill 

(1992, 2005). Rather than focusing on the facilitative effect of gesture on speech, this theory 

proposed that gesture and speech sometimes work in collaboration to express and form ideas. 

Consistent with it, Iverson and Goldin-Meadow (1998c) agreed that gesture that occurs with 

speech can benefit both the speaker and the listener by facilitating speaking, communication, and 
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comprehension.  

Another cognitive activity gesture is also quite widely associated with is counting (Graham, 

1999). It is commonly seen that children spontaneously use gesture while counting objects 

(Fuson, 1988; Gelman, 1980). When children counted, regardless of whether the counting 

gestures were done by themselves or by a puppet, children counted more accurately than when 

they were not gesturing (Alibali & DiRusso, 1999). Regarding the function of gesture itself, 

Gelman and Gallistel (1978) proposed that children gestured to keep track of what had been 

counted. Fuson (1988) argued that children gestured to help themselves coordinate numbers with 

corresponding objects. Alibali and DiRusso (1999) proposed that active gestures produced by 

children themselves helped them to both keep track of the counted items and coordinate speech 

and the items. 

Gesture has been shown to play an important role in problem solving as well. Chu and Kita 

(2011) reported that when people tried to solve spatial visualization tasks (such as mental 

rotation tasks and paper folding tasks), they spontaneously produced gesture to help themselves 

think. The gesture produced actually helped enhance their performance. Alibali, Spencer, Knox, 

and Kita (2011) found out that gesture can also influence the strategy people chose for problem 

solving. In their study, when solving gear movement problems, participants who were allowed to 

gesture were more likely to use perceptual-motor strategies. Meanwhile, those who were not 

allowed to gesture were more likely to use the parity strategy instead. 

Gesture also benefits reasoning. Schwartz and Black (1996) reported that adults spontaneously 

produced gestures when making inferences and constructing mental models to solve gear 

problems. Even children as young as five years old can be taught to gesture to reason. Ehrlich, 
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Levine, and Goldin-Meadow (2006) provided evidence showing that gesturing helped children 

with their spatial reasoning, and even improved their mental rotation skills. Gesture can also 

benefit reasoning in a domain that is even not inherently spatial at all. For example, Beaudoin-

Ryan and Goldin-Meadow (2014) found that in a moral reasoning lesson, fifth-grade children 

who were told to gesture produced significantly more responses involving multiple perspectives 

in speech than children who were told not to gesture. Gesturing successfully helped them to think 

“on one hand”, and also “on the other hand”. 

2. Using gesture in learning 
 
Gesture can be used in a lot of cognitive activities, but how is gesture connected with learning in 

particular? Goldin-Meadow (2010) proposed that gesture is connected with learning in two ways. 

One way is that gesture reflects an individual’s knowledge state. The other is that gesture alters 

people’s cognitive state and therefore promotes learning and understanding.  

a) Gesture reflects the state of learning 
 
A series of studies provided evidence supporting that gesture serves as a window to a learner’s 

knowledge state. Church and Goldin-Meadow (1986) conducted a study in which five- to eight-

year-old children were asked to explain their judgments about quantity invariance in a Piagetian 

conservation task. They reported that when explaining, some children’s gestures contained 

different information from their accompanying speech. For example, they said “The dish is 

wide”, while gesturing both the shortness and the wideness of the dish. The researchers found 

that children who produced explanations with mismatch in speech and gesture gained more 

improvements in the later training session than children whose speech and gesture matched. The 

authors argued that these mismatches between gesture and speech may reveal that these children 

were at the edge of making conceptual progress, therefore they were more receptive to training 
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on this concept. This transitional stage can be observed in older children when they learned about 

mathematical equivalence concepts as well (Perry, Church, & Goldin-Meadow, 1988). In the 

same vein, researchers proposed that the mismatch between gesture and speech can be an index 

of transitional knowledge in other context (Perry et al., 1988), and that the mistach can offer 

insight into understanding the problem-solving process in adults and children alike (Garber & 

Goldin-Meadow, 2002).  

The gesture-speech mismatch theory not only provided information to help researchers identify 

individuals who are at a transitional stage of learning and are ready to learn, it could also reflect 

people’s mental representation during problem solving. Alibali, Bassok, Solomon, Syc, and 

Goldin-Meadow (1999) reported that when people were talking about how they solved a math 

word problem, the information conveyed in their gesture and speech did not always match. From 

information represented from people’s verbal description and gesture, the researchers found that 

gesture could reinforce, be neutral, or conflict with speech. They even found that the strategies 

people used to solve problems varied systematically as a function of how those problems were 

represented in both speech and gesture.  Therefore, they proposed that gesture and speech 

together could provide an index of people’s mental representation of problems.  

Gesture reflects a learner’s knowledge state and even untrained adults could glean information of 

learners’ knowledge state based on their speech and accompanied gestures (Goldin-Meadow, 

Wein, & Chang, 1992; Perry, Woolley, & Ifcher, 1995). All of these lay out the potential for 

educators and instructors to gather clues from a learner’s gesture and use them to inform 

teaching and learning.  
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b) Gesture promotes learning 
 
Goldin-Meadow (2010) stated that gesture can also promote learning in (at least) two ways: (1) 

by influencing the communicative input for learners, and (2) by altering people’s cognitive state 

directly.  

Since gestures can reveal knowledge state and help instructors to identify who is ready for 

instruction, Goldin-Meadow and Singer (2003) conducted a study to investigate if adults can 

change their teaching according to learners’ gesture. In the study, adults were asked to teach 

children who could not yet solve mathematical equivalence problems. They found that the adults 

offered more instruction strategies to children who produced mismatches than to children who 

produced no mismatches. Their findings supported the hypothesis that instructors could tailor 

their instructional input to help students learn.  

Gesture can also alter people’s cognition in a more direct way. Cook, Mitchell, and Goldin-

Meadow (2008) found that requiring children to gesture a strategy to solve math problems prior 

to a math lesson and then asking them to produce the gestures themselves can actually help them 

learn and retain the knowledge. On the other hand, requiring children to speak out the strategy 

without gesturing did not make a difference. Their finding suggested that the act of gesturing 

itself was actively involved in the construction of new knowledge and led to learning. Similarly, 

Jamalian (2014) reported that preschoolers who were required to perform a grouping gesture 

when learning counting strategies significantly outperformed those in the control group. She 

suggested that gesture, which is actions by nature, could add one more layer of meaning by 

presenting information in two modalities (i.e., visual and motor).  
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3. The mechanism of gesture’s effects on learning 
 
Gesture plays an important role in cognition and learning, but what are the mechanisms that 

underlie the effect? A growing number of studies have provided evidence accounting for the 

effect from different angles. I summarized them into the following four main mechanisms:  

gestures can: (1) be used as a tool for representation, (2) add information to people’s mental 

representation, (3) bring out implicit and new knowledge, and (4) offload working memory and 

lighten cognitive load. 

a) Gesture can be used as a tool for representation 
 
Gesture, as action in space, can be used to model space. Emmorey, Tversky, and Taylor (2000) 

found that when describing scenes with landmarks and routes, English speakers and American 

Sign Language users adopted survey and route perspectives differently and used different 

gestures. In this case, gesture is used to represent space. 

Gesture can represent one’s motions on an object, and grounds mental simulations in actions. 

Beilock and Goldin-Meadow (2010) conducted a study in which participants were asked to 

explain how they solved the Tower of Hanoi problems. For some participants, the size and 

weight of the disks were switched (i.e., the smallest disk was the heaviest and could not be lifted 

with one hand). They found that the switch group’s performance was hindered, because the 

switch made the perception and action incompatible. The authors proposed that their finding led 

support to the hypothesis that gesture can help ground people’s mental representation in action 

via its representational properties. 

Gesture can also represent perceptual-motor information. Alibali et al. (2011) asked participants 

to solve physics problems in which they had to predict the direction of gear movement. They 
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found that participants who were prohibited from gesturing used an abstract strategy (the parity 

strategy) more often. Meanwhile, those who were allowed to gesture used perceptual-motor 

strategies more often, which were based on simulation of gear movements. They reasoned that 

the use of gesture can help highlight and structure the perceptual-motor information and thereby 

made such information more likely to be used.   

b) Gesture adds information to people’s mental representations 
 
Gesture adds perception information to people’s mental representation. Beilock and Goldin-

Meadow (2010) asked participants to solve a Tower-of-Hanoi task (TOH1), explain (with 

gesture) how they solve it, and then solve another Tower-of-Hanoi problem (TOH2). In TOH2, 

for some participants (in the experimental group), the disk weights were switched, with the 

smallest disk being the heaviest one that cannot be lifted with just one hand, and the largest disk 

being the lightest. They found that for the experimental group, the more gestures depicted 

moving the smallest disk, the worse people’s performance was on TOH2. However, for the 

participants who worked with regular disks (in the control group), their performance in TOH2 

was not negatively affected. Furthermore, if participants skipped the explanation step and did not 

gesture, their performance was not affected either. The authors reasoned that gesture not only 

grounded people’s mental representation in action, but also added the information of the weight 

of the smallest disk to people’s mental representation. Therefore, when the weight information 

contradicts with size, it interfered with thinking and performance. 

Gesture highlights perceptual information for speakers. Alibali and Kita (2010) asked children to 

explain how they solved a Piagetian conservation task. They found that when children were 

prohibited from gesturing, they expressed more non-present information and less perceptually 
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present information.  They proposed that gesture promoted thinking on perceptually present 

information, and therefore influence a speaker’s decision on what to talk about. 

c) Gesture brings out implicit knowledge and new knowledge 
 
Gesture can bring out implicit knowledge. A study by Broaders, Cook, Mitchell, and Goldin-

Meadow (2007) showed that when students were asked to gesture, those who had been unable to 

solve the problems often added new and correct problem-solving strategies to their explanations. 

These added strategies were expressed only in gesture, but not in speech. Furthermore, in later 

instruction, children who were asked to gesture learned better than those who were asked not to.  

Gesture can bring out the emergence of new knowledge. Boncoddo, Dixon, and Kelley (2010) 

examined gesture’s representational function from a developmental perspective. They found that 

preschoolers, when trying to solve simple gear problems, initially used gesture to simulate the 

movement of gears. Based on their own gestures, most of them discovered the abstract rule (i.e., 

turning direction of gears alternates) on their own later. Their results provided support to the 

embodiment hypothesis that gesture, as an embodied action, can promote the development of 

new representation. 

d) Gesture lightens cognitive load 
 
Another explanation of gesture’s effects on learning is through the cognitive load theory.  The 

cognitive load theory is primarily based on our knowledge of human cognitive architecture, and 

the limited capacity and duration of the human working memory (Paas & Sweller, 2012). Its 

history traces back to Miller (1956)’s experiments on the limitation of the human working 

memory capacity, and Chase and Simon (1973)’s theory on how human chunks memory 

components into schema to organize information. In the late 1980s, the theory was outlined and 
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further developed by Sweller (1988) out of  a series of studies on problem solving. The cognitive 

load theory has had wide implications for instructional design and has provided guidelines to 

optimize learning conditions and instructional materials. This theory differentiates people’s 

cognitive load into three types: intrinsic cognitive load, extraneous cognitive load, and germane 

cognitive load. The intrinsic cognitive load is the inherent level of difficulty associated with a 

specific instructional topic. The extraneous cognitive load is generated by the manner in which 

information is presented to learners and could be controlled by instructional designers (Chandler 

& Sweller, 1991). The germane cognitive load is the load devoted to the processing, construction, 

and automation of schemas (Sweller, Van Merrienboer, & Paas, 1998). According to cognitive 

load theory, an ideal instructional design will limit the extraneous cognitive load and promote the 

germane cognitive load.  

There are a lot of different methods to measure cognitive load, directly or indirectly. Among all 

the objective methods to measure cognitive load, a widely-used one is the dual-task paradigm, 

which is a method to assess a learner’s working memory load using a secondary task (Britton & 

Tesser, 1982; Kerr, 1973) in combination with a primary task. The secondary task usually 

requires learners to engage in an additional cognitive activity (e.g., holding irrelevant numbers or 

letters in mind) that is secondary to the primary task of learning. If the primary learning task 

imposes a heavy cognitive load, performance on the secondary task deteriorates. In contrast, a 

low cognitive load in the primary task will result in improved performance on the secondary task 

(Sweller, Ayres, & Kalyuga, 2011). In literature, the secondary task could be visual (Brünken, 

Steinbacher, Plass, & Leutner, 2002), auditory (Brünken, Plass, & Leutner, 2004), or verbal 

(Myerson, Hale, Rhee, & Jenkins, 1999). 
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Empirically, this dual-task paradigm has been widely used in studies to demonstrate gesture’s 

cognitive benefits in offloading cognitive load. For example, in a study, Goldin-Meadow, 

Nusbaum, Kelly, and Wagner (2001) observed adults and children explaining their solution to a 

math problem (primary task) while trying to hold a list of letters or words in memory (secondary 

task). They expected that if gesture lightened cognitive load during speech, more mental and 

cognitive resources would be saved for the memory task to allow speakers to perform better. 

They found that both adults and children remembered more letters or words if they gestured 

during explanation compared to those who did not gesture, regardless of whether they were 

instructed not to gesture or spontaneously chose not to gesture. They argued that gesturing while 

talking helped lighten speakers’ cognitive load so that they had more cognitive resources 

allocated to the memory task. Similar results were found in Wagner, Nusbaum, and Goldin-

Meadow (2004)’s study as well. In the study, they asked adults to hold strings of letters or visual 

grid patterns in memory (secondary task) while explaining how they solved factoring problems 

(primary task). They found that participants remembered significantly more items when they 

gestured than when they did not gesture, regardless of whether the memory task was a verbal 

memory task or a visual memory task. Furthermore, Ping and Goldin‐Meadow (2010) also asked 

children to hold two words in their memory (secondary task) while explaining answers to a 

Piagetian liquid quantity conservation task (primary task).  Their study suggested that gesture’s 

cognitive benefits could be found not only when speakers used gestures to refer to objects that 

were visible in the immediate environment—the benefits continued to be found even when 

speakers talked and gestured about objects that were not present and could not be directly 

indexed by gesture. These studies all showed that gesture lightened people’s cognitive load. 
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4. Variation in gesture and individual difference 
 
Variation in gesture is another important area in the gesture literature. Research has proposed 

some factors associated with gesture variation. Researchers have found that people’s cognition, 

thinking, language and culture could all influence the usage of gesture.  Different gestures 

benefit different cognitive activities. 

a) Variations of gesture by people 
 
Many studies suggested that people’s visual and verbal abilities are correlated with individual 

differences in gesture production. Bucci and Freedman (1978) found that individuals with high 

referential competence (a type of verbal ability) produced much more representational gestures 

than individuals with low referential competence. Vanetti and Allen (1988) also looked for 

differences among their participants divided into four even groups: high spatial high verbal, high 

spatial low verbal, low spatial high verbal, and low spatial low verbal. They found that 

participants with high spatial and low verbal ability produced the highest number of 

representation gestures, compared to participants from other groups, although the difference was 

not significant.  

Cognitive abilities also correlate with how people use gesture to encode information. In a more 

recent study, Göksun, Goldin-Meadow, Newcombe, and Shipley (2013) found that high-spatial 

individuals used gesture in a different way than low-spatial individuals. They showed that high-

spatial individuals were more likely to use gesture to encode the internal structure of target 

blocks, while low-spatial individuals tended to use gesture to convey the static state of those 

rotation blocks instead of the dynamic form. Furthermore, when the low-spatial participants used 

static gestures, these gestures were often iconic gestures that highlighted the entire structure of 

the blocks (e.g., a curved handshape gesture),  whereas the high-spatial participants’ gestures 
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emphasized the internal structural relationship of the blocks (e.g., an L-shaped gesture). 

Cultural background influences gesture variation in an even more complex way. Kita (2009) 

reviewed four different factors governing the variation: (1) conventions for form-meaning 

associations, (2) cognition, (3) language, and (4) pragmatics for communication. These four 

factors dictate issues such as how gestures are associated with meaning, how gestures are used 

representationally for motion, time, and space, how cross-linguistic differences causes gesture 

differences, and gestural pragmatics (e.g., gesture rate, gesture size, gesture space, and gestural 

politeness).  

b) Variations of gesture in cognition and learning 
 
Gestures are different in terms of their rate, size, encoding, and could be used for different 

communicative purposes. Variations in gesture could have different effects on cognition and 

learning. 

While some gestures help cognition and learning, some do not. Regarding speech-accompanying 

gestures, Cook, Yip, and Goldin-Meadow (2012) proposed that only gestures that were in 

coordination with the content of speech lightened working memory, but meaningless hand 

movements that were produced rhythmically with speech did not. Regarding gestures for 

thinking, Göksun et al. (2013)’s study suggested that gestures that highlighted the inner structure 

of objects but not other features promoted people’s performance on a mental spatial 

transformation task.  

Some gestures promote learning only when they are compatible with the learning content they 

represented. Segal (2011) proposed a concept of Gestural Conceptual Mapping, which 

hypothesized that only the gestures that were congruent with the learning concept would promote 
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learning. She provided evidence showing that when preschool children learned about arithmetic 

(a discrete task), discrete but not continuous gestures supported learning the best; for estimation 

(a continuous task), continuous but not discrete gestures supported learning the best. She argued 

that the “right” gestures should be congruent with learning concepts, and compatible with the 

mental representation and operations needed to solve problems. These gestures would elicit the 

best performance. Another example is Kang (2012)’s study, which showed that different types of 

gestures primed different types of knowledge. In his study, he asked participants to learn from an 

instructional video about how an engine system worked. The instructor in the video taught the 

topic with either iconic gestures or action gestures. He found that iconic gestures that highlighted 

the structural knowledge of the system helped learning of the system’s structure, and action 

gestures that highlighted movements helped learning of the casual relationship between 

components within the system. He reasoned that the type of instructional gesture influenced a 

learner’s mental representation of the complex system. 

Good gesture promotes learning, while bad gesture may impede it. Jamalian (2014) pointed out 

that in preschool children, although pointing gestures accompanying counting can be assumed as 

an accurate counting strategy, they may possibly impede children’s understanding of the 

cardinality concept. For example, when a child counts a set of apples with pointing gesture and 

recites “one, two, three, four, five,” he may fail to realize that “five” refers to the cardinality of 

the whole set, rather than just the fifth apple. Therefore, simple and repeated pointing gestures 

can fail to represent the concept of set as a collection. However, asking children to count and add 

a grouping gesture around the items to highlight the concept of set would promote their 

understanding of cardinality and improve their overall math competence. 

Some gesture leads to cognitive changes, but not all. Goldin-Meadow (2010) stated that in many 
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cases, people produced gestures that contained and reflected more information than its 

accompanying speech. These meaning-loaded gestures can translate differently for novices and 

experts. For experts, the added information may be only an adjustment to small variations in the 

discourse, so these gestures would not lead to learning. However, for novices of knowledge in 

the speech, this added information in gesture may mean a developmental difference. Their 

gestures could reflect speakers’ experimentation with “new and not-yet-solidified ways of 

solving a task,” therefore had the potential to lead to cognitive changes. 

Since not all gestures promote learning equally and gestures are different in nature, I propose an 

effectiveness spectrum (see Figure 1). This spectrum demonstrates that we should not see gesture 

dichotomously as effective or ineffective when gesture is used for thinking and learning, but as a 

spectrum from very ineffective to very effective.  

 
 

 

 

 

 

 

Figure 1. Gesture Effectiveness as a spectrum. 

 
 

c) Co-speech gesture and co-thought gesture 
 
In the gesture literature, co-speech gestures (communicative gestures that accompany concurrent 

speech) have already been very widely studied (e.g., De Ruiter, 1998; Kita, 2000; Krauss et al., 

1996; Krauss et al., 2000; Wesp et al., 2001).  
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However, people also produce a lot of co-thought gestures, which are the gestures that are 

produced when people think in silence. As Chu and Kita (2011, 2015) pointed out, there have 

been very few studies that explicitly explore the role of co-thought gestures in spatial problem 

solving. The mechanisms underlying the production of co-thought gestures are also largely 

unknown. 

From the very limited number of studies that specifically focus on gesture used in problem 

solving, we know that spontaneous gesture can reveal the strategies people chose to solve 

problems (Chu & Kita, 2008). For example, Schwartz and Black (1996) found that when solving 

gear movement problems, the participants transitioned from using a perceptual-motor strategy 

(e.g., depicting the movements of each gear) to using an abstract rule-based reasoning strategy 

(e.g., reasoning based on whether the number of gears was odd or even). This change was 

reflected in the decrease of gestural depictions of gear movements over the course of the 

experiment. Chu and Kita (2008) also reported that when solving mental rotation problems using 

their hands, people tended to use gestures depicting their manipulation on an object at the 

beginning, and then moved to gestures depicting object movements only. They also reported that 

people produced more manipulation gestures in earlier trials of the experiment than in later trials.  

Co-thought gestures not only reflect the strategy people use when solving mental problems, they 

also influence people’s performance in problem solving. In a study by Schwartz and Black 

(1999), participants had to imagine two glasses of different diameters filled to the same level 

with water. They were asked to judge which glass would start to spill first if tilted. The 

researchers found participants rarely answered the questions correctly when asked verbally. 

However, when the participants were asked to close their eyes, tilt the glasses with hands, and 
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imagine the water level, they produced the correct answers more frequently. Consistent with this 

study, Chu and Kita (2011) also reported that when people had difficulty solving visual spatial 

problems, they spontaneously produced gestures to help themselves, and gestures can indeed 

improve their performance. Moreover, people who were encouraged to gesture also performed 

better than people who were prohibited from gesturing and people who were allowed but not 

encouraged to gesture. 

Although a considerable amount of research has consistently shown that co-thought gesture can 

be used to benefit thinking and learning as effectively as the co-speech gesture, the mechanisms 

of co-thought gestures’ benefits on thinking and learning are still relatively understudied. 

Especially, I think it will be beneficial to further explicitly explore how to involve co-thought 

gestures in the field of education as an instructional approach. 

5. Using gestures and body movements for chemistry learning 
 

The literature on embodied cognition, gesture and body movements, and the application of 

embodied cognition as an instructional approach has shown the potential of using gestures and 

body movements in teaching spatial thinking across science, technology, engineer, and 

mathematics (STEM) disciplines. In this dissertation study, I chose chirality in chemistry as the 

learning content based on the following considerations. 

First of all, in the past decades, more and more researchers have considered the role of body and 

movements in visualizing and meaning making in STEM teaching and learning. A growing body 

of research has demonstrated the positive effects of gestures and body movements in various 

fields of STEM education. For example, Goldin-Meadow et al. (2009) found that during a math 
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lesson, children who were required to produce correct gestures learned more than children who 

were required to produce partially correct gestures or no gestures at all. They suggested that 

when learning something new, body movements were not only involved in processing ideas, they 

also helped in extracting implicit meaning and creating new ones. Adults can benefit from 

gestures and body movements as well. By analyzing the gestures produced in an undergraduate 

physics class, Scherr (2008) found that gesturing helped students articulate emerging ideas, 

organize information, and facilitate construction of new ideas. Similarly, Singer, Radinsky, and 

Goldman (2008) also reported that when learning geoscience using a data visualization tool, 

gesturing made it possible for learners to concretize phenomena that were otherwise not directly 

observable in space and time and were difficult to be captured by speech alone, therefore 

promoted their learning of abstract concepts. In general, by functioning as a simulation of the 

physical world and facilitating the linking between sensorimotor experiences and mental 

representations, gestures help learners better comprehend abstract and complex ideas (Wilson, 

2002). 

Second, the discipline of chemistry itself involves extensive study of dynamic spatial 

relationships in entities at a molecular level, therefore it provides a lot of good opportunities to 

study how gestures and body movements support thinking and learning in STEM education 

(Stieff, Lira, & Scopelitis, 2016). Flood et al. (2014) pointed out that many chemistry 

phenomena are frequently submicroscopic (thus inaccessible to our senses), require visual-spatial 

thinking in a three-dimensional space, and involve dynamic motion or change. Therefore, 

gestures of hands and body parts can become a very powerful medium to simulate and enact 

different vibrational and rotational motions at a molecular level. In this line of thinking, 

researchers and educators have demonstrated the benefits of explicit training on the use of 
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gesture, as a pathway to support spatial thinking and improve student success. Their research has 

helped gain insight into instructional techniques and the mechanism of learning. For example, 

Chu and Kita (2011) showed that students who were encouraged to gesture performed better on 

mental rotation tests than those who were instructed not to. Stull, Barrett, and Hegarty (2013) 

demonstrated that manually manipulating virtual molecular models on a haptic device yielded 

comparable improvements in spatial problem solving than learning with high-fidelity concrete 

models. Stieff et al. (2016) found that by physically simulating spatial transformations with 

gestures, students learned equally well as those who learned from concrete models. Their 

learning was long lasting even when the models were taken away. These studies all supported the 

important role of gesture in promoting spatial thinking and learning in the field of chemistry.  

Third, as an important, foundational, yet complicated concept, chirality is a very challenging 

topic for students in introductory level chemistry courses in college. The concept of chirality 

refers to a geometric property of some molecules and ions. By definition, if a molecule or ion is 

non-superimposable on its mirror image, it is chiral; otherwise, it is achiral. In an introductory 

chemistry course, the concept of chirality is often introduced using a pair of hands and other 

chiral and achiral objects. However, to learn the concept, students need to represent three-

dimensional molecular structures with multiple two-dimensional diagrams of the molecule, and 

then translate between these diagrams to make analyses. Translating among these diagrams and 

depicting spatial-relational information to visualize molecular structure can be exceptionally 

challenging for novices who primarily rely on imagistic strategies or even no strategies at all 

(Stieff, 2011; Stieff, Dixon, Ryu, Kumi, & Hegarty, 2014; Stieff et al., 2016). Therefore, using 

chirality as the learning content in this study will have immediate implications for teaching and 

learning in the classroom. 
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Chapter III Study 1 
 
 
 

A. Research questions for this study 
 
A review of literature reveals three reasons for Study 1: 

(1) There are variations in gesture and gesture use. Not every kind of gesture promotes 

thinking and learning. 

(2) The mechanism of how gesture promotes thinking and learning is understudied, 

especially regarding gesture’s effects on cognitive load. 

(3) A very limited number of studies have explicitly investigated the co-thought gestures. 

With this background, I decided to further study the mechanism of gesture’s effects on thinking. 

In this study, I investigated whether and how different types of gestures (including big gestures 

and small gestures) influenced people’s thinking and learning, when people were engaged in 

problem solving activities in a non-communicative environment. 

 There are four guiding research questions for this study: 

1. How would teaching different types of gestures influence learners’ own gesture uses? 

2. How would co-thought gestures change over time when people use them to solve 

problems? 

3. How would different types of gestures influence learners’ performances? 

4. How would different types of gestures influence learners’ cognitive load? 
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B. Method 

1. Participants  
 
Thirty-one graduate students from Teachers College, Columbia University participated in this 

study. They were all at novice level in the learning content. All of them participated this study 

for course credit.  

Participants were randomly divided into two groups. One group (n =15) was taught to use big 

gestures as a strategy to solve a molecule configuration problem. The other group (n =16) was 

taught to use small gestures to solve it. 

In data analysis, four participants were excluded from the sample. From the small gesture group, 

one participant was excluded because she completed each of the questions partially, and another 

participant was excluded because his body blocked the camera, obscuring some of his gestures 

and making it impossible for us to code his gesture use. From the big gesture group, two 

participants were excluded because one was playing with the system (keying in the same answer 

for each question), and the other one spent too little time on each question (the experimenter 

believed it would be impossible to complete the questions in such a short time). Therefore, the 

final sample consisted of 27 individuals, with 13 in the small gesture group and 14 in the big 

gesture group. 

2. Procedure 
 

Participants first signed a consent form and a form of participants’ rights. After they read and 

signed the documents and assented to participating in the study and being video recorded, they 

were asked whether they would like to give permission for us to show their videos in 

presentations of the research.  
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The main procedures of the experiment included: 

1. Participants completed a paper version of the Mental Rotation Task (MRT) (Vandenberg 

& Kuse, 1978).   

2. Participants were divided randomly into two groups. One group was taught how to use 

small gestures to solve a molecule configuration problem. The other group was taught 

how to use big gestures to solve it. 

3. Participants solved 15 sets of problems. Each set contained a primary task (one  molecule 

problem) and a secondary task (one block tapping problem). 

4. Participants completed a NASA Task Load Index (Hart & Staveland, 1988) and an exit 

survey. 

C. Results and discussion 

1. Teaching small and big gestures as a problem solving strategy 
 

Out of the 27 participants included in the final data analysis, 13 of them were taught to solve the 

molecule problems using small gestures. The rest of them were taught big gestures. After 

teaching, participants were asked to solve problems on their own. They were encouraged to use 

the taught gestures but were informed that using the taught gestures was not mandatory. Thus, 

participants voluntarily chose to use small gestures, big gestures, no gestures, and even mixed 

gestures (a combination of small and big gestures) on each trial. 

Small gestures were more easily accepted after they were taught. As shown in Figure 2, for 

the people who were taught big gestures, the number of participants who accepted them was very 

low. Out of 14, 9 persons (64.29%) used the taught gestures for only a few trials (less than 5 

trials). Two (14.29%) of them used the taught gestures moderately (between 5 to 9 trials). Only 3 
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(21.43%) accepted the instruction and used the taught gestures frequently (in more than 10 trials 

out of the 15 trials). However, for the people who were taught small gestures, the pattern was 

reversed. Out of 13, 9 persons (69.23%) applied the taught gestures frequently (in more than 10 

trials out of the 15 trials). Two (15.38%) of them used the taught gestures moderately (between 5 

to 9 trials). Two (15.38%) of them used the taught gestures for only a few trials (less than 5 

trials). Because of the small sample size, the difference between groups was not significant. 

However, the pattern was very obvious. 

 

 

 

 

 

 

 

Figure 2. Gesture used by participants who were taught big and small gestures. Error bars 
represent 95% confidence interval. 
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Similarly, the type of small gesture was the most popular choice by participants from both 

groups, regardless of what type of gesture was taught. Figure 3 shows a breakdown of all 405 

trials by the gesture type and group. 

 

 
 

 
 

 

 

 

 

Figure 3. Gesture taught and used by all participants. 
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taught this type of gesture at all. 

For those who were taught small gestures, the type of no gesture was the next most frequent, 

accounting for 41 (10.12%) trials.  
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For those who were taught big gestures, the second and third most frequently used gesture types 

were the big gesture and no gesture. They were used for similar number of trials, in 58 (14.32%) 

and 49 (12.10%) trials respectively.  

The least frequent gesture type was mixed gesture, which was used in 12 trials (3%). Notably, 11 

mixed gestures were used by people who were taught big gestures. Only one was used by the 

group who was taught small gestures. 

These results indicate that most people who were taught small gestures seemed to be very 

satisfied with using this strategy. The type of small gesture was their primary choice. However, 

for people who were taught big gestures, although a good proportion of them continued to use 

them when asked to solve problems on their own, an even larger proportion of them switched to 

small gestures or even no gestures. Interestingly, those who where taught to use big gestures 

tried mixed gestures on more trials at the beginning than those who were taught small gestures 

did. I think using mixed gestures could possibly reflect some confusion from the participants 

when they tried to look for a suitable strategy for themselves. 

2. Gesture type and performance in the primary task  
 
Figure 4 shows participants’ performances on the primary task (the molecule problems) when 

using small, big, no gestures, and mixed gestures. We can see that when the type of small gesture 

was used, it resulted in much more correct answers than incorrect answers. A similar pattern can 

be seen for questions answered by no gestures. However, for questions answered by big gestures 

and mixed gestures, there did not appear to be a huge difference between the number of correct 

and incorrect answers.  
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Figure 4. Performance in the primary task by gesture type. 
 

To better understand how gesture type affected the performance score on the primary task, I 

constructed a binary logistic regression model, using the actual performance on the primary task 

(right or wrong) as the dependent variable, the type of gesture used (small gesture, big gesture, 

mixed gesture, or no gesture) as a fixed effect and subject ID as a random effect. The model 

showed that the effect of gesture type on performance was not significant (Table 1) 

Table 1  

Effects of Gesture Used on the Primary Task  

Source F df1 df2 p-value 

Corrected Model 0.507 3 401 .677 

Gesture used 0.507 3 401 .677 
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3. Performance in the secondary task: an objective measure of cognitive 
load 
 

Figure 5 shows how participants’ performance on the secondary task (the block tapping problem) 

was influenced by using small, big, no gestures, and mixed gestures.  

The range of the scores for the secondary task was 0 to 5. I found that when small gestures were 

used to solve problems in the primary task, the mean score of cognitive load (M = 3.56, SD=1.18) 

associated with the questions correctly answered was higher than the mean score of cognitive 

load associated with the questions incorrectly answered (M=3.10, SD=1.19). Similarly, for the no 

gesture group, the mean score of cognitive load (M= 3.51, SD=1.23) associated with the 

questions correctly answered was also higher than the mean score of cognitive load associated 

with the questions incorrectly answered (M=2.77, SD=1.25). However, this pattern was not 

shown in the questions answered by big gestures and mixed gestures.  

 

 

 

 

 
 

 
 
 
 
   Figure 5. Performance in the secondary task by gesture type. 
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To understand how the type of gesture used affected the performance score on the secondary task, 

I constructed a binary logistic regression model (a generalized linear mixed-effect model), using 

the actual performance on the secondary task as the dependent variable, the type of gesture used 

(small gesture, big gesture, mixed gesture, or no gesture), answer to molecule questions (right or 

wrong), and the interaction between these two variables as fixed effects, and subject ID as a 

random effect. The model showed that the effects were significant (Table 2). 

Table 2  

Effects of Gesture Used on the Secondary Task 

Source F df1 df2 p-value 

Corrected Model 3.064 7 120 .005 

Gesture Used 2.315 3 120 .079 

Answer to MQ 0.014 1 120 .907 

Answer to MQ * Gesture 1.596 3 120 .194 

 

The above results indicate that the type of gesture used might possibly have some effects on 

performance on the primary task, but also on the cognitive load as shown in the secondary task.  

4. Gesture duration time, thinking time, and gesture density  

Figure 6 shows that the total time spent on thinking on each primary task decreased significantly 

and steadily as people worked from question 1 to question 15. Regardless of the type of gesture 

taught, the gesture time decreased in a very similar pattern. 
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Figure 6. Total time spent on thinking on primary task by participants who were taught small 
and big gestures. Error bars represent standard error. 

	
 
Figure 7 shows that average gesture time and average thinking time both decreased from 

question 1 to question 15. 

 

 

 

 

 

 

 

 

 

Figure 7. Average gesture time and average thinking time for primary task. Error bars represent 
standard error. 
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Figure 8. Average gesture density for primary task. Error bars represent standard error. 

Figure 8 shows that gesture density (gesture density = gesture time/thinking time) also decreased 

from question 1 to question 15.  

Together, the above results show that from question 1 to question 15, people spent less time 

thinking and less time gesturing. Their gesture density decreased in the same trend as well. 

In terms of the type of gesture, Figure 9 shows that the number of participants using small, big, 

and mixed gestures for each primary task decreased slowly from the beginning to the end.  

 

 

 

 

Figure 9. The type of gesture used for the primary task. Error bars represent standard error. 
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Interestingly, from question 1 to question 15, the number of participants who used no gestures 

increased steadily and significantly. It seemed that into the second half of the time (questions 8 

to 15), a small number of people gave up small and big gestures and switched to no gestures. In 

addition, a few people tried the mixed gestures in the first half of the trials, but few used them 

during the second half. It seemed that people tried a mixture of small and big gestures for a few 

trials at the beginning, but dropped them later. 

To understand the effect of the type of gesture taught on the type of gesture used, I constructed a 

multinomial logistic regression model using the type of gesture used (small gestures, big 

gestures, mixed gestures, and no gestures) as the dependent variable and the type of gesture 

taught (small gestures, big gestures, and no gestures) as the fixed effect. The model showed that 

the type of gesture taught significantly influenced the type of gesture used (Table 3). 

Table 3  

Effects of Gesture Taught on Gesture Use 

Source F df1 df2 p value 

Corrected Model 15.142 3 399 p <. 001 

Gesture Taught 15.142 3 399 . p <. 001 

 
 

5. Accuracy percentage 
 

Figure 10 shows that the accuracy percentage for the primary task remained steady and even 

increased slightly towards the end, in spite of a few dips (in No.4, No. 8, and No. 13). This trend, 

together with the decrease of time spent on each trial, suggested that people became more and 
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more skillful at solving the problems, because they managed to keep a steady accuracy 

percentage while spending less and less time on each trial. 

 

 

 

     

Figure 10. Accuracy percentage for the primary task. Error bars represent standard error. 

 
Participants were broken up into the four sub-groups TBUS (taught big used small), TBUB 

(taught big used big), TSUS (taught small used small), and TSUB (taught small used big). As 

shown in Figure 11, we can see that participants who were taught small gestures and used small 

gestures performed the best. In the TSUB group, we do not have a calculation for accuracy 

percentage because there were too few people (n = 4). 

 

 

 

	

Figure 11. Average accuracy percentage for different gesture types. 
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6. Subjective Measure of cognitive load  
 
For each participant, when they solved the molecule questions, the type of gesture (small, big, 

and no gesture) were recorded and coded. 

The result showed that our participants rarely consistently used one type of gesture throughout 

the 15 questions. Many of them started with one certain type of gesture, switched to a different 

type of gesture for some questions now and then, and gradually dropped all gestures as the time 

moved on. Some switched between big and small gestures on one question during thinking. 

Others did not even use gesture at all. In my coding, if a participant used one type of gesture to 

answer more than two thirds of the questions, this individual was coded as the gesture user of 

this type. For example, throughout the 15 questions, if a participant used small gestures on more 

than two thirds of the questions, he was coded as a small gesture user. If a participant did not use 

any particular type of gesture for more than two thirds of the questions, he was coded as a mixed 

gesture user. So all participants were coded into the following four types of gesture users: small 

gesture user, big gesture user, no gesture user, and mixed gesture user (Figure 12). 

 

 

 

 

         Figure 12. The four types of gesture users. 
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Each individual completed a NASA Task Load Index, which was used as a subjective measure of 

cognitive load. The subjective measure of cognitive load revealed several interesting findings 

from the four types of gesture user. Figure 13 shows the results. 

When asked “How physically demanding was the task?,” not surprisingly, people who were big 

gesture users and mixed gesture users reported the highest level of physical demandingness 

followed by the small gesture users. No gesture users reported the lowest level of physical 

demandingness.  

When asked “How mentally demanding was the task?,” no gesture users reported the highest 

level of mental demandingness, with the other users not very different from each other.  

When asked “How successful were you in accomplishing what you were asked to do? 

(performance),” it seemed that mixed gesture users were more confident in their own 

performance, with other groups thinking alike. Maybe it was the switch between gestures that 

made them feel they were trying different strategies and led to this higher level of perceived 

accomplishment.  

When asked “How hard did you have to work to accomplish your level of performance? 

(effort),” the small gesture users and big gesture users were not vert different from each other. 

However, the mixed gesture users thought they had expended the most effort to accomplish their 

level of performance. No gesture users thought they had expended the least effort.  

When asked about frustration level, “How insecure, discouraged, irritated, stressed, and annoyed 

were you?,” big gesture users reported the lowest frustration level. It is consistent with our 

intuition that when movements become bigger or when a large portion of the body is engaged, 
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people tend to feel that their actions on learning are playful, game-like, or more fun, thus the 

frustration level was lowered. The small gesture users’ levels of frustration were higher than 

those of the big gesture users. 

When asked “How hurried or rushed was the pace of the task?,” big gesture users thought they 

were much more hurried throughout the task than the other groups. However, as shown in Figure 

14, they actually took neither more thinking time nor more gesture time than small and mixed 

gesture users. Interestingly, these no gesture users thought they were the least rushed, but they 

took the longest thinking time and shortest gesturing time out of all groups.  
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Figure 13. Subjective measure of cognitive load by gesture user type. Error bars represent 95% 
confidence interval 
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Figure 14. Thinking time and gesture time by gesture user type. Error bars represent 95% 
confidence internal.  

 
 
 

7. Individual difference 
 
 
The Mental Rotation Test (MRT) has been used in a lot of studies to assess participants’ visual 

spatial ability. Some researchers used MRT to identify individuals as high ability if they scored > 

50 %, and low ability if they scored  ≤ 50 % (Geiser, Lehmann, & Eid, 2006). Others used the 

median split. Here, I used the median split at score = 9.00 to divide participants into low- and 

high-scoring group because of the distribution of scores in this sample (Range = 0 -18, median = 

9). See Figure 15. 
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Figure 15. Participants’ Mental Rotation Task score. 

Figure 16 shows that there was an interaction between the type of gesture user and the level of 

visual spatial ability. In high-spatial ability participants, small gesture users and no gesture users 

performed significantly better than the big gesture users and the mixed gesture users. However, 

in low-spatial ability participants, the big gesture users performed significantly better than small 

gesture users and mixed gesture users.  

 

 

 

 

 

 
 
Figure 16. Gesture user type and their mean scores of the primary task. Error bars represent 95% 
confidence interval.  
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D. Discussion 
 
In this study, participants were taught two types of gestures (big or small) and were asked to use 

them to solve molecule configuration problems. They were left alone in a quiet room to solve the 

problems on their own in a non-communicative setting. Their performance on the primary task 

(the molecule question) and on the secondary task (the block question) were analyzed. Based on 

the results, I have the following conclusions. 

1. Small gestures were better accepted than big gestures. In our study, small gestures 

and big gestures were taught as two types of problem strategies to two groups of people. When 

people were encouraged to use the taught gestures to assist their problem solving, those who 

were taught small gestures were much more likely to keep using the taught gestures on most of 

the questions than those who were taught big gestures. People who were taught the big gestures 

spontaneously chose to use a lot of small gestures, which were never taught to them; some even 

did not try the big gestures at all. In addition, in the first half of the 15 questions, quite a number 

of people who were taught big gestures tried a mixture of gestures on several trials, but they 

eventually gave up the mixed gestures and switched to other types of gestures. Comparatively, 

only one person who were taught small gestures tried mixed gestures once in the first half. One 

possible explanation for this observation is that maybe those who were taught big gestures were 

not very satisfied with the taught strategy. They attempted a few other gestures at the beginning 

but gradually moved to gestures they felt confortable with.   

2. Small gestures could be more effective gestures than big gestures. From the accuracy 

percentage (Figure 11), we can see that people who were taught small and used small gestures 

had the highest accuracy percentage of all groups. Small gestures also seemed to be related to a 

better performance in the primary task and a lighter cognitive load. However, the difference was 
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not statistically significant. The type of small gesture could possibly be a more effective gesture 

type than the type of big gesture. 

3. Using gestures influenced people’s subjective judgment of cognitive load. The results 

of the study showed that people’s subjective judgment of cognitive load might not match their 

actual performance. For small gesture users, although small gestures seemed to have some 

positive effects on performance and cognitive load, they reported a much higher level of 

frustration than big gesture users. Moreover, when asked how successful they were in 

accomplishing what they were asked to do, small gesture users’ rating of the performance was 

not significantly higher than that of big gesture users’ (Figure 13).  

Big gesture users’ subjective judgments of cognitive load were also different from their 

actual performance in a number of ways. For example, although big gesture users reported a 

much lower level of frustration, their performance was not significantly better than other groups. 

They reported a significantly higher level of temporal demandingness, but they did not spend a 

longer time on gesturing or thinking than small gestures users did. In addition, big gesture users’ 

rating of the difficulty to accomplish their performance level was also not significantly different 

from small gesture users. Taken together, these results imply that the type of big gesture seems 

to be related with a lower level of frustration, but its positive influence was not extended to other 

aspects. In other words, although using big gestures might look fun and make people feel less 

frustrated, it did not have significantly positive effects on the actual performance or the time 

spent on thinking. 

4. People became more skillful at gesturing. The results also suggested that people spent 

less time thinking and less time gesturing as they moved forward in the tasks (Figure 6 and 7). 

Their gesture density decreased as well. However, their accuracy did not drop as the thinking 
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time, gesturing time, and gesture density decreased (Figure 10). Moreover, the number of people 

who used no gestures increased significantly in the second half of the task (Figure 9). 

Considering the following three findings: (1) the type of no gesture increased during the second 

half, (2) people’s gesture time, thinking time, and gesture density all decreased, and (3) the 

decrease was not at the cost of accuracy percentage, one possible interpretation is that people 

became more and more skillful at solving the problems. 

 
 

E. Limitations of Study 1 
 
 
There are several limitations to this study. First, it would be better if a control group were added, 

in which no gestures were taught. It would help us to have a better idea regarding how the 

teaching of small and big gestures benefited learning, and if the benefits should be attributed to 

gesture type or the gesture teaching per se. Second, the 15 questions in the primary task were 

presented to participants in a fixed order. However, the accuracy percentage for the trials 2, 8, 

and 13 were much lower than other trials for no obvious reason. It would be better to present the 

trials in a random order in the future. Third, all of the instruction sessions on using small or big 

gestures were led by the same researcher. This might introduce some confounding factors as the 

research became more and more skillful at teaching gestures as the data collection process went 

on. It would be better if the instruction were presented in a video. Fourth, in this study, after a 

primary task question was presented, on some trials participants spontaneously used some time 

to rehearse and practice the secondary task so that they could better hold what they saw in 

memory. This period of time was counted into the thinking time in the analysis, because the 

cognitive boundary between stopping rehearsing patterns and starting thinking on the primary 
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task was so unclear, such that a trained coder could not parse them apart. In the future, it would 

be good to add another fixation cross to indicate the beginning of the primary task, and instruct 

participants to move on when seeing the cross every time. 
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Chapter IV Study 2 
 

A. Research questions 
 
A review of literature and findings from Study 1 inspired me to investigate further into the co-

thought gesture; how it can be taught, how it can be learned, whether teaching gesture will 

improve people’s performance in solving spatial problems, and what would be the mechanism of 

gestures’ effects on learning.  

The leading research questions for this study include: 

1. How will teaching big gestures, small gestures, and no gestures influence people’s own 

gesture uses in a non-communicative setting? 

2. How will using different types of gestures influence performances? 

3. How will the use of gestures change over time when people solve problems? 

4. How will using different types of gestures influence cognitive loads? 

B. Hypotheses 
 
Based on previous research and findings of Study 1, I have the following hypotheses: 

Hypothesis 1: Small gestures are better accepted than big gestures when taught as a problem 

solving strategy. 

Hypothesis 2: Among the following four groups: (1) taught small gestures and use small 

gestures (TSUS), (2) taught small gestures and use big gestures (TSUB), (3) taught big gestures 
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and use big gestures (TBUB), and (4) taught big gestures and use small gestures (TBUS), the 

first group will outperform all the other groups. 

Hypothesis 3: When solving spatial problems, people’s gesture time, thinking time, and gesture 

density will decrease; accuracy remains stable.  

Hypothesis 4: When used as a strategy to solve spatial problems, small gestures lighten 

cognitive load more than big gestures. 

 

C. Method  

1. Participants 
 

One hundred graduate students from Teachers College of Columbia University participated in 

this study.  They received either course credit or ten dollars for one hour of participation. Four 

cases were excluded from the sample, because of technical issues during the session. The final 

number of participants included in the analysis was 96, including 75 females and 21 males. 

There were 24 in the small gesture group, 50 in the big gesture group, and 22 in the no gesture 

group. 

2. Design 
 
The study employed a 1 × 3 factorial design. There were three treatment groups. Participants 

were randomly assigned to the three groups. They were taught small gestures, big gestures, and 

no gestures respectively. See Table 4. 
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Table 4  

Experiment Design and the Conditions 

 Gesture Type taught to participants 

 Small gesture Big gesture No gesture 

Groups Group 1 

n =25 

N== 

 

Group 2 

n =50 

 

Group 3 

n =25 

  

From what we observed from Study 1, we found that all participants rarely kept using the same 

gesture from the beginning to the end. Most of them used more than one type of gesture 

throughout the experiment. Moreover, from Study 1 we found that many people who were taught 

big gestures ended up not using them very frequently. Therefore, if we had assigned the same 25 

participants in the big gesture group, we would expect that the number of people who actually 

used big gestures might be too low for us to make meaningful statistical inferences. In the hope 

of increasing the number of participants who ended up using big gestures during the independent 

problem solving session, we decided to double the sample size for the big gesture group from 25 

to 50. 

3. Procedure 
 
 
Participants first signed a consent form and a form of participants’ rights. After they read and 

signed the consent form, assented to participating in the study and being video recorded, they 

were asked whether they would like to give permission for us to show their videos in 

presentations of the research. Then they were asked to complete a paper version of the Mental 

Rotation Task (MRT) (Vandenberg & Kuse, 1978).  
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After that, participants were randomly divided into three groups: the big gesture group, the small 

gesture group, and the no gesture group. Each group of them was given ten minutes to watch an 

instructional video. The video content explained how to judge whether a chiral molecule is R- or 

S- configuration with big, small, or no gestures. Participants were allowed to stop the video at 

any time during the learning portion, and review the content as they felt necessary. Participants 

who were assigned into the small gesture group and the big gesture group were also required to 

move their hands or body parts when the video asked them to do so. Then participants were told: 

(1) They will stay in the room by himself or herself to solve fifteen problem sets on a laptop. (2) 

They will be encouraged to use their hands and any movements learned from the video because it 

will assist their problem solving. However, they are not required to. (3) Accuracy for all 

questions will be more important than the quickness of completion; the accuracy for molecule 

questions (rather than the block questions) is their first priority. (4) They can get started after the 

experimenter leaves the room, and take as much time as they want. (5) A fixation cross on the 

screen indicates they should move on to the next step. After every fixation cross appears for one 

second, the screen will advance automatically.   

Participants were told that accuracy is the priority, so that they could take as much as time as 

needed for any problem. The quickness of responses is de-emphasized because we do not want 

participants’ co-thought gestures to be suppressed due to time pressure. Participants were also 

told that the molecule questions were worth more points than the block questions, so that they 

would pay more attention to the molecule questions without being explicitly told that they were 

the primary task. 
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After ensuring participants understood the instructions, the experimenter left the room to allow 

the participants to work on the 15 trials on their own. Each trial included one primary task and 

one secondary task. Each primary task and secondary task began with a white fixation cross in 

the center of the screen. The fixation cross lasted for one second, and then the trial began 

automatically.  

The procedure in Study 2 was the same as Study 1. Like Study 1, there were no practice trials 

before the experimental trials began. No feedback on the primary or secondary task was given 

during the time of experiment. 

After completing the fifteen trials, participants completed a NASA Task Load Index (Hart & 

Staveland, 1988). After that, participants completed a near-transfer task. Finally, they took an 

exit survey. 

Figure 17 shows the main procedure of the experiment. 

	

	

	

	

Figure 17. Procedure of Study 2. 
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4. Content and Materials 
 
In this study, the learning objective for all participants was to figure out whether a chiral 

molecule is a R-or S- configuration. In the video, they were taught to using small, big, or no 

gestures as a problem solving strategy. 

In the transfer task, participants were asked to learn a related topic (the concept of chirality) from 

an illustration and two examples on their own. Then, they were shown six molecules 

diagrammed in dash-and-wedge notation, and were asked to judge whether each of them was 

chiral (non-superimposable with their mirror image) or achiral (superimposable with their mirror 

image) one by one. In the transfer task, participants were not taught any gestures, nor received 

any explicit instructions regarding whether they should gesture or not.  

5. Measures 

a) An objective measure of cognitive load: Dual- Task Paradigm 
 
In this study, we used the dual-task paradigm to take the objective measure of cognitive load.  

The primary task was a visual spatial problem. In the primary task, a molecule in a two-

dimensional, wedge-and-dash notation was presented to participants on a laptop screen. 

Participants were asked to judge whether it was of R- or S-configuration. Strategy to solve the 

molecule problem using big, small, or no gestures had been already taught during the instruction 

session at the very beginning. Figure 18 shows a sample of the molecules in S-configuration. 

 

  

Figure 18. A molecule presented to participants in dash and wedge notation. 
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Participant had to respond to each problem by hitting the R key for R-configuration and S key 

for S-configuration.  

The secondary task was a block tapping task (see Figure 19). It is a visual spatial problem as well. 

In the experiment, the dual-task was presented in two parts. Part 1 of the secondary task was 

presented before the primary task started. In this part, the nine blue static blocks were shown on 

a black background on the laptop screen, and then five of them turned yellow one after another. 

The duration of each yellow block shown was for one second.  Figure 19 shows a screening shot 

when one block was turning yellow. 

 

 

 

 

Figure 19. Nine static blue boxes shown on a laptop screen. In the experiment, five of the blocks 
will turn yellow one after one, each for one second. 

	
As required, participants had to hold what they saw in memory while working on the primary 

task. After the participants made a response to the primary task (typing “R” or “S”), part 2 of the 

secondary task began automatically. At this point, the original nine blue blocks were shown 

again, asking participants to recall what they had remembered and point the pattern out using a 

finger. After participants finished pointing the pattern out and hit the space key, the second trial 

of the dual task began.  
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This specific secondary task was adapted from the Corsi Block Tapping Task (Kessels, Van 

Zandvoort, Postma, Kappelle, & De Haan, 2000). It was designed as such out of the following 

considerations: (1) The number of blocks turning yellow was set to five. The reason is the Corsi 

Span (the average capacity of visual-spatial short-term working memory for normal human 

subject) is known to be five (Kessels et al., 2000), and we want this secondary task to be difficult 

enough to have participants’ memories taxed. (2) According to the Principle of Specificity, this 

secondary task had to be visuo-spatial so that it can interfere participants’ performance on the 

primary task, which is visuo-spatial as well. 

According to the Dual-Task Paradigm, if different types of gestures induced different amounts of 

cognitive load in the primary task, we would expect that participants’ performance in the 

secondary task will be influenced accordingly. To be specific, if a certain type of gesture lightens 

cognitive load when a participant is working on the molecule problem, the performance on its 

secondary task (the block question) will be better. On the contrary, if this type of gesture does 

not lighten cognitive load that much, the performance on the block question will be worse.  

b) A subjective measure of cognitive load: the NASA Task Load 
Index 

 
The Hart and Staveland (1988)’s NASA Task Load Index was used to assess participants’ 

cognitive load as a subjective measure. Participants filled out this measure after they completed 

all tasks. They rated their cognitive loads from six dimensions: mental demand, physical 

demand, temporal demand, performance, effort, and frustration. 
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c) Mental Rotation Task 
 
A paper version of the Mental Rotation Task (MRT) by Vandenburg & Kuse (1978) was 

administered to measure subjects’ visual-spatial ability. In the test, each item consisted of one 

criterion figure, two alternatives, and two incorrect ones. The two correct alternatives were 

always identical to the criterion figure in structure but were shown in rotated position. The 

incorrect two were distractors. Subjects were asked to choose the correct alternatives. A sample 

item is shown in Figure 20. 

 

 

 

 

 
Figure 20. A sample of the Mentation Rotation Task. The 1st  and 4th  alternative in the first item 
are correct; the distractors are mirror images of the criterion figure. In the second item, the 2nd  
and 3rd  alternatives are correct; the distractors are rotated images of other criterion figures. 

	

6. Apparatus 
 
The primary task and secondary task were programmed in E-prime, and were presented to 

participants on a 15-inch Dell Laptop. Participants’ gestures were captured by two cameras that 

were visible to them throughout the entire session. One camera was set at the left side or right 

side of the participant on a tripod. The second camera was set in front of the participant on a 

tripod too. 
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7. Gesture coding 
 
To check inter rater reliability, two trained coders coded 25% of the videos on gesture type, 

Kappa = .89, p < .001, and for length of gesturing time, r= .964, p < .01. Disagreements were 

resolved by discussion. 

All finger, hand, arm, and body movements by participants over the duration of the primary task 

trials, if not appearing to be for other purposes, such as scratching the head or pulling the hair, 

were coded as gestures. Beating gestures were not coded as gestures. Gesture Time was coded as 

from the beginning when a participant started making a movement to the moment when the 

movement was completed.  

Participants’ gesture type (small gesture, big gesture, mixed gesture, and no gesture) was also 

coded. Small gesture was defined as to use finger, hand, wrist, and part of the forearm as taught 

to represent molecule structure. When using small gestures, participants always used their palm 

to represent the central carbon in the target molecule. Big gesture was defined as to use arm, leg, 

and/or body movements to represent molecule structure. When using big gestures, participants 

use their torso to represent the center of the molecules and limbs to represent the molecule 

structure. The following were not counted as gestures nor into gesture time: (1) holding a gesture 

or holding body parts in a certain position for longer than 4 seconds, (2) the movement of 

dropping hands or arms after holding a gesture, and (3) moving hands and/or arms towards the 

key board to make a response to the primary or secondary task. 

All gestures were coded from recorded videos in the ELAN software (European Distributed 

Corpora Project [EUDICO] Linguistic Annotator), developed by the Max Planck Institute for 

Psycholinguistics. In cases of disagreement, coders discussed to resolve the differences.  
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D.  Results 

1. Teaching different types of gestures as a problem solving strategy  

Each of 96 participants answered 15 molecule questions, which resulted in 1440 trials in the 

primary task. Out of the 1440 trials, the type of small gesture was the most frequently used, 

followed by no gesture, big gesture, and mixed gesture. Table 5 shows the gesture type, 

frequency, and their percentage. 

Table 5  

Gesture Behavior for the Primary Task 

 

 

 

As expected, participants spontaneously chose to use gestures of preference on their own, 

although they were taught small, big, or no gestures respectively. As shown in Table 5, 

regardless of the type of gesture in instruction, small gesture was the most frequently used 

gesture type. 

From Table 6, by percentage, we can see that for those who were taught small gestures, 70.56% 

chose to use small gestures, 7.09% big gestures, 1.94% mixed gestures, and 26.11% no gestures; 

for those who were taught big gestures, 43.20% chose to use small gestures, 20.13% big gestures, 

11.07% mixed gestures, and 25.60% no gestures; for those who were taught no gestures, 11.21% 

chose to use small gestures, 2.73% big gestures, 0.91% mixed gestures, and 85.15% no gestures. 

Gesture Type Frequency Percentage of Total 
Used Small Gesture 615 42.7% 
Used Big Gesture 165 11.5% 
Used Mixed Gesture 93 6.5% 
Used No Gesture 567 39.4% 
Total 1440  
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Mixed gesture was the least popular across all the three conditions. Figure 21 presents a bar 

graph of its percentage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 21. The gesture type taught and the gesture type used by the three groups.  

Table 6  

Gesture Behavior After Instruction 

Gesture Taught Frequency and Percentage of Subtotal  
Taught Small    
    Used Small Gesture 254 (70.56%)  
    Used Big Gesture 5 (7.09%)  
    Used Mixed Gesture 7 (1.94%)  
    Used No Gesture 94 (26.11%)  
Taught Big   
    Used Small Gesture 324 (43.2%)  
    Used Big Gesture 151 (20.13%)  
    Used Mixed Gesture 83 (11.07%)  
    Used No Gesture 192 (25.60%)  
Taught No   
    Used Small Gesture 37 (11.21%)  
    Used Big Gesture 9 (2.73%)  
    Used Mixed Gesture 3 (0.91%)  
    Used No Gesture 281 (85.15%)  
Total 1440  
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Based on these findings, I constructed a multinomial logistic regression model, using the type of 

gesture used (small, big, mixed, and no gesture) as the dependent variable, and the type of 

gesture taught (small, big, and no gesture) as the fixed effect. The model was statistically 

significant. It showed that the type of gesture taught significantly influenced the type of gesture 

used, p <.001. Table 7 shows a summary of the model. 

Table 7  

Effects of Gesture Taught on Gesture Used 

Source F df1 df2 p-value 
Corrected 

Model 

61.416 6 1,431    p <.001 

Gesture Taught 61.416 6 1,431    p <.001 
 

If we see it from the perspective of time, from Figure 22, we can see that through question 1 to 

question 15, small gesture steadily remained to be the most frequently used gesture. The number 

of participants who used no gestures increased steadily and gradually. The number of 

participants who used big gestures remained around 10, except for a slight increase on the last 

few trials. The number of mixed gestures kept decreasing. 
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      Figure 22.  The gesture type used on each trial. 

 
 
 

2. Gesture and accuracy 

 
Table 8 presents a summary of the gestures used, along with their frequency and accuracy 

percentage. Out of the 254 trials answered by small gestures, people got 371 right and 244 wrong, 

with a percentage of accuracy 60.33%. Out of the 165 trials answered by big gestures, people got 

95 right and 70 wrong, with a percentage of accuracy 57.58%. Out of the 93 trials answered by 

mixed gestures, people got 48 right and 45 wrong, with a percentage of accuracy 51.56%. Out of 

the 567 trials answered by no gestures, people got 325 right and 242 wrong, with a percentage of 

accuracy 57.32%. 
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Based on Table 8, I continued my analysis from two perspectives. One is based on the type of 

gesture used by participants, and the other is based on the type of gesture we taught to them 

during instruction. The consideration is: in real life, instructors might be more interested in the 

gestures they chose to teach to students and would likely encourage students to use the taught 

gestures. On the other hand, instructors can not force students to use a certain type of gesture 

strategy, thus eventually the actual gestures students ended up using would affect their learning 

and performance as well.  

From the perspective of gesture use, for each of the 15 trials, I calculated an accuracy percentage 

when the questions were answered by small, big, mixed, and no gestures respectively. Figure 23 

shows that when the questions were answered by small gestures, the accuracy percentage is the 

highest out of all groups. This result is consistent with what we found from Study 1. 

 

 
Table 8  

Gesture Behavior and Accuracy for the Primary Task 

 

Gesture Type Frequency Percentage of Accuracy of 
Subtotal 

Used Small Gesture   
    Right  371 60.33% 
    Wrong 244  
Used Big Gesture   
    Right 95 57.58% 
    Wrong 70  
Used Mixed Gesture   
    Right 48 51.56% 
    Wrong 45  
Used No Gesture   
    Right 325 57.32% 
    Wrong 242  
Total 1440  
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Figure 23. Accuracy based on the type of gesture used. 

 
To better understand how gesture use affected performances on the primary task, I constructed a 

binary logistic regression model using performance on the primary task (right or wrong) as the 

dependent variable, the level of visual-spatial ability (high or low), the type of gesture used 

(small, big, mixed, or no gesture) and the trial number as fixed effects, and subject ID as a 

random effect. The model showed that although the accuracy percentage of questions answered 

by small gesture was the highest among all groups (as shown in Figure 23), this difference did 

not reach the significance level. Table 9 presents a summary of the model. 

Table 9  

Effects of Visual-Spatial Ability, Gesture Used, and Trial on Performance 

Source F df1 df2 p-value 

Corrected Model 1.074 35 1,404 .354 

Visual-Spatial Ability 1.144 18 1,404 .302 

Gesture used 0.885 3 1,404 .448 

# of the trial 1.077 14 1,404 .374 
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From the perspective of teaching, for each of the 15 trials, I calculated an accuracy percentage on 

the questions answered by subjects who were taught small, big, or no gestures. Figure 24 shows 

that the participants who were taught small gestures had the highest accuracy percentage, which 

was only slightly higher than other groups. 

 

 

 

 

Figure 24. Accuracy based on the type of gesture taught. 

 
 

Again, I fitted a binary logistic regression model, using the actual performance on the primary 

task (right or wrong) as the dependent variable, the level of visual-spatial ability (high or low), 

the type of gesture taught (small, big, mixed, and no gesture), and the trial number as fixed 

effects, and subject ID as a random effect.  

The analysis showed that the type of gesture taught did not have a significant effect on 

performance. Table 10 presents a summary of the model. 

 

 

58.61% 58.40% 57.58%

0%

20%

40%

60%

80%

Taught small Taught big Taught no

Ac
cu

ra
cy



	 82 

Table 10 

Effects of Visual-Spatial Ability, Gesture Taught, and Trial on Performance 

Source F df1 df2 p-value 

Corrected Model 1.031 34 1,405 .419 

Visual Spatial Ability 1.182 18 1,405 .267 

Gesture Taught 0.017 2 1,405 .983 

# of the trial 1.035 14 1,405 .415 

 

Comparing the group who were taught and not taught gestures from the perspective of time, from 

Figure 25, we can see that in the first half of the trials, the accuracy percentage of the two groups 

were not very different from each other. In the second half onwards (trial 8 to trial 15), the 

gesture-taught group outperformed the gesture-not-taught group six out of eight times. However, 

this effect seemed to be subtle. 

 
 
Figure 25. Accuracy percentage for people who were taught and not taught gestures. Error bars 
represent standard error. 
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Notably, in the design of this study, the 15 primary questions presented should be of the same 

difficulty level, and they were presented to participants at a random order. In order to check 

whether the trial had an impact on the performance, I fitted two binary logistic regression models 

to test the effects of trial number and question item number on the actual performance 

respectively. The model showed that neither the trial number nor the question item had 

significant effect on performance, except that the 12th trial, and the item 3, 11, 13 seemed to be 

easier than other questions at the p <.05 level.  

3. Gesture time, thinking time, and gesture density  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Thinking time for each trial of the primary task by people who were taught small, big, 
and no gestures. Error bars represent standard error. 

 
From Figure 26, we can see that the average time people spent on thinking decreased from 

question 1 to question 15, regardless whether they were taught small, big, or no gestures. In 

addition, the gesture-taught groups spent more time on thinking in the first half, but the time they 

spent became closer and closer to the no gesture group towards the end. 
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There were four sub-groups within the group who were taught small gestures: taught small used 

small gestures, taught small used big gestures, taught small used mixed gestures, and taught 

small used no gestures. Figure 27 shows that their thinking time decreased from the beginning to 

the end. 

 
 
Figure 27. Time spent on thinking by people who were taught small gestures. 

 
There were also four sub-groups within the group who were taught big gestures: taught big used 

small gestures, taught big used big gestures, taught big used mixed gestures, and taught big used 

no gestures. Figure 28 shows that their thinking time also decreased from the beginning to the 

end. 

 

 

 

 

Figure 28. Time spent on thinking by people who were taught big gestures. 
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People in the three groups not only spent less time thinking, they also spent less and less time 

gesturing (Figure 29). For the gesture-taught group, people who were taught small and big 

gestures showed very similar patterns in their gesturing time. The average time they spent on 

gesturing decreased gradually from the beginning to the end. 

Average gesturing time for people who were taught small gestures decreased from 26.60 seconds 

to 8.71 seconds. Average gesturing time for people who were taught big gestures decreased from 

24.84 seconds to 5.93 seconds. The decrease was especially more rapid in the first half than in 

the second half for both groups. For the gesture-not-taught group, participants did not move their 

hands and/or body parts for the majority of the session time. This group’s average gesturing time 

remained below five seconds from the beginning to the end.  

 
 
Figure 29. Gesture time for each trial of the primary task by people who were taught small, big, 
and no gestures.  
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small used no gestures. Figure 30 shows that the gesture time decreased from the beginning to 

the end.  

 

 

 

 

Figure 30. Time spent on gesturing by people who were taught small gestures. 

There were also four sub-groups within the group who were taught big gestures: taught big used 

small gestures, taught big used big gestures, taught big used mixed gestures, and taught big used 

no gestures. Figure 31 shows that the gesture time also decreased from the beginning to the end 

in a similar pattern. 

 

 

	
	
	
	
	
	
	
	
	
	
	
Figure 31. Time spent on gesturing by people who were taught big gestures. 
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Although both thinking time and gesturing time decreased from question 1 to question 5, 

participants’ gesturing density remained steady from the beginning to the end, between 31.23% 

and 40.46% (with a very slight decrease towards the end), as shown in Figure 32.  

 

Figure 32. Gesture density for each trial. 

 
 

 

 

 

 
 

Figure 33. Accuracy percentage for each primary task. 

 
In addition, although participants’ average thinking time, gesturing time, gesture density kept 

decreasing, people’s accuracy percentage remained pretty steady (Figure 33). 
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4. Objective Measure of cognitive load  
 
 
 
Participants’ cognitive load was measured by their performance in the secondary task, which 

were the block tapping questions. The possible scores ranged from zero to five. 

To understand how the type of gesture used affected performance scores on the secondary task, I 

constructed a binary logistic regression model, using performance on the secondary task (score 

range = 0 to 5) as the dependent variable, the type of gesture used (small, big, mixed, and no 

gesture), answer to molecule questions (right or wrong), and the interaction between these two 

variables as fixed effects, and subject ID as a random effect. The model showed that the type of 

gesture used did not have significant effect on the performance on the secondary questions 

(Table 11). 

Table 11   

Effects of Gesture Used, Answer to Molecule Question, The Interaction, and the Actual Molecule 
Question ID on the Secondary Task 

Source F df1 df2 p-value 

Corrected Model 0.743 21 1,414 .790 

Gesture Used 0.756 3 1,414 .519 

Answer to MQ 1.750 1 1,414 .186 

Answer to MQ* Gesture Used 1.259 3 1,414 .287 

MoleculeQuestionID 0.523 14 1,414 .921 
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5. Subjective Measure of cognitive load  
 
 

Our participants rarely consistently used one type of gesture throughout the 15 trials. As found 

from Study 1, they showed different gesture use patterns by switching between different types of 

gestures throughout the 15 trials. The same as Study 1, for a particular individual, if he chose to 

use a certain type of gesture as a problem solving strategy for more than two thirds of all the 

primary task questions, we coded this individual as the gesture user of this type. For example, for 

the 15 molecule questions, if a participant used small gestures on more than 10 questions, he was 

coded as a small gesture user. If a participant did not have a dominating gesture type, or used 

mixed gestures on one trial for two thirds of the trials, he was coded a mixed gesture user. 

Accordingly, all participants were divided into the following four types of gesture user: the small 

gesture user, the big gesture user, the mixed gesture user, and the no gesture user. Table 12 

presents a summary of the four gesture user types. 

Table 12  

Four Types of Gesture Users 

 

 

 

Each individual completed a NASA Task Load Index, as a subjective measure of their cognitive 

load. 

When asked “How mentally demanding was the task?,” the small, big, mixed, and no gesture 

users reported no significant difference at the p <.05 level, F(3,92) = 1.01, p = .394 (Table 13). 

   

Gesture User Type Count Percentage of the Total 
Small Gesture User 32 33.33% 
Big Gesture User 6 6.25% 
Mixed Gesture User 26 27.08% 
No Gesture User 32 33.33% 
Total 96  
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Table 13  

Means and Standard Deviations of Gesture Users on Mental Demandingness 

 

 

 

When asked “How physically demanding was the task?,” the small, big, mixed, and no gesture 

users reported no significant difference at the p <.05 level, F (3,92) = .85, p = .472 (Table 14). 

Table 14  

Means and Standard Deviations of Gesture Users on Physical Demandingness 

 

 

When asked “How successful were you in accomplishing what you were asked to do? 

(performance)?, ” the small, big, mixed, and no gesture users reported no significant difference at 

the p <.05 level, F(3,92) = .36, p = .785 (Table 15). 

Table 15  

Means and Standard Deviations of Gesture Users on Performance 

 

 

 

 
Gesture Type Mean (SD) F p-value 
Used Small Gesture 16.91 (3.24) 1.01 .39 
Used Big Gesture 19.17(1.33)   
Used Mixed Gesture 16.67(2.76)   
Used No Gesture 17.31(3.93)   

Gesture Type Mean (SD) F p-value 
Used Small Gesture 7.95 (5.38) .85 .47 
Used Big Gesture 8.50 (5.92)   
Used Mixed Gesture 7.58 (5.27)   
Used No Gesture 6.03 (5.59)   

Gesture Type Mean (SD) F p-value 
Used Small Gesture 13.39 (4.44) .36 .79 
Used Big Gesture 15.00 (5.04)   
Used Mixed Gesture 13.04 (4.57)   
Used No Gesture 13.19  (5.59)   
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When asked “How hard did you have to work to accomplish your level of performance? 

(effort)?,” the small, big, mixed, and no gesture users reported no significant difference at the p 

<.05 level, F(3,92) = .83, p = .483 (Table 16). 

Table 16  

Means	and	Standard	Deviations	of	Gesture	Users	on	Effort 

 

 

 

When asked about the frustration level, “How insecure, discouraged, irritated, stressed, and 

annoyed were you?,” the small, big, mixed, and no gesture users reported no significant 

difference at the p <.05 level, F(3,92) = 1.19, p = .319 (Table 17). 

Table 17  

Means and Standard Deviations of Gesture Users on Frustration 

 

 

 

When asked “How hurried or rushed was the pace of the task?,” the small, big, mixed, and no 

gesture users reported no significant difference at the p <.05 level, F(3,92) = .48, p = .720  

(Table 18). 

Gesture Type Mean (SD) F p-value 
Used Small Gesture 15.50 (3.60) .83 .48 
Used Big Gesture 17.00 (3.22)   
Used Mixed Gesture 14.39 (4.08)   
Used No Gesture 14.77  (4.89)   

Gesture Type Mean (SD) F p-value 
Used Small Gesture 11.83 (6.47) 1.19 .32 
Used Big Gesture 15.50 (4.09)   
Used Mixed Gesture 13.96 (3.33)   
Used No Gesture 12.73 (5.99)   
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Table 18  

Means and Standard Deviations of Gesture Users on Temporal Demandingness 

 

 

 

 

6. Individual difference 
 
 

As in Study 1, I used the median split at score = 9.00 to divide participants into low- and high-

scoring group because of the distribution of scores in this sample (Range = 0-18, median = 9.00). 

See Figure 34. 

 

 

 

 
 
 
 

             Figure 34. High and low split of the participants.                     

 
Table 19 shows a summary of the performance scores of the small gesture users, the big gesture 

users, the no gesture users, and the mixed gesture users. 

 

Gesture Type Mean (SD) F p-value 
Used Small Gesture 11.73 (5.28) .48 .72 
Used Big Gesture 11.83 (5.72)   
Used Mixed Gesture 10.13 (5.12)   
Used No Gesture 11.02 (5.94)   
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Table 19  

Four Types of Gesture Users and Their Means Scores for the Primary Task 

 

Figure 35 shows that there was an interaction between gesture user type and the level of visual 

spatial ability on the primary task performance, F (3,88)= 2.90, p = .039. Specifically, high- and 

low- spatial ability participants performed similarly when they chose to use big, mixed, and no 

gestures as their primary strategy. However, low- spatial ability participants performed much 

worse than high-spatial participants, when using small gestures as the primary strategy. 

 

 

 

 

 

 

 

 

 

 

Figure 35. Mean score of the primary task answered by high- and low- spatial ability 
participants. Error bars represent 95% confidence interval. 

   Small Gesture  Big Gesture       No Gesture  Mixed Gesture 

 M SD  M SD  M SD  M SD 
Low Visual 
Spatial Ability 7.32 2.14  8.33 3.06  8.28 2.20  9.00 2.00 

High Visual 
Spatial Ability 10.77 3.06  9.67 3.06  8.93 2.08  9.85 3.08 
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The result of the analysis of variance (ANOVA) is presented in Table 20. 

Table 20  

Gesture User Type and Mean Scores for Primary Task -- ANOVA 

 

 
 
 
 
 

7. Transfer tasks 
	
 
After completing the primary and secondary task, participants were given a new topic to study, 

and then answered six transfer questions based on the topic. The result is shown in Table 21.  

Eight participants (33.33%) who were taught small gestures for the primary task chose to gesture 

when learning a new topic on their own, and sixteen (66.67%) chose not. Nineteen participants 

(38%) who were taught big gestures for the primary task chose to gesture when learning a new 

topic on their own, and thirty-one (62%) chose not. Three participants (13.63%) who were taught 

no gestures for the primary task chose to gesture when learning a new topic on their own, and 

nineteen (86.36%) chose not. Notably, the type of gesture taught (small, big, or no gesture) did 

not significantly influence whether people gestured when learning a new topic, !2(2, N = 96) = 

4.286, p = .117. Overall, our participants tended to not gesture when asked to learn a new topic. 

 df MS F p η2  
 

Gesture User Type 3 1.109 .183 .907 .006 
Visual Spatial Ability 1 25.921 4.288 .041* .046 

Gesture User Type × Visual Spatial Ability 3 17.555 2.904 .039* .090 
Error 88 6.045    
* p <.05 
R Squared = .159 (Adjusted R Squared = .092) 
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Sixty-six out of the 96 (68.75%) participants chose not to gesture when learning a new topic on 

their own. 

Table 21  

Gesture Behavior When Learning a New Topic 

  
 
 

When answering the transfer questions, participants tended to not gesture either. The number of 

participants who did not gesture slightly increased towards the end from 75 to 86. Those who did 

gesture slightly decreased from 21 to 10 (Figure 36). 

 
 
Figure 36. The number of participants who gestured and did not gesture in each transfer question. 
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 Total Used Gesture or not when learning a new topic 
(Transfer Task) 

Gesture Taught  Yes (% of subtotal) No (% of subtotal) 
Taught Small Gestures 24   

  8 (33.33%) 16 (66.67%) 
Taught Big Gestures 50   

  19 (38%) 31 (62%) 
Taught No Gestures 22   

  3 (13.63%) 19 (86.36%) 
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When answering the six transfer questions, the overall performances by people who were taught 

small, big, and no gestures were very similar (Figure 37). A binary logistic regression model 

using performance on the transfer question (right or wrong) as the dependent variable and the 

type of gesture taught (small, big, or no gesture) as the fixed effect showed that the type of 

gesture taught in the training beforehand did not have a significant influence on performance on 

the transfer task, p =. 417. 

 

Figure 37. Accuracy percentage in transfer questions by the gesture type taught before. 

 
 

When answering the transfer questions, people who gestured and not gestured did not show a 

significant difference (Figure 38). A binary logistic regression model using performance on the 

transfer question as the dependent variable, and gesture used as a fixed effect, showed that 

gesture used or not on the transfer questions did not have a significant influence on transfer task 

performance, p =. 836. 
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Figure 38. Accuracy percentage of transfer questions by people who used and did not use 
gesture. 
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Chapter V Discussion 
 
 

A. General discussion 
 
In this dissertation, I investigated how teaching different types of gestures and body movements 

influenced people’s thinking, learning, and problem solving. In Study 1, the instruction was 

conducted in person. In Study 2, the instruction was conducted through a recorded video. In both 

studies, participants completed 15 sets of questions after the instruction, and then rated their 

cognitive load. In Study 2, participants completed an additional near-transfer task that consisted 

of six questions.  Consolidating findings from Study 1 and Study 2, I came to the following 

conclusions. 

The findings of the two studies are consistent with earlier studies on the teaching of gestures. 

First, gesture was teachable. In our study, we purposely taught people different types of gestures 

and body movements as problem solving strategies. Every participant chose to use the taught 

gestures to a lesser or greater extent. None of them tried to solve the problem without gesturing 

at all. Second, I found that when people were taught how to use gesture to solve problems, and 

were encouraged to gesture, they were receptive and subsequently used the gestures and body 

movements. This is consistent with previous findings that modeling gesture to people made them 

gesture (Cook et al., 2008), and encouraging or forcing them to gesture would bring out effective 

gesture as well (Broaders et al., 2007). Third, although our instructions were very brief, after our 

instruction, participants were found to use the taught gesture extensively. This is also consistent 

with previous findings that even brief sessions of training in gesture can yield beneficial results 

(Ehrlich et al., 2006). 
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When it comes to the specific gesture types, the conclusions are as follows. 

1. Small gestures were more readily accepted than big gestures. In both studies, I found 

that small gestures were always better accepted than big gestures, no matter whether they were 

taught in person or through a video. My results also showed that even when people were taught 

big gestures as a problem-solving strategy and were encouraged to use them, the most preferred 

gesture type was still the small gesture. The type of gesture taught had a significant effect on the 

actual gesture use. 

2. Small gestures might have a more positive effect on thinking and performance than 

big gestures. In both studies, questions answered by the small gestures had a slightly higher 

accuracy percentage. However, the effect on accuracy and on the cognitive load did not reach 

statistical significance. Further studies would be needed to further investigate this effect to have 

a better understanding of it. 

3. Using different types of gestures may or may not influence people’s subjective 

judgment of their cognitive load differently. Study 1 showed that using different types of 

gestures affected users’ subjective judgment of their cognitive load differently in multiple 

respects. However, in Study 2, none of the subjective cognitive load judgments showed any 

significant difference. A possible explanation might be related to the mode of instruction, 

because the impact of a real person seems to be bigger than that of a recorded video. 

Specifically, the switch from the in-person instruction to the digital presentation might have 

made gesture’s effects much less impactful, so that a lot of the differences reported in Study 1 

were no longer significant in Study 2. In addition, it’s possible that a lot of the in-person “fun” 

with whole body movement was dampened with the switch to digital instruction, so the 

frustration level of the big gesture users was also not significantly lowered in Study 2. 
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4. People became more skillful at gesturing. The results of both studies suggested that 

people in general spent less time thinking and less time gesturing as they moved forward with the 

trials. Their gesture density decreased slightly as well. However, their accuracy percentage did 

not drop as the thinking time, gesturing time, and gesture density decreased. Moreover, the 

number of people who started to use no gestures increased significantly in the second half of the 

trials.  

5. People tried mixed gestures at the beginning and dropped them gradually. In both 

studies, we observed that a number of participants tried to use a mixture of small gestures and 

big gestures at the beginning, but the number dropped slowly when people moved on towards the 

end. Mixed gesture was not only the least favored gesture type across all conditions, and its 

accuracy was also the lowest. Therefore, trying a mixture of the small and big gestures did not 

seem to be a strategy that boosted people’s problem-solving performance. On the contrary, it 

seemed that across conditions, people attempted this type of mixture at the very beginning when 

they were a little confused and were exploring different strategies, but gradually moved on to a 

gesture type they felt comfortable with or even transitioned to using no gestures as they became 

more competent at problem-solving. 

6. People who were taught to use gestures did not differ significantly from those who 

were not taught to use gestures at the beginning, but the gesture group seemed to perform 

a little better later. In Study 2, we added a no gesture group. In this group, gesture was neither 

taught nor encouraged. We found that the overall performance of this group was not significantly 

different from the other two gesture groups. This finding seemed different from the literature in 

which gesturing groups usually outperformed non-gesturing groups (Chu & Kita, 2011; Goldin-

Meadow et al., 2001; Jamalian, Giardino, & Tversky, 2013a). In my studies, I also found that 
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although there were no overall significant differences between the gesture groups and the no 

gesture group, the gesture groups began to catch up and outperformed the gesture-not-taught 

group in their accuracy during the second half of the trials. A possible explanation for my 

findings might be that participants in the gesture groups responded to the gesture instruction 

differently. For some people, it took some time and effort to learn to use the taught gesture 

skillfully and internalize them as their own strategy to increase their performance. Others might 

have learned the strategy much more quickly. They began by using the taught gesture as the 

main strategy, but as they became more and more skillful at using it, they gradually dropped the 

gestures while maintaining or even increasing their performance. The effect of these two groups 

might cancel each other as time moved forward. In the literature, when comparing the 

performance of a gesture group and a no-gesture group, the gestures people utilized were mostly 

spontaneous gestures that were produced by people naturally (Chu & Kita, 2011; Goldin-

Meadow et al., 2001; Jamalian et al., 2013a).When the gestures were taught as a strategy and 

were required to be used (Cook et al., 2008; Jamalian, 2014), the literature rarely talked about the 

complexity of using the taught gesture as a strategy, or whether participants needed some time 

and effort to practice the taught gestures so that they could used them as a strategy effectively 

and skillfully. In our study, some participants confirmed to experimenters that they would prefer 

more time or practice for the taught gestures, so that they could use them on more questions 

comfortably, or use them more effectively.  

B. Theoretical contributions 
 
First, this study contributes to embodied cognition theories. The findings from the two studies 

encourage us to interpret the embodied cognition theories from a new perspective. According to 

embodied cognition theory, action and gesture (as simulated action) can promote thinking by 
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engaging the human body. However, not many studies in the field have provided direct evidence 

regarding whether the degree of embodiment is as important as well. The results of this 

dissertation suggested that it might make sense to look at the concept of embodiment as a 

spectrum, from a low degree of embodiment to a high degree of embodiment, rather than as a 

dichotomous methodology (e.g., this experience is embodied or not). My findings directly 

suggest that big gestures and body movements, although they could be seen as a higher degree of 

body engagement, might not necessarily lead to better performance compared to small gestures. 

Both teaching and use of the big gestures and body movements seemed to be less effective as the 

small gesture. It may further imply that teaching the right type of embodiment may be more 

important than eliciting a higher level or degree of an embodied experience. 

This study also contributes to the gesture literature. In the literature, although it is widely agreed 

that gesture plays a role in promoting thinking and learning, the mechanisms that underlie this 

process are not yet fully understood (Goldin-Meadow, 2010). My studies shed light on these 

mechanisms by showing that different types of gestures might possibly involve different amounts 

of cognitive load, and that using different types of gestures (e.g., big or small) might benefit 

learners of different cognitive abilities (high and low visual spatial abilities) to different degrees. 

Future studies should further investigate this mechanism and others to better understand 

gesture’s cognitive benefits in teaching and learning. Finally, regarding the manipulation of 

gesture, my studies also provide evidence that small gestures might be more easily accepted than 

big gestures, so it would be beneficial to study how people gradually pick up and drop gestures 

along the course of learning.   
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C. Practical implications 
 
Based on my findings, I have identified the following practical implications for instruction and 

instructional design. First, although in general gestures and body movements were found to 

promote thinking and learning, the literature has already shown that not every kind of gesture 

benefits learning. In line with this, my studies suggest that different types of gestures and body 

movements may promote thinking and learning to different degrees. This means that when 

teaching gesture as a problem solving strategy, instructors should explore, compare, and even 

experiment to find the best suitable gesture type(s) based on the learning materials and learners’ 

ability, in order to get the greatest benefits from the gestures. 

Second, instructors should be cautious about the cost of cognitive load that comes with gesturing, 

although the cognitive benefits of  gesture are relatively more well-known. In our study, I found 

that small gestures are not only more easily accepted, they might also possibly be related to 

higher accuracy and lower cognitive load in some cases. Therefore, it would be beneficial to try 

different gesture types when designing instruction. Ideally, a gesture type that both promotes 

learning and lightens cognitive load would be selected. Instructors should take these two factors 

into consideration when designing instruction.  

Third, when instructors teach gesture to students as a learning strategy or problem solving 

strategy, if the learning content is complicated (e.g., the learning content in my studies is about 

the concept of chirality and molecular structure), or if the gesture strategy itself is not very 

straight forward, time and practice for the learner should be taken into consideration. Participants 

may benefit from being given experience practicing the taught gestures before they could use 

them comfortably and skillfully. 
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Fourth, for learning designers and education software designers, an instructional experience 

designed to engage full body movement (e.g., an educational game on Xbox) might seem more 

attractive and motivational than one on a small-scale interface that only engages bodily 

movement partially. However, the results of my studies suggest that larger-scale movement 

might not necessarily bring better learning results, although a subjective measure indicated that 

people may possibly feel less frustrated with such gestures. In other words, whole body 

movement in an educational setting could be perceived as cool, playful, fun, or less frustrating, 

but it may not be directly related to increased performance. On the contrary, for some learning 

content, small gestures might possibly elicit frustration (although we do not know if it is only 

temporarily, or whether it would be mitigated if any feedback or practice time were given), but 

they may possibly benefit thinking and performance more. An instructor or a designer would 

need to take all of these factors into consideration comprehensively, when making decisions on 

how to design the optimal instructional gesture. An ideal instructional gesture should bring out a 

positive learning experience and learning results.   

D. Limitations 
 
There are four limitations to the present studies. First, the delivery methods of the instruction for 

Study 1 and Study 2 were different. In Study 1, the instruction was conducted in person, but in 

Study 2 the instruction was conducted in a pre-recorded video. Although in the second study, the 

video instruction made the instruction consistent for all participants and conditions, this 

difference made the results of the two studies less comparable.  

Second, for both studies, participants’ learning task performance was solely based on two 

degrees of measurement, namely, right or wrong (R- or S-configuration for the primary task, and 
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chiral or achiral for the transfer task). While the analysis already showed some differences across 

groups, future studies should consider using quantitative measures to gain more information. 

Third, participants’ attitude towards gesture and their tendency to use gesture during learning and 

problem solving were not measured or controlled prior to the study session. Therefore, there is 

no way to conclude whether attitude or tendency to gesture would cause any systematic 

differences. 

Fourth, the studies were conducted with a particular population (college students) on a specific 

domain (college level stereochemistry). Based on these two limitations, the findings cannot be 

generalized to other populations or other domains. Further research might consider teaching 

different types of gestures to learners of other ages and in other domains. 

 

E. Directions for future research 
 
There are several research directions that could extend the theoretical and practical implications 

of the grounded embodiment theories, specifically in the applications of gesture.  Although 

embodied cognition theories suggest that embodiment promotes learning, I believe cognition 

might not be simply seen as “embodied” or “not embodied”. In my studies, I found that the big 

gestures and body movements did not benefit thinking and learning as much as the small 

gestures did. Further research could provide more insights on whether and how different degrees 

of embodiment would influence thinking and learning. 
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This study also inspired us to better harness the cognitive benefits of gesture in instruction, and 

put them to better use. First, in my studies, following instruction, gesture was only encouraged 

but not required. To draw more powerful conclusions, it would be meaningful for future studies 

to further investigate how teaching gestures would benefit people, if gesturing were explicitly 

required (rather than just encouraged). Second, in our study, it was found that people’s gesture 

time, thinking time, and gesture density all decreased as they moved forward with trials without 

sacrificing accuracy. It would be interesting to further study the reason for this decrease. It would 

provide a more complete understanding on whether the decrease was due to people becoming so 

skillful that they did not need to gesture any more, or they just started to internalize the acquired 

gestures and replaced the full-scale gestures with “imagined gesture” or “simulated gesture” that 

were invisible to us. Third, in both studies during the second half of the trials, some people 

started to use “minimal gestures”. These gestures looked like very minimal movements of fingers 

or hands, but seemed to be different from random hand movements. In my data analysis, we 

categorized this type of gesture into small gesture, but its gesture space was so much smaller that 

the gesture mechanism was suspected to be different from what we referred to as small gesture. 

It would be interesting for future studies to investigate the nature of these “mini gestures”, to 

examine whether they were just a transitional stage to no gesture (which reflected that people 

were internalizing the problem solving strategy) or a totally different type of gesture, which was 

partially a physical gesture and partially an imagined gesture. Fourth, our study showed that for 

some but not all participants, time and practice may be needed to master the taught or self-

generated gesture. Considering that literature on gesture manipulation has been limited, a 

worthwhile future research direction could be to look into how to better teach gesture as a 

problem solving strategy, especially when the learning content is complicated. Fifth, in my study, 
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I only investigated the benefits of gestures in the learning of stereochemistry. Future research 

should consider testing gesture’s effects across other content fields to gain a more 

comprehensive understanding. Finally, considering individual difference, people of high and low 

visual ability might benefit from different types of gestures. Future studies could consider 

exploring possible ways to better help learners of lower visual spatial ability.  
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