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ABSTRACT

Quantitative Approaches to the Genomics
of Clonal Evolution

Sakellarios Zairis

Many problems in the biological sciences reduce to questions of genetic evolution. En-

tire classes of medical pathology, such as malignant neoplasia or infectious disease, can be

viewed in the light of Darwinian competition of genomes. With the benefit of today’s matur-

ing sequencing technologies we can observe and quantify genetic evolution with nucleotide

resolution. This provides a molecular view of genetic material that has adapted, or is in the

process of adapting, to its local selection pressures. A series of problems will be discussed in

this thesis, all involving the mathematical modeling of genomic data derived from clonally

evolving populations. We use a variety of computational approaches to characterize over-

represented features in the data, with the underlying hypothesis that we may be detecting

fitness-conferring features of the biology.

In Part I we consider the cross-sectional sampling of human tumors via RNA-sequencing,

and devise computational pipelines for detecting oncogenic gene fusions and oncovirus in-

fections. Genomic translocation and oncovirus infection can each be a highly penetrant

alteration in a tumor’s evolutionary history, with famous examples of both populating the



cancer biology literature. In order to exert a transforming influence over the host cell, gene

fusions and viral genetic programs need to be expressed and thus can be detected via whole

transcriptome sequencing of a malignant cell population. We describe our approaches to pre-

dicting oncogenic gene fusions (Chapter 2) and quantifying host-viral interactions (Chapter

3) in large panels of human tumor tissue. The alterations that we characterize prompt the

larger question of how the genetics of tumors and viruses might vary in time, leading us to

the study of serially sampled populations.

In Part II we consider longitudinal sampling of a clonally evolving population. Phyloge-

netic trees are the standard representation of a clonal process, an evolutionary picture as old

as Darwin’s voyages on the Beagle. Chapter 4 first reviews phylogenetic inference and then

introduces a certain phylogenetic tree space that forms the starting point of our work on the

topic. Specifically, Chapter 4 describes the construction of our projective tree space along

with an explicit implementation for visualizing point clouds of rescaled trees. The Chapter

finishes by defining a method for stable dimensionality reduction of large phylogenies, which

is useful for analyzing long genomic time series. In Chapter 5 we consider medically relevant

instances of clonal evolution and the longitudinal genetic data sets to which they give rise.

We analyze data from (i) the sequencing of cancers along their therapeutic course, (ii) the

passaging of a xenografted tumor through a mouse model, and (iii) the seasonal surveil-

lance of H3N2 influenza’s hemagglutinin segment. A novel approach to predicting influenza

vaccine e�ectiveness is demonstrated using statistics of point clouds in tree spaces.

Our investigations into clonal processes may be extended beyond naturally occurring

genomes. In Part III we focus on the directed clonal evolution of populations of synthetic

RNAs in vitro. Analogous to the selection pressures exerted upon malignant cells or viral



particles, these synthetic RNA genomes can be evolved against a desired fitness objective.

We investigate fitness objectives related to reprogramming ribosomal translation. Chapter 6

identifies high fitness RNA pseudoknot geometries capable of inducing ribosomal frameshift,

while Chapter 7 takes an unbiased approach to evolving sequence and structural elements

that promote stop codon readthrough.
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Chapter 1

Introduction

The guiding theme of this work is the characterization of clonally evolving populations under

strong selection using molecular sequence data. Clonal evolution is also referred to as verti-

cal evolution or asexual evolution in the biology literature, but for the sake of consistency we

will limit ourselves to the former term. Our understanding of genetic determinants of fitness

is immature even for the modest genomes of viruses, to say nothing of the more complex

genomes of human cancer cells. Still, it stands to reason that deeply profiling the sequences

of clonally evolving populations might reveal genetic regularities, recurrent patterns of vari-

ation among individuals. A natural interpretation of regularities in genetic mutation is the

conferral of a fitness advantage against the selective pressures of the environment. In this

thesis we will be interested both in the particular genetic alterations observed in molecular

sequence data as well as the larger patterns of mutation over time. In our discussion of

human tumors it is understood that the genome in question is the nuclear, double-stranded

DNA of the malignant cell lineage. When we shift to the analysis of seasonal influenza, it is

understood that the genome in question is the single-stranded RNA hemagglutinin segment

of the virus. As we conclude with the directed evolution of short RNAs, it is understood the

genome in question is the randomized RNA construct undergoing iterative in vitro selection.

1



Figure 1.1: Phylogenetic trees of life: (Left) Sketch from Darwin’s “notebook B” (1837-
1838). (Right) Three domains of life arranged in a phylogenetic tree inferred from ribosomal
RNA sequencing, image reproduced from [223].

1.1 Heritable Alterations and Common Phylogeny

Charles Darwin’s picture of a single tree to describe the relation between species carries a

profound corollary, that all extant life shares a common ancestry (Figure 1.1). This idea

may represent the most general and useful constraint for the development of theory in

biology [117]. Comparisons across taxa are valid and interpretable under the assumption

of a common origin, and theoretical biology would be far more di�cult if life indeed had

myriad independent starting points. While the initial conditions of biology are not known,

Darwin bequeathed to us a theory in which we understand phenotypic evolution from any

starting point via the action of reproduction and selection.

Reproduction and selection are certainly essential for population adaptation, however

they are not su�cient. Without mutation a population’s survival would be determined

at the outset for a fixed selection environment. Mutation is the final ingredient for true

evolution, and it is the concept that was historically hardest to understand until the first

rigorous experiments on heredity. In roughly the same era of history as Darwin, Gregor

Mendel was making quantitative investigations about what seemed a narrow corner of the

biological world, frequencies of inheritance of phenotypic traits in pea plants. In contrast

with the poorly defined theories of heritability of the time, which included Darwin’s “pan-

genesis” and notions of “blending inheritance,” Mendel’s sharp observations of segregation

2



and independent assortment of genes were a conceptual leap forward. Mendelian inheritance

patterns gave phenotypic traits a discrete nature and pointed to an underlying granularity of

the hereditary information. In 1952 Alfred Hershey and Martha Chase elegantly settled the

debate as to whether protein or nucleic acid acts as the genetic material, at a time when most

assumed protein would mediate heredity because of its greater combinatorial complexity (20

monomers rather than 4). Stochastic mutation in nucleic acid, and its subsequent fixation in

a population, is the molecular mechanism of Darwin’s transformative idea a century earlier.

Modifications to the genetic material are typically qualified with the terms “somatic”

or “germline” when discussing the human genome. This distinction is necessary because

only a privileged subset of cells (the gametes) in the human organism will transmit the

heritable traits. Germline mutation is crucial when studying human evolution and human

population genetics, but less central to the study of tumor evolution and tumor population

genetics. In the latter case the individual element in the population is the malignant cell,

which reproduces asexually. Cancers typically arise on the background of DNA damage in

the somatic cells comprising our bodies, thus the ubiquitous term “somatic mutation.” Of

course, the terms “somatic” or “germline” are not applicable when our discussion turns to

the propagation of RNA viruses or synthetic RNA genomes later in the thesis.

1.2 Nucleic Acid Sequencing as an Evolutionary

Read-Out

Once it was settled that nucleic acid was indeed the polymer of heredity, sequencing of DNA

became a technical challenge of paramount importance. The reason is simply that DNA

bears the scars of its evolutionary past, so one must have access to this genetic information in

order to understand biological adaption. It comes as a surprise to many that the monomeric

composition of proteins (Edman degradation of the mid 1960’s) could be deduced more than

a decade before nucleic acids could be sequenced.

3



Figure 1.2: First generation sequencing technologies: (Left) Maxam-Gilbert sequenc-
ing, image reproduced from [141]. (Right) Sanger’s method of sequencing by dideoxynu-
cleotide chain termination, image reproduced with permission from [188].

The era of “first-generation” DNA sequencing began in the late 1970’s with the discoveries

of Allan Maxam and Walter Gilbert on the one hand, and Frederick Sanger on the other

(Figure 1.2). Maxam-Gilbert sequencing, which has now fallen out of favor, treats 32P 5’

radiolabeled double-stranded DNA with di�erent sets of chemical conditions that are specific

for the cleavage of either: purines (A+G), guanine (G), pyrimidines (C+T), or cytosine (C).

Cleaved products are run on a high resolution polyacrylamide gel for size separation and

autoradiography reveals the nucleotide identities with the band furthest down the gel as the

most 5’ nucleotide on the input sequence. Sanger sequencing, which is still extremely popular

for low-throughput applications, requires no hazardous chemicals or radioactivity but does

require single-stranded input DNA as well as a primer. In its original incarnation there would

be four distinct lanes on a gel, one for each dideoxynucleotide (A,C,G,T) reaction, although

today dye terminators are more commonly used to generate a single capillary electrophoresis

chromatogram encoding the sequence.

4



The era of “next-generation” sequencing has now firmly taken root, with many platforms

competing on read length, read depth, speed, accuracy, and cost to name a few parame-

ters. We highlight two specific next-generation technologies in Figure 1.3. Sequencing by

synthesis is the most widely deployed method for modern high-throughput applications. Sin-

gle stranded fragments of a DNA library are anchored to a glass slide (termed a flow cell)

and are iteratively exposed to fluorescent nucleotides that compete for incorporation into a

strand complementary to the template fragment. Optical recordings of color flashes along

the flow cell determine the sequences for the millions of anchored fragments. The typical

size of a sequencing read from Illumina machines implementing this method is 50-150 base

pairs. A promising, though less developed, alternative is nanopore sequencing, in which

single stranded DNA is threaded through a protein pore embedded in an electrically insu-

lating membrane. A voltage di�erence across the membrane drives di�usion of the DNA

through the pore, and the degree to which the nucleobases occlude ambient ionic current

flow is used to sequence the strand. Nanopore sequencing can produce read lengths in the

kilobases and provides sequencing data in real-time rather than at the termination of a

long step-wise chemistry. We have only highlighted two of the many exciting platforms for

modern-day high-throughput sequencing, but these two examples represent the ends of the

technical spectrum in some sense. Illumina’s sequencing by synthesis has become ubiquitous

because the primary application area is medically relevant studies of human or model organ-

ism tissue. In such scenarios a reference genome is already known, mitigating the potential

weakness of short sequencing reads via alignment of reads to the reference.

We take the time to familiarize the reader with the basics of DNA sequencing as a tool

because it represents our most reliable read-out of evolutionary processes, a development as

foundational to genetics as the invention of the microscope was to cytology. Pathogenesis

and progression of cancer occur on long time scales compared with the lifetimes of indi-

vidual malignant cells. Immune escape or vaccine resistance in viral populations occur on

long time scales compared to the infectious cycles of individual virions. Genomes can be

5



Figure 1.3: Next generation sequencing technologies: (Left) Reversible dye termina-
tor based sequencing by synthesis, image reproduced with permission from [37]. Fragmented
pieces of DNA are bound to, and amplified upon, a glass flow cell to form clusters of identical
single-stranded fragments. A step-wise chemistry then incorporates fluorescent nucleotides
into the synthesis of complementary strands, and recorded patterns of color flashes across
the glass flow cell are converted into sequencing calls. (Right) –-Hemolysin based nanopore
sequencing by voltage-driven di�usion, image reproduced with permission from [37]. Nucle-
obases occupying the narrowest section of the pore determine the degree of occlusion and
thus resistance to ionic current flow.

highly dynamic in such settings of evolution under strong selection, and we would ideally

like to sample the population densely in time. However, even with the falling cost and ris-

ing throughput of DNA sequencing, we are often limited to collecting single genetic cross

sections in time. Part I of this thesis deals exclusively with cross-sectional sequencing data

from cancer patient samples, implementing computational strategies for detecting recurrent

alterations in the tumor transcriptome. Longitudinal sampling of cancer along the therapeu-

tic time course is just now becoming feasible, thus in Part II we move from characterizing

specific genetic alterations to characterizing patterns of genetic mutation across clinical time

points. Influenza databases o�er the gold standard in longitudinal genetic data, and Part II

also illustrates a link between statistics of clonal evolutionary patterns in the viral hemag-

glutinin segment and the seasonal influenza vaccine e�ectiveness. Part III, which considers

the clonal evolution of synthetic RNAs, we circumvent the common issue of haplotyping

genetic variants detected via short read sequencing. The RNA genomes are designed to fit

completely within a single Illumina read, thus allowing the depth of sequencing to deeply

6



probe the composition of the evolved populations.

1.3 Role of Computation in Interpreting Genetic

Evolution

There are many ways to approach the role of computing in genetics (and biology in gen-

eral). An immediate need certainly exists today for data analysis infrastructure, especially

given the rate of adoption of high-throughput sequencing platforms. The maturing niche of

bioinformatics seeks to provide new methods grounded in software engineering and applied

statistics. And though it is tempting to stand in awe of the technical advances made in

DNA sequencing, we should resist the urge to view this revolution as having achieved its ul-

timate goal. It is sobering to consider that today’s technologies are still incapable of cheaply

and exhaustively capturing all haplotypes present in populations of cellular organisms. The

needs for computation in genetics often stem from inherent weaknesses of our measurement

devices: short reads rather than long, bulk DNA rather than single cell, noise limitations on

depth of sequencing, etc. Computational methods in the life sciences are often relied upon

to provide robust inference as compensation for imperfect physical measurement.

To frame the role of computational biology in such limiting terms though, is to ignore

the larger theoretical issues that persist even if our ability to read or write DNA were

hypothetically perfected. Issues of predicting how sequences evolve against particular fitness

landscapes, or understanding the time and length scales across which genetic alterations

manifest, would not be trivially answered with further advances in measurement capability.

Biology may be inundated with data in the present day, but statistical summaries of data

should not be conflated with general model building [117]. Arguably the most important role

for computational life scienstists is to investigate new mathematical ideas and techniques for

parsimoniously modeling biological interactions.

7



1.4 Organization of the Thesis

This thesis is organized into three parts based on the type of high-throughput sequencing

data analyzed and the particular biological setting being interrogated.

Part I deals with single-time-point (cross-sectional) observations of large sets of tumor

transcriptomes, with the goal of detecting penetrant alterations such as gene fusion or on-

covirus infection. Chapter 2 introduces the Pegasus pipeline, which casts the prediction of

oncogenic gene fusions as a supervised learning task. The main results of Chapter 2 are

the superior performance of Pegasus compared with existing tools and the successful de-

tections of novel genomic translocations in peripheral T-cell lymphomas. The novel fusions

we highlight are TRAF1-ALK in anaplastic large cell lymphoma and VAV1 with various

fusion partners in angioimmunoblastic T-cell lymphoma or peripheral T-cell lymphoma not-

otherwise-specified. Material presented in Chapter 2 is published, wholly or in part, in [1, 5].

Chapter 3 introduces the Pandora pipeline, which quantifies viruses present in human RNA-

seq data and supports the exploration of genetic or microenvironmental host-viral interac-

tions. The main results of Chapter 3 are the superior performance of Pandora compared with

existing tools and the viral characterization of hematologic malignancies including Burkitt

lymphoma and peripheral T-cell lymphoma. A novel EBV latency program is reported in

endemic Burkitt lymphoma in addition to an anti-correlation between TCF3/ID3 mutation

and EBV presence in Burkitt lymphoma more generally. In peripheral T-cell lymphoma

Pandora detects a landscape of human herpesvirus infections and supports the likely B-cell

origin of EBV in angioimmunoblastic T-cell lymphoma. Material presented in Chapter 3 is

published, wholly or in part, in [4] and will be published in the manuscript “Viral landscape

and microenvironment of peripheral T-cell lymphomas” (in preparation).

Part II considers multiple-time-point (longitudinal) observations of tumor and viral pop-

ulations undergoing clonal evolution. Chapter 4 begins by reviewing much of the existing

theory concerning phylogenetic inference and also describes the Billera-Holmes-Vogtmann

(BHV) space of phylogenetic trees that forms the foundation for our work. The main results
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of Chapter 4 are twofold. First, we introduce a projective BHV tree space along with an

explicit implementation for visualizing point clouds of re-scaled trees. Second, we define a

method for dimensionality reduction of large phylogenies, useful in analyzing long genomic

time series, and prove its stability. Chapter 5 considers the particular longitudinal data sets

derived from (i) cancer biopsies sequenced along the therapeutic time course, (ii) cancer

xenograft models sequenced at di�erent animal passages, and (iii) seasonal sequencing of

H3N2 influenza hemagglutinin segments. These scenarios all represent clonal evolution un-

der strong selection, and serve to illustrate the utility of our tree space methods. The main

result of Chapter 5 is the inverse association between the variance of phylogenetic trees built

from seasonal H3N2 hemagglutinin sequences and future influenza vaccine e�ectiveness. The

material presented in Chapters 4 and 5 is published, wholly or in part, in [233, 234] and will

be published in the manuscript “Phylogenetic dimensionality reduction” (in preparation).

Part III focuses on an engineering approach to clonal evolution, wherein large populations

of RNAs are clonally evolved in vitro against a desired fitness objective. The fitness objectives

we investigate both relate to altering ribosomal translation, first with programmed ribosomal

frameshift and second with stop codon readthrough. Chapter 6 details the discovery of RNA

pseudoknot compositions for high-e�ciency induction of ribosomal frameshifting. The main

result of Chapter 6 is the identification of an optimal frameshifter genotype in the evolved

population of RNAs, and its use in constructing ligand-responsive riboswitches. The material

presented in Chapter 6 is published, wholly or in part, in [9]. Chapter 7 takes an unbiased

approach to evolving 3’ RNA elements that induce eukaryotic stop codon readthrough. The

main result of Chapter 7 is the development of a classifier of stop codon readthrough based

on position-specific sequence information and structural features of predicted hairpins. The

trained model is applied to the estimation of readthrough e�ciency across all human 3’UTRs,

with subsequent in vivo validation performed. The material presented in Chapter 7 will be

published in the manuscript “Large scale profiling of stop codon readthrough RNA signals

and their identification in human 3’-UTRs” (in preparation).
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Chapter 2

Gene Fusions as Penetrant Oncogenic

Events

Gene fusions are the result of genetic aberrations (translocations, deletions, amplifications

and inversions) involving the juxtaposition of two genes that can generate a single hybrid

transcript. Since 1960 gene fusions have been known to play a major role in tumorgenesis.

The BCR-ABL1 gene fusion, resulting in the Philadelphia chromosome (t(9;22)(q34;q11)),

was the first case of a chromosomal translocation associated with the development of a cancer,

namely chronic myelogenous leukemia [151]. In this fusion, the N-terminus oligomerization

domain of BCR and the tyrosine kinase domain in ABL1 are essential in promoting oncogenic

activity [236]. Among the gene fusions associated with tumor development, it is worth men-

tioning TMPRSS2-ERG, a gene fusion occurring in 40-80% of cases of prostate cancer [204,

38] and fusions involving ALK gene with di�erent partners in various malignancies [34],

such as NPM1-ALK in anaplastic large cell lymphoma (ALCL) [138] and ELM4-ALK in

non-small-cell lung cancer [195].

Material presented in this chapter is published, wholly or in part, in: [1] in collaboration with F. Abate,
E. Ficarra, A. Acquaviva, C.H. Wiggins, V. Frattini, A. Lasorella, A. Iavarone, G. Inghirami, R. Rabadan;
[5] in collaboration with F. Abate, A.C. da Silva-Almeida, J. Robles-Valero, L. Couronne, H. Khiabanian,
S.A. Quinn, M.Y. Kim, M.A. Laginestra, C.S. Kim, D. Fiore, G. Bhagat, M.A. Piris, E. Campo, I.S. Lossos,
O.A. Bernard, G. Inghirami, S. Pileri, X.R. Bustelo, R. Rabadan, A.A. Ferrando, T. Palomero
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Discovering the relationship between gene fusions and cancer is gaining significant mo-

mentum thanks to advances in next generation sequencing (NGS) technology, particularly

RNA-seq paired-end data [131]. Recently, the application of this technology allowed the

discovery of new chromosomal rearrangements of the CIITA gene with various promiscu-

ous partners in the lymphomagenesis of primary mediastinal B cell lymphomas [197]. In

Singh et al. [190], the analysis of RNA-seq paired-end data led to the discovery of the highly

oncogenic fusion protein FGFR3-TACC3 in 3% of patients diagnosed with glioblastoma mul-

tiforme (GBM). Even though FGFR3-TACC3 occurs at low frequency, the e�cacy of FGFR

inhibitors in the treatment of these tumors opens the door to personalized therapies for

this deadly disease. Moreover, the FGFR3-TACC3 fusion has been found in other cancers

such as bladder [220] and lung [132]. These recent discoveries underscore the power of high

throughput genomics for the identification of targetable gene fusions, opening the door to

personalized cancer therapies.

Several bioinformatics tools have are now established for the detection of candidate fusion

events. Most of the fusion detection tools exploit an algorithmic strategy based on RNA-seq

paired-end data. Generally, the detection of read pairs that discordantly map to two distinct

genes generates a first set of gene fusion candidates. Subsequently, the exact fusion junction

is determined for each candidate by searching for reads spanning the breakpoint, i.e. reads

that partially map to both genes. FusionSeq [183] and deFuse [134] are the earliest examples

of software based on this strategy. Detection tools di�er in the type and number of cascading

filters they apply to reduce the large number of false positive fusions. Chimerascan [97]

implements a variation of the algorithm based on trimming reads to increase the fusion

detection sensitivity. Bellerophontes [2] uses TopHat [206] and Cu�inks [207] to identify

gene fusions involving truly expressed genes, and applies a set of modular cascading filters

based on an accurate gene fusion model [55]. A comprehensive comparison of fusion detection

tools has recently been performed in [31].

The methods adopted by fusion detection tools to shrink the list of candidates lead to
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increased specificity but reduced sensitivity. As reported in the comparative analysis per-

formed by Abate et al. [2], because of the heterogeneity of the applied filters the resulting

set of detected fusions poorly overlaps. To obtain a more complete list of relevant fusions,

the union set of candidate fusions detected by all the detection tools should be considered

for further experimental validation. A problem arises however, since the number of putative

gene fusions might be on the order of hundreds of candidates per single RNA-seq sample.

This is largely due to the presence of readthrough events, reverse transcriptase template

switching artifacts, and di�erent systematic errors in the analysis of the reads [159]. The

naÃ�ve approach of considering all candidates quickly overwhelms the capacity of experi-

mental validation procedures, and highlights the need to focus on a reduced number of select

biologically relevant fusions driving the oncogenic progression of disease.

Driver mutations are understood to be genetic alterations that confer a fitness advantage

to malignant cells, and historically they have been identified simply by their high prevalence

across cancer patients. Passenger mutations are alterations that do not have appreciable im-

pact on the malignant phenotype. The classification of gene fusions into driver and passenger

events is a complex problem that has not been fully explored yet. To address this issue, sev-

eral databases have collected hundreds of chromosomal translocations involved in cancer

cases and reported in the biomedical literature. For instance, Mitelman [136], TICdb [150],

and ChimerDB2.0 [110] are manually curated repositories of known gene fusions along with

detailed information such as chromosomal breakpoints, reported tissue types, and fusion

sequences. New computational approaches to nominate biologically relevant fusions from

high-throughput data have been proposed. ConSig assesses driver gene fusions by combin-

ing copy number variations (CNV), ontologies and interactomes based on the assumption

that fusion events are more likely to arise from genes with similar biological functions [217].

Wu et al. have proposed a network based approach relying on relative co-occurrence of

protein domains and domain-domain interactions, and location of the gene fusion in a gene

network [225]. Recently, Oncofuse has improved the computational analysis with a machine
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learning approach based on a Naive Bayes classifier applied to preserved domains after chro-

mosomal rearrangement [189]. Compared to the previous methods, Oncofuse introduces a

level of detail considering only the domains that are e�ectively maintained on the resulting

gene fusions. The domain analysis should be extended, however, taking into account all the

possible transcript isoforms as well as the reading frame, which plays a crucial role since

frameshifted fusions imply a loss of the 3’-gene domains. Moreover, Oncofuse relies on a

NaÃ�ve Bayes classifier that makes a restrictive assumption on the class conditional inde-

pendence of all features. Taking the FGFR3-TACC3 gene fusion as an example, however,

the acquired coiled-coil domain of the TACC3 gene cooperates with tyrosine kinase func-

tionality of FGFR3 to produce the dramatic oncogenic e�ect [190]. This example illustrates

the limitations of a model assumption that ignores interactions between functional protein

domains.

In this chapter we aim to discern oncogenic driver fusions from the background of pas-

senger events and artifacts by combining 1) functional domain annotation based on accurate

fusion sequence analysis and 2) a binary classification algorithm using gradient tree boost-

ing. The implementation of this methodology is Pegasus, a new framework for the functional

characterization of RNA-seq gene fusion candidates and quantification of their oncogenic po-

tential. Pegasus runs on top of multiple state of the art fusion detection tools in order to

maximize detection sensitivity and consider the largest possible set of fusion candidates.

The main innovative steps introduced by Pegasus are as follows: Common interface be-

tween several fusion detection tools; Chimeric transcript assembly: a key feature since fusion

detection tools do not report whole transcript sequences; Reading frame identification and

accurate domain annotation, including both preserved and lost protein domains within the

assembled chimeric transcript; Prediction of fusion oncogenic potential: high performance

ensemble learning technique trained on a feature space of protein domain annotations; Au-

tomated workflow that would otherwise require massive e�ort if manually executed by the

scientist.
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We assess the trained Pegasus model’s prediction accuracy by applying it to a set of

recently discovered gene fusions where it compares quite favorably with the current state of

the art, Oncofuse. The term “prediction” in this context is understood to mean the mapping

of input descriptors of a gene fusion event to a numeric score representing the likelihood of

the event being a driver. Assessment of prediction accuracy is always performed on out-

of-sample data points, and the data used for benchmarking with Oncofuse is, in fact, more

recent than our training corpus, thus representing a true prediction into future data for

Pegasus. Beyond curated datasets, we report the results of Pegasus on real RNA-seq data

from two distinct patient cohorts: public GBM samples from TCGA and non-public ALCL

samples. We successfully identify driver gene fusions in both cancers and demonstrate the

utility of coupling our algorithm with experimental analysis in cancer research.

2.1 Pegasus: Chimeric Transcript Annotation and

Scoring

In order to first motivate our feature engineering, we briefly review the main mechanisms

hitherto identified in oncogenic gene fusions (Figure 2.1). Fusion transcripts can broadly

lead to three scenarios: i) enhanced overexpression of an oncogene ii) deregulation of a tu-

mor suppressor gene iii) formation of a new, aberrant protein. Enhanced overexpression of

an oncogene is exemplified by the famous IgH-MYC fusion and is the main reason for our

explicit annotation of oncogene status and interactions with known oncogenes in our feature

space representation of fusion transcripts. In other cases, deregulating properties can be

associated with the fused transcript, such as insertion of one or two nucleotides across the

junction breakpoint introducing a shift of the reading frame. This scenario is illustrated

in the PPP2RA-CHEK2 fusion [101] where the introduced frameshifted sequence prevents

the formation of the CHEK2 protein that is a known tumor suppressor gene. Here we see

the motivation for our explicit annotation of tumor suppressor status and interactions with
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Figure 2.1: Famous oncogenic gene fusions: Di�erent mechanisms of gene fusions in
cancer are shown. (a) Shows the mechanisms of oncogenic transcription factor activation by
means of an endogenous enhancer. (b) Shows an example of disrupting gene fusion where
the 5’ gene leads to the deregulation of the 3’ tumor suppressor gene. Finally, (c) and (d)
depict the BCR-ABL1, NPM1-ALK, and FGFR3-TACC3 chimeras where a completely new
protein is produced.

known tumor suppressors in the feature space, as well as the need for computing reading

frame of each candidate fusion. Finally, fusion transcripts can also yield a completely new

chimeric protein. BCR-ABL1 [151] and NPM1-ALK [138] are well studied examples of such

in-frame fusions. The new protein is generally larger than the kinase involved and causes an

increase of the tyrosine kinase activity. Moreover, in the recently discovered FGFR3-TACC3

gene fusion, the acquired coiled-coil domain of TACC3 gene drives the localization of the

fusion protein to the mitotic spindle through a mechanism that is dependent on tyrosine

kinase functionality [190]. It seems that a reasonable feature space representation for pre-

dicting the oncogenic properties of such novel chimeric proteins should maintain knowledge

of both preserved and lost functional domains in the partner genes.
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Figure 2.2: Pegasus pipeline architecture: For each phase, the figure shows how the
feature vector is constructed on the left side of the panel. In Fusion Detection Tools Candi-
dates Integration step, report files from several fusion detection tools are loaded in a unique
fusion database. In Chimeric Transcript Sequence Reconstruction and Functional Analysis
phase, the fusion transcript is assembled according to the fusion breakpoint coordinates, the
reading frame is checked and the protein domain annotation is performed on the resulting
fused sequence. Finally, the Driver Fusion Prediction applies machine learning techniques
to determine prediction scores.
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The methodology of Pegasus is composed of three phases (Figure 2.2): a) integration of

candidates from fusion detection tools b) chimeric transcript sequence reconstruction and

domain annotation c) classifier training and driver prediction. The first phase, Fusion De-

tection Tools Integration, involves pooling the entire set of unique gene fusion candidates

detected by any of the fusion detection tools. The second phase, Chimeric Transcript Se-

quence Reconstruction and Domain Annotation, includes two steps: i) reconstruction of the

chimeric transcript using the genomic breakpoint coordinates and the partner gene annota-

tions ii) annotation of the assembled sequence to provide information on the fusion frame

and to generate a report of all the protein domains conserved or lost in the gene fusion.

The final phase frames Driver Fusion Prediction as a binary classification task and fits an

ensemble of decision tress via the gradient boosting algorithm.

The Fusion Detection Tools Integration is the repository of the entire set of fusion can-

didates detected by any of the fusion detection tools. Several fusion detection algorithms

are supported in Pegasus: Bellerophontes, deFuse, and ChimeraScan. Each tool adopts a

private formalism for reporting fusion information with di�erent levels of detail. However,

some chimeric fusion features are common to all the fusion detection tool reports (e.g. genes

involved in the fusion, genomic breakpoint coordinates, number of reads encompassing and

spanning the fusion breakpoint, etc.). Thus, the internal database structure of Pegasus

provides a unique point of access for all the information needed to fully describe a gene fu-

sion candidate. Furthermore, experimental analysis might involve the comparison of several

RNA-seq samples per case study. To this end, the common repository embedded in Pegasus

provides an organized overview of all the fusions occurring in the entire sample set. This fea-

ture allows comparison and the recurrence analysis of the fusion candidates within both the

same experimental dataset (samples of the same disease) and within di�erent experimental

datasets (samples across di�erent diseases).

For each gene fusion candidate, the entire chimeric transcript sequence is first assembled

according to publicly available gene annotations and the fused gene breakpoint coordinates.
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This is the most computationally intensive step in the methodology. For each gene fusion

candidate, Pegasus assembles the chimeric sequence based on the possible isoforms and

splicing junctions of each gene, as well as the genomic breakpoint coordinates (Figure 2.3).

It is worth specifying that Pegasus reconstructs the fusion sequence exclusively on the basis of

gene annotation and fusion breakpoint, and it does not exploit the sequenced reads because

they are not an input to the program. Therefore the reconstructed sequence may not reflect

the actual sequences especially in case of alternative splicing events. We adopt the annotation

file from ENSEMBL database [69]. Since several distinct isoforms might be available for a

specific gene, Pegasus considers the combinations of all possible isoforms reported in the

annotations of those genes involved in the fusion (Figure 2.3). The chimeric transcript

sequence is therefore reconstructed combining the 5’ gene isoform sequence (from the isoform

start codon to the genomic breakpoint) and the 3’ gene isoform sequence (from the genomic

breakpoint to the isoform stop codon). Di�erent gene isoforms allow for di�erent protein

domains to be retained or disrupted during the fusion. If this scenario occurs, Pegasus

considers the union of all possible domains that are retained and lost and as input features

for downstream classification. Furthermore, the fusion breakpoint can fall in either the

coding region (exon-exon junction boundaries), or in non-coding regions (exon-intron or

intron-intron junction boundaries). Pegasus takes the latter scenario into account and if the

fusion breakpoint falls in an intron, the intronic sequence is retained.

After sequence reconstruction we assess the preservation of the reading frame in the

chimeric transcript, which enables a great deal of our downstream feature engineering (Figure

2.4). If the gene fusion introduces or deletes a nucleotide in one of the codons, the entire

reading frame is shifted and the corresponding amino acid sequence changes. Consequently,

the resulting protein sequence is di�erent from the one encoded by the gene involved in the

fusion. The gene fusion encodes a protein sequence that either corresponds to a completely

unknown protein or contains a premature stop codon (the presence of a premature stop

codon in the chimeric sequence interrupts the protein translation resulting in the truncation
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Figure 2.3: Chimeric transcript reconstruction: Both for the 5’ and the 3’ gene the an-
notated isoform sequences are retrieved. All the possible combinations between the isoforms
of the 5’ and 3’ genes are considered as putative fusion transcripts.

of the protein encoded by the 5’ fused gene). This class of mutations is functionally similar

to nonsense point mutations that play a role in many cancers and might imply the loss of

functionality of the 5’ fused gene. The sequence is labeled as in-frame if the number of

nucleotides composing the fusion sequenced is a multiple of three and no premature stop

codons are introduced in the chimeric sequence.

The annotation of the preserved and lost protein domains is essential in order to capture

the oncogenic potential of a translated chimeric transcript. The nucleotide fusion sequence

assembled in the previous step is translated into an amino acid sequence. Subsequently,

the UniProt web service [39] is queried for all available annotations of the putative protein

encoded by the two genes involved in the fusion (Figure 2.4). Leveraging the reading frame

information and fusion breakpoint, Pegasus determines the conserved and lost domains as-

20



sociated with both 5’ and 3’ genes. It is worth emphasizing that both conserved and the lost

domains are valuable features of a fusion transcript, with the former more likely to discrim-

inate oncogene related fusions and the latter more likely to discriminate tumor suppressor

related fusions.

The domain annotation permits the creation of a detailed feature space for the fusion

transcripts, a pre-requisite step for posing the ensuing machine learning task. In Pegasus

the feature space is composed of:

• Binary information about reading frame and breakpoint region (if the breakpoint falls

in coding regions, introns and UTRs).

• Presence or absence of ≥1000 protein domains from UniProt. Our selection was based

on the domains occurring in the training set from ChimerDB2.0.

• Number of oncogenic or tumor suppressor domains, as defined by association with the

keywords “tumor suppressor” or “oncogene” in the UniProt database.

• Number of protein-protein oncogenic interacting domains. We check if one or more

domains of the fusion interact with both oncogenic and tumor suppressor domains.

2.2 Boosting Framework for Supervised Learning

We aim to fit a model that can identify oncogenic fusions from the background of passenger

events and artifacts. More precisely, we aim to learn a mapping f : X ‘æ y from the fusion

transcript feature space X to a label y œ {0, 1} representing oncogenic driver status. Since

we desire a biologically interpretable model that is also capable of capturing interactions

between features, the decision tree is a natural choice. On the other hand, high dimensional

feature spaces predispose to overfitting, and previous driver fusion prediction studies [189]

focused a great deal on upfront dimensionality reduction for this reason. A single, large

decision tree classifier is not likely to generalize beyond some training depth. An ensemble

of shallower decision trees, if learned in a boosting framework, can guard against overfitting
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Figure 2.4: Chimeric frame and domain annotation: (a) The length of the fusion
transcript, from the start to the stop codon, must be multiple of three (three nucleotides
per single encoded codon). If the length of the sequence modulo 3 is non-zero, the fusion
sequence is frameshifted. A premature stop codon can be introduced in the protein sequence.
(b) The nucleotide sequence resulting from the fusion of the 5’ and 3’ gene is translated into
amino acid sequence. Similarly, the genomic breakpoint coordinates are translated into
protein amino acid coordinates. UniProt Web Service is queried and the list of the available
domains for both the gene is retrieved. On the basis of the protein domain sequence and
protein breakpoint, the list of both conserved and lost domains is reported.
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Figure 2.5: Decision tree base learner: The base learner in the boosted classification
model is the decision tree, which defines a recursive partitioning of the feature space into
disjoint regions each modeled by a constant. Decision nodes are colored brown while leaf
nodes are colored green. At the leaf nodes, the samples have been partitioned into disjoint
sets with a higher degree of label homogeneity than at the root.

because of the iterative nature of the learning and the additive structure of the model [75].

Therefore the balance we strike between the expressive power of decision trees and robustness

to overfitting comes in the form of stagewise additive modeling. In Pegasus we employ an

additive model f(x) = q
m

–mhm(x) composed of weighted decision trees, an instance of which

is shown in Figure 2.5, and fit via gradient boosting [73]. There is no manual reduction of

features or feature space dimension in this strategy, unlike the manual selection of 6 enriched

functional categories in the Oncofuse framework [189].

Thus we require neither upfront dimensionality reduction schemes nor the restrictive

assumption of class conditional feature independence in the NaiÌ�ve Bayes model. Gradient

tree boosting is an ensemble learning technique, wherein decision trees are used as base

learners and the final model is expressed as an expansion in these basis functions. Figure

2.5 depicts a sample regression tree that would be added to the ensemble in a single round

of boosting. Although the base learners are performing regression, appropriate choice of loss
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Algorithm 1 Gradient Tree Boosting Algorithm.
1: f0(x) Ω arg min“L(yi, “)
2: for m = 1, 2, . . . , M do
3: for i = 1, 2, . . . , N do
4: Compute rim = ≠[ˆL(y

i

,f(x
i

))
ˆf(x

i

) ]f=f
m≠1

5: end for
6: Fit a regression tree to the targets rim giving terminal regions Rjm, with j =

1, 2, . . . , Jm

7: for j = 1, 2, . . . , Jm do
8: “jm = arg min“

q
x

i

œR
jm

L(yi, fm≠1(xi) + “)

9: end for
10: Update fm(x) = fm≠1(x) +

J
mq

j=1
“jm1(x œ Rjm)

11: end for
12: return f̂(x) = fM(x)

function for gradient boosting yields a classification task. Here we use the binomial deviance

loss, and enforce a maximum depth of 5 nodes in the individual decision trees.

Adaptive boosting, first proposed by Freund and Schapire in the 1990s, has gained recog-

nition as one of the most powerful algorithms in modern machine learning. More recent work

by Friedman in 2000 generalized the adaboost algorithm to arbitrary di�erentiable loss func-

tions and established gradient boosting. The gradient tree boosting algorithm [74], originally

published in 2000, is outlined below (Algorithm 1) and the implementation we use can be

found in the scikit-learn python library [163]. We denote the number of training examples

by N , the number of boosting rounds by M , and the loss function by L:

2.3 Model Training and Validation Performance

This section highlights the performance of Pegasus in detecting driver gene fusions. First, we

examine the performance of the classifier on the training data and compare its e�ectiveness

to a recently published tool, Oncofuse, on a separately curated validation dataset. Next, we

run Pegasus on two experimental datasets and demonstrate its role in reducing the search

space of potential oncogenic drivers by accurately ranking fusion transcripts from a vast

24



set of putative candidates. The first is the publicly available RNA-seq data of GBM from

TCGA.The second is a non-public set of 23 RNA-seq samples from a cohort of patients with

ALCL, with 2 out of the 23 samples reporting the NPM1-ALK fusion. We analyze these

datasets with ChimeraScan or deFuse and apply Pegasus to the entire set of detected fusions.

It is worth specifying that in the reported results about chimeric transcript annotations, if

two or more fusions share the same junction breakpoint coordinates, they are counted as

a single fusion. The rationale is that according to the Pegasus fusion domain analysis, if

two genes fuse in di�erent samples with the same breakpoint they also share exactly the

same domain. Conversely, if two genes occur in di�erent samples with di�erent junction

breakpoint coordinates, the domain analysis accordingly changes.

The corpus of labeled data used to train the classifier comes from two sources. Positive

examples, meaning true oncogenic driver fusions, are drawn from ChimerDB2.0, which con-

tains 501 curated driver fusions. 1500 negative examples are then drawn from an internal

collection of reactive lymph node tissue in patients with no clinical history of malignancy.

The negative examples contain passenger fusions as well as readthrough transcripts. We also

supplement the negative training data with 416 deliberately frameshifted transcripts from

ChimerDB2.0 such that the necessary driver domains are lost. In total there are 501 positive

examples and 1916 negative examples in the training corpus. The rationale for augmenting

the negative set with 416 frameshifted fusions from ChimerDB2.0 is to include the scenario

of chimeric transcripts containing an oncogene at the 3’ position that is frameshifted. Since

such events occur at low frequency in normal lymph node tissue, this design choice improves

the performance of the classifier. In summary, the 501 fusions from ChimerDB2.0 form the

positive training set and provide mostly in-frame fusions involving oncogenes. The 1500

fusions from normal tissue contribute to the negative set and provide both in-frame and

frameshifted fusions. The 416 deliberately frameshifted fusions from ChimerDB2.0 complete

the negative set and provide frameshifted gene fusions mostly with an oncogene at the 3’

position.
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The classifier is trained for 100 rounds of boosting under 10-fold stratified cross validation

(CV) and achieves a mean test split AUROC of 0.96 and an average precision of 0.91. As

expected, in Figure 2.6 the loss on the train split monotonically decreases with increasing

model complexity, while we see no sign of overfitting in the form of rising loss on the test split.

As the binomial deviance falls most sharply in the early rounds of boosting, we specifically

quantified the gain in precision achieved by more complex models in comparison to classifiers

with shallow weak rules (decision trees) or small ensembles of decision trees. The marginal

benefit to classifier precision when augmenting the depth of decision trees or the number of

boosting rounds is illustrated in Figure 2.7, where we observe saturating performance after

roughly 20 boosting rounds in accordance with Figure 2.6. Since each decision tree base

learner implies a hierarchy of informative features, we can average over the boosting rounds

to produce an aggregate view of the most important features in the classification task.

Specifically, the relative feature importances in Figure 2.6 are computed via an ensemble

average of the single decision tree feature importances as defined in Breiman et al. [20]. Let

M denote the number of boosting rounds. Let I2
k denote the squared importance of feature

k. Let T denote a decision tree with J ≠ 1 pairs (t, î2
t ) of (internal decision node, estimated

improvement in squared risk). The squared importance of a feature within a boosting round

can be defined as

I2
k(T ) =

J≠1ÿ

t=1
î2
t1(t = k), (2.1)

and therefore the squared feature importance over the ensemble of base learners is

I2
k = 1

M

Mÿ

m=1
I2

k(Tm). (2.2)

We observe that the computationally expensive step of computing the fusion transcript

reading frame is justified in the eyes of the classifier, as it is the single most informative

feature. Looking a little further down the list we learn other transcript features that are

highly informative of driver events, such as having breakpoints in the CDS and conserving

domains shared with or interacting with known oncogenes. Despite strong performance
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Figure 2.6: Classifier training under stratified 10-fold cross validation: Because of
the imbalance in positive/negative training examples we stratify on the label and ensure
that each 10% of data held out as a test set contains equal proportions of both labels. (a)
Relative feature importances averaged over the 10 CV folds. (b) Binomial deviance loss
function plotted against model complexity for both the train and test splits of the data.

Figure 2.7: Classifier precision as a function of model complexity: Average precision
is calculated as a function of number of boosting rounds and decision tree (our weak rules)
depth. We observe saturating performance after roughly 20 boosting rounds, and our choice
of depth 5 trees for Pegasus appears superior to models composed of simpler weak rules
(shallower decision trees, decision stumps).
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of the model under 10-fold CV on the training corpus, we are interested to see whether

the classifier can generalize to new fusion transcripts that were unseen during the training

phase. A list of 39 driver fusions, the majority of which are more recent than ChimerDB2.0,

and corresponding to the validation set used in [189], is adopted as the positive validation

set examples. To balance the label frequencies, we also select 39 transcripts from benign,

reactive lymph node tissue as the negative validation set examples. None of the 78 validation

examples are included in the training data. The negative examples are selected to contain at

least one oncogene or tumor suppressor domain with the rationale that such transcripts more

closely resemble driver fusions and would be most challenging for a classification function. In

Figure 2.8 we demonstrate the favorable performance of the trained Pegasus classifier versus

Oncofuse, the current state of the art in data-driven prediction of driver fusions. Since the

ROC curve does not necessarily reveal how well separated the Pegasus scores are for the

two class labels, we include the boxplot of Figure 2.8 to illustrate the remarkable resolution

the classifier achieves between positive and negative examples. We also verify that Pegasus

outperforms Oncofuse on randomly drawn sets of 39 non-oncogenic transcripts, though by

a smaller margin. This is to be expected because the majority of non-oncogenic fusions

are very easily classified, whereas our curated subset represents a more challenging task.

Such robust performance on manually curated data sets naturally leads to the next proving

ground, applying Pegasus to the enormous candidate lists generated from real RNA-seq

samples.

2.4 Applications in Glioma

In order to demonstrate the e�ectiveness of Pegasus in predicting driver fusions, we analyze

15 samples of short-term glioblastoma stem cells freshly isolated from individuals with GBM.

RNA-seq samples were first analyzed with ChimeraScan [97] and deFuse[134] for fusion

detection. Next, we apply Pegasus to the set of gene fusion candidates and consider as
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Figure 2.8: Classification performance of trained model: A curated set of 39 recently
reported fusions that were not present in the ChimerDB2.0 training corpus are now used as
an independent validation set. (a) Superior classification performance of Pegasus compared
to Oncofuse on the validation dataset. (b) Boxplot demonstrating the high resolution of the
Pegasus driver score in discerning the class boundary. Positive examples are consistently
scored near 1 and negative examples consistently near 0.

driver events all those fusions having a number of supporting reads greater than 10 and

a Pegasus Driver Score (PDS) greater than 0.8. As shown in Figure 2.8, a threshold of

PDS > 0.8 promises a good trade-o� between specificity and sensitivity. Table 2.1 reports

the 4 detected driver fusions. All fusions have been validated with RT-PCR yielding a

100% rate of transcript validation. And while recurrence is often the surrogate measure of

functional importance, the four unique driver candidates from this 15 patient sample still

contain features associated with oncogenic gene fusions. In fact, CAND1-EGFR has been

reported in [71] and the EGFR gene has been demonstrated to have an oncogenic role in

GBM. Moreover, fusions involving MAPK1 and VOPP1 are reported as frequent in GBM

with di�erent gene partners [71, 21]. These results show that Pegasus can successfully detect

relevant driver fusion candidates from RNA-seq data and that a threshold of PDS>0.8 and

number of supporting reads greater than 10 provide a strong transcript validation rate.

As the most common and deadly primary brain cancer, GBM has recently undergone a
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Table 2.1: Pegasus predictions on 15 private GBM cases: Pegasus top driver scores
(PDS > 0.8) indicate 4 new driver fusions in GBM data.

5’ Gene
Partner

3’ Gene
Partner

Spanning
Reads

Split Reads Pegasus
Driver Score

Validated

CAND1 EGFR 17 14 0.9437 Yes
MAPK1 FAM119B 145 96 0.9426 Yes
ADCK4 NUMBL 11 4 0.9426 Yes
VOPP1 IL22 48 35 0.8243 Yes

Table 2.2: Pegasus predictions on 161 public GBM cases: Pegasus top driver scores
(PDS > 0.8) predicts 46% of known driver gene fusions in GBM data from TCGA cohort.
Recurrence is assessed on the basis of gene fusion frequency reported in [71, 21].

5’ Gene Partner 3’ Gene Partner Pegasus Driver
Score

Recurrence

YEATS4 XRCC6BP1 0.9598 1
EIF4H GTF2I 0.9440 1
ASH1L C1orf61 0.9256 1
SEC61G EGFR 0.9234 4
BCAN NTRK1 0.9182 1
EGFR VOPP1 0.9130 2
EGFR SEPT14 0.9042 6
TDRD3 ESD 0.8959 1
TFG GPR128 0.8880 4
PPP2R2B CCT3 0.8699 1
TBC1D14 HTRA3 0.8697 1
FGFR3 TACC3 0.8442 3
LANCL2 SEPT14 0.8428 3

deep investigation by the multi-institutional consortium, the cancer genome atlas (TCGA).

TCGA makes its collected RNA-seq data available to the larger scientific community, and

we analyze a set of 161 samples from their GBM cohort. We first analyze the 161 RNA-seq

samples with ChimeraScan (default parameters) [97], detecting a total of 9349 unique fusions

across the entire dataset. Next, we apply Pegasus to the set of candidates and consider as

driver events all fusion transcripts having a number of supporting reads greater than 10,

Pegasus Driver Score (PDS) greater than 0.8 and recurrence greater than 1. As shown in

the non-public RNA-seq data, these filtering thresholds provide a good validation rate by
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RT-PCR. The application of these filters reduces the original list of 9349 candidates down

to 13 high confidence fusions, making further functional analysis and validation tractable.

Pegasus computes a score greater than 0.8 for both FGFR3-TACC3 and EGFR-SEPT14 gene

fusions, which are already reported as driver translocation events in GBM [190, 71]. However,

since TCGA biological material is not available, we are unable to perform further functional

analysis of all predicted driver fusions with experimental procedures. Nonetheless, in order to

validate Pegasus performance we compare PDS values with the frequencies reported in both

[71] and [21] (Table 2.2). Of the 13 high confidence Pegasus predictions, 6 are recurrent in

TCGA data suggesting a potential functional driver role in GBM tumorgenesis [198]. Some

of the recurrent fusions involve the EGFR gene that is usually amplified in GBM, where it

is known to activate STAT3 signaling and is thus a drug target. Particularly interesting is

also the BCAN-NTRK1 gene fusion. In fact, NTRK1 is often translocated with di�erent

partners in cancers beyond just GBM [71].

2.5 Applications in Peripheral T-cell Lymphoma

Anaplastic large cell lymphoma (ALCL) is a form of peripheral T-cell lymphoma that is

often associated with translocations of the ALK gene. In 23 non-public ALCL samples (≥450

million properly mapped reads) we detect a total of 5201 candidate fusion transcripts by

means of deFuse [134] and ChimeraScan [97]. Beyond the two NPM1-ALK fusion transcripts

(PDS = 0.98) that are already reported, Pegasus properly annotates and reveals 16 new

biologically relevant fusions in these 23 samples. All 16 candidate driver fusions have been

validated with RT-PCR, and 4 gene fusions have successfully undergone functional assays

and in vivo validation. An example of Pegasus’s e�ectiveness in functional domain analysis

lies in the oncogenic role of TRAF1-ALK [61], a novel fusion in ALCL that Pegasus reports

as driver.

The TRAF1-ALK fusion has been reported in three cases of ALCL (one in [61] and two
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Figure 2.9: Novel driver TRAF1-ALK gene fusion in ALCL: A graphical represen-
tation of the Pegasus annotation on the TRAF1-ALK fusion in ALCL. Conserved domains
are reported according to the junction breakpoint.

in [3]) suggesting a driver role. Pegasus accurately assembles and annotates the in-frame

fusion sequence and correctly detects that the ALK protein kinase domain is completely

conserved. Various fusions involving the ALK gene have been reported in literature and the

oncogenic e�ect is generally promoted by ALK signaling. Interestingly, TRAF1 is also known

to be involved in both the canonical and non-canonical NFkB pathway. Pegasus correctly

annotates that the meprin and TRAF-C homology (MATH) domain is conserved, a domain

that ubiquinates the IKK complex, activating NFkB transcription factors. As depicted in

Figure 2.9, Pegasus properly identifies both the presence of an oncogenic protein domain

(ALK) and an interacting oncogenic domain (TRAF1 to NFKB activation). Experimental

work demonstrates and validates this Pegasus prediction showing the oncogenic e�ect of

TRAF1-ALK in vivo, with activation of both ALK and NFkB signaling [3].

Beyond ALCL is a histopathologically diverse series of T-cell lymphomas, including an-

gioimmunoblastic lymphoma (AITL), peripheral T-cell lymphoma not otherwise specified
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(PTCL-NOS), natural killer / T-cell lymphoma (NKTCL), and cutaneous T-cell lymphoma

(CTCL). We recently performed a systematic analysis of genetic alterations using RNA-seq

data from a cohort of 154 PTCL samples, including 41 PTCL-NOS, 60 AITL, 17 NKTCL,

and 36 ALCL tumors [160, 228, 41]. Pegasus successfully led to the identification and func-

tional characterization of recurrent activating fusions involving the VAV1 gene specifically

in AITL and PTCL-NOS subtypes. We identified three di�erent fusion transcripts encoding

proteins in CH which the C-terminal SH3 domain of VAV1 is replaced by the calycin-like

domain of THAP4 (in two cases), the SH3 domain of MYO1F, or the EF domains of S100A7

(Figure 2.10). Reverse-transcription PCR amplification and DNA sequencing validated the

expression of each of these VAV1 chimeric mRNAs in all samples analyzed.

The VAV1 protooncogene encodes a guanine nucleotide exchange factor (GEF) and adap-

tor protein with crucial signaling roles in protein tyrosine kinase-regulated pathways [27].

Structurally, VAV1 contains a calponin homology domain and an acidic domain in the N

terminus followed by a GEF catalytic active core consisting of a central Dbl homology do-

main, pleckstrin homology domain, and C1 domain [27]. Finally, the C-terminal region of

VAV1 contains three Src homology domains in an SH3-SH2-SH3 arrangement [27]. The GEF

activity of VAV1 stimulates the transition of RAC1 and RHOA small GTPases from their

inactive (GDP-bound) to the active (GTP-bound) configuration [27, 42, 212]. In addition,

the adaptor function of VAV1 mediates activation of the nuclear factor of activated T cells

(NFAT) in synergy with signals from antigenic receptors in lymphoid cells [27, 212, 226,

119, 237, 182, 173]. In basal conditions, un-phosphorylated VAV1 adopts an inactive closed

configuration in which the N-terminal calponin homology and acidic domains and the C-

terminal SH3 (C-SH3) domain block access of small GTPases to the catalytic core and limit

the noncatalytic activities of the protein [27, 14, 229]. Activation of VAV1 by transmem-

brane and cytosolic protein kinases reverses these intramolecular inhibitory interactions by

promoting an open active configuration associated with phosphorylation in the acidic, C1

finger, and C-SH3 domains [27, 14, 229].
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Figure 2.10: Novel VAV1 fusion genes in PTCL: (A) Schematic representation of the do-
main structure of the VAV1 protein. (B) Schematic representation of the domain structures
of the VAV1-S100A7, VAV1-THAP4, and VAV1-MYO1F fusion proteins. Ac, acidic do-
main; C1, C1 domain; recognition motif for diacylglycerol and phorbol esters, atypical; CH,
calponin homology domain; DH, DBL homology; EF, pseudo-EF hand domain; nitrobindin,
nitrobindin domain; PH, pleckstrin homology domain; SH2, Src homology 2 domain; SH3,
Src homology 3 domain.
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VAV1 is specifically expressed in hematopoietic tissues, and plays key roles in lympho-

cyte development and function [212]. VAV1 is essential for T-cell receptor (TCR)-mediated

cytoskeletal reorganization, cytokine secretion, proliferation, and survival [212, 182]. Thus,

Vav1-deficient mice show a partial block in thymic development at the CD4- CD8- double-

negative to CD4+ CD8+ double-positive transition, defective positive selection, and im-

paired negative selection, which altogether point to a major role for VAV1 in TCR sig-

naling [211, 116]. Biochemically, mouse Vav1 knockout T cells fail to elicit TCR-induced

intracellular Ca2+ flux and to activate MAP/ERK pathway and NF-kB signaling [67, 40,

91, 172]. Consistently, the function of mature T-cell populations is also defective in the

absence of Vav1, with reduced TCR-induced proliferation and cytokine secretion [212, 201,

235]. Similarly, VAV1-null human JURKAT T cells show impaired TCR-induced calcium

flux, IL-2 transcription, and NF-ÎûB activation, as well as decreased TCR-induced JNK and

NFAT signaling [29].

Given the prominent role of VAV1 in T-cell activation and to explore the functional con-

sequences of PTCL-associated VAV1 mutations and gene fusions, we analyzed the e�ect of

these genetic alterations on lymphocyte signaling. Analysis of JNK signaling in AP1 reporter

assays, a functional readout of VAV1 catalytic-dependent functions downstream of RAC1,

showed marked increased JNK activation in JURKAT cells expressing the VAV1-MYO1F,

VAV1-S100A7, and VAV1-THAP4 fusions. Notably, this e�ect was primarily independent

of TCR stimulation with anti-CD3 supporting that PTCL-associated VAV1 fusion proteins

adopt a constitutively active configuration. The inhibitory role of VAV1 C-terminal SH3

domain involves its folding over to the N-terminal catalytic and pleckstrin homology do-

mains, which occludes the access of VAV e�ector factors to the catalytic GEF domain [14].

Thus, we postulated that the loss of the C-terminal SH3 domain in the VAV1-MYO1F,

VAV1-S100A7, and VAV1-THAP4 fusions would result in VAV1 activation via loss of these

inhibitory intramolecular interactions. To test this hypothesis, we analyzed the levels of

Tyr174 phosphorylation, a regulatory posttranslational modification indicative of an ac-

35



tive VAV1 open configuration [42, 229]. Consistent with the loss of the inhibitory role of

the VAV1 C-terminal SH3 domain, immunoprecipitation of HA-tagged VAV1 proteins with

anti-HA antibody in these cells, followed by immunoblotting with an antibody recogniz-

ing phospho-Y174, showed high levels of phosphorylation in VAV1-MYO1F, VAV1-S100A7,

and VAV1-THAP4 fusions. These results support that the PTCL-associated fusion proteins

VAV1- MYO1F, VAV1-S100A7, and VAV1-THAP4 can adopt an open configuration even in

the absence of TCR stimulation and mechanistically implicate the loss or impairment of the

inhibitory role of the C-terminal SH3 domain of VAV1 in the pathogenesis of PTCL.

2.6 Conclusions

Gene fusions arising from chromosomal translocation can be highly transforming events,

and quite a common finding in cancer genomes. Fusion detection packages typically have

many false positives and there is a great need to functional annotation and driver prediction.

Pegasus frames the predicting of driver gene fusions as a supervised learning task, taking

advantage of large databases of oncogenic fusions as positive training examples. The trained

model outperformed a competing package, Oncofuse, and the most informative feature in

the classifier was the fusion being in-frame (a feature OncoFuse does not calculate). We

successfully recapitulate much of landscape of driver gene fusions in glioma, and predict

novel fusions in PTCL, namely TRAF1-ALK and VAV1 with its various partners. Pegasus

is successfully deployed at many research labs beyond our own.
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Chapter 3

Viruses as Probes of Tumor Genetics

and Microenvironment

Similar to the gene fusions of the previous chapter, cancer-causing viruses are a class

of potentially high-penetrance alterations in promoting transformation. Oncoviruses are

defined as viruses with the potential to transform the cells or tissues they infect into a

malignant state. Many viruses have strong epidemiological associations with cancers, and

we have a clear picture of the oncogenic mechanism for a subset of these viruses. A virus

may inhabit the malignant clonal lineage of a tumor, or infect tumor infiltrating leukocytes

or stromal cells. A virus-positive malignant clone may have slightly altered genetics than

a virus-negative cancer. Similarly, a tumor in a virus-positive microenvironment of other

infected cell types may receive modified immune signals from a tumor growing in a sterile

microenvironment. The biology community does not yet have answers to such questions

and is in need of robust host-viral characterization methods for high-throughput sequencing

data. Sequencing of human tumor tissue has the potential to reveal new associations between

Material presented in this chapter is published, wholly or in part, in: [4] in collaboration with F. Abate,
M. Ambrosio, L. Mundo, M.A. Laginestra, F. Fuligni, M. Rossi, S. Gazaneo, G. De Falco, S. Lazzi, C.
Bellan, B. Rocca, T. Amato, E. Marasco, M. Etebari, M. Ogwang, V. Calbi, I. Ndede, K. Patel, D. Chumba,
P.P. Piccaluga, S. Pileri, L. Leoncini, R. Rabadan; and will be published in the manuscript “Viral landscape
and microenvironment of peripheral T-cell lymphomas” (in preparation) in collaboration with F. Abate, R.
Rabadan, et al.
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cancer and viral infection. Regardless of the exact location or cellular tropism of tumor-

associated virus, one might view the infection as a biological probe of the local cancer biology.

In this chapter we describe a computational strategy for simultaneous characterization of

viruses present in human sequencing data and host genomic profiling from RNA-seq data. We

then apply the suite of tools, Pandora, to the study of human herpesviruses in lymphomas.

The two lymphomas we consider are Burkitt lymphoma and peripheral T-cell lymphoma.

3.1 Abbreviated History of Viruses in Cancer

Viruses were discovered in the late 19th century through the study of a transmissable dis-

ease of the tobacco plant. Experiments by Mayer, Ivanovsky, and Beijerinck in succession

demonstrated the transmissibility of the tobacco mosaic disease via a filtrate of ground

leaves from an a�icted plants that had been passed through a ceramic filter too fine for any

cellular pathogen to traverse. The existence of infectious agents too small for microscopic

examination had been demonstrated, and it was Beijerink who coined the term virus. In

1911 Peyton Rous published his observations [178] on an aggressive sarcoma of chickens,

also relying heavily on filtrates of diseased tissue to demonstrate the transmissibility of the

cancer between hosts. Rous’s paper never mentions the term virus, though it is widely con-

sidered the dawn of the study of viruses as etiologic agents in cancer. In the years since, the

biomedical community has come to recognize many cancer-associated viruses. Hepatitis B

virus was discovered at the NIH in the mid 1960’s although its causative role in hepatocel-

lular carcinoma was not verified until 1981. In 1964, Epstein, Achong, and Barr published

a paper [58] reporting virus particles in cultured lymphoblasts from Burkitt lymphoma, a

virus that would later bear their names as Epstein-Barr virus (EBV). Between 1979-1981,

the first human retrovirus was discovered, human T-lymphotropic virus 1 (HTLV-1), and it

also happened to be a potent oncovirus, strongly associated to acute T-cell leukemias. In

1984-1986 there came the discoveries of the human papillomavirus virus strains 16 and 18,
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which are responsible for the majority of cervical cancer. In 1989 the cDNA from a non-A

non-B hepatitis virus was isolated from diseased liver tissue and heralded the discovery of

hepatitis C virus [36]. After the onset of the AIDS epidemic, Chang and Moore isolated

DNA sequences from Kaposi sarcoma that were homologous to herpes viruses and that were

rarely present in non-Kaposi sarcoma tissue samples from AIDS patients. Thus, in 1994,

came the discovery of Kaposi sarcoma herpesvirus (KSHV) [32]. In 2008, the same Chang

and Moore uncovered the most recent oncovirus, Merkel cell polyomavirus (MCPV), which is

clonally integrated into Merkel cell cancers [64]. The method they pioneered for the MCPV

discovery is called digital transcriptome subtraction, and serves as the inspiration for our

development of Pandora.

The are many biological di�erences among the oncoviruses highlighted above, and cer-

tainly di�erences between the di�erent cancers they cause. HBV, EBV, HPV, KSHV, and

MCPV are all DNA viruses, while HTLV-1 and HCV are RNA viruses. HBV, MCPV, HPV,

and HTLV-1 integrate into the host cell’s DNA, while herpesviruses like EBV and KSHV

rarely integrate (they remain nuclear episomes). EBV is associated to many cancers includ-

ing Burkitt lymphoma, Hodgkin lymphoma, gastric carcinoma, nasopharyngeal carcinoma,

and peripheral T-cell lymphoma (PTCL). The other viruses are associated with only a single

malignancy each. Perhaps the most important distinction to draw, however, is whether a

virus is directly or indirectly implicated in certain cancer type. A direct oncogenic mecha-

nism would require the viral infection be clonal in the malignant cell lineage. In the case of

a virus like HPV, not only is it integrated into the genome of its host cell, but we have elu-

cidated the exact mechanisms through which the viral gene products (E6, E7) degrade host

tumor suppressor proteins (p53, pRb) and therefore promote transformation. An indirect

mechanism could be similar to the case of chronic HCV infection, where chronic inflam-

mation of the liver ultimately drives transformation. Another indirect mechanism may be

involved in EBV’s association to cancers in which it’s not clonal, such as gastric cancer and

PTCL. If a virus is clonal in the malignant cell lineage, it may help probe the genetics of
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the cancer, while if a virus infects the non-malignant cell-types of the tumor, it may help

probe the microenvironment of the cancer.

3.2 Pandora: Viral Detection From the

Transcriptome

In the spirit of Chang and Moore’s discovery of MCPV in 2009 [64], we wish to implement a

computational strategy based on digital transcriptome subtraction. We recognize the bulk

RNA-seq of virally infected tumor tissue will capture a set of transcripts quite diverse in

origin. The goal of Pandora is first to cleanly separate the viral contribution to the sequencing

data from the human host contribution. The viral reads can be used to profile the virus’s

gene expression while the human host reads can help define the cellular composition of the

tumor. A pictorial representation of the Pandora strategy can be seen in Figure 3.1.

We segment the Pandora routines into three Modules, all taking paired-end RNA-seq

data as input. The first Module is the detection of variants from RNA, leading to somatic

mutation and RNA editing calls. The second Module is the viral detection and expres-

sion profiling. The third Module is the cell-type deconvolution using host gene expression.

Thematically, we notice that each of these three Modules is intended to provide an impor-

tant clue into the tumor’s host-viral interactions: the tumor genetics, the viral expression

program, and the tumor microenvironment composition.

The first Module is implemented using the GATK recommendation for variant calling

from RNAseq [77, 48] and uses the SAVI algorithm [209] for statistical annotation of pre-

dicted variants. Predicted variants are separated into likely somatic mutations vs. likely

RNA editing events using the RADAR database annotations for high confidence A to I edit-

ing [171]. Gene fusions are called first via chimerascan [97], and then annotated and scored

by Pegasus [1] for their oncogenic potential. The set of point mutations, indels, gene fusions,

and A to I RNA editing constitutes the extent to which the host tumor genetics is profiled
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Figure 3.1: Detection and profiling of viruses in their cellular context: Whole tran-
scriptome sequencing provides an unbiased view of both viral and host expression prpgrams.
Tumors contain a diversity of cell types including the malignant lineage, benign stroma, and
infiltrating immune cells. We represent hypothetical virions with the orange icosahedra and
further illustrate their infecting the dark blue B-cell. Pandora e�ciently separates human
from viral transcripts and can be used for both oncovirus discovery and characterization of
virus-host genetic interaction.

in Module 1.

Module 2 is concerned with the sorting of reads into viral and human bins, and the

subsequent use of the viral reads to call infections. Unlike other virus detection packages,

Pandora has a 3-step process of (i) subtracting the human reads, (ii) de novo assembling

the non-human reads, and (iii) BLAST long contigs against nt database. We feel that

the intermediate step of assembling contigs from short reads can decrease false positive

alignments and reduce the number of BLAST subcalls to be made (BLAST can be very time-

intensive). To subtract the human reads, a two-pass splice-aware alignment is performed,

the first pass using STAR aligner [52] and the second pass using Tophat [206]. The hg19

human reference is used for both alignment runs. Any reads mapping to the human genome
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reference are separated into a “human_expression” file (to be used in Module 3), while the

unmapped reads are written back to disk in preparation for assembly. Trinity [83] is used

for de novo assembly of the unmapped reads. This produces a set of nucleotide contigs that

could range in length from from 200 to 100,000 if there is a high load of a virus with a large

genome. The blastn [8] utility within the BLAST package is used to align each contig longer

than a user-defined ‘contig_threshold’ against the entire nt database of NCBI. Reference

genome and annotations are downloaded from GenBank for recurrently detected viral taxa.

The unmapped read set is then directly aligned to the viral reference with Tophat [206] in

order to produce the viral gene expression profile.

We believe there are significant advantages in throughput and accuracy to our decision to

perform contig assembly prior to BLAST. Interestingly, there are reads that neither map to

the human genome nor assemble into contigs. There are also contigs that have no BLAST hits

across all of nt, even at low alignment stringency. These orphan reads and contigs constitute

a di�cult to characterize set of sequence data, but could be an attractive target for open

reading frame (ORF) finding algorithms. Pandora does not currently contain functionality

to predict novel viruses or microbes; this may be a future direction.

Module 3 begins with the “human_expression” file generated as a consequence of host

subtraction in Module 2. The featurecounts [123] utility within the subread package is used

to quantify the read counts for each gene specified in the RefSeq coordinates. Gene expres-

sion values are normalized using transcripts per million (TPM). Our next question concerns

the relative contributions of infiltrating leukocytes into the tumor, and whether this can

be inferred from the host expression profile. We take advantage of recent flow cytometry

based sorting of di�erent leukocyte populations followed by RNAseq. The experiments per-

formed in [147] establish canonical expression profiles for 22 purified immune cell populations

(LM22), and these pure profiles can be used to infer the relative abundances of those 22 im-

mune cell types in our bulk tumor tissue. A probabilistic deconvolution method [167] is

applied to the host gene expression data in the presence of the LM22 purified profiles, from
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which we recover our estimates of the microenvironment cellular composition.

In order to validate the detection performance of Pandora, we prepare synthetic sequenc-

ing files at varying concentrations of viral reads. Many viral and microbial taxa are included

in the simulated reads, across a range of genome sizes. To simulate Illumina reads we use

ART [94] in paired-end mode with 100bp reads. The detection task will be evaluated in

precision-recall space, since it is impossible to gauge the number of true negatives (TN) and

measures like specificity rely on the TN rate. In Figure 3.2 we plot performance of Pandora

as a function of the user-defined contig threshold. This parameter a�ects the sensitivity

(recall) because it is the length of contig, below which, we do not search the nt database for

alignments. Surprisingly, we do not see a significant loss of precision as we increase recall

(corresponding to lowering the contig_threshold so that even short contigs are BLASTed).

We also plot the recall vs. the contig threshold and naturally there is a loss of sensitivity

first for the larger genomes (cellular pathogens) with fewer reads.

We next compare the detection performance of Pandora against a widely used tool,

VirusFinder [216]. Since VirusFinder only claims to detect viral pathogens we omit the

synthetic data using cellular microbes. VirusFinder relies on performing BLAST directly on

short reads after host removal, unlike Pandora’s assembly of long contigs prior to BLAST. We

split our synthetic mixture of many di�erent viral reads into species-specific samples, so that

we can compare the head-to-head performance by taxon. Both Pandora and VirusFinder

had identical recall except for two recently discovered viruses (MVC and PVS) which are

not contained within VirusFinder’s database. Pandora and VirusFinder have more divergent

results when calculating precision, and the panel of comparisons can be seen in Figure 3.3.

Within the family of herpesviridae, where there is sequence homology among HHV1-HHV8,

VirusFinder consistently calls false positive taxa. Since Pandora is attempting to align much

longer sequences against the more up-to-date nt database we su�er no decrease in precision

within a family of closely related viruses.
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Figure 3.2: Recovery of virues and microbes in synthetic data: The length of assem-
bled contig required to initiate local alignment searching is a key user-defined parameter of
Pandora. This tunable threshold control the speed with which the pipeline can run, and
necessarily impacts detection stringency. (Top) Pandora performance is plotted in PR space
for a mixed population of viral pathogens at two concentrations and similarly for a mixed
population of cellular pathogens. (Bottom) The recall (sensitivity) depends on a combina-
tion of parameters including the contig length threshold, the genomic size of the pathogen,
and the concentration of the pathogen.
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Figure 3.3: Superior precision in viral detection: Comparison between Pandora and
VirusFinder [216] on synthetic data highlights the importance of our choice to assemble tran-
scripts prior to BLAST. False positives in VirusFinder lead to decreased precision, particular
in pairs of highly similar viruses such as the herpes simplex viruses (HHV1 and HHV2) or
the HHV6 species. Many existing tools such as VirusFinder also do not maintain up-to-
date databases and we expose this with fact with two contrived cases of recently discovered
viruses – megavirus chilensis (MVC) and pandoravirus salinus (PVS).
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3.3 Applications in Burkitt Lymphoma

Burkitt lymphoma (BL) is the first human cancer to be associated with the Epstein-Barr

virus (EBV), the first tumor to exhibit a chromosomal translocation activating an oncogene

(MYC), and the first lymphoma to be associated with human immunodeficiency virus (HIV)

infection. The World Health Organization classification describes three clinical variants of

BL: endemic, sporadic, and immunodeficiency-related. These variants are similar in mor-

phology, immunophenotype, and genetics. While the sporadic variant (sBL) occurs outside

of Africa and is rarely associated with EBV infection, the endemic variant (eBL) arises

mainly in Africa and is associated with malaria endemicity and EBV infection in almost

all cases. Epidemiological studies have shown that malaria and EBV combined do not fully

explain the distribution of eBL in high risk regions [155]. Malaria and EBV are in fact

ubiquitous within the lymphoma belt of Africa, suggesting that other etiologic agents may

be involved [213]. However, it is unclear what other epidemiological factors could play a role

in the genesis of eBLs.

Three types of EBV latency have been described in EBV-related lymphomas according to

the pattern of EBV nuclear antigen (EBNA) and the latent membrane protein (LMP) expres-

sion, namely latency I, II, and III [202]. Specifically, latency I is usually associated with eBL

and it denotes a transcriptional program in which an EBV infection does not produce virions

and expresses a single protein, EBNA-1. While the latency I program has been extensively

characterized in vitro, a di�erent form of latency has been recently reported in 15% of eBL

that uses a di�erent set of promoters. Termed Wp-restricted latency [109], this program

shows a homogeneous host expression signature [108] characterized by down-regulation of

BCL-6 and up-regulation of IRF-4 and BLIMP-1. Other reports have described latency

program heterogeneity at single cell level [107] and low expression of LMP genes in a fraction

of cases [16, 148]. Heterogeneous EBV transcription profiles with LMP expression have been

recently reported in some cases of AIDS-related and sporadic BL [10], but extensive data

on endemic cases are not available yet. These studies indicate that the transcriptional EBV
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programs of primary eBL could be more complex than expected across cases and within

individuals. Therefore, the exact role of EBV has remained elusive and further investigation

is required.

The genetic hallmark of all three clinical variants of BL is the t(8;14) translocation in-

volving the juxtaposition of the immunoglobulin heavy chain locus (IGH) with the MYC

oncogene [44]. However, although transgenic mice expressing MYC under the control of

the intronic IGH enhancer (EÎ�) develop B cell lymphomas [6], successive molecular char-

acterization demonstrated that this model does not fully recapitulate the human disease.

The comparison between the gene expression profile (GEP) of BL and di�use large B-cell

lymphoma (DLBCL) highlighted a distinct signature of BL characterized by the expression

of both MYC targets and germinal-center B-cell genes [45]. Furthermore, hypermutation

and di�erent breakpoint patterns of IGH/MYC translocation [146, 30] suggests that the

origin of human BL derives from aberrant class switching in the germinal center (GC), while

transgenic IGH/MYC mice typically arise from precursor/naive B-cells. The more accurate

PI3K/MYC transgenic mouse model by Sander et al. [181] better recapitulates the human

phenotype of BL and highlights the importance of the PI3K pathway in the disease. More-

over, GEP analysis has demonstrated that the transcriptional profile of eBL is di�erent

from that observed in sBL [165]. Recent studies have unveiled the genetic landscape of

sBL characterized by mutations a�ecting the B-cell receptor (BCR) pathway and in partic-

ular the transcription factor TCF3, its negative regulator ID3, the cell-cycle G1/S regulator

CCND3 [186, 185], and the chromatin-remodeling gene ARID1A [82]. On the contrary, very

little is known about the spectrum of alterations in eBL, how it might di�er from that of

sBL, the correlations between host mutation and viral infection, and the specific viral/host

transcriptional programs.

We characterize the presence of other potential agents, to define the EBV transcriptional

profile and to link these profiles to the mutational status of new and previously reported

genes. We leverage Pandora to characterize the mutational and viral landscape of eBL
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using 20 cases from Uganda. RNA-Seq, in contrast with earlier microarray-based expression

studies, provides the opportunity to identify and associate microbial and tumor mutational

and expression profiles.

As we see in Figure 3.4, 20/20 cases of eBL are positive for EBV, 5/20 cases contain

CMV, 4/20 KSHV, and 1/20 HTLV-1. HIV is not detected in any case, confirming that

pediatric eBL is rarely associated with the immunodeficiency syndrome [144]. Nested PCR

and immunohistochemical (IHC) analysis performed on all 20 original samples confirmed

the presence of all the viruses in this discovery cohort. To assess whether RNA-Seq findings

generalize for EBV, CMV, KSHV, and HTLV-1, we assayed for the presence of these four

viruses in 20 additional cases from western Kenya by IHC. In this Kenyan cohort, EBV was

detected in 20/20 samples, CMV in 8/20 samples, KSHV in 7/20 samples, and HTLV-1 in

0/20 samples. Therefore, over the 40 cases, we report the overall viral infection frequencies

of 40/40 (100%) for EBV, 13/40 (32.5%) for CMV, 11/40 (27.5%) for KSHV, and 1/40

(2.5%) for HTLV-1. IHC analysis demonstrated the presence of CMV in the stromal cells

and macrophages localized within the tumors and in the adjacent reactive lymphoid tissue.

KSHV was identified not only in normal B-lymphocytes and endothelial cells from the ad-

jacent reactive lymphoid tissue, but also in one case in about 5â��10% of neoplastic cells.

HTLV-1 was detected in reactive T-lymphocytes in the only positive case of the discovery

cohort. We also compare the viral landscape of endemic and sporadic cases by analyzing

27 RNA-Seq sBL samples from Schmitz et al. [186] with Pandora. The analysis shows the

presence of EBV and HIV respectively in 4/27 (15%) and in 1/27 (4%) cases (Figure 3.4),

consistent with several literature sources [87].

Beyond identification of EBV presence, RNA-Seq enabled us to quantitatively analyze

the viral transcriptional program. In addition to EBER-1 and EBER-2 transcripts, ex-

pression analysis of the viral genes showed the expression of EBNA-1, a gene associated to

latency I type, in 18/20 cases (Fig 2A). We also detected either LMP-1 or LMP-2A, charac-

terizing the latency II type, in 13/20 samples (65%), and also EBNA-2 in 1/20 cases (5%).
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Figure 3.4: Associations between viral and mutational presence in BL: (A) There
is a dramatic asymmetry between viral burden in endemic vs. sporadic BL. One eBL case
had simultaenous expression of 3 viruses, namely EBV, CMV, and HTLV-1. (B) Frequency
comparison of virus presence and driver mutations between endemic and sporadic BL. For
each comparison we report the p-value associated with rejecting the null hypothesis of equal
eBL and sBL prevalences.
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Figure 3.5: Non-canonical EBV latency and lytic re-activation: Unsupervised hierar-
chical clustering of expressed EBV genes demonstrates a diversity of non-canonical latency-
associated gene expression programs with a subset of viral episome initiating lytic reactiva-
tion as indicated by expression of genes corresponding to the lytic program.
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Interestingly, 2/20 cases (10%) were characterized by the expression of EBNA-3A/B/C/LP,

together with the lytic gene BHRF-1, suggesting a Wp-restricted program [106]. However,

the specific analysis of EBV isoforms showed the presence of H2-HF splicing event, which is

hallmark of lytic BHRF-1 expression [203, 157, 122]. Unsupervised hierarchical clustering of

expressed EBV genes demonstrates two main clusters (Figure 3.5) distinguished largely by

gene products involved in EBV replication (BALF-2, BCRF-1, BHRF-1, BILF-1, BMRF-1,

BNLF-2a, BZLF-1). The expression of these genes suggests a non-canonical latency program

of the virus with a subset of viral episomes initiating lytic reactivation [106].

Due to the heterogeneity of the viral transcriptional programs, we aimed to validate the

latency type by performing RT-qPCR for the EBNA-1, LMP-1, LMP-2A, EBNA-2, EBNA-

3C, and BHRF-1 transcripts across an additional series of 26 cases from an extended cohort

of samples from Kenya. EBNA-1 was detected in 26/26 (100%), LMP-1 and LMP-2 in

respectively 5/26 (20%) and 20/26 (75%) cases, EBNA-2 in 0/26 (0%), and the combination

of EBNA-3C and BHRF-1 in 4/26 (15%). These results are largely consistent with the

RNA-Seq data with the exception of LMP-1 that has been detected at higher frequency in

RNA-Seq. Next, we evaluated the lytic cycle activation and found BILF-1, BALF-4, and

LF-2 in all 26 cases, whereas we observed the expression of BALF-2 in 23/26 (90%), BHRF-

1 in 20/26 (80%), BZLF-1 and BMRF-1 in 15/26 (60%), BNLF-2a in 13/26 (50%), and

BCRF-1 in 11/26 (45%) of the cases. RT-qPCR validation data is fully tabulated in Table

3.1.

Lastly, we wish to consider the host mutational spectrum alongside the presence/absence

of EBV infection. The distribution of somatic mutations and viral presence across both eBL

and sBL samples exhibit two interesting features (Figure 3.4). First, in eBL samples we

observed lower mutational frequencies in the genes MYC, ID3, TCF3, DDX3X, CCND3 and

TP53, as compared to their reported recurrence in sBL, and higher mutational frequencies in

ARID1A, RHOA, and CCNF [186, 185]. Second, in sBL cases an almost mutual exclusivity

can be seen between EBV presence and mutations in TCF3/ID3 both known to be driver
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Table 3.1: EBV latency type validation by RT-qPCR

Gene RNAseq RT-qPCR Primers
EBNA-1 100% 100% 5’-TACAGGACCTGGAAATGGCC-3’

5’-TCTTTGAGGTCCACTGCCG-3’
EBNA-2 5% 0% 5’-TAACCACCCAGCGCCAATC-3’

5’-GTAGGCATGATGGCGGCAG-3’
EBNA-3C 25% 30% 5’-CTGGCAAAACTTGCTCCA-3’

5’-GTGCTTCTGCCTTATCAGA-3’
LMP-1 70% 20% 5’-CAGTCAGGCAAGCCTATGA-3’

5’-CTGGTTCCGGTGGAGATGA-3’
LMP-2A 100% 75% 5’-AGCTGTAACTGTGGTTTCCATGAC-3’

5’-GCCCCCTGGCGAAGAG-3’
BZLF-1 80% 60% 5’-AAATTTAAGAGATCCTCGTGTAAAACATC-3’

5’-CGCCTCCTGTTGAAGCAGAT-3’
BHRF-1 50% 80% 5’-AGAAACACCTCTCCGCCTTT-3’

5’-ATCCACATGTTCGGTGTGTG-3’
BMRF-1 50% 60% 5’-CAACACCGCACTGGAGAG-3’

5’-GCCTGCTTCACTTTCTTGG-3’
BALF-2 80% 90% 5’-TGCACCTGCTAGAGAACTCG-3’

5’-CACAGAGTACGCGACTGAGG-3’
BALF-4 100% 100% 5’-AACCTTTGACTCGACCATCG-3’

5’-ACCTGCTCTTCGATGCACTT-3’
BILF-1 100% 100% 5’-GTCACCTTCACCGGACTCAT-3’

5’-GTAGTAGCGGGCAACGAGAG-3’
LF-2 85% 100% 5’-CTGACCAGGACATCGTGCTA-3’

5’-GGGGTTCTTGACCAATCTGA-3’
BCRF-1 60% 45%
BNLF-2A 65% 50%

genes in sBL (p-value < 0.02, Fisher exact test). To explore this hypothesis, we performed a

hierarchical clustering of both endemic and sporadic cases on TCF3 target genes (previously

reported in [186]) and we demonstrate that the first bifurcation of the dendrogram classifies

the samples into EBV-positive and EBV-negative BL independently on the specific subtype

with an accuracy of 96% (45/47). This result (Figure 3.6) shows that the TCF3 pathway is

more activated in EBV-negative cases, as indicated by the significant negative enrichment of

TCF3 target genes in EBV-positive samples. Furthermore, we observe that when considering

the overall panel of both endemic and sporadic BL samples, the mutually exclusivity between
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Figure 3.6: Inverse correlation between EBV and TCF3/ID3 mutations: The den-
drogram classifies the samples into EBV-positive and EBV-negative BL independently of the
specific subtype with an accuracy of 96% (45/47). The gene set used in this clustering comes
from [186] and corresponds to genes upregulated in the presence of driver TCF3 mutations.

TCF3/ID3 mutations and EBV infection yields a more significant e�ect (p-value < 0.0008,

Fisher exact test).

3.4 Applications in Peripheral T-cell Lymphoma

Peripheral T-cell lymphoma (PTCL) is a heterogeneous set of aggressive non-Hodgkin lym-

phomas. In order of decreasing prevalence, the four most common histologic subtypes are:

peripheral T-cell lymphoma not-otherwise-specified (NOS), anaplastic large cell lymphoma

(ALCL), angioimmunoblastic T-cell lymphoma (AITL), and extranodal NK / T cell lym-

phoma (NK). We collect 191 RNA-seq samples from recent studies in PTCL cases spanning

these four histologic subtypes. Our case set includes 72 ALCL [41, 5] (37 unpublished),

60 AITL [160, 228, 5], 42 NOS [160, 5], and 17 NKTCL [118]. We run the three Pandora
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Modules in series to characterize the tumor genetics, the viral landscape, and the tumor

microenvironment.

We begin with Module 1, in which we quantify the landscape of genomic alterations in

the 191 cases. We are primarily interested in establishing the set of highly recurrent point

mutations, small indels, and gene fusions across the 4 histologic substypes of the disease.

The full genomic landscape is portrayed in Figure 3.7. In this panel we observe many of

the genomic hallmarks of PTCL: the mutation cluster associated to AITL (RHOA, TET2.

IDH2, CD28, FYN) [160, 5], the ALK+ fusion cluster in ALCL [41] and the ALK- mutation

cluster (PRDM1, TP53, STAT3, JAK1) [41]. The VAV1 fusions discussed at the end of the

last chapter can be seen in NOS and AITL subtypes. The NK subtype shows no significant

enrichment of a driver mutation. The NOS subtype appears to have some subpopulation

that looks similar in genetics to the AITL. The RNA editing events are not included in

Figure 3.7, however we point out a well-known A to I editing event in Figure 3.8. NEIL1 is a

gene involved in DNA repair and the A to I editing introduces a protein changing mutation

in the protein that changes its lesion specificty [227]. The appears to be a mild statistical

association between the levels of NEIL1 editing and outcomes in our cohort.

Running Module 2 of Pandora provides the identities and expression profiles of any viruses

infecting the tumor samples. Surprisingly we detect 4 members of the human herpresviridae,

and in Figure 3.9 we observe the levels of viral expression observed for the HHV4 (EBV),

HHV5 (CMV), HHV6b, and HHV8 (KSHV). EBV is known to associate with the AITL

and NK subtypes of PTCL, which is confirmed by Pandora’s results. Viral expression is

quantified in viral reads per million human reads (VRPMHR). We proceed to plot the gene

expression profiles for each human herpesvirus indepedently, to facilitate the comparison of

latency or lytic activation between samples. HHV4 (EBV) is plotted in Figure 3.10. The

EBV expression profile shows heterogeneous expression patterns across the samples, though

there is a discernible cluster for the NK cases and an overall enrichment of AITL and NK

cases in the region with higher EBV expression. HHV5 (CMV) is plotted in Figure 3.11.
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Figure 3.8: A to I editing of host RNA: Neil1 is a DNA repair protein that that sustains
an amino acid substitution as a result of A to I editing. (Left) We highlight in red the range
of editing frequences in which a high/low division could be made to preserve the statistical
separation of survival curves at a p-value of 0.05. (Right) Kaplan-Meier curve describing the
stratification of the PTCL cases on high/low editing frequency of NEIL1 transcripts.

HHV6b is plotted in Figure 3.12. HHV48 (KSHV) is plotted in Figure 3.13.

Running Module 3 of Pandora provides the immune cell-type abundances comprising

the tumor microenvironment. The majority of the 22 cell-types we can measure (from

LM22 [147]) do not have any presence in the PTCL tumors, however we highlight the 8

cell-types for which at least one PTCL subtype showed nonzero abundance (Figure 3.14).

The AITL and NOS subtypes tend to track together in every cell-type. There is also a strong

signature of macrophages (M1 polarization > M2), and it is generally believed that the M1

polarization is involved in modulating innate immunity [128] and responding to pathogens.

The M2 polarization is associated with tissue repair and tumor progression [128]. In general

there is data [153] to suggest that higher levels of infiltrating macrophages imply worse

prognosis. We see certain positive controls as well. First, the NK subtype appears enriched

for NK cells and gamma/delta T-cells, which is correct since those are the cells of origin.

Similarly, AITL is believed to originate from Th follicular cells [47] and indeed they are

enriched in the AITL subtype. In Figure 3.15 we correlate the viral load of EBV with three

di�erent host cell-type abundances. It is clear that in the case of the NK subtype, the EBV

infection is in the cell of origin. The positive correlation between EBV presence and NK
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Figure 3.14: Immune cell fractions in the microenvironment: Of the 22 immune cell
types characterized in the LM22 matrix [147], these 8 have some nonzero representation
across the PTCL cohort. We observe good agreement between AITL and NOS subtypes,
and we note the strong presence of macrophages (M1 polarization > M2).

cell abundance likely points to the virus playing a direct role in this malignancy as a clonal

alteration. The lack of correlation between EBV and Th follicular cells indicates that EBV

is likely not clonal in this subtype of PTCL, and is therefore an indirect factor. Further

confirmation of EBV’s microenvironmental role, as opposed to clonal role, in AITL comes

from the positive correlation between viral load and infiltrating B cells (Figure 3.15).

3.5 Conclusions

Tumor associated viruses have a long history in illuminating oncogene and tumor suppressor

biology. Viruses can have many roles with respect to a tumor’s growth They can be a

clonal infection that drives the disease or they can be a microenvironmental factor residing

in non-malignant cells. We presented Pandora, a suite of modules for the simultaneous

characterization of viral expression and host tumor genetics and cell composition. EBV

was studied first in Burkitt lymphoma where the infection is clonal and the virus has an
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Figure 3.15: Cellular host of EBV across subtypes: Specific examination of the AITL
and NK subtypes, which are most associated with EBV infection. The associations between
viral load and cell-type fraction demonstrate a fundamental di�erence between the role of
EBV in these two subtypes. We claim that EBV is infecting B-cells in AITL, and therefore
is a micorenvironmetal factor, while in NK the virus is clearly infecting the malignant clone
itself.

inverse correlation with TCF3/ID3 mutations. Then EBV was studied in peripheral T-cell

lymphoma, where the infection can be either clonal (NK) or microenvironmental (AITL).
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Part II

Longitudinal View of Clonal

Evolution in Tree Spaces
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Chapter 4

Tree-Like Evolution and

Representations of Phylogeny

The previous two chapters focused a great deal on characterizing the heterogeneous

landscapes of genomic alterations in cancer. We used cross-sectional sequencing data to

recover specific gene fusions, point mutations, and viral infections in tumors and saw a high

degree of recurrence for many of the alterations. A natural next question is how to track a

genomic landscape through time, given sequencing data at multiple time points along the

clonal process. To answer this question we will rely heavily on objects called phylogenetic

trees. This chapter will begin with an overview of basic evolutionary theory and discuss

common approaches to phylogenetic inference. After establishing the phylogenetic tree as

a computable and natural representation of a clonal process, the question arises of how

to represent large collections of trees. We pay considerable attention to a construction by

Billera, Holmes, and Vogtmann (BHV) [19] wherein trees are mapped to points and an

e�cient algorithm for calculating shortest paths exists. Our own contribution begins with a

definition of projective BHV space, an idea that is well-suited to the analysis of heterogeneous

Material presented in this chapter is published, wholly or in part, in: [233, 234] in collaboration with
H. Khiabanian, A.J. Blumberg, R. Rabadan; and will be published in the manuscript “Phylogenetic dimen-
sionality reduction” (in preparation) in collaboration with H. Khiabanian, A.J. Blumberg, R. Rabadan
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genomic data sets in practice. By understanding the projective tree space as a join of simpler

spaces we show an explicit visualization scheme for point clouds of trees on three, four, or five

leaves. We next survey approaches for statistical summarization of point clouds in tree space.

Finally, we end with a discussion of a structured tree dimesnionality reduction approach for

mapping large phylogenies to distributions of smaller trees more amenable to visualization

and statistical analysis.

4.1 Evolutionary Theory and Phylogenetic Inference

4.1.1 Tree-like evolution

Evolutionary theory was placed on a mathematical footing by the 1930’s with the work of

Ronald Fisher and Sewall Wright. Two classical approaches to simulating an evolving popu-

lation forward in time are the Moran process [137] and the Wright-Fisher [224, 68] process.

Both are instances of birth-death processes and both make the simplifying assumptions of

a well mixed population, a constant population size, and no genetic recombination. The

absence of recombination is perfectly appropriate for our current studies in clonal evolution,

while the biological validity of the first two assumptions may be questioned in the settings

of tumor growth or viral infection. The Moran process is a forward-time Markov process in

which, at each step, a single genome in the population is chosen to reproduce (selected ran-

domly in proportion to its fitness) and another genome is chosen to be eliminated (selected

at random uniformly). The Wright-Fisher process is similar except that at each time step

the entire population is replaced by randomly drawing from the previous generation in pro-

portion to fitness of genotypes. The Wright-Fisher process is equivalent to N generations of

the Moran process, where N is the fixed size of the population [15]. When there is no fitness

advantage to either wildtype or mutant genotype, both of these processes simulate neutral

evolution [15, 112]. There is value in forward-time simulations if one is interested in longitu-

dinal sampling of evolution, since the entire population of genomes is tracked in memory and
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simulations can be stopped, restarted, forked, etc. The tradeo�, however, in comparison to

reverse-time simulations such as Kingman’s coalescent [113], is that forward-time simulation

requires more computational resources. A recent and quite promising simulation package

for forward-time modeling of diallelic loci under many user-controlled evolutionary parame-

ters (mutation rate, selection strength, number of driver genomic sites, number of passenger

genomic sites, epistatic interactions, etc.) is OncoSimulR [50]. This package simulates both

fixed-size and exponential growth populations, and can capture the positive fitness e�ects

of driver mutations as well as the deleterious fitness e�ects of passenger mutations [133].

Though it may be obvious to the reader, genotypes sampled from these sorts of clonal

simulations must fit a phylogenetic tree exactly. The transition rules for the simulations

are specified in terms of parent–child relationships, meaning that any mutational profiles

observed at termination of the simulation must obey a tree-like distance metric. On this

point, we briefly review the conditions for additivity of a metric and also ultametricity. A

dissimilarity measure d(·, ·) can be called a distance metric if it satisfies the properties that

(i) d(x, x) = 0, (ii) d(x, y) Ø 0, (iii) d(x, y) = d(y, x), and (iv) d(x, z) Æ d(x, y) + d(y, z).

A distance constitutes an additive metric if it satisfies Buneman’s four point condition [25],

which is illustrated in Figure 4.1. A distance matrix fits a tree if, for every quartent of 4

observations, the pairwise distances satisfy dik + dkl Æ dik + djl = dil + djk under one of the

three possible labelings {i, j, k, l}. A distance matrix fits an ultrametric tree if the condition

is made more stringent to dik + dkl Æ max(dik + djl, dil + djk).

4.1.2 Inferring phylogeny

Phylogeny is the study and inference of ancestral relationships between observed organisms.

The field predates the molecular biology revolution and early phylogenetic trees were con-

structed on the basis of phenotypic traits rather than genetic data. Today phylogenetic trees

are inferred from aligned sequences. The simplest distance metric is the Hamming distance,

which counts the number (or percentage) of discordant positions between a pair of sequences.
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Figure 4.1: Four point condition for additive metrics: There are three distinct ways
to partition 4 vertices into sets of two unordered pairs. Let the unordered pairs stand for
the graph distance between their vertices, and suppose a set of two unordered pairs denotes
the addition of the pairwise vertex distances. Buneman first noted [25] that a graph is tree
≈∆ two of the three pairwise distance sums are equal and they are at least as large as the
third pairwise distance sum.

Evolutionary distances, rather than just edit distances on a string, come from considering

DNA substitution models which parametrize the rates of transition between nucleotides.

The earliest substitution model came from Jukes and Cantor [103], using a single mutation

rate parameter µ and equal transition rates for all letters. In 1980 Kimura published a two

parameter model [111] that discriminated between the rate of transition and transversion,

and more highly parametrized models have been developed since. Regardless of the choice

of evolutionary distance metric, sequence data rarely adhere to strict additivity. Deviations

from a tree-like distance matrix can arise from back mutations at the same position, from

horizontal (non-clonal) evolutionary events, or something as mundane as technical error in

measurement. We do not consider biological systems undergoing horizontal evolution in this

work, but measurement error and repeated mutation at the same position (especially for

shorter RNA genomes) are relevant sources of noise.

A schematic of a clonally evolving population is given in Figure 4.2, along with a depiction

of tree-like amplification of genomes. In the Figure we illustrate the construction of a

phylogenetic tree on longitudinal sampling of the evolving population. A phylogenetic tree
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Time 1 Time 2 Time 3 Time 4 Time 5

Figure 4.2: Clonal evolution of an asexually reproducing genome: (Left) Through
acquisition of mutations, the primordial clone gives rise to a large heterogeneous population,
whose evolutionary history can be accurately described by a tree. (Right) Longitudinal sam-
pling of a clonal population permits the construction of phylogenetic trees that approximate
the underlying history. Subpopulations are represented in di�erent colors; random sampling
of a particular genotype at each time point is illustrated in the color of the external branch
in the tree. This tree is one of many that could be observed when sampling this population.

with m leaves is a weighted, connected graph with no cycles, having m distinguished vertices

(referred to as leaves) of degree 1 and labeled {1, . . . , m}. All the other vertices are of

degree Ø 3. We refer to edges that terminate in leaves as external edges and the remaining

edges are internal. Phylogenetic trees must be inferred from aligned sequence data, and

there are many competing approached to tree building. The character-based methods that

explicitly optimize a criterion of fit include maximum parsimony and maximum likelihood.

The distance-based methods are clustering algorithms that do not explicitly pose the search

for the best fit tree as an optimization of a particular quantity. The two most prominent

distance methods are Unweighted Pair Group with Arithmetic Mean (UPGMA) and the

neighbor joining method of Saitou and Nei [180]. UPGMA makes the strong assumption that

the data obey a molecular clock, or equivalently that the distance matrix is ultrametric. The

phylogenetic trees inferred in this thesis use the neighbor joining method, as it is guaranteed

to recover the correct tree if one exists and is computationally quite e�cient.
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4.2 Geometric Representations of Phylogenetic Trees

Comparison between trees requires a definition of distance, and many competing tree dis-

tances can be found in the literature. The Robinson-Foulds metric [177] computes the

symmetric di�erence between the partitions defined be each tree’s internal edges. Nearest

neighbor interchange considers the swapping of vertices in 4-leaf subtrees and is the simplest

instance of a rearrangement procedure for quantifying dissimilarity between trees [63]. More

complex tree arrangement procedures exist such as subtree prune and regrafting, or tree bi-

section and reconnection, but will not be described here. A general theme shared by many of

these tree distance is that they prioritize tree topology and do not account for edge lengths.

In the setting of phylogenetic trees the edge lengths have an important interpretation, as

the degree of evolutionary divergence between samples. We therefore seek a distance metric

and an associated space of trees that captures di�erences in both the connectivity as well as

edge lengths between phylogenies.

The foundation of our framework for analysis is the metric geometry of the space of

phylogenetic trees [19]. The purpose of this section is to review in detail the spaces of

phylogenetic trees that we work with and their geometric structure. We begin with a rapid

review of the geometry of geodesic metric spaces and the theory of cubical complexes. We

then review the definition and properties of the Billera-Holmes-Vogtmann metric space of

phylogenetic trees and its metric geometry, following the the excellent original treatment.

Finally, we discuss the properties of projective versions of tree spaces which are relevant for

some of the biological applications.

4.2.1 A rapid review of metric geometry

In this subsection we quickly explain the foundations of metric geometry. See [23, 26] for

comprehensive textbooks on the subject. A metric space (X, d) is a set X equipped with a

distance function d : X ◊ X æ RØ0 having the properties that d(x, y) = d(y, x), d(x, y) = 0
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if and only if x = y, and d(x, z) Æ d(x, y)+d(y, z) for all x, y, z œ X (the triangle inequality).

Although metric spaces often arise in contexts in which there is not an evident notion of

geometric structure, it turns out that under very mild hypotheses a metric space (X, d) can

be endowed with structures analogous to those arising on Riemannian manifolds. A metric

space is a length space if the distance d(x, y) is realized as the infimum of the lengths of

paths joining x and y. A length space (X, d) is a geodesic metric space if any two points x

and y can be joined by a path with length precisely d(x, y). A key insight of Alexandrov is

that curvature makes sense in any geodesic metric space [7].

The idea is that the curvature of a space can be detected by considering the behavior of

the area of triangles, and triangles can be defined in any geodesic metric spaces. Specifically,

given points p, q, r, we have the triangle T = [p, q, r] with edges the paths that realize the

distances d(p, q), d(p, r), and d(q, r). The connection between curvature and area of triangles

comes from the observation that given side lengths (¸1, ¸2, ¸3) µ R3, a triangle with these

side lengths on the surface of the Earth is “fatter” than the corresponding triangle on a

Euclidean plane. To be precise, we consider the distance from a vertex of the triangle to a

point p on the opposite side — in a fat triangle, this distance will be larger than in the the

corresponding Euclidean triangle (and smaller in a thin triangle).

Given a triangle T = [p, q, r] in (X, d), we can find a corresponding triangle T̃ in Euclidean

space with the same edge lengths. Given a point z on the edge [p, q], a comparison point in T̃

is a point z̃ on the corresponding edge [p̃, q̃] such that dE(z̃, p̃) = d(z, p) and dE(z̃, q̃) = d(z, q).

(Where here dE denotes the Euclidean metric.) We say that a triangle T in M satisfies the

CAT(0) inequality if for every such pair (z, z̃), we have d(r, z) Æ dE(r̃, z̃). If every triangle

in M satisfies the CAT(0) inequality then we say that M is a CAT(0) space.

More generally, let MŸ denote the unique two-dimensional Riemannian manifold with

curvature Ÿ. The diameter of MŸ will be denoted DŸ. Then we say that a geodesic metric

space M is CAT(Ÿ) if every triangle in M with perimeter Æ 2DŸ satisfies the inequality

above for the corresponding comparison triangle in MŸ. If ŸÕ Æ Ÿ, any CAT (ŸÕ) space is also

71



CAT(Ÿ). A n-dimensional Riemannian manifold M that is su�ciently smooth has sectional

curvature Æ Ÿ if and only if M (regarded as a metric space) is CAT(Ÿ). For example,

Euclidean spaces are CAT(0), spheres are CAT(1), and hyperbolic spaces are CAT(≠1).

As described, CAT(Ÿ) is a global condition; we will say that a metric space (X, d) is

locally CAT(Ÿ) if for every x there exists a radius rx such that Br
x

(x) ™ X is CAT(Ÿ).

For example, the flat torus (obtained by identifying opposite edges in a rectangle) is locally

CAT(0) but not globally CAT(0). The Cartan-Hadamard theorem implies that a simply-

connected metric space that is locally CAT(0) is also globally CAT(0).

A remarkably productive observation of Gromov is that many geometric properties of

Riemannian manifolds are shared by CAT(Ÿ) spaces. In particular, CAT(Ÿ) spaces with

Ÿ Æ 0 (referred to as non-positively curved metric spaces) admit unique geodesics joining

each pair of points x and y, balls B‘(x) are convex and contractible for all x and ‘ Ø 0, and

midpoints of geodesics are well-behaved. As a consequence, there exist well-defined notions

of mean and variance of a set of points, and more generally one can develop some of the

foundations of classical statistics, as we review below in Section 4.4.

4.2.2 Cubical complexes and their links

In this subsection, we review the theory of cubical complexes, which provide a rich source of

examples of CAT(0) metric spaces (again, see [26] or [23] for textbook treatments). It is in

general very di�cult to determine for an arbitrary metric space whether it is CAT(Ÿ) for any

given Ÿ. Even for finite polyhedra where the metric is induced from the Euclidean metric on

each face, this problem does not have a general solution. The important of cubical complexes

in this context comes from an e�ective criterion for determining if they are non-positively

curved (i.e., CAT(0)).

Let In ™ Rn denote the n-dimensional unit cube [0, 1]◊ . . .◊ [0, 1], regarded as inheriting

a metric structure from the standard metric on Rn. A codimension k face of the cube In

is determined by fixing k coordinates to be in the set {0, 1}. A cubical complex is a metric
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space obtained by gluing together cubes via the data of isometries of faces, subject to the

condition that two cubes are connected by at most a single face identification and no cube is

glued to itself. The metric structure is the length metric induced from the Euclidean metric

on the cubes, i.e., the distance between x and y is the infimum of the lengths over all paths

from x to y that can be expressed as the union of finitely many segments each contained

within a cube. When the cubical complex C is finite or locally finite, results of Bridson [22]

and Moussong [140] imply that C is a complete geodesic metric space.

Gromov gave a criterion for a cubical complex to be CAT(0) that is often possible to

check in practice. In order to explain this criterion, we need to review the notion of the link

of a vertex in a cubical complex.

Fix a vertex v in a cubical complex C and a cube Ci
≥= Im ™ C such that v is a vertex

of Ci. For fixed ‘ > 0, the all-right spherical simplex associated to (Ci, v) is the subset

S(Ci, v) = {z œ Ci | d(z, v) = ‘}.

The set S(Ci, v) has a metric induced by the Euclidean angle metric. The faces of S(Ci, v) are

defined as the intersections of S(Ci, v) with faces of Ci; equivalently, these are the all-right

spherical simplexes associated to faces of Ci. The collection of all-right spherical simplices for

all pairs (Ci, v) forms a polyhedral complex with metric given by the length metric induced

from the angle metrics; this is referred to as a spherical complex. Forgetting the metric

structure, the all-right spherical simplices also form an abstract simplicial complex. (Recall

that an abstract simplicial complex is simply a set of subsets of a set V that is closed under

passage to subsets.)

The link of a vertex v in a cubical complex C is the spherical complex obtained as the

subset

L(v) = {z œ C | d(z, v) = ‘},

for fixed 0 < ‘ < 1. Gromov’s criterion now states that the cubical complex C is locally

CAT(0) if and only if the link is CAT(1) or the abstract simplicial complex underlying the
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link is flag. (Recall that a flag complex is a simplicial complex in which a k-simplex is in

the complex if and only its 1-dimensional faces are in the complex.)

As an easy application of Gromov’s criterion, we conclude the section by showing the

standard result that the Cartesian product of locally CAT(0) cubical complexes is itself a

locally CAT(0) cubical complex. Let X and Y be cubical complexes that are CAT(0). Since

In ◊ Im ≥= In+m, it is clear that X ◊ Y has the structure of a cubical complex. The set of

vertices of X ◊ Y is given by the product of the sets of vertices of X and Y respectively.

The link of a vertex (v, vÕ) in X ◊ Y , regarded as an abstract simplicial complex, is the join

of L(v) and L(vÕ), which we denote L(v) ú L(vÕ) (the join of complexes S1 and S2 is obtained

by considering all pairwise unions of elements of S1 and S2). Finally, since the join of flag

complexes is easily seen to be a flag complex, Gromov’s criterion now implies that X ◊ Y is

locally CAT(0).

4.2.3 The BHV spaces of phylogenetic trees

The space BHVm of isometry classes of rooted phylogenetic trees with m-labelled leaves

where the nonzero weights are on the internal branches was introduced and studied by

Billera, Holmes, and Vogtmann [19]. The space BHVm is constructed by gluing together

(2m≠3)!! positive orthants Rm
Ø0; each orthant corresponds to a particular tree topology, with

the coordinates specifying the lengths of the edges. A point in the interior of an orthant

represents a binary tree; if any of the coordinates are 0, the tree is obtained from a binary

tree by collapsing some of the edges. We glue orthants together such that a (non-binary)

tree is on the boundary between two orthants when it can be obtained by collapsing edges

from either tree geometry. Put another way, two tree topologies are adjacent when they are

connected by a rotation, i.e., one topology can be generated from the other by collapsing an

edge to length 0 and then expanding out another edge from the incident vertex.

The metric on BHVm is induced from the standard Euclidean distance on each of the

orthants. For two trees t1 and t2 which are both in a given orthant, the distance dBHV
m

(t1, t2)
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is defined to be the Euclidean distance between the points specified by the weights on the

edges. For two trees which are in di�erent quadrants, there exist (many) paths connecting

them which consist of a finite number of straight lines in each quadrant. The length of such

a path is the sum of the lengths of these lines, and the distance dBHV
m

(t1, t2) is then the

minimum length over all such paths. For many points, the shortest path goes through the

“cone point”, the star tree in which all internal edges are zero.

Allowing potentially nonzero weights for the m external leaves corresponds to taking the

cartesian product with an m-dimensional orthant. We will focus on the space

�m = BHVm≠1 ◊ Rm
Ø0,

which we refer as the evolutionary moduli space (the m ≠ 1 index arises from the fact that

we consider unrooted trees.) There is a metric on �m induced from the metric on BHVm≠1.

Specifically, for a tree t, let t(i) denote the length of the external edge associated to the

vertex i. Then

d�
m

(t1, t2) =
ı̂ıÙ

1
dBHV

m≠1(t̄1, t̄2)
22

+
mÿ

i=1
(t1(i) ≠ t2(i))2,

where t̄i denotes the tree in BHVm≠1 obtained by forgetting the lengths of the external

edges (e.g., see [158]). As explained in [19, §4.2], e�ciently computing the metric on �m is

a nontrivial problem, although there exists a polynomial-time algorithm [158].

The main result of Billera, Holmes, and Vogtmann is that the length metric on BHVn

endows this space with a (global) CAT(0) structure (Figure 4.3. By subdividing each orthant

into cubes in the evident fashion, �m is naturally a cubical complex where the metric we

have described is the one induced from the Euclidean metric on the cubes; a straightforward

combinatorial analysis of the link of �m implies the result via Gromov’s criterion. In addition,

�m is clearly a complete and separable metric space; any tree can be approximated by a

sequence of trees in the same orthant that have rational edge lengths.
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Figure 4.3: BHV orthants and the CAT(0) condition: (Top) BHV space is constructed
by appropriate gluing of Euclidean orthants along codimension 1 boundaries. The gluing
respects the rotational distances between pairwise tree topologies. All orthants meet at a
single point, the origin. A shortest path between trees in di�erent orthants that goes through
the origin is termed a “cone path,” and we see illustrated that geodesics may or not be cone.
(Bottom) A useful aspect of BHV space is the CAT(0) property which globally guarantees
that any triangle formed will be at least as thin as the analogous Euclidean triangle. Images
reproduced with permission from [19].
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Figure 4.4: Moduli space of phylogenetic trees describing clonal evolution: Col-
lections of trees are points in a metric space, forming a point cloud. Trees with the same
topology live in the same orthant, and crossing into an adjacent orthant corresponds to a
tree rotation. Points closer to the vertex of the cone have relatively little internal branch
length, while points near the base of the cone have little weight in the external branches.

4.3 Projective BHV Space

In evolutionary applications, we are often interested in classifying and comparing distinct

behaviors by understanding the relative lengths of edges: rescaling edge lengths should not

change the relationship between the branches [233]. Motivated by this consideration, we

define P�m to be the subspace of �m consisting of the points {ti} in each orthant for which

the constraint q
i ti = 1 holds.

We denote the space of trees with internal edges of fixed length by ·m≠1. The space of m

external branches whose lengths sum to 1 is the standard m ≠ 1 dimensional simplex �m≠1

in Rm. The constraint that the length of internal branches plus the external branches sum

to 1 implies that

P�m = ·m≠1 ı �m≠1,

where here ı denotes the join of two spaces, using the Milnor model of the join. We can also
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describe P�m as the link on the origin in �m.

There are various possible natural metrics to consider on P�m. The simplest way to

endow P�m with a metric is to use the induced intrinsic metric specified by paths in �m

constrained to lie entirely within P�m. From the perspective of metric geometry, the char-

acterization of P�m as the link of the origin endows it with a “spherical” metric, and Gro-

mov’s criteria imply that with this metric, P�m is a CAT(1) space. (Alternatively, P�m is

the spherical join of ·m≠1 and the spherical realization of the �m≠1; since ·m≠1 and �m≠1

are CAT(1), so is their spherical join [23, p. II.3.15].) The theory of polyhedral complexes

implies that in either case P�m is a complete geodesic metric space [23, p. I.7.19], and it is

evidently separable.

Moreover, with the induced intrinsic metric P�m is in fact a CAT(0) space; although

·m≠1 has points which are not connected by unique geodesics (see Section 4.3.1 below for a

more detailed discussion), the join with �m introduces a new “cone direction” that changes

the geometry.

Theorem 4.3.1. The projective moduli space P�m endowed with the intrinsic metric is a

CAT(0) space.

Proof. First, recall that, for any k Ø 0, ·m≠1 ı �k is isomorphic to

·m≠1 ı �0 ı �0 . . . ı �0¸ ˚˙ ˝
k+1

.

To see this, observe that a point in the join of ·m≠1 ı �k≠1 with �0 can be described as a

tuple

((wt0, . . . , wtn), (wx0, . . . , wxk≠1), 1 ≠ w) ,

where qn
i=0 ti + qk≠1

i=0 xi = 1 and w œ [0, 1]. This data is clearly equivalent to a tuple

((t0, . . . , tn), (x0, . . . , xk≠1, xk))

where qn
i=0 ti + qk

i=0 xi = 1.
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The fact that BHVm≠1 is CAT(0) implies that the cone ·m≠1 ı �0 is CAT(0), and from

this it follows by induction that ·m≠1 ı �m≠1 is also CAT(0).

To compute the intrinsic metric on P�m, we use ‘-nets and a local-to-global construction.

Recall that a set of points S in a metric space (X, ˆ) is an ‘-net if for every z œ X, there

exists q œ S such that ˆ(z, x) < ‘. For a compact metric space equipped with a probability

measure such that all non-empty balls in the metric space have nonzero measure, we can

produce an ‘-net by sampling. More precisely, it is straightforward to show that given a

finite collection of measurable sets {A1, A2, . . . , Ak} and a probability measure µ on fiiAi

such that µ(Ai) Ø – > 0, then given at least

1
–

3
log k + log(1

”
)
4

samples, with probability 1 ≠ ” there is at least one sample in every Ai [149, p. 5.1].

Next, suppose that we have a metric space (X, ˆ) where there exists a constant Ÿ such

that if ˆ(x, y) < Ÿ, it is easy to compute ˆ(x, y). An algorithm for approximating ˆ on all

of X is then to take a dense sample S µ X, form the graph G with vertices the points of S

and edges between x and y when ˆ(x, y) < Ÿ, and define the distance between x and y in X

to be the graph metric on G between the nearest points to x and y in S. This distance can

be e�ciently computed using Dijkstra’s algorithm [51].

When S is an ‘-net for su�ciently small ‘ relative to Ÿ, we can describe the quality of

the resulting approximation to ˆ [18, Thm. 2]. In particular, if ‘ < Ÿ
4 , then

ˆ(x, y) Æ ˆG(x, y) Æ (1 + 4”

‘
)ˆ(x, y).

Putting this all together, to approximate the metric on P�m we take the union of ‘-nets

on all of the simplices (including the faces) and form a Ÿ-approximation ˆG as above. In

practice, the required density of samples is determined by looking at when the approxima-

tion converges (i.e., when the change in distances drops below a specified precision bound).

We sample densely on each simplex representing a tree topology on m leaves, and explicitly
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Figure 4.5: Discrete approximation of P�m, projective BHV space: Unit norm phy-
logenetic trees on m leaves are densely sampled and used as vertices in a graph weighted by
pairwise BHV distances. All edges above a threshold distance are removed, with the thresh-
old determined as the smallest value that maintains a single connected component. We call
this graph the ‘-net. The projective distance is then defined as the graph distance along the
‘-net, and we visualize a force directed layout of the graph. On the left we represent P�4,
and on the right P�5. The case of four leaves is more easily appreciated as a join space, as
described earlier.

include certain key singular points of the projective space. Figure 4.5 contains two visu-

alizations of the projective space, using force-directed layouts of the ‘-nets constructed on

4–leaved and 5–leaved trees respectively.

Our definition of P�m = ·m≠1 ı �m≠1 as a join space implies an intuitive visualization

scheme for point clouds of rescaled trees. The topological join of two spaces X, Y will

produce a space of dimension dim X + dim Y + 1, since it is defined as X ◊ Y ◊ I/ ≥, the

direct product of the two input spaces and the unit interval I quotienting by an equivalence

relation. Specifically, the equivalence is (x, y1, 0) ≥ (x, y2, 0) ’x œ X ’y1, y2 œ Y and

(x1, y, 1) ≥ (x2, y, 1) ’x1, x2 œ X ’y œ Y . We can therefore visualize P�m as a pair

of plots in which each phylogenetic tree is represented as a point in the internal-branch

specifying plot and a point in the external-branch specifying plot. The external branches of

a rescaled 4-tree can be plotted as a point in tetrahedron, while a rescaled 5-tree requires

two tetrahedral shadows of pentachoron. The internal branches of a rescaled tree can be
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plotted on a Boardman space augmented with the unit-length ‘radial’ coordinate of the join.

For 4-trees this corresponds to three unit-length line segmenting meeting at a shared origin,

while for 5-trees this corresponds to fifteen planes, arranged on a Petersen graph, meeting

at a share origin. The height of trees o� the Petersen graph, in the radial coordinate, can

be easily encoded by the size of points plotted. We add more schematic diagrams of this

visualization strategy in the following chapter before applying it to genomic data sets.

4.3.1 The size of P�m

We now describe the size of P�m (see also [19, p. 3.3] for a related discussion). For simplicity,

we will focus on the link in BHVn, which we will denote by Pn, and temporarily ignore

the join with the simplex coming from the external edge lengths. Observe that adjacent

top-dimensional simplices in Pn di�er by a rotation of tree topologies, where a rotation

collapses an internal edge and then expands out from the resulting node. Next, recall that

the homotopy type of Pn is a wedge of (n ≠ 1)! spheres of dimension (n ≠ 3) [176] (and see

also [49, Thm. 6]). Moreover, we can explicitly describe these spheres, as follows.

As discussed in [49, Prop. 1] and [19, §3.1], the boundary of the dual polytope to the

standard associahedron on n letters (parametrizing parenthesizations of n terms) embeds in

many di�erent ways into Pn. Following [49], let us denote this boundary by Kn. Explicitly

Kn is a simplicial sphere of dimension (n ≠ 3) where a k-simplex corresponds to a planar

rooted tree with n leaves and k + 1 internal edges. Then the homotopy type of Pn can be

described in terms of various embedded copies of Kn. As a consequence, to understand the

size of Pn, we need to compute the diameter of Kn.

For convenience, we describe this diameter in terms of counts of simplices; the actual

value can then be obtained by multiplying by the diameter of a simplex. In this guise,

the problem is an old one which can be described in many di�erent forms, perhaps most

relevantly as the computation of maximal rotation distances between binary trees.

The main result here is that, for unrooted trees on n leaves, the diameter of Kn is
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2n ≠ 8 for n > 11 [166]; this bound was established asymptotically (for su�ciently large but

indeterminate n) in [192]. For smaller values, we have the following table (taken from [192,

§2.3]) of explicit values:

Table 4.1: Diameters for Kn for small values of n

4 5 6 7 8 9 10 11
2 4 5 7 9 11 12 15

Warning 4.3.2. The results given in [166] and [192] di�er slightly from the formula above

and from each other due to divergent choices of indexing convention.

More generally, the maximum rotation distance between labelled trees on n leaves is

O(n log n) [193]. Of course, the cone point associated to the join with standard simplex

means that the size is considerably smaller.

4.4 Statistics in Tree Space

Our motivation for using the metric geometry of �m and P�m comes from the problems of

describing and comparing collections of trees generated from experimental data. Regarding

such collections as samples from distributions on the evolutionary moduli spaces, we are in-

terested in basic statistical inference — estimating parameters describing these distributions

and determining if two samples came from the same or di�erent distributions. More gener-

ally, we would like to understand the kinds of distributions that can arise in evolutionary

moduli spaces. We are also interested in clustering and classification (i.e., unsupervised and

supervised learning) problems in this context. Given a set of unlabeled samples, we want to

infer clusters of points that have similar clinical outcomes. Given a set of labeled samples,

we want to produce classifiers that can assign labels to new points in order to predict clinical

outcomes. In this section, we will review available tools for these kinds of problems.
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4.4.1 Statistics for distributions in �m and P�m

In order to study probability distributions in evolutionary moduli spaces, it is necessary to

have reasonable notions of moments of the distribution, expectation of random variables,

and analogues of the law of large numbers. Since �m and P�m are CAT(0) spaces, points

are connected by unique geodesics and there is a sensible notion of a centroid of a collection

of points. Discussion of statistical inference in �m was initiated in [19], and subsequently

Holmes has written extensively on this topic [89, 89, 90] (and see also [65]). More generally,

Sturm explains how to study probability measures on general CAT(0) spaces [199]. He

shows that there are reasonable notions of moments of distribution, expectation of random

variables, and analogues of the law of large numbers on CAT(0) spaces.

Definition 4.4.1. Given a fixed set of n trees {T0, . . . Tn≠1} ™ �m, the Fréchet mean T is

the unique tree that minimizes the quantity

E =
n≠1ÿ

i=0
d�

m

(Ti, T )2.

The variance of T is the ratio E
n

.

Sturm provides an iterative procedure for computing the mean and variance of a set

of points in �m, and by exploiting the local geometric structure of �m, Miller, Owen, and

Provan produce somewhat more e�cient algorithms for computing the mean [135]. Fur-

thermore, Sturm proves versions of Jensen’s inequality and the law of large numbers in

this context. The situation for the central limit theorem is less satisfactory. Barden, Le,

and Owen study central limit theorems for Fréchet means in �m [13]; as they explain, the

situation exhibits non-classical behavior and the limiting distributions depend on the codi-

mension of the simplex in which the mean lies. Finally, there has been some work on principal

components analysis (PCA) in �m [154].

However, in contrast to classical statistics on Rn, we do not know many sensible analytically-

defined distributions on the evolutionary moduli spaces. Billera-Vogtmann-Holmes briefly
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introduce a family of Mallows distribution on �m with density function

x(t) = Ÿe–d�
m

(t1,t)

for fixed t1 œ �m, and an analogous family can be defined on P�m. Sampling from these

distributions is not easy; in general, the behavior of distributions on �m and sampling

algorithms is somewhat perverse due to the pathological behavior near the origin due to the

exponential growth in the mass of an ‘ ball. A much more tractable source of distributions

on �m and P�m arise from resampling from a given set of empirical data points.

4.4.2 Distributions in �m and P�m via distributions in Rn

One way to grapple with the di�culties in dealing with distributions on �m and P�m is to

instead study associated projections into distributions on Euclidean space. The advantage

of this approach is evident; we are now in a setting where the theory of moments, the

central limit theorem, and asymptotic consistency for resampling procedures are all very

familiar. Of course, it is important to keep in mind that the moments derived in this

setting will reflect the geometry of the evolutionary moduli space is complicated ways, and

inverses to the projections will not usually exist. Nonetheless, for purposes of many kinds of

statistical tests (e.g., hypothesis testing about distributions generating observed samples),

this approach can be very e�ective. There are a number of natural ways to map metric

measure spaces into Euclidean space; in this section, we discuss several strategies derived

from the use of the metric.

An intrinsic map comes from looking at the distance distribution on R induced by ˆM .

Specifically, given a Borel distribution � on (M, ˆM), the product distribution �¢� on M ◊

M induces a distibution on R via ˆM . Applying this construction to the empirical measure on

a finite sample yields the empirical distance distribution. More generally, for any fixed n, we

can consider the distribution on Rn2 induced by taking the product distribution �¢n on M◊n

and applying ˆM to produce the n ◊ n matrix of distances. Gromov’s “mm-reconstruction
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theorem” showed that in the limit as n æ Œ, the distance matrix distributions completely

characterize the distribution � on (M, ˆM) [84]. Once again, given a su�ciently large finite

sample, we can construct the empirical distance matrix distributions for any fixed n.

Another approach involves choosing a fixed set of n landmarks and considering the vector

of distances from a fixed point to the landmarks. Given a set L = {t1, t2, . . . , tn} µ M , there

is a continuous map

dL : M æ Rn

specified by

x ‘æ (ˆM(x, t1), ˆM(x, t2), . . . , ˆM(x, tn)).

Pushforward along dL again induces a distribution on Rn from one on M . One expects that

as k increases (provided the landmarks are “generic”), the induced distributions in Rn will

characterize the distribution on M .

In both cases, choice of the parameter k depends on some sense of the intrinsic dimension

of the support of the distribution as well as the number of points available (in the case of

finite samples). Unfortunately, the required k may well be quite large.

Finally, there is a substantial body of work on low-distortion embeddings of finite met-

ric spaces into ¸p spaces, in particular Euclidean spaces. Recall that the distortion of a

non-contractive (distance expanding) embedding of metric spaces f : (X, ˆX) æ (Y, ˆY ) is

given by supx1 ”=x2
ˆ

Y

(f(x1),f(x2))
ˆ

X

(x1,x2) . Notably, Abraham, Bartal, and Neiman show that one can

construct a probabilistic embedding of an n-point finite metric space into an O(log n) di-

mensional space with distortion O(log n). Pushing forward distributions on �m and P�m

provide another way of reducing statistical questions to Euclidean space.
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4.4.3 Distinguishing samples from di�erent underlying

distributions

Given a set of samples X µ �m and a partition X = C1 fi C2 . . . fi Cn (where Ci fl Cj = ÿ), it

is often useful to be able to determine whether or not the di�erent Ci were generated from

the same or di�erent underlying distributions. For instance, C1 might represents samples

from patients who received treatment and C2 is untreated patients, or the di�erent groups

Ci represent di�erent observed genetic markers. Based on the discussion of the previous two

subsections, we can study this problem directly in �m or in via projections to Rn.

The Fréchet mean and variance provides a summary of each collection of samples Ci. A

standard comparison between groups is then given by the distance

◊ij = d�
m

(T (Ci), T (Cj))

between the means. In order to understand the variability due to sampling, we can use boot-

strap resampling (or more general k out of n resampling without replacement) to generate

confidence intervals for the value of ◊i. Asymptotic consistency for the bootstrap follows

from the fact that the VC dimension of the collections of balls in �m and P�m is bounded,

via the usual criteria [79, 80, 81].

However, it is often simpler to consider tests induced by the projections into Rn discussed

above. Here, we can compare collections Ci and Cj by using any of the many standard non-

parametric comparison techniques for real distributions, for example ‰2 tests or two-sample

Kolmogorov-Smirnov tests.

One pervasive problem in clinical applications is that often the number of samples is

quite small, and so we are often far from the asymptotic regime for statistical tests. Stan-

dard small-sample corrections can be applied. However, for this reason a machine learning

approach to analyzing the data is often more useful.
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4.4.4 Clustering in �m and P�m

Given the di�culties with statistical inference in �m and P�m, it is useful to complement

these approaches with techniques from machine learning. The most basic family of techniques

we might consider is clustering, a kind of unsupervised learning. Here, given a finite set X

in �m or P�m, we search for a partitionings of the points into clusters which optimize some

criterion for the “goodness” of the clustering.

Regarding �m and P�m simply as metric spaces, we can apply standard clustering al-

gorithms that operate on arbitrary metric spaces. For example, we can apply standard

k-means clustering, using the centroids as defined above. A related alternative is the k-

medoids algorithm. Like k-means, k-medoids seeks partitions which are optimal in the sense

of minimizing the sum of squared distances; the cost function for a cluster C = {xi, xj}

is given by q
i<j ˆ(xi, xj)2. But instead of using cluster centroids as in k-means, cluster

assignments are determined by medoids, which are points z œ C that minimize q
i d(z, i).

The advantage of k-medoids over k-means is that the problem of finding a centroid in �m

or P�m is avoided.

Another natural family of clustering algorithms comes from spectral clustering tech-

niques. Recall that spectral clustering can be applied to finite subsets of any metric space;

one constructs an embedding into Euclidean space using the graph Laplacian associated to

a graph encoding the local metric structure of the set of points and then performs k-means

clustering. As such, spectral clustering can be applied both to �m and P�m. However,

as illustrated in Figure 4.6, there is substantial distortion under such embeddings for low

dimensions.

4.4.5 Supervised Learning

Although clustering algorithms are very useful for exploratory data analysis, for clinical

applications we expect that classification problems are more salient. Specifically, a temporal

sequence of tumor samples will be linked with a categorical or numeric label denoting the
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Figure 4.6: Euclidean embedding of the a�ne and projective tree spaces, �m and
P�m: A spectral embedding approach is taken to finding Euclidean approximations of our
‘-nets. We are interested in the relation between m and the smallest d with acceptable
distortion of embedding into Rd.

clinical management of the patient. We would then like to predict patient outcomes or expect

response to treatment using a discriminative supervised learning algorithm operating in �m

or P�m. Analogous to our use of k–medoids clustering for unsupervised grouping, the most

basic algorithm for supervised learning is a k–nearest neighbor (k–NN) predictor. In this

algorithm the predicted label for a given point is generated by taking a majority or weighted

vote over the labels of the k nearest trees. The optimal value of k then specifies an order–

k Voronoi tesselation of the space that provides a description of the sizes of the predictive

neighborhoods surrounding each element of the data set. We use this classification algorithm

to study clinical correlates of trees determined by tumor samples from glioma patients in

the following chapter.

4.5 Tree Dimensionality Reduction

When analyzing a large number of genomes, phylogenetic trees are often too complex to

visualize and analyze as they can contain thousands of branches. In this section, we will

explain a technique for dimensionality reduction that projects a single tree in �m or P�m

88



to a “forest” of trees in �n, for n < m. The main idea is that by subsampling leaves

of a large tree we can have a distribution of smaller trees that can capture properties of

the more complex structure. This procedure makes it easy to visualize and analyze high-

dimensional data, and avoids scalability issues with algorithms for working with the spaces

of phylogenetic trees. We believe that the analysis and visualization of the resulting clouds

of trees is an e�ective way to study high-dimensional evolutionary moduli spaces. To provide

theoretical justification for this claim, we prove that this procedure is stable, in the sense

that it preserves distances up to a constant factor.

4.5.1 Structured dimensionality reduction

Let Em denote either �m or P�m.

Definition 4.5.1. For S ™ {1, . . . , m}, define the tree projection function

�S : Em æ �|S|

by specifying �S(T ) to be the unique tree obtained by taking the full subgraph of t on the

leaves that have labels in S and then deleting vertices of degree 2. An edge e created by

vertex deletion is assigned weight w1 + w2, where the wi are the weights of the incident edges

for the deleted vertex. (It is easy to check that the order of vertex deletion does not change

the resulting tree.)

A representative example of �S is shown in Figure 4.7. Using �, we can describe a number

of dimensionality reduction procedures. The most basic example is simply to exhaustively

subsample the labels. Let D(�m) denote the set of distributions on �m.

Definition 4.5.2 (Tree dimensionality reduction). For 1 Æ k < m, define the map

�k : Em æ D(�k)
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Figure 4.7: Tree dimensionality reduction: The leaves that are not highlighted in the
starting phylogeny are pruned and their external edges removed; internal vertices of degree
2 are collapsed and edge weights on either side are summed.

as the assignment that takes T œ Em to the empirical distribution induced by �S as S varies

over all subsets of {1, . . . , m} of size k. Define the map

�Õ
k : Em æ

Ÿ

S™{1,...,m},|S|=k

�k

as the map that takes T œ Em to the product of �S(T ) as S varies over all subsets of

{1, . . . , m} of size k.

(In practice, we approximate �k using Monte Carlo approximations.)

Often there is additional structure in the labels that can be exploited. For instance, in

many natural examples, the genomic data has a natural chronological ordering. When this

holds, sliding windows over the labels induces an ordering on subtrees generated by �S.

Rather than just regarding such a sequence as a distribution, the ordering makes it sensible

to consider the associated trees as forming a piecewise-linear curve in �k. (Note that given

a set of points in �k it is always reasonable to form the associated piecewise-linear curve

because each pair of points is connected by a unique geodesic.) Let Ck(�m) denote the set

of piecewise linear curves in �m; equivalently, Ck(�m) can be thought as the set of ordered

sequences in �m of cardinality k. A schematic example of this sequential operation is given
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Figure 4.8: Sequential tree decomposition on a set of ordered samples: The subsets
of trees generated from the initial phylogeny respect the ordering on the leaves, as would
be the case in a temporally ordered set of samples. Each subtree can be visualized on a
common set of axes, to chart motion through time. Periodicity in the sequence of branch
lengths, for example, might give rise to cycles in the evolutionary moduli space.

in Figure 4.8.

Definition 4.5.3 (Sequential tree dimensionality reduction). For 1 Æ k < m, define the

map

�C : Em æ Cm≠k(�k)

as the assignment that takes T œ Em to the curve induced by �S as S varies over the subsets

{1, . . . , k}, {2, . . . , k + 1}, etc.

Equivalently, we can regard this as producing a map

�C : Em æ D(�k).

There are many variants of �C depending on the precise strategy for windowing that is

employed.
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4.5.2 Tree dimensionality reduction and neighbor-joining

We have described tree dimensionality reduction in terms of the map �, which is an operation

on tree spaces. In practice, this technique would be applied by producing a very large

phylogenetic tree from the raw data and subsequently applying �. However, there is an

alternative form of tree dimensionality reduction that instead subsamples the raw data to

produce smaller phylogenetic trees. In this section, we discuss the relationship between these

two procedures in the context of neighbor-joining.

Neighbor-joining is an algorithm for producing a tree from metric data (or more broadly, a

dissimilarity measure) [63]. That is, the input is a set of points X and a metric ˆX : X ◊X æ

R. One of the main theorems about consistency of neighbor-joining is that when ˆX is “close”

to a tree metric ˆT , neighbor-joining recovers T . Recall that given a tree T , the associated

metric ˆT is defined by taking the distance between leaves i and j to be

ˆT (i, j) =
ÿ

eœP
ij

¸(e),

where Pij is the unique path in T from i to j and ¸(e) is the length of the edge e.

The specific consistency theorem we use is due to Atteson [11]: if

max
x

i

,x
j

œX
|ˆX(xi, xj) ≠ ˆT (xi, xj)| Æ 1

2 min
eœT

¸(e),

then neighbor-joining recovers T . In this case we say that (X, ˆX) is consistent with T .

Proposition 4.5.4. If (X, ˆX) is consistent with T , for any subset S = {x1, x2, . . . xk} ™ X,

the associated submetric space is consistent with �S(T ).

Proof. It is clear from the definition of �S(T ) that

min
eœ�

S

(T )
¸(e) Ø min

eœT
¸(e).

On the other hand,

max
x

i

,x
j

œS
|ˆX(xi, xj) ≠ ˆT (xi, xj)| Æ max

x
i

,x
j

œX
|ˆX(xi, xj) ≠ ˆT (xi, xj)|

The result follows.
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For a metric space (X, ˆX), let T (X) denote the tree obtained from neighbor-joining

applied to (X, ˆX). As a consequence of Proposition 4.5.4, given a metric space (X, ˆX)

that is consistent with T (X), the distribution �k(T (X)) is identical to the distribution

{T (XS)} where S varies over all subsets of X of cardinality k and XS denotes the metric

space structure on S induced by ˆX .

4.5.3 Stability of tree dimensionality reduction

In order to apply tree dimensionality reduction in the face of potentially noisy data, we would

like to know that small random perturbation of the original sample results in a distribution of

subsamples that is “close” in some sense (e.g., small shifts in the centroid in �m). Conversely,

if two distributions of subsamples are suitably close, we would like to be able to conclude

that the sampled trees are also close.

We begin with a lemma describing the interaction of �S and the boundaries of orthants.

Lemma 4.5.5. Fix S ™ {1, . . . , m}. Let T be a point in the interior of an orthant of �m,

and let “ : [0, 1] æ �m be the geodesic path contained in that orthant from T to T Õ, where T Õ

is obtained from T by collapsing an interior edge to length 0. Then �S(T Õ) is obtained from

�S(T ) by shrinking an interior edge, and �S(“) is the geodesic path from �S(T ) to �S(T Õ).

Proof. It su�ces to show that �S(T Õ) is obtained from �S(T ) by shrinking an edge; given

this, the assertion about “ is clear. Let e = (v1, v2) denote the edge to be collapsed, with

v1 the vertex closer to the root and v2 the vertex closer to the leaves. There are three

possibilities. If the edge e is not present in �S(T ), then this means that none of the leaves

below e are in S; as a consequence, none of the leaves below v1 in T Õ are in S, and so

�S(T Õ) will also not contain e and so �S(T ) = �S(T Õ). If the edge e is present in �S(T )

and does not participate in a vertex collapse, this means that both edges emanating from

v2 are present in �S(T ) and therefore that collapsing e to 0 commutes with applying �S.

Finally, if applying �S to T causes e to be concatenated with another edge, then there are
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two cases to analyze — e could be concatenated via the deletion of v1 or v2. Suppose that

the concatenation occurs because the other “downward” edge with endpoint v2, which we

will denote eÕ, leads to leaves that are not in S. If we collapse e to 0 before applying �S,

eÕ will still be deleted when we apply �S, and so the result will be the same. The case of

deletion of v1 is analogous.

In light of Lemma 4.5.5, the projection �S preserves paths. The other thing we need

to understand is the potential increase in length caused by applying �S. Specifically, we

need to consider the impact of the addition of edge lengths that occurs when a degree 2

vertex is produced by the reduction process. In the simplest case, we are considering the

map R2 æ R specified by (x1, x2) ‘æ x1 + x2, and in general, we are looking at Rn ‘æ R

specified by (x1, x2, . . . , xn) ‘æ qn
i=1 xi. Squaring both sides, it is clear that

ˆRn((xi), (yi))2 Æ ˆR(
nÿ

i=1
xi,

nÿ

i=1
yi)2.

On the other hand, since

ˆR(
nÿ

i=1
xi,

nÿ

i=1
yi) Æ n(max

i
|xi ≠ yi|) Æ nˆRn((xi), (yi)),

the addition of edge lengths can result in an expansion bounded by the size of the sum.

Remark 4.5.6. Another way to interpret the previous result is to observe that the addition

map is an isometry for the Manhattan distance (when working in the positive orthant) but

not for the Euclidean distance.

For a rooted tree T , let depth(T ) denote the length of the longest path from a leaf to

the root.

Proposition 4.5.7. Let S ™ {1, . . . , m} such that |S| > 1 and let “ : [0, 1] æ Em be a

path from T to T Õ. Then “ ¶ �S : [0, 1] æ �|S| is a path from �S(T ) to �S(T Õ) and |“Õ| Æ

max(depth(T ), depth(T Õ))|“|.
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Proof. First, observe that if T and T Õ are in the same orthant of Em, the result is clear. In

this case, for any S, �S(T ) and �S(T Õ) will be in the same orthant of �|S|. By the discussion

above, the length of the projected path in that orthant is bounded by the length of the path

in Em scaled by the depth of the tree. This argument also shows that result holds for trees

joined by the cone path; �S applied to the cone point produces the cone point.

Now suppose that T and T Õ are not in the same orthant and neither T nor T Õ is contained

in a positive codimension subspace of Em (i.e., they are not on the boundary of any orthant).

Further, we assume that “ does not go through the origin and that “ can be expressed in

terms of a sequence of contractions and expansions of a single edge. That is, we assume

that “ only goes through codimension 1 faces of each orthant. It su�ces to consider this

case, since for a general “ that does not go through the origin but might traverse faces of

codimension larger than 1, observe that for any ‘ > 0, we can perturb “ to produce a path “Õ

with the same endpoints which satisfies the hypothesis above and has |“Õ| = |“| + ‘. Passing

to limits then implies that the bound holds for such a path. Similarly, a limit argument

implies the result for a path that starts or ends on a positive codimension subspace of Em.

Moroever, given this case, more complicated paths that involve both rotations and also pass

through the origin satisfy the bound by an easy induction.

Thus, fix a subset S œ {1, . . . , m}. Lemma 4.5.5 now implies that �S(“) is a path from

�S(T ) to �S(T Õ), and the discussion preceding the proposition implies that the potential

expansion in length is max(depth(T ), depth(T Õ)).

Remark 4.5.8. In fact, the expansion factor in Proposition 4.5.7 depends on the number of

edge conactenations that occur when �S is applied; in situations where an estimate of this

is available, tighter bounds can be used.

Using Proposition 4.5.7, it is straighforward to deduce the next two theorems that provide

the theoretical support for the use of tree dimensionality reduction. The following theorem

is an immediate consequence of Proposition 4.5.7, choosing the path realizing the distance

between T and T Õ.
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Theorem 4.5.9. For T, T Õ œ Em such that dE
m

(T, T Õ) Æ ‘, then for any S ™ {1, . . . , m}

such that |S| > 1,

d�|S|(�S(T ), �S(T Õ)) Æ max(depth(T ), depth(T Õ))‘.

Moreover, this bound is tight.

Let A and B be subsets of Em such that each item of A and B has a label in L µ

P({1, . . . , m}) (where P(≠) denotes the power set of {1, . . . , m}). Then we can define a

matching distance as

dM,L(A, B) = max
SœL

dE
m

(A(S), B(S)).

Without assuming such a labelling, we define the matching distance between A and B

to be

dM(A, B) = min
„

max
aœA

dE
m

(a, „(a)),

where „ varies over all bijections A æ B.

The following is now also immediate from Proposition 4.5.7.

Lemma 4.5.10. For T, T Õ œ Em and L µ P({1, . . . , m}), ,

dE
m

(T, T Õ) Ø
A

1
max(depth(T ), depth(T Õ))

B

dM,L(�SœL(T ), �SœL(T Õ)).

We conclude the discussion by describing some computational results on simulated data

that illustrates the divergence between dM and dE
m

(T, T Õ); see Figure 4.9. To demonstrate the

stability of the tree projection operation, and to empirically test its approach of the distance

bound, we constructed a panel of pairs of m-dimensional trees, m > 10. The distances

between the pairs of trees were computed and compared against the distributions of distances

induced by the k-dimensional projection operator, �k with k œ 3, 4, 5, 6. The distances

between elements of the projections can exceed the original inter-phylogeny distance (‘), but

rarely approach the upper bound. To further characterize the behavior of the distribution

of subtree distances as a function of k, we compared the distributions of projected distances
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Figure 4.9: Distributions of subsample distances under the tree projection opera-
tion: (Top) Pairs of m-dimensional phylogenies with known distance (horizontal black lines)
are projected into distributions of low dimensional trees. The distances between elements
of the projections can exceed the original inter-phylogeny distance (‘), but rarely approach
the upper bound. (Bottom) As the dimension of the projection operator approaches that
of the initial phylogenies, there is a decrease in the variance of the distribution of subtree
distances and its median approaches the 40-dimensional dBHV (T, T Õ).
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ranging from k = 3 to k = m ≠ 1 for a fixed pair of m-dimensional phylogenies. We see that

the median approaches the true m-dimensional dBHV (T, T Õ) with larger values of k, while

the variance appears to decrease monotonically.

4.5.4 Using tree dimensionality reduction for inference and

machine learning

Broadly speaking, the various tree dimensionality reduction operators transform questions

about comparison of trees or analysis of finite sets of trees to questions about comparisons

and analysis of sets of clouds of trees. This has several advantages. First, when working with

P�m, the resulting clouds live in �k, and as discussed above analysis in the non-projectivized

space can be simpler. Second, when projecting to �3 or �4, both visualization and analysis

is easier (particularly in �3, since that has a Euclidean metric). For example, in order to

perform supervised classification on a labelled set of trees X, we can simultaneously solve

classification problems in �Õ
k(X) and use majority voting in order to assign labels to new

trees. Another possibility is to perform hierarchical clustering on the clouds in �Õ
k(X),

resulting in another tree, and use the distance in tree space as a test statistic to discriminate

between clouds. In the next chapter we describe an application that involves producing a

predictor for influenza vaccine e�ectiveness using the variance of the distribution produced

by �.

Remark 4.5.11. Another interesting direction of research is to consider the use of topological

data analysis summaries (i.e., hierarchical clustering dendrograms or barcodes) for the clouds

of projected points. The stability results above easily imply stability results for the associated

barcodes of the projections.
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4.6 Conclusions

Phylogenetic trees are a natural and easily computed representation of evolutionary rela-

tionships in a clonal process. Billera, Holmes, and Vogtmann (BHV) defined a geometric

space of the internal branches of rooted phylogenetic trees. We extended their construction

here by considering unrooted trees whose total branch length is rescaled to 1. The set of

all such trees forms our projective tree space, P�m, which we understand how to visualize

and which we prove is CAT(0). We reviewed approaches for calculating statistics in tree

space or performing distance-based classification such as k-NN, which will be applicable in

the next chapter. In anticipation of analyzing large phylogenetic trees (or densely sampled

clonal processes), we ended this chapter with a discussion of tree dimensionality reduction,

which maps a large tree to a distribution of subtrees.
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Chapter 5

Clonal Evolution in Tumor and RNA

Virus Genomes

This chapter leverages the infrastructure developed in the previous chapter to examine

instances of clonal evolution under strong selection in the realms of oncology and infectious

disease. The specific settings of clonal evolution we consider are (i) serially biopsied can-

cers along the clinical progression of disease, (ii) xenografted tumors sampled across animal

passages, (iii) H3N2 influenza hemagglutinin segments sampled seasonally over a period of

over two decades. The phylogenetic tree inference implicit in our preparation of this chap-

ter’s data sets is always performed via neighbor-joining with a Hamming metric, leveraging

Felsenstein’s PHYLIP package [62].

Material presented in this chapter is published, wholly or in part, in: [233, 234] in collaboration with
H. Khiabanian, A.J. Blumberg, R. Rabadan; and will be published in the manuscript “Phylogenetic dimen-
sionality reduction” (in preparation) in collaboration with H. Khiabanian, A.J. Blumberg, R. Rabadan
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5.1 Observing Cancer Evolution in Projective Tree

Space

To summarize one of the main points of the previous chapter, we aim to understand the

diverse patterns of clonal evolution in human cancer by first placing the data in the appro-

priate dimensional projective tree space, P�m. Over the clinical course of a cancer’s lifetime

there are alternating epochs of rapid expansion and profound selection bottlencks. Tumors

are generally assumed to have a monoclonal lineage, although su�cient time and a dynamic

fitness landscape can generate a large amount of genetic diversity within the population

of malignant cells. We illustrate a coarse-grained picture of a patient’s treatment course in

Figure 5.1, with the understanding that the underlying evolutionary process may be sampled

with arbitrary frequency.

In the context of cancer patients, triplet samples are often comprised of 1) normal tissue,

2) malignant tissue at diagnosis, and 3) malignant tissue at a later clinical time point such

as local relapse. The moduli space of unrooted phylogenetic 3-trees, �3, is a Euclidean

3-orthant whose basis vectors represent the 3 external edge lengths (ln, ld, lr). We project

each tree onto P�3, the space formed by the intersection R3+ fl S2, by rescaling the branch

lengths. This space is visualized in Figure 5.2

The general case of three nonzero external branch lengths is called branched evolution

and such phylogenetic trees will be found far from the boundary of P�3. We would also like

to understand the possible singular cases that occur when one or more branches degenerate.

If all branch lengths are zero then we have the trivial situation of no evolution among the

three samples. The edges of P�3 represent trees in which a single branch has collapsed to

zero. As ln æ 0 we have the situation where the diagnosis and the relapse are completely

distinct tumors whose earliest common ancestor is in fact normal tissue. We call this diver-

gent evolution. As ld æ 0 we have the situation where the diagnosis is a perfect intermediate

between the normal and relapse genotypes, the well known case of linear evolution. Lastly,
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Normal Diagnosis Relapse Metastasis

oncogenesis

Figure 5.1: The dynamic nature of clonal evolution in cancer: We depict the evolution
of a tumor through various clinical stages, with time running from left to right. There is an
expansion of malignant cells beginning at “oncogenesis” and within the larger gray cell mass
are contained di�erent subclonal populations, represented in di�erent colors. The overall
size of the malignant cell mass is a�ected by therapeutic interventions, here depicted via
symbols for radiation treatment, targeted molecular agents, and salvage chemotherapy. The
schematic shows a progression from oncogenesis through clinically distinct phases: primary
tumor, remission following initial therapy, relapse, remission following salvage therapy, and
finally uncontrolled metastatic spread. Sequencing may be performed at multiple clinical
time points, however the mutational spectrum primarily reflects the dominant clone at that
time point.

as lr æ 0 we have the situation where the relapse sample is actually the intermediate be-

tween normal and diagnosis genotypes, indicating the emergence of an ancient clone that

was not dominant at the time of diagnosis. We call this revertant evolution. The vertices of

P�3 represent trees in which two branches have collapsed to zero. Near the “shared” vertex

is the case where the tumor genomics are almost identical between diagnosis and relapse

samples with respect to normal tissue. From a clinical perspective, no further mutations

are needed beyond the diagnosis stage for the disease to relapse, and we term this scenario

frozen evolution. Near the “diagnosis” vertex is the case where the relapsed tumor is almost
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Figure 5.2: Common evolutionary vocabulary mapped onto P�3: The cancer biology
literature has developed certain qualitative descriptors for the genetic relationships between
serial time points in a tumor’s genetics. This terminology tends to be limited to relationships
between triplets of samples, and we map this qualitative vocabulary to di�erent regions of
P�3. A: frozen evolution, B: branched evolution, C: divergent evolution, D: linear evolution,
E: hypermutation.

identical to normal, healthy tissue with respect to the lesion at diagnosis. This would be

a highly unusual set of genotypes to observe since advanced cancers require some genomic

deviation from normal. Near the “relapse” vertex is the case where the tumor at diagnosis

is essentially the same as normal tissue compared to the number of mutations specific to

the relapsed disease. Rapid accumulation of mutations can result from a shifting fitness

landscape during medical therapy, and this region of the space can indicate a hypermutation

phenotype. This scenario does not imply that the lesion at diagnosis has zero di�erence from

normal tissue, but rather that the di�erence is dwarfed by the number of mutations accumu-

lated in the relapsed sample (a situation often encountered in the context of mismatch-repair

gene mutation).

Quadruplet samples can arise from 1) normal tissue, 2) malignant tissue at diagnosis,

and 3) malignant tissue at local relapse and 4) malignant tissue from distant metastasis.
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Unrooted trees constructed from quadruplet data contain a single internal edge, implying 3

possible tree topologies. We decompose the moduli space of unrooted phylogenetic 4-trees,

�4, into the product of spaces for its internal and external edges respectively, BHV3 ◊ R4+.

Upon rescaling of the branch lengths we project each tree onto P�4, the space formed by

·3 ı �3, which is the join of a set of three points and a tetrahedron. In Figure 5.3, we

illustrate the two components of P�4. A quadruplet is represented by a point in the star

plot (on the left) and a point in the tetrahedron (on the right). The three arms of the star

plot represent the three possible tree topologies, and they meet at an origin corresponding

to the degenerate case of a length zero internal branch. The vertices of the tetrahedron

correspond to trees having only one nonzero external branch, the edges to trees with two

nonzero external branches, and the faces to trees with three nonzero external branches.

Quintuplet samples might include 1) normal tissue, 2) malignant tissue at diagnosis,

3) malignant tissue at local relapse, 4) malignant tissue from distant metastasis, and

5) malignant tissue collected at autopsy. Unrooted trees constructed from quintuplet data

contain two internal edges, implying 15 possible topologies. We decompose the moduli space

of unrooted phylogenetic 5-trees, �5, into the product of spaces for its internal and external

edges respectively, BHV4 ◊ R5+. Upon rescaling of the branch lengths we project each tree

onto P�5, the space formed by ·4 ı �4. The internal space of �5 can be thought of as a cone

on ·4, the Petersen graph. This object is a cubic graph with no planar embedding whose

shortest circuit is 5. In Figure 5.4 we have arranged the possible tree topologies along the

15 edges of ·4, and each vertex corresponds to an intermediate point of rotations between

three adjacent topologies. We represented the space of external branches for triplet data as

a 2–simplex, for quadruplet data as a 3–simplex, and naturally for quintuplet data the space

will be a 4–simplex, also called a pentachoron. Explicit schemes for visualization of P�5

must encode the radial coordinate along the cone on ·4 and also provide lower dimensional

projections of the data residing in the pentachoron.

From a visualization standpoint, the only impediment to explicit constructions of P�m
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Figure 5.3: Tree topology emerges in P�4: Each tree, A—E, is represented by a pair
of points. The three arms of the star plot specify the internal branch topology, while the
tetrahedral plot describes the external branches.

for m Ø 6 is the increasing dimensionality of the space. The number of possible topologies

of an unrooted phylogenetic tree on m samples grows as (2m≠5)!! and the overall dimension

of �m is 2m ≠ 3.
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Figure 5.4: Petersen graph for 5-sample time series: The 15 possible tree topologies
arranged on the edges of ·4 and color coded to reflect biological plausibility. Warmer colors
correspond to evolutionary relationships on the five samples that would be highly surprising,
such as normal tissue (N) and the tumor at autopsy (A) being adjacent in the phylogeny.
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5.2 Human Cancers Sampled Along the Clinical

Progression

Progression of cancer is believed to be intimately related to the accumulation of genomic

alterations in tumor cells [152]. Mutations can spur proliferation, either via activation of an

oncogene or inactivation of a tumor suppressor. The spatial and temporal heterogeneity of

tumors can be addressed by reconstructing the evolutionary history of tumors from di�erent

samples. For each location and time point, one can define (partially or totally) the genotype

of the dominant clone. As the evolution proceeds in a clonal fashion, the relationships

between dominant clones can be structured as a phylogenetic tree. Questions about the

nature of the evolutionary process, mechanisms of resistance, stratification of patient tumor

histories, or prognosis can be formulated as a comparison between sets of trees.

For example, a first step towards personalizing cancer therapy is to monitor the muta-

tional status of patients along the therapeutic course. Genomic snapshots before and after

administration of cytotoxic therapy can reveal the extent of population remodeling. A fur-

ther goal is to establish in vivo mouse models of every patient’s tumor, as a means of rapidly

exploring drug susceptibility and resistance. Such models can be created by direct implan-

tation of human tumor tissue into immunodeficient mice and are termed patient-derived

xenografts (PDX).

5.2.1 Chronic lymphocytic leukemia

Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults, primarily

a�ecting the elderly population (median age at diagnosis is 70) [194]. CLL is a proliferative

disorder of B-lymphoctyes characterized by a steady accumulation of clonal, non-functional

B-cells. Treatment strategies vary greatly given the heterogeneity in disease course, ranging

from watchful waiting, to localized radiation, to systemic chemotherapy. The fact that CLL

is a relatively indolent malignancy makes it an excellent model for studying clonal evolution
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Figure 5.5: Di�erent evolutionary patterns observed in CLL: (Left) In patients that
did not receive chemotherapy the tumor exome did not change. Tumors from these patients,
represented in green, shared most mutations along di�erent time points. However, under
therapy (shown in red) mutations before therapy were not present after treatment, and new
mutations were acquired. (Right) The proportion of mutations shared between time points
is significantly lower among patients treated with chemotherapy (p = 0.049, log-rank test).

under di�erent therapeutic strategies [214].

A recent genomic study [120] performed whole exome sequencing on 160 CLL cases

covering the spectrum of clinical courses the disease can take. This data established a space

of recurrent alterations, which was then used to genotype 18 patients for whom two time

points were available. Of these 18 patients, 10 of 12 treated with chemotherapy underwent

clonal evolution compared to only 1 of 6 receiving no treatment according to the authors of

the study. We combine the 18 patients of [120] with those of a similar study [187] wherein

3 CLL patients received chemotherapy and were sequenced at multiple time points. The

multiple time points for the 3 patients studied in [187] are decomposed into all combinatorial

triplets. Therefore, there are a total of 18 phylogenetic trees inferred from [120] and 12

phylogenetic trees inferred from [187]. In Figure 5.5, we map this data to P�3 and color

based on treatment status.

From a clinical standpoint, a central question is whether treatment promotes evolution

of the cancer and whether there is strong evidence for avoiding cytotoxic therapy in patient

management. Quite clearly the distribution of 6 untreated patients resembles a pattern (in

green) forms a tight cluster, indicating that tumors from patients who did not received ther-
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apy are stable genetically, sharing most of the mutations. However, in red are represented

the histories of tumors of 15 patients under therapy, presenting some mutations at di�erent

times that are not shared across di�erent samples. The ratio between the number of muta-

tions that are exclusive in the early branch versus the ones that are share with other phases

is represented in right hand side of Figure 5.5. A number close to zero indicates a genetically

stable tumor.

To assess how di�erent are the clonal histories of tumors from untreated vs treated

patients, we studied the distance between the centroids of the two populations regarded as

points in P�3. The 95% CI for the distance between the centroids of the treated / untreated

groups is (0.15, 0.36), under 1000-fold bootstrap resampling. The analogous intervals for

untreated / untreated and treated / treated are (0.01, 0.14) and (0.02, 0.16) respectively.

This analysis shows that the centroids of these clinically distinct sets of patients are well-

resolved, supporting the idea that untreated tumors are more stable than treated ones, where

district mutations can appear along the evolution of the tumor.

5.2.2 Relapsed Glioma

As another application, we examined low grade gliomas (LGG), a set of tumors of the central

nervous system most often involving astrocytes or oligodendrocytes. They are distinguised

from high grade gliomas (III, IV), such as glioblastoma multiforme, by the absence of anapla-

sia and have a more favorable prognosis. Surgery alone is not considered curative for LGG

and patients are typically treated with adjuvant radiation therapy, chemotherapy, or both. If

a patient relapses, the tumor may be observed to have a higher grade at that time. Johnson

et al. studied a cohort of 23 LGG patients who relapsed, many of whom were treated with

the chemotherapeutic agent temozolomide (TMZ) [102]. Whole exome sequencing was per-

formed on tumor tissue at diagnosis and at relapse in an e�ort to characterize the evolution

of recurrent glioma.

TMZ is an alkylating agent that directly damages the cellular genome, and accordingly
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Figure 5.6: E�ects of temozolomide treatment in relapsed glioma: Exome sequenc-
ing was performed both at diagnosis and at relapse in 23 glioma patients, allowing for 46
phylogenetic trees to be inferred (spatial replicates in certain cases). (Left) Patients treated
with TMZ are colored red, and the size of a point denotes the total number of mutations
observed. There is a clear tendency of TMZ-treated patients to localize in a particular corner
of the space and to exhibit more mutations associated to the therapy. (Right) Less obvious
is the association between the shape of patient’s tree and the histologic grade of the tumor
at relapse, displayed as a Voronoi tessellation.

we see that the subset of patients that were treated with TMZ show a greater acquisition

of relapse-specific mutations. After projecting the trees to P�3, we find the 95% confidence

interval for distance between centroids of the treated / untreated groups is (0.31, 0.48),

under 1000-fold bootstrap resampling. The analogous intervals for untreated / untreated

and treated / treated are (0.02, 0.13) and (0.02, 0.16) respectively. TMZ treatment status

defines two statistically well-resolved sub-populations of patients with respect to the shape

of their evolutionary behavior, an observation recently reinforced by the larger study of [215].

Also of interest is the apparent correlation between the geometry of the phylogenetic tree

and the histologic grade at relapse. A 1-nearest neighbor classifier of this trinary observable

(grade II, III, or IV at relapse) yields 85% accuracy under two-fold cross-validation, and the

accuracy does not improve with larger values of k. The tesselation of the space associated

to a 1-nearest neighbor classifier is known as a Voronoi diagram, and we have colored the

cells in accordance with the grade at relapse 5.6.

This example shows that in the simple case of trees with three leaves, evolutionary tumor
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histories are visibly di�erent under di�erent therapeutic regimes. Moreover, we see that

evolutionary trajectory can be associated with prognosis, as measured by grade at relapse.

5.2.3 Metastatic pancreatic cancer

Cancer of the exocrine pancreas accounts for roughly 85% of all pancreatic malignancies

and is the 4th leading cause of cancer-related deaths in the United States. In a recent

study, [28] 13 cases of widely metastatic pancreatic ductal adenocarcinoma (PDAC) were

studied at autopsy using a genome-wide detection method of structural rearrangements. The

anatomic sites represented among the metastases include liver, lung, diaphragm, adrenal

glands, peritoneum, and omentum.

We are interested in evolutionary histories involving distinct anatomical regions. To cast

this data as quadruplets of successive anatomic sites of disease, we consider the hypothe-

sis that the liver should represent the first metastatic location of PDAC. There is direct

anatomical communication between the exocrine pancreas and the liver, via the common

bile duct, while many of the other metastatic sites are only reachable via hematogenous

spread of cancer cells. Furthermore, the liver receives a large fraction of cardiac output

and might therefore be responsible for seeding the various more distant sites via the blood.

For these reasons we are interested in di�erentiating between metastases to the liver vs.

other sites. We partition the large number of samples per patient into the following disjoint

subsets: normal tissue (1), primary pancreatic tumor (1), liver metastases (≥ 5), non-liver

metastases (≥ 5).

All combinatorial 4-trees are inferred from this data and their mapping to P�4 is visual-

ized in Figure 5.7. We denote the normal tissue sample by N, the primary pancreatic tumor

by P, the liver metastases by LM, and the non-liver metastases by nLM. Contrary to our

hypothesis that liver metastases give rise to metastases in other tissues, we find that the

centroid of the data corresponds to a tree with branched ancestry between LM and nLM.

Furthermore, we observe that there is no branching in the progression from normal tissue
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Figure 5.7: Clonal structure of PDAC metastases: Both linear and branching behavior
observed in 10 cases of metastatic PDAC. A strong tendency toward (N,P),(LM,nLM) topol-
ogy in is seen in the star plot on the left. The majority of genetic alterations are acquired at
the primary tumor stage. Evolution to LM and nLM do not appear to be linearly related.
The centroid of the distribution is represented as a gold star, and its associated phylogenetic
tree is visualized.

to primary disease to metastatic potential. In other words, the trajectory leading to the

common ancestor of LM and nLM is a linear one.

5.3 Xenografted Tumors Sampled Across Passages

The recent development of single cell transcriptomics and genomics is providing an opportu-

nity to study the role of clonal heterogeneity in tumors [145, 56, 162] and to identify small,

previously uncharacterized cell populations [85]. The single cell approach to studying com-

plex populations brings with it new challenges associated with the large number of sampled

genomes. Another rapidly maturing technology in the modeling of tumor evolution is that of

patient-derived xenografts. Patient-derived xenografts (PDX) are generated by transplant-

ing tumor tissue into immunodeficient mice, serially engrafting in new mice as each host

animal expires. This provides an in vivo platform for drug screening as well as longitudinal

monitoring of tumor adaptation and clonal dynamics.

We take advantage of recently published PDX data from breast cancer patients, where
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single-nucleus deep-sequencing was performed across a lineage of host animals engrafted with

a primary lesion of triple-negative breast cancer [56]. The data are comprised of normal

tissue, a sample from the primary tumor, and three subsequent mouse passages. Somatic

mutation calls revealed 55 informative sites of substitution in this lineage, and these variants

were assigned to eight distinct cellular populations based on bulk sequencing.

Only bulk sequencing data were available from the primary tumor and matched normal

tissue, while the three xenograft passages were sequenced at single-nucleus resolution. For

each cellular fraction we randomly sampled a single nucleus from the first, second, and

fourth PDX passages (27, 36, 27 nuclei respectively were available). This preparation of the

data implies five sequential time points along the tumor’s history: benign germline genome,

genotype at diagnosis of primary tumor, genotype at first PDX, genotype at second PDX,

and genotype at fourth PDX. The combinatorial possibilities in the latter three time points

give rise to a large forest of phylogenetic trees.

We examined the di�erence in heterogeneity between phylogenetic trees constructed on

the first four time points and those constructed on last four time points. The distributions

trees from both time windows are visualized in Figure 5.8 as point clouds in P�4. Consistent

linear evolution is seen from primary tumor through the first two xenograft passages, however

we observe significant heterogeneity of tumor clones upon the fourth mouse passage. The first

time window (purple) is completely contained within the topology corresponding to linear

evolution, unlike the second (gold) which is centered on the origin and extends into all three

possible topologies. The point cloud for the second time window displays a higher standard

deviation than the first (10.49 vs. 8.69), and its centroid is essentially a star tree. Centroids

and variances are computed in �4, prior to rescaling of branch lengths. The high degree of

genotypic heterogeneity giving rise to the second time window distribution is suggestive of

a clonal replacement event between the time points of Xenograft 2 (X2) and Xenograft 4

(X4). Many of the prevalent alterations before X4 disappear during the final passage, and

many new mutations rise to dominance. These results raise interesting questions about the
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Figure 5.8: Emerging clonal heterogeneity in patient-derived xenograft: Single cell
analysis of tumor evolution in a breast cancer derived xenograft model. Single-nucleus deep-
sequence data was obtained from mouse passages 1, 2, and 4, while only bulk sequencing
data was available from the primary tumor and matched normal tissue. This data is used
to generate two distributions of four-leaved trees, shown in purple and gold in P�4. The
former space displays lower standard deviation than the latter, whose centroid is a star tree.
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long-term fidelity of PDX vehicles to the genetics of their ancestral primary tumors, which

theoretically they serve to mimic.

5.4 H3N2 Influenza Hemagglutinin Sampled

Seasonally

In this section, we describe an analysis of dynamics in the circulating hemagglutinin se-

quences of seasonal H3N2 influenza. Influenza A is an RNA virus that annually infects

approximately 5–10% of adults and 20–30% of children, leading to more than half a million

flu associated deaths [156]. Vaccination against the virus remains a major way of preventing

morbidity. However, the virus genome evolves rapidly, changing the antigenic presentation

of proteins that are in the envelope of the virus, mostly hemagglutinin (HA). These con-

tinuous antigenic changes, often referred as antigenic drift, can lead to failures in vaccine

e�ectiveness. The design of the influenza vaccine is based on collected isolates of previous

years, leaning heavily on the results of hemagglutinin inhibition (HI) assays to detect drift

variants. The great majority of H3N2 isolates are only analyzed antigenically via HI assay,

with approximately 10% of viruses undergoing genetic sequencing of the HA segment [179].

Relatively small genetic changes in the genome of the virus can cause drastic antigenic

changes. Influenza vaccine failures can be associated with the emergence of new clones with

novel antigenic properties that have replaced recent circulating strains.

A di�erent phenomenon that can lead to significant antigenic changes is reassortment.

The influenza virus genome consists of eight single-stranded RNA segments, two of which

code the antigenic surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA).

When two di�erent viruses co-infect the same host, they can generate progeny contain-

ing segments from both parental strains. Changes in the constellation of segments could

introduce dramatic genetic and antigenic changes. Reassortments could occur between dif-

ferent viruses infecting the same host or even, more rarely, viruses that are typically found in
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di�erent hosts. Introducing viral segments from non-human reservoirs has led to major pan-

demics over the past century [170, 169] and was particularly associated with the emergence

of the 2009 H1N1 pandemic [208, 196]. In 1968, the reassortment of then-circulating H2N2

with avian strains created H3N2 viruses, which have since been infecting human population.

Reassortment of seasonal strains can also contribute to vaccine failure as low frequency

hemagglutinin segments could combine with highly transmissible strains. In particular, re-

assortment of two H3N2 clades during the 2002-2003 season resulted in a major epidemic

and higher incidents of vaccine failure in the succeeding season [70].

In this section, we analyze how the emergence of a novel subclone could be identified

by unusual/unexpected tree structures and we develop a genomic predictor of vaccine ef-

fectiveness. We study the recent history of influenza A H3N2 using 1,089 sequences of

hemagglutinin collected in the United States between 1993 and 2016 (Figure 5.9). Genomic

data is downloaded from the GISAID EpiFlu database, and aligned with MUSCLE [54] using

default parameters. Vaccine e�ectiveness figures were drawn from the meta analysis of [86].

First, we used tree dimensionality reduction to obtain visualizations of the flu evolution-

ary profile for exploratory data analysis. Using 1,089 full length sequences of hemagglutinin

collected in New York state between 1993 and 2016, we relate HA sequences from one sea-

son to those from the preceding ones. We randomly select sets of HAs such that a single

isolate is drawn from each of three, four, or five consecutive seasons to form a temporal

window. Neighbor-joining with a Hamming metric is used to generate unrooted trees from

the temporally ordered tuples of HA isolates. The case of length five windows is illustrated

in Figure 5.10, where we superimpose each temporal slice onto the same moduli space. If the

current viruses are most similar to viruses circulating in the immediately preceding season,

one should expect an unrooted tree topology relating (1, 2), 3, (4, 5) branches. Deviations

from this topology indicate unexpected genetic relationships. Figure 5.10 confirms that the

vast majority of points land along the topologies most compatible with linear evolution of

HA. Certain windows yield well resolved clusters of trees, while others are dispersed point
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Table 5.1: Seasonal H3N2 influenza data collected: 23 seasons’ of seasonal influenza
hemagglutinin (HA) segments are collected from NY state isolates. We annotate each season
with the CDC estimate for vaccine e�ectiveness (V.E), as well as the antigenic clusters (A.C)
inferred from PREDAC [53]. Certain seasons contained more than one circulating A.C. in
NY state. Near the end of each flu season a particular strain is selected for the vaccine
formulation of the subsequent season, and we annotate the antigenic clusters for the strains
historically chosen.

Season Start
Year

Season End
Year

# of Hemag-
glutinin
Isolates

Single
Circulating
A.C.?

Selected
Vaccine
Strain A.C.

CDC
Vaccine
E�ectiveness

1993 1994 49 Yes SD93 38%
1994 1995 48 Yes JH94 25%
1995 1996 26 No WU95 45%
1996 1995 50 No WU95 28%
1997 1995 50 No Minor-31 -17%
1998 1995 78 No Minor-31 34%
1999 2000 70 No SY97, PA99 43%
2000 2001 1 Yes SY97, PA99 81%
2001 2002 84 Yes SY97, PA99 55%
2002 2003 16 No SY97, PA99 33%
2003 2004 82 Yes FU02 12%
2004 2005 86 Yes CA04 10%
2005 2006 54 No WS05 21%
2006 2007 30 No WS05 52%
2007 2008 41 Yes BR07 37%
2008 2009 68 Yes BR07 60%
2009 2010 2 Yes PE09 56%
2010 2011 6 Yes PE09 60%
2011 2012 9 Yes PE09, SW13 47%
2012 2013 52 Yes PE09, SW13 49%
2013 2014 15 No SW13 51%
2014 2015 81 No SW13 23%
2015 2016 20 Yes HK14 59%
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Figure 5.9: H3N2 Hemagglutinin (HA) isolates 1993–2016: Identifying statistical
patterns in large phylogenies is often di�cult. (Top) Overall phylogenetic tree inferred from
1,089 sequences, collected in New York state, spanning 24 influenza seasons. (Bottom)
There is inter-season variability in the number of H3N2 isolates collected, and we generate
sequences of lower dimensional trees by randomly selecting a single HA per season within
a temporal window. This procedure decomposes the overall phylogeny into distributions of
smaller trees.
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Figure 5.10: Temporally windowed subtrees in P�5: Using a common set of axes for
projective tree space, we superimpose the distributions of trees derived from windows five
seasons long. 1,089 full-length HA segments (H3N2) were collected in New York state from
1993 to 2016. Trees are colored by their most recent season, and point size encodes the
magnitude of the cone coordinate. Two consecutive seasons of poor vaccine e�ectiveness are
2003-2004 and 2004-2005, highlighted with green and gray arrows respectively. The green
distribution strongly pairs the 1999-2000 and 2003-2004 strains, hinting at a reemergence.

clouds. Either scenario might be indicative of elevated diversity in the HA segment or a

clonal replacement event underway. The window ending in the 2003-2004 season shows a

clear reemergence of strains in 2003-2004 that were genetically similar to those circulating

in the 1999-2000 season [88].

Next, we used tree dimensionality reduction based on windowing to generate a predictor

for vaccine e�ectiveness. A natural hypothesis is that elevated HA genetic diversity in cir-

culating influenza predicts poor vaccine performance in the subsequent season. Distribution
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Figure 5.11: Diversity in recent circulating HA predicts vaccine failure: Negative
correlation observed between vaccine e�ectiveness in season t + 1 and the variance in trees
generated from seasons (t, t ≠ 1, t ≠ 2).

features that may intuitively predict future vaccine performance include the variance and

the number of clusters in the point cloud. However, given our limited number of temporal

windows, too rich a feature space runs the risk of overfitting, so we focused simply on the

variance. In Figure 5.11 we illustrate the prediction of vaccine e�ectivenss using the variance

of the distribution of trees generated by a lagging window of length 3. In our notation, a

window labeled year y would include the flu season of (y ≠ 1, y) and preceding years. The

vaccine e�ectiveness figures represent season (y, y + 1). It is clear, both from the left and

right panels, that lower variance in a temporal window predicts increased future vaccine

e�ectiveness, with a Spearman correlation of -0.52 and p-value of 0.02. The lone outlier

season came in 1997-1998 [86], when the vaccine e�ectiveness was lower than expected. In

this season the dominant circulating strain was A/Sydney/5/97 while the vaccine strain was

A/Wuhan/359/95. The analysis can be carried out with length-4 or length-5 windows to

yield a similar result. Noteworthy is the fact that this association rests only on aligned

nucleotide sequence, making no direct use of HA epitope or HI assay data. The correlation

between variance of tree distributions and vaccine e�ectiveness allows us to estimate the

influenza vaccine e�ectiveness for future seasons based on genomic data. In particular, for

the 2016-2017 season, the variance in tree space is 12.77, corresponding to an approximate

e�ectiveness of 36%.
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We can also use our approach to retrospectively examine the annual W.H.O. decisions

to either keep or change the H3N2 componenet of the Northern hemisphere vaccine, and

whether the choice resulted in superior or inferior vaccine e�ectiveness in the following season.

A coarse-grained view of the antigenic features of our HA isolates can be obtained using the

work of [53], who defined a clustering of antigenic phenotype and trained a naive Bayes model,

that maps HA protein sequence to these labels. We begin by labeling our phylogenetic trees

using the antigenic cluster (A.C.) assignments of the classifier, and selecting those seasons

in which more than one A.C. is observed. The goal is to define a mapping between features

of the di�erent A.C. distributions and the change in vaccine e�ectiveness of the next season

relative to the present. Figure 5.12 indicates that in 9 of the 19 seasons for which we have

data, only a single A.C. was observed. In this case it does not make sense to ask whether

a change in H3N2 vaccine strain should have considered for the subsequent season, since we

detect no antigenic diversity. The other 10 seasons are represented as vectors comprised of

4 features: distance between the centroids of the older / newer A.C. distributions, standard

deviation of the older A.C. distribution, standard deviation of the newer A.C. distribution,

whether the vaccine strain for the subsequent season was changed from that of the current

season. We associated a binary label to each of the 10 seasons: whether the change in vaccine

e�ectiveness was positive or negative.

Using a heavily restricted vocabulary of logical and arithmetic operators, we exhaustively

search for a decision tree mapping the feature vectors to the binary label, based on a fitness

function maximizing area under the receiver operating characteristic [184]. A decision rule

that achieves perfect classification on this data set is depicted in Figure 5.12. The limited size

of the data set means that caution is warranted when interpreting the results. Nonetheless,

the results do suggest that if a vaccine strain is unchanged, a higher variance in the old A.C.

distribution predicts improvement in vaccine e�ectiveness (�V.E. > 0), while if a vaccine

strain is changed, then the new A.C. distribution being well-resolved from the old A.C.

predicts �V.E. > 0.
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Table 5.2: Distributions of trees in multi-A.C. seasons: 10 of the 19 possible three-
season windows terminate on a time point with more than one circulating A.C. observed.
20,000 trees are sampled at random for each temporal window (from all combinations possible
given the set of three seasons’ HA isolates). For the purposes of statistical characterization
of these distributions of trees we do not rescale the branch lengths and prefer to work in
a�ne BHV space. We are interested in basic summary statistics of the point clouds, such
as the distance between their means and their variances.

Final Season
of Window

|µred ≠ µblack| ‡red ‡black Vaccine
Updated?

�t+1,tV.E.

1996-1997 1.927 11.503 11.696 No -45%
2013-2014 3.756 14.817 13.791 Yes -28%
2002-2003 28.825 2.403 14.730 No -21%
1995-1996 4.212 8.774 9.298 Yes -17%
2006-2007 11.386 4.410 5.269 No -15%
1998-1999 2.413 9.797 9.309 No +9%
2005-2006 3.242 4.109 4.447 Yes +31%
2014-2015 7.027 12.969 14.182 Yes +36%
1999-2000 3.941 9.910 8.384 Yes +38%
1997-1998 7.254 9.052 10.300 Yes +58%

5.5 Conclusions

We began this chapter with schematic visualizations of the projective tree space as it would

pertain to serial cancer samples. The three types of genomic data from clonal processes

we that analyzed were bulk sequencing of human tumors (CLL, glioma, PDAC), single cell

analysis of a BRCA xenograft model, and finally seasonal sampling of H3N2 infleunza. The

human tumor vignettes demonstrate the utility of analyzing clinically labeled data in P�m,

as distances between point clouds can be easily appreciated. The patient-derived xenograft

analysis highlights a possible clonal replacement event between the second and fourth animal

passages, captured by an increase in variance of the point cloud and a translation away

from a definite topology to being centered at the origin. This was the first data set that

required the use of the tree dimensionality reduction operation. Our final data set came

from 23 seasons’ of H3N2 hemagglutinin (HA) collection and sequencing in NY state. We

demonstrate an inverse correlation between the variance of distributions of smaller HA trees
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Figure 5.12: Stratification of trees on predicted antigenic cluster: Trees are categor-
ically labeled using the predicted [53] antigenic cluster (A.C.) of their most recent isolate.
(Top) A simple decision rule is fit [184] to the 10 seasons in which more than one A.C. is
observed, explaining the change in vaccine e�ectivness (V.E.) in the following season. (Bot-
tom) Colors encode di�erent A.C. labels associated to the HA sequences collected over time.
We also plot the predicted V.E. change given by the decision rule against the historical data,
for the 10 relevant seasons.

and the influenza vaccine e�ectiveness and attempt to link our purely genomic analysis with

data on each sequence’s predict antigenic cluster (A.C.). A promising future application of

our tree space method lies in the tracking of a�nity maturation of antibodies.
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Part III

Directed Clonal Evolution of Short

RNA Genomes
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Chapter 6

Evolving RNA Geometries For

Ribosomal Frameshifting

In this chapter we continue our study of clonal processes, while moving from naturally

occurring genomes to synthetic RNA genomes. Selection, reproduction, and mutation are

all recapitulated in vitro to yield a platform for directed evolution. The fitness objective

of this directed evolution requires inducing a slippage of reading frame in the translating

ribosome. We thus evolve RNAs capable of very high e�ciency -1 programmed ribosomal

frameshift starting from a randomized RNA sca�old. Our approach brings together the com-

binatorial complexity of a classical in vitro RNA selection and the biochemical complexity

of a cell lysate. High-throughput sequencing is leveraged as a fitness read-out for a pop-

ulation of high fitness RNAs, and a computational analysis is established for determining

optimal frameshifting pseudoknot geometry and nucleotide composition. An application in

the rational design of ligand-responsive riboswitches is highlighted.

Material presented in this chapter is published, wholly or in part, in: [9] in collaboration with A.V.
Anzalone, A.J. Lin, R. Rabadan, V.W. Cornish
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6.1 Programmed Ribosomal Frameshift: Natural and

Engineered

The ribosome coordinates the biosynthesis of proteins from mRNA templates according to a

standard translational program. While the ribosome typically executes translation uniformly

and with high fidelity [232], in some cases the program is temporarily altered in order to

change the protein output of a given gene [78, 66]. This reprogramming endows the trans-

lation apparatus with expanded synthetic capabilities, enabling the expression of proteins

containing non-canonical amino acids or the regulated expression of multiple distinct protein

products from a single mRNA transcript. Some forms of translation reprogramming have

been directly adopted for biotechnology, including internal ribosome entry sites (IRES) [139]

and co-translational cleaving 2A peptides [46]. While significant progress has been made in

these areas, other modes of translation reprogramming remain largely unexplored despite

their potential applications to synthetic biology.

Many reprogramming mechanisms utilize cis-acting RNA elements embedded within mR-

NAs. Recently, other RNA-based gene expression frameworks have emerged as powerful tools

for engineering biological systems [95]. Over two decades of SELEX and related in vitro se-

lection experiments [57, 210, 175] have yielded synthetic RNA molecules, termed aptamers,

that bind to diverse ligands [100, 17]. These aptamers have been coupled to RNA-based

expression platforms to construct ligand-controlled gene regulatory tools such as allosteric

ribozymes [200, 114, 205, 115, 125]. These RNA devices have been utilized in cellular com-

putation [222], regulation of gene expression [12], and phenotypic control [33, 76]. The

apparent modularity of device construction suggests that other RNA gene expression frame-

works could be exploited to engineer new classes of RNA devices with distinct regulatory

opportunities.

We identify -1 programmed ribosomal frameshifting (-1 PRF) as a potentially power-

ful gene regulatory mechanism for RNA device engineering. Eukaryotic -1 PRF signals
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contained within mRNA transcripts are composed of two principal features: (i) a heptanu-

cleotide slippery site where the frameshift event occurs, with the general sequence X-XXY-

YYZ (dashes indicate original frame; X denotes any nucleotide; Y denotes A or U; Z denotes

A, C or U); and (ii) a downstream stimulatory RNA structure, typically a hairpin or pseu-

doknot [24]. When encountering a -1 PRF signal in an mRNA, a fraction of translating

ribosomes slip back by a single nucleotide, placing the translation apparatus in the -1 read-

ing frame. This alters the amino acid composition of the polypeptide that is synthesized

downstream of the frameshift site.

-1 PRF has been well-studied in retroviruses such as HIV, where it serves to establish a

precise ratio of Gag to Gag-Pol proteins [98]. Regardless of variation in mRNA transcript

levels or translational activity, the stoichiometry of frameshift to non-frameshift protein

products remains constant for a given -1 PRF signal. While viral -1 PRF signals have

fixed frameshift activities, it may be possible to engineer frameshift signals to respond to

environmental ligands [96].

6.2 Design and Read-Out of In Vitro Evolution

The general strategy is to contruct an iterative scheme for in vitro mutation, reproduction,

and selection acting on a particular RNA construct. These three forces are su�cient to ensure

evolution of the population. The RNA molecules of this population should be considered

independent genomes, each conveniently fitting within a single Illummina read.

An mRNA library was designed such that only active -1 PRF signals form mRNA-peptide

fusions and become enriched. Starting from a prokaryotic riboswitch sca�old [230], 14 of

35 nucleotides were randomized to generate 2.68 ◊ 108 sequence variants (Figure 6.1). A

library of this size is easily accommodated by the mRNA display technology, which allows

for upwards of 1014 input sequences [127]. To enrich active -1 PRF stimulatory elements,

the library was encoded downstream of the heptanucleotide slippery site U-UUA-AAC and
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an in-frame UAG termination codon. mRNA display templates were translated in vitro in

rabbit reticulocyte lysate and purified based solely on the presence of the peptide epitope

tags. Unlike traditional mRNA display, which uses the purified mRNA-peptide fusions for

subsequent selections, the functional selection for -1 PRF activity is complete at this stage

of the cycle.

After three rounds of in vitro selection, assaying of selection products in a dual-fluorescent

protein (dual-FP) reporter in S. cerevisiae revealed enrichment for active -1 PRF stimulatory

elements with in vivo e�ciencies of up to 30% (Figure 6.2). Moreover, flow cytometry of

individual clones revealed that the ratio of fluorescent proteins remained constant for a given

population of cells harboring the same -1 PRF signal, irrespective of total protein synthesis.

As a result, two populations of yeast with frameshifting e�ciencies that di�er by only three-

to fourfold are highly resolvable, despite overall expression levels that span several orders of

magnitude.

High-throughput sequencing of the selection products is performed using the Illumina

HiSeq platform (Columbia Genome Center). A computational pipeline will be described

below to identify promising sequence motifs for downstream engineering applications. Briefly,

sequences were grouped on the basis of compatibility with di�erent hairpin- type (H-type)

pseudoknot geometries, assessed for structure subtype enrichment, and then finally clustered

into motifs based on primary sequence identity. The di�erential abundances of sequence

variants within a motif were used to identify nucleotide preferences at variable sites and

mutation intolerant positions. This analysis provides strong support for further engineering

of -1 PRF motifs, and it forms the basis for rational switch engineering (Figure 6.2).

128



Figure 6.1: Selection construct for PRF: (a) The library is constructed based on a pre-
viously characterized prokaryotic PreQ1 riboswitch sca�old [230]. Nucleotides surrounding
the ligand binding pocket are randomized, generating a library of ≥ 2.68 ◊ 108 variants. (b)
Annotated sequence of the selection construct in DNA form. (c) The translation product
resulting from maintenance of the original reading frame (upper) or -1 frameshift at the
heptanucleotide slippery site (lower).

6.3 Detecting E�cient Frameshifting Pseudoknot

Compositions

A high-level description of our computational approach, to accompany panel (d) of Figure

6.2, is as follows. The sca�old and its 14 variable positions define a restricted region of

sequence space (≥ 2.68 ◊ 108). We constructed a pseudoknot (PK) feature space based

on a combination of the nucleotide constraints and our user-defined segment constraints,
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Figure 6.2: Overview of directed evolution experiment: (a) The four stages of the
mRNA display selection cycle are shown. (b) Translation reprogramming selection prin-
ciple. Ribosomes that terminate translation upstream of the designated fusion point will
fail to produce mRNA-peptide fusions (upper). Frameshifting enables bypass of encoded
stop codons (lower). (c) Dual-FP reporter assay in S. cerevisiae. The frameshift variant is
cloned between a green fluorescent protein (GFP) and the red fluorescent protein variant
mCherry. The ratio of FP signals reflects bulk -1 PRF e�ciency. Flow cytometry of indi-
vidual clones harboring -1 PRF stimulatory elements of varying e�ciencies is shown (‘au’
stands for ‘arbitrary units’). (d) High-throughput sequencing workflow for library selec-
tion products. Selected sequences are grouped into pseudoknot (PK) families, analyzed for
post-selection enrichment, and clustered based on primary sequence identity. Motifs can be
analyzed by comparative analysis, or individual sequences can be analyzed for single and
pair-wise nucleotide changes.
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generating a set of 2,068 individual PK features (Figure 6.3). We enumerate the full set of

unique sequences theoretically present in the initial library and calculate their compatibilities

with the 2,068 PK features. The feature with the greatest amount of base pairing (including

G/U) is associated to each sequence. PK compatibilities are similarly calculated for the

sequences observed in the in vitro selection products. Highly enriched PK features could

then be measured by comparing the two distributions. Of the top 10% of PK features by

enrichment, those with the highest absolute representation in the selection library defined

the broad motif categories. Within a set of PK-compatible sequences, a greedy clustering

algorithm is used to divide the set of sequences into the final motifs. The modes of the

di�erent motif sets are further characterized in terms of the abundances and entropies of

their immediate neighborhood in sequence space. In particular, the modes from the highest

abundance motifs are assessed for single-nucleotide and pairwise nucleotide variant sensitivity

to reveal potential base pair position and tertiary interactions within a given PK geometry.

A more granular description of the pipeline for processing and analyzing the sequenc-

ing products will now be given, with the final goal being the identification of high fitness

motifs evolved in the RNA population. Step 1 of the pipeline beings by processing the raw

sequencing fastq file and generates a file containing every unique sequence and its associated

read count. The HiSeq run yielded roughly 56 million sequencing reads after processing,

from which >3 million unique sequences are recovered. Abundances (or read counts) of

these sequences ranged from 1 read to >800,000 reads. 50% of the total sequencing reads

are accounted for by the top 6,752 most abundant unique sequences. We set out to identify

-1 PRF motifs from this dataset with a specific focus on RNA pseudoknots (PKs), which

are known to promote -1 PRF. To assign a PK structure to each sequence, we chose to

assess compatibility with PK configurations without accounting for energetic contributions.

Because this approach is tailored to our restricted sca�old, it is computationally more e�-

cient than absolute prediction. Notably, this approach often leads to PK assignments that

are in agreement with pseudoknot prediction algorithms (such as pKiss [99]). We created
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a hairpin-type (H-type) PK feature space using the starting library’s sequence constraints

and our imposed structural constraints. Every H-type PK can be defined by the lengths of

its segments: (a) stem 1; (b) loop 1; (c) stem 2; (d) loop 2; and (e) loop 3 (Figure 6.3). To

establish the PK position within the library sca�old, we also define the length of the segment

of unpaired nucleotides preceding (5’ to) the PK, the length of the segment downstream of

(3’ to) the PK, and fix the total length to 44 nucleotides.

Using the library sca�old’s constraints and our imposed constraints, a total of 2,068 PK

features are generated. The top 20,000 most abundant sequences from the high-throughput

sequencing, as well as every theoretical starting library sequence, are evaluated for their

compatibility with the PK feature space (step 2 of the pipeline). A sequence is deemed

compatible with a given PK feature if it supported the base pairs present within the PK

feature (allowable base pairs include the standard Watson-Crick A-U, U-A, G-C, and C-

G, along with the wobble G-U and U-G pairs). Of the PK features supported by a given

sequence, the feature with the most base pairs is chosen as the assigned PK feature for that

sequence. In the case of a tie, both PK features are assigned to the sequence. From the

theoretical starting library, 1,507 PK features are selected by at least 1 sequence.

In step 3 of the pipeline, we determined the enrichment of each PK feature by calculating

its pre-selection probability and comparing it to its post-selection probability (Figure 6.4).

Explicitly, pre-selection probability is defined as the total number of sequences from the

theoretical starting library that are compatible with the PK feature divided by the total

starting sequences (≥ 2.68 ◊ 108). Post-selection probability is defined as the total number

of sequencing reads that fit to the PK feature (number of unique sequences in that feature

multiplied by the mean read-count of sequences within that PK feature) divided by the total

sequencing reads (≥ 5.6 ◊ 107). The enrichment factor (EF) is then defined as the ratio of

the post-selection probability to the pre-selection probability. Each PK feature is ranked

according to its EF, and PK features that showed low occupancy (low total read mass) are

removed. Then, PK features ranked within the top 10% of EFs are nominated for primary
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Figure 6.3: Degrees of freedom for pseudoknots: H-type pseudoknots can be defined
by the lengths of their segments, specifically their loops (L1, L2, and L3) and stems (S1
and S2). To fix the position of the pseudoknot within the library sca�old, an upstream
(Up) and downstream (Dn) segment is also defined. The sum of these strand lengths (stem
segments are double stranded) must equal the sca�old’s total length of 44 nucleotides. All
combinations of stand lengths that obey the above constraints are generated, and then
assessed for base pairing compatibility using the sca�old sequence (where N can take on any
nucleotide identity). The resulting PK features that satisfy these requirements define the
set of all possible PKs. For this set of constraints and sca�old there are 2,068 PK features.

sequencing clustering analysis. Primary sequence clustering is performed using a greedy

algorithm, resulting in families of sequences that comprise the motifs. Clusters containing

less than 5 sequences are discarded or ignored. From this analysis 115 clusters are nominated

as final -1 PRF motifs, the top few cases of which are presented in Table 6.1.

6.4 Engineering Frameshifting Riboswitches

Previous studies [230, 93] in vitro and in mammalian cell culture demonstrated the feasibility

of small-molecule-regulated -1 PRF using metabolite sensing transcriptional riboswitches

that adopt frameshift stimulatory pseudoknot conformations in the presence of their cognate

ligands. However, the ligand-binding domains of these bacterial riboswitches are integral

components that cannot be exchanged with other ligand-binding RNA aptamer domains

and are not easily modified to recognize entirely new ligands. As a result, no general design

strategy currently exists for assembling synthetic -1 PRF devices that respond exclusively
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Figure 6.4: Enrichment among PK compatibility equivalence classes: The PK fea-
ture probability is calculated from the theoretical starting library (assuming equal distribu-
tion of sequences) by dividing the number of sequences within a PK feature by the starting
library size (≥ 2.68◊108). Post selection probability is computed by dividing the number of
sequencing reads contained within the PK feature by the total sequencing reads (≥ 6◊107).

to an orthogonal small molecule of choice.

To engineer ligand-responsive devices, we pursued a modular strategy of rationally cou-

pling -1 PRF signals to small- molecule-binding RNA aptamers. For the stimulatory element,

we chose sequence illustrated in Figure 6.5 and the top row of Table 6.1. This sequence was

the second most abundant in the population at the time of sequencing, it displayed high -1

PRF e�ciency in yeast (30%), and it has a confidently predicted pseudoknot fold. As ap-

tamer domains, we chose the theophylline [100] and neomycin [218] binding aptamers based

on their previous successes in in vivo applications [33].

In the OFF switch design (Figure 6.6), the RNA aptamer and pseudoknot sequences
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Figure 6.5: Top sequence for PK selection: The analysis pipeline outputs various statis-
tics for each RNA (see Table 6.1), as well as a sequence logo [43] (underlined segments
represent regions of randomized nucleotides in the starting library). Illustrated above is our
selection of the best PK sequence in the population. It can be analyzed for single or pairwise
nucleotide variants to identify mutation tolerant or intolerant positions, and reveal potential
mutual information.

overlap and thus compete for folding. In the absence of ligand, the active pseudoknot

predominates and stimulates high -1 PRF activity. However, in the presence of ligand,

the folded aptamer is stabilized by ligand binding energy and disrupts the pseudoknot,

resulting in lowered -1 PRF activity. We designed several constructs by varying the length

and composition of the aptamer stems. As a general trend, we found that increasing the

thermodynamic stability of the aptamer lowered frameshift activity. This simple approach

led to the discovery of a high-performing theophylline OFF switch that displays a sevenfold

reduction in -1 PRF in the presence of ligand.

To engineer ON switches, a ‘switching hairpin’ was introduced to compete with the

pseudoknot folding and to reduce basal -1 PRF levels. By design, structural rearrangements

stimulated by ligand-aptamer recognition serve to destabilize the switching hairpin, leading

to coincident refolding of the pseudoknot and restoration of -1 PRF activity (Figure 6.6).

Several constructs were created to tune the relative stabilities of the ON and OFF states by
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Figure 6.6: Ligand-responsive on/o� conformations: (Left) The PK structure selected
for downstream riboswitch engineering. This structure is described in more granular detail
in the top row of Table 6.1. (Right) (a) Architecture of frameshift switch devices. (b) OFF
switch design. In the absence of ligand, the stimulatory pseudoknot (purple) is energetically
dominant, producing high frameshift levels. Ligand binding induces aptamer (gold) folding,
which disrupts the pseudoknot structure, leading to lowered frameshift levels. (c) ON switch
design. A switching hairpin (gray) is installed to disrupt the pseudoknot and lower basal
frameshifting. In the presence of ligand, the aptamer folds and destabilizes the switching
hairpin, allowing the pseudoknot to re-fold and restore frameshift activity.

varying the lengths and compositions of the aptamer stems and switching hairpins. These

constructs were assessed using the NUPACK [231] RNA secondary structure prediction and

tested experimentally in the dual-FP assay to correlate hairpin and aptamer stability to

switch activity. With minimal optimization, this approach led to e�cient ON switches that

respond to theophylline (5.9-fold) or neomycin (4.2-fold).
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6.5 Conclusions

-1 Programmed ribosomal frameshift (PRF) is a naturally occurring phenomenon with great

promise in bioengineering applications. In this chapter we evolved high e�ciency PRF struc-

tures via a randomized starting RNA population and an in vitro selection approach. Due to

the computational expense of performing pseudoknot predictions, we devised a parametriza-

tion of all the pseudoknot geometries accessible from the PreQ1 sca�old and calculated

sequence compatibility with each of those geometries. Our procedure for finding enriched,

high e�ciency genotypes entailed explicitly calculating the probability distribution over the

pseudoknot geometries pre- and post- evolution. The genotype with the highest fitness was

chosen for the construction of ligand-responsive riboswitches, which ultimately were used to

build RNA logic gates.
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Chapter 7

Evolving Sequence Contexts That

Promote Stop Codon Readthrough

In this chapter we describe a directed evolution approach for the discovery of stop codon

readthrough cis stimulatory element. The starting population of RNA genomes are less

biased than in Chapter 6, as they contain no sca�olding and a full 75 randomized positions.

High-throughput sequencing is leveraged as a fitness read-out for a population of candidate

RNAs, where copy number in the overall library is a proxy for RNA fitness. A machine

learning model is the trained using sequence and structural features to discern high e�-

ciency readthrough motifs from decoy RNAs. An application in the prediction of stop codon

readthrough in human 3’ UTR sequences is explored. U (uracil) and T (thymine) are used

somewhat interchangeably throughout the chapter, with the understanding that the original

sequences are RNA while their characterization by deep sequencing requires the construction

of a cDNA library.

Material presented in this chapter will be published, wholly or in part, in the manuscript “Large scale
profiling of stop codon readthrough RNA signals and their identification in human 3’-UTRs” (in preparation)
in collaboration with A.V. Anzalone, A.J. Lin, R. Rabadan, V.W. Cornish
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7.1 Stop Codon Readthrough: Natural and

Engineered

Alternative modes of translation are common in the world of viruses, whose limited genome

size implies extreme seletion pressures at each position. Reprogramming canonical trans-

lation can expand the coding capacity of a nucleic acid. Non-canonical translation gener-

ally divies into two categories: initation-related mechanisms (internal ribosome entry, leaky

scanning, non-AUG initiation, reinitiation) and elongation mechanisms (frameshifting and

readthrough). Stop codon readthrough (RT) is especially interesting because it is not limited

to RNA viruses, having recently been observed in fungi [72] and metazoa [104]. Both cis-

factors (sequence and structural elements on the transcript) and trans-factors (cytoplasmic

proteins or metabolites) may be involved in the RT phenomenon, complicating the dissec-

tion of exact biochemical mechanisms. Even in the simpler case of cis-factors, we know from

viruses that RT can be mediated by sequence (tobacco mosaic virus) or structure (murine

leukemia virus). Structural motifs are, of course, more di�cult to detect purely from the

reference genomes of organisms.

The first bonafide RT-promoting motif was discovered in the tobacco mosaic virus (TMV) [164]

and related plant viruses [191], implying that RT may be a physiological feature of eukary-

otic biology. The consensus TMV motif is purely sequence-based, CARYYA, where R =

{A,G} and Y = {C,T}. Structural motifs have also been discovered and characterized, for

example a stem-loop 8 nucleotides downstream of a UGA stop codon in Colorado tick fever

virus [143] or a pseudoknot 8 nucleotides downstream of a UAG stop codon in Moloney

murine leukemia virus [221]. In general UGA is believed to be the most leaky stop codon

and UAA the least. VEGFA, a human gene with a UGA stop codon, was recently shown [59]

to undergo RT to produce an anti-angiogenic isoform relevant to colon adenocarcinoma.

As the list of genes and species exploiting RT expands, we are faced with the impor-

tant technical challenge of predicting RT from sequence and ultimately understanding its
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biochemical determinants. In the fields of bioengineering and chemical biology it is of

great interest to incorporate unnatural amino acids [126] at particular codons. Elucidat-

ing the natural mechanisms for incorporating near-cognate amino acids at stop codons (the

very definition of RT) would seemingly empower the engineering of translation more e�ec-

tively. Two existing methodologies for identifying cis-RT elements are based on primary

sequence features alone: the first calculates under-utilized nucleotide contexts surrounding

stop codons [219], while the other detects sequence conservation and protein coding potential

downstream of stop codons in the 3’ UTR [104]. Both of the these approaches make strong

assumptions, such as a) evolutionary conservation of the 3’ extension or b) even that RT is

a rare event whose signature should be depletion of depletion of certain nucleotide contexts

from negative selection. In this chapter we prefer to take the approach of evolving RT from a

population of randomized starting RNAs. We leverage the same mRNA display technology

detailed in Chapter 6, combining it with a eukaryotic cell lysate for an in vitro translation

system.

7.2 Design and Read-Out of In Vitro Evolution

To enrich eukaryotic RT motifs by in vitro selection, we design a strategy based on mRNA

display, which covalently links translation products to their encoding mRNAs [174]. We

demonstrated in the previous chapter that mRNA display can be used to identify eukaryotic

-1 programmed ribosomal frameshifting motifs from large libraries of RNA sequence variants

when translated in rabbit reticulocyte lysate [9]. With such a strategy, libraries of RNA

variants can be cycled through multiple rounds of selection, enriching at each stage for

the desired reprogramming behavior (Figure 7.1). Because selection relies on a distance-

dependent puromycin fusion reaction [127], mRNA display e�ciently selects for translation

reprogramming signals that enable the ribosome to bypass in-frame termination codons.

We first validate the mRNA display selection platform by establishing depletion of stop
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Figure 7.1: Directed evolution conditions and the selection construct: Three rounds
of selection, purification, and reproduction are performed upon an initial population of
randomized RNAs. A rabbit reticulocyte lysate is used as the in vitro translation system.
(A) Purification is achieved via –-FLAG antibody as well as a nickel column. Reproduction
is implemented via a noisy PCR to permit the acquisition of mutations during expansions
following population bottlenecks. (B) Selection is based upon the RNA’s ability to induce a
stop codon readthrough event, which permits the full translation product including hexa-His
tag to be produced. A puromycin reaction is used to covalently link the RNA genotype with
its peptide product. (C) The selection construct is highly unbiased in that it contains 75
fully randomized nucleotides 3’ to the stop codon.

codon containing sequences. A single round of selection is performed on a library of mRNAs

containing 75 randomized nucleotides (70% probability of at least one in-frame stop codon).

Consistent with prior studies [35], we observe complete depletion of stop codon contain-

ing mRNAs in sampled selection products (Figure 7.2A). To ascertain the fate of mRNA

transcripts that contain a programmed stop codon but no readthrough signal, one round of

selection was performed on a sequence containing a single in frame UAG stop codon. Im-

pressively, sequences containing mutations to the stop codon were e�ciently enriched, with

more than half of the sampled sequences mutating around the in frame stop codon (Figure

7.2B).

To demonstrate that authentic reprogramming signals can be enriched from a background

of inactive sequences, mock selections were performed using the murine leukemia virus (MLV)

stimulatory pseudoknot [92, 221]. Selections were conducted by varying the input ratio of

the active MLV mRNA to the inactive control mRNA. The results revealed that the active

MLV sequence is significantly enriched at an estimated level of approximately 30-fold during

142



Figure 7.2: Directed evolution control enrichments: (A) No sequences contain in-frame
stop codons after a single round of evolution, demonstrating purifying selection. (B) With
no randomized positions 3’ in the vicinity of the stop codon, the easiest fitness-conferring
mutation for the contruct is to alter the stop codon itself. Profound enrichment of mutations
at the stop codon is seen after one round of evolution, demonstrating strong positive selection.
(C) The MLV pseudoknot structure is a bonafide RT promoting element, and its enrichment
is measurable in a larger population of inactives at di�erent starting concentrations.

a single round of selection (Figure 7.2C). Together, these results confirm that the in vitro

mRNA display selection is capable of responding to RT motifs, and that the selection strategy

is capable of enriching active RT elements from a pool composed largely of inactive sequences.

We next set out to enrich RT motifs de novo from a large library of randomized RNA

sequences. Because RT stimulating elements can exist in the nucleotides directly adjacent to

the stop codon as well as several nucleotides downstream as hairpin or pseudoknot structures,

we choose to encode a library of 75 randomized nucleotides directly adjacent to a UAG codon.

Though this vast theoretical library size (≥ 1045) has exceedingly low coverage from the 1013

unique RNA molecules submitted to the first round of selection, we anticipate that diverse
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stimulatory structures will be accessible from this library.

After the initial round of selection, sequences containing mutations to the stop codon

were enriched, as was observed in the earlier control selections. To prevent further enrich-

ment of these sequences, primers used for PCR amplification were designed to contain the

entire 5’ segment of the selection construct leading up to and including the stop codon.

Following three rounds of selection, cloning and sequencing of a small sampling of the li-

brary shows enrichment of a hexanucleotide motif directly adjacent to the UAG stop codon

with a consensus sequence of CAAYYA. Significantly, this conforms to the well-described

TMV motif and the previously identified CARNBA motif from yeast [142], suggesting that

sequences promoting stop codon readthrough have been enriched.

To study the RT activity of the selection products in vivo, we implement a dual-fluorescent

protein (dual-FP) reporter assay in saccharomyces cerevisiae, analogous to the reporter de-

scribed in the previous chapter (Figure 7.3A). Post-selection library members are cloned

between GFP and mCherry ORFs, and readthrough activity is assessed by the ratio of GFP

and mCherry fluorescence signals. Sampled yeast colonies demonstrate a range of RT activ-

ity, with the most e�cient sequence reaching nearly 20% RT (Figure 7.3B). Notably, while

many sequences contain the CAAYYA motif, these sequences do not always exhibit equiv-

alent readthrough e�ciencies. This suggests that factors beyond the hexanucleotide motif

are contributing to RT levels in the enriched sequences.

7.3 Modeling Readthrough E�ciency from Sequence

and Structure

In order to probe the full population structure of RNAs after 3 rounds of evolution, we

perform Illumina sequencing at a depth of ≥ 108 reads with 100bp read length. At this

length we capture the entire RNA genome on a single read, which preempts the issue of

haplotyping mutations and dramatically increases our statistical power. Interestingly, a sig-
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Figure 7.3: Individual colonies assayed post-selection: A dual fluorescent protein re-
porter cassette is used to assay the RT e�ciencies of indiviual 3’ sequence contexts. This plot
confirms that highly enriched sequences from the directed evolution experiment are func-
tional in vivo, as we detect non-zero levels of the mCherry channel for multiple constructs.
The fluroescence detection lower limit in this reporter system is ≥0.2%.

nificant fraction of the reads encode an internal methionine followed by a FLAG-like peptide

sequence which we interpret as a site for internal initiation of translation downstream of the

stop codon. Such an adaptation would be highly fitness-conferring since it would enable that

genotype to survive a�nity purifications and propagate to subsequent generations. These

sequences are separated in our computational analysis and will form a negative training set,

or “decoy” set. Essentially these are sequences that likely have no ability to promote RT

and are cheating the selection mechanism.

The first and easiest analysis is primary sequence, where we calculate enriched or depleted

codons along the length of the contruct. The first codon downstream of the stop (position

+1 to +3) shows profound enrichment for CAA, with CAG, CCA, and CTA also highly

represented. The second codon is highly enriched for all combinations of YYA, along with
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CGA. The third codon shows some enrichment for CAG. These results, as well as the cor-

relations between codons at di�erent positions, are plotted in Figure 7.4. The edge weights

in the network visualization encode the degree of overlap between codons at each position,

and we see that the strongest correlation is between 1_CAA and 2_TTA or 2_TCA. This

clearly recapitulates the naturally occurring TMV motif in the first 6 nucleotide positions,

but with the added resolve epistatic interactions in the proximal nucleotide context. We

extend our calculations of codon usage beyonf the 3 most proximal codon positions, and

the traces can be seen in Figure 7.5. It is known that cytosine at the third position is not

preferred in mammalian codons [60], and our hypothesis of likely bias in the codon usage

of the in vitro translation system is confirmed by the data. The traces all share a 4-letter

periodicity with a wobble cytosine associated with decreased fitness. The over-represented

codons correspond to the amino acids aspartic acid or glutamic acid (GA*), glycine (GG*),

and valine (GU*).

Next we examine the ensemble of RNA secondary structures formed in the high copy

number RT genotypes as well as the decoys. Unlike in Chapter 6 where we focused on

H-type pseudoknots, in this analysis we focus exclusively on stem-loop prediction which

is significantly more e�cieny computationally. We use the ViennRNA 2.0 software [129]

to perform stem prediction (the “rnafold” utility was used) with default parameters. It is

worth mentioning that we first append the 60 nucleotides of fixed RNA sca�old downstream

of the 75 randomized positions because applying RNAfold, since it is quite common for the

randomized library to base pair with fixed sequence downstream. The predicted structures

are represented in the standard dot-brack format, where ‘.’ denotes an unpaired nucleotide

and ‘(’ and ‘)’ denote base paired positions in the sequence. RNAfold also predicts the

minimum free energy (MFE) for each ensemble of structures, the probability of base pairing

at each position, and the entropy at each position. Summary distributions on these quantities

are displayed in Figure 7.6, where we stratify the RNAs into the decoy set (negative examples,

cheated the selection mechanism) and the RT set (proper high-e�ciency RT motifs). The
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Figure 7.4: Sequence enrichment proximal to stop codon: (A,B) A statistical analysis
of the first 9 nucleotides immediately downstream of the stop codon reveals striking enrich-
ments and correlations. The first 3 positions are dominated by the motif CAA, while the
next 3 positions are highly enriched for YYA. (C) Targeted experimental perturbations in
the sequence neighborhood of the motifs generated by the primary sequence analysis.

distributions are quite resolved for the MFE, with the RT set possessing more stable stems

and therefore lower MFE. Similarly, the distribution of positional base pair probabilities

is more peaked near 1.0 for the RT set than the decoy set. Most interesting though, is

the position at which stem formation starts across the two sets. The decoy set has an

unremarkable distribution of start positions, monotonically decreasing as we move along the

genome. The RT set, on the other hand, shows a characteristic spike in probability around

the 8th nucleotide. We recall that the structures in Colorado tick fever virus and Moloney

murine leukemia virus started at the 8th nucleotide. This association is not surprising as

this position is close to the mRNA entry tunnel on the ribosome, as determined by ribosome
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Figure 7.5: Codon bias along the construct: We expect some degree of codon bias in the
data due to varying abundances of amino acid specific tRNA molecules in the mammalian cell
lysate. The over-represented codons correspond to the amino acids aspartic acid, glutamic
acid, glycine, and valine.
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footprinting [121], and therefore may pose a steric hindrance to translation. To further

explore this hypothesis, we plot the positional base-pairing probability and the positional

entropy over the length of the randomized genome in Figure 7.7. The decoy set is plotted

in dashed lines and displays no interesting behavior. The RT set plotted in solid lines, on

the other hand, shows marked divergence of entropy and base-pairing probability between

approximately nucleotide positions 8-20. This is range of positions we expect stable stem

formation to be taking place, and perhaps driving RT.

In preparation for training a machine learning model to discern the RT and decoy sets

of genomes, we must define a relevant feature space. Our exploratory analysis thus far

indicates the importance of the nucleotides in the proximal 3’ positions (likely within the

ribosome tunnel), in addition to stem formation in the cytosolic portion of the RNA further

downstream. We settle on a hybrid sequence/structural space of features, in which the first

6 positions are encoded in a position-specific-nucleotide manner and the characteristics of

a potential stem are summarized with 6 numbers. The stem features include 1) starting

position, 2) length, 3) %GC base pairs, 4) average base pair probability, 5) variance of base

pair probability, and 6) number of bulge nucleotides. These features are depicted in Figure

7.8.

Whether each genome is contained in the decoy set or the RT set defines a binary labeling

of the data and permits the training of a binary classifier. Analogous to the development of

Pegasus in Chaper 2, we train an ensemble of gradient boosted decision trees to discriminate

the label from the sequence and structural features. The model achieves an AUROC of

0.99 on held out data under 10-fold cross validation after 100 boosting rounds using depth-

3 decision trees as base learners. The most informative feature is 1_C. Within the top

10 features are all six structural features, in addition to nucleotide identities 1,2,3,6 of the

classic TMV motif. The definition of feature importance scores can be found in Chapter 2,

along with an overview of gradient tree boosting. The training performance is depicted in

Figure 7.9 and the decision tree from the first boosting round is depicted in Figure 7.10.
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Figure 7.6: Structural predictions for RT and decoy sequences: Three key quantities
resolve the positive RT examples from the negative decoy examples. In order of plotting,
these are: minimum free energy (MFE) of predicted stem, average base pairing probability
along predicted stem, and the starting nucleotide (position) for the predicted stem.
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Figure 7.7: Positional entropy and base pairing at mRNA entry tunnel: To further
explore the signal we observe in base pairing and stem formation (Figure 7.6), we compare
the positional entropy and base pairing probability along the RNA sequence. The decoy
set shows no interesting behavior for either quantity, while the RT curves strongly diverge
around the 8th nucleotide. A high degree of stem formation is initiated in this region,
corresponding to a rise in base pairing probability and a decrease in entropy at that locus.
This region of the RNA may be close to the entry tunnel in the eukaryotic ribosome, given
the typical side of mRNA footprints [121].

The shading of the nodes in the decision tree denotes the concentration of positive (orange)

vs. negative (white) labels.

7.4 Predicting Readthrough in Human Transcripts

from 3’UTR Context

A benefit of our feature space construction is that it generalizes to RNA sequences outside

of our randomized library. The most obvious data on which to apply the trained classifier

are 3’ UTR sequences from human (and model organism) transcriptomes. We collect all

annotated human 3’ UTR coordinates from the UCSC table browser [105] and extract their
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Figure 7.8: Structural component of RNA feature space: Based on our exploratory
analysis of stable stem formation proximal to the ribosome tunnel, we define a feature
encoding that captures potential structural determinants of RT e�ciency.

Figure 7.9: Boosting results for binary RT classification: (Left) Feature importances,
as defined in Chapter 2, are plotted in descending order. We recover an intuitive ranking that
includes key nucleotides of the known TMV sequence motif, as well as structural features.
(Right) The loss function is plotted over the boosting rounds for both the training split and
the test split (10-fold cross validation).
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Figure 7.10: Decision tree from first boosting round: The base learners in the boosting
algorithm are depth-3 decision trees and the one visualized here comes from the first boosting
round. As expected from the feature importance scores, the question 1_C is at the root of
the decision tree, denoting the binary-valued statement “the first nucleotide is C.” We note
that most of the structural features are not invoked in the first boosting round.

corresponding nucleotide sequence from the hg19 genome assembly using bedtools [168].

UTR sequences are trimmed to the 135 nucleotides 3’ to the stop codon, and hairpin struc-

ture prediction is performed using RNAfold [129] with default parameters. Position-specific

nucleotide information and predicted structures are combined into the same feature vector

representation described for the model training above. The trained classifier is applied to

the featurized UTRs and the distribution of predicted RT probabilities is visualized in Fig-

ure 7.1. As expected, the vast majority of transcripts are predicted to have no RT, while a

narrow tail of higher scoring UTRs are interesting from the perspective of uncovering novel

regulation of translation in humans. Using the dual fluorescent reporter described above, we

have validated certain predictions (Table 7.1) from the trained classifier as well as positive

and negative controls from the literature. Validations are performed in transfected human

(HEK293) cells, with a lower limit of RT detection of approximately 0.5%.

A recent study [130] relied on PhyloCSF [124] to detect regions of sequence conservation

in the immediate vicinity of a UGA stop codon, and subsequently used a luciferase assay in

HEK293 cells to validate predicted genes. The main results of their work were a recurrent RT-

promoting CTAG motif immediately 3’ to the stop codon and the confirmation of in vivo RT

in the transcripts of MAPK10, AQP4, OPRK1, and OPRL1 (guiding our choice of controls).

They measured no RT experimentally in one of their computationally predicted genes, ACP2,
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Figure 7.11: Application of trained classifier: (Left) The 0.99 AUROC of the classifier
on held out data during training does not indicate the size of the classification margin. We
demonstrate the high degree of resolution in the labels for the known positive (RT+) and
negative (decoy) training examples, while also plotting the predictions for the human 3’
UTR data. (Right) We plot the distribution of scores associated to all annotated human 3’
UTR sequences on a log scale to demonstrate the relatively small set of UTR contexts that
are scored highly in the eyes of the classifier.

which was thus therefore intended to be our negative control. Our computational method

also scores ACP2 among the highest of all human transcripts (Table 7.1), but surprisingly

we experimentally observe a 2.43% RT e�ciency – well above our detection limit. The key

di�erence with the previous study’s measurement was their choice of validation construct

which truncated a critical 3’ stem, while our construct extends far enough into the UTR to

capture the entire structural motif. ACP2 should therefore have been a true positive rather

than a false positive of the PhyloCSF analysis, and our methodology illuminates the precise

region of the UTR that mediates the RT.

Strikingly, we also detect greater than 5% RT e�ciency in the transcripts of the vitamin

D receptor (VDR). The alternative translational isoform of VDR produced by RT contains

an additional 66 amino acids, 17 of which are prolines (26%). This predicted isoform was

directly visualized on western blotting of N-terminally FLAG-tagged VDR constructs. This

extended translational isoform is not described in the literature at present, thus raising

questions about its stability in vivo. In terms of a potential biological role, C-terminal

proline-rich tails have been implicated in nuclear localization [161], which could imply a
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Figure 7.12: Validation of RT e�ciency in human cell culture: HEK293 cells were
transfected with constructs for selected mRNAs along with their 3’ UTR. RT-1 represents
the negative control, and its confidence interval for RT e�ciency constitutes the lower de-
tection limit for evaluating RT e�ciencies of the other constructs. Our ACP2 construct
is distinguised from trACP2 which is the shorter, truncated construct assayed previously
in [130] and found to have no RT. Detailed, feature-level information for the human gene
constructs is contained in Table 7.1.

testable hypothesis that the extended VDR would predominantly be observed in the nucleus

as opposed to the cytoplasm.

7.5 Conclusions

Stop codon readthrough (RT) is increasingly being appreciated as a physiological regulatory

mechanism of translation. Both primary sequence and secondary structure contribute to

promoting RT, although the exact biochemical basis of the phenomenon is not known. We

employ a large, randomized population of RNAs and an in vitro selection to drive the clonal

evolution of the populations toward high e�ciency RT. A machine learning model is trained

to discriminate high e�ciency RT from decoy RNAs, and our feature space contruction is
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broadly applicable to naturally occurring 3’ UTRs. Two biochemical principles that emerge

are that stem formation near the entrance of the ribosome tunnel seems to correlate with

RT, and that the TMV motif of CARYYA in the first 6 positions is the dominant RT-

promoting sequence element. Predicted RT e�ciency has been calculated for all human 3’

UTRs and much of the future work on this project will involve experimental validation of

highly scored transcripts. The novel observation of an extended translational isoform of the

calcitriol receptor, VDR, also o�ers many opportunities for downstream characterization.

If 5% of endogenous calcitriol receptors are in fact RT isoforms, and if the 66 amino acid

C-terminal extension confers some di�erential function, then our methodology would have

uncovered a new wrinkle in endocrine physiology.
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Chapter 8

Impressions

Large scale sequencing is becoming a foundational technology in the pipelines of both basic

and applied life science projects. This work highlights its utility in uncovering evolutionary

associations between mutation and disease, as well as its role in evolving nucleic acids for

engineering purporses. In Part I we discussed the detection of oncogenic gene fusions and

tumor-associated viruses in the context of whole transcriptome sequencing. In Part II we

explored approaches for visualization and statistical summarization of clonal evolution in

the context of tumor and viral genome surveillance. In Part III we illustrated an engineering

approach to clonal evolution, wherein populations of nucleic acids were iteratively evolved

for their ability to reprogram protein synthesis.

The study and exploitation of genetic evolution has become more quantitative in recent

decades, with the simultaneous revolutions in molecular biology and digital computing of the

latter 20th century driving the trend. The most obvious consequence of biology’s transfor-

mation to a quantitative discipline is the rising demand for data analysis infrastructure, par-

ticularly in the area of high-throughput sequencing. Part I showcased two high-throughput

data analysis approaches that typify current needs in translational genomics. Today’s tech-

nologies for deep molecular profiling of genetic material are providing data faster than ever

before, but there is more to quantitative biology than just data. As this work made clear, vast
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nucleotide-resolution data sets can often point to surprisingly simple mathematical objects,

and the degrees of freedom of these objects define intuitive spaces for biological hypothesis

formation. In Part II the objects were somewhat abstract, phylogenetic trees and geometric

spaces thereof, while in Parts I and III the objects were more concrete, namely DNA fusions

and RNA pseudoknots and hairpins.

A crucial step in the development of predictive models in biology is identifying relevant

mathematical structures and relevant degrees of freedom in general. I am confident that

computational approaches in this spirit will continue to find fertile ground in life science’s

open problems.
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Appendix: H3N2 Antigenic
Replacement Distributions

The distributions of trees underlying the tabulated summary statistics and vaccine e�ec-
tiveness classifier presented in Chapter 5 are visualized here as point clouds in P�3. All
triplets of consecutive flu seasons are plotted. Trees colored in red have as their most recent
sample a hemagglutinin (HA) isolate of the same antigenic cluster (A.C.) as that of the
strain chosen for the subsequent season’s vaccine formulation. Trees colored in black have
as their most recent sample a HA isolate of a di�erent A.C. than that of the strain chosen
for the subsequent season’s vaccine formulation. Certain triplets of consecutive seasons can
only produce red points (9 out of 19), since there is only one circulating A.C. observed at
the most recent time point. In those seasons with a single observed A.C. the vaccine strain
is never updated (since there is no circulating HA evidence that a change in the vaccine
is warranted). The other 10 out of 19 three-season windows possess point clouds of both
colors, since their most recent time point contained more than one observed A.C.

Figure 1: Three-season windows, 1993-1998.
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Figure 2: Three-season windows, 1996-2001.

Figure 3: Three-season windows, 1999-2004.

Figure 4: Three-season windows, 2002-2007.
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Figure 5: Three-season windows, 2005-2010.

Figure 6: Three-season windows, 2008-2013.

Figure 7: Three-season windows, 2011-2016.
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