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ABSTRACT

Product Line Design, Pricing and Framing under

General Choice Models

Anran Li

This thesis handles fundamental problems faced by retailers everyday: how do con-

sumers make choices from an enormous variety of products? How to design a product

portfolio to maximize the expected profit given consumers’ choice behavior? How to

frame products if consumers’ choices are influenced by the display location? We solve

those problems by first, constructing mathematical models to describe consumers’ choice

behavior from a given offer set, i.e., consumer choice models; second, by designing effi-

cient algorithms to optimally select the product portfolio to maximize the expected profit,

i.e., assortment optimization. This thesis consists of three main parts: the first part solves

assortment optimization problem under a consideration set based choice model proposed

by Manzini and Mariotti (2014) [Manzini, Paola, Marco Mariotti. 2014. Stochastic choice

and consideration sets. Econometrica 82(3) 1153-1176.]; the second part proposes an ap-

proximation algorithm to jointly optimize products’ selection and display; the third part

works on optimally designing a product line under the Logit family choice models when a

product’s utility depends on attribute-level configurations.
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Chapter 1

Introduction

1.1 Motivation

Walmart removed 15% of its SKUs in 2008 because a survey showed that customers would

like less cluttered stores. However, it was forced to roll back most of the changes due to

significant sales decline. A gelato shop in Santa Monica, California, overwhelmed its cus-

tomers with over 100 flavors. As evidenced by Walmart and the gelato shop, getting the

right subset of products offered to customers is not easy, yet it is critical to retail success.

This dissertation focuses on some of the most important questions asked by retailers: which

set of products to offer, at what prices, and how to present items in the subset to customers?

The problem of finding an optimal subset of products that generates the highest ex-

pected revenue is referred to as the assortment optimization problem, or equivalently, the

product line selection problem. Picking the best assortment is a balancing act, as adding an
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appealing product to an assortment might cannibalize the sales from more profitable items

in the current offer set.

Assortment optimization problem cannot stand apart from consumer choice models.

With the ability to capture how demands are substituted among products, choice models are

key to assortment optimization. An effective choice model should strike a delicate balance

between the accuracy in capturing the purchase behavior and the efficiency in estimating

model parameters and optimizing the assortment. Most existing proposals are based on the

assumption that customers can maximize their utilities by rationally analyzing all available

items and picking the best, for example, the Multinomial Logit choice model (MNL), and

the Nested Logit choice model (NL). However, empirical works (Ghose and Yang 2009,

Goeree 2008) provide the evidence of bounded rationality, indicating that consumers have

limited ability to analyze all items. Therefore, the notion of consideration set — a subset

of the offered assortment over which a consumer will make utility comparisons before ar-

riving at a final purchase decision — has gained wide acceptance since its introduction by

Howard and Sheth (1969). This is because that consideration sets explain, behaviorally,

consumers’ limited ability to process or acquire information; methodologically, it has been

shown that ignoring consideration sets may lead to biased parameter estimates (Chiang,

Chib and Narasimhan 1999). Chapters 2 and 3 focus on consideration set based choice

models, while they are differentiated by the process by which consideration sets are formed.

Chapter 2 looks at the formation of consideration sets based on consumers’ attentions
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associated with products. A common experience for consumers when they go shopping

is that they tend to pay more attention to certain goods. For example, clothes with bright

colors might grab a customer’s eyes at first sight, so the customer might be more likely to

bring them to the fitting room. Manzini and Mariotti (2014) propose a random considera-

tion set based choice model (RCS) where consideration sets are formed stochastically with

each product entering the consideration set with a certain probability, and the probability

measures how much attention is attached to that product. The other salient feature of the

model is that all consumers have a common preference ordering for the products, so the

differences in choices are entirely due to consideration sets heterogeneity. This behavioral

assumption is consistent with empirical findings (Jagabathula and Rusmevichientong 2016)

and is further supported by our airline partner’s transactional data showing that consumers

always tend to buy the cheapest ticket available. While the economics literature Manzini

and Mariotti (2014) focuses on rationalizing the choice model, we are concerned with its

operational applicability. We show how to recover the full ordering and attention probabil-

ities of the RCS model from transaction data. Empirical testing of the RCS model on our

airline partner’s data shows that it outperforms the Multinomial Logit model in the Chi-

square measure over all the instances; compared with the Mixture of Multinomial Logit

model the Chi-square is reduced by 15.6% on average, revealing that a choice model devel-

oped from a behavioral perspective can model choices better than a traditional parametric

model. We show that an assortment that maximizes expected revenues can be found effi-

ciently by dynamic programming. Moreover, the dynamic program can be adapted to solve

several extensions, like the cardinality constrained assortment problem and the problem of
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finding all efficient sets, i.e., the collection of optimal assortments under various marginal

costs, which demonstrates the potential practical usage of the RCS model.

Chapter 3 is motivated by another common experience that consumer choices are influ-

enced by how the products are framed, or displayed, referred as the framing effect, meaning

that people react to a particular choice in different ways depending on how it is presented.

This phenomenon is more common in the ecommerce online retail setting: it has been

observed that consumers’ attention to a display decreases exponentially with the display’s

distance to the top (Feng, Bhargava, and Pennock 2007). During online shopping, it is

cognitively harder for a typical consumer to visit sellers who are listed at the bottom of a

web page, before or in addition to visiting those who are listed at the top. Thus, positioning

a brand or product at a top position on a listing can improve both consumer attention to

the brand, and consequently, consumer selection of the brand. Despite substantial evidence

suggesting the impact of framing on consumers’ choice outcome, there are very few mod-

els that have attempted to capture these effects. In this chapter, we introduce one of the first

models for product framing and the first one for pricing that accounts explicitly for these

effects. We present a model where a set of products are displayed, or framed, into a set

of virtual web pages and build up the model based on consideration sets. We assume that

consumers consider only products in the top pages, with different consumers willing to see

different numbers of pages. Consumers select a product, if any, from these pages following

a general choice model. Products are organized into virtual pages. Each page can hold a

finite number, say p, of products. A consumer will examine only the first X pages, where
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X is a random variable that may be personalized to the consumer’s profile. The consumer

forms a consideration set consisting of only products in the examined pages. From this

consideration set, consumer makes a choice according to a general choice model. Thus,

products that are placed in earlier pages are more likely to be considered, and therefore

purchased, than those that are placed in later pages. We show this problem is NP-hard to

solve and propose fast, easy-to-implement algorithms with worst-case performance guar-

antees.

Assortment optimization and pricing attract much attention in business for its potential

to increase profits. It is also attracting the attention of people in academia interested in

looking at this problem with new ideas and new tools. Most of the current research solves

the problem at the stock-keeping units (SKUs) level, assuming the set of potential products

is given, i.e., they are working on product line selection problem. However, the product

manager cares not only about improving existing products; but also discovering potentially

lucrative new products. Yet this problem cannot be analyzed using the current SKUs based

assortment models due to the ambiguity of the potential product set. Chapter 4 addresses

the product line design and pricing problem. To disentangle this problem, we need to:

first, construct a choice model that is able to forecast demand of existing as well as new

products; second, to jointly search for assortments and prices to maximize the profit. Yet

the difficulties are two fold: to forecast demand of products that has never existed and

to design products from a large number of attributes that can be configured at different

quality levels. Based on the available choices, the number of potential products are in
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the billions and this makes the product line optimization problem very challenging. For

example, Hewlett Packard (HP) used to apply hedonic regression to extract economic value

of the attribute-level and estimate a new configuration’s market price, but this procedure

neglects the impact of a product configuration on consumers’ demand. For example, a

customer who buys a 17 inches HP laptop with core i7 processor at $1500 may choose to

buy a 15 inch Mac book, if HP’s price is increased by 5%. To deal with this problem, we

apply an attribute-level dependent random utility maximization choice model positing that

a consumer’s utility for a product is not a direct function of the product itself, but instead

depends on the product’s attributes and the consumer’s own tastes. Given a consumer’s

attribute-level’s taste, we are able to forecast a new product’s demand, as a new product

merely is a new combination of attributes. We construct a graphical representation of the

configurations and discover that optimal designs can be efficiently found by network flow

algorithms under Multinomial Logit and Nested Logit models.

1.2 Background

In this section, we briefly introduce the dynamics of the choice models we study and the

formulations of assortment problems.
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1.2.1 Consumer Choice Models

Logit Family Models

The MNL model proposed by McFadden (1974) has attracted tremendous theoretical and

empirical interests. It is derived from a random utility model where the random compo-

nents are independent Gumbel random variables. The MNL model can characterize many

choice situations conveniently, since it can provide a closed form for the underlying choice

probability. Although criticized because of the independence of irrelevant alternatives (IIA)

property, i.e., preferences for item A or B should not be changed by the inclusion of item

X, it has remained a sustained assumption in many applications.

The standard MNL model has the following structure:

Ui = vi + εi,

where Ui is the random utility of product i, which is equal to the sum of the expected utility,

denoted by vi, and the εi are independent standard Gumbel random variables.

Under this utility structure, the probability of a customer choosing product i from assort-

ment S is

πi(S) =
Vi

V0 +∑ j∈SVj
,

where Vj = exp(v j) is the attractiveness of product j; V0 = exp(v0) is the attractiveness of

the outside alternative.
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The Multinomial Logit model has many applications due to its ease of estimation and opti-

mization. Standard optimization packages can efficiently estimate parameters of the MNL

model by maximizing the log-likelihood function, as the objective function is concave (Mc-

Fadden 1974). Davis, Gallego and Topaloglu (2014) show that the assortment optimiza-

tion can be easily solved by a linear program and the linear program can be extended to

incorporate all the totally unimodular side constraints. Yet, the independence of irrele-

vant alternative (IIA) property (Luce 1959) is a serious limitation, meaning the ratio of

the probabilities of choosing any two alternatives is independent of the attributes of any

other alternative in the choice set. Debreu(1952) was among the first economists to discuss

the implausibility of the independence from irrelevant alternatives assumption. The Nested

Logit (NL) model, introduced by Williams (1977), has been developed to relax the assump-

tion of independence between all the alternatives. Under the nested logit model, customers

first select a nest, i.e., a subset of offered products that shares some common features, and

then, an alternative within the selected nest, thus NL allows different substitution patterns

within and between nests.

Given the nest structure, the conditional probability of an incoming consumer selecting

product i from nest n under assortment S (let us call it product in for short) follows the

MNL form

π(in|n,S) = exp(vin/γn)

∑ jn∈Sn exp(v jn/γn)+Vn
,

where Sn is the subset of offered products belonging to nest n, and the probability of select-

ing from nest n is
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π(n|S) =
(∑ jn∈Sn exp(v jn/γn)+Vn)

γn

∑n′(∑ jn′∈Sn′
exp(v jn′/γn′)+Vn′)

γn′ +V0
.

The probability of purchasing product i from nest n will be the product of these two

probabilities

π(in|S) = π(in|n,S)π(n).

NL model assumes correlations of valuations among alternatives within a same nest

while independence of valuations among products from different nests. γ measures the

relative independence of the alternatives within the same submarket. The choice model pa-

rameter estimation becomes difficult because the log likelihood function is no longer jointly

concave on expected utility v and the dissimilarity parameter γ. As a result, McFadden and

Train (2000) recommend an iterative approach, which alternates between optimizing v and

γ. Convergence to a stationary point is guaranteed because each sub-problem has a concave

objective. Davis, Topaloglu and Gallego (2014b) show that the assortment problem under

NL model can be solved by a linear program when the nest dissimilarity parameters of

the choice model are less than one and the customers always make a purchase within the

selected nest. Relaxing either of these assumptions renders the problem NP-hard.

Random Consideration Set Model

Let N ≡ {1,2, ...,n} be the set of products. The random consideration set (RCS) model

developed by Manzini and Mariotti (2014) is characterized by a strict preference order ≺

on N, and by a vector λ of positive attention probabilities. We assume without loss of
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generality that the products are labeled so that 1 ≺ 2 ≺ 3 ≺ ... ≺ n. For any subset S ⊂ N,

the probability that product i ∈ S is selected is given by

πi(S) = λiΠ j�i, j∈S(1−λ j) ∀ i ∈ S,

with πi(S) = 0 if i /∈ S. In words, i ∈ S is chosen if and only if i is the highest ranked

product in the random consideration set C(S) that results from paying attention to product

j ∈ S with probability λ j.

Clearly πi({i}) = λi > 0 and 1−λi = π0({i}) where 0 denotes the no-purchase alterna-

tive. This suggests that consumers include product i in a consideration set with probability

λi equal to the probability that product i is preferred to the no-purchase alternative. But the

λis may also arise from a filtering process that may entail several steps with λi measuring

the probability that all steps in the process have been passed. Given a set S, consumers will

select the no-purchase alternative only if no product in S is included in the consideration

set. As a result,

π0(S) = Π j∈S(1−λ j),

with π0(S) > 0 if and only if all the products j ∈ S have positive inattention probabilities

1−λ j > 0.
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1.2.2 Assortment Problems and Its Variants

The assortment problem chooses a single set of products offered to customers to maximize

the expected revenue or profit. Formally speaking, the retailer needs to select a subset S

from a global product set N = {1, ...,n}, where each product i can generate revenue ri.

Therefore the assortment problem can be formulated as follows:

max
S⊆N

riπi(S).

The difficulty of this optimization problem comes from its combinatorial nature. Since we

cannot find the optimal assortment by enumerating all possible offer sets, we must resort to

efficient algorithms.

Chapter 2 considers the pure assortment problem and its variants: assortment problem

with cardinality constraints; as well as assortment pricing problem. Chapter 3 incorporates

another dynamic into the assortment problem — products’ display decision, as consumers’

consideration sets will be influenced by the way that product are displayed. Chapter 4 stud-

ies product line design, so it optimizes configurations by assigning attribute-level directly

to products.
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Chapter 2

Attention, Consideration then Selection

2.1 Introduction

An effective choice model should strike a delicate balance between demand prediction ac-

curacy and efficiency in parameter estimation and assortment optimization. In this chapter

we study a consideration set based choice model that possesses these important properties.

A consideration set is a subset of the offered assortment over which a consumer will make

utility comparisons before arriving at a final purchase decision. There are two key ingre-

dients in consideration set based choice models — the formation of consideration sets and

the ordering of products’ preference given a consideration set.

We are inspired by the random consideration set (RCS) model of Manzini and Mariotti

(2014) emanating from the economics literature. Consideration sets are formed stochasti-

cally in this model with each product entering the consideration set with a certain probabil-
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ity. The other salient feature of the model is that all consumers have a common preference

ordering for the products, so the randomness of choice is entirely due to consideration

sets heterogeneity. While the economics literature focuses on rationalizing choice models

(Eliaz and Spiegler 2011a, 2011b, Manzini and Mariotti 2014 ), we are concerned with

the operations applicability of this model including demand estimation, assortment opti-

mization with and without cardinality constraints, and optimal pricing for the Manzini and

Mariotti (2014) RCS choice model.

Consideration sets are often justified as a form of bounded rationality and have ample

support from the empirical literature, for example, Feng, Bhargava, and Pennock (2007),

Agarwal, Hosanagar and Smith (2009) and Ghose and Yang (2009) in the online advertising

setting; Chandon, Hutchinson, Bradlow and Young (2009), Corstjens and Corstjens (2012)

in the brick-and-mortar retail setting. A vast literature has observed that the consideration

set structure is in itself a significant explanatory factor of choice heterogeneity (Hauser

1978, Jagabathula and Rusmevichientong 2016).

2.1.1 Overview

The RCS model assumes that the composition of consideration sets is stochastic, where

each alternative i is considered with a probability λi. A physical interpretation is that

λi may indirectly measure the degree of brand awareness for a product, or the degree of

salience of the product’s display position, or the willingness of a consumer to seriously

evaluate an alternative. An alternative explanation is that λis reflect the mood of consumers
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for product i. As is pointed out in the Manzini and Mariotti (2014), the assumption of λi

being menu independent is a substantive one. It does have, however, empirical support in

some contexts (Cheremukhin, Popova and Tutino 2011). At a theoretical level, the hypoth-

esis of independent attention parameters is a natural starting point for analysis.

Essentially, the heterogeneity tends to appear mostly during the first stage of the pur-

chasing decision when forming the consideration sets, whereas the preference ordering at

the second stage are observed to be consistent and concentrated around one or a few cen-

tral permutations over products. For example, our airline partner observed that consumers

always tend to buy the cheapest ticket available. Exceptions to this behavior may be ex-

plained by consumer being unaware of the low fare when they buy a higher priced product

even a lower fare is available. We now make some remarks about the plausible full order

among products. When products are perceived to be a commodity or of the same quality

it makes sense to rank them in decreasing order of prices. Consumers may also rank the

products by their net value, or may rank products in decreasing order of quality but pay

attention only to those products that fall within their budget constraint. Even the unique-

ranking order model is quite rich and in general computationally intractable. Specifically,

it was recently shown by Aouad, Farias, Levi and Segev (2015) that assortment optimiza-

tion under the unique-ranking model is NP-hard to approximate within any constant factor

except for some special cases (Aouad, Farias and Levi 2016, Honhon, Jonnalagedda and

Pan 2012).
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Our contributions in this chapter are as follows:

• We show how to recover the full ordering and attention probabilities of the RCS

model given accurate estimates of choice probabilities or from empirical data. First

we give the necessary condition and sufficient condition for assortments’ variability

in order to uniquely identify the model parameters, and then we introduce an alter-

nating minimization algorithm which can discover model parameters efficiently in

the empirical setting. A detailed analysis of data from our airline partner reveals that

RCS model provides a significantly better fit than the Logit family model. Indeed,

in all of the instances studied the RCS model outperformed the Multinomial Logit

model in the Chi-square measure; compared with the Mixture of Multinomial Logit

model, the Chi-square is reduced by 15.6% on average, revealing that a choice model

developed from a behavioral perspective can model choices better than a traditional

parametric model.

• We show that an assortment that maximizes expected revenues can be found in poly-

nomial time by a dynamic program and the algorithm can be easily extended to solve

a cardinality constrained assortment problem. In addition, we show that all of the

efficient sets can be found in polynomial time. To our knowledge, our RCS model

is the only choice model besides MNL and the nested MNL that admits efficient es-

timation, assortment optimization, capacitated assortment optimization and efficient

sets discovery algorithms.

• We extend the Manzini and Mariotti RCS model to allow ties in preferences and
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show that a revenue-ordered assortment has a 1/2 performance guarantee relative to

the optimal assortment.

• We study the pricing problem where both the preference ordering and attention prob-

ability are price aware and show under mild assumptions that optimal profits are such

that both the profit contributions and the net value to consumers are aligned with the

value gap, defined as the difference between the value of the product to consumers

and its unit wholesale cost.

Model Overview

Under the RCS choice model, customers include product i in their consideration set with

probability λi. Once the consideration set is formed, consumers select the highest ranked

product in the consideration set. As an example, suppose that we offer assortment S =

{1,2,3} with preference ordering 1 ≺ 2 ≺ 3. The no-purchase alternative 0 is always

available and will be chosen when the consideration set is null. Table 2.1 illustrates the

consideration probabilities and the choice outcome for all possible consideration sets:

Table 2.1: Formation Probability and Final Choice under Different Consideration Sets
Consideration Set Choice Formation Probability

/0 0 (1−λ1)(1−λ2)(1−λ3)
{1} 1 λ1(1−λ2)(1−λ3)
{2} 2 (1−λ1)λ2(1−λ3)
{3} 3 (1−λ1)(1−λ2)λ3
{1,2} 2 λ1λ2(1−λ3)
{1,3} 3 λ1(1−λ2)λ3
{2,3} 3 (1−λ1)λ2λ3
{1,2,3} 3 λ1λ2λ3
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We can form the probability that product i ∈ S is selected by adding the formation

probabilities of consideration sets that lead to i ∈ S as the final choice as illustrated in

Table 2.2.

Table 2.2: Selection Probabilities for S = {1,2,3}
Choice Probability

0 (1−λ1)(1−λ2)(1−λ3)
1 λ1(1−λ2)(1−λ3)
2 λ2(1−λ3)
3 λ3

The RCS model is able to account for some plausible choice behaviors that cannot

be captured by Luce’s rule (Luce 1959) stating that the probability of selecting one item

over another from an assortment of many items is not affected by the presence or absence

of other items in the pool, as indicated by our numerical studies. We next present two

motivating examples for illustration.

Choice Frequency Reversal In practice, we see choice frequency reversals, where prod-

uct i is preferred to j in assortment S but j is preferred to i in a larger assortment. Reversals

can be explained in the context of the RCS model when an alternative may be chosen more

frequently than another by virtue of the attention paid to it as well as of its ranking as

explained in the following table:

Table 2.3: Example of Choice Probability Reversion

Fare Classes Offer Set
{P,A,B}

Offer Set.
{P,A}

Economic Plus (P) 20% 20%
Economic (A) 5.6% 56%
Economic (B) 72% N.A.
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In Table 2.3, an economic plus (P) ticket, which offers a free meal and free luggage han-

dling may be chosen less frequently than an economic (A) ticket priced $5 lower without

these ancillary services. This behavior may be due to the relatively low attention given to

the more expensive economy plus ticket. The attention probabilities λP = 0.2 and λA = 0.7

result in the third column of Table 2.3 when the offer set is {A,P}). Suppose that a new

economic class (B) ticket with attention probability λB = 0.9 is introduced at the same price

as the original economic (A) ticket with free luggage handling resulting in the full order

ranking A≺ B≺ P. Then the old economic (A) ticket will not be chosen whenever the new

product is considered, so the introduction of the new economy (B) ticket can reverse the

frequency with which the original economy (A) ticket and the economy plus ticket (P) are

chosen. The basis for the choice frequency reversal in the RCS model is that while a better

alternative may be chosen with lower probability than an inferior alternative in pairwise

contests due to low attention for the superior product, the presence of an alternative that is

mediocre among the three will reduce the probability that the inferior alternative is selected

without affecting the probability that the superior alternative is noticed.

Red Bus, Blue Bus Paradox We now look into the classical red and blue buses example

(Debreu 1960) where consumers select the train with probability 1/2 when only one of the

buses is available. Under the MNL the inclusion of the second identical bus will change

the probabilities to 1/3 for each of the three alternatives instead of keeping the probability

of the train unchanged and splitting the 1/2 probability among the two buses.



19

Table 2.4: Example: Red Bus, Blue Bus Paradox

Transportation Choice Prob.
wt. All Options Available

Choice Prob.
wt. Blue Bus Removed

Train 50% 50%
Red Bus 25% 50%
Blue Bus 25% N.A.

The RCS model can resolve the red bus, blue bus paradox. To be more specific, let

the transportations be ordered such that Train � RedBus ∼ BlueBus. Note that RedBus ∼

BlueBus indicates that the choice probability will be equally split between when both can

get chosen. And let the attention probability be such that λT = 1/2, λRB = 1, λBB = 1;

therefore, the removal of blue bus will not affect the choice probability of train.

2.1.2 Related Works

Research on assortment optimization begins with the pioneering study by van Ryzin and

Mahajan (1999). They show that the optimal assortment under a multinomial logit con-

sumer choice model consists of a certain number of the highest utility products when they

are equally profitable. Most of the focus has been on variants of this problem under the

class of random utility maximization (RUM) models such as the Multinomial Logit (MNL)

model, the Nested Logit (NL) model, and the Mixture of MNLs (MMNL) model. We re-

fer readers to Talluri and van Ryzin (2004), Davis, Gallego and Topaloglu (2014), Desir

and Goyal (2013) for a comprehensive review. Recent work in assortment optimization

turns attention to new probabilisitic models leading to tractable assortment optimization

(Blanchet, Gallego and Goyal 2016).
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There are also several papers concerned about assortment optimization under consid-

eration sets. Some work looks at endogenous consideration sets, where consumers pay

a search cost to learn the value of a product and sequentially solve a optimal stopping

time problem. Cachon (2005) shows that in equilibrium, the seller needs a larger assort-

ment to attract more consumers, so ignoring consumer search will lead to less assortment

variety. Sahin and Wang (2015) also study the assortment-optimization problem under

endogenous consideration sets. They assume consumers are homogeneous in search cost

and their search sequence is predetermined by all the products’ expected utilities, which

are common knowledge. There are a few papers studying assortment optimization un-

der exogenous consideration sets. Feldman and Topaloglu (2015) study a model in which

consumers of different types have different consideration sets, where the sets are fixed

and nested, and each type of consumers chooses products according to a MNL model.

They devise a fully polynomial-time approximation scheme for the assortment optimiza-

tion problem. There are also papers that look at framing-dependent consideration sets.

Davis, Topaloglu and Williamson (2015) study a problem in which a firm must sequen-

tially add products to its assortment over time, so as to monotonically increase consumers’

consideration sets. Gallego, Li, Truong and Wang (2016) model a phenomenon where in

the online shopping setting, different consumers tend to view different number of pages and

provide an algorithm with constant performance ratio relative to the optimal independent

of inputs. Jagabathula and Rusmevichientong (2016) look into a two-stage choice process,

where consumers consider the set of products with prices less than the threshold in the first

stage and then choose the most preferred product from the set considered. They develop
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a nonparametric expectation maximization (EM) algorithm to fit the model and design a

polynomial time approximation scheme to the joint assortment pricing problem.

Consideration set based choice models are closely related with preference list models

as each preference list uniquely defines a consideration set. In order to be parsimonious,

Rusmevichiengtong, Van Roy and Glynn (2006), Farias, Jagabathula and Shah (2013), van

Ryzin and Vulcano (2015) assume the choice probability arises from a sparse distribution

over preference lists. In this line of research, Farias, Jagabathula and Shah (2013) develop

a robust estimation methodology by maximizing the worst case revenue. van Ryzin and

Vulcano (2015) propose a “market discovery” algorithm: starting from an initial collection

of preference lists, the support of the distribution is enlarged iteratively by generating a

preference list that increases the log-likelihood value, using the column generation philos-

ophy. In fact, sparsity of the preference list distribution is generally insufficient to alleviate

the computational hardness of assortment optimization, and the problem was shown to be

NP-hard to approximate by Aouad, Farias, Levi and Segev (2015). Honhon, Jonnalagedda

and Pan (2012) develop tailor-made dynamic programming ideas for several special cases,

which are subsumed by Aouad, Farias and Levi (2016), where customer preference lists

are associated with structured set systems defined over a single preference ordering of

the products. Essentially they require the variety of the consideration sets is in the order

of O(log(N)) where N is the number of products in order to keep the dynamic program

tractable. However, our consideration sets’ variety can grow exponentially with respect to

the number of products. Our model differs from Aouad, Farias and Levi (2016) along an-
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other dimension. While Aouad, Farias and Levi (2016) focus on classical consideration set

based models from the marketing literature, where consideration sets are generated from

screening rules, for example, conjunctive or disjunctive rules (Pras and Summers 1975,

Gilbride and Allenby 2004), we observe the bounded rationality among consumers as some

available alternatives might be ignored even after the screening phase due to limited atten-

tion. Paul, Topaloglu and Feldman (2016) model choosy consumers whose rankings con-

tain at most two products and show that even under this case the assortment optimization

problem is NP-hard. Paul, Davis and Feldman (2016) assume the set of consumer classes

is derived from paths in a tree where the order of nodes visited along each path gives the

corresponding preference list, so the substitution will only be among neighboring products.

Moving to assortment pricing, some parametric structures need to be enforced. The

most commonly used is the MNL model assuming linear utility structure (Hanson and

Martin 1996, Song and Xue 2007). Under the MNL model with uniform price-sensitivity,

the markup, defined as price minus cost, has been proven to be constant across all products

at optimality (Anderson, de Palma and Thisse 1992, Hopp and Xu 2005, and Gallego and

Stefanescu 2011). Li and Huh (2011) extend the concavity result to the NL model. Gal-

lego and Wang (2014) extends the constant markup property to a general NL model with

product-differentiated price-sensitivity parameters and arbitrary nest coefficients. More re-

cently, Gallego, Li, Truong and Wang (2016) jointly price and design the product’s display

configuration when a framing effect influences consumer’s choices. They show that prod-

ucts should be framed by sorting them in an increasing order of their value gap, which is
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essentially a product’s surplus when it is priced at the wholesale cost. In addition, they

show that at the optimum the products on a given page have a common markup and the

markups increase with the page number.

2.2 Review of Random Consideration Set Model

Let N ≡ {1,2, ...,n} be the set of products. The random consideration set (RCS) model

developed by Manzini and Mariotti (2014) is characterized by a strict preference order ≺

on N, and by a vector λ of positive attention probabilities. We assume without loss of

generality that the products are labeled so that 1 ≺ 2 ≺ 3 ≺ ... ≺ n. For any subset S ⊆ N,

the probability that product i ∈ S is selected is given by

πi(S) = λiΠ j�i, j∈S(1−λ j) ∀ i ∈ S, (2.2.1)

with πi(S) = 0 if i /∈ S. In words, i ∈ S is chosen if and only if i is the highest ranked

product in the random consideration set C(S) that results from paying attention to product

j ∈ S with probability λ j.

Clearly πi({i}) = λi > 0 and 1−λi = π0({i}) where 0 denotes the no-purchase alter-

native. This suggests that consumers include product i in an assortment with probability λi

equal to the probability that product i is preferred to the no-purchase alternative. But the

λis may also arise from a filtering process that may entail several steps with λi measuring

the probability that all steps in the process have been passed. Given a set S, consumers will
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select the no-purchase alternative only if no product in S is included in the consideration

set. As a result,

π0(S) = Π j∈S(1−λ j),

with π0(S) > 0 if and only if all the products j ∈ S have positive inattention probabilities

1−λ j > 0. Let us assume all the attention probabilities λs are strictly within the unit inter-

val.

Manzini and Mariotti (2014) propose two choice axioms and demonstrate that a choice

model satisfies the two choice axioms if and only if it satisfies (2.2.1). The axioms apply

to all subsets S,T ⊆ N such that i, j ∈ S∩T , i 6= j.

· I-ASYMMETRY: πi(S−{ j})
πi(S)

6= 1⇒ π j(S−{i})
π j(S)

= 1,

· I-INDEPENDENCE: πi(S−{ j})
πi(S)

= πi(T−{ j})
πi(T )

and π0(S−{ j})
π0(S)

= π0(T−{ j})
π0(T )

.

I-Asymmetry states that if the presence of product j influences the probability of i being

chosen, then i≺ j, and therefore the presence of i does not influence the choice of j.

I-Independence says that the impact of one product on another is menu-independent. Simi-

lar to Luce’s IIA (Luce 1959) property, except that instead of relating to the odd ratios πi(S)
π j(S)

being menu-independent, it means that the impact πi(S−{ j})
πi(S)

is menu-independent. The main

result from Manzini and Mariotti (2014) is the following theorem:

Theorem 2.2.1 (Manzini & Mariotti). A random choice rule satisfies I-Asymmetry and I-

Independence if and only if it is a random consideration set rule π≺,λ. Moreover, both ≺
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and λ are unique, that is, for any random choice rule π≺′,λ′ such that π≺′,λ′ = π, we have

(≺′,λ′) = (≺,λ).

Therefore, a set of choice probabilities will uniquely define a random consideration set

choice rule (≺,λ).

As is mentioned by Manzini and Mariotti (2014), a preference relation j� i can be defined

by πi(S−{ j}) > πi(S) for some S ⊆ N and will be revealed uniquely. Moreover, given a

preference order ≺, the attention probability can be calculated by the following formula:

λi = 1−

√
π0({i, j})π0({i,k})

π0({ j,k})
.

According to Manzini and Mariotti (2014), to infer the preference relationship between i

and j we need to know choice probabilities πi(S−{ j}) and πi(S) for at least one set S

containing both i and j. And to identify the attention probabilities, it is sufficient to know

the no-purchase probabilities for all binary menus. In the next section, we take a closer

look into the identification problem. More precisely we are interested in finding minimal

information structures that allow the unique identification of the preference order and the

attention probabilities assuming that choices come from a random consideration rule π≺,λ.

Once we identify such information structure we will show how to infer the preference order

and the attention probabilities.
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2.3 Estimation

In this section we look into the parameter identification problem of the RCS model under

both noiseless and noisy settings. First, we focus on statistical identifiability of the model

parameters under the noiseless setting where for any i∈ S+ we know the exact choice prob-

ability πi(S). We then turn our attention to empirical estimation where we have transaction

data of the choices made by consumers over time under assortments St , t = 1, . . . ,T .

2.3.1 Identifiability

As is shown in Manzini and Mariotti (2014), the random choice rule (≺,λ) can be uniquely

identified under certain information structures. In this section, we look further into the

information structure required to uniquely identify (≺,λ).

Example 2.3.1. To develop intuition we start by looking at a couple of information struc-

tures. Suppose we are given accurate choice probabilities under a collection of assort-

ments:

1. Consider the collection of assortments S = {N,N−{1},N−{2}, ...,N−{n}};

The preference order is easy to discover since πi(N−{ j})> πi(N) for all i≺ j and

πi(N−{ j}) = πi(N) for all i � j. And the attention probability can be calculated

after the preference order is discovered since 1−λ j =
πi(N)

πi(N−{ j}) if i≺ j.

2. Consider the collection of assortments S = {N,{1},{2}, ...,{n}};

Without loss of generality, let us assume products are labeled as 1 ≺ 2 ≺ ... ≺ n.
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Product n, the ”best” product, can be identified immediately as πn(N) = πn({n})

and π j(N) < π j({ j}) for all j 6= n. After we identify n, the product at the top of

the preference list, we remove it from set N and update the information, in other

words, we can infer choice probabilities of all products under assortment N−{n},

as π j(N−{n}) =
π j(N)
1−λn

. Now, as product n−1 is at the top of preference list, we can

immediately identify it since it is the only product such that π j({ j}) = π j(N−{n}).

We repeat the procedures and sequentially identify all products’ preference order and

attention probabilities.

3. There are 3 products with preference ordering 1≺ 2≺ 3 and we are only given choice

probabilities under a set of menus S = {{1,2},{3}}. The preference list cannot be

identified because there is not enough information about the change in probability

caused by adding or removing a product.

The following result uncovers the minimal information requirements to uniquely iden-

tify the model parameters. Minimal information requirements mean that any subset of the

information cannot fully identify model parameters.

Theorem 2.3.2 (Necessary Condition). The parameters of the RCS model can be identified

only if we are given the choice probabilities under a collection of assortments where every

two products who rank consecutively in the preference list are offered together at least once

and separately at least once.

Proof. Necessity: Suppose that products i and j rank consecutively with i ≺ j and @k ∈

N, k 6= i, j and i ≺ k ≺ j. If products i and j are always offered together, then we cannot
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check if i ≺ j or j ≺ i. This is because the presence or absence of other products have

the same impact on both i and j. Moreover, we cannot see the influence to i’s purchase

probability due to removal of j, nor we can see the influence to j due to removal of i,

so the relative ordering of i and j cannot be identified. This shows that it is necessary to

offer the two products separately at least once. On the other hand, if i and j are never

offered together, we cannot see the impact to the purchase probability of one product due

to the presence of the other product, so we cannot infer the ranking between them. This is

illustrated in the third instance in Example 2.3.1.

Theorem 2.3.3 (Sufficient Condition). The parameters of the RCS model can be identified

if first, we are given the choice probabilities under a collection of assortments where every

two products who rank consecutively in the preference list are offered together at least once

and separately at least once. Second, for each product i∈N, there exist at least two offered

subsets S, S′ ⊆ N such that i ∈ S∩S′ and S 6= S′; let Li(S) = { j ∈ S : j � i}, then the choice

probability of the no-purchase π0(Li(S)) 6= π0(Li(S′)) as long as Li(S) 6= Li(S′).

Proof. Sufficiency: Suppose that two conditions hold. Without loss of generality, let us

assume the underlying true preference order is 1 ≺ 2 ≺ ... ≺ n. We can identify product n

because πn(S) = λn for all S⊆N such that n∈ S. And we argue it is the only product whose

choice probability is menu independent. This is due to the other assumption π0(Li(S)) 6=

π0(Li(S′)), because for any product i, πi(S) = λiπ0(Li(S)). This implies that if the choice

probability of a product is menu independent then it must be at the top of the preference

ordering. After identifying product n and its attention probability λn, we remove product
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n from all S such that S 3 n and update the probability information to π j(S−{n}) =
π j(S)
1−λn

for all j ∈ S−{n}. Since product n−1 is at the top of the preference list at this moment,

it will be the only product whose choice probability is menu-independent. This allow us

to identify product n−1 and its attention probability λn−1. By repeating the identification-

elimination procedures we can identify the preference order and attention probabilities of

all of the products.

2.3.2 Empirical Estimation

The setting considered in the previous section assumes that we know all of the choice

probabilities for every assortment in the collection S that satisfies the conditions of Theo-

rem 2.3.3. Now we transfer our attention to parameter estimation in the real setting, where

we are only given the historical transaction data.

Data Model

We assume that available data is in the form of a sequence of consumer choices over of-

fered assortments. More specifically, consumers sequentially arrive over T arrival epochs.

At epoch t = 1, ...,T , we observe (ct ,St), where St is the assortment offered to the con-

sumer t and ct ∈ St ∪{0} is the chosen product. Assortments can change over time due to

stockout or managerial decisions. The type of data is standard in the operations literature

(see Jagabathula and Rusmevichientong 2016, van Ryzin and Vulcano 2015). Particularly,

we assume we can observe the selection of the no-purchase option. This corresponds to the

case where on-line retailers can record consumers visiting their web-sites, or brick- and-
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mortar stores can track consumer flows by monitors. Without the no-purchase information

will require the joint estimation on market size and attention probability, which has been

well studied in the literature (see Haensel, Koole and Erdman 2011).

Estimation Methodology

We use the maximum likelihood estimation (MLE) method to estimate our model parame-

ters. Our choice model is defined by the preference ordering ≺ and attention probabilities

λi, i ∈ N. Let xi j ∈ {0,1} denote the preference order of products i and j, i.e., xi j = 1 if

i � j and xi j = 0 otherwise. With this notation we can write the purchase probability of

product j under assortment S as π j(S) = ∏i∈S−{ j}(1−λi)
xi jλ j.

Assuming that each data point is generated from an independent draw of the choice model,

then the log likelihood is given by

L(x,λ|Data) =
T

∑
t=1

∑
i∈St

xict × log(1−λi)+ logλct .

From the likelihood function we see that a higher purchase probability can be due to ranking

at the upper level of the preference list or having larger attention probability, or both. We
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can model the problem of maximizing the log likelihood function as:

max
x,λ

T

∑
t=1

∑
i∈St

xict × log(1−λi)+ logλct (2.3.1)

s.t. xi j + x ji = 1 ∀i, j ∈ N, i 6= j (2.3.2)

xi j + x jk + xki ≤ 2 ∀i, j,k ∈ N, i 6= j 6= k (2.3.3)

xi j ∈ {0,1} ∀i, j ∈ N

λi ∈ (0,1) ∀i ∈ N,

while xi0 = 1 are fixed for all i ∈ N and λ0 = 1, meaning consumers are always aware of

the no-purchase alternative.

The first equality constraint (2.3.2) ensures that for any two different products i and j, ei-

ther i≺ j or j ≺ i, one and only one of them can happen. The second inequality constraint

(2.3.3) ensures the linear ordering among the products’ preference, indicating the transitiv-

ity among the products’ preferences. The third constraint requires the preference indicator

xi j to be binary, and the last constraint requires the attention probabilities to be well defined.

The Mixed Integer Nonlinear program is in general hard to solve. As a result we settle for

finding a local maximum or a stationary point.

Observe that if we fix the value of x, the objective (2.3.1) is strictly concave with respect

to λ, and it is possible to solve for the optimal λ in closed form. If we fix the value of λ,

the objective (2.3.1) is linear on x, then the problem is reduced to a pure integer program.

So we iteratively optimize on x and λ respectively. We start with arbitrary initial estimates
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of λ̂ and then optimize on the binary variables x by solving the pure integer program. Let

us refer to this as M1 step. Then, conditional on the estimation x̂ from the M1 step, we

maximize with respect to λ. Let us refer to it as M2 step. We repeat the procedure again

and again until we reach at a coordinatewise maximum point. This is the Alternating Mini-

mization Algorithm, or Two-Block Gradient Descent Algorithm, which is commonly used

to simplify the maximization of log likelihood functions when parameters can be parti-

tioned into two sets, but the log likelihood function becomes globally concave when one

of the block is observed. The following lemmas show some structural properties in the M1

and M2 steps.

Lemma 2.3.4 (Conditional optimization of x for the M1 step.). Given model parameter

estimates λ̂, the maximization of the conditional log likelihood function with respect to x

boils down to the classical Rank Aggregation Problem.

Rank Aggregation aims to output a preference list by aggregating pairwise comparison

information and is proved to be NP-hard (Dwork, Kumar, Naor and Sivakumar 2001). We

refer readers to a comprehensive review of Ali and Melia (2012).

Lemma 2.3.5 (Conditional optimization of λ for the M2 step.). Given model parameter

estimates x̂, the maximization of the conditional log likelihood function with respect to λ

can be solved to closed form:

λ
∗
i =

∑
T
t=1 11(ct = i)

∑
T
t=1 11(ct = i)+ x̂ict 11(i ∈ St)

, (2.3.4)

where 11(·) is an indicator function.
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This directly follows the first order condition for maximizing objective (2.3.1) con-

ditional on x, which is quite intuitive since it is the proportion of time that product i is

purchased when it ranks at the top of the offer set.

Based on above results, the estimation procedure can be summarized as follows:

Step 0 [Initialization.] Set λ̂ to arbitrary feasible initial values.

Step 1 [M1 step.] Compute x∗, the optimal estimates of x conditional on λ′s value being λ̂

Step 2 [M2 step.] Compute λ∗, the optimal estimates of λ conditional on x′s value being x̂

by formula (2.3.4)

Step 3 [Check stopping condition.] If Dist((λ̂, x̂),(λ∗,x∗))> ε, then λ̂← λ∗ and x̂← x∗ and

go to Step 1. Otherwise, terminate and output λ∗ and x∗. We can use any metric as

the distance measure, for example the Euclidean distance.

An intuitive question is whether the coordinatewise maximum solution is a stationary

point. Unfortunately, convergence to a stationary point is not guaranteed due to the integer

constraint in the M1 step (Xu and Yin 2017) even if we can solve the NP-hard problem to

optimality. Empirical studies by Reinelt (1985) and Reineilt, Grotschel and Junger (1983),

show that the LP relaxation of M1 performs exceptionally well and often finds optimal and

binary solution in practice. Therefore we relax the binary constraint in the implementation.

Interestingly, all the convergent points in our experiments are integer, which are guaranteed

to be stationary points.
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Now we turn our attention to operational decisions. The first problem we look into is

the product assortment when products configurations and prices are fixed.

2.4 Assortment Optimization

Let ri > 0 denote the revenue associated with product i and let

R(S) = ∑
i∈S

riπi(S),

denote the expected revenue from assortment S. Our goal is to find an optimal assortment

S∗, such that

R(S∗) = max
S⊆N

R(S).

The following lemma will be helpful in finding an optimal assortment.

Lemma 2.4.1. Let S⊆ N, and let k ∈ N be such that i≺ k for all i ∈ S. Then,

R(S∪{k}) = (1−λk)R(S)+λkrk, (2.4.1)

and consequently R(S∪{k})≥ R(S) if and only if rk ≥ R(S).

For i ∈ S, i ≺ k, so πi(S∪{k}) = πi(S)(1−λk), while πk(S∪{k}) = λk, from which

(2.4.1) follows directly. Moreover R(S∪{k}) = R(S)+λk(rk−R(S))≥ R(S) if and only if

rk ≥ R(S). So we have the following greedy-like assortment optimization algorithm.
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Algorithm 2.1 Assortment Optimization Algorithm
Set S0 = /0, S̃0 = /0 and H0 = 0.
for i ∈ N do

Hi = Hi−1 +λi(ri−Hi−1)
+;

Si = Si−1∪{i};
S̃i = { j ∈ Si : r j ≥ H j−1}

end for

where (x)+ ≡max(x,0). The sequence Hi, i ∈ N considers at stage i, whether or not to

add product i to S̃i−1 to form S̃i and does this if and only if ri ≥ Hi−1. For each i ∈ N, the

algorithm requires one comparison, and three arithmetic operations, so the algorithm runs

in O(n) time.

Theorem 2.4.2. The sequence Hi is weakly monotonically increasing in i ∈ N, with

Hi = R(S̃i)≥ R(S) ∀ S⊆ Si, i ∈ N.

Therefore S̃n maximizes R(S).

Proof. The order Hi ≥ Hi−1 follows directly from its definition. Clearly H1 = λ1r1 > 0, so

S̃1 = S1 = {1} and R(S̃1) = H1. Assume that the result holds for i−1, so Hi−1 = R(S̃i−1)≥

R(S) for all S⊂ Si−1. We will show that Hi = R(S̃i)≥ R(S) for all S⊂ Si.

From the algorithm,

Hi = Hi−1 +λi(ri−Hi−1)
+.

= R(S̃i−1)+λi(ri−R(S̃i−1))
+.

If ri < Hi−1 then Hi = Hi−1 = R(S̃i−1) = R(S̃i) on account of S̃i = S̃i−1. On the other hand,
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if ri ≥ Hi−1 then S̃i = S̃i−1∪{i}, and

Hi = (1−λi)R(S̃i−1)+λiri = R(S̃i),

where the last equality follows from equation (2.4.1). To complete the proof we need to

show that R(S̃i)≥ R(S) for all S⊂ Si. If i /∈ S, then R(S)≤ R(S̃i−1)≤ R(S̃i) by the inductive

hypothesis. On the other hand, if i ∈ S, then we can write S = T ∪{i} for some T ⊂ Si−1.

In this case

R(S) = R(T ∪{i}) = (1−λi)R(T )+λiri

≤ (1−λi)R(S̃i−1)+λiri = (1−λi)Hi−1 +λiri

≤ Hi−1 +λi(ri−Hi−1)
+ = Hi

= R(S̃i).

2.4.1 Cardinality Constraints

Finding an optimal assortment subject to a cardinality constraint is also of key interest for

industry and academia. We show that this can be done by introducing a state variable that

represents number of products in the assortment. Let

Hi(k) = max
S:S⊆Si,|S|≤k

R(S).
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Using the dynamic program,

Hi(k) = max{(1−λi)Hi−1(k−1)+λiri, Hi−1(k)}.

By sequentially computing Hi(k), i ∈ N, k = 1, . . .n, we can find optimal assortments of

sizes k = 1, . . . ,n. For each k, we can compute Hi(k), i ∈ N in O(n) times, so finding

Hi(k), i ∈ N and ∀k ≤ n takes O(n2) time.

2.4.2 Efficient Sets

In single-leg revenue management problem, we are often interested in solving the problem

R (z)≡max
S⊆N

R(S,z) = max
S⊆N

∑
i∈S

(ri− z)πi(S), (2.4.2)

where z is the marginal value of capacity and will change over time, so at anytime, the

optimal assortment should maximize R(S,z) for some z. Let Π(S) = ∑ j∈S π j(S) be the

sales probability for S ⊆ N. The problem of finding solutions to (2.4.2) is related to the

following linear program.

Q(ρ) = max ∑α(S)R(S) (2.4.3)

s.t. ∑α(S)Π(S)≤ ρ

∑α(S) = 1

α(S)≥ 0 ∀S⊆ N.
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The linear program (2.4.3) finds the fraction of time, α(S), that assortment S should be of-

fered to maximize expected revenues without exceeding a bound ρ on the average sales rate.

The dual of this problem can be written as Q(ρ) = minz≥0 [R (z)+ρz], so for each ρ, there

is a corresponding dual variable z(ρ) ≥ 0 and an assortment that maximizes R(S,z(ρ)).

Conversely, given z there is an optimal assortment S that maximizes R(S,z) with Π(S) = ρ,

such that Q(ρ) = R(S).

The notion of efficient sets was first introduced by Talluri and van Ryzin (2004). Gal-

lego and Topaloglu (2016) define as efficient any assortment E such that Q(Π(E)) = R(E).

Suppose that /0 = E0,E1, . . . ,Em is the collection of efficient sets. Without loss of general-

ity we can label the sets so that 0 = Π(E0)< Π(E1)< .. . < Π(Em)≤ 1. It can be shown,

see Talluri and van Ryzin (2004) and Gallego and Topaloglu (2016), that the problem of

solving R (z) can be reduced to a search over efficient sets only.

Theorem 2.4.3 (Talluri and van Ryzin 2004). For any z≥ 0,

R (z) = max
i

R(Ei,z).

Moreover, E is efficient if and only if there exists a z≥ 0 such that R(E,z) = R (z).

As a result, there will be cost thresholds 0 < zm < zm−1 < .. . < z1 such that the efficient

set Em is optimal for all z such that 0≤ z≤ zm; E j is optimal for all z such that z j+1 < z≤ z j

for j = 1, . . . ,m−1; and the empty set E0 is optimal for all z such that z1 < z.

For z = 0, the dynamic program algorithm 2.1 finds Em = S∗ = S̃n that maximizes

R(S,0). A brute force approach would be to use the same algorithm for each z ≥ 0. More
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precisely, let H0(z) = 0, and for i ∈ N, let Hi(z) = Hi−1(z) + λi(ri− z−Hi−1(z))+, and

S̃i(z) = { j ∈ Si : r j − z ≥ H j−1(z)}. From our previous results, we know that Hi(z) =

R(S̃i(z),z) ≥ R(S,z) for all S ⊆ Si, and in particular S∗(z) = S̃n(z) maximizes R(S,z) over

all S⊆ N. By running the algorithm for all z≥ 0, we can find the cost thresholds 0 < zm <

zm−1 < .. . < z1 and the efficient sets E0 = /0, and E j = S(z j), j = 1, . . . ,m. In this section

we provide a more expedient way of finding efficient sets. For general choice models, the

efficient sets need not be nested. We next show that the efficient sets are nested for the RCS

model.

Lemma 2.4.4. The efficient sets are nested, i.e.,

E0 ( E1 ( . . .( Em.

To identify the efficient sets, let J0 = 0 and Ji = Π(S̃i), i = 1, . . . ,n be the sales rate

associated with the set S̃i. Consider the graph (Ji,Hi), i = 0,1, . . . ,n, and let ui = (Hi−

Hi−1)/(Ji− Ji−1) for all i ∈ N. Notice that for i /∈ S∗, the ratio is of the form ui = 0/0,

which for convenience we set as 0/0 = ∞. Notice that for i∈ S∗, the slopes are positive and

finite. Let m = |Em| and let i be such that ui < u j for all j ≤ n. We will show that zm = ui

and that Em−1 = S∗/{i}= Em/{i}. To see this, consider the smallest value of z such that it

is optimal to drop a product from S∗ at z+. Thus S∗(z) = S∗ = Em but a product, say i ∈ S∗

is not in S∗(z+). Then,

ri− z = ∑
j∈S̃i−1

(r j− z)π j(S̃i−1) = Hi−1− zJi−1,
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i.e.,

z =
ri−Hi−1

1− Ji−1
= ui,

where the last equality follows from simple algebra. Moreover, i must be a product in S∗

with the smallest ui ratio as otherwise it would be optimal to drop another product first.

This confirms that zm = ui is the first breakpoint and that product i is the one to exit Em to

form set Em−1. In case of ties, it may be necessary to remove more than one product at a

time. Once product i is removed, and zm = ui is recorded, we form the set Em−1 = Em/{i},

and update the slopes and repeat the process until the last product is eliminated. More

precisely, given zk+1 and Ek, we need to compute the points (J j(zk+1),H j(zk+1)) and the

corresponding slopes u j(zk+1), and then find the smallest slope zk = mini∈Ek ui(zk+1) and

form the set Ek−1 = Ek/{i(k)}, where i(k) is the index of the product with the smallest

slope. Because, each time we need to compute at most m ≤ n slopes, and remove at least

one product, the algorithm to identify all of the efficient sets is O(m2). Since the efficient

sets are nested, there can be at most m≤ n efficient sets implying that it takes at most O(n)

effort to find them all.

Table 2.5: Example of the Efficient Sets Discovery Process
Product λ Price E5 u E4 u E3 u E2 u E1

1 0.017 50 1 50.00 1 (50.00) 0 ∞ 0 ∞ 0
2 0.055 60 1 60.17 1 60.17 1 (60.00) 0 ∞ 0
3 0.044 68 1 68.78 1 68.78 1 68.47 1 (68.00) 0
4 0.100 75 1 76.67 1 76.67 1 76.21 1 75.32 1
5 0.089 52 1 (47.89) 0 ∞ 0 ∞ 0 ∞ 0

From the above example we see that the order of elimination does not need to be aligned

with prices order.
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2.4.3 Ordered Preference with Ties

Manzini and Mariotti (2014) assume the preference is strictly ordered, while in reality par-

tial ranking happens often as consumers might be indifferent among choices. For example,

hotels are rated from one star to five stars. Consumers might choose each of the iden-

tically rated ones with equal probability. Tied preference has been widely observed and

over the past decades, for example, statisticians has spent efforts in identifying tied pref-

erences via experiment (Glenn and David 1960, Ennis and Ennis 2012). So in this section

we relax the strict preference ordering assumption and look into the assortment problem

when consumers can have equal preferences with some products, namely, when the pref-

erence is partially ordered. In this situation, some of the products are non-comparable

and have tied preference. For example, consumers evaluate the set N = {1,2, ...,n} as

1 ≺ 2 ∼ 3 ∼ 4 ≺ 5... ≺ n, where consumers are indifferent between products 2, 3, and

4. The randomness still results from inattention, where each product i is considered with

probability λi.

Before presenting our assortment algorithm for the entire problem, let us first take a

look at a subproblem – assortment optimization when consumers have equal preference for

all products but the consideration sets are randomly generated. Equal preference means that

conditional on the consideration set, the probability of purchase is uniformly distributed

among the considered products. Again, let λi be the attention probability of product i

and from now on let us assume all products in assortment S have equal preference. The
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following example shows that assortment problem is intractable and does not have the

nested by revenue structure.

Example 2.4.5. There are eight products among which consumers are indifferent on pref-

erences and they are considered with attention probabilities

λ = (0.477,0.831,0.467,0.046,0.015,0.492,0.150,0.267),

and revenues

r = (55,41,42,44,67,86,8,11).

The optimal expected revenue is 50.03 given by assortment {1,2,5,6}.

Notice that r4 > r3 > r2 but product 3 and 4 are not in the optimal assortment. We will

show that the best revenue ordered assortment can guarantee at least 50% of the optimal

revenue.

From Example 2.4.5 we can see that unlike the assortment problem for the MNL, the op-

timal assortment under this random consideration set model does not necessarily have the

nested by revenue structure; moreover, some products might be introduced even if their

prices are lower than the expected total revenue.

Now let us introduce notations. For every S ⊆ N, the probability that consumers form

consideration set T ⊆ S, is given by

Π(T,S) = Πi∈T λi×Π j∈S\T (1−λ j).
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For any assortment T , we will denote by r(T ) = ∑i∈T ri/|T | the average revenue obtained

from consideration set T . This is because consumers purchase products from the consid-

eration set with uniform probabilities. In order to distinguish from the revenue of strictly

ordered preference, let us denote the revenue from assortment S with tied preference by

J(S). With this notation, we can write the expected revenue from offering assortment S as

J(S) = ∑
T⊆S

r(T )×Π(T,S). (2.4.4)

In the next lemma, we show there indeed is a minimum requirement of products’ rev-

enue in order to be in the optimal assortment.

Lemma 2.4.6. Let S∗ be the optimal assortment, and r(S∗) = min{ri, i ∈ S∗}, then r(S∗)≥

1
2J(S∗).

Lemma 2.4.6 shows that the lowest price in the optimal assortment should be at least

half of the optimal revenue. We will give a detailed proof in the appendix. Now we are

ready to present our main result:

Theorem 2.4.7. Let S̄≡ {i ∈ N : ri ≥ 1
2J(S∗)}, then the expected revenue J(S̄)≥ 1

2J(S∗).

This theorem means that offering all products with prices above a threshold will have

0.5-optimality guarantee. But as the threshold 1
2J(S∗) comes at the cost of knowing optimal

revenue, we have the following more practical corollary.
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Corollary 2.4.8. Consider the assortment optimization among products with tied prefer-

ence, the optimal nested by revenue assortment can guarantee at least 1
2 of the optimal total

revenue.

We remark that finding an optimal nested by revenue assortment still requires us to

compute J(S), which asks for enumerating exponentially many consideration sets. We

now look at an easy to implement heuristic which has the same performance guarantee

but does not require computing J(S). To this end, consider an MNL model with attraction

probabilities vi =
λi

1−λi
for all i ∈ N and v0 = 2, and revenues ri, i ∈ N. Let S̃ be an optimal

assortment for this MNL model. Let J(S̃) be the expected revenue under this assortment

under the true model, and recall that J(S∗) denotes the expected revenue under an optimal

assortment.

Theorem 2.4.9.

J(S̃)≥ 1
2

J(S∗),

where

S̃ ∈ argmax
S⊆N

∑i∈N rivi

v0 +∑i∈N vi
.

Finding S̃ is as easy as finding an optimal assortment for the standard MNL model,

which can be solved in polynomial time since the optimal assortment should be nested by

prices, and the optimal assortment S̃ should be { j ∈N : r j ≥ JMNL(S̃)}, where JMNL(S̃) is

the optimal expected revenue of the constructed MNL model. The intuition behind is that

for a product to enter the optimal assortment set S∗, JMNL(S̃) is the price lower bound.
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However, we can show that JMNL(S̃) is greater than 1
2J(S∗). If we look closely at the

MNL expected revenue, JMNL(S
∗) will drop to 1

2J(S∗) only when attention probabilities

are converging to zero.

Given that we have a 1/2 approximation guarantee for assortment optimization among

products with tied preference, we are ready to check the assortment optimization problem

for the entire product set. Let us partition the global product set N = {1,2, ...,n} in a way

such that Q = {Q1,Q2, ...,QT} is the collection of partitions, where ∀i, j ∈ Qt , we have

i∼ j and ∀i ∈Qt , j ∈Qt+1, we have i≺ j. So all products in the same partition have equal

preferences and products from different partitions are ordered. |Q |= T indicates there are

T preferences levels.

Algorithm 2.2 Assortment Optimization Algorithm When Preferences Have Ties
Set Q0 = /0 and H0(Q0) = 0 ;
for t = 1, . . . ,T do

Qt = Qt−1∪Qt ;
Ht(Qt) = Ht−1(Qt−1)+maxS⊆Qt J(r−Ht−1(Qt−1),S);
Q̃t = Q̃t−1∪ argmaxS⊆Qt

J(r−Ht−1(Qt−1),S)
end for

The sequence Ht(Qt), t = 1, ...,T sequentially considers whether or not to add subset S

of products in Qt to Q̃t−1 to form Q̃t and does this if and only if S = argmaxS⊆Qt
J(r−

Ht−1(Qt−1),S).

Theorem 2.4.10. The sequence Ht(Qt) is weakly monotonically in t = 1, ...,T , with

Ht(Q̃t) = R(r, Q̃t)≥ R(r,S) ∀ S⊆ Q̃t , t = 1, ...,T.

so Q̃T is an optimal assortment.
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The logic is similar to the logic behind theorem (2.4.2), as we can express R(T ∪ S),

T ⊆ Qt−1 and S⊆ Qt by

R(T ∪S) = R(T )+ J(r−R(T ),S).

So we will omit the proof.

Theorem 2.4.11. If the subproblem maxS⊆Qt J(r−Ht−1(Qt−1),S) can be solved to α−optimal

for all t = 1, ...,T , then the entire problem can be at least α−optimal.

This theorem states that if we can solve each subproblem to α−optimal then we can

solve the entire problem to α−optimal. This can be easily shown by induction on t = 1...T .

Corollary 2.4.12. Solving the subproblem maxS⊆Qt J(r−Ht−1(Qt−1),S) heuristically by

choosing optimal assortments under the constructed MNL model for all t = 1, ...,T can

guarantee at least 1/2 of the optimal revenue.

2.5 Pricing under the RCS model

Retailers may have the freedom to select assortments and to price product at the same

time. In this section we parameterize the attention probability using the Logit model, see

Assumption 2.5.1 below, to reflect the fact that people are more likely to include high

utility products in their consideration sets, but less likely to include expensive products.

In particular, we are interested in uncovering the form of the optimal prices relative to the

products’ quality measured by αi and its unit wholesale cost measured by zi. We will see
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that at optimality prices are chosen so that the ordering of the value gap αi− zi is preserved

by αi− ri and by the contribution margins wi = ri− zi.

Assumption 2.5.1. Given the quality αi and price ri of each product i ∈ N, the inclusion

probability of product i into the consideration set follows the Logit form:

λi =
exp(αi− ri)

1+ exp(αi− ri)
. (2.5.1)

Moreover, consumers have common valuations on products’ quality and price, so they will

choose the product with the highest utility αi− ri from the consideration set; therefore,

consumers rank the products in the order of αi− ri.

We consider the case when the seller wants to maximize his profit by taking into account
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zi, the unit cost of product i, then the pricing problem can be formulated as

max
r,x

n

∑
i=1

n

∑
j=i+1

(1−λ( j))λ(i)(r(i)− z(i)) (2.5.2)

s.t. λ(i) =
n

∑
j=1

λ jx j(i) ∀i ∈ N (2.5.3)

r(i) =
n

∑
j=1

r jx j(i) ∀i ∈ N (2.5.4)

z(i) =
n

∑
j=1

z jr j(i) ∀i ∈ N (2.5.5)

n

∑
j=1

(α j− r j)x j(i) ≤
n

∑
j=1

(α j− r j)x j(i+1) ∀i = 1...n−1 (2.5.6)

n

∑
j=1

x j(i) ≤ 1 ∀i ∈ N (2.5.7)

n

∑
i=1

x j(i) ≤ 1 ∀ j ∈ N (2.5.8)

x j(i) ∈ {0,1} ∀i& j ∈ N. (2.5.9)

Driving ri to infinity is equivalent to eliminating it from the market, so our formulation

solves both the assortment and pricing problem. As the prices will affect the value of

αi − ri and thus affect the products’ ranking, we introduce the binary variable x j(i) in-

dicating whether product j is at the ith position of consumer’s preference list. There-

fore, it must satisfy the utility ordering, i.e., utility of the ith product from the prefer-

ence list should not be greater than the utility of the i+ 1st product: ∑
n
j=1(α j− r j)x j(i) ≤

∑
n
j=1(α j− r j)x j(i+1) ∀i = 1...n−1.

Theorem 2.5.2. Without loss of generality, suppose the products are ordered such that
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0<α1−z1 <α2−z2 < .. . <αn−zn, and let wi = ri−zi, i∈N be the contribution margins.

Then at optimality, products should be priced such that the net utility αi− ri has the same

ordering as the value gap αi− zi, i.e., 0 < α1− r1 < α2− r2 < .. . < αn− rn, and 1≺ 2≺

... ≺ n. Moreover, the optimal margins increases monotonically: w1 < w2 < .. . < wn, so

the markups are increasing in i.

This result tells us that if product i has a larger value gap than product j, i.e., αi− zi >

α j− z j, then they should be priced so that both αi− ri > α j− r j and ri− zi > r j− z j. This

is equivalent to saying that a product with a large value gap will be priced so that it is

both ranked higher by the consumer and will have a higher profit to the retailer conditioned

on sales. Moreover, αi − ri > α j − r j implies that λi > λ j, so the product will garner

more attention from consumers. Suppose now that the products are priced as suggested by

Theorem 2.5. Would all the products be part of an optimal assortment? The answer is yes,

as H1 = λ1(r1− z1)> 0 and ri− zi > Hi−1 for all i as Hi−1 is a sub-convex combination of

r1− z1 < .. . < ri−1− zi−1 and consequently Hi−1 < ri−1− zi−1 < ri− zi. As a result, we

have the following corollary.

Corollary 2.5.3. If the products are priced so that αi− zi > α j− z j implies ri− zi > r j− z j

and αi−ri >α j−r j, then λ j is increasing in j and the optimal assortment is N = {1, . . . ,n}.

Table 2.6 gives optimal prices under the given α and z parameters. We see that both

the order of the utility α− r∗ and the profit margin r∗− z are aligned with the order of

value gap α− z. Notice that the price is not necessarily ordered, for example r∗3 > r∗4 as

product 3 has higher cost. But if we compare prices of product 3 and 5, we have r∗3 < r∗5
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Table 2.6: Example of RCS Pricing
Product α z α− z r∗ α− r∗ r∗− z λ λ× (r∗− z)

1 8 5 3 7.56 0.44 2.56 0.608 1.56
2 9 4 5 8.39 0.61 4.39 0.648 2.84
3 13 6 7 12.34 0.66 6.34 0.659 4.18
4 10 1 9 9.32 0.68 8.32 0.664 5.52
5 15 4 11 14.31 0.69 10.31 0.666 6.87

even though product 3’s cost is higher simply because product 5 has higher perceived value

to consumers. Notice that the pricing behavior is much richer than that of the multinomial

logit model which results in a constant markup.

One thing worth mentioning is that we can extend the utility model αi− ri to a more

general form by introducing price sensitivity parameter β, therefore, the utility of product i

should be αi−βri and attention probability λi =
exp(αi−βri)

1+exp(αi−βri)
. We argue that the structural

result still holds under the more general case. Indeed, the adjusted value gap: α−βz gives

the ordering of the net quality α−βr and the margins v = r− z.

To summarize, optimal net utilities and markups will preserve the value gap ordering.

Comparing with MNL under which all products share a common markup at optimality (An-

derson, de Palma and Thisse 1992), our parametrized RCS model shows that products with

higher utilities will have higher markups than products with lower utilities under optimal

pricing.

2.6 Computational Study

The practical applicability of a choice model depends on its predictive power. In this sec-

tion we numerically test our Random Consideration Set (RCS) model on both real world
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transactional data and synthetic data. We compare the predictive power of the RCS model

with the the MMNL(3) model, which represents a mixture of MNLs model with three mar-

ket segments. We find that the RCS model obtains an average of 15.6% improvement over

the benchmark on a chi-square metric for data obtained by our airline partner. Compared

with MNL model, our RCS always outperforms it over all markets.

2.6.1 Predictive Accuracy: Real World Data

Data Description and Assumption

We are given tickets sales data of 107 different itineraries departing over a collection of 120

days from one of the world’s largest airline companies. We eliminate 16 of them due to

data collection error. We fit the data and test the model predictive efficiency for each flight

separately. The sales data are collected for each flight leg departing on each single date in

a set of reading days before its departure. On each reading day, we are presented with the

cumulative sales and nested protection levels of all fare classes (as the airline company uses

the nested capacity allocation policy). So we can infer the sales of each fare class within

two reading days by taking the difference of two cumulative sales and infer the offer set

by checking the inventory availabilities on the two consecutive reading days. Furthermore,

because a consumer’s arrival with no-purchase are not observable, we focus on capturing

the substitution behavior among different fare classes within a single flight by assuming

this is the entire market. We deal with sparsity of the data by looking into a single flight’s

sales among all departure dates and assuming the same choice behavior for consumers
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taking the same flight even on different days. For example, the attention probability and

the preference ordering remain the same for consumers who take flight 32139 regardless of

whether it departs on May-08-2015 or on June-10-2016.

Model Fit and Results

For a single itinerary, we treat flights departing on the first 90 days as the training set and

the rest as the testing set. We compare the predictive accuracy of our RCS model against the

popular Mixture of Multinomial Logit (MMNL) benchmark on the same data set. Under the

MMNL model, an incoming consumer belongs to a market segment m with probability wm

and chooses a product according to MNL. So essentially we are maximizing the following

Log-likelihood function:

max
w,v

T

∑
t=1

log
(
∑
m

wm
exp(vm

ct
)

∑i∈St exp(vm
i )

)
,

where the parameter vm
i is the expected utility of product i evaluated by market segment m;

ct is the product chosen at time t. The problem is difficult to solve in general. We pick the

number of mixtures at three and use the EM algorithm described in Train (2008) to find a

stationary point.

χ
2
E =

1

∑
T
t=1 |St |

T

∑
t=1

∑
i∈St

(n̂model(i,St)−nactual(i,St))
2

0.5+nactual(i,St)
.

where n̂model(i,St) is the predicted sales of product i at time t and nactual(i,St) is the actual

sales of product i at t. And we compute the predicted number of sales by multiplying the
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predicted choice probability with the total sales at time t. This metric is analogous to the

popular chi-square measure (O−E)2/E which measures the goodness of fit and it has been

used in Jagabathula and Rusmevichientong (2016).

The percentage improvements in the χ2
E metrics under our RCS model relative to the

MMNL model can be defined as

χ2MMNL

E −χ2RCS

E

χ2MMNL
E

.

We compare these two models over the 91 markets. The result is summarized in table 2.7

where we also provide comparisons to the MNL model.

Table 2.7: Improvements over Benchmark Models
Improvement

over MNL
Improvement

over MMNL(3)
Max Average Pr(RCS�MNL) Max Average Pr(RCS�MMNL(3))

68.2% 22.3% 100% 44.4% 15.6% 67.0%

The comparison result shows that RCS is a more relevant model to capture demand sub-

stitution. As stated in the Introduction, consumers tend to buy the cheapest ticket available.

And our estimation result shows that the preference ordering and the ticket fare are heavily

correlated. It is worth highlighting that the RCS model outperforms MNL over all markets,

i.e., Pr(RCS�MNL)=100% and even compared with the Mixture of MNLs model, RCS

can give better fit on 67.0% of the markets.
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2.6.2 Predictive Accuracy: Synthetic Data

In this section we test the predictive power of our RCS model against the benchmark

MMNL model on synthetic data. We first explain how the simulations are set up and

then present the results. We assume there are n = 10 products and T = 600 time periods.

At each time point, a random subset is drawn from the global product set as the offered

assortment. Then the random purchase is simulated according to a ground truth model. We

first assume the ground truth model is MMNL(3), using it to simulate random purchases

and then fit the choice data by an MMNL with the same number of segments and by our

RCS model. Later we assume the ground truth model is an RCS choice model, and then fit

the data by MMNL(3) model as well as RCS model and compare their predictive accuracy.

1. MMNL(3) model parameter generation: Assuming MMNL(3) being the ground truth,

we randomly generate the parameter vm
i , valuation of product i of segment m by uni-

form distribution from the interval [−5,5]. And the weight parameter wm = exp(um)
∑ j exp(u j)

,

where um follows uniform distribution from the interval [−2,2] for all market seg-

ments m.

2. Random Consideration Set model parameter generation: Assuming RCS being the

ground truth, we randomly generate the attentions probabilities λi for all products

i = 1, ..,n, where each λi is an independent draw from a uniform[0,1] distribution.

And we generate product rankings by randomly permuting all the products.
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We compare these two models in terms of the MAPE and Chi-square metrics defined

as:

MAPEmodel =
1

∑
T
t=1 |St |

T

∑
t=1

∑
i∈St

|π̂model(i,St)−πactual(i,St)|
πactual(i,St)

,

χ
2model

=
1

∑
T
t=1 |St |

T

∑
t=1

∑
i∈St

(π̂model(i,St)−πactual(i,St))
2

πactual(i,St)
,

where π̂model(i,St) is the predicted sales probability of product i at time t according to the

assumed model, and πactual(i,St) is the actual sales probability of product i at t according

to the ground truth.

Table 2.8 summarizes the comparison result. Basically neither MMNL nor RCS can

dominate the other.

Table 2.8: Predictive Accuracy on Synthetic Data
Ground Truth MMNL(3) RCS

Improvement over MMNL(3)
Measured by Chi-square -79.9% 21.0%

Improvement over MMNL(3)
Measured by MAPE -45.2% 53.3%

Prob. RCS Outperforms MMNL(3) 11.5% 88.6%

2.6.3 Approximation Algorithm Performance: Tied Preference

Recall that in Section 2.4.3 we show that our approximation algorithm has performance

guarantee 1/2. In this section we numerically test its performance. We generate the model

parameters attention probability λ, and preference ordering as in Section 2.6.2; while prices

are simulated from uniform[0,1000] distribution. Since the choice probability is already
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intractable under this model, we test the algorithm on a relative small data set, i.e., the

number of products n ∈ {5,10,15} and find the optimal assortment by exhaustive search.

Table 2.9: Heuristic Performance under Tied Preference
n Average Gap Max Gap Pr(Gap< 1%) Pr(Gap< 5%)
5 0.27% 8.14% 89.65% 99.50%
10 0.80% 10.52% 73.95% 97.45%
15 1.37% 11.25% 62.10% 94.90%

2.7 Conclusion

This chapter contributes to the consideration-set-based choice models literature by bringing

the random consideration set model of Manzini and Mariotti (2014) to the operations man-

agement field. As empirical works (Jagabathula and Rusmevichientong 2016) support the

unique preference ordering among all products, we assume the differences in the purchase

is due to consideration sets variability as consumers pay random attention to the products.

We study the parameter identification problem of the RCS model under both noiseless and

noisy settings. Under the noiseless setting, we give both necessary condition and sufficient

condition to uniquely identify parameters. Under the noisy setting we design an algorithm

that can efficiently discover locally optimal parameters. When testing the RCS model on

our airline partner’s data, we find that RCS model outperforms MNL over all markets, i.e.,

Pr(RCS�MNL)=100% and even compared with the Mixture of MNLs model, RCS can

give better fit on 67.0% of the markets. We also optimize the RCS model to determine the

revenue-maximizing assortment. We show that an optimal assortment can be found effi-

ciently in O(n) time by dynamic programming. Adding a cardinality constraint increases
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the complexity to O(n2). We also extend the RCS model to allow ties in products’ ranks,

which guarantees 1/2 revenue from the optimal approach. Finally, we look into the as-

sortment pricing problem and prove that under mild assumptions optimal prices preserves

the value gap ordering. In the future, it is worthwhile to extend the model to the case of

multiple market segments where each market segment can not only have a different atten-

tion probability but also a different products ranking. But we suspect that this problem

will be intractable, as Aouad, Farias, Levi and Segev (2015) show that even under a gen-

eral unique-ranking model the assortment optimization problem is NP-hard to approximate

within any constant factor.
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Chapter 3

Approximation Algorithms for Product

Framing and Pricing

3.1 Introduction

In this chapter, we propose one of the first models of product framing and pricing. Framing

refers to the way in which the choice among available alternatives is influenced by how

the alternatives are framed, or displayed (Tversky and Kahneman 1986). For example,

empirical works by Agarwal, Hosanagar and Smith (2009) and Ghose and Yang (2009) in

online advertising show that ads that are placed higher on a webpage attract more clicks

from consumers. Johnson, Moe, Fader, Bellman and Lohse (2004) examine the average

number of websites, sorted by product categories, that are actively visited by households

each month. They observe that in a typical search session, consumers search from fewer

than two stores. Their data show that 70% of CD shoppers, 70% of book shoppers, and 42%
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of travel shoppers, are loyal to just one site. Brynjolfsson, Dick, and Smith (2010) find on

a website that catalogs price and product information from multiple retailers, that only 9%

of users select offers that are listed beyond the first page. In related search contexts, Baye,

Gatti, Kattuman and Morgan (2009) have found that a consumer’s likelihood of visiting a

firm and purchasing from it is strongly related to the order in which the firm is listed on

a webpage by a search engine. They find that a firm receives about 17% fewer clicks for

every competitor listed above it on the screen, all other things being equal. chapter

This well-documented framing effect is a natural outcome of the cognitive burden of

processing larger and larger assortments. During online shopping, it is cognitively harder

for a typical consumer to visit sellers who are listed at the bottom of a web page, before or

in addition to visiting those who are listed at the top (Animesh, Viswanathan and Agarwal

2011). In the context of online retailing, it has been observed that consumers’ attention to

a display decreases exponentially with the display’s distance to the top (Feng, Bhargava,

and Pennock 2007). Thus, positioning a brand or product at a top position on a listing can

improve both consumer attention to the brand, and consequently, consumer selection of the

brand (Chandon, Hutchinson, Bradlow, and Young 2009).

3.1.1 Model overview

Despite substantial evidence suggesting the impact of framing on consumers’ choice out-

come, there are very few models that have attempted to capture these effects. In this chapter,

we introduce one of the first models for product framing and the first one for pricing that

accounts explicitly for these effects.
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We base our model on the notion of consideration set. A consideration set is a set of

products over which a consumer will make utility comparisons before arriving at the final

purchase decision. Consideration sets have gained considerable acceptance since their in-

troduction in the seminal work of Howard and Sheth (1969). A widely used approach to

modeling choice in psychology and marketing is to assume that a consumer will first form

a consideration set. Then he will choose from among the alternatives in the set. Considera-

tion sets explain, behaviorally, consumers’ limited ability to process or acquire information

(Manrai and Andrews 1998). Methodologically, it has been shown that ignoring consider-

ation sets may lead to biased parameter estimates (Chiang, Chib and Narasimhan 1999),

whereas including consideration sets improves the predictability of choice models (Hauser

and Gaskin 1984, Silk and Urban 1978). As an example, Hauser (1978) finds that a dis-

proportionate 78% of the explainable uncertainty in consumer choice can be accounted for

by consideration sets, whereas the Multinomial Logit Model (MNL) can only capture the

remaining 22%.

We model the effect of framing on the formation of consideration sets as follows. Prod-

ucts are organized into virtual pages. Each page can hold a finite number, say p, of products.

A consumer will examine only the first X pages, where X is a random variable that may be

personalized to the consumer’s profile. The consumer forms a consideration set consisting

of only products in the examined pages. From this consideration set, the consumer makes a

choice according to a general choice model. Thus, products that are placed in earlier pages

are more likely to be considered, and therefore purchased, than those that are placed in later

pages.
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Given the behavior described above, we study two problems that are faced by an e-

retailer who is managing n different products in a particular product category. The retailer’s

product framing problem is how to determine an assortment and a distribution of the prod-

ucts in the assortment into the different pages in order to maximize the expected revenue.

The retailer’s price framing problem is to determine both the framing and pricing of the

products in order to maximize the expected revenues.

For the product framing problem, we capture additional effects that come into play

after the consideration sets have been formed. We call these effects location preference.

Location preference works as follows. First, given that a collection of pages enters into a

consumer’s consideration set, products that are displayed higher on a page are more likely

to be chosen than those displayed lower on the same page due to the evaluation effect, all

other factors being equal. Second, products that are listed in earlier pages are more likely

to be chosen than products that are listed in later pages due to the attraction effect, all other

factors being equal. With location preference, we require that the choice model be the MNL

model. We capture the effect of location on choice by using location-dependent preference

weights, which we will describe in greater detail in Section 3.8.

3.1.2 Results and Implications for Retailers

Our contributions in this chapter are the following:

• We propose one of the first models of framing effects. Our model is more general
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than those previously proposed in two important ways: It allows for a general choice

model and a more general framing structure.

• We prove that the product framing problem is NP-hard, even when there are just 2

pages and the choice model is the MNL model.

• We propose fast, easy-to-implement algorithms with worst-case performance guar-

antees. Our algorithms are significantly simpler than existing algorithms and offer

strong performance bounds. The ease and simplicity of the algorithms mean that they

can be personalized on-line for each arriving consumer. The algorithms also apply

to an extended model when the product’s display location affects both attention (i.e.,

the formation of consideration sets) and valuation (i.e., the comparison of utilities).

• We prove new structural results for pricing under framing effects. We show that given

a fixed placement of products, at optimality, each page is filled with products as many

as possible. All products on the same page have the same page-level markup, which

increases monotonically with respect to page indices. Products with higher value

gaps are given higher priority, where the value gap is defined as expected utility

when priced at cost. This implies that the optimal markup is higher for less attractive

products. This last finding is contrary to the findings of Arbatskaya (2007), who

focuses on the oligopoly market and argues that sellers lower on a list will charge

lower prices; thus, consumers with lower search costs will search longer and obtain

better deals.
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We remark that our model, although tailored to e-commerce and virtual pages, can

also be used to model brick-and-mortar retailers, with a suitable interpretation of what

consumers are willing to look at. Some consumers, for example, would only look at the

most prominent displays (see Chandon, Hutchinson, Bradlow and Young 2009, Corstjens

and Corstjens 2012), while others may enter a store and look at some aisles or the rest of the

store. Our location-preference model also applies in brick-and-mortar settings to signify

the value of having products at eye level versus waist level, versus shoe level; and the value

of end-of-aisle locations. Our pricing results also have implications for brick-and-mortar

retailers. The most prominent displays should have the highest utility products at the lowest

markups.

3.1.3 Relation to assortment planning

This chapter falls within the literature on assortment planning, which is currently a very

active area of research. Assortment planning began with a stylized model introduced by

van Ryzin and Mahajan (1999). Van Ryzin and Mahajan (1999) show that under the MNL

model, an optimal assortment consists of a certain number of highest-utility products when

the products are equally profitable. When the products’ prices are given exogenously and

the choice model is the MNL, Talluri and van Ryzin (2004) prove that an optimal assort-

ment includes a certain number of products with the highest revenues.

The assortment-planning problem is easy to solve for the MNL model over a given

consideration set. Davis, Gallego and Topaloglu (2013) show that this problem can be

formulated as a linear program with totally unimodular constraints. Davis, Gallego and
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Topaloglu (2014) also propose that under the nested logit (NL) model, the assortment-

planning problem can be solved by a linear program when the nest-dissimilarity parameters

of the choice model are less than one, and a consumer always makes a purchase within the

selected nest. Relaxing either of these assumptions renders the problem NP-hard.

The assortment-planning problem is NP-hard for general choice models. Indeed, Bront,

Mendes-Diaz and Vulcano (2009) show that under the mixed multinomial logit (MMNL)

choice model, the assortment-planning problem with a fixed number of mixtures is NP-

hard. Desir and Goyal (2013) show that this problem is even NP-hard to approximate

within a factor of O(n1−ε), for any fixed ε > 0. They give approximation schemes that

tradeoff running time with solution quality, but the running time for their approach grows

exponentially with the number of mixtures.

Few papers have studied assortment planning with location effects, but ignoring con-

sideration sets. Davis, Gallego and Topaloglu (2013) model location effects by introducing

location-dependent item weights to the MNL model. The resulting assortment-optimization

problem reduces to a linear program with totally unimodular constraints.

Assortment planning under consideration-set-based choice models have been studied

by a number of authors. One stream works with endogenous consideration sets that arise

as a result of search. Cachon (2005) shows that ignoring consumer search will lead to

less assortment variety, since in equilibrium, the seller needs a larger assortment to attract

more consumers. Sahin and Wang (2015) also study the assortment-optimization problem

with search costs. They assume consumers are homogeneous and their search sequence is

predetermined by all the products’ expected utilities, which are common knowledge.
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Feldman and Topaloglu (2015) study a model in which consumers choose products ac-

cording to the MNL model, but consumers of different types have different consideration

sets, and the sets are fixed and nested. They devise a fully polynomial-time approxima-

tion scheme for this problem. To our knowledge, there are only two papers that model

a framing-dependent formation of consideration sets. Davis, Topaloglu and Williamson

(2015) study a problem in which a firm must sequentially add products to its assortment

over time, thereby monotonically increasing consumers’ consideration sets. They provide

an algorithm with constant relative performance. The decision space for this problem is

much more constrained than ours and the application context is very specific. Aouad and

Segev (2016) consider a variant of our model, where the number of products that can be

displayed on each page is one, the choice model is the MNL, and all products must be

displayed even if doing so is suboptimal.

3.1.4 Relation to assortment pricing

Our work also falls within the area of assortment pricing. Hanson and Martin (1996) are

among the first to notice that the expected revenue function fails to be concave in pricing

problems, even under the MNL model. Song and Xue (2007) show that the expected rev-

enue is concave with respect to the market shares. Under the MNL model with uniform

price-sensitivity parameter, the markup, defined as price minus cost, has been shown to

be constant across all products at optimality (Anderson, de Palma and Thisse 1992, Hopp

and Xu 2005, and Gallego and Stefanescu 2011). By assuming that the price sensitivities

of the products are constant within each nest and the nest dissimilarity parameters are re-
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stricted to the unit interval, Li and Huh (2011) extend the concavity result to the NL model.

Gallego and Wang (2014) consider the general NL model with product-differentiated price-

sensitivity parameters and arbitrary nest coefficients. They find that the adjusted nest-level

markup is also constant across all the nests.

We extend the assortment-pricing literature to model framing effects. Under the MNL

revenue- (profit-) maximization model, we find that the constant price (markup) property

still holds at the page level. We also show that the price is higher for less attractive products,

which is contrary to the findings of Arbatskaya (2007).

3.2 Product-Framing Problem

Consider n products. Product i has revenue ri, i ∈ N = {1, . . . ,n}. The revenue can be the

profit contribution net of costs in some applications. Products are organized into virtual

pages. Each page can hold up to p products. Potentially all of the products may be offered,

but offering all of the products is not a hard requirement. Consumers who arrive at the

system have consideration sets that are governed by a random variable X taking values in

a set M that consists of all the positive integers, or is of the form {1, . . . ,m} for some finite

positive integer m. Let λ(x) = P[X = x], and Λ(x) = P[X ≥ x] for all x ∈M. A consumer

who draws X = x ∈M has consideration set {1, . . . ,x}, i.e., he will consider all products in

the first x pages. From this consideration set, the consumer purchases at most one product

according to a general choice model.

The product-framing problem is to distribute the products among the pages to maximize
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the expected revenue that can be obtained from an arriving consumer. We assume that we

do not know the number of pages that a consumer is willing to view when he arrives into

the system. We assume, however, that the distribution of X is known and is independent

of the framing of the products. Knowledge of X can be acquired from observing click data

and by computing the frequency of consumers who examine x ∈M pages. By the law of

large numbers, these frequencies converge to the probability distribution of X . We call

this multi-page assortment-optimization problem, the product-framing problem. Although

we will refer to a single random variable X , it is easy to see that X can be personalized

to heterogeneous consumer types based on available information about the distribution of

pages they are willing to see. Information that may change the distribution of X includes,

but is not limited to, prior purchases, zip code, age, and gender.

We will assume that consumers choose according to a general choice model that is

independent of the consumer type x ∈ M. Later, we will relax this assumption and show

that under mild conditions we can still guarantee a constant ratio of the expected revenue

relative to the upper bound.

The product-framing problem can be formulated in terms of decision variables yi j ∈

{0,1}, i ∈ N, j ∈M, where yi j = 1 if item i is displayed on page j and is zero otherwise.

Let π(i,S) denote the purchase probability of item i when the consideration set is S ⊆ N,
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with π(i,S) = 0 if i 6∈ S. The formulation in terms of the variables yi j is given by

OPT =max
yi j

∑
x∈M

λ(x)
n

∑
i=1

riπ(i,{k ∈ N :
x

∑
l=1

ykl = 1})

s.t. ∑
j∈M

yi j ≤ 1, ∀i ∈ N

n

∑
i=1

yi j ≤ p, ∀ j ∈M

yi j ∈ {0,1}, ∀i ∈ N, j ∈M.

(3.2.1)

We will show that problem (3.2.1) is NP-hard. Therefore, to derive performance bounds

for our algorithms, we will first find an upper bound on (3.2.1), which can be easily com-

puted.

3.3 Upper Bound on Optimal Revenue for Product Fram-

ing

Consider the following assortment-optimization problem, which constrains the number of

products in an assortment to be at most c.

G(c) = max
S⊆N

∑
i∈S

riπ(i,S)

s.t. |S| ≤ c.

(3.3.1)

Let R(x) = G(x · p) be the optimal expected revenue from consumers who see x ∈M pages.

Let S(x)⊂ N be an optimal solution associated with the revenue R(x). If we had the luxury
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of knowing the number of pages x ∈M upon the arrival of a consumer, we would offer him

assortment S(x), and would earn expected revenue

E[R(X)] = ∑
x∈M

λ(x)R(x). (3.3.2)

The following result shows that this E[R(X)] is an upper bound on the expected value V OPT

of OPT .

Theorem 3.3.1. E[R(X)]≥V OPT .

Proof. Suppose y∗ is an optimal solution to (3.2.1). We must have, for any x ∈M,

R(x)≥
n

∑
i=1

riπ(i,{k ∈ N :
x

∑
l=1

y∗kl = 1})

=⇒ ∑
x∈M

λ(x)R(x)≥V OPT .

3.4 Hardness of Framing Problem

We show that problem (3.2.1) is NP-hard even in the special case that m = 2 and the choice

model is the MNL model. We do this by reducing the well-known 2-PARTITION problem

to a special case of our model. The 2-PARTITION problem is defined as follows

Definition 3.4.1 (2-PARTITION). Given a set of n non-negative numbers w1,w2, ...,wn,

determine whether there is a set S⊆ {1,2, ...,n} such that ∑i∈S wi = ∑i6∈S wi.
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Our reduction works as follows. Starting with any instance of 2-PARTITION, we de-

sign an instance of problem (3.2.1). We show that the solution to the continuous relaxation

of this problem takes a certain value if and only if there is a solution to the 2-PARTITION

problem.

Theorem 3.4.2. Problem (3.2.1) is NP-hard even when all consumers follow the same MNL

model.

3.5 Assumptions for Analysis of Algorithms

Given that the product-framing problem is NP-hard, one of our goals will be to propose

algorithms with guaranteed performance ratios relative to OPT . Towards this goal, we will

make three innocuous assumptions:

Assumption 3.5.1.

π(i,S)≥ π(i,T ) for all i ∈ S, and S⊆ T ⊆ N.

Assumption 3.5.2. In polynomial time, we can obtain a solution with expected revenue

Ḡ(c) to problem (3.3.1) such that Ḡ(c)≥ (1− ε)G(c) for some constant ε ∈ (0,1].

Assumption 3.5.3. X has new better than used in expectation (NBUE) distribution.

Assumption 3.5.1 is very general as it holds for all random utility models. Davis,

Topaloglu and Williamson (2015) have shown that Assumption 3.5.1 leads to the following

results which we will use in the analysis.



71

Lemma 3.5.4 (Davis, Topaloglu and Williamson 2015). For any set S ⊆ N with |S| ≥ 2,

there exists i ∈ S such that

∑k∈S,k 6=i rkπ(k,S\{i})
|S|−1

≥ ∑k∈S rkπ(k,S)
|S|

.

Lemma 3.5.5 (Davis, Topaloglu and Williamson 2015). R(x)/x is decreasing in x ∈M.

Assumption 3.5.2 states that we can approximately solve the capacity-constrained prob-

lem (3.3.1) within a constant approximation ratio. For the MNL and Nested Logit models,

the capacity-constrained problem can be solved exactly in polynomial time (ε = 0) (Gal-

lego and Topaloglu 2014 ). The Mixed Multinomial Logit model with a constant number

of mixtures can also be solved within any given error ε > 0 in polynomial time . For ease of

exposition, in the rest of the chapter we will just assume that ε = 0, but all of our algorithms

and bounds can be easily extended to the case of ε > 0 by replacing the revenue function

R(x) with an approximate value, and scaling the corresponding bound by (1− ε).

Let q(x) = E(X−x|X > x) for all x ∈M. Assumption 3.5.3 is equivalent to q(x)≤ q(0)

for all x∈M. Assumption 3.5.3 implies that the additional number of pages that a consumer

will see is no more than the expected number of pages he or she would like to see before

the search.
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3.6 Algorithms with constant Performance Bounds for Prod-

uct Framing

We now propose algorithms for problem (3.2.1), which have guaranteed constant perfor-

mance ratios relative to OPT under Assumptions 3.5.1, 3.5.2, and 3.5.3. All of our perfor-

mance guarantees in this section are tight relative to the upper bound (3.3.2) in the sense

that our proofs exhibit ways to construct instances in which the bounds are achieved by our

algorithms.

Our first algorithms, called NEST, start by truncating the number of pages to an arbi-

trary integer y, and by selecting an optimal assortment, say S(y), for the first y pages. Then

they select an optimal assortment for the first y− 1 pages, say S(y− 1), by looking only

at the products in S(y). This procedure continues until the content of all pages have been

determined. With a little bit abuse of notations, we let R(S) denote the expected revenue

when a consumer considers all of the products in the set S.

NEST(y) Algorithms:

• Let y be an integer and let S(y) be the set of products with revenue R(y). Without

loss of generality, we assume that |S(y)| > (y− 1)p. In other words, a minimum of

y pages are required to hold all products in S(y). If this fails, then we can select a

smaller value of y until this assumption holds.

• For x = y−1 down to 1, let S(x) be the set of products to be displayed on the first x

pages, given that S(x) ⊂ S(x+ 1) and |S(x)| = x · p, and let R̃(x) = R(S(x)). Using
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Lemma 3.5.4, we can set S(x) to be a subset of S(x+1) such that

R̃(x)
x
≥ R̃(x+1)

x+1
. (3.6.1)

This implies that R̃(x)/x≥ R̃(y)/y = R(y)/y for all x < y.

• Use any heuristic to fill products into pages x> y, such that the total expected revenue

of products in the first x > y pages is at least R(y). As a default, we can leave pages

x > y blank.

3.6.1 Constant lower bound

Notice that the revenue of NEST(y) for pages x < y is guaranteed to be at least R̃(x) ≥

xR(y)/y, and the expected revenue for x≥ y is at least yR(y)/y. Consequently,

V NEST (y) ≥
y−1

∑
x=1

R̃(x)λ(x)+R(y)Λ(y)

≥R(y)
y

y−1

∑
x=1

xλ(x)+R(y)Λ(y) (by (3.6.1))

=
R(y)

y

y−1

∑
x=1

xλ(x)+
R(y)

y
yΛ(y)

=
R(y)

y
E[min(X ,y)].

Let NEST = NEST (y) be an algorithm in the above class where y is selected to maxi-
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mize the lower bound. More precisely, let y be the largest integer in the set

argmax
x∈M

E[minX ,x]R(x)/x.

Then V NEST ≥ R(y)
y E[min(X ,y)] for this choice of y. We will show that NEST achieves at

least 6/π2 = 0.607921 . . . of the optimal expected revenue.

The idea of the proof is to minimize R(y)
y E[min(X ,y)] over all functions R(·) satisfying

Lemma 3.5.5, and over all distributions X satisfying Assumption 3.5.3. For convenience

we will scale R(·) without loss of generality so E[R(X)] = 1. This leads to a minmax

problem that can be formulated as follows:

γ = min
R, Λ

max
x∈M

R(x)
x

E[min(X ,x)], (3.6.2)

s.t. 1 = Λ(1)≥ Λ(2)≥ ·· · ≥ 0

Λ(x+1)×∑
y>0

Λ(y)≥ ∑
y>x

Λ(y), x ∈M

R(x)≤ R(x+1), x ∈M,

R(x)
x
≥ R(x+1)

x+1
, x ∈M,

∑
x∈M

λ(x)R(x) = 1

R(x)≥ 0 x ∈M.

The first constraint ensures that Λ corresponds to a valid tail distribution. The second

constraint ensures that X has the NBUE property. The third and fourth constraint ensure
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that R is increasing and satisfies Lemma 3.5.5. The fifth constraint normalizes E[R(X)] to

1, and the last ensures that R is non-negative.

To uncover the structure of an optimal solution to (3.6.2) we will first characterize the

functions R(·) and Λ(·) in the worst case. In the process of establishing the bounds, we will

not use special notation, say γ∗,R∗(·) or Λ∗(·) to denote the optimal solution to program

(3.6.2). This comes at a small cost of ambiguity, but makes the exposition a bit cleaner.

Let y be the largest integer in the set argmax
x∈M

R(x)
x E[min(X ,x)] and γ = R(y)

y E[min(X ,y)].

We next show the worst-case structure for R(x) for all x ∈M.

Lemma 3.6.1. R(x) = γ
x

E[min(X ,x)] for all x ∈M.

The lemma implies that in the worst case, the maximum value of E[min(X ,x)]R(x)/x

is achieved by all points x in the set M. In other words, the worst-case function R and the

worst-case distribution for X are such that the value E[min(X ,x)]R(x)/x is constant for all

x ∈M.

Proof. We first show that the function R(x)
x E[min(X ,x)] cannot decrease in x. Suppose

for a contradiction that there is a smallest x, x > 1, such that the function decreases strictly

from x−1 to x. That is, R(x−1)
x−1 E[min(X ,x−1)]> R(x)

x E[min(X ,x)]. Then we can revise the

function as follows. For points y∈ {x,x+1,x+2, ...,m} such that R(y) = R(x), we increase

their value R(y), such that R(y)← (1+ ε)R(x). Let us denote this set of y′s by Y . Note it

might not be a singleton, since there might be consecutive y′s such that R(y) = R(x). In this

meantime, we scale down the R(·) at all other points y ∈M−Y , i.e., R(y)← (1− ε′)R(y).

We can properly chose the values of ε and ε′ such that E[R(X)] = 1 is maintained. Let z
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be the largest index in the set Y , then the only two constraints that might get violated by

this revision are R(x−1)
x−1 ≥

R(x)
x and R(z) ≤ R(z+ 1). However, R(x−1)

x−1 E[min(X ,x− 1)] >

R(x)
x E[min(X ,x)] implies R(x−1)

x−1 > R(x)
x , which means the decreasing unit reward condition

will not be violated as long as ε and ε′ are chosen small enough; moreover, R(z)≤ R(z+1)

will not be violated either since by the definition of set Y we know R(z)< R(z+1) before

the revision. So again, the increasing reward condition will not be violated as long as ε and

ε′ are chosen small enough. Thus the optimality condition meets contradiction, as we can

strictly decrease the value of γ.

We now show that the function R(x)
x E[min(X ,x)] cannot increase in x either. Suppose

there is a smallest x, x > 1 such that the function increases strictly from x− 1 to x, or

equivalently R(x−1)
x−1 E[min(X ,x− 1)] < R(x)

x E[min(X ,x)]. Then we can scale up the value

of R(·) at all points y < x, and scale down R(·) at all points y ≥ x, while maintaining the

constraint E[R(X)] = 1. This adjustment is valid because the only violation might occur

at pair (x− 1,x) for the constraint R(x− 1) ≤ R(x). However, R(x−1)
x−1 E[min(X ,x− 1)] <

R(x)
x E[min(X ,x)] implies R(x−1)< R(x), as E[min(X ,x−1)]

x−1 > E[min(X ,x)]
x . Consequently, the

condition that R(·) be increasing will not be violated as long as we properly choose the

scaling parameter. This leads to a contradiction as we can strictly decrease the value of

γ.

Given the worst case structure for R(·), we next show the relation between γ and the

distribution Λ(·) by using the normalization condition E[R(X)] = 1.

Theorem 3.6.2. Let Y be a random variable that is independent of the worst case X and
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has the same distribution as X, i.e., P(Y ≥ x) = Λ(x), ∀x ∈M. Then

1
γ
= E

[
X

E[min(X ,Y )|X ]

]
. (3.6.3)

Proof. By Lemma 3.6.1, R(x) = γ
x

E[min(Y,x)] , where Y is a random variable with the same

distribution as X . Then

1 = E[R(X)] = γ ∑
x∈M

x
E[min(Y,x)]

λ(x) = γE
[

X
E[min(X ,Y )|X ]

]
.

The result follows after dividing the equation by γ.

Our next goal is to show that E[ X
E[min(X ,Y )|X ] ] ≤ π2/6 among all non-negative, NBUE

distributions. In our analysis, we will allow for continuous distributions to obtain the

bound. We will later show that there is a discrete distribution that in the limit achieves

the bound.

Lemma 3.6.3. If X is non-negative with mean µ and NBUE, and Z is exponential with the

same mean, then X ≤icx Z in the increasing convex ordering.

Proof. Let F̄X denote the CCDF of X and F̄Z denote the CCDF of Z. Proving X ≤icx Z

is equivalent to proving
∫

∞

a F̄X(v)dv ≤
∫

∞

a F̄Z(v)dv = µe−a/µ for any a ≥ 0. Since X has

NBUE property, we have E(X− t|X > t)≡
∫

∞

t F̄X (v)dv
F̄X (t)

≤ µ for all t ≥ 0, indicating

F̄X(t)∫
∞

t F̄X(v)dv
≥ 1

µ
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We integrate both sides over t ∈ [0,a], and notice that the left hand side can be written as

−dln
∫

∞

t F̄X(v)dv. We have

ln
∫

∞

0
F̄X(v)dv− ln

∫
∞

a
F̄X(v)dv≥ a

µ

Since ln
∫

∞

0 F̄X(v)dv = lnE(X) = lnµ, the above reduces to the desired expression:

∫
∞

a
F̄X(v)dv≤ µe−a/µ =

∫
∞

a
F̄Z(v)dv.

Corollary 3.6.4. If Y is a non-negative, NBUE random variable with mean µ, and Z is

exponential with the same mean, then E[min(Y,x)]≥ E[min(Z,x)] for all x≥ 0.

Proof. Applying the Lemma 3.6.3 to Y and Z, we see that E[(Y − x)+] ≤ E[(Z− x)+], so

E[min(Y,x)] = E[Y ]−E[(Y − x)+]≥ E[Z]−E[(Z− x)+] = E[min(Z,x)].

Corollary 3.6.5. For any independently and identically distributed X and Y that are NBUE

and have mean µ, E [X/E[min(X ,Y )|X ]] ≤ E [W/E[min(Z,W )|W ]], where Z and W are

independent exponentials with mean µ

Proof. Define H(x)≡ x/E[min(Z,x)]. From Corollary 3.6.4, x/E[min(Y,x)]≤ x/E[min(Z,x)]=

H(x). Since H(x) is increasing convex, and X ≤icx W , it follows from Lemma 3.6.3 that

E[H(X)]≤ E[H(W )].

We are now ready to present the bound of our algorithm.
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Theorem 3.6.6. The expected revenue V NEST is at least 6
π2V OPT .

Proof. By Lemma 3.6.1, R(x) = γ
x

E[min(X ,x)] , and by Theorem 3.6.2, and Corollary 3.6.5 ,

1/γ = E
[

W
E[min(Z,W )|W ]

]
, where W and Z are independent exponentially distributed random

variables with the same mean, say µ. We will now show that E [Z/E[min(Z,W )|W ]] = π2/6,

which is independent of µ. This will imply that

V NEST

V OPT ≥ γ = 6/π
2,

completing the proof.

Since W is exponential with mean µ, we have E[min(Z,W )|Z] = µ(1− exp(−Z/µ)).

Substituting this expression into the denominator, we obtain

E
[

Z
µ(1− exp(−Z/µ))

]
=

∫
∞

0

z/µexp(−z/µ)
1− exp(−z/µ)

dz/µ =
∫

∞

0

ue−u

1− e−u du =
∞

∑
x=1

1
x2 =

π2

6
,

where the first equality follows from the distribution of Z, the second from the transforma-

tion u = z/µ, the third equality is a well know result from calculus, and the last equality is

an important problem in number theory, posed by Mengoli in 1644. This problem remained

open for 90 years until Euler solved it in 1734 at the age of 28.

Our results show that the bound for Problem (3.6.2) is tight for the exponential distribu-

tion. The reader may wonder whether there is a discrete distribution over the non-negative
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integers such that the bound for Problem (3.6.2) is also tight. The following corollary

asserts that this is indeed the case.

Corollary 3.6.7. The performance ratio 6/π2 with respect to the upper bound (3.3.2) is

attained when X and Y have geometric distributions with mean 1/(1− p) as p ↑ 1.

Proof. Let X , Y be geometrically distributed with mean 1
1−p . That is, P[X = x] = P[Y =

x] = px−1(1− p). Then we can write

E
[

X
E[min(X ,Y )|X ]

]
=

∞

∑
y=1

py−1(1− p)2y
1− py .

For p < 1, we have

∞

∑
y=1

py−1(1− p)2y
1− py = (1− p)2

∞

∑
y=1

y
p

py

1− py

= (1− p)2
∞

∑
y=1

y
p

∞

∑
n=1

pyn

=
(1− p)2

p

∞

∑
n=1

pn
∞

∑
y=1

y(pn)y−1

=
(1− p)2

p

∞

∑
n=1

pn d
d pn

1
1− pn

=
(1− p)2

p

∞

∑
n=1

pn 1
(1− pn)2

=
∞

∑
n=1

pn−1 (1− p)2

(1− pn)2 .

The above series is an increasing function of p. It is maximized both locally and globally
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at p = 1. To find the limit at p = 1, we use two applications of L’Hospital’s rule to obtain

limp→1 ∑
∞
n=1 pn−1 (1−p)2

(1−pn)2 = ∑
∞
n=1

1
n2 =

π2

6 .

3.6.2 Improvement to the algorithms

We can refine the NEST Algorithms by extending the algorithms to pages beyond y. In

particular, let R̃(x) be the performance of the NEST Algorithms described above for all

x ≤ y. Set x = y+ 1 and solve the x-page problem subject to the constraint that the first y

pages are composed of S(y). Then select the products for page x = y+ 1 by solving the

problem for page x among all products in the complement of S(y). For higher values of

x, continue the procedure, fixing the pages for all z < x and selecting page x among the

complement of the products used in pages 1, . . . ,x−1. Let NEST +(y) be an algorithm in

this improved class. When y is chosen as the largest integer in the set

argmax
x∈M

V NEST+(x)

then we call NEST +(y) as NEST+. Note that NEST+ continues to have a worst-case

performance bound of 6
π2 as we have proved in Section 3.6.1.

Corollary 3.6.8. If R(x) has nested solutions, i.e, S(1)⊆ S(2)⊆ ...⊆ S(m), where S(x) is

the optimal assortment for R(x), then NEST+(y) returns an optimal solution. A sufficient

condition would be that the capacitated assortment problem G(c) has nested solutions.
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3.7 Product Framing with Type-Dependent Consumer Choice

Models

In this section we relax the requirement that the consumer choice model must be the

same for all customers. This relaxation allows us to model keen customers who are more

determined to buy, and picky customers who are more price- or quality-sensitive.

To this end, we allow the choice model to be type dependent. Accordingly, for a con-

sumer of type x, who intends to view x pages, we let πx(i,S) be the purchase probability of

item i in assortment S. We will show that under mild assumptions, we can still design an

algorithm to guarantee an expected revenue of 1/3 of the upper bound.

Define

r(x,S) = ∑
i∈S

riπx(i,S) (3.7.1)

to be the expected revenue from presenting assortment S to a consumer of type x. We will

still use R(x) to denote the optimal revenue from the capacitated assortment problem for

consumers with type x, namely,

R(x) =max
S∈N

r(x,S)

s.t.|S| ≤ x · p.

It is easy to verify that in this extended model Theorem 3.3.1 is still valid, i.e., E[R(X)]
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is still an upper bound on the optimal expected revenue, as we only need to replace π(·, ·)

with πx(·, ·) in the proof of Theorem 3.3.1.

We make the following assumptions:

Assumption B1. r(x,S)≤ r(y,S) for all x≤ y and S⊆ N with |S| ≤ x · p

Assumption B2. R(x)/x is decreasing in x.

Assumption B3. Same as Assumption 3.5.2.

Assumption B4. X has Increasing Failure Rate (IFR).

Assumption B1 was implicitly true in previous sections as r(x,S) = r(y,S) when all

consumers follow the same choice model. Assumption B2 is weaker than Assumption

3.5.1 because, according to Lemma 3.5.5, the former is a result of the latter.

Assumption B4 is stronger than Assumption 3.5.3 as it is sufficient for Assumption 3.5.3

( Shaked and Shanthikuma 2007). It is equivalent to h(x) ≡ λ(x)
Λ(x) increasing in x ∈M. As-

sumption B4 implies that the probability that a consumer will view the next page is de-

creasing in the number of pages he or she has viewed.

To gauge the appropriateness of our algorithms in settings where our assumptions might

not hold, we perform computational experiments in these settings in Section 3.10.2. The

experiments indicate that our algorithms significantly outperform greedy heuristics even in

settings where the choice model changes drastically with x and the monotonicity of r(x,S)

in x is violated.
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3.7.1 TRUNCATE (TRUNC) Algorithms

This algorithm simply optimizes for the set of items to be included in the first x pages, for a

well-chosen x. In other words, it truncates the number of pages to exactly x. It does not try

to optimize for the placement of these items within the x pages. The idea is to cater only to

consumers who will view at least x pages.

Algorithm:

1. Choose y = maxargmax
x∈M

R(x)P[X ≥ x]. Let S(y) be the set of items with expected

revenue R(y).

2. Use any heuristic to fill in the first y pages such that the set of all items in the first y

pages is S(y).

3. Use any heuristic to fill in pages x > y such that the total expected revenue of items

in the first x > y pages is at least R(y). As a default, we can leave pages x > y blank.

This directly follows Assumption B1.

Let T RUNC be an algorithm in the above class. We next show that T RUNC achieves

at least 1/3 of the optimal expected revenue. The main idea of the proof is as follows.

Clearly R(y)Λ(y) is a lower bound on the expected revenue V T RUNC of T RUNC. We will

minimize the quantity R(y)Λ(y) over all IFR distributions of X and all increasing functions

R(·) satisfying Assumption (B2). We will scale R(·) without loss of generality so the upper

bound E[R(X)] is normalized to 1. We will then show that the smallest value of R(y)Λ(y)

is at least 1/3. Doing this is equivalent to proving the same lower bound on the following



85

optimization problem:

r = min
R, Λ

max
x∈M

R(x)Λ(x) (3.7.2)

s.t. 1 = Λ(1)≥ Λ(2)≥ ·· · ≥ 0

Λ(x+1)Λ(x−1)≤ Λ(x)2, x≥ 2

R(1)≤ R(2)≤ ·· ·

R(x)≥ x
x+1

R(x+1), x≥ 1,

∑
x∈M

(Λ(x)−Λ(x+1))R(x) = 1

R(x)≥ 0 x ∈M.

All the constraints follow the same logic as those in optimization problem (3.6.2). How-

ever, note that the third constraint that R be increasing is just a necessary condition of

Assumption B1.

We are now ready to present our main result for the TRUNC algorithm. Please refer to

the Appendix for the detailed analysis.

Theorem 3.7.1. Let R and Λ be an optimal solution of (3.7.2). Then in the worst case X is

geometric with mean E[X ] = y, and

r =
1

3−2/y
≥ 1

3
. (3.7.3)

Notice the this bound is sharper than 1/3 when y is small. We have r = 1 if y=E[X ] = 1

as expected because then people only see page one and TRUNC is optimal. The result is
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r ≥ 1/2 when y = E[X ] = 2, and decreases slowly to 1/3 as y increases to infinity. Thus,

the 1/3 bound is attained in the limit in the unrealistic case that people see in expectation

an infinite number of pages, and there are an infinite number of products.

As a corollary, we have the main result for this section.

Corollary 3.7.2. Under Assumptions B1, B2, B3, and B4, r ≥ 1/3, and consequently

V T RUNC ≥ 1/3V OPT .

3.8 Product Framing with Location Preferences

In online retail, consumers may be more likely to choose products that are displayed at

the top among search results, since consumers tend to associate high valuation with prod-

ucts that are displayed earlier (Chandon, Hutchinson, Bradlow, and Young 2009). In this

section, we augment our model to capture the phenomenon that a consumer is more likely

to buy a product that is displayed earlier, even if the consumer has determined his con-

sideration set. We model this phenomenon by introducing location-dependent preference

weights for all products. We use νixq to denote the preference weight of product i when

this product is displayed at location q on page x. Without loss of generality, we assume

that there are as many locations as there are products so that we can offer all products at

once. If the number of possible locations is smaller than the number of products, then

we can define additional locations with νixq = 0 for all i ∈ N for each additional loca-

tion (x,q). In this case, using one of these additional locations for a product is equivalent

to not displaying the product at all. To capture the product-framing decisions, we use
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y = {yixq : i ∈ N,x ∈M,q ∈ P} ∈ {0,1}n×m×p, where yixq = 1 if we offer product i in lo-

cation q of page x; otherwise yixq = 0. If the product offer decisions are given by y, then

we obtain an expected revenue of Rx(y) =
∑

n
i=1 ∑

x
j=1 ∑

p
q=1 yi jqνi jqri

1+∑
n
i=1 ∑

x
j=1 ∑

p
q=1 yi jqνi jq

from consumers who only

view the first x pages.

Recall that we can obtain the upper bound of the problem without location preference

by E(R(X))≡ ∑
m
x=1 λ(x)R(x), where R(x)≡ G(x · p) is the highest expected revenue from

consumer who is willing to view x pages. Under the MNL choice model, for the problem

with location preference, the problem G(x · p) is still polynomially solvable. This is because

the problem is formulated as

max
y

∑
n
i=1 ∑

x
j=1 ∑

p
q=1 yi jqνi jqri

1+∑
n
i=1 ∑

x
j=1 ∑

p
q=1 yi jqνi jq

s.t. ∑
i∈N

yi jq ≤ 1 ∀ j = 1, ...,x, q ∈ P ; ,

x

∑
j=1

∑
q∈P

yi jq ≤ 1 ∀i ∈ N;

yi jq ∈ {0,1} ∀i ∈ N, j = 1, ...,x, q ∈ P .

where the first set of constraints ensures that each product is offered in at most one location

and the second set of constraints ensure that each location is used by at most one prod-

uct. The constraint matrix is that of an assignment problem, which is totally unimodular;

see Corollary 2.9 in Chapter III.1 of Nemhauser and Wolsey (1988). With the linear frac-

tional objective function, we know the problem is easily solvable; see Davis, Gallego and

Topaloglu (2013).
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We prove the following generalization of Lemma 3.5.5:

Lemma 3.8.1. Assume that νixq≤ νix′q′ if (x−1)× p+q > (x′−1)× p+q′ for all products

i ∈ N, i.e, the preference weight will decrease if the item is displayed further in the rear.

Then R(x)
x ≤

R(x′)
x′ for any x,x′ ∈M and x > x′.

Proof. It is easy to see that the value of R(x) is a root of the following equation:

R(x) = max
y

n

∑
i=1

x

∑
j=1

p

∑
q=1

(ri−R(x))νi jqyi jq

Any suboptimal assortment yields the left hand side bigger than the right hand side. Under

the optimal solution yielding R(x), we can pick the x′× p products that give the highest

(ri−R(x))νi jq. Let us denote this set of products by S. Then it must be true that

∑
i∈S

x

∑
j=1

p

∑
q=1

(ri−R(x))νi jqyi jq ≥ x′
R(x)

x

If any item i ∈ S is displayed in some page later than x′, for example at position jq, then

there must exist one product i′ at position j′q′ such that j′ ≤ x′ and i′ /∈ S. We replace

product i′ by product i, then νi j′q′ ≥ νi jq by assumption. Under the updated configuration

y′ it must be

∑
i∈S

x′

∑
j=1

p

∑
q=1

(ri−R(x))νi jqy′i jq ≥ x′
R(x)

x

Since we are dealing with more restrictive cardinality constraint, i.e., x′ < x, we have
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R(x′)≤ R(x), therefore

R(x′)≥∑
i∈S

x′

∑
j=1

p

∑
q=1

(ri−R(x′))νi jqy′i jq ≥ x′
R(x)

x
,

which implies that

R(x′)
x′
≥ R(x)

x
.

With Lemma 3.8.1 and the increasing-failure-rate property, we can show that the 6
π2

performance bound still holds.

Theorem 3.8.2. Assume that νixq ≤ νix′q′ if (x−1)× p+q > (x′−1)× p+q′ for all prod-

ucts i ∈ N. Then all bounds proved in Sections 3.6 continue to hold for the model with

location preference.

3.9 Price Framing Problem

In practice, the retailer may care not only about how to select and display the products,

but also how to price them to maximize expected revenues. In this section we consider the

problem faced by a retailer who is jointly framing and pricing all products. The framing

policy will still determine consumers’ consideration sets, i.e., each customer will consider

products on the first x pages with probability λ(x), x = 1, . . . ,m. However, prices will influ-

ence consumers’ valuation of the products. More specifically, under a given consideration
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set, we assume that consumers make choices according to the MNL model, with utility fol-

lowing a linear form: ui = ai−βri +εi. This formulation is commonly used in Economics,

Marketing and Psychology (Berry, Levinsohn and Pakes 1995; Fader and Hardie 1996;

Shugan 1980). Here, ai is the price-independent quality of item i, β > 0 is the price sensi-

tivity parameter, and ri is the price of product i. Without loss of generality, the i.i.d. random

perturbation terms ε′s follow a standard Gumbel distribution and the expected utility of the

outside alternative is zero, i.e., E(u0) = 0.

Before rushing into the joint optimization problem, let us first consider the case where

the products are framed and the only issue is to find optimal prices. More precisely, we

assume that an assignment of products to pages is given, where yi j ∈ {0,1}, and yi j = 1 if

and only if item i is displayed on page j. Naturally ∑ j yi j = 1 and ∑i yi j ≤ 1. Without loss

of generality, we first look into revenue maximization problem by assuming cost c= 0. The

decision variables then become the price vector r = (r1, ...,rn) ∈ Rn
+, where ri denotes the

price of item i. Later we will see the result can be easily extended to the profit maximization

case with cost c 6= 0.

Let Sx = {i : yix = 1} be the set of products displayed on page x and Sx = ∪x
j=1S j be the

consideration set of consumers who view x pages. Assuming that the sets Sx, ∀x ∈M, are

fixed, we can express the pricing problem as follows:

Rpricing = maxr R(r|S), (3.9.1)
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where

R(r|S)≡ ∑
x∈M

λ(x)Rx(r|Sx)

is the expected total revenue under price r. Here, Rx(r|Sx) = ∑i∈Sx riπ(i,Sx) is the expected

revenue from consumers who view exactly x pages, and π(i,Sx) is the probability that such

a consumer purchases item i:

π(i,Sx) =


exp(ai−βri)

1+∑ j∈Sx exp(a j−βr j)
, if i ∈ Sx;

0, otherwise.

The following theorem states the structural results of the optimal pricing solution. We omit

the proof because of space constraints.

Theorem 3.9.1. Assume that the assignment of products onto m pages is given. To maxi-

mize expected revenue, all products on the same page have a common price. That is, there

are page-dependent parameters θ = (θ1, ...,θm) such that ri = rk = θx if both products i

and k are displayed on page x. Moreover, the page-dependent parameters monotonically

increase with the page indices, i.e., θ1 < θ2 < ... < θm.

This result extends the classical optimal assortment-pricing structure under the MNL

model. It is known that the optimal prices under the MNL profit-optimization problem have

a constant markup (see for example, Anderson, de Palma and Thisse (1992), Hopp and Xu

(2005) and Gallego and Stefanescu (2011)). We are considering the revenue-maximization

problem, and therefore, we set the costs to zero, treating them as sunk costs. We obtain an

analogous result that the prices should be equal for products that are displayed on the same
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page. We can easily extend the result to the profit maximization problem by treating ai as

ai−βci, then we will see the markups should be page-dependent.

Therefore, we can reduce the decision variables from n prices, one for each item, to m

prices, one for each page. The resulting problem in terms of θx, x ∈M, is given by

Rpricing = max
θ

R(θ|S)

where

R(θ|S)≡
m

∑
x=1

λ(x)Rx(θ|Sx)≡
m

∑
x=1

λ(x)
∑

x
j=1 θ j ∑i∈S j exp(ai−βθ j)

1+∑
x
j=1 ∑i∈S j exp(ai−βθ j)

.

The first order condition yields the system of equations

∂R(θ|S)
∂θx

=
m

∑
j=x

λ( j)π(Sx,S j)(1−βθx +βR j(θ|S j)) = 0 ∀x ∈M,

which are equivalent to

θx =
1
β
+

∑
m
j=x λ( j)π(Sx,S j)R j(θ|S j)

∑
m
j=x λ( j)π(Sx,S j)

.

In other words, the (common) price for products listed on page t is a constant, plus the

weighted average of the expected revenue from the consumers who consider these products.

In general, the expected revenue R(θ|S) may not be jointly concave in the θ vector.

Example 3.9.2. Two products are to be displayed on two pages. Suppose that π(X = 1) =

56% and π(X = 2) = 44%. Product one has quality a1 = 4 and product two has a2 = 2. The
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price sensitivity is equal to one. The graph below shows how the expected revenue changes

with respect to the price. As we can see, the expected revenue is not jointly concave in the

price vector.

Figure 3.1: Pricing under Framing Effect

With the above optimal pricing structure, we now look into the problem of how to dis-

play the products. A related question is whether all products should be displayed. By the

presumed utility structure, we see that products are differentiated by their quality parame-

ters ai, i = 1, ...,n. Without loss of generality, we will assume that the products are ordered

in decreasing quality, so that a1 ≥ a2 ≥ ...≥ an.
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Theorem 3.9.3. Assume that products differ in their quality parameters ai, i = 1, ...,n

such that a1 ≥ a2 ≥ ... ≥ an. At optimality, each page will be filled with products until all

products are displayed. The products are displayed in the order of their indices, so that

higher quality products are displayed earlier.

In essence, Theorems 3.9.1 and 3.9.3 tell us that higher-quality products should be

displayed first and given lower prices. This result might appear unintuitive, and therefore

requires some explanation. The prices are of the form ri = θx(i), where x(i) is the index of

the page for product i, with θ1 . . . < θm. Thus products seen by fewer people have a higher

price, with the lowest price enjoyed by products in page one, which are seen by everybody.

Interestingly, the price θ1, levied on the highest quality products that appear in the first page

is higher than the optimal price, that would result if π(X ≤ 1) = 1; the price θm, levied on

the lowest quality products that appear in the last page is lower than the optimal price, that

would result if π(X ≥ m) = 1. In essence, consumers are penalized for not being willing

to see all products and are compensated for being willing to see more products. Another

way to understand the result is that lower-quality products are charged higher prices and

serve to steer consumers to the higher-quality products. This result is in sharp contrast with

the result for pricing in an oligopoly market, where several firms are deciding prices, see

Arbatskaya (2007).

Corollary 3.9.4. Under optimal pricing and frame, the expected revenue Rx(r|Sx) for a

consumer who views x pages is increasing and concave with respect to x.
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This result is intuitive as the objective function is increasing in the number of products,

and consumers who look at more pages also look at more products.

The optimal structure can also be extended to the profit-maximization problem. Inter-

estingly, products now should be ordered by their value gaps, defined as the quality minus

price sensitivity times price, i.e., the expected utility when products are priced at their costs,

which is first introduced by Gallego, Li and Beltran (2016).

Corollary 3.9.5. For the profit-maximization problem, at optimality, products are displayed

in decreasing order of their value gaps, i.e., ṽi ≡ ai−βci, and they are priced with page-

level constant markups, i.e, ri− ci = θx(i), where the page-level markups should monoton-

ically increase with the page indices. Therefore the products are displayed in decreasing

order of their expected net utility as well.

This result can be easily seen by replacing ai with the value gap ai−βci. For details,

see Gallego, Li and Beltran (2016).

3.10 Computational Experiments

In this section, we numerically test the performance of the following framing heuristics:

• The NEST algorithm introduced in Section 3.6. Recall that NEST(y) leaves pages

x > y empty.

• The enhanced algorithm NEST+ introduced in Section 3.6.2, which is designed to

improve practical performance.
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• A heuristic, SORT1, which sorts and displays products in increasing order of price.

• A heuristic, SORT2, which sorts and displays products in decreasing order of attrac-

tiveness.

• A greedy heuristic, BOTTOM-UP (BU), which starts with the first page (x = 1) and

sequentially fills in products that would maximize the expected revenue for type x

customers, x = 2, . . . ,m, such that this assortment includes the assortment for type-

x−1 customers.

• A greedy heuristic, TOP-DOWN (TD) which starts by fitting all products into m

pages. Then in the k-th step, k = 1, . . . ,m− 1, the heuristic finds an assortment that

maximizes revenue for type-m−k customers, from the assortment for type m−k+1

customers.

3.10.1 Experimental Setup

We proceed by describing the instances being tested in our experiments. In all of our test

problems, we assume that consumer choice is governed by the Multinomial Logit Model.

The MNL associates the attractiveness {vi : i ∈ N} with the products. If the set of products

S(x) is displayed in the first x pages, then conditional on consumer type x’s arrival, he will

buy product i ∈ S(x) with probability

vi

1+∑i′∈S(x) vi′
.
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By convention, vi = eai−βri , where ai is the product quality. In the tests, we independently

draw every ri from a uniform distribution over [50,100]. We set β = 1.02 and ai = ri + εi,

where εi ∈ [−0.3,0.3] is a noise added to the quality of product i.

For all test cases of the framing algorithms, we use n = 300 and m = 20 . We test

three different distributions of X : geometric, uniform and Poisson. We also differentiate

the simulation scenarios by the expectation of X : Small (E(X) = 2), Median (E(X) = 4),

and Large (E(X) = 8). We also vary the number p of products in each page.

For each test case, we simulate 1,000 replicates and report the average gaps between

the heuristics and the upper bound.

3.10.2 Experimental Result

Results of Framing Algorithms

Refer to Tables 3.1 to 3.9. In all scenarios and according to our metrics, SORT2 outperforms

SORT1; TD, same as BU dominates SORT1 and SORT2; and unsurprisingly NEST+ out-

performs NEST . NEST+ dominates all other heuristics SORT1, SORT2, TD and BU, with

the average optimality gap of just 0.99% in the worst case, compared to 35.18% for SORT2,

3.03% for TD and 3.83% for BU. The optimality gaps for SORT1 and SORT2 are relatively

uniform across different scenarios, whereas the optimality gaps for NEST and NEST+

tend to be larger for the geometric and exponential distributions, which we have shown

to be worst-case distributions for these algorithms. When the page capacity and expected
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number of pages viewed by a consumer increase, NEST+, TD and BU tend to give same

performance as they become optimal.

Table 3.1: Performance of NEST when E[X ] = 2 and X follows a geometric distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 12.22% 0.76% 25.12% 12.71% 1.06% 3.83% 2.1 20.0 20.0 20.0
3 7.43% 0.26% 31.49% 23.84% 0.43% 0.55% 6.0 60.0 60.0 60.0
9 12.23% 0.01% 37.52% 32.60% 0.01% 0.03% 9.0 83.0 83.0 83.0

15 8.02% 0.00% 38.73% 34.50% 0.00% 0.01% 15.0 83.2 83.2 83.2

Table 3.2: Performance of NEST when E[X ] = 4 and X follows a geometric distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 10.46% 0.99% 29.39% 20.12% 2.01% 1.68% 4.5 20.0 20.0 20.0
3 9.63% 0.16% 35.15% 29.20% 0.60% 0.24% 9.0 60.0 60.0 60.0
9 7.34% 0.01% 37.92% 33.77% 0.01% 0.01% 18.0 83.1 83.1 83.1

15 11.07% 0.00% 37.12% 33.60% 0.00% 0.00% 18.0 83.1 83.1 83.1

Table 3.3: Performance of NEST when E[X ] = 8 and X follows a geometric distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 10.49% 0.56% 33.28% 26.17% 2.44% 0.74% 7.0 20.0 20.0 20.0
3 9.81% 0.08% 37.32% 32.34% 0.56% 0.11% 13.2 60.0 60.0 60.0
9 5.42% 0.00% 36.26% 32.87% 0.01% 0.01% 27.0 83.2 83.2 83.2

15 5.38% 0.00% 33.20% 30.58% 0.00% 0.00% 30.0 83.0 83.0 83.0

Picky customers

We investigate in this section whether our algorithms continue to make good decisions in

settings in which v0(x) increases linearly or exponentially in x. Specifically, in the linear
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Table 3.4: Performance of NEST when E[X ] = 2 and X follows a uniform distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 0.79% 0.79% 24.43% 12.13% 0.88% 3.34% 3.0 3.0 3.0 20.0
3 6.24% 0.17% 32.03% 24.77% 0.53% 0.40% 6.0 9.0 9.0 60.0
9 2.66% 0.01% 38.20% 33.45% 0.02% 0.02% 18.0 27.0 27.0 83.2

15 10.01% 0.00% 39.32% 35.09% 0.00% 0.00% 15.0 45.0 45.0 83.3

Table 3.5: Performance of NEST when E[X ] = 4 and X follows a uniform distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 4.90% 0.64% 29.42% 20.48% 2.26% 1.17% 5.0 7.0 7.0 20.0
3 4.87% 0.10% 36.25% 30.69% 0.67% 0.15% 12.0 21.0 21.0 60.0
9 8.97% 0.01% 38.91% 34.79% 0.02% 0.01% 18.0 63.0 63.0 82.9

15 4.85% 0.00% 37.70% 34.24% 0.00% 0.00% 30.0 83.1 83.1 83.1

case, we set v0(x) = 1+(x−1)β, for page index x ∈ {1,2, ...,m}. In the exponential case,

we set v0(x) = e(x−1)β, for page index x ∈ {1,2, ...,m}. When computing NEST(y), we set

v0 = v0(y). We explore the range of values [0.2,2] for β in the linear case and [0.1,1] in the

exponential case.

Since NEST+ inherits the structure of both NEST and T RUNC, and is optimized for

performance, we have not added separate computational experiments for T RUNC.

Tables 3.10 and 3.11 display the results in the linear and exponential case, respectively.

The results show that our leading algorithm, namely NEST+ continues to dominate all

heuristics by substantial amounts in nearly all cases, except for a small difference in one

case, where β is very small. Thus, these experiments indicate that our model serves as a

good approximation of the more complex setting where the choice model may change dras-
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Table 3.6: Performance of NEST when E[X ] = 8 and X follows a uniform distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 7.26% 0.32% 34.08% 27.63% 2.75% 0.42% 8.0 15.0 15.0 20.0
3 6.14% 0.05% 38.36% 33.72% 0.60% 0.06% 18.0 45.0 45.0 60.0
9 3.69% 0.00% 36.50% 33.31% 0.01% 0.00% 35.4 83.0 83.0 83.0

15 2.24% 0.00% 32.63% 30.25% 0.00% 0.00% 45.0 83.0 83.0 83.0

Table 3.7: Performance of NEST when E[X ] = 2 and X follows a Poisson distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 10.11% 0.49% 24.84% 12.24% 0.94% 3.53% 2.0 17.1 17.5 20.0
3 6.19% 0.18% 31.91% 24.48% 0.49% 0.45% 6.0 48.4 48.4 60.0
9 14.09% 0.02% 38.02% 33.21% 0.02% 0.02% 9.0 83.1 83.1 83.1

15 9.51% 0.01% 39.16% 34.96% 0.01% 0.00% 15.0 83.1 83.1 83.1

tically with the customer type. Thus, our model is a good starting point for an investigation

of framing decisions involving heterogeneous customers.

3.11 Conclusion and Future Work

In this work, we propose one of the first models of “framing effects” for pricing and as-

sortment optimization. We introduce a model in which a set of products must be organized

sequentially into a set of virtual pages and priced appropriately. Each consumers will only

consider a random number of pages, and will select an item, if any, from these pages fol-

lowing a general choice model. We show that this product-framing problem is NP-hard. We

derive algorithms with guaranteed relative performance. Our algorithms are fast and easy

to implement. We also show new structural results for pricing under framing effects. Direc-
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Table 3.8: Performance of NEST when E[X ] = 4 and X follows a Poisson distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 7.69% 0.34% 28.91% 20.13% 2.21% 0.94% 4.0 20.0 20.0 20.0
3 8.91% 0.04% 36.44% 31.08% 0.74% 0.08% 9.0 60.0 60.0 60.0
9 3.46% 0.00% 39.27% 35.18% 0.02% 0.00% 27.0 82.9 83.0 82.9

15 5.09% 0.00% 38.13% 34.69% 0.00% 0.00% 30.0 82.9 82.9 82.9

Table 3.9: Performance of NEST when E[X ] = 8 and X follows a Poisson distribution.

Avg gap Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 TD BU NEST NEST+ TD BU
1 4.32% 0.05% 34.15% 27.99% 3.03% 0.13% 7.9 20.0 20.0 20.0
3 5.08% 0.01% 39.25% 34.86% 0.65% 0.01% 18.0 60.0 60.0 60.0
9 2.03% 0.00% 37.41% 34.24% 0.01% 0.00% 45.0 83.1 83.1 83.1

15 0.76% 0.00% 33.01% 30.79% 0.00% 0.00% 60.0 82.9 82.9 82.9

tions for future research include to endogenize the number of pages consumers are willing

to see. In the context of dynamic search, it would be convenient to allow for correlations

between X and the choice model.
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Table 3.10: Performance of NEST and other heuristics. E[X ] = 4; p = 3; X follows a
Poisson distribution; v0(i) = 1+(i−1)β, where i is the page index.

Avg gap Max gap
β NEST+ SORT1 SORT2 BU TD NEST+ SORT1 SORT2 BU TD

0.2 0.02% 32.40% 25.93% 0.74% 0.03% 0.10% 34.28% 28.85% 1.70% 0.14%
0.4 0.01% 29.65% 22.13% 0.60% 0.01% 0.04% 32.18% 24.50% 1.57% 0.07%
0.6 0.00% 27.44% 19.03% 0.57% 0.00% 0.02% 31.46% 21.40% 1.35% 0.02%
0.8 0.00% 26.05% 16.76% 0.51% 0.00% 0.00% 29.60% 19.32% 1.18% 0.00%
1 0.00% 24.81% 14.78% 0.45% 0.00% 0.00% 28.70% 17.01% 1.11% 0.00%

1.2 0.00% 24.05% 13.54% 0.39% 0.00% 0.00% 27.74% 15.84% 0.91% 0.00%
1.4 0.00% 22.84% 12.11% 0.35% 0.00% 0.02% 27.08% 15.24% 0.93% 0.02%
1.6 0.00% 22.61% 11.35% 0.29% 0.00% 0.06% 27.84% 13.48% 0.70% 0.06%
1.8 0.01% 21.63% 10.48% 0.26% 0.01% 0.11% 27.07% 13.35% 0.62% 0.11%
2 0.02% 21.52% 9.92% 0.26% 0.02% 0.08% 27.85% 14.01% 0.66% 0.08%

Table 3.11: Performance of NEST and other heuristics. E[X ] = 4; p = 3; X follows a
Poisson distribution; v0(i) = e(i−1)β, where i is the page index.

Avg gap Max gap
β NEST+ SORT1 SORT2 BU TD NEST+ SORT1 SORT2 BU TD

0.1 0.02% 33.77% 27.79% 0.61% 0.03% 0.09% 36.16% 29.81% 1.78% 0.09%
0.2 0.02% 30.95% 24.06% 0.73% 0.49% 0.10% 34.73% 26.15% 1.73% 1.27%
0.3 0.01% 28.17% 19.98% 0.76% 2.30% 0.08% 30.48% 21.91% 1.46% 4.55%
0.4 0.03% 25.99% 16.69% 0.72% 2.37% 0.10% 30.66% 19.13% 1.37% 4.71%
0.5 0.09% 24.22% 14.08% 0.69% 2.03% 0.23% 29.65% 15.82% 1.49% 4.66%
0.6 0.17% 23.37% 12.19% 0.59% 1.79% 0.38% 29.12% 13.60% 1.47% 4.48%
0.7 0.25% 22.53% 10.72% 0.58% 1.74% 0.53% 27.61% 12.74% 1.31% 4.29%
0.8 0.27% 21.82% 9.81% 0.60% 1.53% 0.61% 27.22% 13.05% 1.35% 3.83%
0.9 0.31% 21.46% 9.09% 0.65% 1.47% 0.76% 28.61% 11.12% 1.24% 4.29%
1 0.40% 21.76% 8.53% 0.60% 1.51% 1.07% 28.15% 10.81% 1.36% 3.94%
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Chapter 4

Product Line Design and Pricing under

Logit Models

Assortment optimization and pricing are getting more attention in business for its potential

to increase profits. It is also attracting the attention of people in academia interested in

looking at this problem with new ideas and new tools. Most of the current research solves

the problem at the stock-keeping units (SKUs) level, assuming the set of potential products

is given. However, the product manager cares not only about improving over the existing

products; but also discovering the potentially lucrative new products. Yet this cannot be

analyzed under current SKUs based assortment models due to the ambiguity of the poten-

tial product set. To disentangle the new product introduction and pricing problem, we need

to: First, construct a choice model which is able to forecast demand of current and new

products; Second, jointly search for assortments and prices to maximize the profit.
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Each SKU is actually a unique combination of a set of discrete and tangible attributes,

which may have several levels, and consumers typically view a product based on its at-

tributes. To forecast a new product’s demand, it is important to understand how consumers

integrate the attributes’ valuation into the product’s. For example, customer A buys a 17

inches HP laptop with core i7 processor at $1500, but he may alter his choice to the 15

inches Mac book if HP’s price is increased by 5%. We are looking for a powerful but par-

simonious choice model, to calibrate consumer choice based on attributes and prices, such

that the joint assortment and pricing problem is tractable.

There is a long history of research papers modeling a multi-attribute SKUs choice be-

havior based on consumers’ preference over attribute levels. As is written in Fader and

Hardie (1996): “The theoretical justification for such an approach can be found in psychol-

ogy (Fishbein 1967) and economics ( Lancaster 1971; Quandt 1956). Moreover, in both the

theoretical (e.g., Anderson, de Palma, and Thisse 1992) and empirical (e.g., Berry 1994)

literature on discrete choice models of product differentiation, it is common to posit that

a consumer’s utility for a product is not a direct function of the product itself, but instead

depends on the product’s attributes and the consumer’s tastes.”

The Multinomial Logit (MNL) model has attracted tremendous theoretical and empir-

ical interests. It was first proposed by McFadden (1974), derived from a random utility

model where the random components are independent Gumbel random variables. The

MNL model can characterize many choice situation conveniently, since it can provide
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a convenient closed form for the underlying choice probability without any integration.

Although criticized because of the independence of irrelevant alternatives (IIA) property

(Luce 1959), it has remained a maintained assumption in many applications. The Nested

Logit (NL) model, introduced by Williams (1977), has been developed to relax the as-

sumption of independence between all the alternatives. Under the Nested Logit model,

customers first select a nest, and then, a product within the selected nest, thus NL allows

different substitution patterns within and between nests. In this work we model consumers’

demand by a Logit model, characterizing utility on each SKU by the integrated attribute-

level valuation. The valuation of a new product, even if it never appears on the market

before, can be easily calculated. Therefore, given an assortment, we can forecast the mar-

ket share of any product.

Assortment optimization intends to provide insight into structural properties of optimal

assortments and is an active area of research. The stylized model research began with a pi-

oneering paper by van Ryzin and Mahajan (1999). They show that the optimal assortment

consists of a certain number of the highest utility products when they are equally profitable

under the MNL consumer choice model. Talluri and van Ryzin (2004) show that under

MNL choice model the optimal assortment includes a certain number of products with the

largest revenues when the products’ prices are given exogenously. Davis et al. (2014)

show that the assortment problem under NL model can be solved by a linear program when

the nest dissimilarity parameters of the choice model are less than one and the customers

always make a purchase within the selected nest. Relaxing either of these assumptions
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renders the problem NP-hard. The problem becomes more complicated when more general

choice models are considered.

For the assortment pricing problem, Hanson and Martin (1996) notice that the expected

revenue function fails to be concave in prices for the multinomial logit model. Song and

Xue (2007) and Dong et al. (2009) make significant progress by formulating the expected

revenue as a concave function with respect to market shares; Li and Huh (2011) extend

the concavity result to the Nested Logit model by assuming that the price sensitivities of

the products are constant within each nest and the nest dissimilarity parameters are re-

stricted to be in the unit interval. Derived from first order condition, the markup, defined

as price minus cost, is constant across all the products of the firm at optimality under MNL

model with uniform price-sensitivity parameter (Anderson and de Palma 1992, Hopp and

Xu 2005, and Gallego and Stefanescu 2011). Gallego and Wang (2014) consider the gen-

eral NL model with product-differentiated price-sensitivity parameters and arbitrary nest

coefficients. They find that the adjusted nest-level markup is also constant across all the

nests. Li and Huh (2011) and Gallego and Wang (2014) assume that the customers always

make a purchase within the selected nest, which cannot incorporate the type-primary choice

process in Kok and Xu (2011). Kok and Xu (2011) work with two nest structures: brand-

primary choice model where customers first select a brand, and then a product type within

the selected brand; Type-primary choice model where customers first select a product type,

and then a brand for the selected product type. The authors characterize the structure of the

optimal solution, but they do not provide an explicit result under the type-primary choice
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model or when the number of brands is large.

There are two mainstreams in product line design. One is referred as product line se-

lection problem, which consists of two stages. In the first stage, a set of potentially optimal

products is generated; In the second stage, an optimal product line is selected from the

predetermined reference set. The other stream referred as one-step product line design

constructs an optimal product line directly by assigning levels to product attributes. Most

of the literatures on the product line selection problem focus on the second stage (e.g. Chen

and Hausman 2000, Schon 2010), which essentially is an assortment problem and does not

provide an instruction on how to obtain a reference set. We can generate the reference set by

exhausting the combinations of attributes and levels, but the set’s size will explode unman-

ageably. For example, for the laptop industry, there will be over a billion potential products

if we fully enumerate the combination of attributes and levels. So we refer to the product

line design problem as the one-step design case. Zufryden(1977, 1982) was the first to

consider product-line design problems from idiosyncratic part-worth preference functions

estimated using conjoint analysis. Assuming a deterministic first choice model, he formu-

lates the product line design problem as an integer program to maximize the market share.

His formulation is NP-hard. Kohli and Sukumar (1990) extend this line of research by

proposing a heuristic algorithm from the dynamic programming perspective. Belloni et al.

(2008) compare the performance of different heuristics for product line design and find that

the greedy heuristic performs extremely well. Instead of using conjoint analysis, Chong et

al. (2001) present consumer’s preference by a choice model based on the Guadagni and
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Little (1983) brand-share model and propose a local improvement heuristic algorithm to

design the product line. Fisher and Vaidyanathan (2014) apply several heuristic algorithms

for product line design under their attribute-level substitution based choice model. Luo

(2011) models consumers choice by a random coefficient multinomial logit model, and in-

stead of focusing on discovering structural properties of product configuration, she presents

a model that simultaneously considers both marketing and engineering factors.

We optimize the product line on the attributes space under the MNL model. Each at-

tribute may have different levels of quality and different unit wholesale costs. A product is

defined by the level of its attributes. Thus, a two attribute product may have attribute one

at level one and attribute two at level three. A key to designing products that are both prof-

itable and have high value for consumers is to look for attribute-level combinations with

high value gap. The value gap of an attribute-level combination is defined as the net utility

to the customer when the attribute-level is priced at wholesale cost. Based on this notion,

we can use a greedy approach to solving the problem of finding the K-best assortments.

This beautiful structure makes a greedy algorithm, derived from the K-shortest paths algo-

rithm (Yen 1971), able to find an optimal K products’ configuration in polynomial time.

This structural result also applies to the NL model with respect to each nest, meaning that

given the product line length constraint for each nest, we can find an optimal configuration

in polynomial time by running K-shortest paths algorithm nest-wise.

Conditional on the optimal assortment, we optimize over prices and find that the con-
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stant mark-up property still applies for MNL model, meaning every product should be

priced at its cost plus a constant, which is invariant across all the SKUs. Davis et al. (2014)

show the pure assortment problem is NP-hard under the type-primary NL model, while we

prove the problem is polynomially solvable if we can jointly optimize the assortment and

prices. Under our general NL model, which incorporates both the brand-primary choice

process and type-primary choice process, the markup is constant for all the products within

each nest at optimality. In addition, there is an optimal adjusted nest-level markup invariant

across all the nests, reducing the price optimization problem to a single-dimensional max-

imization of a continuous function over a bounded interval. Moreover, under both choice

models, the profit function is unimodal with respect to the single dimension parameter.

The remainder of this chapter is organized as follows. In section 4.1, we first show the

constant markup property of the MNL pricing problem, and then the structural properties of

optimal products configuration. We present a K-shortest paths algorithm which can solve

the optimal product line design problem in polynomial time. We bound the loss due to the

line length constraint in the extension. In section 4.2, we prove that the nest level constant

markup property holds for NL model and the structural properties of optimal configuration

also apply to NL model within each nest, which will guarantee that the polynomial algo-

rithm still works for the NL product design problem.
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4.1 Product Design and Pricing under Multinomial Logit

Demand

The MNL model has attracted tremendous theoretical and empirical interests. It was first

proposed by McFadden (1974), derived from a random utility model where the random

components are independent Gumbel random variables. The MNL model can character-

ize many choice situation conveniently, since it can provide a convenient closed form for

the underlying choice probability without any integration. Although criticized because of

the independence of irrelevant alternatives (IIA) property, it has remained a maintained

assumption in many applications.

4.1.1 Multinomial Logit Model

The standard MNL model has the following structure:

Ui = vi + εi

where Ui is the random utility of product i, which is equal to the sum of the expected utility,

denoted by vi, and the εi are independent standard Gumbel random variables.

We model the expected utility of a product as a linear function of the attributes that

define the product. By the attributes we mean the product features and the price, e.g.,

CPU, RAM etc. for a laptop. Each attribute can have several levels, so the attribute-level

combination will uniquely define a product. In particular, if xi is the vector that defines
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product i, then

vi = β0 +β
′xi−βrri (4.1.1)

where β0 is a constant, a common valuation across all products, probably used for nor-

malization; β is the utility vector corresponding to all the attribute-level, e.g., the k-th

component of vector β, βk represents attribute-level k’s utility; so basically we represent a

product by a configuration vector, where the k-th component of xi, xik = 1 if product i has

attribute-level k as one component and xik = 0 otherwise; βr is the price sensitivity param-

eter; ri represents i’s price. The term β0 +β′xi is the expected utility of the product at price

zero. Consequently, the expected utility is the product expected quality minus the product

of the price and the sensitivity to price.

Under this utility structure, the probability of an incoming customer choosing product

i from assortment S is

πi(S) =
Vi

V0 +∑ j∈SVj
(4.1.2)

While Vj is the attractiveness of product j, i.e., Vj = exp(v j); V0 = exp(v0) is the attractive-

ness of the outside alternative.

Now we can see the advantage of this formulation: when a new product is introduced,

even if it never exists in the market before, as long as its configuration vector xnew is given,

we can calculate its valuation by the equation vnew = β0 +β′xnew−βrrnew. Therefore its
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market share can be computed under any given assortment.

4.1.2 Product Design and Optimal Pricing

Problem Formulation

Assume there is a manufacturer who designs, prices and sells products. His goal is to im-

prove his profits by discontinuing some existing products, introducing some new products,

and adjusting the prices.

Here we show how the manufacturer can design products to maximize his expected

profit assuming that customers choose according to the MNL model described earlier and

assuming that the cost of the products is equal to the sum of costs of the attributes included

in the product. We will also assume, without loss of generality that the market size is one,

and that the manufacturer wants to design a portfolio of products of size no more than K.

max
S

max
r

R(S, p)≡∑
i∈S

(ri− c′xi)πi(S) (4.1.3)

s.t. |S| ≤ K (4.1.4)

xi · x j ≤ |F |−1,∀i ∈ S (4.1.5)

Axi = e,∀i ∈ S (4.1.6)

xi ∈ {0,1}|FL|,∀i ∈ S (4.1.7)
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The manufacturer has control over both the set of products, or assortment, S := {1,2, ...,K},

where each product i is defined by its configuration vector xi, and the price vector r for the

products in the assortment. Each product in the assortment S is determined by its configu-

ration vector x, where xil = 1 if product i has attribute-level l as a component and xil = 0

otherwise. The vector c is the attribute-level wholesale price vector, and the lth component

cl represents attribute-level l’s cost. Assuming that the unit production cost is equal to the

sum of the wholesale prices of its components, the term ri− c′xi is the profit of selling one

unit of product i, and πi(S) defined in (4.1.2) is the probability of selling product i under

assortment S and price vector r.

We now describe the constraints. Constraint (4.1.4), is a cardinality constraint telling us

that we allow at most K products. Constraint (4.1.5), xi ·x j≤ |F |−1 guarantees that any two

products in S cannot have the same configuration, where F is the set of attributes; as each

attribute needs to assign one level, xi · x j = |F | indicates i and j have same configuration.

Constraint (4.1.6) repeatedly appears in marketing and operations research literatures of

product design (e.g. Zufryden 1982, Kohli and Sukumar 1990, Fisher and Vaidyanathan

2014). A is a configuration constraint matrix, and it imposes that some attribute levels are

mutually exclusive but each product must contain exactly one level for each attribute. Each

row of A represents an attribute, and the columns the levels. For instance, for the laptop,

row m can correspond to attribute RAM, and Am,l = 1 if l is one of the levels of RAM, and

Am,l = 0 otherwise. The constraint ∑l Am,lxi,l = 1 implies that one and only one level of the

RAM should be part of the configuration of product i. This constraint has flexibility in its

nature, for example, it can also incorporate the case that some attribute can be omitted in
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the product by introducing one level representing the decision of not having the attribute.

As an example, in configuring a laptop we may opt for not having a DVD reader. The last

constraint (4.1.7) requires a binary configuration so for each attribute level the variable can

be either zero or one. Here |FL| is the total number of attribute levels, i.e., the length of

configuration vector. This is a Mixed Integer Nonlinear Optimization problem, that we now

analyze in depth.

Optimal Pricing

Assuming for the moment that the set of products is fixed, and that our only challenge is to

price the products. The optimization problem reduces to

max
r ∑

i∈S
(ri− c̃i)

exp(αi−βrri)

V0 +∑ j∈S exp(α j−βrr j)
, (4.1.8)

where S is the set of products to be offered, and for each i∈ S, c̃i = c′xi is the product’s cost

which is equal to the components’ costs sum and αi = β0 + β′xi is the product’s quality.

Driving some of the products’ prices to positive infinity is equivalent to pushing those

products out of market, so optimizing over price also enables us to refine the assortment.

Therefore the question is: should we discontinue some products and will there be some

nice structure on the optimal prices?

Theorem 4.1.1 (Constant Markup). Assuming the set of products S is fixed, optimal prices

are of the form r∗i = c̃i +θ∗S for all i ∈ S. Moreover, θ∗S is increasing in assortment S and is

the maximizer of the profit function R(S|θ) = θ∑i∈S πi(S|θ), where πi(S|θ) is the probability
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that product i ∈ S is selected given markup θ. In addition, R(S|θ) is unimodular on θ and

θ∗S is the root of the equation βrθπ0(S|θ) = 1, where π0(S|θ) is the no purchase probability.

This result is due to Gallego and Wang (2014).

Optimal Product Design

Optimal Products Configuration

Armed with a method to find optimal prices for a given assortment, we now concentrate

on the product line configuration problem. A brute force method would call for exhausting

all of the possible assortments of size K and to compute the profit R(S|θ∗S) for each such

assortment and pick the best, where θ∗S is the optimal markup under assortment S. How-

ever, the number of products and assortments to consider grows very quickly as we add

attributes and levels. Our goal here is to find a systematic way of designing products that

are profitable and highly valued by consumers. To do this we define the concept of value

gaps.

Definition 4.1.2 ( Value Gap Index). The value gap of attribute-level k is defined as gk =

βk− βrck. This is the difference between the part worth of attribute-level k and the cost

disutility βrck. We define the value gap of product i as

ṽi = β0 +g′xi = β0 +β
′xi−βrc̃i.

Notice that vi = ṽi when ri = c̃i = c′xi, i.e., when the price of product i is equal to its

cost. Since ri ≥ c̃i, it follows that vi ≤ ṽi for all i, so ṽi is an upper bound on vi.
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Theorem 4.1.3 (Highest Value Gap Index Property). Assume that the product configura-

tions x j, for all j ∈ S are fixed except for attribute m of product i ∈ S. Then it is optimal

to select level l available for attribute m with the highest value gap rl . More precisely, l

is selected as the attribute-level with highest gl among all available attribute levels q such

that Am,q = 1.

The idea behind is that we can always improve profits by switching to the level with the

highest value gap.

Although this theorem gives us some sense of how to configure the last attribute if ev-

erything else is fixed, it is still unclear how to design the rest of the products given the

interaction effects, since selecting attribute-level l for product i may preclude l from prod-

uct j.

Theorem 4.1.4 (Principle of Priority). Products with higher value gaps are prioritized for

picking attribute levels in the product line design.

The intuition is that under the optimal pricing, adding an attribute-level with positive

value gap to a product with higher value gap will always generate a higher profit than that

from adding it to a product with lower value gap.

This is consistent with the majorization results in van Ryzin and Mahajan (1999). Knowing

the optimal structure, given a set of attribute levels, there will be a polynomial algorithm to

find K optimal products.
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Algorithm

To describe the algorithm we will use the following notation:

• Let f , m represent attributes, and F is the set of attributes

• Let l, q be the indices for attribute-levels, and let FL be the set of all attribute levels

• Let F(m) be the set of all attribute levels of attribute m

• Let F−1 map attribute-level to the attribute it belongs to, i.e., F−1:FL→ F maps

each l ∈ FL to m ∈ F st. F−1(l) = m if and only if l ∈ F(m)

Then construct a graph with key characteristics as the following:

1. There is one node s representing the source;

2. There is one node t representing the sink;

3. There are |FL| additional nodes, each representing an attribute-level l ∈ FL;

4. Order the attributes, i.e., assign them index m = 1, . . . , |F |. (We can see later that the

way how the attributes are ordered does not make a difference, since this is only to

differentiate the attributes);

5. There are arcs connecting the source to every l ∈ F(1) with cost csl = β0, i.e., these

are directed arcs from the source to every level of attribute one with cost β0;
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6. There are arcs connecting every l ∈ F(|F |) to the sink t with cost clt = gl , i.e., there

are directed arcs from every level of the last attribute to the sink with cost clt equal

to the value gap gl;

7. ∀l,q∈ FL such that F−1(l)+1 = F−1(q), indicating attribute-level l and q belong to

two consecutive attributes, then there is one directed arc originating from l connect-

ing them, with cost of l’s value gap clq = gl.

An interpretation of the graph is that: each layer corresponds to an attribute; any node in

a layer is one level of the corresponding attribute; so every path from s to t will pass by one

and only one level of each attribute and then will uniquely define a product configuration.

Since every arc’s originating node defines a component and the cost of that arc is defined

by the originating attribute level’s value gap, cost of the path is the total value gap of the

configured product returned by the path.

From our analysis in the last section, it follows that the first best product is the one

with highest value gap, and shown on the graph it is the longest path; the second best

product will differ from a single optimal product by one attribute-level, which gives the

second highest total value gap, and represented on the graph it is the second longest path.

Inductively, designing K-optimal products is equivalent to finding K-longest paths on the

graph. However, it is well known that the longest path problem is NP-hard. A nice property

of our problem is that the graph is “layered”, i.e., every feasible flow from the source to

the sink has to first pass by one node in the layer one (attribute one), then one node in
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the layer two (attribute two), and so on. In another word, the graph in our formulation is

a directed acyclic graph. Moreover, the longest path is the shortest path in the negative

graph, in which the costs are replaced by their negative value. Due to the layered structure,

no negative cycles can be created in the negative graph. Yen(1971) proposed an efficient

algorithm to find K shortest loopless paths when there are no negative loops in the network,

by making Kl calls to Dijkstra’s algorithm (Dijkstra 1959), where l is length of the spur

paths. In our problem l is no more than the length of each path, |F |+ 1. And the time

complexity of Dijkstra’s algorithm with |FL|+ 2 nodes is O(|FL|2). So the overall time

complexity becomes O(K|F ||FL|2).

Theorem 4.1.5 (K shortest paths algorithm for optimal product configuration). The optimal

K product design can be solved in O(K|F ||FL|2) by running the Yen’s K shortest paths

algorithm on the negative graph.

Example 4.1.6. Two attributes need to be configured for a product line, and there are three

levels for each attribute, as is show in the table below, value in each cell is the value gap

index for every attribute level:

Table 4.1: Product Line Configuration Example

Value Gap Levels
1 2 3

Attribute a 30 20 10
Attribute b 20 15 0

Let us construct the graph as below:
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Figure 4.1: Network Flow for the Product Line Design Algorithm

We then negate the cost and run Yen’s K shortest paths algorithm on the negative graph.

The first shortest path s→ a1→ b1→ t with total length −50 presents the best single

product (with highest total value gap); the second shortest path s→ a1→ b2→ t with

total cost −45 indicates we get the second best product by replacing b1 in the best single

product to b2. Finally, the optimal list of configuration (ordered by total value gap): S∗ =

{{a1,b1},{a1,b2},{a2,b1},{a2,b2},{a3,b1},{a1,b3},{a3,b2},{a2,b3},{a3,b3}}, and

the optimal K products configuration is to select the first K set elements from S∗.
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4.1.3 Extension: Loss Bound due to Line Length Constraint

We assume the product line length constraint is given exogenously. In the optimal config-

uration, the line length should reach its maximum since the optimal profit increase mono-

tonically on the line length. In this section, we want to study the ratio bound of the loss

caused by the cardinality constraint to the optimal profit under full product line length.

Proposition 4.1.7. (Ratio Bound of Cardinality Constraint) Order products by their resid-

ual valuation ṽ, the top K products in the production line can capture at least ∑
K
i=1 exp(ṽi)

∑
K̄
i=1 exp(ṽi)

of

the optimal profit from a product line of bigger length K̄ .

We use simulation to get some numerical bound. When the products’ residual valua-

tions are [0,1] uniformly distributed, 15 out of 30 products can capture 95% of the total

profit. When the residual valuations are [0,3] uniformly distributed, 9 out of 30 products

can capture 98% of the total profit. The higher the variation among the products’ residual

valuation is, the fewer products we need to capture a significant percentage of the total

profit.

4.2 Product Design and Pricing under Nested Logit De-

mand

The Multinomial Logit model has many applications due to its ease of computation and the

existence of a number of computer programs. Yet, the independence of irrelevant alterna-
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tive (IIA) property (Luce 1959) is a serious limitation, meaning the ratio of the probabilities

of choosing any two alternatives is independent of the attributes of any other alternative in

the choice set. Debreu(1952) was among the first economists to discuss the implausibil-

ity of the independence from irrelevant alternatives assumption. The Nested Logit (NL)

model, introduced by Williams (1977), has been developed to relax the assumption of in-

dependence between all the alternatives. Under the Nested Logit model, customers first

select a nest, and then, an alternative within the selected nest, thus NL allows different

substitution patterns within and between nests.

4.2.1 Nested Logit Model

In our study we consider two different hierarchical choice process illustrated in figure 4.2.1

(take the laptop industry as an example). Under the brand-primary model (Li and Huh

2011; Gallego and Wang 2014), a consumer first decides to leave without purchase or to

buy from one brand. Once the brand is selected, the consumer choose one product from

this brand. When consumers have strong brand loyalty and the functionalities among the

attribute levels are not much differed, it is proper to use the brand-primary model. Type-

primary model (Currim, Meyer, and Le 1988) assumes that consumers make hierarchical

decision in the form of a decision tree (Tversky and Sattath 1979), where a sequence of de-

cisions are made to screen the attribute levels. A nest is a set of correlated alternatives shar-

ing similar attribute levels. In contrast, the type-primary model is suitable when consumers

are more picky about the characteristics of the product than its brand and various attribute

levels are aiming for different usage. Both brand-primary and type-primary Nested Logit
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fit data better than the MNL does; However, some empirical papers show that the type-

primary structure gives more accurate estimate than does brand-primary model (Kannan

and Wright 1991). We can also incorporate the attribute-incompatibility constraint into the

type-primary model by representing the constraints by the branches.

Figure 4.2: Brand-Primary and Type-Primary Hierarchical Consumer Choice Models

Given the nest structure, the conditional probability of an incoming consumer selecting

product i from nest n under assortment S (let us call it product in for short) follows the

Logit form

π(in|n,S) =
exp(αin−βn

r rin
γn

)

∑ jn∈Sn exp(α jn−βn
r r jn

γn
)+Vn

(4.2.1)

where Sn is the set of products from nest n; and the probability of selecting from nest n is
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π(n|S) =
(∑ jn∈Sn exp(α jn−βn

r r jn
γn

)+Vn)
γn

∑n′(∑ jn′∈Sn′
exp(

α jn′−βn′
p r jn′

γn′
)+Vn′)

γn′ +V0

(4.2.2)

The final probability of purchasing product i from nest n will be the multiplication of

the two probabilities

π(in|S) = π(in|n,S)π(n|S) (4.2.3)

Consumers’ valuations of two products from different nests are independent; and γ is

a measure of the relative independence of the alternatives within the same submarket. To

be compatible with the random utility maximization theory, we restrict the γ coefficients

lie within the unit interval (Williams 1977, McFadden 1980), indicating the valuations for

two products within a same group are positively correlated. When γ equals 1, it reduces

to the Multinomial Logit model. αin is the expected quality valuation of product in in nest

n. Applying the linear utility structure, we have αin = βn
0 + βn · xin, where βn

0 is nest n’s

inherent valuation and βn is the attribute-level valuation vector for nest n, i.e., the kth com-

ponent (βn)k is attribute-level k’s valuation in nest n. Here we assume the attribute-level

valuation is homogeneous within a nest and heterogeneous across nests. xin is the product

in’s configuration vector, still xk
in = 1 if product in has attribute-level k as a component and

it is 0 otherwise. βn
r is the price sensitivity parameter for nest n. rin represents product

in’s price. Product in’s determinant valuation vin still follows vin = αin−βn
r rin, the product

quality valuation minus the price disutility.

V0 is the attractiveness of the outside alternative outside nests and without loss of gen-

erality, we normalize it to 1.
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Our formulation is general in the sense that it can incorporate both the brand-primary

choice process and the type-primary choice process. When two different branded products

belong to two different sets and the attractiveness of the inner nest outside alternative Vn

equals 0, it follows the brand-primary choice process, and is a common demand formula-

tion for assortment pricing ( Li and Huh 2011; Gallego and Wang 2014). When the nests are

grouped by SKU’s other attribute levels but brands, then the demand follows type-primary

choice process; since within each type, there might be products offered by multiple firms,

from a manufacturer’s point of view there is outside alternative within each nest, i.e., Vn

may be greater than zero. This formulation is similar to that in Kok and Xu (2011), but we

formulate consumers’ preference endogenously as the aggregated attribute-level valuation,

and allow heterogeneity on the valuation parameters across nests, and we also allow for

more than two products within each nest. Davis et al. (2014) show the pure assortment

problem is NP-hard when the customers can make no purchase within the selected nest,

while we prove the problem is polynomially solvable if we can jointly optimize over the

assortment and prices.

4.2.2 Product Design and Optimal Pricing

Problem Formulation

There is a manufacturer who sells a category of products directly to the market, where the

choice behavior follows Nested Logit model. By discontinuing some current products, in-
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troducing some new products, and pricing them in an optimal way, he wants to maximize

his profit. Assuming an SKU’s cost is the linear sum of its components’ cost, and with-

out loss of generality, assuming the market size is normalized to one, the manufacturer is

solving the following problem:

max
S

max
r

R(S,r)≡∑
n

∑
in∈Sn

(rin− c′xin)π(in|S) (4.2.4)

s.t. |Sn| ≤ Kn, ∀ n = 1, ...,N (4.2.5)

xin · x jn ≤ |F |−1, ∀ in 6= jn ∈ Sn (4.2.6)

Anxin = e, ∀ in ∈ Sn (4.2.7)

xin ∈ {0,1}|FL|, ∀ in ∈ Sn

This is a Mixed Integer Nonlinear Optimization problem. We have control over both as-

sortment S := S1∪S2∪ ...∪SN and price r. Let the assortment of nest n be Sn := {1n,2n, ...},

then each product in is determined by its configuration vector xin. As is illustrated in the

choice model, the lth component xl
in = 1 if product in has attribute-level l and it is 0 other-

wise. c is the attribute-level cost vector, and the lth component cl represents attribute-level

l’s cost. By assuming the SKU cost is the linear sum of the attribute-level cost, c′xin is

product in’s cost. So the term rin− c′xin is the profit of selling one unit of product in, and

the term π(in|S) is the probability of selling product in under assortment S and price vector

r, as is defined in the choice model.

We consider cardinality constraints (4.2.5) on the offered assortment, which respectively
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limit the number of the products offered in each nest ( Gallego and Topaloglu 2014). Con-

straint (4.2.6) xin 6= x jn guarantees that any two products cannot have the same configura-

tion. An is a configuration constraint matrix for nest n, and it imposes several constraints.

First, some levels of the attributes are mutually exclusive but one of them must contain

in the product, i.e., each row represents an attribute, for instance, for the laptop, row m

can correspond to attribute RAM, and An(m, l) = 1 if l is one of the levels of RAM, and

An(m, l) = 0 otherwise. Then ∑l An(m, l)xl
in = 1 means one and only one level of the RAM

should be a component of the laptop. This constraint has flexibility in its nature, for ex-

ample, it can also incorporate the case that some attribute can be skipped in the product

by introducing one level representing “NONE” of that attribute. Second, this constraint

precludes some attribute levels for nest n. Again taking the laptop for instance, nest n is

Apple’s market, and let row f correspond to the brand attribute and column q correspond to

attribute-level “brand Apple”, all the elements in row f are 0 except that An( f ,q) = 1, then

constraint ∑l An( f , l)xl
in = 1 enforces all products in nest n should be of Apple brand. Last

constraint is the binary configuration requirement, and |FL| is the total number of attribute

levels.
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Optimal Pricing

Assuming the set of products is fixed (i.e., Sn is given for each nest n), now we are dealing

with the inner problem: maximizing the profit over prices, i.e.,

max
r

R(r)≡∑
n

∑
in∈Sn

(rin− c̃in)π(in|S) (4.2.8)

Recall that the product in’s cost c̃in = c′xin is the component-wise sum of attribute-level

costs. When the set of products’ configuration is fixed, c̃ is constant.

Driving some of the products’ prices to positive infinity is equivalent to pushing those

products out of market, so optimizing over price also enables us to refine the assortment.

Therefore the question is: should we discontinue some products and will there be some

nice structure on the optimal prices?

Theorem 4.2.1 ( Constant Mark-up Pricing). Assuming the set of products is fixed, the

markup, defined as price minus cost, is nest level invariant at optimality for all the products,

i.e., there is a θ∗n for each nest n such that r∗in = c̃in +θ∗n

This result can be discovered from the first order condition, and for each nest it reduces

a multi-variable optimization problem to a single dimension. Let θn denote the constant

markup for all the products in nest n, i.e., θn = rin− c̃in for all products in nest n. Plug

this relation into the choice model, then we can get the conditional choice probability of
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product in in nest n:

π(in|n,S) = exp(ṽin−bnθn)

∑ jn∈Sn exp(ṽ jn−bnθn)+Vn
(4.2.9)

The probability of choosing nest n:

π(n|S) =
(∑ jn∈Sn exp(ṽ jn−bnθn)+Vn)

γn

∑n′(∑ jn′∈Sn′
exp(ṽ jn′−bn′θn′)+Vn′)

γn′ +1
(4.2.10)

By letting ṽin := αin−βn
r c̃in

γn
and bn := βn

r
γn

, which are deterministic when the assortment is

fixed.

Instead of optimizing over prices, which are heterogeneous across all product in every nest,

we optimize over the nest-level constant mark-up θ:

max
θ

R(θ|S) = ∑
n

∑
in∈Sn

θnπ(in|S)

= ∑
n

θnπ(n|S) ∑
in∈Sn

π(in|n,S)

= ∑
n

θnπ(n)π(Sn|n,S)

= ∑
n

θnπ(Sn|S) (4.2.11)

Where π(Sn|n,S) := ∑in∈Sn π(in|n,S) and π(Sn|S) := ∑in∈Sn π(in|S). Also define that

π(S0|n,S) := 1−π(Sn|n,S)

Theorem 4.2.1 tells us that products in a same nest are either opted out of market all to-



130

gether or priced with a same finite markup. When we optimize the expected profit over the

markups, the first order condition gives us the following result:

Theorem 4.2.2 (Optimal Nest Level Markup). All products will be priced finitely and the

adjusted nest level markup, defined as φn = θnπ(Sn|n,S)+ θn
γn

π(S0|n,S)− 1
βn

r
is nest invari-

ant at optimality, i.e., φn = φ for all n.

Thus we further reduce price optimization problem to a single dimension optimization

with respect to the adjusted nest level markup φ, i.e.,

max
φ

R(φ|S) = ∑
n

θnπ(Sn|S)

s.t. φ = θnπ(Sn|n,S)+
θn

γn
π(S0|n,S)−

1
βn

r
,∀n (4.2.12)

Corollary 4.2.3. The price optimization problem can be reduced to a single dimension

optimization with respect to the adjusted nest level markup φ, where R(φ|S) is unimodal on

φ, and the optimal solution can be determined from the unique fixed point R(φ∗|S) = φ∗ =

maxφ R(φ|S).

Gallego and Wang (2014) draw the similar conclusions. However their proofs do not

apply to our type-primary choice model.
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Optimal Inner Nest Structure

Having found the optimal pricing structure, now we should focus on the outer problem –

how to optimally configure the assortment.

Define gn
k := βn

k−βn
r ck

γn
as attribute k’s value gap index in nest n, and ṽin := αin−βn

r c̃in
γn

=

βn
0

γn
+∑k gn

kxk
in as product in’s value gap index. Those are similar to the definition in the

MNL model except that now they are normalized by the nest coefficients γ. We can see this

index still plays a key role in the NL optimal product configuration.

Theorem 4.2.4 (Greedy Inner Nest Structure). A feasible attribute-level with higher value

gap can bring more profit to the product line. Given the available set of attribute-level,

in the optimal product line design, within each nest, products with higher value gap have

priority in picking the higher value gaped attribute levels.

There are three important outputs from Theorem 4.2.4: First, the value gap index plays a

key role in designing products; second, higher value gaped attribute-level can always bring

more profit than lower value gaped attribute levels can; third, adding an attribute-level to

one product may preclude it from another product in the same nest, but the higher value

gaped product always has priority in selecting attribute levels. Thus, the greedy algorithm

in section 4.1 also works for the NL model.

Corollary 4.2.5. We can run the Kn− shortest path algorithm for every nest and get the

optimal product configuration in polynomial time.
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4.3 Conclusions and Future Research

Different from the traditional assortment optimization problem aiming at discontinuing

some existing suboptimal products, our chapter proposes a method in designing an optimal

product line by configuring all the products with attribute levels. Formulating consumers’

utility as the aggregated part-worth valuation, we are able to forecast the market share of

any product under a given assortment even the product has not existed in the market before.

We optimize the product line configuration on the attributes space and find that under

the MNL model, the product with higher value gap has priority in selecting attributes, and

an attribute level with higher residual valuation can bring more profit than other levels

of the attribute can. This structure makes a greedy algorithm, derived from the K-shortest

paths algorithm, able to find an optimal K products’ configuration in polynomial time. This

structural result also applies to the NL model with respect to each nest, meaning that we

can find an optimal product line configuration for every nest in polynomial time by running

K-shortest paths algorithm nest-wise.

Conditional on the optimal product line, we optimize over prices and find that the con-

stant markup property still applies for MNL model, meaning every product should be priced

at its cost plus a constant, which is invariant across all the SKUs. Our NL formulation in-

corporates both brand-primary choice process and type-primary choice process. We show

that under the NL model, the markup is constant for all the products within a same nest at

optimality. In addition, there is an optimal adjusted nest-level markup invariant across all

the nests, which reduce the price optimization problem to a single-dimensional maximiza-
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tion of a continuous function over a bounded interval. Moreover, under both choice model,

the profit function is unimodal with respect to the single dimension parameter.

In our NL choice model formulation, we cluster all the products along the same path in

the decision tree to a single nest. A direction in the future may be modeling the consumer

choice by a d-level Nested Logit model and optimize the product line on it. Another direc-

tion would be product line configuration on Mixed Multinomial Logit model. The problem

is NP-hard, so it would interesting to design some efficient heuristics and study their per-

fomances.
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Chapter 5

Conclusions

We studied product line design, pricing and framing problems under a variety of choice

models in this thesis.

In Chapter 2, we looked at the operations applicability of the Random Consideration Set

based choice model proposed by Manzini and Marrioti (2014). We showed how to recover

the full ordering and attention probabilities given accurate estimates of choice probabilities

or from noisy empirical data. Empirical testing of the Random Consideration Set model

on our airline partner’s data showed that it outperformed the Multinomial Logit choice

model in test data over all markets. The Random Consideration Set model also performed

better than the Mixture of MNLs model giving a better fit on 67.0% of the markets and

with an average improvement of 15.6%. We showed that an assortment that maximizes

expected revenues could be found in O(n) time where n is the number of products. Adding

a cardinality constraint increases the complexity to O(n2). We showed that the efficient

sets discovery problem can be solved in O(n2) where the goal is to find an assortment to
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maximize revenues net of the marginal value of capacity. We extended the model to allow

ties in preferences and showed that a revenue-ordered assortment has a 1/2 performance

guarantee relative to the optimal assortment. We studied the pricing problem where the

preference ordering are price aware and showed under mild assumptions that optimal profits

are such that both the profit contributions and the net utilities to consumers are aligned with

the value gap defined as the difference between the value of the product to consumers and

its unit wholesale cost.

In Chapter 3, we proposed one of the first models of “product framing” and pricing. We

presented a model where a set of products are displayed, or framed, into a set of virtual web

pages. We showed that the product framing problem is NP-hard. We derived algorithms

with guaranteed performance relative to an optimal algorithm under reasonable assump-

tions. Our algorithms are fast and easy to implement. We also presented structural results

for pricing under framing effects. For profit maximization problem, at optimality products

are sorted in descending order of value gap, which is defined as expected utility when the

product is priced at cost; and markups are page-dependent, with higher markups associated

with products on later pages, so that products in the first page are of the highest utility and

have the lowest markups.

In Chapter 4, we studied a manufacturer who wants to design and price a set of products

which are defined by attribute-level combinations. We assumed that demand for products

is based on a Logit model (MNL or NL) that measures quality as the aggregate value of

the attribute-levels. In addition, the Logit model penalizes prices by assuming that cus-

tomers are price sensitive. Assuming that the unit production cost is equal to the sum of the
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wholesale prices of its components we showed how to solve the corresponding product line

design problem. We showed that optimal product configurations give priority to attribute

levels with high value gaps. The K best configurations can be obtained through a greedy

algorithm derived from the K-shortest path problem. The resulting pricing problem has the

well known constant mark-up property, which combines well with the design problem and

allows us to find an optimal configuration in polynomial time.

To summarize, this thesis studied assortment optimization related problems under gen-

eral choice models. The analysis on consumer choice models showed that the models

developed from a behavioral perspective can model choices better than a traditional para-

metric model, and might admit efficient estimation and assortment optimization algorithms

in the meantime (Gallego and Li 2017). In the future, it is important to develop more con-

sumer choice models that delicately balance the realism in terms of capturing consumers?

purchase behavior versus the practicability in terms of ensuring understandable estimation

and assortment optimization algorithms.
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Appendix A

Appendix for Chapter 2: Attention,

Consideration then Selection

A.1 Proofs in Section 2.4

A.1.1 Proof of Lemma 2.4.4

Proof. Let S∗(z) be the efficient set that maximizes R(S,z). We will show that S∗(z) ⊂ S∗

when z > 0. This is sufficient because we can always transform the problem of comparing

the efficient sets for z1 > z2 > 0 to the problem of comparing the efficient sets for z1− z2

and 0 by transforming the revenues r j ← r j− z2 for all j ∈ N. Our conclusion S∗(z) ⊂ S∗

will follow if we can show that i /∈ S∗ implies that i /∈ S∗(z). Let i = argmin{ j ∈N, j /∈ S∗},

then product i is rejected by the algorithm on account of ri < Hi−1, but then by adding and

subtracting zΠ(S̃i−1) to Hi−1 we see that ri < Hi(z)+ zΠ(S̃i−1), and this directly implies
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that ri− z < Hi−1(z), so S̃i(z) ⊂ S̃i. By induction, assume S̃k−1(z) ⊂ S̃k−1 and k /∈ S∗, or

equivalently rk < Hk−1, then the same argument shows that rk− z < Hk−1(z) so S̃k(z)⊂ S̃k.

Consequently, S∗(z) = S̃n(z)⊂ S̃n = S∗ completing the proof.

A.1.2 Proofs of Subsection 2.4.3

To obtain structural results, we need the following Lemmas.

Lemma A.1.1. Suppose k /∈ S. If k ∈ T , then

Π(T,S∪{k}) = λkΠ(T \{k},S),

and if k /∈ T , then

Π(T,S∪{k}) = (1−λk)Π(T,S).

This Lemma shows an effective way to compute Π(·,S∪{k}) based on the knowledge

of Π(·,S). Next let us see how the revenue J(S) updates.

Lemma A.1.2. If there is a product k ∈ N such that J(S)> J(S∪{k}), then J(S)> J(S∪

{l}) for all l such that rl < rk. Moreover, for any T ⊂ {l ∈ N : rl ≤ rk}, J(S)> J(S∪T ).

Proof. Lemma A.1.1 allows us to write

J(S∪{k}) = λk ∑
T⊂S

r(T ∪{k})×Π(T,S)+(1−λk)J(S),
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so

J(S∪{k})− J(S) = λk ∑
T⊂S

[r(T ∪{k})− r(T )]×Π(T,S). (A.1)

Consequently J(S)> J(S∪{k}) if and only if

∑
T⊂S

[r(T ∪{k})− r(T )]Π(T,S)< 0.

Since r(T ∪{l})≤ r(T ∪{k}) for all l such that rl ≤ rk, it follows that

∑
T⊂S

[r(T ∪{l})− r(T )]Π(T,S)< 0,

and consequently that J(S)> J(S∪{l}).

The value of J(S∪T ) can be expressed by

J(S∪T ) = Π( /0,T )J(S)+ ∑
Sa⊂T
Sa 6= /0

(
Π(Sa,T ) ∑

Sl⊂S
Π(Sl,S)r(Sl ∪Sa)

)

= J(S)+ ∑
Sa⊂T
Sa 6= /0

(
Π(Sa,T ) ∑

Sl⊂S
Π(Sl,S)

(
r(Sl ∪Sa)− J(S)

))

≤ J(S)+ ∑
Sa⊂T
Sa 6= /0

(
Π(Sa,T ) ∑

Sl⊂S
Π(Sl,S)

(
r(Sl ∪{k})− J(S)

))

< J(S)

The first line expresses the value of J(S∪T ) as the sum of expected revenues when con-

sumer pays no attention to product in T and when they pay attention to some of them. The
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second equality is because Π( /0,T ) = 1−∑Sl⊂T
Sl 6= /0

Π(Sl,S) and ∑Sl⊂S Π(Sl,S) = 1. The first

inequality is due to rk ≥ ri,∀i ∈ T , and the last inequality is because ∑Sl⊂S Π(Sl,S)
(
r(Sl ∪

{k})− J(S)
)
< 0.

Proof of Lemma 2.4.6

Proof. A necessary condition for S∗ to be optimal is that J(S∗\{ j})≤ J(S∗) for any j ∈ S∗.

We will show that this necessary condition guarantees that r j ≥ 1
2J(S∗), ∀ j ∈ S∗. Let us

prove it by induction on the size of assortment S∗.

Suppose first that S∗ = { j} has a single element. Then J(S∗) = r jλ j, and consequently

r j ≥ J(S∗)/2= r jλ j/2 on account of 2> 1≥ λ j. Suppose it is true for |S∗| ≤ n−1, consider

now the case where |S∗|= n. Assume that r j ≤ ri for all i∈ S∗, and let S∗− j = S∗/{ j}. From

equation (A.1)

0≤ J(S∗)− J(S∗− j) = λ j ∑
T⊂S∗− j

[r(T ∪{ j})− r(T )]×Π(T,S∗− j)

Since the right hand side is increasing in r j and is negative if r j = 0, there is a value of

r j for which the right hand equal to zero, and this is the smallest value that r j can take to

preserve the optimality of S∗, with J(S∗)− J(S∗− j) = 0.

Notice that the terms r(T ∪{ j})− r(T )< 0 except when T = /0. Therefore, if we keep

only the sets T of cardinality |T | ≤ 1, we have

0≤ J(S∗)− J(S∗− j)≤ λ j

r j×Π( /0,S∗− j)+ ∑
i∈S∗− j

r j− ri

2
×Π(i,S∗− j)

 .
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Solving for r j we obtain

r j ≥
∑i∈S∗− j

rivi

2+∑i∈S∗− j
vi
, (A.2)

where vi = λi/(1−λi).

We want to know how small the lower bound (A.2) can be with respect to J(S∗− j), i.e.,

min
r,λ

∑i∈S∗− j
rivi

2+∑i∈S∗− j
vi

J(S∗− j).

We can formulate it as an optimization problem while normalizing J(S∗− j) = 1.

min
r,λ

∑i∈S∗− j
rivi

2+∑i∈S∗− j
vi

s.t. J(S∗− j) = ∑
T⊂S∗− j

r(T )×Π(T,S∗− j) = 1

We want to show the objective value
∑i∈S∗− j

rivi

2+∑i∈S∗− j
vi
≥ 1

2J(S∗− j) =
1
2 , equivalently,

∑
i∈S∗− j

(ri−
1
2
)vi ≥ 1

by multiplying both sides by the denominator and combining common terms. Therefore, as

long as we can show the following optimization problem has objective value greater than
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or equal to one, then we are done

min
r,λ

∑i∈S∗− j
(ri− 1

2)vi (A.3)

s.t . J(S∗− j) = ∑T⊂S∗− j
r(T )×Π(T,S∗− j) = 1 (A.4)

Let write down the constraint (A.4) explicitly

∑
T⊂S∗− j

T 6= /0

∏
k∈T

λk ∏
k∈S∗− j\T

(1−λk)×∑
i∈T

ri

|T |
= 1

If we divide and multiply left hand side by Π( /0,S∗− j), we have

Π( /0,S∗− j)
(

∑
T⊂S∗− j

T 6= /0

∏
k∈T

vk×∑
i∈T

ri

|T |

)
= 1

which is equivalent to

Π( /0,S∗− j)
(

∑
i∈S∗− j

(
∑

T⊂S∗− j\{i}

∏k∈T vk

|T |+1
)
× viri

)
= 1 (A.5)

Observe that both the objective (A.3) and the constraint (A.5) are linear on r′s. Fixing

the values of λ′s, we notice that the problem is a continuous knapsack problem on r′s.

We would like to increase the value of ri to the largest possible amount if product i has

the smallest ratio for vi to ∑T⊂S∗− j\{i}
∏k∈T vk
|T |+1 × vi, which are the coefficient before ri in the

objective function and the coefficient before ri in the constraint respectively, i.e., increase
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the value of ri to its upper bound for

i ∈ argmin
l∈S∗− j

vl

∑T⊂S∗− j\{l}
∏k∈T vk
|T |+1 × vl

=
1

∑T⊂S∗− j\{l}
∏k∈T vk
|T |+1

and to preserve the constraint we decrease the value of rl to their lower bound for all other

l 6= i. Moreover, observe the above ratio, for product i and l, if λi < λl , we can easily show

that

1

∑T⊂S∗− j\{i}
∏k∈T vk
|T |+1

<
1

∑T⊂S∗− j\{l}
∏k∈T vk
|T |+1

Therefore, under any fixed λ, we increase the value of ri to its upper bound such that

i ∈ argmin{k ∈ S∗− j : λk} and decrease all the other r′ls, l ∈ S∗− j \{i} to their lower bounds,

so it will be indifferent from introducing product l or not

ri×λi = J(S∗− j) = 1

If we look back to the objective function (A.3), we have (rk− 1
2)× vk ≥ 0 for all k ∈ S∗− j.

This is because rk ≥ 1
2J(S∗− j) =

1
2 for all k ∈ S∗− j by induction. Recall that |S∗− j| = n− 1,

and by induction we have assumed when |S∗− j| ≤ n−1 that rk ≥ 1
2J(S∗− j) for all k ∈ S∗− j, in

order to guarantee J(S∗− j \{k})≤ J(S∗− j). Note that we need J(S∗− j \{k})≤ J(S∗− j), since

if there is a k ∈ S∗− j, such that J(S∗− j \ {k}) > J(S∗− j), then J(S∗− j \ {k}) > J(S∗) due to

lemma (A.1.2) as rk > r j, which violates the optimality of S∗. Therefore, we show that the
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objective function is lower bounded by

(ri−
1
2
)vi

Now the entire problem is reduced to proving if the following problem has objective value

greater than or equal to one:

min
ri,λi

(ri−
1
2
)vi

s.t. riλi = 1

It can be easily proved that the above problem is optimized when λi→ 0 and the objective

value equals to one. Now the lemma gets proved.



152

Proof of Theorem 2.4.7

Proof. From Lemma 2.4.6 we know the optimal assortment S∗ ⊂ S̄, so let Ŝ ≡ S̄ \S∗, then

the value of J(S̄) = J(S∗∪ Ŝ) can be expressed by

J(S∗∪ Ŝ) = Π( /0, Ŝ)J(S∗)+ ∑
Sa⊂Ŝ
Sa 6= /0

(
Π(Sa, Ŝ) ∑

Sl⊂S∗
Π(Sl,S∗)r(Sl ∪Sa)

)

= J(S∗)+ ∑
Sa⊂Ŝ
Sa 6= /0

(
Π(Sa, Ŝ) ∑

Sl⊂S∗
Π(Sl,S∗)

(
r(Sl ∪Sa)− J(S∗)

))

≤ J(S∗)−
(

∑
Sa⊂Ŝ
Sa 6= /0

Π(Sa, Ŝ) ∑
Sl⊂S∗

Π(Sl,S∗)
)1

2
J(S∗)

<
1
2

J(S∗)

The first line expresses the value of J(S∗ ∪ Ŝ) in terms of S∗ and subsets of Ŝ. The sec-

ond equality is because Π( /0, Ŝ) = 1−∑Sl⊂Ŝ
Sl 6= /0

Π(Sl, Ŝ) and ∑Sl⊂S∗Π(Sl,S∗) = 1. The first

inequality is due to r(Sl ∪ Sa) ≥ 1
2J(S∗) by the set’s definition, and the last inequality is

because ∑Sa⊂Ŝ
Sa 6= /0

Π(Sa, Ŝ)∑Sl⊂S∗Π(Sl,S∗)< 1.

Proof of Corollary 2.4.8

This result immediately follows Lemma A.1.2 and Theorem 2.4.7.
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Proof of Theorem 2.4.9

Proof. The first part is to prove that r j ≥ 1
2J(S∗),∀ j ∈ S̃. This is equivalent to proving

V (S̃)≥ 1
2J(S∗), where V (S̃) is the MNL expected revenue. Still let us normalize J(S∗) = 1,

so the problem boils down to proving the problem below has lower bound 1
2

min
r,λ

max
S⊂N

∑i∈S rivi

2+∑i∈S vi
(A.6)

s.t. J(S∗) = 1

Since we know

max
S⊂N

∑i∈S rivi

2+∑i∈S vi
≥ ∑i∈S∗ rivi

2+∑i∈S∗ vi

a lower bound of the objective function (A.6) will be minp,λ
∑i∈S∗ rivi

2+∑i∈S∗ vi
, so if we can prove

the problem below has lower bound 1/2, then we are done

min
r ,λ

∑i∈S∗ rivi

2+∑i∈S∗ vi
(A.7)

s.t. J(S∗) = 1

The objective value is indeed greater than or equal to 1/2 as is proved in the Lemma 2.4.6.

Next we show that S̃ is inferior to the optimal nested by prices assortment but is superior

to S̄ ≡ {i ∈ N : ri ≥ 1
2J(S∗)}. Inferiority is easy to check since S̃ is one of the nested by

prices assortments. Superiority can be proved by J(S̃) ≥ J(S̄). This is because first we

know, S̃ ⊂ S̄; if S̃ 6= S̄, there should exist j ∈ argmax{ri : i ∈ S̄ \ S̃}. As long as we can
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prove J(S̃)> J(S̃∪{ j}), we are able to conclude J(S̃)> J(S̄) which follows Lemma A.1.2.

Recall that from Lemma 2.4.6, especially formula (A.2), we know a necessary condition

for J(S̃)≤ J(S̃∪{ j}) is such that r j ≥ ∑i∈S̃ rivi
2+∑i∈S̃ vi

, which cannot be true due to the optimality

of S̃ for the V (S). Therefore, J(S̃) > J(S̃∪{ j}) and J(S̃) > J(S̄). So the superiority of S̃

gets proved, and it has 1/2 performance guarantee.

A.2 Proofs in Section 2.5

A.2.1 Proof of Theorem 2.5.2

Proof. We show the ordering result by contradiction. Suppose there exist two position i−1

and i such that α(i−1)− z(i−1)−w(i−1) = α(i−1)− r(i−1) < α(i)− r(i) = α(i)− z(i)−w(i) but

α(i−1)− z(i−1) > α(i)− z(i). Without loss of generality, let product k and l be ranked at the

i− 1st and ith position respectively. By assumption, we know αk− zk−wk < αl − zl −wl

but αk− zk > αl− zl . To have this order, it must be that the markups are ordered such that

wk > wl . Now let us update product k’s and l’s markups to w′k and w′l such that the net

utilities are switched, i.e.,

αk− zk−w′k = αl− zl−wl

αl− zl−w′l = αk− zk−wk

equivalently, we update the markups

w′k = (αk− zk)− (αl− zl)+wl = ∆+wl
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w′l =−(αk− zk)+(αl− zl)+wk =−∆+wk

where ∆ > 0 as αk− zk > αl− zl . The above two equations indicate that

w′k−wl = ∆ and w′l−wk =−∆

As this change of markup will switch the preference order of k and l, therefore

w′(i−1)−w(i−1) = ∆ and w′(i)−w(i) =−∆

λ
′
(i−1) = λ(i−1) ≤ λ

′
(i) = λ(i)

Taking difference on expected profits after and before, the expected profit will change by

n

∏
j=i+1

(1−λ( j))λ(i)∆−
n

∏
j=i+1

(1−λ( j))(1−λ(i))λ(i−1)∆ > 0

This is because λ(i) > (1−λ(i))λ(i−1) as λ(i) > λ(i−1). Using the same logic, we can show

that it is impossible that ai−1− ri−1 = ai− ri either. Therefore desired contradiction gets

shown. The ordering of ai− ri should be consistent with the ordering of ai− zi.

Next we show the that the optimal markups should be ordered in the same way as value

gap ai− zi, i.e, w1 < w2 < ... < wn. The argument will be again by contradiction. Suppose

there exist two consecutive products i− 1 and i such that wi−1 > wi at optimality. From

the proof of the first part, we are convinced that the sequence ai− zi−wi should have the
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same ordering as the sequence ai− zi, i.e., ai−2− zi−2 < ai−1− zi−1 < ai− zi < ai+1− zi+1

indicates ai−2− zi−2−wi−2 < ai−1− zi−1−wi−1 < ai− zi−wi < ai+1− zi+1−wi+1 under

optimal markups. Therefore, we can increase wi or decrease wi−1 or do both by a small

amount without violating the ordering condition.

Now let us look into a sub-problem: fixing markups of all the other products, and ig-

noring all the constraints, let us just focus on the profit maximization problem with respect

to product i′s markup:

max
wi

λiwi +(1−λi)λi−1wi−1 +(1−λi)(1−λi−1)λi−2wi−2 + ...+
i

∏
j=2

(1−λ j)λ1w1

Fixing all the other products’ markups, then profits from products preferred before i will be

fixed, as i exerts no cannibalization to them. Moreover, we can rewrite the above formula

as

max
wi

λiwi +(1−λi)R({1, ..., i−1})≡max
wi

λi×
(

wi−R({1, ..., i−1})
)
+R({1, ..., i−1})

(A.1)

Where R({1, ..., i− 1}) ≡ λi−1wi−1 +(1−λi−1)λi−2wi−2 + ...+∏
i−1
j=2(1−λ j)λ1w1 is the

profit from assortment {1, ..., i−1} under the fixed markups, so it is independent of wi. As

a consequence, wi will affect no other terms except λi.

Now we check the first order condition of problem (A.1). Let w∗i denote the optimal
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solution, then it must satisfy:

w∗i = θ

(
i,R({1, ..., i−1})

)
+R({1, ..., i−1})+1 (A.2)

Where θ(i,R({1, ..., i− 1})) = λ∗i ×
(

w∗i −R({1, ..., i− 1})
)

, i.e., the maximum value of

λi×
(

wi−R({1, ..., i−1})
)

. Moreover, the objective (A.1) is unimodal with respect to wi,

i.e, it monotonically increases when wi < w∗i and monotonically decreases when wi > w∗i .

As increasing the value of wi by a small amount can still preserve the optimal ordering

condition, it must be true that wi≥w∗i , otherwise we can just raise wi and therefore increase

the expected profit. Similarly, if we look into the problem of markup optimization on

product i−1, we know that i−1 is facing an identical problem:

max
wi−1

λi−1×
(

wi−1−R({1, ..., i−2})
)
+R({1, ..., i−2})

and the first order condition shows

w∗i−1 = θ

(
i−1,R({1, ..., i−2})

)
+R({1, ..., i−2})+1 (A.3)

will be a maximizer to the above problem, where θ

(
i− 1,R({1, ..., i− 2})

)
= λ∗i−1 ×(

w∗i−1− R({1, ..., i− 2})
)

. Since again, decreasing wi−1 is feasible, so it must be true

that wi−1 < w∗i−1.

According to the presumed relationship wi−1 >wi and above derivation, we should have

w∗i−1 > w∗i . We now show that this ordering is impossible. Recall the equilibrium formu-
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lations (A.2) and (A.3) which give the values of w∗i−1 and w∗i , we have R({1, ..., i− 2}) <

R({1, ..., i− 1}), so the rest concern is on the comparison between θ(i− 1,R({1, ..., i−

2})) and θ(i,R({1, ..., i− 1})). As long as we can prove θ(i,R({1, ..., i− 1}))− θ(i−

1,R({1, ..., i− 2})) > R({1, ..., i− 2})−R({1, ..., i− 1}), we are able to show the contra-

diction. Since θ

(
i,R({1, ..., i− 1})

)
is the optimal value of λi×

(
wi−R({1, ..., i− 1})

)
and θ

(
i−1,R({1, ..., i−2})

)
is the optimal value of λi−1×

(
wi−1−R({1, ..., i−2})

)
, we

can easily show that the gap between these two values can be at most R({1, ..., i− 2})−

R({1, ..., i−1}) by setting wi−1 to optimal, i.e., wi−1 = w∗i−1 and assigning wi a suboptimal

value w∗i−1. Therefore, it is impossible to have w∗i−1 > w∗i , and thus impossible to have

wi−1 > wi. This proves the ordering of the optimal markups.
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Appendix B

Appendix for Chapter 3: Approximation

Algorithms for Product Framing and

Pricing

B.1 Proofs in Section 3.4

B.1.1 Proof of Theorem 3.4.2.

Proof. Fix any instance of a 2-PARTITION problem with d numbers w1,w2, ...,wd . We

reduce this instance to a special case of our model with m = 2, p = 200d2 and n = 400d2+

2d. The attractiveness of the ‘no-purchase’ option is 1. The prices and attractiveness of the

n products are as follows:

• Each of the first d products corresponds to a number in the two-partition problem.
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For i= 1,2, ...,d, we set ri = 34 and νi =M+εwi, where ε is some small value which

we will define shortly, and M is determined by ε via

2d ·M+ ε

d

∑
i=1

wi = 2.

• For i = d +1,d +2, ...,2d, we set ri = 34 and νi = M.

• For i = 2d +1,2d +2, ...,3d, we set ri = 59 and νi = 2δ where

δ≡ 1
p
=

1
200d2 .

• For i = 3d +1,3d +2, ...,n, we set ri = 59 and νi = δ.

Given the special case constructed above, we argue that for an optimal frame, it is critical to

decide which of the first 2d products with price 34 should be offered on the first page. We

prove that the total expected revenue is a quasi-concave function of the total attractiveness

of the first 2d products that are offered on the first page. In particular, if the 2-PARTITION

problem has a solution, then we are able to recover that solution from the maximizer of the

quasi-concave function (i.e., the optimal solution of our model). Therefore, we can solve

the 2-PARTITION problem by optimizing the expected total revenue of our model.

We first observe the following structural properties of the special case of our model:

1. Since the revenues of all products are at most 59, the expected total revenue should

be strictly less than 59 (due to the no-purchase option). Thus, it is never optimal to
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leave any space in the two pages unfilled, as there are plenty of products with revenue

59.

2. It is easy to check that it always improves revenue to greedily replace a product with

price 59 and attractiveness δ by, if any, a spare product with price 59 and attractive-

ness 2δ. Furthermore, whenever there is a product with price 59 and attractiveness

δ on the first page and a product with price 59 and attractiveness 2δ on the second

page, it is better to greedily swap the two products. Thus, products with price 59 and

attractiveness 2δ should all be put on the first page.

3. Starting with an optimal solution, if we remove all the (at most 2d) products with

price 34 from the first two pages, we end up with at least 2p−2d ≈ 2p products with

price 59 remaining in the two pages (among which only d products have attractive-

ness 2δ). It is easy to check that the resulting expected revenue is

≈ 59 ·d ·2δ+59 ·2p ·δ
1+d ·2δ+2p ·δ

≈ 39.33

for customers who view two pages. Thus, when we put those products with price

34 back into the solution, the expected revenue for customers who view two pages

should be strictly greater than 34. This implies that in the optimal solution, no prod-

uct with revenue 34 should be put on the second page, because 34 is lower than the

expected revenue of the assortment consisting of products on the two pages.
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In summary, the optimal solution must put some of the products with price 34 on the

first page if any, all products with price 59 and attractiveness 2δ on the first page, and fill

in all other spots using products with price 59 and attractiveness δ.

Let S ⊆ {1,2, ...,2d} denote the set of products with price 34 that are put in the first

page. We set λ(1) = λ(2) = 0.5. The expected revenue under decision S is

R(S) =λ(1)
34∑i∈S νi +59 ·2δ ·d +59 ·δ · (p−|S|−d)

1+∑i∈S νi +2δ ·d +δ · (p−|S|−d)

+λ(2)
34∑i∈S νi +59 ·2δ ·d +59 ·δ · (2p−|S|−d)

1+∑i∈S νi +2δ ·d +δ · (2p−|S|−d)

=0.5
59(1− (|S|−d)δ)+34∑i∈S νi

2− (|S|−d)δ+∑i∈S νi
+0.5

59(2− (|S|−d)δ)+34∑i∈S νi

3− (|S|−d)δ+∑i∈S νi
.

(B.1)

Now consider the following function defined for l = 1,2, ...,2d and θ ∈ R.

f (l,θ)≡ 0.5
59(1− (l−d)δ)+34

( l
d +θ

)
2− (l−d)δ+ l

d +θ
+0.5

59(2− (l−d)δ)+34
( l

d +θ
)

3− (l−d)δ+ l
d +θ

= 0.5
59(1− l−d

200d2 )+34
( l

d +θ
)

2− l−d
200d2 +

l
d +θ

+0.5
59(2− l−d

200d2 )+34
( l

d +θ
)

3− l−d
200d2 +

l
d +θ

.

By this definition, we have R(S) = f (|S|,∑i∈S νi−|S|/d) and limε→0 R(S) = f (|S|,0). Fur-

thermore, we can prove the following properties for f (·, ·):

• f (l,0) is quasi-concave in l for l ≥ 0. When d ≥ 1 and l is relaxed to a non-negative

continuous variable, the only solution for ∂ f (l,0)
∂l = 0 is

l =
−21d−25000d3 +25d2

(
−427+4

√
−441−7350d +360000d2

)
7(3+25d)(−1+200d)

≥ 0.
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It is easy to check that this is a local maximizer for f (l,0). Therefore, f (l,0) is

quasi-concave in l for l ≥ 0.

• When l can only take non-negative integral values, the maximizer for f (l,0) is l = d.

We can deduce that

f (d,0)− f (d−1,0) =
−49+9600d +5000d2

2(1−200d +600d2)(1−200d +800d2)
>

1
200d2 , ∀d ≥ 1,

f (d,0)− f (d+1,0)=
−49+9600d +75000d2

2(−1+200d +600d2)(−1+200d +800d2)
>

1
200d2 , ∀d≥ 1.

Therefore, since f (l,0) has at most one local maximizer for l ≥ 0, l = d must be the

unique maximizer for f (l,0) when l is a non-negative integer.

• When l = d and θ ∈ [−1,1], the unique maximizer for f (d,θ) is θ = 0 as shown by

the following calculation.

f (d,θ) =
8

θ+4
− 4.5

θ+3
+34

=⇒ ∂ f (d,θ)
∂θ

=
4.5

(θ+3)2 −
8

(θ+4)2 .

When θ ∈ [−1,1],

∂ f (d,θ)
∂θ

= 0 =⇒ θ = 0.

It is easy to check that θ = 0 is a maximizer for f (d,θ).
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Thus,

f (d,θ)< f (d,0), ∀θ 6= 0,θ ∈ [−1,1]. (B.2)

• When l 6= d, l ∈ {0,1,2, ...,2d} and θ ∈ [−0.5,0.5], we can deduce that

f (l,θ) =0.5
59(1− l−d

200d2 )+34
( l

d +θ
)

2− l−d
200d2 +

l
d +θ

+0.5
59(2− l−d

200d2 )+34
( l

d +θ
)

3− l−d
200d2 +

l
d +θ

≤0.5
59(1− l−d

200d2 )+34 l
d

2− l−d
200d2 +

l
d +θ

+0.5 ·34|θ|+0.5
59(2− l−d

200d2 )+34 l
d

3− l−d
200d2 +

l
d +θ

+0.5 ·34|θ|

(because 2− l−d
200d2 +

l
d
+θ≥ 1 and 3− l−d

200d2 +
l
d
+θ≥ 1)

=0.5
59(1− l−d

200d2 )+34 l
d

2− l−d
200d2 +

l
d +θ

+0.5
59(2− l−d

200d2 )+34 l
d

3− l−d
200d2 +

l
d +θ

+34|θ|

≤0.5
59(1− l−d

200d2 )+34 l
d

2− l−d
200d2 +

l
d

(
1+

2|θ|
2− l−d

200d2 +
l
d

)
+

0.5
59(2− l−d

200d2 )+34 l
d

3− l−d
200d2 +

l
d +θ

(
1+

2|θ|
3− l−d

200d2 +
l
d

)
+34|θ|

(since θ ∈ [−0.5,0.5])

≤0.5
59(1− l−d

200d2 )+34 l
d

2− l−d
200d2 +

l
d

(1+2|θ|)+0.5
59(2− l−d

200d2 )+34 l
d

3− l−d
200d2 +

l
d +θ

(1+2|θ|)+34|θ|

= f (l,0)+(2 f (l,0)+34)|θ|

≤ f (l,0)+(2 f (d,0)+34)|θ|.

• Combining these results, for l 6= d, l ∈ {0,1, ...,2d}, if

|θ| ≤ 1
2 f (d,0)+34

· 1
200d2 , (B.3)
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we must always have |θ|< 0.5 and

f (l,θ)≤ f (l,0)+(2 f (d,0)+34)|θ| ≤ f (l,0)+
1

200d2 < f (d,0),

where the last inequality follows from the bound in the second bullet point.

In our model, we set

ε =
1

2∑
d
i=1 wi

· 1
2 f (d,0)+34

· 1
200d2 .

Then we can bound the total expected revenue R(S) using f (d,0).

R(S) = f (|S|,∑
i∈S

νi−|S|/d)

= f (|S|, |S|M−|S|/d + ∑
i∈S∩{1,2,...,d}

εwi)

= f (|S|, |S|2− ε∑
d
i=1 wi

2d
−|S|/d + ε ∑

i∈S∩{1,2,...,d}
wi)

= f (|S|,ε

[
−|S|∑d

i=1 wi

2d
+ ∑

i∈S∩{1,2,...,d}
wi

]
).



166

Since

∣∣∣∣∣ε
[
−|S|∑d

i=1 wi

2d
+ ∑

i∈S∩{1,2,...,d}
wi

]∣∣∣∣∣
=

∣∣∣∣∣ 1
2∑

d
i=1 wi

· 1
2 f (d,0)+34

· 1
200d2

[
−|S|∑d

i=1 wi

2d
+ ∑

i∈S∩{1,2,...,d}
wi

]∣∣∣∣∣
≤ 1

2∑
d
i=1 wi

· 1
2 f (d,0)+34

· 1
200d2

[
d

∑
i=1

wi + ∑
i∈S∩{1,2,...,d}

wi

]

≤ 1
2 f (d,0)+34

· 1
200d2 ,

we must have, according to (B.2) and (B.3),

R(S) = f (|S|,∑
i∈S

νi−|S|/d)


= f (d,0), if |S|= d,∑i∈S νi = 1

< f (d,0), otherwise.
(B.4)

This implies that R(S) = f (d,0) if and only if |S|= d,∑i∈S νi = 1. Furthermore, if R(S) =

f (d,0), then S is an optimal solution to our model (not vice versa).

Let S∗ be an optimal solution to our model. We prove the theorem by showing that the

following two conditions are equivalent:

• R(S∗) = f (d,0), i.e., the optimal expected revenue of our model is f (d,0).

• The 2-PARTITION problem has a solution.

The above equivalence shows that the ranking problem reduces to the 2-partition prob-

lem as follows. If we can solve the ranking problem, then we can find the optimal value. If

the optimal value is f (d,0), then we can conclude that there is a solution to the 2-partition
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problem. If the optimal value is not f (d,0), then we can conclude that there is no solution

to the 2-partition problem.

First, suppose the 2-PARTITION problem has a solution T ⊂ {1,2, ...,d} such that

∑
i∈T

wi =
1
2

d

∑
i=1

wi.

We construct a solution S⊂ {1,2, ...,2d} to our model as

S = T ∪{d +1,d +2, ...,2d−|T |}.

We can check that |S|= d and

∑
i∈S

νi = dM+ ∑
i∈T

εwi = dM+
1
2

ε

d

∑
i=1

wi = 1.

Therefore, according to (B.4) , S is an optimal solution to our model which gives ex-

pected revenue R(S) = f (d,0).

On the other hand, suppose S∗ is an optimal solution to our model and R(S∗) = f (d,0).

According to (B.4), we must have |S∗|= d and ∑i∈S∗ νi = 1, which gives

∑
i∈S

νi = 1

=⇒ |S|M+ ∑
i∈S∩{1,2,...,d}

εwi = 1
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=⇒ d
2− ε∑

d
i=1 wi

2d
+ ∑

i∈S∩{1,2,...,d}
εwi = 1

=⇒ ∑
i∈S∩{1,2,...,d}

wi =
1
2

d

∑
i=1

wi.

This proves that the 2-PARTITION problem has a solution.

B.2 Proofs in Section 3.7

To uncover the structure an optimal solution to (3.7.2) we will first establish some ele-

mentary results concerning the function g(x) = xΛ(x) which turns out to play an important

role in the analysis.

Lemma B.2.1. If X has an IFR distribution, then g(x) is unimodal, and the largest maxi-

mizer, say y, is the smallest integer x such that (x+1)h(x)> 1. Moreover, if X is geometric

with h(x) = θ for all x ∈M, then 1/(y+1)< θ≤ 1/y.

Proof of Lemma B.2.1

A little algebra shows that g(x) ≤ g(x+ 1) if and only if h(x) ≤ 1/(x+ 1). Since h(x)

is increasing and 1/(x+ 1) is decreasing, there is a smallest x, say y, such that h(y) >

1/(y+1). Then, h(x)≤ 1/(x+1) for all x < y implies that g(1)≤ . . .≤ g(y). On the other

hand, h(x) > 1/(x+ 1) for all x ≥ y, implies that g(y) > g(y+ 1) > .. .. In the geometric

case, h(x) = θ for all x implies that at θ= h(y−1)≤ 1/y and θ= h(y)> 1/(y+1), together

imply that 1/(y+1)< θ≤ 1/y as claimed.
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Lemma B.2.2. Let R and Λ be an optimal solution of (3.7.2), and let y=maxargmax
x∈M

R(x)Λ(x).

Then

1. R(x) = xR(y)
y for all x≥ y; and

2. h(x) = h(y) for all x ∈M, x≥ y.

The intuition behind the above result is that if the above properties are not satisfied, then

we can find another set of values for R(·) and Λ(·) satisfying the constraints but generating

a lower objective value in program (3.7.2). The result also hints at a geometric or truncated

geometric distribution for values of x≥ y.

Proof of Lemma B.2.2.

Proof. Consider x > y. By Assumption B2, R(x)/x ≤ R(y)/y, so R(x) ≤ xR(y)/y for all

x > y. If any of the R(x),x > y values is not at its upper bound, then we can rescale the

values of R(x),x > y, and reduce R(x),x≤ y, while maintaining the constraint E[R(X)] = 1.

But this impossible because it would contradict the optimality of Problem (3.7.2).

We next verify that h(x) = h(y) for all x ∈ {y, . . . ,m}. This implies that Λ(x+1)Λ(x−

1) = Λ(x)2 for all x = y, . . . ,m−1. If not, there is a largest z such that Λ(z+1)Λ(z−1)<

Λ(z)2, and we can Increase Λ(z+ 1), . . . ,Λ(m) by a small amount while maintaining the

IFR property. This adjustment has the effect of increasing E[R(X)]. To maintain E[R(X)] =

1 we would need to scale down all the R′s and in the process reduce R(y)Λ(y), again

contradicting the optimality of Problem (3.7.2).
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We will now show that y = maxargmax
x∈M

R(x)Λ(x) is also the largest maximizer of g(x)

in M.

Lemma B.2.3. Let R and Λ be an optimal solution of (3.7.2), then y=maxargmax
x∈M

R(x)Λ(x)

is the largest maximizer of g(x) in M.

Proof of Lemma B.2.3.

Proof. By Lemma B.2.2, R(x)/x = R(y)/y for all x > y. Since y is the largest maximizer

of R(x)Λ(x) it follows that R(x)Λ(x) < R(y)Λ(y) for all x > y. Multiplying both sides by

x/R(x)= y/R(y), we obtain xΛ(x)< yΛ(y) for all x> y. For all x< y, R(x)Λ(x)≤R(y)Λ(y)

and x/R(x)≤ y/R(y), multiplying the inequalities, we obtain xΛ(x)≤ yΛ(y). Therefore, y

is the largest maximizer of g(x) over x ∈M.

Let r = R(y)Λ(y). We next show the structure of R(x) for all x ∈ {1, . . . ,y}.

Lemma B.2.4. R(x) = r/Λ(x) for all x ∈ {1, . . . ,y}.

Proof of Lemma B.2.4.

Proof. From r = R(y)Λ(y), it follows that R(x) ≤ r/Λ(x) for all x ∈ {1, . . . ,y}. We will

show that R(x) = r/Λ(x) for all x∈ {1, . . . ,y}. Suppose for a contradiction that this is false,

and let z be the smallest x ∈ {1, . . . ,y} such that R(x) < r/Λ(x). We first argue that z > 1,

for if z = 1, then we could increase R(1) a bit, without disrupting R(x)/x decreasing in x.
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This would then allow us to scale down R(x),x > 1 and reduce r = R(y)Λ(y), contradicting

the optimality of Problem (3). Consequently, z > 1. We now argue that R(z)/z = R(z−

1)/(z− 1). Otherwise, we could increase R(z) and decrease R(x), x > z, and again get a

contradiction. Then from r = R(z− 1)Λ(z− 1) > R(z)Λ(z) = R(z− 1)z/(z− 1)Λ(z), we

obtain g(z−1)> g(z)< g(y), but this contradicts the uni-modality of g(x). Consequently,

R(x) = r/Λ(x) for all x ∈ {1, . . . ,y}.

This implies that the R(x)Λ(x) = r for all x ∈ {1, . . . ,y}, so the maximizers of R(x)Λ(x)

are consecutive. It also implies that R(x)λ(x) = rh(x) for all x ∈ {1, . . . ,y}.

B.2.1 Proof of Theorem 3.7.2.

Proof. We will work with the condition 1 = E[R(X)] = ∑x∈M R(x)λ(x) to show that in the

worst case the distribution of X is geometric with mean E[X ] = y, and from this conclude

that r≥ 1/(3−2/y)≥ 1/3. Let h(y) = θ for some θ > 0 and recall from Lemma B.2.2 that

h(x) = θ for all x ∈M,x ≥ y. This implies that X has tail probabilities Λ(x) = (1−θ)x−1

for all x ∈ M,x ≥ y. For any such X , we have E[X |X ≥ y] = E[X |X > y− 1] ≤ y− 1+

E[X ] = y−1+1/θ with the upper bound attained by the distribution with tail probabilities

Λ(x) = (1− θ)x−1 for all x ≥ y. Finally notice that R(x) = r/Λ(x),x < y, implies that
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R(x)λ(x) = rh(x)≤ rθ. Consequently,

1 = E[R(X)] =
y−1

∑
x=1

R(x)λ(x)+ ∑
x>y−1

R(x)λ(x)

= r
y−1

∑
x=1

h(x)+
r
y ∑

x>y−1
x

λ(x)
Λ(y)

= r
y−1

∑
x=1

h(x)+
r
y

E[X |X > y−1]

≤ r
(
(y−1)θ)+

1
y
(y−1+1/θ)

)

where the bound is attained by the geometric distribution with hazard rate h(x) = θ and

mean E[X ] = 1/θ. Because Lemma B.2.1, it follows that 1/(y+ 1) < θ ≤ 1/y. Since the

expression is brackets is convex in θ, the maximum is at an extreme point and it is easy to

see that it is maximized when θ = 1/y, or equivalently when E[X ] = y. Evaluating the last

equation at θ = 1/y, we see that 1≤ r(3−2/y), or equivalently r ≥ 1/(3−2/y)≥ 1/3.

B.3 Proofs in Section 3.9

B.3.1 Proof of Theorem 3.9.1

Proof. Given the sets Sx, ∀x = 1, ...,m fixed, we maximize solely over prices. That is, we

want to compute

max
r

R(r|S) =
m

∑
x=1

λ(x)Rx(r|Sx) =
m

∑
x=1

λ(x) ∑
i∈Sx

riπ(i,Sx),
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where Rx(r|Sx) is the expected revenue from consumer who has consideration set Sx and

π(i,Sx) =
exp(ai−βri)

1+∑k∈Sx exp(ak−βrk)
is the probability of choosing item i if i is in consumer x’s

consideration set. Taking partial derivative of π(i,Sx) with respect to product i’s and k’s

prices ri and rk respectively, we have the following formulas:

∂π(i,Sx)

∂ri
= βπ(i,Sx)(π(i,Sx)−1), and

∂π(i,Sx)

∂rk
= βπ(i,Sx)π(k,Sx).

Taking the first order derivative of the expected revenue Rx(r) with respect to ri, we

obtain

∂Rx(r|Sx)

∂ri
= π(i,Sx)+ ri

∂π(i,Sx)

∂ri
+∑

k 6=i
rk

∂π(k,Sx)

∂ri

= βπ(i,Sx){
1
β
+ ∑

k∈Sx

rkπ(k,Sx)− ri}

= βπ(i,Sx){
1
β
+Rx(r)− ri}.

Let x(i) ≡ {x : i ∈ Sx}. That is, x(i) denotes the page where item i is displayed. Taking

partial derivative of the total expected revenue with respect to ri, we obtain

∂R(r|S)
∂ri

= β

m

∑
j=x(i)

λ( j)π(i,S j){
1
β
+R j(r|S j)− ri}. (B.1)
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Equivalently,

m

∑
j=x(i)

λ( j)π(i,S j){
1
β
+R j(r|S j)}=

m

∑
j=x(i)

λ( j)π(i,S j)ri. (B.2)

Notice that equation (B.2) is satisfied either when π(i,S j) = 0, ∀ j = 1, ...,m, i.e, when

ri =+∞ meaning item i is priced out of the market; or when

ri =
∑

m
j=x(i)λ( j)π(i,S j){ 1

β
+R j(r|S j)}

∑
m
j=x(i)λ( j)π(i,S j)

(B.3)

It is easy to check that in the above equation (B.3), the right hand side is invariant for all

i and k such that x(i) = x(k), i.e, invariant for all products that are displayed on the same

page. Thus, for every finitely priced item i, there should be a page-level invariant price

θx(i), such that ri = θx(i) at optimality.

For the monotonicity of the page-level price, notice that equation (B.3) tells us that the

price is a weighted average of 1
β
+R j(r|S j), where R j(r|S j), the expected revenue from

consumer j, must be nondecreasing. To see, suppose that there is a drop at j. This could

only be because we set prices too low for products in page j. Then we would just raise

their prices and therefore increase the expected revenue consumer j. Moreover, we argue

the expected revenue from the later market can also be increased due to the unimodularity

of R j(·) function with respect to all r′s (See Gallego, Li and Beltran (2016)). And the

saddle point will shift right as more products are considered. According to Theorem (3.9.3),
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indeed all products should be introduced, so R j(r|S j) must be monotonically increasing in

j. Thus, the page-level price must be monotonically increasing in j.

To prove the optimal prices for all products are finite, we want to show two facts: (1)

the optimal price for all pages, i.e., θ1 ...θm are finite; and (2) supposing that at optimality,

some products are priced at infinity, then the item offering cannot be optimal.

The first fact is equivalent to having θm <+∞, since we know that the page-level price

θx is monotonically increasing in x. The first-order condition given by page m implies

θm = 1
β
+Rm(θ|Sm), which proves the finiteness of θm.

Consider the second fact that we need to prove. Notice that having some prices equal

to infinity is equivalent to pricing the corresponding products out of the market, or not

displaying them at all. Equivalently, there is some page x displaying fewer than p products.

Therefore we can introduce one more item without increasing the total attractiveness of

page x. This can be achieved by increasing products’ prices on page x. In this situation,

the expected revenue from consumer segment x′ = 1...x− 1 will not be affected, and the

expected revenue from segment x and larger will strictly increase. That is, Rx′(r|Sx′), x′ =

x...m, will become larger. Thus, the total expected revenue will strictly increase when we

fill all pages with finitely priced products.
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B.3.2 Proof of Theorem 3.9.3

Proof. Suppose that the page configuration Sx is fixed for all x = 1, ...,m. Given the quality

vector a = (a1, ...,an), we want to optimize with respect to prices. That is, we want to solve

R(a) = maxr R(r|S)≡ ∑
m
x=1 λ(x)Rx(r|Sx). (B.4)

Now, suppose we can change the vector a. We wish to determine how the optimal revenue

R(a) will change. Let us take the partial derivative of R(a) with respect to ai.

∂R(a)
∂ai

=
m

∑
j=x(i)

λ( j)
∂R j(r(a)|S j)

∂ai

=
m

∑
j=x(i)

λ( j){ri(a)−R j(r(a)|S j)}π(i,S j), (B.5)

where r(a) is the optimal price vector under quality vector a, which must satisfy the

first-order condition given by (B.3), i.e, ∑
m
j=x(i)λ( j)π(i,S j)ri(a) = ∑

m
j=x(i)λ( j)π(i,S j){ 1

β
+

R j(r(a)|S j)}. Plug this relationship into (B.5), we obtain

∂R(a)
∂ai

=
1
β

m

∑
j=x(i)

λ( j)π(i,S j). (B.6)

From the above relationship, we can draw several conclusions. First, the optimal revenue

R(a) is increasing in ai for all i = 1, ...,n. Second, suppose there are two item i and k with

the same quality ai = ak, but x(i) < x(k), in other words, i is displayed before k so it can

be viewed by more consumer. Equation (B.6) tells us ∂R(a)
∂ai

> ∂R(a)
∂ak

, so if we can either
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increase ai or ak, it is always better to prioritize ai. This indicates that products should be

displayed in decreasing order of their quality.

To prove that all products should be displayed, notice that eliminating item i is equiva-

lent to letting its quality ai go to negative infinity. However, since ∂R(a)
∂ai

> 0 and it is always

better to put products with higher quality ahead of products with lower quality, we can

conclude that at optimality, all products should be displayed; and they are displayed in the

order of their indices. Each page is filled up with products until its capacity is saturated.
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Appendix C

Appendix for Chapter 4: Product Line

Design and Pricing under Logit Models

C.1 Proofs in Section 4.1

C.1.1 Proof of Theorem 4.1.1.

Proof. Given the potential set of products S, we purely maximize over prices:

max
r

R(r|S) = ∑
j∈S

(r j− c̃ j)πi(S)

where π j(S) =
exp(a j−βrr j)

V0+∑ j∈S exp(a j−βrr j)
, is the probability of choosing product j from set S

under price vector r. Taking partial derivative of product i’s and product j’s choice proba-

bilities with respect to i’s price, we have the following formulas:



179

∂πi(S)
∂ri

= βrπi(S)(πi(S)−1)

∂π j(S)
∂ri

= βrπi(S)π j(S)

Take first order derivative of expected profit R(p) with respect to product i’s price pi:

∂R(r|S)
∂ri

= πi(S)+(ri− c̃i)
∂πi(S)

∂ri
+∑

j 6=i
(r j− c̃ j)

∂π j(S)
∂ri

= βrπi(S){
1
βr

+ ∑
j∈S

(r j− c̃ j)π j(S)− (ri− c̃i)} (C.1)

From (C.1) we see, to satisfy the first order condition (FOC), either πi(S) = 0, meaning

ri = +∞, i.e., product i is priced out of market; Or the second term of (C.1) is equal to 0,

i.e.,

ri− c̃i =
1
βr

+ ∑
j∈S

(r j− c̃ j)π j(S) (C.2)

In the above equation, the right hand side is invariant for all i, meaning for every finitely

priced product i, there should be a constant mark-up, let us call it θ, such that ri = c̃i +θ at

optimality.

Assuming the set S∗ of products with finite price is a proper subset of S, then there should

be at least one product i ∈ S \S∗ not offered. The expected profit when set S∗ is offered at

prices with constant mark-up θ is:
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RS∗(θ) = ∑
j∈S∗

θ
exp(α j−βrc̃ j−βrθ)

V0 +∑ j∈S∗ exp(α j−βrc̃ j−βrθ)

The expected profit by offering assortment S∗∪{i} at prices with the same mark-up is

strictly higher. Therefore it is optimal to offer all the available products with a constant

mark-up.

So the problem can be simplified to the one dimensional optimization problem

max
θ

R(θ|S) = θ∑i∈S exp(αi−βr(θ+ c̃i))

V0 +∑i∈S exp(αi−βr(θ+ c̃i))

and we take first order derivative of R(θ|S) with respect to θ, then

∂R(θ|S)
∂θ

= (1−πS
θ(0))(1−βθπS

θ(0))) (C.3)

In order to satisfy the first order condition, the right hand side of equation (C.3) should

be 0, yet the first part can never be 0 since π0(S) = 1 is impossible; Therefore it must be

the case that at optimality:

π0
θ(S) =

1
θβr

Observe that second term of the right hand side of equation (C.3) 1−βθπS
θ(0)) mono-

tonically increases with respect to θ, there must be a unique sign change of (C.3) from

positive to negative. So it can be concluded that R(θ) is unimodal in θ.
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C.1.2 Proof of Theorem 4.1.3

Proof. First, let us assume that the configuration of S \{i} is fixed, and all the features of

i except for feature m have picked a level. This indicates we only need to select one level

from feature m to product i.

Let us compare two potential levels – k and q of feature m: with feature-level valuation βk >

βq and costs ck > cq (otherwise the problem is trivial, just select the level who has higher

valuation and lower cost). The the profit under price ri and feature level k configuration is:

R(k,ri) =
R−i +(ri− c0− ck)exp(α0 +βk−βrri)

V−i + exp(α0 +βk−βrri)

And the profit under price p′i and feature level q configuration is:

R(q, p′i) =
R−i +(r′i− c0− cq)exp(α0 +βq−βrr′i)

V−i + exp(α0 +βq−βrr′i)

Where R−i = ∑ j 6=i(r j− c̃ j)exp(β0+β′x j−βrr j) and V−i = ∑ j 6=i exp(β0+β′x j−βrr j).

Since have assumed that configurations and prices of all products except for i are fixed, R−i

and V−i are just constant. Let c0 be the cost of product i’s current configuration x0
i , i.e., c0 =

c′x0
i and a0 be its current configuration’s expected quality evaluation, i.e., a0 = β0 +β′x0

i .

Those are also constant.

Now let pi be the price such that product i has same utility before and after, i.e.,

α0 +βk−βrri = α0 +βq−βrr′i
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⇔

ri =
βk−βq

βr
+ p′i

This will guarantee the two configurations have the same total market share. Replace ri by

that quantity, then

R(k,ri) =
R−i +(r′i− c0− ck +

βk−βq
βr

)exp(α0 +βq−βrr′i)

V−i + exp(α0 +βq−βrr′i)

Compare it with R(q,ri), then

R(k,ri)≥ R(q,r′i)

⇔

r′i− c0− ck +
βk−βq

βr
≥ r′i− c0− cq

⇔

βk

βr
− ck ≥

βq

βr
− cq

So as long as βk
βr
−ck ≥

βq
βr
−cq, under whatever price of configuration q, we can always

find another price, so the profit under k will strictly dominate.
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C.1.3 Proof of Theorem 4.1.4

Proof. Assume the current assortment S with products i, j ∈ S is fixed. Except that a

feature-level k with positive adjusted value gap rk = βk− βrck is available to either i or

j. Assuming that under current configuration, value gap of product i: ṽi = β0 +∑l glxi,l is

greater than product j’s ṽ j = β0+∑l glx j,l , the question is: should we add the feature-level

k to i or to j?

Recall theorem 4.1.1 – the constant adjusted mark-up property, so for each configura-

tion, we are actually solving the following program:

max
θ

R(θ, i) = θ
V−i j(θ)+ exp(ṽi−βrθ+gk)+ exp(ṽ j−βrθ)

V0 +V−i j(θ)+ exp(ṽi−βrθ+gk)+ exp(ṽ j−βrθ)

or

max
θ

R(θ, j) = θ
V−i j(θ)+ exp(ṽi−βrθ)+ exp(ṽ j−βrθ+gk)

V0 +V−i j(θ)+ exp(ṽi−βrθ)+ exp(ṽ j−βrθ+gk)

Since we have assumed all the other products’ configurations are fixed then the total

valuation of them V−i j(θ) = ∑i′ 6=i, j exp(ṽi′−βrθ) is just a function on θ. And recall that V0

is the valuation of outside alternative.

Let us price both assortment at the same θ and compare their profits, which is equivalent to

comparing:

V−i j + eui+z + eu j

V0 +V−i j + eui+z + eu j
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with

V−i j + eui + eu j+z

V0 +V−i j + eui + eu j+z

They are simplified by defining constantsV−i j = V−i j(θ), ui = ṽi−βrθ, u j = ṽ j−βrθ

and z = gk. Given that ui > u j and z > 0, we can easily prove that R(θ, i)> R(θ, j).

So we can see the higher adjusted value gaped product tends to attract more to its value gap

to increase the profit, which proves our theorem.

Proof of PROPOSITION 4.1.7.

Proof. Assume in the current assortment, we put K-optimal products; According to Theo-

rem 4.1.1, the optimal markup θK should satisfy the equation:

θK = R(θK)+
1
βr

i.e., the optimal constant markup should be equal to the total profit under this pricing strat-

egy and the reciprocal of price sensitivity. Also by Theorem 4.1.1, we also have at optimal-

ity:

π0(K) =
1

θKβr

Combining the above two results:

θK = R(θK)+
1
βr

=
∑

K
i=1 exp(ṽi−βrθK)+1

βr
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Therefore,

R(θK) =
∑

K
i=1 exp(ṽi−βrθK)

βr

So

R(θK+1)−R(θK) =
∑

K+1
i=1 exp(ṽi−βrθK+1)−∑

K
i=1 exp(ṽi−βrθK)

βr

<
exp(ṽK−βrθK)

βr

Since θK < θK+1. Hence,

R(θK+1)−R(θK)

R(θK)
<

exp(ṽK+1−βrθK)

βrθK−1

And for any larger set K̄, the ratio:

R(θK̄)−R(θK)

R(θK)
<

∑
K̄
i=K+1 exp(ṽi−βrθK)

βrθK−1

=
∑

K̄
i=K+1 exp(ṽi−βrθK)

∑
K
i=1 exp(ṽi−βrθK)

=
∑

K̄
i=K+1 exp(ṽi)

∑
K
i=1 exp(ṽi)
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C.2 Proofs in Section 4.2

C.2.1 Proof of Theorem 4.2.1

Proof. Before proving the theorems, let us look into the differential equations of choice

probabilities (4.2.1), (4.2.2) and (4.2.3) with respect to prices, which will be used iteratively

in the later proofs.

The partial derivative of product in’s conditional choice probability with respect to its own

price is:

∂π(in|n,S)
∂rin

=
βn

r
γn

π(in|n,S)(π(in|n,S)−1)

The partial derivative of product in’s conditional choice probability with respect to the price

of another product in the same submarket is:

∂π(in|n,S)
∂r jn

=
βn

r
γn

π(in|n,S)π( j|n)

The partial derivative of product in’s conditional choice probability with respect to another

product from a different submarket is:

∂π(in|n,S)
∂rkn′

= 0

The partial derivative of nest n’s market share with respect to the price of one of its products

is:

∂π(n|S)
∂rin

= β
n
r π(in|S)(π(n|S)−1)
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The partial derivative of nest n’s market share with respect to the price of a product in a

different submarket is:

∂π(n|S)
∂rkn′

= β
n
r π(n|S)π(kn′|S)

The partial derivative of product in’s market share with respect its own price is:

∂π(in|S)
∂ rin

=
βn

r
γn

π(in|S)(π(in|n,S)−1)+β
n
r π(in|S)2−β

n
r π(in|n,S)π(in|S)

The partial derivative of product in’s market share with respect the price of another product

from the same submarket is:

∂π(in|S)
∂r jn

=
βn

r
γn

π(in|n,S)π( jn|S)+β
n
r π(in|S)π( jn|S)−β

n
r π( jn|S)π(in|n,S)

The partial derivative of product in’s market share with respect the price of another product

from the different submarket is:

∂π(in|S)
∂r jn′

= β
n
r π(in|S)π( jn′|S)

Plug the above results into the partial derivative of the expected profit with respect to
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product jn’s price:

∂R(r|S)
∂r jn

= ∑
n′ 6=n

∑
i
(rin′− c̃in′)

∂π(in′|S)
∂r jn

+∑
i 6= j

(rin− c̃in)
∂π(in|S)

∂r jn
+π( jn|S)+(r jn− c̃ jn)

∂π( jn|S)
∂r jn

= β
n
r π( jn|S){∑

n′
∑

i
(rin′− c̃in′)π(in

′|S)+(
1
γn
−1)∑

i
(rin− c̃in)π(in|n,S)+

1
βn

r
−

r jn− c̃ jn

γn
}

(C.1)

In order to satisfy the first order condition, (C.1) must equal to 0, which can be achieved

either by letting π( jn|S) = 0⇔ r jn =+∞ or the second term of (C.1) be 0, i.e.,

∑
n′

∑
i
(rin′− c̃in′)π(in

′|S)+(
1
γn
−1)∑

i
(rin− c̃in)π(in|n,S)+

1
βn

r
−

r jn− c̃ jn

γn
= 0 (C.2)

Observe that the first term on the left hand side of equation (C.2) is the expected profit

R(r|S); and the second term, which can be denoted by R(r|n), is invariant for all products

belonging to the nest n, so (C.2) is equivalent to

γnR(r|S)+(1− γn)R(r|n)+
γn

βn
r
= r jn− c̃ jn (C.3)

The left hand side of the above equation is invariant within nest n, so there must be a
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θn for each nest n such that,

r jn = θn + c̃ jn (C.4)

θn = γnR(p)+(1− γn)R(p|n)+ γn

βn
r

(C.5)

Assume that at optimality, S∗n, set products in nest n priced with the constant markup is

a proper subset of the available set of products in nest n, denoted by Sn, i.e., there exists at

least one product in such that in ∈ Sn \S∗n.

Let us fix the optimal price for all nests except nest n, and denote it by vector r∗−n; To

be more specific, let the optimal price vector of nest n′ be denoted as r∗n′ . Let the adjusted

attractiveness of nest n′ be a(r∗n′) = (∑ j exp(
α jn′−βn′

r r∗jn′
γn′

)+Vn′)
γn′ , which is a constant under

the fixed optimal price vector r∗n′ . And denote the adjusted attractiveness over all nests

except n be ã(r∗−n) = ∑n′ 6=n a(r∗n′). And at optimality, another parameter ρ∗, defined as

ρ
∗ =

ã(r∗−n)+(∑ j∈S∗n exp(
α jn−β

p
n r∗jn

γn
)+Vn)

γn

ã(r∗−n)+(∑ j∈S∗n exp(
α jn−β

p
n r∗jn

γn
)+Vn)γn +1

(C.6)

should be fixed also. We can interpret ρ as the total nests’ market share.

Equation (C.6) is equivalent to

( ∑
j∈S∗n

exp(
α jn−β

p
nr∗jn

γn
)+Vn)

γn =
ρ∗

1−ρ∗
− ã(r∗−n) (C.7)

According to the constant markup property, there must be a θn(S∗n) such that r jn =
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c̃ jn +θn(S∗n) at optimality, and by replacing θn(S∗n) into equation (C.7), we see that θn(S∗n)

should satisfy

( ∑
j∈S∗n

exp(
α jn−β

p
n(θn(S∗n)+ c̃ jn)

γn
)+Vn)

γn =
ρ∗

1−ρ∗
− ã(r∗−n) (C.8)

Let us look into optimal profit function in terms of ρ, θn and r−n

R(r∗|S) = θn(S∗n)(ρ
∗− (1−ρ

∗)ã(r∗−n))
( ρ∗

1−ρ∗ − ã(r∗−n))
1

ρ∗ −Vn

( ρ∗

1−ρ∗ − ã(r∗−n))
1

ρ∗
(C.9)

+ ∑
n′ 6=n

(1−ρ
∗)a(r∗n′)∑

i
(r∗in′− c̃in′)

exp(
αin′−βn′

r r∗in′
γn′

)

a(r∗n′)
1

γn′
(C.10)

By fixing ρ∗ and r∗−n, the objective value will monotonically increase only with respect

to θn(S∗n). Observe from equation (C.8), when we expand the set to S∗n ∪ i, θn’s value will

strictly increase to keep the equation hold, i.e., θn(S∗n∪ i∗) > θn(S∗n), which will strictly

increase the expected profit and that contradicts to the optimality of S∗n. Therefore, all the

available products within a same nest should be priced with the same markup.

C.2.2 Proof of Theorem 4.2.2

Proof. Let us first look into some partial differential equations of the choice probability

defined in (4.2.9) and (4.2.10) with respect to the nest level constant markup.
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The partial derivative of product in’s conditional choice probability with respect to nest n’s

markup θn:

∂π(in|n,S)
∂θn

=−bnπ(in|n,S)π(S0|n,S)

The partial derivative of nest n’s market share with respect to its own markup θn:

∂π(n|S)
∂θn

= β
n
r π(Sn|S)(π(n|S)−1)

The partial derivative of nest n’s market share with respect to another submarket n’s markup

θn′:

∂π(n|S)
∂θn′

= β
n′
p π(n|S)π(Sn′|S)

Recall that π(Sn|S)=∑i π(in|S), π(Sn|n,S)=∑i π(in|n,S), π(S0|n,S)= 1−∑i π(in|n,S).

Take partial derivative of the expected profit R(θ|S) with respect to nest n’s markup θn:

∂R(θ|S)
∂θn

= β
n
r π(Sn|S){

1
βn

r
+∑

n
θnπ(Sn|S)−θnπ(Sn|n,S)−

θn

γn
π(S0|n,S)} (C.11)

If nest n is offered, meaning π(Sn|S) > 0, then to satisfy the first order condition, the

second term of the right hand side of equation (C.11) must be 0, i.e.

R(θ|S) = θnπ(Sn|n,S)+
θn

γn
π(S0|n,S)−

1
βn

r
(C.12)

Observe that the left hand side is nest invariant, therefore all we need to prove now is
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π(Sn|S) > 0 for every nest n at optimality, which is equivalent to all optimal mark-ups θn

being finite.

Preparatory Material

Lemma C.2.1. Problem (4.2.11) can alternatively be solved by computing the fixed point

of an appropriately defined scaler function:

η = max
θ

∑
n
{θn(∑

j
eṽ jn−bnθn +Vn)

γn
∑ j exp(ṽ jn−bnθn)

∑ j exp(ṽ jn−bnθn)+Vn
− (∑

j
eṽ jn−bnθn +Vn)

γnη}

(C.13)

This is due to Rayfield et al. 2015.

Proof. Proof of Lemma C.2.1. First observe that the left hand side to equation (C.13)

is strictly increasing with respect to η and the right hand side is strictly decreasing with

respect to η. When η = 0, the left hand side is strictly less than the right. Those conditions

guarantee the uniqueness and existence of the fixed point satisfying (C.13). Letting η̂

denote the value of η satisfying (C.13), we can argue that η̂ is the optimal objective value

of problem (C.13). To see this, let us denote the optimal solution to problem (4.2.11) by

(θ∗1,θ
∗
2, ..,θ

∗
n), then we must have

η̂≥∑
n
{θ∗n(∑

j
eṽ jn−bnθ∗n +Vn)

γn
∑ j exp(ṽ jn−bnθ∗n)

∑ j exp(ṽ jn−bnθ∗n)+Vn
− (∑

j
eṽ jn−bnθ∗n +Vn)

γnη̂}

This is because η̂ is the value satisfying ((C.13)) and θ∗ is a feasible solution but
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not necessarily an optimal solution to the maximization problem at the right hand side

of ((C.13)) under η = η̂. If we collect the term η̂ in the above inequality, we get η̂≥ R(θ∗),

i.e., η̂’s value is no smaller than the optimal profit in problem (4.2.11).

Furthermore, since η̂ satisfies the equation in ((C.13)), there must exist a vector (θ̂1, θ̂2, .., θ̂n)

satisfying the equation:

η̂ = ∑
n
{θ̂n(∑

j
eṽ jn−bnθ̂n +Vn)

γn
∑ j exp(ṽ jn−bnθ̂n)

∑ j exp(ṽ jn−bnθ̂n)+Vn
− (∑

j
eṽ jn−bnθ̂n +Vn)

γnη̂}

Collect the term η̂ again in the above equation, then we will find η̂ = R(θ̂) ≤ R(θ∗),

since θ∗ optimizes (4.2.11). Therefore, the lemma gets proved.

Now we are ready to prove that all θ’s value is finite at optimality.

An obvious advantage of formulation in (C.13) is that the whole maximization problem

in (4.2.11) can be separated into a single dimensional optimization problem for each nest,

e.g., for nest n, given η’s value, it solves the following problem:

ηn(θ
∗
n) = max

θn
θn(∑

j
eṽ jn−bnθn +Vn)

γn
∑ j exp(ṽ jn−bnθn)

∑ j exp(ṽ jn−bnθn)+Vn
− (∑

j
eṽ jn−bnθn +Vn)

γnη

(C.14)

If problem (C.14) has finite maximizer under all values of η, then obviously all optimal

mark-ups in problem (4.2.11) will be finite.
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Observe that when θn→ +∞, (C.14)’s objective value ηn(+∞) = −Vn
γnη; Therefore,

a finite maximizer of (C.14) exists if and only if we can find a finite θn satisfying η(θn)>

η(+∞), i.e., there exists a θn ∈ [0,+∞) such that

θn(∑
j

eṽ jn−bnθn +Vn)
γn

∑ j exp(ṽ jn−bnθn)

∑ j exp(ṽ jn−bnθn)+Vn
− (∑

j
eṽ jn−bnθn +Vn)

γnη

>

−Vn
γnη (C.15)

Collecting the term of η, we see (C.15) is equivalent to

θn
∑ j exp(ṽ jn−bnθn)

∑ j exp(ṽ jn−bnθn)+Vn
> (1− (

Vn

∑ j exp(ṽ jn−bnθn)+Vn
)γn)η (C.16)

Let θn = η and plug its value into (C.15) to check the inequality, which is equivalent to

checking

∑ j exp(ṽ jn−bnη)

∑ j exp(ṽ jn−bnη)+Vn
> 1− (

Vn

∑ j exp(ṽ jn−bnη)+Vn
)γn

⇔

(
Vn

∑ j exp(ṽ jn−bnη)+Vn
)γn >

Vn

∑ j exp(ṽ jn−bnη)+Vn
(C.17)

(C.17) is satisfied because Vn
∑ j exp(ṽ jn−bnη)+Vn

< 1. Therefore, we can find a finite θn such

that ηn(θn)> η(+∞), which proves the existence of finite optimizer for problem (4.2.11).
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Proof of Corollary 4.2.3

Proof. Let function φn(θ) := θnπ(Sn|n,S)+ θn
γn

π(S0|n,S)− 1
βn

r
. Taking partial derivative of

φn(θ) with respect to θn:

∂φn(θ)

∂θn
= π(Sn|n,S)+

1
γn

π(S0|n,S)+(
bnθn

γn
−bnθn)π(Sn|n,S)π(S0|n,S) (C.18)

Since γn < 1, then term bnθn
γn
−bnθn > 0, so φn(θ) monotonically increases with respect to

θn. Therefore, we know that in equation (4.2.12), every φ will uniquely determine a vector

of θ.

Consider the derivative of R(φ) with respect to φ,

∂R(φ)
∂φ

= ∑
n

∂R(θ)/∂θn

∂φ/∂θn

= ∑
n

βn
r π(Sn|S){ 1

βn
r
+∑n θnπ(Sn|S)−θnπ(Sn|n,S)− θn

γn
π(S0|n,S)

π(Sn|n,S)+ 1
γn

π(S0|n,S)+(bnθn
γn
−bnθn)π(Sn|n,S)π(S0|n,S)

= (R(φ)−φ)∑
n

βn
r π(Sn|S)

π(Sn|n,S)+ 1
γn

π(S0|n,S)+(bnθn
γn
−bnθn)π(Sn|n,S)π(S0|n,S)

(C.19)

Observe the second part of (C.19) is always greater than 0, so the sign of the first order

derivative will purely depend on R(φ)−φ. As the value of φ increase, there will be a unique
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sign change from positive to negative for the derivative, and the optimal φ∗ is determined

from the unique fixed point R(φ) = φ.

C.2.3 Proof of Theorem 4.2.4

Proof. Assume that all nests except nest n are configured, and nest n is also “partially”

configured as Sn, where only one feature-level k is available for any product in the nest n.

Then to which product should the feature-level be added?

Recall that under the constant markup scheme, the conditional choice probability of

product i in nest n:

π(in|n,S) = exp(ṽin−bnθn)

∑ j exp(ṽ jn−bnθn)+Vn

The probability of choosing nest n:

π(n|S) =
(∑ j exp(ṽ jn−bnθn)+Vn)

γn

∑n′(∑ j exp(ṽ jn′−bn′θn′)+Vn′)
γn′ +1

The expected profit:

R(θ) = ∑
n

θnπ(n|S)∑
i

π(in|n,S)

where ṽin = βn
0/γn+∑k gn

kxk
in is product in’s value gap index, entirely determined by the

product’s configuration. And every feature-level k in nest n also has its own identity gn
k , the
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feature-level value gap.

From the above formulation we can see, under a given constant markup, adding feature-

level k to product i in nest n is equivalent to increasing product in’s value gap by gn
k ; Sim-

ilarly, adding feature-level k to product j in nest n is equivalent to increasing product jn’s

value gap by gn
k ; So all we need to compare is which manipulation can increase the expected

profit by a larger amount.

First, we need to look into the partial derivatives of the choice probabilities with respect

to the value gaps.

The partial derivative of product in’s conditional choice probability with respect to its

own value gap:

∂π(in|n,S)
∂ṽin

= π(in|n,S)(1−π(in|n,S))

The partial derivative of another product jn’s conditional choice probability with respect to

in’s value gap:

∂π( j|n)
∂ṽin

= π(in|n,S)π( j|n)

The partial derivative of nest n’s choice probability with respect to in’s value gap:

∂π(n|S)
∂ṽin

= γnπ(in|S)(1−π(n|S))

The partial derivative of nest n′’s choice probability with respect to in’s value gap:

∂π(n′)
∂ṽin

= γnπ(n′)π(in|S)
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Plug them into the partial derivative of R(ṽ) with respect to ṽin. According to the En-

velop Theorem,

∂R(ṽ)
∂ṽin

= ∑
n′

θn′{
∂π(n′)

∂ṽin
π(S|n′)+π(n′)∑

j

∂π( j|n′)
∂ṽin

}

= γnπ(in|S){θnπ(Sn|n,S)−R(θ)+
θn

γn
π(S0|n,S)} (C.20)

Where θ is the optimal nest-level mark-up vector, satisfying the first order condition

given in (C.11). So the partial derivative can be reduced to:

∂R(ṽ)
∂ṽin

=
π(in|S)

bn
(C.21)

Compare the partial derivative with respect to different products’ value gaps,

∂R(ṽ)
∂ṽin

=
π(in|S)

bn
>

∂R(ṽ)
∂ṽ jn

=
π( jn|S)

bn
> 0

because π(in|S) > π( jn|S) when ṽin > ṽ jn. So adding the positive valued feature-level to

the product with higher value gap brings more profits than the lower value gap combination

does.


