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Abstract

The seismogenic potential of subducting sediments

Hannah Sarah Rabinowitz

This thesis examines the seismic behavior of sediments in shallow subduction zones. In
the traditional view of the seismogenic zone, the upper stability limit is controlled by a tran-
sition to velocity-strengthening (frictionally stable) clay-rich sediments at shallow depths in
the accretionary prism. However, recent observations have emphasized that these shallow
sediments can host a wide range of seismic behaviors. On one end of the seismic spectrum,
the March 2011 M,9.1 Tohoku-oki earthquake demonstrated that peak slip in a megathrust
rupture can be hosted at the shallowest depths. At the other end of the spectrum, obser-
vations at the Hikurangi trench off the North Island of New Zealand have revealed that
spontaneous, periodic slow slip events (SSEs) can nucleate in the shallowest portions of a
subduction zone.

The Japan Fast Trench Drilling Project (JFAST, IODP Expedition 343) drilled through
the plate boundary faults in the Japan Trench to investigate the structure that hosted the
Tohoku-oki earthquake. In Chapter 2, I use a trace element-based stratigraphy to identify
several large displacement faults within the bottom ~15 m of the JFAST core. This work
highlights that there are multiple candidate structures that could host a megathrust rupture
and that not all displacement is accommodated along a weak pelagic clay layer recovered
in the JFAST core. However, this method is incapable of determining which of these faults
experienced significant seismic slip. In Chapter 3, I develop a novel paleoseismic indicator

appropriate for faults hosted in seafloor sediments. This tool takes advantage of the fact



that organic material (molecular biomarkers) in sediments degrades as a function of time
and temperature. In this study, I determine the kinetics of thermal maturation for alkenones
(coccolithophore-derived molecules) and n-alkanes (plant leaf wax-derived molecules) found
in western Pacific sediments. In Chapter 4, I apply these kinetics to measured biomarker
anomalies in JFAST samples to determine which faults recovered in the JFAST core could
have hosted a megathrust event such as the Tohoku-oki earthquake. This approach reveals
that multiple faults in the plate boundary region have likely hosted megathrust events and
that the occurrence of seismic slip is not confined to a particular lithology. This implies
that small differences in frictional behavior in subducting sedimentary lithologies are not the
primary control on the occurrence of shallow seismic slip.

In Chapter 5, I turn to a different type of shallow seismic behavior and focus on SSEs
in the shallowest portion of the Hikurangi trench. In this study, I measure friction and
velocity-dependence of the input sediments for this subduction zone at a range of pressures
and temperatures relevant to the shallow portion of the slab where SSEs have been observed.
These experiments demonstrate that the sediment here becomes frictionally weak at effective
stresses expected deeper than ~2 km. At the same effective stresses, the sediment becomes
less velocity strengthening, and under some conditions exhibits velocity neutral behavior.
A plate-rate experiment exhibits velocity-weakening behavior and two spontaneous SSEs,
indicating that at slow velocities, the sediment subducting at the Hikurangi trench is capable
of unstable frictional behavior required to promote shallow SSEs. These results demonstrate
that subducting sediments can exhibit a variety of frictional properties that can support

unstable behavior in the shallowest reaches of the subduction zone.
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List of Figures

2.1

2.2

2.3

Bathymetry and topography of the Japan Trench plate boundary. Slip along
the plate boundary during the 2011 Tohoku earthquake is shown in gray and
contoured in meters [Ammon et al., 2011, Chester et al., 2013, Fujii et al., 2011,
Koper et al., 2011]. We compare sediments in the JFAST core to stratigraphy
at DSDP Site 436 and ODP Site 1149 (labeled red dots). . . . . .. .. . ..
Stratigraphy and age of Western Pacific reference cores DSDP Site 436 [a,
Langseth et al., 1977] and ODP Site 1149 [b, Plank et al., 2000]. Both cores
show similar stratigraphy with corresponding lithologic units deposited at
approximately the same time. The original unit names from DSDP 436 are
shown along with the unit names used in this paper (with the unit colors that
are also used in Figures 3-7.) . . . .. . ...
Key trace element ratios and concentrations demonstrate changing signatures
with depth in both reference cores, DSDP Site 436 (a and b) and ODP Site
1149 (¢ and d). These signatures are consistent across wide ranges of the
Western Pacific as seen by the similar signatures in corresponding sedimentary
units in both reference cores. Here, we show two examples of trace element
signatures — Th (a and ¢) and Ce/Ce* (b and d). Original DSDP 436 unit
designations are shown in b) and unit designation from this paper are shown
in a). Site 436 data is color-coded according to the unit colors introduced in

Figure 2. Original ODP 1149 unit designations are shown ind). . . . . . ..
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2.4

2.5

2.6

Scatterplots of key trace element parameters that differentiate between sedi-
mentary units in Western Pacific cores. Colored squares are DSDP Site 436
samples (color-coded by sedimentary unit as introduced in Figure 2.2) and
white circles are JFAST samples. In these examples, we see that Unit C is
distinguishable from Units A and B and can be subdivided into Units C1-3
based on Th, Ce/Ce*, Ce, and Co/TiOs. Unit B can be distinguished from
Unit A based on higher Th and Ce concentrations and lower Zn/Ce (<1.3)
values. The bottom plot demonstrates how Unit A can be subdivided into
Units A1-3 based on Zn/Ce values as well as higher Ce/Ce* values for Unit
A3 than Units A1-2. A more comprehensive list of trace elements used for
fingerprinting these sedimentary units can be found in Table 2.1. . . . . . . .
Assignment of JFAST samples to Western Pacific sedimentary units using the
trace element fields from DSDP Site 436 developed in Figure 2.4. JFAST
samples (circles) are colored according to the sedimentary unit to which they
are assigned. Labels indicate core number and depth of the JFAST samples
using standard IODP format (core number, tool, section and depth in core).
Stratigraphy of the JFAST site based upon trace element correlations to DSDP
436. Deformation features (i.e. faults, breccia, deformation fabrics) identified
in the science party report are indicated with arrows to the left of each strati-
graphic column [Chester et al., 2012, Kirkpatrick et al., 2015] and samples
from this study are indicated with asterisks on the right. Faults inferred from
the trace element stratigraphy are indicated by large arrows to the right of
each column. The Japan Trench accretionary wedge at the JFAST site is
composed primarily of Unit A material (note the scale break in the left strati-
graphic column). There is more stratigraphic complexity approaching the
décollement including a significant inversion with Unit C overlaying Units A

and B and two age gaps of 15 and 60 Ma, respectively. . . . . . . ... ...
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2.7 Structural interpretation of the accretionary wedge in the Japan Trench based

3.1

on our trace element stratigraphy at Site CO019E. Light gray sediments in
the accretionary wedge are undifferentiated frontal prism sediments that are
unconstrained by our data. Dark grey at the bottom is basement. Inset is
a blow-up of the region boxed in white from the larger cross section. The
stratigraphic section developed in this paper and the core recovery are shown
to the left of the blow-up. The section inferred to have been drilled at JFAST
is indicated by the dark grey dotted line in the structure blow-up. After
Kirkpatrick et al. [2015]. . . . . . . ...

Molecular structure and gas chromatographic analysis of long-chain alkenones
and n-alkanes. a) Alkenone concentrations are higher in an unheated sam-
ple (PP877) compared to a sample exposed to high temperature (PP876).
Alkenone data (a) were collected on a GC-FID with stearyl stearate as an
internal recovery standard. Alkenone peaks are labeled as methyl and ethyl
ketones with the number of carbon atoms and number of double bonds. b)
n-alkane data were collected on a GC-MSD. Shown are the m/z 71 extracted
ion chromatograms that is characteristic for n-alkanes. Note that the n-alkane
internal recovery standard, ba-androstane, does not have a strong m/z 71 re-
sponse and is not seen here. Retention times for the unheated and heated
samples are slightly different due to slight changes in the column length re-

sulting from column maintenance between run dates. . . . . .. . ... ...
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3.2

3.3

Heating apparatus used in hydrous pyrolysis experiments [a, after Sheppard
et al., 2015]. Water and sediment are added to the reactor tube (1) with the
internal thermocouple (3) inserted through the bottom fitting. This assembly
is then mounted on the experimental frame and is leak-checked by pressurizing
to 6895 kPa (1000 psi) of helium (5-8). The tube is then wrapped with a
resistive heater (2) and the external thermocouple (4) is placed with its tip
to the reactor tube. Finally, the assembly is wrapped with insulation (9).
At the end of each experiment, the insulation is unwrapped and the sample
is quenched by spraying DI water over the reactor tube. An example of the
temperature data (b) collected during the experiments shows the internal and
external thermocouple temperatures and typical heating and cooling times.
Experiments that experienced peak temperature larger than 30 °C above the
target temperature and a peak duration longer than 350 seconds were not
used for later calculations in this paper.. . . . . . . . . .. ... ... .. ..
Alkenone concentration (a), U% values (b), CPI (c), and ADI (d) measured
for each sampled batch of core RC14-99 plotted against the time since the first
measurement, of the batch. Batch A is red, Batch B is blue, and Batch C is
purple. General trends are shown with grey arrows and correspond with the
trends observed in the thermal alteration of alkenones (decreasing alkenone
concentration and increasing UX values). n-Alkane indices do not show a
consistent trend. The third extraction of Batch C in all parameters shows the

samples used to calculate analytical uncertainty. . . . . . . . . .. ... ...
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3.4

3.5

3.6

a) Alkenone concentration decreases with increasing temperature, over various
durations. Long experiments (green) were conducted over 2 hours to 4 days.
b) Arrhenius relationship of alkenone destruction showing the natural log of
the reaction rate (k) plotted against inverse temperature in K. The linear fit
demonstrates a first-order Arrhenius relationship. A clear difference in the
reaction rate-temperature relationship occurs below 120 °C and, thus only
experiments 100 °C are used to calculate the kinetic parameters of alkenone
destruction. Hatched points (a) or open points (b) correspond to samples that
exhibited anomalous results for all biomarker parameters are not used in the
ft. .
a) UY change (final UY value/initial U}, value) is positively correlated with
temperature. b) MK37:2 and MK37:3 concentrations decrease with increas-
ing temperature, though MK37:3 decreases more dramatically. ¢) Arrhenius
relation for MK37:2 and MK37:3. In ac, hatched (a and b) and hollow points
(¢) correspond to samples not used in the fit. d) Examples of heating paths at
300 °C for samples with different initial U values. Each curve shows the U}
values as total alkenone destruction proceeds. At low to moderate alkenone
reaction extents (0 to 0.8), the change in UX is greatest for initial UL values
near 0.5. At very high alkenone reaction extents the U§7/ changes are greater
for initial U4 near zero. . . . . . . . ... ...
a) CPI (odd/even chain length n-Alkanes Cqos—Css) for hydrous pyrolysis ex-
periments presented in this study. We see a decrease in CPI with increasing
temperature, though the decrease is mostly apparent above 120 °C. b) Arrhe-
nius relation for the CPI degradation rate constants. Hatched (a) and hollow

(b) points correspond to samples not used in fit. . . . ... ... L.
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3.7 a) Change in the n-alkane distribution index (ADI) with increasing temper-

3.8

4.1

ature for hydrous pyrolysis experiments in this study. b) Arrhenius plot for
the ADI. ¢) Histograms of Co;—C3; n-alkane concentrations, normalized to
the sum of Co7;—Csy, for the sample heated to 340 °C (PP876) and the corre-
sponding control (PP877). Hatched (a) and hollow (b) points correspond to
samples not used in fit. . . . ... ... L
a) Arrhenius best-fit line for all compound parameters analyzed in this study.

Methylphenanthrene kinetics (MPI-1) are from Sheppard et al. [2015]. D)

Time-temperature diagram illustrating where 5% reaction occurs in each biomarker

parameter. Time-temperature combinations above these curves should be de-

tectable using these biomarker heating proxies. . . . . . . . . . ... ... ..

Location and structure of the JFAST core. A) Map of the Japan Trench with
the rupture area of the Tohoku earthquake indicated in grey and the JFAST
and Site 436 sites identified by red dots. Grey shades indicate regions of equal
slip [Ammon et al., 2011, Chester et al., 2013, Fujii et al., 2011, Koper et al.,
2011]. B) Schematic structure of the accretionary prism recovered at JFAST

and C) close-up of JFAST stratigraphy [Rabinowitz et al., 2015] and pictures

of typical structures from regions of the core where damage has been observed. 57



4.2

Biomarker indicators of heating in the JFAST core. Fraction remaining (i.e.
not reacted) of (A)Cs; total, (B)U%, (C)CPI, and (D)ADI are shown for sam-
ples in the plate boundary region. Box plots indicate the median and quartiles
of the fraction remaining value (relative to the range of biomarker values mea-
sured in the corresponding sedimentary unit at Site 436) while, minimum and
maximum values are indicated by the whiskers, and outliers by dots. (E)
Sample locations shown as stars, colored red when biomarker anomalies in-
dicate heating. Grey shading indicates JFAST core recovery. Stratigraphy
is shown with previously observed faults indicated [Keren and Kirkpatrick,
2016a, Kirkpatrick et al., 2015, Rabinowitz et al., 2015], those with biomarker
anomalies discussed in the main text in red, and those with samples close
enough to observe an anomaly, but lacking one, in black. Sample PP948,
represented by hollow symbols in (A) and (E), had alkenone concentrations
below the quantification limit and thus, the magnitude of the heating anomaly

is poorly constrained. . . . . .. ... Lo
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4.3 Example of a coupled fault heating and biomarker thermal maturity model
for sample PP945 assuming a fault half-width of 0.0026 m and slip of 50 m for
2 earthquakes. Slip zone half-width is indicated by a black vertical line. (A)
Temperature rise at a series of time-steps during (red) and after (blue) seismic
slip at 1 m/s. The minimum temperature of biomarker reaction, 120 °C, is
indicated by the light blue bar. (B) Fractions reacted with distance from the
fault calculated for Cs; total, U\l}/, CPI, and ADI are represented by colored
curves. Corresponding sample measurements are indicated by translucent
boxes in the appropriate color. The height of the boxes indicates the range
of measured fractions reacted for each biomarker and the width of the boxes
indicates the sample width used in the model. Note that because this sample
was not within the candidate slip zone, only distances further than the slip
zone width are considered. (C) Schematic of model set-up. Candidate slipping
zone is indicated by bold dashed lines. Half-width is half of the thickness of the
candidate slipping zone (indicated by thin dotted line). Grey box represents
the sampled region of core with the minimum and maximum distances from
the slipping zone indicated with arrows. This model fit is considered a success
because all modeled biomarker fraction reacted values are within the range
of measured biomarker fraction reacted values at an allowable distance from
the fault structure. The probability that this sample can be fit by two 50 m
slip events is determined by dividing the total number of successful model fits
(considering the uncertainty in biomarker parameters) by the total number of

models. . ..
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4.4

4.5

4.6

Temperature rise on faults modeled was constrained by core observations.
Sample locations are indicated with brackets and sample numbers. Damage
features described in the supplemental material, as well as the locations of
structural whole rounds and core boundaries are indicated by dotted white
lines as well as annotations to the right of the core pictures [Chester et al.,
2012]. The images of Core 17, taken before structural whole rounds were
removed from the core, are courtesy of J. Kirkpatrick. . . . . . ... ... ..
A) Temperature rise was additionally constrained by the fact that 7., could
not exceed 900 °C, at which point smectite should become amorphous (red
shaded region), or be less than 120 °C, the minimum temperature for the
thermal maturation of the biomarkers considered here (blue shaded region).
These temperature bounds put limits on the maximum and minimum fault
half-widths (a) that could be considered for a given amount of seismic slip. B)
Acceptable distances from the faults were constrained by the distances where

temperatures reach >120 °C at a given fault a (indicated in yellow for 50 m

(A-G) Results from coupled fault heating and biomarker reaction models,
assuming 50 m of slip as observed in the Tohoku earthquake and 0.54 MPa
coseismic shear stress as determined by Fulton et al. [2013]. Colored plots
show the probability of matching all biomarker constraints with a given fault
half width, slipping in a given number of earthquakes. White areas correspond
to half-widths that are either too thin (would yield a peak temperature above
900 °C) or thicker than the observed fault structure recovered in the JFAST
core. Histograms to the right of each colored plot show the probability of a
match for a range of half-widths (summed across number of earthquakes) with

the right-hand y-axis label showing the corresponding peak temperature.
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4.7

4.8

4.9

(A-G) Maximum probability (model matches to all four biomarker fraction
reacted observations/ Nga * Nyistances, where Nga is the number of kinetic
E and A rate pairs sampled from their joint uncertainty distribution and
Nyistances 18 the number of distances away from the center of the slipping zone
that were sampled) for a range of slip magnitudes. Blue bars indicate the range
of displacements that have been modeled for the Tohoku-oki earthquake [Sun
et al., 2017] and red arrows indicate the minimum required slip magnitudes
for each sample, corresponding to the minimum slip magnitude values plotted
in Figure 4.8. The lowest slip magnitude where the probability is greater
than zero determines the minimum required slip magnitude to explain the
biomarker measurements given their uncertainty and the uncertainty of the
biomarker kinetics. Higher slip magnitudes are allowed but not required.

Model results. (A) Minimum number of 50 m slip events and (B) minimum
event slip (assuming 3.2 km total displacement) required to generate the ob-
served biomarker anomalies in JFAST samples. (C) Samples, core recovery,
and stratigraphy as in Figure 4.2E. Red symbols in all plots indicate features
with clear biomarker anomalies. Hollow symbols represent sample PP948,
which has alkenone concentrations below the quantification limit and is not
modeled. . . . . ..
Schematic of the structure recovered at JFAST [Kirkpatrick et al., 2015, Ra-
binowitz et al., 2015]. Faults with biomarker thermal anomalies are colored by
the minimum slip magnitude capable of reproducing the observations within
the allowable amount of slip [Chester et al., 2013]. Dotted line represents
PP948, which was not modeled. Shades of grey represent variations in steady-

state frictional behavior [Ikari et al., 2015b]. . . . . . . . ... ... L.
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5.1

5.2

5.3

A) Map of New Zealand with location of the Hikurangi trench just east of
the North Island. The samples used in this study come from ODP Site 1124.
B) XRD analysis shows the sediment is composed of 43.3% calcite, 20% phyl-
losilicates (~10% expandable clays shown in green), 8.8% quartz, and 15%
feldspar. . . . . . . .
Sample configurations for the three apparatus used in this study (A, C, E)
as well as friction vs. displacement plotted for each apparatus (B, D, F).
Friction curves are labeled with the experimental effective stress. F) Only
room temperature triaxial experiments are plotted here for clarity. Effective
stress values indicated for the triaxial experiments are mean effective stress
during the experiment (Table D.2). Note that the amount of displacement
achieved in BRAVA is significantly greater than the other experiments.

A) Friction (p) and B) a — b plotted against effective stress (o.s) for room
temperature experiments with insets also showing high temperature experi-
ments for completeness. Different symbols represent experiments conducted
on different apparatus (xs for BRAVA, squares for slow experiments, and cir-
cles for triax experiments). Symbols represent the median friction value with
error bars showing the range of friction values observed (A) and the range of
a — b values for all velocity steps in a given experiment (B). In (A), grey dots
represent data from experiments on pure smectite from Saffer and Marone
[2003]. At room temperature, both friction and a — b decrease with increasing
effective stress. C) Friction and D) a — b plotted against temperature for tri-
axial experiments, with color representing effective stress as indicated. Note

a slight positive correlation between both 1 and a — b and temperature. . . .
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5.4 Velocity-dependence as a function of up-step velocity. Effective stress as in-

5.5

5.6

dicated. A clear trend towards increasing a — b values with higher sliding
velocity is seen in the lowest effective stress experiments (BRAVA). The low-
est a — b values are seen in the plate-rate experiment, conducted at 10 MPa.
The approximate range in sliding velocities [Saffer and Wallace, 2015] at the
Hikurangi subduction zone is indicated by the grey bar. . . . . . . ... ...
Rate-and-state friction parameters as a function of effective stress (A, C, and
E) and temperature (B, D, and F). A) a values decrease with increasing ef-
fective stress and B) show a slight increase with increasing temperature. C)
b values are more variable in the low stress experiments with values hovering
around 0 for the high effective stress experiments and D) no clear trend as a
function of temperature. E) D, values show no significant trend with effective
stress or F) temperature. C) Plotted b values in the BRAVA and plate-rate
experiments represent by + bs. E) D, in the BRAVA and plate-rate experi-
ments, black symbols represents D.; + D.,. Note that the scale of the y-axis
changes above the axis break in the D, plots (Eand F).. . . . .. .. .. ..
Slow slip events observed in the plate-rate experiment, zoomed in from Figure
5.2D. In both events, the final stress drop is ~0.02 MPa. A) In SSE 1, shear
stress drops by ~0.01 for the ~20 h at a higher steady state 7. B) In SSE
2, shear stress drops by a total of ~0.02 MPa during the ~20 h at elevated
stress in two events with ~0.01 MPa stress drop. C) Displacement in SSE
1 shows a decrease in slip accumulation at the beginning and an increase in
slip accumulation at the end of the slip event. D) In SSE 2, a slip deficit is
accumulated during the initial shear stress accumulation. Slip is accumulated
during each stress drop during this slip event. E and F) During both SSEs, a

peak in slip velocity is observed at the time of final stress drop. . . . . . ..
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5.7

B.1

B.2

Frictional strength and stability with depth. A) Friction and B) velocity-
dependence for samples conducted at effective stress and temperature condi-
tions expected for a given depth in the Hikurangi subduction zone are plotted
against depth. We see a reduction in friction coefficient and in a — b with
increasing depth for traditional velocity-stepping experiments. The depth ex-
tent of the September—October 2014 SSE in Hikurangi determined by Wallace
et al. [2016] is shown to the right. The dotted line represents the possible ex-
tension of this SSE to the trench, though instrumental constraints prevented

them from resolving this shallowest extent. . . . . . . . . . ... ... ....

Alkenone (blue) and n-alkane (red) concentrations obtained through ASE and
sonication extraction techniques. While there is a general trend of larger ASE
yields from samples that had higher sonication yields, some samples exhibited
near total extraction through sonication while some retained over half of their
TLE after sonication, prior to ASE extraction. . . . . . . . . ... ... ...
The effect of ASE extraction at different temperatures on a) alkenone con-
centration, b) U¥ ¢) CPI and d) ADI was tested by extracting two samples
three times with two different extraction schedules. We find that in all cases,

a b0 °C extraction temperature is insufficient to extract all organic material.
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B.3

B.4

B.5

B.6

The measured U:,f; value of heated sediment depends strongly on the initial
U% value of the unheated sediment. Here, we show the variation of measured
U% values as a function of the initial U% value (contoured in increments
of 0.1 in color on each plot) of the sediment. This is plotted against the
reaction extent of total alkenones (though a similar plot could be made using
the reaction extent of MK37:2 or MK37:3) with each subplot representing a
different heating temperature. This plot can be used to estimate the reaction
extent of a sediment of known (measured) U if the initial U% value is also
known (e.g. from paleoclimate records providing an estimate of SST at the
time of deposition). . . . . . ..o
We observe a marked increase in extractable Sg in our experiments T > 250
°C and most notably above 300 °C. Hatched symbols represent points not
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1 Introduction

Subduction zones are known to host the largest and most devastating earthquakes on
Earth. Understanding seismic processes in these regions is an essential goal of earthquake
mechanics research. Earthquakes generally occur within a specific depth range known as the
seismogenic zone, where material properties of the rocks promote unstable, brittle behavior
[Blanpied et al., 1991, Scholz, 1988, Sibson, 1982]. The limits of the seismogenic zone are
defined by transitions in deformation behavior: to plastic flow at the down-dip limit and to
stable slip at the up-dip limit. These transitions are thought to be controlled by changes
in the mechanical behavior of the subducting material with lithology, temperature, and
effective stress [Marone and Scholz, 1988, Oleskevich et al., 1999, Sibson, 1982]. Specifically,
the stable behavior in the shallowest portion of subduction zones is thought to be controlled
by weak, velocity strengthening clays that make up the majority of subducting sediments in
combination with low effective stresses [Hyndman et al., 1997, Moore and Saffer, 2001].

However, earthquake slip can sometimes extend to significantly shallower depths. For ex-
ample, the 2011 M 9.1 Tohoku-oki earthquake exhibited peak slip in the shallowest portions
of the fault, a feature that enhanced the devastating tsunami associated with this earthquake
[Fujii et al., 2011, Fujiwara et al., 2011, Ide et al., 2011, Sun et al., 2017]. This implies that
under certain conditions, rupture propagation can be enhanced in the shallowest regions of
faults. Observations of slow slip at depths ranging from below the seismogenic zone to the
trench highlight that complex seismic behaviors cannot be described by a simple depth-zoned
friction model. Shallow slow slip at several subduction zones around the world [Brown et al.,

2005, Outerbridge et al., 2010, Wallace and Beavan, 2010] suggests that unstable frictional



behavior can be supported in these shallowest sediments even without the effects of dynamic
slip propagation from further down-dip. Shallow slow slip preceded the Tohoku-oki earth-
quake [Ito et al., 2013], and understanding the mechanisms of this behavior is important to
improving seismic hazard estimates. At the Hikurangi trench, offshore of the North Island
of New Zealand, shallow slow slip events (SSEs) have been observed extending almost to the
seafloor [Wallace et al., 2016].

This dissertation uses samples from ocean drill cores to examine the shallow seismic
behavior of the Japan trench and the Hikurangi trench. In Chapters 24, core samples from
the Japan trench are analyzed using geochemical methods to identify faults in the shallowest
portion of the subduction zone that have slipped seismically. In Chapter 5, deformation
experiments conducted on core samples from the Hikurangi trench interrogate the frictional
behavior of subducting sediment at depths relevant to shallow SSEs.

Chapter 2 (now published: Rabinowitz et al, 2015) focuses on characterizing the shal-
low fault structure of the accretionary wedge at the Japan trench where the March 11,
2011 M,,9.1 Tohoku earthquake exhibited about 50 m of slip to the trench, with the peak
slip in the shallowest portion of the subduction interface [Ammon et al., 2011, Fujii et al.,
2011, Fujiwara et al., 2011, Ide et al., 2011, Kodaira et al., 2012, Koper et al., 2011, Si-
mons et al., 2011, Sun et al., 2017]. A year after the earthquake, IODP Expedition 343
(JFAST) drilled through the décollement that hosted peak slip to sample fault rocks in the
subduction zone and installed an observatory to capture the temperature decay from the
earthquake. Initial observations of the JFAST core identified a thin (<5 m thick) weak,
foliated pelagic clay layer. The strong fabric and frictional weakness of the clay, as well as
the structural changes between sediments above and below this layer, imply that this is a
significant tectonic boundary [Chester et al., 2013, Ikari et al., 2015b, Keren and Kirkpatrick,
2016a, Kirkpatrick et al., 2015, Ujiie et al., 2013, Yang et al., 2013]. If seismic deformation
is indeed confined to this weak layer, hazard estimates for subduction zones should consider

the presence or lack of a pelagic clay unit within the subducting sediment package [Moore



et al., 2015]. This study uses trace element geochemistry to fingerprint each individual sedi-
mentary unit in two reference cores drilled through the incoming Pacific plate, and develops
a detailed chemostratigraphy of the JFAST core to determine whether deformation is indeed
predominantly localized on this weak lithology. Using this stratigraphic approach, multiple
large displacement faults are identified in a ~15 m thick region recovered at the bottom
of the JFAST core, indicating that deformation is distributed across multiple lithologies in
the Japan trench. However, this stratigraphic approach is unable to determine whether the
interpreted faults have experienced seismic slip.

The typical approach to determining whether a fault has experienced seismic slip is
by using a signature of frictional heating in the rock record. Pseudotachylyte is the most
commonly used paleoseismic indicator and occurs when a fault reaches temperatures high
enough enough to melt the host rock during coseismic slip [Shand, 1916, Sibson, 1975]. This
feature is rarely observed in sedimentary rocks, as heating is often buffered by effects such as
pore fluid pressurization [Sibson and Toy, 2006]. Recently, there have been significant efforts
to develop sub-solidus paleoseismic indicators that can be applied to sedimentary rocks
[Barker and Pawlewicz, 1986, D’Alessio et al., 2003, Hirono et al., 2007, Rowe and Griffith,
2015, Schleicher et al., 2015, Sheppard et al., 2015, Yang et al., 2016]. In Chapter 3 (now
published: Rabinowitz et al, 2017), I develop a new set of paleoseismic indicators, which
quantify the degradation of organic molecules (biomarkers) found in seafloor sediments.
Biomarkers have long been known to thermally mature due to burial heating over geologic
time [Peters et al., 2004]. During earthquakes, frictional heating can cause temperature rise
significantly above that experienced due to burial heating, but over a shorter timescale of
seconds to minutes [Lachenbruch, 1986]. Because biomarker degradation is a function of
both time and temperature, these elevated coseismic temperatures can generate anomalies
in measured biomarker concentrations which can be used to identify seismic faults [Polissar
et al., 2011, Savage et al., 2014]. In this study, I determine the kinetics of biomarker thermal

maturity for alkenones (long-chain carbon molecules sourced from coccolithophore algae) and



n-alkanes (long-chain carbon molecules sourced from terrestrial plant leaf waxes) at seismic
timescales.

In Chapter 4, I apply the kinetics of thermal maturity defined in Chapter 3 to sam-
ples from the JFAST core. Implementing the trace element stratigraphy from Chapter 2,
biomarker values measured in individual JFAST samples can be compared to their initial
values as measured in a reference core through the incoming Pacific plate sediments. Sam-
ples that exhibit anomalous biomarker values are interpreted as having experienced frictional
heating. I use forward models of temperature rise on faults [Lachenbruch, 1986] coupled with
the reaction kinetics of biomarkers to constrain the temperature rise necessary to create the
biomarker anomalies. This provides estimates of the minimum slip magnitude and minimum
number of earthquakes that could have generated the observed biomarker anomalies. These
models confirm that megathrust earthquakes regularly propagate to the trench and that shal-
low coseismic slip in the Japan trench is not confined to any particular lithology. Rather,
coseismic slip can be accommodated in lithologies with a range of frictional properties.

While Chapters 2-4 emphasize the frequency with which large-magnitude earthquakes
propagate to shallow depths, seismic and geodetic observations have demonstrated that shal-
low deformation in subduction zones is accommodated by a wide range of slip behaviors.
Most notably, recent advances in seafloor instrumentation have shown that slow slip events
(SSEs), which have previously been observed at the down-dip limit of the seismogenic zone,
extend to within <~2 km of the seafloor at the Hikurangi trench offshore North Island, New
Zealand [Wallace et al., 2016, Wallace and Beavan, 2010]. In Chapter 5, I use rate-and-
state friction experiments to explore the frictional stability of sediment subducting at the
Hikurangi trench at a range of pressure and temperature conditions relevant to the shallow
subduction zone [McCaffrey et al., 2008]. These experiments demonstrate that the subduct-
ing sediment becomes frictionally weaker, and less velocity strengthening, at conditions of
increasing pressure within the upper 10 km of the subduction zone where shallow slow slip

is observed. Plate-rate experiments exhibit velocity-weakening behavior and SSEs at low



effective stress conditions. These results suggest that at slow sliding velocities, the sediment
subducting at the Hikurangi trench is frictionally unstable and capable of nucleating slow
slip at shallow depths.

Taken together, this thesis addresses the range of seismic behaviors that occur in shallow
subduction zone environments. The distribution of seismic faults through multiple lithologies
suggests that subtle variations in steady-state frictional strength and stability are not the
primary control on megathrust rupture propagation to the trench. On the other hand, at slow
slip velocities, shallow subduction zone sediments can support unstable frictional behavior
as observed at the Hikurangi trench. These observations imply that, while determination
of steady-state friction parameters can help to understand the mechanisms that control
slow seismic behavior (e.g. SSEs), the most effective method to determine seismic hazard
from dynamic ruptures (e.g. shallow megathrust rupture) is through establishing detailed

earthquake histories in seismically active regions.



2 Multiple major faults at the Japan Trench:
Chemostratigraphy of the plate boundary at IODP

Exp. 343: JFAST
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J., Kirkpatrick, J. D., & Rowe, C. D. (2015). Multiple major faults at the Japan Trench:
Chemostratigraphy of the plate boundary at IODP Fxp. 343: JFAST. Farth and Planetary
Science Letters, 423, 57-66.

We determine the trace element stratigraphy of Site C0019, drilled during the Japan Fast
Trench Drilling Project (JFAST) International Ocean Discovery Program (IODP) Expedition
343, to illuminate the structure of the plate boundary following the Tohoku-Oki earthquake
of 2011. The stratigraphic units at the JFAST site are compared to undeformed Western
Pacific sediments from two reference sites (Ocean Drilling Program (ODP) Site 1149 and
Deep Sea Drilling Project (DSDP) Site 436). The trace element fingerprints in these reference
sedimentary units can be correlated to individual JFAST samples. At the JFAST site, we
find that the accretionary wedge and downgoing plate sediments in the core are composed
primarily of Holocene to Eocene sediments. There are several age reversals and gaps within

the sequence, consistent with multiple faults in the bottom 15 m of the JFAST core. Our



results point to several candidate faults that could have slipped during the 2011 Tohoku-
Oki earthquake, in addition to the pelagic clay layer that has been proposed as the main
décollement fault.

Keywords: Tohoku earthquake, Pacific plate stratigraphy, shallow subduction structure,
ODP Site 1149, DSDP Site 436, IODP Expedition 343

2.1 Introduction

The 2011 M, 9.1 Tohoku-Oki earthquake was a societally devastating event, and was
unusual in that peak slip (> 50 m) occurred near the seafloor [Fujiwara et al., 2011, Ide
et al., 2011, Ito et al., 2011]. Although the Tohoku earthquake is the largest earthquake that
has been observed on this section of the Japan Trench, tsunami records indicate previous
great earthquakes with a recurrence time of approximately 1100 years [Minoura et al., 2001]
and possibly as short as ~500 years [Sawai et al., 2012, Simons et al., 2011]. These large
tsunami deposits suggest that the previous great earthquakes may have also caused signifi-
cant shallow co-seismic slip. Active source seismic surveys indicate that the shallow portion
of the accretionary prism at the site of the Tohoku earthquake has experienced significant
deformation [Kodaira et al., 2012, Nakamura et al., 2013]. Approximately 3 km of displace-
ment has occurred across the plate-boundary at the JFAST site [Chester et al., 2013], and
could have resulted from many large earthquakes with shallow slip propagating through the
accretionary wedge cored here.

IODP Expedition 343 (JFAST) drilled through the accretionary wedge at the Japan
Trench to investigate shallow, tsunamigenic earthquake slip [Chester et al., 2012]. Several
holes were drilled at the site; one hole was cored (C0019E) and has been studied extensively
[Chester et al., 2013, Kirkpatrick et al., 2015, Lin et al., 2014, Rowe et al., 2013, Sawai
et al., 2014, Tanikawa et al., 2013, Ujiie et al., 2013, Yang et al., 2013]. Samples for this
study come from core CO019E, which is hereafter referred to as the “JFAST core”. The

JFAST core shows many structural features that provide insight into how deformation was



accommodated. For instance, there is a change in structural domain with depth. In the
top part of the core, above ~820 meters below sea floor (mbsf), sediments dip at ~20—
80° [Chester et al., 2013, Kirkpatrick et al., 2015] and faults have an average dip of 67°
[Chester et al., 2012]. At 820 mbsf, a 1-meter thick layer of pelagic clay with high smectite
content [Kameda et al., 2015] was recovered that showed pervasive shear fabric. Below this
layer the bedding has a much shallower dip [~10°; Chester et al., 2013, Kirkpatrick et al.,
2015] and there is a change in the anisotropy of magnetic susceptibility [Yang et al., 2013].
Temperature measurements at the JFAST site are consistent with the pelagic clay layer
accommodating the slip of the Tohoku-Oki earthquake [Fulton et al., 2013, Lin et al., 2014].
These observations suggest that the pelagic clay is the boundary between the off-scraped
sediments and the subducting material, and has hosted a significant amount of slip, perhaps
including the Tohoku earthquake [Chester et al., 2013, Kirkpatrick et al., 2015, Ujiie et al.,
2013].

However, multiple faults above and below the pelagic clay layer have been noted and
could be important in the slip history of the plate boundary [Chester et al., 2012, Kirkpatrick
et al., 2015]. It has been difficult to develop a detailed stratigraphy and clear picture of the
plate boundary structure at the JFAST site due to significant amounts of missing drillcore
(57 m were recovered out of the 831 m drill hole, and there was <50% recovery within
the cored sections), lack of reliable strain markers in many observed faults, and the large
amount of similar mudstone lithology throughout the JFAST core [Chester et al., 2013, 2012,
Kirkpatrick et al., 2015].

Here, we develop a more detailed stratigraphy of the JFAST core based on the trace ele-
ment chemical compositions of the sediments. Previous studies of the core used a nearby site
in the Western Pacific (DSDP Site 436) as a reference site for the incoming plate stratigraphy
[Chester et al., 2013, Moore et al., 2015]. The correlation between the two ocean drilling sites
has been based largely on radiolarian biostratigraphic ages and lithologic characteristics of

sediments [Chester et al., 2012]. While these age-based methods of correlating stratigraphic



units between ocean drill cores are robust for undisturbed Western Pacific stratigraphy (with
the exception of the pelagic clays that contain no radiolarians), the sampling for radiolarian
analysis in the JFAST core may be too coarse to capture the stratigraphic complexity of
the plate boundary. In this paper, we demonstrate a coherent chemostratigraphy in the
lithologically equivalent units at Pacific DSDP Site 436 and ODP Site 1149, which allows for
a more detailed reconstruction of the stratigraphy of the accretionary wedge at the JFAST
site. Our analysis locates intervals of missing section and inverted stratigraphy that indicate
the presence of major faults. Some of these faults were previously identified, but their total
displacement was unconstrained. Other faults were previously unrecognized in the JFAST
core because of the coarseness of radiolarian sampling or because they are within unrecovered
sections of the JFAST core. These faults may have accommodated a significant portion of
the total displacement along the plate boundary and, therefore, may have accommodated
earthquake slip near the trench.

2.2 Background

Establishing the primary stratigraphic relationships within fault zones is essential to
identifying inversions, missing and repeated sections, and other disruptions that can help
identify faults. Such data are particularly useful in drillcores where coring gaps and the
lack of lateral exposure can obscure important structural features. Sediment ages from
biostratigraphy are typically used to date continuously deposited deep ocean sediments that
contain flat lying, “layer-cake” units where the law of superposition can be applied as a
relative age constraint. However, in tectonically disrupted cores, such as were recovered
during the drilling of the accretionary wedge at the JFAST site, it cannot be assumed
that the layers have remained in order or intact and superposition does not hold. This
creates a challenge in developing a stratigraphy for JFAST sediments. In the JFAST core,
radiolarian biostratigraphic data were used to correlate sediments to the nearby DSDP Site
436 site on the incoming plate. While this analysis identified significant structural features,

the relatively broad spacing of the biostratigraphic samples increased the likelihood that



important stratigraphic offsets were missed.

Here we use trace element analysis to place the JFAST samples within the stratigraphic
context of the incoming Western Pacific Plate stratigraphy from the closest available core
record in the Japan Trench (DSDP Site 436), corroborated with the more distant core record
from Izu-Bonin (ODP Site 1149). Trace element concentrations in marine sediments are
controlled by factors including sedimentation rate, biological productivity in the overlying
ocean, and the provenance of sedimentary detritus [Plank and Langmuir, 1998, Plank, 2014].
When regions of the Pacific Plate passed through similar depositional regimes concurrently,
sedimentary layers with similar ages and similar trace element compositions were deposited
[Moore et al., 2015]. Therefore, trace elements can be used to develop a geochemical stratig-
raphy linking widely spaced Pacific Ocean drilling cores. This consistent stratigraphy also
indicates that similar lithologies make up the incoming plate at the JFAST site, and that
much of the plate boundary stratigraphy consists of disrupted Western Pacific sediments
[Chester et al., 2012]. Trace element patterns in Western Pacific sediments can therefore be
used to correlate the tectonically disrupted stratigraphy of the JFAST site with incoming

sediment profiles in nearby cores.
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Figure 2.1: Bathymetry and topography of the Japan Trench plate boundary. Slip along
the plate boundary during the 2011 Tohoku earthquake is shown in gray and contoured in
meters [Ammon et al., 2011, Chester et al., 2013, Fujii et al., 2011, Koper et al., 2011]. We
compare sediments in the JFAST core to stratigraphy at DSDP Site 436 and ODP Site 1149
(labeled red dots).
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2.2.1 DSDP Site 436 Stratigraphy

DSDP Site 436 is ~200 km NNE of the JFAST site and is comprised of undeformed West-
ern Pacific Plate pelagic sediments (Figure 2.1). This site exhibits a 380 m thick, “layer-cake”
stratigraphic package from Holocene through Cretaceous sediments [Figure 2.2a; Langseth
et al., 1977]. The sequence was divided into three units based on age and lithology. Unit 1
is composed of diatomaceous silty clay and claystone and is subdivided into two subunits.
Subunit 1A is composed of Holocene to Pliocene greenish vitric (ash-rich) diatomaceous silty
clay. Subunit 1B differs gradationally from Subunit 1A in that it shows a higher degree of
lithification and is predominantly composed of Late Miocene claystone. There is also a de-
crease in the average sedimentation rate of Units 1A (~50 m/my) compared with the older
Unit 1B (~10 m/my; Table 2.1). Unit 2 is a darker radiolarian diatomaceous claystone from
the Middle to Upper Miocene. The top of Unit 3 is composed of dark brown to nearly black
early Miocene to Eocene pelagic clay underlain by Cretaceous chert, sampled as chert cobbles
in the two lowermost cores [Langseth et al., 1977]. The Miocene/Eocene pelagic clays are
devoid of radiolaria but were dated using fish teeth fossils [Doyle and Riedel, 1980]. Drilling
at DSDP Site 436 ended in the chert layer and did not penetrate to basaltic basement.

2.2.2 ODP Site 1149 Stratigraphy

ODP Site 1149 is located ~1000 km S of the JFAST site (Figure 2.1) and ~100 km
seaward of the Izu trench. Like DSDP Site 436, this site exhibits a “layer-cake” stratigraphy
consisting of similar units [Figure 2.2c; Plank et al., 2000]. Unit I is composed of late
Miocene to late Pleistocene ash and diatomaceous clay with abundant radiolarians. Unit II
contains dark brown pelagic clay that is devoid of radiolarians. Due to the lack of siliceous
microfossils, Unit IT brown clays were not dated (although they also contain fish teeth), but
are constrained to have been deposited between 6.5 and 105 Ma based on biostratigraphic
designations within the adjacent units [Bartolini, 2003, Plank et al., 2000]. Unit IIT of ODP
Site 1149 exhibits alternating Cretaceous chert and clay layers. Unit IV contains Cretaceous

radiolarian chert and chalk [Plank et al., 2000], extending to the Late Valaginian (134 Ma)
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on top of mid-ocean-ridge type basaltic basement. This carbonate layer is not observed in
either of the other cores discussed in this paper (presumably due to the greater age of ODP
Site 1149 sediments and basement, variations in local seafloor depth, or lack of penetration

past the chert layer in the DSDP Site 436 and JFAST cores).
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Figure 2.2: Stratigraphy and age of Western Pacific reference cores DSDP Site 436 [a,
Langseth et al., 1977] and ODP Site 1149 [b, Plank et al., 2000]. Both cores show sim-
ilar stratigraphy with corresponding lithologic units deposited at approximately the same
time. The original unit names from DSDP 436 are shown along with the unit names used
in this paper (with the unit colors that are also used in Figures 3-7.)

Table 2.1: Unit designations for the new chemostratigraphy of the JFAST core.

claystone

Unit B 2 radiolarian diatomaceous Mid Miocene 12 359.5 cores 34-38 70-100 >86 35-60 11-14 1.2-1.35 1.1-1.3

T36-JFAST  Site 436 Tithological Age Sed rate Tnt base Cores at Te, 7m, To/Ti03 Th Ce/Ce*  7Zm/Ce
Unit Description (m/my) _ depths (mbsf) _ DSDP 436 ppm ppm ppm
Unit A1 1A vitric diatomaceous Plio-Pleisto 50 245.5 cores 1-26 <52 <40 <9 1.1-1.15 >1.7
clay
Unit A2 1B vitric diatomaceous Late Mio 10 293 cores 27-31 <52 <86 <40 <9 11115 1517
claystone
Unit A3 1B vitric diatomaceous Late Mio 11 312 cores 31-33 <90 <40 12-1.35 1315
(]

claystone

Unit € brown pelagic cla Early Mic 1 365 ore 39 m 130-150 8 u‘ ‘ J.T‘ ‘\\ ‘ 1.2-1.3
Unit C2 3 brown pelagi Ly Oligocene 1 377 ores 39-40 150-170 ‘ 25( 151 “ ‘ ) ”‘ ‘ 1.2 'H‘ El
Unit C3 brown pelagic cla Eocenc 0.1 378 ore 40 180-210 170-190 150 )22 [<1] |
Unit D 3 chert and clay Late Cret. - >397.5 cores 41-42 <175 <175 <135 <20 13

Original DSDP Site 436 unit designations are indicated in addition to the unit designations used
in this paper. Unit depths refer to the depths of the incoming stratigraphy at DSDP Site 436.
Outlined boxes indicate the most diagnostic trace element indicators for fingerprinting each unit
and subunit. Unit D designation is also based on the geochemical characteristics of ODP Site 1149
[Plank et al., 2007].

12



2.2.3 Correlation between Sites 436 and 1149

The generalized stratigraphic succession at both DSDP Site 436 and ODP Site 1149,
seaward of the Japan and Izu trenches respectively, is identical, with diatom- and ash-
rich greenish silty clay overlying dark brown pelagic clay, overlying Cretaceous chert. This
succession characterizes most of the western North Pacific, from the Izu, to the Japan,
Kurile and Kamchatka trenches [Plank, 2014]. The Cretaceous chert was first deposited
as biosiliceous ooze when the sites crossed beneath equatorial regions of high productivity.
Based on backtracked plate motions, the Western Pacific sites originated in the equatorial
Eastern Pacific [Moore et al., 2015]. The distinctive brown-to-black, slick pelagic clay, barren
of siliceous or carbonate microfossils, was deposited during the northwestward passage of sites
beneath the central gyre of the Pacific [Moore et al., 2015]. Far from terrestrial sources and
in a region of low biological productivity, the sedimentation rate dropped to < 1 m/m.y.
during this time. At various times in the Miocene (depending upon location) these sites
exited the gyre and entered a region of higher biological productivity (as in the modern
Kuroshio Current) and entered the Asian dust belt, both factors leading to more rapid
accumulation (> 10 m/m.y.) of biosiliceous silty clays [Moore et al., 2015]. Although this
same succession characterizes the Western Pacific trenches from 35-55 °N, the thickness
of the units varies latitudinally, with the thickening of the top diatomaceous silty clays
correlated to the thinning of the lower brown clay and chert units from south to north.

2.2.4 JFAST Stratigraphy

IODP Site C0019 is composed of similar lithologies to those discussed above, although the
sediments are highly deformed and the original succession disrupted. Due to time constraints,
the JFAST expedition sampled 4 discrete depth ranges (176.5-186, 648-660.5, 770-772.35,
and 780.5-837 mbsf) and therefore significant sections of the stratigraphy are missing from
the core record. The JFAST science party reports seven different sedimentary units, based
on lithology and depth. They provide a first-order correlation with the stratigraphy at DSDP

Site 436 based on lithology, but are unable to distinguish between lithologically similar units
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[Chester et al., 2012].

As described in Chester et al. [2012] the first sampled section, 176.5-186 mbsf, is com-
posed of Pliocene green-grey siliceous mudstone (all ages are based on radiolarian dating).
The next sampled section, 648—-660.5 mbsf, is composed of reddish and bluish, Miocene mud-
stones. This section is heavily brecciated (possibly during drilling) and could not be used
for structural analysis. Below this, between 688.5-821.5 mbsf, several mudstone layers are
observed, including greenish-brownish-grey, dark grey with black layers, clay-rich, and dark
grey pyritic mudstones. These sediments are mostly Pleistocene with the exception of a
Pliocene section at 816.5-818 mbsf. From 821.5-822.5 mbsf, sediments are predominantly
intensely sheared black, scaly clay (with the exception of a less sheared tan mudstone sliver
tectonically emplaced within this section). This section of the core has been identified as the
décollement [Chester et al., 2013]. Surrounding the 1 m-thick recovered pelagic clay layer
is about 3 m of unrecovered section (820-821.5 and 822.5-824 mbsf). Therefore, the dark
pelagic clay layer has a thickness of < 5 m. Below the pelagic clay, there is a yellow- to
grey-brown mudstone that overlies orange-pink to buff to dark brown Miocene clays. The
final lithology recovered at JFAST is a chert and clay layer beginning at around 831 mbsf
[Chester et al., 2012].

Radiolarian ages in the JFAST core are primarily determined from core catcher samples
and are taken to be representative of the corresponding core section above [Chester et al.,
2012]. However, when the number of faults is larger than the number of cores in a segment
of the hole, this standard sampling frequency is insufficient to capture multiple age reversals
and gaps that could be contained within a single core. Due to the frequency of faulting
in the JFAST core, especially close to the plate boundary, it is possible that the ages of
the sediments in core catcher samples are not representative of the entire core. It is also
probable that several more faults are contained within the unsampled sections at the JFAST
site. Furthermore, Pacific radiolarian zones have age ranges that do not always allow for

accurate fingerprinting of the sample to the reference core depth. The trace element method
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described below allows for more precise correlations between the JFAST core and reference

cores.

2.3 Methods

Samples from DSDP Site 436 and JFAST were first extracted with organic solvents for
lipid biomarker analyses, and a small amount of the extracted sample (~1 g) was used for
trace element analyses. Digestion and analytical procedures generally follow those in Plank
et al. [2007]. Sediments were dried at 110°C before weighing 50 mg into Teflon screw-top
vials, to which 3 mL of 8N HNOj3 and 1 mL of HF were added. Samples were digested
overnight in sealed capsules on a hot plate (< 100°C), then uncapped and evaporated to
dryness. Dried samples were re-wetted with DI water and hydrogen peroxide to digest any
residual organic matter. Solutions were then acidified with HNOg, transferred to 250 mL
HDPE bottles, diluted with DI water to 3000x the original dry powder weight, and sonicated
for 30 minutes. A procedural blank as well as standard reference materials (IOBC, IORC,
JA-2, W2) were prepared in the same manner with each batch of ten unknowns and analyzed
on a PQ ExCell ICP-MS at LDEO. Data were reduced by blank subtraction, external drift
correction, and standard calibration. Calibrations were strongly linear (R? > 0.999), and
internal precision based on replicate analyses of each unknown solution is on the order of
< 3% relative standard deviation (RSD). External precision is generally < 5% RSD for
separately digested aliquots of PP829 and IORC (Supplementary Table A.1). The same
solutions were then analyzed on an Agilent 700-series ICP-ES for major elements, except
Si0,, which is volatilized by the HF treatment. Prior tests, however, have demonstrated
that SiO, can be calculated by difference from a 100 wt% sum within 0.5 wt% absolute
[Wade et al., 2005], provided the total volatile content has also been measured by loss on
ignition (LOI). Trace elements, major elements, SiO,-by-difference and LOI concentrations

are provided in Supplementary Table A.1.
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2.4 Results

2.4.1 'Trace element signatures at DSDP Site 436 and ODP Site 1149
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Figure 2.3: Key trace element ratios and concentrations demonstrate changing signatures
with depth in both reference cores, DSDP Site 436 (a and b) and ODP Site 1149 (c and
d). These signatures are consistent across wide ranges of the Western Pacific as seen by
the similar signatures in corresponding sedimentary units in both reference cores. Here, we
show two examples of trace element signatures — Th (a and c¢) and Ce/Ce* (b and d).
Original DSDP 436 unit designations are shown in b) and unit designation from this paper
are shown in a). Site 436 data is color-coded according to the unit colors introduced in
Figure 2. Original ODP 1149 unit designations are shown in d).

We compared trace element concentrations in the diatomaceous ashy-clay and pelagic
clay units above the Cretaceous cherts (at different depths, but similar time horizons at
the two sites) for both DSDP Site 436 and ODP Site 1149 (Figure 2.3). The concentra-
tion of Th increases downcore in both sites, as does the Ce anomaly (Ce/Ce*), which is
the deviation of Ce from the adjacent rare earth elements, La and Pr, due to its ability to

partially speciate in the ocean with a different oxidation state (44 as opposed to the other
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3+ REE) [De Baar et al., 1983]. Moreover, the absolute values of these tracers in the up-
per units are nearly identical (5-9 ppm Th and 1.1 Ce/Ce*) despite the fact that the two
sites are > 1000 km apart (Figure 2.3). At both sites, Th increases dramatically to 20-25
ppm in the brown-black pelagic clay that is barren of microfossils (except fish teeth). The
Ce anomaly also increases significantly in the upper pelagic clay before decreasing near the
contact with the chert [where it continues to be low, based upon ODP Site 1149 data; Plank
et al., 2007]. Thorium and Ce/Ce* are both tracers strongly linked to sedimentation rate
and the proportion of iron-manganese (FeMn) oxyhydroxides in marine sediments, which
form by authigenic precipitation in the water column [Plank and Langmuir, 1998]. At low
sedimentation rates, FeMn oxyhydroxides predominate as the proportion of detrital and bio-
genic sediments diminishes to very low values, as occurs in the central gyre of the Pacific.
Thorium and Ce** are both highly particle-reactive, and strongly scavenged by FeMn oxy-
hydroxides [Anderson et al., 1983, Bau and Koschinsky, 2009]. The increases in both tracers
downcore reflect the decreasing sedimentation rates as both sites track back to the central
gyre. The sharp decrease in Ce/Ce* near the base of the brown pelagic clay (and cherts
below) results from higher proportion of fish debris phosphate [which inherits the negative
Ce anomaly of seawater; Plank and Langmuir, 1998] and biogenic productivity in general,
on the far side of the gyre. Thus, there is a coherent chemostratigraphy at both sites [and
indeed much of the Western Pacific; Plank, 2014] that marks the journey through different
sedimentation zones across the Pacific.

Although a similar chemostratigraphy characterizes most of the sediments now entering
Western Pacific trenches, from the Marianas to the Kuriles, we use the section at DSDP
Site 436 as the best template for the original JFAST stratigraphy due to its proximity.
The chemical variations at DSDP Site 436 presented here define finer unit boundaries than
those originally designated in the initial reports volume [Langseth et al., 1977], and to avoid
confusion with the DSDP Site 436 unit boundaries (1-3) and those at ODP Site 1149 (I-

IV), we have used different names for the chemostratigraphic boundaries at DSDP Site 436
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(Units A-D). DSDP Site 436 Unit 1A corresponds to our Unit Al and DSDP Site 436
Unit 2 corresponds to our Unit B. We subdivide DSDP Site 436 Unit 1B into two units,
Units A2 and A3, and likewise subdivide DSDP Site 436 Unit 3 into four units, Units C1-3
and D (Figure 2.2). These subdivisions are notable in that they occur in parts of the core
where sedimentation rate decreases downcore. In these locations, the diatom-radiolarian
biostratigraphy loses resolution (or ceases to exist entirely) and large chemical gradients
form. Thus, the very processes that challenge biostratigraphy improve chemostratigraphy,
and the two methods are highly complimentary.

Younger sedimentary units at the reference sites are most difficult to distinguish litholog-
ically and we demonstrate their unique geochemical signatures through several trace element
plots (Figure 2.4). Classical trace element plots are used to identify sediments with signif-
icantly different provenance. However, in the Western Pacific sediments studied here, the
units have similar provenance and we use non-standard plots to highlight more subtle dif-
ferences that can be used to distinguish the subunits. Figure 2.4 illustrates the basis for
the new chemostratigraphy at DSDP Site 436, and Table 2.1 provides the criteria for unit
designations. Unit C (brown-black pelagic clay) is clearly distinguished from Units A and B
by high Th and Ce concentrations, and high Co/TiOs (another sedimentation rate proxy),
although subunits within Unit C have different proportions of these three tracers (e.g., C3
has intermediate Co/TiO;). Unit B is also readily distinguished from Unit A based on Th
and Ce concentrations, and has a Zn/Ce ratio < 1.3. Unit A subdivisions are more subtle
and can be most easily identified by variations in Ce and Zn (Figure 2.4). Unit A3 has
higher Ce/Ce* (> 1.2) than Units Al or A2; Unit A1 has higher Zn/Ce (> 1.7) than Units
A2 or A3. Unit A2 occupies an intermediate position in Zn/Ce, with a lower Ce/Ce* than
A3 and lower Zn concentration than Al. The Zn/Ce ratio may be a measure of biological
productivity, and it is one of the few tracers that varies systematically throughout Unit
A. The geochemical distinction between Unit A1l and Unit A2 is more subtle than others

that we discuss here, but these subunit designations are consistent with the biostratigraphy.
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Namely, sediments that are geochemically designated as Unit Al are late Pliocene to Pleis-
tocene while Unit A2 sediments are Miocene to Pliocene in age. Some of these tracers may
be more susceptible to diagenesis or fluid-reactions (Ce/Ce*, Zn/Ce) than others (Th, Ce
concentrations and Co/TiOz). We emphasize that no single tracer, but rather an ensemble

of attributes, is diagnostic of any particular subunit (Table 2.1).
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Figure 2.4: Scatterplots of key trace element parameters that differentiate between sedimen-
tary units in Western Pacific cores. Colored squares are DSDP Site 436 samples (color-coded
by sedimentary unit as introduced in Figure 2.2) and white circles are JFAST samples. In
these examples, we see that Unit C is distinguishable from Units A and B and can be subdi-
vided into Units C1-3 based on Th, Ce/Ce*, Ce, and Co/TiO;. Unit B can be distinguished
from Unit A based on higher Th and Ce concentrations and lower Zn/Ce (<1.3) values. The
bottom plot demonstrates how Unit A can be subdivided into Units A1-3 based on Zn/Ce
values as well as higher Ce/Ce* values for Unit A3 than Units A1-2. A more comprehensive

list of trace elements used for fingerprinting these sedimentary units can be found in Table
2.1.
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2.4.2 'Trace element signatures at JFAST

We use the above template at DSDP Site 436 to assign JFAST samples to each unit.
Figure 2.4 shows that the JFAST sediments overlap almost completely with the trace element
variations in DSDP Site 436, further supporting a common original chemostratigraphy at
both sites. Some of the JFAST sediments have slightly lower Ce/Ce* for the same Th
concentration as DSDP Site 436 sediments, and it is possible this is a secondary (diagenetic or
fault-fluid reaction) effect due to reduction of Ce** to Ce®*. Likewise, the Zn concentrations
in the youngest JFAST sediments are more varied than those at DSDP Site 436, and this
could be due to original or secondary differences in the diatomaceous ashy-clays. We expect

Ce and Th concentrations, as well as Co/TiO,, to be more impervious to secondary processes.
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Figure 2.5: Assignment of JFAST samples to Western Pacific sedimentary units using the
trace element fields from DSDP Site 436 developed in Figure 2.4. JFAST samples (circles)
are colored according to the sedimentary unit to which they are assigned. Labels indicate
core number and depth of the JFAST samples using standard IODP format (core number,
tool, section and depth in core).

Figure 2.5 shows the unit designation for the JFAST sediments, superimposed on the field
boundaries defined by DSDP Site 436 sediments. The brown-black pelagic clays of Core 17R
clearly correspond to Unit C2. Core 18R sediments are best ascribed to Unit B, while Cores
19R-~20R most resemble Unit A2 and A3 sediments, as does Core 1R. The long section of
sediment in Cores 4R-16R is assigned to Unit Al. From these designations, it is clear
that the stratigraphic sequence is re-ordered in the JFAST core, with older sediments (1R)

over younger sediment (4R-16R), and younger sediments (19R-20R) below older sediments
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(17R).
2.4.3 Trace element stratigraphy at JFAST

Using the fingerprinted samples from the JFAST core, we present a trace element-based
stratigraphy of the subducted Pacific Plate at the JFAST site (Figure 2.6). From this
analysis, we see that the top of the JFAST core (1R, ~180 mbsf) is composed of Unit A2.
This is consistent with radiolarian age dates in this section of the JFAST core of ~4.4 Ma.
Below this, there is a large break in core recovery until ~650 mbsf. Based on radiolarian
age dating, the top two cores from the second interval of recovery (2R-3R, ~650-660 mbsf)
are ~10-11 Ma. Therefore, we assume that these cores can also be designated as Unit A2,
although we did not sample this interval for the current study. It is worth noting that because
the radiolarian ages of Core 1R are much younger than those of 2R-3R, this could also
represent a faulted section. However, with limited core recovery in this shallowest section,
no definitive conclusions are possible at this time. From a depth of ~690 mbsf and below,
most of the JFAST core is composed of Unit Al, consistent with radiolarian ages of 0.3-3
Ma (Figure 2.6). In this section, several faults are described from structural observations
of the core. Notably, faults or brecciated regions are observed at ~700, 720, and 817 mbsf
[Chester et al., 2013, 2012, Kirkpatrick et al., 2015]. All of these faults occur within Unit
A1 material where we do not have good chemostratigraphic resolution and cannot identify
within-subunit age gaps or inversions.

Near the plate boundary, the structure becomes more complicated and contains several
age gaps and inversions. At the identified décollement (17R, ~820 mbsf), Holocene to Late
Pliocene Unit A1l overlies the Unit C2 Early Miocene to Eocene pelagic clays. Assuming
the Unit A1l samples are from the bottom of the Unit Al sequence, we give a conservative
estimate of ~15 Ma of missing section between the Unit A1l mudstone and Unit C pelagic
clays at 820 mbsf. This corresponds with 114 m of missing section assuming unit thicknesses
of DSDP Site 436. Within the décollement pelagic clay layer, a mudstone sliver from Unit

A3 indicates another significant fault with Unit C2 above and below the sliver. At ~822
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mbsf there is a major fault based upon the sharp contacts within Core 17R and the scaly
microstructure of the pelagic clay layer that is indicative of shear [Labaume et al., 1997,

Moore et al., 1986, Vannucchi et al., 2003].
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Figure 2.6: Stratigraphy of the JFAST site based upon trace element correlations to DSDP
436. Deformation features (i.e. faults, breccia, deformation fabrics) identified in the science
party report are indicated with arrows to the left of each stratigraphic column [Chester et al.,
2012, Kirkpatrick et al., 2015] and samples from this study are indicated with asterisks on the
right. Faults inferred from the trace element stratigraphy are indicated by large arrows to the
right of each column. The Japan Trench accretionary wedge at the JFAST site is composed
primarily of Unit A material (note the scale break in the left stratigraphic column). There is
more stratigraphic complexity approaching the décollement including a significant inversion
with Unit C overlaying Units A and B and two age gaps of 15 and 60 Ma, respectively.

Below the Unit C2 pelagic clay is Unit B claystone indicating another inversion. Within
the Unit B claystone are two faults observed in the JFAST core at 824.4 and 825.1 mbsf
[Kirkpatrick et al., 2015], which do not appear in the stratigraphy as inversions or age gaps.

Unit B in turn overlies Unit A3. This constitutes another significant age inversion below
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the pelagic clay, possibly representing a fault within unrecovered section between Cores 18R
and 19R. The Unit A3 mudstone overlies an interval of Unit A2 sediment (Figure 2.6) at
approximately 832 mbsf (Core 20R), another possible stratigraphic inversion. Although no
faults have been previously identified at this depth, the inversion of Unit A3 over A2 is
marked by a change in mudstone color (with mottling over a distance of ~30 cm) as well as
a zone of brecciation. We note here that this sequence of Unit B overlying Unit A3, which, in
turn, overlies Unit A2, could represent an overturned section, however, the unit thicknesses
are significantly smaller than those at DSDP Site 436. Finally, near the bottom of the JFAST
core (within Core 20R) at ~833 mbsf, Unit A2 directly overlies Unit D Cretaceous partially
silicified clay. This requires a ~60 Ma stratigraphic age gap (~85 m assuming DSDP Site
436 unit thicknesses) above the partially silicified clay layer. This age gap corresponds with
deformation features observed in Core 20 such as a dark seam between the Unit A3 mudstone
and the finely layered Unit D clay [Figure 2.6; Kirkpatrick et al., 2015].

2.5 Discussion

The trace element approach allows for additional relative age constraints that improve on
the stratigraphy at JFAST, especially below the pelagic clay layer. Although several faults
were previously identified bounding the pelagic clay layer [Chester et al., 2012, Kirkpatrick
et al., 2015], the trace element stratigraphy presented here suggests that several additional
large displacement faults exist between the pelagic clay layer at ~822 mbsf and the Creta-
ceous partially silicified clay at 833 mbsf. These faults are identifiable based on our ability to
fingerprint the Quaternary to Miocene mudstones in this interval (Figure 2.6). For example,
we identify the topmost mudstone in the 824-832 mbsf interval as Unit B. Below this, we see
the younger mudstone unit (Unit A3) underlain by Unit A2 mudstone. The stratigraphic
inversions present here imply a significant fault at a depth of ~826 mbsf and another at
~832 msbf. One of the most significant age gaps is observed at ~833 mbsf. Based on trace
element measurements, we see Unit A2 material overlying Unit D chertified clay. This sec-

tion is characterized by an extremely thin mm-scale transition from Unit A mudstone to
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Unit D partially silicified clay. The presence of a potential gouge layer (see core images in
Figure 2.6) as well as slight misorientation of bedding in the pelagic clay below this contact
suggest that the ~60 Ma of missing stratigraphy here could imply a major fault.

Notably, the bedding below Core 17R is much more shallowly dipping (~10° rather than
~67° above the pelagic clay layer). The absence of observed bedding cutoffs in the deeper
JFAST cores suggests that any faults in this section are sub-parallel to bedding and likely
highly localized. The localized shear strain accommodated by the faults would not have
been captured by the anisotropy of magnetic susceptibility (AMS) results (due to sample
spacing), which suggest vertical shortening in the deeper part of the section [Yang et al.,
2013]. It follows that even though the faults we document would have accommodated little
flattening, our observations are not inconsistent with the AMS results. Significant amounts
of displacement would be required to explain the stratigraphic reversals and gaps on low
dip structures. This may imply that the dip is not regionally constant on individual fault
strands, consistent with a duplex or fault ramp model (Figure 2.7).

Chester et al. [2013] estimated that the plate boundary at the JFAST site has hosted ~3.2
km of displacement based on balancing a two-dimensional cross-section. Because the pelagic
clay layer showed the most pervasive deformation, the largest age gap in the biostratigraphy,
and a low frictional strength at both slow and fast velocities [Ikari et al., 2015b], most of
the 3.2 km of displacement was thought to occur within it. We have shown here that the
faults we identify at the JFAST site may have accommodated a significant amount of the
inferred plate boundary slip, implying that cumulative displacement at the plate boundary
was not localized exclusively in the pelagic clay layer but rather distributed among several
major faults. Adding together the faults inferred from the chemostratigraphy, along with
the distances between them [c.f. Rowe et al., 2013] yields a plate boundary thickness ~15
m which is consistent with the maximum décollement thickness proposed by Kirkpatrick
et al. [2015]. We also note that because the JFAST core did not penetrate to basement,

significant faults could have been missed below the bottom of the recovered JFAST section.
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A thicker décollement (at least 10 m) would be more in keeping with observations in other
subduction zone settings such as Barbados [Maltman et al., 1997], although estimates from
Nankai suggest a décollement more on the order of tens to hundreds of meters [Moore et al.,
1990, Rowe et al., 2013, Ujiie and Kimura, 2014]. Our results imply that structures with
insignificant appearance in the core, such as thin shear surfaces with little notable damage

surrounding them, may be responsible for significant displacement.
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Figure 2.7: Structural interpretation of the accretionary wedge in the Japan Trench based
on our trace element stratigraphy at Site CO019E. Light gray sediments in the accretionary
wedge are undifferentiated frontal prism sediments that are unconstrained by our data. Dark
grey at the bottom is basement. Inset is a blow-up of the region boxed in white from the
larger cross section. The stratigraphic section developed in this paper and the core recovery
are shown to the left of the blow-up. The section inferred to have been drilled at JFAST
is indicated by the dark grey dotted line in the structure blow-up. After Kirkpatrick et al.
[2015].

The pelagic clay layer in the JFAST core, like most smectite-rich clays, is frictionally
weak and extremely velocity weakening at high slip rates, indicating that both aseismic and
seismic slip could occur within this layer [Faulkner et al., 2011, Ikari et al., 2015b,a, Sawai
et al., 2014, Ujiie and Tsutsumi, 2010]. However, the presence of multiple, large-displacement

faults in the surrounding sediments implies that shallow slip was not exclusively localized

within the pelagic clay. This could suggest that the path of a rupture during dynamic seismic
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slip might not be completely controlled by differences in friction between stratigraphic units.
Instead, earthquake rupture might propagate or branch in a more chaotic way [Poliakov
et al., 2002]. Furthermore, low velocity friction experiments on samples from the JFAST
core show that the younger mudstones, though frictionally stronger than the pelagic clay,
are significantly more velocity weakening [Ikari et al., 2015b,a].

While we can determine that significant displacement took place on a fault by noting
major stratigraphic inversions and age gaps, we cannot tell which earthquake, how many
earthquakes, or even if an earthquake rather than aseismic creep was responsible for the
displacement based on the chemostratigraphy presented here. Although the stratigraphy
suggests large displacement, it does not require any particular inversion or age gap to have
been produced specifically by the Tohoku earthquake. Nonetheless, the depth range over
which significant faults are identified is not excluded by temperature data collected from
a thermistor string installed during the JFAST project [Fulton et al., 2013|. Inversions of
the temperature data are consistent with a fault that was frictionally heated during the
earthquake, and several of the faults identified in the JFAST core could fit the slip location
identified in the temperature data.

There are a number of additional factors that might affect the trace element method of
identifying stratigraphic units, including overlapping elemental fingerprints, sediment mix-
ing, fault heating and fluid flow. Western Pacific units in this study can be distinguished
using multiple trace element signatures, however this could be an issue in other regions.
Mixing of multiple units could occur if a sample is collected on a border between different
units or as a result of faulting if there is soft-sediment deformation during an earthquake.
Mixing would cause the sample to exhibit trace element signatures intermediate between
the two homogenized units. While we do observe some JFAST samples that fall outside of
the trace-element fields defined from DSDP Site 436, they are generally not along tie lines
between fields, suggesting mixing is minimal. Bedding is also evident in non-faulted regions

indicating mixing is unlikely to be an issue for many of the samples. Finally, we have not
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explicitly considered the role of fault heating or faulting-related fluid flow to mobilize certain
elements [Ishikawa et al., 2008] and, thus, change the trace element signature in the JFAST
core relative to that of the corresponding stratigraphic unit in the reference cores. While Zn
concentrations and Ce/Ce* could potentially be altered by this process, Ce and Th concen-
trations and Co/TiO ratios that are also used to define the chemostratigraphy should be
less susceptible to these processes.

2.6 Conclusions

Based on trace element geochemistry, we fingerprint stratigraphic units in the Western
Pacific to develop a detailed stratigraphy of the JFAST core. The trace element stratigraphy
agrees well with the coarse stratigraphy determined by radiolarian age dating, while also
identifying several age inversions and sections of missing stratigraphy that were not apparent
from the biostratigraphy. These features require multiple faults within a ~15 m-thick zone
of sediment above the Cretaceous chert layer at the bottom of the JFAST core. Our findings
imply that deformation at the plate boundary was not limited to the frictionally weak pelagic
clay layer as previously suggested. Rather, the large displacement faults identified here
should be considered as candidate faults for the Tohoku earthquake.
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Recent experiments and field observations have indicated that biomarker molecules can re-
act over short timescales relevant to seismic slip, thereby making these compounds a useful
tool in studying temperature rise in fault zones. However, short-timescale biomarker reac-
tion kinetics studies have previously focused on compounds that have already experienced
burial heating. Here, we present a set of hydrous pyrolysis experiments on Pleistocene-aged
shallow marine sediment to develop the reaction kinetics of long-chain alkenone destruction,
change in the alkenone unsaturation ratio (UL), and change in the n-alkane chain length
distribution. Our results show that biomarker thermal maturity provides a useful method
for detecting temperature rise in the shallow reaches of faults, such as subduction zone
trench environments. Through the course of our work, we also noted the alteration of total
alkenone concentrations and U%; values in crushed sediments stored dry at room temperature
for durations of months to years but not in the solvent extracts of these materials. This re-
sult, though parenthetical for our work in fault zones, has important implications for proper

storage of sedimentary samples to be used for alkenone paleotemperature and productivity
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analysis.

3.1 Introduction

The distribution and structure of organic molecules (biomarkers) evolves in measurable
ways when sediments are heated over a range of timescales and temperatures. Thermal
maturity of organic molecules has long been studied in applications related to petroleum
generation, which usually occurs on the scale of millions of years [Peters et al., 2004]. Only
recently has biomarker thermal maturity over very short timescales been experimentally
investigated [Sheppard et al., 2015]. The kinetics of biomarker maturation at short timescales
are an important tool for constraining the temperature rise in sediments exposed to short
duration heat sources such as earthquakes, forest fires, bolide impacts, dike intrusions, and
hydrothermal fluids [Bishop and Abbott, 1993, Bowden et al., 2008, Kaiho et al., 2013,
Parnell et al., 2010, 2005, Polissar et al., 2011, Savage et al., 2014, Schimmelmann et al.,
2009, Simoneit et al., 1994, Simoneit, 1994]. In this paper, we focus on thermal alteration
from earthquakes, but our results are applicable to other environments as well.

Temperature rise during earthquakes is a function of the absolute fault shear stress during
sliding. However, determining earthquake temperature rise from the rock record has proven
difficult. At shear stress values on the order of 10 to 100 MPa (typical values within the
seismogenic zone), temperature rise could easily reach several hundred to over 1000 °C
during large earthquakes, which is hot enough to melt rock. Some faults have unequivocally
experienced such significant temperature rises, and can be identified by the presence of
frictional melt known as pseudotachylyte [e.g. Sibson, 1975]. Pseudotachylyte in faults,
however, is not ubiquitous and its absence in most faults raises the difficult question: why
did the fault not get hot enough to melt? One possibility is that pseudotachylyte does not
preserve well in the rock record, retrograding to minerals such as micas that make it difficult
to pinpoint their earthquake-related origins [Kirkpatrick and Rowe, 2013, Rowe and Griffith,

2015]. Another possibility is that earthquakes generally do not produce sufficiently large
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temperature excursions to melt fault rocks. A range of dynamic weakening mechanisms such
as pore fluid pressurization, flash heating, and mineral dehydration, have been documented
in laboratory experiments [e.g. Collettini et al., 2013, Di Toro et al., 2011, Han et al., 2007,
Mase and Smith, 1985, Rice, 2006] and provide ways to reduce the effective shear stress on
a fault during dynamic slip, thus limiting the temperature rise on the fault over the course
of a seismic event. However, it is not well understood how effective these mechanisms may
be in real faults.

Other methods have been developed more recently to investigate the sub-solidus coseismic
temperature rise on a fault, such as thermally dependent alterations to the smectite structure,
decarbonation of the fault host rocks, changes in the magnetic signatures of frictionally
heated sediments, and fission-track thermochronology [D’Alessio et al., 2003, Hirono et al.,
2007, Rowe and Griffith, 2015, Schleicher et al., 2015, Yang et al., 2016]. Additionally, organic
thermal maturity is becoming an established paleoseismic indicator that can be applied to
faults hosted in sedimentary rocks. Field studies of the thermal maturity of organic material
have considered vitrinite reflectance [Barker and Pawlewicz, 1986, Burnham et al., 1989,
Fulton and Harris, 2012, Sakaguchi et al., 2011], as well as molecular methods focusing on a
range of biomarkers [Polissar et al., 2011, Savage et al., 2014].

Previous studies of biomarker thermal maturity have focused on faults hosted in mod-
erate to deeply buried rocks where the suite of biomarkers useful for paleoseismic thermal
maturity studies reflect a relatively high background thermal maturity (e.g. methylphenan-
threnes and diamondoids) [Polissar et al., 2011, Savage et al., 2014, Sheppard et al., 2015].
In order to apply biomarkers as a fault thermometer in shallow sediments that have not ex-
perienced burial heating (such as would be expected in faults located within the shallowest
portions of subduction zones that determine tsunamigenic potential) it is necessary to deter-
mine the kinetics of thermal alteration for immature biomarker molecules. In this study, we
develop the kinetics of thermal maturity for long-chain alkenones and plant-wax n-alkanes.

Plant-wax n-alkanes are ubiquitous in Cenozoic (and older) thermally immature sediments
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[c.f. Brooks and Smith, 1967] while long-chain alkenones are present in most Neogene ma-
rine sediments [Brassell, 2014]. This widespread occurrence makes studies of their thermal

alteration applicable to most subduction zone settings.

3.2 Background

3.2.1 Alkenones
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Figure 3.1: Molecular structure and gas chromatographic analysis of long-chain alkenones
and n-alkanes. a) Alkenone concentrations are higher in an unheated sample (PP877) com-
pared to a sample exposed to high temperature (PP876). Alkenone data (a) were collected
on a GC-FID with stearyl stearate as an internal recovery standard. Alkenone peaks are
labeled as methyl and ethyl ketones with the number of carbon atoms and number of double
bonds. b) n-alkane data were collected on a GC-MSD. Shown are the m/z 71 extracted ion
chromatograms that is characteristic for n-alkanes. Note that the n-alkane internal recovery
standard, ba-androstane, does not have a strong m/z 71 response and is not seen here. Re-
tention times for the unheated and heated samples are slightly different due to slight changes
in the column length resulting from column maintenance between run dates.

Long-chain unsaturated methyl and ethyl ketones (hereafter alkenones, Figure 3.1a) are
produced by a number of haptophyte algae and are well preserved in ocean sediments [Her-

bert, 2014]. The relative proportion of alkenones with two, three or four double bonds is
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thought to be controlled by sea surface temperature (SST) with the level of alkenone un-
saturation (UX) varying linearly with temperature [Brassell et al., 1986, Prahl et al., 2000].
Hydrous pyrolysis experiments have shown that alkenones thermally mature to an unknown
product at temperatures of ~200 °C and entirely disappear from the sediment when held
at 250 °C for 24 h [Simoneit et al., 1994]. However, these experiments do not confirm
that alkenones react on the shorter time-scale associated with earthquakes and other short
timescale heating processes. Here, we establish the kinetics of alkenone destruction and the
change in U% at short timescales.

3.2.2 n-Alkanes

n-Alkanes are linear hydrocarbons (Figure 3.1b) derived from a wide variety of natural
sources. Long-chain n-alkanes are found in plant leaf waxes with a preference for odd-over-
even chain lengths [Carbon Preference Index — CPI; Eglinton and Hamilton, 1967, Eglinton
et al., 1962, Rieley et al., 1991]. The distribution of n-alkane chain lengths is known to
change with increasing thermal maturity. Long-chain n-alkanes with no carbon preference
are formed during kerogen cracking and petroleum formation. With further heating, cracking
of the n-alkanes themselves reduces the long-chain n-alkane abundance [Eglinton et al., 1988].
The formation of n-alkanes during heating causes the n-alkane CPI to decrease, particularly
in long chain n-alkanes [Simoneit, 1994]. These thermal alterations to the n-alkane chain
length distribution have been studied in experiments on the scale of days [e.g. Eglinton et al.,
1988]. However, the thermal maturity of n-alkanes has not previously been established on

shorter timescales relevant to fast geologic heating processes such as earthquakes.
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3.3 Methods

3.3.1 Hydrous Pyrolysis Experiments
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Figure 3.2: Heating apparatus used in hydrous pyrolysis experiments [a, after Sheppard et al.,
2015]. Water and sediment are added to the reactor tube (1) with the internal thermocouple
(3) inserted through the bottom fitting. This assembly is then mounted on the experimental
frame and is leak-checked by pressurizing to 6895 kPa (1000 psi) of helium (5-8). The tube
is then wrapped with a resistive heater (2) and the external thermocouple (4) is placed with
its tip to the reactor tube. Finally, the assembly is wrapped with insulation (9). At the end
of each experiment, the insulation is unwrapped and the sample is quenched by spraying DI
water over the reactor tube. An example of the temperature data (b) collected during the
experiments shows the internal and external thermocouple temperatures and typical heating
and cooling times. Experiments that experienced peak temperature larger than 30 °C above
the target temperature and a peak duration longer than 350 seconds were not used for later
calculations in this paper.

We present a series of hydrous pyrolysis experiments performed on crushed and homog-
enized samples from deep-sea piston core RC14-99 [Morley and Heusser, 1997], taken near
to the Japan trench (36°57.9'N, 147°55.7'E, 5652 m depth). This material was selected for
its similarity to sediments being subducted in the Japan trench where tsunamigenic earth-
quakes have occurred [Maeda et al., 2011, Minoura et al., 2001]. Sediment was sampled from
RC14-99, section 6b throughout its depth for 3 batches (Batch A: 1285-1405 cm, Batch B:
1280-1436 cm, Batch C: 1244-1454 cm; see Table B.1 for exact sampling depths). Three
batches were required due to limitations on the amount of core that we were able to sample
with our first two sample requests and because we depleted our initial batches before we had

completed our experiments. The core pieces for each batch were crushed with mortar and
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Table 3.1: Experimental Conditions

Purpose Sample Number  Weight (g)® Time (min)P Temp (°C)° Sed. Batch
d
Unheated control and PP877d 4.879 - 20 A
PP920 5.006 _ 20 B
PP10514 5.027 — 20 A+B
alkenone degradation analysis PP12854 2.003 I 20 C
PP13614 1.94 — 20 C
PP1286" 1.936 — 60 C
Low temperature pP1287f 1.968 S 60 C
pPP128sf 1.979 — 60 C
pP1362f 1.983 —_— 100 C
thermal alteration PP1363f 1.944 —_— 100 C
pP1364f 2.009 — 100 C
PP1045 4.701 178.55 124.08 A+B
PP918 4.969 87.43 132.39 B
High temperature PP873 3.37 28.88 134.25 A
PP913 4.795 56.25 235.57 B
PP854 5.077 25.63 237.38 A
PP917 4.419 83.78 252.94 B
PP914 4.455 53.93 263.7 B
thermal alteration PP915 4.639 52.68 308.63 B
PP875 1.905 22.27 349.97 A
PP876 1.121 20.07 384.8 A

2 Sediment weights measured after sample recovery

b Time at 85% Tmax in minutes unless otherwise noted
¢ Mean temperature during time at 85% Tmax

d Sample used as unheated control

€ Sample used for alkenone degradation analysis

f Experiments conducted in glass vials in a GC oven.

pestle and mixed to homogenize the sample for the experiments. The prepared sediment
was stored in an ashed Fisher 250 ml glass jar, covered with a screw cap lined with ashed
foil and placed in a drawer at room temperature (~20 °C) and experimental samples were
removed at the time of the experiment using an ashed spatula.

Rapid high-temperature heating experiments were conducted using a small, carburized
reactor designed for rapid heating [Figure 3.2; Sheppard et al., 2015]. To prepare these
experiments, 5.0 g of sediment and 6 ml of Fisher Optima-grade ultra-pure deionized water
(degassed with Ny using a sparger) were poured into the reactor. First, about half of the
sediment was added, followed by half of the water. The sample was tamped down with a
metal push-rod to mix the sediment and water, and then this process was repeated with
the remainder of the sediment and water. This procedure prevents un-wetted sediment
from getting stuck to the bottom of the reactor or floating on top of the water layer. The

metal pushrod, reactor and all other materials that contacted the sample were cleaned with
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dichloromethane (DCM) and methanol (MeOH) before use.

Once loaded, the reactor was attached to the experimental frame (Figure 3.2a), evacu-
ated using a vacuum pump, and then pressurized to 1000 psi (6.9 MPa) using He gas to
check for leaks. Pressure was reduced to 10-100 psi of helium (69-690 kPa) prior to a run.
Samples were heated using a resistive heater wrapped around the reactor tube. Tempera-
ture was measured using an inner thermocouple and an outer thermocouple (Omega J-type
thermocouple, maximum temperature range 0-750 °C) and controlled using a proportional-
integral-derivative (PID) controller. During the experiments, the reactor was wrapped with
insulation to allow rapid heating and help maintain temperature. Experiments were con-
ducted at temperatures ranging from 120-350 °C over durations of 20-180 min (Table 3.1).
Samples achieved experimental temperatures in less than 10 min (Figure 3.2b). At the end
of each experiment, insulation was quickly removed, the resistive heater was unplugged from
the PID controller, and the reactor tube was quenched by spraying it with deionized water
until the temperature read by the thermocouples was reduced to room temperature. Ex-
periments were quenched in about 1 minute (Figure 3.2b). After the experiment, samples
were removed from the reactor using the cleaned push-rod and an ashed (450 °C for 8 hours)
glass fiber filter paper plug (Whatman GF/C) and pushed through into an ashed recovery
beaker. The rolled filter paper was necessary to maximize sample recovery by preventing the
sample (which had a fine-grained muddy consistency) from sticking to the reactor walls. The
inside of the reactor tube was then rinsed with ultra-pure deionized water into the recovery
beaker. Though we were able to recover almost all of the sediment for most experiments
(within ~0.5 g of the initial 5 g; Table 3.1), recovery of sediment from the reactors was
sometimes incomplete, yielding variable sample weights for extraction of organic material.
The variability in sample recovery was accounted for by re-weighing samples after extraction
to obtain the weights used in the determination of biomarker concentrations.

Low temperature hydrous pyrolysis experiments were also conducted to constrain the

low temperature kinetics of alkenone and n-alkane thermal maturity over longer times (Ta-
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ble 3.1). Our experimental heating setup for the high temperature experiments was not
designed for the longer experiments needed to measure reaction kinetics at low tempera-
tures. Therefore, these experiments were conducted in the oven of a gas chromatograph at
temperatures of 60 and 100 °C and times ranging from 2 h to 4 days. Two-gram samples were
placed into 8 ml ashed borosilicate glass vials with 5 ml of degassed ultra-pure deionized wa-
ter and thoroughly mixed using a spatula cleaned with DCM and MeOH. Vials were purged
for 15 s with Ny gas before being tightly capped. For each set of experiments (at 60 and 100
°C) a control vial was left at room temperature for the duration of the experiments. The
experimental vials were placed in the oven into a beaker filled with sand that was pre-heated
to the experimental temperature. The sand provided thermal mass to minimize temperature
fluctuations when the oven door was opened. In each experiment the temperature was held
constant throughout and at each of three pre-designated time points (2 h, 1 day, and 4 days),
one vial was removed from the oven and quenched by running cold water over the vial until
it reached room temperature.

3.3.2 Total Lipid Extraction

After recovery from the reactor, samples were freeze dried for 1-3 days under a vacuum
of 60x1073 mbar. The total lipid extract (TLE) was obtained by sonicating the freeze-dried
sediments in a solution of 9:1 DCM: MeOH three times for 15 min. After each sonication,
samples were left to settle for 10 min and then the solvent was poured into a 60 ml vial. The
experimental samples were too fine grained to decant without pouring significant amounts
of sediment into the 60 ml vial during the sonication extractions. Because of this, post-
sonication solvent was filtered through an ashed glass fiber filter paper (Whatman GF/F)
into the 60 ml recovery vials. We initially used sonication extractions to avoid further heat-
ing the sediment during Accelerated Solvent Extraction (ASE) where our standard 100 °C
method could potentially contaminate the temperature signal from the experiments. How-
ever, upon further testing, we found that sonication extraction yielded incomplete recovery

of all compounds and that ASE extraction at 100 °C effectively extracted all alkenone and

36



alkane molecules. We performed further testing to determine whether ASE extraction al-
tered the distribution and thermal maturity of the extracted compounds in any way. These
tests indicated no difference in biomarker signatures in 100 °C ASE extractions and multiple,
lower temperature extractions of the same material (see Section B.2 for more detail).

To ensure complete recovery of organic molecules, samples were extracted a second time
using ASE extractions with 9:1 (v/v) DCM:MeOH at an extraction temperature of 100 °C.
Laboratory recovery standards were added to the collected TLE (5a-androstane and stearyl
stearate) and the liquid was evaporated (by a combination of drying in a hood and under a
stream of Ny) and then transferred to a 4 ml vial using DCM. Sonication extracted and ASE
extracted samples were analyzed separately, with alkenone and n-alkane concentrations from
the sonication and ASE extractions for each experimental sample summed after measure-
ment. Sonication extractions yielded 40-100% of the total TLE (Figure B.1). Due to some
sediment loss in the sonication procedure and the small amount of sediment used in the low
temperature hydrous pyrolysis experiments, samples for the 60 and 100 °C experiments were
only extracted using the ASE method.

3.3.3 Column Chromatography and Gas Chromatography

The TLE in the 4 ml vial was separated into three fractions (aliphatic, ketone, and polar)
using silica gel column chromatography. First, the TLE was brought up in 1 ml hexane and
pipetted onto a column containing 0.5 g DCM-rinsed silica gel. An additional 3 ml hexane
was then added to the column to elute the F1 (aliphatic) fraction. This procedure was
repeated for the F2 (ketone) and F3 (polar) fractions with DCM and MeOH, respectively.
The aliphatic and ketone fractions were dried under N, and transferred to 2 ml vials with
DCM. These were then dried under Ny and brought up in hexane and toluene respectively
for analysis using a gas chromatograph with a flame ionization detector (GC-FID) for the
ketone fraction and a gas chromatograph with mass selective detection (GC-MSD) for the
aliphatic fraction. Most alkenone samples were run on the GC-FID using the PTV injector

with a 60 m DB1 column with a diameter of 0.25 mm and a stationary phase thickness
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of 0.1 pm with a 10 m non-polar guard column. Samples were injected at a volume of
1 pl. Upon injection, the oven was held at 90 °C for 1.5 min, raised to 250 °C at a 25
°C/min ramp, then raised to 313 °C at a 1 °C/min ramp and finally raised to 320 °C at
a 10 °C/min ramp and held at 320 °C for 20 min. Some of the ketone samples were run
using a split-splitless (S/SL) injector with a 60 m VF-200 column (i.d. 0.25 mm, stationary
phase thickness 0.1 ym) with a 10 m guard column into which 2 ul of sample was injected.
Upon injection, the oven was held at 90 °C for 3 min, raised to 250 °C at a 25 °C/min ramp,
then raised to 305 °C at a 1 °C/min ramp and finally raised to 320 °C at a 10 °C/min ramp
and held at 320 °C for 20 min. The samples quantified with the S/SL injector and VF-200
column were analyzed during laboratory testing for the most effective method for alkenone
quantification. As described below, we rigorously compared results from the two methods
and found no significant differences in alkenone parameters and decided to combine results
from the two methods rather than re-analyzing samples run with the S/SL-VF200 method.

We determined the repeatability of measured alkenone parameters with the PTV injector
by comparing results from 26 runs of the same F2 ketone fraction acquired over the course
of three years. Alkenone concentrations are repeatable within 4.4% and UY values were
repeatable within 0.006. We also evaluated whether the different injectors and columns
produced the same alkenone concentrations and U% values. No significant differences were
found on measurements of the same samples using the PTV and S/SL injectors (mean
difference as a fraction of the sample concentration was +3.3 &+ 4.4% for concentration and
+0.003 + 0.023 for Uk, N = 8, 1s uncertainties).

The precision of the full analytical procedure (extraction, purification, quantification)
was determined by measuring biomarkers in seven aliquots of Batch C sediment extracted
on the same day (in order to eliminate the effect of biomarker degradation; see Section
3.4.1 for more discussion) and analyzed together. Total alkenone concentrations (MK37:2
+ MK37:3) are repeatable to 4.1% and U}, values are repeatable to 0.0033. These results

are comparable to our long-term GC-FID precision and demonstrate the repeatability of our
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analyses. Our results for precision on alkenone concentrations and Uj; values are excellent
compared to those from a laboratory ring test [Rosell-Melé et al., 2001].

n-Alkanes were measured using the GC-MSD run with a multi-mode inlet and a DB-5
column (30 m length, 0.25 mm i.d., 0.25 um phase thickness). 1 pl of sample was injected
and the oven held at 60 °C for 1.5 min. The temperature was ramped up to 150 °C at a
rate of 15 °C/min and then to 320 °C at a rate of 4 °C/min where it was held for 10 min.
n-alkane chain length distribution parameters are repeatable to <1.5% for the CPI and <1%
for the ADI.

Alkenone chromatograms (Figure 3.1a) were integrated using ChromQuest software (GC-
FID) and n-alkane chromatograms (Figure 3.1b) were integrated using Chemstation software
(GC-MSD). Long-chain alkenone peak areas from the ketone fraction were converted to
alkenone concentrations (Table B.2) by normalizing to the stearyl stearate internal standard

peak area:

{ng molecule} _ Mygtceue . Vitandard * [standard)] (3.1)

g sediment M etandard sample weight

where M occute @and Mgiandara are the chromatographic peak areas corresponding to the
molecule of interest and the standard molecule, respectively, Viiandara i the volume of recov-
ery standard put into the TLE after extraction (ul), and [standard] is the concentration of
the standard molecule in the recovery standard (ng/pl).

These concentrations of individual alkenone molecules were used to calculate the total
alkenone concentration and UL, value for each sample (Table 3.2). Total alkenone concen-
tration was calculated by adding the concentrations of the Cs; alkenone molecules present in
the RC14-99 sediment (MK37:3 and MK37:2). Note that MK37:4 was present in the samples
(Figure 3.1a), but in concentrations too small to reliably quantify. U:f% values were calcu-
lated by dividing the concentration of MK37:2 by the summed concentrations of MK37:2
and MK37:3.

Differences in the GC-MSD response for each n-alkane were corrected for by analyzing au-
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Table 3.2: Biomarker parameters measured in hydrous pyrolysis experiments

Sample # Time Temperature Sediment Batch Alkenone Conc. Uéc.; CPI ADI
(sec)® °o)® (ng/g)

PP877° — 20 A 1714.22 0.668585777 4.288060066 1.343665114
PP920° — 20 B 1516.90 0.702396537 4.264641653 1.323593663
PP1051°¢ — 20 A+B 1299.45 0.713562277 3.895173643 1.317586339
PP1285°¢ —_ 20 C 1782.84 0.653841882 3.547071708 1.241436461
PP1361%4 147 days 20 C 1617.22 0.664501099 3.074313675 1.186545578
PP1286 7290 60 C 1801.25 0.65234117 3.843986262 1.278804882
PP1287 86430 60 C 1821.65 0.653308122 4.070637274 1.312663375
PP1288 345600 60 C 1846.12 0.64716301 4.179085613 1.318003111
PP1362 7269 100 C 1513.18 0.661695436 3.295147066 1.230303204
PP1363 86428 100 C 1517.55 0.658769022 3.488213761 1.234888372
PP1364 345595 100 C 1384.86 0.676800736 3.28206312 1.234339767
PP1045 10713 124.08 A+B 1008.54 0.727526124 3.548612626 1.279816635
PP918 5246 132.39 B 1345.85 0.700675441 3.933209133 1.334383473
PP873 1733 134.25 A 1107.48 0.677751666 3.034503534 1.198156822
PP913 3375 235.57 B 659.05 0.721790501 1.961981691 1.011091689
PP854 1538 237.38 A 443.17 0.680802586 2.615239566 1.225968341
PPI17 5027 252.94 B 298.41 0.741928181 3.093466722 1.227604833
PP914 3236 263.70 B 280.90 0.716337808 2.276250834 1.170371406
PPI15 3161 308.63 B 126.38 0.77536705 2.321856006 1.205354484
PP875 1336 349.97 A 484.05 0.713566146 2.392124672 1.14585085
PP876 1204 384.80 A 288.96 0.72889014 1.77452984 1.061644896

2 Time at 85% Tmax in minutes unless otherwise noted
Mean temperature during time at 85% Tmax

€ Sample used as unheated control

d Sample used for alkenone degradation analysis

thentic standards with the samples. A mixture of Cg-Cyg n-alkanes plus the ba-androstane re-
covery standard was analyzed with the aliphatic fraction of the samples and used to calculate
a GC-MSD relative response factor for each n-alkane homologue relative to 5a-androstane.
The area ratio of each n-alkane molecule to 5a-androstane was then multiplied by this re-
sponse factor before calculating the concentration by multiplying by the concentration of
ba-androstane in the standard divided by the sample weight (Table B.3). n-Alkane concen-
trations were used to calculate the CPI (odd/even n-alkanes from Cg6—Cs;) and the ADI
(alkane distribution index, Co74Cs1/Cag+Ca9+Cs) (Table 3.2). Here we introduce the ADI
index as a measure of the development of a secondary peak in the n-alkane chain-length
distribution centered on Cyg. Because this secondary peak develops at a slower rate than
the reduction of the CPI or alkenone concentration, an analysis of this change in n-alkane
distribution can help to place further constraints on coseismic temperature rise.

3.3.4 Determining the kinetics of biomarker thermal maturity

The rapid heating of the reactor during our experiments sometimes introduced temper-
ature overshoots that could influence our results. Therefore, temperature data from the

experiments were analyzed to ensure that only high-quality isothermal hydrous pyrolysis
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experiments were used for the determination of the reaction kinetics of alkenone destruction
and the change in n-alkane distribution. Experiments with an initial peak in temperature
that was larger than ~30 °C above the eventual steady-state temperature and longer in dura-
tion than ~350 s were not used in the analysis. Such deviations from isothermal temperature
profiles may have occurred due to factors such as variations in the degree of coupling be-
tween the resistive heaters and the reactor tube and differences in the wrapping of insulation
around the heating apparatus.

After removing non-isothermal experiments, experimental temperatures were determined
by taking the mean of the recorded temperature between the time at which the sample
achieved 85% of its peak temperature at the beginning of the experiment and the time at
which the sample had been cooled down to 85% of its peak temperature at the end of the
experiment. Experimental times are considered to be the duration for which the sample
was heated to the experimental temperature (Figure 3.2b). The reaction rate constant, k,
for isothermal experimental samples was determined by rearranging the following equation

[Lewis, 1993]:

p=1—ec* (3.2)

where p is the fraction reacted in the given experiment relative to a control sample. Though
all experiments were conducted using sediment from RC14-99, we determine the fraction
reacted using control samples from the batch of RC14-99 that was used at the same time as
each experiment. This allows us to examine the thermal effects on the biomarkers without
superimposing signals from differences in the starting biomarker compositions of the batches
or any degradation of the biomarkers resulting from long-term storage at room tempera-
ture (see Section 4.1). Thus, the controls for the high temperature heating experiments
are PP877 (Batch A), PP920 (Batch B), and PP1051 (Batch A+B) for experiment groups
PP854-876, PP913-918, and PP1045, respectively. The controls for the low temperature

heating experiments are PP1285 and PP1361 for the 60 and 100 °C sets, respectively. The
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fraction reacted value is determined by dividing the measured amount of the given biomarker
parameter in each heated sample by the amount in the control sample to obtain the fraction
of the parameter remaining (f). This can then be subtracted from 1 to obtain the fraction

reacted (p =1 — f). We use the experimentally determined p to obtain an expression for k:

_ —in(1—-p)
t

k (3.3)

Experimental values of k£ were calculated using the p values determined for each experi-
mental sample and the time, ¢, of each experiment as described above. Using Arrhenius plots,
we determined the temperature dependence of kinetic parameters for alkenone destruction

and changes in n-alkane distribution by rearranging the Arrhenius equation,

k = Aert (3.4)

to its linear form:

In(k) = In(A) — % « T (3.5)

,where A is the pre-exponential frequency factor (s!), E, is the activation energy (kcal/mol),
R is the gas constant (1.987x107 kcal/K*mol), and 7T is the temperature (K). Using this for-
mulation, —F, /R is the slope and (n(A) is the intercept of the best-fit line to the Arrhenius
plot. Samples with k£ < 0 are excluded from the fit. These values result from uncertainty in
the measurements themselves and only affect samples heated at the lowest temperatures. An
alternative approach involves binning these low temperature experiments and determining
the k value from the slope of a best fit line to the ¢t vs. In(f) values for these experiments
(Figure B.6). This approach yields similar kinetics for these samples. We also exclude sam-
ples PP854 and PP873, which are anomalous for all analyzed biomarkers. This indicates
an inaccurate determination of the experimental temperature, possibly resulting from vari-

ations in packing the sediment into the reactor for early experiments. Error bounds on the
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Arrhenius fits are calculated using a Monte Carlo approach as described in Sheppard et al.
[2015].
3.4 Results

3.4.1 Alkenone and U degradation at room temperature
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Figure 3.3: Alkenone concentration (a), U% values (b), CPI (c), and ADI (d) measured for
each sampled batch of core RC14-99 plotted against the time since the first measurement
of the batch. Batch A is red, Batch B is blue, and Batch C is purple. General trends are
shown with grey arrows and correspond with the trends observed in the thermal alteration of
alkenones (decreasing alkenone concentration and increasing U}, values). n-Alkane indices
do not show a consistent trend. The third extraction of Batch C in all parameters shows the
samples used to calculate analytical uncertainty.

In order to ensure that our estimates of the fractional change in biomarker parame-
ters were not contaminated by a possible signal from inter-batch variability, we measured
biomarker parameters in control unheated samples during each set of experiments. While we
did not observe a consistent inter-batch variability in the biomarker parameters (Figure 3.3),
we found that alkenone parameters (total Cy; concentration and U%) exhibited significant
changes with storage time of the dry sediment on the scale of months to years.

After each sampling of RC14-99 (Batches A, B, and C; Table B.1), the sediment was

crushed and combined in an ashed jar (Section 3.1). For each set of hydrous pyrolysis
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experiments, the source batch was sampled until the sediment from that batch was exhausted,
at which point, RC14-99 was re-sampled to make the next batch. This led to three instances
of sampling Batch A, and two instances each of sampling Batches B and C for unheated
control samples. We also conducted a third sampling of Batch C in which we sampled the
batch seven times in one day. This had the additional benefit of demonstrating the precision
of the biomarker measurements for different aliquots of the same sample.

We observe a systematic decrease in alkenone concentration and a systematic increase in
Ué“; with storage time of the crushed dry sediment at room temperature between measure-
ments made months to years apart in all three batches (Figure 3.3a,b). However, the batches
did not show a systematic decrease in alkenone concentration or increase in U% value as the
core aged over the course of this study (i.e. between Batches A, B, and C on their first
sampling). Based upon these findings, we control for the effect of storage time by using the
control sample analyzed with each group of pyrolysis experiments to normalize our results.

We also measured m-alkane concentrations in the control samples over time (Figure
3.3c,d). While there is some scatter in both the CPI and ADI measured at different times
in Batch C, Batches A and B show fairly stable values for these two parameters. We use the
control sample of the batch that was extracted at the same time as each set of hydrous py-
rolysis experiments to ensure that no potential n-alkane degradation overprints the thermal
maturity signature.

An important additional observation is that repeat analyses of the same ketone fraction
stored in toluene over several years did not show any change in alkenone parameters (Section
3.3). This fraction was stored in the dark at 3 °C (37 °F) when not being analyzed. This
finding indicates that the change in alkenone parameters we observed with dry storage of
crushed sediment is specifically related to either the sediment matrix or storage conditions
and is not a process operating universally during storage of alkenone molecules. Furthermore,
the observations that the initial alkenone parameters for each successive sediment batch did

not systematically change and that the sediment core itself had any alkenones preserved
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indicates that the degradation process is either accelerated or activated by the crushing and
storage of the sediment samples after sampling the core.

3.4.2 Alkenone Destruction

Temperature (°C)
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Figure 3.4: a) Alkenone concentration decreases with increasing temperature, over various
durations. Long experiments (green) were conducted over 2 hours to 4 days. b) Arrhenius
relationship of alkenone destruction showing the natural log of the reaction rate (k) plot-
ted against inverse temperature in K. The linear fit demonstrates a first-order Arrhenius
relationship. A clear difference in the reaction rate-temperature relationship occurs below
120 °C and, thus only experiments 100 °C are used to calculate the kinetic parameters of
alkenone destruction. Hatched points (a) or open points (b) correspond to samples that
exhibited anomalous results for all biomarker parameters are not used in the fit.

Hydrous pyrolysis experiments show that alkenone concentration decreases over short
time periods at high temperatures (Figure 3.4a). Low temperature hydrous pyrolysis ex-
periments conducted at 60 °C demonstrate that there is no measureable change in alkenone
concentration at these temperatures, even over long periods of time (Figure 3.4a). Shorter ex-
periments conducted above 120 °C show significant change in alkenone concentration (Figure
3.4a). Long-duration experiments conducted at 100 °C show a slight decrease in alkenone
concentration; however, the reaction rate calculated for these experiments is lower than
would be predicted from an Arrhenius fit to the higher temperature experiments, implying

a change in mechanism (Figure 3.4b). As a result, the Arrhenius fit for alkenones (Figure
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3.4b) only includes experiments above 120 °C. From this fit, we obtain values for £, and A
of 8.6 kcal/mol and 1.2 s, respectively.
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Figure 3.5: a) UX change (final U% value/initial U% value) is positively correlated with
temperature. b) MK37:2 and MK37:3 concentrations decrease with increasing temperature,
though MK37:3 decreases more dramatically. ¢) Arrhenius relation for MK37:2 and MK37:3.
In ac, hatched (a and b) and hollow points (c) correspond to samples not used in the fit. d)
Examples of heating paths at 300 °C for samples with different initial U?’f; values. Each curve
shows the U values as total alkenone destruction proceeds. At low to moderate alkenone
reaction extents (0 to 0.8), the change in U% is greatest for initial U values near 0.5. At
very high alkenone reaction extents the U% changes are greater for initial UX near zero.

There is also an increasing trend in the proportion of di- to tri-unsaturated alkenones with
higher temperatures and longer duration experiments. We report these changes using the U%

parameter typically used for paleoceanographic reconstruction of sea surface temperatures.

The UL, parameter is defined as:

MK3T7:2

Uk
3T MK37:2+ MK37:3

(3.6)

where MK37:2 and MK37:3 are methyl ketones with 37 C atoms and 2 or 3 unsaturated
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bonds, respectively. In the case of Ué‘“?', the values increase with increasing thermal maturity
(Figure 3.5a). The increase in U% is accompanied by a marked decrease in both the MK37:2
and MK37:3 concentrations (Figure 3.5b). The decrease in the concentration of these two
molecules also becomes most notable at temperatures above ~120 °C. Arrhenius analysis
of MK37:2 and MK37:3 shows that the kinetics of destruction for these individual alkenone
molecules are nearly identical to the kinetics of destruction calculated for the total alkenone
concentrations with £, values for MK37:2 and MK37:3 of 8.57 and 8.67 kcal/mol and A
values of 1.12 and 1.39 s, respectively. However, while the rates for MK37:2 and MK37:3
destruction are similar at lower temperatures, the MK37:3 destruction rate increases more at
higher temperatures leading to greater destruction and an increase in the U% value (Figure
3.5b). As the rate of U:f; change will depend upon the relative concentrations of MK37:2
and MK37:3 initially present in the sediment (Figure 3.5d), it is more appropriate to use the
individual kinetics of each alkenone molecule to interpret change in U§7/ values for samples
that have a different starting U% value from our sample material (see Section B.3 for more
details).

3.4.3 n-Alkane Distribution

There are significant changes in the distribution of n-alkanes in our experiments (Figures
3.6a and 3.7a) as the biogenic signature in the long-chain n-alkane distributions of the
unheated sediment are overprinted. We see a decrease in the odd/even preference in the long-
chain n-alkanes and increasing amounts of mid-chain n-alkanes with no odd/even preference
(Figure B.5). We examine two particular parameters that capture different trends in this
distribution change. First, we focus on the Carbon Preference Index (CPI), which is defined
as the ratio between the odd chain length and even chain length n-alkanes from Cos—C35. We
see a decrease in CPI with increasing temperature, beginning at temperatures of ~120 °C
(Figure 3.6a). We determine the kinetics of reduction in CPI using an Arrhenius analysis,
fitting experiments above 120 °C, and obtain values for E, and A of 8.08 kcal/mol and

0.302 s71, respectively (Figure 3.6b). While the decrease in odd/even preference is directly
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measured in the CPI, we also observe the creation of low CPI long-chain n-alkanes with a
maximum at Cog unlike the pre-existing n-alkanes in the sample, which have a maximum at
Cs1. To track the combined effects of this process, we also introduce the n-alkane distribution

index (ADI), defined as:

Cor + Csy

ADI = (3.7)
Cog + Cag + Csg
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Figure 3.6: a) CPI (odd/even chain length n-Alkanes Co6—Css) for hydrous pyrolysis experi-
ments presented in this study. We see a decrease in CPI with increasing temperature, though
the decrease is mostly apparent above 120 °C. b) Arrhenius relation for the CPI degradation
rate constants. Hatched (a) and hollow (b) points correspond to samples not used in fit.

This parameter describes a relative change in long chain-length n-alkanes in the range
of Cog to Czg with respect to the surrounding chain lengths with increasing temperature
(Figure 3.7c). The ADI decreases as low CPI n-alkanes are created during heating and the
average n-alkane chain length decreases, leading to the creation of n-alkanes with a maximum
around Cag. The ADI shows a decrease with increasing time and temperature (Figure 3.7b),
predominantly observed at temperatures above 120 °C. However, in this case, the scatter
of the ADI values calculated for individual experiments at 120-135 °C includes one sample

with a slight increase in ADI, indicating that this temperature range is very close to the
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Table 3.3: Kinetic parameters of thermal maturity for biomarkers determined in this study

Biomarker Parameter E (kcal/mol) A (1/s) minimum T (°C)

MK37:2 8.57 1.12 120
MK37:3 8.67 1.39 120
Total alkenone (Cs7) 8.6 1.2 120
CPI 8.08 0.302 120
ADI 7.72 0.052 120

minimum temperature at which reaction might be expected. We determine the values of E,

and A for the thermal alteration of the ADI to be 7.72 kcal/mol and 0.052 s, respectively.
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Figure 3.7: a) Change in the n-alkane distribution index (ADI) with increasing temperature
for hydrous pyrolysis experiments in this study. b) Arrhenius plot for the ADI. ¢) Histograms
of Cy7—C31 n-alkane concentrations, normalized to the sum of Cy7—Csq, for the sample heated
to 340 °C (PP876) and the corresponding control (PP877). Hatched (a) and hollow (b) points
correspond to samples not used in fit.

3.4.4 Sulfur Concentration

Although not the main focus of the work presented here, we note an increase in the
concentration of solvent-extractable elemental sulfur detected in the highest temperature
experiments (Figure B.4). Present as Sg in the solvent extract, this product presumably
reflects breakdown of other sulfur phases in the sediments at high temperature. Further

studies with more high temperature experiments are required to understand the reactions
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occurring and to determine kinetics based on this change (see Section B.4).

3.5 Discussion

3.5.1 Kinetics of biomarker thermal maturity

Our experiments exhibit first-order reaction kinetics whose temperature dependence can
be described by an Arrhenius-type relationship (Figures 3.4-3.7b). We further find that
within experimental uncertainty there is no destruction of alkenones below temperatures of
~60 °C (Figure 3.4a). Our low temperature experiments were run for up to four days to
specifically investigate low temperature reactions. The lack of reaction in our long, 60 °C ex-
periments and the small amount of reaction in the 100 °C experiments is not predicted from
the higher temperature experiments and thus indicates a change in the temperature depen-
dence of the reaction rate at low temperatures. Quantification of this change in temperature
dependence will require an additional suite of experiments.

We also observe differences in the reaction rate of the di- and tri-unsaturated Cs; methyl
ketones. The reaction rate for the tri-unsaturated ketone is slightly greater, especially at
higher temperatures, producing an increase in the U:f; value with reaction extent. Changes in
U could thus provide additional information on alkenone destruction independent of total
alkenone concentration. This could be particularly beneficial as the precision and accuracy
during measurement of the UL, index is better than for the total alkenone concentration
[Section 3.3; Rosell-Melé et al., 2001]. The extent of U% change with heating temperature

(T) and time (¢) also depends upon the initial U% value:

1

Us(t,T) =
1+ [Ul } s e(ka(T)—ks(T))t

(3.8)

k/
37,0

where UL (t) and UX 0 are the final and initial U4, values, respectively, and ko and k3 are the
temperature-dependent reaction rate constants from MK37:2 and MK37:3, respectively (see
Section B.3 for more detail). This relationship allows an estimate of the fractional change in

MK37:2 or MK37:3 in a heated sample by comparing the measured U%, value with an initial

20



U% value.

The only previous work on thermal alkenone destruction we can compare our results
with is Simoneit et al. [1994]. They investigated the destruction of long-chain unsaturated
alkenones in sediments from Middle Valley, in the north of the Juan de Fuca ridge system
(ODP Leg 139). Their hydrous pyrolysis experiments, conducted at temperatures of 200—
350 °C over 24 hours demonstrated complete destruction of alkenones at 250 °C and partial
destruction at 200 °C. Interestingly, they found that the UZ, value decreased from an initial
value of 0.81 to 0.69 in the 200 °C experiment with partial alkenone destruction. We see the
U§7’ value systematically increasing in all of our heated experiments in a manner consistent
with slight differences in the rate constants for the MK37:2 and MK37:3 molecules. At this
point we do not know the reason that the UX value decreased in the Simoneit et al. [1994]
experiments but increased in our experiments. Attack of the double bond positions is one
pathway for alkenone destruction and would favor greater destruction of the tri-unsaturated
molecule as found in our experiments.

While thermal maturity in alkenones is largely expressed as a change in absolute concen-
tration, the thermal maturity of n-alkanes is observed as a change in chain length distribution
(Figure 3.1b). We see a reduction in CPI at temperatures above 120 °C, consistent with
previous observations of the changes in n-alkane chain length distribution [Eglinton et al.,
1988, Simoneit, 1994]. This is indicative of overprinting of the biogenic signature for a
strong preference for odd chain-lengths, derived from plant leaf waxes [Eglinton et al., 1962]
by petrogenic hydrocarbons with a CPI of ~1. The change in n-alkane distribution is also
described by a decrease in the ADI. This parameter is representative of an increase in the
Cas—C3p m-alkane concentration compared to the surrounding chain lengths (Figure 3.7c).
This transition is likely caused by the superimposed effects of the formation of long chain
n-alkanes due to high temperature cracking reactions, the breakdown of these long-chain n-
alkanes to form shorter-chain molecules, and the reduction of odd chain lengths with respect

to even chain lengths (Figure B.5). Because this parameter describes multiple processes, the
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observed change in ADI yields a strong signal with increasing thermal maturity.
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Figure 3.8: a) Arrhenius best-fit line for all compound parameters analyzed in this study.
Methylphenanthrene kinetics (MPI-1) are from Sheppard et al. [2015]. b) Time-temperature
diagram illustrating where 5% reaction occurs in each biomarker parameter. Time-
temperature combinations above these curves should be detectable using these biomarker
heating proxies.

Figure 3.8 shows the Arrhenius relationships for the biomarkers analyzed in this study
(Figure 3.8a) and the predicted time-temperature values for samples that have experienced
5% biomarker reaction. Changes at this scale should be easily detectable given the precision
of our measurements for all biomarker parameters discussed in this study, even with variable
initial biomarker values. Notably, the kinetics of thermal maturity differ significantly between
the alkenones and n-alkanes with the former reacting more quickly at lower temperatures
(Figure 3.8a). Additionally, these kinetic parameters are quite different from those previously
determined for methylphenanthrenes [Sheppard et al., 2015], indicating a higher reaction
rate, but lower temperature sensitivity for biomarkers present in fresh sediments compared
with biomarkers generated as a result of burial heating (Figure 3.8a). These results provide
tantalizing evidence for a dramatic divergence in the kinetics of thermal maturation for
different biomarker parameters. By measuring biomarker parameters with different kinetics
in a heated sample, we gain better constraints on the possible time-temperature combinations
that a sample has experienced.

3.5.2 Application as fault thermometers

We observe significant changes in concentration for marine and terrigenous organic mate-
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rial in short-duration hydrous pyrolysis experiments. This suggests that the thermal maturity
of biomarkers can be used to estimate temperature rise on faults hosted in unaltered marine
sediments. This is particularly of interest for shallow faults active in subduction zones where
large amounts of shallow slip can significantly enhance the tsunamigenic potential of a sub-
duction zone margin [Fujii et al., 2011]. In these types of environments, thermal alteration
of biomarkers in unaltered sediments can provide a constraint on coseismic temperature rise,
which, in turn, can help to constrain the coseismic stress conditions that govern the propa-
gation of shallow seismic slip. This is particularly important because subduction zones host
the largest earthquakes due to the large amount of fault area available for slip relative to
other tectonic environments.

The differences in kinetic parameters of thermal maturity in these biomarkers have the po-
tential to provide added constraints on the maximum temperature rise experienced by marine
sediments hosting seismic faults. This is because sediment that has experienced a given time-
temperature history will record different degrees of alteration in the alkenone and n-alkane
parameters. By constraining the degree of alteration of a suite of biomarkers, more precise
estimates of temperature rise can be made than are possible using only one biomarker. By
coupling thermal diffusion models with the kinetics for different biomarkers, a more thorough
understanding of the coseismic temperature rise and subsequent temperature decay during
earthquakes can be achieved. We note that the kinetics of thermal maturation analyzed in
this paper are unlikely to be of use in sediments containing methylphenanthrenes. This is
because, if the sediments are thermally mature enough to contain methylphenanthrenes, the
n-alkanes are likely to have experienced enough thermal alteration to overprint the original
biogenic fingerprint. Thus, in order to use the thermal maturity of n-alkanes to help con-
strain temperature rise on faults in sediments that have experienced burial heating, more
experiments on sediment with a more thermally mature initial composition are required.

In order to accurately assess thermal alteration in sediments, it is of utmost importance to

fully characterize the initial biomarker parameters of the unheated protolith. Concentrations
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of different biomarkers can vary widely over short stratigraphic intervals and throughout the
oceans. Therefore it is important to establish the natural variability within the protolith in
order to confidently attribute anomalies to temperature rise. In settings such as subduction
zones, initial concentrations can be measured in input sediments on the downgoing plate, as
long as independent parameters are used to assess stratigraphic equivalence. For instance,
Rabinowitz et al. [2015] showed that trace element geochemistry could be used to correlate
stratigraphy between a core through the Japan trench décollement and a nearby reference
core.

3.5.3 Implications of biomarker degradation for sediment sampling and storage

Our observations of significant alteration in alkenone concentration and n-alkane distri-
bution with heating suggest that care should be taken when using samples that may have
experienced heating (e.g. around faults or hydrothermal areas) for paleoclimatological stud-
ies. Notably, we observe a systematic difference in the kinetics of thermal maturity between
alkenone molecules with different levels of unsaturation. This implies that samples that have
been exposed to heating above 120 °C, even for a short amount of time, such as might be
expected in a faulted or hydrothermal environment, should not be relied upon for representa-
tive U:f; values. However, our long-duration experiments at 60 °C show no significant change
in U§7' value. We therefore suggest that samples exposed to such low levels of heating might
retain their biogenic U§7/ values although extrapolation to thousands or millions of years of
burial includes large uncertainties from our kinetic parameters. In addition, the observed
changes in the distribution of n-alkane chain lengths due to heating support the conclusion
that care should be taken when interpreting n-alkane data in hydrothermal and faulted areas
[e.g. Simoneit, 1994].

We further observe the degradation of alkenone concentration and U, values in our
crushed control samples stored at room temperature over the span of months to years.
Because the batches each sampled slightly different parts of core RC14-99 6b, variation in

both initial alkenone concentration and UL is to be expected between starting materials.
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If alkenone degradation were taking place while the samples were still in the core, this
trend might be expected to dominate any climatically-controlled inter-batch variability. In
addition, if alkenone degradation in the cores was as dramatic as we observe in our control
sediment, we might expect all alkenones to be destroyed in cores that have been stored at
room temperatures for decades (as has core RC14-99, which was recovered in 1972). Since
the presence of alkenones in our experimental sediment belies this possibility, we suggest that
the degradation of alkenones in our control samples over the span of months to years occurred
post-crushing and could be related to the resultant higher surface area of the sediment that
is exposed to atmospheric conditions (e.g. higher oxidation).

3.6 Conclusions

Hydrous pyrolysis experiments conducted on Western Pacific sediment allow us to de-
termine the kinetics of thermal maturation for a suite of biomarker parameters found in
marine sediments, specifically alkenone destruction, increase in U;lf; and transformation of
the plant-wax n-alkane signature to a petrogenic distribution observed as reductions in the
CPI and ADI (n-alkane distribution index, Ca7;+Cg;/(Cag+Ca9+Csp)). These thermal mat-
uration kinetics can be used to constrain the temperature rise on seismic faults in marine
environments and allow for a more thorough understanding of shallow seismic slip.
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4 Multiple shallow seismic faults in the region of

the 2011 Tohoku-oki Earthquake

Co-authors: H. M. Savage and P. J. Polissar

Shallow slip during earthquakes is a major contributor to seismic hazard near large fault
zones, but the fault structures and material properties that control shallow seismic slip
remain poorly understood. IODP Expedition 343 JFAST drilled through a patch of the
Japan Trench that hosted ~50 m of slip during the M,9.1 2011 Tohoku-oki earthquake.
We use new biomarker thermal maturity indicators to identify faults in the JFAST core
that have experienced considerable frictional heating, as can only occur during earthquake
slip. We find that seismic slip has occurred on multiple faults and that any of these faults
could have hosted the Tohoku-oki earthquake. Multiple structures could have hosted great
earthquakes, implying that seismic slip to the trench is common. These faults occur in
a range of lithologies suggesting that material properties do not predict the likelihood of

shallow slip or seismic hazards in these settings.

4.1 Introduction and Background

During large earthquakes, coseismic slip can propagate to the seafloor and increase the
severity of seismic hazards such as earthquake-related tsunamis. The 2011 March 11, M,,9.1
Tohoku-oki earthquake and tsunami was one such event, leading to significant damage in

Japan, claiming the lives of over 15,000 people, and causing a meltdown in the Fukushima
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Daiichi nuclear power plant. The tsunami was enhanced by an estimated ~50 m of shal-
low earthquake slip that propagated to the subduction trench [Fujiwara et al., 2011, Ito
et al., 2011, Sun et al., 2017]. On-shore tsunami deposits suggest that at least three similar
tsunamis have occurred along this section of the Japan Trench with ~1000 yr periodicity
[Minoura et al., 2001]. The conditions that allow for shallow coseismic slip are not well
understood, but could depend on such parameters as interactions with the seafloor [Kozdon
and Dunham, 2013], frictional properties of the fault zone [Ikari et al., 2015b,a], and dynamic
weakening of faults during rapid slip [Noda and Lapusta, 2013, Remitti et al., 2015, Ujiie
et al., 2013]. Improving earthquake risk assessment requires understanding the conditions
that favor earthquake propagation to the trench. We use indicators in the rock record to
determine which faults within the Japan Trench experienced earthquake slip to understand

how shallow slip relates to the composition and material properties of subducting sediments.

Unit A1

shear bands
within Unit C2

Vﬂﬂz 1

Unit A3
Unit A2

Wby

ik

fault and damage
within Unit B

¢ JFAST
B) & CO019E

fault between
Unit A2 and Unit D

Figure 4.1: Location and structure of the JFAST core. A) Map of the Japan Trench with
the rupture area of the Tohoku earthquake indicated in grey and the JFAST and Site 436
sites identified by red dots. Grey shades indicate regions of equal slip [Ammon et al., 2011,
Chester et al., 2013, Fujii et al., 2011, Koper et al., 2011]. B) Schematic structure of the
accretionary prism recovered at JFAST and C) close-up of JFAST stratigraphy [Rabinowitz
et al., 2015] and pictures of typical structures from regions of the core where damage has
been observed.

JFAST drilled through the subduction zone where the maximum slip occurred during the

Tohoku-oki earthquake in order to study the physical controls on shallow seismic slip [Figure
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4.1; Chester et al., 2013]. Structural and stratigraphic characterizations show that the core
is comprised of mudstones and pelagic clays offset by several faults [Keren and Kirkpatrick,
2016a, Kirkpatrick et al., 2015, Rabinowitz et al., 2015]. Previous studies showed that one of
these faults, a frictionally weak, thin pelagic clay with a penetrative scaly fabric (implying
significant shear strain), was a major structural boundary. Furthermore, structural features
also significantly change from one side of this fault to the other [Kirkpatrick et al., 2015,
Yang et al., 2013]. Because of these observations, most of the 3.2 km displacement—including
earthquakes—are thought to localize on this fault [Chester et al., 2013, Ikari et al., 2015b,a,
Kirkpatrick et al., 2015, Remitti et al., 2015, Sawai et al., 2014, Ujiie et al., 2013, Yang
et al., 2013]. However, other faults are present and form part of the subduction interface
fault system, and it can be difficult to determine whether a fault has failed seismically or
aseismically based on structural evidence alone.

The most robust, independent indication of seismic slip is temperature rise along the fault,
because significant temperature rise only occurs during rapid slip (earthquakes) [Lachen-
bruch, 1986]. The JFAST expedition installed a temperature observatory to monitor the
decay of the heat signal produced by frictional heating during the Tohoku-oki earthquake.
The measured temperature decay suggests a low integrated coseismic shear stress of 0.54
MPa [Fulton et al., 2013]. However, the temperature anomaly cannot constrain which fault
slipped during the earthquake, as there are several closely-spaced faults within the bottom
15 m of the core [Keren and Kirkpatrick, 2016a, Kirkpatrick et al., 2015, Rabinowitz et al.,
2015].

A different way to determine whether the faults at JFAST have experienced elevated
temperatures is to look for evidence in the fault rocks themselves. Thermal alteration inside
or near the fault relative to the surrounding rock provides evidence of earthquake slip.
Although this approach cannot pinpoint any particular earthquake, it places a bound on the
highest temperature the fault has ever achieved during earthquake slip. Therefore, thermal

alteration can determine which faults are candidates for hosting the Tohoku-oki or other
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earthquakes. Co-seismic temperature rise in subduction zones has been investigated through
a variety of methods including vitrinite reflectance, pseudotachylyte, and clay alteration
[Rowe et al., 2005, Sakaguchi et al., 2011, Schleicher et al., 2015]. Here, we analyze the
thermal maturity of organic matter (molecular biomarkers) in and around faults within
the JFAST core. Biomarkers experience irreversible chemical alterations that permanently
record the maximum temperature experienced by a fault hosted in sedimentary sequences,
and have been used to detect heating signatures in ancient faults [Polissar et al., 2011,
Savage et al., 2014]. Recent work establishing reaction kinetics of biomarkers at seismic
timescales allows for estimates of peak temperature in the JFAST faults [Rabinowitz et al.,
2017, Sheppard et al., 2015]. For slip zone thicknesses of centimeters or less, only earthquakes
generate heat fast enough to create a significant temperature rise that is recorded by the
biomarkers discussed here.

4.2 Biomarkers in sediments at the Japan Trench

Here we use coccolithophore algae-sourced long-chain unsaturated ketones [herein alkenones;
Lawrence et al., 2007] and plant-derived long-chain n-alkane distributions to identify heating
anomalies. Cs; alkenones document heating through decreasing concentrations (Cs; total)
and preferential destruction of molecules with three double bonds compared to those with
two double bonds (measured by increasing UX values)[Rabinowitz et al., 2017, Simoneit
et al., 1994]. n-Alkane distributions document heating through a decreasing carbon prefer-
ence index (CPI) and by the addition of a secondary peak described by a decrease in the
alkane distribution index [ADI, see Section C.1.2 for more detail; Rabinowitz et al., 2017].
We use kinetic parameters for these reactions [Rabinowitz et al., 2017] to infer peak tem-
peratures from reaction extent. Dissimilar kinetic parameters between reactions mean that
we will not observe identical alteration in all biomarker parameters. These differences help

constrain temperature rise during earthquake slip.
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4.3 Methods

4.3.1 Analysis of biomarker reaction in the JFAST core

Biomarker concentrations were measured following the methods of Rabinowitz et al.
[2017] (see Section C.1.2 for more details). In order to use biomarker thermal maturity to
reconstruct temperature rise, it is necessary to establish the initial values of the biomarker
parameters before the rocks were faulted. We compare JFAST samples to a reference core
on the incoming plate (DSDP Site 436; Figure 4.1A) in order to determine the level of
biomarker alteration. Stratigraphic units were correlated between the two cores using trace
element concentrations [Rabinowitz et al., 2015], which provide a way to accurately finger-
print units with similar lithologies and ages on a sample-by-sample basis. This stratigraphy
demonstrates the presence of age gaps and inversions interpreted as faults at various depths
[Figure 4.1C, see Section C.2.1 for more detail; Rabinowitz et al., 2015], and is consistent
with faults identified through biostratigraphic age inversions and damage structures in the
JFAST core [Keren and Kirkpatrick, 2016a, Kirkpatrick et al., 2015].

We analyzed the fractional change of Cs; total, U§7’, CPI and ADI in JFAST samples
compared to Site 436 as the ratio of the biomarker measured in a JFAST sample to the initial
value measured from Site 436: 7 = Pyrast/Pinitiar- For each JFAST sample, the distribution
of r is calculated from the distribution of P, values measured in the corresponding
sedimentary unit at Site 436 (Figures C.1-C.5). The range in r for each sample (Figure
4.2) therefore reflects the range of Pjuq at Site 436. Seismically active faults that have
experienced frictional heating are determined by values of r less than one for Cs; total,
CPI, and ADI and values of 7 greater than one for U}, (Figure 4.2). We take the most
conservative approach to identifying heating signatures: for each biomarker parameter, only
JFAST samples that express anomalies relative to all of the possible P, values in the

corresponding sedimentary unit of Site 436 are considered to reflect a temperature rise.
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Figure 4.2: Biomarker indicators of heating in the JFAST core. Fraction remaining (i.e. not
reacted) of (A)Cs; total, (B)UL, (C)CPI, and (D)ADI are shown for samples in the plate
boundary region. Box plots indicate the median and quartiles of the fraction remaining
value (relative to the range of biomarker values measured in the corresponding sedimentary
unit at Site 436) while, minimum and maximum values are indicated by the whiskers, and
outliers by dots. (E) Sample locations shown as stars, colored red when biomarker anomalies
indicate heating. Grey shading indicates JFAST core recovery. Stratigraphy is shown with
previously observed faults indicated [Keren and Kirkpatrick, 2016a, Kirkpatrick et al., 2015,
Rabinowitz et al., 2015], those with biomarker anomalies discussed in the main text in red,
and those with samples close enough to observe an anomaly, but lacking one, in black.
Sample PP948, represented by hollow symbols in (A) and (E), had alkenone concentrations
below the quantification limit and thus, the magnitude of the heating anomaly is poorly
constrained.

4.3.2 Modeling of temperature rise on faults

An integrated time-temperature history of a shear-heating event is used to analyze
biomarker alteration in natural fault samples [Carslaw and Jaeger, 1959]. In order to ac-
count for the duration of elevated temperatures with distance from the observed faults, a
fault-heating model with heat diffusing away from a fault using constant slip velocity, fault
half-width, shear stress and sedimentary material properties was implemented [Lachenbruch,

1936]:
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where 6 is the temperature rise (K), a is the fault half-width (m), 7 is shear stress on the
fault (Pa), ¢ is time (s), t* is the slip duration (s), x is the distance from the center of the
fault (m), p is the density of the material (kg/m?), c is the heat capacity (J/kgK), v is the
slip velocity (m/s), i2er fc is the second integral of the complementary error function, and
« is the thermal diffusivity (m?/s). Absolute temperature is determined by adding 0 to the
background temperature, which is 20 °C (293.15 K) at ~700 mbsf at the JFAST site [Fulton
et al., 2013].

We note that this model does not take into account possible advection of fluids, which
have been inferred to play an important role in heat and stress transfer during earthquakes
in some fault zones, indicated by the presence of features such as mineral veining around
faults [Robert et al., 1995, Sibson et al., 1988, 1975, Yamaguchi et al., 2011]. However, such
features are not observed in the JFAST core [Keren and Kirkpatrick, 2016a, Kirkpatrick
et al., 2015]. Here, we model the temperature rise generated only through seismic slip and
heat diffusion on observed structures in the JFAST core. Advection of hydrothermal fluids
immediately after seismic slip would serve to transport heat to further distances from the
slipping surface. For samples within the slipping zone, this effect would lower the measurable
peak temperature at the slip surface and Equation 4.1 would underestimate the temperature
rise. Conversely, for samples outside of the slipping zone, hydrothermal fluid advection would

yield a higher temperature further from the fault compared with values attained through
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diffusion alone. In these cases, Equation 4.1 would overestimate the peak temperature at
the center of the slipping zone.
Biomarker thermal alteration is modeled using an expanded form of the Arrhenius equa-

tion:

f=1—exp|—At*xexp(—FE,/RT)] (4.2)

where f is the fraction reacted (1 —7), A is the pre-exponential frequency factor (s!), E, is
the activation energy (J/mol), R is the gas constant (8.314 J/K*mol), and 7" is temperature
(K). Note that for U¥ which increases with increasing thermal maturity, f is calculated as:

k/
1 - U37,JFAST

fU;f; =1- (4.3)

1=U. §7I,Site436

The time-temperature history for earthquakes with slip ranging from 5-150 m (here-
after referred to as event slip) is calculated using Equation 4.1, for a range of possible fault
half-widths consistent with structural observations for each sample. These time-temperature
histories are used, along with the experimentally determined kinetic parameters of biomarker
thermal maturation [Rabinowitz et al., 2017], to calculate the predicted fraction of the
biomarkers reacted for each half-width (Equation 4.2). Additionally, model f values are cal-
culated for scenarios incorporating multiple earthquakes. For each half-width, we consider
100 random samples from the joint probability distribution of F,/A pairs that define the
uncertainty envelope on the biomarker kinetic parameters determined by Rabinowitz et al.
[2017] and consider the degree of biomarker alteration resulting from repeated earthquakes.
Calculated f values are compared to the measured f values for all biomarker parameters in
each sample (e.g. Figure 4.3). For each biomarker parameter in a sample there is a range of
measured f values due to the variation in the initial, unaltered values within each sedimen-
tary unit at Site 436. A comparison between the model and the data is considered successful
if the calculated f values at a given distance from the slipping zone (4 /- half of the width

of the sample) fall between the minimum and maximum measured f values for all biomarker
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constraints in that sample. We note that, due to the large uncertainty in the Ué“; kinetics,

/ . . . . .
UY provides the least constraint of the four biomarker parameters investigated here.
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Figure 4.3: Example of a coupled fault heating and biomarker thermal maturity model for
sample PP945 assuming a fault half-width of 0.0026 m and slip of 50 m for 2 earthquakes.
Slip zone half-width is indicated by a black vertical line. (A) Temperature rise at a series of
time-steps during (red) and after (blue) seismic slip at 1 m/s. The minimum temperature
of biomarker reaction, 120 °C, is indicated by the light blue bar. (B) Fractions reacted
with distance from the fault calculated for Cs; total, U, CPI, and ADI are represented
by colored curves. Corresponding sample measurements are indicated by translucent boxes
in the appropriate color. The height of the boxes indicates the range of measured fractions
reacted for each biomarker and the width of the boxes indicates the sample width used in the
model. Note that because this sample was not within the candidate slip zone, only distances
further than the slip zone width are considered. (C) Schematic of model set-up. Candidate
slipping zone is indicated by bold dashed lines. Half-width is half of the thickness of the
candidate slipping zone (indicated by thin dotted line). Grey box represents the sampled
region of core with the minimum and maximum distances from the slipping zone indicated
with arrows. This model fit is considered a success because all modeled biomarker fraction
reacted values are within the range of measured biomarker fraction reacted values at an
allowable distance from the fault structure. The probability that this sample can be fit by
two 50 m slip events is determined by dividing the total number of successful model fits
(considering the uncertainty in biomarker parameters) by the total number of models.

We run a forward model for each sample that exhibits a biomarker anomaly (i.e. samples
indicated in red in Figure 4.2) to determine potential temperature rise from large earth-
quakes. As stated above, temperature rise is a function of shear stress and slip during the

earthquake, as well as fault parameters such as fault thickness and rock properties. Param-

eters used to model temperature rise are taken from observations of the JFAST borehole

64



and sediments (Figure 4.4), along with measurements of material properties from the core
[Fulton et al., 2013]. Shear stress on the fault is 0.54 MPa, as determined by JFAST bore-
hole temperature decay measurements reported by Fulton et al. [2013]. Estimates of shallow
displacement during the Tohoku earthquake range from ~40-80 m [Sun et al., 2017]. Our
models span this range and, in addition, we explore displacements from 5-150 m to deter-
mine the minimum event slip required to replicate the observed biomarker anomalies, with
models conducted every 10 m displacement. Sediment density p=1850 kg/m3, thermal dif-
fusivity a=3.92x10"" m?/s and heat capacity ¢c=1515.7 J/kg*K are based on measurements
of samples recovered at JFAST [Chester et al., 2012, Fulton et al., 2013].

We use core observations to find potential fault structures close to each anomalous
biomarker sample. In some cases, samples were taken directly from a fault structure (samples
PP829 and 948), while other samples were from intact sections of the core. In those cases,
we measure the distance to the closest potential fault and compare our thermal maturity to
an equivalent off-fault distance in our model (e.g. Figure 4.3).

Active slipping thickness can be difficult to ascertain from structure data alone because
there are often multiple localized slip zones within a fault and determining whether these
represent separate events or if the whole fault was active during a particular earthquake is
impossible. For samples associated with a clear structure with easily definable boundaries,
the maximum thickness of the slipping zone is considered to be the thickness of that structure.
To further constrain fault width, we establish a minimum and maximum possible thickness
based on known temperature limits of two reactions. The biomarkers used in this study do
not react at short timescales (minutes—days) below 120 °C [Rabinowitz et al., 2017], which
limits the maximum half-width of the fault due to the lower temperature rise with thicker
half-widths (e.g. anq: = 4.8 cm assuming a displacement of 50 m; Figure 4.5A). Furthermore,
forward models indicate that a Tohoku-sized earthquake would not generate temperature
above 120 °C at distances more than ~5 cm from the fault, which is an important constraint

for off-fault anomalies (Figure 4.5B). On the hotter end of the spectrum, we expect smectite
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clay to amorphize at 900 °C [Noyan et al., 2008, Spray, 1992]. Amorphous clay material
is not observed in the JFAST core, suggesting temperatures remained below 900 °C for all
samples and limiting the minimum fault half-widths because of the larger temperature rise
with thinner half-widths (e.g. @i, = 0.26 cm for 50 m displacement; Figure 4.5A). By

placing the modeled events along faults of different thicknesses, we get a range of possible

temperature rises (e.g. Figure 4.6).
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Figure 4.4: Temperature rise on faults modeled was constrained by core observations. Sample
locations are indicated with brackets and sample numbers. Damage features described in
the supplemental material, as well as the locations of structural whole rounds and core
boundaries are indicated by dotted white lines as well as annotations to the right of the core
pictures [Chester et al., 2012]. The images of Core 17, taken before structural whole rounds
were removed from the core, are courtesy of J. Kirkpatrick.
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Figure 4.5: A) Temperature rise was additionally constrained by the fact that 7,,,, could not
exceed 900 °C, at which point smectite should become amorphous (red shaded region), or be
less than 120 °C, the minimum temperature for the thermal maturation of the biomarkers
considered here (blue shaded region). These temperature bounds put limits on the max-
imum and minimum fault half-widths (a) that could be considered for a given amount of
seismic slip. B) Acceptable distances from the faults were constrained by the distances where
temperatures reach >120 °C at a given fault a (indicated in yellow for 50 m slip).

In addition to the possible range in fault half-widths, we also consider the potential
cumulative biomarker thermal maturity from multiple slip events to explore the possibility
that the fault experienced multiple earthquakes. In the case of multiple slip events, we limit
the total slip on a fault to 3.2 km, based on the palinspastic reconstruction of Chester et al.
[2013]. This gives an end-member situation that all displacement accommodated in this plate
boundary fault zone occurred on one of the faults observed at the JFAST site and gives a
maximum number of events of any given slip for each structure [Keren and Kirkpatrick,
2016a, Kirkpatrick et al., 2015, Rabinowitz et al., 2015]. Clearly, this approximation over-
predicts the maximum number of earthquakes on each structure as no structure analyzed

here or present in unrecovered sections of the JFAST core could have accommodated all 3.2

km of displacement.
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Figure 4.6: (A-G) Results from coupled fault heating and biomarker reaction models, as-
suming 50 m of slip as observed in the Tohoku earthquake and 0.54 MPa coseismic shear
Colored plots show the probability of match-
ing all biomarker constraints with a given fault half width, slipping in a given number of
earthquakes. White areas correspond to half-widths that are either too thin (would yield a
peak temperature above 900 °C) or thicker than the observed fault structure recovered in the
JFAST core. Histograms to the right of each colored plot show the probability of a match for
a range of half-widths (summed across number of earthquakes) with the right-hand y-axis
label showing the corresponding peak temperature.



The probability of a given combination of half-width and number of earthquakes describ-
ing the core observations for each biomarker is taken to be the number of successes divided
by the number of E,/A pairs considered (100*the number of distances interrogated between
the slipping zone and sample). The joint probability of a match for the given combination of
@, Nearthquake, and distance from the fault is found by multiplying the probabilities of each
individual biomarker. These constraints are used to generate a series of probability distri-
butions of different a, Negringuake combinations for a given amount of slip for each sample
(e.g. Figure 4.6 for 50 m of slip). The probability of each event slip is then evaluated to
determine whether earthquakes of that size could be hosted on the structure (Figure C.10).
For example, the 50 m symbols on Figure 4.7 are the maximum values from the probability
distribution for each fault in Figure 4.6.

We are interested in the smallest earthquake that could cumulatively generate the biomarker
signal, given the constraint of 3.2 km total slip. The probability of a given event slip is taken
to be the maximum of the probabilities calculated for all (a, Negrthquake) Pairs, and the small-
est earthquake allowed by the data is taken to be the minimum event slip with a non-zero
probability (Figure 4.7). This is a minimum constraint as it is the lowest slip magnitude
where some of the models match the data within the uncertainty in the measured f and
uncertainty in the biomarker kinetics. Larger events could also have generated the observed
biomarker signature on these faults as evidenced by the non-zero probabilities (fraction of
models matching the data) as event slip continues to increase (Figure 4.7). We emphasize
that in the models presented here, the probability describes the half-width and number of

earthquakes that have the most successful matches for the four biomarker parameters.
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Figure 4.7: (A-G) Maximum probability (model matches to all four biomarker fraction re-
acted observations/ Nga * Nyistances, Where Ny is the number of kinetic E and A rate pairs
sampled from their joint uncertainty distribution and Nysances 18 the number of distances
away from the center of the slipping zone that were sampled) for a range of slip magnitudes.
Blue bars indicate the range of displacements that have been modeled for the Tohoku-oki
earthquake [Sun et al., 2017] and red arrows indicate the minimum required slip magnitudes
for each sample, corresponding to the minimum slip magnitude values plotted in Figure 4.8.
The lowest slip magnitude where the probability is greater than zero determines the mini-
mum required slip magnitude to explain the biomarker measurements given their uncertainty
and the uncertainty of the biomarker kinetics. Higher slip magnitudes are allowed but not

required.
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4.4 Results and Discussion

Our biomarker analysis indicates that seven of the faults we sampled have experienced
shear heating (Figure 4.2). Some faults only show a heating anomaly in the alkenone proxies,
due to the faster reaction rates of alkenones compared to n-alkanes [Rabinowitz et al., 2017].
The pelagic clay layer has initial alkenone concentrations below the detection limit, so the
temperature anomaly there is based solely on the n-alkanes. Of the two pelagic clay samples
that we analyzed, only one exhibited biomarker anomalies, implying that seismic slip in this

weak layer took place only on select localized features [Kirkpatrick et al., 2015].
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Figure 4.8: Model results. (A) Minimum number of 50 m slip events and (B) minimum
event slip (assuming 3.2 km total displacement) required to generate the observed biomarker
anomalies in JFAST samples. (C) Samples, core recovery, and stratigraphy as in Figure 4.2E.
Red symbols in all plots indicate features with clear biomarker anomalies. Hollow symbols
represent sample PP948, which has alkenone concentrations below the quantification limit
and is not modeled.
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4.5 Biomarker constraints on earthquakes hosted in the Japan Trench

Because biomarker thermal maturity is cumulative, it reflects the entire seismic history
of the fault. This limits our ability to query specific earthquakes, but we can constrain
two important questions: 1) Which faults recovered at JFAST could have hosted the 2011
Tohoku-oki earthquake? and 2) What is the minimum earthquake size needed to generate the
biomarker signal on each fault? To answer these questions, we couple a forward model of heat
generation and dissipation from earthquake slip [Carslaw and Jaeger, 1959, Lachenbruch,
1986] with the laboratory-derived reaction kinetics for the relevant biomarkers [Rabinowitz
et al., 2017].

To determine which fault could have hosted the Tohoku-oki earthquake, we forward
model an event with 50 m slip and the shear stress inferred from the JFAST temperature
observatory [Fulton et al., 2013]. Given the possible range of fault thicknesses and distances
from samples, we find that any of the faults with heating anomalies could have hosted at
least one such event (Figure 4.8A). In several cases, additional 50 m earthquakes are required
on a structure to generate the observed biomarker signal.

Although every fault could have hosted the Tohoku-oki earthquake, multiple smaller
events could generate a similar biomarker anomaly on some faults (Figures 4.7, C.6). To
constrain an absolute minimum earthquake size that could produce the observed biomarker
anomalies, we model multiple earthquakes at a given slip magnitude up to the number
of earthquakes that sum to 3.2 km of total displacement on the plate boundary [Chester
et al., 2013]. If the observed anomalies cannot be reproduced by these earthquakes, the
fault represented by that sample must have experienced at least one earthquake of larger
magnitude (Table C.7, Figure 4.7). We model increasingly large earthquakes until we find a
minimum event slip capable of reproducing the observed biomarker anomaly (Figure 4.8B).
This does not mean that larger earthquakes did not occur on these faults, just that they are
not required by our data. The minimum slip is useful because it means that earthquakes at or

below this size do not significantly contribute to the cumulative biomarker thermal maturity
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of the fault. We find that for all modeled samples, the biomarker signal is generated by

earthquakes with more than 10 m of slip [~M8 and larger; Wells and Coppersmith, 1994].

u~0.5
v-weakening

’ |:| u~0.3
v-neutral

I:I p~0.2
v-strengthening

0 20 40
Min. event slip (m)

Figure 4.9: Schematic of the structure recovered at JFAST [Kirkpatrick et al., 2015, Rabi-
nowitz et al., 2015]. Faults with biomarker thermal anomalies are colored by the minimum
slip magnitude capable of reproducing the observations within the allowable amount of slip
[Chester et al., 2013]. Dotted line represents PP948, which was not modeled. Shades of grey
represent variations in steady-state frictional behavior [Ikari et al., 2015b].

Despite significant variations in steady-state friction and velocity dependence, seismic
faults are present in almost all of the major lithologies [Figure 4.9; Ikari et al., 2015b]. Our
findings suggest that while steady-state friction parameters are important for understand-
ing earthquake nucleation, they are not a strong control for shallow rupture propagation.
Instead, similarities in dynamic friction (<0.1) measured on two JFAST lithologies suggest
that dynamic friction controls shallow rupture propagation [Sawai et al., 2014]. Additional
high velocity experiments on all lithologies are needed to test this hypothesis. At present,
paleoseismic history, rather than lithology, is the best predictor of shallow seismic hazard in
subduction zones.

4.6 Conclusions

Our biomarker analysis highlights the frequency with which large earthquakes propagate

into the shallow reaches of the subduction zone. However, there are little other available
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data on seismic history of faults through shallow subduction zones [Sakaguchi et al., 2011]
to determine whether the degree of shallow seismic activity at the Japan plate boundary
is unusual. Future drilling projects at other subduction zones are necessary to determine
whether shallow, tsunamigenic seismic slip is common over geologic time.
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5 Frictional behavior of input sediments to the Hiku-

rangi trench

Co-authors: H. M. Savage, R.M. Skarbek, M.J. Ikari, B.M. Carpenter, and C. Collettini

The Hikurangi subduction zone hosts shallow slow slip events, possibly extending to the
seafloor. The mechanisms allowing for this slow seismic behavior are poorly understood, but
are likely a function of the frictional properties of the down-going seafloor sediments. We
conducted friction experiments at a range of effective stresses, temperatures, and velocities
on the incoming sediments to the Hikurangi subduction zone to determine whether their
frictional properties would promote SSEs. We find that the material frictionally weakens
and becomes less velocity strengthening over our effective stress range, whereas temperature
has only a small effect on both friction and frictional stability. At plate-rate velocities,
the sediment exhibits velocity-weakening behavior. These results imply that the frictional
properties of the sediment package subducting at Hikurangi could promote slow slip events
at the pressures, temperatures, and strain rates expected along the slab interface up to
10 km depth. The transition to velocity strengthening behavior at faster slip rates could
provide a mechanism for maintaining unstable slip at slow sliding velocities, rather than

accommodating deformation through ordinary earthquakes.

5.1 Introduction

Strain at plate boundaries is accommodated over a wide range of deformation rates,
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ranging from earthquake slip to aseismic creep. Within this spectrum are slow slip events
(SSEs), which last for days to months [Dragert et al., 2001, 2004, Ide et al., 2007, Obara, 2002,
Ozawa et al., 2007, Vallée et al., 2013, Wallace and Beavan, 2010]. SSEs at the Hikurangi
Trench are observed at a range of depths [Wallace et al., 2012, Wallace and Beavan, 2010,
2006], and may play an important role in loading seismogenic fault segments [Hamling and
Wallace, 2015, Tto et al., 2013, Kato et al., 2012]. Along the Hikurangi subduction zone of
the North Island of New Zealand, shallow SSEs extend to depths <2 km [Wallace et al., 2016]
and show a complex relationship with regional deformation, by triggering slip on upper plate
faults [Hamling and Wallace, 2015] and being triggered by nearby earthquakes [Wallace et al.,
2017]. In addition, the region in which shallow SSEs occur has hosted historical tsunami
earthquakes, which are characterized by anomalously long source durations, slightly slower
rupture velocities, and a relatively large amount of low-frequency energy relative to their
moment [Bell et al., 2014]. These interactions between slow slip and damaging tectonic
earthquakes highlight the importance of investigating the mechanisms that control SSEs.
Previous work has suggested that shallow slow slip at Hikurangi (<15 km depth) and
other subduction zones might be promoted by elevated pore fluid pressures through a reduc-
tion in critical stiffness [Bell et al., 2010, Ellis et al., 2015, Kitajima and Saffer, 2012, Saffer
and Tobin, 2011]. In addition, slow slip could be facilitated by a transition from frictionally
stable to frictionally unstable or conditionally stable behavior through a reduction in the
rate-and-state friction parameter a — b [Ikari et al., 2013b, 2009]. Slow slip can be promoted
over conventional earthquake slip by an increase in this @ — b parameter (indicating a tran-
sition towards frictional stability) with increasing sliding velocity. The transition between
positive and negative values of a — b is known as the cutoff velocity [Shibazaki and Iio, 2003,
Shibazaki and Shimamoto, 2007]. However, the shallow parts of subduction zones tend to
be dominated by clays, which often exhibit frictionally stable behavior and are frequently
invoked as the cause of the up-dip limit of the seismogenic zone where earthquakes nucle-

ate [Hyndman et al., 1997, Tkari and Saffer, 2011, Saffer and Marone, 2003, Scholz, 1998].
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One important consideration is that subducting sediments often include multiple lithologies,
which can impact frictional transitions along the slab interface. Sediments with a range of
compositions (including clays and carbonates) become more frictionally unstable at higher
pressure and temperature conditions relevant to shallow subduction zone environments [den
Hartog et al., 2012b,a, Ikari et al., 2013b, Kurzawski et al., 2016], possibly allowing for the
nucleation of unstable slip such as SSEs. It is important to characterize the frictional behav-
ior of sediments subducting at individual subduction zones in order to assess the role that
pressure, temperature and composition have in controlling the occurrence of SSEs.

In this work, we investigate the frictional behavior of sediment on the incoming plate of
the Hikurangi trough [ODP Site 1124; Figure 5.1A; Plank, 2014]. The upper portion of the
incoming stratigraphy consists of a mixture of carbonate and clay, and is likely similar to the
material within the shallow subduction zone. Through velocity-stepping friction experiments
at a range of effective stresses and temperatures, as well as new plate-rate experiments [Ikari
et al., 2015a, Tkari and Kopf, 2017], we investigate the strength and stability of this mixed
sedimentary material. We find that the frictional properties of the subducting sediments at
Hikurangi could promote instability.

5.2 Background

5.2.1 Slow slip in subduction zones

Slow slip in subduction zones was first observed in Japan and Cascadia [Dragert et al.,
2001, Rogers and Dragert, 2003, Sacks et al., 1978] and has now been observed in many
subduction zones around the world [Ide et al., 2007, Ito et al., 2013, Ito and Obara, 2006,
Kato et al., 2012, Obara, 2002, Ozawa et al., 2007, Peng and Gomberg, 2010, Vallée et al.,
2013, Wallace et al., 2012, Wallace and Beavan, 2006]. Slow slip can be detected geodetically,
or inferred through seismically detectable events such as non-volcanic tremor [Dragert et al.,
2004, Obara and Hirose, 2006, Payero et al., 2008, Wallace and Beavan, 2010, Walter et al.,
2011]. Here, we use the term slow slip to include all of these observations where a fault

slips at subseismic velocities in a frictionally unstable manner. Slow slip is often observed
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at the down-dip limit of the seismogenic zone [Peng and Gomberg, 2010]. It is generally
interpreted as a frictionally transitional deformation behavior and is often associated with
high pore fluid pressures [Saffer and Wallace, 2015]. Although harder to detect because of
observational constraints, SSEs also occur above and within the seismogenic zone [Araki
et al., 2017, Outerbridge et al., 2010, Wallace et al., 2016, Wallace and Beavan, 2010]. SSEs
have been observed as precursors to large megathrust earthquakes, such as the 2001 M,,8.4
Peru earthquake [Melbourne and Webb, 2002], the 2011 M,,9.1 Tohoku-oki earthquake [Ito

et al., 2013, Kato et al., 2012], and the 2014 M,7.3 Papanoa earthquake [Radiguet et al.,

2016], demonstrating that they may increase stress within seismogenic zones in some cases.
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Figure 5.1: A) Map of New Zealand with location of the Hikurangi trench just east of the
North Island. The samples used in this study come from ODP Site 1124. B) XRD analysis
shows the sediment is composed of 43.3% calcite, 20% phyllosilicates (~10% expandable
clays shown in green), 8.8% quartz, and 15% feldspar.

5.2.2 Hikurangi shallow slow slip and Stratigraphy of Leg 181 ODP Site 1124

The Hikurangi margin can be divided into the northern and southern sections based
both on geomorphic character and observed slip behavior. The convergence rate of the
Australian and Pacific Plates also varies dramatically along the trench from a rate of ~6
cm/y in the north, decreasing to ~2 cm/y in the south [Wallace et al., 2004]. Geodetic
coupling varies along the margin as well. The northern section is coupled only to ~5-15 km
depth while the southern section is coupled to ~30 km depth [Wallace et al., 2004, Wallace

and Beavan, 2010]. The Hikurangi margin exhibits a paucity of large magnitude megathrust
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earthquakes. The largest recorded earthquakes at Hikurangi are two ~M,7 events that
occurred near Gisborne in 1947 [Bell et al., 2014, Doser and Webb, 2003], and there are no
M,,>7.2 earthquakes in the historic record [Wallace et al., 2009]. Instead, the deformation
seems to be largely accommodated through SSEs with an equivalent seismic moment release
of ~M,, 6.5-7 [Wallace et al., 2012]. These SSEs fall into two main categories. Deep SSEs
occur in the southern section at depths of ~20-70 km, have durations of ~1.5 years, and
repeat times of ~5 years [Wallace et al., 2012, Wallace and Beavan, 2006]. Shallow SSEs
have been observed in the northern section of the margin, where a relatively thin sedimentary
package (~1 km as compared to ~3—6 km in the south) is subducting [Davy and Wood, 1994,
Lewis et al., 1998]. Shallow SSEs with durations of 1-3 weeks occur approximately every 2
years and may propagate to the trench [Beavan et al., 2007, Douglas et al., 2005, Wallace
et al., 2016, 2012, Wallace and Beavan, 2010]. These events appear to be correlated with
zones of elevated pore fluid pressure [Bell et al., 2010, Ellis et al., 2015, Saffer and Wallace,
2015]. However, it remains unclear whether elevated pore pressure in the shallow portions
of a subduction zone is the only mechanism required for slow slip.

One important factor to constrain in order to understand slow slip is the frictional be-
havior of the sediments subducting at the Hikurangi Trench. Extensive work on subduction
zone sediments has highlighted the evolution of frictional behavior at a continuum of slip
rates [Buijze et al., 2017, Faulkner et al., 2011, Tkari et al., 2013a, 2011a, Tkari and Kopf,
2017, Ikari et al., 2015a, Ujiie et al., 2013]. At a distance of ~500 km, ODP Site 1124 is
the closest existing ocean drill core through the input sediments to the Hikurangi Trench.
Core recovered at this site extends to a depth of ~470 mbsf and is composed primarily of
nanofossil ooze interlayered with clays and mudstones [Carter et al., 2000]. The complete
stratigraphy was determined using both this core and nearby DSDP Site 317, which pen-
etrated to basement. The entire subducting sediment package is composed of ~800 m of
nanofossil ooze (~40 wt% carbonate), underlain by ~800 m of volcaniclastics [Plank, 2014].

In this study, we investigate the frictional behavior of carbonate-rich sediments sampled from
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cores at Site 1124.

5.2.3 Friction of subducting sediments

Because clays are common in subducting sediments and fault gouges, there has been
considerable effort towards characterizing clay friction [Vrolijk and Van Der Pluijm, 1999].
Studies consistently show that clays are weaker than most other materials, exhibiting friction
() values significantly below Byerlee friction (z = 0.6) in both dry and wet experiments
[Bird, 1984, Byerlee, 1978, Faulkner et al., 2011, Tkari et al., 2009, Moore and Lockner, 2007,
Morrow et al., 1992, Saffer et al., 2012, 2001, Saffer and Marone, 2003, Tembe et al., 2010].
Unlike many other materials, which maintain a pressure dependent shear strength (constant
friction coefficient) through upper crustal conditions, some clays exhibit a rapid reduction
in friction at relatively low effective stresses of ~30 MPa, indicating a transition to pressure
independent shear strength with increasing effective stress [Bird, 1984, Saffer et al., 2001,
Saffer and Marone, 2003|. Fabric development in clays is also thought to lead to a decrease
in steady-state frictional strength [Collettini et al., 2009, Ikari et al., 2011b, Ikari and Saffer,
2011].

Clays not only control the steady-state friction of a fault zone, but the fault stability as
well. Frictional stability can be described using a rate-and-state friction framework, where
friction is a function of both sliding velocity and time. With a step in velocity, there is an
immediate change in friction described as the direct effect, a, followed by the evolution of y to
a new steady-state value, known as the evolution effect, b. Materials are considered velocity-
strengthening, or frictionally stable, if @ — b >0 and velocity-weakening if a — b <0 [Marone,
1998]. When a material is both velocity-weakening and its surroundings are sufficiently
compliant, it is considered frictionally unstable. Clays are largely velocity-strengthening,
though at low effective stresses and low sliding velocities they can be velocity-weakening
[Tkari et al., 2013a, Saffer et al., 2001, Saffer and Marone, 2003]. At high effective stresses,
steady-state friction coefficients of clays decrease, and they become consistently velocity-

strengthening over the range of velocities used in conventional velocity-stepping experiments
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[0.1-200 pm/s; Saffer and Marone, 2003]. These observations are attributed to a reduction
in b with increasing effective stress.

While the behavior of clay-rich material at a range of effective stress conditions relevant
to shallow subduction zones is well established, fewer studies have focused on the effects
of temperature on clay friction. Talc strength decreases with increasing temperature and
exhibits only velocity strengthening behavior over a range of ~100-400 °C [Moore and Lock-
ner, 2008]. Deformation experiments on illite at a range of temperatures have shown an
increase in frictional strength with increasing temperature, and the occurrence of velocity-
weakening behavior at temperatures ranging from 250-350 °C, as well as unstable stick-slip
behavior at temperatures from 200-600 °C [den Hartog et al., 2012b,a, Moore et al., 1989,
1986, 1983]. Finally, recent plate-rate experiments show that gouge with high clay contents
from a range of plate boundary faults exhibits velocity-weakening behavior and stick-slip in-
stabilities when deformed at sliding velocities of 5-25 cm/yr, similar to tectonic plate rates
[Tkari et al., 2015b, Tkari and Kopf, 2017].

Although clay has been shown to control frictional strength of materials, even when it
does not constitute a large fraction of the bulk volume of the material [Giorgetti et al.,
2015, Ikari et al., 2007, Moore and Lockner, 2011, Niemeijer et al., 2010, Saffer and Marone,
2003, Tembe et al., 2010], calcite is the largest mineral component of the sediment in the
Hikurangi samples (Figure 5.1B) and has distinct frictional properties. Experiments on pure
calcite and calcite-rich sediment from the Middle America trench offshore Costa Rica show
that carbonate-rich sediment exhibits unstable, stick-slip, velocity-weakening behavior at a
range of pressures and temperatures relevant to shallow subduction zone environments [Ikari
et al., 2013b, Kurzawski et al., 2016, Verberne et al., 2014b,a, 2013]. Because of this velocity-
weakening frictional behavior, the presence of calcite in a subducting sediment package could
imply the potential for seismogenic conditions at shallow depths. While the carbonate-rich
Costa Rica sediments had some phyllosilicates, the weight percent was much smaller than the

Hikurangi sediments. More work on natural clay mixtures is necessary to fully characterize
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range of possible frictional behaviors.

5.3 Methods

Friction experiments were conducted on input sediments from ODP Site 1124C (Figure
5.1A; Cores 20-5W, 21-5W, and 22-5W, 0-18 c¢cm). Sediment from the cores was crushed
and sieved to a grain size of <125 pm in order to homogenize the experimental gouge. The
homogenized gouge was measured using XRD and was composed of 43.3 wt% calcite, 20
wt% phyllosilicates, 15.1 wt% feldspar, and 8.8 wt% quartz [Figure 5.1B; Vogt et al., 2002].
Experiments were conducted using a brine approximating the composition of seawater, made
by combining 35 g of sea salt with 1 L of distilled water. Using a pore fluid composition that
reflects natural compositions is essential because pore fluid composition can have dramatic
effects on the deformation behavior of gouge. This is particularly true for calcite-rich gouge
which has been shown to exhibit higher rates of pressure solution when deformed with NaCl
brine compared with pure water [Zhang and Spiers, 2005].

Friction experiments were conducted on three deformation apparatus to test the range
of stresses, temperatures, and velocities expected along the Hikurangi slab interface. By
using multiple deformation apparatus, we are able to investigate a wider range of these
conditions than is available on any one apparatus. In addition, interlab comparisons confirm
that reported friction values are consistent, and that lab variability such as jacketing and
piston friction in different apparatus is accurately accounted for. Low effective stress (oesy)
experiments (o.rf = 1-25 MPa) were conducted on the biaxial deformation apparatus at the
Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome while higher o.¢ (0e5f = 25~
150 MPa) and elevated temperature experiments were conducted on the triaxial deformation
apparatus at the Lamont-Doherty Earth Observatory (LDEO) in New York. Further direct
shear experiments (plate-rate experiments) were conducted at the University of Bremen to
test the frictional behavior of the gouge at plate convergence rates of ~5.3 cm/yr (1.68

nm/s).
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Table 5.1: Friction experiments conducted on gouge from ODP Site 1124. Note that in
biaxial deformation experiments, normal stress is independently controlled while in triaxial
deformation experiments, normal stress is a function of the controlled confining pressure
and the measured axial stress. Depths were calculated assuming a pressure gradient of 25
MPa/km less the hydrostatic pressure of 10 MPa/km.

Experiment Apparatus Depth on (BRAVA, slow) P. (BRAVA, triax) Py T, mean T, std Velocity steps
Number Apparatus (km) (MPa) (MPa) (MPa) (°C) (°C) (pm/s)
1205 BRAVA 0.067 0.8 0.7 0.5 20 — 1-300
i206 BRAVA 0.33 4 2 1 20 —_— 1-300
i207 BRAVA 1.67 16 10 1 20 — 1-300
B628 plate-rate 0.67 10 — — 20 — 0.0017-0.0051
T035 LDEO Triax 10 — 165 12 106.69 3.93 1.41-42.43
TO036 LDEO Triax 7 — 115 10 73.35 3.54 1.41-42.43
TO037 LDEO Triax 5 65 5 47.43 3.15 1.41-141
TO039 LDEO Triax 165 15 20 1.41-141
T040 LDEO Triax —_— —_— 165 15 73.26 3.78 1.41-141
T041 LDEO Triax —_— —_— 115 10 20 —_— 1.41-141
T042 LDEO Triax R R 65 5 20 R 1.41-141
T044 LDEO Triax 5 R 65 5 47.96 3.33 1.41-141
T045 LDEO Triax 2 — 25 1 20 e 1.41-141
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Figure 5.2: Sample configurations for the three apparatus used in this study (A, C, E) as well
as friction vs. displacement plotted for each apparatus (B, D, F). Friction curves are labeled
with the experimental effective stress. F) Only room temperature triaxial experiments are
plotted here for clarity. Effective stress values indicated for the triaxial experiments are mean
effective stress during the experiment (Table D.2). Note that the amount of displacement
achieved in BRAVA is significantly greater than the other experiments.
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5.3.1 Biaxial Deformation Experiments

Biaxial deformation experiments were conducted on the Brittle Rock deformAtion Ver-
satile Apparatus (BRAVA) at INGV in a double-direct shear configuration [Figure 5.2A
Collettini et al., 2014]. Horizontal and vertical forces were measured using stainless steel
load cells with £0.03 kN resolution. Displacements were measured using LVDTs with £0.1
pm resolution. Data was recorded at 10 kHz and down sampled to 1-1000 Hz depending on
the shearing velocity. Gouge was sandwiched in two layers between three grooved forcing
blocks in ~6 mm thick layers. This assembly was then jacketed in a rubber jacket to iso-
late the gouge from the confining fluid during the experiment. The jacketed assembly was
placed in the pressure vessel and an initial normal stress of ~1 MPa was applied to hold
the assembly in place. The vessel was then sealed and a confining pressure of ~0.5 MPa
was applied by pumping silicone oil into the pressure vessel. Pore fluid pressure was then
applied to ~0.25 MPa. Confining pressure (P.), normal stress (oy), and pore fluid pressure
(P,) were then raised in parallel to the experimental values. After the experimental values
of P., on, and P, were attained, the sample was allowed to equilibrate for ~1 h as the gouge
layer compacted. After this, the central forcing block was driven downward at a rate of
10 pm/s for a run-in of ~5 mm to achieve a steady-state friction. Due to the significant
contribution of phyllosilicates in the gouge material, the samples exhibited significant strain
weakening throughout the course of the experiments, so steady-state was taken to be the
point at which friction began following a constant linear trend (Figure 5.2D). After steady-
state was achieved, velocity-stepping tests were conducted at sliding velocities ranging from
1-300 pum/s to test the velocity-dependence of friction. Slide-hold-slide (SHS) tests were
conducted with hold times ranging from 1-1000 s to test the healing rates of the material.

5.3.2 Triaxial Deformation Experiments

High pressure and temperature deformation experiments were conducted on the triaxial
deformation apparatus at LDEO. These experiments were conducted using a 45° sawcut

configuration with 3.5 cm diameter cylindrical stainless steel forcing blocks (Figure 5.2C).
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Gouge was mixed with some brine to create a paste that was then spread in an even ~2.1
mm thick layer on one forcing block using a loading jig. The sample was pre-compressed
between the two forcing blocks for 1 hour in a hydraulic press with an axial load of 4.5 MPa,
yielding a gouge layer ~1.85 mm thick. The sample assembly was then jacketed with an
inner Cu foil jacket to hold the forcing blocks and gouge together throughout the rest of
the loading process. This assembly was then placed within a silicone rubber jacket, which
extended to cover an o-ring on the top end plug as well as an o-ring on the bottom end cap.
The jacket was held in place using stainless steel tourniquets wrapped tightly over these
o-rings in order to create a gas-tight seal around the sample.

Pore fluid pressure was applied through high-pressure tubing through the top stainless
steel end plug and was distributed across the sample surface through five holes in the top
forcing block. Stainless steel frits in the top forcing block prevented gouge from being
extruded into the pore fluid system. A teflon shim was placed between the bottom forcing
block and end cap to reduce the sliding friction between the forcing block and piston interface
during deformation.

The assembly for high temperature experiments included insulating alumina end caps
placed between the forcing blocks and upper end plug and lower end cap. For these exper-
iments, a coiled resistive heater was tightly wrapped around the Si rubber jacket, followed
by a layer of insulation and aluminum foil. The ends of the insulation were held in place
with a layer of self-fusing silicone rubber tape.

This assembly was loaded into the pressure vessel and the piston was advanced until it
hit the bottom forcing block. Confining pressure and pore pressure were applied in parallel,
keeping P, at least 5 MPa higher than P, until the target P, was reached, after which, P, was
raised to the target confining pressure. For high temperature experiments, the temperature
was then increased to the target temperature (Ty;) over the course of 2 h, controlled using
a PID Omega controller which used a J-type thermocouple in contact with the top forcing

block as an input. To account for temperature variations along the length of the sample
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assembly, calibration tests were performed to determine the temperature at the sample
interface relative to the control temperature. For these tests, we monitored the temperature
at the interface between the top and bottom forcing blocks (sample location) while controlling
temperature from the top forcing block (Figure D.1). Reported temperatures (Tqm,) are
corrected to account for this temperature difference to reflect the true temperature at the
gouge layer and are plotted using the mean temperature during the experiment. For room
temperature experiments, samples were allowed to equilibrate at the target FP. and P, for
2 h for consistency. This equilibration time allowed for further compaction prior to the
beginning of the run-in.

After equilibration, the piston was advanced at a rate of 10 ym/s for a run-in of ~1-2
mm. Triaxial experiments consisted of velocity-stepping tests with axial velocities varying
between 1-100 pm/s (velocities on the shear interface varying between 1.414-141.4 pm/s).
Displacement during experiments was measured using an external LVDT. Axial load was
measured using an external load cell with a resolution of 0.2 MPa and was corrected for
pressure-dependent piston friction (Figure D.2). Confining pressure was decreased by servo
control throughout the experiment to account for the decrease in contact area with increasing
displacement [He et al., 2006]. In this way, normal stress was held nearly constant. Due
to the 45° sawcut configuration, normal stress (oy) and shear stress (7) during experiments

were calculated as

P.
A (5.1)
2
and
o1 — PC
= 5.2
r= (52)

where o7 is the measured axial stress. Friction (1 = 7/0) was corrected for jacket strength by
subtracting the displacement-dependent frictional strength of the assembly jacket. Multiple

jacket strength tests indicated that the displacement-dependent jacket strength increases
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with increasing confining pressure, but is insensitive to temperature. Displacement in all
figures reflects the elastic-corrected displacement along the shear surface (45° to the measured
axial displacement). We note that, due to the 45° sawcut configuration, normal stress is
a function of axial load, which necessarily changes during velocity steps. The change in
effective stress during all velocity steps in this study was <1 MPa. We more fully discuss
the implications of this normal stress step in Section 5.3.4.

5.3.3 Plate-rate Deformation Experiments

Plate-rate experiments were conducted in order to test the frictional behavior of the
gouge at near plate-rates using a Giesa RSH direct shear apparatus (Figure 5.2B). Gouge
was mixed with water to create a paste, which was placed into the sample cell and cold
pressed in a 25 mm diameter, 30 mm height cylinder. These experiments were conducted
at room temperature and saturated with seawater, but no controlled pore fluid pressure was
applied. Normal stress was applied using a vertical ram with resolution of 0.15 kPa. After
initial application of 10 MPa normal stress, the sample was allowed to compact overnight
(~18 h). Pore fluid remained in communication with the sample through stainless steel frits
in the bottom plate with the top plate in communication with the atmosphere. During this
time, it is assumed that pore fluid pressure dissipates, and o.s is taken to be equivalent to
the applied stress.

Run-in began after the compaction rate, determined as the change in distance between the
top and bottom forcing block, became negligible. Initial run-in was achieved by displacing
the top plate relative to the bottom plate at a sliding velocity of 10 um/s. After steady-state
friction was achieved, the slip velocity was decreased to 1.68 nm/s (equivalent to 5.3 cm/yr
as observed at Hikurangi), followed by a subsequent velocity step to 5 nm/s. Shear stress

was monitored using a horizontal load cell with resolution of 0.3 kPa.
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5.3.4 Determining rate-and-state friction parameters

Friction () was determined as the ratio of shear stress to effective stress:

T T
e g 5-3
s — (5.3)

Velocity-dependence of friction is described as a—b, where a and b are dimensionless constants
determined through analysis of velocity-step data. Velocity-steps in the biaxial experiments
(BRAVA and the plate-rate experiments) were analyzed using the rate-and-state friction

formulation, where friction is described as:

V Vobh Vol
— l — b b 4
ol M0+an(%>+ 1(D01>+ Q(ch) (5 )

and the state variable can be defined as

db 5 Vo
bt ] — 5.9
dt Dcl,2 ( )
or
d; - \ Vo
2o _ 17 .
dt D12 " <Dcl,2) (5.6)

where g1 is the friction coefficient prior to a velocity-step, Vj and V' are the sliding velocities
prior to and after the velocity-step, respectively (um/s), 6; and 6y are the state parameters
(s), and D, and D,y are the critical slip distance (um) [Dieterich, 1979, Marone, 1998, Ruina,
1983]. These parameters were determined using a least-squares iterative inversion [Table D.1;
Reinen and Weeks, 1993]. We model velocity steps using the Dieterich (aging; Equation 5.5)
for the BRAVA and plate-rate experiments and both the Dieterich (aging; Equation 5.5) and
Ruina (slip; Equation 5.6) state evolution laws for the triaxial experiments. However, fits
yield indistinguishable results (e.g. Figure D.3) and we report RSF parameters determined

using the Dieterich law.
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In the triaxial deformation experiments, due to the sample geometry, o.rs changes with
a velocity step. Because of this, velocity-dependence of friction in these experiments was
modeled using an alternative evolution of the state variable that takes into account changing
normal stress during the velocity steps [Hong and Marone, 2005, Linker and Dieterich, 1992,
Perfettini et al., 2001]:
¢ . VO abdo ATt/o

dt D, bodt’ @ In(o/o9) (57)

where « is the normalized frictional response to a step in normal stress. Typically, a normal
stress step is considered to have a similar effect as a velocity step, with an increase in
normal stress causing an increase in shear stress, which decays to a new steady-state value.
Both modeling and experimental studies have shown that « is limited to a value between
0 and steady-state friction, puss, after the velocity step or change in oy [Hong and Marone,
2005, Perfettini et al., 2001]. Thus, for each velocity step, we determined the parameters
a, b, and D, assuming the end member cases where a=0 and a=p,s. The changes in o.s
during the velocity steps in our experiments are <1 MPa, and, thus, lower than is normally
considered in normal stress stepping experiments and not expected to strongly influence the
results reported here. Indeed, for all velocity steps in this study, while RSF parameters
determined under these two bounding conditions vary slightly, a — b values determined with
the two approaches are indistinguishable (Figure D.3, Table D.1) and we plot only the values
obtained using the a=0 case.

5.4 Results

Performing friction experiments on multiple apparatuses affords us the opportunity, not
only to access a wider range of deformation conditions, but also to compare results across
labs. We find that friction values measured at comparable o.; conditions in the different
apparatus are consistent. The plate-rate experiment, conducted at o.r;=10 MPa, has a

friction coefficient of ~0.4 and falls well within the range of friction coefficients measured
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in the BRAVA experiments, which were conducted at o.;;=1-25 MPa (Figure 5.3A). One
overlapping experiment conducted in the triaxial apparatus at o.s; ~26 MPa shows a fric-
tion coefficient that is comparable to the o.fr=25 MPa BRAVA experiment (Figure 5.3A).
The BRAVA friction coefficient is found to be slightly higher than the value measured in
the triaxial deformation apparatus. However, friction steadily decreased throughout the
BRAVA experiments (Figure 5.2D), suggesting an evolution with increasing fabric develop-
ment towards a lower steady-state friction coefficient. The gouge layers in the triaxial and
plate-rate experiments samples, on the other hand, were much thinner (~1.85 mm in triaxial
and sliding along a surface between two forcing blocks in the plate rate experiments). This
thinner shearing layer yields a higher shear strain at much shorter displacements, providing
an opportunity for the alignment of clay layers prior to shearing as evidenced by the lack of
strain weakening in these experiments.

5.4.1 Effect of effective stress on friction and velocity dependence

Our data show that friction and velocity-dependence vary as a function of effective stress
(Figures 5.3A,B). This is apparent from initial observations of the friction data for exper-
iments conducted on the three apparatus (Figure 5.2). Friction values in the lower stress
experiments conducted on BRAVA are highest (up to ~0.57 for the 1 MPa experiment),
and show significant strain weakening, with friction decreasing by 0.0068 to 0.0106 /mm
displacement. The plate-rate experiment conducted at o.f;=10 MPa shows a friction coef-
ficient of 0.4, which is constant with displacement. High effective stress experiments show
overall lower friction coefficients (<0.3).

Velocity-dependence of friction shows a similar pattern, with values decreasing as a func-
tion of effective stress (Figure 5.3B). High effective stress experiments also show less scatter
in a—b values than lower effective stress experiments. We highlight that the plate-rate exper-
iments, conducted at the relatively low effective stress of 10 MPa, show velocity-weakening
behavior at sliding velocities <1 pm/s (Figure 5.3B). This observation, combined with the

fact that a — b decreases with increasing o.s¢, leads us to hypothesize that at plate-rate
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velocities and higher o.¢¢, the gouge would have mostly velocity-weakening behavior.
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Figure 5.3: A) Friction (p) and B) a — b plotted against effective stress (o.ff) for room
temperature experiments with insets also showing high temperature experiments for com-
pleteness. Different symbols represent experiments conducted on different apparatus (xs for
BRAVA, squares for slow experiments, and circles for triax experiments). Symbols represent
the median friction value with error bars showing the range of friction values observed (A)
and the range of a— b values for all velocity steps in a given experiment (B). In (A), grey dots
represent data from experiments on pure smectite from Saffer and Marone [2003]. At room
temperature, both friction and a — b decrease with increasing effective stress. C) Friction
and D) a — b plotted against temperature for triaxial experiments, with color representing
effective stress as indicated. Note a slight positive correlation between both p and a — b and
temperature.

5.4.2 Effect of temperature on friction and velocity dependence

The temperatures relevant in the shallow portion of the Hikurangi subduction zone have
a much smaller impact than o,y on friction and frictional stability. Experiments conducted
at elevated temperatures show higher friction coefficients than those conducted at the same
oesp and lower temperature (Figure 5.3C). However, this trend becomes less pronounced for
higher effective stress experiments. Similarly, we see a slight increase in a — b with increasing

temperature (Figure 5.3D), though for the highest stress experiments, this trend is much
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less pronounced.

5.4.3 Effect of sliding velocity on velocity dependence

Sliding velocity has a strong effect on velocity dependence at low effective stresses (Figure
5.4). At o.sp=1 MPa, a — b ranges from 0.008 for the 1-3 pm/s velocity step to 0.023 for
the 100-300 pum/s velocity step. At higher effective stresses of 525 MPa, a — b remains
more constant over the range of velocities tested, with values from 0.003-0.011, though the
trend of increasing a — b with increasing sliding velocity is still apparent. In the ~26 MPa
experiment conducted on the triaxial apparatus, a — b values are close to those observed in
the 25 MPa experiment on BRAVA, though two points are slightly lower, and there is no
clear velocity dependence (Figure 5.4). In the plate-rate experiments, conducted at o.r=10
MPa, we see a transition to velocity-weakening behavior below an up-step velocity of ~1

um/s (Figure 5.4).
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Figure 5.4: Velocity-dependence as a function of up-step velocity. Effective stress as indi-
cated. A clear trend towards increasing a — b values with higher sliding velocity is seen in
the lowest effective stress experiments (BRAVA). The lowest a — b values are seen in the
plate-rate experiment, conducted at 10 MPa. The approximate range in sliding velocities
[Saffer and Wallace, 2015] at the Hikurangi subduction zone is indicated by the grey bar.
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5.4.4 Variation in RSF Parameters

0.02

§ A B
© 0.01% ;
3 Q ® x BRAVA
0 . ' . g 6 . M Plate-rate
@ Triax (a=0)
Temp (A, C, E)
0.01 C D 20°C
' X 50°C
g Q 100°C
e @ o 8 o
< e 80839 s g o
001§ o, (C,D,F)
T
150-165 MPa
i |
150 E F
-~ i
& 50 =
§ x \\ \\ \\
é 04§ X R X
[$)
= Y " ? o 8 e
()
18 K, g 6 ¢
50

0 100 200 0 100
o_. (MPa) Temperature (°C)

Figure 5.5: Rate-and-state friction parameters as a function of effective stress (A, C, and E)
and temperature (B, D, and F). A) a values decrease with increasing effective stress and B)
show a slight increase with increasing temperature. C) b values are more variable in the low
stress experiments with values hovering around 0 for the high effective stress experiments
and D) no clear trend as a function of temperature. E) D, values show no significant trend
with effective stress or F') temperature. C) Plotted b values in the BRAVA and plate-rate
experiments represent by + by. E) D. in the BRAVA and plate-rate experiments, black
symbols represents D.; + D.o. Note that the scale of the y-axis changes above the axis break
in the D, plots (E and F).

We see a systematic decrease with increasing effective stress in a values, as well as a slight

increase with increasing temperature (Figure 5.5A B). In all experiments conducted in this
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study, we see mostly low values of b with no clear trend as a function of effective stress or
temperature (Figure 5.5C,D). Scatter in b appears to decrease with increasing effective stress,
implying a diminishing impact of changing sliding velocity on the b value with increasing
effective stress. A similar pattern is seen in D, with no clear trend as a function of effective
stress or temperature (Figure 5.5E.F).

5.4.5 Experimental SSEs
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Figure 5.6: Slow slip events observed in the plate-rate experiment, zoomed in from Figure
5.2D. In both events, the final stress drop is ~0.02 MPa. A) In SSE 1, shear stress drops
by ~0.01 for the ~20 h at a higher steady state 7. B) In SSE 2, shear stress drops by a
total of ~0.02 MPa during the ~20 h at elevated stress in two events with ~0.01 MPa stress
drop. C) Displacement in SSE 1 shows a decrease in slip accumulation at the beginning and
an increase in slip accumulation at the end of the slip event. D) In SSE 2, a slip deficit is
accumulated during the initial shear stress accumulation. Slip is accumulated during each
stress drop during this slip event. E and F) During both SSEs, a peak in slip velocity is
observed at the time of final stress drop.

Two slow slip events are observed in B628 (Figure 5.2D). The first SSE begins with an
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accumulation of stress, accompanied by a reduction in slip velocity along the sample (Figure
5.6A, E). A slow stress release over ~10 h relieves ~0.01 MPa of stress and is followed by a
relatively fast stress drop (A7) over ~1.5 h which relieves the remaining 0.02 MPa of shear
stress accumulation, yielding a total A7 of ~0.03 MPa. This stress drop is accompanied by
a doubling of the slip velocity from the imposed slip velocity of 1.68 nm/s to 4 nm/s (Figure
6E). The second SSE also begins with an accumulation of shear stress accompanied by a
slip deficit accumulation. In this case, the gradual shear stress reduction is accommodated
largely in two small stress drops of ~0.01 MPa (Figure 5.6B), each accompanied by a small
amount of slip accumulation (Figure 5.6D). The final stress drop occurs over ~2 h and
relieves ~0.02 MPa shear stress. This stress drop is accompanied by another peak in slip
velocity to 4 nm/s (Figure 5.6F).

5.5 Discussion

5.5.1 Mineralogical controls on friction and stability

While the gouge from ODP 1124 used in this study is largely composed of calcite (43 wt%)
with smaller contributions of phyllosilicates (~20 wt%), quartz (~9 wt%), and feldspars (~15
wt%), the low friction coefficients observed in our experiments are most consistent with
previous observations of friction in smectite clay [Morrow et al., 1992, Saffer et al., 2001,
Saffer and Marone, 2003]. This is consistent with previous studies in talc/calcite mixtures
which have demonstrated that the phyllosilicate fraction dominates frictional behavior at talc
contents of at least 20 wt% [Giorgetti et al., 2015]. Most striking is the strong dependence of
friction and frictional stability on effective stress (Figure 5.3A,B). The dramatic reduction in
friction coefficient with increasing effective stress is consistent with previous observations of
the frictional behavior of smectite-rich gouge [Saffer et al., 2001, Saffer and Marone, 2003].
Saffer and Marone [2003] showed that the friction coefficient of pure smectite decreases to
values <0.1 at effective stresses above 30-40 MPa (Figure 5.3A). They suggest two main
mechanisms for this transition, which happens at significantly lower stresses than expected

for most minerals. The first mechanism is that the low friction coefficient is controlled
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by a weak, hydrated interlayer in the clay structure [Bird, 1984]. At higher stresses, this
water could be expelled, leading to locally elevated pore fluid pressures. Alternatively, the
transition to pressure-insensitive creep (indicated by the low friction coefficients measured in
the high effective stress experiments) could be the result of a transition to achieving nearly
full contact between clay grains (real area of contact ~ nominal area of contact) at ~30
MPa. This would be expected to happen at a lower stress for clays than other minerals
as a result of the platy structure of the clays and is supported in our experiments by the
low values of b observed in all high stress experiments (Figure 5.5C). We note that the
evolution in a — b to lower values with increasing effective stress and to higher values with
increasing temperature is driven largely by changes in the direct effect, a. Decreases in a
with increasing effective stress could be the result of more efficient alignment of the clay
fabric, with disruption to that fabric during a velocity step being more dramatic at lower
oers. At higher temperatures, both friction and a —b increase, with the change in a —b driven
by increases in a. The strengthened gouge material at the higher temperatures could exhibit
a more substantial disruption to the fabric upon an up-step in sliding velocity. However,
this effect is minor compared to the reduction in a — b due to o.fs, suggesting that clay
layer alignment is the dominant control on frictional behavior of this sediment at shallow
subduction zone conditions.

We note that our higher stress experiments are all on the triaxial deformation appara-
tus and show overall lower values of i, even for an experiment conducted at an effective
stress within ~1 MPa of the highest stress experiment conducted on BRAVA. This could
be the result of the longer pre-compaction time allowed in the triaxial experiments, which
would lead to a higher state of fabric development in the gouge prior to deformation. Al-
ternatively, the higher strain accommodated in the plate-rate and triaxial experiments due
to the thinner shearing layers could lead to more dramatic fabric development. The inter-
pretation of a fabric-dominated weakening is supported by the strain weakening observed

in the BRAVA experiments throughout deformation (Figure 5.2D). Previous experiments
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have demonstrated that fabric development can be a strong factor in friction reduction for
clay-rich lithologies [Collettini et al., 2009, Ikari et al., 2011b, Tesei et al., 2012]. Low stress
experiments on intact fault samples recovered from the upcoming drilling expedition to the
Hikurangi Trench (IODP Exp. 375) could determine whether these lithologic effects would
serve to lower the friction in the shallowest sediments.

5.5.2 Implications for the Hikurangi subduction zone

A° %" | Bl * ¥ %] A

1 EI-U

3 ! x A

ol —e— :33"‘ 2

| S

| o

! 9]

P | X
4_

£ | :

~ —— e <|D

S 5 ! g

L 1 0

o | e

Q @ | o ‘5’_

| (]

L | (V)

! £

10 @— | em® &

! <

I )

l [a)

12 | i

0 02 04 06 O 0.01  0.02
M a-b

Figure 5.7: Frictional strength and stability with depth. A) Friction and B) velocity-
dependence for samples conducted at effective stress and temperature conditions expected
for a given depth in the Hikurangi subduction zone are plotted against depth. We see a
reduction in friction coefficient and in @ — b with increasing depth for traditional velocity-
stepping experiments. The depth extent of the September—October 2014 SSE in Hikurangi
determined by Wallace et al. [2016] is shown to the right. The dotted line represents the
possible extension of this SSE to the trench, though instrumental constraints prevented them
from resolving this shallowest extent.

In Figure 5.7, we plot the friction and velocity-dependence of samples deformed at ef-
fective stress and temperature conditions consistent with the subducting slab at Hikurangi,
assuming stress due to overburden less a hydrostatic pressure gradient and a geotherm of

10 °C/km [McCaffrey et al., 2008]. We see a reduction in friction coefficient and a — b with

increasing depth. We also note that our plate-rate experiments, which showed velocity-
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weakening behavior below 1 um/s, were conducted at 10 MPa, an effective stress below the
frictional fall-off that we observe in the other experiments. Assuming that the trends in
frictional strength and velocity-dependence with o.ss hold true at lower sliding velocities,
this implies velocity-weakening behavior in this gouge deformed at plate-rate velocities at
depths of 2-10 km. However, rate-dependent processes such as pressure solution that could
control frictional behavior [Bos and Spiers, 2001], are likely to be affected by changes in
pressure and temperature. Slow experiments at higher pressure and temperature conditions
are necessary to determine the evolution of u and a — b with increasing depth at plate-rate
velocities.

Our results indicate that shallow slow slip in the Hikurangi Trench could be hosted in
the sedimentary material tested here. At velocities in the range of 1-300 um/s, material
is velocity-strengthening at low stresses and room temperature, with some velocity-neutral
behavior at higher stresses and temperatures, consistent with the occurrence of shallow SSEs
at depths below 2 km [Figure 5.7; Wallace et al., 2017]. This is supported by the dramatic
decrease in frictional strength at higher effective stress conditions, which would facilitate
slip. Though the consistently velocity-strengthening nature of the gouge, particularly at the
shallowest depths, supports the occurrence of aseismic slip in this material, our plate-rate
experiments show that below the cutoff velocity of ~1 pm/s, this lithology is velocity-
weakening (Figure 5.4). This observation is further supported by the occurrence of two
spontaneous SSEs in the plate rate experiment (Figure 5.6). These unstable behaviors at
low effective stress imply that slow slip could extend even to shallower depths within faults
of this composition. We note that elevated temperatures within the range expected for
shallow SSEs at Hikurangi [McCaffrey et al., 2008] do not exert a strong control on either
friction or frictional stability in this material, but the highest temperatures tested here are
modest compared to the temperatures at which velocity-weakening behavior has previously
been observed in clays [den Hartog et al., 2012b,a, Moore et al., 1989, 1986, 1983]. However,

calcite is expected to exhibit velocity-weakening behavior at the highest temperatures tested
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here [Tkari et al., 2013b, Kurzawski et al., 2016, Verberne et al., 2014b,a, 2013]. Therefore,
we suggest it does not control the frictional behavior of sediment subducting at the shallow
portions of the Hikurangi Trench at velocities higher than ~1 pm/s. However, at lower
velocities relevant to SSEs, where mechanisms such as pressure solution might be active,
calcite could play a larger role in deformation style (Figure 5.4).

5.6 Conclusions

Our experiments show that even for a lithology with only 20 wt% phyllosilicate, the clay
fraction of the gouge controls the frictional behavior. We see that frictional strength decreases
dramatically with increasing effective stress, starting at a depth of ~2-3 km, implying low
friction at the depths of shallow SSEs in the Hikurangi subduction zone. At the temperatures
expected in the shallow subduction zone at Hikurangi, temperature does not exert a strong
control on friction or frictional stability. Plate-rate velocities promote velocity-weakening
behavior, even at low stresses and temperatures, and suggest that the sediment subducting
at Hikurangi is capable of hosting SSEs even without fluid overpressure. These experiments
highlight that the normal stress, temperature, and sliding velocities expected in the region of
Hikurangi margin slow slip events hover near velocity-neutral behavior. Small perturbations
in these conditions could push a fault into instability.
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B Appendix B

This appendix includes supplementary materials submitted with Rabinowitz, H. S., Savage, H.
M., & Polissar, P. J. Reaction kinetics of alkenone and n-alkane thermal alteration at seismic

timescales. Geochemistry, Geophysics, Geosystems, 18(1), 204-219.

B.1 Introduction

The supporting information contains descriptions of tests conducted to assess the efficacy of
ASE vs. sonication extractions, a more in-depth description of the Uéfé modeling, and additional
information about the increase in extractable sulfur observed during the heating experiments as well
as supporting figures. In addition, we include data tables with specific sampling locations in RC14-
99, measured concentrations of all molecules discussed in this paper, biomarker parameters for all
molecules measured, and an extended table with kinetic parameters for all biomarker parameters

presented in Figure B.7.

B.2 ASE vs. Sonication Extractions

Due to this studys focus on the effect of heating on the biomarker composition of sediments,
care was taken to avoid heating the sediments in all steps of the procedure aside from the hydrous
pyrolysis experiments. Sonication extractions were initially assumed to provide the lowest chance
of thermally altering sediment during the extraction procedure due to the fact that organic solvents
are maintained at room temperature during the sonication procedure. However, upon re-extracting
sediment using the ASE, it became clear that a significant and variable amount of the long-chain
alkenones were not extracted by sonication (Figure B.1). Initial concerns about the potential
thermal alteration of sediment during ASE extraction (which is regularly performed at an extraction

temperature of 100 °C) led us to perform tests of the extraction methods. Two potential competing
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effects could lead to differences in extraction yield at different extraction temperatures. First, a
higher extraction temperature could lead to a higher yield by dissociating organic molecules from
their sediment matrix more efficiently and increasing solubility. Conversely, a higher extraction
temperature could lead to a lower yield due to the thermal alteration of the molecules during the

extraction process.
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Figure B.1: Alkenone (blue) and n-alkane (red) concentrations obtained through ASE and
sonication extraction techniques. While there is a general trend of larger ASE yields from
samples that had higher sonication yields, some samples exhibited near total extraction
through sonication while some retained over half of their TLE after sonication, prior to ASE
extraction.

The result of these two potential effects was tested by extracting two samples of Batch C
sediment three times using the ASE. The first sequence (PP1294) involved sequentially extracting
one aliquot of the sample first at 100 °C, then at 50 °C, and finally at 100 °C again. This extraction
schedule was designed to test whether the higher extraction temperature (100 °C) would yield the
complete TLE in one extraction or if, in fact, the heated solvent would destroy alkenones, reducing

the total yield. If there was incomplete extraction, there would be organic matter remaining that
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could be extracted at the lower temperature (50 °C) or, if this lower temperature was insufficient
to extract the resistant organic matter, the final 100 °C extraction could yield the remainder of the
organic material. The second sequence (PP1295) involved extracting an aliquot of the sample at 50
°C, followed by another extraction at 50 °C, and finally, an extraction at 100 °C. This extraction
schedule was aimed at testing whether the lower extraction temperature would lead to a higher

yield by causing less thermal alteration of the sediment.
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Figure B.2: The effect of ASE extraction at different temperatures on a) alkenone concen-
tration, b) U%, ¢) CPI and d) ADI was tested by extracting two samples three times with
two different extraction schedules. We find that in all cases, a 50 °C extraction temperature
is insufficient to extract all organic material.

We found that the 100 °C extraction temperature was the more effective extraction temperature,
extracting 100% of the TLE in one extraction for PP1294 (Figure B.2). The second experiment
(PP1295) showed that the 50 °C extractions only provided partial yields. However, upon the
final 100 °C extraction, the remainder of the TLE was extracted. The complete extraction for
PP1295 was confirmed by summing the extracted concentrations for each sequence. These summed
alkenone concentrations showed only a 4.2% difference between the two samples. Ué“% values were
found to vary by ~0.01. These observations imply that, while the 100 °C extraction temperature
does not lead to excess alkenone destruction relative to the 50 °C extraction temperature, the

50 °C extractions provides less effective extraction. Based on these results, we suggest that the
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complete yield of long-chain alkenones from sediments can be obtained by ASE extraction at 100 °C
without thermally altering the extracted organic material. We also find an incomplete extraction
of n-alkanes with sonication (Figure B.1) and find that ASE extraction at 50 and 100 °C yield the

values for CPI and ADI which vary only by 0.29 and 0.044, respectively (Figure B.2).

B.3 UX Modeling

Due to the strong dependence of U%; thermal alteration on the initial U value, we do not use an
Arrhenius analysis to determine the kinetics of thermal alteration of this parameter. The reasons for
this are two-fold. First, we observe a change in Ué“é in our starting material throughout the course of
this study. This change makes a direct calculation of Ué“% kinetics from the experiments uncertain.
Second, such a direct determination of kinetics might suggest that the kinetic parameters calculated
from our experiments could be applied to any heated marine sediment, though our kinetics would
be inapplicable to sediments with a different starting U§7l value. Rather, we suggest that a time-
temperature history for sediment be inferred by using the known initial U:f?/ value and measured
final U?’f; value to determine the relative reaction extent of MK37:2 or MK37:3. Then, the kinetics
of these two molecules can be used to model time-temperature history.

We relate the fractional change of Ué“% to that of its component molecules as follows. We can

re-arrange the equation defining the Ué@l value (Equation 3.6):

, MK37:2
Uk = B.1
T MK37:2+ MK37:3 (B.1)
to define Uéfé in terms of a ratio of MK37:3 to MK37:2
1-UK 1 MK37:3
37 — = (B.2)

Uk Uk MK37:2
We can then solve for the UL value as a function of heating time and temperature using the kinetics

of MK37:2 and MK37:3 destruction:

1 MK37:3gxe ™" 1 MK37:3 ko)t

UE — MK3T7:20%e k2t UF — MK3T: 2

(B.3)

where ko and ks are the reaction rate constants for MK37:2 and MK37:3, respectively, at a given
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temperature as defined in Equation 3.4 (k = Ae(=Fa/ET)) The values for E, and A are those
determined experimentally for each molecule. This equation can be rearranged to derive a function

for the measured U§7' value as a function of heating time in terms of the initial Uéf% value:

1
1+ [ L 1} s elka(T)—ks (1))t

k/
U37

Ul (t,7) = (B4)

This can be compared to the fraction reacted (p) in terms of time (¢) in seconds and temperature
(T) in Kelvin of MK37:2, MK37:3, or Cs7 concentration using the equation for p:
—Eg
p=1—exp(—AteRT) (B.5)

where A is the pre-exponential frequency factor (s!), E, is the activation energy (kcal/mol), R is

the gas constant (1.987*10° kcal/K*mol).
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Figure B.3: The measured U, value of heated sediment depends strongly on the initial U
value of the unheated sediment. Here, we show the variation of measured UL values as a
function of the initial U value (contoured in increments of 0.1 in color on each plot) of the
sediment. This is plotted against the reaction extent of total alkenones (though a similar
plot could be made using the reaction extent of MK37:2 or MK37:3) with each subplot
representing a different heating temperature. This plot can be used to estimate the reaction
extent of a sediment of known (measured) U% if the initial UL value is also known (e.g. from
paleoclimate records providing an estimate of SST at the time of deposition).
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We show the dependence of reaction extent of different measured Ué“% values on initial U?% value
in Figure B.3. Using a plot such as this, the reaction extent of a sediment can be determined
simply by estimating the initial U:,’f; value from a known SST history and measuring the Ué“% value
exhibited by the sediment after it has experienced heating. The reaction extent of MK37:2 or
MK37:3 determined in this way can be used to model a potential time/temperature path for the

sample even if the absolute initial concentrations of the molecules remains unknown.

B.4 Extractable Sulfur
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Figure B.4: We observe a marked increase in extractable Sg in our experiments T > 250 °C
and most notably above 300 °C. Hatched symbols represent points not used in Arrhenius

fits.

We also observe the formation of extractable elemental sulfur, measured as Sg, during our exper-
iments at high temperature (Figure B.4). Below temperatures of ~250 °C, the sulfur concentration
remains at the initial value (measured in the appropriate control sample). Above this temperature,
the sulfur concentration increases by ~1,000-11,000 ng/g. We note that absolute concentrations re-
ported are very uncertain as they are uncorrected for the MSD response. However, relative changes
between samples are robust. Because the dramatic increase in sulfur concentration is most signifi-

cantly observed only in our very highest temperature experiments, we do not determine the kinetic
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parameters for sulfur production here. However, when biologic sources can be ruled out, a dramatic
increase in elemental sulfur concentration in a fault zone relative to that observed in the host rock
could be suggestive of a significant coseismic temperature rise. If such a signal is rapidly removed
through chemical redox reactions (abiotic or biotically mediated) its presence could perhaps be an
indicator of recent heating along the fault surface.

B.5 Additional Figures
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Figure B.5: The distribution of n-alkane chain lengths changes throughout heating. Shorter-
chain lengths (<Css) are produced at all temperatures (a) while longer-chain length n-alkanes
(C31—Cgs5) are consistently produced upon heating, but also show indications of immediate
breakdown to shorter-chain lengths at higher temperatures (b). At higher temperatures,
production of shorter-chain n-alkanes occurs more rapidly, leading to an initial decrease in
longer-chain n-alkane concentration until cracking reactions that produce longer-chain n-
alkanes compensate for this decrease in concentration at longer times. Hatched symbols
represent samples not used in Arrhenius fits.
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Figure B.6: Plots showing the fractional change of biomarkers used in this study with time.
Colors represent temperature bins of 15 °C. Error bars are the propagated uncertainty in
the fractional change that includes the analytical uncertainty of the initial, unheated sample
and the heated sample. Slopes are the rate constants for each temperature bin.
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B.6 Supplemental Tables
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Table B.1: Sampling depths from core RC14-99 6b for hydrous pyrolysis experiments

Batch A, Batch B, Batch C,
sampled 11/13/12 sampled 01/11/13 sampled 01/13/15
Sample depth Size Sample depth Size Sample depth Size
(cm in core) (ce) (cm in core) (cc) (cm in core) (cc)
1285 ) 1280 ) 1244 10
1285 ) 1283 D 1248 )
1290 5 1287 5 1258 5
1300 5 1292 d 1275 5
1305 5 1294 > 1345 10
1305 5 1305 D 1355 5
1310 5 1312 D 1365 10
1315 5 1313 5 1365 5
1317 ) 1314 > 1377 )
1325 5 1322 d 1390 5
1335 5 1323 D 1395 5
1345 ) 1331 ) 1411 10
1350 ) 1332 D 1422 )
1355 ) 1333 d 1435 )
1365 5 1371 d 1447 5
1375 5 1372 > 1454 5
1390 5 1405 D
1405 ) 1415 D
1405 ) 1416 d

1436 >
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Table B.5: Biomarker parameters measured in hydrous pyrolysis experiments, degradation
tests, and ASE tests

Sample # Weight (g) Time (min)b Temp. Sediment Alkenone U\If,; CPI ADI

*unless otherwise (C)e Batch Conc. (C3z7)

noted
Hydrous
Pyrolysis
Experiments
PP877° 4.879 — 20.00 A 1714.22 0.67 4.29 1.34
PP920° 5.006 E— 20.00 B 1516.90 0.70 4.26 1.32
PP1051°¢ 5.027 E— 20.00 A+B 1299.45 0.71 3.90 1.32
PP1285°¢ 2.003 E— 20.00 C 1782.84 0.65 3.55 1.24
PP1361%4 1.94 147 days 20.00 C 1617.22 0.66 3.07 1.19
PP1286 1.936 7290 60.00 C 1801.25 0.65 3.84 1.28
PP1287 1.968 86430 60.00 C 1821.65 0.65 4.07 1.31
PP1288 1.979 345600 60.00 C 1846.12 0.65 4.18 1.32
PP1362 1.983 7269 100.00 C 1513.18 0.66 3.30 1.23
PP1363 1.944 86428 100.00 C 1517.55 0.66 3.49 1.23
PP1364 2.009 345595 100.00 C 1384.86 0.68 3.28 1.23
PP1045 4.701 10713 124.08 A+B 1008.54 0.73 3.55 1.28
PP918 4.969 5246 132.39 B 1345.85 0.70 3.93 1.33
PP873 3.37 1733 134.25 A 1107.48 0.68 3.03 1.20
PP913 4.795 3375 235.57 B 659.05 0.72 1.96 1.01
PP854 5.077 1538 237.38 A 443.17 0.68 2.62 1.23
PPI17 4.419 5027 252.94 B 298.41 0.74 3.09 1.23
PP914 4.455 3236 263.70 B 280.90 0.72 2.28 1.17
PP915 4.639 3161 308.63 B 126.38 0.78 2.32 1.21
PP875 1.905 1336 349.97 A 484.05 0.71 2.39 1.15
PP876 1.121 1204 384.80 A 288.96 0.73 1.77 1.06
Biomarker
Degradation
Tests
PP877° 4.879 E— 20.00 A 1714.22 0.67 4.29 1.34
PP919 5.002 144 days 20.00 A 1653.63 0.69 3.98 1.30
PP1035 4.955 564 days 20.00 A 1114.17 0.71 3.97 1.30
PP920° 5.006 — 20.00 B 1516.90 0.70 4.26 1.32
PP1036 4.964 403 days 20.00 B 1285.29 0.72 4.07 1.35
PP1285° 2.003 — 20.00 C 1782.84 0.65 3.55 1.24
PP1361%4 1.94 147 days 20.00 C 1617.22 0.66 3.07 1.19
PP1959 2.922 496 days 20.00 C 1439.12 0.67 4.00 1.32
PP1960 2.949 496 days 20.00 C 1344.88 0.68 3.90 1.29
PP1961 2.999 496 days 20.00 C 1409.81 0.67 3.94 1.32
PP1962 3.139 496 days 20.00 C 1338.07 0.68 4.04 1.31
PP1963 3.011 496 days 20.00 C 1445.73 0.68 4.02 1.33
PP1964 3.254 496 days 20.00 C 1324.45 0.68 4.05 1.32
PP1965 2.951 496 days 20.00 C 1315.65 0.68 3.99 1.32
ASE Tests
PP1294A - 100.00 C 1871.89 0.65 4.63 1.29
PP1294B 2.305 50.00 0.00 E— E— e
PP1294C 100.00 0.00 E— E— e
PP1295A E— 50.00 C 1313.63 0.65 4.30 1.25
PP1295B 2.137 50.00 87.66 0.68 8.28 1.66
PP1295C 100.00 394.99 0.67 4.17 1.12

2 Time at 85% Tmax in minutes unless otherwise noted
b Mean temperature during time at 85% Tmax

€ Sample used as unheated control

d Sample used for alkenone degradation analysis
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Table B.6: Kinetic parameters of thermal maturity for all biomarkers determined in this
study

Biomarker Parameter E (kcal/mol) A (1/s) T (°C)

alkenone conc. 8.48 1.05 120
(Cs6-Cso)

MK37:2 8.57 1.12 120
MK37:3 8.67 1.39 120
Cs; total 8.6 1.2 120
MK38:2 9.38 2.33 120
MK38:3 10.48 3.83 120
MK38 total 9.29 1.81 120
EK38:2 7.91 0.653 120
EK38:3 8.01 0.716 120
EK38 total 7.93 0.666 120
Csg total 8.22 0.81 120
CPI 8.08 0.302 120
ADI 7.72 0.052 120
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C Appendix C

C.1 Materials and Methods

C.1.1 Samples

We sampled the JFAST core throughout its recovered depth (183-833 mbsf, sample spacing ranging
from 0.7-507 m) with finer sample spacing near the bottom of the core (817-833 mbsf, sample
spacing ranging from 0.12-1.6 m), where multiple faults are present [Chester et al., 2013, Keren and
Kirkpatrick, 2016a, Kirkpatrick et al., 2015, Rabinowitz et al., 2015]. DSDP Site 436 was selected as
a reference for incoming sediments at JFAST due to its proximity to the JFAST site [Chester et al.,
2012]. One of the most important components of the biomarker analysis is determining the initial
biomarker content of the faulted sediments. Analysis of trace elements shows that western Pacific
sedimentary units are broadly consistent over large distances [Rabinowitz et al., 2015]. Therefore,
by correlating the chemostratigraphy between the JFAST and 436 sites, we calibrate the range of

initial organic content for each sedimentary unit.

C.1.2 Quantification of biomarker concentrations

Biomarker concentrations were determined following methods described in Rabinowitz et al.
[2017]. Sediment was freeze dried at a vacuum of 6 Pa and then crushed in a mortar and pestle
that was solvent-rinsed with dichloromethane (DCM) and methanol (MeOH). The total lipid ex-
tract (TLE) was obtained through sonication extraction using a solution of 9:1 DCM:MeOH with

three 15-minute sonications. In order to ensure that all extractable organic material was analyzed,
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a second extraction of the sediment was performed using an Accelerated Solvent Extraction sys-
tem (ASE) following the methods of Rabinowitz et al. [2017], again with an extraction solvent of
9:1 DCM:MeOH. The ASE extractions were conducted at 100 °C, which has been demonstrated
to effectively extract organic material without degrading the biomarkers analyzed in this study
[Rabinowitz et al., 2017].

Once the sediment was extracted, 50 ul of a recovery standard containing 5a-androstane and
stearyl stearate was added to each TLE. The TLEs were then evaporated under Ny, transferred
into a 4 ml vial using DCM, and dried down again. TLEs were separated into three fractions
(aliphatic, ketone, and polar) using silica gel column chromatography. The F1 (aliphatic) fraction
was obtained by pipetting the sample in 1 ml of hexane into a Pasteur pipette column half-filled
with DCM-rinsed silica gel that had been activated at 100 °C for >24 hours. An additional ~3
ml of hexane was pipetted onto the column to elute the aliphatic fraction. This procedure was
repeated using DCM and MeOH to separate the F2 (ketone) and F3 (polar) fractions, respectively.
The F1 and F2 fractions were evaporated and transferred to 2 ml vials using DCM. These were then
evaporated and brought up in hexane (F1) and toluene (F2) for analysis by gas chromatograph.
At the Lamont-Doherty Earth Observatory, n-alkanes (F1) were analyzed using an Agilent gas
chromatograph with a mass selective detector (GC-MSD) and alkenones (F2) were analyzed with a
Thermo gas chromatograph with a flame ionization detector (GC-FID). TLEs from sonication and
ASE extractions were analyzed separately (see below). Total n-alkane concentrations in a sample
were obtained by summing the concentrations of each molecule determined in the sonication and
ASE extracts. Alkenone concentrations in the ASE extracted fraction of the samples were found
to be below the detection limit and only sonication extractions were used for analysis.

The GC-MSD was run with a multi-mode inlet using a DB5 column. One pul of sample was
injected and the oven was held at 60 °C for 1.5 min. The temperature was ramped to 150 °C at
15 °C/min and then to 320 °C at 4 °C/min followed by a 10-minute hold. Chromatograms were
quantified using Chemstation software. The Thermo Trace GC Ultra GC-FID was run using a
PTYV injector with a 2 mm i.d. silicosteel liner and a 60 m x 0.250 mm i.d. DB1 column with a
stationary phase thickness of 0.1 ym and a 10 m x 0.250 mm non-polar retention gap. One ul of

sample was injected, after which, the oven was held at 90 °C for 1.5 min, raised to 250 °C at 25
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°C/min, then raised to 313 °C at 1 °C/min and finally raised to 320 °C at 10 °C/min and held
for 20 min. To quantify alkenone concentrations, we integrated the chromatograms from the F2
fraction using ChromQuest software.

We analyzed an n-alkane drift, a mixture of Cgs—Cyg m-alkanes containing the ba-androstane
standard, along with the F1 fractions of the samples. This n-alkane drift is used to calculate a
response factor for each n-alkane homologue relative to ba-androstane. We multiply the area ratio
of each n-alkane molecule to 5a-androstane by that molecules response factor to obtain the amount
ratio of each n-alkane molecule relative to the 5a-androstane standard added to that sample. F2
fractions of samples were analyzed with a stearyl stearate standard contained within the recovery
standard added to each sample. The amount ratio of alkenone molecules is determined by dividing
the area of each alkenone molecule peak by the area of the stearyl stearate standard. Concentrations
are calculated by multiplying the amount ratio of each molecule by the amount of the respective
standard added to the sample and dividing by the sample weight (Table C.1).

We report C19—C35 n-alkane concentrations as these were the molecules with concentrations high
enough to reliably quantify (Table C.1). We use these concentrations to calculate the n-alkane pa-
rameters used in the analysis (Table C.3). The carbon preference index (CPI) is calculated by divid-
ing the summed concentrations of odd chain-length n-alkanes by the summed concentrations of even
chain-length n-alkanes between chain lengths of 26-35 (> Codd,27-35 / 2 Ceven,26-34). The alkane dis-
tribution index (ADI), defined by Rabinowitz et al. [2017], is calculated as (C27+Cs1)/(Cag+Ca9+Cao).
CPI is repeatable to <1.5% and ADI is repeatable to <1% (1s) [Rabinowitz et al., 2017]. We
calculate the alkenone concentration by adding the concentrations of the measured Cs; alkenone
molecules (MK37:3 and MK37:2). U% values are determined as (MK37:2) /(MK37:24+MK37:3) (Ta-
ble C.1). Alkenone concentrations are repeatable to 4.1% and Ué“é values are repeatable to 0.0033

(1s) [Rabinowitz et al., 2017].

C.1.3 Total organic carbon

After the TLE was extracted from each sample, about one gram of sediment was set aside
to measure total organic carbon (TOC). The dried sediment was transferred to a weighed 50 ml
centrifuge tube and the tube was weighed again to determine the sample size. About 20 ml of 1 N

HCI (1:11 12 N HCl:ultra-pure distilled water) was added to each tube to dissolve any carbonate.

151



The tubes were shaken by hand and then using a vortex mixer and allowed to sit for 2 h. Another
20 ml of HCI was then added and the tubes were shaken again and allowed to sit overnight.
Tubes were then filled the rest of the way with ultra-pure distilled water and centrifuged for
15 min. The supernatant was carefully decanted and the rinsing procedure was repeated until the
pH of the liquid after centrifugation was about equal to the rinse water, typically six rinses (after
the third rinse, distilled water from the tap was used). The pellets at the bottom of the vials
were then freeze-dried for 1 day. Tubes were again weighed to determine the amount of sample
lost during the decarbonation procedure. Small amounts of sample (10-50 mg) were weighed into
aluminum boats and TOC was measured on a Costech Elemental Analyzer. Because the samples
have low organic carbon concentrations, TOC was measured at the H8 sensitivity setting on the
EAs thermal conductivity detector (Table C.1). Uncertainty in TOC values is ~4.04% based upon

replicate analysis of 15 samples.

C.1.4 Calculation of fraction reacted

To determine whether thermal alteration has occurred, we compare JFAST biomarker concen-
trations to the biomarker concentrations of undeformed sediments in samples from corresponding
sedimentary units in the reference core. Samples were correlated to sedimentary units at Site
436 using the trace element stratigraphy developed by Rabinowitz et al. [2015]. To calculate the
biomarker reaction, the fraction remaining (r) was determined by dividing the alkenone concentra-
tion, Uéﬁ% value, CPI or ADI of the JFAST sample by corresponding biomarker parameter values
in the protolith unit measured at Site 436. For each JFAST sample, r values were calculated with
respect to each sample in the correlated Site 436 unit. The range of these fraction remaining values
are plotted in Figure 4.2 as box plots with the median value of the fraction remaining indicated by
the vertical line, the boxes corresponding to the quartiles (Q;=25" and Q3=75"" percentiles) and
the whiskers to values lying ~2.7¢ from the median. Outliers, plotted as individual data points in

Figure 4.2 are values that are less than Q;—1.5%(Q3—Q1) or greater than Q3+1.5%(Q3—Q1).

C.2 Supplementary Text

C.2.1 JFAST Stratigraphy

The lithostratigraphy of the JFAST core was described in the JFAST Science Party Report
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[Chester et al., 2012] and refined through a chemostratigraphic analysis [Rabinowitz et al., 2015].
Here, we summarize the stratigraphy presented by Rabinowitz et al. [2015], which provides the
most detailed correlations between JFAST samples and their protolith in the reference core used
in this study (Site 436). The shallowest sediments recovered at JFAST are Unit A2 Late Miocene
mudstones. Below these, at a depth of ~690 mbsf, lie Holocene to Late Pliocene Unit Al diatoma-
ceous silty mudstones. This age inversion suggests a fault between the two units, though core
recovery in this interval is insufficient to analyze variations in the thermal maturity of the faulted
material. The Unit Al material persists to a depth of ~820 mbsf where a <5 m thick layer of Early
Miocene Unit C2 pelagic clay, interpreted as the main slip zone of the Tohoku earthquake [Chester
et al., 2013, Ujiie et al., 2013, Yang et al., 2013], was recovered. Thrust into this pelagic clay layer
is a sliver of Unit A3 mudstone. Below the pelagic clay layer is an inverted sequence of Unit B
underlain by Unit A3 and then A2. This series of age inversions implies the presence of faults at
~824, 825, and 832 mbsf. The deepest sediments in the JFAST core are Unit D partially silicified
clay. Here, the 60 Myr age gap is interpreted as another fault at a depth of ~833 mbsf [Rabinowitz
et al., 2015].

C.2.2 Biomarkers at JFAST

Alkenone concentrations (Cs7 total) measured in the JFAST core (Figure C.1A) demonstrate
relatively constant values in the top part of the core while concentrations drop and are more vari-
able closer to the plate boundary (at depths > 810 mbsf). The alkenone concentration at Site
436 changes over 3 orders of magnitude, with the oldest samples having the lowest alkenone con-
centration. The oldest sedimentary units (Units C and D) have alkenone concentrations that are
below the detection limit. This trend in alkenone concentration is likely dominated by changes in
productivity, rather than changes in preservation of alkenone molecules. The low concentrations
of middle-late Miocene samples reflect low productivity as the site passed under oligotrophic sub-
tropical gyre waters. Increasing concentrations occurred in the late Miocene as the site entered the
more productive western boundary current. Although the changes in concentrations in alkenones
throughout Site 436 are large, the concentrations in JFAST samples are only compared to the

alkenone concentrations for the corresponding sedimentary unit at Site 436 (Figure C.1B).
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Figure C.1: Alkenone concentrations measured in the JFAST core (A) and in the reference
core, Site 436 (B). Colors indicate unit designations, labeled in (B), of the samples [Rabi-
nowitz et al., 2015]. JFAST alkenone concentrations are constant in the shallower sections of
the core while concentrations are decreased and more variable near the bottom of the core.
In Site 436, concentrations decrease with depth and are below the detection limit in Unit C,
represented by the black bar at these depths.

The alkenone unsaturation index (Ué“%) generally decreases at Site 436 from higher values during
the middle Miocene to lower values in the late Miocene (with a few exceptions). Interpreted as
sea surface temperature, this trend indicates cooling from middle Miocene to present times. Unlike
other biomarker proxies used in this study, sz% values increase with increasing thermal maturity
[Rabinowitz et al., 2017]. We find that U:f; values in Site 436 and the shallower sediments in the
JFAST core are similar (if somewhat variable, Figure C.2B), whereas samples from the bottom of the
JFAST core near the plate boundary (Figure C.2A) are consistently higher, with four unambiguous

thermal anomalies (Figure C.2B).
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Figure C.2: UL measured in the JFAST core (A) and in the reference core, Site 436 (B).
Colors correspond to sedimentary units defined by Rabinowitz et al. [2015]. U?f% values
are constant near the top of the JFAST core, and near to the lower values observed in
corresponding sedimentary units at Site 436. U?{%/ values increase approaching the plate
boundary. Note that U% cannot be calculated in Unit C samples due to the lack of alkenones
measured in these subunits.

In order to address concerns that local heterogeneities in deposition of organic material and
dilution by inorganic sediments (dust, volcanics, terrigenous sediment, carbonate etc.) might yield
variable alkenone concentrations, we analyzed the TOC of samples from JFAST and Site 436 (Figure
C.3). TOC values at JFAST are constant for most of the Unit Al sediments and within ~0.0008
g/g from the range of Site 436 Unit A1l values. The exception to this is at ~818 mbsf, where the
TOC values in Unit A1 JFAST samples drop and are within ~0.0015 g/g from the minimum values
observed in Site 436. The other sedimentary units show similar consistency in TOC with Unit
A2 samples at JFAST within 0.0007 g/g from Site 436 values, Unit A3 and B samples at JFAST
within 0.0003 g/g from Site 436 values, and Unit C samples at JFAST within 0.0002 g/g from Site
436 values. When the ratio of alkenones to TOC in the JFAST core is considered (Figure C.3C),
the major alkenone anomalies remain, indicating that the alkenone anomalies that we observe are

larger than any variations caused by differential dilution between JFAST and Site 436.
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Figure C.3: Total organic carbon (TOC) measured in the JFAST core (A) and in the reference
core, Site 436 (B). The alkenone/TOC ratio is also shown for the JFAST core (C). While
some variability in TOC is observed in samples near the plate boundary in the JFAST core,
anomalies can still be seen in the alkenone/TOC ratios, implying that alkenone anomalies
are beyond that which can be explained by depositional effects.

CPI at Site 436 shows no clear trend with age and values fluctuate around a CPI of ~3. Units
A1l and A3 have a larger range of CPI values than the other sedimentary units, with Unit B showing
the least variability (Figure C.4B). CPI values in the hanging wall sediments in the JFAST core are
relatively constant, with values near the upper end of the range of values for Unit Al measured in
Site 436 (Figure C.4A). While significantly lower CPI values are observed near the plate boundary,
the variance in the initial CPI values as measured at Site 436 limits the number of samples that
exhibit anomalous values with respect to the whole range of initial CPI (Figure 4.2C). Anomalies
with respect to the range of CPI values in the corresponding sedimentary unit at Site 436 are

observed at 822 and 824 mbsf.

156



A) 18(1

700¢
720
740

760

Depth (mbsf)

780r

800

820¢

CPI

Figure C.4: CPI values measured in the JFAST core (A) and in the reference core, Site 436
(B). CPI at the top of the JFAST core is within the range of observations for corresponding
units at Site 436, while values in decrease below those observed in corresponding units at
Site 436 in two samples approaching the plate boundary region.

ADI is fairly constant throughout Site 436, with most values lying between an ADI of ~1 and
1.5 and only Unit A3 showing a significantly larger variation (Figure C.5B). This stability in ADI
is also seen in the hanging wall sediments in the JFAST core with lower ADI values approaching
the plate boundary (Figure C.5A). Again, an anomaly with respect to the range of possible initial
values is seen at 822 mbsf in the pelagic clay. The agreement of both n-alkane parameters that
a biomarker anomaly exists here supports the conclusion that this is a localized seismic structure
within the pelagic clay. However, two other samples analyzed within the previously interpreted
décollement layer (including a sample from the mudstone biscuit thrust into this layer) do not
show clear evidence for fault heating (Figure 4.2). This observation supports previous suggestions
that some of the deformation in this layer has been accommodated through aseismic or distributed
slip [Janssen et al., 2015, Kirkpatrick et al., 2015]. Another ADI anomaly is observed at 832
mbsf (Figure C.5a), supporting the interpretation of a thermal anomaly implied by the alkenone

anomalies.
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Figure C.5: ADI values measured in the JFAST core (A) and in the reference core, Site 436
(B). ADI values in the JFAST core are constant in the top portion of the core and show more
variability and decreased values (beyond those observed at Site 436) in the deeper samples
near the plate boundary region.

C.2.3 Analysis of minimum size earthquakes at damage structures in the JFAST

core

818 mbsf anomalies

The shallowest biomarker anomalies in the plate-boundary region were observed at ~818 mbsf
in three samples between 817.4-817.9 mbsf (PP944, PP945, and PP727). While these samples are
relatively closely spaced, they are far enough apart that it is unlikely that they all were heated by
slip on the same fault (Figure 4.5b). Candidate structural features in Core 15 are observed at 817.5
mbsf, 817.6 mbsf, and 817.8 mbsf (Figure 4.4).

While the structure at 817.6 mbsf appears more significant, it is too distant (>10 cm) to
cause any biomarker anomaly at sample PP944 (817.485 mbsf). Even with multiple slip events,
there would be no biomarker anomaly from this feature recorded at this sample. One candidate
structure near to PP944 is a high angle crack in the core, which is, indeed, close enough to have

caused significant biomarker alteration; however, this feature appears very minor (Figure 4.4) and
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is unlikely to have accommodated 50-70 m of coseismic slip, much less to have hosted multiple
megathrust earthquakes. Another nearby structure is a near horizontal gouge layer at 817.5 mbsf
with a maximum thickness of ~1.5 cm (Figure 4.4), lying 0—4 cm away from PP944. Such horizontal
features have been previously interpreted as resulting from drilling damage to the core rather than
being tectonic structures [Keren and Kirkpatrick, 2016b] , however due to its proximity to the
reacted sample and the shallow dip of many of the larger features in the core, we consider this
the most likely candidate for slip. The thermal anomaly at this sample is best fit by a model
with multiple earthquakes with a slip magnitude of ~40 m. The smallest event that could have
contributed to the signal is a 10 m slip earthquake (Figure 4.7a, Table C.6).

The next sample down, PP945, is adjacent to the < 2 cm thick structural feature at 817.6 mbsf
(0-3 cm away). This structure is at the border of a zone of fragmented core near the bottom of
core 15R—1W that could be related to fault damage. The biomarker anomalies here are well fit by
30 m slip events and can be fit with a minimum size event of 10 m slip (Figure 4.7B).

Similarly, PP727 lies within damaged material recovered in 15R-CCW and near (0.5-10 cm)
to a more highly comminuted region at 817.8 mbsf with a maximum thickness of ~9 cm (Figure
4.4). In this case, the maximum thickness of the modeled slipping zone is limited by the minimum
temperature of biomarker reaction (Figure 4.5A). While this sample shows biomarker anomalies in
alkenone concentration, Uéfé, and ADI, the lack of an observed anomaly in CPI provides a strong
additional constraint in our models. The anomalies observed in this sample are best fit by several
100 m slip events, implying that this sample could represent the cumulative effect of several large
megathrust events. The minimum slip magnitude that could contribute to the biomarker anomalies
measured in this sample is 30 m (Figure 4.7¢, Table C.6). A relatively large amount of displacement

here is consistent with the broad damage zone observed at this depth in the core (Figure 4.4).

Pelagic clay anomaly

We sampled three locations within the pelagic clay layer: at 821.8 (mudstone biscuit), 822.12,
and 822.55 mbsf. Though the entire layer has been interpreted as having hosted displacement, with
multiple features near the top of the recovered pelagic clay interpreted as localization features for
seismic slip [Kirkpatrick et al., 2015], only one of the three samples that we analyzed within this

layer exhibited unambiguous biomarker anomalies. This indicates that, while the whole pelagic
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clay layer is significantly sheared, only certain locations have experienced localized seismic slip.
We note that the pelagic clay is not expected to have any alkenones in it, based on the lack of
alkenones in the Site 436 pelagic clay units (Figure C.1B), and thus, the lack of alkenones in the
pelagic clay samples cannot be interpreted in terms of biomarker thermal maturity. However, both
the CPI and ADI show anomalies for sample PP829 (822.55 mbsf). This sample is within a region
of structures interpreted as shear localization bands which are ~0.5-1 cm thick [J. Kirkpatrick,
personal communication] and thus, distance from the fault is taken to be 0-10 cm (Figure 4.4). The
n-alkane anomalies are well fit by a slip magnitude of 70 m (Figure 4.7D). Larger slip magnitudes
are precluded because they would require a minimum half-width that is larger than that allowed by
the observed thickness range of the shear localization bands in order for temperature rise to remain
below 900 °C. The biomarker anomalies in this sample require earthquakes with slip magnitudes

of at least 10 m (Figure 4.7d, Table C.6).

824.3 mbsf anomaly

Core 18 exhibits a significant amount of apparent damage [Figure 4.4 Keren and Kirkpatrick,
2016b,a] with few obvious localization features. This damage has been interpreted as a combination
of damage induced by core recovery and tectonic damage related to the damage zone focused around
the pelagic clay layer [Keren and Kirkpatrick, 2016a]. There is a stratigraphic inversion above this
core between the pelagic clay unit and the underlying mudstone unit [Rabinowitz et al., 2015] and
both observations together imply a major fault below the pelagic clay layer. Sample PP730 lies
within a significantly brecciated section of the core. While the brecciation in this core is extensive,
a zone of elevated damage is about 4 cm thick (Figure 4.4). The sample was taken from ~4 cm
away from this highly comminuted band, but could be closer (~1 c¢m) to a slip zone if the entire
damage zone is considered. This sample is well fit by 40 m slip events and requires earthquakes

with a minimum slip magnitude of 30 m (Figure 4.7E, Table C.6).

825.6 mbsf anomaly

The biomarker anomaly observed at 825.6 mbsf in sample PP948 is found in the core catcher
section of Core 18. This sample is found in a heavily brecciated section of the core, right above

a stratigraphic inversion interpreted to be a fault by Rabinowitz et al. [2015], and is likely to be
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immediately adjacent to (or even within) the fault (Figure 4.4). The implication that this sample
represents a seismic fault from structural observation is supported by the large amount of alkenone
reaction (near complete alkenone destruction), though the lower reaction rates from the n-alkane
parameters seem to have generated negligible reaction. Because alkenone concentration is below
the quantification limit, constraints on the fraction of alkenones reacted are poor, though the
chromatograms qualitatively appear to have lower alkenone concentrations than even the lowest
alkenone concentrations observed in the Unit B samples at Site 436. The inability to accurately
quantify alkenone concentrations in this sample also prevents us from determining the Ué“; value.
Due to the relatively poor constraints on the level of biomarker reaction in this sample, we do
not model the number of earthquakes that could be hosted on this fault and instead represent the

sample with open red symbols in Figsures 4.2 and 4.8.

833 mbsf anomalies

We find that two samples near the mudstone/silicifying clay boundary at ~833 mbsf [Rabinowitz
et al., 2015] exhibit biomarker anomalies. The shallower sample (PP951, 832.515 mbsf) shows
anomalies in both alkenone parameters but in neither of the n-alkane parameters. This sample is
close to a peak in tectonic damage features [Keren and Kirkpatrick, 2016a], implying the presence
of a fault at this depth (Figure 4.4). The biomarker anomalies measured in this sample are best fit
by earthquakes of slip magnitude equal to ~90 m and can be fit by earthquakes with a minimum
slip magnitude of 40 m (Figure 4.7F, Table C.6). The deeper sample, PP952, is better constrained
through structural observations of the JFAST core (Figure 4.4). This sample was taken ~1.5 cm
away from a very visible contact between late Miocene mudstone and Cretaceous silicifying clay at
832.85 mbsf. This sample is well fit by 100 m slip events and also requires events with a minimum

slip magnitude of 40 m (Figure 4.7G, Table C.6).

161



A) P © Y somn ' 7 |D)
L W CPI B O s0mslip | i
810 : W ADI /\ 70mslip " 14R ==
«—F—>
thermal maturity thermal maturity
requires more events | Sallslledsl‘i};:;ls 50m
815 | 1 § 7
I
I
- B e 9 v e ® 3L 15R
k7] | ‘
£ 820} | | | 16R
= I
3 I
§' — ) ) i 17R
—t—H
825 1 1 5. - 1 ?} 18R
I
I 19R
! ¥
830 | 4 4 ' 4
| 1
| |
| ! ® i 20R
I )
835 Il 1 1 1 L 1 L L 1 L L 1 Il
-1 -05 0 0.5 1 0 10 20 30 40 50 0 10 20 30 40
Model — Measured Min. Number Eqs Min. Slip Magnitude (m)

Fraction Reacted

Figure C.6: (A) Difference between modeled fraction reacted values for one Tohoku-sized
earthquake with 50 m slip and measured biomarker values (Cs7 total, CPI, and ADI) indicates
that all faults with heating anomalies could have hosted at least one event of this size. (B)
Minimum number of 30, 50, and 70 m slip events and (C) minimum slip magnitude required to
generate the observed biomarker anomalies in JFAST samples given the constraints discussed
in the text. Red symbols in all plots indicate features with clear biomarker anomalies.
Question mark in (A) indicates the pelagic clay sample, where alkenone concentrations are
below the detection limit and cannot be used as a model constraint. Dashed line (A) and
hollow symbol (B-D) represent sample PP948, which has alkenone concentrations below the
quantification limit and is not modeled.

C.2.4 Temperature rise estimates and implications for dynamic weakening mech-

anisms

One of the central goals of earthquake mechanics research is to understand the dynamic weak-
ening mechanisms that control seismic slip. This better understanding is essential for improving
seismic hazard estimates because the conditions required for dynamic instability likely exert a
strong control on where and when an earthquake will nucleate and how far it will propagate. A key
parameter to constrain in the search for plausible dynamic weakening mechanisms is the coseismic
temperature because many of these mechanisms are thought to be thermally activated [Rice, 2006].

We present a temperature constraint based on the minimum slip magnitude required to repro-
duce the biomarker anomalies in each sample. Specifically, we report the minimum temperature

required for this minimum slip magnitude earthquake (Table C.6). Because this is a lower-bound
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limit for the temperature rise on these faults, plausible dynamic weakening mechanisms must be
activated by temperatures greater than or equal to these temperature estimates. The average
minimum temperature determined in this way is ~279+43 (1o) °C with a range of 233-335 °C
(Table C.6). We emphasize that this minimum temperature estimate is based on the minimum
size earthquake that could replicate the observed biomarker anomalies in the allowable displace-
ment. Because it is unlikely that one of the observed faults accommodated all, or even most, of
the displacement in this décollement, the faults likely hosted earthquakes with slip magnitudes
higher than the minimum values reported here. Accordingly, the temperature experienced during
these earthquakes could be significantly higher than the minimum temperatures reported here. An
upper bound on the temperature achieved in these faults comes from the fact that there were no
observations of clay amorphization or pseudotachylyte. As discussed above, this limits the peak
temperature to 900 °C. We note that temperature estimates on natural faults are best constrained

by the application of a wide range of paleoseismic indicators with different temperature sensitivities.
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D Appendix D
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Figure D.1: Temperature calibration. Temperatures at the sample interface are consistently
higher than the control temperature.
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Figure D.2: Piston friction correction. Piston friction due to o-ring seals increases with
increasing confining pressure.
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T041, 1-10 um/s

a=0
0.085 . ‘ ‘ . ‘ ; :
a,=0.00178 b,=-0.000874  a-b,=0.00266
ag=0.00171 bg=-0.000945  a-bg=0.00266
0.08 .
3 0.075 1
Data
0.07 m— Aging Law |
| ——Slip Law
0.065 1 Il Il 1 Il Il Il 1 1 Il
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Figure D.3: Example of a velocity step from 1 to 10 pm/s from experiment T041 modeled
for this study. Red curves show Aging (Dieterich) fit and blue curves show Slip (Ruina)
fit. A) Model fits assuming a=0 and B) a=ps,. While a and b values show small variation
between fits, all a — b values are identical.
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