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ABSTRACT 

Development of Single Molecule Electronic SNP Assays  

using Polymer Tagged Nucleotides and Nanopore Detection 

Youngjin Cho 

 

As knowledge of the human genome has accelerated, various diseases and individuals’ 

responses to drugs have been pinpointed to specific DNA variations in one’s genome. Among 

many different types of variants, the most common and simplest is the single nucleotide 

polymorphism (SNP) in which a single base substitution occurs. Although there have been 

considerable improvements in technologies that can reveal a single base difference in a DNA 

strand, simple and affordable methods that have high detection sensitivity and require small 

sample volume are expected to facilitate widespread adoption of routine SNP analysis in clinical 

settings.  

One such method that meets these requirements is to use nanopore as a single molecule 

detector, an emerging analytic system that detects changes in current related to molecules 

occupying a nanometer aperture. This dissertation thus chronicles our endeavors in developing a 

nanopore-based SNP assay using polymer tagged dideoxynucleotides (ddNTPs). The 

fundamental principles of this method rely on single base extension (SBE) of a primer by DNA 

polymerase using polymer tagged ddNTP analogs for allele discrimination and simple electronic 

readout of an alpha hemolysin (αHL) nanopore current for allele detection at the single molecule 

level. Using four uniquely tagged ddNTPs, a characteristic current level that is specific to each 

base is produced, thus identifying the SNP alleles present and the genotype at the site.   

To demonstrate the feasibility of this approach, four polymer attached ddNTPs, each with 

a different tag that generates a characteristic current blockade level in the αHL nanopore, were 



 
 

designed and synthesized. To search for a DNA polymerase that can accept these tagged ddNTP 

analogs as substrates, several candidate DNA polymerases were surveyed and their relative 

efficiencies for incorporation of the analogs were compared (Chapter 2).  

To generate a steady and stable blockade event for accurate SNP analysis, two different 

means of positioning a tag molecule in the αHL nanopore after the SBE reaction have been 

explored: covalent conjugation of DNA primer to the pore and immobilization of biotinylated 

primer within the pore by streptavidin. To find a suitable position for primer attachment on the 

pore, three αHL mutants, each with a different single conjugation point, were constructed. Using 

these mutants, different DNA-pore conjugates were produced and purified via various 

chromatography systems (Chapter 3).  

In the nanopore system, charged molecules such as DNA are electrophoretically driven 

through the pore under an applied voltage, thereby modulating the ionic current through the 

nanopore. This current reveals useful information about the structure and dynamic motion of the 

molecule at the single molecule level. Before performing SNP analysis, we first studied single 

molecule behaviors of oligonucleotides of different lengths and structures in the αHL pore and 

their ensuing current signatures in the system (Chapter 4). 

Finally, harnessed with tools and insights from the nanopore single molecule studies, 

actual SNP assays were performed in our nanopore system using the polymer tagged ddNTPs 

and SBE. Chapter 5 discusses the integrated approach where SBE is achieved on a primer-

conjugated αHL nanopore and Chapter 6 presents the results using a biotin-streptavidin complex 

for immobilization of tag molecules in the pore. Overall, this thesis validates adaptation of the 

nanopore detection system for SNP analysis using the polymer tagged ddNTPs. 
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CHAPTER 1: Introduction 

1.1 Implication of SNPs in precision medicine and pharmacogenomics 

 

Over the past few decades, advances in molecular science and genomic technology have 

enabled us to achieve remarkable progress in the service of medicine such as the Human 

Genome Project, the International HapMap Project and genome wide association studies 

(GWAS).
1,2

 On account of these endeavors, there has been an increased awareness of the scale 

and significance of numerous subtle genetic variations found in the human genome. Among 

these, the most common genetic markers are single nucleotide polymorphisms (SNPs) which 

account for remarkable genetic diversity and are a vital resource for studying complex genetic 

traits.
3,4

  

By definition, SNPs are single-nucleotide substitutions of one base for another that are 

stable enough to occur in more than one percent of the general population.
3,9,16

 In general, SNPs 

occur throughout the genome about once every 100 to 300 nucleotide base pairs and this can be 

interpreted as roughly 10 million SNPs within the 3 billion nucleotide human genome.
9,16

 The 

majority of SNPs do not occur within genes and usually have no influence on protein 

function.
3,6,16

 Nevertheless, many do correlate with a particular drug response or disease 

susceptibility in an individual and thus they are still considered as important markers for 

comparative or evolutionary genomic studies.
6,7

 On the other hand, SNPs within the coding 

region or the regulatory sequences of a gene directly affect protein structure or function by 

changing the amino acid sequence of the product or level of gene expression.
8,16

 In this case, 

SNPs can elucidate direct associations between sequence difference and phenotypic variation. 



 

 

2 

 

Recently, a new approach to disease treatment and prevention called precision medicine 

has emerged and is leading toward a paradigm shift in medical practice. In essence, precision 

medicine aims to help better understand and predict the onset and progression of disease, 

reactions to treatment as well as health outcomes by taking into account genetic, lifestyle and 

environmental variations of each individual.
2
 One core component of this promising avenue is 

pharmacogenomics which seeks to make use of genetic information to maximize effectiveness of 

drugs and minimize the likelihood of their adverse events.
12-15

 It is well reported that individuals 

respond in different ways to the same drug because of SNPs in genes encoding molecules such as 

drug-metabolizing enzymes, drug targets and drug transporters.
11,18,19

 However, at present, most 

medical treatments still involve empirical selection of medications with widely varied efficacy 

and common side effects and this has led to mounting cases of drug-induced side effects and 

even adverse drug reactions in patients each year, representing a major social and financial 

burden.
20,22

 In response of the importance of this matter, pharmacogenomics essentially hopes to 

improve overall healthcare by predicting an individual’s genetic response to a specific 

medication as a means of delivering a better choice of drug with optimal safety and efficacy 

according to the patient’s genetic profile.
5
  

Despite such potential clinical benefits of pharmacogenomics, there have been many 

barriers for it to be widely adopted into clinical practice. This includes the cost of analysis and 

the turnaround time of the genetic testing.
21,25,26

 Although advances in technologies have led to a 

continuous decline in these two factors, most conventional assays are still not economical for 

screening of the general population and rapid enough to be useful as a standard of care in the 

clinic.
21,22

 These have been impediments to the routine clinical utilization of pharmacogenomic 

testing.
25,27

 In light of this, a novel method that aims at faster and more reduced costs than the 
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current technologies is expected to help remove such obstacles and ease the integration of SNP 

genotyping into clinical practice, providing a more effective, precise and less empirical approach 

to healthcare. 

1.2 Review of traditional SNP genotyping methods 

In general, SNP analysis involves two steps: the generation of allele-specific products for 

SNPs of interest (allele discrimination) and their detection for genotype identification (allele 

detection).
41 

 First, an allele discrimination step is performed to introduce specificity. There are four 

common methods to achieve this: hybridization, ligation, enzymatic cleavage and single base 

extension of a primer (SBE).
16,35

 For instance, the hybridization strategy uses differences in 

binding energy of the probe-target duplex to discriminate between perfectly matched and 

mismatched strands.
31

 Since the hybridization method does not involve any enzymatic reactions, 

it has been applied on high-throughput platforms such as microarrays.
16

 However, it requires 

rather stringent conditions where the annealing occurs only between probe and target DNA that 

have perfectly complementary sequences to each other and not to the probe with a single base 

mismatch.
17,41

 The enzymatic cleavage method is based on the activity of a particular enzyme to 

cleave DNA having specific cognate sequences and structures. Although probes are not required 

for this method, it has low throughput and can only be applied for SNP sites that are located in 

enzyme recognition sequences.
16,17

 Assays involving ligation utilize the specificity of the ligase 

enzyme and require three probes in total: two allele specific probes for annealing to the template 

at the SNP site and one common probe that binds immediately adjacent to the allele-specific 

probe.
39

 If the allele specific probe anneals to the SNP site with a perfect match, the enzyme 

ligates it to the common probe to produce a single long oligonucleotide. Unfortunately, the assay 
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itself is not very sensitive and thus it has not been widely adopted.
17

 Lastly, the assays using the 

SBE strategy provide great flexibility and robustness, producing reliable results. They are based 

on allele-specific incorporation of nucleotides in a primer extension reaction with a DNA 

template using a single primer for detecting both alleles and it exploits the specificity of DNA 

polymerase to achieve allele distinction.
30

 In contrast to the above four methods for allele 

discrimination, the SBE strategy is not sensitive to the overall DNA sequence and thus allows for 

analyzing various SNPs under similar reaction conditions, minimizing the effort for assay design 

and optimization.
16,17,41 

 As mentioned earlier, these various allele discrimination steps are followed by allele 

detection for the specific base identification. There are three conventional detection methods: 

fluorescence, mass spectrometry and chemiluminescence.
16,41

 For fluorescence based detection, 

fluorescence polarization (FP) and fluorescence resonance energy transfer (FRET) are the two 

widely used strategies.  In FP measurements, the fluorophores are excited with linearly polarized 

light and fluorescence measurements are made parallel and perpendicular to the plane of the 

polarized excitation light.
5
 The relative fluorescence intensity of these two measurements 

changes as the molecule rotates while in its excited state lifetime.
126

 In general, the degree to 

which a molecule rotates is indicative of its size. If a fluorescently labeled probe binds to a target 

molecule, the rate of rotation decreases due to its higher molecular size and this preserves the 

fluorescence polarization. Therefore, the polarization value is higher in the bound state compared 

to the unbound state.
16,43

 On the other hand, FRET occurs by a dipole-dipole interaction between 

two dyes in close proximity in which a donor fluorophore in the excited state transfers its energy 

to an acceptor fluorophore in the ground state.
42

 Consequently, the fluorescent signature varies 
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depending on the distance between the two dyes and thus it can be employed where reaction 

results bring together or separate the neighboring donor/acceptor dyes.  

 Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) is an ionization and separation technique for the mass analysis of various biomolecules. 

It uses a matrix of small organic molecules which absorb laser energy to generate ions from large 

molecules with minimum fragmentation.
16

 Resulting ions are then accelerated at a fixed voltage 

and separate from each other based on their different mass-to-charge ratios (m/z).
32

 During 

MALDI-TOF analysis, the m/z ratio of an ion is determined by the time required for it to travel 

the distance of the flight tube.
38

 Unlike the above fluorescent detection methods, MS does not 

require any labels. However, its current drawback is the loss of signal intensity and mass 

resolution with increasing size of the analyte.
65

   

 Lastly, pyrosequencing based on chemiluminescence detection employs a cascade of 

enzyme reactions for SNP detection: DNA polymerase, ATP sulfurylase, luciferase and 

apyrase.
40

 In this method, nucleotides are added one at a time to a primer extension reaction 

mixture and the result is analyzed each time to detect which base is actually incorporated at each 

step. When the nucleotide is incorporated into the primer, pyrophosphate (PPi) is released as a 

result of the catalytic reaction by DNA polymerase. In a series of enzymatic reactions, ATP 

sulfurylase uses the PPi to produce ATP, which participates in luciferase-mediated conversion of 

luciferin to oxyluciferin.
16

 The oxyluciferin then emits visible light to an extent relative to the 

amount of ATP. At the end of each cycle, the unincorporated nucleotide is degraded by apyrase 

and the cycle can be repeated if desired with another nucleotide.
44

  

Over the last decades, there have been considerable improvements towards high detection 

sensitivity and throughput of genotyping assays. However, these traditional detection methods 

https://en.wikipedia.org/wiki/DNA_polymerase
https://en.wikipedia.org/wiki/Sulfate_adenylyltransferase
https://en.wikipedia.org/wiki/Luciferase
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still require sizable and rather expensive equipment and thus they are not quite ideal for a point 

of care diagnostic platform. Novel methods working especially towards low concentration 

detection in small sample volume, simple and fast instrumentation, as well as high sensitivity 

such as single molecule readout are thus in great demand.  

1.3 Nanopore detection 

1.3.1 Principle of stochastic sensing of analytes in a nanopore 

 Nanopores are nanoscale apertures in electrically insulating materials that are used to 

characterize biochemical and physical properties of biomolecules at the single molecule level. In 

general, a single nanopore is placed in an electrochemical reservoir separated into cis- and trans-

compartments with an electrode on each side, typically Ag/AgCl, and filled with a conductive 

electrolyte solution such as potassium chloride (KCl). Under an applied voltage, two reversible 

electrochemical reactions occur at the electrodes. On the trans side of the membrane, an 

oxidative electrochemical reaction Ag(s) + Cl
ˉ
 → AgCl(s) + eˉ

  
takes place at the anode (+). As a 

result of Clˉ deposition from the solution to the electrode, an electron migrates through the wire 

to the amplifier. This creates a charge imbalance at the electrode, leading to cation migration 

towards the cis side of the membrane.
46

 The reverse reaction AgCl(s) + eˉ → Ag(s) + Cl
ˉ
 occurs 

at the cathode (-) in which an electron is deployed from the circuit and the resulting Clˉ ion 

migrates towards the trans side of the membrane (Figure 1.1A).
46

 Such ion transport across the 

pore and completion of an electrochemical circuit generates a stable baseline ionic current, 

typically at the pico-Ampere (pA) scale. The current is detected using a patch clamp system with 

highly sensitive electronics. In this technique, capture and subsequent translocation of charged 

biomolecules such as DNA are characterized by monitoring modulations in current with time 

(Figure 1.1B). For instance, in the presence of target analytes, the passage of the electrolyte ions 
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through the pore is impeded as the electrophoretic force pulls an analyte through the pore, 

leading to an observable drop in ionic current. As the molecule completely transits through the 

pore, more ions are able to move across the pore again, resulting in a rebound in the current. 

Different molecules generate distinct event signatures, typically represented by three parameters: 

the mean current amplitude of current blockades triggered by the analyte when it transits through 

the pore (δI), the duration of its residence in the pore [dwell time (td)], and the time delay 

between two consecutive events (δt). In general, the δI can vary due to several factors such as 

size, structure and net charge of the molecule in the pore.
48

 The td is usually affected by the type 

and strength of the interactions between the analytes and the nanopore such as aromatic 

interaction or electrostatic force, and δt changes with the concentration of the molecule in 

solution.
46

 Therefore, investigating the events in this system not only reveals the dynamic motion 

of the analytes in the pore but also provides valuable information about their structure and 

concentration.  

 

  

 

 

 

 

 

 

 

 

Figure 1.1 Schematic of ionic current detection of biomolecules in a nanopore. A. An insulating material with a 

nanoscale aperture divides two chambers containing an electrolyte solution such as KCl. When a voltage bias is 

applied across the partition, ions are transported across the pore resulting in electric current. In general, the 

relationship between current and voltage of a pore is linear and thus holding the potential at a constant voltage 

generates a steady-state DC current signal. B. When a charged biopolymer such as DNA is added to the 

grounded (cis) chamber, it diffuses towards the positively charged (trans) side. The passage of each individual 

molecule causes a transient drop in the ionic current through the pore. This event can be characterized by 

parameters such as the average event amplitude (δI), the dwell time (td) and the time between two consecutive 

events (δt).
46

  

Cis 

Trans 
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1.3.2 Types of nanopores 

 The nanopore may be either a naturally occurring protein channel embedded in a lipid 

bilayer or a synthetic nanoscale cavity fabricated in a solid state membrane. Naturally occurring 

biological protein pores possess advantageous features such as their atomic precision and 

reproducibility; each pore is atomically identical to the previous one.
45

 Also, they are made in 

biological cells and therefore it is relatively easy to modify amino acids at defined positions or 

fuse other functional groups to them using genetically engineered DNA templates.
49

 On the other 

hand, solid state nanopores are usually formed by etching pores in a thin sheet of materials such 

as silicon nitride (Si3N4) or graphene and thus their pore geometry is variable.
50

 While biological 

nanopores are rather sensitive to temperature, pH and solution composition and also have a 

rather limited life span due to the fragility of lipid bilayers, solid state pores present superior 

mechanical, chemical and thermal robustness and they can be reused repeatedly.
51

 Although the 

recent advances in microfabrication techniques are beginning to rival biological pores, protein 

pores still offer much greater flexibility for chemical and structural modification by site-directed 

mutagenesis.
49,50

 Thus, they have been serving as the main workhorses in many applications of 

nanopore technology and single molecule studies.   

1.3.3 Features of the alpha hemolysin pore 

 There are varied protein pores, each with their own distinct shape and dimensions as well 

as benefits and limitations. Among them, alpha hemolysin (αHL) is one of the best studied 

protein pores for use as a nanopore detector. αHL is a heptameric cytotoxin that is secreted by 

the bacterium Staphylococcus aureus as a water-soluble monomer.
47,52,53

 Upon binding to the 

membrane, seven protomers self-assemble to form a 232.4 kDa mushroom-shaped heptameric 

transmembrane channel of defined structure consisting of three domains: the cap, rim and stem 



 

 

9 

 

(Figure 1.2).
52

 The overall dimensions of the pore are 10 nm x 10 nm with the cap of the protein 

concealing a large vestibule with a 2.6 nm wide opening and 4.6 nm at its widest.
47,52

 The overall 

stem region is 5.2 nm in length and 2 nm wide with a 1.4 nm wide limiting aperture at the 

junction of the vestibule and transmembrane domain.
47,52,53

 This channel remains constitutively 

open, meaning it does not present any voltage or ligand induced gating and is also stable over a 

wide range of temperature and pH.
50

 All these features provide αHL with significant advantages 

over other protein pores and thus make it ideally suited for serving as a stochastic sensing 

element.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2 Structural details of the mushroom-shaped αHL pore. A. Side view of crystal structure of 

the oligomerized heptamer at 1.9 Å resolution.
52

 B. Top view C. Detailed dimensions of the pore.
47
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1.3.4 αHL as a single molecule sensor for genomic applications 

 The first biomolecule sensing with αHL dates back to 1996 when Kasianowicz et al. 

demonstrated the electrophoretic translocation of polynucleotides through this channel.
54

 As 

described earlier, the inner diameter of the channel is 1.4 nm and the size of a single stranded 

DNA (ssDNA) molecule is approximately 1.2 nm which means ssDNA can pass through the 

pore but double-stranded DNA (dsDNA) cannot. Because of this close correspondence between 

them, a single DNA molecule nearly occupies the limiting aperture as it traverses the pore and 

this generates a current signal that is exquisitely related to the physical and chemical properties 

of the molecule. Since only a single ssDNA can fit in the pore at a time, this provides a means to 

transduce single molecule events into observable current changes making αHL a very promising 

single molecule analytic tool for biomolecules, especially ssDNA and RNA (Figure 1.3).
45-48

  

  

  

 

 

 

 

 

 

 

 

  

  

Figure 1.3 A typical current blockade signal of a strand of DNA passing 

through an αHL pore.
59
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 To date, many interesting applications have been developed based on the use of αHL as a 

biosensor. Among them, the most attention has been paid to developing a single molecule 

medical diagnostic tool using this nanopore. Compared to traditional diagnostic platforms, a 

nanopore-based one is revolutionary in that it delivers sensitive single molecule resolution, 

requiring a very low analyte concentration and small sample volume, and also provides rapid 

analysis at relatively low cost which is especially important in point of care diagnostics. Of 

particular interest is single molecule nanopore-based DNA sequencing. Because of the ability of 

the αHL to translocate ssDNA in strict single file fashion, it was suggested that this channel 

could be an ultimate DNA sequencer if individual bases produce characteristic modulations in 

the current signal during translocation.
54

 Unfortunately, ssDNA crosses the pore too quickly to 

achieve single-base resolution.
59

 Thus, over the last decades, much research has gone into 

controlling the translocation of DNA and several variations of the approach including the use of 

adaptors, molecular motors, exonuclease, and polymer tagged nucleotides have demonstrated 

their capability for nanopore DNA sequencing.
55-61

    

 Besides DNA sequencing, there are other potential applications where nanopore 

technology could excel in diagnostics.
48

 Among these, an important diagnostic application is 

genetic analysis of SNPs. As mentioned earlier, SNPs are the most common variants found in the 

human genome and implicated in various diseases and responses to treatment.
62

 However, there 

are only a few studies which show discrimination of single nucleotide variation in a nanopore.
63-

65
 Although SNP analysis can be achieved by direct sequencing of DNA, reading every 

nucleotide in order is time-consuming and costly for SNP analysis unless it is for discovery 

purposes. Besides, sequencing often generates errors at a rate of one base per 100 and this is 

about the rate at which SNPs are found to occur in the genome. Thus, it is not quite ideal for SNP 
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analysis even though the accuracy can be improved by increasing sequencing depth. In particular, 

the relatively new nanopore-based DNA sequencing approaches are still in their infancy and thus 

the accuracy of current methods remains to be improved. Therefore, a more targeted nanopore 

assay such as focusing on clinically relevant variations would be of more benefit in terms of 

improving overall efficiency of care and decreasing the associated cost for screening patients. 

1.3.5 Literature review for nanopore-based SNP anlaysis 

 To date, three studies have demonstrated SNP discrimination using nanopores; two of 

them are based on synthetic nanopores and the last one employs the αHL channel as a detection 

system.
63-65

  

 First, in proof-of-principle experiments, Zhao et al. have demonstrated detection of SNPs 

using a solid-state nanopore.
63

 The method is based on the binding of a restriction enzyme to 

DNA and they used the pore as a local force knob to discriminate the binding energies between a 

restriction enzyme and its cognate sequence compared to a SNP sequence (Figure 1.4). 

Specifically, they measured the permeability of EcoRI bound dsDNA through a 2.6 nm pore in a 

Si3N4 membrane as a function of applied voltage. The pore is large enough to pass dsDNA but 

too small for the restriction enzyme. When the enzyme-DNA complex is drawn to the pore under 

the electric field, the potential in the pore pulls the DNA to the trans side of the membrane, 

generating a shear force between the enzyme and the binding sites in DNA. In this study, they 

observed that a threshold voltage required for breaking the bond between the enzyme and DNA 

depends on the sequence of the binding site and thus the congnate DNA sequence could be 

differentiated from SNP sites based on the differences in the required voltage to reverse the 

binding. As in Figure 1.4B, one nucleotide difference in the binding sequence caused the 

threshold potential to fall, therefore allowing SNPs to be discovered. The voltage is plotted 
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against the number of copies of 105 bp dsDNA that have threaded through the pore as a result of 

protein dissociation. The DNA was measured by quantitative PCR.  

 

 

 

 

  

 

 

 

 

  

  

  

 

  

Figure 1.4 SNP detection based on the difference in binding energy between protein and DNA using a 

synthetic nanopore. A. An EcoRI bound dsDNA complex was electrophoretically drawn into a nanopore 

and then dissociated. B. The shearing takes place when the potential across the pore is above a threshold, 

thereby dissociating the enzyme and enabling the DNA to be translocated through the pore. Cog indicates 

cognate enzyme binding sequence.
63
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 Another SNP method using a synthetic nanopore is based on probe strand displacement 

by the SNP allele (Figure 1.5).
64

 In detail, a 7.2 kbp DNA carrier having a streptavidin (black)-

biotin (yellow) complex at its 3’ end is employed; this generates a unique current blockade 

signature when it is applied to a glass nanopore due to the large biotin-streptavidin complex. The 

carrier also includes a complementary sequence for the polymorphic allele (blue) and the biotin 

probe is placed in such a way that binding of the polymorphic but not the wild type allele to the 

complementary sequences displaces the biotin probe in the carrier. Without the biotin label, 

streptavidin no longer binds to the carrier and thus the characteristic current signal of the biotin-

streptavidin complex disappears, indicating the presence of the SNP allele in the solution.  

 

 

 

  

 

 

 

 

 

  

Figure 1.5 SNP detection with DNA carriers and glass nanopore. A.Schematic of DNA carriers 

passing through a nanopore under an applied potential. B. Schematic of the designed DNA 

structure for SNP detection. A pair of overhang DNA probes is placed in the middle of the 

carrier. The central 152bp portion is zoomed in to display the displacement event caused by the 

target DNA strand (green). Blue indicates a complementary sequence to the target DNA strand 

and the SNP site on the mutant strand is marked as a pink spot. The biotin (yellow)-streptavidin 

(black) complex is shown as a square. The bottom shows the two examples of current signatures 

when the biotin probe is present or displaced.
64
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 Recently, another paper has demonstrated a method to detect a point mutation in DNA 

molecules using the αHL nanopore (Figure 1.6).
65

 The technique uses a “nanolock-nanopore” 

sensor in which a sequence-specific DNA interstrand structure with metal ions called a nanolock 

is constructed. Specifically, it is based on the stabilization effect of metal ions such as Hg
2+

 on 

the T-T basepair in the DNA duplex structure. The metal bound DNA displays a distinct current 

signature for dehybridization in the αHL nanopore due to the effect of metal binding on the T-T 

basepair compared to regular A-T bound DNA. The difference in the two current signatures 

allows the SNP site to be detected.  

 

 

 

 

 

 

 

 

 

 

  

Figure 1.6 ‘Nanolock-nanopore’ sensors for SNP detection. A. Sequences of probe (P) and WT strand. B. 

Sequences of probe (P) and target mutant strand forming an interstrand nanolock on the T-T mismatch 

with Hg
2+

. The bottom shows the comparison of current signatures between the WT duplex and the 

mutant duplex carrying a nanolock. The nanolock causes a distinct pattern of signal, allowing the SNP site 

to be detected. Cartoons show the proposed stepwise process of unzipping of WT vs nanolock duplexes in 

the αHL pore.
65
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 The above three assays have proven their concepts for nanopore-based SNP applications. 

Although they are all very original and intriguing, each of them can be applied under limited 

conditions. For instance, even though the first approach can be extended to other protein binding 

sites such as transcription factors or nucleases, it is still limited to these specific sequences and 

thus cannot be employed for other SNP sites. On the other hand, the second method is analogous 

to the traditional hybridization based allele discrimination and as mentioned earlier, it is often 

challenging to find a condition where a single-base mismatch is sufficient to avoid hybridization 

of the nonmatching probe.
17,41

 The last method requires four different metal ions or other 

equivalent compounds that specifically bind to each interstrand basepair in the sequence and in 

this paper, the authors only demonstrated binding of Hg
2+ 

to the T-T basepair. More importantly, 

all these assays provide only a simple binary absence or presence readout. In other words, they 

do not reveal base identity at the SNP site nor the genotype of alleles, whether they are 

homozygous or heterozygous. Therefore, another nanopore-based SNP assay that can provide 

full information about the variation in the sequence and genotype of alleles would be of more 

assistance for diagnostics.  

1.4 Our approaches for single molecule electronic SNP assay using polymer 

tagged ddNTPs 

 As mentioned earlier, routine clinical practice of SNP analysis mandates simple and 

inexpensive instruments, fast turnaround time and an integrated and robust workflow.
27

 In 

keeping with this demand, this thesis demonstrates a nanopore-based single molecule SNP assay 

that has the potential to be a favored genotyping method in a clinical setting. Basically, the 

fundamental structure of our assay is based on SBE of a primer using polymer tagged ddNTPs 

for allele discrimination and simple ionic current readout of an αHL pore for allele detection. In 
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an attempt to realize this, we have developed two different assay models. While the first 

approach is designed to be an integrated method in which allele discrimination is combined with 

the allele detection step, the second approach involves an initial allele discrimination step, after 

which the reaction products are applied to the detection system for analysis. More detailed 

stepwise processes and features of each method are illustrated below.  

1.4.1 An integrated SNP assay in which SBE is achieved on a primer-

conjugated nanopore.  

 With the aim of developing an assay that is preferred for a clinical setting, a combined 

workflow was designed by integrating the allele discrimination step into the nanopore detection 

system (Figure 1.7). In detail, a primer is covalently conjugated to the αHL nanopore and this 

serves as a platform for the entire assay. After reconstituting the primer-conjugated pore in the 

membrane, SBE is performed by applying a circular DNA template, tagged ddNTPs and DNA 

polymerase to the pore. In this reaction, depending on the sequence of the template, DNA 

polymerase extends the primer with one of the ddNTPs, each of which has a unique identifying 

molecule attached to its base. Under an applied voltage, the electric field drives the tag on the 

extended primer into the pore and this generates a current signal event that is specific to the 

identifying molecule on each of the nucleotides, thereby revealing the genotype of the template. 

The results for this assay design are presented in Chapter 5.  

1.4.2 An alternative approach utilizing a biotin-streptavidin complex  

 In the first assay design, primer is covalently conjugated to the pore which is in a 

stationary phase on the membrane. Although this integrated design is beneficial for increasing 

throughput and automation of the assay in the future, immobilization of one of the enzyme’s 
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substrates could affect overall efficiency of the enzymatic reaction due to issues of diffusion and 

the need to bring together the required substrates at a fixed position.  

 To compensate for this potential limitation of the previous design, we developed an 

alternative approach where SBE is completed in advance of applying it to the detection system. 

The key difference in this method compared to the previous one is that it utilizes the strength of 

the biotin-streptavidin interaction as a means of immobilizing the extended primer near the 

vestibule of the αHL pore. In detail, SBE is performed using biotinylated primer, tagged ddNTPs 

and DNA polymerase. This is followed by streptavidin treatment, after which the reaction 

products are applied to the nanopore system. Under an applied potential, the resulting biotin-

streptavidin complex is stalled on the pore due to the large diameter of streptavidin and this 

essentially serves the same purpose as conjugating primer to the pore in the previous approach. 

The annealed primer-template is double stranded and only the single stranded tag on the 

extended primer is designed to be long enough to thread into the channel of the αHL pore. Hence, 

the electric field drives the tag on the extended primer to the pore under the applied potential and 

this generates a distinct current blockade signal depending on the identifying molecule on each 

nucleotide, revealing in turn, the genotype of the template (Figure 1.8). The data validating this 

assay are shown in Chapter 6.  
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Figure 1.7 Scheme of single molecule electronic SNP assay using four polymer tagged ddNTPs in a primer-

conjugated nanopore array. 

An αHL nanopore that is conjugated with primer is prepared. SBE is performed by adding ddNTPs with tags 

on the base position, DNA polymerase and circular template. The primer is extended by the complementary 

nucleotide to the queried site in the template by DNA polymerase. Under an applied potential, the tag on the 

extended primer is drawn into the pore and this generates a unique event in the measured current signal, 

thereby revealing the genotype of the template.  



 

 

20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 An alternative single molecule electronic SNP assay scheme employing a 

biotin-streptavidin complex in a nanopore array. 

SBE is performed with a biotinylated primer, template, DNA polymerase and tagged 

ddNTPs. The reaction products are subsequently bound to a streptavidin molecule and 

analyzed in the nanopore system. The biotin-streptavidin complex positions the tag on 

the extended primer near the pore, allowing the tag to be pulled into the pore under the 

applied potential. The ensuing current signals are monitored to decipher the base identity 

in the template.  
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1.5 The Genia nanopore array 

 The instrumentation used for nanopore experiments in this thesis was developed by Genia 

Technologies, Inc. The key part of their system is a complementary metal-oxide semiconductor 

(CMOS) integrated circuit containing hundreds of individually addressable Ag/AgCl electrodes 

isolated by independent lipid bilayers (Figure 1.9A).
56

 The overall design of the chip is that it 

consists of one shared fluidic chamber (the cis compartment) and membrane-isolated 5 µm 

diameter wells with a silver electrode deposited at the base of each well (the trans compartment). 

The surface of the chip is covered with SiO2 and over-coated with C18 silane to create a 

hydrophobic support for building lipid bilayers across the top (Figure 1.9B). All chip functions, 

voltage application and current measurements are controlled on a single reader circuit board. The 

fluidic chip can house hundreds of pores in parallel and insertion of a single nanopore per 

membrane is achieved using individual feedback circuits which monitor currents generated from 

single pores. First, microgram amounts of phospholipid dissolved in alkanes are applied to the 

chip. Membrane formation is achieved using an automated lipid spreading protocol utilizing a 

syringe pump to apply iterative buffer and air bubble flow to mechanically thin the membrane 

until a single lipid bilayer is shaped on a C18 silanized surface. The electrical capacitance, which 

is directly associated with the structural integrity of the membrane, is measured with each 

electrode by applying voltage across the membrane during this step. An empirically set 

capacitance threshold value of 5 fF/µm
2 

is employed to classify the properly formed single lipid 

bilayer and the thinning process ends when a majority of wells exhibit this value. Once the 

membrane is formed over the electrode, αHL is pumped into the system and the instrument 

begins the automated pore insertion step which consists of a linearly increasing voltage gradient 

ranging from 50 mV to 600 mV in 50 mV increments. The increasing potential stresses the lipid 
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bilayers, potentiating self-insertion of αHL pores into the bilayer. During this step, the reader 

board screens the current across each membrane and a sudden rise in the current is considered a 

pore insertion event based on the increase in conductance across the membrane. When this 

occurs, the voltage on the specific membrane is turned off to avoid additional pore insertion 

events. In this way, the likelihood of multiple pore insertions in a single well is minimized. At 

this point, analytes can be flowed into the cis chamber to carry out the desired assay.  

 

 

  

 

 

 

 

 

  

Figure 1.9 Genia nanopore array. A. Its reader board and integrated circuit with 264 sensors. 

B. Each sensor contains a 5µm diameter silver electrode at the bottom of a well. A lipid 

bilayer covers the opening of the well and a single αHL nanopore completes the electrical 

circuit between the sensing and reference electrodes.  
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CHAPTER 2: Design and Synthesis of Polymer-Tagged 

ddNTP Analogs for DNA Polymerase Extension 
 

2.1 Introduction 

In our single molecule electronic SNP assay, the capture of a unique identifying molecule 

that is tagged to each nucleotide generates a distinct current impedance signal in the nanopore 

system. To realize this concept, four nucleotide analogs possessing distinct tags were designed 

and synthesized. Previous studies from our laboratory have demonstrated the synthesis of 

deoxynucleotides (dNTPs) with various polyethylene glycol (PEG) or oligonucleotide polymers 

with structural variations.
56,68

 In those studies, the polymer tags were attached to the terminal 

phosphate position of the nucleotides and this enabled the tags to be released along with 

pyrophosphates upon their incorporation into DNA for continuous sequence determination. 

However, in SNP analysis, only a single base in the original template is of interest and thus 

further extension is not necessary. Thus, we employed ddNTPs for our SNP assay instead of 

dNTPs; ddNTPs lack the 3’-hydroxyl group which is crucial for creation of a phosphodiester 

bond between the incorporating nucleotide and the primer end. Hence, further extension of 

primer ceases once a ddNTP is included in a growing chain. In addition, since only one base in 

the template is of concern, the tag molecule does not have to be removed for the next cycle of 

extension. This means that the tags can be permanently incorporated into the primer by 

conjugating to places other than the terminal phosphate on the nucleotide. Lastly, our method 

relies on DNA polymerase to produce allele-specific SBE products using polymer tagged 

ddNTPs. Therefore, it is imperative to find a suitable position for attaching the tag molecules in 
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the ddNTPs where they do not disrupt the active sites of DNA polymerases and conserve the 

DNA structure during nucleotide incorporation.  

In view of all these points, an ideal tag conjugation site on ddNTPs was investigated. 

Previously, a study has shown that certain modified DNA polymerases can accept nucleotide 

analogs having large groups at the 5-position of pyrimidines (C and U) and the 7-position of 

purines (A and G).
69

 In support of this, the X-ray crystallographic structure of the ternary 

complex formed by a rat DNA polymerase, a DNA template-primer, and ddCTP has revealed 

that these specific positions in each base ring are relatively available for sizable tag attachment
 

(Figure 2.1).
70

 Indeed, bulky fluorescent dyes have been placed at these positions and they have 

been used extensively for several genomic applications such as DNA labeling and sequencing.
71-

74 
Based on these studies, we decided to conjugate a tag to the 5-position of C/U and the 7-

position of A/G. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 X-ray crystallographic structure of ternary complexes of rat DNA polymerase 

beta, a DNA template-primer, and ddCTP. Green indicates the sugar ring and red marks 

the pyrimidine base ring in ddCTP. The 5-position of ddCTP (arrow) has a relatively large 

space for modification with a bulky group.
69
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After synthesizing these tagged ddNTPs, their applicability as substrates for DNA 

polymerase was tested using a self-primed looped DNA template. In quest of a proper enzyme 

that can tolerate our newly synthetized tagged ddNTP analogs, five DNA polymerases that have 

been shown to accept ddNTPs were investigated. These include two Therminator DNA 

polymerases, mutant versions of the native DNA polymerase from Thermococcus species 9°N-7, 

which have been engineered to possess an improved ability to catalyze incorporation of modified 

substrates such as ddNTPs, ribonucleotides or other nucleotide analogs with variations at the 3´ 

ribose position. Therminator II contains D141A / E143A / Y409V / A485L mutations and 

Therminator III has D141A / E143A / L408S / Y409A / P410V mutations.
75,76

 These distinct 

combinations of mutations enable them to tolerate various nucleotide analogs and incorporate 

them into a growing primer. The Klenow fragment (exo-) is an N-terminal truncation of DNA 

polymerase I which retains polymerization but has had its 5’  3’ and 3’  5’ exonuclease 

activities removed. It has been widely used to sequence DNA using the method of Sanger which 

employs ddNTPs.
77

 Sequenase 2.0 is a genetically engineered version of bacteriophage T7 DNA 

polymerase which has been shown to incorporate ddNTPs at the same rate as dNTPs. Finally, 

Thermo Sequenase is a Taq DNA polymerase variant with a genetic change that abolishes 

discrimination against ddNTPs.
78-82 

Moreover, previous studies have shown that the use of the 

catalytic manganese ion (Mn
2+

) instead of magnesium ion (Mg
2+

) can increase the efficiency of 

incorporation of ddNTPs by some of the enzymes listed above and thus additional extension 

reactions with Mn
2+ 

were also examined.
83-85

 Using the enzyme that exhibited the best 

incorporation efficiency from the above five candidates, a kinetic fluorogenic assay was 

performed to estimate the efficiency of our newly tagged ddNTP analogs as substrates for DNA 

polymerase compared to unmodified ddNTPs.  
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2.2 Methods 

2.2.1 Synthesis of polymer tagged ddNTPs (cf. Figure 2.4) 

 Oligonucleotide polymers were conjugated to the 5-position of pyrimidines (C and U) 

and 7-position of purines (A and G). To synthesize these molecules, first, 5-proparglyamino-

ddNTPs for C/U and 7-proparglyamino-ddNTPs for A/G (1-4) were extended with amino 

caproic acid-N hydroxysuccinimide (NHS) ester to install an amino extended chain on the 

ddNTPs (5-8) as described by Duthie et al.
88

 The products were purified by reverse phase HPLC. 

In order to attach polymer tags using a click chemistry approach, based on a cycloaddition 

reaction between an alkyne and an azide, an azido group was introduced by reacting the extended 

ddNTPs with azidobutyric acid-NHS ester. The reaction mixture was stirred overnight at room 

temperature and purified by HPLC using 0.1 M triethylammonium acetate (TEAC) buffer (pH 

7.5) and an acetonitrile gradient to provide azido extended ddNTPs (9-12). Each 5’-hexynyl-

oligonucleotide tag (custom synthesized by TriLink, 500 nmol in 200 µl H2O) was reacted with 

the corresponding ddNTP-N3 nucleotide (750 nmol) followed by the addition of copper bromide 

(50 µl, 0.1 M solution in 3:1 DMSO/t-BuOH) and tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine (TBTA) (100 µl, 0.1 M solution in 3:1 DMSO/t-BuOH). The reaction mixture 

was stirred at 40 °C for 16 hr and purified by HPLC using 0.1 M TEAC buffer (pH 7.5) and an 

acetonitrile gradient.  
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2.2.2 Screening several DNA polymerases for incorporation of the polymer tagged 

ddNTPs  

 In search of a polymerase that can recognize and incorporate our polymer tagged ddNTP 

analogues, five DNA polymerases (Therminator II, Therminator III, Klenow, Sequenase 2.0 and 

Thermo Sequenase) that are known to have the ability to incorporate modified ddNTPs were 

screened for SBE with self-primed looped templates and different ratios of our polymer tagged 

ddNTP relative to the templates. Sequences of these templates are as follows: 5’-

CGCGGCGCGGTTCCGCGCCGCGAGCT-3’ for T and 5’-CGCGGCGCGGTTCCGCGCCGC 

GGCTA-3’ for C. The reactions were performed at 37˚C for 1 hour in a 20µL volume containing 

1 µM template, 4 units of Thermo Sequenase (Affymetrix) and 20 or 30 µM tagged ddNTPs. 

Reactions with 5 units of Klenow(exo-) (New England Biolabs), 13 units of Sequenase 2.0 

(Affymetrix), or 4 units of Therminator II or III (NEB) having the same concentration of the 

template and the tagged ddNTPs were also investigated. The extension products were analyzed 

by 8M urea 15% polyacrylamide gel electrophoresis.  

2.2.3 Kinetic measurements of nucleotide activity using a fluorogenic assay 

Sequence of the primer is shown in Figure 2.7. Extension reactions were prepared with 

the primer, Thermo Sequenase, dCTP and various dilutions of ddCTP or tagged ddCTP. First, a 

series of SBE reactions were carried out with final ddCTP concentrations ranging from 0 to 10 

µM at a concentration of dCTP of 10 µM and 0.3 µM of labeled primer. Under these conditions, 

the primer is extended by the incorporation of dCTP until it encounters ddCTP incorporation. 

Next, the same experiments were performed in the presence of the polymer tagged ddCTP at 
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concentrations ranging from 0 to 5 µM with 5 µM dCTP and 0.3 µM labeled primer. 

Fluorescence intensity was measured on a SpectraMax3 Microplate Reader (Molecular Devices, 

LLC).  

2.3 Results and Discussion 

2.3.1 Design and synthesis of linear oligonucleotide tagged ddNTPs 

 In our assay, allele discrimination is achieved by capturing the tag on the extended primer 

in a nanopore system. Therefore, in order to generate characteristic current blockade signatures, 

several distinct oligonucleotide polymers having various structural modifications were attached 

to the 5 position of C/T and 7 position of A/G. In general, each oligonucleotide tag starts with a 

hexynyl moiety at the 5’ position for conjugation to azido-ddNTPs followed by unique 

sequential units of molecules as identifiers to generate different current blockade signatures. This 

includes relatively neutral phosphodiester building blocks, different numbers of repeated abasic 

nucleotides or simple spacers that have a smaller diameter. These differences in charge and size 

create unique current impedance signals when the tags thread through an αHL nanopore in 

response to an applied voltage. These modifications are envisioned to be localized to the 

narrowest constriction zone in the αHL pore where they will directly affect ionic current and thus 

generate the largest changes in current amplitude. Figure 2.2 shows details of the 4 tagged 

ddNTPs that we selected based on their unique current blockade levels from the nanopore 

experiments. Three nucleotides contain different numbers of abasic nucleotides, deoxyribose 

phosphate units (dSp) (3, 8 or 17), and one nucleotide has a chain of relatively neutral molecules, 

6 inosine methyl phosphonate (Imp) linkages within the tag as identifiers. An optional Cy3 dye 

was included in the tag design as a gel electrophoresis tracer to verify that the primer was 

extended with the polymer tagged ddNTP. 



 

 

29 

 

  

To synthesize these tagged ddNTP molecules, we employed the copper catalyzed azide-

alkyne 1,3-dipolar cycloaddition chemistry system that generates a 1,2,3-triazole (Figure 2.3). In 

detail, 5-aminopropargyl-ddNTPs for C/T and 7-aminopropargyl-ddNTPs for A/G (1-4) were 

reacted with aminocaproic acid-NHS ester in order to produce an extended chain for the ddNTPs 

(5-8). They were subsequently reacted with azidobutyric acid-NHS ester to generate azido 

terminated ddNTPs (9-12) that were eventually coupled with an alkyne moiety at the 5’ position 

of each tag through the azide-alkyne click chemistry system (13-16) (Figure 2.4). Detailed 

reaction conditions are provided in the Methods section. The synthesized molecules were 

Figure 2.2 Structures of polymer tagged ddNTPs. A nucleotide (red) is attached to a linker (green) and an 

oligonucleotide polymer tag having an optional Cy3 dye and a dT chain as a backbone (black) with 

interspersed abasic nucleotides (dSp) or inosine methyl phosphonates (Imp) as identifiers (blue). 
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purified by HPLC and the final products were characterized by MALDI-TOF MS analysis. 

MALDI-TOF mass data for the four tagged nucleotides are shown in Figure 2.5.  

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

Figure 2.3 Cu (I)-catalyzed 1,3-dipolar Huisgen cycloaddition of alkyne and azide. 

Figure 2.4 Synthesis scheme for the four polymer tagged ddNTPs. 
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2.3.2. Surveying polymerases for incorporating base labeled polymer tagged 

ddNTP analogs  

 After synthesizing these nucleotides, five DNA polymerases (Therminator II, 

Therminator III, Klenow(exo-), Sequenase 2.0 and Thermo Sequenase) that have shown the 

capability to accept modified ddNTPs were tested for incorporating our base labeled polymer 

tagged ddNTP analogs.
75-82

 The extension reactions were performed using self-primed looped 

templates and varying enzymes or catalytic ions. Tagged ddCTP or tagged ddTTP were 

Figure 2.5 MALDI-TOF MS spectra of the four tagged ddNTPs. The expected molecular 

weights of these nucleotides are (A) 4798 Da for ddGTP-T3-dSp17-C3, (B) 9605 Da for 

ddCTP-Cy3-T2-dSp8-T20-C3, (C) 10225 Da for ddTTP-Cy3-T4-dSp3-T23-C3, (D) 10669 Da for 

ddATP-Cy3-T4-Imp6-T20-C3. The measured values are shown in the spectra.  
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employed for the screening as examples. The sequences of the templates and detailed reaction 

conditions are provided in the Methods section. The extension results were compared and 

analyzed by urea-PAGE analysis. To ensure that the extended primers contain the tagged 

ddNTPs, the molecules on the gel were first illuminated under UV light without any DNA 

staining. As mentioned earlier, an optional Cy3 dye was included in the tag design and in those 

cases the primer extended by tagged ddNTP also retains the dye. The gels on the left in Figure 

2.6 show the two species that contain a Cy3 dye: the residual tagged ddNTP and the extended 

products. The presence of an extra band containing Cy3 dye on the gel confirms that the primer 

was extended by the expected molecule. The gels on the right show the results after DNA 

staining with SYBR® Gold to display all DNA containing molecules. Figure 2.6A shows 

reaction results with Therminator II (T2) and Therminator III (T3) DNA polymerases. Figure 

2.6B displays the results with Klenow (exo-), Sequenase 2.0 and Thermo Sequenase enzymes. 

As shown in the figure, Thermo Sequenase revealed the best incorporation efficiency with our 

polymer tagged ddNTPs among the tested DNA polymerases, indicating it does not discriminate 

against them. While Klenow, Therminator II and III polymerases demonstrated modest 

incorporation results, Sequenase 2.0 did not show any extension of primer by our tagged 

nucleotides. Also, previous studies have shown that certain enzymes preferentially utilize Mn
2+

 

instead of Mg
2+

 ions.
82,83

 Thus, these enzymes were also tested in reactions containing Mn
2+

. A 

summary table of the incorporation results by all DNA polymerases tested with a specific 

catalytic ion is provided in Table 2.1. The detailed reaction conditions are provided in the 

Methods section.  
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Figure 2.6 Screening five DNA polymerases for incorporation of tagged ddNTPs. Reactions were analyzed on 

a denaturing polyacrylamide gel. The gels were first illuminated under UV light without any DNA staining to 

monitor molecules having a Cy3 dye (left) followed by DNA staining (right). A. Therminator II (T2) and III 

(T3) were tested for SBE with self-primed looped template and tagged ddTTP or tagged ddCTP. Lanes 6 and 7 

show the incorporation results of tagged ddTTP with either T2 or T3. Lanes 8 and 9 are the reaction results 

with tagged ddCTP.  Lane 2, 3 and 4 are controls: the template, tagged ddTTP and tagged ddCTP respectively. 

B. SBE reaction results with Klenow, Sequenase 2.0 and Thermo Sequenase with different ratios of the 

template relative to the tagged ddCTP (1:20 and 1:10). Lanes 3 and 4 show the results with the Klenow 

enzyme. Lanes 5 and 6 are with Sequenase 2.0 polymerase and lanes 7 and 8 are with Thermo Sequenase 

polymerase. Lane 9 is a blank lane. Lanes 10 and 11 are controls with tagged ddCTP and the template 

respectively.  
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2.3.3 Kinetic measurements of activity of tagged ddNTP analogs as substrates for 

Thermo Sequenase  

A simple kinetic enzymatic assay was performed to test how efficiently our polymer 

tagged ddNTP analogs are consumed as substrates for Thermo Sequenase compared to 

unmodified ddNTPs. The assay is based on fluorescence polarization of a self-primed template 

labeled at its 3’ end with a single fluorophore. A previous study has shown that the fluorescence 

intensity of the primer changes as DNA polymerases extend it.
86

 The sequences of the template 

stretches of the molecules are composed of 7 identical nucleotides (Figure 2.7) and thus, in this 

design, primer can be extended by between one and seven bases, depending on the ratio of 

dNTPs and ddNTPs added in the mixture. With this template, control extension reactions were 

performed with an increasing concentration of ddCTP and a constant concentration of dCTP. 

Based on the fluorescent intensity emitted in each experiment, a relative IC50 of ddCTP was 

estimated by measuring the concentration of ddCTP required to bring the intensity down to the 

Table 2.1 A summary table showing the relative incorporation efficiency of tagged 

ddNTPs by the tested enzymes.  



 

 

35 

 

half-way point between the maximum and bottom plateaus. The same experiment was repeated 

with our tagged ddCTP and its relative IC50 was compared to that of unmodified ddCTP.  

 

 

 

 

 

Figure 2.8 shows a plot of fluorescence intensity versus time. First, a series of SBE 

reactions were carried out with final ddCTP concentrations ranging from 0 to 10 µM with 10 µM 

dCTP and 0.3 µM labeled primer. Under these conditions, the primer is extended by the 

incorporation of dCTP until it encounters ddCTP incorporation. As shown in Figure 2.8A, the 

concentration of unmodified ddCTP that produces the half maximum fluorescent intensity is 

approximately 0.5 µM. Next, the same experiments were repeated in the presence of our polymer 

tagged ddCTP at concentrations ranging from 0 to 5 µM with 5 µM dCTP and 0.3 µM labeled 

primer. The result shows that the apparent IC50, a concentration of nucleotide required to bring 

the intensity down to the half-way point, of polymer tagged ddCTP is approximately 0.25 µM 

(Figure 2.8B). Thus, we concluded that our tagged ddCTP analog has comparable kinetic 

properties to the unmodified ddCTP at least with the DNA polymerase tested.  

 

 

 

Figure 2.7 Structure of oligonucleotides used in this experiment. The fluorescein label (FL) 

is attached to the 3′-most T residue. The sequence of the single-stranded part of the 

oligonucleotide consists of seven identical bases (G’s shown here) and thus allows the 

enzymatic extension of the 3′ end by between one and seven bases. 
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2.4 Conclusion 

 In most currently available genomic assays, DNA polymerase is required to catalyze 

necessary biochemical reactions for determining the identity of bases in DNA sequences and the 

fundamental difference among these assays is the type of nucleotide substrate incorporated.
21

 In 

other words, the capability of DNA polymerase to process certain nucleotide analogs lies at the 

heart of the assays.   

 In this chapter, novel ddNTP analogs labeled with oligonucleotide polymer tags were 

synthesized and various DNA polymerases were investigated for their ability to accept our new 

Figure 2.8 Fluorescence intensity change vs time using self-primed looped primers having a fluoresceinated dT 

near their 3’ ends. A. Varying concentrations of ddCTP (0 to 10 µM) were added to solutions containing 0.3 µM 

single fluorescein labeled self-primed template and 10 µM dCTP. The concentration of unmodified ddCTP that 

produces the half maximum fluorescent intensity is approximately 0.5 µM.  B. The same experiments performed 

with the tagged ddCTP (0 to 5 µM) in the presence of the same template and 5 µM dCTP. The result shows that 

the apparent IC50 of polymer tagged ddCTP is approximately 0.25 µM. 

DNA polymerase 

+Tagged ddNTP/ 

dNTP 
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compounds. Our results indicate that Thermo Sequenase with Mg
2+ 

exhibits the best 

incorporation efficiency of our polymer modified ddNTPs and the kinetic experiment shows that 

the rate of the enzymatic reaction was barely affected despite the presence of long tags on the 

nucleotides. As mentioned earlier, Thermo Sequenase is an engineered version of Taq DNA 

polymerase. In this enzyme, the phenylalanine at amino acid (AA) position 667 in the original 

Taq polymerase is replaced with tyrosine and studies have shown that this single residue 

substitution eliminates discrimination against ddNTPs.
79

 Since this discovery, many studies have 

demonstrated the incorporation of ddNTPs labeled with fluorescent molecules by this 

enzyme.
80,81

 In line with these previous results, our data indicate that even a rather extensive 

modification such as a 20-30 unit long polymer attached to the 5 position of pyrimidine and 7 

position of purine bases does not interrupt the catalytic activity of Thermo Sequenase and thus 

they can be efficiently incorporated into the growing chain by this enzyme.  
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CHAPTER 3: Building DNA Conjugated Nanopores:  

Strategies for Mutagenesis, Conjugation and Purification  
 

3.1 Introduction 

 
 In one of our approaches for the single molecule electronic SNP assay, a ssDNA 

molecule is conjugated to the αHL heptameric pore and this complex serves as a platform for the 

entire assay (Chapter 5). Thus, this chapter will discuss several experimental strategies for 

constructing DNA-pore conjugates.   

 The attachment of DNA to the pore was achieved via a sulfosuccinimidyl-4-(N-

maleimidomethyl) cyclohexane-1-carboxylate (sSMCC) hetero bifunctional crosslinker that 

contains an amine-reactive NHS ester and a thiol-reactive maleimide group at opposite ends. The 

native form of αHL does not possess cysteine residues. In order to conjugate DNA to the pore, 

we thus engineered an αHL construct where a single amino acid (AA) has been substituted by 

cysteine. To find a suitable position for DNA attachment on the pore, three attachment sites at 

various distances from the cis opening of the pore were explored using three mutant DNA 

constructs having a cysteine residue (Cys) at a different AA site. 

 As mentioned earlier, αHL is expressed as a water-soluble monomer (33.2 kD) that 

naturally assembles into a heptameric pore-forming channel (232.4 kD) upon inserting into the 

membrane. Thus, to build DNA-pore conjugates, αHL monomers were first expressed in E. coli 

and purified. To attach a single DNA molecule to the pore, the formation of pore was induced by 

incubating a mixture of WT and Cys αHL monomers in the presence of lipids. Both monomers 

were recombinant proteins with a specific tagging system for purification. Specifically, the WT 
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construct contains a neutral 2x-Streptag® and the Cys construct has an 8x histidine tag (8x-

Histag) that becomes protonated below its pI. Taking advantage of the charge difference between 

the two tagging systems, a 6:1 stoichiometry of the pore having 6 units of WT monomers and 

one unit of Cys mutant was separated from the rest of the pores by ion exchange chromatography 

(IEC). The step-wise process for the purification of 6(WT):1(Cys) stoichiometry pore and the 

possible permutations of hetero-heptameric pore are shown in Figure 3.1.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 The sSMCC linker attached DNA molecule (1) was reacted with the 6:1 pore and the 

resulting single DNA molecule attached DNA-pore conjugate (2) was finally purified using size 

exclusion chromatography (SEC). The overall process of conjugation is illustrated in Figure 3.2.  

 

Figure 3.1 Building a 6:1 pore assembly. A. A stepwise process of isolating a 6:1 pore 

assembly. B. Possible permutations of eight stoichiometric ratios of WT and Cys with 

the desired arrangement highlighted. 
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3.2 Methods 

3.2.1 PCR based one-step mutagenesis 

A single pair of partially overlapping primers was designed to anneal to the template sequences 

flanking the target regions (underlined) where the sequences are to be substituted. The primer 

sequences that were used for each mutagenesis experiment are as follows. 8xHistag: F- 5’-

GAAGAAATGACAAATAAGGGTCATCATCACCATCACCATCATCATTGAGTTTAAAC  

TATATAGAAT-3’, R- 5’-TTAAACTCAATGATGATGGTGATGGTGATGATGACCCTTAT 

TTGTCATTTCTTCTTTTTCCCA-3’, S239C: F- 5’-GTGATTACCATGGATCGCAAAGCGT 

GCAAACAGCAGACCAACATTGATGTGATTTATGAACGC-3’, R- 5’-CACATCAATGTT 

GGTCTGCTGTTTGCACGCTTTGCGATCCATGGTAATCACGGTCGCAAAATCCGG-3’, 

N93C: F- 5’-GTACAGTTGCAACTACCTGATTGCGAAGTAGCTCAAATATCTGATTACT 

ATCCAAGAAAT-3’, R- 5’-GTAATCAGATATTTGAGCTACTTCGCAATCAGGTAGTTG 

CAACTGTACCTTAAAGGCTGAAGG-3’. Using these primers and the original plasmid as 

template, a PCR reaction was performed with high-fidelity Phusion® DNA polymerase (NEB). 

Figure 3.2 Synthesis of DNA-conjugated αHL. 
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A 20 µl PCR reaction contained 1 µl of template (~100 ng), 1 µl of each primer (~10 pM each), 

1 µl of 10 mM dNTP mixture, 1X buffer and 1 µl Phusion
®
 DNA polymerase (2 U). The reaction 

started with a pre-denaturation step for 2 mins at 94°C followed by 34 cycles of 1 min at 94 °C 

and 1 min at 68 °C with a final extension step for 1 min at 72 °C. After the PCR reaction, the 

mixture was treated with 1 μl of DpnI (20 U) (NEB) at 37 °C for 1 hour to remove the original 

template plasmids that contain methylated sites.   

3.2.2 Transformation  

Following the DpnI digestion, 1 μl of the mixture was used to transform DH10B™ 

electrocompetent cells (Thermo Fisher). After an hour recovery in 600 μl SOC medium, the 

transformed cells were spread on LB plates containing 100 μg/ml carbenicillin and incubated at 

37 °C overnight. Eight colonies were selected and grown in 100 µl of LB with 100 μg/ml 

carbenicillin overnight. To confirm the presence of the desired plasmid, a DNA fragment 

containing the αHL gene was amplified in a PCR reaction containing 1 µl of the culture, 1 µM 

forward and reverse primers, 0.2 mM dNTP mix, 0.1 unit of 2X Advantage DNA polymerase 

mix and 2 µl 10X Advantage buffer (Clontech). The PCR products were analyzed on a 1% 

agarose gel. After confirming the size of products, plasmid DNA was purified using a QIAprep 

Spin Miniprep Kit (Qiagen) and sequenced. 

3.2.3 αHL protein expression 

WT and Cys mutant proteins were expressed in One Shot® BL21 (DE3) Star cells (Thermo 

Fisher). This E. coil strain is deficient in Lon protease (cytoplasm) and OmpT protease (outer 

membrane). Therefore, it is suitable for expressing recombinant proteins. The αHL gene was 

originally cloned using the pEXP5 vector system that contains the T7-lac promoter for inducible 

expression. To induce the protein expression, MagicMedia™ medium (Thermo Fisher) with 100 
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µg/ml carbenicillin was inoculated with the seed culture at 30 °C for 18 hours. Cells were 

harvested and lysed by sonication in buffer: 100 mM Tris-HCl, 1M NaCl, pH 7.4 for WT and 

1M PBS, 40 mM imidazole, 1M NaCl, 50 mM TCEP, pH 7.4 for the Cys mutants. Cell debris 

was removed by ultracentrifugation at 4 °C for 30 min at 20,000 rpm and the supernatants were 

collected.  

3.2.4 αHL monomer purification 

The proteins were purified using a Streptactin® affinity column for WT and a nickel-NTA 

column for Cys mutants on an ÄKTA chromatography system (GE). After loading with cleared 

lysates, columns were first washed with the equilibration buffers to eliminate nonspecific 

binding to the column and then proteins were eluted in elution buffer: 100 mM Tris-HCl, 1 M 

NaCl, 2.5 mM desthiobiotin, pH 7.5 for WT and 1M PBS, 500 mM imidazole, 1 M NaCl, 50 

mM TCEP, pH 7.4 for Cys mutants. The purified fractions were analyzed by SDS-PAGE gel 

analysis.  

3.2.5 Formation and purification of αHL heptameric pores 

The two purified αHL monomers were mixed at a ratio of 6(WT):1(Cys) and incubated at 40°C 

for 1 hour in the presence of 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) at a 

concentration of 5mg/ml. Lipid vesicles were subsequently solubilized by adding 300 mM n-

octyl-β-D-glucoside (βOG) to the reaction to a final concentration of 5% (vol/vol). Fully formed 

heptameric pores were separated from the remaining monomers and lipid vesicles by Superdex 

200 SEC in 1 M PBS, 1 M NaCl, pH 7.5 and 30 mM βOG. The collected protein fractions were 

characterized by SDS-PAGE analysis.  
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3.2.6 Separation of 6:1 stoichiometry pore assembly 

The pH of the purified heptameric pore solution was adjusted to pH 5.0 to protonate the 8x-

Histag on the Cys mutant and then loaded on a Mono S column (GE) in 20 mM MES buffer, pH 

5.0, 0.1 % Tween 20 and eluted with a linear gradient of 0 M to 2 M NaCl. The chromatographic 

fractions were collected and the presence of two monomers and their relative ratio were 

confirmed by SDS-PAGE.  

3.2.7 Conjugation of DNA to pore 

1 mM oligonucleotide with a single amine modification was incubated with 2 mg of sSMCC 

crosslinker (Thermo Scientific) at room temperature for 1 hour and the linker attached DNA was 

first purified from the unreacted sSMCC by Sephadex G25 SEC in 1 X PBS, pH 7.4. The 

purified 6(WT):1(Cys) pore was added at a 60X molar deficit relative to the concentration of the 

sSMCC-activated DNA and incubated for 4 hours. The final DNA-pore conjugate was isolated 

from the residual DNA by Superdex 200 SEC. The attachment of DNA to the Cys αHL mutant 

and the completion of the reaction were observed by a mobility shift of the Cys monomer in the 

denatured samples on an SDS-polyacrylamide gel.  

3.2.8 Hemolytic capability of the purified proteins on blood agar plate 

3.2 µg of each protein was spotted on a 5% sheep blood agar plate (Thermo Fisher) and 

incubated at 37 °C overnight.  

3.2.9 Leakage kinetic assay based on vesicles 

DPhPC vesicles were generated by the extrusion method using membrane with pore size 100 nm 

according to literature procedures.
89

 Kinetics of αHL-induced calcein dye leakage from lipid 

vesicles was measured by fluorescence spectroscopy using a Fluorolog 3P fluorometer 

(HORIBA Jobin Yvon). Vesicle solutions (700 µL) were excited at 488 nm and fluorescence 
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over time was recorded at 515 nm. After collecting baseline fluorescence for 1 min, 50 µL pore 

solution was injected into the vesicle solution. 

3.3 Results and Discussion 

3.3.1 Introducing an 8xHistag and a single cysteine residue in αHL construct 
 

 As described above, the mutant αHL monomer with a single cysteine residue was 

designed to contain an 8x-Histag. Thus, we first introduced this tag to the C-terminus of the αHL 

plasmid construct using a one-step PCR-based mutagenesis strategy. Specifically, this method 

employs a pair of partially overlapping primers that is designed to anneal to the template 

sequences flanking the target regions. Using these primers and the original plasmid as template, 

PCR was performed and the reaction was subsequently treated with DpnI restriction enzyme 

which is specific for methylated and hemimethylated DNA. Since only the parental plasmid 

previously grown in E. coli strains was Dam methylated, this step removes the unmodified 

original template, leaving the newly amplified PCR products containing an 8x-Histag intact. The 

PCR products become viable circular plasmids via an in vivo recombination mechanism in the 

transformed E. coli cells. A schematic of the procedures is illustrated in Figure 3.3A.   

 Based on this method, a pair of primers containing new sequences of histidine residues at 

the C-terminus were designed (Figure 3.3B). After PCR, the original plasmid without the 

modification was digested by DpnI. The remaining DpnI resistant PCR products were confirmed 

by agarose gel electrophoresis to contain the expected plasmid size (Figure 3.4A). After 

confirming their size, they were used to transform DH10B electrocompetent cells. After plating 

on LB agar, 8 colonies were analyzed and a fragment of the plasmid (1.2kb) was amplified from 

each of them to confirm they possessed the desired αHL modification (Figure 3.4B). After 
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verifying the sequences of the 8x-Histag at the C-terminus, it was employed for expression and 

purification of αHL monomers.  

  

  

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Analysis of PCR products after mutagenesis. A. PCR products after 

DpnI digestion separated on a 1% agarose gel. B. Analysis of αHL amplicons 

from 8 selected colonies in a 1% agarose gel. 

Figure 3.3 A. Scheme of one-step PCR-based site-directed mutagenesis. 

B. Sequences of forward and reverse primers. 
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 To attach DNA at different distances from the entrance of the pore, we made several 

versions of αHL mutants in which a single cysteine residue was introduced in different positions 

of the pore. In total, three different AA positions on the cap of the αHL pore were selected: C46, 

C239 and C93 (Figure 3.5). Position 46 is in the middle of the cap and position 239 is at the edge 

of the top surface and thus is further from the pore entrance. Position 93 is on the side of the pore 

instead of the top surface and therefore is the furthest from the pore mouth. The C46 mutant was 

previously available in our laboratory and the other two αHL mutants were created using the 

previously made αHL plasmid with 8xHistag via the same site-directed mutagenesis strategy.  

 

 

 

 

 

 

 

 
 

 

 

3.3.2 Purifications of monomers, 6(WT):1(Cys) heptameric pore and DNA-pore 

conjugate 

 
 The two αHL monomers, WT and Cys, were first expressed in E. coli strain BL21 (DE3) 

and purified using affinity chromatography. As described above, the WT αHL construct contains 

a 2x-Streptag and therefore has a strong affinity for Strep-Tactin
®
 which is an engineered form 

of streptavidin. The cleared cell lysate containing WT αHL monomer was applied to a Strep-

Figure 3.5 Positions of cysteine residues in three different αHL mutants. 

A. C46, top view of αHL pore B. C239, top view C. C93, side view. 
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Tactin column (GE). After a brief washing step which removes non-specifically bound proteins 

from the column, elution was performed with desthiobiotin, which competes for the binding site 

of the Strep-Tactin
®
. Figure 3.6A shows a chromatogram of the WT monomer purification and 

the elution peak collected. The Cys αHL mutants contain an 8xHistag and thus they were 

purified using an immobilized metal affinity chromatography (IMAC) column charged with Ni
2+

 

which interacts with the imidazole rings of the histidine tag introduced in the Cys mutants. The 

bound proteins were then eluted with imidazole which competes with the histidine tag for 

binding to the nickel ion. A chromatogram of the C239 αHL monomer purification is shown as 

an example (Figure 3.6B). The other two Cys mutants (C46 and C93) were purified in the same 

way. Figure 3.6C shows the result of SDS-PAGE analysis of each peak in the two 

chromatograms above. The WT αHL having the 2xStreptag (~35kD) is slightly larger than the 

one with an 8xHistag (~34kD) and the gel shows the difference in size between the two proteins. 

The last two lanes on the gel represent denatured forms of the molecules. To verify that the 

purified proteins possess hemolytic activity, all four recombinant αHL monomers were tested on 

a blood agar plate. They all produced hemolytic plagues in blood agar, confirming that they are 

indeed functional hemolysin proteins (Figure 3.6D).  
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Additionally, to compare the kinetic properties of the purified monomers, a vesicle 

leakage experiment was performed with the WT and one of the Cys αHL mutants (C93). In this 

experiment, DPhPC vesicles containing calcein dye (Figure 3.7A) were prepared. The 

Figure 3.6 Purification of αHL monomers. A. Chromatogram of the purification result for WT monomer 

on a Streptactin column. B. Chromatogram of purification of C239 monomer on a nickel column. FT = 

flow through. C. SDS-PAGE analysis of purified monomers. D. Confirmation of hemolytic activities of 

the purified proteins on a 5% sheep blood agar plate. 
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encapsulated calcein dye exhibits almost no fluorescence at high concentration because of self-

quenching. However, when an αHL monomer is added to the calcein vesicles, it forms pores in 

the vesicles causing the dye to escape into the solution and thus the fluorescence from calcein 

increases upon dilution (Figure 3.7B). Therefore, αHL pore-forming activity can be measured by 

the increase in fluorescence intensity after addition of the αHL monomer. Figure 3.7C shows 

changes in fluorescence intensity over time. Two concentrations of αHL monomers were tested 

(25 nM and 50 nM) and we observed that the initial slope for the dye leakage induced by the C93 

mutant was greater than that of the WT αHL, indicating that the C93 αHL mutant has relatively 

faster kinetics of pore formation than the WT. The upper black trace represents a control 

experiment with Triton X-100, which solubilizes the vesicle membrane and thus causes all 

calcein dye to be released into the solution. This trace corresponds to the fluorescence intensity 

of complete leakage and the same fluorescence intensity was absorbed after addition of Triton X-

100 to the αHL containing solutions at the end of experiments (not shown). Overall, the data 

show that the mutant αHL has a slightly faster kinetics of pore formation than WT αHL and both 

should be suitable for preparation of heterologous pores. 

  

 

 

 

 

 

 

 
Figure 3.7 A kinetic experiment using calcein dye leakage from vesicles. A. Structure of calcein 

dye. B. Scheme of fluorescence emission after the pore insertion. C. A graph of fluorescent 

intensity over time comparing WT and the C93 mutant.  
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As described earlier, αHL monomers spontaneously form a heptameric transmembrane 

channel upon contact with a lipid membrane. To induce the formation of heterologous 

heptameric pores, a mixture of the purified WT and Cys αHL monomers was incubated in the 

presence of DPhPC bilayers at 40°C for 1h. After solubilizing the vesicles with octyl-beta-

glucopyranoside (βOG), αHL oligomers were separated from the residual monomers and the 

lipid by SEC. Figure 3.8 shows the chromatogram of the reaction mixture and SDS-PAGE 

analysis of the three peaks. In order to confirm that the high-molecular weight fraction represents 

the αHL oligomers, the collected fractions were heat denatured (95 °C, 5 min) and compared 

with the equivalent native forms. The first six lanes display intact samples and the last six lanes 

show the denatured ones (Figure 3.8B). As can be seen in the gel, the protein that came out as the 

first peak (P1) possess the mobility corresponding to the expected heptameric pore size (~240kD) 

and dissociates to monomers upon heat denaturation (~34kD). Based on the chromatogram and 

results of this electrophoretic analysis, we thus concluded that P1 contained the heptameric 

oligomers of hemolysin.  

 

 

 

 

 

 

 

  

Figure 3.8 Purification of heptameric pores. A. A chromatogram of the SEC purification result. 

B. Fraction analysis by SDS-PAGE after Coomassie blue staining. 
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 At this step, a mixture of hetero-heptameric pores of various stoichiometries is present in 

the sample. To isolate 6(WT):1(Cys) pore assemblies, we used mono S (GE) IEC. Before 

applying the sample to the column, the pH of the solution was adjusted to pH 5.0 to protonate the 

histidine tag residues in the Cys αHL monomer of the assembled pores. Thus, the positively 

charged Cys αHL pores bind to the negatively charged groups on the cation exchange column. 

After a brief washing step to remove the unbound materials from the column, elution was begun 

using a salt gradient to separate molecules based on their overall charge. Figure 3.9A shows the 

resulting chromatogram. Five different peaks were collected and analyzed by SDS-PAGE 

(Figure 3.9B). The first six lanes on the left show the native forms of the proteins and the last six 

lanes represent their denatured counterparts. While the protein migration pattern of all five 

collected peaks indicate that they contain approximately the same size heptameric pores, the 

denatured forms demonstrate that there are two different monomers in these fractions except for 

those that came out in the first peak (P1), which is comprised of only WT αHL monomers and 

thus represents a 7:0 pore. The other peaks show progressively different ratios of WT and Cys 

αHL monomers. Based on the combined gel and chromatography results, we concluded that the 

second peak (P2) contains heptameric pores with 6:1 stoichiometry. 

  As described earlier, DNA oligonucleotide was conjugated to this purified 6:1 pore using 

the sSMCC crosslinker and the final product was separated from the residual DNA by SEC. 

Based on the chromatogram (Figure 3.10A), the first peak was analyzed in the gel along with 

controls of different monomers and pores. The presence of DNA conjugated Cys monomer was 

confirmed by a mobility shift of the Cys monomer upward due to its increase in molecular 

weight after conjugation of the DNA.  
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Figure 3.10 Purification of ‘DNA-pore’ conjugates. A. A chromatogram of the SEC purification 

result. B. SDS-PAGE gel analysis of each peak fraction along with monomer and previous pores 

with different stoichiometries as controls.  

Figure 3.9 Purification of pores of various stoichiometries by ion exchange chromatography.  

A. A chromatogram of the purification result on a Mono S column B. SDS-PAGE analysis of five 

collected fractions along with the C239 monomer control.  
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3.4 Conclusion 

 The overall process of constructing DNA-pore conjugates is described in this chapter. 

First, several Cys-containing aHL mutants were created using one-step site directed mutagenesis 

and the corresponding proteins were purified by affinity chromatography according to their 

respective tagging system; WT: Streptag and Cys: Histag. By mixing WT and Cys αHL 

monomers, αHL oligomers with various stoichiometries were generated and purified by SEC. 

Because of the presence of the histidine tag in the Cys-containing αHL, pores of different 

monomer stoichiometry could be separated based on their charge. After isolating the 6:1 pore, 

DNA was conjugated to it via an sSMCC crosslinker, which was confirmed by a change in 

mobility of the Cys monomer after conjugation. In short, these data validate our methodology for 

building nanopores with single DNA molecules.  
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CHAPTER 4: Single Molecule Measurements of Different 

Conformation DNAs Conjugated to Nanopore   
 

4.1 Introduction 

 
 In our first approach, an integrated single molecule electronic SNP assay, ssDNA is 

covalently tethered to the pore to serve as a platform for the entire assay (Chapter 5). Therefore, 

to gain insights about single molecule behavior of DNA coupled to the pore, several DNA-pore 

conjugates having DNAs of different lengths and structures were prepared and their current 

signatures were analyzed in the nanopore system. 

 As described earlier, αHL is a pore-forming membrane channel that is well suited for 

single molecule DNA experiments due to its geometry and stability.
90-96

 The mushroom shaped 

heptameric transmembrane pore contains a large 4.6 nm cavity that is located entirely within the 

extramembranous domain. In the transmembrane domain, the pore lumen constricts to form a 14-

stranded β-barrel that is 2 nm wide and 5.2 nm long with a 1.4 nm limiting constriction between 

the vestibule and the stem.
52

 Because its diameter is large enough to accommodate ssDNA but 

not dsDNA, each polynucleotide must uncoil when it is forced into the narrow lumen of the pore 

and traverse through it as an extended single stranded chain, scanning the full contour length of 

the molecule.
101-103

 During translocation, the ssDNA partially occludes ion flow through the pore 

increasing its electrical resistance, and this allows for straightforward sensing of the DNA 

molecule, which in turn provides information about its structure and dynamic motions.
100-104

  

 In 1996, Kasianowicz et al. first demonstrated electrophoretic transport of individual 

ssDNA and ssRNA molecules through αHL pores.
54

 Since then, polynucleotide translocation 
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through this pore has drawn much interest, producing numerous theoretical and experimental 

studies about how extended polymers enter and pass through a constricted pore under an applied 

potential.
54,98,99,104,105

 The dynamics of polymer transport through a narrow pore is central to 

many biological processes including RNA export across nuclear pores, phage infection and 

protein transport through membrane channels, and is also the fundamental principle behind 

various new methods for nucleic acid analysis using nanopores.
95,96,101,102,106-108

  

 Under physiological conditions, biopolymers such as ssDNA form into a random coil 

geometry. This geometry maximizes the conformational entropy of the DNA by allowing it to 

access a large range of different conformations.
101,104

 As previously discussed, ssDNA can only 

thread the limiting constriction of the αHL pore as an extended chain. There is a significant 

entropic penalty associated with this process, which constrains and reduces the degrees of 

freedom of the ssDNA.
101,104

 This effectively presents an energetic barrier which makes it very 

unlikely that ssDNA will be able to diffuse through the pore. This has been experimentally 

demonstrated in a study that measured the capture of DNA as a function of voltage. In 2003, 

Meller found that the capture rate in αHL pores is exponentially dependent on the applied 

potential, indicating the presence of an energetic barrier to threading the DNA into the pore.
102

 

The barrier is overcome by increasing voltage, the driving force, thus exponentially increasing 

the DNA capture rate. Several experiments have supported the notion that the location of the 

energy barrier for polymer transport probably corresponds to the narrowest geometric path inside 

the pore.
98,100

 This means that the polymer must cross this threshold before it is committed to 

transport through the pore against thermal agitation and repulsive forces; otherwise, it is likely to 

escape on the same side of the membrane from which it entered.
46,103,104

 Molecular Dynamics 

(MD) simulation has also shown that the steepest gradient of the electrostatic potential arises 
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around the smallest cross-sectional area inside the αHL pore.
99,105

 Experimental studies have 

supported the idea that this position in the channel is the place that is most sensitive to blockade 

and thus where the recognition for different translocating molecules is at its strongest.
98,103

  

 Another study has shown that pore geometry also influences the capture of biopolymers. 

In 2000, Henrickson et al. studied translocation frequency of ssDNA into an αHL as a function 

of applied potential and compared the rate when the DNA was added to the cis or trans side of 

the membrane.
101

 Consistent with the above study, for both cis and trans experiments, DNA 

capture into the pore had an exponential relationship with the applied potential, suggesting a 

voltage-reduced energy barrier for capture. Additionally, the rate of capture was considerably 

different for cis and trans experiments; cis entry was noticeably more favorable than trans entry 

at any given potential.
101

 These results can be interpreted to mean that the wider opening of the 

αHL vestibule provides a relatively lower energy barrier for DNA entry since ssDNA can enter 

the cis side in many configurations while it can only insert itself to the trans entrance of the pore 

in a stretched conformation. In other words, DNA entry into the cis side is energetically favored. 

Together with the first study, these data suggest that size and geometry of the pore are critical 

factors in polymer dynamics.  

 In light of the above published results, the dynamics of threading DNA through the pore 

were characterized at varying applied potentials, DNA lengths and structure and their impacts on 

the ionic current reduction within the pore were compared. For these experiments, DNAs were 

attached to the same position on the pore using C46 heptamers and thus DNA in each conjugate 

spanned the same distance to the pore mouth. Since DNA is covalently conjugated to the pore, in 

our experiments, the molecule was captured and immobilized inside the pore by electrical force 

but they were not completely translocated into the trans compartment. As mentioned above, 
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previous experimental and MD simulation studies have indicated that the major component of 

the electric potential drop occurs in the transmembrane beta barrel, rather than over the entire 

length of the lumen of the αHL.
98,100,103 

Considering this, for the analysis of current signatures, 

the pore in this chapter is defined as the stem region that penetrates the membrane, and excludes 

the extramembranous larger vestibule and pore mouth. The final conjugates were purified using 

the same methods as described in Chapter 3. 

4.2 Methods 

These experiments were performed in the Genia nanopore array and a detailed description of the 

instrument and the common automated procedures such as membrane formation and pore 

insertion steps are provided in Chapter 1.  

4.2.1 DNA capture experiment with DNA-pore conjugates 

DNA capture experiments were performed in a buffer containing 300 mM KCl, 20 mM Hepes, 

pH 7.5, unless otherwise stated. The conjugate was diluted in the buffer to a final concentration 

of 8 nM. After applying a 10 µl aliquot to the cis compartment, the automated pore insertion 

process was started. Several trapezoidal voltage pulses were generated to measure the current 

signature of the inserted pore.  

4.2.2 Binding of complementary DNA to the oligonucleotide on the ‘DNA-pore’ 

conjugate 

After recording the current signature of the DNA-pore conjugate, 3 µM “dumbbell” shaped 

complementary DNA was applied to the system. The sequence of the complementary DNA is as 

follow: 5’-CGCGGCGCGTAAGCGCCGCGACAACAGTACTAAACCCCCATAAATAGGA 

GCGCCGGCCGTAAGGCCGGCG-3’. 
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4.2.3 Exonuclease treatment of the conjugate 

This experiment was performed in a buffer containing 150 mM KCl, 20 mM Hepes, and pH 7.5. 

10 units of 3’  5’ Phi29 exonuclease was diluted in the buffer and added to the system after the 

pore insertion step.  

4.2.4 Data analysis 

Data were sampled at 1-kHz bandwidth in an asynchronous configuration at each cell using 

circuit-based analog-to-digital conversion and noise filtering (Genia Technologies, Inc.) and the I 

vs V plot was built using MATLAB.  

4.3 Results and Discussion 

 In these experiments, current passing through the nanopore was measured at varying 

voltages. Specifically, the voltage was linearly ramped for 2 seconds, held at a fixed voltage for 

6 seconds, and then ramped back to the ground level for 2 seconds, forming a trapezoidal 

waveform with rising and falling periods. Such slow ramping of voltage allows us to investigate 

instances of capture and release of the molecule into and out of the pore. In this type of 

waveform, the molecule escapes from the pore at the end of each cycle when the polarity of the 

potential difference is reversed. This allows the conjugated DNA to be analyzed repeatedly from 

the same pore by generating repeated waveforms.   

4.3.1 Current signature in the absence of DNA attachment 

 Before testing the DNA-pore conjugates, the conductance of the C46 heptameric pore 

without bound DNA was measured as a control. First, 300 mM KCl solution was added to the 

system. After checking the current measurement, DPhPC lipid was applied to form the bilayers 

followed by addition of the pore. A trapezoidal waveform that ramps up from 0 to 160 mV in 2 

seconds and returns to the ground level after 6 seconds of plateau was generated and repeated 10 
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times. Figure 4.1 shows a plot of the applied voltage (red) and induced current (blue) over time. 

As seen in this figure, the current is directly proportional to the applied voltage with minor 

fluctuations. This demonstrates that the purified pore conducts appropriate current and also 

establishes the baseline current signature of the pore without any DNA captures.  

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Current signature of ssDNA tethered to the pore 

 To characterize the intramolecular capture of DNA by αHL pores, several DNA-pore 

conjugates were made with DNAs of different lengths and structures, and tested in the nanopore 

system. As mentioned earlier, we employed the sSMCC crosslinker to attach an amine-modified 

DNA to Cys 46 in αHL. Therefore, the position of an amine modification (NH2) in the DNA 

sequence along with the position of the cysteine residue on the pore determines the final 

configuration of the DNA-pore conjugate. First, a “T” shaped conjugate was made by placing an 

Figure 4.1 A graph of voltage and current traces against time from the C46 pore without bound DNA. 
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amino dT in the middle of a 25-mer oligonucleotide sequence, 17 bases from the 5’ end and 7 

bases from the 3’ end. Figure 4.2A shows the NH2 position in the sequence of the 

oligonucleotide along with a graph of the voltage and current traces obtained with this conjugate. 

Figure 4.2B is an expanded image of a single trapezoidal trace. Unlike the DNA-free pore, there 

is a sudden decrease in current with increasing voltage. We interpret this to mean that the end of 

the DNA is threaded into the pore. Such a DNA capture event causes a decrease in current 

because the DNA present inside the pore blocks ion flow through the pore. During the 160 mV 

plateau period, the DNA stays within the pore, maintaining the current until the voltage ramps 

back to the ground level. As the potential difference decreases, there is an abrupt increase in 

current as the DNA escapes from the pore restoring the current to its open pore value. 

Interestingly, this conjugate exhibits a symmetrical behavior, where capture and release occur at 

about the same voltage. Compared to the previous current trace of the DNA-free pore, these 

signals by this DNA-pore conjugate represent the dynamic motions of a single molecule of DNA 

being captured into and released from the pore in response to changes in the electric field. Along 

with the results from the gel shift assay in Chapter 3, the differences in current traces 

demonstrate the presence of DNA conjugated to the pore.   
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Figure 4.2  A. A graph of voltage and current traces against time with the DNA-pore conjugate.  

B. A zoomed-in picture of a single current trace. 
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4.3.3 Threshold voltages for threading the DNA into the pore 

 Using the recorded data points shown in Figure 4.2, we built the I vs V plot of this 

conjugate shown in Figure 4.3. Three conductance states are observed: one with a low resistance 

at low voltage (1), another with a high resistance at higher voltage (3) and an intermediate one 

with intermittently increased resistance (2). The first state corresponds to the conductivity of the 

open pore with no DNA threaded. The second state is an intermediate one when the DNA mostly 

stays outside the pore, but occasionally and briefly threads in. The third state represents when the 

DNA more continuously threads and stays inside the pore. According to this plot, the transition 

from the first state to the second state appears to occur at approximately 80 mV and transition 

from the second state to the third occurs at about 110 mV. We interpret this to mean that the 

DNA starts approaching the pore at about 80 mV and it shifts to a stable threaded position when 

the potential reaches approximately 110 mV. Between these two voltages, DNA appears to be in 

between the two states, briefly interrupting the pore current. The fact that current is not as low in 

state 2 may indicate that the DNA can only partially traverse the pore before it comes back out, 

essentially probing the vestibule or entrance to the channel, but is not fully threaded. 

 

 

 

 

 

 

 

 
Figure 4.3 A plot of I vs V from the DNA-pore conjugate. This shows three conductance states: a higher 

conductance when the DNA molecule remains outside the pore (1), a lower one corresponding to a state when 

the DNA is stably trapped inside (3), and an intermediate state (2) when the DNA does not fully thread.  
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4.3.4 Voltage dependent current signatures 

 Interestingly, similar data were also obtained from current traces, which were generated 

by applying a range of voltages to the conjugate as shown in Figure 4.4. In this experiment, 

trapezoidal waveforms with peak voltages of 80 – 200 mV with an increment of 20 mV after 

every 5 cycles were applied. In the current trace at 80 mV, we observe brief interruptions in 

current, suggesting that the DNA is briefly captured in the pore, but it escapes. At 100 mV, the 

DNA also briefly threads, this time long enough to display fully threaded current levels during 

the plateau period. At 120 mV and above, the DNA threads more continuously, producing steady 

blockade events under the applied potential. This result is in agreement with the I vs V plot of 

Figure 4.3 where we see one state below 80 mV and another above 110 mV and an intermediate 

situation between these voltages. In terms of thermodynamics, this indicates that approximately 

80 mV corresponds to the minimum potential required to overcome the energetic barrier for 

DNA to enter the pore and thus the DNA starts threading inside. However, it appears to require a 

potential greater than 110 mV for it to be stably confined within the pore.    

4.3.5 Absence of current signature in exonuclease treated conjugate 

 As a control experiment, the conjugate was also exposed to the exonuclease activity of 

phi29 DNA polymerase which digests the DNA of the conjugate starting from the 3’ end. As 

shown in Figure 4.5, the signature blockade pattern disappeared in the current trace upon 

exonuclease treatment. Instead, the trace appears to resemble that of the heptameric pore without 

attached DNA (Figure 4.1). This result verifies that the capture events in the previous 

experiments are attributable to the presence of the oligonucleotide attached to the αHL pore. 
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Figure 4.4 Current traces against time at various voltages showing dynamics of DNA capture 

events into the pore.  

Figure 4.5 Current signatures of the exonuclease treated conjugate at various voltages.  
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4.3.6 Current changes resulting from duplex formation of the conjugated DNA 

  In a separate experiment, a “dumbbell”-shaped complementary DNA strand was added 

to the conjugate to test if hybridization would abolish DNA capture. Figure 4.6 displays the 

current traces before and after the addition of the complementary strand to the oligonucleotide in 

the conjugate. While the same capture behavior as in the previous experiments was observed 

before applying the complementary DNA strand, its characteristic signature disappeared after the 

addition of the strand. This change in the current trace upon the addition of the complementary 

DNA could be interpreted as indicative of its binding to the ssDNA on the pore, with the 

resulting duplex no longer being captured as the ssDNA end is no longer available for threading 

into the pore. This shows that the secondary structural changes of the conjugated DNA also can 

be detected by monitoring current signals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Current trace against time before and after the addition of a complementary DNA strand to 

the DNA in the conjugate. The characteristic current signature disappeared after binding the 

complementary DNA.  
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4.3.7 Current signature of conjugate having shorter oligonucleotide 

 As described above, the ssDNA molecule on the previous conjugate had an amine 

modification at the 18
th

 position of a 25 base long ssDNA, resulting in branches of 17 

nucleotides and 7 nucleotides (Figure 4.2). Given the highly stable and uniform blockade level 

generated by this conjugate, we speculated that the longer branch is preferentially captured and 

threads, generating a steady blockade signature. To verify that this was the case and also to 

further probe the length dependence of capture, another 25-mer oligonucleotide containing 

shorter branches was designed and conjugated to the pore. The new DNA consists of branches of 

13 and 11 bases from the conjugation point as shown in Figure 4.7. Unlike the DNA on the 

previous conjugate, the DNA of this new conjugate could only thread briefly and partially even 

at a relatively high voltage such as 160 mV. In fact, the signature of this conjugate was rather 

noisy with transitions between the two conductance states and the percentage of time spent at the 

higher current was greater than at the lower one, indicating that the DNA was in continuous 

motion, captured briefly in the pore but mostly staying outside. 
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 As discussed earlier, these conjugates were made with the pore having a cysteine residue 

at position 46 that is in the middle of the top surface of the pore (Figure 3.5) estimated to be 17 Å 

from the pore opening.
52

 The distance from the cis entrance to the constriction site is 48 Å.
52

 

Therefore, the total distance from the point at which DNA is conjugated to the constriction zone 

is 65 Å. Given the 5.6 Å length per base of ssDNA,
110

 the current signatures of the conjugates 

Figure 4.7 A. Current trace against time from the conjugate with the DNA sequence shown in 

the figure. B. A zoomed in picture of a single trapezoidal voltage pulse at 160 mV. 
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are consistent with the lengths of the attached DNA and the signals produced by them. 

Specifically, 65 Å is translated to approximately 12 nucleotides and thus the 13 nucleotide long 

DNA branch is just about able to pass the constriction zone but it might not be long enough to be 

stably threaded into the pore, thus generating such a fluctuating current signature. On the other 

hand, the previous conjugate produced stable and long-lived events. We interpret this to mean 

that the length of 17 nucleotides (95.2 Å) is sufficient to almost extend through the full length of 

the pore and thus form a more stable threaded structure. Note that the reduction in current level 

for captures with the new conjugate was smaller (~35%) than that of the previous one (~67%). 

This suggests that the molecule reached a different threaded structure, presumably extending a 

shorter distance into the barrel. This is consistent with the notion that the blockade level 

increases with the fractional volume of the pore occupied by the polymer.
98,100

 Overall, these 

data are in good agreement with structural considerations and roughly map the distance from the 

attachment to the barrel of the pore.
52,98-100

 A summary schematic of behaviors of the DNA 

molecules on the two conjugates under the electric field is presented in Figure 4.8.   

   

  

 

 

 

 

 

  

 Figure 4.8 A schematic of possible behaviors of the two DNA molecules at equivalent voltage. 

A. The ssDNA having 17 nucleotides is long enough to almost extend through the full length of the pore, 

generating a steady blockade event. B. The ssDNA with 13 nucleotides forms a less stable and weaker 

blockade level when threaded. These signatures are consistent with the dimension of the channel.  
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4.3.8 Current signature of hairpin DNA attached to the pore 

 We also investigated how a DNA molecule containing a secondary structure with an 

intramolecular base-paired hairpin would behave when conjugated to the αHL pore. Hairpins are 

sequences of ssDNA that fold back on themselves to form base pairs. As explained earlier, the 

narrow path of the αHL pore allows passage of ssDNA but not dsDNA. Therefore, the higher-

order structure of a molecule such as a hairpin or duplex region must denature as it is driven 

through the channel by electrical force. Figure 4.9 shows the structure and sequence of the tested 

DNA molecule. It consists of a 16 base-pair double stranded stem portion that is connected with 

a small loop, and has a 13 base ssDNA tail with an amino modification at its 5’ end serving as 

the conjugation site. Thus, the 3’ end of the hairpin DNA is the only end that can thread into the 

pore. However, it is in a double-stranded region of the hairpin and thus, if we observe DNA 

threading, we will know that the DNA has been denatured.  

 To investigate the behavior of the molecule having a hairpin structure under an electrical 

potential, varying voltages of 60 – 200 mV were applied and changes in current were recorded 

(Figure 4.9). In this conjugate, the prolonged blockade events start to appear at substantially 

higher voltages than needed for conjugates with linear DNA, indicating that a higher potential 

difference is required to unzip and pull the 3’ end of the DNA into the pore. The length of the 

unzipped DNA is sufficient to fully traverse the pore. Thus, we interpret this to mean that the 

DNA is denatured by electrical force and its leading end is completely driven through to the 

trans side. After the 6 seconds of pulse duration, the voltage starts to ramp back to the ground 

level and the current begins decreasing proportionally. This is followed by a small but rapid 

“jump” in current and this tail signature is indicative of the molecule finally escaping the pore as 

the applied potential approaches 0 mV. Note that the threaded DNA is released at the very end of 
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the falling period. This delayed release event suggests that the threaded DNA tends to stay in the 

pore even when the external force is not sufficient to hold it there.   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 An interesting characteristic of the current signature of this conjugate is that it showed 

asymmetrical behavior, unlike the previous ssDNA attached conjugate that produced a mirror 

image of blockade event with similar threshold potentials for both capture and release. This 

Figure 4.9 A graph of current trace against time from the conjugate with hairpin DNA. 



 

 

71 

 

asymmetry in its signature suggests that the potential required to capture the molecule to the pore 

is different from the level needed to release it from the pore. As discussed earlier, a previous 

study showed that the narrower diameter pore entrance on the trans side presents a higher 

entropic barrier and thus the DNA capture rate from the trans compartment is significantly lower 

than from the cis side.
101

 Based on this, we interpret the asymmetrical trend in this conjugate to 

imply that a substantial portion of the unzipped DNA is completely translocated to the trans side 

where the entropic barrier is greater and thus the DNA end is less easily re-captured back into the 

pore from the trans side, thus taking a longer time to be released. Furthermore, due to the 

presence of complementary sequences, it is also possible that the end of the molecule might 

partially fold back on itself again after completely traversing the pore to the trans side, forming a 

secondary structure with sufficient stabilizing energy to basically lock itself inside the pore 

(Figure 4.9). This, along with the increased entropic barrier due to the narrow entry, might 

contribute to its extended stay inside the pore.  

4.3.9 Removing the hairpin structure 

 As a means to confirm the structure of this molecule, another control experiment was 

performed with this conjugate. A PvuП restriction site is included in the double-stranded portion 

of the molecule (Figure 4.10 (Top)). Treatment with PvuП cuts off the hairpin loop, resulting in 

a short intermolecular base-paired duplex. To test if this structural change can be detected in the 

current traces, several stepped waveforms were generated at various voltages. Currents were 

recorded before and after the direct addition of the enzyme to the same conjugate. As shown in 

Figure 4.10, the asymmetrical current blockade signature was produced before the addition of the 

restriction enzyme. However, the shape of the current trace is pronouncedly different after the 

addition of the enzyme, consistent with the expected structural change in the molecule. 
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Furthermore, a stable blockade event is detected even at a relatively low voltage such as 80 mV. 

We interpret this to mean that the shorter duplex DNA region without the loop is more easily 

unzipped and the remaining 21mer ssDNA threads into the pore at a lower voltage. Overall, 

these data indicate that structural differences of the molecule could be detected in the nanopore 

system by monitoring changes in current signals.  

 

 

 

  

 

 

 

 

 

 

 

Figure 4.10 Current trace against time before and after PvuII treatment of the conjugate 

with hairpin DNA. 
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4.4 Conclusion 

 Analysis of biomolecules at the single molecule level can reveal valuable information 

that is often disguised by ensemble averaging such as their detailed dynamic movements or 

temporary intermediate states. In this chapter, current signatures elicited by changes in length 

and structure of ssDNA attached on the pore were studied in the nanopore system. Consistent 

with previous studies, our data support the notion that the current signals collected at various 

voltages reveal useful information about the molecule such as its structural details and dynamic 

behaviors.
98,100,102,103

 At the same time, the results here also demonstrate that tethering DNA to 

the channel could serve as a molecular ruler to probe the geometry and electric potential within 

the pore. 
98,100 
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CHAPTER 5: Single Molecule Electronic SNP Assay  

in a Primer-conjugated Nanopore 

  

5.1 Introduction 

 

 Armed with the insights from the DNA capture experiments in the previous chapter, a 

novel single molecule electronic SNP assay that employs SBE of a primer using polymer-tagged 

ddNTPs for allele discrimination and an electrical readout of the αHL nanopore for allele 

detection is established. As described earlier, a ssDNA primer conjugated αHL pore is first 

prepared and serves as a platform for the entire assay (Figure 5.1). In this assay, the primer is 

attached to the pore like the DNA-pore conjugates in Chapter 4. Therefore, the primer can also 

thread into the pore and produce background events if it is attached close to the pore opening. To 

avoid this, other conjugation sites in the pore, AA positions 239 and 93, which are located 

further from the pore entrance are explored (Figure 3.5). We observed that conjugates with 18-

mer DNA attached to the C239 site had a tendency to produce weak blockade events at higher 

voltages (180 mV or 200 mV). Thus, in order to have a full window for measurements, we chose 

C93 as the conjugation point in the 6(WT):1(C93) pores for this assay. After verifying 

conductance of the conjugate, in-situ SBE reactions are performed by applying circular template, 

DNA polymerase and four polymer tagged ddNTPs that contain unique tag structures for 

identification. The polymerase extends the primer with one of the ddNTPs depending on the 

sequence of the template and the long polymer tag on the extended primer is then pulled into the 

pore by electrical force, generating a distinct current blockade level specific to each of the 

nucleotides. By monitoring current signatures, the genotype of the template is deciphered. 
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Figure 5.1 A scheme of a single molecule electronic SNP assay using four tagged ddNTPs in a primer-

conjugated nanopore array. 

Nanopore that is conjugated with primer is prepared. SBE is performed by adding ddNTPs with tags on the 

base position, DNA polymerase and circular template. The primer is extended by the complementary 

nucleotide to the queried site in the template by DNA polymerase. Under an applied potential, the tag on the 

extended primer is drawn into the pore and this generates a characteristic event in the measured current signal, 

thereby revealing the genotype of the template.  
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 In this assay design, the position of the tag molecule in the pore after extension is 

dependent on the initial primer length that is conjugated to the pore. In other words, a change in 

its length might move the identifying moiety in tags away from the constriction zone where the 

largest current change occurs in the pore, compromising the accuracy of tag recognition. 

Although potential variations in primer length are likely to be minor and thus the position 

certainly can be adjusted by remapping the molecules, the assay is not very flexible if the tag 

molecule has to be calibrated based on the primer length.  

 To improve this aspect of the assay, another version of tags containing an internal 

positioning structure was also explored. As mentioned above, the entry of dsDNA is limited to 

the vestibule of the αHL pore and there is barely enough room for ssDNA to pass through the 

narrowest constriction point of the channel. Taking advantage of this structural barrier, tagged 

ddNTPs with a hairpin structure in the middle of the tag sequence were designed (Figure 5.2). 

The structure begins with a nucleotide with a short linear left overhang (A) which will be 

covalently attached to the primer after SBE followed by a hairpin structure in the middle (B), and 

it ends with another linear overhang with an identifying moiety (identifier) positioned right after 

the hairpin structure (C) for producing a unique current signature. Since this tag design contains 

a double stranded secondary structure, the hairpin on the extended primer is held within the 

vestibule under the applied potential locating the identifying moiety at a fixed position inside the 

channel until it unzips. In this way, the tag position within the pore is solely defined by the 

hairpin structure and no longer depends on the primer length. Several studies have measured the 

time required for thermally activated opening of hairpin DNAs and they typically last several 

hundreds of milliseconds depending on the strength of their base pairing energy; this is sufficient 

time to record the current signatures of the identifying moiety in the tags.
114,115
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  To employ these secondary structure-containing tags, the assay was slightly modified to 

include an additional washing step before acquiring data for tag recognition on the extended 

primer (Figure 5.3). The primer-conjugated nanopore is first prepared as in the previous 

approach. After performing in situ SBE by applying hairpin tagged ddNTPs, template and DNA 

polymerase onto the conjugate, several rounds of a washing step is performed to ensure removal 

of residual hairpin tagged ddNTPs in the solution, which might otherwise generate false positive 

signals. After thorough washing, only the hairpin tag on the nucleotide that is permanently 

incorporated into the primer remains in the system and produces the appropriate current 

signature when the voltage is applied for the identification of the tag.  

 To test the feasibility of this version of the assay using hairpin tagged nucleotides, four 

hairpin tagged ddNTPs were synthesized following the same synthetic strategy described in 

Chapter 2. After confirming that they can be also recognized by the DNA polymerase, we first 

investigated the conditions for completely washing away the residual tag molecules in the 

solution and then examined their characteristic blockade levels. 

 

Figure 5.2 A schematic of a likely position of a hairpin tag in the pore under the applied voltage.  
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Figure 5.3 A schematic of the single molecule electronic SNP assay using hairpin tagged ddNTPs.  

An extra washing step is included before applying voltage for tag recognition to remove the residual 

tagged nucleotides in the system. 

 

A 
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5.2 Methods 

5.2.1 Template circularization 

5’ phosphorylated synthetic 70mer ssDNA templates having a different base at the queried site 

were designed. Sequences of template are as follows: Temp G 5’-Phos/ATGACTCCAGGCCCT 

CTGAGGGATAGCAGGAAGCAGAACCCACCAGACCAGGCCCCTGA-3’, Temp T 5’-

Phos/ATGACTCCAGGCCCTCTGAGTGATAGCAGGAAGCAGAACCCACCAGACCAGG 

CCCCTGA-3’, Temp C 5’-Phos/ATGACTCCAGGCCCTCTGAGCGATAGCAGGAAGCAG 

AACCCACCAGACCAGGCCCCTGA-3’, Temp A 5’-Phos/ATGACTCCAGGCCCTCTGAG 

AGATAGCAGGAAGCAGAACCCACCAGACCAGGCCCCTGA-3’. The ligation reaction 

was performed in a 20 µl volume with 500 pmol DNA, 1000 units of CircLigase (Epicentre), 2 

µl 10X reaction buffer, 50 µM ATP and 2.5 mM MnCl2,  and incubated at 37 °C overnight. The 

reaction products were subsequently treated with 300 units of exonuclease I (Epicentre) and 

incubated for 4 hours. The final products were purified using a QIAquick PCR purification kit 

(Qiagen) and the circular nature of the products was confirmed on an 8M urea 15% 

polyacrylamide gel.  

5.2.2 In situ SBE on the conjugate in the nanopore system 

After the automated membrane formation and pore insertion processes, SBE reactions were 

performed by applying a final concentration of 3 µM circular template, 5 µM tagged nucleotides, 

0.04 unit of Thermo Sequenase, 6.5 mM MgCl2 in a 150 mM KCl, 20 mM Hepes, pH 7.4 buffer.  

5.2.3 Testing hairpin tagged nucleotides in the nanopore system 

The experiment was performed in a buffer containing 300 mM KCl, 20 mM Hepes, pH 7.4. Each 

nucleotide was diluted in the buffer to a final concentration of 3 µM. Washing was achieved by 

flowing buffer into the system. 
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5.2.4 Primer extension by hairpin tagged ddNTPs and HhaI digestion of the hairpin 

structure 

The extension reactions were performed in a 20 µl volume with 4 units of Thermo Sequenase, 

1X reaction buffer, 20 pmol of specific self-primed looped template and 200 pmol of matching 

hairpin tagged ddNTPs. The sequences of the four templates are as follows: Temp C 5’-

GATCGCGCGCGCCTTGGCGCGGCGC-3’, Temp G 5’-GATGGCGCCGCGCCTTGGCGC 

GGCGC-3’, Temp T 5’-GATTGCGCCGCGCCTTGGCGCGGCGC-3’, Temp A 5’-GATAGC 

GCCGCGCCTTGGCGCGGCGC-3’. They were incubated at 65 °C for 1 hour and half of the 

reaction products were treated with 20 units of HhaI restriction enzyme for 30 mins at 37 °C. 

The extension and digestion products were confirmed on an 8M urea 15% polyacrylamide gel.  

5.3 Results and Discussion 

5.3.1 Single molecule electronic SNP assay using a primer-conjugated nanopore and 

linear polymer tagged ddNTPs 

 To avoid potential background events due to the ssDNA primer conjugated on the pore, 

AA position 93 on the side of the pore was explored as a conjugation site. This mutant was 

generated using the same PCR-based site-directed mutagenesis method and 18-mer ssDNA 

primer molecule was attached to 6(WT):1(C93) pore using the same conjugation strategy as 

described in chapter 3. Figure 5.4 shows the current trace for this conjugate at various voltages. 

Unlike the previous conjugate that generated strong blockade signals, the DNA conjugated at this 

position (C93) of the pore no longer threaded into the pore and thus a clean and steady open 

current trace without any interruptions was produced. The presence of the primer conjugated 

αHL monomer was confirmed after pore denaturation by SDS-PAGE analysis (Chapter 3).  
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 To prevent the template from being pulled into the pore and producing a background 

signal, a 40mer ssDNA template was circularized using CircLigase™ (Epicentre), which 

catalyzes intramolecular ligation of the ends of a ssDNA template containing a 5’-phosphate and 

a 3’-hydroxyl group. The conversion of ssDNA into a circular DNA form can be confirmed by 

either mobility shift following Urea-PAGE analysis or digesting the reaction with exonuclease I 

which specifically digests linear ssDNA having a free 5’ or 3’ end.  Figure 5.5A shows the 

results of circularization reactions with the four different templates along with control linear 

ssDNAs before the reaction (Linear). The conformational change of the molecule was verified by 

both the change in its mobility on the gel (Pre-Exo) and also by its resistance to exonuclease I 

(Post-Exo). The circular nature of the molecule was further verified by applying it to the 

nanopore system with the pore-primer conjugate (Figure 5.5B). The clear trace at various 

Figure 5.4 Current trace against time from the conjugate with DNA on the side of the pore. 
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voltages in this experiment shows that neither the primer nor template produces any background 

current blockade events.  

 

  

 

 

  

  

  

 

 

 

 After checking the background, in-situ SBE was performed by adding specific template, 

DNA polymerase and tagged ddNTPs to the membrane-bound pore-primer conjugate. 

Considering that a complementary nucleotide would be permanently incorporated into the primer 

that is covalently bound to the pore, we expected to obtain the blockade signal in every 

trapezoidal pulse if it is indeed from the tag on the incorporated nucleotide. Other signals that 

occurred intermittently were disregarded. Figure 5.6 shows the current traces and a summary of 

blockade levels generated in four different reactions with one specific template and matching 

A 

B 

Figure 5.5 A. Urea-PAGE gel analysis of circularization reactions.  B. A graph of 

current trace against time after the addition of circular template to the conjugate.  
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nucleotide. The reaction with template C and G nucleotide tagged with 17 adjacent dSps, the 

moiety with the smallest width, allowed more current to flow, thus resulting in the highest 

blockade level (I/I̥ = 0.68). Reactions with G and A templates where complementary nucleotides, 

C and T contain less dSp units (8 or 3) elicited slightly lower levels (I/I̥ = 0.58 and I/I̥ = 0.47, 

respectively). On the other hand, the A nucleotide with a neutral moiety (6 Imp) blocked most of 

the current flow and thus its level was the lowest among the four tagged ddNTPs (I/I̥ = 0.36). A 

summary of the four different levels is shown in Figure 5.6E.  

 

 

  

  

 

  

  

 

 

 

 

 

 

 

 

 

Figure 5.6 Current signatures of four tagged ddNTPs in reactions with single nucleotide and matched template. 

A. Detected current signature of the in situ SBE reaction with template C, Thermo Sequenase and tagged 

ddGTP on the conjugate. B. Current signature of the reaction with Template G, Thermo Sequenase and tagged 

ddCTP on the conjugate. C. Current signature of the reaction with template A, Thermo Sequenase and tagged 

ddTTP on the conjugate. D. Current signature of the reaction with Template T, Thermo Sequenase and tagged 

ddATP on the conjugate. E. A summary of current levels of the four reactions. 
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 In this approach, the SBE reaction is achieved by applying DNA polymerase, template 

and nucleotides to the conjugate in which primer, one of the enzyme’s substrates, is immobilized 

on the membrane-bound pore. Thus, for the reaction to occur, all three components need to 

diffuse towards the immobilized primer to form the ternary complex; first complementary 

template should approach and bind to the primer and then enzyme should grip the matching 

nucleotide and bring it to the active site. Unlike the reaction in solution where all the reactants 

are free to diffuse and thus collide with each other, the rate of the reaction in this approach was 

unfortunately too slow to gather enough samples of blockade events.   

 To improve the reaction efficiency, we have conducted a few straightforward initial tests, 

such as increasing the amount of template, nucleotide or enzyme in the reaction within the 

constraints of the system, extending the incubation time up to 2 hours and increasing temperature 

of the system up to 45 °C to accelerate the diffusion rate. Unfortunately, we could not succeed in 

obtaining a sufficient number of events for statistical analysis by any of these means.  

 Nonetheless, we are convinced that this starightforward assay has great potential for 

genotyping and additional room for improvements. A previous study has shown that the rate of 

enzymatic reaction on the immobilized substrate is determined by both the intrinsic reaction rate 

of the enzyme and the diffusion of the enzyme between substrate sites.
119

 Thus, in the future, 

improvement of the enzyme’s intrinsic kinetic properties by mutagenesis might lead to an 

increase in reaction rate. Or, modification of the enzyme to bear more negative charges could 

also help drive the enzyme to the primer site by increasing electrophoretic strength under the 

applied voltage. On the other hand, previous studies have attached a cholesterol anchor to a DNA 

molecule and have shown that this can serve to concentrate them at the lipid bilayer, thereby 

increasing their capture rate in the nanopore.
116,117

 Based on this, the lipophilic concentration can 
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also be increased by conjugating hydrophobic moieties to the template and enzyme to 

concentrate them in the vicinity of the membrane-bound primer-conjugated pore.  

5.3.2 Design and synthesis of tagged nucleotides with a secondary structure 

 In an attempt to render more flexibility to our approach using primer-conjugated 

nanopore, a variation of tags having a secondary structure to aid in proper positioning of the 

identifier in the tag was also explored in our system. As discussed earlier, our previous tags are 

built on a thymidine (dT) backbone with specific identifiers in the middle (Figure 2.2). Although 

minor, we noticed occasional interactions between the dT backbone of the tags and DNA 

molecules possessing a sequence of deoxyadenosine (dA) in one of our control SBE reactions 

and found that these can produce false-positive background events in the nanopore system. In 

order to prevent such interaction between the tag backbone and other DNA molecules in the 

reaction mixture, a backbone of repeated deoxythymidine (dT) molecules but interspersed with a 

propyl spacer was employed in the new set of hairpin tagged nucleotides (Figure 5.7). As with 

previous linear tagged ddNTPs, each hairpin tag molecule begins with a 5’-hexynyl moiety for 

conjugation to ddNTPs via a click chemistry process followed by a short 5-mer backbone ssDNA 

tail. The rest of the tag is composed of another ssDNA portion consisting of a unique identifier 

with a double stranded hairpin structure in the middle. In general, the stability of the hairpin 

structure is mainly influenced by the strength of the stem portion which is determined by its 

length and GC content and by the size of the loop.
111

 Given these factors, a strong hairpin loop 

structure was designed with 12 G-C complementary sequences in the stem connected by a stable 

loop sequence that has been shown to display high thermodynamic stability.
112,113

 For this 

version of tagged ddNTPs, we tested four new identifying components to explore different 

current signatures. As a standard, an oligonucleotide molecule with 6 deoxythymidines (T6) 
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following by the hairpin was designed and expected to reduce the current to approximately 60 % 

of the open current when it is held in the pore based on a previous study from our laboratory.
56

 In 

order to create a higher current level, another molecule with 6 propyl phosphates, which have 

much smaller diameters than T6 was tested. For the remaining two tags, 2 units of relatively 

neutral, thymidine methyl phosphonate (Tmp) were selected to generate a slightly lower level 

than T6 and 6 consecutive units of Tmp right after the hairpin were designed to produce the 

lowest current level. These identifiers in the tags have been previously demonstrated to produce 

distinct signal in our laboratory. To stably capture the molecule in the pore, the tail of the tag was 

elongated with an additional backbone ssDNA. These molecules were attached to ddNTPs using 

the same synthesis strategies described in Chapter 2. After their purification by RP-HPLC, the 

molecular weights of each compound were confirmed by MALDI-TOF MS analysis (Figure 5.8).  

Using this new version of hairpin tagged ddNTPs with a secondary structure, we first 

assayed for their recognition and incorporation by Thermo Sequenase in SBE reactions. Due to 

the high molecular weights of the hairpin tagged ddNTPs, there is a significant change in 

molecular weight between the original primer and the extended product. In addition, in the 

previous version of tagged ddNTPs, an optional Cy3 tracer was added to confirm that the primer 

was extended by the expected molecules, the tagged ddNTPs. Following similar logic, in this 

design, two HhaI restriction digestion sites (5’-GCG'C-3’) were included in the stem sequences 

to confirm that the final products include hairpin tagged ddNTPs. As indicated in Figure 5.9, the 

tagged nucleotides are digested into 5 pieces by the HhaI enzyme and thus the high molecular 

weights of new products should disappear after treatment with the restriction enzyme if they 

contain the hairpin tagged ddNTPs. Figure 5.10 shows the comparison of molecules in the 

extension reactions before and after HhaI treatment on a denaturing polyacrylamide gel. 
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Although it was not possible to clearly separate small fragments of digested DNA molecules, this 

clearly shows the presence of new high molecular weight products after the extension reaction 

and their disappearance upon HhaI enzyme treatment, demonstrating that our hairpin tagged 

ddNTPs can also be incorporated into the primer by Thermo Sequenase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Sequences of four hairpin tags and structure of an identifying moiety in each tag. 

A. ddA-hp-propyl6 B. ddC-hp-dT6 C. ddG-hp-Tmp2 D. ddT-hp-Tmp6 
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Figure 5.9 The two HhaI digestion sites (5’-GCG'C-3’) are highlighted and underlined in the stem 

sequence. 

Figure 5.8 MALDI-TOF MS spectra of four hairpin tagged ddNTPs. The expected molecular 

weights of these nucleotides are A. 17269 Da for ddATP-hp-propyl6, B. 18381 Da for ddCTP-

hp-T2-dT6, C. 18413 Da for ddGTP-hp-Tmp2, D. 18368 Da for ddTTP-hp-Tmp6. The measured 

values are shown in the spectra.  
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5.2.3 Testing a washing step and characterization of current level by the new 

identifiers 

 As discussed earlier, an additional washing step that removes any residual nucleotide in 

the solution is mandatory to employ this type of tag having a secondary structure. Thus, we first 

tested if the applied hairpin nucleotides could be clearly washed away by flowing excess buffer 

through the system. To ensure complete removal of the residual nucleotides, the washing was 

repeated three times. Figure 5.11 shows the current signals at three different points of the 

experiment: before and after the addition of ddTTP-hp-Tmp6 and after the washing steps. 

Noticeably, the signals generated after adding the nucleotide were different from the ones with 

the empty pore, and those after washing revealed clean traces without any apparent blockade 

events, indicating the hairpin tagged nucleotide in the system was removed by applying extra 

buffer to the system.  

Figure 5.10 Results of extension reactions using self-primed looped template and HhaI digestion of stem loop in 

the hairpin tag. The circled bands indicate extension products. The extended primer and the absence of these 

molecules after HhaI treatment confirms that the primer was extended by hairpin tagged ddNTPs. 
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 After establishing conditions for washing, we then sounght to establish reference current 

blockade levels of the new hairpin tags by applying each one of them to the system. Figure 5.12 

shows the current traces of the four newly synthesized hairpin tagged ddNTPs. Unfortunately, 

these tags generated current signals with high fluctuations. Although there are a few pulses 

which show stable blockade-like traces, most signals were not easily interpretable due to highly 

changing levels. Considering the strong stem sequence (Tm = 98.2 °C) of the hairpin structure, 

we reasoned that this is unlikely to be due to instability or unzipping of the molecule. 

Nonetheless, one previous study has shown that unlike hairpin structures with a single tail, those 

with two tails such as ours can in fact be more easily unzipped and translocated through a pore 

by electric force.
118

 The authors argued that hairpins with with two tails are not likely to enter the 

vestibule of the pore due to their larger structure. This is in contrast to other studies that 

interpreted their data under the assumption that such hairpins lodge themselves on the bottom of 

the vestibule of the pore in the same manner as those with a single tail.
125

 Rather, these 

Figure 5.11 Comparison of current traces from the pore before applying the hairpin tagged nucleotide, after 

the addition and after 3 repetitive washing steps. 
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investigators proposed that the hairpin and one of the overhanging tails stays outside the cis 

entrance of the pore with only the other tail being threaded into the pore (Figure 5.13). Such a 

position of the hairpin allows it to be more easily opened up under the applied voltage since the 

force generated is parallel to the base pair plane in such an arrangement compared to when the 

hairpin is in the vestibule and the unzipping force is perpendicular to the plane.
118

 Nevertheless, 

we used a stronger stem sequence than theirs and our data evidently do not show any uniform 

signs of unzipping or translocation of the molecule. A few signals, though minor, showed 

prolonged blockade levels implying that the tags were statically held within the vestibule. 

Therefore, these puzzling characteristic behaviors of our tags can not be explained clearly with 

their model either. It is possible that this kind of DNA structure may not produce a uniform level 

because its motion around the pore entrance is not actually steady under the applied voltage. This 

might be the reason for the fluctuating current signals in our experiments. Further testing at 

varying concentrations and voltages and comparisons of molecules having different length or 

structure hairpins are required to fully clarify the mechanism of these behaviors.  
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Figure 5.13 The direction of the unzipping force and the base pairs in the two different hairpin structures. A. 

The direction of unzipping force is perpendicular to the direction of the base pair in a hairpin with a single 

tail. B. The direction of unzipping force is parallel to the direction of the base pair, in a hairpin with two 

tails.
118

  

Figure 5.12 Detected current signatures of four hairpin tagged ddNTPs at three different voltages. 
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 In terms of our assay, generation of four clearly distinguishable levels is a prerequisite for 

employing these molecules as tags. Thus, the levels must be identifiable in the first place. Also, 

the hairpin is conjugated to the nucleotide during the synthesis step and eventually it gets 

incorporated into the primer. Thus, for our purpose, the hairpin structure must have two tails. If 

future experiments also support the theory that a structure with two tails is more easily 

disengaged, a hairpin with crosslinked base pairs might stablize the current levels by preventing 

its unwinding by the electrical force. Such crosslinked tags with unique identifiers at known 

intervals in the tail can also help further validate the theory of the authors of the above-

mentioned studies concerning the hairpin’s position under an applied electric potential.
118,125

   

5.4 Conclusion 

 In summary, a single molecule SNP assay was performed on an integrated platform in 

which allele discrimination is combined with the allele detection step using a primer-conjugated 

nanopore. Combining an enzymatic allele discrimination process with allele detection in a single 

system has the advantage that it can ease future automation and scale up of the assay. With our 

four selected linear polymer tagged ddNTPs, in situ SBE was attempted by applying template, 

enzyme and tagged ddNTPs to the membrane-bound primer-conjugated pore in our detection 

system. Although we managed to obtain current signatures from each reaction with specific 

template and matching nucleotide, the reaction rate was not very efficient due to the constraint 

on primer concentration in this design. Therefore, it was not practical to collect a sufficient 

number of blockade events from this assay design. In the future, strategies to increase the 

electrophoretic concentration of the enzyme or lipophilic concentration of the enzyme and 

template might aid in driving them to the membrane-embedded primer-pore conjugate against 
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the diffusion rate. This will help verify the current signatures of the tagged ddNTPs and allow for 

further genotyping experiments on this platform. 

 In an attempt to remove the dependency of tag position on primer length and 

consequently to confer more flexibility to the assay, a slight variation of the assay using 

nucleotides containing a hairpin structure was also examined. To employ this version of tagged 

ddNTPs, an additional washing step was included to eliminate potential false positive signals by 

the unincorporated hairpin molecules. To stably seize the molecule in the pore, a structure with a 

highly stable hairpin and two ssDNA tails was designed and tested. In contrast to our expectation, 

we found that the motion of this specific structure is not stable in an electric field and thus the 

current signatures of nucleotides containing tags with hairpin structures could not be clearly 

defined due to their high fluctuations. Additional tests with variations in structure and under 

different conditions are expected to provide further insights into the behavior of these molecules 

under the applied electrical force.  
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CHAPTER 6: Single Molecule Electronic SNP Assay  

using Biotin-Streptavidin Interaction 
 

6.1 Introduction 

 The integrated single molecule SNP assay with immobilized primer on the pore described 

in Chapter 5 revealed slow reaction rate due to the limited concentration of the primer. Thus, it 

was not feasible to accumulate enough events for statistical analysis to compare different 

samples. With the aim of improving the efficiency of the reaction, we developed a modified 

assay in which the enzymatic allele discrimination process was conducted in advance of the 

detection step. In this approach, immobilization of tag in the pore was achieved using a biotin-

streptavidin complex instead of covalently conjugating primer to the pore. Specifically, SBE is 

completed in solution with a biotinylated primer, matching template, DNA polymerase and 

tagged ddNTPs before applying the reaction to the detection system. In this way, the efficiency 

of the reaction is not limited by the immobilized substrate. After the completion of SBE, the 

reaction is then treated with streptavidin and applied to the system. Under the applied voltage, 

molecules are stochastically driven to the pore and since the streptavidin is too large to penetrate 

the pore, the tag molecule on the streptavidin bound biotinylated primer is immobilized, 

generating a unique current signature specific to the incorporated nucleotide (Figure 6.2).  

 To validate this new approach, first, four SBE reactions with biotinylated primer, specific 

template, DNA polymerase and matching nucleotide were performed and the reference current 

level of each tag was established in this configuration. Using the verified tag-specific levels for 

each of the nucleotides, additional experiments were performed to check the specificity of the 
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enzymatic reaction and also to test the assay’s ability to differentiate between homozygous and 

heterozygous alleles.  

 After verifying all these properties of the SNP assay with synthetic templates, it was 

validated again with actual human DNA samples. As a model system, two polymorphic sites in 

the vitamin K epoxide reductase complex subunit 1 gene (VKORC1), which is implicated in the 

high inter-individual variability in response to the commonly prescribed anticoagulant drug 

warfarin, were selected: –1639 C >T (rs9923231) and 1173 G >A (rs9934438).
121,122

 The -1639 

C >T allele, which is in the promoter region of VKORC1, alters the binding site for transcription 

factors.
121

 Experiments have shown that carriers of the T allele at this position have decreased 

expression of VKORC1 mRNA, presumably producing lower amounts of functional VKORC1 

proteins.
124

 Hence, carriers of the T allele require lower doses of warfarin than those with the C 

allele and they are at the greatest risk for warfarin-related adverse events.
120-123

 On the other hand, 

the 1173G >A site is in the first intron of the VKORC1 gene and is the first SNP found to be 

associated with the low-dose warfarin phenotype.
121

 Although the exact function of this SNP has 

not yet been determined, studies have shown that in some populations, the common G allele is 

replaced by the A allele at this site, altering sensitivity to warfarin.
121,123

 Thus, carriers of the A 

allele are considered warfarin sensitive and require lower doses of the drug than those with the G 

allele.
120-123

  

 Using these two sites as examples, the surrounding portions of VKORC1 gene was 

amplified from DNA samples having different genotypes and the double stranded amplicons 

were then converted to ssDNAs. With these as templates, SBE reactions were performed with 

biotinylated primer, DNA polymerase and tagged ddNTPs followed by the streptavidin treatment 

and analysis in the nanopore system.  
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Figure 6.1 Scheme of the single molecule electronic SNP assay. SBE reactions were 

performed with primers having biotinylated nucleotide at the 3’ end, templates, Thermo 

Sequenase and tagged ddNTPs. After completion of the reaction, they were subsequently 

treated with streptavidin and then applied to the nanopore detection system. The ensuing 

current modulations were measured to identify the incorporated nucleotides on the primer.  
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6.2 Methods 

6.2.1 Generation of ssDNA from PCR products by λ exonuclease 

PCR reactions were performed using a phosphorylated primer for the unwanted strand, a regular 

5’ hydroxyl primer for the desired strand, Advantage
®

 2 polymerase mix (Clonetech) and human 

DNA samples. Sequences of the primers are as follows: F: 5'-GGTGATTTCCAAGAAGCCA 

CC-3’ R: 5'-/Phos/GATAGGGTCAGTGACATGGAATCCTG-3' (1173 G>A), F: 5’-GGTTTC 

ACCATG TTGGCCAG-3’ R: 5’-/Phos/GGAAGTCAAGCAAGAGAAGACCTG-3’ (-1639   

C>T). After purifying amplicons with the QIAquick PCR Purification Kit (Qiagen), they were 

digested with 10 units λ exonuclease (NEB) at 37 °C for an hour. The reactions were purified 

using ssDNA/RNA Clean & Concentrator™ (Zymo Research) and employed as templates in the 

SBE reactions.  

6.2.2 SBE reactions and nanopore detection  

The SBE reactions were performed with 10 pmol biotinylated primer, 15 pmol complementary 

template, 1 unit Thermo Sequenase, 1X reaction buffer and 100 pmole each tagged ddNTP in a 

20 µl total reaction volume. They were incubated at 65 °C for an hour after 15 seconds of an 

initial denaturation step at 95 °C and then analyzed on a 15% Criterion™ TBE-Urea 

polyacrylamide gel. After confirming the presence of the products, a quarter of the reaction was 

applied to the nanopore system after incubation with 1 nmol of streptavidin (Sigma). The 

sequences of biotinylated primer and synthetic template are as follows: 5’-GTTCTGCTTCCTG 

C/Biotin-dT/-3’ (Figure 6.2) and 5’-GGANAGCAGGAAGCAGAACCC-3’ (N = A, T, C and G).  

The sequences of biotinylated primers for VKORC1 genes are as follows: 5’-AAACAACCATT 

GGC/Biotin-dC/-3’ for -1639 C>T and 5’-CAGGAGATCAT CGA/Biotin-dC/-3’ for 1173 G>A. 
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6.2.3 Data analysis 

After compiling blockade events from each experiment, histograms and box-and-whisker plots 

were generated in Excel, and Graphpad Prism software was used to fit them to a normal 

distribution. Statistical significance was determined with a one way ANOVA for comparisons 

among groups with significance level p < 0.05 and individual comparisons were determined 

using a Bonferroni post-test correction.   

6.3 Results and Discussion 

6.3.1 Experiments with synthetic DNA templates 

 First, four SBE reactions with primer, specific template, DNA polymerase and a 

matching nucleotide were performed to establish a reference level for each tag. Before applying 

the products to the detection system, the presence of extended products was confirmed by urea-

PAGE analysis along with primer, template and nucleotide controls. As shown in Figure 6.3, all 

four reactions contained an extra band of the expected size confirming that primer was extended 

Figure 6.2 Structure of biotin-modified thymidine residue as an example.
124 
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by each of the tagged ddNTPs in these reactions. There was almost no primer left in any of the 

reactions, indicating their high efficiency. After checking the size of products, each reaction was 

treated with streptavidin and then applied to the nanopore system for current determination. As 

in the previous experiments, a trapezoidal pulse was generated by slowly ramping potential to 

180 mV for 2 seconds followed by a plateau of 6 seconds and returning to the ground level for 2 

seconds at the end. In all four signals, there is an obvious current drop during the 6 seconds of 

the plateau period, indicating that the tag on the extended primer is stably immobilized in the 

pore by streptavidin (Figure 6.4). After the plateau period, voltage begins ramping back to 

baseline and thus the current drops further with a minor increase at the end due to the tag 

molecule being released from the pore. Specifically, the G nucleotide tagged with 17 adjacent 

dSp units decreased current flow the least (ΔI/I˳ 0.74 ± 0.03), producing the highest level. The C 

nucleotide with 8 dSps produced the next highest current level (ΔI/I˳ 0.58 ± 0.02). Events 

elicited by primer extended by the T nucleotide having 3 dSps produced ΔI/I˳ 0.35 ± 0.03 and 

those extended by the A nucleotide containing 6 neutral Imps generated ΔI/I˳ 0.28 ± 0.02 on 

average. The collected events were quantified via a box-and-whisker plot and a histogram and 

the results show that the events corresponding to each nucleotide cluster in well-separated 

regions (Figure 6.4E and 6.4F respectively). We also examined two negative control reactions: 

one with only biotinylated primer, matched template and DNA polymerase but without any 

nucleotide (Figure 6.5) and another with all reactants in the absence of enzyme. Neither showed 

any measurable blockade events after streptavidin treatment most likely due to the relatively 

short length of the primer and thus it would be difficult to stably arrest the unextended primer by 

streptavidin in the pore. The absence of detectable events from these control reactions verifies 

that the ones collected in the previous experiments resulted from the tags on the extended 
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primers. Overall, these results demonstrate that each tag on a specific nucleotide produces a 

distinct, well-separated level.  

 

 

 

 

 

 

 

 

  

  

  

 

 

 

 

 

Figure 6.3 SBE results with biotinylated primer, matched template, single tagged ddNTP and Thermo 

Sequenase on a denaturing polyacrylamide gel. The first two lanes indicate the position of primer and 

template. The following paired lanes show the size of each nucleotide and reaction results of SBE using 

the same nucleotides. Due to the absence of bases in dSpacers (dSp), ddG-dSp17 by itself is not visible 

with DNA staining. The circled bands indicate products of each reaction.  
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Figure 6.4 Current signatures of four tagged nucleotides in reactions with specific template and 

matched nucleotide at 180 mV. A. Detected current signature of the SBE reaction with biotinylated 

primer, template C, Thermo Sequenase and tagged ddGTP. B. Current signature of the reaction with 

biotinylated primer, Template G, Thermo Sequenase and tagged ddCTP. C. Current signature of the 

reaction with biotinylated primer, template A, Thermo Sequenase and tagged ddUTP. D. Current 

signature of the reaction with biotinylated primer, Template T, Thermo Sequenase and tagged 

ddATP. E. A box-and-whisker plot of current levels of the four reactions. F. A histogram of counted 

events from these experiments. The differences among them were statistically significant. 

* 

* 

* 

p<0.000001 
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 With these levels as guidance, the specificity of the SBE reaction was confirmed by 

performing reactions with a mixture of tagged ddNTPs, one specific template, biotinylated 

primer and Thermo Sequenase. Considering that most SNPs are biallelic, we first examined the 

four SBE reactions with specific template and a mixture of two different tagged ddNTPs. Figure 

6.6 shows distinguishable current signatures from each reaction under a constant 160 mV. First, 

the reaction with template C and a mixture of tagged ddGTP and tagged ddATP produced signals 

that correspond to the level previously observed by tagged ddGTP (ΔI/I˳ 0.72 ± 0.02) (Fig. 6.6A) 

while the reaction with template T and the same mixture of tagged nucleotides generated 

signatures that are consistent with those detected by tagged ddATP (ΔI/I˳ 0.28 ± 0.02) (Fig.6.6D). 

The specificity for template T (Fig. 6.6B) and template A (Fig. 6.6C) were also verified in 

reactions with a mixture of tagged ddCTP and tagged ddTTP. A box-and-whisker plot and a 

histogram of the collected events from each experiment are shown in Figure 6.6E and 6.6F 

respectively. The presence of products in these reactions was also confirmed on a denaturing 

urea gel (Figure 6.7). We also analyzed the specificity of the reactions containing a mixture of all 

four tagged ddTNPs and one specific template (Figure 6.8). In these reactions which contain all 

Figure 6.5 Current trace from the negative control reaction with the 

biotinylated primer, template, DNA polymerase but no nucleotide.  
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four nucleotides, minor non-specific events were observed, notably in the reaction with template 

C. Nevertheless, the major blockade events in each reaction correlate clearly with the level 

elicited by the nucleotide complementary to the added template (Figure 6.8). Overall, both 

results demonstrate that template-specific products were produced under the four different 

conditions, that Thermo Sequenase exhibits high specificity with our polymer tagged ddNTP 

analogs, and that these levels are clearly distinguishable in the nanopore system. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Current signatures of four tagged ddNTPs in reactions with a mixture of two nucleotides and 

single template at 180 mV. A. Detected current signature of the reaction with biotinylated primer, template 

C, Thermo Sequenase and a mixture of tagged ddGTP and tagged ddATP. B. Current signature of the 

reaction with biotinylated primer, template G, Thermo Sequenase and a mixture of tagged ddCTP and 

tagged ddUTP. C. Current signature of the reaction with biotinylated primer, template A, Thermo 

Sequenase and a mixture of tagged ddUTP and tagged ddGTP. D. Current signature of the reaction with 

biotinylated primer, template T, Thermo Sequenase and a mixture of tagged ddCTP and tagged ddUTP. E. 

A summary of the apparent current levels of the four reactions. F. A histogram of counted events from these 

experiments. The differences among them were statistically significant. 
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Figure 6.7 SBE reaction results with biotinylated primer, one specific template and a mixture of 

two tagged ddNTPs on a denaturing polyacrylamide gel. Each reaction is compared with the 

products from reactions with single matched nucleotides.  

Figure 6.8 Current signatures of four tagged ddNTPs in reactions with a mixture of four nucleotides and single 

template and corresponding histograms below. A. Detected current signature of the reaction with biotinylated 

primer, template C, Thermo Sequenase and a mixture of four tagged ddNTPs. B. Current signature of the reaction 

with biotinylated primer, template G, Thermo Sequenase and a mixture of four tagged ddNTPs. C. Current signature 

of the reaction with biotinylated primer, template A, Thermo Sequenase and a mixture of four tagged ddNTPs. D. 

Current signature of the reaction with biotinylated primer, template T, Thermo Sequenase and a mixture of four 

tagged ddNTPs. The differences among them were statistically significant. 
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 Besides the specificity of the assay, another critical aspect of the genotyping is the ability 

to discern heterozygous from homozygous alleles. To evaluate this feature of our assay, we also 

performed the reactions with a mixture of two different templates and corresponding tagged 

nucleotides and analyzed them in the nanopore system. As mentioned earlier, in this assay design, 

an event is produced by stochastically driving and threading a streptavidin-bound tag molecule 

into the pore and after detection, the molecule is diffused again into the solution as the polarity of 

voltage is reversed at the end of each cycle. Thus, by repeatedly generating trapezoidal pulses, 

multiple independent events are obtained from a single pore. In this setting, it is therefore 

possible to detect two distinct current signatures generated by two different extended products 

from a single pore, provided that there were two different templates in the reaction such as would 

be the case for heterozygous alleles. We tested this by performing SBE with a mixture of two 

templates. Figures 6.9A and 6.9C show current traces that exhibit two unique levels in a single 

pore confirming the presence of two products created in these reactions. The histograms of the 

collected events display two distinct populations of current levels confirming that there were two 

extension products generated for each allele in these reactions (Figure 6.9B and 6.9D). Although 

the templates were mixed in a 1:1 ratio, there was a difference in frequencies observed in each 

case. This might be due to differences in kinetics of threading each tag into the pore due to their 

different chemical structures and properties. Or the enzyme’s binding affinity for each substrate 

could vary, producing one product slightly more often than the other. Nevertheless, the results 

clearly show two clusters of blockade levels, demonstrating the presence of two different 

templates in these reactions.  
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Figure 6.9 Current signatures of two products in reactions with a mixture of two templates from a single pore. 

A. Detected current signature and a histogram of counted events from the reaction with biotinylated primer, a 

mixture of template T and template C, Thermo Sequenase and a mixture of tagged ddATP and tagged ddGTP. 

B. Current signature and a histogram of counted events from the reaction with biotinylated primer, a mixture of 

template G and template A, Thermo Sequenase and a mixture of tagged ddCTP and tagged ddTTP. C&D. 

Additional examples of current traces from the two reactions. 
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6.3.2 Genotyping at two polymorphic sites in VKORC1 using human genomic 

DNA templates 

 Lastly, our assay was also validated by detecting different genotypes in actual human 

DNA samples. As mentioned earlier, warfarin, the most commonly prescribed anticoagulant drug, 

has a narrow therapeutic window and exhibits wide inter-individual variation in dose 

requirements.
120

 Together with other non-genetic factors, increasing evidence has shown that two 

variants, 1173 G>A and -1639 C>T, in the VKORC1 gene appear to be the most important 

genetic determinants for warfarin dosing.
120-123

 Thus, as a model system, human DNA samples 

bearing different genotypes at these two sites: homozygous G, homozygous A and heterozygous 

G/A at the 1173 G >A site and homozygous C, homozygous T and heterozygous C/T at the -

1639 C >T were tested in our assay. After confirming their genotypes by Sanger sequencing of 

the PCR amplified locus (Figure 6.10), samples were processed to generate ssDNA template by a 

PCR reaction with a 5’ phosphorylated primer for the unwanted strand. After the amplification, 

the phosphorylated strand was digested by λ exonuclease, which is specific for 5’ phosphorylated 

DNA (Figure 6.11).
97

  

 Using the resulting ssDNA as template, SBE reactions were performed with tagged 

ddNTPs and the presence of products was confirmed along with controls by urea-PAGE analysis 

(Figure 6.12). Each reaction was examined together with two controls: double stranded PCR 

products and λ exonuclease treated products. Two bands were found in the λ exonuclease 

digested product lanes; the upper band indicates undigested and thus residual dsDNA and the 

bottom band contains the digested ssDNA, which migrates slightly faster than the original 

dsDNA. The last lane in each set is the reaction result from the SBE reactions and the circled 

bands indicate the extended products. The right panels show the same gel before DNA staining 
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(Figure 6.12B and D). All our tags except the ddG-dSp17 contain Cy3 dye. Therefore, the gels 

before staining show the two Cy3 containing-molecules: the residual tagged nucleotides and 

extended products. These results confirm again that the primer was extended with the expected 

molecules, the tagged nucleotides. After incubation with streptavidin, each reaction was applied 

to the detection system and blockade events were examined. Negative control reactions with 

biotinylated primer, heterozygous templates and a mixture of two tagged ddNTPs but without 

enzyme were included in the last lane on the gel, demonstrating the absence of products. These 

control reactions were analyzed in the system as well and any events detected from them were 

considered background captures. 

 

 

 

 

 

 

 

 

  

 Figure 6.10 PCR amplification and Sanger sequencing results for two sites in VKORC1 gene. 

A. PCR amplification and Sanger sequencing result for VKORC1 gene including 1173 G>A 

(rs9934438) site. B. PCR amplification and Sanger sequencing result of VKORC1 gene 

including -1693 C>T (rs9923231) site. 
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Figure 6.11 A scheme of ssDNA template preparation.  

Figure 6.12 SBE reaction results for various VKORC1 genotypes assessed by gel 

electrophoresis. A. SBE reaction results with three –1639 C >T (rs9923231) genotypes with 

DNA staining. B. The same gel without any staining. C. SBE reaction results with three 

1173G >A (rs9934438) genotypes with DNA staining. D. The same gel without any staining.  
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 For the analysis of these experiments, each trapezoidal pulse was treated as an 

independent event and the four reactions (the three experimental reactions with different 

genotypes and one negative control) were normalized based on the total number of collected 

events. Specifically, 4060 measurements including trapezoids without any blockade events were 

compiled from each experiment for the 1173 site (rs9934438) and a sample size of 5346 was 

used for the analysis of the  -1639  C >T site (rs9923231). As shown in Figure 6.13 and Figure 

6.14, the events from homozygous alleles exhibited uniform blockade levels: the homozygous G 

and homozygote A produced ΔI/I˳ 0.52 ± 0.09 and ΔI/I˳ 0.35 ± 0.08 whereas homozygous C and 

homozygous T generated ΔI/I˳ 0.63 ± 0.1 and ΔI/I˳ 0.3 ± 0.07, respectively. On the other hand, 

mixtures of two signals that are in line with the levels found for homozygous samples were 

detected from the reactions with heterozygous alleles. These levels also coincide with those 

obtained for each product in the reactions with synthetic DNA templates. Figure 6.15 shows the 

histograms of events collected from homozygous and heterozygous alleles. While the four 

experiments with the homozygotes exhibit unimodal distribution, those with heterozygotes 

display bimodal distributions with two distinct peaks, demonstrating again the presence of two 

different extension products. Box-and-whisker plots are also provided in Figure 6.15C and 6.15D. 

 As mentioned earlier, the events from the negative control reaction without enzyme were 

also analyzed to estimate the extent of the background in the experimental reactions. Figure 

6.16A shows the number of blockade events in the normalized samples; a sample size of 4060 

and 5346 measurements were gathered from each reaction for the 1173 G >A and the -1649 C 

>T sites, respectively. The rate was calculated by dividing the number of capture events by the 

sample size for each site (Figure 6.16B). The relatively minor rates in the negative controls 

highlight that the background events are insignificant in these reactions, indicating that a 
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majority of the events were elicited as a result of the enzymatic reaction. The differences across 

samples were tested by ANOVA followed by a Bonferroni post t-test correction and all tests 

were statistically significant. Overall, data in these experiments validate that our approach can be 

employed for diagnostic screening of SNPs in human genes.  
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Figure 6.13 Current signatures of products in reactions with different genotypes at VKORC1 1173 G>A. A. 

Detected current signatures of the reaction with biotinylated primer, homozygote G allele, Thermo Sequenase 

and tagged ddCTP. B. Current signatures of the reaction with biotinylated primer, homozygote A allele, 

Thermo Sequenase and tagged ddTTP. C. Current signatures of the reaction with biotinylated primer, 

heterozygote G/A alleles, Thermo Sequenase and a mixture of tagged ddCTP and tagged ddUTP. D. Box-

whisker plots of different genotypes. The differences among them were statistically significant.  
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Figure 6.14 Current signatures of products in reactions with different genotypes at VKORC1 -1639 C>T. 

A. Detected current signatures of the reaction with biotinylated primer, homozygote T allele, Thermo 

Sequenase and tagged ddATP. B. Current signatures of the reaction with biotinylated primer, homozygote 

C allele, Thermo Sequenase and tagged ddGTP. C. Current signatures of the reaction with biotinylated 

primer, heterozygote C/T alleles, Thermo Sequenase and a mixture of tagged ddATP and tagged ddGTP. 

D. Box-whisker plots of different genotypes. The differences among them were statistically significant. 
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Figure 6.15 Histograms generated from the results exemplified in Figure 6.13 and Figure 6.14. Red line 

indicates a normal distribution fitted to the data and the black dotted line is the mean of each data set. A. 

Histograms of the collected events from three reactions (three different genotypes) for VKORC1 1173 

G>A sites. B. Histograms of the collected events from three reactions (three different genotypes) for 

three different genotypes at VKORC1 -1639 C>T site.  
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Figure 6.16 The number of blockade events and the percentages of capture events in normalized data 

sets A. The number of capture events analyzing the VKORC1 1173 G>A site. B. The number of events 

examining the VKORC1 -1639 C>T site. C&D. The percentages of capture events in each data set.  
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6.4 Conclusion 

 To improve the efficiency of the previously described integrated approach (Chapter 5), 

here we developed another assay that is based on the immobilization of a biotinylated extended 

primer with a streptavidin molecule. Unlike the former approach, this method first completes the 

enzymatic reaction in solution followed by incubation with streptavidin and subsequent 

application to the detection system. Since the reaction rate is not limited by substrate 

concentrations in this approach, we could achieve very efficient SBE reactions, allowing us to 

collect a sufficient number of blockade events from each reaction containing different templates 

for statistical analysis. After establishing the reference level for each tag, we also tested the 

specificity of our SBE reactions with Thermo Sequenase in the presence of the specific template 

and a mixture of tagged ddNTPs. Our data demonstrated that template specific products were 

produced in each reaction and could be clearly differentiated in our nanopore detection system. 

In addition, the assay’s ability to discriminate homozygous and heterozygous alleles was 

examined; different alleles produced distinct genotype-specific histogram patterns. As a final 

validation of the assay, we examined two polymorphic sites in the VKORC1 gene using human 

genomic DNA samples and obtained well-separated genotype-specific levels. Taken together, 

these data not only prove the concept of our design for base labeled ddNTPs for nanopore 

detection but also supports its potential to be a nanopore-based companion diagnostic using these 

nucleotides. By simplifying SNP analysis with such a simple electronic readout that requires 

small sample volume and low detection concentration, the cost for detecting SNPs could be 

reduced and this might allow better, faster and cheaper routine screening for SNPs in patients, 

ultimately realizing an important goal of precision medicine. 
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Conclusion and Future Directions 

 In this thesis, we demonstrated a novel single molecule electronic SNP assay using four 

nucleotide analogs and a nanopore detection system. Specifically, we employed SBE of a primer 

with ddNTPs containing unique oligonucleotide polymers attached to their bases for allele 

discrimination, and ionic current readout due to capture of these tags in αHL nanopores for allele 

detection. To realize this concept, we designed and synthesized four polymer-attached ddNTPs 

with tags that produce characteristic electrical signatures in the nanopore system and confirmed 

that they are active substrates for Thermo Sequenase DNA polymerase.  Two different assay 

models were tested to stably immobilize a tag molecule on the extended primer inside the pore; 

an integrated approach using ssDNA primer-conjugated αHL nanopores and another two-step 

assay employing a biotin-streptavidin interaction. As discussed earlier, the first approach 

revealed slow SBE reaction rate due to issues of diffusion and the primer concentration 

constraint. To overcome this, in the future, strategies to enhance the electrophoretic 

concentration of the enzyme using mutagenesis or lipophilic concentration of the enzyme and 

template via a hydrophobic moiety such as cholesterol could help congregate them in the vicinity 

of the immobilized substrate, the membrane-embedded primer-pore conjugate.  

 As an alternative approach, we developed an assay using a biotin-streptavidin interaction 

in which the enzymatic allele descrimation step is performed in advance of the detection step. In 

this approach, we could achieve very efficient SBE reactions, allowing us to examine the 

essential properties of the SNP assay using our tagged ddNTPs in the nanopore system. The 

results demonstrated that our method is an accurate and reliable approach for genotyping 

analysis that has the potential to be implemented for real-life diagnostic applications. Typically, 

screening patients or disease detection involves analysis of a panel of biomarkers. As described 
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in Chapter 1, our nanopore chip is composed of a large number of individually addressable 

sensors. Therefore, multiple SNP sites could be simultaneously analyzed in a single cycle of the 

assay by applying different samples over separate areas of the chip.  

 Furthermore, additional dimensions could be introduced to the output by including 

another identifying moiety in the tag design. For instance, two different blocks of identifiers can 

be arranged in the tag and they can be sequentially detected as it traverses the pore during the 

capture event (Figure A1). In an immobilized setting, the rear identifier in the tag serves as a 

barcode for the encoded reaction and registers its brief signature first as it crosses the 

constriction zone. This is followed by a long-lived blockade event that is produced by the former 

identifier as it is stably confined inside the pore, revealing the identity of the incorporated base as 

demonstrated throughout this thesis. The combination of two identifying moieties generates a 

unique pattern of current signatures and this could allow simultaneous detection of multiple 

SNPs in a single nanopore. Previously, it has been demonstrated that PEG molecules of different 

lengths can characteristically block the pore current.
93

 Thus, a series of barcode probes can be 

generated to encode different reactions using these molecules. In this study, we constructed 4 

distinct identifiers that generate well-separated current signatures in the nanopore system. Using 

just these four, at least 16 combinatorial libraries of tags consisting of two uniquely ordered 

molecules can be generated. In addition, previous studies have demonstrated that the resolution 

of αHL can be improved by mutating AA residues in the barrel.
67,92

 The clearer resolution of the 

new pore might provide better separation of different tag molecules and this could allow 

additional current levels by other compounds to be discovered. These advances, combined with 

an array of hundreds of thousands of nanopores should allow parallel analysis of a biomarker 

panel, eventually realizing a cost-effective multiplexed point-of-care SNP diagnostic.  



 

 

120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1 Schematic of current signatures of tags containing a barcode for different 

SNP sites. The initial transient signature which is generated as the molecule crosses the 

pore encodes different SNP sites. This, along with a large array of nanopores, should 

allow multiplexed nanopore SNP genotyping.  
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