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Abstract 

 

Social Ties over the Life Cycle in Blue Monkeys 
 

Nicole A. Thompson 
 

 The ways that individuals socialize within groups have evolved to overcome 

challenges relevant to species-specific socioecology and individuals’ life history state. 

Studying the drivers, proximate benefits, and fitness consequences of social interaction 

across life stages therefore helps clarify why and how social behavior has evolved. To 

date, juvenility is one life stage that field researchers have largely overlooked; however, 

individual experiences during development are relevant to later behavior and ultimately 

to fitness. Juvenile animals are subject to unique challenges related to their small size and 

relative inexperience. They are likely to employ behavioral strategies to overcome these 

challenges, while developing adult-like behavioral competence according to their species 

and sex. The research presented in this dissertation draws from long-term behavioral 

records of adult females and shorter-term behavioral records of juveniles from a 

population of blue monkeys (Cercopithecus mitis stuhlmanni) in western Kenya. I 

combine data on social behavior, demography, and biomarkers related to energetic and 

metabolic status, to assess both short and long term corollaries of social strategies in this 

gregarious Old World primate. 

 I first explored whether the quality of social ties predicted longevity among adult 

female blue monkeys. Controlling for any effects of dominance rank, group size, and life 

history strategy on survival, I used Cox proportional hazards regression to model the both 

the cumulative and current relationship of social ties and the hazard of mortality in 83 

wild adult females of known age, observed 2-8 years each (437 subject-years) in 8 social 



 

groups. The strength of bonds with close partners increased mortality risk under certain 

conditions: females that had strong bonds with partners that were inconsistent over 

multiple years had a higher risk of mortality than females adopting any other social 

strategy. Within a single year, females had a higher risk of mortality if they were strongly 

bonded with partners that were inconsistent from the previous year vs. with partners that 

were consistent. Dominance rank, number of adult female group-mates, and age at first 

reproduction did not predict the risk of death. This study demonstrates that costs and 

benefits of strong social bonds during adulthood can be context-dependent, relating to the 

consistency of social partners over time. 

 To understand the adaptive value of social behavior among juveniles, it was first 

necessary to understand the conditions under which their social behavior occurred and 

with which it co-varied. I examined the social behavior of 41 juvenile blue monkeys, 

using data collected over 8 consecutive months. I analyzed variation in social activity 

budgets and partner number related to life history characteristics, socio-demographic 

conditions, and seasonal environmental change. I examined partner preferences according 

to kinship, and relative age and rank. Lastly, I explored the stability of juvenile social 

tendencies over time. Males and females differed strongly in their social activity budgets 

and partner numbers: males spent more time playing with more partners than females, 

whereas females spent more time grooming and sitting close with more partners than 

males. Nevertheless, they were much more similar in terms of their partner preferences. 

Juveniles generally preferred to interact with partners with whom they were closely 

related and that were similar in age and maternal rank. Juveniles’ affiliative and 

aggressive behavior varied seasonally, suggesting that these two types of behavior were 



 

related. Rates of agonism given and received were the only types of social behavior to 

demonstrate repeatable inter-individual differences. This analysis provides a 

comprehensive examination of juvenile behavior in blue monkeys, synthesizing findings 

with those in other primate and non-primate species. 

I then explored the short-term costs and benefits of juveniles’ sociality in terms of 

their effects on allostatic load. I examined variation in energy balance (as measured by 

urinary C-peptide), social style, and their influences on allostatic load (as measured by 

fecal glucocorticoid metabolites, fGCs). Juvenile energy balance varied according to sex, 

availability of ripe fruit, and rainfall. Both energy balance and social style predicted fGC 

levels, such that juveniles that had a higher energy balance, groomed less, and played 

more had lower fGCs. Time spent grooming interacted with energy balance in their effect 

on fGCs, such that individuals with higher energy balance actually had higher fGCs the 

more time they groomed. Neither maternal rank nor involvement in agonism 

corresponded with juvenile fGC levels. These results suggest that juvenile blue monkeys 

experience energetic stressors and that navigating the social environment via overt 

affiliative behavior, namely grooming, is a potentially stress-inducing endeavor. 

Lastly, to further understand variation in social behavior during juvenility, I 

explored the role of mothers in shaping juveniles’ affiliative tendencies. I examined 

whether the social behavior of juvenile animals resembled that of their mothers and 

whether their social behavior was subject to maternal effects, using data from the 41 

juveniles and their 29 mothers. Juveniles’ grooming time with peers corresponded with 

the amount of time they groomed with (primarily being groomed by) mothers as infants, 

and this relationship varied by sex. Females spent less time grooming with peers the more 



 

maternal grooming they received during infancy, whereas males groomed with peers 

more. The time juveniles spent in other types of association with partners did not 

correspond with the same behavior in mothers, nor were other types of association 

subject to maternal effects. This exploratory study suggests limited effects of maternal 

behavior during infancy, but also that females and males respond differently to maternal 

investment during the first year. 

 The results of this dissertation emphasize the importance of long-term studies of 

natural populations in understanding the evolution of social behavior, particularly when 

examining the causes and consequences of social ties over the life cycle in a long-lived 

animal. Strategies of affiliation did indeed correspond with costs and benefits over the 

life cycle, as they were relevant both to mortality in female adults and metabolic 

hormones among juveniles. Further, individuals socialize during development according 

to their life trajectory as male or female, what seasonal changes in the physical 

environment require or allow, and early-life maternal effects. 
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Chapter 1: Understanding the fitness benefits of social connectionover the life 

cycle.Introduction 

In recent decades, research has focused on examining the adaptive benefits of 

long-term cooperative and affiliative relationships in animals, beyond the general benefits 

of social living (Lin & Michener, 1972; Silk, 2007). Studies of numerous gregarious and 

group-living mammals, including primates (Archie, Tung, Clark, Altmann, & Alberts, 

2014; Gilby et al., 2013; Lehmann, Majolo, & McFarland, 2016; McFarland et al., 2015; 

McFarland & Majolo, 2013; McFarland et al., 2017; Silk et al., 2009; Silk et al., 2010b), 

rodents (Yee, Cavigelli, Delgado, & McClintock, 2008), cetaceans (Foster et al., 2012; 

Stanton & Mann, 2012),  and ungulates (Cameron, Setsaas, & Linklater, 2009; Nuñez, 

Adelman, & Rubenstein, 2015; Vander Wal, Festa-Bianchet, Réale, Coltman, & Pelletier, 

2014), have revealed that maintaining affiliative and cooperative relationships, both 

among same and opposite sex partners, corresponds with increased individual fitness, or 

increased survival and reproductive success. Despite the recent proliferation of findings 

that “social ties matter”, the mechanisms by which relationships influence fitness are not 

altogether clear. The length and resolution of research projects, particularly on long-lived 

gregarious animals, are not always sufficient to understand the precise pathways by 

which long-term fitness outcomes come about. 

This review focuses on evidence of how social ties influence individual fitness. 

Similar to previous reviews of “friendship” in animals (Bergman, 2010; Massen, Sterck, 

& De Vos, 2010; Seyfarth & Cheney, 2012), I touch on the description, evolution, and 

development of social ties in various social animals, with a focus on evidence from same-

sex relationships in non-human primates. Unlike previous reviews, I concentrate on 
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delineating pathways by which positive social interactions potentially influence fitness 

(expanding on those mentioned briefly in Cords and Thompson (2017)), while 

incorporating evidence from current literature. Importantly, the literature cited herein 

attempts to focus on the development and the effects of differentiated social relationships, 

rather than social living more broadly. I use the terms “ties” and “connections” 

interchangeably in reference to relationships (or the pattern of interactions) between 

individuals and their preferred social partners, and “bonds” to refer to an individual’s ties 

that are particularly strong relative to their other ties. 

The review comprises three parts: 1) the definition and measurements of social 

ties, 2) the fitness outcomes associated with ties and the functional pathways by which 

they potentially enhance fitness, and 3) the physiological and developmental bases of 

social ties and their important links to early-life attachment to caregivers. In the first 

section, I address ways to quantify patterns in relationships and touch on the cognitive 

abilities that underlie them. In the second section, I outline seven functional pathways by 

which connections can benefit individuals and potentially influence their fitness, 

particularly given their life history stage, sex, and physical environment. These seven 

pathways include cooperative hunting, communal care of offspring, cooperative 

territorial defense, monopolizing mates and resources, establishing and maintaining 

social status, developing social and physical competence, and reducing exposure to risk 

and regulating homeostasis. In the final section, I describe the physiological 

underpinnings of connections and describe how early-life attachments, in part, are the 

evolutionary roots and strong ontogenetic influences on the physiology underlying ties 

later in life. 



 3 

 

Issues Related to the Definition and Measurement of Social Connections 

i. What are connections? 

In the 1970’s, Hinde pioneered the scientific description and classification of 

relationships in animals (Hinde, 1976a, 1976b). The impetus for such work was an 

accumulation of observations that individuals of many gregarious species associate in a 

non-random way, preferring to interact with certain conspecifics and avoiding others. A 

relationship between two individuals is formed when, after becoming known to one 

another, their interactions become patterned over time, and the quality of the interactions 

themselves define the quality of the relationship (e.g. cooperative, affiliative, agonistic 

(Hinde, 1976a). Friendships and associations are characterized by affiliative interactions, 

including spatial proximity, and non-aggressive physical contact and vocalizations. 

Alliances are characterized by cooperative interactions or joint efforts that achieve a 

mutual or reciprocated reward, such as access to food or a mate, and often occur in zero-

sum contexts where individuals work together to outcompete a third party. Enemies and 

dominance relationships are characterized by agonistic and competitive interactions, 

including visual or vocal threats, physical aggression, chasing or fleeing, exclusion, and 

avoidance. In this review, I focus on the function of connections or ties, which I define as 

relationships that are characterized by association and cooperation rather than avoidance 

and competition. Connections herein are not related to reproduction (e.g. monogamous 

pairs), but do include the affiliative relationships among kin. 

Typically, what are considered ties are relationships that are perpetuated because 

of the quality of the interactions that define them, and not by third variables such as 
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individual personality or mutual attraction to particular microhabitats (Best, Dwyer, 

Seddon, & Goldizen, 2014; Dingemanse, Both, Drent, & Tinbergen, 2004; Godde, 

Humbert, Côté, Réale, & Whitehead, 2013). Male chimpanzees, for instance, maintain 

connections in that a dyad that maintains close spatial proximity in one period of 

observation is more likely to do the same in future (Mitani, 2009). The time that male 

chimpanzees spend in proximity to one another correlates positively with the quality of 

their interactions, as measured by the equitability of their grooming, suggesting that 

males are attracted to one another to affiliate (Mitani, 2009). 

Despite controls for environmental variation, the line between the “dynamic 

stability” (Hinde, 1976a) of a relationship and the instability of interactions governed by 

third variables is not always clear. There are no universal criteria for either how stable or 

enduring a pattern must be to constitute a relationship. For instance, Henzi et al. (2009) 

argued that female baboons in two South African populations did not interact in ways that 

should be considered “relationships”, because the preference for dyad members to 

associate spatially increased when food was scarce and decreased when food was 

abundant. The majority of females in the study populations also did not demonstrate the 

same partner preferences from the first food-scarce season to the second. These findings 

resembled a previous report that the identity of a female’s top grooming associates 

changed from year to year over a four-year study (Barrett & Henzi, 2002). Silk et al. 

(2006; 2010a), by contrast, found that many of a baboon female’s closest spatial and 

grooming partners remained her closest partners for up to seven years. Unlike Barrett et 

al. (2002), Silk et al. (2006; 2010a) allowed a “one year gap” such that a female has a 

close partner for three years if her partner is close in year 1, not close in year 2, and 
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reappears in year 3. However, the duration of strong ties did not change substantially 

whether excluding vs. including a one-year gap (Silk et al., 2010a). Although studies at 

both sites focused on grooming and spatial association behavior, differences in 

observation methods could account for differences in the length of female-female 

relationships among chacma baboons in South Africa vs. Botswana. For example, Henzi 

and Barrett (2002) based analyses on scan samples taken at 30 min intervals, whereas 

Silk et al. (2006, 2010) used 10-min focal follows, with point samples taken at 1 min 

intervals (Silk et al. 2006) or exact durations of grooming bouts recorded (Silk et al. 

2010). While both sampling methods capture narrow windows on a female’s social 

world, scans at 30 min intervals could be more prone to missing dyadic interactions that 

continuous focal follows capture. It is also possible that females actually associate in 

different ways between these two populations, particularly because the ecological 

environments of the two study sites differ (see McFarland et al., 2017). 

 

ii. Quantifying individual social tendencies 

In the literature today, measures of an individual’s social ties fall into three major 

categories: measures of individual gregariousness, bondedness, and integration, each 

explained further below (Silk, Cheney, & Seyfarth, 2013).  

Gregariousness is often measured simply by rates of affiliation given to and 

received from any partner relative to that of the average individual (e.g. composite 

sociality index, CSI, Sapolsky, Alberts, & Altmann, 1997) and/or by those rates relative 

to aggression given and received (e.g. relationship quality index, Weaver & de Waal, 

2003). Although gregariousness is not a measure of one’s precise strategy of connection, 
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in species that associate non-randomly, one can predict that individuals distribute 

affiliation in a non-random manner.  

Bondedness is fundamentally a quality of a dyad, but can be translated to describe 

the tendencies of an individual. Three particular measurable aspects of bondedness are 

bond strength, stability, and symmetry (Cairns & Schwager, 1987). Bond strength is 

usually calculated as the observed rate of affiliation and/or spatial association between 

two partners relative to their opportunities to encounter one another (Cairns & Schwager, 

1987; Mitani, 2009), and is often further expressed in relation to the rates of an average 

dyad (e.g. dyadic CSI or DSI, Silk et al., 2013). One can characterize how strongly 

bonded an individual is by averaging the strength of an individual’s closest partners (Silk 

et al., 2013), where “closest” is determined by some reasonable threshold (Massen & 

Sterck, 2013; Silk et al., 2009). One can measure the stability of a bond as its duration 

over time or an individual’s bond stability by the consistency of the identities of its 

closest partners over time (Silk et al., 2013). The symmetry of a connection can be 

measured in several ways, such as the equitability of social exchange or the bias in 

responsibility for maintaining spatial proximity (Silk et al., 2013). 

 Integration is frequently measured as one’s total number of social partners (its 

network degree) and/or its position within a network (Hanneman & Riddle, 2005). Social 

networks are based on the rates of interaction within pairs of individuals, e.g. coalition 

formation and bond strength, and one can choose whether to filter connections such that 

they represent rates of interaction only above a given threshold (Hanneman & Riddle, 

2005). Popular measures of an individual’s position within the network are its centrality, 

power, and local clustering coefficient (or local transitivity; Brent 2015) . There are 
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several ways of expressing centrality, including betweenness or ability to link disparate 

cliques of individuals, closeness or number of connections required to reach certain 

individuals, and eigenvector centrality or the connectedness of an individual’s 

connections. Centrality and power are generally considered to be useful measures of 

one’s access to and ability to disseminate information and influence (and possibly 

disease). Local clustering coefficient is a measure of the connectedness (or connectivity) 

of one’s social partners with one another. Hanneman and Riddle (2005) describe the 

connectivity of one’s immediate network to be indicative of the “texture” one’s regular 

social life. For example, an individual with high local transitivity may associate 

simultaneously with a consistent set of partners. 

Closely related to integration is the idea of partner diversity (e.g. Shannon Weiner 

Diversity index; Silk et al. 2013) . In social contexts, the SWI in particular is most 

meaningful when one controls for group size, as it then represents how evenly an 

individual associates or distributes affiliative or cooperative behavior among its possible 

connections.  

In measuring ties, one can control for spatial preferences, that are driven by non-

social factors, by calculating spatial association according to the proportion of 

observations in which either individual were present in the same subgroup and the size of 

the subgroup (e.g. pairwise affinity index, Mitani, 2009). This approach is especially 

useful in species with fission-fusion social structures or poorly defined communities, 

such as dolphins or kangaroos. For example, some researchers have included the spatial 

overlap of individual home ranges as an analytical control variable when assessing the 
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nature of social ties or propensity of two individuals to interact (e.g. Best et al., 2014; 

Mann, Stanton, Patterson, Bienenstock, & Singh, 2012).   

To assess the influence of a dyadic attribute (e.g. kinship, age difference) on 

social ties that are independent of spatial preference, one can also randomly and 

repeatedly permute the underlying social matrices of the dyadic response, only swapping 

observations that occur in the same geographic areas, and then comparing permutation-

based coefficients with observed (Farine, 2017). Indeed, apart from controlling for space 

use, there are many important methods to control for the general non-independence of 

dyadic measures as statistical responses (Farine, 2017; Farine & Whitehead, 2015; 

Gomes, Mundry, & Boesch, 2009). Permutation methods are less advisable when social 

ties are an independent or a predictor variable in a multiple regression, as permuting their 

underlying matrices may disrupt relationships between covariates if they are at all 

correlated (Anderson & Legendre, 1999; Dekker, Krackhardt, & Snijders, 2007). 

In an experimental setting, one can manipulate available spaces and see if 

preferences for association hold (e.g. Durrell, Sneddon, O’connell, & Whitehead, 2004). 

Although less common, one can also control for the influence of individual personality in 

an association, such that interactions do not represent one individual’s attraction to larger 

sub-groups (e.g. (Best et al., 2014) or lack of fear of novel environments (Dingemanse et 

al., 2004). Domestic pigs, for example, prefer particular resting areas within their sties, 

but not the company of particular sty-mates (Durrell et al., 2004). After the structure of 

the sty was changed, individuals did not prefer to associate spatially with their previous 

partners. 
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Several factors, apart from space use, can cause pronounced fluctuations in 

connections, such as seasonal availability of food, mates, or infants (Brent, MacLarnon, 

Platt, & Semple, 2012; Henzi et al., 2009), life history state including development and 

senescence (Almeling, Hammerschmidt, Sennhenn-Reulen, Freund, & Fischer; Berman, 

1982), extraordinary climatic or demographic events (Sapolsky, 1986b), death via 

predation or infanticide (Engh, Beehner, Bergman, Whitten, Hoffmeier, et al., 2006; 

Wittig et al., 2008), and group fissioning (Cords, 2012). To assess the stability of ties 

despite these factors, behavioral data can be collated over periods that represent either 

stable environments, such as mating and non-mating seasons (Schülke, Bhagavatula, 

Vigilant, & Ostner, 2010), or simply cover all seasons in a year (Silk et al., 2009). One 

can also control for variation in the environment by clustering observations by habitat 

type (Silk, Alberts, & Altmann, 2003) or by building models that include the context of 

interaction (e.g. food vs. non-food, Smith et al., 2010) or an index of environmental 

quality (e.g. fruit availability) as analytical controls. Finally, observations potentially 

influenced by third variables could be omitted altogether. For example, in calculating a 

dyadic composite sociality index in female baboons, Silk et al. (2009) removed 

interactions when either female had an infant under 100 days old, because infants are 

attractive to adult females. 

 

iii. Connections do not require but can involve advanced social cognition 

A relationship, broadly, does not need to exist as a concept within the minds of its 

partners to be deemed as such by human observers. The formation and maintenance of 

connections, at most basic, requires cognitive abilities that mediate patterns of 
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preference/avoidance and stability, i.e. individual recognition, social memory, and 

associative learning. The ability to recognize individuals either by sight or smell is 

widespread among social animals, indicating its fundamental value in social living, e.g. 

paper wasps (Sheehan & Tibbetts, 2011), octopuses (Tricarico, Borrelli, Gherardi, & 

Fiorito, 2011), storm petrels (Bonadonna & Sanz-Aguilar, 2012), dolphins (Bruck, 2013), 

elephants (McComb, Moss, Sayialel, & Baker, 2000), hyenas, several primates 

(Holekamp, Sakai, & Lundrigan, 2007), and many others (Frommolt, Goltsman, & 

Macdonald, 2003; Insley, Holt, Southall, & Atwood, 2014; Karavanich & Atema, 1998; 

Kirschel et al., 2011; Knörnschild, Feifel, & Kalko, 2013; Proops, McComb, & Reby, 

2009)). Individuals of several gregarious species demonstrate long-term social memory, 

such as male hyenas that recognize former clan-mates after dispersing (Holekamp et al., 

2007) and bottlenose dolphins that recognize individuals after 20 years of separation 

(Bruck, 2013). Associative learning in a social context is also common in animals. One 

example is social rank inheritance in spotted hyenas and several cercopithecine primates 

(Holekamp et al., 2007), in which a young female establishes a dominance rank 

immediately below her mother’s via a series of interactions in which her mother or 

maternal kin intervene on her behalf in aggressive interactions, with other group-mates 

apparently learning this contingency (Holekamp & Smale, 1991). 

Some animals demonstrate other, more advanced cognitive abilities that are 

necessary for certain social decisions. Individuals of some species demonstrate an 

awareness of triadic, or third party, social relationships. Male chimpanzees and female 

chacma baboons are more likely to avoid the close partners and the kin, respectively, of 

their recent opponents (Wittig, Crockford, Langergraber, & Zuberbuehler, 2014; Wittig, 
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Crockford, Seyfarth, & Cheney, 2007), presumably to avoid any retaliatory harassment 

from them. Baboons pay more attention to an interaction that violates an expectation of 

triadic social relationships: individuals looked longer in the direction of a speaker when it 

played a threat signal from one group member that was followed it by a scream of 

another member who ranked higher than that of the threatener (Bergman, Beehner, 

Cheney, & Seyfarth, 2003; Cheney, Seyfarth, & Silk, 1995). Hyenas, corvids, and some 

fish also appear to understand the relative dominance status of other individuals (Emery, 

Seed, Von Bayern, & Clayton, 2007; Holekamp et al., 2007). In hyenas, a female 

increased her rate of aggression toward a target when joined by an ally that was lower-

ranking to her but higher ranking to her target (Holekamp, 2007). This pattern ruled out 

the use of a rule of thumb such as “attack more when a dominant individual helps.” 

Individuals of species that demonstrate triadic awareness may further apply this 

understanding when recruiting allies, intervening on the behalf of others, redirecting 

aggression, and reconciling (Holekamp et al., 2007). Lastly, theory of mind may inform 

social decision-making in some primates and corvids, but the debate of whether this 

ability is present in animals is extensive (e.g. Emery & Clayton, 2009) and beyond the 

scope of this review. 

  

iv. Strategies of connection are adaptive 

As Kummer (1978) envisioned it, individuals “invest” in connections because of 

their adaptive value, or the benefits that they confer on individuals either in the present or 

the future. The ability and propensity to recognize, seek, and invest in valuable 

connections evolves via kin selection, reciprocal altruism, or mutualism (Silk, 2007). In 
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concrete terms, benefits of connections can be access to higher quality food (Holekamp et 

al., 2007; Peres, 1989), copulations (Connor, Read, & Wrangham, 2000), more rapid 

return to homeostasis (Wittig, 2010), protection from predators (Ron, Henzi, & Motro, 

1996), or bodily warmth (McFarland et al., 2015). The actual value or importance of 

these benefits to individual fitness depends on the individual’s experience of its 

environment, i.e. its state (e.g. old/young, large/small, male/female) and it access or 

exposure to some aspect of the environment (e.g. food, mates, shelter, warmth). As 

species represent some large-scale distinctions in state and environment, one would 

expect that the value of connections would vary among them.  

Nevertheless, assessing the adaptive value of a behavioral strategy frequently 

involves many assumptions. As Grafen (1984) puts it, behavioral ecologists typically use 

a “phenotypic gambit.” Instead of attempting to describe the genetic basis of a trait and 

its variation, one measures the trait phenotypically and assumes that its presence, absence 

or variation in degree represent alternative genetically-based strategies. Instead of 

measuring the fitness of a trait by the change in its gene frequency over time within a 

population, one measures an association between strategies and certain benefits (as listed 

above), and assumes that these benefits determine individual fitness. Indeed, field-based 

studies on long-lived animals are limited even when measuring more direct fitness-

related outcomes, such as survival, reproductive output, and offspring survival, as even 

these may not always translate into lifetime reproductive success when measured over 

what may be a relatively short-term period. 
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Pathways of Connections’ Benefits 

 Several studies present evidence that many or strong and consistent social ties 

correspond with better fitness-related outcomes. The seminal work of Silk and colleagues 

on two populations of savannah baboons brought the question “do social ties matter?” to 

the fore (Silk et al., 2003; Silk et al., 2009; Silk et al., 2010b) and in the following 

decade, several studies have examined links between either the quality or quantity of 

social ties and fitness outcomes, such as individual longevity (Archie et al., 2014; Brent, 

Ruiz-Lambides, & Platt, 2017; Foster et al., 2012; Stanton & Mann, 2012; Vander Wal et 

al., 2014), survival during or after a traumatic event (Lehmann et al., 2016; McFarland & 

Majolo, 2013; Nuñez et al., 2015), reproductive output (Gilby et al., 2013; McFarland et 

al., 2017; Schülke et al., 2010; Vander Wal et al., 2014), and infant survival to one year 

(Cameron et al., 2009; Kalbitzer et al., 2017; McFarland et al., 2017).  

My goal is not to synthesize the findings of above studies, but rather to highlight 

that the studies provide one kind of evidence that connections influence fitness, i.e. 

different social strategies correspond with different patterns of fitness outcomes (e.g. 

survival, reproductive success). None demonstrate a clear functional pathway (excluding 

Cameron et al. 2009 and Stanton et al. 2012: avoiding harassment; McFarland & Majolo, 

2013: thermoregulation) by which connections benefit individuals. Indeed, single studies 

rarely present both outcomes and the pathways by which they arise, because short-term 

projects are frequently unable to measure outcomes and long-term projects do not have 

the data to test pathways in hindsight. In the literature today, evidence of the functional 

pathways by which connections possibly influence fitness comprise the majority of 

evidence of connections’ influence on fitness, therefore in the following paragraphs I 
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review these pathways. When possible, I separately discuss strategies of connection by 

sex, and among same and mixed-sex connections, and by age classes to highlight how 

functional strategies differ based on these important state variables. 

 

Pathway 1: Cooperative hunting 

Hunting cooperatively is a strategy in which average individual energy intake is 

higher when hunting as a group than when hunting alone and occurs in a wide range of 

taxa including carnivores, cetaceans, primates, birds, and spiders (Bailey, Myatt, & 

Wilson, 2013; Ruch, Herberstein, & Schneider, 2014). Advantages of hunting 

cooperatively include capturing prey that is larger, in less time or distance covered, and 

with a lower variability in success over time (Bailey et al., 2013). Maintaining 

connections in the context of hunting thereby optimizes individual foraging efficiency 

(Bailey et al., 2013). Whether the bondedness of alliance members increases the 

efficiency of hunting is not clear, although hunting in family units vs. unrelated groups 

increased feeding efficiency in spiders (Ruch et al., 2014). Species that hunt 

cooperatively usually do so in extended family units, suggesting that familiarity may play 

a role in facilitating the cooperation of the hunt (Bailey et al., 2013). In some species, 

such as chimpanzees (Melis, Hare, & Tomasello, 2006) and hyenas (Drea & Carter, 

2009), tolerance does appear to facilitate cooperation on experimental tasks that mimic 

foraging and hunting, respectively. 

 

Pathway 2: Communal care of offspring 



 15

Individuals cooperate in rearing offspring when sharing the duties of care confers, 

on average, greater reproductive success than does rearing alone. Here, I refer to species 

that care communally for offspring and in which reproductive skew among females is 

low, i.e. not species classified as cooperative breeders. Female house mice are one 

example in which preferred social partners confer fitness benefits via communal rearing. 

In natural conditions, female house mice frequently provide milk to the offspring of 

others in a communal nest (CN), which enhances infant behavioral development (Curley 

& Branchi, 2012), growth, survival, and adult female lifetime reproductive success 

(Weidt, Lindholm, & Koenig, 2014). As adults, infants nursed communally show less 

anxiety, establish social roles among novel conspecifics more quickly, and are generally 

more sociable (Curley & Branchi, 2012). In an experimental study, females preferred 

certain spatial associates more than others and those that were allowed to rear litters with 

their preferred partners engaged in less overt aggression and enjoyed higher average 

individual reproductive success (number of offspring successfully weaned) than females 

paired with non-preferred partners (Weidt, Hofmann, & König, 2008). All pairs of 

females fought, but in the non-preferred pairs, one female delayed reproduction while the 

other had higher reproductive success than the average of preferred-partner pairs. 

Communal nursing was previously thought to be a product of social group living, but 

wild female mice appear to select their rearing partners (Weidt et al., 2014). Weidt et al. 

(2014) found that females in the wild formed communal nests in only 33% the cases in 

which a potential partner was present. Females were more likely to form communal nests 

when more partners were available, but less likely if population density was high, 



 16

suggesting that females are not obligated to rear communally but choose it as a strategy 

given a suitable partner.  

Unlike female house mice that appear to seek an egalitarian rearing partnership, 

female eider ducks that communally rear young choose alliance partners based on 

negative assortment of physical condition (Öst, Ydenberg, Kilpi, & Lindström, 2003). 

Two or more un-related females often pool broods in crèches over the brood-rearing 

period (approx. 40 days) and share care duties, such as feeding and guarding young from 

predators. A cost to communal rearing arises if offspring fall low in a brood’s dominance 

hierarchy. In general, females that choose to rear young communally are in poorer 

physical condition than those that rear alone, because high-quality females seem to feed 

and defend offspring well enough alone (Ost & Kilpi, 1999; Öst et al., 2003). Females 

that form alliances choose partners that have the optimal body condition relative to their 

own: for female B in poor physical condition, partner A is in good enough condition if 

the service she provides to B’s offspring is better than if B’s offspring are reared with 

only one mother. For female A in better physical condition, an optimal partner B is in 

poor enough physical condition such that B’s offspring are unlikely to outrank A’s. 

Similar negative assortment in body size or condition is seen in same sex associations of 

some invertebrates, such as male forked fungus beetles (Formica et al., 2011). 

  

Pathway 3: Cooperative territorial defense 

Among females, alliances to cooperatively defend territory can increase territory 

quality. Although the influence of the quality of particular social ties on the efficiency of 

cooperative territorial defense is largely unknown, the benefits of effective territorial 
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defense could select for team-building social behavior such as increased tolerance 

(Sterck, Watts, & van Schaik, 1997), “pay-to-play” distributions of grooming from 

dominant to subordinate individuals (Kutsukake & Clutton-Brock, 2010), or more diverse 

and reciprocal grooming among group members (Cords, 2002; Majolo, de Bortoli Vizioli, 

& Lehmann, 2016). Cheney (1992) found that females in species that do not engage in 

territorial defense had exceptionally low grooming diversity; however, females’ 

grooming diversity was unrelated to the frequency of territorial disputes both across and 

within species in which territorial disputes did occur. Further, in Sifakas, individuals 

maintain stronger group cohesion in areas that overlap with neighboring groups’ home 

ranges, possibly in anticipation of territorial disputes (Benadi, Fichtel, & Kappeler, 

2008).  

While future studies should assess whether particular degrees of bondedness or 

social integration influence the outcome of territorial disputes, the benefits of female-

female alliances in disputes are clear. Female golden lion tamarins that invest more time 

in cooperative territorial defense are able to maximize individual food intake and allow 

areas central to their territory to replenish themselves (Peres, 1989). Female lions are the 

primary defenders of territory and prides in the Serengeti: an increase in their number of 

adult females allowed a pride to gain disputed areas and improve territory quality in 

subsequent time periods (as determined by the distance of territory centroids to river 

confluences; Mosser & Packer, 2009). In general, larger groups often are more successful 

in territorial disputes (Cassidy, MacNulty, Stahler, Smith, & Mech, 2015; Markham, 

Alberts, & Altmann, 2012; Mosser & Packer, 2009; Roth & Cords, 2016; Sillero-Zubiri 

& Macdonald, 2001), and specific aspects of group composition can influence dispute 



 18

outcomes (e.g. Sillero-Zubiri & Macdonald, 2001). Further studies could reveal how 

female-female relationships and alliances vary according to group size and how these 

contribute to outcomes of territorial disputes. 

In some species, male territorial alliances appear to increase male reproductive 

success by enhancing the fertility of co-resident females (Williams, Oehlert, Carlis, & 

Pusey, 2004). Chimpanzee males form patrolling coalitions that raid neighboring 

community territories to harass both male and female neighbors (Williams et al., 2004). 

When male alliances increase the size of their community’s territory, they do not gain 

more females, but inter-birth intervals of co-resident females become shorter and their 

reproductive rates increase (Williams et al., 2004). Male alliances thereby allow males to 

benefit from higher average individual paternity by increasing territory quality and 

female fertility (Williams et al., 2004). Male chimpanzees also increase female fertility 

within their communities by harassing older and non-cycling females in neighboring 

communities, who are more likely to compete with resident females and not sexually 

available to males. Male lions also attack neighbor females perhaps for the same reason 

(Mosser & Packer, 2009). It is further possible that male territorial behavior deters such 

harassment from neighboring males: in lion prides with a higher proportion of males 

relative to females, females were less likely to be wounded by neighbor males (Mosser & 

Packer, 2009). 

 

Pathway 4: Monopolizing resources within social units 

 Males frequently form cooperative alliances to access and monopolize mates. The 

basis of mate-guarding alliances is that individuals achieve more copulations on average 
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when in an alliance than when alone (Whitehead & Connor, 2005). Fertilizations are not 

a shareable resource, particularly in non-litter producing species, therefore males that 

mate-guard should benefit from some percentage of fertilizations over time. A classic 

example of mate-guarding alliances occurs in bottlenose dolphins (Whitehead & Connor, 

2005), in which affiliative, non-kin partners form long-term alliances (up to 20 yrs, 

Connor, Heithaus, & Barre, 2001) that compete with other alliances to monopolize 

females in their communities. Formation of mate-guarding alliances varies by population 

and individuals are more likely to form alliances when individual body size is smaller, 

relative competitive abilities of alliance members are more similar, and the operational 

sex ratio of communities is male-biased (Whitehead & Connor, 2005). In Port Stephens, 

reproductive skew in alliances is not large and males that maintain larger alliances (e.g. 

3-4 individuals) have higher individual reproductive success (Wiszniewski, Corrigan, 

Beheregaray, & Möller, 2012). In Shark Bay, males that participated in alliances whose 

members remained more constant over time (i.e. stable alliances) also participated in 

more multiple-day consortships, increasing average individual copulations (Connor et al., 

2001). Males may also benefit from forming alliances by increasing access to females via 

mate choice. Male synchronous displays may attract females as a signal of male 

competitive ability (Connor, Smolker, & Bejder, 2006) and/or females perhaps prefer 

males in larger alliances (Wiszniewski et al., 2012). 

Mate-guarding alliances occur in several other species. Male feral horses form 

alliances that are characterized by a strong affiliative bond that can last their lifetimes and 

they share fertilizations in a 3:1 ratio between the dominant and subordinate male (Feh, 

1999). This scenario is better than either male would have alone, because allied males are 



 20

globally low to middle ranking.  Middle, but not low-ranking, male baboons in both 

Amboseli and Gilgil are more likely to form mate-guarding alliances, which steal females 

from their consortships with higher-ranking males (Noë & Sluijter, 1995). Allied male 

baboons do not appear to share an affiliative bond nor do they need to be co-resident for a 

long period to become familiar with one another; they do, however, appear to selectively 

choose their alliance partners (Noë & Sluijter, 1995). Although unexplored, authors 

predict that reproductive skew in baboon alliances should be low, as males are of similar 

competitive ability and should, in theory, take equal turns fertilizing females. This pattern 

of mutualism is apparent in mate-guarding alliances of male chimpanzees in which 

dominant and subordinate partners tolerate the other’s consortships in turn (Watts, 1998). 

 Within-group alliances to monopolize food and nest sites occur primarily among 

females. The importance of such alliances for female fitness forms the basis of the 

socioecological model of female relationships, initially developed in regard to primates 

(Isbell & Young, 2002; Sterck et al., 1997) but applicable to other group-living species 

(see Archie, Morrison, Foley, Moss, & Alberts, 2006; Holekamp, Swanson, & Van 

Meter, 2013). According to the model, the formation of competitive alliances depends on 

the monopolizability of the resource defended, i.e. whether it is discrete, easily guarded, 

and/or easily consumed (Isbell & Young, 2002). A comparison of two subspecies of 

squirrel monkeys demonstrates this principle. In the subspecies whose foods were 

monopolizable, females formed friendships, alliances, and dominance hierarchies 

(Mitchell, Boinski, & Van Schaik, 1991). In the subspecies whose food was not 

monopolizable, female connections were undifferentiated. In many cases, female 

competitive alliances aim to secure priority of access to food and space via social status, 
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rather than immediate access to resources themselves (Smith et al., 2010). For that 

reason, I continue to discuss within-group competitive alliances among females in the 

following section on dominance status. 

 

Pathway 5: Establishing and maintaining social status 

 Connections are valuable for optimizing one’s social power, or rank within a 

group’s dominance hierarchy. This is particularly true in plural breeding species, where 

the single top-ranking male and female do not monopolize breeding and individuals tend 

to form highly linear dominance hierarchies. Among adult males dominance rank often 

translates to priority of access to mates and among females and juveniles rank translates 

to priority of access to food, space, and nesting sites (TH Clutton-Brock & E Huchard, 

2013). In species with sex-typical roles of parental investment, these resources are 

integral to the fitness of the respective sex; therefore the benefits of securing a high 

dominance rank are clear. In a meta-analysis of several cercopithecine primates, male 

dominance rank accounted for 50% of the variance in mating success (Alberts, 2012; 

Altmann & Alberts, 2003). In females of several populations of matrifocal species, such 

as baboons and hyenas, high rank corresponds to shorter inter-birth intervals, earlier ages 

at reproductive maturity (Altmann & Alberts, 2003; Holekamp, Smale, & Szykman, 

1996; Pusey, 2012; Pusey, Williams, & Goodall, 1997), and faster infant growth 

(Altmann & Alberts, 2005), although the differential benefits of rank are somewhat 

dependent on ecological (Holekamp et al., 1996) and demographic conditions (Silk, 

2007). 
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Juveniles of species in which individuals inherit their mothers’ dominance rank 

require the assistance of older allies to establish their optimal dominance status. Allies are 

typically mothers or maternal kin (Chapais & Gauthier, 2004). In female philopatric 

species where female dominance is unrelated to age, such as hyenas and many 

cercopithecine primates, maternal aid enables juvenile females to dominate all females 

subordinate to their mothers, or to “inherit” their mother’s rank (or one just below 

mother’s) for life (Chapais, 1988; Cheney, 1977; Datta, 1988; Engh, Esch, Smale, & 

Holekamp, 2000; Holekamp & Smale, 1991; Horrocks & Hunte, 1983; Pereira, 1989). 

For males too, such as bonobos, dominance rank correlates positively with maternal rank 

and male rank declines when mothers are no longer present in the community (Surbeck, 

Mundry, & Hohmann, 2011), suggesting that alliances with mothers are necessary for 

males to maintain their status. Similarly, in hyenas, juvenile males inherit a status just 

below their mothers for as long as they remain in their natal group (Holekamp et al., 

2007). Although males’ rank post-dispersal is not necessarily equal to their rank pre-

dispersal (e.g. Smale, Frank, & Holekamp, 1993), the nutritional and social advantages of 

high rank in one’s natal group could cause a male to disperse sooner rather than later and 

to groups offering optimal mating conditions, thereby potentially extending a male’s 

reproductive career (e.g. Höner et al., 2010). 

Adults of species in which individuals form dominance hierarchies also rely on 

allies to either maintain or rise in dominance rank. Females of such species are frequently 

philopatric and alliances that maintain the dominance hierarchy, or conservative 

alliances, are the most frequent kind among adults (Smith et al., 2010). In Japanese 

macaques, when a female’s kin were removed from the group, she succumbed to 
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revolutionary coalitions and rapidly fell in dominance rank, but was able to regain her 

former rank upon the reintroduction of her kin (Chapais, 1995). Patterns of rank 

inheritance also disappear in natural populations when supporting kin are absent. In a 

group of Japanese macaques with low relatedness, juveniles came to outrank females to 

whom their mothers were subordinate because target females lacked conservative support 

and juveniles opportunistically joined bridging coalitions with higher-ranking females 

(Chapais & Gauthier, 2004). The overall occurrence of rank-related coalitions are 

relatively rare, perhaps because single events are salient enough to reinforce 

developmentally established dominance relationships (Smith et al., 2010).  

Males of species with dominance hierarchies frequently form alliances that they 

use to vie for top rank (Chapais, 1995). In such cases, the strength of affiliative ties with 

allies may be integral to alliance success. For example, Assamese macaque males 

maintain affiliative bonds with coalitionary allies and those with stronger bonds 

(measured by a CSI) with their top three affiliative partners were also more likely to rise 

in rank and sire more offspring in subsequent periods of observation (Schülke et al., 

2010). Chimpanzee males form long-term, equitable ties with each other (Mitani, 2009) 

and also form coalitions to vie for alpha male status (Gilby et al., 2013); however, it is 

not yet clear if the strength of their affiliative connections translates into the success of 

their cooperative ones. 

 

Pathway 6:  Reducing exposure to risk and mediating HPA axis activity 

In animals, both behavioral and endocrinological mediators help individuals avoid 

risk and maintain homeostasis (Romero, Dickens, & Cyr, 2009; Schulkin, 2011), which 
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are centrally important for fitness in all organisms. While avoiding risks such as 

predation and aggression is a primary advantage of social ties, maintaining homeostasis 

can be considered a “secondary” benefit, as ties often confer this advantage only once the 

propensity to form ties has evolved. In the human medical and psychological literature, 

social ties that help individuals avoid risk and maintain homeostasis are collectively 

referred to as “social support” (Gunnar, 2017; Uchino, 2009), which is often partitioned 

into “instrumental” and “buffering” support. The former describes support that decreases 

or removes the risk or energetic challenge in the environment, such as sheltering 

individuals from predators and extreme cold, or increasing their access to food. The 

second refers to support that either reduces the psychological perception of risk and/or 

helps individuals return to homeostasis following their response to a challenge (i.e., their 

“stress response”). Reducing the psychological perception of risk is, of course, only 

beneficial if the risk is no longer present in the environment. Humans and laboratory 

animals, for example, are unlikely to be more exposed to a predator when alone, but feel 

the need to be more vigilant and alert for such a risk when alone (Hawkley & Cacioppo, 

2010). In such cases, social support can “buffer” individuals from the perception of risk. 

Evidence of the psychological component of buffering in non-human animals is 

obviously difficult to gather. However, monitoring sympathetic activity and important 

endocrinological mediators of homeostasis following a potential challenge is one way to 

gauge both individuals’ perception of risk and their ability to return to homeostasis. 

Mediators prominently featured in studies of social buffering are glucocorticoid 

hormones (GCs). GCs catabolize glycogen into readily available glucose to respond to 

current and anticipated energetic needs, and dampen the activity of other physical 
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processes that are less immediately important for survival, such as inflammatory immune 

responses and reproduction.(Sapolsky, Romero, & Munck, 2000). While long-term or 

“chronic” elevations in GCs are often characterized as maladaptive, causing permanent 

damage to their own negative feedback mechanism, individuals’ long-term memory, and 

fertility (Sapolsky, 2005; Sapolsky et al., 2000), it is unclear how relevant chronic GC 

levels are to the fitness of wild animals (Beehner & Bergman, 2017; Bonier, Martin, 

Moore, & Wingfield, 2009). In any case, variation in baseline GCs between individuals, 

and deviation from baseline within individuals, are useful signals of the challenges that 

an individual or population of individuals is experiencing (Beehner & Bergman, 2017). 

 

a. Protection from isolation 

Social isolation poses a physical threat to some social animals, particularly those 

that depend on a social group for defense from predators or territorial neighbors, and for 

maintaining hygiene or warmth (Cheney & Seyfarth, 2009; Hawkley, Cole, Capitanio, 

Norman, & Cacioppo, 2012). Captive individuals of various social species mount stress 

responses to experimentally induced isolation, including rats, piglets, and prairie voles, 

suggesting that the adaptive value of avoiding isolation is conserved across social animals 

(reviewed in Hawkley et al., 2012). In baboons, males that were more isolated, as 

measured by a CSI, had higher baseline GC concentrations than did more sociable males 

(Sapolsky et al., 1997). In humans, the perception of isolation increases one’s vigilance 

and expectancy of an impending threat, which increases sympathetic activity (Hawkley & 

Cacioppo, 2010). Prolonged increase in sympathetic activity results in increased 

peripheral resistance in blood vessels, hypertension, depression, risk of autoimmune 



 26

disease, and myocardial infarction (Cacioppo, Hawkley, Norman, & Berntson, 2011). 

The over-activation of the HPA axis is the most likely cause these symptoms, as opposed 

to poor health practices (Cacioppo & Hawkley, 2003; Cohen, Gottlieb, & Underwood, 

2000). In humans, the benefits of avoiding the negative consequences of isolation has 

selected for the neural pathways and brain regions used in the perception of physical pain 

to be co-opted in the perception of isolation, causing “social pain” and calling attention to 

weakened connections (Cacioppo et al., 2011). 

 

b. Protection from harassment 

Social partners can protect individuals from aggressive competition and sexual 

harassment. Baseline GC levels often correspond to individual’s dominance status 

(reviewed in Sapolsky, 2005), however the social environments that correspond to status, 

and not necessarily status itself, appear to underlie observed patterns (Abbott et al., 

2003). In a meta-analysis of Old and New World monkeys, Abbott et al. (Abbott et al., 

2003) found that males in a given rank class (high or low) had lower baseline GC levels 

if they received more social support (i.e. grooming and interventions) and fewer attacks.  

In feral horses, mothers that were more sociable with female peers (high CSI) 

were better shielded from harassment from adult males, perhaps leading to the higher 

survival of their foals (Cameron et al., 2009). Alternatively, the bond a female has with a 

male may increase his tolerance of her and lower the rate at which he harasses her, as 

seen in Assamese macaques (Haunhorst, Heesen, Ostner, & Schülke, 2017). Such 

patterns within dyads may demonstrate a more general pattern of “paying” potentially 
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threatening or dominant individuals for social tolerance (Kutsukake & Clutton-Brock, 

2010; Seyfarth, 1977). 

Male dolphins, rather than females appear to benefit from higher social centrality 

early in life perhaps because it helps them avoid harassment from larger juveniles, who 

are targeting their future competitors. Juvenile male bottlenose dolphins that are more 

central (eigenvector centrality) in spatial association networks during their infancy 

survive longer than males that are less central (Stanton & Mann, 2012). There was no 

influence of centrality on female survival nor did the sheer number (binary degree) of a 

male’s connections predict his survival. An association with a well-connected mother 

may be at the root of this effect, such that a male that associates more frequently with its 

mother has higher eigenvector centrality. As another example, female langurs frequently 

form coalitions to defend one another from the harassment of potentially infanticidal 

males (Sterck et al., 1997). 

 

c. Coping with trauma and instability 

Associating with social partners often appears to help individuals cope with 

traumatic events. Among female baboons in the Okavango Delta, GC levels increased in 

response to various events, including infanticide, losing a close partner to predation 

(Engh, Beehner, Bergman, Whitten, Hoffmeier, et al., 2006), and instability in the male 

or female dominance hierarchy (Engh, Beehner, Bergman, Whitten, Hoffmeiers, et al., 

2006; Wittig et al., 2008). Wittig et al. (2008) found that female GC levels rose at the 

onset of instability in the alpha male position. Females that subsequently focused, or 

decreased the diversity, of their grooming connections to a smaller subset of individuals, 
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presumably their closest associates, showed a more rapid decline in GC concentrations 

than females that did not focus their networks or did so to a lesser degree. By contrast, 

individual rates of grooming did not change from before to after the onset of instability. 

Focusing networks then perhaps provided females with a dependable source of grooming, 

or with partners with whom females felt most familiar, such as kin.  

Females baboons that maintained grooming networks that were more focused had 

lower baseline GC levels even during periods of rank stability (Crockford, Wittig, 

Whitten, Seyfarth, & Cheney, 2008). It is possible therefore that simply associating 

regularly with bond partners attenuates HPA reactivity. Indeed, chimpanzees that 

groomed with a strong vs. weakly bonded partner for a single bout, regardless of bout 

length or quality, demonstrated a drop in urinary GC levels relative to before grooming, 

and did so both after a challenging event (intergroup encounter) and in the absence of 

challenges (Wittig et al., 2016). 

Affiliative contact may mediate HPA responses by stimulating the release of 

oxytocin (OT, Crockford et al., 2013; Seyfarth & Cheney, 2013), which can counteract 

the effects of GCs and reduce GC levels (Curley, 2011). In Barbary macaques, giving 

grooming, but not receiving grooming, was shown to associate with lower baseline GC 

levels (Shutt, MacLarnon, Heistermann, & Semple, 2007). Among female rats, the 

equitability of grooming relationships appears to lowers GC levels (Yee et al., 2008). 

Among trios of sisters, those that groomed most equitably in response to a stressor had 

the lowest levels of GCs (Yee et al., 2008) and in adulthood, these females had the lowest 

risk of mortality and were the least likely to develop mammary tumors.  
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The most supportive social strategy is not always a small and close set of 

connections. Among female rhesus macaques, females that had more ties, and partners 

with more ties themselves (i.e. proximity reach), had lower GC levels if they were low-

ranking (Brent, Semple, Dubuc, Heistermann, & MacLarnon, 2011). High-ranking 

females, however, had lower GC levels when they were less connected. This variation 

could result from psychological stressors perhaps being condition-dependent. For 

example, following the immigration of a new male baboon, elevation in GC levels were 

highest among females that were at greatest risk of infanticide, i.e. lactating females 

(Engh, Beehner, Bergman, Whitten, Hoffmeiers, et al., 2006). Nevertheless, why patterns 

of direct and indirect ties within a spatial association network predicted GC levels of 

rhesus females is not clear. 

 

d. Protection from environmental variation and predation 

Social partners can help defend individuals from challenges in the physical 

environment, such as food scarcity and cold temperatures. The intensity of a tie in a non-

competitive context often translates into tolerance in contexts where individuals 

potentially compete for a limited resource, such as food or warmth. The strength of a 

bond between female baboons in the arid Namibian savannah significantly predicted their 

likelihood to co-feed with one another and predicted co-feeding more strongly than 

relatedness (King, Clark, & Cowlishaw, 2011). Tolerant or preferential co-feeding also 

increases among affiliative partners in domestic dairy cows and Assamese macaques 

(Haunhorst et al., 2017; Val-Laillet, Guesdon, von Keyserlingk, de Passillé, & Rushen, 

2009). Simply having more social ties may also increase the number of tolerant spatial 
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associates. Vervets in South Africa huddle together at night to help maintain 

homeothermy (McFarland et al., 2015). Temperatures fall below freezing during winter 

and individuals that had more spatial and/or grooming partners throughout the day 

maintained a higher minimum body temperature and varied less in temperature from day 

to night (as measured by a subcutaneous thermometer). Number of social ties appeared to 

translate, too, into thermal efficiency for male and female adult and subadult Barbary 

macaques in the Atlas Mountains, where individuals with more ties were more likely to 

survive an intense winter (Lehmann et al., 2016; McFarland & Majolo, 2013). In both 

species, more social ties during the day perhaps allowed individuals to occupy key 

huddling locations among group members to stay warm at night.  

Social ties and their corresponding tolerance and familiarity can also influence 

exposure to predators. In some primates, a lack of tolerance between dominant and 

subordinate females appears to cause the lowest-ranking females to be located 

peripherally to the group, leaving them exposed to higher rates of predation (Ron et al., 

1996; van Schaik & Van Noordwijk, 1986). In reverse, being tolerated by a larger 

number of potential neighbors could increase spatial integration in a group and reduce 

exposure to predators. For example, eigenvector centrality in spatial association networks 

of adult ewes increases their survival, reproductive output, and infant survival (Vander 

Wal et al., 2014). Interestingly, rams do not incur these benefits of high eigenvector 

centrality, perhaps because they are at lower risk of being preyed upon (Vander Wal, 

Gagné-Delorme, Festa-Bianchet, & Pelletier, 2015). Stronger connections may help 

individuals to avoid predators because the familiarity between partners increases the 

efficiency of communication. In crested macaques, for example, adult females follow 
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others’ eye movements more frequently and quickly when they are more strongly 

connected (Micheletta & Waller, 2012). In dwarf mongooses, too, individuals respond 

more readily, for longer, and are more likely to approach a caller with whom they are 

strongly vs. weakly bonded when the caller emits a recruitment call to mob predatory 

snakes (Kern & Radford, 2016). In both macaques and mongooses, one can see how 

differentiated social ties mediate the increased vigilance that is often cited as a primary 

cause of the evolution of sociality, particularly in primates (Sterck et al., 1997). Females 

are more responsive to their strongest connections perhaps because strong connections 

have proved themselves trustworthy or perhaps because the physiological basis of their 

bond increases their behavioral synchrony (e.g. Arueti et al., 2013). More fundamentally, 

bonded partners may be more responsive to one another than are weakly bonded partners 

simply because they more easily recognize one another’s cues. Pairs of social mite larvae 

that are familiar with one another react more quickly than unfamiliar pairs to the larvae of 

a predatory mite (Strodl & Schausberger, 2012).     

 

Pathway 7: Developing social and physical competence 

Social ties during development may benefit individuals immediately, e.g. by 

defending them from harassment, and/or in the future by either persisting in themselves 

or preparing individuals for adult-typical behavior (Fairbanks, 2003). The social 

environment during development can become ingrained in several aspects of physiology 

if perceived as a signal for the environment to come in adulthood (Bateson, Gluckman, & 

Hanson, 2014; Sachser, Kaiser, & Hennessy, 2013). According to evolutionary theory, 

signals that accurately portray the adult environment are beneficial because they may 
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provide better physio- and psychological preparation for future environments, causing a 

predictive adaptive response (PAR, Bateson et al., 2014; Gluckman, Hanson, Spencer, & 

Bateson, 2005). Evidence of PARs to the physical environment is limited (e.g. Berghänel 

et al., 2017), and may be more likely to occur in wild animals with short vs. long 

lifespans (Douhard et al., 2014). PARs to the social environment, however, have not been 

well studied in either short or long-lived wild animals. Nevertheless, laboratory studies 

suggest that social experience during development can lead to behavioral profiles that are 

more likely to be successful in their adult environment. For example, guinea pig males 

raised in colonies with several adult males during adolescence demonstrate behavior as 

adults that is likely better adapted to intense competition for mates than males raised with 

a single male: they are less aggressive and follow a queuing strategy, rather than a contest 

strategy, to achieve reproductive dominance (Kaiser, Harderthauer, Sachser, & Hennessy, 

2007). Similarly, in cichlids, individuals raised with older conspecifics are better able to 

navigate an intense adult competitive environments than those raised without (Taborsky 

& Oliviera, 2012). The ability to assess social stimuli and respond optimally (i.e. with 

predefined optimal behavior) is termed “social competence” (Taborsky & Oliveira, 2012) 

and the motor skills required for those responses add its physical component. 

 

a. Benefit of learning  

Maintaining particular individuals as regular social partners can be key to 

developing competence in various physical or social tasks, like foraging or defending 

territory. In captive ravens, the trained behavior required to open a food box spread more 

readily between individuals that affiliated more often, and more readily between 
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affiliative than antagonistic partners (Kulahci et al., 2016). Cichlids raised with (vs. 

without) older conspecifics seem to learn socially appropriate behavior by experiencing 

the varied social roles and competitive abilities of other individuals in their unit: those 

raised with older conspecifics required fewer trials to respond appropriately (i.e. 

submissively) when experimentally introduced to a territory-holding individual (Arnold 

& Taborsky, 2010). They also required fewer trials to develop proper aggressive 

responses to intruders when they were territory-holders, themselves.  

Studies of individual variation in social network centrality may also demonstrate 

the importance of experiential diversity in social competence. Juvenile male long-tailed 

manakins that were more central (information centrality) within networks based on non-

aggressive contact were more likely as adults to rise to alpha status within their leks. 

Interestingly, the centrality of adult males did not predict rise to alpha status, suggesting 

that network centrality during development was key. McDonald (2007) argued that high 

juvenile connectivity represents investment in several leks and the development of proper 

dominant and submissive behavior that built individual social capital.  

Experiential diversity possibly primes individual social competence in adulthood, 

too. Adult male cowbirds whose aviary members were regularly rotated, rather than held 

constant, sang more to court females than to intimidate males when competing with 

males of all treatments within a mating tournament condition (White, Gersick, Freed-

Brown, & Snyder-Mackler, 2010). This behavior perhaps does not reflect competence, as 

the authors did not predefine appropriate behavior in the competitive mating condition. 

Nevertheless, males with a diversity of social experience were more successful in the 
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mating tournament by copulating at higher rates than males held in aviaries with constant 

membership (White et al., 2010).  

 

b. Benefit of social play 

Connections that occur in the context of social play may have a particularly 

important role in the development of competence. Play predominantly occurs during 

development and among peers, and is hypothesized to develop competence by its ability 

to provide “practice for the unexpected” and “self-assessment” (Spinka, Newberry, & 

Bekoff, 2001). Social play consists of friendly interactions that nevertheless involve acute 

social and physical challenges that are easily overcome and typically low risk. In this 

way, play allows individuals to gain cognitive and physical experience of unexpected 

situations and of their own abilities and limitations. In support of the self-assessment 

hypothesis, both male and female juveniles of several species, including sable antelope 

(Thompson, 1996) and ground squirrels, prefer to play with partners that are similar to 

them in size and age. In some species, however, play appears to be more asymmetric: 

domestic dogs, for example, prefer partners that they can dominate and demonstrate more 

offensive than self-handicapping behavior (Ward, Bauer, & Smuts, 2008). This inequality 

between social partners may serve as practice for maintaining social status later in life. 

For example, juvenile male marmots that win more play fights also rise to higher social 

ranks later in adulthood (Blumstein, Chung, & Smith, 2013). Nevertheless, play is not 

universal preparation for later fighting. Among male meerkats, rates of winning in play 

during development do not correspond to fighting success in adulthood (Sharpe, 2005b). 
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Social play during immaturity appears critical in developing some of the 

neuroanatomical and hormonal pathways necessary for competence. In rats, juveniles that 

are deprived of play partners (but not other social partners) do not develop normal neural 

circuitry in the medial prefrontal cortices of the brain, which is associated with motor-

skills (Bell, Pellis, & Kolb, 2010). As these areas are functionally linked in the 

production of social behavior, their proper development is key to social competence (Bell 

et al., 2010). In another experiment, male rats isolated during a period of development 

when play is most abundant were delayed in demonstrating appropriate submissive 

behavior to a dominant, resident male (van den Berg et al., 1999), much like socially 

incompetent cichlids that were raised without older conspecifics (Arnold & Taborsky, 

2010). These males also had higher baseline GCs and adrenaline levels than males that 

did play during development (van den Berg et al., 1999). In marmosets, too, individuals 

that engaged in more social play had lower baseline GCs and lower GC reactivity 

(Mustoe, Taylor, Birnie, Huffman, & French, 2014). The negative effect of social play on 

GC concentrations was stronger than the positive effect of prenatal exposure on GCs, 

suggesting that social play is one way to compensate for potentially deleterious GC 

exposure in the womb. 

 The competence developed by social play may also be linked to fitness outcomes. 

In Belding ground squirrels, males and females that played more showed faster 

development of motor skills (Nunes, Muecke, Sanchez, Hoffmeier, & Lancaster, 2004) 

and in adulthood females that played more defended their territory more intensely and 

were more likely to successfully wean their first litter (Nunes, 2014). This analysis is 

perhaps incomplete in demonstrating the effect of play on fitness because individual body 
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size possibly influenced both play rates and adult aggression independently (Nunes, 

2014). In brown bears, litters with higher average play rates had a larger proportion of 

cubs survive the winter season (Fagen & Fagen, 2004). The effect of play on survival 

held even after controlling for the abundance of salmon, the bears’ primary food. Fagen 

and Fagen (2004) argue that this result demonstrates how play prepared the cubs’ 

physiology to overcome the stressors faced during the long and harsh winter season. 

Because play behavior is energetically costly and access to food can increase play rates 

(e.g. Sharpe, Clutton-Brock, Brotherton, Cameron, & Cherry, 2002), this study is 

important in demonstrating that experience in play rather than access to food influences 

fitness (Fagen & Fagen, 2004).  

 

The Physiological and Developmental Bases of Connections 

In mammals, affiliation and cooperation are linked evolutionarily and 

developmentally by their common roots in the biological mechanisms of parent-offspring 

attachment, or the connection between an early-life dependent and its caregiver. Also in 

mammals, an attachment is typically strongest between an offspring and its mother 

(Curley & Keverne, 2005) and in birds between a hatchling and its caregiver (Hinde, 

1961). Attachment theory, as developed by Bowlby and Ainsworth from the 1950’s to 

1980’s, emphasizes the importance of the mother-infant relationship in the normal social 

and emotional development of mammalian young (Bretherton, 1992). At its heart, the 

theory maintains that a dependent young mammal requires a secure and stable attachment 

to its mother or caregiver that provides a base from which the individual explores, 

develops autonomy, and acquires decision-making skills, each of which bear on the 
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development of later life social connections. Although not all social ties are best 

characterized as attachments per se (Bergman, 2010; Suomi, 2005), they share many 

behavioral commonalities. For example, while rat pups will nurse from any lactating 

dam, they develop recognition of their mother’s odor and form a strong preference for her 

(Moriceau, Roth, & Sullivan, 2010). An attachment is an emotional linkage that 

motivates one individual to maintain proximity or to interact with another, and causes it 

to express distress upon forced separation, pleasure upon reunion, and grief upon 

permanent loss (Ainsworth & Parkes, 1991). 

 

i. Common neurochemical pathways of attachment and connections 

Two predominant neurochemical systems appear to mediate both caregiver-

dependent attachment and later-life social connections: the cerebral endorphin and 

oxytocin/vasopressin systems. The cerebral administration of beta-endorphin opioids 

reduces the distress behavior of offspring when separated from mothers in chicks, 

puppies, and guinea pigs (in Keverne, Martensz, & Tuite, 1989). Keverne et al. therefore 

hypothesized that social ties, too, may be mediated by the reward of beta-endorphins. The 

authors pair-housed talapoin monkeys that were more affiliative than aggressive with one 

another and manipulated a barrier to unite and separate them for constant amounts of 

time. Pairs received one of three treatments: morphine injections, opioid blockers, or 

nothing (controls). Among controls, pairs that groomed more reciprocally upon reunion 

had higher central (CSF) concentrations of beta-endorphins. Pairs that were administered 

morphine were more indifferent upon reunion, grooming and soliciting grooming less 

than other treatments. Finally, pairs administered an opioid blocker sought more contact, 
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grooming and soliciting grooming more than other treatments. These results 

demonstrated that beta-endorphins are indeed a driving reward in affiliative behavior. 

The oxytocin (OT) pathway of social reward likely evolved in some of the earliest 

mammals as a reward pathway to facilitate bonding and increased coordination (Curley & 

Keverne, 2005). OT has simultaneous central and peripheral functions: peripherally, OT 

is released to stimulate the contraction of the uterus for parturition, the tactile stimulation 

of which releases a flood of OT within the brain to serve as a reward for the individual 

recognition of one’s offspring, usually via olfactory stimuli (Curley & Keverne, 2005). 

OT acts in the brain as a general anxiolytic (Campbell, 2010), therefore its release is 

calming and pleasurable. The central release of OT is adaptive in initiating and 

reinforcing the bond between mother and offspring and also the responsiveness of 

mothers to infant signals (Churchland & Winkielman, 2012). In later life connections, OT 

levels increase in response to contact with a recognized and valuable individual, although 

likely to much a lesser extent, thereby reinforcing the social connection with a 

pleasurable reward much like that between mothers and offspring (Curley & Keverne, 

2005). Crockford et al. (2013) found that urinary concentrations of OT were higher in  

chimpanzees immediately after they groomed with individuals with whom they were 

more strongly bonded. One should note with caution that the accuracy and validity of 

using peripheral concentrations of OT to assess central concentrations is not altogether 

certain, because OT does not pass the blood/brain barrier (Churchland & Winkielman, 

2012). Nevertheless, peripheral and central levels often appear related in wild animals 

(Crockford, Deschner, Ziegler, & Wittig, 2014), and an effect of peripherally 

administered OT is visible for some social tasks. In humans, OT administered by nasal 
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spray increased coordination in a cooperative drawing task (Arueti et al., 2013), possibly 

paralleling the coordination necessary in mother-offspring interactions.  

 

ii. Influence of attachment for later life connections 

The quality of early-life attachments determines the development of many aspects 

of the above reward systems and the HPA axis and so influences the formation of later 

life social connections. Studies of rodents and non-human primates have demonstrated 

the importance of secure attachments early in life, mostly by observing the consequences 

of insecure attachments. In rats, licking and grooming (LG) alters methylation patterns in 

hippocampal cells to increase the expression of GC receptors (GRs), making the negative 

feedback of the stress response more efficient and decreasing neophobic behavior 

(Champagne et al., 2006). In reverse, human victims of childhood abuse decrease 

expression of GRs (Champagne, 2010), resulting in higher baseline GC levels and 

possibly the degeneration of hippocampal neurons that leads to depression (Sapolsky, 

2000). Both neophobia and depressive symptoms impede the formation and maintenance 

of later life connections.  

Behavioral evidence also demonstrates that secure mother-offspring attachment 

enhances the development of basic emotional competence, or emotional regulation, 

which may later underlie the social and physiological competence necessary to maintain 

valuable connections. Compared to orphans, bonobo infants that were raised by mothers 

regulated their emotional responses to social distress more effectively, i.e. by screaming 

for shorter bouts, not continuing to scream after a 30 second pause, and taking less time 

overall to recover from distress (Clay & de Waal, 2013). As juveniles, securely attached 
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individuals were more sociable (CSI), played more frequently and in longer bouts, and 

were more likely to demonstrate the social skill of consolation towards distressed peers 

(Clay & de Waal, 2013). Similarly, immature brown capuchins (during infancy, weaning, 

and juvenescence) that were securely attached to their mothers regulated their emotions 

more efficiently in response to social conflict and were more likely to initiate 

reconciliation with their former opponents (Weaver & de Waal, 2003), thereby 

potentially restoring valuable connections (Cords & Thurnheer, 1993). Even in humans, 

adolescents that reported a sense of secure attachment with their mothers in childhood 

demonstrated a stronger propensity to regulate their emotions by seeking support from 

peers than adolescents that reported insecure attachments (Allen, Porter, McFarland, 

McElhaney, & Marsh, 2007). Adolescents that had secure attachments also demonstrated 

higher quality social connections, as measured by self-rated degrees of trust, 

communication, and alienation among peers (Allen et al., 2007).  

The influence of early-life attachments on later-life strategies of connection 

underscores the potential legacy that one generation of social ties leaves for the next. The 

epigenetic inheritance of behavioral profiles is well demonstrated in the context of 

maternal care: low maternal affect begets low maternal affect in house mice, via changes 

in estrogen receptor mediated expression of OT receptors (Champagne, 2008). Here, one 

can see that strategies of social connection may also be heritable epigenetically, 

particularly if maternal sociality corresponds strongly with maternal attachment behavior. 

This possibility adds another perspective to studies that demonstrate that maternal 

connectedness influences offspring survival (e.g. Cameron et al., 2009; Silk et al., 2003; 
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Silk et al., 2009), namely, that maternal strategies of connection influence those of 

offspring, and offspring strategies themselves influence offspring fitness. 

 

Summary and Future Directions 

Across social species, the evidence for the benefits of social connections comes in 

two types of patterns: 1) links between variation in social ties and variation in fitness 

outcomes and 2) links between social ties and short-term advantages conferred along 

pathways that likely influence fitness. This review outlines and evaluates seven 

functional pathways: cooperative hunting, communal care of offspring, cooperative 

territorial defense, monopolizing mates and resources, establishing and maintaining 

social status, developing of social and physical competence, and mediating exposure to 

risk and HPA axis activity. This list is not exhaustive and pathways are certainly not 

mutually exclusive. 

The purpose of this review is to synthesize and frame evidence of the adaptive 

value of social connections for two reasons: 1) to encourage testing of alternative 

hypotheses about which social strategies are most important for individuals of a given 

species, sex, and age and 2) to facilitate the formation of these hypotheses with a clear list 

of functional pathways. To further aid the understanding of mechanisms by which social 

ties influence fitness, this review also outlines how life history and environmental 

variables influence the patterns of interaction that characterize ties. Also, this review 

highlights that the external environment can shape intrinsic states, particularly during the 

important life stage of immaturity. 
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 The optimal strategies of connectedness appear often to depend on nuanced 

variables such as individual condition (e.g. eider ducks, Öst et al., 2003) or competitive 

ability (e.g. rhesus macaque females Brent et al., 2011; female mice, Weidt et al., 2008; 

male dolphins Whitehead & Connor, 2005; male baboons Nöe & Sluijter, 1995). Broadly, 

it appears that affiliative behavior and various degrees of diversity in connections can be 

beneficial to both adult and immature males and females in a wide array of social species. 

There still remains much to be understood about what intrinsic life history and external 

challenges in the social and physical environment drive and select for patterns of social 

ties. Similarly, studies must consider how the challenges, or costs, of social living 

generally and of particular population and group structures counterbalance the benefits of 

social ties and shape patterns of social interaction. 
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Chapter 2: Stronger Social Bonds Do Not Always Predict Greater Longevity in A 

Gregarious Primate 
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Figure 2.1. Two adult female blue monkeys grooming.  Photo: M. Cords 
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Abstract 

In group-living species, individuals often have preferred affiliative social partners, 

with whom ties or bonds can confer advantages that correspond with greater fitness. For 

example, in adult female baboons and juvenile horses, individuals with stronger or more 

social ties experience greater survival. We used detailed behavioral and life history 

records to explore the relationship between tie quality and survival in a gregarious 

monkey (Cercopithecus mitis stuhlmanni), while controlling for dominance rank, group 

size, and life history strategy. We used Cox proportional hazards regressions to model the 

cumulative (multi-year) and current (single year) relationships of social ties and the 

hazard of mortality in 83 wild adult females of known age, observed 2-8 years each (437 

subject-years) in 8 social groups. The strength of bonds with close partners was 

associated with increased mortality risk under certain conditions: females that had strong 

bonds with close partners that were inconsistent over multiple years had a higher risk of 

mortality than females adopting any other social strategy. Within a given year, females 

had a higher risk of death if they were strongly bonded with partners that changed from 

the previous year vs. with partners that remained consistent. Dominance rank, number of 

adult female group-mates, and age at first reproduction did not predict the risk of death. 

This study demonstrates that costs and benefits of strong social bonds can be context-

dependent, relating to the consistency of social partners over time. 

 

Key-words: fitness, social relationships, social ties, social partner consistency, survival. 
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Introduction 

Among social animals, individuals commonly have differentiated relationships, or 

ties, with others. Particularly intriguing are close social bonds, which are characterized by 

especially high rates of affiliative behavior, including amicable physical contact, and/or 

particularly close spatial association (Cords & Thompson, 2017). To understand social 

differentiation from an evolutionary perspective, it is essential to examine its fitness 

consequences. In humans, for instance, decades of research have shown that the quality 

and patterning of social ties predict important fitness-related variables like disease risk 

(Uchino, 2006) and mortality (Holt-Lunstad, Smith, & Layton, 2010). Human studies 

also suggest that the short-term effects of social ties accumulate over the long-term to 

influence health outcomes (Uchino, 2006). 

More recently, research on non-human animals has also linked social relations to 

direct and indirect measures of fitness, such as reproductive rate (Farine & Sheldon, 

2015; Formica et al., 2011; Formica et al., 2012; Gilby et al., 2013; McDonald, 2007; 

Schülke et al., 2010; Vander Wal et al., 2014), offspring survival (Cameron et al., 2009; 

Kalbitzer et al., 2017; Silk et al., 2003; Silk et al., 2009; Vander Wal et al., 2014), and 

longevity (Archie et al., 2014; Brent et al., 2017; Fagen & Fagen, 2004; Foster et al., 

2012; Lehmann et al., 2016; McFarland et al., 2017; Nuñez et al., 2015; Silk et al., 

2010b; Stanton & Mann, 2012; Yee et al., 2008). Among these measures, longevity, or 

survival, is a particularly important fitness measure in long-lived mammals, like primates, 

that have relatively low reproductive rates (Jones, 2011; Morris et al., 2011). Adult 

female baboons  (Papio hamadryas ursinus) in Botswana lived longer if they maintained 

stronger, more consistent bonds with each other (Silk et al., 2010b). Similarly, female 



 47

baboons in Kenya (Papio hamadryas cynocephalus) lived longer if they were more 

connected to either adult male or female group-mates (Archie et al., 2014).  

Affiliative relationships can influence fitness in several ways (Cords & 

Thompson, 2017). The general benefits of group living may be amplified by living with 

especially tolerant and familiar partners. Such partners may work together more 

efficiently in cooperative hunting (Ruch et al., 2014), communal care of offspring (Weidt 

et al., 2014), or attending to predators (Micheletta et al., 2012). In several species, 

affiliative partners, often kin, compete more effectively as allies, and alliances help to 

maintain dominance rank (Chapais, 1995; Mitani, Merriwether, & Zhang, 2000; Schülke 

et al., 2010) or increase access to mates (Connor et al., 2000; Feh, 1999). Affiliative 

partners may also provide psychosocial support that attenuates prolonged stress responses 

to events like infanticide or the loss of close social partners (Engh, Beehner, Bergman, 

Whitten, Hoffmeier, et al., 2006; Wittig et al., 2008), although links between chronically 

elevated glucocorticoids and fitness may not be as direct or as prevalent in wild animals 

as in humans (Beehner & Bergman, 2017). More general integration in social groups, e.g. 

having more affiliative partners, may also provide such a buffering effect and protect 

individuals from environmental risks like cold temperatures (Lehmann et al., 2016; 

McFarland et al., 2015; McFarland & Majolo, 2013), enhance access to relevant social 

and environmental information (Archie, Moss, & Alberts, 2006; Templeton, Reed, 

Campbell, & Beecher, 2012), and help individuals survive traumatic population-wide 

events (Nuñez et al., 2015). 

Although most studies emphasize the effects of affiliative and cooperative 

relations on fitness outcomes, agonistic interactions may also be important. In Barbary 



 48

macaques, individuals that either received or directed aggression to more partners, and 

whose aggressive partners were not aggressive towards one another, were more likely to 

survive a hard winter (Lehmann et al., 2016). Similarly, yellow-bellied marmots 

(Marmota flaviventris) lived longer if they initiated aggression towards more recipients, 

although the benefits of aggression here likely derived from its association with social 

dominance (Lea, Blumstein, Wey, & Martin, 2010). 

Indeed, dominance status or rank, derived from agonistic interactions, has a 

pervasive influence on fitness-related variables in female mammals, as rank frequently 

corresponds with priority of access to food (T. Clutton-Brock & E. Huchard, 2013). 

Dominance rank can predict survival (Pusey et al., 1997; Silk et al., 2010b), possibly 

because high-ranking individuals are able to access safer microhabitats and avoid 

predation (van Schaik & Van Noordwijk, 1986), better access nutrients (Foerster, Cords, 

& Monfort, 2011), and avoid harassment during development (Silk, Samuels, & Rodman, 

1981). In our study species, the blue monkey, rank has no effect on conception 

probability (Roberts & Cords, 2013), but higher-ranking females had lower baseline 

glucocorticoid levels during an energetically challenging period when lactation 

overlapped with low food availability (Foerster et al., 2011).  

Variables other than the quality of social ties and rank can also influence survival 

in group-living animals. Large group size may enhance survival by providing benefits 

similar to those of maintaining particularly affiliative relationships, such as more 

effective vigilance for predators (Elgar, 1989; Lehtonen & Jaatinen, 2016; Roberts, 1996; 

van Schaik & Van Noordwijk, 1986), defense of young offspring (Grinnell & McComb, 

1996; Wolff & Peterson, 1998), or defense of feeding territories (Radford & du Plessis, 
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2004; Roth & Cords, 2016). Nevertheless, living in larger groups may also exact costs by 

increasing within-group competition for food (Roberts & Cords, 2013; VanderWaal, 

Mosser, & Packer, 2009), or by increasing the risk of male takeovers and subsequent 

infanticide (Steenbeek & van Schaik, 2001). In some cases, the way the cost-benefit 

balance changes in larger social groups means that intermediate group sizes are optimal 

for individual fitness (Markham, Gesquiere, Alberts, & Altmann, 2015; Roberts & Cords, 

2013). Finally, at a basic life history level, individuals may trade off energetic investment 

in somatic growth and maintenance (survival) for reproduction (Descamps, Boutin, 

Berteaux, & Gaillard, 2006; Hamel et al., 2010). 

In this study, we used survival analyses to examine the link between affiliative 

social ties and lifespan of wild adult female blue monkeys, while also controlling for the 

influence of other socio-demographic factors and a potential life history trade-off. We 

examined both the cumulative (multi-year) and current (annual) effect of social 

experience on survival, using fixed-effect and time-dependent Cox models to test for 

each, respectively. We focused mainly on affiliative relations because agonistic 

interactions occur at low rates in this species (Klass & Cords, 2015). 

Although blue monkeys differ from other cercopithecines in multiple ways, we 

expected to confirm patterns documented in certain macaques (Lehmann et al., 2016) and 

baboons (Archie et al., 2014; Silk et al., 2010b), namely, that more or higher-quality 

social ties, either cumulatively over multiple years or in one’s current environment, 

correspond with higher survival. Unlike these other species, blue monkeys are highly 

arboreal, live in a less seasonal (rainforest) environment, seem to experience relatively 

strong feeding competition between groups but relatively weak competition within 
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groups (Cords, 2007; Klass & Cords, 2015), and live in groups with a single male. 

Despite these differences, we hypothesized that strong and stable female-female 

affiliative ties would enhance longevity in female blue monkeys because, like other 

cercopithecines, they have a female-philopatric and matrilineally structured society in 

which grooming is the most obvious form of affiliation. We combine long-term life 

history data with detailed behavioral observations from an 8-year period on a wild 

population. We predicted specifically that females that maintained consistent and strong 

bonds with their closest partners would have a survival advantage relative to females with 

weak and inconsistent bonds, and that the benefits of strong and consistent bonds would 

be more pronounced over the long-term. 

 

Materials and methods 

(a) Study Site and Population 

The study population inhabits the Isecheno area of Kakamega Forest in western 

Kenya (0˚19´ N, 34˚52´ E; elevation 1580 m, mean annual rainfall 1997–2011 1942 mm; 

Mitchell 2009). Natural predators occur here, including the African crowned eagle 

(Stephanoaeutus coronatus) and Gaboon viper (Bitis gabonica, Gaynor & Cords 2012). 

The ca. 2 km2 study area supports a high density of blue monkeys, with approximately 

192 individuals/km2 in old secondary forest and fewer in mixed indigenous plantations 

(Fashing et al., 2012). Between-group territorial disputes are common, occurring about 

every other day (Cords, 2007). Blue monkey groups usually comprise a single adult male, 

multiple adult philopatric females and their young. This population has been monitored 
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since 1979 and all study group members were identifiable based on natural physical 

variation (Cords, 2012). 

During the period of data collection for this study (2006-2014), we observed 83 

adult (parous) female subjects in eight study groups, four of which resulted from two 

fission events that occurred in 2008 and 2009 (Fig. 1 in Klass & Cords 2015). In addition, 

in one group, three juveniles of unknown provenance joined the group in 2010 and 

became adult subjects in our analysis.  

Long-term monitoring of demographic events (Cords 2012) allowed us to specify 

birth and death dates; females alive at the end of the study (N=63) were right-censored. 

For 12 of the oldest adult females and 3 who had immigrated as juveniles, we estimated 

birthdates based on changes in juvenile body size (average precision ± 0.75 years, range: 

0.08-2). We inferred most deaths based on permanent disappearances as observers rarely 

found carcasses of missing animals. Female dispersal from the natal group is extremely 

rare in this species (two possible events in 111 group-years of monitoring, though these 

may have been small group fusions, author MC pers. obs.), and several females that 

disappeared either left behind young offspring (<2 years) or were in poor physical 

condition prior to disappearance. Cause of death was seldom known, but most deaths 

probably resulted from intrinsic factors or predation. 

 

(b) Behavioral data collection 

Detailed records of adult female social behavior, based on focal animal sampling, 

were available from October 2006. A team of observers trained by and including MC 

conducted 30 min samples on subjects approximately once every 3 days throughout the 
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year (mean ± SD observation hours per subject-year = 67 ± 20, N = 437). On a given day, 

observers chose focal subjects so as to even out the sampling rate across individuals and 

to balance observation time across the hours of the day. Subjects were observed for 2-8 

years each (mean = 5.26). We considered a subject to be present in a given observation 

year if she was a subject for >10% of the year (69 of 467 subject-years < full year, mean 

days observed if < full year = 310).  

During focal samples, observers made instantaneous records at 1 min intervals of 

subject activity (including grooming, resting, feeding, and moving) and the identity of all 

“neighbors” within 1 m whenever the subject was grooming or resting, or within 7 m if 

she was feeding. Because of the dense vegetation, subjects sometimes went out of sight. 

If observers relocated the subject within 15 min, they continued the sample until they 

achieved 30 min of observation; otherwise, the sample was terminated. Samples lasting < 

20 min were discarded.  

Data on agonism, used to calculate dominance rank, came from focal and ad 

libitum observations (Klass & Cords 2015). Observers recorded winners and losers in all 

decided agonistic interactions (in which one and only one opponent showed submission).  

 

Data analysis 

i. Social predictors of survival 

In many primates, mothers of young infants attract extra social attention. To 

measure social interaction that was not driven by short-term attraction to infants (Henzi 

& Barrett, 2002), we removed observation records when a subject or her partner had an 
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infant <100 days old. Infant blue monkeys begin to spend a substantial time away from 

their mothers at this age (Förster & Cords, 2005). 

To see how the quality of social bonds affected survival we first calculated bond 

strength for a given subject and all her adult female social partners in a given year. For 

this we used an annual dyadic sociality index (DSI, Silk, Cheney & Seyfarth 2013) based 

on grooming and time spent resting in proximity (1 m), each expressed as a proportion of 

total dyad observation time (which was the sum of time observed for each dyad member 

as a subject). Grooming and resting within 1 m are two measures of affiliation known to 

be strongly biased toward maternal kin (Cords & Nikitopoulos, 2015). Matrices of dyadic 

proportions of time spent grooming or resting in proximity were correlated in 28 of 43 

group-years, so their combination in a composite index seemed justified (electronic 

supplementary material, Table S2.1). We calculated the index as follows: 

DSI =  

where Gij represents the proportion of time that the dyad members spent grooming, Rij 

and Rji represent the proportion of time each dyad member i and j, as focal subjects, spent 

resting within 1 m of the other (without grooming or feeding), and Gmed and Rmed are the 

median values of all within-group dyads across social groups in the same year. We 

divided the resting association data for a given dyad into two equal components based on 

focal subject identity to account for the fact that resting-proximity was not symmetrical 

within the dyad (i.e., a resting focal subject might have a neighbor who was feeding, 

when observers scored proximity partners within a larger 7 m distance). A DSI of 1 
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would represent a typical dyad, while values >1 represent a dyad with stronger than 

median social ties. 

To characterize each subject’s bondedness over multiple years, we first averaged 

DSIs with her top three partners in a given year, and then averaged over her annual 

values. We chose to average the DSIs of a female’s top 3 partners for two reasons. First, 

across several species of social mammals, individuals tend to associate with decreasing 

intensity across social partners in tiers that scale by a multiple 3 – 3.15 (e.g. tier1 = 

individual, tier2 = grooming clique, Zhou et al. 2005; Hill, Bentley & Dunbar 2008). 

Second, averaging over top 3 partners allowed us to compare results with previous 

landmark studies on closely-related primates (Silk et al., 2003; Silk et al., 2009). 

Nevertheless, to assess whether ties with top 3 partners specifically were meaningful, we 

also explored the influence of DSIs averaged over the top 6 closest partners. 

To measure partner consistency over multiple years, we first identified those 

individuals among the top three partners that were “consistent”, and then asked what 

proportion of a female’s top 3 partner “slots”, across the years in which she was 

observed, were occupied by such consistent partners. We considered a top partner in a 

given year to be consistent if her DSI continued to place her in the top three positions at 

least once in the next two years (Silk et al. 2009). In a subject’s second to last year of 

observation, we counted a top partner as consistent if she was among the top 3 in the next 

year only. We then determined what fraction of a female’s top three “slots”, summed 

across years, were occupied by a consistent partner. The number of “slots” was 3Y-3, 

where Y is the total number of observation-years; we subtracted 3 because we could not 

assess consistency status of partners in the last year. This fraction varied from 0 (low 
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consistency) to 1 (high consistency). Partner consistency was not related to number of 

years observed. To correspond with our alternative measure of bond strength with top 6 

partners, we also calculated consistency in top 6 partners over time. During a few years, 

some subjects lived in groups with fewer than 6 or even 3 adult female groupmates. 

These comprised 7% and 1% of 437 subject-years, respectively.  

To measure current partner consistency (i.e. within a given year), we counted the 

proportion of a female’s top 3 or 6 partners that were present among her top partners at 

least once in the previous 2 years. For a female’s second year of observation, we counted 

the proportion of top partners present from the previous year of observation alone. As the 

consistency of partners in a female’s first year of observation could not be measured, 

annual partner consistencies were calculated for 354 of 437 subject-years. We calculated 

annual partner consistency retrospectively because we considered current (not future) 

partner stability relative to previous years to be most relevant to survival in the same 

year. Although prospective and retrospective measures of multi-year partner consistency 

do not differ greatly, measuring multi-year consistency prospectively assesses whether a 

female invested in partners that then remained consistent, and perhaps whether current 

partner choices would pay off over time. 

Similar to a previous study (Silk et al. 2010), we wished to condense bond 

strength and partner consistency into a single measure of relationship quality. Multi-year 

bond strength and partner consistency were correlated (N = 83, r = 0.23, p = 0.03), 

however they were not correlated so closely as to load on a single principal component 

(Table S2.2). The relative independence of these variables led us to categorize females in 

one of four classes of above (+) and below (-) population mean bond strength and partner 
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consistency, where class 1 =  - strength & - consistency (N = 29), 2 = - strength & + 

consistency (N = 20), 3 = + strength & - consistency (N = 11), and 4 =  + strength & + 

consistency (N = 23). We also categorized females using measures of bond strength and 

partner consistency among her top 6 partners (classes 1 -/- N = 39, 2 -/+ N = 11 +/- N = 

16, 3 +/+ N = 17). To better understand if females were forced into particular multi-year 

classes because of the deaths of social partners, we calculated how often deaths were 

responsible for partner changes, and whether the proportion of death-induced changes 

differed among females by class.  

To characterize current relationship quality, we again created an index in which 

females were placed in 4 classes of above or below average annual bond strength and 

above or below average annual partner consistency. These classes were populated relative 

to one another in a similar way as multi-year strength-consistency classes (top 3 class 1 -

/- N = 112 subject-years, 2 -/+ N = 94, 3 +/- N = 60, 4 +/+ N = 88; top 6 class 1 N = 150, 

2 N = 65, 3 N = 84, 4 N = 55). 

We calculated dominance ranks from records of decided agonistic interactions 

among adult females using the I&SI method as implemented in DomiCalc (Schmid & de 

Vries, 2013). We expressed ranks as the proportion of adult female group-mates a female 

out-ranked in each year. For multi-year analyses, we averaged subjects’ annual ranks 

over all years in which she was observed. 

ii. Demographic and environmental predictors of survival 

Long-term records allowed us to specify females’ age at first birth and the number 

of adult female group-mates (Cords 2012). Average number of adult female groupmates 

closely approximated a female’s average number of adult female grooming partners (N = 
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83, r = 0.8, p < 0.001), as annual grooming networks among female groupmates were 

saturated or nearly so. We therefore included only number of adult female groupmates, 

and not number of grooming partners (which would provide no additional information), 

as a predictor of survival. 

 

Statistical Analysis 

i. Repeatability of social behavior 

 To assess the validity of averaging bond strength, dominance rank, and adult 

female groupmates over time to derive single, multi-year values for each subject, we 

tested the repeatability of inter-individual differences in each predictor by calculating the 

intra-class correlation coefficient from a linear mixed effects model (function rpt in R 

package “rptR”, Nakagawa & Schielzeth 2010). The model calculates the proportion of 

total variance among all annual measures of a given variable that is attributed to variation 

between individuals, which are modeled as random effects, while controlling for variance 

explained by other social or environmental variables, modeled as fixed effects.  

ii. Survival analysis 

We used both fixed-time and time-dependent Cox Proportional Hazards 

regressions (function coxph in R package “survival”, Therneau & Grambsch 2000; 

Therneau 2015) to assess the cumulative (fixed-time) and current (time-dependent) 

influence of social tie quality (bond strength and consistency class with top partners), 

dominance relationships (rank), group size (number of adult female groupmates), and life 

history strategy (age at first birth) on a subject’s instantaneous risk of death. Survival 

intervals were left truncated at a subject’s age when focal animal sampling began in 
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October 2006 (if she was an adult then) or at the subject’s age at first birth (if she became 

an adult later). In all models, we used standardized covariates (Schielzeth, 2010).  

We considered a predictor to influence the hazard if the 95% confidence interval 

of its parameter estimate did not include zero (Nakagawa & Cuthill, 2007). Because bond 

strength-partner consistency classifications were based on dyadic data, we additionally 

examined their influence on the hazard according to permutation tests, comparing 

observed effects of strength-consistency class to a null model based on 1000 random 

node permutations of annual DSI matrices (Croft, Madden, Franks, & James, 2011; 

Farine, 2017). We chose node permutations to test the null hypothesis based on the 

possibility that females could maintain any position within a social group’s annual 

network. Because of a lack of consensus in the literature as to whether permutation tests 

are appropriate when relational social measures are independent variables (Anderson & 

Legendre, 1999; Dekker et al., 2007; Lehmann et al., 2016; VanderWaal, Atwill, Hooper, 

Buckle, & McCowan, 2013), we compared 95% CIs and permutation to assess their 

agreement, and if significance based on 95% CIs disagreed with permutation tests, we 

gave prominence to 95% CI results. 

For fixed-time covariate Cox models, we averaged annual measures across all 

years in which the subject was observed, effectively testing the cumulative effect of 

multiple years of social conditions on survival. Survival models have sufficient power 

when each variable corresponds with 5—10 events (Vittinghoff & McCulloch, 2007). 

Given our sample size of 20 deaths in 83 females, we created two models with 3 

predictors each. Both tested the influence of social ties (strength-consistency class) on 

survival and controlled for the effects of a potential life history trade-off (age at first 
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reproduction). One model included adult female dominance rank and the other included 

number of adult female groupmates as measures of social competition. We report model-

averaged parameters of strength-consistency class and age at first birth, as their effects 

did not differ qualitatively between the model including dominance rank and the model 

including number of adult female groupmates ("modavg" function in R package 

"AICcModavg", Mazerolle, 2016). To assess the possibility that female survival was 

highest in groups of intermediate size, we also explored two additional models testing the 

significance of a quadratic relationship between survival and number of adult female 

groupmates, alongside subjects’ strength-consistency class for top 3 and top 6 partners 

and her age at first reproduction. We tested that all models, with either dominance rank or 

number of female groupmates, met the proportional hazards assumption by assessing the 

correlation of their Schoenfeld residuals to transformed time (cox.zph function in R 

package "survival", Therneau & Grambsch 2000; Therneau 2015). 

In the time-dependent covariate model, variables per subject-year appeared as 

separate observations to predict a female’s risk of death in the same year. This approach 

effectively tested the time-dependent relationship between current social conditions and 

survival. We constructed separate models for measures with top 3 and 6 partners, which 

included annual values of strength-consistency class, dominance rank, and number of 

adult female groupmates.  

Results 

 Averaging annual measures of social predictor variables appeared to be a valid 

approach, as each predictor showed repeatable inter-individual differences (electronic 

supplementary material, Table S2.3). Nevertheless, as the lower confidence limit of bond 
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strength’s repeatability statistic was close to zero, a female’s bond strength did appear to 

vary from year to year. Such intra-individual variation supported our analysis of time-

dependent predictors. 

Across 83 females, the average female’s bond strength with her top three partners 

was 7.6 ± 2.5, i.e. 7.6 times greater than the median bond-strength between any two adult 

co-resident females, and 51 ± 18% of the top three partner identities remained consistent 

(as per definition) during her observation period (electronic supplementary material, 

Table S2.4). Females lived with an average of 13.6 ± 4.2 adult female groupmates (range 

3 – 21).  

Measures of bond strength and partner consistency with top 3 partners were each 

highly correlated with their corresponding measure including top 6 partners (Table S2.4). 

Each multi-year measure decreased as group size increased, such that females had weaker 

and less consistent close partners in larger social groups (Table S2.4). Indeed, average 

number of adult female groupmates varied by strength-consistency class with top 3 

partners, such that females that had strong and consistent partners (class 4, + / +) lived on 

average in smaller groups than females that had weak and inconsistent bond partners 

(class 1, - / - ; Tukey’s HSD, difference classes 4 - 1 = -3.89, 95% range = - 6.82 – - 0.96, 

p = 0.004 ; Figure 2.2). Number of adult female groupmates did not differ between any 

other classes of relationship quality. 
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Figure 2.2. Number of adult female groupmates per female (median and IQR, N = 83) by 

multi-year strength-consistency class of top 3 partners.Group sizes were significantly 

different for females in Class 1 vs. 4 (see text). 

 Deaths accounted for 13.8% of the average female’s changes in top 3 partners (N 

= 82 females with changes in top 3) and 19.6% of changes among her top 6 partners (N = 

80 females with changes in top 6). Proportion of partner changes resulting from death did 

not differ among females according to their multi-year, top 3 strength-consistency classes 

(ANOVA F3,78 = 1.99, p = 0.12). However, females that were weakly bonded to a 

consistent set of top 6 partners (class 2) experienced a higher proportion of death-related 

partner changes than females with weak and inconsistent (class 1; N = 80, Tukey’s HSD, 

difference classes 2 - 1 = 0.29, range = 0.10 – 0.48, p = 0.001) and strong and 

inconsistent top 6 partners (class 3, difference classes 3 - 2 = -0.31, range = -0.52 – -
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0.094, p = 0.002). It is likely that females with few partner changes consequently had a 

higher proportion of changes resulting from deaths. 

 

Influences on risk of death 

Risk of death among adult females varied according to multi-year relationship 

quality with their top 3 partners (Table 2.1, Figure 2.3). Females that had above average 

strength bonds with less than average consistency in partners (class 3, + / -) had a higher 

risk of death than females in all other strength-consistency classes, according to both 95% 

CI’s of parameter estimates and permutation tests (Table 2.1, Figure 2.3). The difference 

in the hazards of classes 1 (- / -), 2 (- / +), and 4 (+ / +) did not reach significance 

according to 95% CIs (Tables S2.5–6). Yet according to permutation tests, the hazard 

ratio of females with weak and inconsistent bonds (class 1, - / -) vs. females with strong 

and consistent bonds (class 4, + / +) was significantly higher than expected by chance. 

There were no differences in risk between intermediate-risk classes 1 and 2 according to 

either 95% CIs or permutation tests. 

When we considered a females’ multi-year relationship quality with top 6 

partners, there were no significant contrasts in the hazards among strength-consistency 

classes according to 95% CIs. According to permutation tests, however, classes 1 (- / -) 

and 3 (+ / -) had similar hazards that were significantly higher than classes 2 (- / +) and 4 

(+ / +, Tables S2.7–9). Permutation tests therefore emphasized a positive influence on 

survival of consistency among top 6 partners. 

The significant effects according to permutation tests are potentially false 

positives, which may arise as a result of breaking ancillarity (Anderson & Legendre 



 63

1999; Dekker, Krackhardt & Snijders 2007). Permuting values of a predictor variable in a 

multiple regression breaks ancillarity if there is any collinearity among predictor 

variables, as it removes any relationships between them. Indeed, there were several 

unavoidable correlations among bond strength, partner consistency, rank, and group size 

(Table S2.4), although collinearity among them in linear regression Cox models was not 

problematically high (max VIF all models, excluding model with quadratic term = 1.23). 

These contrasts in results according to parametric vs. permutation-based null hypotheses 

may contribute further to discussion in the ecological literature about the suitability of 

permuting an independent social variable when estimating its partial regression 

coefficient. 

Neither multi-year dominance rank’s nor group size’s influence on survival 

reached significance (Table 2.1, fixed-time models). Group size also did not demonstrate 

a quadratic relationship with survival (Tables S2.10–11). Age at first reproduction did 

approach significance in the expected direction, such that later ages at maturity would 

increase longevity (Table 2.1). All models including either dominance rank or number of 

adult female groupmates as a competition variable did not depart from proportional 

hazards (all global p > 0.10).  
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Table 2.1. Influence of (standardized) fixed-time predictors on risk of death. 

 N=83 females, 20 deaths. 

Predictor 

class 

Predictor of 

hazard 

Factor 

level 
ß 95% CI 

Hazard 

Ratio 

Proportion of 

permutation 

coefficients < 

observed 

 
 

Strength – 

Consistency Class 

 

(reference class: 

3, +/- ) 

 

1 (- / -) 

 

-2.1 † -3.53, -0.62 * 0.13 0.0011, 0.022 

Social ties 

 

2 (- /+) 

 

-1.5 † -2.91, -0.13 * 0.22 0.011,2 

 

4 (+/+) 

 

-3.0 † -4.83, -1.2 * 0.05 01,2 

Competition 

 

Dominance rank 
n/a 0.06 -0.52, 0.64 1.06 n/a 

 

Number adult 

female 

groupmates 

 

n/a -0.23 -0.77, 0.31 0.80 n/a 

Life history 

 

Age at first birth 

 

n/a -0.52 † -1.12, 0.07 0.59 n/a 

† Model averaged coefficient 

* 95% CI does not include zero 
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1From model 1: including dominance rank as competition variable. 

2From model 2: including number of adult female groupmates as competition variable. 
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Figure 2.3. Survival curve of subjects in four multi-year bond strength – partner 

consistency classes : Class 1) below average bond strength and below average partner 

consistency (light blue, solid line). Class 2) below average bond strength and above 

average consistency (pink, dashed line). Class 3) above average bond strength and below 

average consistency (red, small dotted line). Class 4) above average strength and above 

average consistency (dark blue, dashed and dotted line).  

 

Time-dependent covariate models revealed patterns similar to those of fixed-time 

models. Strong bonds with few top 3 partners from the previous two years (class 3: + 
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strength / - consistency) was associated with a higher risk of death than having strong 

bonds with consistent partners from previous years (class 4 +/+, Cox proportional 

hazards, N = 354, ß class 3 vs. 4 = -1.52, hazard ratio = 0.22, 95% CI = -3.03 – - 0.01; 

electronic supplementary material, Tables S2.12 –13, Fig. S2.2 – S2.3). However, no 

other comparison between annual strength-consistency classes was more or less 

hazardous than the other. Fewer between-class comparisons reached significance in time-

dependent models and the lower 95% confidence limit of the coefficient of class 3 vs. 4 

was very near zero, suggesting that annual strength-consistency class had a weaker effect 

on survival than strength-consistency classes based on multiple years. The effects of 

annual dominance rank and annual group size on survival did not reach significance in 

models of either top 3 or top 6 partners. Strength-consistency class with top 6 partners 

also did not significantly influence survival in a time-dependent way. 

 

Discussion  

(a) Influences on the risk of death 

The quality of a female’s social ties with her closest 3 partners, assessed both over 

multiple and single years, predicted survival in adult female blue monkeys. Specifically, 

over multiple years of observation, a female’s risk of death was highest if she had strong 

bonds with a set of top 3 partners that was inconsistent from year to year. Females that 

were weakly bonded over multiple years, with either consistent or inconsistent partners, 

or strongly bonded with consistent partners all had similarly lower risks of death than 

females with strong and inconsistent partners. Similarly, a female that was strongly 

bonded in a given year with partners that had changed from previous years had a higher 
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risk of dying in that same year than females that were strongly bonded with consistent 

partners. Neither multi-year nor current annual relationship quality with her closest 6 

partners influenced female survival.  

  We did not find clear evidence of a life history trade-off between survival and 

reproduction (Table 2.1, fixed-time analysis). If early investment in reproduction does 

compromise somatic maintenance, these results emphasize the greater influence of 

cumulative social relationship quality vs. physical condition on survival in blue monkeys. 

Similarly in bighorn ewes, social ties had a stronger effect than body mass on survival 

(Vander Wal et al. 2014). We also found no evidence of an effect of dominance rank and 

group size on survival, either over multiple years or in a particular year. 

Maintaining strong bonds when partners are inconsistent from year to year (highest risk 

multi-year strategy, Table 2.1 Figure 2.3) may represent an investment that outweighs the 

return, i.e. females invest in partners that are too inconsistent to reciprocate or cooperate 

as allies. In general, consistent partners help to create a stable social environment, and the 

loss of important partners can elicit a stress response (Engh et al. 2006). Affiliative 

partners that persist over time may also promote reciprocal grooming (Taborsky 2013) or 

provide coalitionary or affiliative support on a subject’s behalf during or after an 

aggressive encounter (Silk et al. 2010a). More passively, consistent partners may tolerate 

a subject’s presence during feeding (Marshall et al. 2012). The benefits of consistent 

partners are presumably amplified when partners affiliate more intensely (Silk et al. 

2010b). The fact that strong bonds over multiple years actually decreased survival when 

partners were inconsistent, rather than having a neutral influence, suggests that 

maintaining strong bonds may be costly to blue monkey females.  
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The effects of current relationship quality on immediate survival (in a time-

dependent model) also suggested that strong bonds were costly. Maintaining currently 

strong bonds with few close partners from previous years was riskier than being strongly 

bonded with many previously close partners. This finding emphasizes that if a female 

maintains strong bonds, she should do so with partners that are relatively consistent. It 

also suggests that females may not only lose the return on investment in strong bonds 

with future inconsistent partners, but they may also pay a cost when associating most 

frequently with “new” partners.  

The stronger effect of multi- vs. single-year strength-consistency class on survival 

further suggests that the cost of maintaining strong bonds with inconsistent partners is 

cumulative. Only after several years of investment in partners that change from year to 

year are females disadvantaged relative to females maintaining any other strategy of 

bondedness with close partners (i.e. even being weakly bonded with inconsistent partners 

or weakly bonded with consistent partners is a better strategy). 

If maintaining bonds is costly, being weakly bonded may actually be a beneficial strategy 

over multiple years. In fact, maintaining weak bonds with either consistent or inconsistent 

partners were both lower risk than maintaining strong bonds with inconsistent partners 

over time. Females that are weakly bonded spend less time and energy on partners, and 

so perhaps never pay the cost of maintaining strong bonds. 

Demographic constraints such as group size, but not partner deaths, may underlie 

the uncoupling of bond strength and partner consistency in blue monkeys. Females with 

the most hazardous combinations of strong bonds with inconsistent partners over multiple 

years tended to live in groups of intermediate size. Meanwhile, females that lived with 
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relatively more or fewer females had weak and inconsistent or strong and consistent 

partners, respectively. While the greater availability of different social partners may 

understandably decrease the consistency of close partners from year to year, extreme (vs. 

intermediate) group sizes may facilitate females’ beneficial tendency to maintain either 

strong bonds with consistent or weak bonds with inconsistent partners. Although the 

riskiest social strategy tended to occur in groups of intermediate size, number of adult 

female group-mates did not appear to have a quadratic relationship with female survival. 

 

Comparison with other social species 

 This study is the first survival analysis to examine how social connections 

influence longevity in an arboreal primate (Yee et al. 2008; Silk et al. 2010b; Foster et al. 

2012; Stanton & Mann 2012; Archie et al. 2014; Nuñez, Adelman & Rubenstein 2015; 

Brent, Ruiz-Lambides & Platt 2017; McFarland et al. 2017) and to compare the 

cumulative vs. current effects of relationship quality. Results both concur with and differ 

from these and other previous studies of how social relations influence other direct fitness 

measures (Silk, Alberts & Altmann 2003; McDonald 2007; Cameron, Setsaas & 

Linklater 2009; Silk et al. 2009; Schülke et al. 2010; Brent et al. 2013; Gilby et al. 2013; 

Vander Wal et al. 2014; Kalbitzer et al. 2017).  

Similar to all the above studies, we found that greater sociality in the form of 

stronger top bonds can indeed correspond with higher survival in blue monkey females. 

However, in contrast to several previous studies, strong bonds actually correspond with 

lower survival in certain situations (i.e., when bond partners change from year to year), 

suggesting that maintaining bonds is costly. Indeed, over multiple years, females that 
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were weakly bonded had a lower risk of death than females that were strongly bonded to 

partners that were inconsistent over time. 

Blue monkey females seem to receive a return on their social investment only if 

bond partners are relatively consistent. Somewhat similarly, affiliation appears to be 

costly to female marmots because strongly affiliating females produced fewer offspring 

(although the causal relationship between affiliation and reproduction was not clear, Wey 

& Blumstein 2012) and are more likely to die during hibernation (Yang, Maldonado-

Chaparro, & Blumstein, 2016). Also similarly, in white-faced capuchin, the costs and 

benefits of females’ strong bonds depend on male behavior (Kalbitzer et al. 2017). The 

offspring of strongly bonded females were more likely to fall victim to infanticide during 

alpha male replacements, but during periods of alpha male stability, they were more 

likely to survive. As the strongest bonds of blue monkey females are not necessarily with 

a consistent set of partners (unlike in baboons, Silk, Alberts & Altmann 2006a,b; Silk et 

al. 2010b), females may actually benefit by saving the time and energy spent on 

cultivating strong bonds. Those savings and their benefits remain to be quantified on a 

mechanistic level. Because within-group agonism and alliances are rare in blue monkeys 

(Klass & Cords 2015), the function of social bonds in general may be to maintain group 

cohesiveness rather than orchestrating competitive power relations within groups. Group-

wide cohesion may not require particularly strong bonds. 

 

Conclusions 

We found that stronger bonds do not necessarily increase survival in females in a 

matrilocal, gregarious species. In adult female blue monkeys, stronger bonds with close 
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social partners decreased survival when close partners were inconsistent over time. When 

strong bonds were consistent over multiple years, survival was high relative to all other 

strategies. It appears, then, that strong bonds may be costly to adult females and are a 

productive “investment” only in situations where their benefit outweighs their cost. Other 

longitudinal, individual-based studies that examine the influence of social ties on fitness 

may find it useful to incorporate variables that capture variation in the potential costs and 

benefits of social ties. 

In general, studies such as ours that find a correlation between the quality of 

social ties and survival in animals are only a first step in understanding the actual 

mechanisms by which social ties influence fitness. Although it is a regular challenge of 

long-term field studies to obtain high-resolution data on individuals’ physiological status 

and social interactions simultaneously, future studies should aim to resolve the three-part 

connection between social ties, physiological status, and fitness outcomes whenever 

possible. Consideration of social measures and time scales relevant to study species will 

help us to understand how social ties influence fitness. 
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Supplemental Information 

Table S2.1. QAP Matrix correlations of annual matrices of proportion of dyads' shared 

observation time spent grooming and resting within 1 m. 

Year* Group test value p value** significant alpha < 0.05 

2006-2007 GN 0.41 0 TRUE 
2007-2008 GN 0.4 0 TRUE 
2008-2009 GN 0.38 0 TRUE 
2009-2010 GN 0.11 0.12 FALSE 
2010-2011 GN 0.5 0 TRUE 
2011-2012 GN 0.54 0 TRUE 
2012-2013 GN 0.47 0 TRUE 
2013-2014 GN 0.56 0 TRUE 
2006-2007 GS 0.31 0 TRUE 
2007-2008 GS 0.56 0 TRUE 
2008-2009 GSB 0.11 0.31 FALSE 
2008-2009 GSA 0.09 0.21 FALSE 
2009-2010 GSB 0.01 0.44 FALSE 
2009-2010 GSAA 0.88 0 TRUE 
2009-2010 GSC -0.07 0.52 FALSE 
2010-2011 GSB 0.79 0.06 FALSE 
2010-2011 GSAA 0.25 0.06 FALSE 
2010-2011 GSC 0.56 0.03 TRUE 
2011-2012 GSB 0.94 0.16 FALSE 
2011-2012 GSAA 0.61 0 TRUE 
2011-2012 GSC 0.5 0.01 TRUE 
2012-2013 GSB 0.39 0.4 FALSE 
2012-2013 GSAA 0.36 0.01 TRUE 
2012-2013 GSC 0.51 0 TRUE 
2013-2014 GSB 0.41 0.39 FALSE 
2013-2014 GSAA 0.77 0 TRUE 
2013-2014 GSC 0.68 0 TRUE 
2006-2007 TWN 0.37 0.08 FALSE 
2007-2008 TWN 0.01 0.44 FALSE 
2008-2009 TWN 0.43 0.08 FALSE 
2009-2010 TWN 0.09 0.35 FALSE 
2010-2011 TWN 0.31 0.17 FALSE 
2011-2012 TWN 0.5 0.01 TRUE 
2012-2013 TWN 0.66 0 TRUE 
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2013-2014 TWN 0.38 0.01 TRUE 
2006-2007 TWS 0.31 0 TRUE 
2007-2008 TWS 0.39 0 TRUE 
2008-2009 TWS 0.44 0 TRUE 
2009-2010 TWS 0.26 0.01 TRUE 
2010-2011 TWS 0.31 0 TRUE 
2011-2012 TWS 0.3 0 TRUE 
2012-2013 TWS 0.31 0 TRUE 

2013-2014 TWS 0.49 0 TRUE 

percentage years correlated: 28/43 = %65 
*Each 12-month year ran from October to October 

** p value of 0 is <0.001 
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Table S2.2.  Loadings of multi-year bond strength 

and consistency with top 3 partners on principal 

components. 

  PC1 PC2 

% Variance explained 99.48% 0.52% 

strength.3 0.9998 0.0176 

consistency.3 0.0176 -0.9998 
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Table S2.3. LMER Repeatability statistics for variables with annual measures * (rptR package) N = 
437 subject-years 

Variable 
Fixed effect in model (control 

variable) 
R 95% CI p** 

Bond strength (top 3) 
Number adult female 

groupmates 
0.15 0.06 - 0.23 < 0.001 

Dominance rank 
 

0.82 0.75 - 0.86 < 0.001 

Number adult female groupmates   0.73 0.65 - 0.79 < 0.001 

*Subject included as random effect. 

**1000 bootstrap iterations used to calculate 95% CI and 1000 matrix randomizations used to 
calculate p. 
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Table S2.4. Mean and standard deviation across all subjects of multi-year variables used to predict 

survival, and correlations1 between variables  (N = 83 subjects). Columns 1-9 correspond to predictors 
listed in the left-most column. 

Predictor  

   

SD Range 1 2 3 4 5 6 7 8 

1. Age at entry 10.1 ± 3.9 5.8 – 22.6 - -0.22 * -0.27 * - - 
   

2. Bond 
strength top 3 

partners 
7.6 ± 2.49 2.9 – 15.9 

 
- 0.95 *** 0.27* 0.32** - -0.35** - 

3. Bond 
strength top 6 

5.4 ± 1.91 
2.12 – 
12.7   

- 0.26* 0.27* - -0.29** - 

4. Partner 
consistency top 

3 
0.51 ± 0.18 0 – 1 

   
- 0.45*** 0.22* -0.38*** - 

5. Partner 
consistency top 

6 
0.67 ± 0.13 0.17  – 1 

    
- - -0.59*** - 

6. Dominance 
rank 

0.49 ± 0.29 0 – 1 
     

- - - 

7. Number 
adult female 
groupmates 

13.6 ± 4.2 3 – 21 
      

- - 

8. Age at first 
birth 

7.3 ± 1.2 4.6 – 10.9               - 

1- no correlation, * p < 0.05, ** p < 0.01, *** p < 0.001. There were no p values 0.10 -- 0.05. 
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Multi-year strength-consistency class with top 3 partners: comparisons between 

different reference classes: 
 

Table S2.5. Average influence of multi-year strength-consistency class (top 3 partners) in fixed-time 

survival models, where reference class = 4, strong and consistent bonds. N=83 females, 20 deaths. 

Predictor of hazard 
Factor 
level 

ß 95% CI 
Hazard 
Ratio 

Proportion of 
permutation 

coefficients < 
observed 

Proportion of 
permutation 

coefficients > 
observed 

 
Strength – 

Consistency Class 

 
(reference class:  

4, + / +  
lowest risk) 

 
1 (- / -) 

 
0.93 † -0.72, 2.6  2.55 11, 0.9992 01, 0.0012 

 
2 (- /+) 

 
1.49 † -0.2, 3.18 4.45 0.9581, 0.9612 0.0421, 0.0392 

 
3 (+/ -) 

 
3.01 † 1.2, 4.83 * 20.39 11,2 01,2 

† Model averaged coefficient 
* 95% CI does not include zero 
1From model 1: including dominance rank as competition variable. 
2From model 2: including number of adult female groupmates as competition variable. 

 
 
 
 
Table S2.6. Average influence of multi-year strength-consistency class (top 3 partners) in fixed-time 

survival models, where reference class = 1, weak and inconsistent bonds. N=83 females, 20 deaths. 

Predictor of hazard 
Factor 
level 

ß 95% CI 
Hazard 
Ratio 

Proportion of 
permutation 

coefficients < 
observed 

Proportion of 
permutation 

coefficients > 
observed 

 
Strength – Consistency 

Class 

 
(reference class:  

1, - / -  
second to lowest risk) 

 

 
2 (- / +) 

 
0.56 † -0.73, 1.84 1.74 0.0691, 0.0652 0.9311, 0.9352 

 
3 (+/ -) 

 
2.1 † 0.62, 3.53 * 8.0 0.9991, 0.9842 0.0011, 0.0162 

 
4 (+/+) 

 
-0.93 † -2.6, 0.72 0.39 01, 0.012 11, 0.992 

† Model averaged coefficient 
* 95% CI does not include zero 
1From model 1: including dominance rank as competition variable. 
2From model 2: including number of adult female groupmates as competition variable. 
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Multi-year strength-consistency class with top 6 partners results: 

 

 
Figure S2.1. Survival curve of subjects falling into a given multi-year bond strength – partner consistency 

(with top 6 partners) class. Class 1) below average bond strength and below average partner consistency 

(light blue, solid line). Class 2) below average bond strength and above average consistency (pink, dashed 

line). Class 3) above average bond strength and below average consistency (red, small dotted line). Class 4) 

above average strength and above average consistency (dark blue, dashed and dotted line). Female survival 

did not significantly vary by class according to coefficients’ 95% CI. 
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Table S2.7. Average influence of multi-year strength-consistency class (top 6 partners) in fixed-time 

survival models, where reference class = 3, strong and inconsistent bonds (highest risk class). N=83 
females, 20 deaths. 

 
Predictor of 

hazard 
Factor 
level 

ß 95% CI 
Hazard 
Ratio 

Proportion of 
permutation 

coefficients < 
observed 

Proportion of 
permutation 

coefficients > 
observed 

Social ties 

 
Strength – 

Consistency 
Class 

 
(reference class:  

3, + / - 
highest risk) 

 
1 (- / -) 

 
-0.39† -1.56, 0.79 0.68 0.5171, 0.6252 0.5491, 0.4092 

 
2 (- /+) 

 
-0.47† -2.07, 1.13 0.62 0.0051, 0.0022 0.995, 0.9981,2 

 
4 (+/ +) 

 
-0.82† -2.68, 1.05 0.44 0.0111, 0.012 0.9891, 0.992 

Competition 

 
Dominance rank 

 
Number adult 

female 
groupmates 

 

n/a 0.13 -0.37, 0.62 1.14 n/a n/a 

n/a -0.44 -0.97, 0.29 0.64 n/a n/a 

Life history 
 

Age at first birth 
 

n/a -0.46 -1.01, 0.09 0.63 n/a n/a 

† Model averaged coefficient 
* 95% CI does not include zero 
1From model 1: including dominance rank as competition variable. 
2From model 2: including number of adult female groupmates as competition variable. 

 
Table S2.8. Average influence of multi-year strength-consistency class (top 6 partners) in fixed time 

survival models, where reference class = 4, strong and consistent bonds (lowest risk class). N=83 females, 
20 deaths. 

Predictor of hazard 
Factor 
level 

ß 95% CI 
Hazard 
Ratio 

Proportion of 
permutation 

coefficients < 
observed 

Proportion of 
permutation 

coefficients > 
observed 

 
Strength – 

Consistency Class 

 
(reference class:  

4, + / +  
lowest risk) 

 
1 (- / -) 

 
0.43† -1.33, 2.19 1.54 0.9851, 0.9872 0.0151, 0.0132 

 
2 (- /+) 

 
0.34† -1.54, 2.23 1.41 0.4811, 0.5132 0.5191, 0.4872 

 
3 (+/ -) 

 
0.82† -1.05, 2.68 2.26 0.9891, 0.992 0.0111, 0.012 

† Model averaged coefficient 
* 95% CI does not include zero 
1From model 1: including dominance rank as competition variable. 
2From model 2: including number of adult female groupmates as competition variable. 
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Table S2.9. Average influence of multi-year strength-consistency class (top 6 partners) in fixed-time 

survival models, where reference class = 1, weak and inconsistent bonds. N=83 females, 20 deaths. 

Predictor of hazard 
Factor 
level 

ß 95% CI 
Hazard 
Ratio 

Proportion of 
permutation 

coefficients < 
observed 

(more likely to 
decrease 
hazard) 

Proportion of 
permutation 

coefficients > 
observed 

 
Strength – Consistency 

Class 

 
(reference class:  

1, - / -  
second to highest risk) 

 

 
2 (- / +) 

 
-0.90† -1.59, 1.42 0.92 0.0081, 0.0052 0.9921, 0.9952 

 
3 (+/ -) 

 
0.39† -0.79, 1.56 1.47 0.4831, 0.3752 0.5171, 0.6152 

 
4 (+/+) 

 
-0.43† -2.19, 1.33 0.65 0.0151, 0.0132 0.9851, 0.9872 

† Model averaged coefficient 
* 95% CI does not include zero 
1From model 1: including dominance rank as competition variable. 
2From model 2: including number of adult female groupmates as competition variable. 
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Table S2.10. Test quadratic relationship of number adult female groupmates on survival in 

fixed-time Cox model  (including multi-year st.co classes with top 3 partners, reference level 3 
+ st / - cons) 

  coef Hazard ratio lowerCI upperCI 

st.co3 (class 1 -/-) -1.793 0.167 -3.382 -0.204 

st.co3 (class 2 -/+) -1.371 0.254 -2.751 0.009 

st.co3 (class 4 +/+) -2.956 0.052 -4.773 -1.14 

af.groupmates -0.355 0.701 -1.048 0.337 

af.groupmates^2 -0.239 0.788 -0.967 0.489 

age.first.rep -0.495 0.609 -1.099 0.109 

Table S2.11. Test quadratic relationship of number adult female groupmates on survival in 

fixed-time Cox model  (including multi-year st.co classes with top 6 partners, reference level 3 
+ st /- cons) 

  coef Hazard ratio lowerCI upperCI 

st.co6 (class 1 -/-) -0.324 0.723 -1.508 0.861 

st.co6 (class 2 -/+) -0.103 0.903 -2.144 1.939 

st.co6 (class 4 +/+) -0.592 0.553 -2.643 1.46 

af.groupmates -0.381 0.683 -1.041 0.279 

af.groupmates^2 -0.321 0.726 -1.196 0.555 

age.first.rep -0.461 0.63 -1.019 0.096 
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Annual strength-consistency class with top 3 partners results: 

 

 
Figure S2. Survival curve of subjects falling into a given annual bond strength – partner consistency (with 

top 3 partners) class. Class 1) below average bond strength and below average partner consistency (light 

blue, solid line). Class 2) below average bond strength and above average consistency (pink, dashed line). 

Class 3) above average bond strength and below average consistency (red, small dotted line). Class 4) 

above average strength and above average consistency (dark blue, dashed and dotted line). Females in class 

3 (+/-) have significantly lower mortality than females in class 4 (+/+) 

 

 

 

 

 

 

 

Table S2.12. Time dependent covariate Cox model including annual classes of 

strength-consistency (st-cons) with top 3 partners, dominance rank, and number 
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adult female groupmates. N = 354 subject-yrs. (Significant effects in bold) 

A) Base class 3 (+st/-cons) 

predictor coef hazard.ratio CI 

st-cons3 (1 -/-) -1.4 0.25 [-2.82,0.03] 

st-cons3 (2 -/+) -0.76 0.47 [-2.01,0.48] 

st-cons3 (4 +/+) -1.52 0.22 [-3.03,-0.01] 

Rank 0.16 1.17 [-0.32,0.64] 

af.groupmates -0.13 0.88 [-0.6,0.34] 

B) Base class 4 (+st/+cons) 

predictor coef hazard.ratio CI 

st-cons3 (1 -/-) 0.12 1.13 [-1.44,1.69] 

st-cons3 (2 -/+) 0.76 2.13 [-0.69,2.2] 

st-cons3 (3 +/-) 1.52 4.57 [0.01,3.03] 

Rank 0.16 1.17 [-0.32,0.64] 

af.groupmates -0.13 0.88 [-0.6,0.34] 

C) Base class 1 (-st/-cons) 

predictor coef hazard.ratio CI 

st-cons3 (2 -/+) 0.63 1.88 [-0.73,1.99] 

st-cons3 (3 +/-) 1.4 4.04 [-0.03,2.82] 

st-cons3 (4 +/+) -0.12 0.88 [-1.69,1.44] 

rank 0.16 1.17 [-0.32,0.64] 

af.groupmates -0.13 0.88 [-0.6,0.34] 
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Annual strength-consistency class with top 6 partners results: 

 

 
Figure S2.3. Survival curve of subjects falling into a given annual bond strength – partner 

consistency (with top 6 partners) class. Class 1) below average bond strength and below average 

partner consistency (light blue, solid line). Class 2) below average bond strength and above 

average consistency (pink, dashed line). Class 3) above average bond strength and below average 

consistency (red, small dotted line). Class 4) above average strength and above average 

consistency (dark blue, dashed and dotted line). Female survival did not vary by class. 

 
 
 
 
 
 

Table S2.13. Time dependent covariate Cox model including annual classes of strength-

consistency (st-cons) with top 6  partners, dominance rank, and number adult female groupmates. 
N = 354 subject-yrs 
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A) Base class 3 (+st/-cons) 

predictor coef hazard.ratio CI 

st-cons6 (1 -/-) 0.04 1.04 [-1.19,1.27] 

st-cons6 (2 -/+) -0.58 0.56 [-2.42,1.26] 

st-cons6 (4 +/+) -0.02 0.98 [-1.55,1.52] 

rank 0.1 1.1 [-0.39,0.58] 

af.groupmates -0.29 0.75 [-0.78,0.21] 

B) Base class 4 (+st/+cons) 

predictor coef hazard.ratio CI 

st-cons6 (1 -/-) 0.05 1.06 [-1.31,1.42] 

st-cons6 (2 -/+) -0.56 0.57 [-2.32,1.19] 

st-cons6 (3 +/-) 0.02 1.02 [-1.52,1.55] 

rank 0.1 1.1 [-0.39,0.58] 

af.groupmates -0.29 0.75 [-0.78,0.21] 

C) Base class 1 (-st/-cons) 

predictor coef hazard.ratio CI 

st-cons6 (2 -/+) -0.62 0.54 [-2.32,1.09] 

st-cons6 (3 +/-) -0.04 0.96 [-1.27,1.19] 

st-cons6 (4 +/+) -0.05 0.95 [-1.42,1.31] 

rank 0.1 1.1 [-0.39,0.58] 

af.groupmates -0.29 0.75 [-0.78,0.21] 
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Chapter 3: Socio-ecological drivers of social behavior during development in blue 

monkeys. 

Introduction 

 In group-living animals, social behavior has evolved to cope with regular intrinsic 

and extrinsic challenges, including those associated with different life stages and social 

and physical environments. Juvenility, when individuals are no longer dependent on 

parental care for survival but not yet reproductively mature, can be a particularly 

challenging life stage because juveniles are physically small and relatively inexperienced. 

They often experience higher rates of predation and physical aggression and their 

growing bodies and brains are prone to suffer nutritional deficiencies (Altmann, 1991; 

Baker & Thompson, 2007; Caughley, 1966; Clutton-Brock, Major, Albon, & Guinness, 

1987; Derocher & Stirling, 1996; Douhard et al., 2014; Kuzawa et al., 2014; Pereira, 

2003). Alongside locomotor and neuroanatomical development, particular experiences, or 

behavioral inputs, during immaturity can be critical to establish adult level competence in 

behavioral and physiological responses to challenges such as mothering, mounting 

immune responses, and navigating social competition (Champagne, 2010; Gluckman, 

Hanson, & Beedle, 2007; Pellis & Pellis, 2007; Sachser et al., 2013; Taborsky, Arnold, 

Junker, & Tschopp, 2012). Such competence may be integral to fitness, as adverse 

conditions during this life stage can lead to shorter lifespans and decreased reproductive 

success (Altmann, 1991; Metcalfe & Monaghan, 2001; Tung, Archie, Altmann, & 

Alberts, 2016). 

 To understand the adaptive value of social behavior, one must understand the 

conditions under which it occurs and with which it co-varies (Duboscq et al., 2017; Silk, 
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Altmann, et al., 2006; Silk et al., 2010a). Despite the unique challenges of the juvenile 

period, and its important consequences for fitness, juvenile behavior is often overlooked 

in research on animal behavior (Pereira & Fairbanks, 2003). In primates, the juvenile 

period is longer relative to mammals of similar body sizes, which has led some to suggest 

that experiences during development help individuals gain competence in navigating 

particularly complex adult social environments (Blumstein & Armitage, 1998; Pagel & 

Harvey, 2003). In part because sex differences that align with adult-typical behavior of a 

given species tend to become more apparent with age, patterns of juvenile behavior 

across birds and mammals are often characterized as optimizing current survival (e.g. 

avoiding competition and predation) while simultaneously “practicing” for the future 

(Cords, Sheehan, & Ekernas, 2010; Fairbanks, 2003; Heinsohn, Packer, & Pusey, 1996; 

Kulik, Amici, Langos, & Widdig, 2015; Maestripieri & Ross, 2004; O'Brien & Robinson, 

2003; Paukner & Suomi, 2008; Raleigh, Flannery, & Ervin, 1979; Rodrigues, 2014; 

Rothstein & Griswold, 1991; Rowell & Chism, 1986; Strier, 2003; Templeton et al., 

2012; van Noordwijk, Emelrijk, Herremans, & Sterck, 2003). For example, in several 

female-philopatric primates, juvenile females often spend more time than males 

grooming adult females (Fairbanks, 2003; Nakamichi, 1989; Rowell & Chism, 1986). 

Such behavior may be advantageous for the present in pacifying adult females that often 

disproportionately aggress juveniles that will be their future competitors (Pereira, 1988a), 

and for the future because those same adults may be life-long partners, and grooming is a 

large part of adult female social life (Fairbanks, 2003; O'Brien & Robinson, 2003; 

Pereira, 1988a). Sex differences in behavior typically become more pronounced leading 

up to sexual maturity, particularly as sex steroids become more abundant and 
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differentiated, provoking adult-like behavior (Gesquiere et al., 2005; Pusey, 1990), 

further indicating that such behavior is preparatory or transitional. 

 Several aspects of sociality may constitute a strategy that is adaptive for one’s 

particular current (e.g. age, body size, environment) and future state (e.g. species-specific 

reproductive roles). Such aspects include amount of time engaged in particular types of 

social behavior and one’s diversity of social partners. Indeed, each of these measures may 

have important fitness consequences, such as enhanced reproductive success or survival. 

For example, higher general levels of individual affiliation can increase reproductive 

success and survival among females in species with strong feeding competition and 

potential male sexual harassment, such as feral horses and baboons (Archie et al., 2014; 

Cameron et al., 2009). Integration within a social unit via one’s number of direct or 

indirect social ties can also increase survival, as seen in horses and dolphins, where 

immature animals receive more physical harassment from competitors than adults (Nuñez 

et al., 2015; Stanton, Gibson, & Mann, 2011). Although not strategic in terms of choice, 

number of preferred social partners, such as maternal kin, may also have important 

consequences for fitness and social strategies themselves. For example, adult female 

rhesus macaques with more maternal kin in their social group have longer lifespans 

(Brent et al., 2017) and adult female baboons establish their strongest and most enduring 

relationships with maternal kin (Silk, Alberts, et al., 2006). 

 Preferences for particular social partners are indeed another central aspect to social 

strategies. Choice of partners is often considered strategic, in that individuals invest time 

associating and affiliating with partners that are “valuable” (Aureli, Cords, & van Schaik, 

2002; Kummer, 1978). In several species, individuals preferentially associate and affiliate 
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with kin, which are often more familiar and tolerant (Elizabeth A Archie et al., 2006; 

Carter, Seddon, Frère, Carter, & Goldizen, 2013; Chapais, 2001; Cords & Nikitopoulos, 

2015; Wey & Blumstein, 2010). Kin are also likely allies in competitive aggression, 

particularly for young animals navigating a relatively new competitive environment 

(Chapais, 1995; Engh et al., 2000). Age-mates may also be preferred partners for 

particular kinds of interactions, like play (Cameron, Linklater, Stafford, & Minot, 2008; 

Thompson, 1996). Juveniles may prefer to play with like-aged partners because they are 

similar in body size, physical ability, and experience and so may serve as a type of mirror 

for assessing one’s own physical ability (Graham & Burghardt, 2010; Thompson, 1996). 

Conversely, some studies have found that juveniles prefer to associate with older 

individuals, possibly because they are more experienced, are likely future allies, and/or 

can serve as a type of role model (Fairbanks, 2003; Sherrow, 2008; Wittemyer, Douglas-

Hamilton, & Getz, 2005). There is also evidence to suggest that juveniles could adopt 

strategies to associate with partners that are either similarly or differently ranked within a 

dominance hierarchy. Similarly-ranked individuals, apart from perhaps being closely 

related, are possibly safer and pose less of a risk of physical aggression (Duboscq et al., 

2017). Alternatively, individuals may prefer to associate or affiliate with higher-ranking 

partners because they are potentially powerful allies in aggressive conflicts or their 

tolerance is beneficial (Schino, 2001). There is very little evidence, however, that 

individuals regularly trade affiliative behavior for active support in aggressive conflicts 

(Duboscq et al., 2017; Hemelrijk & Ek, 1991; Kern & Radford, 2016; Schino, 2007). 

 When examining social behavior to understand its adaptive nature, it is important to 

control for environmental influences. Seasonal changes in habitat and the distribution of 
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foods can alter individual association patterns, such that fluctuations in space use may 

influence the amount time individuals spend interacting and the number of partners they 

have (Henzi et al., 2009; Holekamp, Smith, Strelioff, Van Horn, & Watts, 2012). For 

example, in South African baboons, adult females associated more intensely when food 

was scarce, possibly because available food was highly clumped (Henzi et al., 2009). 

Also, if competition for food and space is strong within groups, dominance rank may 

influence patterns of spatial association, and thus also interaction patterns (King et al., 

2011).  

 Although some social behavior varies by season, individuals may possess social 

tendencies in which between-individual differences in behavior persist over time (Bell, 

Hankison, & Laskowski, 2009). Repeatable differences could indicate a genetically based 

trait upon which selection may act, and thus are key to understanding the adaptive value 

and any mode of their inheritance of social tendencies (Dingemanse et al., 2004; Hayes & 

Jenkins, 1997; Visscher, Hill, & Wray, 2008). Assessing repeatable differences is also 

important for understanding the occurrence and extent of early-life behavioral 

programming (Careau, Buttemer, & Buchanan, 2014; Grindstaff, 2016) and perhaps 

predicting how individuals will behave in the future (Sih & Bell, 2008). 

 Blue monkeys have a particularly prolonged juvenile period even among slow-

developing primates (Cords & Chowdhury, 2010), making them an interesting candidate 

for understanding the adaptive value of social strategies during the juvenile period and 

the evolution of its prolongation. Adult male and female blue monkeys are also highly 

dimorphic in both social behavior and body size, such that females reside in their natal 

group for life and males disperse at maturity to lead either or both of two lifestyles: 
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solitary bachelor or in-group resident male (Leigh & Shea, 1995; Roberts & Cords, 2015; 

Roberts, Nikitopoulos, & Cords, 2014). Such extreme sexual dimorphism in adult social 

behavior suggests that juveniles of different sexes should also differ strongly in their 

behavior (Cords et al. 2010). 

 In this study, I pursue two aims. First, I assess how juvenile blue monkeys’ social 

activities vary with intrinsic and extrinsic variables. Specifically, I examine how time 

spent playing, grooming, and resting in proximity or in contact with partners, and number 

of partners in each behavior type, vary according to age, sex, maternal dominance rank, 

number of maternal kin, and ecological variables, including fruit availability and rainfall. 

To further understand variation in individual social behavior, I assess whether between-

individual differences in social tendencies are consistent over time. Second, I examine 

what kinds of partners juveniles prefer for each of the above types of social interaction, 

according to their relatedness, difference in age, and rank. This study differs from a 

previous study on social behavior in juvenile blue monkeys (Cords et al., 2010) in that I 

assess variation in behavior (including play) according to ecological variables, more 

extensively test drivers of partner preferences, and evaluate the consistency in between-

individual differences over time. This dataset also allowed us to monitor within-

individual longitudinal trends more closely. 

 Because of strong sexual dimorphism in adult behavior and juvenile sex differences 

known from previous studies of this species, I expected males to be generally more 

involved in play and less involved with grooming than females, and for differences to 

increase with age (Cords et al., 2010). I also predicted that seasonal fruit availability and 

maternal dominance rank would not strongly influence juvenile social behavior, because 
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blue monkeys are generalist feeders in which dominance rank has rare effects on 

reproduction and physiology (Foerster et al., 2011; Pazol & Cords, 2005; Roberts & 

Cords, 2013). I did, however, expect juveniles of higher maternal dominance rank to give 

more and receive less agonism (Klass & Cords, 2015).  

 Because adult females bias grooming and association time towards maternal kin 

(Cords & Nikitopoulos, 2015), I predicted that juveniles would do the same, favoring kin 

as partners and increasing time affiliating with kin when more were available. I also 

expected juveniles to prefer to groom with older individuals that were more experienced 

and could possibly be more effective allies. In contrast, I expected juveniles to prefer 

playing with like-aged partners that were similar in physical ability and experience. 

Again, because dominance rank is not related to affiliative behavior among adult females 

(Cords, 2000), I did not expect juveniles to prefer partners based on relative rank. Finally, 

as adult females demonstrate repeatable inter-individual differences in several aspects of 

social behavior, I expected juveniles to do the same. Alternatively, juveniles might not 

socialize in a repeatable way because they are still developing stable social tendencies. 

   

Methods 

Study site and species 

The study population inhabits the Isecheno area of Kakamega Forest in western 

Kenya (0˚19´ N, 34˚52´ E; elevation 1580 m, mean annual rainfall 1997–2011 1942 mm; 

(Mitchell, 2009). From Aug 2015 – March 2016 (8 months), four observers (including 

NAT) collected data on 41 juvenile subjects (22 males, 19 females, mean age 4.4 ± 1.7 

yrs) from 3 groups that ranged in size from an average of 37 – 65 individuals, including a 
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resident adult male, adult females, and 16 – 31 juvenile offspring. Subjects were 

individually distinguishable, with ages and maternal kin relations known from precise, 

long-term demographic records (Cords, 2012).  

Behavioral data collection 

 I conducted 20 min focal follows, recording focal subjects’ activity (e.g. resting, 

grooming, playing, feeding) at 1 min intervals (point samples). “Playing” exclusively 

refers to social, rough-and-tumble play, or play fighting. Observers also recorded 

identities of grooming and play partners, and of neighbors resting within 1 m or in 

contact with (but not grooming) the subject. Observers also recorded all agonistic 

encounters (threats, lunges, aggressive contact, and approach-retreat). Follows occurred 

between 07:30 and 17:00, and I prioritized focal subjects to maintain even numbers of 

follows per subject across each week and across times of day (morning, midday, 

afternoon). I collected a total of 1591 hours of behavioral data, averaging 39 ± 3.1 hrs per 

subject. 

Data analysis 

 I collated data into four 2-month periods (e.g. Aug 1st – Sept. 31st), for which I 

calculated all social and ecological variables. Two-month periods captured seasonal 

variation in the availability of ripe fruits and rainfall (Fig. S3.1a-b). Two months of 

behavioral observation (mean: 9.8 ± 1.2 hrs/subject) also conservatively represented 

characteristic numbers of social partners, as grooming and play partner numbers did not 

plateau for all subjects before 4 hours of observation. 

 I calculated individual activity budgets from point sample data, extracting the 

proportion of time (points) observed in focal follows that subjects spent in social play, 
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resting within 1 m or in contact with at least one partner (both measures excluding 

grooming; henceforth “sitting close”), and giving or receiving grooming. I calculated the 

number of partners in each activity type using point sample data pooled among subjects, 

and standardized partner numbers for each subject by dividing observed numbers by 

average “shared” observation time with each possible partner. For example, the time 

subject A could have been observed to interact with a non-subject was simply the time 

subject A was observed as a focal, but the time subjects A and B could have been 

observed to interact was the sum of A and B’s focal observation time. For agonistic 

behavior, I expressed frequencies of agonism (each event  ≥ 5 min after the last) given 

and received as rates per hour of a subject’s average shared observation time. To measure 

affiliation within dyads, I calculated the proportions of shared observation time (points) 

that a dyad spent playing, sitting close, and grooming one another.  

I counted maternal kin and estimated relatedness coefficients of known kin 

relations for use in analyses, with maternal aunts and nieces/nephews (r = 0.125) as the 

most distantly related dyads included. As blue monkey offspring appear to inherit their 

mothers’ rank as adults (Klass & Cords, 2015), I used mothers’ rank to represent juvenile 

dominance relations. To calculate maternal ranks, I used records of adult female agonism 

collected as part of long-term population monitoring (Cords 2012), collating winner-loser 

interactions using the I&SI method in DomiCalc (Schmid & de Vries, 2013). I collated 

data over the entire study for mothers still alive, or otherwise (for 2 subjects) over the 

mother’s last year of life (≤ 5 yrs before study). Dominance rank represented the 

proportion of co-resident adult females that a mother outranked (range 0 –1). I expressed 

subjects’ ages in each 2-mo period according to its mid-date. 
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 I calculated average daily rainfall per period using rainfall data collected daily by 

local Kenya Forest Service staff. We calculated a fruit availability index (FAI) by 

combining data from monthly plant phenology surveys of 36 major food species and data 

on these species’ abundance from vegetation transects. To assess fruiting phenology, ca. 

10 focal trees per species were monitored each month, and if they had fruits, an observer 

estimated the number of fruits (at least twice, to ensure consistency) on a modified log 

scale (e.g. 100-399, 400-699, 700-1000; Leighton, 1993) and also estimated percentage 

of ripe fruit (0, 25, 50, 75, 100%). Because not all fruiting focal trees received a fruit 

count, I averaged number of ripe fruits (midpoints of the above intervals) among trees 

that received counts and assigned that average to all fruiting trees of a given species, then 

calculated the average number of ripe fruits among all focal trees of that species (whether 

fruiting or not). To assess tree abundance, assistants measured basal areas of the 36 tree 

species in group-specific 10m x 100m transects (N = 13, 6, and 9 for groups 1, 2 and 3 

respectively), which represented approximately 10% of each group’s home range area. 

To calculate group-specific FAI, I multiplied the average number of ripe fruits for a given 

tree species by its average basal area per transect, and summed these products across the 

36 species (Foerster, Cords, & Monfort, 2012).  

Statistical analysis 

 I assessed the influence of life history (age, sex, and an age-sex interaction), socio-

demographic (number of maternal kin in group, maternal dominance rank), and 

ecological variables (available ripe fruit, total rainfall) on juvenile social affiliation 

variables using generalized additive models (GAMs, package “gamlss” in R) 

(Stasinopoulos & Rigby, 2007). Generalized additive models are a useful alternative to 
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generalized linear models because they allow one to evaluate non-linear relationships 

between predictors and response variables. The “gamlss” package also easily implements 

zero-inflated non-parametric error distributions for mixed effects models. To determine 

the error distributions of each response variable I used Cullen Frey graphs, created with 

the “descdist” function of “fitdistr” package (Delignette-Muller & Dutang, 2015), and 

assessed model residuals for normality with Q-Q plots. In all GAMs, predictors were 

standardized (Schielzeth, 2010) with group and subject ID as a random effects. 

 I modeled activity budgets (proportions of individual observation time in particular 

activities) using a zero-inflated beta error distribution. For number of social partners and 

rates of agonism given and received, I modeled errors using a Poisson distribution (zero-

inflated for play partners) and offset response variables by the log of exposure, or the 

subject’s average shared observation time with partners. I considered a predictor variable 

to have a significant influence on the response if the 95% confidence interval of its 

parameter estimate did not include zero (Nakagawa & Cuthill, 2007). Because data for 

number of social partners and rates of agonism were pooled among subjects, their 

observations were not independent of one another. Therefore, for these response 

variables, I further assessed the significance of subject-level life history and socio-

demographic predictors (i.e. age, sex, maternal rank, number of maternal kin, and the 

interaction between age and sex) by comparing the estimated parameter of each against a 

null distribution of parameters estimated from 1000 random node permutations of the 

underlying interaction matrices (Farine & Whitehead, 2015). 

 To assess non-linear effects in GAMs, I first fit all continuous predictor variables 

with a cubic spline smoothing function and visualized the fitted values of the response 
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according to the partial variation of the response explained by a given predictor variable 

("term.plot" function, Larsen, 2015). If a predictor variable was significant according to 

its 95% CI and had a visibly non-linear relationship with the response variable, I 

compared AIC scores between linear vs. non-linear models and chose the model whose 

score was lower by at least 2 criteria points. In all instances of significant non-linear 

effects, the model with the non-linear term was better according to AIC than the model 

with a linear term.  

 To explore the relationship between juvenile affiliative interactions within a dyad 

(i.e. grooming, playing, sitting close), and partner attributes (i.e. kinship, age difference, 

rank difference) I used generalized linear mixed models (R package “lme4,” function 

“glmer” (Bates, Maechler, Bolker, & Walker, 2014). Because many within-group dyads 

never interacted in a given period, the dyadic dataset was extremely zero-inflated (shown 

in N’s of Tables S3.3–4 vs. S3.5–6). For this reason, I created two types of models to 

analyze patterns of dyadic interaction. First, I used kinship (estimated r values), age 

difference, and rank difference to predict the occurrence (0,1) of a given type of 

interaction. Second, including only dyads that interacted in a given period, I used the 

same dyadic attributes to predict the proportion of shared observation time that a dyad 

spent in a given type of interaction.  

 I used six modifications of the dyadic dataset when modeling patterns of dyadic 

affiliation. The first included all unique within-group dyads that included a juvenile 

subject. The second dataset included dyads with at least one male subject as a member (a 

“male focused” dataset) and the third, at least one female subject (a “female focused” 

dataset). Lastly, to control for the influence of mother-offspring interactions on patterns 
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of dyadic affiliation, I ran models on datasets that included vs. excluded mother-offspring 

dyads. In total, I ran 36 mixed models to examine dyadic affiliation: 2 sets analyzing 

presence/absence and magnitude of interaction; on 3 response variables (playing, 

grooming, and sitting close); using 6 modified datasets (all dyads, male subjects and 

partners, female subjects and partners; each including vs. excluding mother-offspring 

dyads). 

 I modeled the occurrence of dyadic affiliation in each period using a binomial error 

structure with a logit link. Because shared time spent affiliating was positively skewed 

across dyads, I modeled these responses using either gamma or log-normal error 

distributions, as best allowed parameters to be estimated (described in Tables S3.5–6). In 

each model, I included three random effects: dyad ID and each dyad member assigned 

randomly as partner 1 or 2 (as in e.g. Gomes et al., 2009). I repeated random partner 

assignments in each dataset 1000 times, and then averaged the coefficients and standard 

errors of each predictor among the 1000 results. I assessed collinearity in all models with 

the variance inflation factor of each variable, using a function modified to assess VIFs for 

mixed effects models (Frank, 2014). For both generalized additive and generalized linear 

models, I assessed goodness of fit by calculating the change in AIC between models with 

vs. without fixed effects (Nakagawa & Schielzeth, 2013). 

 Lastly, I assessed the adjusted repeatability, or consistency in inter-individual 

differences apart from confounding factors, in juvenile social variables using a 

generalized linear mixed effects model to calculate R, the intra-class coefficient  (“rptR” 

package in R (Nakagawa & Schielzeth, 2010). Linear mixed models assess what 

proportion of behavioral variation among individuals occurs between individuals, while 
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controlling for factors, such as life history, demographic, and ecological variables, that 

might account for behavioral variation apart from clustered observations (e.g. by 

individual ID). In each model, I included variables that significantly influenced 

behavioral outcomes in GAM models as fixed effects. Among error distributions 

available in “rptR”, I chose to model all behavioral responses using Poisson errors, 

offsetting number of minutes observed in a given behavior by the log of total minutes 

observed, and number of social partners and frequencies of agonism by the log of 

individuals’ average shared time observed. Models included group and subject ID as 

random effects. I assessed significance in repeatability statistics using 1000 

randomizations of behavioral matrices (subject x period observations) and confidence 

intervals of repeatabilities using 1000 parametric bootstraps, without replacement. 

 

Results 

Social activity budgets, partner number, and agonism 

 Overall, juvenile blue monkeys averaged only 2.3 ± 3.1% (N = 162 subject-periods) 

of observation time playing, 5.2 ± 3.1% sitting close to partners, and 4.3 ± 3.6% 

grooming (Table S3.1, Fig. S3.2). Subjects averaged 4.3 ± 4.1 play partners, 13.7 ± 5.9 

sitting partners, and 4.9 ± 3.1 grooming partners per 2-month period. Juveniles gave 

agonism at a rate of 0.16 ± 0.17 events/hour, and received agonism at 0.3 ± 0.3 

events/hour.  

 Age and sex had strong effects on almost all behavioral variables. Males spent more 

time playing than females, but less time sitting close or grooming (Fig. 3.1a–c, Table 

S3.2a–c). Males also had more play partners, but fewer sitting and grooming partners 
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than females (Fig. 3.2a–c, Table S3.2d–f). There was a weak sex difference in agonism 

given, whereby males gave agonism slightly more often than females, however any 

difference between males and females in rates of agonism received did not reach 

significance (Fig. 3.3a–b, Table S3.2g–h). 

 Although age had some universal effects on behavior, its effect frequently varied 

by sex. Both sexes increased the amount of time they spent sitting close to partners as 

they aged (Fig. 3.1b, Table S3.2b). Females spent more time grooming as they grew older, 

whereas males appeared to spend less time grooming (Fig. 3.4a, Table S3.2c). 

Surprisingly, play time did not decrease with age among male or female juveniles (Fig. 

3.1a, Table S3.2a); however, the number of play partners did decrease with age, and more 

sharply for females than males (Fig. 3.2a, Fig. 3.4b, Table S3.2d). Similarly, females 

increased the number of grooming partners as they grew older more than males did (Fig. 

3.4c, Table S3.2c). Both males and females participated more in agonism with age, 

giving and receiving agonism at higher rates (Fig. 3.3, Table S3.2g–h). 

 Maternal rank and number of maternal kin had few effects on juvenile social 

behavior. Juveniles with higher-ranking mothers sat close to more partners than juveniles 

of lower-ranking mothers (Fig. 3.2b, Table S3.2e). As predicted, rates of agonism given 

and received did vary by maternal rank, such that juveniles with higher-ranking mothers 

gave more and received less agonism than juveniles with lower-ranking mothers (Fig. 3.3, 

Table S3.2g–h). Juveniles with more maternal kin also received less agonism (Fig. 3b, 

Table S3.2h), however number of maternal kin did not influence any other behavior or 

number of partners. 

 Several behavioral variables varied seasonally in relation to the availability of ripe 
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fruit (FAI) and rainfall. Time sitting close, number of grooming partners, and rates of 

agonism given and received all varied in a non-linear manner in relation to FAI, 

decreasing as ripe fruit became more available, but then increasing when ripe fruit was 

most abundant (Fig. 3.1b, 3.2c, 3.3, Table S3.2b, f, g, h). FAI had a simple linear 

relationship with number of play partners and number of sitting partners, such that 

juveniles played with more partners and rested with fewer partners as ripe fruit became 

more available (Fig. 3.2a–b, Table S3.2d–e). Rainfall generally decreased play and sitting 

close: juveniles spent less time playing and sitting close to partners (Fig. 3.1a–b, Table 

S3.2b–c), and similarly played and sat close to fewer partners, as rainfall increased (Fig. 

3.2a–b, Table S3.2d–e). Because rainfall and fruit abundance did not co-vary exactly (Fig. 

S3.2) and were both included in the same GAMs, each likely had its own independent 

influence on number of play and sitting partners. 
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Figure 3.1. Variation in juvenile social activity budget according to life history, socio-

demographic, and ecological factors using generalized additive models. Trend lines are 

the fitted value of the partial variation of the response a) %Time playing, b) %Time in 1 

m proximity or in contact, and c) % Time grooming, explained by a given predictor 

variable (sex, age, maternal rank, etc.) and shaded regions are standard errors. * Indicates 

significant effect. N = 162 subject – periods. 
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Figure 3.2. Variation in juvenile social partner numbers according to life history, socio-

demographic, and ecological factors. Trend lines are the fitted value of the partial 

variation of the response a) Number play partners, b) Number partners in 1 m proximity 

or in contact, and c) Number grooming partners, explained by a given predictor variable 

(sex, age, maternal rank, etc.) and shaded regions are standard errors.  * Indicates 

significant effect. N = 162 subject – periods. 
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Figure 3.3. Variation in juvenile rates of agonism according to life history, socio-

demographic, and ecological factors. using generalized additive models. Trend lines are 

the fitted value of the partial variation of the response a) rate of aggression given per hour 

and b) rate of aggression received per hour, explained by a given predictor variable (sex, 

age, maternal rank, etc.) and shaded regions are standard errors. * Indicates significant 

effect. N = 162 subject – periods. 

 

 

 
Figure 3.4. Age influence on juvenile social activity and partner number by sex. Mean 

values of the partial variation of the responses (a-c) fitted by Generalized Additive 

Models. Only significant relationships shown. 
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Partner preferences in dyadic interactions 

 Kinship, age difference, and rank difference had several effects on the occurrence 

of affiliation within dyads (Fig. 3.5, Tables S3.3–4), and among partners that did affiliate, 

the amount of time doing so (Fig. 3.6, Tables S3.5–6). Few results differed when datasets 

included vs. excluded mother-offspring pairs. To more generally represent juvenile social 

tendencies with non-mothers, I provide figures from models excluding mother-offspring 

dyads, though all results are available in supplementary tables (Tables S3.3–6). Further, 

while Fig. 3.5 represents the influence of all dyadic attributes on the occurrence of 

affiliation, Fig. 3.6 shows only the significant relationships (in either male- or female-

focused datasets) between amount of time that partners spent affiliating and partners’ 

relative attributes. 

 Kinship increased the odds of play only among males and their partners, and only 

when excluding mother-offspring dyads (Fig. 3.5a, Table S3.3-4). For both male and 

female-focused datasets, the odds of play occurring between a juvenile and its partner 

were lower as their age gap increased (Fig. 3.5a, Tables S3.3-4). Rank difference between 

partners decreased the odds of play more weakly than difference in age. When I 

considered male- vs. female-focused data sets, rank difference lowered the odds of play 

only for female-focused dyads. Unlike occurrence models, no dyadic attributes 

influenced the amount of time partners spent playing with one another (Tables S3.5-6). 

 Juvenile subjects were more likely to sit close to partners that were more closely 

related or were more similar to themselves in either age or rank (Fig. 3.5b, Tables S3.3-4). 

These patterns were consistent whether mother-offspring dyads were included or not 

(Tables S3.3-4). Similarly, juveniles spent more time sitting close to partners who were 
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more closely related (Fig. 3.6b, Tables S3.5-6). Despite having higher odds of sitting 

close with like-aged partners, juveniles that did sit with partners spent more time sitting 

with differently-aged partners (Fig. 3.6a-b, Tables S3.5-6). Female-focused dyads 

followed these same patterns, but among male-focused dyads (including mother-offspring 

dyads), the effect of age difference on time sitting close was not significant (Table S3.5). 

Also, while rank difference decreased the occurrence of sitting close, differences in rank 

did not influence time spent sitting close (Tables S3.5-6).  

 Similar to sitting close, the odds of juveniles grooming with partners increased if 

they were close in age and relatedness (Fig. 3.5c, Tables S3.3-4, whether including or 

excluding mother-offspring dyads). These overall results masked some differences 

between the sexes. Relatedness and a larger age gap were associated with more grooming 

time for juvenile females and their partners, both when including and excluding mother-

offspring dyads (Fig. 3.6c–d, Tables S3.5-6). For dyads including a juvenile male, 

however, relatedness increased grooming time only if mothers were included as partners 

(Table S3.5), and age difference had no effect (Tables S3.5-6). Rank differences 

decreased the odds of grooming, but this effect disappeared for male juveniles if mother-

offspring dyads were excluded (Fig. 3.5c, Tables S3.3-4). Among dyads that did groom, 

rank difference did not influence the amount of time spent grooming, whether including 

mothers or not (Tables S3.3-4). The maximum VIF in all models, using either male- or 

female-focused datasets or datasets including or excluding mothers, was 1.75. 

Repeatability 

 The only behavioral variables that demonstrated significant inter-individual 

differences across periods were rates of agonism given and received, although number of 
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grooming partners was near significantly repeatable (Table S3.7). The rarity of repeatable 

social behavior occurred despite controls for life history, socio-demographic and 

ecological variables that explained variation in behavior in general additive models. 

 

 
Figure 3.5. Coefficient plot of the influence of kinship, age difference, and rank 

difference on odds of a dyadic interaction: A) playing B) sitting close and C) grooming. 

Circles represent maximum-likelihood estimated parameters of predictor variable and 

horizontal lines indicate 95% CIs. Parameters estimated for data sets including all dyads 

(orange), female juveniles and their partners (purple), and male juveniles and their 

partners (green). * indicates significant effect. 
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Figure 3.6. Relationships between relative attributes and percentage of observation time 

a dyad spent in a given behavior, excluding mother-offspring dyads. Trend lines created 

with simple linear regression, unlike statistical models using GLMM. Male juveniles and 

partners plotted in orange, females and partners plotted in purple, and points jittered 

along estimated relatedness axes. Only significant relationships shown, except C & D) 

kinship and age difference influence dyadic grooming only among female-focused dyads. 
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Discussion 

Playing 

i. Time playing, play partner diversity 

 Male juveniles spent more time playing and played with more partners than females 

did, as is often seen among social mammals where males disperse and compete 

physically for reproductive access to females (Fagen, 2003; Maestripieri & Ross, 2004; 

Paukner & Suomi, 2008; Power 1999; for exceptions see Graham & Burghardt, 2010; 

Rowell & Chism, 1986). Male-biased play supports the hypothesis that play is 

preparation for novel social interactions, motor development, and future physical 

aggression (Spinka et al., 2001), which adult male blue monkeys regularly engage in 

when competing for access to mates and/or the reproductively dominant position of 

resident male once they have dispersed (Cords, 2004; Roberts & Cords, 2015). While 

there is some evidence that “winning” play bouts during immaturity corresponds with 

higher dominance status in adulthood (e.g. yellow-bellied marmots, Blumstein et al., 

2013), a higher frequency of play does not necessarily translate into obtaining social 

positions with higher reproductive success (e.g. meerkats, Sharpe, 2005a). On a 

proximate level, sex-differences in play may be driven by differential levels of sex-

steroid hormones such as testosterone, which is strongly associated with aggressive 

behavior, social dominance, and often corresponds with greater rough and tumble play 

within each sex (Graham & Burghardt, 2010; Pedersen, Glickman, Frank, & Beach, 

1990). These proximate and ultimate drivers of male-biased play may also contribute to 

the pattern in which male juveniles gave (but did not receive) more aggression than 

females. That males give more aggression than females perhaps foreshadows males’ 
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social dominance over females in adulthood.  

 Surprisingly, neither males nor females appeared to reduce play time with age, 

unlike other species (Pusey, 1990; Rowell & Chism, 1986; van Noordwijk et al., 2003). 

Nevertheless, both sexes decreased their number of play partners, demonstrating some 

shift in priorities away from social play as individuals approached sexual maturity. As 

rates of aggression given increased with age, older juveniles may be transitioning from 

practice in play to application in competition (Barale, Rubenstein, & Beehner, 2015). The 

number of partners with whom females played declined at a faster rate than males as 

subjects grew older, again demonstrating females’ overall muted interest in play relative 

to males, perhaps because it does not prepare females as well for adult life. Females’ 

more rapid decline in play partners with age is somewhat similar to patterns in female 

geladas, who stopped playing at a younger age than males (Barale et al., 2015).  

ii. Play partner preferences 

 Juvenile males and females were more likely to play with individuals closer in age 

to themselves, similar to other primates (Barale et al., 2015; Fairbanks, 2003; Palagi, 

Antonacci, & Cordoni, 2007) and non-primate species (Byers, 1980; Nunes et al., 2004; 

Rothstein & Griswold, 1991; Thompson, 1996). While attraction to peers may simply 

indicate that adults rarely play, it could also support the hypothesis that play functions, in 

part, for individuals to assess their own physical ability (Thompson, 1998). However, 

because no relative attributes increased the amount of time that juveniles played with 

partners, self-assessment is perhaps neither the exclusive nor the predominant function of 

play in juvenile blue monkeys.  

 While all juveniles preferred to play with similarly aged partners, only males and 
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their play partners were more likely to be closely related. Preferences for closer kin may 

highlight a balance that males seek between novelty vs. familiarity during play. Closer 

kin are likely to be more predictable partners and possibly more tolerant if play fighting 

goes awry. Therefore, unpredictable play sequences would occur under relatively safe 

circumstances. If closer kin are also more similar in physical ability, a preference for 

playing with kin may also support play as a form of self-assessment (Thompson, 1998). 

A preference for kin as play partners contrasted with patterns seen in juvenile geladas and 

vervet monkeys (Barale et al., 2015; Fairbanks, 2003), but was similar to several other 

primate species where juveniles play preferentially with kin (Cheney, 1978; Glick, Eaton, 

Johnson, & Worlein, 1986; Kulik et al., 2015). 

 That female juveniles were more likely to play with partners of similar rank was 

curious. While rank similarity could correspond with relatedness, this was not the case, as 

relatedness was statistically controlled for and only male juveniles were more likely to 

play with closer kin. Attraction to similarly ranked partners among dyads involving 

females could indicate either of two scenarios. First, females may choose partners whose 

mothers are more similar in power to their own because they are more risk-averse than 

males during play – as play may go awry and escalate into true aggression. Alternatively, 

males may avoid the possibility of a relatively more powerful mother intervening on her 

daughter’s behalf, and engage females that are more similarly ranked. Because aggressive 

interventions are so rare in blue monkeys, I do not know whether adult females favor 

male vs. female offspring in aggressive conflicts. Other more fine-scale data on 

initiations and retreats in play bouts could also reveal whether preference for similarly 

ranked play partners is driven by males or females. 
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iii. Seasonality in time playing and play partners 

 Time spent playing and number of play partners also varied seasonally. Decreases 

in play time and partner number during rainier periods probably resulted from rainfall’s 

influence on access to preferred play substrates. Juveniles often played on or near the 

ground, particularly in dry areas (pers. obs.). Further, during the hot and dry season, 

individuals occupied lower, cooler levels of the canopy, making the ground more easily 

accessible. Juveniles played with more partners when local fruit availability was higher, 

likely because fruit availability translates into higher energy balance among juveniles 

(Chap. 4). Food availability, and corresponding energy balance, has a well-established 

influence on rates of social play, with individuals often decreasing play when energy is 

limited (Krachun, Rushen, & de Passillé, 2010; Loy, 1970; Muller-Schwarze, Stagge, & 

Muller-Schwarze, 1982) and increasing it when in more positive energetic states (Sharpe 

et al., 2002). These results both agree and contrast with findings in geladas, where 

juveniles spend more time playing when rainfall is higher, probably because rainfall 

corresponded directly with higher food availability (Barrett, Dunbar, & Dunbar, 1992). 

Spatial association and grooming 

i. Time sitting close, grooming and diversity of partners  

 Female juveniles spent more time sitting close with more neighbors, and more time 

grooming with more partners than males did. These patterns are similar to those reported 

in other female-bonded primates, such as vervets, geladas, sooty mangabeys, and 

baboons (Barale et al., 2015; Fairbanks, 2003; Nakamichi, 1989; Pereira, 1988b; Raleigh 

et al., 1979; Range, 2006; Rowell & Chism, 1986; van Noordwijk et al., 2003). These 

findings confirm an earlier report by Cords et al. (2010) on this population, though Cords 
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et al. found no sex differences in number of association partners. As this study’s records 

of association were based on closer association, i.e. either within 1 m or in bodily contact 

vs. within 3 m with no contact, this contrast suggests that females associate intimately 

with more partners than males but are perhaps not more integrated at a slightly larger 

spatial scale. Juvenile female patterns of association and grooming support the hypothesis 

that individuals of the philopatric sex make social choices both to practice the overtly 

affiliative behavior that constitutes a large part of adult social life and invest in 

relationships with potentially life-long social partners (Cords et al., 2010; Fairbanks, 

2003; O'Brien & Robinson, 2003; Strier, 2003). Whether females are practicing social 

interaction vs. investing in enduring relationships would require a longitudinal study to 

see if 1) females that interacted more as juveniles were more competent socially as adults, 

or 2) the strength of females’ ties with preferred partners persisted into adulthood, as seen 

in vervet and capuchin monkeys (Fairbanks, 2003; O'Brien & Robinson, 2003). 

Nevertheless, practice and investment are likely not to be mutually exclusive functions of 

affiliation for juvenile females. These sex differences in spatial association and grooming 

behavior were also consistent with a previous study on juvenile blue monkey social 

behavior, where behavioral sampling was limited to certain seasons of the year (Cords et 

al., 2010). 

 While, females spent more time with more neighbors and grooming partners, both 

sexes increased their social time and the number of partners with age. This increase may 

reflect juveniles growing more familiar and comfortable with diverse group members or 

vice versa. Still, this pattern contrasted to that seen in juvenile long-tailed macaques, 

where individuals appeared to aggregate in a “main party” when traveling and foraging, 
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and younger juveniles were more likely to be present in this main party (van Noordwijk 

et al., 2003). The number of partners with whom female blue monkeys groomed varied 

with age in an opposite but similar pattern to their number of play partners: while both 

sexes increased grooming partners with age, females increased more steeply than males, 

adding more grooming partners with each year of age. As novel grooming, but not play, 

partners are likely to prepare females for adult life, these patterns again demonstrated the 

different priorities and life trajectories of males and females (Cords et al., 2010).  

ii. Preferences for sitting and grooming partners 

 In general, juveniles appeared more likely to sit close and groom with partners that 

were similar to them. Kinship and age similarity were important in predicting juvenile 

spatial and grooming partners, for both males and females. Rank similarity, while 

increasing the odds of spatial association in both sexes, increased only the occurrence 

(but not the duration) of grooming between females and their partners. This trend for 

juveniles to prefer affiliative partners similar to themselves suggests that homophily 

serves not only to allow self-assessment during play, but is more generally important for 

juveniles. Homophily based on age and kinship strongly structures group-wide affiliative 

networks in yellow-bellied marmots, and may be a source of stability and predictability 

among group members (Wey & Blumstein, 2010). Associating with similar partners can 

also increase reciprocity between partners, in grooming or other forms of cooperation (de 

Waal & Luttrell, 1988), as in bats and chimpanzees (reviewed in Massen et al., 2010). 

For juveniles, similarly aged and ranked partners may also be more tolerant of one 

another’s presence or provide mutual practice in grooming behavior. I further discuss the 

adaptive benefits of associating with kin below. 
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 While juveniles were more likely to sit close and groom with like-aged partners, 

both males and females spent more time associating with, and females spent more time 

grooming with, older partners. These patterns were not driven by preferences to sit close 

and groom with mothers. As older partners were primarily adult females, juveniles may 

be more interested in associating spatially with established and core members of their 

social group, who are potentially important sources of social and ecological knowledge 

(Galef & Laland, 2005; McComb et al., 2011; Sherrow, 2008). In terms of grooming, 

males spent more time grooming older partners only when mothers were included, 

indicating that while juvenile females groom with non-mother adult females, juvenile 

males do not. These grooming patterns generally concur with those of Cords et al. (2010), 

who found that males preferentially groomed peers while females avoided them. Females 

are perhaps more interested than males in partners that are more experienced at grooming 

and with whom they may spend all their lives interacting. Males, in contrast, focus their 

grooming on the individuals that best prepare them for their adult life, i.e. their highly 

tolerant mothers and the peers with whom they play. 

 Juvenile females’ preference, and males’ lack of preference, for similarly ranked 

grooming partners may reflect the particularly large divergence in adult sex-typical social 

behavior in this species. In sooty mangabeys, which form multi-male/multi-female 

groups, both male and female juveniles preferred to sit close with similarly ranked adult 

females, although male preferences were weaker relative to females’ and males showed 

no rank preferences when associating with peers (Range, 2006). Generally in female 

philopatric species, relative rank may be a less salient feature in determining male 

patterns of overt affiliation because males will eventually disperse, losing their natal 



 118

group relationships (e.g. Kulik et al., 2015). In blue monkeys, adult males rarely need to 

behave subordinately, spending most of their time either as the dominant individual of a 

social group or largely solitary as a bachelor. Adult male social roles may make relative 

rank less consequential to their preferences for affiliative partners during development, 

relative to male juveniles of other species. By contrast, female juveniles in female-

philopatric species will maintain their relative ranks for a much longer period than males, 

if not for life, and in multi-female groups, they will perpetually interact with potential 

competitors. The tendency for female juveniles to groom more similarly-ranked partners 

was consistent with the finding of Cords et al. (2010), where female juveniles 

disproportionately groomed adult females from the middle of the dominance hierarchy, 

such that females with high-maternal rank groomed down the hierarchy and females with 

low-maternal rank groomed up. 

 Kinship was the only dyadic attribute that simultaneously increased both the odds 

and the amount of time that juveniles sat close or groomed with a partner (except for, 

notably, not increasing the amount of time males groomed with non-mother partners). 

Preferences for kin as sitting and grooming partners were generally evident when 

excluding mother-offspring interactions, indicating that even more distantly related kin 

(siblings, aunts, grandmothers) are important social partners for both male and female 

juveniles. The strong positive influence of kinship on juveniles’ sitting and grooming 

with partners concurs with trends among adult females in this population, who prefer to 

sit close and groom with maternal kin (Cords & Nikitopoulos, 2015). Kin-biased 

association is widespread in social mammals (Silk, 2007), as familiarity among kin may 

increase tolerance, cooperation, and reciprocity in affiliative behavior (Chapais, 2001; 
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Cords & Nikitopoulos, 2015; Smith, 2014). Immature individuals, who are smaller and 

less experienced physically and socially, may benefit particularly from such tolerant and 

positive associations and so preferentially interact with kin in many ways (e.g. grooming 

and playing, Glick et al., 1986; Kulik et al., 2015). Still, despite favoring kin in 

association and affiliation, the presence of more maternal kin in a social group did not 

influence either the amount of time or the number of individuals with whom juveniles sat 

close or groomed, suggesting perhaps that juveniles seek a target amount of positive 

social interaction from kin, that even few relatives can fulfill. 

Influence of maternal rank and presence of kin on social activity budget 

 Subjects’ own maternal dominance rank influenced social behavior less pervasively 

than their maternal rank relative to social partners’. Specifically, individual maternal rank 

influenced only the number of partners with whom juveniles sat close and individual 

rates of aggression given and received, whereas relative ranks influenced preference for 

sitting partners in both sexes, and preference of play and grooming partners in females. 

That juveniles with higher maternal rank gave more and received less aggression was 

expected, as adult dominance ranks are themselves characterized by aggressive and 

submissive behavior, and dominance relations among juveniles in this and other 

gregarious species regularly follow those of their mothers (Cheney, 1977; Engh et al., 

2000; Horrocks & Hunte, 1983; Klass & Cords, 2015). Juveniles of higher-ranking 

mothers may “get away” with intimidating others because their mothers are more likely 

able to dominate their victims. As aggression occurs primarily over fruit, an energy rich 

resource, there is incentive for juveniles to take advantage of their mother’s social 

position and aggress others (Klass & Cords, 2015; Pazol & Cords, 2005). Given that 
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juveniles of low-ranking mothers receive agonism at higher rates, they are perhaps 

motivated to avoid more social partners than juveniles of high-ranking mothers, leading 

them to sit close to fewer partners than juveniles of high-ranking mothers. Although blue 

monkeys do not appear to form central aggregations of group members, rank-related 

patterns of juvenile association may resemble those seen in adult female long-tailed 

macaques, where low-ranking females are also more likely to forage on the periphery of a 

main party (van Schaik & Van Noordwijk, 1986). 

Seasonality changes in affiliation and aggression 

 Several results together suggested that affiliation and aggression were closely 

related aspects of juvenile sociality. Juvenile blue monkeys’ number of neighbors, 

grooming partners, and rates of aggression given and received all varied in the same non-

linear pattern with FAI, such that social interactions and partners were fewer when the 

availability of ripe fruit was intermediate, but were highest when ripe fruit was at its 

minimum or at its peak. Both scarce and highly abundant fruit may be clumped in the 

environment such that it attracts individuals to the same area, leading to opportunities for 

both friendly and aggressive interactions over food and space.  For example, clumped 

resources during low food abundance increased aggregations in adult female Sumatran 

orang-utans (Sugardjito, te Boekhorst, & van Hooff, 1987) and social ties increased in 

intensity during food scarcity in adult female baboons (Henzi et al., 2009). However, 

adult female blue monkeys appeared to spread out while foraging and feeding, though not 

groom less, when fruit availability was lowest (Pazol & Cords, 2005). The trees of the 

species that contributed most strongly to peak fruit in all social groups’ home ranges, 

Harungana madagascariensis, were not rare or highly clustered in the environment, 
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however they did frequently occur on the edge of the forest in highly exposed areas 

where individuals often engaged in long bouts of resting, feeding, and grooming (pers. 

obs.). The microhabitat offered by this tree species therefore may increase social partner 

exposure and visibility, and consequently both positive and negative social interactions 

among juveniles and groupmates. Interestingly, rates of aggression among adult female 

blue monkeys did not vary with food availability (Pazol & Cords, 2005). This contrast 

with juvenile rates of aggression concurs with previous findings that juvenile blue 

monkeys appear to experience feeding competition more intensely than adults (Cords et 

al. 2010). 

  

General absence of consistent inter-individual differences 

 Published analyses of repeatable between-individual differences in affiliative 

behavior are rare, and even fewer have explored repeatable differences in juveniles 

(Barale et al., 2015; Bell et al., 2009; Vander Wal et al., 2014). Unlike geladas, where 

juveniles ranked similarly among peers in the amounts of time playing and grooming 

over a two-year period (Barale et al., 2015), juvenile blue monkeys did not demonstrate 

repeatable differences in any affiliative behavior. These results may contrast with the 

study on geladas because of different statistical techniques, namely Barale et al. (2015) 

tested a simple rank correlation between individual observations made over time, not 

looking at actual between vs. within individual variation nor controlling for factors that 

can make inter-individual differences in social behavior more pronounced, such as sex. In 

Kakamega blue monkeys, adult females demonstrated repeatable differences in the 

intensity of their close annual ties, their time grooming with groupmates, and time 
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associating with other adult females over several years (2–8) (Chap. 2 and 5). Their 

contrast with juveniles could suggest that repeatability emerges when data for 

observations are collated over longer periods and when individuals have more 

observations. Additionally, this contrast could suggest that different aspects of affiliation 

are more repeatable than others (e.g. intensity of close ties vs. number of ties), or that 

juveniles become more stable in their behavioral phenotypes with age. Aside from 

affiliation, juvenile blue monkeys did show repeatable differences in the amount of 

aggression they gave and received, even when controlling for other stable social factors 

such as maternal dominance rank and social group. Repeatable rates of aggression 

suggest that aggression is a regular and stable part of social life in juvenile blue monkeys. 

 

Summary and Future Directions 

 Overall, as expected, juvenile social behavior varied strongly by age and sex. 

Nevertheless, there were several commonalities that drove both male and female 

preferences for social partners, such as similarity in kinship, age, and, though less 

pervasively, dominance rank. Patterns of social preferences were largely consistent 

whether including or excluding mothers as potential partners. Interestingly, time spent in 

a given social activity and number of partners engaged in that activity did not always 

follow the same patterns in relation to life history, demographic, or ecological variables. 

For example, time playing did not decrease sharply with age, but number of play partners 

did. This suggests that the time one spends socializing and one’s diversity of social 

partners may be distinctly different aspects of sociability. Similarly, the influence of 

kinship, age, and relative dominance rank did not always influence the amount of time 
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juveniles spent interacting with a given partner as strongly or even in the same direction 

as it did the odds of a juvenile and its partner interacting. For example, juveniles as a 

whole were more likely to sit close with similarly aged partners, but those that did sit 

close spent more time associating with partners that were older than themselves. 

 Measures of juvenile sociality demonstrated a large degree of within individual 

variation over time. Juveniles varied in their social behavior according to the availability 

of ripe fruit, rainfall, or both. Further, even when controlling for such external seasonal 

factors, individuals differed repeatably only in their rates of aggression given and 

received. Covariation of affiliative and aggressive behavior with available fruit suggested 

that juveniles might experience affiliation and aggression as two sides of a single social 

coin, with both closely related to feeding competition. As expected, evidence suggested 

that juvenile blue monkeys experience feeding competition more strongly than adults.  

 The results of this study confirm previous studies that juveniles indeed behave in 

ways that appear preparatory for species and sex-typical roles in adulthood, and further 

demonstrate that juvenile social behavior can fluctuate dramatically according to seasonal 

changes in the environment. Future studies may look to explore the development of 

individual stability (repeatability) in different types of social behavior. As primates’ 

particularly slow pace of life perpetually hinders longitudinal studies of social 

development, investigators running long-term field sites may consider adding juvenile 

subjects to their data collection protocols to pursue this aim. Comparative analyses could 

also explore variation in developmental timing and degree of differentiation in social 

behavior between the sexes in relation to degree of sexual dimorphism in adult-typical 

behavior. Sex differences in overt affiliative behavior, such as grooming, may emerge 
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earlier in species where, for example, adult males are largely asocial vs. species where 

adult males affiliate with coalitionary allies. Also, differences in maternal rank may drive 

grooming interactions only in the sex that regularly navigates stable dominance 

relationships as adults, e.g. males and females in sooty mangabeys but only females in 

blue monkeys. Of course, such meta-analyses should seek to standardize the degree of 

intimacy of various proximity measures, given that association distances varying in 

intimacy could differentially vary by sex even within a species. 
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Supplemental Information 

Table S3.1. Mean and standard deviation of juvenile behavioral variables calculated across each subject’s focal follows collated per 

period: All = all subjects, M = males, and F = females. N = 40–41 subjects per period, 21–22 males, 19 females. 

Period Sex 
Time Playing 

Time sitting 

close 
Time grooming 

Number play 

partners 

Number prox 

partners 

Number groom 

partners 

Rate ago 

given 

Rate ago 

received 

mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd 

p1 All 1.14 1.87 5.82 3.41 5.52 4.40 1.65 2.07 11.70 3.72 4.67 2.72 0.21 0.21 0.39 0.34 

p1 F 0.15 0.39 7.43 3.55 8.25 4.57 0.26 0.56 12.58 3.96 6.21 2.97 0.16 0.19 0.33 0.23 

p1 M 2.03 2.23 4.36 2.58 3.05 2.33 2.90 2.14 10.90 3.39 3.29 1.49 0.25 0.22 0.45 0.41 

p2 All 1.69 3.16 3.87 1.66 4.43 3.48 2.76 2.62 11.10 3.88 4.68 2.32 0.09 0.11 0.22 0.18 

p2 F 0.17 0.35 4.45 1.94 6.76 3.67 0.68 1.11 11.47 4.48 6.21 2.12 0.07 0.09 0.16 0.15 

p2 M 3.00 3.88 3.37 1.20 2.43 1.56 4.55 2.20 10.77 3.37 3.36 1.56 0.11 0.12 0.27 0.18 

p3 All 3.04 3.21 4.73 2.75 3.13 2.97 6.12 4.09 13.41 4.77 4.44 2.94 0.12 0.15 0.18 0.29 

p3 F 0.92 1.18 5.66 3.02 4.94 3.26 3.53 2.93 15.11 4.95 6.84 2.39 0.13 0.13 0.16 0.25 

p3 M 4.88 3.30 3.92 2.25 1.56 1.45 8.36 3.62 11.95 4.18 2.36 1.36 0.11 0.16 0.19 0.33 

p4 All 3.38 3.32 6.57 3.70 4.18 3.05 6.85 4.63 18.52 7.37 5.95 4.19 0.21 0.19 0.31 0.20 

p4 F 1.22 1.18 8.95 3.78 6.27 2.96 4.16 3.37 23.00 7.74 8.79 4.30 0.19 0.21 0.29 0.22 

p4 M 5.34 3.43 4.42 1.90 2.28 1.52 9.29 4.29 14.48 3.96 3.38 1.75 0.22 0.17 0.32 0.18 

All 

period 

mean: 

 2.31 3.07 5.24 3.12 4.31 3.59 4.35 4.11 13.67 5.87 4.93 3.14 0.16 0.17 0.27 0.27 
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Table S3.2. Influence of life history, socio-demographic, and ecological variables on 

juvenile social behavior. General additive models, group and subject as random effects. N 

= 162 subject-periods. 

Response Predictor Beta se CI P(Beta>null)* P(Beta<null) 

a) Time 

playing 

∆AIC = -24 

Sex (Male) 1.15** 0.14 [0.87, 1.43]   

Age -0.14 0.12 [-0.38, 0.09]   

Maternal rank 0.01 0.06 [-0.11, 0.12]   

Number maternal 

kin 

-0.04 0.07 [-0.18, 0.1]   

FAI 0.09 0.05 [-0.01, 0.19]   

Rainfall -0.27 0.06 [-0.39, -0.16]   

Age:Sex 0.14 0.15 [-0.15, 0.43]   

b) Time sitting 

close 

∆AIC = -42 

Sex (Male) -0.48 0.07 [-0.63, -0.34]   

Age 0.12 0.05 [0.02, 0.22]   

Maternal rank 0.07 0.04 [0, 0.15]   

Number maternal 

kin 

-0.05 0.04 [-0.13, 0.03]   

cs(FAI) -0.13† 0.04 [-0.21, -0.06]   

Rainfall -0.16 0.04 [-0.24, -0.09]   

Age:Sex -0.13 0.08 [-0.29, 0.03]   

c) Time 

grooming with 

∆AIC = -29 

Sex (Male) -0.94 0.1 [-1.13, -0.76]   

Age 0.18 0.06 [0.07, 0.28]   

Maternal rank 0.01 0.05 [-0.08, 0.1]   

Number maternal 

kin 

0 0.05 [-0.09, 0.09]   

FAI -0.19 0.05 [-0.29, -0.09]   

Rainfall 0.05 0.04 [-0.04, 0.13]   

Age:Sex -0.23 0.1 [-0.44, -0.03]   

d) Number 

partners play 

∆AIC = -105 

Sex (Male) 1.11 0.1 [0.92, 1.29] 0 1 

Age -0.35 0.08 [-0.52, -0.19] 1 0 

Maternal rank -0.03 0.04 [-0.11, 0.05] 0.732 0.268 

Number maternal 

kin 

-0.07 0.05 [-0.16, 0.03] 0.749 0.251 

FAI 0.17 0.04 [0.1, 0.24]   

Rainfall -0.39 0.04 [-0.48, -0.31]   

Age:Sex 0.25 0.1 [0.04, 0.45] 0.026 0.974 

e) Number 

partners 

sitting close 

∆AIC = -72 

Sex (Male) -0.24 0.04 [-0.33, -0.16] 1 0 

Age 0.07 0.03 [0.01, 0.13] 0.028 0.972 

Maternal rank 0.07 0.02 [0.03, 0.12] 0 1 

Number maternal 

kin 

-0.04 0.02 [-0.09, 0] 0.91 0.09 

FAI -0.07 0.02 [-0.11, -0.02]   

Rainfall -0.14 0.02 [-0.19, -0.1]   

Age:Sex -0.09 0.05 [-0.19, 0] 0.952 0.048 

f) Number 

partners 

grooming 

∆AIC = -19 

Sex (Male) -0.76 0.08 [-0.91, -0.61] 1 0 

Age 0.26 0.05 [0.17, 0.35] 0.001 0.999 

Maternal rank 0.06 0.04 [-0.02, 0.13] 0.094 0.906 

Number maternal 

kin 

0 0.04 [-0.07, 0.07] 0.658 0.342 

cs(FAI) -0.1† 0.04 [-0.17, -0.02]   

Rainfall -0.02 0.04 [-0.09, 0.05]   

Age:Sex -0.24 0.08 [-0.4, -0.08] 0.98 0.02 

g) Rate 

agonism given 

∆AIC = -34 

Sex (Male) 0.31 0.15 [0.01, 0.6] 0.062 0.938 

Age 0.42 0.12 [0.19, 0.66] 0 1 

Maternal rank 0.39 0.08 [0.24, 0.55] 0 1 

Number maternal 

kin 

0.03 0.08 [-0.13, 0.2] 0.429 0.571 

cs(FAI) -0.24† 0.08 [-0.4, -0.08]   

Rainfall -0.13 0.07 [-0.27, 0]   

Age:Sex 0.06 0.17 [-0.28, 0.39] 0.332 0.668 

h) Rate 

agonism 

Sex (Male) 0.21 0.11 [0, 0.42] 0.084 0.916 

Age 0.29 0.07 [0.16, 0.42] 0.005 0.995 
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received 

∆AIC = -46 

Maternal rank -0.19 0.06 [-0.31, -0.07] 0.994 0.006 

Number maternal 

kin 

-0.16 0.05 [-0.27, -0.05] 0.981 0.019 

cs(FAI) -0.29† 0.05 [-0.39, -0.2]   

Rainfall -0.02 0.06 [-0.14, 0.11]   

Age:Sex -0.2 0.1 [-0.41, 0] 0.907 0.093 

* Null distribution of betas for partner numbers and rates of agonism based on 1000 node permutations of dyadic 
matrices.  
** Predictor variables with significant effects in bold. 
† Fruit availability modeled non-linearly with a cubic spline (cs). 
 

 
 

Table S3.3. Influence of relative partner attributes on occurrence of dyadic affiliation, 

excluding mother-offspring dyads. Binomial regression with logit link, N = 7269 all 

dyads, N = 3698 female-focused dyads, N = 4132 male-focused dyads.  

Dyadic 

behavior 

Predictor Dyads Beta* SE Odds Ratio 95% CI 

Playing 
∆AIC = -259 

Kinship all 0.11 0.06 1.11 [-0.01, 0.23] 

female 0.01 0.1 1.01 [-0.19, 0.21] 

male 0.14** 0.07 1.15 [0.01, 0.28] 

Age 

difference 

all -2.59 0.2 0.07 [-2.99, -2.2] 

female -1.94 0.25 0.14 [-2.44, -1.45] 

male -2.88 0.25 0.06 [-3.36, -2.4] 

Rank 

difference 

all -0.17 0.07 0.85 [-0.31, -0.02] 

female -0.22 0.1 0.8 [-0.42, -0.02] 

male -0.13 0.08 0.88 [-0.29, 0.03] 

Sitting close 
∆AIC = -236 

Kinship all 0.29 0.03 1.33 [0.22, 0.35] 

female 0.3 0.04 1.35 [0.22, 0.38] 

male 0.3 0.05 1.35 [0.21, 0.39] 

Age 

difference 

all -0.53 0.05 0.59 [-0.62, -0.43] 

female -0.36 0.05 0.7 [-0.46, -0.25] 

male -0.78 0.08 0.46 [-0.94, -0.63] 

Rank 

difference 

all -0.17 0.04 0.84 [-0.25, -0.09] 

female -0.18 0.05 0.83 [-0.28, -0.09] 

male -0.14 0.06 0.87 [-0.25, -0.03] 

Grooming 

with 
∆AIC = -116 

Kinship all 0.35 0.05 1.42 [0.26, 0.44] 

female 0.33 0.05 1.39 [0.23, 0.44] 

male 0.56 0.17 1.75 [0.23, 0.89] 

Age 

difference 

all -0.32 0.07 0.72 [-0.47, -0.18] 

female -0.16 0.07 0.85 [-0.31, -0.02] 

male -0.91 0.28 0.4 [-1.45, -0.37] 

Rank 

difference 

all -0.18 0.07 0.83 [-0.31, -0.05] 

female -0.21 0.07 0.81 [-0.35, -0.07] 

male -0.35 0.21 0.7 [-0.77, 0.06] 

*Betas, SE, and 95% confidence interval values averaged over 1000 random assignments of partner IDs to random 
effects. 
**Betas and 95% CIs in bold when effect significant. 
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Table S3.4. Influence of relative partner attributes on occurrence of dyadic affiliation, 

including mother-offspring dyads. Binomial regression, N = 7419 dyads, N = 3768 

female-focused dyads, N = 4212 male-focused dyads. 

Dyadic 

behavior 

Predictor Dyads Beta* SE Odds Ratio 95% CI 

Playing 
∆AIC = -265 

Kinship all 0.14 0.09 1.15 [-0.04, 0.32] 

female -0.02 0.15 0.98 [-0.31, 0.27] 

male 0.19 0.11 1.22 [-0.01, 0.4] 

Age 

difference 

all -2.66** 0.2 0.07 [-3.06, -2.26] 

female -1.99 0.26 0.14 [-2.49, -1.48] 

male -2.96 0.25 0.05 [-3.45, -2.47] 

Rank 

difference 

all -0.17 0.07 0.84 [-0.32, -0.03] 

female -0.23 0.1 0.8 [-0.43, -0.02] 

male -0.14 0.08 0.87 [-0.3, 0.02] 

Sitting close 
∆AIC = -333 

Kinship all 0.44 0.03 1.56 [0.38, 0.51] 

female 0.37 0.04 1.44 [0.28, 0.45] 

male 0.54 0.05 1.72 [0.45, 0.64] 

Age 

difference 

all -0.53 0.05 0.59 [-0.62, -0.43] 

female -0.35 0.05 0.7 [-0.46, -0.25] 

male -0.79 0.08 0.45 [-0.94, -0.64] 

Rank 

difference 

all -0.17 0.04 0.84 [-0.25, -0.09] 

female -0.2 0.05 0.82 [-0.29, -0.1] 

male -0.13 0.06 0.88 [-0.24, -0.02] 

Grooming 

with 
∆AIC = -302 

Kinship all 0.61 0.04 1.84 [0.52, 0.7] 

female 0.5 0.06 1.64 [0.39, 0.6] 

male 0.77 0.08 2.16 [0.62, 0.92] 

Age 

difference 

all -0.29 0.07 0.75 [-0.43, -0.16] 

female -0.14 0.07 0.87 [-0.28, -0.01] 

male -0.7 0.14 0.5 [-0.97, -0.43] 

Rank 

difference 

all -0.17 0.06 0.84 [-0.3, -0.04] 

female -0.22 0.07 0.81 [-0.36, -0.08] 

male -0.24 0.12 0.79 [-0.47, -0.01] 

*Betas, SE, and 95% confidence interval values averaged over 1000 random assignments of partner IDs to random 
effects. 
**Betas and 95% CIs in bold when effect significant. 
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Table S3.5. Influence of relative partner attributes on magnitude of dyadic affiliation, 

excluding mother-offspring dyads.  

Dyadic behavior Predictor Dyads Beta* SE 95% CI 

Playing 
∆AIC = 3 

Kinship all -0.17 0.13 [-0.43, 0.08] 

female -0.04 0.07 [-0.18, 0.11] 

male -0.27 0.14 [-0.54, 0] 

Age difference all 0.12 0.12 [-0.12, 0.36] 

female 0.03 0.08 [-0.12, 0.18] 

male 0.13 0.13 [-0.12, 0.39] 

Rank 

difference 

all -0.06 0.14 [-0.33, 0.2] 

female -0.06 0.07 [-0.2, 0.08] 

male -0.24 0.15 [-0.53, 0.05] 

N = 447 all play dyads, Gamma distributed errors with inverse link; N = 144 female-focused dyads, 

Gamma errors with log link; N = 354 male-focused dyads, Gamma errors with inverse link. 

Sitting close 
∆AIC = -17 

Kinship all 0.13** 0.03 [0.06, 0.19] 

female 0.1 0.04 [0.01, 0.18] 

male -0.39† 0.14 [-0.67, -0.11] 

Age difference all 0.08 0.03 [0.01, 0.14] 

female 0.09 0.04 [0.01, 0.17] 

male -0.23† 0.11 [-0.44, -0.02] 

Rank 

difference 

all -0.03 0.04 [-0.1, 0.04] 

female -0.03 0.04 [-0.12, 0.06] 

male 0.14 0.13 [-0.11, 0.39] 

N = 1563 all proximity dyads, Gaussian distributed errors with log link; N = 997 female-focused dyads, 

Gaussian errors with log link; N = 761 male-focused dyads, Gamma errors with inverse link. 

Grooming with 
∆AIC = -16 

Kinship all 0.19 0.06 [0.08, 0.31] 

female 0.15 0.07 [0.02, 0.28] 

male 0.19 0.1 [0, 0.38] 

Age difference all 0.18 0.05 [0.08, 0.28] 

female 0.21 0.06 [0.1, 0.32] 

male 0.03 0.08 [-0.13, 0.18] 

Rank 

difference 

all -0.03 0.05 [-0.13, 0.08] 

female -0.06 0.06 [-0.18, 0.06] 

male 0 0.1 [-0.19, 0.2] 

N = 517 all grooming dyads, Gamma distributed errors with log link; N = 404 female-focused dyads, 

Gamma errors with log link; N = 174 male-focused dyads, Gaussian errors with log link. 

*Betas, SE, and 95% confidence interval values averaged over 1000 random assignments of partner IDs to random 
effects. 
**Betas and 95% CIs in bold when effect significant. 
†Parameter estimated with an inverse link function, i.e. negative estimates indicate a positive relationship between the 
predictor on the response. 
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Table S3.6. Influence of relative partner attributes on magnitude of dyadic affiliation, 

including mother-offspring dyads.  

Dyadic 

behavior 

Predictor Dyads Beta* SE 95% CI 

Playing 
∆AIC = 3 

Kinship all -0.17 0.13 [-0.43, 0.08] 

female -0.02 0.07 [-0.16, 0.13] 

male -0.27 0.14 [-0.54, 0] 

Age difference all 0.12 0.12 [-0.12, 0.36] 

female 0.03 0.08 [-0.13, 0.18] 

male 0.13 0.13 [-0.12, 0.39] 

Rank difference all -0.06 0.14 [-0.33, 0.2] 

female -0.06 0.07 [-0.2, 0.09] 

male -0.24 0.15 [-0.53, 0.05] 

N = 447 all play dyads, Gamma distributed errors with inverse link; N = 144 female-focused dyads, Gamma 

errors with log link; N = 354 male-focused dyads, Gamma errors with inverse link.*** 

Sitting close 
∆AIC = -29 

Kinship all 0.14** 0.04 [0.07, 0.21] 

female 0.11 0.04 [0.02, 0.2] 

male -0.45† 0.15 [-0.74, -0.16] 

Age difference all 0.08 0.04 [0.01, 0.15] 

female 0.09 0.04 [0.01, 0.18] 

male -0.22 0.11 [-0.43, 0] 

Rank difference all -0.05 0.04 [-0.12, 0.02] 

female -0.03 0.04 [-0.12, 0.05] 

male 0.17 0.12 [-0.07, 0.41] 

N = 1656 all proximity dyads, Gaussian distributed errors with log link; N = 1039 female-focused dyads, 

Gaussian errors with log link; N = 812 male-focused dyads, Gamma errors with inverse link. 

Grooming 

with 
∆AIC = -68 

Kinship all 0.39 0.06 [0.26, 0.51] 

female 0.31 0.07 [0.16, 0.45] 

male 0.49 0.11 [0.27, 0.71] 

Age difference all 0.18 0.05 [0.07, 0.29] 

female 0.21 0.06 [0.09, 0.32] 

male 0 0.09 [-0.18, 0.18] 

Rank difference all -0.03 0.05 [-0.14, 0.07] 

female -0.05 0.06 [-0.17, 0.06] 

male 0.02 0.1 [-0.17, 0.21] 

N = 610 all grooming dyads, Gamma distributed errors with log link; N = 449 female-focused dyads, Gamma 

errors with log link; N = 222 male-focused dyads, Gaussian errors with log link 

*Betas, SE, and 95% confidence interval values averaged over 1000 random assignments of partner IDs to random 
effects. 
**Betas and 95% CIs in bold when effect significant. 
*** Type of link function chosen to allow parameter estimates to converge. 
†Parameters estimated with an inverse link function, i.e. negative estimates indicate a positive effect of the predictor on 
the response. 
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Table S3.7. Repeatabilities (intra-class correlations, R) of inter-individual differences in 

juvenile social behavior. N = 162 observations, 41 subjects, 3 social groups. Group and subject 

included as random effects. 

Behavior R se CI* P(R > null)** 

% Time playing 0.05 0.05 [0,0.17] 0.3 

% Time in 

proximity or 

contact 

0 0.03 [0,0.11] 0.57 

% Time 

grooming 

0.04 0.05 [0,0.15] 0.28 

Number 

partners play 

0.06 0.07 [0,0.22] 0.1 

Number 

partners in 

proximity or 

0 0.03 [0,0.11] 0.39 

Number 

grooming 

partners 

0.07 0.05 [0,0.16] 0.04 

Rate agonism 

given 

0.25 0.1 [0.02,0.43] 0 

Rate agonism 

received 

0.23 0.1 [0.03,0.41] 0 

*95% CI based on 1000 bootstraps without replacement 
** null R distribution based on 1000 permutations of observation matrix. 
 
 
 

 
Figure S3.1. Seasonal variation in A) group homerange-specific availability of ripe fruit 

and B) total rainfall by observation period.
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Figure S3.2. Juveniles’ time spent in a given activity per observation period, averaged 

over N = 40-41 subjects per period. 
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Chapter 4: Socio-ecological correlates of allostatic load during development in an 

Old World monkey. 

Introduction 

 Overt affiliation, such as social grooming and play, evolved among group-living 

animals for several reasons, including navigating competition and accessing resources 

(Cords & Thompson, 2017; Chap. 1). Once the tendency to form social ties then evolved, 

ties became able to decrease individual allostatic load, or the cost of maintaining 

homeostasis through predictable and unpredictable environmental change (Romero et al., 

2009). Mediators of homeostasis, including hormones and behavior, vary in circadian and 

seasonal rhythms and according to life history state, however additional challenges 

related to food availability, temperature, exposure to predators, and social environment 

can alter levels of allostatic mediators in a “stress response” (Reeder & Kramer, 2005; 

Romero, 2002). While challenges to homeostasis can vary by life stage, most studies of 

allostasis (and its behavioral mediators) in wild populations have focused on adults, with 

effects of age explored primarily during infancy or senescence (Reeder & Kramer, 2005). 

Juvenile individuals, which are neither dependent on parental care nor yet reproductively 

active (Pereira & Fairbanks, 2003), have been largely overlooked, leaving a deficit in our 

understanding of the links between socioecology and allostatic load during this important 

life stage. 

 Juveniles are particularly vulnerable to social competition from older and larger 

individuals (Pereira & Fairbanks, 2003; Stanton et al., 2011). Simultaneously, because 

they dedicate energy to physical growth and development, they are more vulnerable to 

the negative effects of food shortage (Douhard et al., 2014). Catch-up growth to 
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compensate for nutritional deficiencies during episodes of food scarcity can increase 

individuals’ exposure to predators during foraging, disrupt cell function, and advance the 

deterioration of telomeres (Metcalfe & Monaghan, 2001). In baboons, for example, 

females have shorter lifespans if they experience a combination of poor social and 

nutritional conditions during development, such as early maternal loss, competing 

siblings, and drought during the first year of life (Altmann, 1991; Tung et al., 2016). 

 A commonly measured mediator of allostatic load is circulating levels of 

glucocorticoids (GCs, Romero et al., 2009), which are released into the bloodstream to 

mobilize energy and inhibit bodily maintenance that is not immediately essential for 

survival (Sapolsky et al., 2000).  

Because of their metabolic function, elevated GC levels can indicate energetic 

challenges, or stressors, in the environment. If individuals sustain GC levels higher than 

those within their “reactive scope,” their physiological systems can succumb to “wear 

and tear” (Romero et al., 2009), with effects on cardiovascular health, fertility, and 

memory (Sapolsky et al. 2000). Whether such “chronic” elevations of GCs directly 

reduce fitness, or even regularly occur in wild-living animals, is not clear (Beehner & 

Bergman, 2017; Boonstra, 2013), however elevated GCs in tandem with food shortages 

may signal that individuals are vulnerable to disease or death (Bonier et al., 2009; Pride, 

2005; Wilkening & Ray, 2016).  

 Food shortages can lead individuals into negative energy balance and, in several 

vertebrates, cause increased glucocorticoid secretion to mobilize energy for foraging and 

bodily maintenance (Bonier et al. 2009). A food shortage associated with an El Niño 

event caused iguanas in the Galapagos to lose body mass, which after crossing a certain 
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threshold, led to large spikes in GCs (Romero & Wikelski, 2001). Iguanas with the 

highest GCs were most likely to die during the year. Food shortage during periods of 

great energetic demand, such as reproduction, can lead to pronounced energetic 

deficiencies. In wild kittiwakes, a decrease in fish abundance corresponded with an 

increase in GCs (Kitaysky, Piatt, & Wingfield, 2007), and reproductive females with 

higher GCs had lower annual reproductive success and a higher probability of 

disappearing. In blue monkeys, females undergoing the energetically costly process of 

lactating had higher GCs if they were lower ranking, indicating their energetic deficiency 

(Foerster et al., 2011). Although dominance rank does not influence female blue monkeys 

ability to conceive (Roberts & Cords, 2013), it is possible that higher energetic stress 

during lactation affects fitness by influencing the life history trajectory of offspring 

(Berghänel, Heistermann, Schülke, & Ostner, 2016; Douhard et al., 2014). 

 Energy balance is defined by the rate of energy intake minus the rate of energy 

expenditure (Hall et al., 2012). It is difficult to calculate precisely for wild animals. 

Specifically, measuring expenditure requires administering doubly labeled water and 

measuring intake requires records of all items consumed and their caloric content. 

Biomarkers such as insulin can often adequately represent energy balance, as insulin 

secretion may correspond with changes in body mass (Deschner, Kratzsch, & Hohmann, 

2008; Girard-Buttoz et al., 2011) and signals energy balance to the brain (Emery 

Thompson, 2016). C-peptide of insulin (hereafter, CP) is produced on an equimolar basis 

to insulin after the cleavage of pro-insulin (Norman & Litwack, 1997).  Because CP is 

excreted in urine, its levels can be quantified relatively easily (and non-invasively) in 

wild animals (Emery Thompson & Knott, 2008; Emery Thompson, Muller, Kahlenberg, 
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& Wrangham, 2010; Emery Thompson, Muller, Wrangham, Lwanga, & Potts, 2009; 

Higham, Heistermann, & Maestripieri, 2011). It is therefore a useful biomarker to assess 

whether allostatic load derives from negative energy balance. 

 While the physical environment presents several challenges, such as food shortages, 

social relationships can help individuals avoid or cope with them. For example, grooming 

may increase tolerance while co-feeding in adult female baboons (King et al., 2011) and 

in adult Barbary macaques and vervets, the number of affiliative ties may shelter 

individuals from cold temperatures (Lehmann et al., 2016; McFarland et al., 2015). 

Social ties can also moderate challenges presented by the social environment itself, such 

as competition for food or mates. For instance, adult females that affiliate with other 

females more frequently (e.g. horses) or maintain strong bonds with the opposite sex (e.g. 

Assamese macaques) may avoid sexual harassment from males (Cameron et al., 2009; 

Haunhorst et al., 2017). 

 Social ties can not only prevent the experience of stressors such as harassment and 

cold, but also correspond with, and modify, GC levels when ties contribute to stability in 

the social environment (Gunnar, 2017; Hennessy, Kaiser, & Sachser, 2009). In several 

primates, GC levels are higher in low-ranking adult animals when low-rank corresponds 

with fewer opportunities for grooming, social contact, alliances, and unpredictable receipt 

of aggression (Abbott et al., 2003).  Close affiliates may buffer the experience of 

stressors because they are more consistently available for socio-positive contact (female 

baboons Silk, Alberts, et al., 2006), which may stimulate the release of oxytocin, an 

anxiolytic that likely inhibits HPA axis reactivity (Heinrichs, Baumgartner, Kirschbaum, 

& Ehlert, 2003). For example, among adult male Barbary macaques that frequently 
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experienced aggression, those that affiliated more intensely with their closest partners had 

lower baseline GC levels than males with weaker bonds to top partners (Young, Majolo, 

Heistermann, Schülke, & Ostner, 2014). In blue monkeys, grooming behavior moderates 

adult females’ GC levels, which are likely energetically driven (Foerster et al., 2011). 

GCs can also be elevated among individuals that experience a relative lack of social 

contact, such as in baboons where both males and females experience higher GC levels 

when socially isolated (Sapolsky et al., 1997; Seyfarth, Silk, & Cheney, 2012). 

 Very few studies have examined the influence of the social environment on the GC 

levels of juvenile non-human animals (Gust, Gordon, Brodie, & McClure, 1996; 

Hennessy et al., 2009; Mustoe et al., 2014; Stoewe et al., 2008). To my knowledge, only 

Seabloom, Iverson, and Turner (1978) conducted such a study in wild animals (meadow 

voles), and even so, the influence of social environment was assessed only indirectly as a 

part of seasonal variation. Captive studies suggest that juveniles can maintain lower GC 

levels if they have even a single familiar social partner during stressful events (i.e. 

experimental transfer to a new social group, rhesus macaques, Gust et al., 1996), or by 

engaging in social play (marmosets, Mustoe et al., 2014). In contrast, post-fledgling 

ravens had higher GC levels the more time they spent associating and allopreening with 

partners (Stoewe et al., 2008). Social styles or strategies, more broadly measured by 

several pro- and anti-social behavioral variables, can also relate to GC levels. Anestis 

(2005) examined the relationship between juvenile chimpanzees’ social style and baseline 

GCs. Contrary to predictions, she found that “smart” juveniles (i.e. those that received 

grooming, had play partners, and used coalitions) and “aggressive” juveniles (i.e. those 

that frequently initiated aggression and had several coalition partners) both had higher 
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GC levels than less “smart” or “aggressive” juveniles. Her results suggest that juveniles 

may actually bear some physiological cost when actively navigating the adult social 

environment. 

I explore the links between socioecology and allostatic load in juvenile blue 

monkeys. Blue monkeys are gregarious, group-living primates that live in a habitat with 

seasonal fluctuations in both fruit availability and rainfall (Mitchell, 2009; Pazol & 

Cords, 2005), which are known to correspond with variation in glucocorticoid levels 

among adult females (Foerster et al., 2011, 2012). Juvenile blue monkeys also face 

challenges that are likely representative of those faced by developing individuals more 

broadly. Juveniles receive more agonism than do adult females (Cords et al., 2010; Chap. 

3) and have a wider range of annual mortalities, which are possibly related to variation in 

food availability and predation (Cords & Chowdhury, 2010). Further, blue monkeys have 

particularly long developmental periods, which permits a broader exploration of how 

homeostatic challenges and social behavior can co-vary during development. To my 

knowledge, this is the first study of the homeostatic challenges and possible coping 

strategies of juveniles in a wild primate.  

The goals of this study were twofold. I first aimed to understand how juveniles’ 

energy balance varied according to their life history status (i.e. their age, sex, and 

maternal dominance rank) and their physical environment (local fruit availability and 

rainfall). I predicted that the availability of ripe fruit would be the strongest driver of 

energy balance among juveniles. I also predicted that maternal dominance rank would 

have a weak or negligible influence on energy balance, as it only affected adult females’ 

energetic stress in rare situations (Foerster et al., 2011). Second, I wished to understand 
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how life history variables, energy balance, and social strategy influenced GC levels, or 

allostatic load. As a part of this aim, I characterized juvenile social strategies according to 

an exploratory principle components analysis and examined the life history, 

demographic, and seasonal correlates of such strategies. I predicted that energy balance 

would decrease GC levels, as seen in adult females of this species (Foerster et al., 2011, 

2012). I also predicted that social strategies involving positive social contact, such as 

social play or grooming, would lower GC levels and have a buffering effect in helping 

juveniles overcome ecological challenges such as variable energy balance.  

 

Methods 

Study site and population 

The wild study population inhabits the Isecheno area of Kakamega Forest in 

western Kenya (0˚19´ N, 34˚52´ E; elevation 1580 m, mean annual rainfall 1997–2011 

1942 mm; (Mitchell, 2009). We collected data on 41 juveniles (22 males, 19 females, 

mean age 4.4 ± 1.7 yrs) for 8 months (August 2015 – March 2016). Subjects lived in 3 

social groups that neighbored one another (average group size: 37 – 65 individuals; 

average juveniles per group: 16 – 31), and male juveniles of neighboring groups often 

interacted with one another. Subjects were individually identifiable by their natural, 

physical variation. Subjects’ ages were known from precise, long-term demographic 

records of the study population (Cords, 2012). A team of 4 observers, including author 

NAT, collected all behavioral and biomarker samples after a 2-month training period to 

ensure inter-observer agreement in behavioral coding. 
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Fecal and urine sample collection and fecal glucocorticoid (fGC) and urinary C-peptide 

(uCP) analysis  

 We collected fecal and urine samples ad libitum between 07:30 and 17:00, 

immediately after observing excretion from identified subjects. For fecal samples, we 

homogenized the whole sample and placed ca. 1 g of feces, uncontaminated with dirt, 

urine or other feces, with a stick and stored it in 1.5 to 15 ml plastic tubes. We pipetted 

urine from leaves or other substrates that were uncontaminated with dirt, feces, or urine 

from other animals, and stored samples in 1.5 ml polypropylene tubes. Urine and fecal 

samples were immediately placed in field thermoses with ice packs until they were 

returned to a -20ºC freezer < 4 hours later. Samples remained frozen and in the dark until 

they were shipped to the USA on ice and transferred to a -20ºC freezer at New York 

University, where they remained frozen until further processing. In total, we collected 

627 fecal and 612 urine samples, averaging 15.3 ± 2.1 fecal and 15.0 ± 2.4 urine samples 

per subject. 

I extracted glucocorticoid metabolites from feces following the protocol of 

Heistermann et al. (1995) and Palme, Touma, Arias, Dominchin, and Lepschy (2013) at 

the Anthropology Department of New York University. I lyophilized and pulverized 

samples and extracted an aliquot of ca. 0.05 – 0.1 grams (exact weights recorded) of fecal 

powder into 3 ml of 80% methanol in water by vortexing for 15 min. Following 

centrifugation (2000 g, 20 min) of the fecal suspension, I removed 1 ml of the resulting 

supernatant and stored it at -20ºC until hormone analysis.  

 I assayed fecal extracts for concentrations of cortisol metabolites at the German 
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Primate Center using an enzyme immunoassay (EIA) for immunoreactive 11ß-

hydroxyetiocholanolone, a group-specific assay for the measurement of 5-reduced 

3α,11ß-dihydroxylated cortisol metabolites which represent a major and quantitatively 

abundant portion of metabolites of cortisol in the feces of primates and other mammals 

(e.g. Heistermann et al. 2006; Ostner et al. 2008; Shutt et al., 2012; Ganswindt et al., 

2003; Braga Goncalves et al. 2016). This assay has previously been validated and shown 

to reliably track changes in glucocorticoid output in several mammal species (e.g. Palme 

and Möstl, 1997; Braga Goncalves et al. 2016; Ganswindt et al., 2003), including 

numerous primate species of all major taxa (i.e. lemurs, South American primates, Old 

World monkeys and great apes; Heistermann et al. 2006; Fichtel et al. 2007; Hämälainen 

et al., 2014; Heistermann et al., 2004; Ostner et al. 2008; Pirovino et al., 2013; Weingrill 

et al., 2011; Shutt et al., 2012; Wheeler et al., 2013; Rimbach et al., 2013; Kalbitzer et al., 

2015), indicating its outstanding versatility for assessing adrenocortical activity across 

the primate order. The 11ß-hydroxyetiocholanolone EIA has also been shown to 

generally present enhanced biological sensitivity when compared to more specific fGC 

assays designed to measure cortisol or corticosterone, making this assay generally 

superior over most other fGC assays for assessing glucocorticoid output from fecal 

samples (e.g. Shutt et al., 2012; Heistermann et al.; 2006; Fichtel et al., 2007; Weingrill et 

al., 2011; Hämälainen et al., 2014; Braga Goncalves et al, 2016; but see Wheeler et al., 

2013). 

 The assay was carried out as described in detail by Heistermann et al. (2004). Prior 

to assay, samples were diluted at 1: 80 or 1:800 (depending on concentration) in assay 

buffer (0.04 M PBS, pH 7.2) to bring hormone concentrations into the working range of 
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the assay. Sensitivity of the assay at 90% binding was 0.6 pg. Serial dilutions of fecal 

extracts from samples of different animals gave displacement curves that were parallel to 

the 11ß-hydroxyetiocholanolone standard curve. Inter-assay coefficients of variation 

(CV), assessed by replicate determinations of high- and low-value quality controls run in 

each assay, were 8.9% (high, N = 42 wells) and 11.9% (low, N = 42) and intra-assay CVs 

were 3.9% (high; N = 20 plates) and 6.0% (low, N = 20). All hormone concentrations are 

expressed as mass hormone per fecal dry mass. 

 I assayed urinary C-peptide of insulin (uCP) by radioimmunoassay (RIA) using a 

Merck Millipore RIA kit for human C-Peptide in the Anthropology Department at 

Rutgers University. The C-peptide molecule is extremely well conserved among 

mammals (Peterson, Nehrlich, Oyer, & Steiner, 1972) and C-peptide in blue monkey 

samples dilutes in parallel when using Merck Millipore kits (Michelle Brown, personal 

communication). Prior to assay, samples were diluted at 1:2 or 1:20, depending on 

concentration. Inter-assay coefficients of variation of high- and low-value quality 

controls were 5.1 (high) and 7.3 (low, N = 9 batches), and average intra-assay coefficient 

of variation was 4.4% (N = 666 CVs including samples, standards, and controls). I 

standardized uCP concentrations by samples’ specific gravity, measured by an Atago 

handheld refractometer, following Miller et al. (2004). To control for variable water 

content of urine samples, the uCPs in a given sample were multiplied by the average 

specific gravity of all samples divided by the specific gravity of the given sample (Miller 

et al., 2004).  

 Concentrations of fGCs per sample did not vary by hour of collection during the 

day, however uCP concentrations did decrease with time of day (linear mixed effects 
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regression on log uCP levels, subject ID as random effect, N = 612, ß = -0.1, p = 0.007; 

Fig. S4.1). I did not include group as a random effect when modeling time-effects on uCP 

levels because it decreased model fit according to a ∆AIC > 2. I therefore calculated uCP 

baselines by averaging the residuals of log uCP levels vs. time of day (Emery Thompson 

et al., 2010). To focus on variation in fGCs driven by socio-ecological factors rather than 

inter-individual differences in baseline levels, I expressed each sample concentration in 

terms of its deviation from the subject’s 8-month baseline and then averaged individuals’ 

deviations from baseline for each 2-month observation period (see Behavioral data 

collection and analysis). As 3 pairs of fecal and 2 pairs of urine samples were collected 

from the same subject on the same day, I averaged the fGCs and uCP residuals for each 

pair, yielding a total of N = 623 fGC and N = 610 uCP values, and overall N = 160 

subject-period average deviations in fGCs and N = 156 subject-period average uCP 

residuals. 

 

Behavioral data collection and analysis 

 My team conducted 20-min focal follows in which we recorded a focal subject’s 

activity (e.g. resting, grooming, playing, feeding, moving) at 1 min intervals (i.e. point 

samples) and recorded the identities of social partners and of neighbors resting within 1 

m of and in contact (but not grooming) with the subject and food item if feeding (e.g. 

fruit, leaves, insects). We recorded whether a subject self-scratched or self-groomed 

during a given minute as a 0-1 occurrence. During a follow, we continuously recorded the 

occurrence of affiliative approaches (an individual arriving and remaining within 1 m) 

and agonistic behavior (aggressive threats, lunges, growls, contact, and approach-retreat 
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interactions), and social partners in either scenario. Focal follows occurred between 07:30 

and 17:00, and we chose focal subjects throughout the day to maintain even numbers of 

follows each week per subject, and per day-period (i.e. morning, midday and afternoon). 

We collected a total of 1591 hours of behavioral data, averaging 39 ± 3.1 hrs per subject.   

 I divided the study into four 2-month periods (e.g. Aug 1st – Sept. 31st), for which I 

calculated all social variables and baseline (average) biomarker concentrations. Two 

months of observation (mean: 9.8 ± 1.2 hrs/subject) were conservatively representative of 

regular numbers of social partners, as preliminary data revealed that grooming and play 

partner numbers do not plateau for all subjects before 4 hours of observation. Further, 2 

months allowed us to collect enough fecal and urine samples per subject to establish 

minimally sufficient average biomarker concentrations (mean 3.9 ± 0.9 fecal and 4.0 ± 

1.0 urine samples/subject/period). 

From point samples, I calculated the proportion of each subject’s observation time 

per period that was spent in a given activity (e.g. grooming, playing, resting).  I pooled 

focal data to calculate each subject’s number of affiliative partners (i.e. neighbors during 

resting, groomers and groomees, and play partners) and standardized them relative to the 

average amount of observation time it shared with other members of the study 

population. I calculated subjects’ tie or bond strength using a dyadic sociality index (DSI 

as in Silk et al., 2013). The DSI included dyadic time spent grooming, resting within 1 m 

without grooming one another, sitting in contact without grooming, and their hourly rate 

of approaches. I included these types of behavior in a DSI because they were positively 

correlated among dyads within groups for each period (QAP matrix correlation with 

double Dekker semi-partialling technique, using function “netlm” in R package “sna”, 
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Table S4.1; Dekker et al., 2007) . The only type of affiliative behavior that did not 

consistently correlate positively with other types of affiliation was play (Table S4.1), 

therefore, I calculated a separate measure of the amount of play with closest partners. To 

calculate affiliative tie strength, I averaged DSIs over each subject’s closest 3 partners, 

excluding its mother, as ties with mothers are disproportionately strong relative to non-

mothers among all juveniles (Cords et al., 2010). For play tie strength, I similarly 

averaged dyadic time spent playing among a subject’s top 3 partners. I calculated 

subjects’ rates of agonism given and received per hour of shared observation time from 

continuously recorded events during focal follows, pooled among subjects. Lastly, I 

calculated the proportion of minutes observed in which a subject self-scratched or self-

groomed. 

To characterize juveniles’ social strategies concisely, I entered behavioral 

variables in a principal components analysis (function “princomp” in R “base” package). 

I tested for sampling adequacy of all variables using a Kaiser-Meyer-Olkin test and for 

adequate correlations between variables using Bartlett’s test (Budaev, 2010). I chose the 

number of components to retain (3) based on Kaiser’s rule, a scree test, and parallel 

analysis with 1000 iterations using the function “paran” in the R “paran” package (Dinno 

& Dinno, 2010; Zwick & Velicer, 1986). I chose not to rotate components after retaining 

them because rotation did not increase components’ interpretability (Jolliffe, 2002).  

For each 2-month period (e.g. Aug – Sep, Oct – Nov), I calculated subjects’ ages 

using the mid-date of the period. I used mothers’ dominance rank to represent juvenile 

dominance relations because offspring appear to inherit mothers’ rankings in blue 

monkeys (Klass & Cords, 2015). Maternal dominance rank was calculated based on 
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decided winner-loser interactions either from data collated over the study period if 

mothers were still alive, or over the mother’s last year of life, using the I&SI method in 

DomiCalc (Schmid & de Vries, 2013). Dominance rank ranged from 0 –1 representing 

the proportion of co-resident adult females that a mother outranked. I counted subjects’ 

maternal kin present in the social group based on known pedigrees, where maternal aunts 

and nieces (r = 0.125) were the most distant relations included. 

Fruit availability 

 I calculated a fruit availability index (FAI) using data from monthly plant 

phenological surveys of 36 major food species (consistently constituting > 0.05% of 

annual adult feeding time) and their basal areas in 44 group-specific transects (N = 13 

10m x 100 m transects, group 1; N = 6 transects, group 2; N = 9 transects, group 3), 

which represented approximately 10% of each group’s home range area. A field assistant 

collected data on ca. 10 focal trees of each food species, recording each as fruiting or 

non-fruiting, and for fruiting trees, counting number of fruits (twice, to check for 

accuracy) on a log scale (e.g. 100–399, 400–699, 700–1000) and estimated percentage of 

ripe fruit to the nearest 25%. Not all focal trees designated as “fruiting” received a fruit 

count, therefore I averaged number of ripe fruits among trees that received counts and 

assigned that average to all fruiting trees. I then calculated the average number of ripe 

fruits across all focal trees of a given species (fruiting or not fruiting). To calculate group-

specific FAIs, I summed the products of the average mid-point estimate of number of ripe 

fruits per fruit-tree species and each species’ average basal area among group-specific 

transects. I calculated average daily rainfall per period using daily rainfall data collected 

by local Kenya Forest Service staff.  
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Statistical analysis 

I first examined how ecological (fruit availability, rainfall) and life history 

variables (age, sex, maternal dominance rank) influenced energy balance as measured by 

uCP. Because of an unexpected sex difference in uCP levels, I ran a follow-up model to 

assess potential sex differences in percentage time feeding on fruit (blue monkeys’ main 

source of calories, Takahashi in prep.). I also assessed how life history and ecological 

variables predicted scores on PCs 1 – 3. For both analyses I used linear mixed effects 

regressions using the “lmer” function in the R package “lme4” (Bates et al., 2014). I 

included only subject as a random effect in modeling uCP levels, as including social 

group as a random effect decreased model fit (∆AIC > 2). For models of PC scores, I 

nested subject in group as random effects, as including group generally increased models’ 

fit (PC1 ∆AIC = 1.46; PC2 ∆AIC = 9.86; PC3 ∆AIC = 12.12). To then understand social, 

life history, and ecological influences on fGC levels, I again used a linear mixed effects 

model that included the three retained principal components, age, sex, maternal 

dominance rank, and uCP levels as fixed effects. I included social group alone as a 

random effect, because the random effect of “subject” no longer improved model fit 

when fGCs were expressed as deviations from individual baseline (AIC model with RE 

subject = 472, AICc model without RE subject = 470). 

I standardized predictors according to their mean and standard deviation for 

interpretability and standardized response variables to adjust for their scales (Schielzeth, 

2010). I assessed collinearity of fixed effects via their variance inflation factors, using the 

“vif.mer” function in R (Frank, 2014) and confirmed normality of model residuals using 
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Q-Q plots. I considered a predictor’s influence on an outcome variable to be significant if 

the 95% confidence interval of its parameter estimate did not include zero (Nakagawa & 

Cuthill, 2007). Because scores on the first principal component of behavioral variables 

significantly influenced fGCs, I created two post-hoc models to test how percentage of 

time grooming and playing (i.e. the two variables that loaded most strongly yet in 

opposite directions on PC1) corresponded to fGC levels. I then used these two variables 

to further assess whether social ties buffer the effect of energy balance on fGC levels, 

testing the interaction between energy balance and percentage of time grooming or 

playing. Because percentage time grooming moderated the effect of energy balance on 

fGCs in an unexpected way, I further hypothesized that individuals spending the most 

time grooming could be grooming with riskier social partners. To compare whether time 

spent grooming kin vs. non-kin differed for juveniles according to how much grooming 

they participated in, I used a linear mixed effects model, where the response was 

subjects’ percentage of time spent grooming (separately for kin and non-kin partners) per 

period. I then predicted percentage time spent grooming according to the categorical 

variable of grooming quartile and kin or non-kin groom partner (e.g. groom quartile 4 – 

non-kin, see Fig. 4.3C), resetting the reference class to compare time grooming with kin 

vs. non-kin within each quartile. Subject ID nested in group ID were random effects. 

 

Results 

Influences on energy balance measured by uCP 

 Energy balance as measured by uCP levels was less positive in males than females 

(linear mixed model, ß = - 0.15, 95% CI = - 0.28 – - 0.02, N =156,) and was very nearly 
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higher as subjects grew older (ß = 0.06, 95% CI = - 0.01 – 0.12; Fig. 4.1A,B, Table S4.2). 

Juveniles entered into a more positive energy balance as ripe fruit became more available 

in their home range (ß = 0.15, 95% CI = 0.08 – 0.22, Fig. 4.1A,C) and a less positive 

energy balance with higher average daily rainfall (ß = - 0.1, 95% CI = - 0.17 – - 0.04, Fig. 

4.1A,D). Although ripe fruit availability roughly corresponded with less rainfall across 

the four periods, these variables did not mirror one another (Chap. 3, Fig. S3.1), and 

including them in a single model did not introduce problems of collinearity (maximum 

VIF in model was 1.08). Fruit availability and rainfall therefore likely contributed 

independent effects to individual uCP levels. Although male uCP levels were lower than 

those in females, males did not spend significantly less time feeding on fruit than females 

did (linear mixed model of % Time feeding on fruit, subject as random effect, ß sex 

(male) = 0.09, 95% CI -1.4 –1.58). uCP levels were not related to maternal dominance 

rank. 
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Figure 4.1. Influences on juvenile uCP levels. A) Effects of standardized predictors on 

subject uCP levels in linear mixed model. Point is restricted maximum likelihood 

estimated coefficient. Thick and thin lines represent 50 and 95% confidence intervals, 

respectively. Dashed vertical line indicates a parameter estimate of zero. * 95% CI does 

not include zero. Variation in average uCP residuals by B) sex, C) fruit availability index, 

D) average daily rainfall. Trend lines added with simple linear regression. 
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Social strategies: Behavioral variables and principal components 

 All variables had appropriate sampling adequacy for PCA (Kaiser-Meyer-Olkin test, 

min measure of sampling adequacy (MSA) = 0.57, overall MSA = 0.72; Dziuban & 

Shirky, 1974). Correlations between variables were also appropriately strong for PCA 

(Bartlett’s test, χ2(45)=601.64 p < 0.0001). Both Kaiser’s rule and parallel analysis 

indicated that retaining the top 3 PCs was appropriate and these collectively explained 

65% of variance in behavioral measures (Table 4.1.). 

 I characterized each component according to the patterns by which variables loaded 

on it. Grooming and play measures both loaded strongly on PC1, however in opposite 

directions (Table 4.1). This led us to characterize PC1 as the groomer vs. player 

component. Number of play partners, number of neighbors while resting, and both 

agonism given and received loaded strongly on PC2.  Variables loading weakly or in the 

opposite direction of tie number and involvement in agonism included time spent 

grooming and rates of self-directed behavior, which either do not require a diversity of 

partners (time grooming) or are largely done solitarily (self-directed behavior). Indeed, 

89% of self-directed behavior occurred when subjects were resting and not within 1 m or 

in contact with neighbors. Given this pattern of loadings, I characterized PC2 as social vs. 

solitary. Of the several variables that loaded strongly on PC3, only agonism given loaded 

positively. Variables that loaded negatively were socio-positive (e.g. play and affiliative 

bonds) or solitary (self-directed behavior), leading us to characterize PC3 as aggressive 

vs. peaceful. 
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Table 4.1. Loadings of behavioral variables on top 3 principal components (A) and 

coefficients of life history and ecological variables predicting scores on components (B). 

Component loadings |x| > 0.40 shaded grey. Significant predictors of PC scores in bold. 

N = 162 subject-periods. 

A) 

Behavioral 

variable 

 

 

PC1 

Groomer vs. Player 

 

PC2 

Social vs. Solitary 

PC3 

Aggressive vs. 

Peaceful 

Variation 

explained by 

component 

35% 17% 13% 

% Time playing -0.41 0.23 -0.3 

# Play partners1
 -0.37 0.38 -0.09 

Mean top play 

bond 
-0.34 0.17 -0.35 

% Time grooming 0.43 -0.04 -0.3 

# Groom 

partners1 
0.43 0.25 -0.22 

Mean top 

affiliative bond 
0.35 0.13 -0.44 

# Neighborsa 0.21 0.56 -0.05 

Agonism received2 0 0.43 0.13 

Agonism given2 0.04 0.44 0.43 

Rate of self-

directed behavior 
-0.2 -0.09 -0.49 

B) 

Predictor of PC 

score 

 

ß  95% CI ß  95% CI ß  95% CI 

Sex (M) -2.65 [-3.09, -2.2] 0.28 [-0.13, 0.69] 0.34 [-0.02, 0.7] 

Age 0.38 [0.16, 0.61] 0.24 [0.03, 0.46] 0.00 [-0.18, 0.2] 

Number maternal 

kin 
0.11 [-0.13, 0.40] -0.13 [-0.35, 0.12] -0.04 [-0.25, 0.17] 

Maternal rank 0.09 [-0.15, 0.31] 0.12 [-0.10, 0.33] 0.16 [-0.02, 0.35] 

FAI -0.25 [-0.41, -0.10] -0.22 [-0.38, -0.05] -0.07 [-0.22, 0.08] 

Rainfall 0.28 [0.12, 0.44] -0.42 [-0.58, -0.25] 0.06 [-0.09, 0.21] 
1 # partners (relative to shared observation time) per subject-period; 2 rates per hour of shared observation 

time 
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 Juvenile scores on PCs 1 and 2 varied according to different life history and 

ecological variables (Table 4.1). Scores on PC1 were lower in males relative to females, 

indicating that males were generally less involved in grooming and non-play affiliation 

and relatively more involved in play than females. Older individuals were more likely to 

have higher scores on PC1, and thereby were more involved in grooming-related 

affiliation and less involved in play. Scores on PC1 decreased (less grooming, more play) 

when ripe fruit was less available and increased with greater rainfall. Juveniles had higher 

scores on PC2 as they aged, indicating that older juveniles had a higher number of social 

partners and higher involvement in agonism. Scores on PC2 decreased (fewer social 

partners, less agonism) with both fruit availability and rainfall. Scores on PC3, related to 

giving agonism vs. engaging in peaceful social or asocial activities, did not vary 

according to life history or ecological variables. The maximum VIF in all models was 

1.13. 

Influences on allostatic load  

 Subjects’ average deviation in fGC concentrations varied according to their scores 

on the grooming vs. playing component (PC1) and their energy balance. fGCs increased 

among subjects that groomed more and played less (i.e. higher score on PC1, ß = 0.15, 

95% CI 0.03 – 0.28, N = 155; Fig. 4.2A, B, Table S4.3) and decreased when subjects had 

a more positive energy balance (ß = - 0.17, 95% CI -0.33 – -0.013; Fig. 4.2A,C). Subjects’ 

scores on social vs. solitary (PC2) and aggressive vs. peaceful (PC3) components did not 

relate to fGCs, nor did their age, sex, or maternal rank. All VIFs were < 2.5, with highest 

values of 2.37 (PC1) and 2.40 (sex), demonstrating a relationship between grooming-

related affiliation, play, and sex. FGC concentrations did not vary significantly by group, 
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when group ID was tested as a fixed effect (linear model, CIs of all between-group 

contrasts contain 0). 

 

 Figure 4.2. Influence on juvenile fGC levels. A) Effects of standardized predictors on 

subject fGC levels. Point is restricted maximum likelihood estimated coefficient. Thick 

and thin lines represent 50 and 95% confidence intervals, respectively. Dashed vertical 

line indicates a parameter estimate of zero. *95% CI does not include zero. Variation in 

fGCs by B) scores on PC1, C) average uCP residual. Trend lines added with simple linear 

regression. 

 Although PCAs conducted separately on male- and female-only datasets also 

revealed first principal components in which time spent grooming and time spent playing 

loaded most strongly and in opposite directions, the effect of sex-specific PC1 (and any 

sex-specific PC) on fGCs did not reach significance in models separated by sex (linear 
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mixed model, Male PC1 95% CI -0.01 – 0.25, Female PC1 95% CI -0.24 – 0.01). 

Nevertheless, the influence of scores on the sex-specific PC1s on fGC levels were in the 

same direction as the first PC that included both sexes, with time playing loading 

positively and grooming loading negatively on the female-specific PC1 (Female PC1 ß = 

- 0.11), and time grooming loading positively and time playing loading negative on male-

specific PC1 (Male PC1 ß = 0.12). Sampling adequacy according to a KMO test reached 

criteria for females (min MSA = 0.64, overall MSA = 0.72), but was weak for males (min 

MSA = 0.47, overall MSA = 0.57), suggesting that the lack of a significant effect of PC1 

on fGCs within each sex may have resulted from limited statistical power. 

 The influence of PC1 on fGCs was driven by both the positive influence of 

percentage time grooming on fGCs and the negative influence of percentage time playing 

on fGCs (Table 4.2). Play behavior did not moderate the negative relationship of energy 

balance on fGCs, but grooming behavior did. Surprisingly, energy balance had an 

increasingly positive influence on fGCs as time spent grooming increased (Table 4.2). 

Biologically, increasing energy balance should not increase HPA activity (Sapolsky et al., 

2000). Therefore one might best express this interaction as the more positive a juvenile’s 

energy balance, the more strongly its grooming positively corresponded with fGCs (Fig. 

4.3A). Indeed, it appeared that juveniles that spent the greatest amount of time giving and 

receiving grooming were those that were mostly likely to have a positive relationship 

between energy balance and fGCs (Fig. 4.3B). I found that individuals in the top 

grooming quartile spent significantly more time grooming non-kin vs. kin, though there 

were no differences in grooming non-kin vs. kin among subjects in other quartiles (Fig. 

4.3C, Table S4.4). 
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Table 4.2. Effects on fGCs of % time grooming and % time playing, the variables 

loading most strongly on PC1, and their interactions with energy balance in linear mixed 

effect models. Significant effects in bold. N = 155 subject-periods. 

Response 

variable 
Predictor variables ß 95% CI 

 

fGCs 

 

% Time grooming 

 

0.23 

 

0.035, 0.43 

 Sex (M) 0.26 -0.13, 0.64 

 Age -0.03 -0.18, 0.13 

 Maternal rank 0.03 -0.12, 0.19 

 Energy balance -0.18 -0.34, -0.02 

 

fGCs 

 

% Time grooming 

 

0.27 

 

0.07, 0.46 

 Sex (M) 0.29 -0.09, 0.67 

 Age -0.05 -0.20, 0.11 

 Maternal rank 0.05 -0.10, 0.20 

 Energy balance -0.19 -0.34, -0.03 

 
% Time grooming 

*Energy balance 
0.19 0.05, 0.33 

 

fGCs 

 

% Time playing 

 

-0.21 

 

-0.39, -0.03 

 Sex (M) 0.20 -0.16, 0.56 

 Age -0.001 -0.16, 0.15 

 Maternal rank 0.022 -0.13, 0.18 

 Energy balance -0.18 -0.34, -0.02 

 

fGCs 

 

% Time playing 

 

-0.22 

 

-0.40, -0.04 

 Sex (M) 0.21 -0.15, 0.57 

 Age -0.003 -0.16, 0.15 

 Maternal rank 0.03 -0.13, 0.18 

 Energy balance -0.19 -0.35, -0.03 

 
% Time playing *Energy 

balance 
-0.05 -0.22, 0.12 
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Figure 4.3. Exploring effects of time grooming. A) Conditional coefficient of uCP levels 

on fGCs as % time grooming varies. Predictors unstandardized. B) fGC levels on uCP 

levels by quartiles of % time grooming. C) % Time grooming kin vs. non-kin among 

subjects in each grooming quartile (significant difference for top quartile). 
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Discussion 

 In juvenile blue monkeys, both ecological and social variables appear to contribute 

to allostatic load, as measured by fecal glucocorticoid metabolites. Juvenile energy 

balance varied according to fruit availability, rainfall, and sex, and as energy balance 

became more positive, individual baseline fGC levels decreased. The first principal 

component characterizing social behavior, “groomer vs. player,” also predicted baseline 

fGC levels: when sex was controlled for, juveniles that groomed more and played less 

had higher baseline fGCs. I did not find evidence that maternal dominance rank or 

involvement in agonism corresponded with fGCs. Neither grooming behavior nor playing 

appeared to buffer juveniles’ experiences of energetic stressors. In fact, fGCs surprisingly 

increased with energy balance among juveniles that groomed the most. Time playing had 

no such moderating effect on energy balance and fGCs. It is possible that juveniles that 

groomed most were engaging riskier partners, as only they groomed more with non-kin 

than kin.  

 

Variation in energy balance during development 

 Juvenile energy balance, as measured by urinary C-peptide levels, increased with 

the availability of ripe fruit in juveniles’ home range, as known for wild chimpanzees and 

orangutans (Emery Thompson & Knott, 2008; Emery Thompson et al., 2009). Thus, as in 

other primate species (e.g. Deschner et al., 2008; Girard-Buttoz et al., 2011; Grueter, 

Deschner, Behringer, Fawcett, & Robbins, 2014; Harris, Chapman, & Monfort, 2010; 

Higham, Girard-Buttoz, Engelhardt, & Heistermann, 2011), uCP is also a valid measure 

of energy balance in wild, juvenile blue monkeys, confirming the general usefulness of 
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this biomarker for investigating the association of environmental, social and life history 

variables with energetic condition of wild-living primates. Females were in a more 

positive energy balance than males, though they did not spend a larger percentage of their 

observation time feeding on fruit than males. Future studies of feeding and nutritional 

strategies might explore whether males and females select for different qualities of food 

during development. It is possible that males were more often in a less positive energy 

balance than females were because they spent more time playing, which is energetically 

costly (Held & Špinka, 2011). Additionally, older juvenile males could be in a less 

positive energy balance than similarly-aged females because they are entering or 

undergoing a growth spurt. Male growth rates appear to accelerate in blue monkeys at 

approximately 5 years old (Leigh, 1992), and 7 male subjects were older than this 

throughout the study. Unlike sex, maternal rank did not predict juvenile energy balance, 

although adult females form linear dominance hierarchies in which higher-ranking 

individuals have been observed to spend more time feeding on fruits than low-ranking 

females (Foerster et al., 2011). Also, probably because rainfall coincided somewhat with 

low availability of ripe fruit, individuals had lower energy balance during rainy periods. 

Social strategies and their drivers during development 

 PCA revealed that playing and grooming accounted for the greatest variation in 

juvenile behavioral patterns (PC1), and were driven by differences in age, sex, fruit 

availability, and rainfall. Sex differences in playing and grooming in this species are 

pronounced, and higher scores on PC1 among older individuals likely derive from 

females increasing their time spent grooming with age (Cords et al 2010, Chap. 3). Fruit 

availability may have lowered scores on PC1 primarily through its influence on grooming, 
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rather than play, as both time spent grooming and number of grooming partners 

decreased when more fruit was available, but number of play partners increased (Chap. 3).  

Higher fruit availability may influence group spatial dynamics such that individuals are 

more spread out and have fewer opportunities to groom. Nevertheless, males may have 

been more willing to overcome distant spacing to play, a behavior that could potentially 

be more vital to males than grooming is to females in terms of developing adult-typical 

behavioral competence in this species. More highly abundant fruit could also provide 

larger energy stores, which either motivate or allow males to play more (Sharpe et al., 

2002). Peaks in fruit availability also corresponded with relatively low rainfall and higher 

daytime temperatures (Mitchell, 2009). On hot days individuals rest on or nearer the 

ground, which particularly while dry, is an attractive substrate for play (pers. obs.). 

 The second most important behavioral dimension (PC2), characterized as social vs. 

solitary, revealed that interacting with more affiliative partners frequently corresponded 

with giving and receiving agonism from them. Sexes did not differ in their scores on PC2 

and, with age, both sexes appeared to expand their social networks and, concomitantly, 

their involvement in agonism. Interestingly, both fruit availability and rainfall decreased 

juveniles’ number of social partners and their involvement in agonism. Again, juveniles 

are possibly more dispersed in the forest when foraging for widely available fruit and 

they may interact with fewer partners when huddling during heavy rain (Chap. 3).   

Roles of social strategies and energy balance in juvenile allostatic load 

 As expected, given the major metabolic role that glucocorticoids play for 

mobilizing energy during unfavorable energetic conditions (Sapolsky et al., 2000), 

juveniles in a more positive energy balance had lower fGCs. This finding concurs with a 
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previous study of adult female blue monkeys, which suggested that females increase 

circulating GCs to mobilize energy when energy balance is relatively low or insufficient 

(Foerster et al., 2011, 2012). Unlike adult females, all juveniles appeared prone to 

experience energetic stressors. Surprisingly, juveniles had higher fGC levels if they spent 

more time grooming (opposite to what was reported for adult females; Foerster et al., 

2011) and were more intensely bonded to close affiliative partners, and if they spent less 

time playing and were less bonded to close play partners (i.e. had higher scores on PC1). 

These patterns appear to result from both a positive influence of time grooming on fGCs 

and a negative influence of time playing on fGCs. Although the negative relationship 

between play and fGCs was expected, the positive relationship between grooming and 

fGCs was not. 

 Two processes possibly underlie the relationships between playing, grooming, and 

fGCs. First, fruit availability and rainfall could be third variables corresponding to both 

social behavior and fGCs. Fruit availability and rainfall influence energy balance, 

correspond with temperature, and potentially alter habitat-use (e.g. more fruit leads to 

less associating and grooming; less rain leads to individuals closer to the ground and 

more play). Therefore, the relationship of social behavior and fGCs may be primarily 

driven by the effect of energetic status on fGCs, i.e. a more positive energetic state leads 

to lower GCs, and corresponds with more playing and less grooming. An alternative set 

of explanations, given that the influence of energy balance on fGCs was analytically 

controlled for in models, is that social behavior and fGCs have a relationship independent 

of energy balance. Within this set of explanations, GC levels may be a cause or a 

consequence of affiliative behavior. 
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 The study by Anestis (2005), in which  juvenile chimpanzees had higher GC levels 

if they were socially “smart” (i.e. if they received grooming, engaged in social play, and 

used coalitions), suggested that metabolic state was somehow associated with or caused 

social behavior. Because the study population of juvenile chimpanzees was captive, there 

was less opportunity than in the present study for variation in energy balance to 

simultaneously influence behavior and GC levels. Similarly, among ravens, post-

fledgling individuals were thought to seek spatial associates and affiliative contact as a 

result of social stressors, leading to a positive relationship between GC levels and 

affiliative behavior (Stoewe et al., 2008). Nevertheless, Stoewe et al. (2008) did not 

directly examine whether rates of agonism per se corresponded with GC levels. A similar 

relationship between GCs and sociality may exist in juvenile blue monkeys, in which 

energy mobilized by GCs could motivate affiliative behavior. 

 Alternatively, navigating social groups may in itself be a (psychological) stressor to 

individuals, in which grooming interactions lead to elevations in GC levels. Although 

involvement in agonism (i.e. high scores on PC2) did not correspond with higher fGCs in 

the juvenile study subjects, affiliative interactions like grooming could be risky or 

uncertain because they increase opportunities for agonism. For example, in Japanese 

macaques, individuals that groom partners are more likely to subsequently receive 

agonism from groomees, although over time groomees reduced agonism and seemed to 

increase tolerance of groomers (Schino & Alessandrini, 2015). I found that juvenile blue 

monkeys that spent the most time grooming spent more time grooming with non-kin vs. 

kin. Unrelated partners may be riskier because they are less familiar and often more 

likely to aggress juveniles, such as in savannah baboons (Pereira, 1988a). Among 
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chimpanzees, adults consistently have higher urinary cortisol after bouts of grooming 

non-bond partners than after bouts of grooming bond partners, with whom they are more 

familiar (Wittig et al., 2016). If blue monkey juveniles often groom with non-kin in 

feeding contexts, this might lead to the observed positive relationship between energy 

balance and fGCs among individuals that groomed the most. 

 Neither play nor grooming acted as a buffer of energy balance on fGC levels. In 

fact, the relationship between energy balance and fGCs was increasingly positive as time 

spent grooming increased, a reverse of the main effect of energy balance decreasing fGC 

levels. This suggests that, indeed, grooming with partners acts as some kind of stressor to 

juveniles, particularly when fruit availability is high. 

 Despite strong sex differences in grooming vs. play behavior (Chap. 3) and the 

influence of grooming vs. play on fGCs, sex did not predict further variation in fGC 

levels. This is likely because, while females groomed more and played less than males, 

thereby increasing fGCs, they also typically had higher energy balance than males, 

thereby lowering fGCs. This pattern may account for the large confidence interval of the 

estimated effect of sex on fGCs (Fig. 4.2). Stressors that juveniles experience did not 

appear to vary considerably with age. Similarly, maternal dominance relations do not 

confer any kind of advantage in terms of allostatic load in their offspring. The absence of 

dominance rank’s influence on fGCs concurs with other studies in blue monkeys that 

demonstrate limited consequences of female dominance relations (Cords, 2000; Foerster 

et al., 2011; Pazol & Cords, 2005; Roberts & Cords, 2013). 
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Conclusions and Future Directions 

 Challenges to homeostasis during development stem from both ecological and 

social environments in blue monkeys. Notably, social strategies do not appear to help 

individuals cope with ecological challenges, but they do appear to exert other challenges 

of their own. Affiliative behavior, particularly when juveniles engage unfamiliar adults, 

may be may be inherently risky or uncertain for individuals that are relatively 

inexperienced or in a young life stage. 

 It is possible that the stress-inducing or energetic cost of grooming with non-kin is a 

worthwhile investment for juveniles, particularly among females that will spend the 

remaining years of their life potentially cooperating and competing with these non-kin 

partners. As other research on adult female blue monkeys shows (Chap. 2), if females are 

able to develop strong affiliative relationships with social partners that are consistent over 

years, this investment might pay off in greater survival. This study contributes to our 

understanding of short-term, proximate mechanisms by which social behavior potentially 

influences individual fitness.  



 165

Supplemental Information 

 

 

Figure S4.1. Log uCP value vs. time at collection.Term line is fitted from simple linear 

regression, unlike linear mixed model used for statistical analysis. N = 612 urine samples. 
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Table S4.1. QAP matrix correlations of DSI components: proportions of observation 

time that dyads engaged in grooming, approaching within 1 m, sitting in contact, resting 

in 1 m, and playing. N = 120 group-periods. 

  Group 1 : GN Group 2 : TWN Group 3 : TWS 

period 
Paired 

behavior 
R 

P (R) > 

null * 
R 

P (R) > 

null * 
R 

P (R) > 

null * 

p1 

grooming & 

approaches 

2.81 0 1.4 0 1.46 0 

p2 2.21 0 1.21 0 2.2 0 

p3 0.86 0 1.43 0 0.53 0 

p4 1 0 1.64 0 0.28 0 

p1 

contact & 

approaches 

1.22 0 0.98 0 0.84 0 

p2 0.8 0 0.64 0 0.36 0 

p3 0.33 0 0.61 0 0.24 0 

p4 0.34 0 0.94 0 1.36 0 

p1 

grooming & 

contact 

1.08 0 0.46 0 0.35 0 

p2 1.37 0 1.58 0 1.96 0 

p3 2.03 0 1.87 0 0.3 0.001 

p4 0.49 0 0.99 0 0.09 0.003 

p1 

grooming & 

playing 

-0.07† 0.719 0.03 0.149 0.03 0.169 

p2 0.57 0 -0.01 0.385 0.01 0.193 

p3 0.09 0.03 0.07 0.061 0.03 0.05 

p4 0.08 0.013 -0.01 0.43 0.02 0.157 

p1 

grooming & 

resting in 1 m 

0.67 0 0.2 0.002 0.35 0 

p2 0.39 0 0.23 0.003 0.29 0.002 

p3 0.26 0 0.16 0.033 0.26 0 

p4 0.17 0 0.37 0 0.07 0.003 

p1 

play & 

approaches 

0.07 0.001 1.36 0 0.22 0 

p2 0.67 0 2.85 0 0.45 0 

p3 0.93 0 1.99 0 1.02 0 

p4 1.35 0 1.76 0 0.5 0 

p1 

play & contact 

0.01 0.008 0.04 0.092 0 0.109 

p2 0.1 0.001 0.22 0.021 0.07 0.014 

p3 0.29 0 0.37 0.003 0.11 0.034 

p4 0.12 0.01 0.05 0.063 0.02 0.034 

p1 

play & resting 

in 1 m 

0.01 0.018 0.02 0.062 0.04 0.004 

p2 0.09 0 0.19 0.006 0.05 0.003 

p3 0.1 0 0.24 0.006 0.14 0 

p4 0.1 0 0.13 0.005 0.04 0.004 

p1 

resting in 1 m 

& approaches 

1.56 0 1.22 0 1.42 0 

p2 1.62 0 1.33 0 1.49 0 

p3 1.77 0 0.6 0 1.34 0 

p4 2.04 0 1.38 0 1.81 0 

p1 

resting in 1 m 

& contact 

0.41 0 0.81 0 0.4 0 

p2 0.62 0 0.37 0.006 0.74 0 

p3 0.78 0 0.2 0.002 0.72 0 

p4 0.88 0 0.3 0 0.62 0 

* null distribution of correlation coefficients calculated using 1000 random permutations of social matrices. 

† Non-significant correlations of behavior types in bold. Play did not correlate with other affiliative 

behavior in 13 of 120 comparisons.
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Table S4.2. Influence of standardized predictors on energy balance as measured by 

average residual of log urinary C-Peptide (pg/ml urine) vs. time of day. Linear mixed 

effects regression, N = 156 subject-periods. 

Predictor Beta SE 95% CI 

Age 0.06 0.03 [-0.01, 0.12] 

Sex (M) -0.15 0.07 [-0.28, - 0.02] 

Maternal rank 0 0.03 [-0.07, 0.06] 

FAI 0.15 0.03 [0.08, 0.22] 

Rainfall -0.1 0.03 [-0.17, -0.04] 

* 95% CI does not cross zero. 
 

 

Table S4.3. Influence of standardized predictors on subjects’ average deviation from 

baseline fGC levels  (ng/g feces). Linear mixed effects regression, N = 155 subject-

periods. 

Predictor Beta SE 95% CI 

PC1 0.15 0.07 [0.03, 0.28] 

PC2 -0.01 0.07 [-0.14, 0.12] 

PC3 0.03 0.07 [-0.11, 0.17] 

Age 0.39 0.24 [-0.08, 0.86] 

Sex (M) -0.05 0.09 [-0.22, 0.12] 

Maternal rank 0.01 0.08 [-0.15, 0.17] 

uCP -0.17 0.08 [-0.33, -0.01] 

*95% CI does not cross zero. 
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Table S4.4. Linear mixed effects model comparing subjects’ % time grooming kin vs. 

non-kin, subjects grouped by % time grooming quartile (1-4). N = 324 observations of 

groom time w kin and nonkin per subject-period. 

comparison ß se 95% CI 

nonkin.1-kin.1 0.05 0.25 [-0.44, 0.54] 

nonkin.2-kin.2 0.24 0.25 [-0.25, 0.73] 

nonkin.3-kin.3 0.32 0.25 [-0.17, 0.81] 

nonkin.4-kin.4 0.9 0.25 [0.41, 1.39] 

* significant difference in % time grooming kin vs. non-kin 
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Chapter 5: Mothers’ role in shaping offspring social tendencies in a gregarious 

primate. 

Introduction 

 In group-living animals, individuals often vary in the nature and degree to which 

they engage socially. Examining the causes of such variation is an important part of 

understanding the adaptive function of social behavior. Mothers are an important source 

of variation in social behavior, particularly in mammals, where mothers are critical social 

partners both early on and potentially throughout an offspring’s lifetime. Indeed, in 

several animals, interactions with mothers early in life shape individual’s social behavior 

throughout life (Champagne, 2010; Cushing & Kramer, 2005). In mammals, this effect 

occurs in part because neuroendocrinological mechanisms that maintain mammalian 

mother-offspring bonds underlie affiliative ties with all other social partners, 

phylogenetically and ontogenetically (Curley & Keverne, 2005; Keverne et al., 1989). 

The maternal genome also strongly affects the development of areas of the brain that are 

most involved in complex decision-making and social behavior, and which have 

undergone relative expansion in primates (Isles, Davies, & Wilkinson, 2006; Keverne, 

Martel, & Nevison, 1996). For these reasons, individuals often appear to inherit their 

mothers’ social tendencies, socializing in ways that either resemble or are profoundly 

shaped by their mothers’ behavior (e.g. Berman, 1990; Boehnke, 2015; Champagne, 

2010; Maestripieri, 2003; Stevenson-Hinde & Simpson, 1981; Sullivan, Mendoza, & 

Capitanio, 2011). 
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Individuals can inherit their mothers’ behavior in several ways. Inheritance can be 

primarily genetic, as assessed by either quantitative genetics (Wehner, Radcliffe, & 

Bowers, 2001) or cross-fostering experiments (Maestripieri, 2003; Møller, 2002), or 

epigenetic, via environmentally induced modifications of histone structure or methylation 

of gene promoter regions (Champagne, 2008). Behavior can also be transmitted via 

observation and learning, as when chimpanzees gain expertise in termite fishing by 

observing their mothers (Lonsdorf, 2006). Maternal effects are one class of particularly 

important phenomena in which an individual’s behavior is shaped by its mother’s, either 

epigenetically or by learning (Mousseau & Fox, 1998). Maternal effects typically refer to 

how an offspring’s direct interaction with either its mother or the socio-ecological niche 

she creates changes its phenotype. Maternal effects are widespread: mothers influence 

offspring phenotypes and fitness even in animals with minimal parental care, such as in 

some herbivorous insects where the location in which mothers choose to lay their eggs 

influences offspring phenotype (Mousseau & Fox, 1998). One powerful example of 

maternal effects on behavior via epigenetic pathways comes from rats, where a mother’s 

licking and grooming behavior determines the development of the same behavior in her 

daughters (Champagne, 2008) 

 Unlike strict genetic inheritance, epigenetic/learned inheritance often involves 

critical periods in which experience is especially likely to modify behavior. Early-life is 

one such critical window (Fawcett & Frankenhuis, 2015). During early-life development, 

aspects of individual physiology develop according to present experiences, in part 

because these serve as cues of the individual’s future states, thus leading to what are 

called predictive adaptive responses (Bateson et al., 2014; English, Fawcett, Higginson, 
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Trimmer, & Uller, 2016; Fawcett & Frankenhuis, 2015). In Assamese macaques for 

example, a mother’s prenatal glucocorticoids increase with food scarcity and this in turn 

corresponds with her offspring’s accelerated physical growth, a likely sign of early 

maturation that suggests an overall emphasis on reproduction over survival (Berghänel et 

al., 2016). Within early life, infancy, when individuals depend on parental care for 

survival, is often seen to be a critical window during which mother-offspring interactions 

and the mother’s social niche influence later offspring behavior (Champagne, 2010; 

Fairbanks, 1996; Maestripieri, 2005; Maestripieri, Lindell, & Higley, 2007). For 

example, studies of laboratory rodents, humans, and non-human primates have revealed 

that infants with more secure attachments to mothers have greater emotional well-being 

later in life (lower anxiety, depression, and fearfulness) and lower sensitivity to external 

stressors (reviewed in Champagne, 2010). 

The kinds of behavior subject to maternal effects, or in which mother-offspring 

similarities occur, are variable and include both social and non-social realms. In some 

birds, individuals may resemble mothers in their tendency to disperse (Doligez, 

Gustafsson, & Pärt, 2009) or their propensity to explore novel environments 

(Dingemanse, Both, Drent, Van Oers, & Van Noordwijk, 2002). In terms of broad social 

preferences, parents and offspring in some swallows prefer joining colonies of similar 

size post dispersal (Brown & Brown, 2000; Møller, 2002). In primates, individuals and 

their mothers display similar rates of affiliative social contact and aggression 

(Maestripieri, 2003), general social temperament or personality (Boehnke, 2015; 

Stevenson-Hinde & Simpson, 1981; Sullivan et al., 2011), and  maternal style (Berman, 

1990; Champagne, 2008; Fairbanks, 1996). Seyfarth et al. (2012), however, found no 
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similarities between the social personalities of mothers and their adult daughters in 

baboons. 

Similarities in the behavior of individuals and their mothers may be particular to 

sex. Sex-specific reproductive strategies select for different behavioral tendencies, the 

underlying neuroendocrinological mechanisms of which may cause each sex to respond 

differently to the same environmental or hormonal stimuli (Cushing & Kramer, 2005). 

For example, centrally administered oxytocin decreases sexual behavior in male prairie 

voles, but does not influence sexual behavior in females, potentially because of the 

mediating effects of differential levels of estrogen or expression of estrogen-receptors 

each sex (in Cushing & Kramer, 2005). Such neuroendocrinological differences could 

result in sex-differentiated responses to the same maternally-induced environment. 

Rhesus macaque mothers and daughters, but not sons, resemble one another in their 

“confidence” (lack of hesitation) and “excitability” (reactiveness to novelty) as assessed 

from observer surveys, whereas mothers’ “excitability” is inversely related to the 

“confidence” of their sons (Stevenson-Hinde & Simpson, 1981). Similarly, in a study that 

assessed rhesus mother’s and offspring’s temperaments during infancy, mothers that 

responded to novel challenges “confidently” had sons, but not daughters, that approached 

novel challenges in a “gentle” (calm, curious) and less vigilant way (Sullivan et al., 

2011). Sullivan et al. (2011) argued that this sex-dependent relationship between mother-

offspring behavior results from sex differences in sensitivity to early maternal behavior, 

such that sons are more responsive than daughters to maternal signals because they will 

eventually separate from mothers when they disperse. 



 173

 Behavior that is similar between individuals and their mothers can be specific to 

interactions with particular partners. For example, similarities in maternal style are (by 

definition) relevant only to mothers’ interactions with offspring. Peers, i.e., individuals 

within the same life stage, could be one such subset of partners with whom interactions 

follow a particular pattern or strategy, as peers are possibly both competitors and allies. 

For example, individuals often prefer to play with partners that are similar in age, 

presumably because they are also similar in size and experience and therefore facilitate 

individuals’ self-assessment and motor development (Thompson, 1998). Because self-

assessment could be a function particular to play with peers, patterns of play with peers 

could differ substantially from patterns of any play that occurs with non-peers. As 

another example, grooming between un-related adults could function to build alliances 

(Hemelrijk & Ek, 1991), whereas a mother grooming her infant functions as maternal 

investment and to improve offspring hygiene (Blanchard, Pays, & Fritz, 2017). 

Therefore, an adult female’s pattern of grooming with adult peers likely differs from her 

pattern of grooming with her offspring.  

 In this study, I explore the relationship between the affiliative tendencies of 

juvenile animals with those of their mothers in wild blue monkeys (Cercopithecus mitis 

stuhlmanni). Blue monkeys are an interesting species in which to examine the inheritance 

of social behavior: although adult females spend little time associating closely with one 

another (< 8% of observation time, Cords, 2002), variation in their affiliation with peers 

does appear to influence survival (Chap. 2). Specifically, females with strong but 

inconsistent ties to close partners have a relatively high risk of death. Further, social 

strategies of juveniles correspond with energetic costs and benefits, such that individuals 
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that play more have lower and those that groom more have higher baseline 

glucocorticoids (Chap. 4). 

I focus on affiliative vs. aggressive behavior because blue monkeys are relatively 

peaceful primates, exhibiting low rates of aggression (Klass & Cords, 2015). Further, I 

already know that individuals and their mothers are likely to be similar in their rates of 

agonism given and received because individuals appear to inherit their mothers’ 

dominance ranks (Klass & Cords, 2015) and maternal dominance rank is a strong 

predictor of juveniles’ agonistic behavior (Chap. 3). To examine similarities in the social 

behavior of juveniles and their mothers, I combined a long-term dataset on adult female 

social behavior in the wild study population with an independent dataset on juvenile 

social behavior from a shorter period. This study was observational and as it focused on 

long-lived animals, records were too limited to conduct robust quantitative genetic 

analyses. I assumed that transmission of behavior could occur by any means, including 

genetic or epigenetic inheritance, or learning. I evaluated maternal effects on juvenile 

social behavior by characterizing mothers’ social niche and mother-offspring interactions 

during the juvenile subjects’ infancy to predict later juvenile behavior. I used a broad-

scale social metric (spatial association) to conduct an exploratory analysis aimed to 

generate hypotheses about inheritance and maternal effects on affiliative social behavior 

in this and other gregarious species. I also assessed the potential inheritance of strategies 

specific to association with peers. 
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Methods 

Study site and subjects 

The wild study population inhabits the Isecheno area of the Kakamega Forest, 

Kenya (0˚19´ N, 34˚52´ E; Mitchell, 2009). Study subjects were 41 juveniles (19 males, 

22 females, average age = 4.4 ± 1.7 years, range = 2.2 – 6.9) and their 29 mothers 

(average age = 13.4 ± 4.1 years, range = 8.2 – 22), living in 3 social groups that ranged in 

size from 35 – 66 individuals, and 16 – 31 juveniles. 12 of 29 mothers were mother to 

two juvenile subjects, and 7 of the 12 had both a son and a daughter. Group composition 

and birthdates for juveniles and adult females were known from long-term demographic 

records (Cords, 2012). All subjects were individually identifiable by natural physical 

variation. I considered juveniles to be any individual that had not yet dispersed or given 

birth but was not born in the annual birth cohort (starting Dec 1, 2014) immediately prior 

to the start of juvenile observation. 

 

Behavioral data collection 

A team of observers collected data on mothers’ behavior from October 2006 to 

August 2015, as a part of an ongoing long term study. Mothers’ behavioral data spanned 

an average of 7.3 ± 2.1 yrs (range = 3–9 yrs, N=29 females). Data on juvenile behavior 

were collected during an 8-month study from August 2015 to March 2016 by a team of 

observers including author NAT. Observers conducted 30 min focal follows on mothers 

and 20 min follows on juveniles, recording at 1 minute intervals the subjects’ activity 

(e.g. grooming, resting, moving, feeding, and playing for juveniles) and the IDs of its 

partners within 1 m, in contact, during grooming and play. When focal subjects were not 
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visible, observers recorded their activity as “out of sight.” Upon relocating the subject, 

observers continued follows until they completed 20 or 30 min of observation for 

juveniles and mothers, respectively. If focal subjects were out of sight for 10 (juveniles) 

or 15 (mothers) consecutive minutes, the follow was terminated and the data discarded. 

In total, observers collected an average of 38.6 ± 3.0 hrs of behavioral data per juvenile 

and 553 ± 189 hrs per mother, for an average of 73.3 ± 18 hrs per mother–year.  

 

Data analysis 

I used data from focal follows to calculate 3 measures of association for mothers 

and 4 for juveniles: proportion of time spent (1) giving or receiving allo-grooming, (2) 

within 1 m or in contact with a partner, without allo-grooming, and (3) in 1 m of a partner 

whether grooming or not (general proximity). For juveniles, I additionally calculated time 

spent (4) playing, a behavior that hardly ever occurs among adult females. To better 

differentiate juveniles’ and mothers’ association measures, I also excluded mothers as 

partners that would count towards juveniles’ time in proximity or grooming. For mothers, 

I expressed proportions of time spent in association in two ways: (a) as an average across 

all years in which she was observed as a focal subject (“average”), and (b) during the first 

year of life of her offspring who was a juvenile subject. For both mothers and juveniles, I 

calculated association measures with two sets of partners (i) all groupmates and (ii) peers, 

i.e., at a given point sample, at least one other adult female was a partner for mothers and 

one other juvenile for juveniles. Finally, I calculated the time that mothers spent 

associating (measures 1-3) with her juvenile subject in its first year, and her time in 
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general proximity to her juvenile in each year that she was observed during which the 

juvenile subject was alive (a proxy for juvenile age). 

I expressed juvenile ages relative to the mid-date of their observation period. As 

controls in repeatability analyses, I calculated the annual number of peers and 

groupmates that mothers had in each observation year by averaging the daily number of 

co-resident adult females and other groupmates (including infants, juveniles, and adult 

males) over an observation year. 

 

Statistical analysis 

I modeled the time that juveniles spent associating with partners as a response in 

generalized additive models (GAMs) using the “gamlss” package in R (Stasinopoulos & 

Rigby, 2007). Generalized additive models easily implement beta and zero-inflated beta 

error distributions, which were appropriate for the responses.  

We modeled juveniles’ time in association as a function of the corresponding 

association type and partner subset of mothers. For example, mothers’ time in general 

proximity to other adult females was used to predict juveniles’ time in general proximity 

to other juveniles (example in Fig. 5.1). I also modeled juveniles’ time in association as a 

function of the same association type of mother’s with their juvenile offspring in its first 

year. Because play had no directly equivalent behavior among adult females, we used 

mothers’ time in general proximity and time grooming in separate models to predict 

juveniles’ time playing. I used mother’s time with her juvenile subject in its first year of 

life to predict the juvenile’s time spent in association with both subsets of partners, i.e. 

any partner and peers.  
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In each GAM, I included juveniles’ sex and age as analytical control variables and 

an interaction term of mothers’ social variable and juvenile sex, to explore whether 

relationships between juvenile and mother sociality varied by sex. I included mother and 

group IDs as random effects. Continuous fixed effects were standardized according to 

their mean and standard deviation (Schielzeth, 2010). In a two-step process to control for 

repeated testing, I first selected models in which the 95% confidence intervals of the 

parameters of interest (i.e. mother’s time in association and mother’s time in association 

by sex) did not include zero. After selecting models, I created adjusted confidence 

intervals of parameters of interest to control for their false coverage rate (FCR) arising 

from multiple testing (Benjamini & Yekutieli, 2005). Confidence intervals were adjusted 

according to the 60 hypotheses tested, i.e. 30 models x 2 parameters of interest. I 

considered predictors to have a significant effect on the response if the adjusted 

confidence intervals of their parameters did not include zero. I assessed overall model fit 

by comparing the AIC of the fitted model to a model that did not include any fixed 

effects (Nakagawa & Schielzeth, 2013). I used qq-plots to assess the normality of 

residuals in all models. 
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Figure 5.1. Conceptual diagram of modeled hypotheses: juvenile affiliative behavior is 

shaped by mother’s social behavior and juvenile age and sex. 

 

To further assess the possibility that juveniles and mothers were socially similar 

because their mutual association meant that they shared a social environment, I 

conducted two additional analyses. First, I examined how the time that mothers spent 

with their offspring changed over time. Using data on adult females, I constructed a 

GAM in which mothers’ time in association with her juvenile was the response, 

observation year in which the juvenile was alive as a proxy for juvenile age, sex, and a 

sex by observation year interaction were fixed effects, with mother and group ID as 

random effects. Second, I examined whether juveniles’ time in general proximity to their 

mothers (data from juvenile study) predicted their time in general proximity to non-

mothers in a GAM with juvenile age, sex, time in general proximity to mother, and an 

interaction between time with mother and sex as fixed effects, and no random effects.  
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To assess whether mothers had social personalities, I calculated the consistency of 

between individual differences, or repeatability, in mothers’ annual association time with 

a linear mixed model approach, using the “rptR” package in R (Nakagawa & Schielzeth, 

2010; Stoffel, Nakagawa, & Schielzeth, 2017). This approach calculates the intra-class 

correlation coefficient (R) by grouping observations according to a random effects term 

(here, individual ID) and then assessing the variation among observations that is 

attributable to variation among individuals. The mixed model also allows one to control 

for confounding factors, e.g. group size or sex, that might otherwise bias an assessment of 

behavioral variation within or between individuals.  Accordingly, mothers’ annual 

association measures with any partner and peers were modeled as responses with either 

average total group size and number of adult females per year included as fixed effects. I 

further assessed the repeatability of mothers’ annual association time in general 

proximity to their juveniles, including total group size and observation year with juvenile 

as fixed effects. I calculated confidence intervals and p values of R estimates by 

performing 1000 bootstraps without replacement and 1000 random permutations of 

observations, respectively. 

 

Results 

 Juveniles spent an average of 9.5 ± 2.8% of time during the 8-month observation 

period in general proximity to (“near”) another partner (excluding mothers), 6.3 ± 2.1% 

of time near another juvenile (though perhaps not exclusively), and 1.8 ±1.4% near their 

mothers. Juvenile females on average spent more time near groupmates than males did 

(females: 10.6 ± 3.2 %, males: 8.5 ± 2.0%, t29.4 = 2.5, two-tailed p = 0.020), whereas 
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males spent more time near peers than females did (females: 5.3 ± 1.5 %, males: 7.1 ± 

2.2%, t36.6 = -3.0, two-tailed p = 0.005). Male and female juveniles spent similar amounts 

of time near mothers during their 8-month study period (females = 2.0 ± 1.7%, males = 

1.6 ± 1.0%, t-test, two-tailed, t27.4 = 0.92, p = 0.37). Both males and females spent less 

time near other partners the more time they spent near their mothers (GAM, response = 

time in general prox of groupmates, ß of time near mothers = -0.15, 95% CI = -0.26 – -

0.03, ß of interaction between time near mothers and sex = 0.18, 95% CI = -0.01 – 0.37). 

Over all observation years, mothers spent an average of 20.3 ± 4.9 % of 

observation time near another partner, and an average of 6.5 ± 2.5% near another adult 

female, specifically. During the juveniles’ first year of life, mothers spent an average of 

22.7 ± 5.6% of their observation time near their juveniles, and did not spend different 

amounts of time near or grooming offspring according to its sex (GAM, sex as fixed and 

mother as random effect, Sex (M) ß = 0.005, 95% CI = -0.004 – 0.015 for proximity, Sex 

(M) ß = 0.0004, 95% CI = -0.003 – 0.002 for grooming). Mothers groomed offspring, 

rather than received grooming from offspring, for an average of 99.2 ± 3% of total 

mother-infant grooming time. Mothers of male subjects alone spent no more or less of 

their time near partners (averaged over all observation years, 20.6 ± 5.0%, N=15) than 

mothers of only female subjects (20.7 ± 4.6%, N = 12; t-test, two-tailed t24.5 = 0.077, p = 

0.94). 

Because I was primarily interested in the relationship between juveniles’ and 

mothers’ sociality, I focused my presentation of results on those comparisons in which 

the relationship was significant. As expected, juvenile sex and age significantly predicted 
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several measures of juveniles’ time in association. Detailed analyses of sex differences 

during development in this species can be found in Cords et al. (2010) and Chap. 3.  

Juveniles’ sociality was related to their mothers’ in only one instance, according 

to adjusted confidence intervals. Namely, the time that a juvenile spent grooming with its 

mother in its first year of life had a positive relationship with the time that male juveniles 

spent grooming with peers and a negative relationship with the time that female juveniles 

spent grooming with peers (Table 5.1, Fig. 5.2a, Fig. S5.1a). The difference in the time 

that male and female juveniles groomed with peers was largest when the time that they 

had groomed with mothers as infants was low. For those juveniles that groomed most 

with mothers during infancy, there was (almost) no sex difference in grooming with peers 

(Fig. 5.2a, Fig. S5.1a). Juveniles did not appear to groom differently with non-peers 

according to their grooming with peers, as the two values were unrelated when 

controlling for juvenile sex, age, and their interaction (GAM, response = time grooming 

with non-peers, time grooming with peers ß = 0.04, CI = - 0.16 – 0.24). 

Other comparisons that were initially selected for 95% CI of interaction 

parameters, but not significant according to their adjusted CI, revealed similar effects of 

mother sociality moderated by sex (Table 5.1, Fig. 5.2b-c, Fig. S5.1b-c). A mother’s time 

spent near any partner, either averaged over all observation years or during their 

juvenile’s the first year of life, also had a positive relationship with their sons’ and a 

negative relationship with their daughters’ general proximity to any partner. Also as 

mothers’ spent more time near partners (averaged over all years), daughters spent less 

time playing, whereas the amount of time sons played did not vary (Table 5.1, Fig. 5.2d, 

Fig. S5.1d). 
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Notably, the majority of comparisons did not reveal significant relationships 

between juveniles’ and mothers’ sociality (Table S5.1). No measure of mothers’ 

association time with any groupmate (excluding mother-offspring association in 

juveniles’ first year) predicted juveniles’ association time. Further, mothers’ time near 

peers did not predict their juveniles’ time near peers, regardless of the measure of 

association time (i.e. time grooming, time in proximity without grooming, etc.), and 

regardless of whether I included mother’s average behavior or her behavior during her 

offspring’s first year. Mother-offspring association time in juveniles’ first year did not 

predict juveniles’ time in association with any groupmate, and neither mother’s time in 

proximity to (and not grooming) nor time near the juvenile in its first year predicted the 

time that juveniles spent in the same behavior with their peers.
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Figure 5.2. Juveniles’ time spent in association by mothers’ social variables. a) 

Juveniles’ % time grooming peers, b and c) in general proximity of partners, and d) 

playing according to mothers’ time in association with partners (x-axis) by sex (males in 

red and females in black). Trend line is simple linear regression, unlike GAM models in 

results. Models selected according to 95% CI of interaction’s parameter estimate. * 

Indicates significant effect according to CI adjusted for false coverage rate.
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Table 5.1. Selected and significant relationships between juvenile and mothers’ 

association measures (General additive models, mother and group ID as random effects, 

N = 41 mother-juvenile pairs). Selected parameters (significant according to unadjusted 

CI) italicized, significant parameters according to adjusted CI in bold. 

 

Response: 

 

% Time juv… 

(partners) 

 

∆AIC* 

Predictor: 

 

% Time mother…, 

(partners, time period) 

ß se 95% CI adjusted CI** 

Juv groom 

(peers) 
-22.93 Intercept -3.91 0.07 [-4.044, -3.774]  

  
Mother	groom	with	juv	

(juv	first	year)	
-0.19	 0.07	 [-0.325,	-0.057]	 [-0.39, 0.01] 

  Juv sex (M) -0.78 0.12 [-1.015, -0.554]  

  Juv age 0.23 0.05 [0.126, 0.338]  

  
Mother groom with 

juv (fy) : Sex (M) 
0.44	 0.13	 [0.186,	0.696]	 [0.06, 0.82] 

Juv general prox 

(any partner†) 
-11.31 Intercept -2.15 0.06 [-2.26, -2.041]  

  
Mother general prox 

(any partner, all years) 
-0.08 0.06 [-0.199, 0.047]  

  Juv sex (M) -0.23 0.08 [-0.384, -0.073]  

  Juv age 0.13 0.04 [0.051, 0.219]  

  
Mother	general	prox	

(ap,	ay)	:	Sex	(M)	
0.18	 0.08	 [0.023,	0.336]	 [-0.05, 0.41] 

Juv general prox 

(any partner) 
-11.55 Intercept -2.16 0.06 [-2.273, -2.048]  

  

Mother general prox 

(any partner, juv first 

year) 

-0.06 0.05 [-0.165, 0.041]  

  Juv sex (M) -0.24 0.08 [-0.398, -0.076]  

  Juv age 0.14 0.04 [0.06, 0.23]  

  
Mother	general	prox	

(ap,	fy)	:	Sex	(M)	
0.2	 0.09	 [0.03,	0.365]	 [-0.05, 0.45] 

Juv play (any 

partner) 
-48.11 Intercept -5.1 0.15 [-5.391, -4.816]  

  
Mother general prox 

(any partner, all years) 
-0.28 0.15 [-0.568, 0.016]  

  Juv sex (M) 1.83 0.16 [1.526, 2.136]  

  Juv age -0.17 0.06 [-0.28, -0.052]  

  
Mother	general	prox	

(ap,	ay)	:	Sex	(M)	
0.31	 0.16	 [0.003,	0.616]	 [-0.15, 0.77] 

* ∆AIC = AIC full model - AIC null model (no fixed effects) 
** Confidence intervals adjusted to control for false coverage rate (Benjamini & Yekutieli, 2005). 
† Mother excluded as potential partner of juvenile. 
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Mothers showed consistent inter-individual differences in the amount time that 

they spent grooming with any partner, but the amount of time that they spent in proximity 

to any partners without grooming or simply near partners was not repeatable over years 

(Table 5.2). Time that mothers spent in association with other adult females (whether 

grooming, resting in proximity without grooming, or in general proximity) was 

repeatable over years. These repeatable differences in mothers’ social behavior were 

evident even as I accounted for their number of potential partners. In contrast to these 

results for mothers interacting with other group mates, no variant of their association with 

offspring was repeatable over years (Table 5.2). Further, the time that mothers spent near 

their offspring declined with each observation year during which the juvenile was alive, 

similarly for both males and females (Fig. 5.3; GAM, ß observation year  = - 0.41, 95% 

CI = -0.46 – -0.35, ß observation year by sex = -0.02, 95% CI = -0.1 – 0.05, N = 186 

mother-offspring observation years).
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Table 5.2. Repeatability of  % of observation time that mothers spent in association with 

different partner subsets. 

 Association type R se CI 
Permuted 

p 

N 

(mother-

years) 

Any 

partners 

In general prox 0.03 0.04 [0, 0.12] 0.22 

212 
Grooming with 0.59 0.08 [0.42, 

0.72] 
0* 

In prox  

(no grooming) 
0 0.03 [0, 0.09] 1 

Peers 

 

In general prox 0.81 0.05 [0.69, 

0.88] 
0 

212 
Grooming with 0.72 0.06 [0.57, 

0.82] 
0 

In prox  

(no grooming) 
0.76 0.06 

[0.62, 

0.84] 
0 

Juvenile 

offspring 

In general prox 0 0.02 [0, 0.08] 0.36 

186 
Grooming with 0 0.02 [0, 0.07] 1 

In prox  

(no grooming) 
0 0.02 [0, 0.07] 1 

*Significantly repeatable behavior in bold. 
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Figure 5.3. Standardized variation in percentage of observation time that mothers spent 

near their juveniles during each year of offsprings’ life. Solid points fitted by a general 

additive model, hollow data points jittered by observation year, N = 186 mother-offspring 

observation years. Time with male offspring in red/pink and female offspring in 

black/grey. 
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Discussion 

 Of the several hypotheses tested regarding the relationship between juveniles’ and 

mothers’ sociality, only one was strongly supported: the time that an animal spent 

grooming with its mother in its first year of life predicted the time it spent grooming 

fellow juveniles later in life. Within this effect, males that groomed more with mothers 

during infancy spent more time grooming with juvenile peers later in life, whereas 

females that groomed more with mothers as infants groomed fellow juveniles less. 

Variation in grooming with peers did not appear to be a part of a larger grooming 

strategy, as juveniles’ time grooming with peers was not related to time grooming non-

peers. 

I discuss my findings in two parts, treating first the timing of this apparent 

maternal effect and second the facts that the effect was related to grooming behavior and 

differed by sex. I acknowledge that my measure of early life grooming, derived from 

focal sampling adult females, clearly focused attention exclusively on the infant’s 

interactions with its mother alone. A previous study of blue monkey infants found that 

non-mothers account for more grooming during infancy than mothers do (Förster & 

Cords, 2005), and therefore the dataset excludes what could be important variation in the 

amount of time that infants were groomed by non-mothers. I critically discuss both likely 

and unlikely explanations for the findings. 

If patterns of juvenile grooming behavior were caused in part by interactions with 

mothers, interactions during infancy were the more likely cause than interactions with 

mothers throughout development for two reasons. First, the time that mothers and their 

offspring spent together decreased drastically after a juvenile’s second year. Second, 



 190

variation among mothers in the amount of time they spent with their offspring was not 

consistent from year to year. It is also unlikely that the relationship between mother-

infant and juvenile-peer grooming behavior represented the continuation of juveniles’ 

behavioral phenotypes from infancy into juvenility. Nearly all mother-infant grooming 

time involved mothers as the groomers, and therefore mothers, not infants, were largely 

responsible for grooming time. Further, variation in nutrition, rather than in maternal 

behavior, was also unlikely to cause variation in later juvenile behavior, because suckling 

was considered a form of contact and so was primarily captured by either mothers’ time 

spent in proximity without grooming or general proximity to infants. Although mothers 

could suckle infants while grooming them, such simultaneous occurrences were rare. 

Although the influence of nutrition during infancy on later behavior would be interesting 

to examine, exact rates of suckling are difficult to quantify, as even time observed on the 

nipple may not equate to feeding. 

Differential social experiences with mothers during infancy do not appear to 

explain sex differences in how a juvenile’s grooming with its mother during infancy 

related to its grooming with peers. Males and females groomed with their mothers for 

similar amounts of time during infancy and also spent similar amounts of time with 

mothers during juvenility. Mothers’ social environments, in terms of association with 

other group-mates, also did not differ if their offspring in this study were only male vs. 

female. Further, previous analyses have shown that non-mothers do not treat infants 

differently according to their sex (Förster & Cords, 2005). During juvenility, both males 

and females spent less time near non-mothers as time near their mothers increased, 
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suggesting that neither sex gained different amounts of time associating with other 

groupmates as a result of associating with their mother. 

If grooming behavior towards peers is learned or transmitted epigenetically, it 

appears that males and females respond differently to early-life grooming with their 

mothers. It is difficult to imagine a scenario in which the transmission of grooming 

behavior was strictly genetic and behavior simply manifested differently in males vs. 

females. In general, one might expect a relative deprivation of maternal grooming to 

decrease grooming behavior in offspring, as seen in rats that were separated from their 

mothers during infancy for daily 4.5 hr periods (Vivinetto, Suárez, & Rivarola, 2013). 

While such evidence in rats adds insight to maternal effects on grooming behavior among 

male juvenile blue monkeys, it does not explain the opposite pattern that occurs in 

females. Evidence of sex-specific maternal effects on social behavior comes mostly from 

rodents, particularly relating to play behavior. More maternal licking and grooming 

decreases rates of social play in male but not female rat pups (reviewed in Auger & 

Olesen, 2009), although this effect seems not to occur in mice (Franks, Champagne, & 

Curley, 2015). Maternal contact and grooming in early life may modify the development 

of important neurotransmitter receptors that differ according to sex, possibly resulting in 

behavioral outcomes that differ by sex. For example, maternal licking and grooming in 

rats corresponds with increased oxytocin receptors in the brains of female pups, but not 

of males, and increased vasopressin receptors in males’ but not females’ brains (Francis, 

Young, Meaney, & Insel, 2002). 

In blue monkeys, grooming constitutes a large portion of adult female, but not 

adult male, social life; accordingly, female juveniles on average spend more time 
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grooming than do males (Cords et al., 2010; Chap. 3). As grooming experience may be 

more important for developing behavioral competence among females than males, 

juvenile females that received little grooming from their mothers during infancy may 

have compensated for their lack of experience by spending more time grooming peers as 

juveniles. Such a compensatory or “rebound” effect following relative social deprivation 

has been seen in the play behavior of several rodent species (Hole, 1991), although no 

studies to my knowledge reveal a similar effect in grooming. Maternal grooming in blue 

monkeys could correspond to one of several “mothering styles,” which are often 

characterized as spanning a spectrum of protective – rejecting, such that female offspring 

that receive very little grooming from mothers are encouraged to be independent and less 

neophobic, whereas female offspring that receive lots of grooming from mothers are 

more wary of novel environments and social partners (as seen in Bardi & Huffman, 2002; 

Fairbanks & McGuire, 1988; Schino, Speranza, & Troisi, 2001). A related and 

underlying neurological process of female juvenile grooming patterns could be related to 

the development of their reward pathways. Low maternal grooming during infancy could 

result in low dopamine receptor density, causing females to seek out additional rewarding 

interactions (Peña, Neugut, Calarco, & Champagne, 2014). It could also be possible, as in 

vervets, that mothers and female offspring are carriers of the dopamine D4 receptor 

polymorphism, which decreases maternal sensitivity and attentiveness, increases juvenile 

impulsivity, and results in offspring with a highly impulsive and novelty-seeking 

phenotype when both offspring and mother are carriers (Fairbanks, Way, Breidenthal, 

Bailey, & Jorgensen, 2012). 
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 Alternatively, of course, female infants that were groomed less by their mothers 

could have been groomed more by non-mothers, specifically by large juvenile females 

and older siblings (Brent, Bramblett, Bard, Bloomsmith, & Blangero, 1997; Förster & 

Cords, 2005). Female infants could have simply continued to interact with such juveniles 

as they aged, and so spent more time grooming “peers” than females that received more 

grooming from mothers as infants. The current dataset is unfortunately limited to records 

of infant behavior from the perspective of the mother. Nevertheless, if less grooming 

from mothers equated to more grooming from non-mother groupmates, it would still not 

explain why male and female grooming behavior with peers would differ according to 

their time grooming with their mother as infants. 

Male juveniles spent more time with peers than females did, probably because 

juvenile male blue monkeys spend more time playing than females and are more likely to 

play with partners that are close vs. distant in age to them (Chap. 3), similar to patterns in 

other species (Templeton et al., 2012; van Noordwijk et al., 2003). Although male 

juveniles generally spend less time grooming than females (Cords et al., 2010; Chap. 3), 

it is not uncommon to see male juveniles grooming one another during breaks in play 

bouts (pers. obs.). It is possible, therefore, that as males received more grooming from 

their mothers as infants they were more disposed to groom their peer play partners. 

 Relationships between juveniles’ and mothers’ social behavior that were selected 

but did not reach significance according to CIs adjusted for false coverage rate were 

similar to those between mother-infant and juvenile-peer grooming. Although these 

patterns did not reach significance, their similarity to the effect of mother-offspring 

grooming on juvenile-peer grooming behavior – i.e. males’ association time increased 
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and females’ association time decreased with increased mothers’ sociality – suggests that 

this effect is real. It is possible that mothers’ time grooming juveniles’ in their first year, 

and juveniles’ time grooming with peers, were large enough contributions to mothers’ 

and juveniles’ time near partners that patterns of grooming behavior drove patterns of 

general proximity. Alternatively, there could be other relationships between mother and 

offspring social behavior that a study with greater statistical power could uncover. 

Although mother-infant grooming time and juvenile-peer grooming time do not clearly 

translate to the behavioral patterns known to correspond with survival and energetics in 

adult female and juveniles, respectively (Chap. 2, 4), this study takes a first step to 

understand how potentially adaptive behavior is transmitted from one generation to the 

next in blue monkeys. 

 

Conclusions 

 The findings of this preliminary study are meant to encourage the development of 

hypotheses to be tested in future studies. Although I found no direct links between 

juveniles’ sociality with groupmates and that of their mothers, I did find an apparent 

maternal effect in which juveniles’ grooming with peers varied according to the time 

their mother had groomed with them during infancy. The results of this study suggest that 

males and females demonstrated different amounts of affiliative behavior in response to 

the affiliative experiences they had with their mothers as infants. Although I found 

evidence for such an early-life maternal effect on juvenile grooming behavior, future 

studies should focus on the infant and measure the total grooming it receives from non-

mothers. One striking implication of the apparent influence of mother-infant grooming on 
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juvenile grooming behavior is that the rather conventional sex difference in juvenile 

grooming behavior in blue monkeys (at least among peers) arises only when mother-

infant grooming time is low. Future experimental studies could modify mother-infant 

interactions to observe maternal effects on offspring social behavior in a controlled 

environment, avoiding the cruelty and confound of complete isolation (e.g. Holloway & 

Suter, 2004).
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Supplemental Information 

 
Figure S5.1. Modeled partial variation of juveniles’ time spent with partners : a) 

grooming peers, b and c) in general proximity of partners, and d) playing according to 

mothers’ time in association with partners (x-axis) by sex (males in red and females in 

black). Models selected according to 95% CI of interaction’s parameter estimate. * 

Indicates significant effect according to CI adjusted for false coverage rate. 
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Table S5.1. Non-significant relationships between juvenile and mothers’ association 

measures (General additive models, mother and group as random effects, N = 41 mother-

juvenile pairs). ∆AIC = AIC full model - AIC null model (no fixed effects). 

 

Response: 

 

% Time juv… 

(partners) 

 

∆AIC 

Predictor: 

 

% Time mother…, (partners, 

time period) 

ß se 95% CI 

Juv groom (any 

partners) 
-38.86 Intercept -3.04 0.09 [-3.211, -2.859] 

  
Mother groom (any partners, 

all years) 
-0.08 0.08 [-0.23, 0.077] 

  Juv sex (M) -1.29 0.16 [-1.614, -0.973] 

  Juv age 0.35 0.07 [0.21, 0.498] 

  
Mother groom (ap, ay) : Sex 

(M) 
0.21 0.15 [-0.086, 0.504] 

Juv groom (any 

partners) 
-39.85 Intercept -3.04 0.09 [-3.217, -2.861] 

  
Mother groom (any partners, 

juv first year) 
-0.11 0.11 [-0.325, 0.114] 

  Juv sex (M) -1.26 0.16 [-1.58, -0.938] 

  Juv age 0.35 0.09 [0.164, 0.535] 

  Mother groom (ap, fy) : Sex (M) 0.26 0.15 [-0.042, 0.565] 

Juv groom (any 

partners) 
-41.33 Intercept -3.04 0.08 [-3.206, -2.875] 

  
Mother groom with juv (juv 

first year) 
-0.15 0.08 [-0.317, 0.008] 

  Juv sex (M) -1.31 0.16 [-1.621, -1.007] 

  Juv age 0.35 0.07 [0.22, 0.486] 

  
Mother groom with juv (fy) : 

Sex (M) 
0.31 0.17 [-0.015, 0.638] 

Juv groom (peers) -13.49 Intercept -3.86 0.09 [-4.03, -3.694] 

  
Mother groom (peers, all 

years) 
0.06 0.1 [-0.132, 0.26] 

  Juv sex (M) -0.77 0.14 [-1.049, -0.499] 

  Juv age 0.23 0.07 [0.098, 0.371] 

  
Mother groom (prs, ay) : Sex 

(M) 
0.05 0.15 [-0.241, 0.334] 

Juv groom (peers) -14.27 Intercept -3.83 0.09 [-3.999, -3.665] 

  
Mother groom (peers, juv first 

year) 
-0.1 0.09 [-0.285, 0.082] 

  Juv sex (M) -0.85 0.15 [-1.136, -0.559] 

  Juv age 0.18 0.08 [0.035, 0.332] 

  
Mother groom (prs, fy) : Sex 

(M) 
-0.01 0.15 [-0.317, 0.287] 

Juv prox no groom 

(any partners) 
-28.1 Intercept -2.71 0.05 [-2.805, -2.617] 

  
Mother prox no groom (any 

partners, all years) 
-0.04 0.06 [-0.149, 0.067] 

  Juv sex (M) -0.56 0.07 [-0.707, -0.415] 

  Juv age 0.11 0.04 [0.029, 0.187] 

  
Mother prox no groom (ap, ay) 

: Sex (M) 
0.13 0.07 [-0.019, 0.271] 

Juv prox no groom 

(any partners) 
-25.75 Intercept -2.71 0.05 [-2.813, -2.612] 
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Mother prox no groom (any 

partners, juv first year) 
-0.01 0.05 [-0.107, 0.079] 

  Juv sex (M) -0.57 0.08 [-0.723, -0.41] 

  Juv age 0.11 0.04 [0.029, 0.188] 

  
Mother prox no groom (ap, fy) : 

Sex (M) 
0.06 0.08 [-0.106, 0.222] 

Juv prox no groom 

(any partners) 
-25.49 Intercept -2.71 0.05 [-2.81, -2.606] 

  
Mother prox no groom with juv 

(juv first year) 
0.03 0.06 [-0.086, 0.141] 

  Juv sex (M) -0.57 0.08 [-0.725, -0.407] 

  Juv age 0.11 0.04 [0.033, 0.191] 

  
Mother prox no groom with juv 

(fy) : Sex (M) 
-0.04 0.09 [-0.214, 0.126] 

Juv prox no groom 

(peers) 
3.47 Intercept -3.53 0.06 [-3.662, -3.407] 

  
Mother prox no groom (peers, 

all years) 
-0.11 0.07 [-0.246, 0.022] 

  Juv sex (M) -0.08 0.09 [-0.254, 0.098] 

  Juv age -0.07 0.05 [-0.166, 0.017] 

  
Mother prox no groom (prs, ay) 

: Sex (M) 
0.06 0.09 [-0.125, 0.247] 

Juv prox no groom 

(peers) 
1.72 Intercept -3.52 0.06 [-3.649, -3.398] 

  
Mother prox no groom (peers, 

juv first year) 
-0.13 0.07 [-0.265, -0.004] 

  Juv sex (M) -0.1 0.09 [-0.281, 0.071] 

  Juv age -0.12 0.05 [-0.231, -0.018] 

  
Mother prox no groom (prs, fy) 

: Sex (M) 
0.02 0.09 [-0.16, 0.205] 

Juv prox no groom 

(peers) 
5.04 Intercept -3.55 0.07 [-3.685, -3.424] 

  
Mother prox no groom with juv 

(juv first year) 
-0.07 0.08 [-0.218, 0.077] 

  Juv sex (M) -0.05 0.09 [-0.224, 0.131] 

  Juv age -0.05 0.05 [-0.137, 0.043] 

  
Mother prox no groom with juv 

(fy) : Sex (M) 
0.01 0.1 [-0.174, 0.202] 

Juv play (any partners) -44.94 Intercept -5.08 0.17 [-5.407, -4.755] 

  
Mother general prox (any 

partners, juv first year) 
-0.03 0.14 [-0.309, 0.247] 

  Juv sex (M) 1.78 0.18 [1.437, 2.13] 

  Juv age -0.1 0.07 [-0.229, 0.033] 

  
Mother general prox (ap, fy) : 

Sex (M) 
0.24 0.16 [-0.079, 0.556] 

Juv play (any partners) -43.99 Intercept -5.07 0.16 [-5.393, -4.753] 

  
Mother general prox with juv 

(juv first year) 
0.01 0.16 [-0.309, 0.327] 

  Juv sex (M) 1.8 0.17 [1.462, 2.142] 

  Juv age -0.14 0.06 [-0.26, -0.014] 

  
Mother general prox (fy) : Sex 

(M) 
0.11 0.18 [-0.243, 0.464] 

Juv play (peers) -30.66 Intercept -4.98 0.19 [-5.359, -4.602] 

  
Mother general prox (peers, all 

years) 
-0.25 0.17 [-0.579, 0.088] 

  Juv sex (M) 1.64 0.2 [1.243, 2.041] 

  Juv age -0.07 0.07 [-0.216, 0.072] 

  
Mother general prox (prs, ay) : 

Sex (M) 
0.27 0.18 [-0.088, 0.637] 

Juv play (peers) -28.87 Intercept -4.93 0.2 [-5.335, -4.533] 

  Mother general prox (peers, juv -0.24 0.19 [-0.618, 0.137] 
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first year) 

  Juv sex (M) 1.6 0.22 [1.176, 2.023] 

  Juv age -0.08 0.1 [-0.275, 0.125] 

  
Mother general prox (ap, fy) : 

Sex (M) 
0.25 0.2 [-0.132, 0.638] 

Juv play (peers) -28.03 Intercept -5 0.2 [-5.399, -4.601] 

  
Mother general prox with juv 

(juv first year) 
0.06 0.2 [-0.328, 0.453] 

  Juv sex (M) 1.66 0.21 [1.242, 2.083] 

  Juv age -0.04 0.08 [-0.187, 0.116] 

  
Mother general prox (fy) : Sex 

(M) 
-0.02 0.22 [-0.455, 0.418] 

Juv play (any partners) -45.24 Intercept -5.08 0.16 [-5.384, -4.771] 

  
Mother groom (any partners, 

all years) 
-0.07 0.13 [-0.319, 0.189] 

  Juv sex (M) 1.8 0.17 [1.48, 2.13] 

  Juv age -0.13 0.06 [-0.247, -0.009] 

  
Mother groom (ap, ay) : Sex 

(M) 
0.17 0.15 [-0.115, 0.454] 

Juv play (any partners) -40.84 Intercept -5.02 0.19 [-5.384, -4.647] 

  
Mother groom (any partners, 

juv first year) 
0.01 0.18 [-0.347, 0.363] 

  Juv sex (M) 1.77 0.2 [1.383, 2.162] 

  Juv age -0.02 0.11 [-0.229, 0.195] 

  Mother groom (ap, fy) : Sex (M) 0.13 0.19 [-0.231, 0.497] 

Juv play (any partners) -43.43 Intercept -5.06 0.17 [-5.4, -4.715] 

  
Mother groom with juv (juv 

first year) 
-0.02 0.14 [-0.3, 0.257] 

  Juv sex (M) 1.8 0.19 [1.439, 2.165] 

  Juv age -0.12 0.07 [-0.249, 0.013] 

  
Mother groom with juv (fy) : 

Sex (M) 
0.2 0.16 [-0.127, 0.52] 

Juv play (peers) -28.92 Intercept -4.98 0.2 [-5.376, -4.588] 

  
Mother groom (peers, all 

years) 
-0.2 0.16 [-0.514, 0.119] 

  Juv sex (M) 1.65 0.21 [1.232, 2.061] 

  Juv age -0.06 0.08 [-0.206, 0.094] 

  
Mother groom (prs, ay) : Sex 

(M) 
0.15 0.18 [-0.202, 0.505] 

Juv play (peers) -30.54 Intercept -4.94 0.2 [-5.326, -4.553] 

  
Mother groom (peers, juv first 

year) 
-0.35 0.21 [-0.756, 0.061] 

  Juv sex (M) 1.58 0.21 [1.172, 1.991] 

  Juv age -0.13 0.09 [-0.318, 0.05] 

  
Mother groom (prs, fy) : Sex 

(M) 
0.23 0.21 [-0.193, 0.645] 

Juv play (peers) -28.39 Intercept -4.99 0.21 [-5.397, -4.579] 

  
Mother groom with juv (juv 

first year) 
-0.03 0.16 [-0.352, 0.285] 

  Juv sex (M) 1.64 0.22 [1.213, 2.076] 

  Juv age -0.04 0.08 [-0.195, 0.122] 

  
Mother groom with juv (fy) : 

Sex (M) 
0.23 0.19 [-0.145, 0.608] 

Juv general prox (any 

partners) 
-6.58 Intercept -2.15 0.06 [-2.262, -2.03] 

  
Mother general prox with juv 

(juv first year) 
-0.01 0.06 [-0.138, 0.111] 

  Juv sex (M) -0.23 0.08 [-0.4, -0.068] 

  Juv age 0.14 0.04 [0.054, 0.219] 

  Mother general prox (fy) : Sex 0.03 0.09 [-0.149, 0.215] 
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(M) 

Juv general prox 

(peers) 
-1.26 Intercept -2.85 0.08 [-3.002, -2.703] 

  
Mother general prox (peers, all 

years) 
-0.08 0.08 [-0.245, 0.085] 

  Juv sex (M) 0.27 0.1 [0.082, 0.466] 

  Juv age 0.01 0.05 [-0.082, 0.111] 

  
Mother general prox (prs, ay) : 

Sex (M) 
0.14 0.1 [-0.063, 0.339] 

Juv general prox 

(peers) 
-2.02 Intercept -2.84 0.08 [-2.991, -2.689] 

  
Mother general prox (peers, juv 

first year) 
-0.1 0.08 [-0.263, 0.058] 

  Juv sex (M) 0.26 0.1 [0.067, 0.461] 

  Juv age 0.01 0.06 [-0.113, 0.13] 

  
Mother general prox (ap, fy) : 

Sex (M) 
0.15 0.1 [-0.04, 0.341] 

Juv general prox 

(peers) 
0.11 Intercept -2.86 0.08 [-3.015, -2.71] 

  
Mother general prox with juv 

(juv first year) 
-0.06 0.08 [-0.215, 0.105] 

  Juv sex (M) 0.28 0.1 [0.085, 0.476] 

  Juv age 0.02 0.05 [-0.071, 0.118] 

  
Mother general prox (fy) : Sex 

(M) 
0.05 0.11 [-0.159, 0.258] 
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Chapter 6: Summary and Conclusions. 

 The preceding chapters contribute new information about the potential causes, 

consequences, and correlates of social behavior over the life cycle in a gregariously social 

mammal. The chapters integrate long-term behavioral and life history data on adult 

females with short-term behavioral and physiological data on male and female juveniles, 

to provide a body of results that are uniquely broad in scope yet integrative across life 

stages. This final chapter summarizes findings from previous chapters and highlights 

avenues for future research. 

 In Chapter 1, I created a framework to understand the pathways by which social 

ties potentially influence fitness. In it, I also discussed methodological issues important to 

meaningfully describe ties and individual social tendencies, and their 

neuroendocrinological and developmental bases. The framework is useful to generate 

hypotheses for future analyses of the benefits of social ties over the life cycle in an array 

of social species, as the pathways described therein are relevant to different socio-

ecologies and life stages. This chapter served as a framework for later chapters: namely, 

in understanding 1) the overall connection between adult ties and longevity (Chapter 2); 

2) socio-demographic drivers of ties and their function in developing adult behavioral 

competence (Chapter 3); 3) the ability of ties to help individuals maintain homeostasis 

(Chapter 4); and 4) the origins of social ties and early life maternal effects on social 

behavior (Chapter 5). 

 In Chapter 2, I found that strong bonds do not always increase longevity among 

adult blue monkey females, as they appear to do in closely related baboons. Maintaining 

strong bonds with close partners increased survival only when close partners were 
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consistent over time. I also found both a current and cumulative relationship between 

bond quality and survival, the first finding of its kind among non-human animals. This 

analysis suggested that strong bonds are perhaps costly to adult females, as maintaining 

strong bonds with inconsistent partners over multiple years corresponded with lower 

mortality than maintaining weak bonds with inconsistent partners.  Future studies can aim 

to quantify the costs of social bonds and the pay-offs of maintaining them with consistent 

partners, who may provide a stable, reciprocal, and long-term alliance. Examining the 

physiological correlates of relationship quality in adult females can reveal the 

mechanisms by which social ties are linked to mortality in this species. 

 In Chapter 3, I found that juvenile gregariousness, or time spent socializing, and 

aggression varied according to sex and age in ways that supports the hypothesis that 

sociality during juvenility functions to develop adult sex-typical social competence. Male 

juveniles spent more time playing with more partners and gave agonism at higher rates 

than females, whereas females spent more time sitting close to and grooming with more 

partners. Sex differences in grooming and sitting close to partners increased with age, and 

while both sexes decreased their number of play partners as they approached maturity, 

females did so at a higher rate. Juvenile partner preferences also demonstrated a mixed 

strategy of developing adult competence and avoiding the risk of being dominated by 

older and larger individuals. In general, both males and females preferred to interact with 

partners that were more similar to themselves, in relatedness, age, and maternal rank. 

These results support the hypothesis that juveniles use partners for “self-assessment” 

(Thompson, 1998). Nevertheless, both males and females increased the time they spent 

resting near partners the older that partners were, and females spent more time grooming 
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with older partners, suggesting that certain older individuals were either safe havens (e.g. 

tolerantly providing vigilance), role models that could potentially enhance grooming 

skills or access to ecological information, or were potential future allies. I also found fruit 

availability drove individual spacing patterns and that close proximity during peak fruit 

abundance seemed to provide an opportunity for both positive (affiliative) and negative 

(agonistic) social experiences for juveniles. 

 In Chapter 4, I found that juveniles’ allostatic load, as measured by fecal 

glucocorticoid (fGC) metabolites, was related to both social strategy and energy balance. 

Juvenile sex, age, and maternal dominance rank were unrelated to fGC levels. In general, 

juvenile fGC levels decreased with more positive energy balance, an expected effect 

wherein fewer GCs are secreted to mobilize glucose as energy is readily available from 

the diet. Also in line with predictions, time spent playing corresponded with lower fGC 

levels; however, time spent grooming had a positive relationship with fGCs. Indeed, 

among individuals that spent the most time grooming (top quartile) fGCs actually 

increased with energy balance, suggesting perhaps some perceived or actual risk in 

feeding contexts among highly social individuals. Juveniles that groomed the most spent 

more time grooming non-kin than kin, a contrast that was not significant among juveniles 

in any other grooming quartile. This further suggests that grooming with unrelated and 

less familiar social partners was associated with a real or perceived risk of harm.   

 Lastly in Chapter 5, I found that juveniles’ social behavior does correspond with 

their mothers’ social behavior. Specifically, the amount of time that mothers groomed 

with their offspring during its infancy predicted the amount of time that their offspring 

groomed with their peers later as juveniles. The significant relationship between 
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juveniles’ and mothers’ behavior was restricted to their direct interactions with one 

another during the juveniles’ first year of life, suggesting that juvenile grooming behavior 

is subject to maternal effects. The maternal effect then varied according to juvenile sex, 

such that as females groomed more with their mothers during infancy they groomed their 

peers less, whereas when males groomed more with their mothers during infancy they 

groomed their peers more. These results set up a future study to examine the 

physiological correlates of maternal grooming during infancy, particularly in relation to 

hormone and neurotransmitter receptor densities (e.g. estrogen, dopamine), or their 

genetic correlates, that could correspond to sex-specific affiliative behavior later in life. 

 Although I conducted the analyses of each chapter under the hypothesis that 

affiliative ties would benefit individuals, whether as mature adults or immature juveniles, 

results demonstrated that affiliative behavior is often associated with both short and long-

term costs. The apparent costs of strong bonds among adult females (lower survival when 

maintained with inconsistent partners), of juveniles’ proximity to partners in a feeding 

context (agonism received), and of juveniles’ grooming with unrelated social partners 

(higher allostatic load), do not suggest that socializing and social ties are not beneficial. 

These costs are potentially outweighed by benefits particular to context or time scale. For 

example, strong bonds with consistent partners could result in reciprocal, long-term 

alliances and a stable social environment; feeding on desirable foods could result in 

increased access to energy; and socializing with less familiar individuals could develop 

adult behavioral competence and future alliances during intergroup competition.  

The results of this dissertation research provide a strong outline as to how the 

fitness benefits of differentiated social ties can be further studied. The true function of 
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sociality during development requires a follow-up examination of how fitness-related 

performance in the adult social environment corresponds to juvenile social behavior. 

Simultaneously, the mechanisms by which adult social behavior correlated with fitness 

outcomes require further elaboration. If grooming with unfamiliar individuals is generally 

associated with higher allostatic load, as it appears to be in juveniles, adult females could 

pay the same cost when maintaining strong bonds with new and unfamiliar partners, i.e. 

close partners that change from year to year. Future studies can focus on quantifying the 

costs of social behavior relative to its potential pay-offs, both over the short and long 

term, to understand how social tendencies are maintained and why they have evolved. 

This work therefore emphasizes the necessity of long-term field studies to understand the 

evolution of social behavior wild animals. 
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