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ABSTRACT

Methods in functional data analysis and functional
genomics

Daniel Backenroth

This thesis has two overall themes, both of which involve the word functional, albeit

in different contexts. The theme that motivates two of the chapters is the development of

methods that enable a deeper understanding of the variability of functional data. The theme

of the final chapter is the development of methods that enable a deeper understanding of

the landscape of functionality across the human genome in different human tissues.

The first chapter of this thesis provides a framework for quantifying the variability

of functional data and for analyzing the factors that affect this variability. We extend

functional principal components analysis by modeling the variance of principal component

scores. We pose a Bayesian model, which we estimate using variational Bayes methods. We

illustrate our model with an application to a kinematic dataset of two-dimensional planar

reaching motions by healthy subjects, showing the effect of learning on motion variability.

The second chapter of this thesis provides an alternative method for decomposing func-

tional data that follows a Poisson distribution. Classical methods pose a latent Gaussian

process that is then linked to the observed data via a logarithmic link function. We pose

an alternative model that draws on ideas from non-negative matrix factorization, in which

we constrain both scores and spline coefficient vectors for the functional prototypes to be

non-negative. We impose smoothness on the functional prototypes. We estimate our model

using the method of alternating minimization. We illustrate our model with an application

to a dataset of accelerometer readings from elderly healthy Americans.

The third chapter of this thesis focuses on functional genomics, rather than functional

data analysis. Here we pose a method for unsupervised clustering of functional genomics

data. Our method is non-parametric, allowing for flexible modeling of the functional ge-



nomics data without binarization. We estimate our model using variational Bayes methods,

and illustrate it by calculating genome-wide functional scores (based on a partition of our

clusters into functional and non-functional clusters) for 127 different human tissues. We

show that these genome-wide and tissue-specific functional scores provide state-of-the-art

functional prediction.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The first part of this thesis focuses on functional data analysis, and specifically on functional

principal component analysis and related methods.

The first chapter in the first part of this thesis develops a framework for quantifying the

variability of functional data and for analyzing the factors that affect this variability. We

start with functional principal components analysis, in which a basis for a set of functional

observations is selected that is in some sense optimal for capturing the variability of those

observations. Classically, the first FPC is selected to explain the largest possible amount of

variance in the data, subject to some smoothness penalty. The second FPC is selected to be

orthogonal to the first FPC, and to explain the largest possible amount of remaining variance

in the data. And so on. In this framework, scores for each FPC are assumed to come from a

distribution (usually Gaussian) with constant variance. We extend this model by allowing

scores for each curve to have a different Gaussian distribution, whose variance depends on

covariate and subject-specific factors. We fit our model using variational Bayes methods.

In our application, our extended model enables us to quantify the effects of learning on

motion variability, using a kinematic dataset of two-dimensional planar reaching motions

by healthy subjects.

The second chapter in the first part of this thesis shifts focus from functions with Gaus-

sian noise to functions that represent observations of a Poisson process. Classical methods

for the analysis of this data pose a latent Gaussian process that is then linked to the ob-

served data via a logarithmic link function. We pose an alternative model that draws on
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ideas from non-negative matrix factorization, in which we constrain both scores and spline

coefficient vectors for the functional prototypes to be non-negative. We impose smooth-

ness on the functional prototypes. We estimate our model using the method of alternating

minimization. We illustrate our model with an application to a dataset of accelerometer

readings from elderly healthy Americans.

The second part of this thesis focuses on the use of statistical methods in functional

genomics. A significant open problem in functional genomics is understanding the func-

tion of non-coding DNA, which comprises the vast majority of the human genome. Our

contribution to this area of research is the development of a statistical method that can

predict whether a given region of the genome is functional in a tissue-specific manner. This

method makes use of a recent project, the Roadmap project, that generated tissue-specific

histone mark binding and DNase hypersensitivity maps across the entire genome in more

than a hundred tissues. Our method clusters this data probabilistically, non-parametrically

modeling the distribution of histone mark binding and DNase measurements. Our method

therefore differs from other existing methods that binarize this data, therefore losing some

of the information in the assays. We estimate our model using variational Bayes methods,

and illustrate it by calculating genome-wide functional scores (based on a partition of our

clusters into functional and non-functional clusters) for 127 different human tissues. We

show that these genome-wide and tissue-specific functional scores provide state-of-the-art

functional prediction.



3

Part I

Methods in functional data

analysis
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Chapter 2

Modeling motor learning using

heteroskedastic functional principal

components analysis

2.1 Scientific motivation

2.1.1 Motor learning

Recent work in motor learning has suggested that change in motion variability is an impor-

tant component of improvement in motor skill. It has been suggested that when a motor task

is learned, variance is reduced along dimensions relevant to the successful accomplishment

of the task, although it may increase in other dimensions [Scholz and Schöner, 1999; Yarrow

et al., 2009]. Experimental work, moreover, has shown that learning-induced improvement

of motion execution, measured through the trade-off between speed and accuracy, is accom-

panied by significant reductions in motion variability. In fact, these reductions in motion

variability may be a more important feature of learning than changes in the average motion

[Shmuelof et al., 2012]. These results have typically been based on assessments of variability

at a few time points, e.g., at the end of the motion, although high-frequency laboratory

recordings of complete motions are often available.

In this chapter we develop a modeling framework that can be used to quantify motion
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variability based on dense recordings of fingertip position throughout motion execution.

This framework can be used to explore many aspects of motor skill and learning: differences

in baseline skill among healthy subjects, effects of repetition and training to modulate

variability over time, or the effect of baseline stroke severity on motion variance and recovery

[Krakauer, 2006]. By taking full advantage of high-frequency laboratory recordings, we

shift focus from particular time points to complete curves. Our approach allows us to

model the variability of these curves as they depend on covariates, like the hand used or

the repetition number, as well as the estimation of random effects reflecting differences in

baseline variability and learning rates among subjects.

Section 2.1.2 describes our motivating data in more detail, and Section 2.2 introduces

our modeling framework. A review of relevant statistical work appears in Section 2.3.

Details of our estimation approach are in Section 3.2. Simulations and the application

to our motivating data appear in Sections 3.4 and 2.6, respectively, and we close with a

discussion in Section 2.7.

2.1.2 Dataset

Our motivating data were gathered as part of a study of motor learning among healthy

subjects. Kinematic data were acquired in a standard task used to measure control of

reaching motions. In this task, subjects rest their forearm on an air-sled system to reduce

effects of friction and gravity. The subjects are presented with a screen showing eight targets

arranged in a circle around a starting point, and they reach with their arm to a target and

back when it is illuminated on the screen. Subjects’ motions are displayed on the screen,

and they are rewarded with 10 points if they turn their hand around within the target, and

3 or 1 otherwise, depending on how far their hand is from the target at the point of return.

Subjects are not rewarded for motions outside pre-specified velocity thresholds.

Our dataset consists of 9,481 motions by 26 right-handed subjects. After becoming

familiarized with the experimental apparatus, each subject made 24 or 25 reaching motions

to each of the 8 targets, in a semi-random order, with both the left and right hand. Motions

that did not reach at least 30% of the distance to the target and motions with a direction

more than 90◦ away from the target direction at the point of peak velocity were excluded
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from the dataset, because of the likelihood that they were made to the wrong target or not

attempted due to distraction. Motions made at speeds outside the range of interest, with

peak velocity less than 0.04 or greater than 2.0 m/s, were also excluded. These exclusion

rules and other similar rules have been used previously in similar kinematic experiments,

and are designed to increase the specificity of these experiments for probing motor control

mechanisms [Huang et al., 2012; Tanaka et al., 2009; Kitago et al., 2015]. A small number

of additional motions were removed from the dataset due to instrumentation and recording

errors. The data we consider have not been previously reported.

For each motion, the X and Y position of the hand motion is recorded as a function

of time from motion onset to the initiation of return to the starting point, resulting in

bivariate functional observations denoted [PXij (t), P Yij (t)] for subject i and motion j. In

practice, observations are recorded not as functions but as discrete vectors. There is some

variability in motion duration, which we remove for computational convenience by linearly

registering each motion onto a common grid of length D = 50. The structure of the

registered kinematic data is illustrated in Figure 2.1. The top and bottom rows show,

respectively, the first and last right-hand motion made to each target by each subject. The

reduction in motion variance after practice is clear.

Prior to our analyses, we rotate curves so that all motions extend to the target at 0◦.

This rotation preserves shape and scale, but improves interpretation. After rotation, motion

along the X coordinate represents motion parallel to the line between origin and target,

and motion along the Y coordinate represents motion perpendicular to this line. We build

models for X and Y coordinate curves separately in our primary analysis. An alternative

bivariate analysis appears in Appendix A.3.

2.2 Model for curve variance

We adopt a functional data approach to model position curves Pij(t). Here we omit the X

and Y superscripts for notational simplicity. Our starting point is the functional principal

component analysis (FPCA) model of Yao et al. [2005] with subject-specific means. In this
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Figure 2.1: Observed kinematic data. The top row shows the first right-hand motion to

each target for each subject; the bottom row shows the last motion. The left panel of each

row shows observed reaching data in the X and Y plane. Targets are indicated with circles.

The middle and right panels of each row show the PXij (t) and P Yij (t) curves, respectively.
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model, it is assumed that each curve Pij(t) can be modeled as

Pij(t) = µij(t) + δij(t)

= µij(t) +
∞∑
k=1

ξijkφk(t) + εij(t). (2.1)

Here µij(t) is the mean function for curve Pij(t), the deviation δij(t) is modeled as a linear

combination of eigenfunctions φk(t), the ξijk are uncorrelated random variables with mean

0 and variances λk, where
∑

k λk <∞ and λ1 ≥ λ2 ≥ · · · , and εij(t) is white noise. Here all

the deviations δij(t) are assumed to have the same distribution, that of a single underlying

random process δ(t).

Model (2.1) is based on a truncation of the Karhunen-Loève representation of the ran-

dom process δ(t). The Karhunen-Loève representation, in turn, arises from the spectral

decomposition of the covariance of the random process δ(t) from Mercer’s Theorem, from

which one can obtain eigenfunctions φk(t) and eigenvalues λk.

The assumption of constant score variances λk in model (2.1) is inconsistent with our

motivating data because it implies that the variability of the position curves Pij(t) is not

covariate- or subject-dependent. However, motion variance can depend on the subject’s

baseline motor control and may change in response to training. Indeed, these changes in

motion variance are precisely our interest.

In contrast to the preceding, we therefore assume that each random process δij(t) has a

potentially unique distribution, with a covariance operator that can be decomposed as

Cov[δij(s), δij(t)] =

∞∑
k=1

λijkφk(s)φk(t),

so that the eigenvalues λijk, but not the eigenfunctions, vary among the curves. We assume

that deviations δij(t) are uncorrelated across both i and j.

The model we pose for the Pij(t) is therefore

Pij(t) = µij(t) +
K∑
k=1

ξijkφk(t) + εij(t), (2.2)

where we have truncated the expansion in model (2.1) to K eigenfunctions, and into which

we incorporate covariate and subject-dependent heteroskedasticity with the score variance
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model

λijk = λk|x∗
ijk,z

∗
ijk,gik

= Var(ξijk|x∗ijk, z∗ijk, gik) = exp

(
γ0k +

L∗∑
l=1

γlkx
∗
ijlk +

M∗∑
m=1

gimkz
∗
ijmk

)
(2.3)

where, as before, ξijk is the kth score for the jth curve of the ith subject. In model

(2.3), γ0k is an intercept for the variance of the scores, γlk are fixed effects coefficients

for covariates x∗ijlk, l = 1, . . . , L∗, and gimk are random effects coefficients for covariates

z∗ijmk, m = 1, . . . ,M∗. The vector gik consists of the concatenation of the coefficients

gimk, and likewise for the vectors x∗ijk and z∗ijk. Throughout, the subscript k indicates

that models are used to describe the variance of scores associated with each basis function

φk(t) separately. The covariates x∗ijlk and z∗ijmk in model (2.3) need not be the same across

principal components. This model allows exploration of the dependence of motion variability

on covariates, like progress through a training regimen, as well as of idiosyncratic subject-

specific effects on variance through the incorporation of random intercepts and slopes.

Together, models (2.2) and (2.3) induce a subject- and covariate-dependent covariance

structure for δij(t):

Cov[δij(s), δij(t)|x∗ijk, z∗ijk, φk, gik] =
K∑
k=1

λk|x∗
ijk,z

∗
ijk,gik

φk(s)φk(t).

In particular, the φk(t) are assumed to be eigenfunctions of a conditional covariance opera-

tor. Our proposal can be related to standard FPCA by considering covariate values random

and marginalizing across the distribution of random effects and covariates using the law of

total covariance:

Cov[δij(s), δij(t)] = E {Cov[δij(s), δij(t)|x∗, z∗, g]}+

Cov {E[δij(s)|x∗, z∗, g]E[δij(t)|x∗, z∗, g]}

=
∑K

k=1E
[
λk|x∗

ijk,z
∗
ijk,gik

]
φk(s)φk(t).

We assume that the basis functions φk(t) do not depend on covariate or subject effects, and

are therefore unchanged by this marginalization. Scores ξijk are marginally uncorrelated

over k; this follows from the assumption that scores are uncorrelated in our conditional

specification, and holds even if random effects gik are correlated over k. Lastly, the order
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of marginal variances E
[
λk|x∗

ijk,z
∗
ijk,gik

]
may not correspond to the order of conditional

variances λk|x∗
ijk,z

∗
ijk,gik

for some or even all values of the covariates and random effects

coefficients.

In our approach, we assume that the scores ξijk have mean zero. For this assumption

to be valid, the mean µij(t) in model (2.2) should be carefully modeled. To this end we use

the well-studied multilevel function-on-scalar regression model [Guo, 2002; Di et al., 2009;

Morris and Carroll, 2006; Scheipl et al., 2015],

µij(t) = β0(t) +

L∑
l=1

xijlβl(t) +

M∑
m=1

zijmbim(t). (2.4)

Here β0(t) is the functional intercept; xijl for l ∈ 1, . . . , L are scalar covariates associated

with functional fixed effects with respect to the curve Pij(t); βl(t) is the functional fixed

effect associated with the lth such covariate; zijm for m ∈ 1, . . . ,M are scalar covariates

associated with functional random effects with respect to the curve Pij(t); and bim(t) for

m ∈ 1, . . . ,M are functional random effects associated with the ith subject.

Keeping the basis functions constant across all subjects and motions, as in conventional

FPCA, maintains the interpretability of the basis functions as the major patterns of vari-

ation across curves. Moreover, the covariate and subject-dependent score variances reflect

the proportion of variation attributable to those patterns. To examine the appropriateness

of this assumption for our data, we estimated basis functions for various subsets of motions

using a traditional FPCA approach, after rotating observed data so that all motions extend

to the target at 0◦. As illustrated in Figure 2.2, the basis functions for motions made by

both hands and at different stages of training are similar.

2.3 Prior work

FPCA has a long history in functional data analysis. It is commonly performed using a

spectral decomposition of the sample covariance matrix of the observed functional data

[Ramsay and Silverman, 2005; Yao et al., 2005]. Most relevant to our current work are

probabilistic and Bayesian approaches based on non-functional PCA methods [Tipping and

Bishop, 1999; Bishop, 1999; Peng and Paul, 2009]. Rather than proceeding in stages, first
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Figure 2.2: FPC basis functions estimated for various data subsets after rotating curves onto

the positive X axis. The left panel shows the first and second FPC basis functions estimated

for the X coordinate of motions to each target, for the left and right hand separately, and

separately for motion numbers 1-6, 7-12, 13-18 and 19-24. The right panel shows the same

for the Y coordinate.

by estimating basis functions and then, given these, estimating scores, such approaches

estimate all parameters in model (2.1) jointly. James et al. [2000] focused on sparsely

observed functional data and estimated parameters using an EM algorithm; van der Linde

[2008] took a variational Bayes approach to estimation of a similar model. Goldsmith et

al. [2015] considered both exponential-family functional data and multilevel curves, and

estimated parameters using Hamiltonian Monte Carlo.

Some previous work has allowed for heteroskedasticity in FPCA. Chiou et al. [2003] de-

veloped a model which uses covariate-dependent scores to capture the covariate dependence

of the mean of curves. In a manner that is constrained by the conditional mean structure

of the curves, some covariate dependence of the variance of curves is also induced; the de-

velopment of models for score variance was, however, not pursued. Here, by contrast, our

interest is to use FPCA to model the effects of covariates on curve variance, independently

of the mean structure. We are not using FPCA to model the mean; rather, the mean is

modeled by the function-on-scalar regression model (2.4). Jiang and Wang [2010] introduce

heteroskedasticity by allowing both the basis functions and the scores in an FPCA decom-

position to depend on covariates. Briefly, rather than considering a bivariate covariance as

the object to be decomposed, the authors pose a covariance surface that depends smoothly

on a covariate. Aside from the challenge of incorporating more than a few covariates or
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subject-specific effects, it is difficult to use this model to explore the effects of covariates

on heteroskedasticity: covariates affect both the basis functions and the scores, making the

interpretation of scores and score variances at different covariate levels unclear. Although it

does not allow for covariate-dependent heteroskedasticity, the model of Huang et al. [2014]

allows curves to belong to one of a few different clusters, each with its own FPCs and score

variances.

In contrast to the existing literature, our model provides a general framework for un-

derstanding covariate and subject-dependent heteroskedasticity in FPCA. This allows the

estimation of rich models with multiple covariates and random effects, while maintaining

the familiar interpretation of basis functions, scores, and score variances.

Variational Bayes methods, which we use here to approximate Bayesian estimates of

the parameters in models (2.2) and (2.3), are computationally efficient and typically yield

accurate point estimates for model parameters, although they provide only an approxima-

tion to the complete posterior distribution and inference may suffer as a result [Ormerod

and Wand, 2012; Jordan, 2004; Jordan et al., 1999; Titterington, 2004]. These tools have

previously been used in functional data analysis [van der Linde, 2008; Goldsmith et al.,

2011; McLean et al., 2013]; in particular, Goldsmith and Kitago [2016] used variational

Bayes methods in the estimation of model (2.4).

2.4 Methods

The main contribution of this chapter is the introduction of subject and covariate effects

on score variances in model (2.3). Several estimation strategies can be used within this

framework. Here we describe three possible approaches. Later, these will be compared in

simulations.

2.4.1 Sequential estimation

Models (2.2) and (2.3) can be fit sequentially in the following way. First, the mean µij(t)

in model (2.2) is estimated through function-on-scalar regression under a working indepen-

dence assumption of the errors; we use the function pffr in the refund package [Crainiceanu
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et al., 2012] in R. Next, the residuals from the function-on-scalar regression are modeled us-

ing standard FPCA approaches to obtain estimates of principal components and marginal

score variances; given these quantities, scores themselves can be estimated [Yao et al., 2005].

For this step we use the function fpca.sc, also in the refund package, which is among

the available implementations. Next, we reestimate the mean µij(t) in model (2.2) with

function-on-scalar regression using pffr, although now, instead of assuming independence,

we decompose the residuals using the principal components and score variances estimated

in the previous step. We then reestimate principal components and scores using fpca.sc.

The final step is to model the score variances given these score estimates. Assuming that

the scores are normally distributed conditional on random effects and covariates, model

(2.3) induces a generalized gamma linear mixed model for ξ2
ijk, the square of the scores,

with log link, coefficients γlk and gimk, and shape parameter equal to 1/2. We fit this model

with the lme4 package, separately with respect to the scores for each principal component,

in order to obtain estimates of our parameters of interest in the score variance model [Bates

et al., 2015].

The first two steps of this approach are consistent with the common strategy for FPCA,

and we account for non-constant score variance through an additional modeling step. We

anticipate that this sequential approach will work reasonably well in many cases, but note

that it arises as a sequence of models that treat estimated quantities as fixed. First, one

estimates the mean; then one treats the mean as fixed to estimate the principal components

and the scores; finally, one treats the scores as fixed to estimate the score variance model.

Overall performance may deteriorate by failing to incorporate uncertainty in estimates

in each step, particularly in cases of sparsely observed curves or high measurement error

variances [Goldsmith et al., 2013]. Additionally, because scores are typically estimated in a

mixed model framework, the use of marginal score variances in the FPCA step can negatively

impact score estimation and the subsequent modeling of conditional score variances.
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2.4.2 Bayesian approach

2.4.2.1 Bayesian model

Jointly estimating all parameters in models (2.2) and (2.3) in a Bayesian framework is

an appealing alternative to the sequential estimation approach. We expect this to be less

familiar to readers than the sequential approach, and therefore provide a more detailed

description.

Our Bayesian specification of these models is formulated in matrix form to reflect the

discrete nature of the observed data. In the following Θ is a known D ×Kθ matrix of Kθ

spline basis functions evaluated on the shared grid of length D on which the curves are

observed. We assume a normal distribution of the scores ξijk conditional on random effects

and covariates:

pij =

L∑
l=0

xijlΘβl +

M∑
m=1

zijmΘbim +

K∑
k=1

ξijkΘφk + εij (2.5)

βl ∼ MVN
[
0, σ2

βl
Q−1

]
;σ2
βl
∼ IG [α, β]

bi ∼ MVN
[
0, σ2

b((1− π)Q+ πI)−1
]

;σ2
b ∼ IG [α, β]

φk ∼ MVN
[
0, σ2

φk
Q−1

]
;σ2
φk
∼ IG [α, β]

ξijk ∼ N

[
0, exp

(
L∗∑
l=0

γlkx
∗
ijlk +

M∗∑
m=1

gimkz
∗
ijmk

)]

γlk ∼ N
[
0, σ2

γlk

]
gik ∼ MVN

[
0,Σgk

]
; Σgk ∼ IW [Ψk, ν]

εij ∼ MVN
[
0, σ2I

]
;σ2 ∼ IG [α, β]

In model (2.5), i = 1, . . . , I refers to subjects, j = 1, . . . , Ji refers to motions within subjects,

and k = 1, . . . ,K refers to principal components. We define the total number of functional

observations n =
∑I

i=1 Ji. The column vectors pij and εij are the D×1 observed functional

outcome and independent error term, respectively, on the finite grid shared across subjects

for the jth curve of the ith subject. The vectors βl, for l = 0, . . . , L, are functional effect

spline coefficient vectors, bim, for i = 1, . . . , I and m = 1, . . . ,M, are random effect spline

coefficient vectors, and φk, for k = 1 . . . ,K, are principal component spline coefficient vec-
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tors, all of length Kθ. Q is a penalty matrix of the form ΘTMTMΘ, where M is a matrix

that penalizes the second derivative of the estimated functions. I is the identity matrix.

MVN refers to the multivariate normal distribution, N to the normal distribution, IG to

the inverse-gamma distribution, and IW to the inverse-Wishart distribution. Models (2.3)

and (2.4) can be written in the form of model (2.5) above by introducing into those mod-

els covariates x∗ij0k (in model (2.3), multiplying γ0k) and xij0 (in model (2.4), multiplying

β0(t)), identically equal to 1. Some of the models used here, like in our real data analysis,

do not have a global functional intercept β0 or global score variance intercepts γ0k; in these

models there are no such covariates identically equal to 1.

As discussed further in Section 2.4.2.3, for purposes of identifiability and to obtain FPCs

that represent non-overlapping directions of variation, when fitting this model we introduce

the additional constraint that the FPCs should be orthonormal and that each FPC should

explain the largest possible amount of variance in the data, conditionally on the previously

estimated FPCs, if any.

In keeping with standard practice, we set the prior variances σ2
γlk

for the fixed-effect

coefficients in the score variance model to a large constant, so that their prior is close to

uniform. We set ν, the degrees of freedom parameter for the inverse-Wishart prior for the

covariance matrices Σgk , to the dimension of gik. We use an empirical Bayes approach,

discussed further in Section 2.4.2.4, to specify Ψk, the scale matrix parameters of these

inverse-Wishart priors. When the random effects gik are one-dimensional, this prior reduces

to an inverse-Gamma prior. Sensitivity to prior specifications of this model should be

explored, and we do so with respect to our real data analysis in Appendix A.4.

Variance components {σ2
βl
}Ll=0 and {σ2

φk
}Kk=1 act as tuning parameters controlling the

smoothness of coefficient functions βl(t) and FPC functions φk(t), and our prior specifica-

tion for them is related to standard techniques in semiparametric regression. σ2
b, meanwhile,

is a tuning parameter that controls the amount of penalization of the random effects, and

is shared across the bim(t), so that all random effects for all subjects share a common dis-

tribution. Whereas fixed effects and functional principal components are penalized only

through their squared second derivative, the magnitude of the random effects is also penal-

ized through the full-rank penalty matrix I to ensure identifiability [Scheipl et al., 2015; ?].
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The parameter π, 0 < π < 1, determines the balance of smoothness and shrinkage penalties

in the estimation of the random effects bim(t). We discuss how to set the value of this

parameter in Section 2.4.2.4. We set α and β, the parameters of the inverse-gamma prior

distributions for the variance components, to 1.

Our framework can accommodate more complicated random effect structures. In our

application in Section 2.6, for example, each subject has 8 random effect vectors gilk, one

for each target, indexed by l = 1, . . . , 8; the index l is used here since in Section 2.6 l is used

to index targets. We model the correlations between these random effect vectors through a

nested random effect structure:

gilk ∼ MVN
[
gik,Σgik

]
; gik ∼ MVN

[
0,Σgk

]
(2.6)

Here the random effect vectors gilk for subject i and FPC k, l = 1, . . . 8, are centered

around a subject-specific random effect vector gik. We estimate two separate random effect

covariance matrices, Σgik and Σgk , for each FPC k, one at the subject-target level and

one at the subject level. These matrices are given inverse-Wishart priors, and are discussed

further in Section 2.4.2.4.

2.4.2.2 Estimation strategies

Sampling-based approaches to Bayesian inference of model (2.5) are challenging due to the

constraints we impose on the φk(t) for purposes of interpretability of the score variance

models, which are our primary interest. We present two methods for Bayesian estimation

and inference for model (2.5): first, an iterative variational Bayes method, and second, a

Hamiltonian Monte Carlo (HMC) sampler, implemented with the STAN Bayesian program-

ming language [Stan Development Team, 2013]. Our iterative variational Bayes method,

which estimates each parameter in turn conditional on currently estimated values of the

other parameters, is described in detail in Appendix A.5. This appendix also includes a

brief overview of variational Bayes methods. Our HMC sampler, also described in Appendix

A.5, conditions on estimates of the FPCs and fixed and random functional effects from the

variational Bayes method, and estimates the other quantities in model (2.5).
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2.4.2.3 Orthonormalization

A well-known challenge for Bayesian and probabilistic approaches to FPCA is that the basis

functions φk(t) are not constrained to be orthogonal. In addition, when the scores ξijk do

not have unit variance, the basis functions will also be indeterminate up to magnitude,

since any increase in their norm can be accommodated by decreased variance of the scores.

Where interest lies in the variance of scores with respect to particular basis functions, it is

important for the basis functions to be well-identified and orthogonal, so that they represent

distinct and non-overlapping modes of variation. We therefore constrain estimated FPCs

to be orthonormal and require each FPC to explain the largest possible amount of variance

in the data, conditionally on the previously estimated FPCs, if any.

Let Ξ be the n×K matrix of principal component scores and Φ the K by Kθ matrix of

principal component spline coefficient vectors. In each step of our iterative variational Bayes

algorithm, we apply the singular value decomposition to the matrix product ΞΦTΘT ; the

orthonormalized principal component basis vectors which satisfy these constraints are then

the right singular vectors of this decomposition. A similar approach was used to induce

orthogonality of the principal components in the Monte Carlo Expectation Maximization

algorithm of [Huang et al., 2014] and as a post-processing step in [Goldsmith et al., 2015].

Although explicit orthonormality constraints may be possible in this setting [Šmı́dl and

Quinn, 2007], our simple approach, while not exact, provides for accurate estimation. Our

HMC sampler conditions on the variational Bayes estimates of the FPCs, and therefore also

satisfies the desired constraints.

2.4.2.4 Hyperparameter selection

The parameter π in model (2.5) controls the balance of smoothness and shrinkage penal-

ization in the estimation of the random effects bim. In our variational Bayes approach we

choose π to minimize the Bayesian information criterion [?], following the approach of ?.

To set the hyperparameter Ψk in model (2.5) (or the hyperparameters in the inverse-

Wishart priors for the variance parameters in model (2.6)), we use an empirical Bayes

method. First, we estimate scores ξijk using our variational Bayes method, with a constant

score variance for each FPC. We then estimate the random effects gik (or gilk) using a



CHAPTER 2. MODELING MOTOR LEARNING USING HETEROSKEDASTIC
FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS 18

generalized gamma linear mixed model, as described in Section 2.4.1. Finally, we compute

the empirical covariance matrix corresponding to Σgk (or Σgik and Σgk), and set the

hyperparameter so that the mode of the prior distribution matches this empirical covariance

matrix.

2.5 Simulations

We demonstrate the performance of our method using simulated data. Here we present a

simulation that includes functional random effects as well as scalar score variance random

effects. Appendix A.6 includes additional simulations in a cross-sectional context which

demonstrate the effect of varying the number of estimated FPCs, the number of spline

basis functions, and the measurement error.

In our simulation design, the jth curve for the ith subject is generated from the model

Pij(t) = 0 + bi(t) +

4∑
k=1

ξijkφk(t) + εij(t) (2.7)

We observe the curves at D = 50 equally spaced points on the domain [0, 2π]. FPCs φ1 and

φ2 correspond to the functions sin(x) and cos(x) and FPCs φ3 and φ4 correspond to the

functions sin(2x) and cos(2x). We divide the curves equally into two groups m = 1, 2. We

define x∗ij1 to be equal to 1 if the ith subject is assigned to group 1, and 0 otherwise, and

we define x∗ij2 to be equal to 1 if the ith subject is assigned to group 2, and 0 otherwise.

We generate scores ξijk from zero-mean normal distributions with variances equal to

Var(ξijk|x∗ij , gik) = exp

(
2∑
l=1

γlkx
∗
ijl + gik

)
(2.8)

We set γ1k for k = 1, . . . , 4 to the natural logarithms of 36, 12, 6 and 4, respectively, and γ2k

for k = 1, . . . , 4 to the natural logarithms of 18, 24, 12 and 6, respectively. The order of γ1k

and γ2k for FPCs (represented by k) 1 and 2 black is purposely reversed between groups

1 and 2 so that the dominant mode of variation is not the same in the two groups. We

generate the random effects gik in the score variance model from a normal distribution with

mean zero and variance σ2
gk

, setting σ2
gk

to 3.0, 1.0, 0.3, and 0.1 across FPCs. We simulate

functional random effects bi(t) for each subject by generating 10 elements of a random
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effect spline coefficient vector from the distribution MVN
[
0, σ2

b((1− π)Q+ πI)−1
]
, and

then multiplying this vector by a B-spline basis function evaluation matrix. We set π =

σ2
b = 1/2000, resulting in smooth random effects approximately one-third the magnitude

of the FPC deviations. The εij(t) are independent errors generated at all t from a normal

distribution with mean zero and variance σ2 = 0.25.

We fix the sample size I at 24 and set the number of curves per subject Ji to 4, 12,

24 and 48. Two hundred replicate datasets were generated for each of the four scenarios.

The simulation scenario with I = Ji = 24 is closest to the sample size in our real data

application, where for each of 8 targets we have I = 26 and Ji ≈ 24.

We fit the following model to each simulated dataset using each of the three approaches

described in Section 3.2:

pij = Θβ0 + Θbi +
4∑

k=1

ξijkΘφk + εij

ξijk ∼ N

[
0, exp

(
2∑
l=1

γlkx
∗
ijl + gik

)]
.

Here pij is the vectorized observation of Pij(t) from model (2.7). We use 10 spline basis

functions for estimation, so that Θ is a 50 × 10 B-spline basis function evaluation matrix.

For the Bayesian approaches, we use the priors specified in model (2.5), including N [0, 100]

priors for variance parameters σ2
γlk

. We use the empirical Bayes approach discussed in

Section 2.4.2.4 to set the scale parameters for the inverse-gamma priors for the variances

σ2
gk

of the random effects gik.

Figures 2.3, 2.4 and 2.5 illustrate the quality of variational Bayes (VB) estimation of

functional random effects, FPCs, and fixed and random effect score variance parameters.

The top row of Figure 2.3 shows the collection of simulated curves for two subjects and

includes the true and estimated subject-specific mean. The bottom row of this figure shows

the true and estimated score variances across FPCs for a single simulated dataset, and

suggests that fixed and random effects in the score variance model can be well-estimated.

The top row of Figure 2.4 shows estimated FPCs across all simulated datasets with Ji =

24; the FPCs are well-estimated and have no obvious systematic biases. The bottom row

shows integrated squared errors (ISEs) for the FPCs across each possible Ji. As expected,
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Figure 2.3: Selected results for the VB method for one simulation replicate with I = Ji = 24.

This simulation replicate was selected because the estimation quality of the group-level

score variances, shown in the bottom row, is close to median with respect to all simulations.

Panels in the top row show simulated curves for two subjects in light black, the simulated

functional random effect for that subject as a dashed line, and the estimated functional

random effect for that subject as a dark solid line. The subjects were selected to show

one subject with a poorly estimated functional random effect (left) and one with a well

estimated functional random effect (right). Panels in the bottom row show, for each FPC,

estimates and simulated values of the group-level and subject-specific score variances. Large

colored dots are the group-level score variances, and small colored dots are the estimated

score variances for each subject, i.e., they combine the fixed effect and the random effect.



CHAPTER 2. MODELING MOTOR LEARNING USING HETEROSKEDASTIC
FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS 21

FPC1 FPC2 FPC3 FPC4

0 π 2π 0 π 2π 0 π 2π 0 π 2π
t

●

●●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●
●●●
●●

●

●

●

●●●
●●

●

●●●●●●

●

●●

●

●

●

●
●

●
●
●

●

●●●●
●

●

●●

●

●

●
●●

●

●

●

●
●

●
●
●●

●
●●

●

●

●
●●

●

●●●●●●●●

●

●

●

●

●●●

●●

●
●●

●

●

●

●

●
●

●

●●●
●●●

●

●●●●

●●●●●●
●●●●

●

●●
●●

●

●●●

●

●
●

●

●

●●

●
●
●●●

●

●

●●●
●●●
●

●●●●●●●
●●
●●●

FPC1 FPC2 FPC3 FPC4

4 12 24 48 4 12 24 48 4 12 24 48 4 12 24 48
0.00

0.02

0.04

0.06
0.08

# curves per subject

IS
E

, F
P

C
s

Figure 2.4: Estimation of FPCs using the VB method. Panels in the top row show a true

FPC in dark black, and the VB estimates of that FPC for all simulation replicates with

Ji = 24 in light black. Panels in the bottom row show, for each FPC and Ji, boxplots

of integrated square errors (ISEs) for VB estimates φ̂k(t) of each FPC φk(t), defined as

ISE =
∫ 2π

0 [φk(t)− φ̂k(t)]2dt. The estimates in the top row therefore correspond to the ISEs

for Ji = 24 shown in the bottom row. Figure A.10 in Appendix A.6 shows examples of

estimates of FPCs with a range of different ISEs.
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Figure 2.5: Estimation of score variance fixed and random effects using VB. Panels in the

top row show, for each FPC, group, and Ji, boxplots of signed relative errors (SREs) for

VB estimates γ̂lk of the fixed effect score variance parameters γlk, defined as SRE = γ̂lk−γlk
γlk

.

Panels in the bottom row show, for each FPC and Ji, the correlation between random

effect score variance parameters gik and their VB estimates. Intercepts and slopes for linear

regressions of estimated on simulated random effect score variances are centered around 0

and 1, respectively (not shown).

the ISEs are smaller for the FPCs with larger score variances, and decrease as Ji increases.

For 12 and especially for 4 curves per subject, estimates of the FPCs correspond to linear

combinations of the simulated FPCs, leading to high ISEs and to inaccurate estimates of

parameters in our score variance model (examples of poorly estimated FPCs can be seen in

Appendix A.6).

Panels in the top row of Figure 2.5 show that estimates of fixed effect score variance

parameters are shrunk towards zero, especially for lower numbers of curves per subject and

FPCs 3 and 4. We attribute this to overfitting of the random effects in the mean model,

which incorporates some of the variability attributable to the FPCs into the estimated

random effects and reduces estimated score variances. Score variance random effects, shown

in the bottom row of Figure 2.5, are more accurately estimated with more curves per subject.
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Figure 2.6: Comparison of estimation of score variance fixed and random effects using three

methods. Panels in the top row show, for each FPC, group, and estimation method, boxplots

of signed relative errors (SREs) for estimates of the fixed effect score variance parameters

γlk for Ji = 24. Panels in the bottom row show, for each FPC and estimation method,

the correlation between random effect score variance parameters gik and their estimates

for Ji = 24. Intercepts and slopes for linear regressions of estimated on simulated random

effect score variances are centered around 0 and 1, respectively (not shown).
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Figure 2.6 and Table 2.1 show results from a comparison of the VB estimation procedure

to the sequential estimation (SE) and Hamiltonian Monte Carlo (HMC) methods described

in Section 3.2. We ran 4 HMC chains for 800 iterations each, and discarded the first

400 iterations from each chain. We assessed convergence of the chains by examining the

convergence criterion of Gelman and Rubin [1992]. Values of this criterion near 1 indicate

convergence. For each of our simulation runs the criterion for every sampled variable was

less than 1.1, and usually much closer to 1, suggesting convergence of the chains. In general,

performance for the VB and HMC methods is comparable, and both methods are in some

respects superior to the performance of the SE method. Figure 2.6 compares the three

methods’ estimation of the score variance parameters. Especially for FPC 4, the SE method

occasionally estimates random effect variances at 0; these are represented in the lower-right

panel of Figure 2.6 as points where the correlation between simulated and estimated score

variance random effects is 0. Table 2.1 shows, based on the simulation scenario with Ji = 24,

the frequentist coverage of 95% credible intervals for the VB and HMC methods, and of

95% confidence intervals for the SE method, in each case, for the fixed effect score variance

parameters γlk. For FPCs 3 and 4 especially, the SE procedure confidence intervals are too

narrow. The median ISE for the functional random effects is about 30% higher with the

VB method than with the SE method. This results from the relative tendency of the VB

method to shrink FPC score estimates to zero; when the mean of the scores is in fact non-

zero, this shifts estimated functional random effects away from zero. Other comparisons of

these methods are broadly similar.

The HMC method is more computationally expensive than the other two methods.

Running 4 chains for 800 iterations in parallel took approximately 90 minutes for Ji = 24.

On one processor, by comparison, the SE method took about 20 minutes, almost entirely

to run function-on-scalar regression using pffr. The VB method took approximately six

minutes, including the grid search to set the value of the parameter π, which controls

the balance between zeroth and second-derivative penalties in the estimation of functional

random effects.
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FPC Group VB SE HMC

1 1 0.955 0.915 0.960

1 2 0.945 0.905 0.945

2 1 0.940 0.935 0.940

2 2 0.980 0.935 0.975

3 1 0.965 0.930 0.975

3 2 0.955 0.885 0.980

4 1 0.930 0.775 0.970

4 2 0.940 0.705 0.965

Table 2.1: Coverage of 95% credible/confidence intervals for the score variance parameters

γlk using the VB, SE and HMC procedures, for Ji = 24.

2.6 Analysis of kinematic data

We now apply the methods described above to our motivating dataset. To reiterate, our

goal is to quantify the process of motor learning in healthy subjects, with a focus on the

reduction of motor variance through repetition. Our dataset consists of 26 healthy, right-

handed subjects making repeated motions to each of 8 targets. We focus on estimation,

interpretation and inference for the parameters in a covariate and subject-dependent het-

eroskedastic FPCA model, with primary interest in the effect of repetition number in the

model for score variance. We hypothesize that variance will be lower for later repetitions

due to skill learning.

Prior to fitting the model, we rotate all motions to be in the direction of the target at 0◦

so that the X axis is the major axis of motion. For this reason, variation along the X axis

is interpretable as variation in motion extent and variation along the Y axis is interpretable

as variation in motion direction. We present results for univariate analyses of the PXij (t)

and P Yij (t) position curves in the right hand and describe a bivariate approach to modeling

the same data.

We present models with 2 FPCs, since 2 FPCs are sufficient to explain roughly 95% of

the motion variability (and usually more) of motions remaining after accounting for fixed
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and random effects in the mean structure. Most of the variability of motions around the

mean is explained by the first FPC, so we emphasize score variance of the first FPC as a

convenient summary for the motion variance, and briefly present some results for the second

FPC.

2.6.1 Model

We examine the effect of practice on the variance of motions while accounting for target

and individual-specific idiosyncrasies. To do this, we use a model for score variance that

includes a fixed intercept and slope parameter for each target and one random intercept and

slope parameter for each subject-target combination. Correlation between score variance

random effects for different targets for the same subject is induced via a nested random

effects structure. The mean structure for observed curves consists of functional intercepts

βl for each target l ∈ {1, . . . , 8} and random effects bil for each subject-target combina-

tion, to account for heterogeneity in the average motion across subjects and targets. Our

heteroskedastic FPCA model is therefore:

pij =

8∑
l=1

I(tarij = l) (Θβl + Θbil) +

K∑
k=1

ξijkΘφk + εij (2.9)

ξijk ∼ N

[
0, σ2

ξijk
= exp

(
8∑
l=1

I(tarij = l) (γlk,int + gilk,int + (repij − 1)(γlk,slope + gilk,slope))

)]
(2.10)

gilk ∼ MVN
[
gik,Σgik

]
; gik ∼ MVN

[
0,Σgk

]
The covariate tarij indicates the target to which motion j by subject i is directed. The

covariate repij indicates the repetition number of motion j, starting at 1, among all motions

by subject i to the target to which motion j is directed, and I(·) is the indicator function. To

accommodate differences in baseline variance across targets, this model includes separate

population-level intercepts γlk,int for each target l. The slopes γlk,slope on repetition number

indicate the change in variance due to practice for target l; negative values indicate a

reduction in motion variance. To accommodate subject and target-specific effects, each

subject-target combination has a random intercept gilk,int and a random slope gilk,slope, and

each subject has an overall random intercept gik,int and overall random slope gik,slope, in the
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score variance model for each functional principal component. This model parameterization

allows different baseline variances and changes in variance for each target and subject,

but shares FPC basis functions across targets. The model also assumes independence of

functional random effects bil, l = 1, . . . , 8 by the same subject to different targets, as well

as independence of functional random effects bil and score variance random effects gilk for

the same subject. The validity of these assumptions for our data are discussed in Appendix

A.4.

Throughout, fixed effects γlk,int and γlk,slope are given N [0, 100] priors. Random effects

gilk,int and gilk,slope are modeled using a bivariate normal distribution to allow for correlation

between the random intercept and slope parameters in each FPC score variance model, and

with nesting to allow for correlations between the random effects for the same subject and

different targets. We use the empirical Bayes method described in Section 2.4.2.4 to set

the scale matrix parameters of the inverse-Wishart priors for gilk and gik. Appendix A.4

includes an analysis which examines the sensitivity of our results to various choices of prior

hyperparameters.

We fit (2.9) and (2.10) using our VB method, with K = 2 principal components and a

cubic B-spline evaluation matrix Θ with Kθ = 10 basis functions.

2.6.2 Results

Figure 2.7 shows estimated score variances as a function of repetition number for X and Y

coordinate right hand motions to all targets. There is a decreasing trend in score variance

for the first principal component scores for all targets and for both the X and Y coordinates,

which agrees with our hypotheses regarding learning. Figure 2.7 also shows that nearly all

of the variance of motion is attributable to the first FPC. Baseline variance is generally

higher in the X direction than the Y direction, indicating that motion extent is generally

more variable than motion direction.

To examine the adequacy of modeling score variance as a function of repetition number

with a linear model, we compared the results of model (2.10) with a model for the score

variances saturated in repetition number, i.e., where each repetition number m has its own
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Figure 2.7: VB estimates of score variances for right hand motions to each target (in

columns), separately for each direction (X or Y , in rows). Panels show the VB estimates

of the score variance as a function of repetition number using the slope-intercept model

(2.10) in red and orange (first and second FPC, respectively), and using the saturated one-

parameter-per-repetition number model (2.11), in black and grey (first and second FPC,

respectively).

set of parameters γlkm in the model for the score variances:

ξijk ∼ N

[
0, σ2

ξijk
= exp

(
8∑
l=1

24∑
m=1

I(tarij = l, repij = m)γlkm

)]
. (2.11)

The results for these two models are included in Figure 2.7. The general agreement between

the linear and saturated models suggests that the slope-intercept model is reasonable. For

some targets score variance is especially high for the first motion, which may reflect a

familiarization with the experimental apparatus.

We now consider inference for the decreasing trend in variance for the first princi-

pal component scores. We are interested in the parameters γl1,slope, which estimate the

population-level target-specific changes in score variance for the first principal component

with each additional motion. Figure 2.8 shows VB estimates and 95% credible intervals for

the γl1,slope parameters for motions by the right hand to each target. All the point estimates
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Figure 2.8: VB estimates of γl1,slope. This figure shows VB estimates and 95% credible

intervals for target-specific score variance slope parameters γl1,slope for motions by the right

hand to each target, for the X and Y coordinates.

γl1,slope are lower than 0, indicating decreasing first principal component score variance with

additional repetition. For some targets and coordinates there is substantial evidence that

γl1,slope < 0; these results are consistent with our understanding of motor learning, although

they do not adjust for multiple comparisons.

Appendix A.3 includes results of a bivariate approach to modeling motion kinematics,

which accounts for the 2-dimensional nature of the motions. In this approach, the X and

Y coordinates of curves are concatenated, and each principal component reflects variation

in both X and Y coordinates. For curves rotated to extend in the same direction, the

results of this approach suggests that variation in motion extent (represented by the X

coordinate) and motion direction (represented by the Y coordinate) are largely uncorrelated:

the estimate of the first bivariate FPC represents variation primarily in the X coordinate,

and is similar to the estimate of the first FPC in the X coordinate model, and vice versa

for the second bivariate FPC. Analyses of score variance, then, closely follow the preceding

univariate analyses.

Appendix A.2 includes an analysis of data for one target using the VB, HMC and SE

methods. The three methods yield similar results.
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2.7 Discussion

This chapter develops a framework for the analysis of covariate and subject-dependent

patterns of motion variance in kinematic data. Our methods allow for flexible modeling

of the covariate-dependence of variance of functional data with easily interpretable results.

Our approach allows for the estimation of subject-specific effects on variance, as well as the

consideration of multiple covariates.

By applying these methods to our motivating dataset, we have demonstrated that mo-

tion variance is reduced with repetition. Results in Appendix A.1 additionally show that

the baseline level of skill of subjects is correlated across targets and hands, and that base-

line variance is considerably greater in the non-dominant than the dominant hand. Further

applications of these methods in scientifically important contexts could focus, for example,

on whether motion variance is reduced with training faster in the dominant hand, or on

whether training with one hand transfers skill to the other hand. Further research could

also investigate target-specific differences in improvement of variance with training. Move-

ments to some of the targets require coordination between the shoulder and elbow, whereas

others are primarily single-joint motions; the effectiveness of training may depend on the

complexity of the motion.

We have provided three different estimation approaches for fitting heteroskedastic func-

tional principal components models. Given its computational efficiency and comparable

accuracy to the HMC and SE methods, we recommend use of the VB approach for ex-

ploratory analyses and model building. However, because of its approximate nature, we

advise that any conclusions derived from the VB approach be confirmed with one of the

other two methods, perhaps with a subset of the data if required for computational feasi-

bility.

An alternative approach to the analysis of this dataset could treat the target effects

γlk,int and γlk,slope in model (2.10) for the score variances as random effects centered around

parameters µk,int and µk,slope, representing the average across-target baseline score variance

and change in score variance with repetition. Some advantages of this approach would

be the estimation of parameters that summarize the global effect of repetition on motion

variance and shrinkage of the target-specific score variance parameters. However, with
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only 8 random target effects, the model would be sensitive to the specification of priors.

Moreover, as discussed above, motions to different targets impose different demands on

coordination and skill, which may reduce the interpretability of the parameters µk,int and

µk,slope.

Our analysis here is of curves linearly registered onto a common time domain, although

our method could be applied to curves with different time domains, or to sparsely observed

functional data. Current ongoing research will yield an improved approach to registration in

kinematic experiments which will take account of the repeated observations at the subject

level by seeking to estimate subject- and curve-specific warping functions. This approach,

combined with the methods we present in this chapter, will eventually allow a more complete

model for motion variability that takes into account both variability in motion duration and

variability in motion trajectories.

There are several directions for further development. A full Bayesian treatment could

estimate all quantities in model (2.5) jointly, or could condition on only the FPCs and

jointly estimate all other quantities; given the very flexible nature of this model, additional

constraints might be required in such a Bayesian treatment to improve identifiability. More

complex models could allow for correlations between functional random effects and score

variance random effects. Considering our data from the perspective of shape analysis may

provide better understanding of interpretable motion features like location, scale and ori-

entation [Kurtek et al., 2012; Gu et al., 2012]. Lastly, an alternative approach to that

presented here would be to model covariate-dependent score distributions through quantile

regression. This may produce valuable insights into the complete distribution of motions,

especially when this is not symmetric, but some work is needed to understand the connection

of this technique to traditional FPCA.
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Chapter 3

Non-negative matrix factorization

approach to analysis of functional

data

3.1 Scientific Motivation and Statistical Background

Accelerometers can be used to study human activity in an unbiased and continuous man-

ner at high temporal resolution. As part of the Baltimore Longitudinal Study of Aging

(BLSA) [Schrack et al., 2014], a sample of elderly healthy subjects wore the Actiheart, a

combined heart rate and accelerometer adhesively placed on the chest [Brage et al., 2006].

The Actiheart measures physical activity every minute in activity counts, a cumulative

summary of acceleration. There are multiple days of physical activity records for most sub-

jects, providing a valuable resource to study patterns of activity in this sample of elderly

Americans.

This BLSA dataset was previously analyzed in Goldsmith et al. [2015], using a general-

ized function-on-scalar regression model. That work analyzed the dataset in two different

ways. In one analysis the count data were binarized, to represent either activity or inac-

tivity, and continuous functional principal components (FPCs) and fixed effects on a latent

scale, linked to the binary outcomes via the logit link function, were estimated. In an alter-
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Figure 3.1: On the left is the raw data for one subject, showing activity summed over 5

days, binned in 10 minute intervals. A smooth of the data, fit using a generalized additive

model with Poisson responses and a logarithmic link function with 15 basis functions, is

also included. On the right are smooths for 50 subjects, including the subject shown on the

left.
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native analysis, the count data were treated as Poisson distributed, and continuous FPCs

and fixed effects were estimated, again on a latent scale, linked to the observations via the

logarithmic link function.

Here we use this dataset to present a novel decomposition of functional data, which

results in decompositions that are more easily interpretable than those that result from

modeling the data using exponential family distributions with canonical link functions. This

decomposition draws on ideas from non-negative matrix factorization, and constrains both

prototypic modes of variations and the coefficients encoding the decompositions of curves

using these modes of variation to be non-negative. In non-negative matrix factorization [Lee

and Seung, 1999], an n×m data matrix Y , each column of which contains one observation,

is approximated with a matrix product V ×H, where V and H are both non-negative

rank r matrices. The n×r matrix V contains r different prototypes (these are also referred

to in the literature as features, or basis images, among other terms), one in each column.

Each column of the r × m matrix H encodes the contribution of each of the prototypes

to the corresponding observation in Y . The matrices V and H are often estimated via

a scheme of multiplicative updates, for if the initial estimate of one of the coefficients is

positive, and the update factors are also always positive, then the non-negativity constraint

on the coefficients of the decomposition will be respected. Non-negative matrix factorization

has been applied in a myriad of contexts, including in biostatistics [Sotiras et al., 2015].

Conditions exist such that non-negative matrix factorization is unique, in that the data

Y are only representable using one set of non-negative prototypes [Donoho and Stodden,

2003]. As shown in Section 3.4, in our simulations our method is able to correctly recover

the functional prototypes used to generate simulated data.

In this chapter we extend non-negative matrix factorization to functional data analysis

by expressing the prototypes in the columns of V in terms of spline basis functions, V =

Θ × Φ, where Θ is a spline basis evaluation matrix. We encourage smoothness of the

prototypes by penalizing their wiggliness with a second derivative penalty. In Section 3.2

below, we present this model and develop an estimation approach for it.

One benefit of our approach, in which functional prototypes are estimated on the data

scale, without a link function transformation, is that the functional prototypes we estimate
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are sparse and represent ‘parts’ that are transparently assembled into observations via ad-

dition, thus facilitating exploration of patterns of variation across subjects. This constrasts

with approaches, like those of Hall et al. [2008], van der Linde [2009] and Goldsmith et al.

[2015], that assume that observed data is related to a latent Gaussian process via a gener-

alized linear model. In these models FPCs are interpretable and orthogonal on the latent

logarithmic scale, not on the scale on which the data is observed. These approaches result

in decompositions of observations that reflect highly complex patterns of cancellation and

multiplication of non-sparse FPCs that often vary across their entire domain.

The remainder of this chapter is organized as follows. Section 3.2 presents our NARFD

(Non-negative and Regularized Function Decomposition) model. Section 3.3 presents our

implementation of a generalized FPC model for count data, to which we compare NARFD.

Section 3.4 presents a simulation study that explores the estimation accuracy of NARFD.

Section 3.5 presents our analysis of the BLSA accelerometer dataset. We close with a

discussion.

3.2 Methods

We observe nonnegative integer data Yi(tij) for subjects i ∈ 1 . . . I and times t11, . . . , tIJi .

Each subject is observed at a possibly unique set of Ji times ti1, ti2, . . . , tiJi in the domain

[T1, T2]. In NARFD for Poisson data, we assume the following generative process for the

trajectories:

µi(t) =
K∑
k=1

ξikφ(t) (3.1)

Yi(t) ∼ Pois{µi(t)}

Here µi(t) is a latent trajectory, φk(t), k ∈ 1, . . . ,K, are functional prototypes, and ξik

are scores. Since Yi(t) has the Poisson distribution, the variance and mean of Yi(t) are

both equal to µi(t). Both the scores ξik and the functional prototypes φk(t) are assumed

nonnegative, so that µi(t) satisfies the nonnegativity constraint for the mean of the Poisson

distribution. This generative model lacks an overall trajectory µ(t) shared across subjects

since it would function as a floor, rather than a mean, of the curves.
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Expressing this model in matrix form, to reflect the discrete nature of the observed

data, and approximating the functional prototypes with a spline basis expansion in terms

of Kθ spline basis functions, we can rewrite equation (3.1) as µi =
∑K

k=1 ξikΘiφk. Here

Θi is a Ji × Kθ matrix of spline basis functions and φk are spline coefficient vectors for

the functional prototypes. We use B-spline basis functions, as they are nonnegative and

so ensure the nonnegativity of the µi. During estimation, we set the number Kθ of spline

basis functions to a large number and then encourage smoothness with a second derivative

penalty on the spline coefficient functions. Letting µi(tij) be the jth element of µi, the

negative log penalized likelihood we minimize is

− log


I∏
i=1

Ji∏
j=1

µi(tij)
Yi(tj)e−µi(tj)

Yi(tj)

+ λ

K∑
k=1

φTkDφk, (3.2)

whereD is the matrix that penalizes the second derivative of the spline coefficient functions.

We minimize this negative penalized log likelihood using the method of alternating

minimization [Udell et al., 2016]. This is a method that alternates between estimating the

spline coefficient vectors, conditioning on the current values of the scores, and estimating

the scores, conditioning on the current values of the spline coefficient vectors. Therefore

we alternate between conditioning on the current values of the ξik and estimating the φk,

and vice versa. As discussed later, we select the value of λ using cross-validation. We use

random nonnegative starting values for the scores.

Each of the two sub-problems that arises during alternating minimization amounts to

fitting a generalized linear model with a nonnegativity constraint and, in the case of the

model for the spline coefficient vectors, a second derivative penalty. To see this, assume

for simplicity of exposition that all the trajectories are observed at the same set of times

t1, t2, . . . , tJ , so that all trajectories share a common J × Kθ matrix Θ of spline basis

functions. Then, stacking all the observations in an J × I matrix Y , our model for the

observations (leaving out the penalty) can be expressed as Y ∼ Pois(ΘΦΞT ), where Φ is a

Kθ ×K matrix of spline coefficient vectors and Ξ is an n×K matrix of scores. Combining

all the spline coefficients into one matrix, this model can equivalently be expressed as

Y ∼ Pois(ΘΦΞT ), where 1n is an n-vector of 1’s. Using the matrix identity vec (ABC) =

(CT ⊗A)vec (B), we can rewrite this expression as vec (Y ) ∼ Pois{(Ξ⊗Θ)vec (Φ)}.
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Using estimates of the scores and a fixed value of λ, Φ in this last expression can be

estimated by fitting a regularized Poisson generalized linear model with a nonnegativity

constraint on the coefficients, using vec (Y ) as the responses, Ξ ⊗Θ as the model matrix

and λ
∑K

k=1φ
T
kDφk as the quadratic penalty. We do this using an implementation in

the nloptr package of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, a quasi-

Newton method that minimizes a local quadratic approximation to the objective function,

that allows for box constraints [Byrd et al., 1995].

To estimate the vector of scores ξi for the ith trajectory, we first write the model for the

observations Y i for the ith trajectory (again omitting the penalty) as Y i ∼ Pois(ΘΦξTi ).

Using estimates of Φ, ξi can also be estimated using a regularized Poisson linear model

with a nonnegativity constraint, using vec (Yi) as the vector of responses and ΘΦ as the

model matrix. We fit this model using the NNLM package.

We use five-fold cross validation to select the best λ from a pre-defined sequence of

values. Each fold is a group of approximately one-fifth of the curves. For each fold and

value of λ, we fit our model using the other curves, and use the spline coefficients estimated

using these curves to estimate scores, and thus fitted values, for the held-out curves. The

criterion we use to select the optimal λ is the mean value of the Poisson likelihood of the

held-out curves, given the predictions, over the five folds.

3.3 Generalized functional principal components analysis

In sections 3.4 and 3.5 we compare NARFD to generalized functional principal components

analysis (GFPCA). This is a model that has been previously developed in the literature,

which we estimate using a method similar to that we use for estimating NARFD mod-

els. Here we briefly describe the GFPCA model and how we estimate it using alternating

minimization.

In GFPCA for Poisson data with a logarithmic link function, the following generative

process for the trajectories is assumed:
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µi(t) = µ(t) +

K∑
k=1

ξikφk(t)

Yi(t) ∼ Pois(exp(µi(t))),

where µ(t) is a mean trajectory shared across subjects and all other terms are as defined

previously, although we refer to the φk(t) here as FPCs rather than as functional prototypes.

Several estimation strategies for this model have been proposed. Goldsmith et al. [2015]

fit a Bayesian form of this model using the Hamiltonian Monte Carlo sampler implemented

in Stan [Hoffman and Gelman, 2011]. van der Linde [2009] proposed a computationally

efficient variational Bayes algorithm estimation method to fit a Bayesian form of this model.

Hall et al. [2008] fit a similar model, one that assumes that deviations around the mean

are small, by estimating the mean and covariance using observed data and then obtaining

latent mean and basis functions by inverting a linear approximation to the logarithmic link

function.

As the full Bayesian treatment in Goldsmith et al. [2015] is relatively slow, van der

Linde [2009] did not make code implementing her method publicly available, and we found

the method of Hall et al. [2008] to be numerically unstable (see Appendix Figures B.8 and

B.9; this may occur because of violations of the assumption of this method that deviations

around the mean are small), we have implemented an alternating minimization algorithm

for estimating GFPCA. This involves a few modifications from the alternating minimization

algorithm we use for estimating NARFD models. First, in addition to principal component

spline coefficient vectors φk, we also estimate β, a spline coefficient vector that estimates

the mean function µ(t). Second, in lieu of a regularized Poisson generalized linear model

with a nonnegativity constraint, we use a regularized Poisson generalized linear model with

a logarithmic link. To estimate the mean and principal component coefficient vectors, both

of which we penalize with the same second derivative penalty, we use the mgcv package

[Wood, 2011]. To estimate the scores, we use a standard generalized linear models routine,

including the estimated mean function as an offset. Third, after estimation of the FPCs

in each iteration, we orthogonalize the FPCs using the singular value decomposition. This

avoids degenerate solutions characterized by estimated FPCs that are multiples of each
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other, and also improves interpretability of the estimated FPCs. After estimation of the

scores in each iteration, we center the scores for each FPC around 0, and add the appropriate

multiple of that FPC to the estimated mean.

3.4 Simulations

To simulate non-negative count data, we use the model Yi(tj) ∼ Pois[µ(t) + h{ξi1φ1(tj) +

ξi2φ2(tj)}], where h is either the identity function or the exponential function. In our first

simulation scenario (which we call Scenario I), we assume data are generated using the

generative model appropriate for modeling with NARFD. Here h is the identity function,

µ(t) = 0, φ1(t) is the function sin(2s) + 1 and φ2(t) is the function cos(s) + 1. The scores

ξi1 and ξi2 are the squares of random variables generated from normal distributions with

standard deviations equal to 4 and 3, respectively. The tj for each j are a sequence of length

50 equally spaced over the domain [0, 2π], so that Ji = 50 for all i.

We also simulate data under a second scenario (Scenario II), where we assume that

data are generated using the generative model appropriate for modeling with GFPCA.

We simulate data under this second scenario both to confirm that our implementation

of GFPCA accurately estimates GFPCA models, and also to compare how the GFPCA

and NARFD models perform under model misspecification (where, for example, data is

generated with the GFPCA generative model, and a NARFD model is used for estimation).

For this second scenario, h is the exponential function, µ(t) = 3, φ1(t) is the function

sin(2s), and φ2(t) is the function cos(s). The scores ξi1 and ξi2 are generated from normal

distributions with standard deviations equal to 1.5 and 1.0, respectively.

Figure 3.2 shows NARFD estimates of φ1(t) and φ2(t) in Scenario I, for I ∈ {50, 200, 400}.

Estimation quality improves as I increases. Appendix Figure B.1 shows GFPCA estimates

of φ1(t) and φ2(t) in Scenario II. Again, estimation quality improves as I increases, and the

correct FPCs are recovered. Appendix Figures B.2 and B.3 show how integrated squared

errors of estimation improve for both NARFD and GFPCA when I increases, when the

generative model matches the estimation method used.

To examine how the two methods perform under model misspecification, we simulated
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Figure 3.2: Simulated FPCs and NARFD estimates for Scenario I, for different numbers of

curves per simulation replicate. Each simulation was replicated 5 times.
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Figure 3.3: Negative Poisson log-likelihood of data generated using the NARFD generative

model and fitted using NARFD and GFPCA, left, and of data generated using the GFPCA

generative model and fitted using NARFD and GFPCA, right. Here I = 50 and Kθ = 25.

data using Scenario II and estimated functional prototypes using NARFD, and simulated

data using Scenario I and estimated FPCs using GFPCA. Reconstruction of the curves is

better when the estimation method matches the generative model, although reconstruc-

tion error decreases with additional functional prototypes/FPCs, more quickly with GF-

PCA than with NARFD, when the estimation method does not match the data generat-

ing model (see Appendix Figure 3.3). As expected, given the different generative mod-

els and constraints applicable to the two methods, neither method can accurately recover

FPCs/functional prototypes used in simulating data using the other method (see Appendix

Figure B.10).

The Appendix also includes results showing the effect of changing the number of ba-

sis functions (see Appendix Figures B.4 and B.5) and estimating more FPCs/functional

prototypes than are used in simulation (see Appendix Figures B.6 and B.7). Due to its

nonnnegativity constraint, NARFD requires many basis functions to accurately represent

quickly varying curves. Figures B.8 and B.9 also show results, for Scenario II, using the

method of Hall et al. [2008], for comparison with our implementation of GFPCA.
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For Scenario I with 400 curves, one run of NARFD at the λ selected by cross-validation

took about 80 seconds. For Scenario II with 400 curves, one run of GFPCA at the λ selected

by cross-validation took about 90 seconds.

3.5 Results

We apply NARFD to data from the Baltimore Longitudinal Study on Aging (BLSA)

[Schrack et al., 2014], a study of human aging with healthy participants. We also com-

pare with our implementation of GFPCA. The sample we consider in this chapter consists

of 631 men and women who wore the Actiheart, a combined heart rate and physical activity

monitor placed on the chest [Brage et al., 2006]. Subjects were asked to wear the device

except when showering, bathing or swimming. Physical activity was measured in activity

counts per minute, a cumulative summary of acceleration detected by the device within

1-minute monitoring epochs [Bai et al., 2014].

Subjects in our BLSA sample have between 1 and 26 days of monitoring data. To obtain

consistent activity profiles, we selected the 592 subjects with at least 5 days of data, added

observations across the first 5 days of observations for those subjects, and then combined

the activity data into 10 minute intervals. This yields 144 observations for each subject,

combining activity across 5 days of monitoring. Given the periodic nature of the data, we

use a periodic B-spline basis, with 25 basis functions.

To compare the methods, we estimated FPCs/functional prototypes with each method

using from 1 to 12 FPCs/functional prototypes. We used 50 subjects to estimate FPCs and

then estimated scores for the remaining held-out subjects. Figure 3.4 shows the negative

Poisson log-likelihood with respect to curves of these held-out subjects for NARFD and

GFPCA as a function of the number of FPCs/functional prototypes used in the decompo-

sition. NARFD is less parsimonious than BLSA in explaining the variation in the BLSA

data. Figure 3.5 shows the FPCs estimated using each method, for a model fit with five

FPCs using all the 592 curves. FPCs/functional prototypes are ordered for GFPCA by the

standard deviation of the corresponding scores, after normalization of the FPCs, and for

NARFD by the sum of the contribution of the functional prototypes to the curve recon-
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Figure 3.4: Negative Poisson log-likelihood for held-out curves from BLSA data for NARFD

and GFPCA, decomposed using 1 through 12 FPCs/functional prototypes estimated using

50 curves from BLSA data.

structions. The functional prototypes estimated using NARFD are simpler, sparser, and

easier to interpret than the FPCs estimated using GFPCA, each directly corresponding to

a burst of activity at particular times during the day.

Figure 3.6 shows the reconstruction of a curve using NARFD and GFPCA. NARFD

has the property that the contributions from each prototype are additive, so that the final

curves incorporate the contributions from each FPC without cancellation. On the other

hand, contributions from FPCs for GFPCA may cancel out, since the FPCs estimated

using GFPCA are multiplicative, and the contribution of a FPC to the overall activity

profile depends not only on the score for that FPC but also on the scores for the other

FPCs.

3.6 Discussion

We have presented NARFD, a novel decomposition of non-negative functional count data

which enables the study of patterns of variation across subjects in a highly interpretable
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NARFD and GFPCA. Activity counts are shown in light dots, and cumulative contributions

of the mean and the FPCs/functional prototypes are shown as lines.
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manner. Applying these methods to our motivating dataset, we have extracted functional

components which show clear peaks of activity at various times during the day. The ac-

companying scores can be used to classify subjects, and can be used as outcome variables

to investigate the relationship between covariates and activity at different times of the day.

We have also presented a novel algorithm for fitting GFPCA models for count data with

a logarithmic link, using alternating minimization. Both of our methods can accurately

recover correct modes of variation, as demonstrated in our simulation studies.

Further work in this area could investigate ways to have a separate smoothness penalty

for each FPC/functional prototype. This would require the development of a new procedure

for smoothness parameter selection, as our cross-validation procedure would become com-

putationally infeasible with more than a few smoothness parameters. Further work could

also incorporate random effects, so that, as in [Goldsmith et al., 2015], patterns of activity

within subjects, in addition to patterns of activity across subjects, could be analyzed.
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Chapter 4

FUN-LDA: A latent Dirichlet

allocation model for predicting

tissue-specific functional effects of

noncoding variation

4.1 Introduction

Understanding the functional consequences of noncoding genetic variation is one of the most

important problems in human genetics. Comparative genomics studies suggest that most

of the mammalian conserved and recently adapted regions consist of noncoding elements

[Lindblad-Toh et al., 2011; Khurana et al., 2013; ENCODE Project Consortium, 2012]. Fur-

thermore, most of the loci identified in genome-wide association studies fall in noncoding

regions and are likely to be involved in gene regulation in a cell type and tissue specific

manner [Altshuler et al., 2008]. Noncoding variants are also known to play an important

role in cancer. Somatic variants in noncoding regions can act as drivers of tumor progres-

sion and germline noncoding variants can act as risk alleles [Khurana et al., 2016]. Thus,

improved understanding of tissue-specific functional effects of noncoding variants will have

implications for multiple diseases and traits.
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Prediction of the functional effects of genetic variation is difficult for several reasons. To

begin with, there is no single definition of function. As discussed in Kellis et al. [2014] there

are several possible definitions, depending on whether one considers genetic, evolutionary

conservation or biochemical perspectives. These different approaches each have limitations

and vary substantially with respect to the specific regions of the human genome that they

predict to be functional. In particular, the genetic approach, based on experimental evalu-

ation of the phenotypic consequence of a sequence alteration (e.g. by measuring the impact

of individual alleles on gene expression in a particular context), is currently laborious, has

modest throughput and may miss elements that lead to phenotypic effects manifest only

in rare cells or specific contexts. The evolutionary approach relies on accurate multispecies

alignment which makes it challenging to identify certain functional elements, such as dis-

tal regulatory elements known to evolve rapidly, although recently several approaches have

been developed for primate- or even human-specific elements [Petrovski et al., 2013]. An

additional limitation of the evolutionary approach is that it is not sensitive to tissue and cell

type. Finally, the biochemical approach adopted by projects such as ENCODE [ENCODE

Project Consortium, 2012] and Roadmap Epigenomics [Roadmap Epigenomics Consortium,

2015], although helpful in identifying potentially regulatory elements in specific contexts,

does not provide definitive proof of function since the observed biochemical signatures can

occur stochastically and in general are not completely correlated with function. Besides the

difficulty in precisely defining function, a challenge is that the use of functional genomics

features from ENCODE and Roadmap Epigenomics (e.g. ChIP-seq and DNase I hypersen-

sitive sites signals) are mostly useful for predicting the effects of variants in cis-regulatory

elements, such as promoters, enhancers, silencers and insulators. Other classes of functional

variants, for example those with effects on post-transcriptional regulation by alteration of

RNA secondary structure or RNA-protein interactions, would be missed by these features.

Recently, several computational approaches have been proposed to predict functional

effects of genetic variation in noncoding regions of the genome based on epigenetic and evo-

lutionary conservation features [Khurana et al., 2013; Kircher et al., 2014; Fu et al., 2014;

Ionita-Laza et al., 2016; Quang et al., 2015; Huang et al., 2017]. These predictions are at the

organism level and are not specific to particular cell types or tissues. Here we are interested
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in predicting functional effects of genetic variants in specific cell types and tissues using epi-

genetic features and chromatin accessibility measurements. The ENCODE Project and the

Roadmap Epigenomics Project have profiled various epigenetic features, including histone

modifications and chromatin accessibility, genome-wide in more than a hundred different

cell types and tissues. Histone modifications are chemical modifications of the DNA-binding

histone proteins that influence transcription as well as other DNA processes. Particular hi-

stone modifications have characteristic genomic distributions [Bannister and Kouzarides,

2011]. For example, trimethylation of histone H3 lysine 4 (H3K4me3) is associated with

promoter regions, monomethylation of histone H3 lysine 4 (H3K4me1) is associated with

enhancer regions, and acetylation of histone H3 lysine 27 (H3K27ac) and of histone H3

lysine 9 (H3K9ac) is associated with increased activation of enhancer and promoter regions

[Roadmap Epigenomics Consortium, 2015]. Repressive marks include trimethylation of hi-

stone H3 lysine 27 (H3K27me3 ) and trimethylation of histone H3 lysine 9 (H3K9me3),

both associated with inactive promoters of protein-coding genes; H3K27me3 is found in

facultatively repressed genes by Polycomb-group factors, while H3K9me3 is found in hete-

rochromatin regions corresponding to constitutively repressed genes [Friedman and Rando,

2015].

Several unsupervised approaches exist for the integration of these epigenetic features

in specific cell types and tissues. Such integrative approaches reflect the belief that epige-

netic features interact with one another to control gene expression. One class of methods

attempts to segment the genome into non-overlapping segments, representing major pat-

terns of chromatin marks, and labels these segments using a small set of labels such as

active transcription start site, enhancer, strong transcription, weak transcription, quiescent

etc. This class includes methods such as ChromHMM [Roadmap Epigenomics Consortium,

2015; Ernst and Kellis, 2012, 2015] and Segway [Hoffman et al., 2012], based on Hidden

Markov Models (HMMs) and Dynamic Bayesian Networks respectively. ChromHMM is

based on complete pooling of data from multiple tissues and fitting a single model to this

superdataset, while Segway is based on fitting separate models to data from each tissue (no

pooling). Various extensions of these early segmentation approaches have been proposed.

Several approaches have focused on better modeling the read count data from the under-



CHAPTER 4. FUN-LDA: A LATENT DIRICHLET ALLOCATION MODEL FOR
PREDICTING TISSUE-SPECIFIC FUNCTIONAL EFFECTS OF NONCODING
VARIATION 50

lying assays using Poisson-lognormal and negative multinomial distributions [Zacher et al.,

2017; Mammana and Chung, 2015], while others have focused on better modeling of the

correlations among related cell types and tissues [Biesinger et al., 2013; Zhang et al., 2016;

Zhang and Hardison, 2017]. Yet another approach attempts to improve the HMM param-

eter estimation procedure in ChromHMM by replacing the EM algorithm with a spectral

learning procedure [Song and Chen, 2015]. Another class of methods focuses exclusively on

predicting functional effects of variants, rather than segmenting the genome as discussed

above. A recent method in this class, GenoSkyline [Lu et al., 2016], is based on fitting

a two-component mixture model of multivariate Bernoulli distributions to epigenetic data

for each tissue separately, and then computing a posterior probability for each variant to

be in the functional class. Recently, several supervised approaches have been proposed as

well, including deltaSVM [Lee et al., 2015] and cepip [Li et al., 2017]. While supervised ap-

proaches can be more efficient than unsupervised ones when high-quality, unbiased labeled

data are available for training, unsupervised approaches as proposed here can provide more

robust, less biased functional predictions across large number of tissues and cell types when

such unbiased labeled data is scarce, as is the case now.

We introduce here a new integrated functional score that combines different epigenetic

features in specific cell types and tissues. Our model is based on the latent Dirichlet

allocation (LDA) model [Blei et al., 2003], a generative probabilistic model often used in the

topic modeling literature, that allows joint modeling of data from multiple cell types and

tissues. In our context, the latent functional classes correspond to latent topics in the topic

modeling setting, the various tissues correspond to different documents, while the tissue

specific position scores correspond to words in a document. The proposed LDA model has

several advantages. First, our method makes no distributional assumptions on the data,

allowing us to avoid various data transformations employed by other approaches (such as

binary peak calling/dichotomization), and facilitating the integration of annotation data on

the original scale (e.g. quantitative, binary etc.). Second, because the model is fit jointly to

data from multiple cell types and tissues, cross-tissue comparisons are meaningful. Third,

we show that our method outperforms other methods in labeling positions in the genome

as functional in a particular tissue, or not.
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4.2 Methods

4.2.1 LDA model for functional annotation

We propose an application of the latent Dirichlet allocation (LDA) model [Blei et al., 2003],

a generative probabilistic model, in the setting of functional genomics annotation with

the goal of computing posterior probabilities for positions to belong to different functional

classes in any given tissue.

The position scores in each tissue are modeled as a mixture over latent functional classes.

In the mixture distribution, we assume that the mixture components are shared across all

the tissues, while the mixture proportions for the different functional classes can vary from

tissue to tissue. Since our primary goal is to provide a functional score (as opposed to a

functional element annotation) we focus on integrating four activating histone modifications

(i.e. H3K4me1, H3K4me3, H3K9ac, H3K27ac) and DNase. For the four activating histone

modifications data, we compute “valley” scores, motivated by previous work showing that

within regions of high histone acetylation, local minima (or valleys) are strongly associated

with transcription factor binding sites. We fit the LDA model with nine functional classes to

these data, and compute for each position its posterior probability to belong to a functional

class in a specific tissue. We define the functional score at a position as the sum of posterior

probabilities for the designated ‘active enhancer’ and ‘active promoter’ classes.

We now present a detailed description of our model and how we estimate it. Let us

assume that we have a set of m genomic positions in the training set, together with a set

of k functional annotations. For each position i, we have k tissue-specific functional scores:

Xi = (Xi1, . . . , Xik). Let X = (X1, . . . ,Xm) be the set of (continuous) functional scores

for all the positions. These scores are epigenetic features (histone modifications and DNase

hypersensitivity) from ENCODE and Roadmap Epigenomics across a varied set of tissues

and cell types. Let l be the number of tissues, and mj be the number of positions with

tissue j annotations in the training set (m =
∑l

j=1mj). For each position i ≤ m in the

training set we denote by ti the corresponding tissue (i.e. the annotations corresponding

to this variant are for tissue ti). For each tissue, the positions’ scores are represented as

a mixture over latent functional classes, where each functional class is characterized by a
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distribution over position scores. In what follows, for ease of presentation, we assume only

two latent functional classes, but the number of classes can be chosen to be greater than

two. We let C = (C1, . . . , Cm) denote the set of indicator variables for all the positions,

where Ci = 1 if position i belongs to the first functional class and Ci = 0 otherwise. We

are not able to observe C.

Let α = (α0, α1) be the hyperparameter vector with α0, α1 > 0. Here we assume α is a

vector of 1s throughout (a uniform prior). We assume the functional annotation data has

been generated from the following generative model:

1. For each tissue j, choose (1− πj , πj) ∼ Dir(α0, α1).

2. Given πj , for each position i with ti = j choose a class Ci ∼ Bern(πj).

3. Given C1, . . . , Cm, X1, . . . ,Xm are independently generated with each Xi being gen-

erated from the appropriate multivariate distribution: F1 if Ci = 1, and F0 otherwise.

Here π = (π1, . . . , πl) and C are latent variables. We want to calculate the posterior

probability for each position i to be in the first functional class:

wi = P (Ci = 1 |Xi,α),

and the densities f0 and f1. For a given tissue the conditional density of (π,C) given X

and α is:

p(π,C|X,α) =
p(π,C,X|α)

p(X|α)
.

For the numerator we have:

p(π,C,X|α) = p(π|α)
m∏
i=1

p(Ci|π)p(Xi|Ci).

This is easy to compute. However the denominator is not. For the denominator we have:

p(X|α) =

∫
p(π|α)

 m∏
i=1

∑
Ci

p(Ci|π)p(Xi|Ci)

 dπ.

There are 2m terms in the summation so this is difficult to compute for moderately large

m. We propose instead to use a variational approach as described in Blei et al. [2003]. In

the variational inference approach we first introduce a family of distributions {q(·, ·|a,w)}
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over the latent variables (π,Cm) with its own variational parameters a = (a0, a1) and w

(these are tissue specific parameters).

Then

q(π,Cm|a,w) = q(π|a)
m∏
i=1

q(Ci|wi),

where q(π|a) is the density of Dir(a) and q(Ci|wi) is the probability mass function of

Bern(wi) for i = 1 . . .m.

Using Jensen’s inequality we have:

log p(X|α) = log

∫ ∑
C

p(π,C,X|α) dπ

= log

∫ ∑
C

p(π,C,X|α)

q(π,C|a,w)
q(π,C|a,w) dπ

≥
∫ ∑

C

q(π,C|a,w) log p(π,C,X|α) dπ −
∫ ∑

C

q(π,C|a,w) log q(π,C|a,w) dπ

= Eq log p(π,C,X|α)− Eq log q(π,C|a,w) = L(a,w|α).

Note that L(a,w|α) is a lower bound on the log likelihood. So instead of maximizing

the log likelihood directly we maximize this lower bound with respect to the variational

parameters a and w. It can be shown that log p(X|α)−L(a,w|α) is the Kullback-Leibler

(KL) divergence between the true posterior p(π,C|α,X) and the variational posterior

q(π,C|a,w) with respect to q(π,C|a,w). Therefore by maximizing L(a,w|α) with respect

to a and w, we minimize the KL divergence between the variational posterior probability

and the true posterior probability. Then we can estimate P (Ci = 1|α,X) by wi for each

variant i. Below we describe the variational inference algorithm.

Variational Inference Algorithm Assume the initial state
(
w1, . . . , wm, f0, f1

)
. The

algorithm proceeds as follows:

Step 1. (Kernel Density Estimation)

Fit a multivariate kernel density estimate for each annotation and component sepa-

rately: fnew
0s and fnew

1s for each annotation s = 1, . . . , k, weighting variants by com-

ponent membership probability. Specifically, for any x = (x1, . . . , xk) ∈ Rk and
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s = 1, . . . , k, we let

fnew
0s (xs) =

∑m
i=1(1− wi)Khs(xs −Xis)∑m

i=1(1− wi)
,

and

fnew
1s (xs) =

∑m
i=1wiKhs(xs −Xis)∑m

i=1wi
.

The scaled kernel Khs(a) = 1
hs
K( ahs ), where K(·) is taken to be the probability density

function of a standard normal, and the bandwidth parameter hs is chosen to be

hs = 0.9 min{SDs, IQRs/1.34}m−1/5

according to a rule of thumb due to Silverman Silverman [1986], where SDs and IQRs

are the standard deviation and interquartile range of annotation s, respectively. Then

fnew
0 (mx) =

k∏
s=1

fnew
0s (xs), and fnew

1 (mx) =

k∏
s=1

fnew
1s (mx).

Step 2. (Variational Step)

For each tissue j, we obtain wi for all variants i with ti = j and (aj0, a
j
1) by maximizing

the lower bound on the marginal likelihood of X, i.e. L(a,w|α), with respect to a

and w.

This results in the following iterative algorithm:

wi =
f1(Xi) exp(Ψ(aj1)))

f1(Xi) exp(Ψ(aj1)) + f0(Xi) exp(Ψ(aj0))
for variants i with ti = j,

aj0 = α0 +
∑
ti=j

(1− wi) and aj1 = α1 +
∑
ti=j

wi.

where Ψ(x) = d log Γ(x)/dx and Γ(x) is the Gamma function. Additional details are

available in Blei et al. [2003].

4.2.2 LDA implementation

We have implemented the above algorithm in an R package, FUNLDA. For training pur-

poses, we select 4, 000 random positions in each of the 127 tissues. The positions are chosen

among 9, 254, 335 SNPs with minor allele count greater than 5 in European samples from
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the 1000 Genomes project. We have also looked at other ways to select positions in the

training set (e.g. randomly from across the entire genome, with enrichment near genes) and

the results were similar, suggesting that our predictions are robust to the choice of posi-

tions used in the training sets. The number of outer iterations in the variational inference

algorithm is 250 and the number of inner iterations is 200.

FUN-LDA is computed by fitting the LDA model with nine classes to and DNase hy-

persensitivity and valley scores for the four activating histone modifications (H3K4me1,

H3K4me3, H3K9ac, H3K27ac). For the histone modifications and DNase we start with the

negative log10 of the Poisson P-value of ChIP-seq or DNase counts relative to expected

background counts, as output by ChromImpute [Ernst and Kellis, 2015]. The valley scores

are computed as in Ramsey et al. [2010]: for every window of 25 bp, we calculate the max-

imum score for the two regions from −100 to −500 bp and from 100 to 500 bp. If the score

at the window of 25 bp is less than 90% of the minimum of those two maxima, we set the

value in that window to that minimum. Otherwise, we set the value in that 25 bp window

to 0. For each variant, we get a set of nine posterior probabilities for the position to be

in a specific functional class. To get a functional score, we sum the posterior probabilities

for the active functional classes, namely ‘active promoters’ and ‘active enhancers’ (Figure

4.1), which we identified by looking for the characteristic histone modification and DNAse

signatures associated with these active functional classes among the 9 classes inferred by

our model.

4.3 Validation of our method

To assess the accuracy of the predictions of FUNLDA and compare with other methods, we

conducted thorough comparisons using validation sets of variants that have been shown to

have some evidence of a regulatory function. We use both tissue/cell type specific validation

sets, and non tissue/cell type specific validation sets.

4.3.1 Tissue/cell type specific validation sets

We focus on several lists of variants with tissue/cell type specific functional evidence:
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Figure 4.1: Heatmap showing classes inferred by FUN-LDA. The five left-most columns

each show the average value of valley scores or the DNase hypersensitivity assay for posi-

tions assigned to the corresponding class, across all tissues. The sixth column indicates the

percentage of positions assigned to each of the classes. The last column shows our assign-

ment of function to the class. We sum the probability of being in the ActivePromoters and

ActiveEnhancers rows to get the FUN-LDA score. The ActivePromoters state is character-

ized by high values of DNase and H3K4me3; the ActiveEnhancers state is characterized by

high values of H3K4me1 and lower values of H3K4me3.
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• confirmed regulatory variants from a multiplexed reporter assay in lymphoblastoid

cell lines [Tewhey and others, 2016],

• regulatory motifs in 2, 000 predicted human enhancers using a massively parallel

reporter assay in two human cell lines, liver carcinoma (HepG2) and erythrocytic

leukemia (K562) cell lines [Kheradpour et al., 2013], and

• a collection of dsQTLs (DNase I sensitivity quantitative trait loci) in lymphoblastoid

cell lines [Degner and others, 2012].

4.3.1.1 Confirmed regulatory variants (emVars) from a multiplexed reporter

assay

In Tewhey and others [2016], the authors applied the massively parallel reporter assay

(MPRA) to identify variants with effects on gene expression. In particular, they apply it

to 32, 373 variants from 3, 642 cis-expression quantitative trait loci and control regions in

lymphoblastoid cell lines (LCLs), and identify 842 variants showing differential expression

between alleles, or emVars, expression-modulating variants. We use this set of 842 emVars as

positive control variants. We paired each positive control with four variants tested using the

MPRA where neither allele showed differential expression relative to the control, applying a

threshold of 0.1 for the Bonferroni corrected p value. After removing from the list of positive

and negative control variants those variants that we could not map to a genomic location

using the Ensembl database (http://grch37.ensembl.org/index.html), there remained 693

positive control variants and 2, 772 negative control variants.

We compute AUROC (the area under a receiver operating characteristic curve) values

for several methods, including FUN-LDA, GenoSkyline, ChromHMM (25 state model), Seg-

way, IDEAS and cepip (two versions: cepip cell, and cepip combined). For ChromHMM

we partition the twenty-five states into two groups, ‘functional’ and ‘non-functional’, with

the functional group consisting of ‘TssA’ (active TSS), ‘PromU’ (Promoter Upstream TSS),

‘PromD1’ (Promoter Downstream TSS 1), ‘PromD2’ (Promoter Downstream TSS 2), ‘EnhA1’

(Active Enhancer 1), ‘EnhA2’ (Active Enhancer 2), ‘EnhAF’ (Active Enhancer Flank). For

each variant, the sum of ChromHMM posterior probabilities for the classes in the functional
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group above is used to score the variant. Segway and IDEAS only provide a functional class

assignment for each position, and we use these assignments to identify the functional vari-

ants. Results are shown in Table 4.1. As shown, FUN-LDA has higher AUROC (0.707)

compared to existing tissue-specific functional prediction methods methods. FUN-LDA

performs significantly better than the two binarized versions, but it does not outperform

raw DNase (0.718).

4.3.1.2 Regulatory motifs in 2,000 predicted human enhancers using a mas-

sively parallel reporter assay

In Kheradpour et al. [2013], the authors use a massively parallel reporter assay to mea-

sure the transcriptional levels produced by targeted motif disruptions in 2, 104 candidate

enhancers in two human cell lines, liver carcinoma (HepG2) and erythrocytic leukemia

(K562) cell lines, providing one of the largest resource of experimentally validated enhancer

manipulations in human cells. We use as positive control variants those variants where the

p value comparing expression values for the sequence with the motif compared to sequences

with scrambled versions of the motif was less than 0.05. We use as negative control variants

those variants where this p value was greater than 0.1. After removing those variants whose

genomic coordinates we could not resolve, there remained, for HepG2, 525 positive and

1, 451 negative control variants, and for K562, 342 positive and 1, 578 negative control vari-

ants. For all methods, we calculate the scores for these motifs by averaging across all bases

in the motifs. As shown in Table 4.1, FUN-LDA has better accuracy than GenoSkyline,

ChromHMM, IDEAS, Segway and cepip.

4.3.1.3 dsQTLs (DNase I sensitivity quantitative trait loci) in lymphoblastoid

cell lines

We also utilized a collection of dsQTLs in human lymphoblastoid cell lines, originally iden-

tified using DNase I sequencing data from human lymphoblastoid cell lines [Degner and

others, 2012]. In Lee et al. [2015] the authors further processed this list of dsQTLs and

generated 579 dsQTLs (with p value < 1 × 10−5), and randomly selected as controls a

larger set of common SNPs (minor allele frequency > 5%) only from the top 5% of DNase
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Table 4.1: Tissue/cell type specific functional predictions.

.

Dataset Method AUROC

emVars in Tewhey and others [2016], E116 FUN-LDA 0.707

GenoSkyline 0.673

ChromHMM 0.669

Segway 0.622

IDEAS 0.645

DNase 0.718

DNase-narrow 0.666

DNase-gapped 0.659

cepip cell 0.653

cepip combined 0.642

Regulatory motifs in Kheradpour et al. [2013], E118/HepG2 FUN-LDA 0.691

GenoSkyline 0.629

ChromHMM 0.606

Segway 0.618

IDEAS 0.546

DNase 0.719

DNase-narrow 0.561

DNase-gapped 0.550

cepip cell 0.592

cepip combined 0.641

Regulatory motifs in Kheradpour et al. [2013], E123/K562 FUN-LDA 0.645

GenoSkyline 0.620

ChromHMM 0.634

Segway 0.585

IDEAS 0.615

DNase 0.656

DNase-narrow 0.524

DNase-gapped 0.565

cepip cell 0.606

cepip combined 0.625

dsQTLs in Degner and others [2012], E116 FUN-LDA 0.750

GenoSkyline 0.740

ChromHMM 0.639

Segway 0.580

IDEAS 0.677

DNase 0.823

DNase-narrow 0.665

DNase-gapped 0.662

cepip cell 0.741

cepip combined 0.760

deltaSVM 0.751

dsQTLs & eQTLs in Degner and others [2012], E116 FUN-LDA 0.793

GenoSkyline 0.756

ChromHMM 0.721

Segway 0.648

IDEAS 0.700

DNase 0.832

DNase-narrow 0.713

DNase-gapped 0.701

cepip cell 0.753

cepip combined 0.769

deltaSVM 0.708
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I sensitivity sites that had been used to identify dsQTLs in the original study Degner and

others [2012]. After removing variants with missing functional predictions, there remain

560 dsQTLs in the positive control set. We paired each of these dsQTLs with four ran-

domly selected controls (2, 236 negative controls). In addition, Degner et al. [Degner and

others, 2012] observed that a substantial fraction (16%) of dsQTLs are also associated with

variation in the expression levels of nearby genes (that is, these loci are also eQTLs). There-

fore, we also considered separately 102 dsQTLs that are also eQTLs, and paired them with

408 randomly selected (from the set above) negative controls. We present the results in

Table 4.1. It should be noted that the vast majority of dsQTLs reside close to the target

DNase I hypersensitive site, and hence methods such as DNase and deltaSVM are expected

to perform well for these datasets. Despite this, FUN-LDA attains an AUROC similar to

deltaSVM on the dsQTL dataset, and substantially higher for the dsQTL & eQTL dataset

(0.793 for FUN-LDA and 0.708 for deltaSVM).

4.3.2 Non-tissue/cell type specific validation sets

We also use several non-tissue specific datasets to validate our method. For tissue/cell type

specific functional prediction methods, we construct a score by taking the maximum of the

functional scores for a position across the 127 tissues in Roadmap (this is the most severe

functional score for the position). We were unable to include cepip and deltaSVM in these

comparisons as for these two methods scores are not available across all 127 tissues and

cell types. We compare with several popular organism-level functional prediction methods,

including CADD, Eigen, DANN and LINSIGHT.

We use the following lists for validation:

• 76 manually curated, experimentally validated regulatory SNPs [Li and others, 2016],

• allelic imbalanced SNPs in chromatin accessible regions from a large number of DNase-

seq assays [Maurano and others, 2015],

• refined causal SNPs in non-coding regions from different sources including HGMD,

ClinVar, OregAnno, and variants from fine-mapping candidate causal SNPs for 39
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immune and non-immune diseases in a recent fine-mapping study [Li and others,

2016], and

• eQTLs from eleven uniformly processed fine-mapping studies [Brown et al., 2016].

4.3.2.1 Validated regulatory SNPs

We used a set of 76 manually curated experimentally validated regulatory SNPs, and a set

of 156 frequency-matched background SNPs within 10 kb of the curated causal variants,

as used in Li and others [2016]. The results are shown in Table 4.2. As shown, FUN-

LDA achieves an excellent AUROC of 0.878, substantially outperforming the organism

level functional prediction methods such as CADD (0.718), Eigen (0.806), DANN (0.711),

and LINSIGHT (0.818).

4.3.2.2 Allelic imbalanced SNPs in chromatin accessibility

We considered also a dataset of allelic imbalanced SNPs in chromatin accessible regions

(9, 456 positive controls, 9, 678 negative controls) identified using a large number of DNase-

seq assays [Maurano and others, 2015]. The negative controls are frequency-matched back-

ground SNPs around the nearest TSS of randomly selected genes. After removing variants

with missing functional predictions, there remain 8, 592 dsQTLs and 9, 610 controls. It

should be noted that the allelic imbalanced SNPs are identified using DNase-seq assays,

and hence DNase-max is expected to perform well for this dataset. As shown in Table

4.2, FUN-LDA performs very well with an AUROC of 0.935, higher than other tissue-

specific functional prediction methods like GenoSkyline (0.906), ChromHMM (0.863), Seg-

way (0.793) and IDEAS (0.794), and substantially better than the organism level functional

prediction methods such as CADD (0.692), Eigen (0.753), DANN (0.619) and LINSIGHT

(0.880).

4.3.2.3 Refined causal SNPs

We used here 5, 229 refined ‘causal’ SNPs in non-coding regions collected from different

sources including the HGMD, ClinVar, and ORegAnno databases, and fine-mapping candi-
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date causal SNPs for 39 immune and non-immune diseases from a recent fine-mapping study

[Li and others, 2016]. The controls consisted of 20, 916 randomly selected frequency-matched

non-coding SNPs. FUN-LDA performs very well with an AUROC of 0.803, outperforming

almost all the other functional prediction methods, especially the organism level prediction

methods (Table 4.2): CADD (0.591), Eigen (0.655), DANN (0.587) and LINSIGHT (0.775)

4.3.2.4 Fine mapped eQTLs

Finally, we used a collection of eQTLs (31, 118 positive controls, 36, 540 negative controls)

from the uniformly processed expression quantitative trait locus (eQTL) fine-mapping data

in Brown et al. [2016]. The eQTLs were originally identified by multi-trait Bayesian linear

regression models from eleven studies on seven tissues/cell lines, and then pre-processed

by Li and others [2016] to generate a dataset of 31, 118 most likely functional eQTLs (our

positive controls) and 36, 540 frequency-matched background SNPs around nearest TSS of

randomly selected genes (our negative controls). FUN-LDA performs very well with an

AUROC of 0.775, same as LINSIGHT, but substantially better than CADD (0.621), Eigen

(0.653) and DANN (0.573). GenoSkyline and DNase perform slightly better than FUN-LDA

for this dataset with AUROCs of 0.785 and 0.778, respectively.

4.4 Applications of our method

4.4.1 eQTL enrichment

The Genotype-Tissue Expression (GTEx) project is designed to establish a comprehensive

data resource on genetic variation, gene expression and other molecular phenotypes across

multiple human tissues [The GTEx Consortium, 2015]. We focus here on the cis-eQTL

results from the GTEx V6 release comprising RNA-seq data on 7, 051 samples in 44 tissues,

each with at least 70 samples. We are interested in identifying for each GTEx tissue the

Roadmap tissue that is most enriched in eQTLs from that GTEx tissue relative to other

Roadmap tissues, i.e., that gives highest functional scores to those eQTLs relative to other

tissues. We exclude from our analysis the sex-specific GTEx tissues (ovary, vagina, uterus,

testis, prostate, breast), most of which have no relevant counterpart in Roadmap. In Table
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4.3 we show the top Roadmap tissue for each remaining GTEx tissue, along with the p value

from the enrichment test (see Appendix C.0.1 for details about how enrichment is measured

and the p value is calculated). In most cases, eQTLs from a GTEx tissue show the most

enrichment in the functional component of a relevant Roadmap tissue. For example, for

liver tissue in GTEx, liver is the Roadmap tissue with the highest enrichment, for pancreas

tissue in GTEx, the Roadmap tissue with the highest enrichment is pancreas, for skeletal

muscle tissue in GTEx, the most enriched Roadmap tissue is skeletal muscle. However,

there are also a few cases where the top tissue is not necessarily the most intuitive one,

as for lung and several brain tissues. Generally, the tissues with unexpected combinations

tend to either have small sample sizes for eQTL discovery in GTEx (such as brain tissues)

or inadequate representation in Roadmap. Most of the mismatches have relatively large p

values as well (p > 0.001).

4.4.2 LD score regression

As an application of the use of our scores in complex trait genetics, we use the recently

developed stratified linkage disequilibrium (LD) score regression framework [Finucane et

al., 2015] to identify the most relevant cell types and tissues for 21 complex traits for which

moderate to large GWAS studies have been performed. The stratified LD score regression

approach uses information from all single nucleotide polymorphisms (SNPs) and explicitly

models LD to estimate the contribution to heritability of different functional classes of

variants. We modify this method to weight SNPs by their tissue specific functional score

(e.g. FUN-LDA), and in this way we assess the contribution to heritability of predicted

functional SNPs in a particular Roadmap cell type or tissue (see Appendix C.1 for more

details).

In Table 4.4 we show the top Roadmap cell type/tissue (the one with the smallest p

value from testing whether predicted functional variants in a tissue contribute significantly

to SNP heritability) for each of the 21 complex traits using FUN-LDA to predict functional

variants in specific cell types and tissues. For most disorders, the top tissue has previously

been implicated in their pathogenesis. For example, the top tissues for body mass index

(BMI) are brain tissues, consistent with recent findings indicating that BMI-associated loci
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are enriched for expression in the brain and central nervous system [Locke et al., 2015]. Sim-

ilarly, brain represents the top tissue for most neuropsychiatric disorders, education levels,

and smoking. Blood-derived and immune cells represent the top tissue for virtually all of the

autoimmune conditions available for analysis. For example, GWAS findings for ulcerative

colitis map specifically to the regulatory elements in Th17 cells, whereas lymphoblastoid

cell lines represent the top cell type for rheumatoid arthritis. Another interesting finding

involves primary hematopoietic stem cells for Alzheimer’s disease, consistent with emerg-

ing data on the involvement of bone marrow-derived immune cells in the pathogenesis of

neurodegeneration [Gjoneska et al., 2015].

4.5 Discussion

We have introduced here a new unsupervised approach FUN-LDA for the functional pre-

diction of genetic variation in specific cell types and tissues using histone modification and

DNase data from the ENCODE and Roadmap Epigenomics projects, and have provided

comparisons with commonly used functional annotation methods, both at the tissue/cell

type specific and organism level. FUN-LDA is based on a mixture model that focuses

on identifying the regions in the genome whose disruption is most likely to interfere with

function in a particular cell type or tissue. Such context specific functional prediction of

genetic variation is essential for understanding the function of noncoding variation across

cell types and tissues, and for the interpretation of genetic variants uncovered in GWAS

and sequencing studies. While existing segmentation approaches can be used to derive a

numeric functional score as well, we have shown that they tend to be less accurate at pre-

dicting functional effects. Relative to other recently developed functional scores, such as

GenoSkyline, FUN-LDA can have substantially better prediction accuracy, can use anno-

tation data on the original scale (e.g. quantitative or binary), and makes explicit which

classes are considered functionally active, namely active promoters and active enhancers,

providing an attractive tool for functional scoring of variants.

In terms of prediction accuracy, we have shown that overall FUN-LDA outperforms

existing methods over a variety of test datasets, sometimes substantially. In particular, we
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show that compared with popular organism level functional scores such as CADD, Eigen,

DANN, and LINSIGHT, FUN-LDA has substantially better accuracy. We have also shown

that raw DNase can have higher predictive power than FUN-LDA and other tissue/cell

type specific functional prediction methods, although the difference between FUN-LDA and

DNase is minor in most comparisons, and smaller than the difference between FUN-LDA

and other integrative methods (except for the DNase based datasets, such as dsQTLs and

allelic imbalanced SNPs in chromatin accessibility, where DNase has an inherent advantage).

This observation is concordant with a recent study showing that within open chromatin

regions transcription factor binding is strongly correlated with the quantitative level of

chromatin accessibility (as measured by DNase-seq) [Grossman and others, 2017]. Therefore

the proposed FUN-LDA method, by being able to integrate annotation data with arbitrary

distributions, has clear advantages over other mixture-based methods like GenoSkyline and

ChromHMM that make use of binary peak calls. However not being a probabilistic score is

a significant deficiency of DNase (e.g. enrichment analyses as shown here for eQTL, and LD

score regression analyses are more difficult to implement/interpret) and in practice, in the

vast majority of cases, researchers use binary DNase peak calls (DNase-narrow and DNase-

gapped) rather than the quantitative DNase scores; as we show, our method FUN-LDA

significantly outperforms DNase peaks on the metrics we considered.

These cell type and tissue specific functional scores have numerous applications. As

shown before in Finucane et al. [2015], and as illustrated here as well, they can be used to

infer the most relevant cell types and tissues for a trait of interest, and can help focus the

search for causal variants in complex traits by restricting the set of candidate variants to

only those that are predicted to be functional in tissues relevant for the trait under consider-

ation. Beyond the application shown here, such functional predictions have numerous other

applications. They can naturally be used in gene discovery studies to potentially improve

power in sequence-based association tests such as SKAT and burden [Lee et al., 2012; He et

al., 2017], and in fine-mapping studies [Ionita-Laza et al., 2014; Kichaev et al., 2014]. They

can also be used in identifying regulatory regions that are depleted in functional variation

in a specific tissue, similar to recent efforts to identify coding regions that are depleted in

functional (e.g. missense, nonsense, and splice acceptor/donor variants) variation [Petro-
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vski et al., 2013]. Other applications include improving power of trans-eQTL studies, by

using the cell type and tissue specific functional predictions as prior information. Similarly,

gene-gene and gene-environment interaction studies can benefit from an analysis focused on

variants predicted to be functional in a cell type or tissue relevant to the trait under study.

Choosing the number of functional classes in the LDA model is not an easy task, partly

because the number of functional classes is not well defined. We have focused here on a

model with nine functional classes based on biological knowledge. There is some subjectivity

in any method that seeks to partition the genome into functional classes, both in terms of

the number of such classes and their interpretation. Further experiments that produce

catalogs of specific types of elements with validated tissue-specific functions would aid in

determining the number of states that a genomic annotation model should have, and the

interpretation of those states, leading to potential improvements in the accuracy of such

functional predictors. Such tissue-specific experimental data would also allow the use of

supervised methods which could lead to improved tissue-specific functional scores.

Unlike our method, most of the existing segmentation methods smooth the genomic

signal spatially. While they thereby use information from neighboring regions in making

predictions for a particular variant, they may be less able to predict functionality of narrow

regions with different histone modification profiles from neighboring regions. Another dif-

ference between our method and methods that use binary peak calls is that our method can

incorporate the quantitative level of the functional annotations, which can be important;

for example in the case of DNase it has been recently shown that the quantitative level of

chromatin accessibility is strongly correlated with transcription factor binding [Grossman

and others, 2017].

We have computed FUN-LDA posterior probabilities for every position in the human

genome for 127 tissue and cell types available in Roadmap. These scores are available at

www.funlda.com and can also be imported into the UCSC Genome Browser.
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Table 4.2: Organism level functional prediction.
Dataset Method AUROC

Validated regulatory SNPs FUN-LDA-max 0.878

GenoSkyline-max 0.846

ChromHMM-max 0.865

Segway-max 0.711

IDEAS-max 0.694

DNase-max 0.885

DNase-narrow-max 0.828

DNase-gapped-max 0.807

Eigen 0.806

CADD 0.718

DANN 0.711

LINSIGHT 0.818

Allelic imbalanced SNPs FUN-LDA-max 0.935

in chromatin accessibility GenoSkyline-max 0.906

ChromHMM-max 0.863

Segway-max 0.793

IDEAS-max 0.794

DNase-max 0.968

DNase-narrow-max 0.869

DNase-gapped-max 0.849

Eigen 0.753

CADD 0.692

DANN 0.619

LINSIGHT 0.880

Refined causal SNPs FUN-LDA-max 0.803

GenoSkyline-max 0.811

ChromHMM-max 0.748

Segway-max 0.714

IDEAS-max 0.720

DNase-max 0.807

DNase-narrow-max 0.680

DNase-gapped-max 0.756

Eigen 0.655

CADD 0.591

DANN 0.587

LINSIGHT 0.775

Fine mapped eQTLs FUN-LDA-max 0.775

GenoSkyline-max 0.785

ChromHMM-max 0.680

Segway-max 0.687

IDEAS-max 0.686

DNase-max 0.778

DNase-narrow-max 0.615

DNase-gapped-max 0.707

Eigen 0.653

CADD 0.621

DANN 0.573

LINSIGHT 0.777
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Table 4.3: Enrichment of eQTLs among FUN-LDA predicted functional variants in tissues

and cell types in Roadmap Epigenomics. The top Roadmap tissue is given for each eQTL

tissue, along with the p value from a two-sample proportion test.
Tissue Roadmap Epigenome Name -log10(p)

Whole Blood Primary neutrophils from peripheral blood 189.72

Cells - Transformed fibroblasts Muscle Satellite Cultured Cells 62.69

Cells - EBV-transformed lymphocytes GM12878 Lymphoblastoid Cells 37.74

Liver Liver 31.82

Muscle - Skeletal Skeletal Muscle Male 19.42

Heart - Left Ventricle Fetal Heart 15.83

Esophagus - Mucosa Esophagus 12.78

Pancreas Pancreas 10.84

Colon - Transverse Rectal Mucosa Donor 31 10.46

Artery - Tibial Stomach Smooth Muscle 7.74

Esophagus Muscularis Stomach Smooth Muscle 6.74

Thyroid Fetal Intestine Small 5.96

Skin - Sun Exposed (Lower leg) Foreskin Keratinocyte Primary Cells skin03 5.47

Spleen Primary B cells from peripheral blood 5.35

Artery - Aorta Aorta 5.28

Brain - Hippocampus Brain Cingulate Gyrus 5.10

Small Intestine - Terminal Ileum Fetal Intestine Large 5.04

Heart - Atrial Appendage Fetal Heart 4.90

Adipose - Subcutaneous Adipose Nuclei 4.74

Colon - Sigmoid Colon Smooth Muscle 4.62

Brain - Caudate (basal ganglia) Brain Substantia Nigra 4.17

Brain - Cerebellum Adipose Derived Mesenchymal Stem Cell Cultured Cells 4.12

Nerve - Tibial Brain Hippocampus Middle 4.11

Adrenal Gland Fetal Adrenal Gland 3.94

Skin - Not Sun Exposed (Suprapubic) Foreskin Keratinocyte Primary Cells skin03 3.56

Brain - Putamen (basal ganglia) Brain Substantia Nigra 3.36

Brain - Cerebellar Hemisphere Brain Angular Gyrus 3.08

Stomach Stomach Mucosa 3.02

Lung Osteoblast Primary Cells 2.57

Brain - Cortex Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells 2.10

Adipose - Visceral (Omentum) Primary T helper cells from peripheral blood 2.00

Pituitary Primary T helper cells PMA-I stimulated 1.96

Brain - Nucleus accumbens (basal ganglia) H9 Cells 1.80

Esophagus - Gastroesophageal Junction Primary neutrophils from peripheral blood 1.64

Brain - Frontal Cortex (BA9) NHDF-Ad Adult Dermal Fibroblast Primary Cells 1.61

Artery - Coronary Primary B cells from peripheral blood 1.35

Brain - Hypothalamus Osteoblast Primary Cells 1.29

Brain - Anterior cingulate cortex (BA24) A549 EtOH 0.02pct Lung Carcinoma Cell Line 1.04
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Table 4.4: Top cell type/tissue in Roadmap for 21 GWAS traits using FUN-LDA posterior

probabilities. The p value from the stratified LD score regression, as well as the GWAS

sample size are reported for each trait.

Trait Roadmap Epigenome Name -log10(p) nGWAS

Schizophrenia Fetal Brain Female 14.69 82,315

Height Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells 12.27 133,653

Rheumatoid Arthritis GM12878 Lymphoblastoid Cells 6.92 58,284

Crohn’s Disease Primary B cells from cord blood 6.24 20,883

Age at Menarche H9 Derived Neuronal Progenitor Cultured Cells 6.14 132,989

Educational Attainment Fetal Brain Female 5.83 101,069

BMI Brain Germinal Matrix 4.79 123,865

HDL Liver 4.72 99,900

Coronary Artery Disease Liver 4.60 86,995

Ulcerative Colitis Primary T helper 17 cells PMA-I stimulated 4.44 27,432

Type2 Diabetes Pancreatic Islets 4.20 69,033

Epilepsy Brain Anterior Caudate 4.11 34,853

Triglycerides Liver 4.10 96,598

LDL Liver 4.08 95,454

Alopecia Areata Primary T cells from cord blood 3.90 7,776

Alzheimer’s Primary hematopoietic stem cells G-CSF-mobilized Male 3.78 54,162

IGAN Primary Natural Killer cells from peripheral blood 3.28 11,946

Bipolar Disorder Fetal Brain Female 3.19 16,731

Ever Smoked Brain Inferior Temporal Lobe 2.67 74,035

Autism Primary monocytes from peripheral blood 2.40 10,263

Fasting Glucose Pancreatic Islets 1.44 58,074
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Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting linear mixed-effects

models using lme4. Journal of Statistical Software, 67(1):1–48, 2015.

J Biesinger, Y Wang, and X Xie. Discovering and mapping chromatin states using a tree

hidden markov model. BMC Bioinformatics, Suppl 5:S4, 2013.

Christopher M Bishop. Bayesian PCA. Advances in Neural Information Processing Systems,

pages 382–388, 1999.

DM Blei, AY Ng, and MI Jordan. Latent dirichlet allocation. Journal of Machine Learning

Research, 3:993–1022, 2003.

S Brage, N Brage, U Ekelund, J Luan, P W Franks, K Froberg, and N J Wareham. Effect

of combined movement and heart rate monitor placement on physical activity estimates

during treadmill locomotion and free-living. European Journal of Applied Physiology,

96:517–524, 2006.



BIBLIOGRAPHY 72

AA Brown, A Vinuela, O Delaneau, et al. Predicting causal variants affecting ex-

pression using whole-genome sequence and rna-seq from multiple human tissues.

http://www.biorxiv.org/content/biorxiv/early/2016/11/21/088872.full.pdf, 2016.

R H Byrd, P Lu, J Nocedal, and C Zhu. A limited memory algorithm for bound constrained

optimization. SIAM Journal on Scientific Computing, 16:1190–1208, 1995.

J-M Chiou, H-G Müller, and J-L Wang. Functional quasi-likelihood regression models with

smooth random effects. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 65(2):405–423, 2003.

C Crainiceanu, P Reiss, J Goldsmith, L Huang, L Huo, and F Scheipl. refund: Regression

with Functional Data, 2012. R package version 0.1-6.

JF Degner et al. Dnase i sensitivity qtls are a major determinant of human expression

variation. Nature, 482:390–394, 2012.

C-Z Di, C M Crainiceanu, B S Caffo, and N M Punjabi. Multilevel functional principal

component analysis. Annals of Applied Statistics, 4:458–488, 2009.

D L Donoho and V C Stodden. When does non-negative matrix factorization give a correct

decomposition into parts? Advances in Neural Information Processing Systems, 16:1141–

1148, 2003.

ENCODE Project Consortium. An integrated encyclopedia of dna elements in the human

genome. Nature, 2012.

J Ernst and M Kellis. Chromhmm:automating chromatin-state discovery and characteriza-

tion. Nature Methods, 9:215–216, 2012.

J Ernst and M Kellis. Large-scale imputation of epigenomic datasets for systematic anno-

tation of diverse human tissues. Nat Biotechnol, 33:364–376, 2015.

HK Finucane, B Bulik-Sullivan, A Gusev, et al. Partitioning heritability by functional

annotation using genome-wide association summary statistics. Nat Genet, 47:1228–1235,

2015.



BIBLIOGRAPHY 73

N Friedman and OJ Rando. Epigenomics and the structure of the living genome. Genome

Res, 25:1482–1490, 2015.

Y Fu, Z Liu, S Lu, J Bedford, X Mu, K Yip, E Khurana, and M Gerstein. Funseq2:a

framework for prioritizing noncoding regulatory variants in cancer. Genome Biology,

15:480, 2014.

A Gelman and D B Rubin. Inference from iterative simulation using multiple sequences.

Statistical Science, 7:457–472, 1992.

E Gjoneska, AR Pfenning, H Mathys, G Quon, A Kundaje, LH Tsai, and M Kellis. Con-

served epigenomic signals in mice and humans reveal immune basis of alzheimer’s disease.

Nature, 518:365–369, 2015.

J Goldsmith and T Kitago. Assessing systematic effects of stroke on motor control using

hierarchical function-on-scalar regression. Journal of the Royal Statistical Society: Series

C, 65:215–236, 2016.

J Goldsmith, M P Wand, and C M Crainiceanu. Functional regression via variational Bayes.

Electronic Journal of Statistics, 5:572–602, 2011.

J Goldsmith, S Greven, and C M Crainiceanu. Corrected confidence bands for functional

data using principal components. Biometrics, 69:41–51, 2013.

J Goldsmith, V Zipunnikov, and J Schrack. Generalized multilevel function-on-scalar re-

gression and principal component analysis. Biometrics, 71(2):344–353, 2015.

SR Grossman et al. Systematic dissection of genomic features determining transcription

factor binding and enhancer function. Proc Natl Acad Sci USA, 114:E1291–E1300, 2017.

K Gu, D Pati, and D B Dunson. Bayesian hierarchical modeling of simply connected 2d

shapes. arXiv preprint arXiv:1201.1658, 2012.

W Guo. Functional mixed effects models. Biometrics, 58:121–128, 2002.



BIBLIOGRAPHY 74

P Hall, H-G Müller, and F Yao. Modelling sparse generalized longitudinal observations with

latent gaussian processes. Journal of the Royal Statistical Society: Series B, 70:703–723,

2008.

Z He, B Xu, S Lee, and I Ionita-Laza. Unified sequence-based association tests allowing for

multiple functional annotations and meta-analysis of noncoding variation in metabochip

data. Am J Hum Genet, 101:340–352, 2017.

M D Hoffman and A Gelman. The no-u-turn sampler: Adaptively setting path lengths in

hamiltonian monte carlo. arXiv preprint arXiv:1111.4246, 2011.

MM Hoffman, OJ Buske, J Wang, Z Weng, J Bilmes, and WS Noble. Unsupervised pattern

discovery in human chromatin structure through genomic segmentation. Nat Methods,

9:473–476, 2012.

VS Huang, SL Ryan, L Kane, S Huang, J Berard, T Kitago, P Mazzoni, and JW Krakauer.

3d robotic training in chronic stroke improves motor control but not motor function.

Society for Neuroscience. October 2012. New Orleans, USA, 2012.

H Huang, Y Li, and Y Guan. Joint modeling and clustering paired generalized longitudinal

trajectories with application to cocaine abuse treatment data. Journal of the American

Statistical Association, 83:210–223, 2014.

YF Huang, B Gulko, and A Siepel. Fast, scalable prediction of deleterious noncoding

variants from functional and population genomic data. Nat Genet, 49:618–624, 2017.

I Ionita-Laza, M Capanu, S De Rubeis, K McCallum, and JD Buxbaum. Identification of

rare causal variants in sequence-based studies: methods and applications to vps13b, a

gene involved in cohen syndrome and autism. PLoS Genet, 10:e1004729, 2014.

I Ionita-Laza, K McCallum, B Xu, and JD Buxbaum. A spectral approach integrating

functional genomic annotations for coding and noncoding variants. Nat Genet, 48:214–

220, 2016.

G M James, T J Hastie, and C A Sugar. Principal component models for sparse functional

data. Biometrika, 87:587–602, 2000.



BIBLIOGRAPHY 75

C-R Jiang and J-L Wang. Covariate adjusted functional principal components analysis for

longitudinal data. The Annals of Statistics, 38:1194–1226, 2010.

M I Jordan, Z Ghahramani, T S Jaakkola, and L K Saul. An introduction to variational

methods for graphical models. Machine Learning, 37:183–233, 1999.

M I Jordan. Graphical models. Statistical Science, 19:140–155, 2004.

M Kellis, B Wold, MP Synder, et al. Defining functional dna elements in the human genome.

Proc Natl Acad Sci USA, 111:6131–6138, 2014.

P Kheradpour, J Ernst, A Melnikov, P Rogov, L Wang, X Zhang, J Alston, TS Mikkelsen,

and M Kellis. Systematic dissection of regulatory motifs in 2000 predicted human en-

hancers using a massively parallel reporter assay. Genome Res, 23:800–811, 2013.

E Khurana, Y Fu, V Colonna, et al. Integrative annotation of variants from 1092 hu-

mans:application to cancer genomics. Science, 342:1235587, 2013.

E Khurana, Y Fu, D Chakravarty, F Demichelis, MA Rubin, and Gerstein M. Role of

non-coding sequence variants in cancer. Nat Rev Genet, 17:93–108, 2016.

G Kichaev, WY Yang, S Lindstrom, F Hormozdiari, E Eskin, AL Price, P Kraft, and

B Pasaniuc. Integrating functional data to prioritize causal variants in statistical fine-

mapping studies. PLoS Genet, 10:e1004722, 2014.

M Kircher, DM Witten, P Jain, BJ O’Roak, GM Cooper, and J Shendure. A general

framework for estimating the relative pathogenicity of human genetic variants. Nat Genet,

46:310–315, 2014.

Tomoko Kitago, Jeff Goldsmith, Michelle Harran, Leslie Kane, Jessica Berard, Sylvia

Huang, Sophia L. Ryan, Pietro Mazzoni, John W. Krakauer, and Vincent S. Huang.

Robotic therapy for chronic stroke: general recovery of impairment or improved task-

specific skill? Journal of Neurophysiology, 114(3):1885–1894, 2015.

J W Krakauer. Motor learning: its relevance to stroke recovery and neurorehabilitation.

Current Opinion in Neurology, 19:84–90, 2006.



BIBLIOGRAPHY 76

S Kurtek, A Srivastava, E Klassen, and Z Ding. Statistical modeling of curves using shapes

and related features. Journal of the American Statistical Association, 107:1152–1165,

2012.

D D Lee and H S Seung. Learning the parts of objects by non-negative matrix factorization.

Nature, 401:788–791, 1999.

S Lee, MC Wu, and X Lin. Optimal tests for rare variant effects in sequencing association

studies. Biostatistics, 13:762–775, 2012.

D Lee, DU Gorkin, M Baker, et al. A method to predict the impact of regulatory variants

from dna sequence. Nat Genet, 47:955–961, 2015.

MJ Li et al. Predicting regulatory variants with composite statistic. Bioinformatics,

32:2729–2736, 2016.

MJ Li, M Li, Z Liu, et al. cepip:context-dependent epigenomic weighting for prioritization

of regulatory variants and disease-associated genes. Genome Biol, 18:52, 2017.

K Lindblad-Toh, M Garber, O Zuk, et al. A high-resolution map of human evolutionary

constraint using 29 mammals. Nature, 478:476–482, 2011.

AE Locke, B Kahali, SI Berndt, et al. Genetic studies of body mass index yield new insights

for obesity biology. Nature, 518:197–206, 2015.

Q Lu, RL Powles, Q Wang, BJ He, and Zhao H. Integrative tissue-specific functional anno-

tations in the human genome provide novel insights on many complex traits and improve

signal prioritization in genome wide association studies. PLoS Genet, 12:e1005947, 2016.

A Mammana and HR Chung. Chromatin segmentation based on a probabilistic model for

read counts explains a large portion of the epigenome. Genome Biol, 16:151, 2015.

MT Maurano et al. Large-scale identification of sequence variants influencing human tran-

scription factor occupancy in vivo. Nat Genet, 47:1393–1401, 2015.

M W McLean, F Scheipl, G Hooker, S Greven, and D Ruppert. Bayesian functional gener-

alized additive models for sparsely observed covariates. Arxiv, 2013.



BIBLIOGRAPHY 77

J S Morris and R J Carroll. Wavelet-based functional mixed models. Journal of the Royal

Statistical Society: Series B, 68:179–199, 2006.

R Neal. MCMC Using Hamiltonian Dynamics. Handbook of Markov Chain Monte Carlo,

Chapter 5, pages 113–162, 2011.

D J Nott, M-N Tran, and C Leng. Variational approximation for heteroscedastic linear

models and matching pursuit algorithms. Statistics and Computing, 22(2):497–512, 2012.

J Ormerod and M P Wand. Gaussian variational approximation inference for generalized

linear mixed models. The American Statistician, 21:2–17, 2012.

J Peng and D Paul. A geometric approach to maximum likelihood estimation of the func-

tional principal components from sparse longitudinal data. Journal of Computational and

Graphical Statistics, 18:995–1015, 2009.

S Petrovski, Q Wang, EL Heinzen, AS Allen, and Goldstein DB. Genic intolerance to

functional variation and the interpretation of personal genomes. PLoS Genet, 9:e1003709,

2013.

D Quang, Y Chen, and X Xie. Dann:a deep learning approach for annotating the pathogenic-

ity of genetic variants. Bioinformatics, 31:761–763, 2015.

J O Ramsay and B W Silverman. Functional Data Analysis. New York: Springer, 2005.

S Ramsey, TA Kinjnenburg, KA Kennedy, et al. Genome-wide histone acetylation data

improve prediction of mammalian transcription factor binding sites. Bioinformatics,

26:2071–2075, 2010.

Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human

epigenomes. Nature, 518:317–330, 2015.

F Scheipl, A-M Staicu, and S Greven. Functional additive mixed models. Journal of

Computational and Graphical Statistics, 24:477–501, 2015.
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Appendix A

Appendix to Modeling motor

learning using heteroskedastic

functional principal components

analysis

A.1 Additional results from analysis of kinematic data

One scientifically interesting question about individual motion characteristics that is ad-

dressable in our modeling framework is whether subjects with high baseline motion variance

to one target tend to have high baseline motion variance to other targets. Figure A.1 shows

the estimated first principal component score variance random intercept parameters gil1,int

for each subject and each target for both the left and right hands for the X coordinate

of motion, ordered by the average random intercept for each subject across targets for the

right hand. There are clear subject-specific patterns of variability shared across and within

hands, and clearer subject-specific patterns of variability within each hand across 8 targets.

The correlation of average random intercepts for each subject across the 8 targets, one

for the left and one for the right hand, was 0.56, indicating a positive correlation between

baseline motor skill across hands within an individual.
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Figure A.1: Estimates of random intercepts. Each panel shows, for the left or the right

hand, the estimated first principal component score variance random intercept parameters

gil1,int in model (2.10) for each subject i and target l, for the X coordinate of motion.

Targets are colored as in Figure 2.1, and subjects are ordered by their average random

intercept across targets for the right hand.

Our model’s point estimate of the correlation between the subject-specific cross-target

score variance random intercept and the subject-specific cross-target score variance random

slope is -0.80, suggesting a relationship between high baseline motion variance and faster

decrease in variance with practice.
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A.2 HMC and SE methods applied to kinematic data

We applied the VB, HMC and SE methods to the X coordinate of motions by the right

hand to the target at 0◦, and obtained very similar results. While the estimate and 95%

posterior credible interval for the first FPC slope variance parameter using VB was

−0.020 (−0.043, 0.003),

the corresponding estimate and interval for HMC was

−0.020 (−0.040,−0.001)

and the SE confidence interval was

−0.023 (−0.041,−0.005).

The estimates and posterior credible/confidence intervals for the first FPC intercept vari-

ance parameter were also similar:

3.12 (2.81, 3.43)

for VB versus

3.18 (2.9, 3.45)

for HMC and

3.23 (2.97, 3.49)

for SE.

Estimates of random effects were also similar using the three methods, with all pair-

wise correlations between random intercepts and random slopes estimated using the three

methods exceeding 0.85.

To generate these HMC results we ran 4 HMC chains for 2000 iterations each, and

discarded the first 1000 iterations from each chain. The convergence criterion of Gelman

and Rubin [1992] was less than 1.011 for each sampled variable, suggesting convergence of

the chains.
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A.3 Bivariate model

To fit our model to bivariate data, we make the following modifications to our model. First,

pij is now a 2D × 1 observed functional outcome, formed by concatenating the X and Y

coordinates of rotated motions. Second, our basis function matrix Θ′ is now the 2D× 2Kθ

matrix
(

Θ 0
0 Θ

)
, where Θ is the D ×Kθ basis function matrix from model (2.5). Third, the

covariance matrices in the multivariate normal distributions for βl, bi and φk are now the

matrices (where p* represents the appropriate parameter)
(
σ2
p∗,x 0

0 σ2
p∗,y

)
⊗ P−1

Kθ
, where ⊗ is

the Kronecker product operator, σ2
p∗,x and σ2

p∗,y are independent with IG [α, β] priors and

PKθ is the corresponding penalty matrix from model (2.5). Finally, εij is now a 2D × 1

vector of independent error terms with a MVN
[
0, σ2I2D

]
distribution. Since the FPCs are

bi-dimensional in this model, each FPC represents a deviation from the mean motion in two

dimensions, and each score represents the amount of that bi-dimensional mode of variation

reflected in each motion. We assume independence of the first and last D coordinates of the

functional random effects (each corresponding to a different coordinate of motion); further

work could introduce correlations between them.

Figure A.2 illustrates the FPCs estimated using model (2.9) fitted to the X and Y coor-

dinates of right hand rotated motions separately (top panels) and together using bivariate

curves (bottom panels). The FPCs estimated using X and Y coordinates separately are

very similar to one another. The first FPC in the bivariate model is similar to the first FPC

from the model fit only to X coordinate data, and shows little variation in the Y coordinate.

The second FPC in the bivariate model is similar to the first FPC from the model fit only

to Y coordinate data, and shows little variation in the X coordinate. These FPCs therefore

show similar patterns of variation but in different dimensions. The same pattern repeats,

to a lesser extent, for the third and fourth PCs estimated using the bivariate model.

This pattern indicates that deviations from the mean motion profile in each of the

dimensions represented by the X and Y coordinates are for the most part independent. The

first FPC, for example, which represents a mode of variation in which motions overshoot or

undershoot the target with respect to the line connecting the origin and target, is associated

only with a slight systematic deviation upwards or downwards from this line. Likewise, the

second FPC, which represents a mode of variation in which motions deviate upwards or
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Figure A.2: FPCs from model (2.9) fit to the univariate and bivariate data. The FPCs on

the left are for the X coordinates of motions, those on the right are for the Y -coordinate.

The FPCs in the top row were estimated using univariate models, and the FPCs in the

bottom row were estimated using bivariate models.

downwards from the line connecting the origin and the target, is associated with only a

slight systematic deviation in length of motion along this line. The third and fourth FPCs

represent patterns in which motions are slower than average at the beginning of the motion

and then faster than average later (or vice versa). There is slightly greater involvement of

both dimensions in FPCs 3 and 4.

Figure A.3 shows the change in variability of first and second bivariate FPC scores as

a function of practice at the motion task. For both FPCs and all targets, score variance is

estimated to decrease with motion number.
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Figure A.3: Estimates of bivariate FPC score variances in the right hand for each target.

Panels show the estimates of the score variance as a function of repetition number using the

slope-intercept model (2.10) in red and orange (first and second FPC, respectively), and

using the saturated one-parameter-per-repetition number model (2.11), in black and grey

(first and second FPC, respectively).

A.4 Sensitivity Analyses

A.4.1 Hyperparameters

In our sensitivity analysis we focus on the parameters of principal interest to us in the

analysis in Section 2.6, the fixed effect parameters γl1,slope, which measure how much the

variability of the first FPC scores decreases with each additional motion. We found that

inference for these parameters in our VB model is not sensitive to the choice of the hyper-

parameters α and β in the inverse-gamma priors for the smoothing parameters σ2
βl

, σ2
b and

σ2
φk

(we tried various combinations of values of α and β in the set {0.001, 0.01, 0.1, 1}), or

to the number of spline basis functions used (we tried values in the set {5, 10, 15, 20}).

When the prior for the parameters γl1,int, which measure the baseline variance of scores

for the first FPC, becomes too concentrated around zero, for example, when the variance

of the mean-zero normal prior for this parameter is decreased to 1, then to compensate for

the resulting severely shrunk estimates of these parameters, the estimates of γl1,slope reverse

sign. However, inference for γl1,slope was relatively insensitive to values of the variance of

this prior in the set {10, 100, 100} (see Figures A.4 and A.5).
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When using standard prior specifications for the scale matrix parameters of the inverse-

Wishart priors for the random effects gik (like a diagonal identity matrix), we observed that

the variance of the random effects, and credible intervals for the fixed effect parameters γ,

showed dependence on the scale matrix parameters Ψk. For this reason we use the empirical

Bayes method described in Section 2.4.2.4 to set the value of these priors.
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Figure A.4: Estimates and 95% credible intervals for γl1,int as a function of the variance of

its normal prior.

A.4.2 Mean Structure

We conducted various analyses to critically examine various modeling assumptions inher-

ent in models (2.9) and (2.10). First, model (2.9) assumes that it is adequate to model

the mean of the observed curves with a functional intercept for each target and random

functional effects for each subject-target combination. If the mean motion to a target sys-

tematically changed as a function of repetition number, then scores at the beginning or end

of the training session might be inflated, which could lead to over- or under-estimation of

our parameter of principal interest, the motion number score variance slopes γl1,slope. To

examine this possibility, we conducted an analysis, restricted to data for right hand motions

to target 0◦, in which we fit 4 separate functional random effects for each subject, for 4

groups of consecutive motions (motions 1 through 6, motions 7 through 12, et cetera). We
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Figure A.5: Estimates and 95% credible intervals for γl1,slope as a function of the variance

of its normal prior.

found that inference for the slope parameter γ11,slope was unchanged, suggesting that model

(2.9) is adequate.

Models (2.9) and (2.10) also make several simplifying independence assumptions. First,

we assume independence of functional random effects for motions made by the same sub-

ject to different targets. Analysis of more complex models that modeled correlation between

these functional random effects showed that although taking into account these correlations

did shrink together functional random effects for the same subject, it did not change in-

ference for our parameters of interest in the model above, the score variance repetition

number slope parameters γl1,slope. Second, we assume independence of functional random

effects and score variance random effects. In an ad hoc analysis to check the effects of

this simplifying assumption, we included the endpoint of the estimated functional random

effects as a predictor in our score variance model for data for right hand motions to target

0◦. Although the 95% credible interval for this endpoint parameter did not include 0, its

inclusion in the score variance model did not alter the credible interval for the repetition

number slope parameter. In other contexts, for example, motions by stroke patients, corre-

lations between functional and score variance model random effects might be stronger, and

might need to be taken into account in order for inference to be correct.
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A.5 Derivations

This section includes derivations of conditional distributions of all quantities in model (2.5),

an overview of variational Bayes, a derivation of our variational Bayes algorithm, and addi-

tional details on the implementation of our HMC sampler. The derivations of conditional

distributions are included because they are used in the derivation of our variational Bayes

algorithm. Throughout this section we consider a model where each subject has one func-

tional random effect bi. It is straightforward to extend the derivations below to the case

where there are different functional random effects bim for different sets of curves for each

subject.

A.5.1 Derivation of conditional distributions

Let n =
∑I

i=1 Ji be the total number of motions by all subjects. Let P be the D×n matrix

of functional outcomes, β the Kθ × (L+ 1) matrix of fixed effect coefficient vectors and X

the corresponding n × (l + 1) fixed effects design matrix, B the Kθ × I matrix of random

effect coefficient vectors and V the corresponding n×I random effects design matrix, Φ the

Kθ ×K matrix of principal component coefficient vectors and Ξ the corresponding n×K

matrix of principal component scores and E the D × n error matrix of error vectors εi.

We rewrite our model using matrix notation as follows:

P = ΘβXT + ΘBV T + ΘΦΞT +E

We will first derive the posterior distribution of β conditional on the values of the other

parameters in the model. Let σ2
β be the length L + 1 vector of prior variances σ2

βl
or,

in the model with bivariate observations, the length 2L + 2 vector of prior variances

(σ2
βx0
σ2
βy0
, . . . , σ2

βxL
, σ2
βyL

). Let vec (M) be the vector formed by concatenating the columns

of the matrix M . Then the covariance matrix of the normal prior distribution of vec (β) is

Σβ = diag
(
σ2
β

)
⊗Q−1, where diag (c) is the matrix with the elements of c on its main di-

agonal and 0 elsewhere and ⊗ is the Kronecker product operator. The posterior distribution
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of vec (β) is then

p(vec (β) |rest) ∝ p(vec (P ) |β,B,Φ,Ξ, σ2)p(vec (β) |Σβ)

∝ exp

{
−1

2

[
1

σ2
‖vec

(
P −ΘβXT −ΘBV T −ΘΦΞT

)
‖2 + vec (β)T Σ−1

β vec (β)

]}
Using the identity

vec (ABC) = (CT ⊗A)vec (B) (A.1)

we see that the exponent in this posterior distribution is a quadratic in vec (β), and so the

posterior distribution is multivariate normal. The inverse of the coefficient of the quadratic

term is the covariance matrix of this posterior distribution:

Σ′β =

[
(X ⊗Θ)T

1

σ2
(X ⊗Θ) + Σ−1

β

]−1

.

This covariance matrix multiplied by the linear term of this exponent gives the mean of this

posterior distribution:

µ′β = Σ′β(X ⊗Θ)T
1

σ2

[
vec
(
P −ΘBV T −ΘΦΞT

)]
.

The derivations of the conditional posterior distributions of B and Φ are similar. Let

bi be the random effect for the ith subject. The covariance matrix of the normal prior

distribution of bi is Σb = diag
(
σ2
b

)
⊗ ((1−π)Q+πI)−1, where, in the model with bivariate

observations, σ2
b = (σ2

bx , σ
2
by). Let P i,Xi and Ξi be the submatrices of the matrices P ,X

and Ξ corresponding to the observations for the ith subject. The posterior distribution of

bi is then

p(bi|rest) ∝ p(vec (P i) |β, bi,Φ,Ξi, σ
2)p(vec (bi) |Σb)

∝ exp

{
−1

2

[
1

σ2
‖vec

(
P i −ΘβXT

i −Θbi1
T
Ji −ΘΦΞT

i

)
‖2 + bTi Σ−1

b bi

]}
,

that is, multivariate normal with covariance matrix

Σ′b =

[
(1Ji ⊗Θ)T

1

σ2
(1Ji ⊗Θ) + Σ−1

b

]−1

and mean

µ′bi = Σ′b(1Ji ⊗Θ)T
1

σ2

[
vec
(
P i −ΘβXT

i −ΘΦΞT
i

)]
.
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Letting σ2
Φ be the length K vector of prior variances σ2

φk
(or, in the model with bivariate

observations, the length 2K vector (σ2
φx1
, σ2
φy1
, . . . , σ2

φxK
, σ2
φyK

)), the covariance matrix of the

normal prior distribution of vec (Φ) is ΣΦ = diag
(
σ2

Φ

)
⊗Q−1. The posterior distribution

of vec (Φ) is then

p(vec (Φ) |rest) ∝ p(vec (P ) |β,B,Φ,Ξ, σ2)p(vec (Φ) |ΣΦ)

∝ exp

{
−1

2

[
1

σ2
‖vec

(
P −ΘβXT −ΘBV T −ΘΦΞT

)
‖2 + vec (Φ)T Σ−1

Φ vec (Φ)

]}
,

that is, multivariate normal with covariance matrix

Σ′Φ =

[
(Ξ⊗Θ)T

1

σ2
(Ξ⊗Θ) + Σ−1

Φ

]−1

and mean

µ′Φ = Σ′Φ(Ξ⊗Θ)T
1

σ2

[
vec
(
P −ΘβXT −ΘBV T

)]
.

To compute the conditional posterior distribution of ξij , the vector of scores for the jth

motion for the ith subject, we let the covariance matrix of the normal prior distribution

of ξij be Σξij = diag
(
σ2
ξij

)
, where σ2

ξij
is the length K vector of prior variances for ξij .

Then the posterior distribution of ξij is

p(ξij |rest)

∝ p(pij |β, bi,Φ, ξij , σ2)p(ξij |Σξij )

∝ exp

(
−1

2

{
1

σ2
‖pij −Θβxij −Θbi −ΘΦξij‖2 + ξTijΣ

−1
ξij
ξij

})
,

that is, multivariate normal with covariance matrix

Σ′ξij =

{
1

σ2
ΦTΘTΘΦ + Σ−1

ξij

}−1

and mean

µ′ξij = Σ′ξijΦ
TΘT 1

σ2

(
pij −Θβxij −Θbi

)
.

In the model for the variance of the kth principal component scores, let x∗ijk be the

length L∗ + 1 vector of fixed effect coefficients for the jth motion by the ith subject and

γk the corresponding vector of fixed effects, shared across all subjects and motions, and let

z∗ijk be the length M∗ vector of random effect coefficients for the jth motion by the ith
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subject and gik the corresponding vector of random effects for the ith subject. If we let σ2
γk

be the vector of the σ2
γlk

, the prior variances of the components of γk, then the covariance

matrix of the prior distribution of γk is Σγk = diag
(
σ2
γk

)
. Let the covariance matrix of

the prior distribution of gik be Σgk . The conditional posterior distribution of γk and the

vectors gik, i = 1, . . . , I is then

p(γk,g1k, g2k, . . . , gIk|rest) ∝

 I∏
i=1

Ji∏
j=1

p(ξijk|γk, gik)

 p(γk)

(
I∏
i=1

p(gik)

)

∝

 I∏
i=1

Ji∏
j=1

e−ξ
2
ijk/2e

(γkx
∗
ijk+gikz

∗
ijk)

e(γkx
∗
ijk+gikz

∗
ijk)/2

 exp

[
−1

2

(
γTkΣγkγk +

I∑
i=1

gTikΣgkgik

)]
,

which has the form of the posterior of a gamma generalized linear model with log link,

responses given by ξ2
ijk, shape parameter equal to 1/2 and a mean-zero multivariate normal

prior on the coefficients γk and gik, i = 1, . . . , I, with covariance matrix determined by Σγk

and Σgk .

Now we derive the conditional distributions of the variance parameters, starting with

σ2
βl

. The inverse gamma density is p(x|α, β) = βα

Γ(α)x
−α−1 exp

(
−β
x

)
. Therefore the posterior

distribution of σ2
βl

is

p(σ2
βl
|rest) ∝ p(σ2

βl
|α, β)p(βl|σ2

βl
)

∝
(
σ2
βl

)−α−1
exp

(
− β

σ2
βl

)
1(

σ2
βl

)Kθ/2 exp

(
− 1

2σ2
βl

βTl Qβl

)

∝ IG

[
α+

Kθ

2
, β +

1

2
βTl Qβl

]
.

For this variance parameter and also for the variance parameters σ2
b and σ2

φk
, the conditional

posterior distributions are the same in the model with bivariate observations, except that,

for example, in the conditional posterior distribution of σ2
βxl

, the quadratic form in the

expression for the second parameter of the inverse gamma posterior distribution is computed

with respect to only the first Kθ components of the vector βl. In the conditional distribution

of σ2
βyl

, the remaining components of βl are used. The conditional distribution of σ2
b is
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similar:

p(σ2
b|rest) ∝ p(σ2

b|α, β)
I∏
i=1

p(bi|σ2
b)

∝
(
σ2
b

)−α−1
exp

(
− β

σ2
b

)
1(

σ2
b

)IKθ/2 exp

(
− 1

2σ2
b

I∑
i=1

bTi ((1− π)Q+ πI)bi

)

∝ IG

[
α+

IKθ

2
, β +

1

2

I∑
i=1

bTi ((1− π)Q+ πI)bi

]
,

as is the conditional distribution of σ2
φk

:

p(σ2
φk
|rest) ∝ p(σ2

φk
|α, β)p(φk|σ2

φk
)

∝
(
σ2
φk

)−α−1
exp

(
− β

σ2
φk

)
1(

σ2
φk

)Kθ/2 exp

(
− 1

2σ2
φk

φTkQφk

)

∝ IG

[
α+

Kθ

2
, β +

1

2
φTkQφk

]
,

of σ2:

p(σ2|rest) ∝ p(σ2|α, β)p(vec (P ) |β,B,Φ,Ξ, σ2)

∝
(
σ2
)−α−1

exp

(
− β

σ2

)
1

(σ2)nD/2
×

exp

[
− 1

2σ2
‖vec

(
P −ΘβXT −ΘBV T −ΘΦΞT

)
‖2
]

∝ IG

[
α+

nD

2
, β +

1

2
‖vec

(
P −ΘβXT −ΘBV T −ΘΦΞT

)
‖2
]
,

and of σ2
gk

(this is the case where there is just one scalar random effect):

p(σ2
gk
|rest) ∝ p(σ2

gk
|α, β)

I∏
i=1

p(gik|σ2
gk

)

∝
(
σ2
gk

)−α−1
exp

(
− β

σ2
gk

)
1(

σ2
gk

)I/2 exp

(
− 1

2σ2
gk

I∑
i=1

g2
ik

)

∝ IG

[
α+

I

2
, β +

1

2

I∑
i=1

g2
ik

]
.

In our real data application, we consider a model where two random effects gik,int and

gik,slope have a bivariate, mean-zero normal prior distribution with covariance matrix Σgk .
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This covariance matrix has an inverse-Wishart prior distribution. The inverse-Wishart

density is p(Σ|Ψ, ν) = |Σ|−
ν+p+1

2 exp
(
−1

2tr
[
ΨΣ−1

])
, where p is the number of rows and

columns of the covariance matrix Σ. The conditional posterior distribution of Σgk is there-

fore

p(Σgk |rest) ∝ p(Σgk)

I∏
i=1

p(gik|Σg)

∝ |Σgk |
− ν+p+1

2 exp

(
−1

2
tr
[
ΨΣ−1

gk

])
|Σgk |

−I/2 exp

(
−1

2

I∑
i=1

gTikΣ
−1
gk
gik

)

∝ |Σgk |
− ν+p+I+1

2 exp

[
−1

2

(
I∑
i=1

tr
[
gikg

T
ikΣ

−1
gk

]
+ tr

[
ΨΣ−1

gk

])]

∝ IW

[
Ψ +

I∑
i=1

gikg
T
ik, ν + I

]
.

Straightforward extensions of these derivations apply in the case of nested random ef-

fects, as in model extension (2.6).

A.5.2 Overview of variational Bayes

Let y and ζ represent the data and parameters, respectively, in a Bayesian model. Using

variational Bayes, we approximate the posterior p(ζ|y) using q(ζ), where q is a member

of a restricted class of functions Q more easily estimated than the posterior p(ζ|y). To

find the best q in this restricted class, we choose the element q∗ ∈ Q that minimizes

the Kullback-Leibler distance from p(ζ|y). The class Q is often the class of posterior

distributions satisfying some factorization property, so that q(ζ) =
∏H
h=1 qh(ζh), with each

qh(ζh) a parametric density function. It can then be shown that the optimal q∗h densities

are given by

q∗h(ζh) ∝ exp [E−ζh log p(ζh|rest)] (A.2)

where E−ζh represents the expectation with respect to the currently estimated values of all

parameters except ζh, and “rest” represents the observed data plus all parameters other than

ζh. This suggests the use of an iterative algorithm, setting initial values for all parameters

and then updating the optimal density for each parameter ζh in turn, conditionally on the

currently estimated values for all the other parameters.
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Let {σ2
s}s∈S represent the collection of all variance parameters in model (2.5). Let ξij

represent the vector of scores for the jth motion of the ith subject. The factorization we

use to approximate the posterior distribution q(ζ) for model (2.5) is

q(β0, . . . ,βL)

{
I∏
i=1

M∏
m=1

q(bim)

}
q(φ1, . . . ,φK)


I∏
i=1

Ji∏
j=1

q(ξij)

{
K∏
k=1

q(γ0k, . . . , g11k, . . . , )

}{∏
s∈S

q(σ2
s)

}

In the case of the model extension (2.6), each term gik would have its own factor q(gik) in

the factorization above.

The quality of this approximation depends on the extent to which the true posterior

distribution factors as above. It is expected that the parameters in the curve mean µij(t)

and the deviation δij(t) will be correlated, which sugg

ests that assumptions underlying the variational approximation will be violated for these

components of the posterior. Nonetheless, the assumptions related to the score variance

model, which is our main interest, may be sufficiently accurate to provide a reasonable

approximation.

A.5.3 Derivation of variational Bayes algorithm

To find the optimal q∗(·) distributions for β,B,Φ and Ξ, we use the following result:

if the conditional distribution of a parameter ζ is multivariate normal with mean µ and

covariance matrix Σ, then the distribution q∗(ζ) is multivariate normal with covariance

matrix Σq(ζ) =
(
E−ζ

[
Σ−1

])−1
and mean µq(ζ) =

(
E−ζ

[
Σ−1

])−1
E−ζ

[
Σ−1µ

]
, where we use

the notation µq(ζ) and Σq(ζ), respectively, to denote the mean and variance of a parameter

ζ under its optimal q∗ distribution.

Throughout this section we make extensive use of the conditional distributions derived

in Appendix A.5.1.

For vec (β), the optimal density q∗(vec (β)) is thus multivariate normal with covariance

matrix

Σq(vec(β)) =

[
µ
q
(

1
σ2

)((X ⊗Θ)T (X ⊗Θ)) + diag

(
µ
q
(

1/σ2
βl

))⊗Q]−1
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and mean

µq(vec(β)) = Σq(vec(β))(X ⊗Θ)Tµ
q
(

1
σ2

) [vec
(
P −Θµq(B)V

T −Θµq(Φ)µ
T
q(Ξ)

)]
.

For bi, the optimal density q∗(bi) is multivariate normal with covariance matrix

Σq(bi) =

[
µ
q
(

1
σ2

)(1Ji ⊗Θ)T (1Ji ⊗Θ) + diag
(
µq(1/σ2

b)

)
⊗ ((1− π)Q+ πI)

]−1

and mean

µq(bi) = Σq(bi)(1Ji ⊗Θ)Tµ
q
(

1
σ2

) [vec
(
P i −Θµq(β)X

T
i −Θµq(Φ)µq(ΞTi )

)]
.

For vec (Φ), the optimal density q∗(vec (Φ)) is multivariate normal with covariance

matrix

Σq(vec(Φ)) =
[
µq(ΞTΞ) ⊗ (ΘTΘ) + diag

(
µq(1/σ2

Φ)

)
⊗Q

]−1

and mean

µq(vec(Φ)) = Σq(vec(Φ))(µq(Ξ) ⊗Θ)Tµ
q
(

1
σ2

) [vec
(
P −Θµq(β)X

T −Θµq(B)V
T
)]
.

For ξij , letting µ
q
(

Σ−1
ξij

) represent the expectation under the current distributions of the

parameters γlk and gimk of the precision matrix of the ξij , the optimal density q∗(ξij) is

multivariate normal with covariance matrix

Σq(ξij) =

{
µ
q
(

1
σ2

)µq(ΦTΘTΘΦ) + µ
q
(

Σ−1
ξij

)}−1

and mean

µq(ξij) = Σq(ξij)µ
T
q(Φ)Θ

Tµ
q
(

1
σ2

) (pij −Θµq(β)xij −Θµq(bi)
)
.

The expectation µq(ΦTΘTΘΦ) appearing in the above expression for Σq(ξij) is the K ×K

matrix given by µTq(Φ)Θ
TΘµq(Φ) +{Mij} where Mij = tr

[
ΘTΘcov(φi,φj)

]
and cov(φi,φj)

is a submatrix of Σq(vec(Φ)). The expectation µq(ΞTΞ) appearing in the above expression

for Σq(vec(Φ)) is the K ×K matrix given by µTq(Ξ)µq(Ξ) +M, where M =
∑

i,j Σq(ξij).

Let (γ, g)k represent the vector (γk, g1k, g2k, . . . , gIk). As in Nott et al. [2012], we use a

multivariate normal approximation to the density q((γ, g)k). Using a routine from Nott et

al. [2012], we approximate the mean µq((γ,g)k) of the density q((γ, g)k) with the posterior

mode of the Bayesian gamma generalized linear model corresponding to the conditional
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posterior distribution of (γ, g)k, using as responses the expectations µq(ξ2
ijk) in place of

ξ2
ijk, and we approximate the variance Σq((γ,g)k) with the negative inverse Hessian of the

log posterior at the mode. Let these approximations be µmode and Σmode. Then, if ξijk

has the distribution N [0, exp
(
xT (γ, g)k

)
] for some coefficient vector x, then by completing

the square, we find that the expectation µ
q
(

Σ−1
ξij

) in the expression for Σq(ξij) above is

exp
(
−µTmodex−

1
2x

TΣmodex
)
.

To find the optimal q∗(·) distributions for σ2
βl

, σ2
b, σ

2
φk

and σ2, we use the following

result: if the conditional distribution of a parameter ζ is inverse gamma with parameters α

and β, then the distribution q∗(ζ) is inverse gamma with parameters E−ζ [α] and E−ζ [β],

and the expectation µq(1/ζ) is E−ζ [α] /E−ζ [β] .

For σ2
βl

, the optimal density q∗(σ2
βl

) is inverse gamma with parameters α + Kθ
2 and

β+ 1
2µq(βTl Qβl)

. For σ2
b, the optimal density q∗(σ2

b) is inverse gamma with parameters α+ IKθ
2

and β + 1
2µq(

∑I
i=1 b

T
i ((1−π)Q+πI)bi). For σ2

φk
, the optimal density q∗(σ2

φk
) is inverse gamma

with parameters α+ Kθ
2 and β + 1

2µq(φTkQφk)
. All of these expectations can be found using

the optimal q∗() distributions for βl, bi and φk and the formula for the expectation of a

quadratic form.

For σ2, let xij be the row of the matrix X corresponding to the jth motion of the ith

subject. Then the optimal density q∗(σ2) is inverse gamma with parameters α+ nD
2 and

β +
1

2

I∑
i=1

Ji∑
j=1

[
‖pij −Θµq(β)xij −Θµq(bi) −Θµq(Φ)µq(ξij)‖

2

+ xijLx
T
ij +mi + nij

]
where the matrix L is the (l+ 1)× (l+ 1) matrix whose i, j entry is the trace of ΘTΘ times

the covariance between the ith and jth column of β under the current distribution of β,

mi = tr
[
ΘTΘΣq(bi)

]
, and

nij = µTq(ξij)µq(ΦTΘTΘΦ)µq(ξij) + tr
[
µq(ΦTΘTΘΦ)Σq(ξij)

]
− µTq(ξij)µ

T
q(Φ)Θ

TΘµq(Φ)µq(ξij).

The optimal q∗(Σgk) density is given by

q∗(Σgk) ∼ exp[E−Σgk
log p(Σgk |rest)]

∼ exp

[
E−Σgk

{
−ν + I + p+ 1

2
log |Σ| − 1

2

(
tr

[
(Ψ +

I∑
i=1

gikg
T
ik)Σ

−1

])}]
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Therefore the optimal density is inverse-Wishart with parameters ν+I and Ψ+
∑I

i=1 µq(gikgTik).

The expectation µq(gikgTik) in this expression is µq(gik)µ
T
q(gik) +M , where M is the covariance

of gik under the posterior distribution of (γ, g)k. The mean of this density is

µq(Σgk) =
Ψ +

∑I
i=1 µq(gikgTik)

ν + I − p− 1
.

Straightforward extensions of these derivations apply in the case of nested random ef-

fects, as in model extension (2.6).

A.5.4 Details of implementation of HMC sampler

Our HMC samplers in Sections 3.4 and 2.6 fit the same models as fit by our VB model, while

conditioning on VB estimates of the parameters βl, bim and φk in model (2.5), and therefore

implicitly also conditioning on the associated variance parameters and on the VB estimate

of π. The HMC samplers estimate all other parameters in these models: the scores ξijk, the

fixed effect variance parameters γlk, the random effect variance parameters gik (and gilk,

in model extension (2.6)), the random effect variance parameter covariance matrices, and

the error variance σ2. The samplers were implemented in the STAN Bayesian programming

language [Stan Development Team, 2013]. STAN implements Hamiltonian Monte Carlo, an

MCMC algorithm that uses the gradient of the log-posterior to avoid random walk behavior

and therefore more quickly generate samples from the posterior [Neal, 2011].

We ran all HMC samplers here using 4 chains and checked for convergence using the

convergence criterion of Gelman and Rubin [1992]. We ran the HMC sampler used in

Section 3.4 for 800 iterations per chain, and discarded the first 400 iterations from each

chain, which took about 90 minutes per chain. We ran the HMC sampler used in Appendix

A.2 for 2000 iterations per chain, and discarded the first 1000 iterations from each chain.

Code implementing the STAN model used in Section 3.4 is included in the Supplementary

Materials.
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A.6 Additional simulation results

Here we present cross-sectional simulations to illustrate the effect of varying the number

of curves, the number of estimated FPCs, the number of spline basis functions and the

measurement error on the quality of estimation using the VB method. In this cross-sectional

design, curves are generated from the model

Pi(t) = 0 +

4∑
k=1

ξikφk(t) + εi(t).

FPCs and group and FPC-specific score variances are as in the simulations in Section 3.4.

All results are for 200 replicates per simulation scenario. We present one simulation

where we fix the number of estimated FPCs at 4, the number of spline basis functions at

10, and the measurement error standard deviation at 0.25, and vary the number of curves

in the set {20, 40, 80, 160, 320}. In the other simulations we fix the sample size at 80 and

vary one of the other parameters.

For each simulated dataset, we use the methods described in Section 3.2 to fit the model

pi = Θβ0 +
K∑
k=1

ξikΘφk + εi (A.3)

ξik ∼ N

[
0, exp

(
2∑

m=1

γlkx
∗
il

)]
. (A.4)

The covariates x∗il are defined like the analogous covariates in Section 3.4.

Figure A.6 shows that accuracy in estimation of FPCs and bias in estimation of variance

model parameters decreases with more curves. Figure A.7 shows that when 2 or 3 FPCs

are estimated instead of the 4 that actually exist, estimates of the quantities that are

estimated are not negatively affected. Figure A.8 shows the result of changing the number

of spline basis functions used for estimation. 5 spline basis functions are not sufficient to

adequately capture the relatively fast variation in FPCs 3 and 4; otherwise, because we

induce smoothness in the estimated FPCs using the penalty matrix Q, using richer spline

bases does not negatively affect estimation accuracy. Figure A.9 shows the result of adding

more noise to the simulated curves, keeping the sample size fixed. As expected, more noise

results in larger errors in estimation, of both the FPCs and the score variance parameters.
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Figure A.6: Varying the number of curves. Integrated squared errors in estimation of

FPCs (first row) and signed relative error in estimation of variance parameters (second

row) decreases with more curves.

Figure A.10 shows examples of estimates of FPC 2 with varying levels of integrated

squared error. These estimates are from the longitudinal simulation scenario with Ji = 4.
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Figure A.7: Varying the number of estimated FPCs. Integrated squared errors in estimation

of FPCs (first row) and signed relative error in estimation of variance parameters (second

row) for FPCs 1 and 2 is mostly invariant to whether additional FPCs and associated score

variance parameters are also estimated.
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Figure A.8: Varying the number of spline basis functions. 5 spline basis functions are not

sufficient to adequately capture the relatively fast variation in FPCs 3 and 4. Otherwise

integrated squared errors in estimation of FPCs (first row) and signed relative error in

estimation of variance parameters (second row) are mostly invariant to the number of spline

basis functions used in simulation.



APPENDIX A. APPENDIX TO MODELING MOTOR LEARNING USING
HETEROSKEDASTIC FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS 103

●

●

●

●
●

●●

●
●
●

●●

●
●●

●

●
●

●

●
●●

●

●

●

●●

●
●●

●●

●

●

●

●

●●
●

●

●

●

●

●●

●
●
●

●

●

●
●
●
●●

●

●

●

●

●

FPC1 FPC2

0.5 1 2 4 0.5 1 2 4

0.0

0.1

0.2

0.3

noise SD

IS
E

, F
P

C
s

●●●●

●

●●● ●

●
● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●●
●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

FPC1

Group 1

FPC1

Group 2

FPC2

Group 1

FPC2

Group 2

0.5 1 2 4 0.5 1 2 4 0.5 1 2 4 0.5 1 2 4

−2

−1

0

noise SD

S
R

E
, v

ar
ia

nc
e 

F
E

s

Figure A.9: Varying the measurement error. We varied the measurement error standard

deviation to 0.5, 1, 2 and 4. FPC integrated squared errors (first row) and signed relative

errors in estimation of the variance parameters (second row) illustrate that results are robust

to a significant amount of noise, but estimation of parameters becomes poorer as the amount

of noise increases. Four FPCs were simulated but only 2 were estimated.
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Figure A.10: Examples of estimates of FPC 2 with varying levels of integrated squared

error. These estimates come from the longitudinal simulation scenario with Ji = 4.
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Appendix B

Appendix to Non-negative matrix

factorization approach to analysis

of functional data

B.1 Additional figures
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Figure B.1: Simulated FPCs and GFPCA estimates for Scenario II, for different numbers

of curves per simulation replicate. Each simulation was replicated 5 times.
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Figure B.2: Integrated squared errors of estimation of functional prototypes estimated using

NARFD for I ∈ {50, 200, 400} and simulation Scenario I.
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Figure B.3: Integrated squared errors of estimation of FPCs estimated using GFPCA for

I ∈ {50, 200, 400} and simulation Scenario II.



APPENDIX B. APPENDIX TO NON-NEGATIVE MATRIX FACTORIZATION
APPROACH TO ANALYSIS OF FUNCTIONAL DATA 108

φ1(t) φ2(t)

K
θ =

10
K

θ =
25

0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

Time

Estimated

Simulated

Figure B.4: Effect of changing Kθ on NARFD estimation, with I = 50 and simulation

Scenario I.
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Figure B.5: Effect of changing Kθ on GFPCA estimation, with I = 50 and simulation

Scenario II.
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Figure B.6: Effect of estimating more functional prototypes than simulated with NARFD,

with I = 50 and simulation Scenario I. Two functional prototypes were simulated and, in

the bottom panel, three were estimated. Estimated functional prototypes are labeled based

on their total contribution to the curve reconstructions. Since the contribution of the high

frequency cosine to the reconstructions is now split among two prototypes, the order of the

first two prototypes is sometimes switched.
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Figure B.7: Effect of estimating more FPCs than used in simulation on GFPCA estimation,

with I = 50 and simulation Scenario II. Two FPCs were simulated and, in the bottom panel,

three were estimated. Estimated FPCs are labeled based on the variance of their scores,

after the FPCs have been normalized to have unit norm.
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Figure B.8: Simulated FPCs and estimates using the method of Hall et al. [2008] for Scenario

II, for different numbers of curves per simulation replicate. Each simulation was replicated

5 times. The poor performance of this method may be due to a violation of its assumption

that the variation of the curves about the mean is relatively small.
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Figure B.9: Integrated squared errors of estimation of FPCs estimated using the method of

Hall et al. [2008] for I ∈ {50, 200, 400} and simulation Scenario II.
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Figure B.10: The top panel shows FPCs simulated under Scenario II (the GFPCA generative

model) and corresponding functional prototypes estimated with NARFD. The bottom panel

shows functional prototypes simulated under Scenario I (the NARFD generative model) and

corresponding FPCs estimated with GFPCA.
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Figure B.11: Functional prototypes and FPCs estimated using BLSA data using 1 through

5 FPCs/prototypes, using NARFD and GFPCA. For both methods, the kth estimated

FPC/prototype is not invariant to how many FPCs/prototypes are estimated. GFPCA

FPCs are shown on the scale on which they are estimated.
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Figure B.12: Five functional prototypes estimated using BLSA data using non-negative

matrix factorization, without any smoothing, using data from all 592 subjects.
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Appendix C

Appendix to FUN-LDA: A latent

Dirichlet allocation model for

predicting tissue-specific functional

effects of noncoding variation

C.0.1 eQTL enrichment

Let G1, . . . , G44 be the 44 GTEx tissues with at least 70 samples, and R1, . . . , R127 be the

127 Roadmap tissues. For a given tissue in GTEx Gi we are interested in identifying the

Roadmap tissue Rj with the highest enrichment in eQTLs from Gi relative to other tissues

in Roadmap.

Let

pGi|Rj =
#eQTLs in tissue Gi in functional component of Rj

#eQTLs in functional component of Rj
.

Note that the number of eQTLs in GTEx tissue Gi is a weighted count, with an eQTL

weighted by the inverse of the number of GTEx tissues in which the variant is eQTL, such

that
∑

i pGi|Rj = 1. This way eQTLs that are unique to tissue Gi are given higher weight

relative to eQTLs that are shared across many tissues. For GTEx tissue Gi, to test whether

there is an enrichment in the functional component of Roadmap tissue Rj , we compare
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pGi|Rj with

pGi|R−j =
#eQTLs in tissue Gi in functional components excluding Rj

#eQTLs in functional components excluding Rj
.

The null hypothesis is H0 : PGi|Rj = PGi|R−j vs. H0 : PGi|Rj > PGi|R−j . We apply a two-

sample proportion test for each Roadmap tissue Rj and report the Roadmap tissue with

minimum p value in Table 4.3.

The eQTLs that we used in these analyses are all significantly associated SNP-gene pairs

for eGenes in each of these 44 GTEx tissues, obtained using a permutation threshold-based

approach as described by the GTEx Consortium The GTEx Consortium [2015] (see also

https://

www.gtexportal.org/home/documentationPage#staticTextAnalysisMethods for more details).

C.1 LD score regression

The stratified LD score regression approach [Finucane et al., 2015] uses two sets of SNPs,

reference SNPs and regression SNPs. The regression SNPs are SNPs that are used in a

regression of χ2 statistics from GWAS studies against the “LD scores” of those regression

SNPs. The LD score of a regression SNP is a numeric score which captures the amount

of genetic variation tagged by the SNP. Here, following Finucane et al. [2015] we use as

regression SNPs HapMap3 SNPs, chosen for their high imputation quality, and as reference

SNPs those SNPs with minor allele count greater than 5 in the 379 European samples from

the 1000 Genomes Project. We first compute tissue-specific scores using each of our methods

for the 9, 254, 335 SNPs with minor allele count greater than 5 in the 379 European samples

from the 1000 Genomes Project, which we will subsequently use as our “reference SNPs”

for LD score regression. In the stratified LD score regression approach, a linear model is

used to model a quantitative phenotype yi for an individual i:

yi =
∑
j∈G

Xijβj + εi.

Here G is some set of SNPs, Xij is the standardized genotype of individual i at SNP j,

βj is the effect size of SNP j, and εi is mean-zero noise. In this framework, β, the vector

of all the βj , is modeled as a mean-0 random vector with independent entries, and the
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variance of βj depends on the functional categories included in the model. We have a set

of functional categories C1, . . . , CC , and the variance of a SNP’s effect size will depend on

which functional categories it belongs to:

Var(βj) =
∑
c:j∈Cc

τc.

Here τc is the per-SNP contribution to heritability of SNPs in category Cc. In Finucane et

al. [2015], the authors show that under this model τc can be estimated through the following

equation:

E[χ2
j ] = N

∑
c

τcl(j, c) + 1.

Here χ2
j is the chi-squared statistic for SNP j from a GWAS study, N is the sample

size from that study, and l(j, c) is the LD score of SNP j with respect to category Cc,

l(j, c) =
∑

k∈Cc r
2
jk. This equation therefore allows for the estimation of the τc via the

regression of the chi-squared statistics from a GWAS study on the LD scores of the regression

SNPs.

Here, we extend the stratified LD score by allowing SNPs to be assigned to a category

Cc probabilistically, that is, we assume a probability pkc that SNP k belongs to category

Cc, and therefore that the variance of its effect size is affected by its membership in that

category. This only involves minor changes to the above equations, namely, we have that

Var(βj) =
∑
c:j∈Cc

pjcτc,

where pjc is the probability that SNP j belongs to category Cc, and as above

E[χ2
j ] = N

∑
c

τcl(j, c) + 1,

although now l(j, c) =
∑

k∈Cc pkcr
2
jk, pkc being the probability that SNP k belongs to

category Cc. We can therefore still estimate the τc via the regression of the chi-squared

statistics from a GWAS study on the LD scores of the regression SNPs, but in calculating

these LD scores we weight the squared correlation of a SNP k with a regression SNP j by

the probability that SNP k belongs to a particular category.

For each tissue and phenotype, and each of our functional scores, we fit a separate LD

score regression model, including the LD score derived using the posterior probability that
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each regression SNP is in the functional component in that tissue, to estimate the per-SNP

contribution of SNPs that belong to that component to heritability. To control for overlap

of the tissue-specific functional score with other functional categories, we use the same

54 baseline categories used in Finucane et al. [2015], which represent various non-tissue-

specific annotations, including histone modification measurements combined across tissues,

measurements of open chromatin, and super enhancers.
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