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ABSTRACT

Stochastic Differential Equations and Strict Local Martingales

Lisha Qiu

In this thesis, we address two problems arising from the application of stochastic differential

equations (SDEs). The first one pertains to the detection of asset bubbles, where the

price process solves an SDE. We combine the strict local martingale model together with a

statistical tool to instantaneously check the existence and severity of asset bubbles through

the asset’s historical price process. Our approach assumes that the price process of interest

is a CEV process. We relate the exponent parameter in the CEV process to an asset

bubble by studying the future expectation and the running maximum of the CEV process.

The detection of asset bubbles then boils down to the estimation of the exponent. With

a dynamic linear regression model, inference on the exponent can be carried out using

historical price data. Estimation of the volatility and calibration of the parameters in the

dynamic linear regression model are also studied. When using SDEs in practice, for example,

in the detection of asset bubbles, one often would like to simulate its paths using the Euler

scheme to study the behavior of the solution. The second part of this thesis focuses on

the convergence property of the Euler scheme under the assumption that the coefficients of

the SDE are locally Lipschitz and that the solution has no finite explosion. We prove that

if a numerical scheme converges uniformly on any compact time set (UCP) in probability

with a certain rate under the globally Lipschitz condition, then when the globally Lipschitz

condition is replaced with a locally Lipschitz one plus a no finite explosion condition, UCP

convergence with the same rate holds. One contribution of this thesis is the proof of
√
n-

weak convergence of the asymptotic normalized error process. The limit error process is

also provided. We further study the boundedness for the second moment of the weak limit

process and its running maximum under both the globally Lipschitz and the locally Lipschitz

conditions. The convergence of the Euler scheme in the sense of approximating expectations

of functionals is also studied under the locally Lipschitz condition.
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Chapter 1

Introduction

In this thesis, we study the application of SDEs in asset bubble detection and numerical

schemes for solving SDEs taking the form

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0 ∈ R, (1.0.1)

where W is a standard Brownian motion. We assume µ(x) and σ(x) satisfy the Engelbert-

Schmidt conditions [19], which ensures a unique weak solution to the SDE above. In practice,

for various purposes, one often requires that µ(x) and σ(x) are of linear growth at most or

globally Lipschitz. For example, in modeling asset price process with SDEs, assuming at

most linear growth of coefficients leads toX being a martingale under a risk neutral measure.

Under the globally Lipschitz assumption, numerical methods such as the Euler scheme for

solving SDEs, have been proved to have different types of convergence properties. In this

thesis, we go beyond the linear growth world. Chapters 2 and 3 are based on two working

papers. Chapter 2 studies the detection of asset bubbles using SDEs and Chapter 3 studies

the limit distribution of the asymptotic error process from the Euler scheme.

In Chapter 2, we focus on using SDEs to detect asset bubbles. From Mijatovic and Urusov

[59], that when the coefficient σ(x) goes to infinity with at least order n1+γ , ∀γ > 0 as x

goes to infinity, X is a strict local martingale under a risk neutral measure. If X is the
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price process of an asset, this indicates the existence of an asset bubble, (see Jarrow, Kchia

and Protter[41], Jarrow, Protter and Shimbo [43],[44],[45], and Protter [66] for details). In

Section 1 of Chapter 2, we review existing methods for detecting asset bubbles. In Section

2, we give definitions for the fundamental price process and the bubble process. Then we

introduce the concept of a strict local martingale and describe how it can be used to model

asset bubbles in a finite time horizon. Section 3 studies the constant elasticity variance

(CEV) model, our main model for the stock price process. We show that the exponent

parameter of the CEV model is linked to financial bubbles in two respects. First, when the

exponent exceeds a fixed threshold, it indicates the existence of a bubble. Secondly, a larger

exponent parameter leads to a more extreme asset bubble in the sense of smaller future

expectation of the asset price process and a higher probability for the running maximum to

hit a large value in a certain time range. In Section 4, we propose the usage of the dynamic

linear regression method with a prior distribution on the noise terms to estimate the exponent

parameter in the CEV model. We also address the problem of volatility estimation and focus

on the Florens-Zmirou estimators. The details of using the Monte Carlo method to estimate

the parameters is also studied in Section 4. Section 5 illustrates the asset bubble detection

technique by applying it to several stocks from the alleged internet dot-com bubble.

In short, we have two innovations. One is that instead of assuming volatility σ(x) as a

functional of the price stays the same for the observation time period, we allow it to change

over time to gain more model flexibility. The second is that we link the exponent parameter

in the CEV model to the existence and severity of asset bubbles and propose a statistical

method to estimate the exponent parameter instantaneously using historical price data up

to the current time.

The motivation for the work in Chapter 3 started from the work in Chapter 2. It is known

that a price process has an asset price bubble if and only if it is a nonnegative strict local

martingale under a risk neutral measure. To study price processes with bubbles, we would

like to simulate the paths of SDEs (1.0.1) with µ = 0, and σ(x) being superlinear as their

solutions can be nonnegative strict local martingales. Since a nonnegative strict local mar-
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tingale is a supermartingale, its future expectation is decreasing with time. However, when

we use the Euler scheme to solve SDE (1.0.1) with µ = 0, the numerical solution is a true

martingale. The future expectation of a martingale does not decrease with time indicating

that the Euler scheme diverges in L1. In existing work on numerical schemes, the globally

Lipschitz or at most linear growth condition is often assumed to ensure different types of

convergence, including Lp convergence. The example of the nonnegative strict local mar-

tingale is one piece of evidence that in practice, this is often too stringent a requirement to

meet. Many Brownian motion driven SDEs used in applications have coefficients which are

only Lipschitz on a compact sets, for example, superlinear continuous functions. But the

solutions to such SDEs can be arbitrarily large. This leads us to ask while L1 convergence

does not hold for the Euler scheme with only the locally Lipschitz condition, can other types

of convergence hold? e.g., convergence in probability or convergence in distribution? And if

so, at what rate does the Euler scheme converge? This is answered in Chapter 3. In Section

3 of Chapter 3, we prove that if a numerical scheme converges uniformly in probability on

any compact time interval with a certain rate under the globally Lipschitz condition, the

same result holds when the globally Lipschitz condition is replaced with a locally Lipschitz

one and a no finite explosion condition. Convergence in probability for the Euler and the

Milstein schemes are studied as examples. Beginning with Section 4, we focus on the Euler

scheme. We prove the sequence of the normalized error process from the Euler scheme with

normalizing coefficient as
√
n is relatively compact. Furthermore, by proving uniqueness of

the limit process, we have the asymptotic normalized error process converges in distribu-

tion. The limit error process is also provided as a solution to an SDE. Section 5 turns to

the study of the the second moment of the limit error process and its running maximum. In

Section 6 of Chapter 3, we give an upper bound for the rate of convergence in the sense of

approximating expectations of functionals of the Euler scheme under the locally Lipschitz

assumption.

Chapter 4 summarizes the results in this thesis and presents several interesting ideas for

future work.
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Chapter 2

Detecting Asset Bubbles with the

Strict Local Martingale Model

Abstract

Using local martingales to model asset price processes, the detection of asset price bubbles is

equivalent to detecting whether or not the price process is a strict local martingale under a

risk neutral measure. In this paper, we model asset price processes with the CEV (constant

elasticity of variance) model with time varying parameters. Some mathematical properties

of the CEV processes are studied and linked to the severity or size of asset bubbles. The

dynamic linear regression method is described for instantaneously detecting asset bubbles

by estimating the exponent parameter in the CEV processes from historical asset price data.

Applications in detecting asset bubbles in the dot-com bubble era are presented.

Keywords: stochastic differential equation, strict local martingale, asset bubble, constant

elasticity of variance model, dynamic linear regression
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2.1 Introduction

Financial bubbles have a long history. The first documented bubble is Tulipmania, which

occurred in Amsterdam in the 17th century. More recently, from 2000 to 2002, the U.S. mar-

ket experienced the dot-com bubble and in 2008 the housing bubble. It is of intrinsic interest

to investigate the causes of financial bubbles, and there is a wealth of economic literature

on the subject ([20],[21],[24],[25], [31],[34],[53],[58],[71],[72],[74],[79]). However studying the

causes of financial bubbles is not the purpose of this paper. Instead, we aim to propose a

statistical model to analyze historical prices and to determine instantaneously whether or

not a bubble is occurring and how extreme the bubble is, regardless of its origins.

The detection of financial bubbles has received a great deal of attention. Instead of present-

ing a thorough survey, we discuss five existing methods for bubble detection. The first is

proposed in the papers of Jarrow and Madan [42], Gilles [27], and Gilles and Lerov [28]. To

explain the method, we require the technical concept of a price operator. Let ψ = (∆, Eν)

denote the payoff of an asset, where ∆ represents the asset’s cumulative dividend process

and Eν is a nonnegative random variable representing the asset’s terminal payoff at fixed

time ν. The market price operator Ft : ψ ⇒ R+ is a function mapping from payoff ψ to

a nonnegative price. The existence of asset bubbles is linked to the concept of countable

additivity for price operators, meaning the price system is the sum or integral of the values

of the individual components. The main theorem used to detect asset bubbles is that for a

fixed time t, a price operator Ft is countably additive, if and only if bubbles do not exist.

The second approach is that of Caballero et al [12], who, as described by Phillips et al [62],

proposed a simple general equilibrium model without monetary factors, but with goods that

may be partially securitized.

The third approach builds upon the second approach using the recursive implementation of

a right-side unit root test. Let xt be log stock price or log dividend:

xt = µx + δxt−1 + ΣJ
j=1ψj∆xt−j + εx,t, εx,t ∼ N(0, σ2

x) (2.1.1)
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The detection of financial bubbles reduces to the problem of testing whether or not δ > 1,

and the model (2.1.1) is estimated repeatedly, using subsets of the sample data incremented

by one observation at each time.

The fourth approach is due to Sornette and co-authors ([8], [73], [69], [35] and [46]). The

key feature of their financial model is that log-periodic oscillations appear in the price of the

asset before the critical date tc, which is the bubble crash date. Let p be the price process

before the critical date. The price process evolves as

p(t) u pc −
κ

β
[B0(t− t0)β +B1(tc − t)βcos[ωlog(tc − t)− φ]].

The crash as a point process has intensity

h(t) u B0(tc − t)−α +B1(tc − t)−αcos[ωlog(tc − t)− ψ′].

Then a bubble exists when the crash hazard rate accelerates with time.

Recent work on asset price bubbles is based on arbitrage-free martingale pricing technol-

ogy for Brownian driven asset price processes. Using this framework, Jarrow, Kchia and

Protter[41], Jarrow, Protter and Shimbo [43],[44],[45], and Protter [66] propose a new ap-

proach. The key theorem they use is that for a nonnegative price process, the existence of

a bubble in a finite time horizon equals that the price process being a strict local martin-

gale under a risk neutral measure. Given the price process of a risky asset that follows a

stochastic differential equation under a risk neutral measure taking the form

dXt = σ(Xt)dBt, Bt is a standard Brownian motion,

the condition on σ(x) such that Xt is a strict local martingale is given in Mijatovic and

Urusov [59]. The main method they used in [41] to estimate σ(x) is by reproducing kernel

spaces, which extends the estimator for σ(X) with the values where the price process X is

observed.



CHAPTER 2. DETECTING ASSET BUBBLES WITH THE STRICT LOCAL
MARTINGALE MODEL 7

This paper extends the fifth approach. In Section 2, we give definitions for the fundamental

price process and the bubble process. Then we introduce the concept of a strict local

martingale and how it can be used to model the asset bubbles in a finite time horizon.

Section 3 studies the constant elasticity variance (CEV) model, our main model for the

stock price process. We show that the exponent parameter of the CEV model is linked to

financial bubbles in two respects. First, when the exponent exceeds a fixed threshold, it

indicates the existence of a bubble. Secondly, a larger exponent parameter leads to a more

extreme asset bubble in the sense of smaller future expectation of the asset price process and

a higher probability for the running maximum to hit a large value in a certain time range.

In Section 4, we propose the usage of the dynamic linear regression method with a prior

distribution on the noise terms to estimate the exponent parameter in the CEV model. We

also address the problem of volatility estimation and focus on the Florens-Zmirou estimators.

The details of using the Monte Carlo method to estimate the parameters is also studied in

Section 4. Section 5 illustrates the asset bubble detection technique by applying it to several

stocks from the alleged internet dot-com bubble.

In short, we have two innovations. One is that instead of assuming volatility σ(x) as a

functional of the price stays the same for the observation time period, we allow it to change

over time to gain more model flexibility. The second is that we link the exponent parameter

in the CEV model to the existence and severity of asset bubbles and propose a statistical

method to estimate the exponent parameter instantaneously using historical price data up

to the current time.

2.2 A Mathematical Definition of Bubbles

Following Protter [66], we begin with a complete probability space (Ω,F , P ) and a filtration

F = (Ft)t>0 satisfying the usual hypotheses, (see Protter [?] for details of usual hypotheses).

Let r = (rt)t>0 be at least progressively measurable, and denote the instantaneous default-
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free spot interest rate. Define At as

At = exp(

ˆ t

0
rudu),

which is the time t value of a money market account. We work on the time interval [0, T ?],

where T ? is assumed to be a finite fixed time in this paper. The assumption that T ? is finite

is reasonable, since we can always make T ? large enough to include the lifetime of a risky

asset that we are interested in. Let τ be the lifetime of the risky asset, where τ is a stopping

time and τ < T ?. Let Dt be the dividend process, and St the nonnegative price process of

the risky asset. Both Dt and St are assumed to be semimartingales. Since St has càdlàg

paths 1, it represents the price process ex-cash flow. By ex-cash flow, we mean that the price

at time t is after all dividends have been paid, including the time t dividend. Let ∆ ∈ Ft

be the time τ terminal payoff or liquidation value of the asset, and ∆ > 0. Finally, let W

be the wealth process associated with the market price of the risky asset plus accumulated

cash flows. Then,

Wt = It<τSt +At

ˆ t∧τ

0

1

Au
dDu +

At
Aτ

∆Iτ6t, (2.2.1)

with all the cash flows invested in the money market account. In the standard setting, one

often assumes that the market is arbitrage-free in the sense of No Free Lunch with Vanishing

Risk (NFLVR), (see Delbaen and Schachermayer [17] for details). NFLVR guarantees the

existence of a local martingale measure Q, with the same null sets as P (we write Q ∼ P ),

such that under Q, the wealth process W is a local martingale. Q is often called a risk

neutral measure. We use this risk neutral measure to calculate the market’s fundamental

value for the risky asset; this should be the best guess for the future discounted cash flows,

given one’s knowledge at the present time.

1Càdlàg paths refer to paths that are right continuous with left limits almost surely.
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Definition The market’s fundamental value process for the risky asset is defined as

S?t = EQ(

ˆ τ

t

1

Au
dDu +

∆

Aτ
Iτ6T ? |Ft)At.

With this definition, we are now able to define the bubble process.

Definition Let S̃t be the difference between the market price process and the fundamental

price process:

S̃t = St − S?t .

Then the process S̃t is called the bubble process.

Protter [66] studied the characterization of the bubble process S̃t under the assumption that

the stock pays no dividends and the interest rate is 0. The bubble process S̃t is a nonnegative

process and a price bubble exists when S̃t is not identically 0. Protter [66] identified three

possible ways in which a bubble can occur:

Theorem 2.2.1. (Protter) The existences of a bubble in an asset’s price occurs only under

3 possibilities.

1. If P(τ = ∞) > 0, then βt is a local martingale (which could be a uniformly integrable

martingale).

2. If τ is unbounded, but with P(τ < ∞) = 1, then βt is a local martingale, but not a

uniformly integrable martingale.

3. If τ is a bounded stopping time, βt is a strict Q− local martingale.

For a proof, see Protter [66]. Of the three situations above, the third is most interesting,

since we are working on the compact time interval. As seen in Theorem 2.2.1, a bubble

exists on [0, T ], if and only if the price process St is a strict local martingale, and a bubble

does not exist if and only if S is a martingale under a risk neutral measure. Let us make
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the reasonable assumption that S is the unique strong solution of a SDE

dSt = σ(St)dWt + µ(St, νt)dt,

dνt = s(νt)dBt + g(νt)dt,
(2.2.2)

where Wt and Bt are two independent standard Brownian motions. This gives a model for

St in the context of an incomplete market. Under mild conditions on σ and µ, (see Protter

[66]) , there exists a risk neutral measure Q under which (2.2.2) reduces to

dSt = σ(St)dWt, (2.2.3)

and the SDE (2.2.3) does not depend on which risk neutral measure is chosen, though there

might be infinitely many of them. The condition under which St is a strict local martingale

is studied in Mijatovic and Urusov [59].

Theorem 2.2.2. (Mijatovic and Urusov) Let W be a Brownian motion and suppose S

follows the SDE below under a measure Q

dSt = σ(St)dWt, S0 > 0, (2.2.4)

where σ : (0,+∞)→ R is a Borel function satisfying the Engelbert-Schmidt conditions

σ(x) 6= 0, ∀x ∈ J, J = (0,+∞),

1

σ2
∈ L1

loc(J) is integrable on compact subsets of J.

Assume that S is stopped at its hitting time of 0. Then S is a strict local martingale if and

only if for some a > 0, the following condition H holds

H:
ˆ ∞
a

x

σ2(x)
dx <∞. (2.2.5)

Theorem 2.2.2 indicates that for a price process S following (2.2.4) under a risk neutral

measure, detecting the existence of a price bubble is equivalent to checking the condition
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H , which can be realized when σ(x) is known or properly estimated.

2.2.1 An Example of a Strict Local Martingale

It is not so straightforward to see that a nonnegative diffusion without a drift term can

be a strict local martingale whose future expectation strictly decreases with time. We give

one famous example, the inverse Bessel process. Let W be a standard three dimensional

Brownian motion starting from the point (1,0,0). Define a process X by

Xt =
1

‖Wt‖
, t > 0.

Then X is a nonnegative process with finite values almost surely, since, with probability 1,

W never hits the origin. It is known that an alternate representation for the inverse Bessel

process is as a solution to a SDE of the form

Xt = X2
t dBt, X0 = 1,

where Bt is a standard Brownian motion. This is a special case of the CEV process, the

model assumed in later parts of this chapter. Applying Theorem 2.2.2, Xt is a strict local

martingale. The mean of Xt can be calculated explicitly as E(Xt) = 2φ( 1√
t
) − 1, where φ

is the cumulative distribution function of the standard normal distribution. Thus, E(Xt) is

decreasing with time and lim
t→+∞

E(Xt) = 0.

2.3 The Constant Elasticity Variance (CEV) Model and Its

Relation to Asset Bubbles

2.3.1 The CEV Model

It is always assumed herein that the asset price process follows the SDE (2.2.2). In order

to apply Theorem 2.2.2, we impose a parametric form restriction on σ(x) such that we can



CHAPTER 2. DETECTING ASSET BUBBLES WITH THE STRICT LOCAL
MARTINGALE MODEL 12

estimate it. If we assume σ(x) is a power function, then CEV model developed by John Cox

[13] is obtained. The CEV model is the main model used here for detecting asset bubbles.

Under the model, the following deterministic relationship between price and volatility

σ(St, t) = δS
θ
2
t , θ > 0,

is assumed to hold. Here the exponent parameter is in the fraction form for notational

convenience in later sections. Then the price process follows the SDE below

dSt = µStdt+ δS
θ
2
t dWt, µ = r − q, St0 = s0, (2.3.1)

where Wt is a standard brownian motion, r is the interest rate and q is the dividend rate.

It is known that there exists a risk neutral measure Q, under which the drift term in (2.3.1)

is removed, and S follows

dSt = δS
θ
2
t dWt. (2.3.2)

By applying condition H in Theorem 2.2.2, we have that for θ > 2, the price process St

is a strict local martingale and an asset bubble exists. When θ ≤ 2, S is a martingale

and there is no asset bubble. Here we assume the price process follows the CEV model.

The model is often used by practitioners in the financial industry, especially for modeling

equities and commodities. Besides the wide acceptance and simplicity of the CEV model, the

exponent parameter θ is related to the severity or scale of asset bubbles, which is discussed

subsequently.

Theorem 2.2.2 indicates that the behavior of σ(x) when x → ∞ determines whether St

is a martingale or not, thus the existence of an asset bubble. In the CEV model, σ(x) is

restricted to be a power function, but it is able to capture the tail behavior of a wider range

of diffusion functions, namely those which are continuous and locally bounded. This can be

shown by applying the Stone-Weierstrass approximation theorem.

Theorem 2.3.1 (Stone-Weierstrass). Let X be a compact Hausdorff space C(X,R), which
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is the space of all bounded continuous real functions defined on X, and let A be a closed

subalgebra which separates points and contains a non-zero constant function of C(X,R).

Then A equals C(X,R).

Take X as any closed interval [a, b], and let A be the closure of all functions of the form

p(x) = a0 + a1x
b1 . . . anx

bn , where ai ∈ R\{0} and bi ∈ R+. The Stone-Weierstrass theorem

states that every continuous function defined on a closed interval [a, b] can be uniformly

approximated as closely as desired by functions in the form of p(x). And for p(x) = a0 +

a1x
b1 . . . anx

bn , with bn as the largest power coefficient, its tail behavior is the same as

p̃(x) = anx
bn .Therefore in terms of analyzing the tail behavior of p(x) for detecting asset

bubbles, the CEV model with a simple power function form for σ(x) is a good choice. If

the coefficients of the smaller exponents are exceptionally large, the bubble affect could be

masked. But if all the coefficients are reasonable, the CEV model assumption should work.

2.3.2 Future Expectations under the CEV model

Assuming that a price process S follows the CEV model, the mathematical properties of S

have been extensively studied in the situation that S is a martingale under a risk neutral

measure. However to the best of our knowledge, there are not many papers considering the

possible existence of asset bubbles while applying the CEV model. Theorem 2.2.2 implies

that under the CEV model, S being a strict local martingale if and only if θ > 2. In practice,

it is often assumed that θ ≤ 2 to ensure that S is a martingale, thus excluding the possibility

of asset bubbles.

In this subsection, we are going to study the mathematical properties of S with the as-

sumption that θ > 2 i.e., under the assumption that an asset bubble exists. Two features

of the price process S that are of interest are the future expectation E(St) and the running

maximum S∗T = sup
0≤s≤T

Ss. They are not only related to the return and risk of the price

process, but also closely linked to the behavior of asset bubbles, as a price process with a

bubble has a decreasing future expectation and a high possibility of a soaring period, hitting

a relatively high value. It is well known that if S is a nonnegative strict local martingale,
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one has E(Ss|Ft) < St,∀s > t > 0. The decreasing expectation of a nonnegative strict local

martingale causes the bubble process S̃ not to be identically 0, and also implies that the

expected future return of an asset with a bubble is negative under a risk neutral measure.

We will prove that if S follows the CEV model with θ > 2, larger values of θ result in more

extreme asset bubbles. By more extreme bubbles, we mean a lower value of E(St) and higher

probability of hitting a high price level in a short time range.

To study E(St), we relate ST to the distribution of a noncentral chi-squared distribution as

in Emmanuel and MacBeth [16]. The expectation of a CEV process was studied in S.Mark

[57]. However the form provided by Mark was incorrect for the case θ > 2. Proposition 2.3.1

below corrects this.

Proposition 2.3.1. Assume that a nonnegative process St follows the SDE (2.3.1). Define

a, b, c, λ by

a =
1

2
δ2(θ − 2)2,

b = µ(2− θ),

c =
1

2
δ2(θ2 − 3θ + 2),

λ =
2s0

2−θbebτ

a(ebτ − 1)
,

df =
2c

a

where τ = T − t0 > 0. Let F [x; k, d] be the cumulative distribution function of a noncentral

chi-squared distribution with degree of freedom k (k is a positive real number, and can be

non integer) and the noncentrality parameter d. Then, when θ > 2,

E(ST |St0 = s0) = s0e
µτF
î
λ; df − 2, 0

ó
,

Proof. We first show that Z = λe−bτ (STs0 )2−θ follows a noncentral chi-squared distribution
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χ2
df,λ. Let Yt = S2−θ

t . Applying Itô’s formula to Yt gives

dYt = [µ(2− θ)Yt +
1

2
δ2(θ2 − 3θ + 2)]dt+ δ(2− θ)

√
YtdWt, Yt0 = s2−θ

0 .

Let p(yt, t) be the probability density function of process Y at time t > t0 with value yt.

Then by the Fokker-Planck equation, p(yt, t) satisfies the partial deferential equation

∂

∂t
p(yt, t) = − ∂

∂y

î
µY (yt, t)p(yt, t)

ó
+

∂2

∂y2

î
DY (yt, t)p(yt, t)

ó
, (2.3.3)

where the drift coefficient µY and the diffusion coefficient DY are

µY (yt, t) = µ(2− θ)yt +
1

2
δ2(θ2 − 3θ + 2),

DY (yt, t) =
1

2
δ2(θ − 2)2yt.

Using Feller’s result (see [22]), given the initial condition that Yt0 = s2−θ
0 , the Laplace

transform of the probability density p(yT , T ) is

ωY (τ, s) =

ï
b

sa(ebτ − 1) + b

òc/a
exp
¶ −s2−θ

0 sbebτ

sa(ebτ − 1) + b

©
, τ = T − to.

To get the density function p(yt, t), instead of applying the inverse Laplace transforma-

tion to ωY (τ, s), we relate ωY (τ, s) to the noncentral chi-squared distribution. Since Z =

λe−bτ (STs0 )2−θ =
2bS2−θ

T

a(ebτ−1)
, the Laplace transform of the probability density of Z is

ωZ(τ, s) = ωY (τ,
2bs

a(ebτ − 1)
) = (1 + 2s)−

c
a exp

¶ 2s2−θ
0 bebτ

a(ebτ − 1)(1 + 2s)

©
.

It can be shown that ωZ(τ, s) equals the Laplace transform of a noncentral chi-squared

distribution, which is

wX(s) = (1 + 2s)−
df
2 exp(

λ

1 + 2s
), X ∼ χ2

df,λ.

Since the Laplace transform uniquely determines a probability distribution, one has Z ∼
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χ2
df,λ. Let p[z; df, λ] be the density function for the distribution χ2

(df,λ),

fχ2
(df,λ)

(z) = p(z; df, λ) =
1

2
e
z+λ

2 (
z

λ
)
df
4
− 1

2 I df
2
−1

(
√
λz), (2.3.4)

where Iν(·) is the modified Bessel function of the first kind of order ν. Then by ST =

s0e
µτ (Zλ )

1
2−θ , and (2.3.4)

Eθ(ST |Ft0) =

ˆ +∞

0
s0e

µτ (
z

λ
)

1
2−θ p(z; df, λ)dz

= s0e
µτ

ˆ +∞

0
p(λ; df, z)dz

Using the property of density of noncentral chi-squared distributions (see S.Mark [57]),

ˆ +∞

y
p(z; ν, k)dk = F (z; ν − 2, y), (2.3.5)

we have

Eθ(ST |Ft0) = s0e
µτF (λ; df − 2, 0).

With the explicit form of Eθ(ST ) given in Proposition 2.3.1 under the CEV model, we are

able to compare future expectations with different values of θ. The goal is to show that θ

is related to the size of asset bubbles by the study of future expectations and the running

maximum of St.

Proposition 2.3.2. Let S1 and S2 follow SDEs

dS1(t) = δS
θ1
2

1 (t)dW1(t),

dS2(t) = δS
θ2
2

2 (t)dW2(t), for t ∈ [t0, T ]

S1(t0) = S2(t0) = s0 > 0,

where W1 and W2 are two standard Brownian motions. Let σir = δs
θi−2

2
0 , i = 1, 2, and
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L(θ, σr, τ) = max{(θ − 2)−
1
2σ−2

r , (θ − 2)−2σ−2
r }. Then, if θ1 > θ2 > 2, s0 ≥ 1 and τ =

T − t0 < min{L(θ1, σ2r, s0), L(θ2, σ1r, s0)},

E[S1(T)] < E[S2(T)] < s0.

Proof. Let St follow the SDE (2.3.2) with θ > 2 and initial value s0 > 0. By Proposition

2.3.1, and using the same notation there,

Eθ(ST ) = F

ï
λ; df − 2, 0

ò
s0.

Let d = 1
θ−2 and C = 2

δ2τ
. Then

U = 1− F
ï
λ; df − 2, 0

ò
= 1− F

ï
2Cs

− 1
d

0 d2; 2d, 0

ò
=

ˆ +∞

2Cs
− 1
d

0 d2

1

Γ(d)

1

2d
zd−1e−z/2dz =

ˆ +∞

Cs
− 1
d

0 d2

1

Γ(d)
yd−1e−ydy.

To study the monotonicity of U as a function of d, we examine ∂U
∂d ,

Γ(d)
∂U

∂d
= −

Å
Cs
− 1
d

0 d2
ãd−1

e−Cs
− 1
d

0 d2
Å
Cs
− 1
d

0 log(s0) + 2dCs
− 2
d

0

ã
+

ˆ +∞

Cs
− 1
d

0 d2

yd−1 log(y)e−ydy − Γ′(d)

Γ(d)

ˆ +∞

Cs
− 1
d

0 d2

yd−1e−ydy.

Let H = Cs
− 1
d

0 d2. Then,

Γ(d)
∂U

∂d
=−Hde−H

Å
log(s0)

d2
+

2

d

ã
+

ˆ +∞

H
yd−1 log(y)e−ydy − Γ′(d)

Γ(d)

ˆ +∞

H
yd−1e−ydy.

Notice that

ψ(d) =
Γ′(d)

Γ(d)
, is the polygamma function of order 0.
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Rewriting Hde−H as

Hde−H =

ˆ +∞

H
yde−y − dyd−1e−ydy,

Then

∂U

∂d
=

1

Γ(d)

ˆ +∞

H
yd−1e−y

ï
log(y)− ψ(d) +

Å
log s0

d2
+

2

d

ã
(d− y)

ò
dy. (2.3.6)

Equation (2.3.6) indicates that when s0 and H are large enough, ∂U
∂d ≤ 0. However it is

hard to solve ∂U(d)
∂d ≤ 0 explicitly. As a compromise, we try to find a sufficient condition to

guarantee ∂U
∂d < 0. With the assumption that s0 ≥ 1 and by approximating ψ(d) from its

expansion (see [2])

ψ(d) = −γ −
∞∑
k=0

(
1

d+ k
− 1

k + 1
), γ = 0.5772 . . . ,

we have when y ≥ H ≥ max{2d
3
2 , 2},

log(y)− ψ(d) +

Å
log s0

d2
+

2

d

ã
(d− y) < 0,

which leads to ∂U
∂d < 0. With the definition of H and C, one gets H ≥ max{2d

3
2 , 2}

is equivalent to τ ≤ min

ß
s
− 1
d

0 d
1
2

δ2 ,
s
− 1
d

0 d2

δ2

™
. Thus when s0 ≥ 1, τ ≤ min

ß
s
− 1
d

0 d
1
2

δ2 ,
s
− 1
d

0 d2

δ2

™
,

Eθ(ST ) = s0(1 − U) is a increasing function of d, therefore also a decreasing function of θ

conditioning on θ > 2. Since σr = δs
θ−2

2
0 , the proof concludes.

The reason that a nonnegative strict local martingale has an expectation that decreases with

time is that there is some probability mass escaping to infinity. Theorem 2.2.2 suggests that

a type 3 bubble only occurs when σ(S)→∞ too fast when S →∞. Thus we expect that a

larger value of θ leads to a more extreme bubble. One attribute of a more extreme bubble

is relatively smaller future expectation. However Proposition 2.3.2 suggests the situation is

more complicated, that we actually require some conditions on the starting value and time.

The intuition behind the conditions is that when S is very small, a larger θ actually shrinks
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the volatility σ(S) more. An extreme case would be S < 1, when θ → +∞, σ(S) → 0,

Eθ(ST ) barely decreases with time. The condition on t is for the same reason. When t is

large enough, St is likely to be a small value, as Eθ(St) is decreasing towards 0 when θ > 2,

and a large value of θ shrinks volatility when S is smaller than 1.

In Proposition 2.3.2, the conditions on s0 and τ are usually satisfied in practice. For example,

when 2 < θ < 3, s0 > 1, σr < 0.5, which is usually the case in the stock markets, large values

of θ lead to smaller future expectations within 4 years. In later sections, we shall use real

trading data to estimate θ. And the that θ > 3 rarely occurs, and the lifetime of a bubble

generally stays within 4 years. To better illustrate how Eθ(ST |Ft0)/St0 changes with different

θ, we present an example. Let δ = 0.5, St0 = 10, θ range from 2 to 4.8, and τ range from a

quarter of a year to 2 years. For different values of θ and τ = T − t0, we calculate the ratio

Eθ(ST |Ft0)/St0 . Each row in Table 2.3.1 illustrates that Eθ(ST |Ft0)/St0 is decreasing with

Table 2.3.1: Future expectation of CEV processes
τ =1/4 τ =1/2 τ =3/4 τ =1 τ =5/4 τ =3/2 τ =7/4 τ =2

θ = 2.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
θ = 2.4 1.000 1.000 0.999 0.993 0.973 0.939 0.893 0.840
θ = 2.8 0.621 0.353 0.237 0.175 0.137 0.111 0.093 0.080
θ = 3.2 0.135 0.078 0.056 0.044 0.037 0.031 0.028 0.025
θ = 3.6 0.054 0.035 0.027 0.023 0.020 0.018 0.016 0.015
θ = 4.0 0.032 0.023 0.018 0.016 0.014 0.013 0.012 0.011
θ = 4.4 0.023 0.017 0.015 0.013 0.012 0.011 0.010 0.010
θ = 4.8 0.019 0.014 0.013 0.011 0.010 0.010 0.009 0.009

Eθ(ST |Ft0)/St0 with St0 = 10, δ = 0.5.

time τ , except that when θ = 2. Each column illustrates that as θ increases from 2 to 4.8,

Eθ(ST |Ft0)/St0 is decreasing. Figure 2.3.1 also illustrates how Eθ(ST |Ft0)/St0 changes with

τ and θ. In the left plot of Figure 2.3.1, each curve represents Eθ(ST |Ft0)/St0 as a function

of τ , for a fixed θ. At first curves corresponding to larger values of θ decrease more rapidly

than curves with smaller values of θ. But when time τ is large enough, curves begin to cross,

which means the result that CEV processes with a larger value for θ produce smaller future

expectations. However, this occurs only for very large τ when θ is well bounded from above.

In our example, for the curves with θ ≤ 4, (which is usually the case in stock markets), there
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is no crossing when τ < 10 years.
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Figure 2.3.1: Future expectation of CEV processes

Linking Proposition 2.3.2 to the fundamental price process and bubble process, we have

Theorem 2.3.2. Let S1(t) and S2(t) be the nonnegative price processes of two stocks. As-

sume that S1 and S2 pay no dividends and the spot interest rate is 0. Let Q1 and Q2 be risk

neutral measures under which S1(t), S2(t) are local martingales that follows the SDEs below

dS1(t) = δS
θ1
2

1 (t)dW1(t), S1(t0) = s0,

dS2(t) = δS
θ2
2

2 (t)dW2(t), S2(t0) = s0, for t ∈ [t0, T ].

Assume that asset bubbles do not exist for either S1(t) or S2(t) after time T . Let S?1 ,

S?2 be the fundamental value processes of the assets calculated under Q1 and Q2, and let

S̃1(t) = S1(t) − S∗1(t), S̃2(t) = S1(t) − S∗1(t), be the bubble processes. Let σir = δs
θ−2

2
0 , i =

1, 2, L is defined as in Proposition 2.3.2. Then, if θ1 > θ2 > 2, s0 ≥ 1, τ = T − t0 <

min{L(θ1, σ2r, s0), L(θ2, σ1r, s0)}:

(i) for the two fundamental value processes at time t0,

S?1(t0) < S?2(t0);
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(ii) for the two bubble processes at time t0,

S̃1(t0) > S̃2(t0).

Proof. (i) Assume S is a price process which has a bubble when t ∈ [t0, T ], and no bubble

after T until liquidation time. Since there is no bubble after T , the stock price ST should

match the fundamental price S?T . Under the assumption of no dividends and an interest

rate of 0, under the price process’s risk neutral measure Q,

S?t0 = EQ(S?T |Ft0) = EQ(ST |Ft0).

With the assumptions on s0, τ, θ1 and θ2, we can apply Proposition 2.3.2 to obtain

S?1(t0) = EQ1(S1(T )|Ft0) < EQ2(S2(T )|Ft0) = S?2(t0).

(ii) From (i),

S̃1(t0) = S1(t0)− S?1(t0),

S̃2(t0) = S2(t0)− S?2(t0),

S̃1(t0) > S̃2(t0).

2.3.3 Running Maximum under the CEV Model

The running maximum of a price process is interesting to look at, since when a bubble

occurs, the price process is likely to have a temporary boom and hit relatively high levels

in a short time. The running maximum of a price process is also linked to the problem

of pricing look back options. Under the CEV model, the Laplace transform is given in

V.Linetsky [52], D.Davydov and V.Linetsky [15]. However we are not able to obtain the

explicit form of the distribution for S∗T = max{St : t0 ≤ t ≤ T} when θ > 2, since the
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inverse Laplace transformation is not easy to calculate. However if T is an exponentially

distributed random variable, one obtains an explicit form for the distribution of S∗T .

Proposition 2.3.3. Let S be a process satisfying the SDE (2.3.1). Let τ be a random time

independent of S and has exponential distribution P (τ > t) = e−λt, λ > 0 and T = t0 + τ .

Let S∗T = max{St : t0 ≤ t ≤ T} be the running maximum at time T . Then for any M > s0,

define ν, a and b by

ν =
1

θ − 2
, a =

2ν

δ
s
− 1

2ν
0 , b =

2ν

δ
M−

1
2ν .

Then

P (S∗T > M) =
a−νKν(a

√
2λ)

b−νKν(b
√

2λ)
, (2.3.7)

where Kν is the modified Bessel function of the second kind.

Proof. Let Rt = 2ν
δ S
− 1

2ν
t . Then by Itô’s formula, Rt follows the SDE

dRt = (
1

2
+ ν)

1

Rt
dt− dWt, Rt0 = a.

Thus Rt is a Bessel process with order ν = 1
θ−2 . For a, b > 0, τ (ν)

a,b is the first hitting time

to b for Rt. The Laplace transform of the hitting time of a Bessel process has been well

studied. We link the probability distribution of the running maximum of CEV process to

its corresponding Bessel process hitting time:

PS0(S∗T > M) = P (τa,b < t0 + τ) =

ˆ +∞

0
P (τ

(ν)
a,b < t0 + t)e−λtdt = E[e−λ(τ

(ν)
a,b
−t0)].

From the result of A.N.Borodin and P.Salminen [?], we have

E[e−λ(τ
(ν)
a,b
−t0)] =

a−νKν(a
√

2λ)

b−νKν(b
√

2λ)
.
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With Proposition 2.3.3, we are able to have some comparison results on the running maxi-

mum of CEV processes with different values of θ.

Theorem 2.3.3. Let S1 and S2 be defined in the same way as in Proposition 2.3.2. Assume

θ1 > θ2 > 2, s0 ≥ 1. Then

lim
t→t0+

P (S∗1(t) > M)

P (S∗2(t) > M)
= +∞, ∀M > s0. (2.3.8)

Further if τ = T − t0 < min{L(θ1, σ2r, s0), L(θ2, σ1r, s0)}, where L and σir, i = 1, 2 are the

same as in Proposition 2.3.2, then

lim
M→∞

P (S∗1(T ) > M)

P (S∗2(T ) > M)
=
s0 − E[S1(T )]

s0 − E[S2(T )]
> 1. (2.3.9)

Proof. Let τ be a random time independent of S1 and S2 with exponential distribution

P (τ > t) = e−λt, λ > 0, and let T = t0 + τ ,

lim
t→t0+

P (S∗1(t) > M)

P (S∗2(t) > M)
= lim

λ→+∞

P (S∗1(T ) > M)

P (S∗2(T ) > M)
.

For the Bessel function of second kind Kν , it is known that

lim
z→+∞

Kν(z)»
π
2z e
−z

= 1.

Let aν,M = 2ν
δ s
− 1

2ν
0 , bν,M = 2ν

δ M
− 1

2ν and ν1 = 1
θ1−2 , ν2 = 1

θ2−2 . From Proposition 2.3.3,

lim
t→t0+

P (S∗1(t) > M)

P (S∗2(t) > M)
= lim

λ→+∞

√
aν2bν1

bν2aν1

e
√

2λ(bν1−aν1−bν2−aν2 ). (2.3.10)

Since

∂2(bν,M − aν,M )

∂ν∂M
= − 1

2ν2
logMM−

1
2ν
−1 < 0, M > s0 ≥ 1
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one gets

∂(bν,M − aν,M )

∂ν
<
∂(bν,M − aν,M )

∂ν

∣∣∣∣(M = s0) = 0.

Thus as ν1 < ν2, we get (bν1,M − aν1,M ) − (bν2,M − aν2,M ) > 0. Together with (2.3.10), we

conclude that (2.3.8) holds. To prove (2.3.11), we first state one known result in Madan and

Yor [55]. For a non-negative local martingale X starting from t = 0 with value x0, there is

the identity

x0 − E(Xt) = lim
K→+∞

KP (X∗t > K).

Thus

lim
M→∞

P (S∗1(T ) > M)

P (S∗2(T ) > M)
=
s0 − E[S1(T )]

s0 − E[S2(T )]
. (2.3.11)

With the assumptions on τ and s0, Proposition 2.3.2 applies and s0−E[S1(T )]
s0−E[S2(T )] < 1.

We use an example to illustrate how P (S∗T > M) changes with θ, with τ = T − t0 exponen-

tially distributed. Set the starting value as 10 and M = 40, we vary λ and θ. Table 2.3.2

and Figure 2.3.2 illustrate how P (S∗T > M) changes with different λ and θ. In Figure 2.3.2,

each line represents P (S∗T > M) as a function of 1
λ = E(τ), for a fixed θ. We can see that

CEV processes with larger values of θ where θ > 2, have larger probabilities to hit a large

value from below in a short time as proved in Theorem 2.3.3 and illustrated in Figure 2.3.2.

As indicated by Figure 2.3.2, we also see that when time range is sufficiently long, the CEV

processes with larger values of θ, conditioning on θ > 2, has smaller probabilities of hitting

a large value, which can be proved using Hamana and Matsumoto’s result in [30], interested

readers can refer to Appendix A.1.
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Table 2.3.2: Distribution of the running maximum for CEV processes
λ = 0.001 λ = 0.01 λ = 0.1 λ = 1 λ = 2 λ = 5 λ = 10

θ = 2.1 0.248 0.230 0.137 0.015 0.004 0.000 0.000
θ = 2.3 0.248 0.236 0.164 0.034 0.012 0.002 0.000
θ = 2.5 0.249 0.239 0.185 0.059 0.028 0.006 0.001
θ = 3.0 0.249 0.244 0.216 0.128 0.091 0.045 0.020
θ = 4.0 0.248 0.245 0.234 0.202 0.185 0.156 0.128
θ = 10 0.243 0.240 0.237 0.233 0.231 0.229 0.227
θ = 20 0.239 0.237 0.235 0.233 0.233 0.232 0.231
θ = 40 0.236 0.235 0.234 0.233 0.232 0.232 0.232

P (S∗T > M) with P (T − τ > t) = e−λt, s0 = 10, M = 40, δ = 0.5
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Figure 2.3.2: Distribution of the running maximum of CEV processes
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2.4 Detecting Bubbles Under the CEV Model

2.4.1 Statistical Formulation

If the asset price process follows the general form (2.2.2), Theorem 2.2.2 indicates that the

σ(x) as a function of the current price is critical for the existence of asset bubbles. Under

the assumption that the functional form σ does not change in the time range of interest,

Jarrow, Kchia, and Protter [43] used reproducing kernel space methods to estimate σ(x) and

check condition H in Theorem 2.2.2 to detect asset bubbles. In this paper we are interested

in detecting the existence and severity of asset bubbles. We allow the functional form σ(Xt)

to change over the time range [0, T ], but stay the same within a discretization of time with

size ∆T . Letting T0 = 0, Tn = T , ∆T = Ti− Ti−1, i = 1 . . . n, the price process follows the

SDE

dXt =
n∑
i=1

σi(Xt)I{t∈(Ti−1,Ti]}dWt. (2.4.1)

The form (2.4.1) is also used in detecting the lifetime of bubble in Protter, Obayashi and

Wang [67]. Assuming that each σi(S) satisfies the Engelbert-Schmidt conditions and apply-

ing Theorem 2.2.2, the asset bubble detection problem is transformed into finding those i′s

with σi(x) satisfying condition H in Theorem 2.2.2. The advantage of using a parametric

form for the volatility function σ(x) is that once the parameters have been estimated, we

know the tails. We choose a family of volatility functions to include the cases where S is

either a martingale or a strict local martingale under its risk neutral measure. Here we

use power functions σi(S) = aiS
bi , which results in the CEV process, where ai and bi are

unknown parameters. Our goal is to detect the potential asset bubble time region, and the

severity of the bubble; these could be achieved by making inference on the parameters ai

and bi.By applying condition H in Theorem 2.2.2, we find that when bi > 1, S is a strict

local martingale, which implies the existence of an asset bubble, and when bi ≤ 1, there is

no asset bubble. Let ai > 0, bi > 0, it is known that if S0 > 0, St is positive almost surely.

Since σi(S) = aiS
bi , if we take the log on both sides, we have log(σi(S)) = log(ai)+bilog(S).
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We therefore construct a statistical model with time varying parameters log(ai) and bi

log(σ̂i(Si)) = log(ai) + bi log(Si) + νi,

where νi is an error with E(νi| log(Si)) = 0. The terms log(Si) and log(σ̂i(Si)) can both be

obtained by using the historical stock price.

2.4.2 Estimating Volatility

In order to apply Theorem 2.2.2 to detect asset bubbles, we need to estimate the volatility

σ(x) at fixed prices. Using the price and volatility pairs (x, σ̂2(x)), we can estimate the

parameters in σ(x). To estimate the volatility at fixed prices, we use the Florens-Zmirou’s

estimator:

σ̂2
n(x) =

n∑
i=0
I{|Sti−x|<hn}n(Sti+1 − Sti)2

T
n∑
i=0
I{|Sti−x|<hn}

, (2.4.2)

where Sti are n observations on [0, T ], with ti+1 − ti = T
n , and hn is a sequence of positive

real numbers converging to 0. The following theorem can be found in Florens-Zmirou [18].

Theorem 2.4.1. Assume σ is bounded, strictly positive, and has three continuous and

bounded derivatives. If (hn)n≥1 satisfies that nhn →∞ and nh3
n → 0, then

√
Nn
x (Sn(x)

σ2(x)
− 1)

converges in distribution to
√

2Z, where Z is a standard normal random variable and

Nn
x =

n∑
i=0
I{|Sti−x|<hn}.

Remark: For the Florens-Zmirou’s estimator, in the theorem σ needs to be bounded. In

practice, conditioning on the price history, the maximum of the price is always finite, σ for

that path is finite as well.

For each trading day, using the intraday trading prices we estimate σ(x̄), where x̄ is the daily

average of the trading prices. Assuming that the intraday fluctuation is relatively small, we
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can take

σ̂2(x̄) =

n∑
i=0

(Sti+1 − Sti)2

∆tN
, (2.4.3)

where N is the number of price observations in a day. By Theorem 2.4.1, the distribution of

σ̂2(x̄) is approximately N(σ2(x̄), 2σ4(x̄)). Note that the the variance varies with x̄, which

is undesirable when estimating σ. We apply the delta method to resolve this issue. We take

the log transform to σ̂2(x̄), then

log σ̂2(x̄) ∼ N
Å

log σ2(x̄),
σ4(x̄)

N

ï
∂ log σ2(x)

∂σ2(x)

∣∣∣∣x̄òã,
which leads to

log σ̂2(x̄) ∼ N
Ä

log σ2(x̄),
2

N

ä
. (2.4.4)

There are several reasons for choosing one day as our time range. Taking a time range finer

than a day will necessitate the consideration of the higher volatility associated with the

market opening and closing times. Further, the use of a finer range will result in fewer data

points if the sampling frequency does not change. At the same time, the sampling frequency

can not go too high in order to avoid microstructure noise. Taking a time range greater

than one day will include the overnight effect, which is not desirable.

For day k, we have N historical prices Xk,1, Xk,2 . . . Xk,N with regular sampling Tk,i =

Tk,i−1 + ∆T , where ∆T is the sampling time gap. Let x̄k be the average price of the

observations Xk,1, Xk,2 . . . Xk,N on kth day, and σ̂2(x̄k) is obtained using (2.4.3). With all

the pairs (x̄k, σ̂k
2(x̄k)), we can estimate σk(x).
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2.4.3 The Dynamic Linear Regression Model

As discussed previously, an asset bubble exists for those i′s with bi > 1 in the regression

log(σ̂t(St)) = log(at) + btlog(St) + νt, t = 1, 2 . . .

where νt is the noise term, log(St) and log(σ̂t(St)) are known from observations of the

stock price process. For notational convenience, let αt = log(at), βt = bt, θt =

αt
βt

,
Yt = log(σ̂t(St)) and Ft =

ï
1 log(St)

ò
. We further assume αt+1|αt ∼ N(αt, w1) and

βt+1|βt ∼ N(βt, w2). A dynamic linear model is specified by a normal prior θ0 ∼ Np(m0, C0)

together with a pair of equations for each time t > 1,

Yt = Ftθt + νt, νt ∼ N(0, Vt), observation equation;

θt = Gtθt−1 + ωt, ωt ∼ Np(0,Wt), state equation,

where Gt =

1 0

0 1

, Ft =

ï
1 log(St)

ò
, and (νt)t>1, (ωt)t>1 are two independent sequences

of independent Gaussian random vectors with mean zero and variance matrices Vt =

ï
v

ò
and

Wt =

w1 0

0 w2

. Consider the dynamic linear model specified above, and let θt−1|y1:t−1 ∼

N(mt−1, Ct−1). Then the following statements from Kalman Filtering hold.

(i)The one-step-ahead predictive distribution of θt given y1:t−1 is Gaussian, with mean and

covariance matrix

at = E(θt|y1:t−1) = Gtmt−1, Rt = V ar(θt|y1:t−1) = GtCt−1G
′
t +Wt.
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(ii)The one-step-ahead predictive distribution of Yt given y1:t−1 is Gaussian, with mean and

covariance matrix

ft = E(Yt|y1:t−1) = Ftat, Rt = V ar(Yt|y1:t−1) = FtRtF
′
t + Vt.

(iii)The distribution of θt given y1:t is Gaussian, with mean and covariance matrix

mt = E(θt|y1:t) = at +RtF
′
tQ
−1
t et, Ct = V ar(θt|y1:t) = Rt −RtF ′tQ−1

t Rt,

where et = Yt − ft is the forecast error. We are most interested in the last step of deriving

the distribution of θt given y1:t, because it gives the distribution of bt given the price process

until the tth trading day. However the distribution θt|y1:t requires calculating the 3 steps

above recursively.

2.4.3.1 Estimating the Predictive Covariance Matrix Wt

For the Kalman Filter decribded above, we have some knowledge of the matrix Vt from

the property of Florens-Zmirou’s estimator for volatility. However we do not know what

Wt =

w1 0

0 w2

 is. We can not use the maximum likelihood as the maximizer does not

exist, even though we already assume it is a constant matrix. One solution is to put a

conjugate prior, then use the posterior mean of W . We put independent inverse gamma

distribution priors on w1, w2,

w1 ∼ Inv_gamma(a1, b1), with density π(w1) =
ba1
1

Γ(a1)
w−a1−1

1 exp(
−b1
w1

);

w2 ∼ Inv_gamma(a2, b2), with density π(w2) =
ba2
2

Γ(a2)
w−a2−1

2 exp(
−b2
w2

).
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With the above prior distributions for w1 and w2, we can easily compute the conditional

distribution π(w1, w2|DT , θ0...T ) as

π(w1, w2|DT , θ0...T ) ∼ π(w1)π(w2)π(θ0)ΠT
t=1π(Yt|θt)ΠT

t=1π(θt|θt−1)

∝ w−(T
2

+a1+1)
1 exp

ß
−

2b1 +
T
Σ
t=1

(αt − αt−1)2

2w1

™
w
−(T

2
+a2+1)

2 exp

ß
−

2b2 +
T
Σ
t=1

(βt − βt−1)2

2w2

™
,

where DT = (Y1, . . . , TT ). Let θ̃ = θ0...T ,

w1|DT , θ̃ ∼ Inv_gamma(a1 + T/2, b1 +
T
Σ
t=1

(αt − αt−1)2/2), (2.4.5)

w2|DT , θ̃ ∼ Inv_gamma(a2 + T/2, b2 +
T
Σ
t=1

(βt − βt−1)2/2). (2.4.6)

To estimate w1 and w2, we use the sample mean from their posterior distribution. We sam-

ple from the joint distribution π(w1, w2, θ̃|DT ) using the Gibbs sampler instead of directly

from π(w1, w2|DT ), as the later is not easy to calculate explicitly. Gibbs sampling from

π(w1, w2, θ0...T |DT ) requires iteratively simulating from the full conditional distributions

π(θ0:T |DT , w1, w2), π(w1, w2|DT , θ0...T ) and π(w1, w2|DT , θ0...T ). We describe the steps of

the Gibbs sampling procedure used here:

1. Initializer: set w1 = w
(0)
1 , w2 = w

(0)
2 ,

2. For i = 1 . . . N :

(i)Draw θi0:T from π(θ0:T |DT , w1 = w
(i−1)
1 , w2 = w

(i−1)
2 ),

(ii)Draw w1 from π(w1|DT , θ0...T = θ
(i)
0...T ),

(ii)Draw w2 from π(w2|DT , θ0...T = θ
(i)
0...T )).

For step 2(ii) and 2(iii), we already have the explicit form from (2.4.5). For step 2(i), we

introduce the forward filtering backward sampling method (FFBS).

1. Run the Kalman Filter as described in the previous section;

2. Draw θT from the distribution N(mT , CT );
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3. For t = T − 1, T − 2 . . . 0, draw θt from π(θt|Dt, θt+1, θt+2 . . . θT ) = N(ht, Ht), where

ht = mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1),

Ht = Ct − CtG′t+1R
−1
t+1Gt+1Ct.

After sampling from π(w1, w2, θ0...T |DT ), we use the sample means as the estimators for w1

and w2. This approach also solves the problem of filtering, smoothing and forecasting at the

same time. However, unlike the Kalman Filter, it is not designed for recursive inference. If

new observations of yt become available, one has to run a new Markov Chain all over again

for sampling, which is computationally costly. One solution is to use part of the data to

estimate w1 and w2 in the beginning, and as commonly used in practice, treat the estimates

ŵ1, ŵ2 as if they were true values of the parameters in applying filtering and smoothing

recursions. For a simulation result on the procedure described in this section in estimating

the time varying parameters in the CEV model, see Appendix A.1.

2.5 Real Data Examples

2.5.1 Dot-com Bubbles

The dot-come bubble happened roughly during 1997 to 2000 in the US stock markets. It was

characterized by a rapid rise in the stock markets, fueled by investments in Internet-based

companies. The effects of the bubble bursting were that several companies went bankrupt

and many other struggling companies became acquired or merged with other companies,

with negative consequences such as employee layoffs and delays in the development of po-

tential technologies. We pick several representative stocks to show how our model works

for detecting asset bubbles instantaneously and we examine the severity of the bubbles by

estimating the exponent parameter in the CEV model.
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Figure 2.5.1: Historical YHOO stock price.

2.5.1.1 Stock YHOO

Yahoo!’s stock price skyrocketed during the dot-com bubble and closed at an all-time high in

2000; however, after the dot-com bubble burst, it reached an all-time low in 2001. The price

history of the stock symbol YHOO is shown in Figure 2.5.1. Applying the dynamic linear

regression described in the previous section on historical trading data of symbol YHOO, we

have our instantaneous estimated β̂t in the sense that β̂t is obtained using the price process

records up to the time t, together with its 95% confidence interval plotted in Figure 2.5.2 .

As illustrated in Figure 2.5.2, β̂t > 1 for the time range roughly from Janurary 1998 to June

2001, we can conclude that the stock was in bubble in that time range. In Figure 2.5.3, the

price is colored red, if β̂t > 1 for the corresponding day. The time region colored red well

captured the soaring and crashing period of the stock. For better illustration, we also take

the log of the price process in Figure 2.5.4.

2.5.1.2 Stock INSP

Founded in the mid-1990s amid the beginnings of the dot-com boom, InfoSpace went public

in 1998 and the company’s stock quickly soared. At its peak in early 2000, InfoSpace stock

was worth more than 1,000 dollars per share. It dropped drastically after the dot-com bubble

burst and fluctuated around its initial offering price of roughly15 dollars. The history of
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Figure 2.5.2: Instantaneous estimation β̂ for YHOO.
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Figure 2.5.3: Historical price for YHOO.
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Figure 2.5.4: Historical log price for YHOO.



CHAPTER 2. DETECTING ASSET BUBBLES WITH THE STRICT LOCAL
MARTINGALE MODEL 35

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

INSP stock price 1999−2005

Time

Pr
ic

e

12/1998  9/1999  5/2000  1/2001  9/2001  5/2002  4/2003 12/2003  8/2004  5/2005 12/2005

Figure 2.5.5: Historical price for INSP.
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Figure 2.5.6: Instantaneous estimation β̂ for INSP.

INSP stock price is shown in Figure 2.5.5. Applying the dynamic linear regression described

in the previous section to the historical trading data for INSP, we obtain the instantaneous

estimated β̂, together with its 95% confidence interval as plotted in Figure 2.5.6 . In Figure

2.5.7 we color the price in red for stock INSP, if on that day the estimation β̂ > 1. For better

illustration, we also take the log scale to the price process in Figure 2.5.8. As illustrated

both in Figure 2.5.6 and Figure 2.5.7, the asset bubble in INSP which occurred shortly after

it was issued was successfully detected. The extreme soaring period starting from the end

of 1999 to the early 2000 is also well captured as a time range with bubbles.

With the dynamic regression model, we are also able to obtain the estimated distribution
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Figure 2.5.7: Historical price for INSP.
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Figure 2.5.8: Historical log price for INSP.
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for expected future return of a stock after time ∆t, conditioning on the size of the current

bubble will last for ∆t. For details see Appendix A.1.

2.5.2 Details of the Data Analysis

The dataset is provided by Wharton Research Data Services. The original dataset is the

recorded trade price. We only use the data during the market open time, from 9:30am to

16:00pm. To avoid microstructure noise in estimating volatility, we sample at the frequency

of every 10min, which give us 40 price records per day. The Gaussian prior we used for

the dynamic linear regression is θ0 ∼ N2(m0, C0). We do not have much information on

what θ0 should be before analyzing the historical data, thus we chose a relatively flat prior,

m0 =

−5

0.8

 and C0 =

9 0

0 0.5

. For the variance of the noise term in the observation

equation, we set V = 2/(40− 1), where 40 is the number of price observations each trading

day. To estimate the covariance matrix W =

w1 0

0 w2

 in the state equation, we first

use the beginning 6 month price and estimated volatility data, roughly 120 pairs of data

points. The inverse gamma distribution priors on W are w1 ∼ Inv_gamma(20, 0.001) and

w2 ∼ Inv_gamma(20, 0.001). To run the Gibbs sampling procedure, the initial values for

w1 and w2 are both 0.01. We notice that after roughly 50 iterations of sampling, the Markov

chain for Gibbs sampling of w1 and w2 is already stable. Thus we run 2000 iterations and

drop the first 50 pairs, taking the average of the remaining w1, w2 sample pairs as the

estimates.
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Chapter 3

The Asymptotic Error Distribution

for the Euler Scheme with Locally

Lipschitz Coefficients

Abstract

In traditional work on numerical schemes for solving stochastic differential equations (SDEs),

it is usually assumed that the coefficients are globally Lipschitz. This assumption has been

used to establish a powerful analysis of the numerical approximations of the solutions of

stochastic differential equations. In practice, however, the globally Lipschitz assumption

on the coefficients is on occasion too stringent a requirement to meet. Some Brownian

motion driven SDEs used in applications have coefficients that are Lipschitz only on compact

sets. Reflecting the importance of the locally Lipschitz case, it has been well studied in

recent years, yet some simple to state, fundamental results remain unproved. We attempt

to fill these gaps in this paper, establishing both a rate of convergence, but also we find

the asymptotic normalized error process of the error process arising from a sequence of

approximations. The result is analogous to the original result of this type, established

in [51] back in 1991. This result was improved in 1998 in [38], and recently(2009) it was
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partially extended in [60]. As we indicate, the results in our paper provide the basis of a

statistical analysis of the error; in this spirit we give conditions for a finite variance.

Keywords: stochastic differential equation, locally Lipschitz, convergence in probability,

Euler scheme, normalized error process, weak convergence

3.1 Introduction

We investigage the numerical solution of a one-dimensional stochastic differential equation

(SDE) of the form

dXt = µ(Xt)dt+ σ(Xt)dWt, 0 ≤ t ≤ T, X0 = x0 ∈ R. (3.1.1)

Here Xt ∈ R for each t, µ, σ : R→ R are coefficient functions, and W is a one dimensional

standard Brownian motion. We assume the initial value x0 ∈ R is non-random. For back-

ground information about SDEs, we refer to Chapter 5 of Protter [65], Chapter 9 of Revuz

and Yor [70] and Chapter 5 of Karatzas and Shreve [47].

In applications, one would often like to solve (3.1.1) numerically, as an explicit solution is

usually not obtainable. This is often done in low dimensions using PDE methods that require

heavy computational complexity. Hence, in practice, it is advisable to solve (3.1.1) with the

simple Euler scheme. (See the survey paper of Talay [76] for a discussion of this issue).

Our primary objective is to study uniform convergence in probability and weak convergence

of the normalized error process for the Euler scheme under locally Lipschitz and no finite

explosion assumptions on (3.1.1). Note that the result on uniform convergence in probability

in this paper is not restricted to the Euler scheme, but applicable to all numerical schemes

satisfying some mild assumptions.

The use of the Euler scheme to solve Brownian motion driven SDEs is already well studied.

A number of treatments impose conditions on µ and σ in (3.1.1), and in particular a globally

Lipschitz condition and/or a linear growth condition is imposed. We list some of the works
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here. For the rate of convergence of the expectation of functionals, see Talay and Tubaro

[77]; for the rate of convergence of the distribution function, see Bally and Talay [5]; for the

rate of convergence of the density, see Bally and Talay [6]; for error analysis, see Bally and

Talay [4]; for an Euler scheme when one has irregular coefficients and Hölder continuous

coefficients see Yan [81], and in this regard see also Bass-Pardoux [7]; for complete reviews,

see Talay [78] and Kloeden-Platen [48]. In two interesting recent papers M. Bossy et al [11],

[9] have studied a modified (symmetrized) Euler scheme to handle solutions of the Cox-

Ingersoll-Ross type (CIR), but for equations where the diffusive coefficient is of the form

|x|α for 1
2 ≤ α < 1, which are of course locally Lipschitz.

There is also some work on numerical schemes for solving SDEs not tied to Brownian motion,

but rather driven by semimartingales with jumps. The case of SDEs driven by Brownian

motion and Lebesgue measure can be found in Kurtz and Protter [51] where the convergence

in distribution of the normalized Euler scheme is first studied. Lp estimates of the Euler

scheme error were given by Kohatsu-Higa and Protter [49]. Protter and Talay [64] also

studied the Euler scheme for SDEs driven by Lévy processes. Jacod and Protter [38] obtained

a (to date) definitive result about the asymptotic error distributions for the Euler scheme

solving SDEs driven by a vector of semimartingales. More recent work has focused on

numerical schemes to solve SDEs under relaxed conditions on the coefficients, to wit the

locally Lipschitz condition replaces the customary Lipschitz condition. Under the locally

Lipschitz hypothesis, the Euler scheme may diverge in the strong sense of convergence, such

as Lp. The Lp convergence, or more correctly the lack of it, is studied in Hutzenthaler,

Jentzen and Kloeden [36]. To obtain convergence results for the Euler scheme under the

locally Lipschitz condition, additional assumptions are assumed in existing work. Examples

of attempts are assuming the existence of a Lyapunov function, or a one sided Lipschitz

condition and finite moments of the true solution and the numerical solution (see [29],[32],[56]

).

Convergence in probability for Euler-type schemes in general still holds, see Hutzenthaler

and Jentzen [37] and the citations therein. Under the condition that µ, σ are continuously
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differentiable (C1) and grow at most linearly, Kurtz and Protter [51] obtained the limit

distribution for the asymptotic normalized error process for the Euler scheme. Neuenkirch

and Zähle [60] generalized the result of Kurtz and Protter by assuming the solution never

leaves an open set in finite time and that the coefficients are C1.

In this paper, we study the limit distribution for the asymptotic normalized error process

with only a locally Lipschitz assumption plus no finite time explosions, and σ in (3.1.1) being

bounded away from 0. By relaxing the C1 and linear growth hypotheses to the assumption

that the coefficient need only be locally Lipschitz, we are able to deal with coefficients that

may have super linear growth, and their derivatives may have poor smoothness properties,

or may not even exist.

Some locally Lipschitz coefficients lead to well defined stochastic differential equations, but

only because the solution remains always positive. This is the case for example with the

CIR type processes. The Euler scheme approximations, however, need not be defined, since

for example we might be taking the square root of a negative quantity at some steps. For

these situations, we can use a nice trick due to Bossy at al [9, 11] where the Euler scheme is

replaced by what is known as a symmetrized Euler scheme. This keeps the approximations

positive, too. Our results apply for these schemes as well, since they are ”local”, which is

our rubric for the types of schemes we utilize in this chapter.

This chapter is organized as follows. Section 2 briefly reviews existing work. In Section 3,

we prove that if a numerical scheme converges uniformly in probability on any compact time

interval with a certain rate under the globally Lipschitz condition, then the same result holds

when the globally Lipschitz condition is replaced with a locally Lipschitz condition and a no

finite time explosion condition. The Euler and Milstein schemes are studied as examples.

From Section 4 on, we focus on the Euler scheme. We prove that the sequence of the error

process for the Euler scheme normalized by
√
n is relatively compact. Furthermore, by

proving uniqueness of the limit process, we show the normalized error process converges in

law. The limit error process is also provided as a solution to an SDE. This is not surprising,

given the results of [51]. Section 5 turns to a study on the the second moment of the weak
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limit process and its running maximum. In the last section, we give an upper bound for

the rate of weak convergence for the approximating expectation of functionals for the Euler

scheme.

3.2 A Brief Review of Existing Work

3.2.1 The Globally Lipschitz Case

We start with some notation. For a discretization of the time interval [0, T ] with discretiza-

tion size T
n , let n(t) = [ntT ]Tn , the nearest left time grid point for t. For all g : [0, T ] → R,

define

∆g
(n)
t = g(t)− g(n(t)). (3.2.1)

The continuous Euler scheme for solving SDE (3.1.1) is defined by

XE,n
t = XE,n

n(t) + σ(XE,n
n(t))∆W

(n)
t + µ(XE,n

n(t))∆t
(n), XE,n

0 = X0, (3.2.2)

and the continuous Milstein scheme is defined by

XM,n
t = XM,n

n(t) + σ(Xn
n(t))∆W

(n)
t + µ(Xn

n(t))∆t
(n) +

1

2
σ(XM,n

n(t) )σ′(XM,n
n(t) )[(∆W

(n)
t )2 −∆t(n)]

+
1

2
µ(XM,n

n(t) )µ′(XM,n
n(t) )(∆t(n))2, XM,n

0 = X0.

Without further specification, in this chapter, Xn represents the numerical solution from

the continuous Euler scheme with step size T
n on [0, T ].

The convergence properties of the Euler scheme for solving SDEs with globally Lipschitz

coefficients have been widely studied. The following Theorem is from the review paper of

Talay [78].

Theorem 3.2.1. Consider the SDE (3.1.1) and suppose the coefficients µ, σ are globally

Lipschitz. Let Xn be the numerical solution from the Euler scheme, then ∀ 0 < T <∞
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(i) Xn converges to X pathwise almost surely and

∀α < 1

2
, nα sup

0≤t≤T
|Xt −Xn

t | → 0, a.s.;

(ii) There exists a positive constant C, increasing with T, such that,

sup
0≤t≤T

E(|Xt −Xn
t |

2) ≤ C

n
;

(iii) For f ∈ C∞, and at most polynomial growth, there exists a positive constant D, increas-

ing with T, such that,

∣∣Ef(XT )− Ef(Xn
T )
∣∣ ≤ D

n
.

For the asymptotic distribution for the normalized error process, Kurtz and Protter [51]

proved that

Theorem 3.2.2 (Kurtz and Protter). Consider the SDE (3.1.1) and suppose the coefficients

µ, σ are C1 and bounded. Let Xn be the numerical solution from the Euler scheme, and

Un =
√
n(Xn −X). Then Un converges in law to a limiting process U , which is the unique

solution to the following linear equation:

Ut =

ˆ t

0
µ′(Xs)Usds+

ˆ t

0
σ′(Xs)UsdWs +

√
2

2

ˆ t

0
σ(Xs)σ

′(Xs)dBs, U0 = 0.

where Bt is a standard Brownian motion independent of Wt in a extended space.

3.2.2 The Locally Lipschitz Case

Hutzenthaler, Jentzen and Kloeden [36] have studied the strong and weak divergence of the

Euler Scheme for solving SDEs with coefficients that are not globally Lipschitz.

Theorem 3.2.3 (Hutzenthaler, Jentzen and Kloeden). Consider the SDE (3.1.1) and sup-



CHAPTER 3. THE ASYMPTOTIC ERROR DISTRIBUTION FOR THE EULER
SCHEME WITH LOCALLY LIPSCHITZ COEFFICIENTS 44

pose P(σ(X) 6= 0) > 0 and let C ≥ 1, β > α > 1 be constants such that

max(
∣∣µ(x)

∣∣ ,∣∣σ(x)
∣∣) ≥ |x|β

C
and min(

∣∣µ(x)
∣∣ ,∣∣σ(x)

∣∣) ≤ C|x|α
for all |x| ≥ C. Then, if the exact solution X satisfies E[|XT |p] <∞ for one p ∈ [1,∞),

lim
n→∞

E[|XT −Xn
T |
p] =∞ and lim

n→∞
E[|Xn

T |
p] =∞,

where Xn is the numerical solution for solving SDE (3.1.1) from the Euler scheme.

To ensure different types of convergence of the Euler scheme with locally Lipschitz condition,

additional assumptions are required. For convergence in probability we refer to Marion, Mao

and Renshaw [56]. The authors deal with the multidimensional case.

dXt = µ̂(Xt)dt+ σ̂(Xt)dBt, X0 = x0, (3.2.3)

where x = (x1, . . . xd), µ̂ = (µ1(x), . . . µd(x)), σ̂(x) = (σij(x)d×m), B is a m-dimensional

Brownian motion defined on a given complete probability space (Ω,F , P ) with a filtration

satisfying the usual conditions. The solution takes value in G ⊆ Rd.

Theorem 3.2.4 (Marion, Mao and Renshaw). Consider SDE (3.2.3). Let G be an open set

of Rd, x0 ∈ G and the solution Xt ∈ G. Let Xn be the numerical solution from the Euler

scheme. Suppose the following conditions are satisfied

(i) µ̂(Xt) and σ̂(Xt) are locally Lipschitz;

(ii) there exits a C2-function V : G→ R+ such that {x ∈ G : V (x) ≤ r} is compact for any

r > 0;

(iii) LV (x) ≤ K(1 + V (x)) where

LV (x) = Vx(x)µ̂(x) +
1

2
trace

ï
σ̂T (x)Vxxσ̂(x)

ò
;
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(iv) there exists a positive constant K3(D) such that for all x, y ∈ D

∣∣V (x)− V (y)
∣∣ ∨∣∣Vx(x)− Vx(y)

∣∣ ∨∣∣∣Vxx(x)− Vyy(y)
∣∣∣ ≤ K3(D)|x− y| .

Assume the Euler scheme is well defined in this case. Then for any ε, δ > 0, there exists

n′ > 0 such that

Pn(δ) = P( sup
0≤t≤T

|Xn −X|2 ≥ δ) ≤ ε, (3.2.4)

provided that n > n′ and the initial value x0 ∈ G.

In [56], the authors also provided an upper bound for Pn(δ). It is later mentioned in Hutzen-

thaler and Jentzen [37], to ensure convergence in probability, one only needs the locally Lip-

schitz condition on µ̂ and σ̂ and the solution Xt ∈ G exists on [0, T ]. Convergence almost

surely for the Euler scheme is studied in Gyöngy [29] who takes up the multi-dimensional

case with time dependent coefficient µ̂, σ̂. We present the result for the case that µ̂ and σ̂

not depending on time.

Theorem 3.2.5 (Gyöngy). Consider SDE (3.2.3). Let D be an open set of Rd, x0 ∈ D

and the solution Xt ∈ D. Let Xn be the numerical solution solving (3.2.3) from the Euler

scheme. Suppose the following conditions are satisfied:

(i) µ̂, σ̂ are locally Lipschitz and there exists an increasing sequence of bounded domains

{Dk}∞k=1 such that ∪∞k=1Dk = D, and for every k, t ∈ [0, k]

sup
x∈Dk

∣∣µ̂(x)
∣∣ ≤Mk; sup

x∈Dk

∣∣σ̂(x)
∣∣2 ≤Mk,

where Mk is a constant;

(ii) there exists a nonnegative function V ∈ C2 such that

LV (x) ≤ V (x), ∀t ∈ [0, T ], x ∈ D,

Vk(T ) : = inf
x∈∂Dk,t≤T

V (x)→∞,
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as k →∞ for every finite T , where M = M(T ) is a constant, ∂Dk denotes the boundary of

Dk, and L is the differential operator

LV (x) = Vx(x)µ̂(x) +
1

2
trace

ï
σ̂T (x)Vxxσ̂(x)

ò
.

Then for every γ < 1
2 and T > 0, there is a finite random variable η such that

sup
0≤t≤T

|Xn −X|2 ≤ n−γ a.s..

Strong convergence is studied in Higham, Mao and Stuart [32] who consider the one dimen-

sional case:

Theorem 3.2.6 (Higham, Mao and Stuart). Consider the SDE (3.1.1). Let Xn be the

numerical solution solving (3.1.1) from the Euler scheme. If µ and σ are locally Lipschitz

and for some p > 2 there is constant A such that

E
ï
sup

0≤t≤T
|Xt|p

ò
∨ E
ï
sup

0≤t≤T
|Xn

t |
p
ò
≤ A,

then

lim
n→∞

E
ï
sup

0≤t≤T
|Xn

t −Xt|2
ò

= 0.

3.3 Convergence in Probability

Under the globally Lipschitz condition, most of the proposed numerical schemes including

the Euler and Milstein schemes have been proved to converge uniformly in probability at a

finite time point. Fortunately, the same result can be extended to the locally Lipschitz case

if one also adds a no finite time explosion condition. To prove this, we need a localization

technique. Let us start with some notation.

Notation 3.3.1. Given a process Z, we denote by Tm(Z) = inf{t ≥ 0 : |Zt| > m}. Also,
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we denote by ZT the stopped process.

In what follows, we denote by X = X(x0, µ, σ,W ) the unique solution of the SDE (3.1.1),

where the coefficients µ, σ are assumed regular enough to have a unique strong solution

(for example locally Lipschitz). For every m ≥ 1 consider µ(m) a continuous modification

of µ such that µ(x) = µ(m)(x) for |x| ≤ m, µ(m)(x) = µ(m + 1) for x ≥ m + 1 and

µ(m)(x) = µ(−m − 1) for x ≤ −m − 1. In case the numerical procedure assumes that µ

is Ck (or Lipschitz) we interpolate µ(m) on (−m − 1,−m) ∪ (m,m + 1) in such a way that

µ(m) is also Ck (respectively Lipschitz). Similarly, we denote by σ(m) a modification of σ.

Given a numerical procedure φ, we denote by (Xφ,n)n = (Xφ,n(x0, µ, σ,W ))n the associated

sequence of approximations. We remove the dependence on φ in Xφ,n when there is no

possible confusion. Note that we use the same Brownian motion for every n. This numerical

procedure is assumed local in the following sense. Assume that µ = µ̃, σ = σ̃ on the interval

[−m,m], where |x0| < m. Then for all n and for T = Tm(Xφ,n(x0, µ, σ,W )) it holds

(Xφ,n(x0, µ, σ,W ))T = (Xφ,n(x0, µ̃, σ̃,W ))T

almost surely. In particular Tm(Xφ,n(x0, µ, σ,W )) = Tm(Xφ,n(x0, µ̃, σ̃,W )) a.s.. This hy-

pothesis is satisfied, for example, by the Euler and Milstein schemes. On the other hand, if

(µ, σ) and (µ̃, σ̃) are regular, the associated solutions satisfy

(X(x0, µ, σ,W ))T = (X(x0, µ̃, σ̃,W ))T

almost surely for T = Tm(X(x0, µ, σ,W )). Again, we have Tm(X(x0, µ, σ,W )) = Tm(X(x0, µ̃, σ̃,W ))

a.s.. Now, we present Theorem 3.3.1.

Theorem 3.3.1. Assume that a numerical scheme φ is well defined and local. Let Xn
t be

the numerical solution using φ for the SDE (3.1.1) on [0, T ]. If Xn
t converges in probability

uniformly on [0, T ], with order α > 0, that is ∀ C > 0

P(nα sup
0≤t≤T

|Xn
t −Xt| > C)→ 0, as n→ +∞, (3.3.1)
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given µ, σ are globally Lipschitz, then (3.3.1) also holds when the globally Lipschitz condition

is replaced with a locally Lipschitz condition and a no finite time explosion condition.

Proof. In what follows, to avoid overly burdensome notation, we denote by

X = X(x0, µ, σ,W ), Xn = Xn(x0, µ, σ,W ),

Y (m) = X(x0, µ
(m), σ(m),W ), Y n,(m) = Xn(x0, µ

(m), σ(m),W ) .

Now, define

Xn =

{
ω : nα sup

0≤t≤T
|Xn

t −Xt| ≤ C
}
, Yn,(m) =

{
ω : nα sup

0≤t≤T
|Y n,(m)
t − Y (m)

t | ≤ C
}
.

We also consider T = Tm(X),S = Tm−1(X). It is clear that XS = (Y (m))S (actually

they are equal up to time T). Since the numerical procedure is local, also U = Tm(Xn) =

Tm(Y n,(m)) and

(Xn)U = (Y n,(m))U .

Consider m large enough such that |x0| < m − 1 and n large enough such that C/nα < 1.

For these values of n,m, we show that a.s.

Yn,(m)

⋂
{S > T} ⊂Xn .

Indeed, on the set {S > T} the two processes X,Y (m) agree on [0, T ] a.s.. In particular, we

have that sup
0≤t≤T

|Y (m)
t | = sup

0≤t≤T
|Xt| ≤ m−1 a.s. On the other hand on the set Yn,(m)

⋂{S >
T} we have a.s.

sup
0≤t≤T

|Y n,(m)
t | ≤ m− 1 +

C

nα
< m .

That is Tm(Y n,(m)) > T a.s.. Since φ is local, we deduce that on [0, T ] the processes Xn
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and Y n,(m) agree a.s. and therefore on Yn,(m)
⋂{S > T}

sup
0≤t≤T

|Xn −Xt| = sup
0≤t≤T

|Y n,(m) − Y (m)
t | ≤ C

nα

holds also a.s., proving the desired inclusion. This shows that the inequality

P
(
nα sup

0≤t≤T
|Xn

t −Xt| > C

)
≤ P

(
nα sup

0≤t≤T
|Y n,(m)
t − Y (m)

t | > C

)
+ P(Tm−1(X) ≤ T ) .

Now, given ε > 0 choose m large such that P(Tm−1(X) ≤ T ) ≤ ε/2. For that m, according

to the hypothesis of the Theorem, there exists n0 = n0(m, ε), such that for all n ≥ n0

P
(
nα sup

0≤t≤T
|Y n,(m)
t − Y (m)

t | > C

)
≤ ε

2
,

giving the result.

Taking α = 0 in Theorem 3.3.1, we immediately see that if a numerical scheme converges in

probability uniformly on compact time intervals for solving SDEs with the globally Lipschitz

coefficients, then the same result also holds under the locally Lipschitz condition and no finite

time explosion condition.

We illustrate the application of Theorem 3.3.1 using the two most widely used numerical

schemes, the Euler scheme and the Milstein scheme. Under the globally Lipschitz condition,

it is well known that the continuous Euler and Milstein schemes converge in probability

uniformly on compact time intervals with any order between [0, 1
2) and [0, 1) respectively.

Interested readers can refer to [75] and [81] for details. Then applying Theorem 3.3.1 leads

to the following corollary.

Corollary 3.3.1. Consider SDE (3.1.1), assume µ, σ are locally Lipschitz and the solution

has no finite time explosion and the continuous Euler scheme XE,n and the continuous

Milstein scheme XM,n are well defined for solving (3.1.1). Then XE,n and XM,n, converge



CHAPTER 3. THE ASYMPTOTIC ERROR DISTRIBUTION FOR THE EULER
SCHEME WITH LOCALLY LIPSCHITZ COEFFICIENTS 50

in probability uniformly to X on [0, T ]. Moreover ∀ γ ∈ (0, 1
2 ], we have

P(n
1
2
−γ sup

0≤t≤T

∣∣∣XE,n −Xt

∣∣∣ > C)→ 0, as n→ +∞,

P(n1−γ sup
0≤t≤T

∣∣∣XM,n −Xt

∣∣∣ > C)→ 0, as n→ +∞.

3.4 Asymptotic Error Distribution for the Euler Scheme

In this section, we are going to prove that the asymptotic normalized error process from

the Euler scheme converges in distribution with rate
√
n, under the locally Lipschitz and no

finite time explosion assumption. In the previous section, the localization technique used in

the proof for Theorem 3.3.1 transfers the locally Lipschitz case into the globally Lipschitz

case. The localization technique will be used in this section as well, and we present Propo-

sition 3.4.1 to make future proofs concise when applying this technique.

Proposition 3.4.1. Consider the SDE (3.1.1), assume that µ and σ are locally Lipschitz

and the solution X has no finite time explosion. For m > |x0|, define Y (m) as in the proof

of Theorem 3.3.1. Let Xn, Y n,(m) be the numerical solutions from a numerical scheme

φ. Assume φ is well defined, local and converges uniformly in probability on compact time

interval. Then ∀ 0 < T <∞,

lim
m→∞

sup
n

P
Å
X 6= Y (m) or Xn 6= Y n,(m)

ã
= 0, on [0, T ].

Proof. Since the Euler scheme is local,

Tm(X) = Tm(X(m)), Tm(Xn) = Tm(Xn,(m)). (3.4.1)

Thus, we have on [0, T ]

P
Å
X 6= Y (m) or Xn 6= Y n,(m)

ã
= P
Å
Tm(X) < T or Tm(Xn) < T

ã
. (3.4.2)
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Since X has no finite time explosion, ∀ε > 0, there exists m1 = m1(ε) large enough so that

P(Tm1(X) ≤ T ) <
ε

3
.

By the uniform convergence in probability of Xn on [0, T ], there exists n′ = n′(ε) such that

∀n > n′, we have

P( sup
0≤s≤T

|Xn
s −Xs| ≥ 1) <

ε

3

and

P(Tm1+1(Xn) ≤ T ) ≤ P(Tm1(X) ≤ T ) + P( sup
0≤s≤T

|Xn
s −Xs| ≥ 1) <

2

3
ε.

Hence when n > n′,

P(Tm1+1(Xn) ≤ T or Tm1+1(X) ≤ T ) ≤ P(Tm1(X) ≤ T ) + P(Tm1+1(Xn) ≤ T ) < ε.

Now for n ≤ n′, take Q?t = max

ß
X∗t , X

1,∗
t , X2,∗

t . . . Xn′,∗
t

™
, where X∗ indicates the running

maximum of the absolute process. As the true solution X and the Euler scheme numerical

solutions have no explosion on [0, T ], and n′ is finite, the process Q?t has no explosion either.

We can always find m = m(n′) > m1 + 1 large enough so that for the hitting time of Q?t ,

P(Tm(Q?t ) ≤ T ) ≤ ε. Together with (3.4.2), the proof concludes.

Remark 3.4.1. Proposition 3.4.1 also holds for the multidimensional case with the same

techniques used in the proof.

Remark 3.4.2. Kurtz and Protter [51] obtained the weak limit for the sequence of normalized

error process for the Euler scheme under the condition that µ, σ are C1 and of at most linear

growth. Proposition 3.4.1 implies that the condition can be replaced with µ, σ are C1 and

at most linear growth condition on any compact set plus the solution has no finite time

explosion. This generalization can be found in Neuenkirch and Zähle [60].
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Remark 3.4.3. In Yan [?], the C2 and at most growth hypotheses used for obtaining for

the weak limit of the sequence of normalized error process for the Mistein scheme, can be

replaced with C2 and at most linear growth conditions on any compact set, plus that the

solution has no finite time explosion.

Now we turn to prove a weak convergence result for the normalized error of the Euler scheme

with the locally Lipschitz assumption. Define Zn as follows

Zn11
t =

ˆ t

0

√
n∆s(n)ds, Zn12

t =

ˆ t

0

√
n∆s(n)dWs,

Zn21
t =

ˆ t

0

√
n∆W (n)

s ds, Zn22
t =

ˆ t

0

√
n∆W (n)

s dWs.

Our goal is to prove convergence in distribution for the asymptotic error process from the

Euler scheme at the rate
√
n, which requires Zn to converge in distribution.

Proposition 3.4.2. The sequence Zn is tight and converges in distribution to Z under the

uniform topology on compact time set, where Z is independent of W and Z1,1 = Z1,2 =

Z2,1 = 0,
√

2Z2,2 is a standard Brownian motion.

Proposition 3.4.2 is implied by Theorem 5.1 in Jacod and Protter [38].

Proposition 3.4.3. Consider SDE (3.1.1), and assume that µ(x), σ(x) are both Lipschitz

and bounded. Let Xn be the numerical solution to (3.1.1) on [0, T ] from the continuous Euler

scheme with step size T
n . Then the sequence of normalized error processes Un =

√
n(Xn−X)

is relatively compact.

Proof. It has been proved that Zn are good sequences (see [50] for the definition of a good

sequence). From Proposition 3.4.2, Zn ⇒ Z, where ⇒ denotes convergence in distribution

under the uniform topology on a compact time set. The limit process Z is independent of

W and Z1,1 = Z1,2 = Z2,1 = 0, Z2,2 is mean zero Brownian motion with E[(Z2,2
t )2] = t

2 . By

Corollary 3.3.1, we also have (Xn, Zn) ⇒ (X,Z). By the definition of a continuous Euler
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scheme, Xn can also be represented as

Xn
t =

ˆ t

0
µ(Xn

n(s))ds+

ˆ t

0
σ(Xn

n(s))dWs.

Then

Unt =
√
n(Xn

t −Xt)

=

ˆ t

0

√
n{µ(Xn

n(s))− µ(Xs)}ds+

ˆ t

0

√
n{σ(Xn

n(s))− σ(Xs)}dWs.

For x 6= y, define functions g, h : R2 → R as

g(x, y) =
µ(x)− µ(y)

x− y
, h(x, y) =

σ(x)− σ(y)

x− y
.

Since µ, σ are Lipschitz, g(x, y) and h(x, y) are bounded. Now we separate the error process

into two terms Un = U1,n + U2,n, where

U1,n
t =

ˆ t

0

√
n{µ(Xn

n(s))− µ(Xs)}ds

=

ˆ t

0

√
n{µ(Xn

s )− µ(Xs)}ds−
ˆ t

0

√
n{µ(Xn

s )− µ(Xn
n(s))}ds

=

ˆ t

0
g(Xn

s , Xs)U
n
t ds−

ˆ t

0

µ(Xn
s )− µ(Xn

n(s))

Xs −Xn
n(s)

(Xn
s −Xn

n(s))
√
nds.

Note that Xn
s −Xn

n(s) = µ(Xn
n(s))∆s

(n) + σ(Xn
n(s))∆W

(n)
s . Then

U1,n
t =

ˆ t

0
g(Xn

n(s), Xs)U
n
t − g(Xn

s , X
n
n(s))

¶
µ(Xn

n(s))
√
n∆s(n) + σ(Xn

n(s))
√
n∆W (n)

s

©
ds.

Similarly,

U2,n
t =

ˆ t

0
h(Xn

n(s), Xs)U
n
t − h(Xn

s , X
n
n(s))

¶
µ(Xn

n(s))
√
n∆s(n) + σ(Xn

n(s))
√
n∆W (n)

s

©
dWs.
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For notational convenience, define f̃n as

f̃n =
î
g(Xn

s , Xs), g(Xn
s , X

n
n(s)), h(Xn

s , Xs), h(Xn
s , X

n
n(s))

ó
.

If µ, σ are also assumed to be continuously differentiable, as in Kurtz and Protter [51], then

f̃n converges weakly uniformly to [µ′(X), µ′(X), σ′(X), σ′(X)] on [0, T ]. By results on weak

convergence of stochastic integrals in Kurtz and Protter [50], Un converges weakly uniformly

on [0, T ] as well.

However, here σ, µ are only assumed to be Lipschitz and bounded, hence their derivatives

might not be continuous or not even exist. This would cause f̃n to fail to converge weakly.

Fortunately, by the boundedness of f̃n, applying weak convergence techniques in [50] would

give relative compactness of Un under the uniform topology, which is shown in the following

steps.

By Prokhorov’s Theorem which states that tightness is equivalent to relative compactness

in our case, f̃n is also relatively compact. Then for every subsequence of f̃n, there exists

a further subsubsequence nk such that f̃nk converges weakly uniformly on [0, T ]. It is also

known that (Xn
n(.), X

n,
√
nZn) ⇒ (X,X,Z), and the sequence is a good sequence (see [51]

for details). Then, we can assume on [0, T ],î
fnk,1, fnk,2, fnk,3, fnk,4, Xnk

nk(.), X
nk , Znk,1, Znk,2, Znk,3, Znk,4

ó
⇒ [G, G̃,H, H̃,X,X, 0, 0, 0,

√
2

2
B].

Since Zn is a good sequence and µ, σ are bounded, then, by proof of Theorem 3.5 in Kurtz

and Protter [51], Unk ⇒ R on [0, T ], where

Rt =

ˆ t

0
GtRtds+

ˆ t

0
HtRtdWs +

√
2

2

ˆ t

0
σ(Xt)H̃tdBs. (3.4.3)

Thus every subsequence of Un =
√
n(Xn−X) has a subsubsequence that converges weakly

uniformly on [0, T ], implying that Un is relatively compact.



CHAPTER 3. THE ASYMPTOTIC ERROR DISTRIBUTION FOR THE EULER
SCHEME WITH LOCALLY LIPSCHITZ COEFFICIENTS 55

Remark 3.4.4. Our next theorem is similar to results in [51, 60] but with two important

differences: We do not assume the coefficients are C1, but only that they are locally Lips-

chitz; We do not assume a linear growth condition, but rather assume only locally Lipschitz

combined with no finite explosions in finite time. As a simple example, this allows for the

consideration of coefficients of the form σ(x) = xγ, with γ > 1. In Economics, such coeffi-

cients are known as CEV (= Constant Elasticity of Variance). Usually γ is assumed to be

less than or equal to one, but here we lay the groundwork to consider γ > 1 on a practical

level.

Theorem 3.4.1. Consider the SDE (3.1.1), assume that µ, σ are locally Lipschitz and that

the solution X has no finite time explosion. Further assume that σ(x) is non-negative and

bounded from below by some d ∈ R+ on any compact set. Let µ′(x), σ′(x) equal the derivatives

of µ, σ at x when the derivatives exist; and that they equal 0, when the derivatives at a point

x do not exist.

Let Xn be numerical solution from the continuous Euler scheme, and Un =
√
n(Xn−X) be

the normalized error process. Then for all 0 < T < ∞, Un converges weakly uniformly on

[0, T ] to U , where U satisfies

Ut =

ˆ t

0
µ′(Xs)Usds+

ˆ t

0
σ′(Xs)UsdWs +

√
2

2

ˆ t

0
σ(Xs)σ

′(Xs)dBs, U0 = 0, (3.4.4)

where B is a standard Brownian motion and is independent of W .

Proof. Use Proposition 3.4.1 and apply the localization technique, we can assume µ, σ are

bounded and globally Lipschitz and there exists d > 0, such that for all x ∈ R we have∣∣σ(x)
∣∣ > d without loss of generality. In what follows we denote by K a constant that

bounds |µ|, |σ| and the Lipschitz constants of µ, σ.

Define g(x, y), h(x, y) as in Proposition 3.4.3. By Proposition 3.4.2

(Zn11, Zn12, Zn21, Zn22)⇒ Z = (0, 0, 0,

√
2

2
B), on [0, T ]. (3.4.5)
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B is a standard Brownian motion and is independent of W . Proposition 3.4.3 shows Unt

is relatively compact. Thus for any subsequence n′, there exists a subsubsequence n′k of n′

and a process R in C[0, T ], such that Un
′
k

t ⇒ R. SDE (3.4.4) has unique weak solution as

it satisfies the Engelbert-Schmidt conditions, (see [19] for details). To prove Un ⇒ U , it is

sufficient to prove that R is a weak solution to SDE (3.4.4).

Because (Un
′
k , X,W,Zn)⇒ (R,X,W,Z), by the almost sure representation theorem (The-

orem 1.10.4 on page 59 of van der Vaart and Wellner [80]), there exists a probability space

(Ω̄, F̄ , P̄ ) and a sequence of processes Ỹk and Y , with L(Y k) = L(Un
′
k , X,W,Zn) for all

k ≥ 1, such that L(Y ) = L(R,X,W,Z), and Y k a.s.→ Y uniformly on [0, T ]. If we could prove

that the first element of Y is a weak solution to SDE (3.4.4), it follows immediately that R

is also a weak solution to (3.4.4).

Thus, without loss of generality, we assume (Un, X,W,Zn)
a.s.→ (R,X,W,Z) as n→∞ and

we try to prove R is a weak solution to (3.4.4). In particular, for fixed T > 0 we remove AT

a set of probability P(AT ) = 0, such that for all ω ∈ A c
T and uniform in [0, T ], we have the

convergence

(Un, X,W,Zn)→ (R,X,W,Z).

We first present one known result for the continuous Euler scheme under the condition that

µ, σ are globally Lipschitz, stated here as (3.4.6). The proof of (3.4.6) can be found in

Kloeden [48], proof of Theorem 10.2.2.

sup
n

E sup
0<s≤T

|Uns |
2 <∞. (3.4.6)

Since Un a.s.→ R on [0, T ], by Fatou’s lemma, we also have

E sup
0<s≤T

|Rs|2 <∞. (3.4.7)

From the definition of Un, we have Un =
√
n(Xn −X) = U1,n + U2,n, where U1,n, U2,n are

the same as in proof of Lemma 3.4.3. Since the Lipschitz condition implies differentiability

almost everywhere, we can find subset A of R with Lebesgue measure 0 such that both µ
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and σ are differentiable on R ∩ Ac. Define I1 = I{s:Xs∈Ac} and I2 = I{s:Xs∈A}. We analyze

the following terms, i = 1, 2,

Gni1t =

ˆ t

0
Ii {g(Xn

n(s), Xs)U
n
t − µ′(Xt)Rt}ds,

Gni2t =

ˆ t

0
Ii g(Xn

s , X
n
n(s))µ(Xn

n(s))
√
n∆s(n)ds,

Gni3t =

ˆ t

0
Ii g(Xn

s , X
n
n(s))σ(Xn

n(s))
√
n∆W (n)

s ds,

Fni1t =

ˆ t

0
Ii {h(Xn

n(s), Xs)U
n
t − σ′(Xt)Rt}dWs,

Fni2t =

ˆ t

0
Ii h(Xn

s , X
n
n(s))µ(Xn

n(s))
√
n∆s(n)dWs,

Fni3t =

ˆ t

0
Ii h(Xn

s , X
n
n(s))σ(Xn

n(s))
√
n∆W (n)

s dWs −
√

2

2

ˆ t

0
Iiσ(Xt)σ

′(Xt)dBs.

Note that

2∑
i=1

3∑
j=1

(Gnij + Fnij)

= Un −
ß ˆ t

0
µ′(Xt)Rtds+

ˆ t

0
σ′(Xs)RsdWs +

√
2

2

ˆ t

0
σ(Xs)σ

′(Xs)dBs

™
.

(3.4.8)

Our goal is to show that each term of Gnij , Fnij converges to a 0 process on [0, T ] in

distribution.

Consider term Gn11. Since (Xn, Xn
n(.), U

n)
a.s.→ (X,X,R) as n→∞, and µ differentiable on

Ac, for each ω ∈ A c
T ,

I{Xt∈Ac}g(Xn
n(t), Xt)U

n
t →I{Xt∈Ac}µ

′(Xt)Rt, pointwise in t.

Since Un is a continuous process and the convergence is uniform, it’s limit R will be contin-

uous as well, and moreover

R∗T (ω) = sup
0≤s≤T

|Rs| (ω) <∞, sup
n

sup
0<s≤T

|Uns | (ω) <∞.
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By the globally Lipschitz condition on µ,

∣∣∣g(Xn
n(t), Xt)U

n
t − µ′(Xt)Rt

∣∣∣ ≤ K( sup
0<s≤T

|Uns |+ sup
0<s≤T

|Rs|).

Applying the dominated convergence theorem, Gn11 converges to 0 uniformly almost surely

on [0, T ].

Consider term Gn21. By (3.4.6) and (3.4.7) there exists C1 > 0

E(Gn21) ≤ E
î ˆ T

0
I{s:Xs∈A}K

¶
|Uns |+|Rs|

©
ds
ó

≤ K
Å
E
ïÄ

sup
0<s≤T

|Uns |+ sup
0<s≤T

|Rs|
ä2òã 1

2
Å
E
ï ˆ T

0
I{s:Xs∈A}ds

òã 1
2

≤ C1E
ïˆ T

0
I{s:Xs∈A}ds

ò
.

(3.4.9)

By Corollary 3.8 in Chap 7 of Revuz and Yor [70], let Ta,Tb be hitting time of Xs and a < b,

then

E
ïˆ Ta∧Tb

0
I{s:Xs∈A}ds

ò
=

ˆ Ta∧Tb

0
GI(x0, y)I{y∈A}m(dy),

where

s(x) =

ˆ x

c
exp

Å
−
ˆ y

c
2µ(z)σ−2(z)dz

ã
dy, ∀c ∈ R;

GI =



(s(x)−s(a))(s(b)−s(y))
s(b)−s(a) , a ≤ x ≤ y ≤ b,

(s(y)−s(a))(s(b)−s(x))
s(b)−s(a) , a ≤ y ≤ x ≤ b,

0, otherwise;

m(dx) =
2

s′(x)σ2(x)
dx.

Recall that s is the scale function, GI is the Green function and m(dy) is the speed measure.

By the boundedness of µ, σ, we have GI(x0, y) and 2
s′(x)σ2(x)

are bounded. Since A has
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Lebesgue measure 0

E
ïˆ T∧Ta∧Tb

0
I{s:Xs∈A}ds

ò
≤ E
ï ˆ Ta∧Tb

0
I{s:Xs∈A}ds

ò
= 0.

Let a→ −∞, b→∞, and apply Fatou’s lemma,

E
ï ˆ T

0
I2ds

ò
= E
ïˆ T

0
I{s:Xs∈A}ds

ò
= 0 (3.4.10)

Together with (3.4.9), we have Gn21 = 0.

Consider Fn11, from the Burkholder-Davis-Gundy inequality, there exists C3 > 0 s.t.

E
ï

sup
0<s≤T

∣∣∣Fn11
t

∣∣∣ ò ≤ C E
ïÅ ˆ T

0
I1

Ä
h(Xn

n(s), Xs)U
n
s − σ′(Xs)Rs

ä2
ds

ã 1
2
ò

≤ C3E
ïÅ ˆ T

0
I1

¶
h(Xn

n(s), Xs)(U
n
t −Rt)

©2
ds

ã 1
2
ò

+ C3E
ïÅ ˆ T

0
I1

¶
Rt(h(Xn

n(s), Xs)− σ′(Xt))
©2
ds

ã 1
2
ò
.

(3.4.11)

Consider the first term on the right side of (3.4.11). Since |h| ≤ K,

E
ïÅˆ T

0
I1

¶
h(Xn

n(s), Xs)(U
n
s −Rs)

©2
ds

ã 1
2
ò
≤ K T E

Å
sup

0<s≤T
|Uns −Rs|

ã
.

On the one hand sup
0<s≤T

|Uns −Rs|
a.s.→ 0. On the other by (3.4.6) and (3.4.7), we get

sup
n

Å
E
ï

sup
0<s≤T

|Uns −Rs|
2
òã

<∞,

which gives a uniform integrability condition to ensure

lim
n→∞

E
Å

sup
0<s≤T

|Uns −Rs|
ã

= 0.

Thus the first term on the right side of (3.4.11) converges to 0. For the second term, an
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application of the Hölder’s inequality gives

E
ïÅˆ T

0
I1

¶
Rs(h(Xn

n(s), Xs)− σ′(Xs))
©2
ds

ã 1
2
ò

≤ E
ï

sup
0<s≤T

|Rs|
Åˆ T

0
I1

¶
h(Xn

n(s), Xs)− σ′(Xs)
©2
ds

ã 1
2
ò

≤
Å
E
ï

sup
0<s≤T

|Rs|2
òã 1

2
Å
E
ïˆ T

0
I1

¶
h(Xn

n(s), Xs)− µ′(Xs)
©2
ds

òã 1
2

.

For each ω ∈ A c
T , we have I{t:Xt∈Ac}h(Xn

n(t), Xt)
a.s.→ I{t:Xt∈Ac}σ

′(Xt) pointwise in t, and∣∣∣h(Xn
n(s), Xs)

∣∣∣ ,∣∣µ′(Xs)
∣∣ are uniformly bounded by K.

From the dominated convergence theorem,

lim
n→∞

E
Åˆ T

0
I{s:Xs∈R∩Ac}

¶
h(Xn

n(s), Xs)− σ′(Xs)
©2
ds

ã
= 0.

With (3.4.7), we have the second term of right side of (3.4.11) also converges to 0. Thus

lim
n→∞

E sup
0<s≤t

∣∣∣Fn11
t

∣∣∣ = 0.

For the term Fn21, we would like to prove

lim
n→∞

E sup
0<s≤T

∣∣∣Fn21
s

∣∣∣ = 0. (3.4.12)

Similarly to the analysis of Fn11, to prove (3.4.12) we are only left to prove

lim
n→∞

E
Äˆ T

0
I2

¶
h(Xn

n(s), Xs)− σ′(Xs)
©2
ds
ä

= 0,

which is implied by (3.4.10) and boundedness of
∣∣∣h(Xn

n(s), Xs)
∣∣∣ ,∣∣σ′(Xs)

∣∣ .

Consider the terms Gn12, Gn13, Gn22, Gn23, Fn12, Fn22 all of which converge to the constant

process 0 almost surely uniformly on [0, T ] because g, h, µ, σ are bounded and (Zn11, Zn12, Zn21)
a.s.→

(0, 0, 0) uniformly on [0, T ].
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For dealing with the last two terms Fn13 and Fn23, we first define F̃n13 as

F̃n13
t =

ˆ t

0
I1

¶
h(Xn

s , X
n
n(s))σ(Xn

n(s))− σ
′(Xs)σ(Xs)

©√
n∆W (n)

s dWs.

From the Burkholder-Davis-Gundy inequality, there exists C3 > 0 such that

E[ sup
0<s≤T

∣∣∣F̃n13
s

∣∣∣] ≤ C3 E
ïÅˆ T

0
I1

Ä
h(Xn

s , X
n
n(s))σ(Xn

n(s))− σ
′(Xs)σ(Xs)

ä2
(
√
n∆W (n)

s )2ds

ã 1
2
ò
.

Applying Cauchy-Schwarz inequality to the right side, there exists C ′4, C4 > 0 s.t.

E[ sup
0<s≤T

∣∣∣F̃n13
s

∣∣∣]
≤ C ′4E

ïÅˆ T

0
I1

Ä
h(Xn

s , X
n
n(s))σ(Xn

n(s))− σ
′(Xs)σ(Xs)

ä4
ds

ã 1
4
Åˆ T

0
I1

Ä√
n∆W (n)

s

ä4
ds

ã 1
4
ò

≤ C ′4
ï
E
Åˆ T

0
I1

Ä√
n∆W (n)

s

ä4
ds

ã 1
2
ò 1

2
ï
E
Åˆ T

0
I1

Ä
h(Xn

s , X
n
n(s))σ(Xn

n(s))− σ
′(Xs)σ(Xs)

ä4
ds

ã 1
2
ò 1

2

≤ C4

ï
E
Åˆ T

0
I1

Ä
h(Xn

s , X
n
n(s))σ(Xn

n(s))− σ
′(Xs)σ(Xs)

ä4
ds

ã 1
2
ò 1

2

.

Since h, σ, σ′ are bounded, by the dominated convergence theorem,

lim
n→∞

E
ï

sup
0<s≤t

∣∣∣F̃n13
t

∣∣∣ ò = lim
n→∞

E
Åˆ T

0
I1

Ä
h(Xn

s , X
n
n(s))σ(Xn

n(s))− σ
′(Xs)σ(Xs)

ä4
ds

ã 1
2

= 0.

Thus F̃n13 L1

→ 0 uniformly on [0, T ]. We define F̄n13 as

F̄n13
t =

ˆ T

0
I1 σ

′(Xs)σ(Xs)dZ
n22 −

ˆ T

0
I1 σ

′(Xs)σ(Xs)dBs. (3.4.13)

Since Zn22 a.s.→ Bs uniformly on [0, T ] and Zn22 is a good sequence, the result on convergence

in probability of stochastic integrals in Protter and Kurtz [50] leads to F̄n13 p→ 0 uniformly

on [0, T ]. As Fn13 = F̃n13 + F̄n13, Fn13 p→ 0.

For the last term Fn23, applying the Burkholder-Davis-Gundy inequality first, then using
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the same technique as in bounding F̃n13, together with (3.4.10), give

lim
n→∞

E
ï

sup
0<s≤T

∣∣∣∣∣
ˆ T

0
I2 h(Xn

s , X
n
n(s))σ(Xn

n(s))
√
n∆W (n)

s dWs

∣∣∣∣∣
ò

= 0,

lim
n→∞

E
ï

sup
0<s≤T

∣∣∣∣∣
ˆ T

0
I2σ(Xs)σ

′(Xs)dBs

∣∣∣∣∣
ò

= 0.

Thus Fn23 L1

→ 0 uniformly on [0, T ]. Each of the G and F terms converges to 0 uniformly on

[0, T ] either almost surely or in L1 or in probability. Then, by (3.4.8), Un p→ R̃ uniformly

on [0, T ], where

R̃t =

ˆ t

0
µ′(Xs)Rsds+

ˆ t

0
σ′(Xs)RsdWs +

√
2

2

ˆ t

0
σ(Xs)σ

′(Xs)dBs.

Since also Un a.s→ R on [0, T ], the two limits must equal each other, and R follows

Rt =

ˆ t

0
µ′(Xt)Rtds+

ˆ t

0
σ′(Xs)RsdWs +

√
2

2

ˆ t

0
σ(Xs)σ

′(Xs)dBs. (3.4.14)

This concludes the proof.

Remark 3.4.5. Both in Kurtz and Protter [51] and Neuenkirch and Zähle [60], µ and σ are

assumed to be C1. Since Lipschitz continuity does not imply differentiability, the key part in

proof of Theorem 3.4.1 is to show that the time the weak limit error process spends on the

set where µ and σ are not differentiable has Lebesgue measure 0.

3.5 Study of The Normalized Limit Error Process

With the weak limit of normalized error process for the Euler scheme being derived, we

are interested to further analyze its properties. Though Kurtz and Protter [51] derived

the form of the normalized error process of the Euler scheme under the condition that the

coefficients are C1 and bounded, its properties have barely been studied in previous work.

In this section, we focus on the mean, variance and martingality of the limit error process

under the globally Lipschitz condition. The locally Lipschitz case is more complicated and
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is studied through examples as well.

3.5.1 The Globally Lipschitz Case

Theorem 3.5.1. When µ and σ are globally Lipschitz, for the normalized error process

Un =
√
n(Xn −X) from the continuous Euler scheme, there exists 0 < Ct < ∞, where Ct

increasing with t, such that

E[U2
t ] ≤ E[U∗2t ] ≤ Ct,

where U∗t = sup
0≤s≤t

|Us|. Furthermore when µ′ = 0, U is a square integrable martingale.

Proof. Since Un ⇒ U uniformly on [0, T ], we have ∀ t ∈ [0, T ], Un∗t ⇒ U∗t . When µ and σ

are both globally Lipschitz, from Kloeden [48] proof of Theorem 10.2.2, there exists a Ct,

increasing with t, such that

sup
n

E[(Un∗t )2] < Ct. (3.5.1)

Without loss of generality we can assume there exists a subsequence (Unk)2 a.s.→ U2 uniformly

on [0, T ]. Since (Unk)2 ≥ 0, from Fatou’s lemma

E[U2
t ] ≤ E[U∗2t ] ≤ lim inf

k→∞
E[(Unk∗t )2] ≤ Ct.

When µ′ = 0, there is no drift term in (3.4.4). Thus U is a local martingale. We also have a

bound for the expectation of the quadratic variation of Ut. Since µ, σ are globally Lipschitz,

it is known that E(X2
t ) < ∞,∀ t ∈ [0, T ]. Let K be the Lipschitz coefficients for µ and σ,

then

E(〈U,U〉t) = E
ï ˆ t

0
{σ′2(X)U2

s + σ′2(X)σ2(Xs)}ds
ò

≤
ˆ t

0
K2E(U2

s )ds+

ˆ t

0
K4E(X2

s )ds <∞.
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Us is a local martingale with finite expected quadratic variation. From Corollary 3 in page

73 in Protter [65], we conclude it is a martingale when µ′ = 0.

3.5.2 The Locally Lipschitz Case and Examples

3.5.2.1 The Inverse Bessel Process

When µ and σ are only locally Lipschitz, the finiteness of the second moment of the corre-

sponding Ut may not hold. Theorem 3.5.1 can not be extended to the locally Lipschitz plus

no finite time time case. One example is the inverse Bessel process, which is a solution to

the SDE

dXt = X2
t dWt, X0 > 0.

The coefficient σ(x) = x2 is locally Lipschitz and X has no finite explosion. From Theorem

3.4.1, the error process Unt =
√
n(Xn

t − Xt) converges in distribution uniformly to Ut on

[0, T ]. Ut is solution to

dUt = 2XtUtdWt +
√

2X3
t dBt,

where B is a Brownian motion independent of W .

E(U2
t ) = E

Å
2

ˆ t

0
XsUsdWs +

√
2

ˆ t

0
X3
sdBs

ã2

= 4E
Åˆ t

0
XsUsdWs

ã2

+ 2E
Åˆ t

0
X6
sds

ã
Since the inverse Bessel process can also be represented as the inverse of the norm of a three

dimensional Brownian motion starting from (1, 0, 0), its explicit distribution can be obtained

(for example see [23]). A calculation shows if X0 > 0, then ∀t > 0, EX6
t = ∞. This gives

E(U2
t ) =∞ and E(U∗2t ) =∞. This indicates that under the locally Lipschitz condition, the

asymptotic distribution for the normalized error process might have larger tail probability
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than in the globally Lipschitz case.

3.5.2.2 The CIR process

There are also examples with µ and σ only locally Lipschitz, Ut still has finite second

moment. We look at the Cox-Ingersoll-Ross model (or CIR model) which is often used to

describe the evolution of interest rates. The CIR process follows the SDE

dXt = (a− bXt)dt+ σ
√
XtdWt, X0 > 0, a > 0. (3.5.2)

The coefficient function σ
√
Xt is only locally Lipschitz. The true solution to (3.5.2) remains

always positive, but the numerical solution from the Euler scheme may go negative. Thus

the Euler scheme is not well defined for solving (3.5.2). We use the same trick due to Bossy

at al [9], replacing the Euler scheme by a symmetrized Euler scheme. Let Un be the sequence

of normalized error from the symmetrized Euler scheme solving (3.5.2). By Theorem 2.2 in

Berkaoui, Bossy and Diop [9], there exists a Ct, increasing with t, such that

sup
n

E[(Un∗t )2] < Ct, (3.5.3)

if the following condition holds

σ2

8

Ä2a

σ2
− 1
ä2
> K(8), with K(p) = max{b(4p− 1), (2σ(2p− 1))2}.

Since the symmetrized Euler scheme is local and the true solution never hits 0 or∞ in finite

time, it can be shown that Un ⇒ U as n → ∞ on any finite time interval. The weak limit

U has the same form as in Theorem 3.4.1, it solves the SDE below.

dUt = −bUtdt+
σUt

2
√
Xt
dWt +

√
2

2
σ2dBt.
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With (3.5.3), applying Fatou’s Lemma, we have

E[U2
t ] ≤ E[U∗2t ] ≤ Ct.

The inverse Bessel and CIR examples show that the finiteness of the second moment of the

normalized error process for the Euler scheme (or modified Euler scheme in order for the

scheme to be well defined) under the locally Lipschitz situation is more complicated than

the globally Lipschitz situation.

3.6 Approximation of Expectations of Functionals

In applications, the convergence of expectations of functionals (also called weak convergence

in existing literature) of the Euler scheme is important. To avoid confusion, in this section

weak convergence means the convergence of expectations of functionals unless further speci-

fied. We are interested in the rate of convergence for E[g(Xn
T )]−E[g(XT )] to 0, as n goes to

infinity. When µ and σ are only assumed to be locally Lipchitz, inferred from Hutzenthaler,

Jentzen and Kloeden [36], even for g with linear growth, weak convergence in the sense of

expectations of functionals may not hold. As a compromise, in this section we assume g is

Lipschitz and bounded, and give upper bound for the weak convergence rate with the no

finite explosion condition and some other mild conditions on the SDE (3.1.1). Before we

deal with the locally Lipschitz case, we need the following Proposition.

In Proposition 3.6.1, inequality (3.6.1) can be inferred from Kloeden [48] page 343 proof of

Theorem 10.2.2 in chapter 10, or Theorem 4.4 in H. Desmond and X.Mao [32].

Proposition 3.6.1. Consider SDE (3.1.1), if µ and σ are globally Lipschitz with Lipschitz

coefficient as K, then for all T > 0 there exists c > 0 not depending on K increasing with

T , such that for all n ∈ N+,

E[ sup
0≤s≤T

(Xn
s −Xs)

2] ≤ exp(cK)

n
, (3.6.1)
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and for all γ ∈ [0, 1
2)

P( sup
0≤s≤T

|Xn
s −Xs| > n−γ) ≤ exp(cK)n−1+2γ . (3.6.2)

Proof. From Theorem 4.4 in H. Desmond and X.Mao [32], with the globally Lipschitz con-

dition, for any δ > 0 there exists universal constant C and A independent of n such that

E[ sup
0≤s≤T

(Xn
s −Xs)

2] ≤ C

n
(K2 + 1) exp{4K(T + 4)}+

A

n
.

Thus (3.6.1) holds. Applying the Chebyshev’s inequality gives (3.6.2).

Theorem 3.6.1. Consider the SDE (3.1.1). If µ, σ are locally Lipschitz and we assume

the Lipschitz constant has at most polynomial growth with exponent a ∈ R+, that is, for all

x, y ∈ R

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ (max{|x|, |y|}+K)a |x− y|,

where K is a constant. We assume there exists κ, ν > 0, such that for all x > 0

P(X∗T > x) ≤ κx−ν .

Then, there exists a finite constant C = C(κ, ν,K, a, |x0|) such that for any Lipschitz and

bounded function g and for all n > 1

∣∣Eg(Xn
T )− Eg(XT )

∣∣ < C(‖g‖∞ +G+ 1)
Ä

log n
ä− ν

a ,

where G is the Lipschitz constant of g.

Proof. For a fixedm > |x0|, define µ(m), σ(m) and Y (m) as in Proposition 3.3.1. Let Tm(Z) =

inf{t ≥ 0 : |Zt| > m}. Since the Euler scheme is local,

Tm(X(x0, µ, σ,W )) = Tm(X(x0, µ
(m), σ(m),W )),

Tm(Xn(x0, µ, σ,W )) = Tm(Xn(x0, µ
(m), σ(m),W )).
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Let θm = Tm+2(X(x0, µ, σ,B)) ∧ Tm+2(Xn(x0, µ, σ,B)). Then

∣∣Eg(Xn
T )− Eg(XT )

∣∣ ≤ ∣∣Eg(Xn
T∧θm)− Eg(XT∧θm)

∣∣+ 2‖g‖∞P(θm < T )

Let G be a Lipschitz constant for g. Then by (3.6.1) in Proposition 3.6.1, and since the

Lipschitz constant of µ, σ on [−(m+ 2),m+ 2] is bounded by (m+K + 2)a

∣∣Eg(Xn
T∧θm)− Eg(XT∧θm)

∣∣ ≤ G(E|Xn
T∧θm −XT∧θm |2)

1
2 ≤ G exp

Å
c

2
(m+K + 2)a

ã
n−

1
2 ,

where c is the constant given in Proposition 3.6.1. By the distribution assumption on X∗

and (3.6.2) in Proposition 3.6.1 with γ = 0,

P(θm < T ) ≤ P(Tm+2(X(x0, µ, σ,W )) < T ) + P(Tm+2(Xn(x0, µ, σ,W )) < T )

≤ 2P (Tm+1(X) ≤ T ) + P(Tm+1(X) > T, Tm+2(Xn) < T )

= 2P (Tm+1(X) ≤ T ) + P(Tm+1(X(m+2)) > T, Tm+2(Xn,(m+2)) < T )

≤ 2P (Tm+1(X) < T ) + exp(c(m+K + 2)a)n−1

≤ 2κ(m+ 1)−ν + exp(c(m+K + 2)a)n−1.

For m ≥ 0, we have (m+ 1)−ν ≤ (K + 2)ν(m+K + 2)−ν . Thus, we get

∣∣∣Eg(Xn
T )− Eg(XT )

∣∣∣ ≤ 2‖g‖∞
î
2κ (K + 2)ν(m+K + 2)−ν + exp(c(m+K + 2)a)n−1

ó
+G exp

Ä
c
2(m+K + 2)a

ä
n−

1
2 .

Take n = (m+K + 2)2ν exp(c(m+K + 2)a) to get

∣∣Eg(Xn
T )− Eg(XT )

∣∣ ≤ (2‖g‖∞[(K + 2)ν2κ+ 1] +G)(m+K + 2)−ν .

Notice that

log n ≤ c(m+K + 2)a + 2ν log(m+K + 2) ≤ (c+ 2ν/a)(m+K + 2)a,
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which implies that

∣∣Eg(Xn
T )− Eg(XT )

∣∣ ≤ (2‖g‖∞[(K + 2)ν2κ+ 1] +G)

Ç
log n

c+ 2ν/a

å− ν
a

.

The result follows from this estimation. Finally, notice we have assumed m ≥ |x0|, which

imposes that n ≥ n0 has to be large enough, for example

log n0 ≥ c(|x0|+K + 2)a + 2ν log(|x0|+K + 2).

As an example we consider the constant elasticity of variance process which follows the

following SDE

dSt = bSβt dWt, S0 > 0

When β > 1, the solution to the above SDE is strict local martingale and is used for

detecting asset bubbles. By a result of A. N. Borodin and P. Salminen [10], chapter 4.6,

∀x > S0, T > 0

P (S∗T > x) <
S0

x
.

Thus, there exists a constant C > 0, such that for all g : R → R, bounded and Lipschitz

and for all n > 1

∣∣Eg(SnT )− Eg(ST )
∣∣ < C(‖g‖∞ +G+ 1)

Ä
log n

ä− 1
(β−1)

Remark 3.6.1. The above example of the CEV process for β > 1 illustrates the weakness

of the result of Theorem 3.6.1. The rate of convergence is so slow as to be essentially useless

in practice. It is our hope that future research will illustrate methods that will permit a more

practically useful analysis of the rate of convergence. This seems far away at this point.
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Chapter 4

Conclusion

In this thesis, we address two problems related to stochastic differential equations of the

form

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0 ∈ R,

where W is a one dimensional standard Brownian motion. Chapter 2 treats an important

problem in financial markets, how to detect the existence of an asset bubble and judge its

severity instantaneously with observations from a price process. To address these problems,

we propose an approach combining the use of SDEs and dynamic linear regression. The CEV

model with time varying parameters is used to model asset price processes with potential

bubbles. When using the CEV model, we show that the exponent parameter is linked to the

existence and severity of an asset bubble. An asset bubble exists if and only if the exponent

parameter is larger than a fixed threshold. Conditioning on the existence of an asset bubble,

we prove that a larger exponent indicates the price process has smaller future expectation

and a greater probability for the running maximum to hit a large value in a certain time

range. We use the dynamic linear regression model to estimate the exponent parameter

in the CEV model, which allows the existence and severity of asset bubbles to be checked

instantaneously with historical intraday price observations. The approach is illustrated with
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examples from the Dot-com bubble era. Under the CEV model, σ(x) is restricted to be a

power function. In future work, it would be useful to obtain a comparison result on the

future expectation of X under a risk neutral measure with a more a general form of σ(x).

Chapter 3 focuses on the convergence property of the Euler scheme solving SDEs under

general assumptions, namely, locally Lipschitz coefficients and no finite explosion. Existing

work often assumes the globally Lipschitz condition, which is too stringent in practice. We

have shown that if a numerical scheme converges in probability uniformly on any compact

time set (UCP), with a certain rate under the global Lipschitz condition, then the UCP

convergence with same rate holds when the globally Lipschitz condition is replaced with a

locally Lipschitz condition plus a no finite explosion condition. For the Euler scheme, we

prove the
√
n rate of convergence in distribution for the asymptotic normalized error process.

The limit error process is derived as a solution to an SDE. In addition, we further study the

boundedness of the second moment of the limit error process and its running maximum. We

also study the weak convergence for the Euler scheme in the sense of expectation of bounded

and Lipschitz functions. We show that with some mild conditions, the weak convergence is

at least at the rate of (log n)α, where α > 0 depends on the SDE. In chapter 3, we consider

the case of one dimensional Brownian motion driven SDEs. Generalizing the results to the

multi-dimensional case and to semimartingale driven SDEs with jumps are left for future

work. With the locally Lipschitz assumption, the Euler scheme may diverge in Lp, even

if the pth moment of the solution exists. How to modify the Euler scheme so that it will

converge in Lp is also left for future work.
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Appendix A

First Appendix Section

A.1 Option Pricing and Auxiliary Results for the CEV Model

(a correction of S.Mark [57])

The following theorem is a correction of the call option pricing formula in S.Mark [57].

Theorem A.1.1. Assume that a nonnegative process St follows the SDE (2.3.1). We use

the same notations as in Proposition 2.3.1. Let y = λe−bτ ( Es0 )2−θ. The European call price

with exercise price E is

C = s0e
−aτ
¶
F (λ; df − 2, 0)− F (λ; df − 2, 2y)

©
− Ee−rτF (2x; df, 2y).

Proof. The European call price with exercise price E is

C = e−rτ
ˆ +∞

E
(ST − E)f(ST , T ;St0 , t0)dST

= e−rτ
ˆ +∞

E
ST f(ST , T ;St0 , t0)dST − Ee−rτ

ˆ +∞

E
f(ST , T ;St0 , t0)dST

= A−B
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We deal with the two parts separately

A = e−rτ
ˆ +∞

E
ST f(ST , T ;St0 , t0)dST

= e−rτ
ˆ +∞

y
s0e

µτ (
z

λ
)

1
2−θ p(z; df, λ)dz

= s0e
−aτ
ˆ +∞

y
p(λ; df, z)dz.

By equation (2.3.5)

A = s0e
−aτ
¶
F (λ; df − 2, 0)− F (2x; df − 2, 2y)

©
.

For the term B,

B = E

ˆ +∞

E
f(ST , T ;St0 , t0)dST

= Ee−rτ
ˆ +∞

y
p(z; df, λ)dz

= Ee−rτF (λ; df, 2y).

Thus

C = A−B

= s0e
−aτ
¶
F (λ; df − 2, 0)− F (λ; df − 2, 2y)

©
− Ee−rτF (λ; df, 2y).

From Proposition 2.3.1, we obtain the following two corollaries.

Corollary A.1.1. Assume S follows the SDE

dS = δS
θ
2 dW, with S(t0) = s0 > 0. (A.1.1)

If θ > 2, ST converges to 0 in L1as T goes to infinity.
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Proof. From Proposition 2.3.1,

Eθ(ST ) = F [
4s2−θ

0

δ2(2− θ)2τ
;

2

θ − 2
, 0]s0, τ = T − t0.

Then

lim
τ→+∞

F [
4s2−θ

0

δ2(2− θ)2τ
;

2

θ − 2
, 0] = F [0;

2

θ − 2
, 0] = 0.

This concludes the proof.

Corrollary(A.1.1) indicates that if an asset bubble lasts long enough, the price process will

converge to 0 in L1 as time goes to infinity.

Corollary A.1.2. Assume S follows the SDE (A.1.1). Then

lim
θ→+2

Eθs0(ST) = s0, (A.1.2)

and

when s0 < 1, lim
θ→+∞

Eθs0(ST) = s0,

when s0 ≥ 1, lim
θ→+∞

Eθs0(ST) = 1.

Proof. Using Theorem 2.3.1,

Eθ(ST ) = F [
4S2−θ

t

δ2(2− θ)2τ
;

2

θ − 2
, 0]s0.

Note that

lim
θ→+2

1− F [
4s2−θ

0

δ2(2− θ)2τ
;

2

θ − 2
, 0] ≤ lim

θ→+2

2
θ−2

4s2−θ0
δ2(2−θ)2τ

= 0.

Thus (A.1.2) holds.
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When s0 < 1,

lim
θ→+∞

2

θ − 2
= 0, and lim

θ→+∞

4s2−θ
0

δ2(2− θ)2τ
= +∞.

Thus,

lim
θ→+∞

F [
4s2−θ

0

δ2(2− θ)2τ
;

2

θ − 2
, 0] = 1

We use the same notation as in Proposition ?? for the case s0 > 1. Since

F [
4s2−θ

0

δ2(2− θ)2τ
;

2

θ − 2
, 0] =

ˆ Cs
− 2
d

0 d2

0

1

Γ(d)
yd−1e−ydz,

lim
θ→+∞

Eθs0(ST ) = lim
d→+0

s0

ˆ Cs
− 1
d

0 d2

0

1

Γ(d)
yd−1e−ydz

= lim
d→+0

s0

ˆ Cs
− 1
d

0 d2

0
dyd−1dz

= lim
d→+0

s0(Cs
− 1
d

0 d2)d = 1.

This concludes the proof.

We also study the tail behavior of the CEV processes. When 0 < θ < 2,

P (ST > A) = 1− F [
2CA2−θ

(θ − 2)2
;

2

2− θ
,
CS2−θ

t

(θ − 2)2
]. = O(exp(−2CA2−θ

(θ − 2)2
))

Thus, the distribution of ST is light tailed and has finite moments of all order. When θ > 2,

it can be shown that

P (ST > A) = 1− F [
2CA2−θ

(θ − 2)2
; 2 +

2

2− θ
,

2CS2−θ
t

(θ − 2)2
] = O(A1−θ).

Thus, the distribution of ST has a heavy tail with power law 1− θ.
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Figure A.2.1: Simulated α and β.

A.2 Simulation Result for the Dynamic Regression and the

CEV Model

In this section, we simulate the paths of the price process under the assumption that the

price process follows the CEV model with parameters αn and βn that vary each day, but are

constant within a day. Under the assumptions of the Kalman Filter, the series αn and βn

are both AR(1). Let αn, βn be the values of the coefficients for the nth trading day. Suppose

there is no trading time gap between two consecutive trading days. For the nth trading day,

the trading time interval is [Tn−1, Tn). We simulate βn and αn in the following way,

αn+1 = αn + ε1, ε1 ∼ N(0, 0.0022), (A.2.1)

βn+1 = βn + ε2, ε2 ∼ N(0, 0.022). (A.2.2)

In Figure (A.2.1), it shows that the simulated βn stay above 1 in the time range around the

50th to the 250th day. The price process under a risk measure follows the CEV model with
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time varying parameters

dSt = eαnSβnt dWt, t ∈ [Tn−1, Tn) (A.2.3)

We use the Euler Method to simulate the paths of the price process S

Stk+1+∆t = Stk + eαnkS
βnk
t (Wtk+1

−Wtk), tk ∈ [Tnk−1, Tnk) (A.2.4)

Based on the simulated αn and βn, we simulate 500 sample paths from the CEV model

(A.2.3) using the Euler scheme (A.2.4). We set the starting value as 40. When doing the

simulation, we retain those sample paths whose maximum value is at least 60 in order to

resemble a real bubble. For each simulated price process, we use the dynamic linear model to

achieve real time instantaneous estimation for the parameters of the underlying CEV process.

Figure (A.2.2) illustrates βn for n = 1 . . . 400, the average of the instantaneous estimates for

all 500 simulated price processes for 400 days, as well as the upper and lower 5% quantiles

of β̂n. The average of β̂ is below 1 at the beginning of the true bubble time range, because

only a small part of the price data used to estimate β for those days is from the bubble

region. Since the statistical method is getting information from the whole past history up

to the current time, the recent time bubble is masked by the initial time range which is not

in bubble. As illustrated in Figure A.2.2, the average of the instantaneous estimates of βn

for all 500 simulated price processes is quite close to the underlying true value of βn. We

plot the first 6 simulated price processes and apply the dynamic linear regression model to

the processes. The true bubble regions for each price process are between the two black

vertical lines. In Figure A.2.3 the red dots indicate the regions with instantaneous estimate

β̂ > 1 from the dynamic linear regression model. We regard the days as marked with red

dots as the days detected as days with bubbles. For day k, β̂k,j is the instantaneous estimate

for β using the jth simulated price process. Bubble detecting rate for day k is calculated

as 1
500ΣIβ̂k,j>1. When the underlying β is larger than 1, the statistical procedure can only

detect it with a certain probability. Figure A.2.4 indicates that the probability at time t is

higher when the time range with bubbles before t is longer and the value of the true β is
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Figure A.2.2: Average of β̂n for simulated price processes with upper, lower 5% quantiles.

further away above 1.

A.3 Further Study of the Stock YHOO and Stock INSP

Using the formula (2.3.1), for each t we sample αt and βt from the posterior distribution

with observations up to time t, according to the time varying regression model . With each

sample of αt and βt from the posterior distribution, we could calculate Eαt,βt(
St+∆t

St
|Ft),

assuming α = αt and β = βt. The heat maps in Figure A.3.1 and Figure A.3.2 illustrate the

posterior distribution of Eαt,βt(
St+∆t

St
|Ft) when ∆t is a quarter of a year and 1 year respec-

tively, for stock YHOO. Figure A.3.3 and Figure A.3.4 illustrate the posterior distribution

of Eαt,βt(
St+∆t

St
|Ft) when ∆t is a quarter of a year and 1 year respectively, for stock INSP.

From the heat maps, a darker color indicates a smaller future expectation relative to the

current starting value. We can see the evolvement of severity of asset bubbles for YHOO

and INSO from 1998 to 2001, which is the dot-com bubble era.
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Figure A.2.3: Simulated sample paths
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Figure A.2.4: Bubble detection rate from simulation
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Quantiles of Expected Relative Price after 3 Months for YHOO
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Figure A.3.1: Distribution of the expected relative price after 3 months for YHOO

Quantiles of Expected Relative Price after 1 Year for YHOO
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Figure A.3.2: Distribution of the expected relative price after 1 year for YHOO
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Quantiles of Expected Relative Price after 3 Months for INSP
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Figure A.3.3: Distribution of the expected relative price after 3 months for INSP

Quantiles of Expected Relative Price after 1 Year for INSP
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Figure A.3.4: Distribution of the expected relative price after 1 year for INSP
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A.4 The Running Maximum of CEV Processes over A Long

Time Range

This section uses the same notation as in Proposition 2.3.3. Y.Hamana and H.Matsumoto

[30] provided asymptotic approximation for the cumulative probability function of the hitting

time of a Bessel process. We can easily use the result to get asymptotic approximation for

P (S∗T > M), when θ > 2, and t→∞:

Pθ(S
∗
T > M) = 1− P (τ

(ν)
a,b > t)

= (
b

a
)2ν − (

b3

2a
)ν
ß

(
a

b
)ν − (

b

a
)ν
™

1

Γ(1 + ν)tν
+ o(

1

tν
)

=
s0

M
− (

s0

2M
)1/2M−1(

2ν

δθ
)2ν
ß

(
M

s0
)1/2 − (

s0

M
)1/2
™

1

Γ(1 + ν)tν
+ o(

1

tν
)

= P̃θ(S
∗
T > M) + o(

1

tν
)

P̃θ(S
∗
T > M) =

s0

M
− (

s0

2M
)1/2M−1(

2ν

δ
)2ν
ß

(
M

s0
)1/2 − (

s0

M
)1/2
™

1

Γ(1 + ν)tν

When θ1 > θ2 > 2 and t ≥ 4e2

δ2(θ1−1)(θ1−2)
for ∀M > s0,

P̃θ1(S∗T > M) < P̃θ2(S∗T > M) (A.4.1)
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Appendix B

Second Appendix Section

B.1 Proof of Weak Convergence for Zn22 in Proposition 3.4.2

Let Y be a continuous one dimensional local martingale. Let C be the quadratic variation

process. Let Zn be

Dn
t =

ˆ t

0
∆Y (n)dY, (B.1.1)

where ∆Y (n) is defined as in (3.2.1). Jacod and Protter [38] proved the following theorem:

Theorem B.1.1 (Jacod and Protter). If the quadratic variation process for Y satisfies

Ct =

ˆ t

0
csds,

ˆ 1

0
|cs|2 ds ≤ ∞,

then the sequence
√
nDn converges in distribution to a process D given by

Dt =
1√
2

ˆ t

0
csdb,

where B is a standard Brownian motion defined on an extension of the space on which Y is

defined and independent of Y .

Consider Zn22
t in Proposition 3.4.2. Let Y = W , where W is a standard one dimensional
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Brownian motion, then cs = 1 in this case. By Theorem B.1.1,
√

2Zn22
t ⇒ B on [0, T ],

where B is a standard Brownian motion independent of W .

B.2 Simulation From the Euler Scheme

In order to illustrate the difference between the limit normalized error processes for the

globally Lipschitz and the locally Lipschitz cases, we use the geometric Brownian motion

and inverse Bessel process as a simulation example. Let S(1) and S(2) follow the SDEs below:

dXt = XtdWt, S0 = 1,

dX̃t = X̃2
t dWt, X̃0 = 1.

(B.2.1)

Then X is a geometric Brownian motion and X̃ is an inverse Bessel process. Take T = 1

and set the number of discretizations to 1000 for the Euler scheme for solving (B.2.1). The

normalized error processes are obtained using the Euler scheme again on the SDE (3.4.4) in

Theorem 3.4.1, substituting X with Xn and taking σ(x) = x and x2 respectively:

Ūni = σ′(Xi−1)Ūni−1∆Wi +

√
2

2
σ′(Xi−1)σ(Xi−1)∆Bi, i = 1 . . . n.

Figure B.2.1 illustrates the 50 simulated paths for the limit normalized error processes. As

shown in Figure B.2.1, the simulated normalized error process from the inverse Bessel process

has a higher probability of high spikes than the one for the geometric Brownian motion. As

proved in Theorem 3.5.1, the limit normalized error process for the globally Lipschitz case

has finite first moment for its running maximum. The same result does not hold for the

case of the inverse Bessel process as the SDE it follows has coefficients that are only locally

Lipschitz. A better way to compare the scale of the simulated normalized error processes is

to divide them by the absolute simulated value of the underlying processes that the Euler

scheme approximates. Let Ũnt =
Ūnt
|Xn

t |
; Figure B.2.2 illustrates the 50 simulated paths for

Ũn. We also use the kernel estimation method to estimate the maximum normalized error

up to time T = 1 from the Euler schemes for the two processes. From Figure B.2.3, the
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Figure B.2.1: Simulated normalized error process for the Euler scheme

estimated density for the running maximum of the normalized error process is more heavy

tailed for the situation of geometric Brownian motion than for the inverse Bessel process.
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Figure B.2.2: Simulated relative normalized error process for the Euler scheme
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Figure B.2.3: Estimation of the density for the running maximum of the normalized error
process
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