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Sustainable water management often emphasizes water resource quantity, with
focus on availability and use practices. However, only a subset of the available
water may be usable when also considering water quality. Water quality manage-
ment is examined within three broad sectors—urban, agriculture, and environ-
mental systems—to investigate how water quality sustainability (WQS) is
defined by each and across the three sectors. The definitions determined for both
urban and agricultural WQS mention downstream human and ecosystem use;
however, regulatory policy does not always support these definitions. This chal-
lenge of managing water quality locally and downstream, coupled with interac-
tions across multiple sectors, has led to a fragmented approach to water quality
management. Legislation typically divides water quality management into com-
partments without considering the entire system. Within the United States, there
is an uneven distribution of responsibility regarding water quality protection,
and notable policies which counteract efforts to improve water quality. The
review suggests that despite a growing intention to use a single system approach
where water is considered as a limited resource that must supply all competing
interests, one does not yet exist and is even hindered by current policies and reg-
ulations. Recent policy is signaling a shift toward increasing interagency coordi-
nation; however, the basic definitions of WQS remain disconnected across
sectors. It is the conclusion of this review that sustainable water quality is not
currently practiced in the United States. © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

On the spatial and temporal scales of most natu-
ral environments, the quality of water is mana-

ged as it cycles and filters through the landscape;
however, pollution from human activities and
increased demands for clean water have stressed that
natural system, requiring intentional water quality

management. The transition from natural processes
to human designed systems has supported human
population growth and development. The 2015
United Nations World Water Development Report
admonishes society for using resource management
models where economic growth is prioritized at the
expense of the world’s water resources needed to sus-
tain that activity over the long term.1 The report cites
overexploitation of resources and ecosystem disrup-
tion through urbanization and agricultural practices,
and an undermining of ecosystem services. The ques-
tion remains, though, how does each of these sectors
define sustainable water quality, and what are the
markers and metrics used to measure the greater goal
of ‘sustainability.’ The objective of this article is to
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review and discuss current practices, challenges, and
regulations in water quality management for three
sectors: urban, agricultural, and ecosystem manage-
ment. Urban water quality includes domestic and
municipal water, wastewater, and industrial water
quality issues. Agricultural water includes irrigation
water and water quality issues caused by agricultural
practices. The third assessment includes practices and
policy influencing ecosystem water requirements to
sustain healthy, natural environments. The inter-
section between water quality evaluation and policy
and/or regulation is a major focus for all three sec-
toral investigations.

In the United States, major infrastructure and
water policies have guided the water management
trajectory that supported urban growth, agricultural
development, and protection of environmental sys-
tems. In the cases of drainage systems, sewer con-
struction in major cities, and major dam construction
in the 18th, 19th, and 20th centuries, respectively,
these development efforts shaped the very flow and
use of water. As we approach an era where many of
these systems must be replaced or repaired,2,3 we
have an opportunity to evaluate whether current
practices and policies support sustainable water qual-
ity, and modify our development plan based on those
findings. The judgment of these practices as sustaina-
ble or not starts with how sustainability is defined as
it relates to water quality.

Definition of Sustainable Water
Management
Proper management of water resources to protect
quality is critical to most definitions of water sus-
tainability. Early definitions regarding water qual-
ity in sustainable water development describe the
hazardous capacity of water while emphasizing
the sufficiency of our water resources given proper
water management plans and practices.4 Richards
and Woodman4 illustrate the entwined difficulties
of sustainable human development and water
quality in that water can be used to remove pol-
lution from one location yet it also delivers such
hazards to downstream users. Water, by its chem-
ical and physical properties, is an efficient trans-
porter of contamination, disease, and nutrients for
better or for worse. Harnessing water to support
various populations, and ensuring responsible
development while maintaining the resource’s
quality remain central to the management of
water systems in the 21st century for modern,
connected communities.

Nearly a century later, Gleick5 provided a
framework for water sustainability based in part on
the Brundtland Report6 which defined sustainable
development as supporting current needs without
sacrificing the needs of the future. Broadly, Gleick
defined sustainability as water use that supports the
‘ability of human society to endure and flourish into
the indefinite future without undermining the integ-
rity of the hydrological cycle or the ecological sys-
tems that depend on it,’5 and outlined seven criteria
for sustainable water planning with three directly
related to water quality. The water quality criteria
include: (1) that minimum standards for water qual-
ity will be maintained dependent upon usage,
(2) that humans will not impact the long-term
renewability of sources, and (3) that data on availa-
bility, use, and quality should be collected and
shared. This assessment structure provided a
broader view of sustainability whereas Richards and
Woodman, as chemists, focused on how the chemi-
cal properties of water impact water quality man-
agement. Carter et al., reflecting on the failure of
many water and sanitation projects in developing
regions, proposed that water sustainability evalua-
tion should include three tests: (1) does water
extraction continue at the same rate and quality as
when the supply system was designed, (2) are dis-
posal systems functioning and used as planned, and
(3) does the environmental quality continue to
improve.7 Both the Gleick and Carter
et al. definitions address the sustainability of the
water infrastructure or management system, as well
as the sustainability of the natural hydrological sys-
tem as a resource, though with differing emphases.
Carter et al. are more concerned with water and
wastewater system sustainability and, therefore,
emphasize protecting the environment within the
context of the implemented infrastructure, differing
from Gleick’s emphasis on achieving basic provi-
sions within the structure of an ecosystem. More
recent iterations of sustainable water management
definitions include balancing social, economic, and
environmental needs within the greater sustainable
development context.8,9 The definition put forth by
Gleick still remains widely cited and used, but
increasingly sustainability is defined with more con-
sideration for the human dimension.10 While the
broad objectives of sustainable water management
have evolved and clarified, the details of water qual-
ity protection and management in the urban, agri-
cultural, and ecosystem management sectors remain
relatively arbitrary and in some cases vague, making
it difficult to assess whether ‘sustainability’ has been
achieved.
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Publication History for Major Water
Quality Categories
A method of framing how water quality is broadly
defined in the context of sustainable development is
to assess the number of publications addressing these
issues. The number of publications with ‘water’ and
‘sustainability’ in the title have increased exponen-
tially over the past two decades. Searches for ‘water’
and ‘sustainability’ and ‘agriculture’ or ‘urban’ or
‘ecosystem’ on the Web of Science database limited
to journal articles published in English resulted in
over 9000 articles; however, these terms are too
broad and can include a number of articles that only
mention sustainability. Refining this search further,
to include ‘sustainable + water + management +
development’ resulted in 7355 results, of which 4208
citations were retrievable. A random sample of
100 titles was reviewed for search accuracy and 2%
were deemed unrelated to the topic. Assuming the
random sample represented the complete set of
retrievable articles, approximately 4125 articles are
expected to match the search criteria. The articles
date back to 1963, while articles within the subcate-
gory of ‘agriculture’ date back to 1983, and those
with ‘ecosystem’ or ‘urban’ were first published in
1987. Articles in these categories that explicitly
focused on water quality did not appear until the
1990s (Figure 1). Outside of these subcategory
searches, 1835 articles related to ‘sustainable +
water + management + development’ and another
topic, such as coastal management or fishing, creat-
ing an ‘other’ category in Figure 1. Typically less

than 25% of the publication count in each of the
three subcategories focused on ‘water quality’
(Figure 1).

This initial database assessment indicates that
while water sustainability research has grown over
the past two decades, the number of articles that
investigate these specific fields and water quality sus-
tainability (WQS) remain relatively small in number
compared to publications on other sustainable water
management and development topics. This relative
lack of WQS publications and the complexity
involved in defining what sustainability exactly
means in terms of water quality is the premise upon
which this review begins. The objective of this review
is to determine how WQS is defined and managed
for each sector and, in a holistic, one-water view,
determine how these management practices and defi-
nitions relate, contradict, and compare to the popular
definitions of sustainability discussed in the previous
section. Due to variability in management practices
and infrastructure, this review focuses on issues of
WQS in the United States.

URBAN WATER QUALITY

Urban water and wastewater systems are designed to
provide potable water to residents, remove toxins
from waste, manage stormwater, and eliminate was-
tewater from the city to prevent unhygienic condi-
tions.11 Sustainable water quality management in an
urban context should meet the population’s water
demands while preventing effluent from ruining the
water quality within and surrounding an urban cen-
ter, closely aligning to the definition outlined by
Carter et al.7

Urban Wastewater Treatment Systems
The history of civil and environmental engineering in
the United States stems from the need of growing
cities to manage waste streams, understanding that
there was a large, yet manageable impact of human
development on water quality. The first urban drain-
age system in the United States was built in Boston in
the 1700s, with major cities including New York
City and Chicago building sewer systems in the
1850s and 1860s. The majority of sewage construc-
tion in the United States occurred during 1890s–
1900s in response to the cholera epidemics earlier in
the 19th century.12 Despite being the largest city
affected by the 1866 cholera outbreak, New York’s
sanitary campaign, designed and implemented before
the outbreak, is credited with a decrease in cholera-
related fatalities.13 The centralized water

FIGURE 1 | Article search results from the Web of Science
database highlighting the contribution of agriculture, urban, and
ecosystem publications to the overall publication record on
‘sustainable + development + management’. The darker colors in
each category are the returns including ‘water quality’ in the search.
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management scheme replicated throughout the
United States and many parts of the world was used
to effectively remove wastes from the city.13–15 Was-
tewater management and sanitation advances had
notable positive impacts on sustainable urban
living.16,17

Merely collecting and removing water waste
from a city does not meet modern definitions of
WQS. Treated wastewater and stormwater must be
reintegrated with the environment to sustain the
health of the city and not degrade the surrounding
and downstream environments. In addition to treated
wastewater effluent, major contaminant sources from
urban areas include stormwater runoff and combined
sewer overflow (CSO) events. In the National Water
Quality Inventory: 2000 Report to Congress,18

urban runoff was identified as a major source of
water quality impairment, ranking second in influ-
ence for estuary impairment. Although urban runoffs
ranking improved in the 2004 Report to Congress19

for all categories considered (rivers and streams,
lakes, and estuaries), urban runoff remained a major
contributor to surface water impairment. Methods of
urban runoff management such as treatment with
other wastewater or channeling flow to nearby deten-
tion areas began in the 1800s. Despite the intended
benefits of a central management scheme, pathogens
can enter surface water sources from urban areas in
almost any sewer configuration, but the highest con-
taminant loads typically come from combined sewer
systems.

In cities with combined sewer systems, where
stormwater is managed using wastewater sewer pipe-
lines, large rain events can overwhelm treatment sys-
tems and trigger raw sewage releases into the
environment. In 2004, over 800 combined sewer sys-
tems released approximately 3.2 million m3 of
untreated sewage into local water bodies.20 In the
Gowanus Canal area of New York City, 10 discharge
points line the canal with approximately 50 discharge
events each year. As little as 2.7 mm of rainfall
occurring over an hour period is enough to trigger a
CSO event in the Gowanus Canal.21 The 2008
United States Environmental Protection Agency
(USEPA) Clean Watershed Needs Survey estimated
that of the reported $298.1 billion required for water
quality assurance, 21% was needed for CSO correc-
tion.22 Given the magnitude of the issue, centralized
management alone cannot address the CSO problem,
therefore many locations are integrating distributed
low impact development (LID) techniques, into their
planning and management. For CSO abatement, LID
technologies include porous pavement and green
roofs, while centralized infrastructure may include

large detention tanks for controlling the flow patterns
of stormwater to treatment facilities.21,23 Most CSO-
related LID techniques mimic natural hydrologic pro-
cesses with the intent of detaining, storing, infiltrat-
ing, or even treating urban stormwater runoff23–25

creating the opportunity for localized, sustainable
management of the problem.26,27

As research in the area of CSO flow control con-
tinues to progress, evaluation of changes regarding the
quality of urban runoff using LID technologies for
CSO-abatement lags.23,28,29 More literature focuses on
the repurposing of harvested rain water as a potable
source through treatment26,30–32 than on the impacts
of water released back into the environment. A remain-
ing challenge in defining WQS with respect to CSOs is
that the measurement of success focuses almost exclu-
sively on decreased number of CSO events rather than
reduction of actual water quality contaminant concen-
trations beyond coliform measurements.

Cities of any size and infrastructural configuration
are stressors on environmental health, increasing con-
taminant export as population density increases,33,34

however, total population is not always a direct indica-
tor of environmental impact. A study investigating the
impact of urban design and layout on water quality
found that differing housing density configurations led
to varied contaminant loading.35 Goonetilleke et al.35

concluded that denser urban configurations had a
smaller negative impact on nitrogen and phosphorous
contamination than if that same population was spread
over a larger area (e.g., a subdivision, suburban areas,
peri-urbanization). Less densely urbanized areas will
experience increases in these nutrients while dense
urban centers have higher probabilities of pathogen
and coliform contamination.36–39 As urbanization con-
tinues in the United States and abroad, it is important
to account for changes in pollutants originating from
these centers and the impact on downstream residents’
ability to use the water, including recreational and
drinking water purposes, if applicable.

Water quality can also be affected post-treatment,
as water travels through distribution and in-home
plumbing systems. The organizations, agencies, and
companies tasked with maintaining WQS are limited
by the extent and age of their infrastructure. The recent
crisis in Flint, Michigan, USA, caused by switching to a
more corrosive water source which mobilized lead from
old pipes, highlighted this reality. This crisis alerted the
nation to what most drinking water professionals
already knew: the US’s infrastructure is old and in need
of repair3,40; however, Flint is not an isolated case. In
2000, Washington, DC switched disinfectants to reduce
the carcinogenic byproducts from chlorine disinfection,
but this switch changed the water chemistry causing
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lead to leach from service line pipes.41–43 Contamina-
tion can be introduced after treated water enters the dis-
tribution system to include coliforms, Escherichia coli
(in certain circumstances), Legionella, disinfection
byproducts, and heavy metals including lead, thus mak-
ing WQS at the individual household level difficult to
centrally manage. These water quality management
issues are not all new, yet they present an increasing
challenge as infrastructure ages and water resource
options decline. Management of treated water chemis-
try, distribution pipes, and household plumping are
crucial to ensuring water deliveries remain clean at their
point of use.

As infrastructure is replaced and expanded,
there is a distinct opportunity to redesign how we
use high quality water in urban areas. Typically, US
households receiving water from a treatment facility
only have one type of water entering their home, thus
potable water is used for all activities, including
flushing toilets, irrigating lawns, and washing cars
and sidewalks.44 The average US family of four uses
1500 L (400 gallons) of water a day, where 70% is
used indoors. Less than 20% of the indoor water use
in the United States is from the faucet, potentially
related to consumption-related activities.45,46 In the
United States, a projected $498 billion dollars in
drinking water pipeline expansion is needed to sim-
ply keep pace with the growth of cities from 2011 to
2035,3 offering an opportunity to redesign distribu-
tion and reconsider our current, single stream
approach to water supply in these growing commu-
nities.40 It is suspected that WQS in urban areas will
soon require that systems are flexible enough to add
treatment for new contaminants and/or dynamic
enough to allow for the implementation of a multi-
faceted distribution system based on the water qual-
ity requirements of the end use. This focus on
adaptability of treatment processes contrasts with
sustainable water quantity supply, which just needs
the ability to meet increasing water demand.9 Urban
sustainable water management must plan for popula-
tion growth while effectively integrating waste
streams with the environment, adhering to govern-
ment legislation and water quality policy, and man-
aging chemical contaminants in water sources.

Urban Water Quality Regulations
Urban areas, through runoff and waste streams, can
impart a significant strain on local water sources.
Water quality regulations passed related to urban
water aim to promote urban WQS and offer clear dis-
tinctions on how urban WQS is defined. The Safe
Drinking Water Act (SDWA) and the Clean Water

Act (CWA) both address water quality through a set
of standards; yet, with few exceptions, there is little
overlap in these two programs. SDWA regulates on
maximum contaminant levels in potable water deliv-
ered to residents while CWA focuses water quality
standards for ambient water and wastewater effluent.
The SDWA includes 87 drinking water contaminant
rules currently regulating the concentrations of over
90 chemical contaminants in the water supplied by
any given drinking water utility. Of those 87 regula-
tions, only nine apply to naturally occurring constitu-
ents. Industrial and urban practices are associated
with 51 contaminants with an additional five that are
produced by both agricultural and industrial prac-
tices. New ‘emerging’ contaminants are under peri-
odic review by the USEPA for regulatory
determinations. Ninety-two chemical contaminants
related to industrial processes, personal care products,
or pharmaceuticals were listed on the 2016 Fourth
Contaminant Candidate List (CCL4), a list comprised
of chemicals known or anticipated to occur in public
water systems but are not currently regulated by the
SDWA.47 While the SDWA and CWA regulate vari-
ous types of water, the CWA ambient and effluent reg-
ulations directly impact what the SDWA must
regulate for downstream urban centers.

Individually, many USEPA programs incorpo-
rate risk-based and geographic targeting to a degree,
but they are scattered across different state commis-
sions, departments, and agencies. In 1991, the
USEPA drafted the Watershed Protection Framework
Approach (WPA), later updated in 1996, to integrate
all the individual efforts into a single management
plan to encourage states and stakeholders to view a
watershed more holistically.48,49 A statewide water-
shed approach consisted of five criteria to include
(1) delineating a state into watersheds/basins,
(2) defining of a management steps to guide regula-
tory and nonregulatory actions, (3) coordinating
water resource programs, (4) codifying a process to
involve stakeholders, and (5) focusing on environ-
mental results. Approximately 20 states adopted this
statewide watershed approach50 and it is estimated
that use continues in 18 states.51 How each state
codified management was not prescribed by the
approach framework, yet many had the National
Pollutant Discharge Elimination System (NPDES), a
program that regulates the pollution concentration
thresholds emitted through a permitting process,52,53

as a part of statewide watershed management.
Despite states agreeing that basin-wide NPDES per-
mitting can lead to more effective permit limits, issu-
ing these permits on a basin-wide schedule was
difficult. In a review of eight states’ experience
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implementing the management plan, there were sev-
eral main barriers related to NPDES, including:
(1) uneven permitting across basins, (2) federal initia-
tives and new programs that diverted resources from
the basin permitting cycle, (3) USEPA and court
imposed total maximum daily load (TMDL) sche-
dules and processes that impacted permit cycles, and
(4) pressure from the regulated community to issue
permits outside of the cycle periods.50

Inclusion of the NPDES program into a state-
wide watershed management program and the issues
encountered are not exclusive to this program. The
WPA was an attempt to merge several fragmented,
output-oriented programs into a single process. Pro-
grams that relate to watershed protection and would,
essentially, require integration to achieve a watershed
approach include Wetlands, Nonpoint Source,
NPDES, NPDES/CSO, NPDES/Stormwater, Ground-
water Protection, SDWA/SDWTR, among others,
many of which directly related to management of
urban water quality.

In Europe, a similar regulation was issued that
moved away from the ‘emission limit’ approach, and
toward one focused on ecological health. The 2000
European Water Framework Directive (WFD) placed
the focus on the ecological state of a river, defining
catchments based on river basin boundaries and not
political boundaries,54–56 going beyond the approach
of the USEPA WPA in eliminating state boundaries as
well. The WFD also aims to promote water quality
management within sustainable development by a
‘polluter pays’ statute.57 Levying taxes on polluters in
proportion to the amount of contamination dis-
charged is a different approach than allowing pollu-
ters the ability to transfer discharge licenses by buying
and selling them, a practice common in the US system.
Adopting this approach could remove pressure from
US drinking water treatment plants and improve the
ecological health of surface waters by reducing con-
tamination at the source, rather than relying on down-
stream treatment to protect human and ecosystem
health. Using this framework, a full cycle view of
water quality impacts of an urban area and a more
realistic assessment of sustainability is possible.

Unbalanced Expectations from Water
Utilities
A major component of urban water is the supply of
potable drinking water to residents. As previously
mentioned, drinking water sources, especially surface
water sources, are directly influenced by upstream
urban and industrial waste streams. Safe drinking
water programs are not significantly involved in state

assessment, planning, and management programs,
thus creating an important disconnect with potential
statewide management. A primary barrier to includ-
ing drinking water in a watershed management
approach is the fact that it was administratively
placed in a different division from the USEPA and
the state agencies concerned with watershed manage-
ment. Additionally, SDWA and CWA focus on two
different types of water (potable vs raw water) lead-
ing to the SDWA and CWA stressing different stand-
ard setting approaches and different contaminant
concerns.50

An unintended consequence of a fractured
approach to emission-based regulation is the burden-
ing of the water treatment utilities, and not the entire
community of water users and waste producers, to
maintain WQS. For example, in response to the indus-
trial chemical spill of 4-Methylcyclohexanemethanol
(MCHM) by Freedom Industries’ into the Elk
River, West Virginia, USA, the Governor placed
the burden of restoring acceptable water quality on
the local utility, American Water.58 Before ques-
tions regarding the safety issues behind the spill
itself surfaced, the drinking water utility was criti-
cized for its vulnerability to the contamination.59

This unbalanced assessment of the spill continued
as, in the aftermath, the Governor signed a new
bill that regulated above-ground chemical storage,
but also required American Water and all utilities
in West Virginia to install early monitoring systems
and develop written plans for any future chemical
spills in the water supply (SB 373). The new bill in
West Virginia has placed a larger infrastructural
burden on water utilities to ensure water quality
resiliency given all potential types of upstream con-
tamination events. This unbalanced burden conflicts
with the infrastructure and management aspects
of WQS.

Defining Urban WQS
The definition of urban WQS includes maintaining
the provision of reliable, potable water for consump-
tion and industrial processes, and ensuring waste-
water does not inhibit downstream use by
ecosystems and humans. In the United States, the pair
of water quality requirements regulating urban water
quality—before use and after use—are fractured and
have unequal geographic impacts. While the manage-
ment structure is in line with Gleick’s water quality
criteria in that minimum standards for water quality
are maintained dependent upon usage, this overlooks
a key flaw in the system. The very nature of regulat-
ing standards dependent upon usage in a system that
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is hydrologically linked does not take a holistic view
of the scenario. At the scale of a residence, use-based
treatment standards may be appropriate when the
use can be controlled. However, because the waste
streams and consumption-based intake locations for
a given city are often not colocated, there is little
incentive for upstream cities to bear the infrastruc-
tural and financial burdens required to improve their
own waste stream quality when the impacts are only
felt downstream.

AGRICULTURAL WATER QUALITY

Just as water is a vehicle for waste and pathogen
transport in urban areas, it transports nutrients and
pesticides away from agricultural fields to underlying,
adjacent, and downstream water bodies. Farmland
area in the United States has increased from ~300
million acres in 1850 to 914 million in 2012,
accounting for over 40% of all US land.60,61 Inten-
sive agricultural practices deplete nutrients from the
soil, requiring the addition of fertilizer or other
chemical amendments. WQS in the agricultural sec-
tor requires management of agrochemical pollution,
soil and water salinization, and sediment loading.
Similar to urban water quality management which
has two primary types of water, agriculture WQS
addresses local consumed water (e.g., irrigation, soil
water, and groundwater), and the runoff which
impacts downstream water bodies.

Local and Downstream WQS
The impact of agriculture on groundwater quality
has been demonstrated for several decades.62,63 On-
farm water quality issues are typically caused by
excess nutrient applications as well as salinity and
sodicity accumulation in soil water. WQS must
account for the direct impacts on the sustainability of
potable water supply for rural households relying on
private wells (about 15% of the US. population64).
Nitrate is most likely to impact groundwater, com-
pared to pesticides which degrade over time in the
subsurface and phosphorus which sorbs to particles
and materials in the aquifer.65 Regions with high
agricultural nitrogen application, high water inputs,
well drained soils, and permeable aquifers are more
likely to have groundwater nitrate concentrations
exceed USEPA drinking water standards than areas
with low nitrogen and water application, poorly
drained soils, and low permeability aquifers.66–68 Ele-
vated nitrate levels can cause human health issues
such as methemoglobinemia (blue baby syndrome).

In addition to direct contamination from agro-
chemicals, agricultural activities can impact ground-
water and soil water quality through soil
salinization. Salt accumulation can result from irriga-
tion and excess nutrient application, which may
impact shallow aquifers via percolation.69 The FAO
reports that ~20% of irrigated soils are salt
affected,70 with an approximate area increase of 1%
per year.71 Soil salinization is typically combatted by
flushing solutes from soil with large quantities of
water which can further lead to degraded surface and
groundwater quality. Therefore, soil salinization is
especially problematic when coupled with waterlog-
ging.72 The installation of drains can reduce soil sali-
nization, water logging, and leaching of
agrochemicals to shallow groundwater.73 Although
farmers are motivated to maintain the quality of their
groundwater and soil water, the costs of some best
management practices may be prohibitive relative to
the perceived risk of unsustainable water resources.

Similar to urban WQS concerns regarding efflu-
ent impact on downstream users, agricultural WQS
must account for water and ecosystem sustainability
beyond the extents of each agricultural land holding.
The 2000 and 2004 USEPA Reports to Congress on
the state of the environment listed agricultural influ-
ences as the top source of impairment to rivers and
streams and the third greatest influence on affected
lakes in 2004.18,19 Since 2008, more than 50% of
surveyed rivers and streams in the United States have
been classified as threatened or impaired.74 In a study
of 946 rivers worldwide, catchments dominated by
agricultural crops had nitrogen exports twice that of
pastures and four times as high as forested areas.33

The American prairie, a historically productive grass-
land, receives some of the highest concentrations of
nitrogen-based fertilizer, more than any other area in
the United States.75 Downstream water bodies,
including the Gulf of Mexico, experience seasonal or
persistent eutrophication caused by elevated nitrogen
and phosphorous levels, resulting in algal growth
and hypoxic zones. In the Midwest, agricultural run-
off is a leading contributor to algal blooms in Lake
Erie.76 These blooms, formerly in recession during
the 1980s,77 are largely reoccurring due to the
increased temperatures and spring time phosphorous
and nitrogen loading originating mainly from west-
ern Ohio and eastern Indiana.

Nutrient and pollution loading are heavily
influenced by rainfall events, antecedent moisture
conditions, and a wide array of land management
practices.33,78 Most nutrient contamination is quanti-
fied by a discharge concentration or total loading,
but does not account for the range of impacts on the
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receiving water bodies, which can vary with stream
discharge, system sensitivity, and buffering capacity.
For example, rain events can increase streamflow and
dilute the nutrient concentrations, or conversely can
increase nutrient concentrations due to runoff from
within the watershed. Rain and wind may also cause
soil erosion from agricultural fields contributing sedi-
ment to surface water bodies.79 Sediment can be det-
rimental both by increasing turbidity and by
transporting adsorbed nutrients, like phosphorus, to
the water body.80

The impacts of agricultural activities and man-
agement plans enacted in the United States can pro-
vide valuable lessons for developing nations. Global
application of nutrients (nitrogen, potash, and phos-
phate based fertilizers) has increased 34% from 2002
to 201481 and will likely continue to rise as Green
Revolutions progress in Africa and Latin America.82

The United States has relatively stable nutrient appli-
cation rates over the time period without decreases in
yields, similar to many other developed countries,
due to increasing efficiencies in other management
practices.83 Pesticide use (fungicides, bactericides,
herbicides, and insecticides) in the United States, has
also remained relatively constant since the 1990s81,
however, legacy pesticides persist in the environment
and continue to pose a challenge to surface water
quality.84

Agriculture Water Quality Regulations and
Responses
Agriculture WQS includes regulations to protect
water quality for use on farms, and to protect down-
stream users from the impacts of agricultural activ-
ities. The former is primarily focused on the reuse of
municipal or industrial wastewater for irrigation.
The USEPA regulates recycled water quality for
irrigation,85 while some states have their own regula-
tions (e.g., the California Water Recycling Criteria,
Title 22 of the state Code of Regulations). Contami-
nants of concern vary based on the origin of the
water and the intended application, and may include
nutrients, heavy metals, pharmaceuticals, and patho-
gens.86 The sustainability of irrigation and soil water
quality is not regulated; however, best management
practices are typically in the economic interest of the
farmer. Management responses may include adop-
tion of salt tolerant crops, maintenance of adequate
soil drainage,73 and modification of irrigation
methods.87

Policy measures that promote WQS by mitigat-
ing downstream agricultural water pollution include
mandatory regulations and potential voluntary

actions. The NPDES permit program under the CWA
is used to limit wastewater discharge and industrial
effluent; however, agricultural runoff remains largely
unregulated. The nature of agricultural runoff as a
nonpoint source pollution, and the strength of the
agricultural industry lobby have helped keep nutrient
TMDLs largely exempt for agricultural polluters,
while adherence to load-reduction practices is volun-
tary. One portion of the agricultural sector required
to obtain NPDES permits are the discharging concen-
trated animal feeding operations (CAFOs).88 Dis-
charging CAFOs must meet the water quality
standards set by the state based on the use and qual-
ity criteria set for the receiving water body.

In lieu of water quality regulations, many
national and state-level farm groups promote nutri-
ent management best practices as a means to reduce
pollution and improve agricultural production. Agri-
cultural water contamination can often be prevented
through good crop husbandry and proper manage-
ment of chemical additives.89–91 Despite education
and training efforts, voluntary changes are difficult
to solicit, in part, because the impacts of pollution
are typically felt downstream from the individual
farmer, thus removing the personal incentive to
invest in WQS promoting activities. Motivation to
adopt best management practices may come through
financial assistance designed to promote technology
adoption or more labor intensive, environmentally
beneficial practices.

Due to continued nutrient runoff challenges,
several programs help to promote alliances between
water utilities and agricultural communities such as
the USEPA CWA Section 319 and Healthy Water-
shed Consortium grants, the US Geological Society’s
Cooperative Water Program, and various activities of
the Department of Agriculture at the state level.92

However, when sectors are unwilling to partner,
water utilities are starting to challenge responsible
parties. In January 2015, Des Moines Water Works
filed a federal lawsuit under the CWA and Iowa code
Chapter 455B against the drainage district officials in
Sac, Buena Vista, and Calhoun Counties for the dis-
charge of nitrate pollutants into the Raccoon River
without NPDES permits.93–96 Similar to the Gover-
nor of West Virginia passing legislation which
increased the burden on the local water utilities to
treat industrial spills, government officials in Iowa
have been unsympathetic to the water utility. State
Senator Feenstra attempted to block the lawsuit call-
ing for an economic boycott of the Des Moines
metro area, and Governor Branstad continues to
oppose this type of intervention in agriculture,97

including regulating water quality emissions from
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farms. The Iowa Supreme Court ruled against the
utility stating that the least-cost method for removing
nitrates is the water utility, which already has an
obligation to do so.98

Defining Agricultural WQS
The definition of agricultural WQS includes main-
taining adequate soil, irrigation, and groundwater
quality, in addition to preventing agrochemical run-
off or leaching from harming downstream ecosystems
or hindering human use. Contrary to the cases of
urban and industrial water quality in the United
States, much of the decision-making regarding agri-
cultural WQS is made by farmers without govern-
ment regulation. Significant effort has gone into
development of nutrient, salinity, and soil erosion
best management practices, though most remain
optional and unsubsidized. Farmers may have more
individual incentive to maintain on-farm irrigation
and soil water quality, because of the direct impact it
has on crop production. However, protection of
downstream water quality is not a priority as it can
conflict with crop production and cost of cultivation.
Widespread groundwater contamination, soil salini-
zation, eutrophication, and ecosystem damage sug-
gests the United States does not practice agricultural
WQS, however, one may argue that it should be eval-
uated in the larger framework of food, energy, and
economic sustainability.

ENVIRONMENTAL WATER QUALITY

Human development has altered nutrient cycles
which balance the concentrations of several key ele-
ments in nature. The changes to chemical concentra-
tions can be simultaneously beneficial and injurious
to different components of the ecosystem, thereby
making sustainable water quality management for
ecosystems particularly difficult to define. WQS for
ecosystems requires an understanding of the inte-
grated impact of all sectors; therefore, environmental
WQS should adhere to Gleick’s5 definition to not
undermine ecological systems. The realization of eco-
logical WQS is primarily dependent upon the effect
of water quality regulations on the surrounding envi-
ronment, including those discussed previously from
the urban and agricultural sectors.

Environmental Water Quality Regulations
As discussed previously, human development leads to
increased nutrient loading from urban and agricul-
tural practices. Pesticides are present in almost all

rivers and streams within the United States and in
some cases at levels harmful to fish and wildlife.99

Despite the direct negative impacts on the environ-
ment, few policies account for the minimum water
quality needs for the environment in the same way
that environmental flow (quantity) requirements have
become a popular area of study and policy.100–104

The CWA does aim to ‘restore and maintain’ the
chemical integrity of US waters, yet agricultural and
urban pressures still remain a major problem for sus-
taining healthy waterways.

In the late 1940s, declines in coastal ecosystem
health were correlated with a noted increase in the
use of agricultural nitrogen over the previous
10 years.105 Hypoxic zones created by localized
eutrophication are mentioned as early as 1930 in the
Baltic Sea, with the number of zones, globally, dou-
bling each decade since the 1960s.105–107 The Federal
Water Pollution Control Act of 1948 was the first
major US law to address water pollution. However,
it was not until the 1972 amendments forming the
CWA that public concern was sparked and legislative
efforts to control water pollution began. The CWA
established the basic structure for regulating pollu-
tant discharges in the United States and granted the
USEPA the authority to establish wastewater stan-
dards for industry, set water quality standards for all
contaminants in surface water, and made it unlawful
to discharge pollutants into navigable waters from
identifiable point sources unless a permit was
obtained. These laws largely pertain to point source
polluters; therefore, agricultural pollution still threa-
tens many surface water sources. Nonpoint source
pollution, or diffuse pollution, is especially difficult
to legislate and control in both emission and water-
shed management approaches.

Currently, there are over 400 coastal systems
that have recorded and monitored accounts of
eutrophication hypoxic zones associated with more
than 245,000 km2 of stressed ecosystems.105 The sec-
ond largest hypoxic zone in the world is in the
Northern Gulf of Mexico. It is caused by excessive
nutrient loading, physical changes to the basin to
include channelization and loss of wetlands, and
stratification in the water of the Northern Gulf due
to fresh river water meeting the saltwater of the
Gulf.108 Approximately 90% of the nitrate loads are
from nonpoint sources and 56% enter the Missis-
sippi River above the Ohio River. In years with low
Mississippi flows at the confluence to the Gulf, the
hypoxic zone shrinks, though never disappears.105

To combat the growing hypoxic zone, in 2008, the
Gulf Action Plan established a goal of reducing the
5-year average of hypoxic zone areal extent from
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14,000 km2 (the average from 1996 to 2000) to less
than 5000 km2.108

At the same time, the Energy and Security Act
of 2007 (EISA of 2007) was passed, which uninten-
tionally conflicted with the goals to reduce the size of
the hypoxic zone through the Gulf Action Plan. The
act requires a ninefold increase in renewable fuel pro-
duction between 2006 and 2022, half of which will
be advanced biofuel, e.g., corn, sugar starch, and
waste material (U.S. CRS 2007). As a result, this pol-
icy caused an increase in corn production109 which
has relatively high fertilizer and pesticide application
requirements, compared to previously grown
crops.109,110 In 2013, more than five years after the
Gulf Action Plan set the goal of a 5000 km2 hypoxic
area, the actual hypoxic area extent of the northern
Gulf of Mexico was still 14,000 km2 and in 2015 it
exceeded 17,000 km2. In total, the nutrient loading
reduction benefits from the policies enacted to pro-
tect environmental water quality were counteracted
by policies aiming to improve national energy
security.

The complexity of combined impacts from envi-
ronmental and development-oriented policies makes
it difficult to project the success of individual regula-
tions. These conflicting policies are one example of
the deterioration of environmental water quality,
while seemingly meeting economic and energy pro-
duction objectives. Upon a broader inspection, the
problems of water pollution and environmental deg-
radation likewise can stress human and economic
development.8 For example, the long-term economic
impacts from the Gulf of Mexico hypoxic zone on
commercial and recreational users are still under
investigation.111 In a study quantifying the economic
impact of eutrophication in the United States, eco-
nomic losses were categorized by recreational water
usage, real estate impacts, increased spending related
to endangered species, and drinking water-related
costs. In total, hypoxic zones in the United States
result in over $2 billion annual losses and associated
costs.112 This is most likely an underestimation as
the peak summertime algal blooms, when recrea-
tional uses are highest, were not captured in the anal-
ysis. Proactive watershed protection programs can
provide cost-effective alternatives to technological
interventions. In Boston and New York City, exten-
sive watershed protection programs surrounding the
cities' drinking water sources have precluded a need
for expensive water treatment. New York City
invested in their protection program as a direct
response to the 1989 SDWA Surface Water Treat-
ment Rule which required filtration of all drinking
water unless the watershed is sufficiently protected. It

is estimated that the $1.5 billion New York City
spent on watershed protection has avoided $6 billion
in capital costs and $300 million in annual operating
costs for a subsequent filtration program.113

A common theme in policy efforts to address
the shortcoming of past regulations is to promote
interagency collaboration and coordination.
Section 404 of the CWA focuses on nonpoint
source pollution and a 1990 provision calls for
needed interagency cooperation to sustain and pro-
tect the health of wetlands.114 As discussed earlier,
the WPA attempts to coordinate permitting and
other factors on a watershed basis to shift the focus
to the health of a basin. Recently, the USEPA estab-
lished the Urban Waters Federal Partnership
(UWFP) program to address urban impacts on envi-
ronmental water quality. The UWFP consists of
19 designated community locations that are
attempting to coordinate federal agencies and
community-led efforts to improve water systems
within the urban area.115 Setting this apart from
the WPA are the core principles which promote
reconnection to local waterways and encourage
conservation over simply coordinating permitting
and regulation. While there is an apparent shift
toward a more cohesive, cooperative, interagency,
and local community partnership in address envi-
ronmental WQS, it is still not how most locations
operate. These partnerships are still in pilot phases,
with less than 20 states implementing the WPA and
less than 20 cities using a UWFP approach to
urban water, but they have the potential to set the
tone for regulatory approaches to come.

Defining Environmental WQS
The definition of environmental WQS includes bal-
ancing the policy and regulation of other sectors
with ecological requirements throughout the water-
shed. Much of the decisions regarding environmen-
tal WQS are components of regulations in other
sectors. Urban WQS considered ecological health
only as it pertained to waste loading and agricul-
tural WQS was not codified to consider the envi-
ronment. A methodical accounting of impacts from
all regulations related to a watershed, repeated
across the United States, is required to truly know
the status of environmental WQS.

CONCLUSIONS

The definitions of WQS across sectors must share a
common consideration for downstream ecosystems and
users. This spatial challenge, coupled with interactions
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across multiple sectors, has led to a fragmented
approach to water quality management. Legislation
typically divides water quality management into com-
partments without considering the entire system: the
energy legislation of EISA negates attempts to decrease
the Gulf of Mexico hypoxic zone; the aftermath of the
Elk River chemical spill bypasses ecological WQS and
instead requires utilities to manage water quality; and
the yearly algal blooms in Lake Erie have had little to
no impact on upstream agricultural practices and only
recently, with the Des Moines Water Works lawsuit,
might the ecological health of rivers, streams, and lakes
improve with respect to agricultural runoff. In many
US policies, water quality and sustainability is meas-
ured second to economic development, and is most
strictly defined for municipal water supply; yet, a shift
in policy to promote sector coordination is noticed.

Sustainable water quality also includes the sus-
tainability of the infrastructure and water used
within the system, making WQS a pressing issue for
cities in the United States. The burden for ensuring
high-level water quality for human consumption is
placed heavily on the drinking water utilities, a sector
with aging infrastructure. The policy and regulations
in the United States uphold this uneven management
practice, with the latest law enacted in West Virginia
exacerbating this imbalance. While drinking water
utilities are responsible for supplying potable water
to residents, they should not be responsible for treat-
ing excess contaminants caused by the lack of regula-
tion in agriculture. Management practices and policy
enactment should consider urban, industrial, agricul-
tural, and ecosystem water as a single connected
hydrologic system. Without a balanced water quality

management policy, parties ultimately responsible for
degrading the quality of water will have no incentive
to reverse harmful practices.

While some recent policy is signaling a shift
toward increasing interagency coordination, the basic
definitions of WQS remain disconnected across sec-
tors. An integrated approach is needed to define sus-
tainable ecosystem water quality management, as it
is linked to urban, industrial, and agricultural water
management. Approaches to pollution abatement
and regulation need to go beyond simply keeping
pollution below hazardous upper limits and instead
must strive to achieve lower thresholds. The very
nature of the emission-based approach to regulating
pollution places ecosystem and human health at a
disadvantage and suggests that sustainable ecosystem
water quality management will conflict with develop-
ment plans.

It is the conclusion of this review that sustaina-
ble water quality is not currently practiced, not as
Gleick or Carter et al. proposed nor as a hypothetical
unified approach. In urban environments, contami-
nants are diverted downstream to preserve the health
of the immediate vicinity, and regulations have to bal-
ance water quality with industrial productivity so as
not to hinder economic progress. Both urban and
agricultural systems rely on downstream treatment of
pollutants released into the environment. Just as the
founders of sustainable development tried to integrate
environmental, economic, and social aspects without
skewing focus to one of these three categories, water
quality management will not be truly sustainable until
it considers and addresses impacts across sectors and
within the entire watershed or region.
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