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Role of Rheology in 
Achieving Successful 
Concrete Performance
Properties must be balanced to manage segregation, surface finish, pumping 
pressure, or formwork pressure

by Chiara F. Ferraris, Peter Billberg, Raissa Ferron, Dimitri Feys, Jiong Hu, Shiho Kawashima, Eric Koehler, Mohammed 
Sonebi, Jussara Tanesi, and Nathan Tregger

This article provides a basic introduction to concrete 
rheology, as well as some insight into how rheology 
can be applicable to concrete construction. The fresh 

state performance of concrete is not only important for proper 
concrete placement and finishing but also for its hardened 
state properties. Yet, the most commonly used workability test 
methods are based on empirical methodologies, such as slump 
tests. Even self-consolidating concrete (SCC), which is 
governed by the property of flowing under its own weight,1 is 
typically classified based on the results of empirical tests such 
as slump flow, V-funnel, L-box, and J-ring tests. To improve 
quality control and performance of concrete, workability 
measurements based on fundamental principles instead of 
empirical tests are pertinent. 

Rheology is the science that seeks to characterize the flow 
and deformation of materials using fundamental principles of 
stresses and shear rates. Similar to how the hardened state 
mechanical properties of concrete are characterized by 
stresses and strains, rheology provides the user a way to 
objectively and quantitatively assess the fresh state properties 
of concrete by relating the shear stresses and shear rates.2 
Furthermore, rheology is a science that can be applied to 
various cement-based systems, including but not limited to 
grouts, SCC, fiber-reinforced concrete, and traditionally 
vibrated concrete.

This introduction to concrete rheology begins with a listing 
of basic terminology (refer to the textbox), and is followed by 
explanations of typical measuring instruments and testing 
procedures used to determine rheological properties. The 
concepts of rheology are then further applied to five different 
practical applications: mixture design and quality control, 
segregation, pumping, formwork pressure, and surface finish.

Measurement Tools and Procedures
Tools and devices

Rotational shear rheometers are standard equipment used 
to characterize the rheological properties of fluids. Such 
equipment is commonly used in asphalt binder testing 
laboratories (state, federal agencies, and producers); for 
example, refer to ASTM D717513 and AASHTO T 315.14 
These devices apply continuous shear to the sample through 
rotational movement at controlled torque or speed. Rheometers 
for concrete must be specifically designed due to the large 
particle size of the aggregates. Most geometrical configurations 
for concrete rheometers are based on coaxial cylinders shown 
in Fig. 2(a). The coaxial cylinder geometry consists of an 
inner cylinder (a bob) inserted into an outer cylinder (a cup). 
Various geometries can be used for the bob, including but not 
limited to a solid cylinder,16 vane,17 and a double spiral.18 The 
vane and double-spiral geometries can be used in place of the 
inner cylinder of a coaxial cylinder rheometer to prevent 
slippage.19 Another commonly used rheometer geometry for 
concrete is the parallel plate, as shown in Fig. 2(b).20,21 The 
surfaces of the coaxial cylinder and parallel plate should be 
textured or roughened to prevent slippage between the 
concrete and rheometer surface.21 Concrete rheometers have 
been used on various types of concrete classes (for example, 
SCC and fiber-reinforced concrete), but are not well-suited for 
stiff concretes (for example, zero-inch slump concrete).

Although rotational concrete rheometers have been 
successfully used to measure concrete rheology, a series of 
tests has shown that results from different rheometers do not 
agree with each other in absolute terms, caused by differences 
in experimental techniques and instruments.22-24 Nevertheless, 
these results have been shown to rank different mixtures in a 
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(a)

Fig. 2: Typical rheometer configurations: (a) coaxial cylinders; and (b) parallel plates (adapted from Reference 15)
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Terminology
Rheology—the science of flow and deformation of matter.2 

For fluids, relationships can be described by plotting the shear 
stress versus the shear rate. 

Bingham model—a linear approximation of the shear 
stress-shear rate relationship of a material or fluid (Fig. 1), 
described by two material parameters: yield stress and plastic 
viscosity. Most cement-based materials can be described as 
Bingham materials that follow this model. The Bingham yield 
stress, or dynamic yield stress, of cement-based materials is 
related to the slump3,4 or slump flow.5

Yield stress—the stress required to initiate material flow. 
Typically, two types of yield stresses are considered:

 • Static yield stress—the stress required to transition 
from a solid-like to a liquid-like behavior (going from 
rest to flow)—that is, starting from a static state and 
going to a dynamic state. As most cementitious 
materials exhibit thixotropy, the static yield stress 
increases over time6,7; and 

 • Dynamic yield stress—typically taken as the apparent stress where the material transitions from a liquid-like behavior 
to a solid-like behavior (going from flow to rest). The dynamic yield stress is an extrapolated value based on the flow 
curve (shear stress versus shear rate) and is often based on measurements performed on the “down” flow curve (the 
shear stress-shear rate curve obtained from measurements in which the shear rate is decreased from a high shear rate 
to a low shear rate; shown in Fig. 1).

Viscosity—a measure of a material’s resistance to flow after flow is initiated. The higher the viscosity, the higher the 
material’s resistance to flow. This term is generally used to describe materials that show liquid-like behavior and it provides a 
way to fundamentally quantify the “measure of the resistance of a fluid to deform under shear stress.”8

 • Plastic viscosity—the slope of the shear stress-shear rate relationship as described by the Bingham model (Fig. 1). 
Thixotropy—the reversible material stiffening with time of the material at rest, and its ability to refluidize when 

sheared.9,10 Per definition, thixotropy has a physical nature due to particle agglomeration11,12 and it is not the same as stiffening 
due to hydration, which is chemical in nature. Cement-based materials are more complicated than ideal Bingham materials 
because the rheological properties of cement-based materials will also vary with time.

Fig. 1: Representation of Bingham model. The stars represent 
experimentally determined data points that are approximated 
using a straight line  
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similar fashion. Another way to compare results from different 
rheometers would be to calculate relative plastic viscosity as 
described in Ferraris and Martys.25 To enable more meaningful 
comparisons among laboratories and their rheometer, efforts 
are underway at the National Institute of Standards and 
Technology (NIST) to develop a standard reference material 
(SRM) that would be used to calibrate the rheometers.26,27 
RILEM Technical Committee 266-MRP, Measuring 
Rheological Properties of Cement-based Materials, is in the 
process of developing guidelines for the use of rheometers in 
characterizing cementitious materials. Also, ASTM C174928 
provides guidelines to use rheometers to measure paste.

Procedures
There are two major types of measurements for concrete 

rheology: the flow curve test and the stress growth test. The 
choice of test depends on the rheological property required to 
be measured.

Flow curve test 
A flow curve test is performed by shearing concrete at 

different shear rates and measuring the resistance to flow. In 
most cases, a constant, high rate of shear is initially applied to 
bring the sample to a reference state to normalize the effects 
of thixotropy on the measured shear stress.29-31 The shear rate 
is then decreased in increments and the corresponding 
torsional resistance values are converted into shear stresses. 
Because the data are taken at decreasing shear rates, the 
results are often referred to as the down curve. As shown in 
Fig. 1, if the data are fitted with a linear function, the intercept 
is the Bingham yield stress (dynamic yield stress) and the 
slope is the plastic viscosity. 

Stress growth test 
The stress growth test is used to determine static yield 

stress (going from rest to flow), and how this property 
increases with resting time. The static yield stress at rest is the 
consequence of workability loss, which includes thixotropy, 
hydration, and other factors. The test is performed with a 
rheometer by applying very low shear rate to concrete initially 
at rest, increasing the strain until the concrete begins to flow 
(yield). The maximum shear stress from the shear stress 
versus shear strain (or time) plot is equal to the static yield 
stress, as shown in Fig. 3. The static yield stress is dependent 
on the shear rate or strain applied. These parameters need to 
be selected carefully to minimize the effect of the material 
setting evolution on the measurement of the static yield stress.32

Implications of Inappropriate Rheological 
Properties

In the applications discussed herein, rheological properties 
are tailored through the mixture design process. Nearly all 
aspects of the mixture proportions, including powder content, 
water-cementitious materials ratio (w/cm), supplementary 
cementitious materials (SCMs) content, aggregate properties 

and content, and admixtures play an important role in 
concrete rheology. Yield stress and plastic viscosity of the 
paste increase as w/cm decreases and as the cement becomes 
finer.33,34 These properties are further modified (up or down) 
by the incorporation of SCMs. Due to the incorporation of 
aggregate, the yield stress of concrete is higher than that of 
the paste alone. Aggregate angularity, surface texture, 
maximum particle size, gradation, packing, and content can 
all have a significant effect on the viscosity and yield stress of 
concrete. Admixtures such as viscosity-modifying agents 
(VMAs) and water-reducing admixtures (WRAs)—normal-, 
mid-, and high-range—can also enhance placement, 
consolidation, and finishability of concrete and even increase 
thixotropy without the need to adjust the water content. 
Figure 4 summarizes some of the general effects that different 
components can have on properties. For example, increasing 
the water content can decrease both the yield stress and 
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Fig. 4: The effect of an increase in specific constituent materials on 
concrete rheological properties (adapted from Reference 35)
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plastic viscosity. On the other hand, the use of a low dosage of 
silica fume can decrease viscosity, while higher dosages can 
lead to increase in both yield stress and viscosity. It should be 
noted that, except for the WRA + VMA behavior, Fig. 4 
shows the effect of individual components only and does not 
consider the interactions between multiple components added. 
The synergistic effect of adding WRA and VMA to a mixture 
will depend on the dosages and types of the admixtures 
employed; thus, the WRA + VMA line shown in Fig. 4 is for 
illustrative purposes and should not be interpreted as 
indicating, for example, that a WRA has a greater effect on 
plastic viscosity than a VMA. 

Limiting variations in concrete properties for a job 
requiring high volumes of concrete can present a difficult 
challenge. Thus, once a mixture proportion has been approved 
for a project, implementing a continual quality control process 
is crucial. Rheometers that are more rugged and designed for 
field use are available to accurately quantify and monitor the 
concrete performance during processing (mixing, pumping, 
casting, finishing, and so on). Frequent monitoring of the 
rheological properties not only serves to ensure that the proper 
concrete is being placed but also acts to inform the batch plant 
if changes are necessary and in what direction the changes 
need to be made. However, in situations where one does not 
have access to a field rheometer, effort should be made to 
characterize the rheological properties of the mixture in the 
lab and then correlate those rheological properties with the 
field-friendly workability test method(s) that will be used on 
the jobsite. In the following sections, specific applications will 
be highlighted to show the influence of rheological properties 
on the performance and quality of concrete.

Segregation
In many concrete applications, increased flowability 

facilitates placing and finishing, but increasing the flowability 
beyond the capabilities of a particular mixture design can 
result in segregation. Segregation leads to a mixture that is not 
homogenous and may hinder mechanical properties and 
reduce the service life of concrete. Segregation can be 
observed in different forms whether it is the aggregate 
migrating within the paste or mortar phase, or excessive 
amount of the water phase of the cement paste migrating to 
the surface of the concrete (for example, bleeding). 

The yield stress of the suspending matrix (typically that of 
the paste or mortar phase)36 is a key rheological parameter to 
ensure that a concrete mixture would have adequate 
segregation resistance. The magnitude of the desired yield 
stress will depend on the application; however, the yield stress 
alone of the suspending liquid (paste or mortar) may not be 
sufficient to keep the fine and coarse aggregate particles 
suspended in the paste or mortar, respectively. An elevated 
plastic viscosity of the suspending liquid can slow down the 
segregation. Additionally, if the concrete is at rest, the yield 
stress increases due to thixotropy limiting further migration of 
the aggregates. In this way, if a low yield stress concrete is 

designed, a relatively high viscosity and thixotropy is 
necessary to minimize segregation effects.35

Common approaches to modify yield stress and viscosity 
include varying dosages or types of fines (such as limestone 
powder), SCMs,37-39 and use of chemical admixtures.40-42 
Additionally, decreasing the maximum aggregate size helps 
decrease segregation,29 and having a well-graded aggregate 
packing creates an enhanced particle lattice effect (smaller 
particles holding larger ones in position) that can help keep 
aggregates suspended.43,44

Pumpability 
Two major problems can occur during concrete pumping. 

The first problem is blockage during start-up, which is mostly 
the consequence of a nonpumpable mixture design (usually a 
result of a high coarse aggregate fraction) or inappropriate 
selection or preparation of the pumpline (lack of or inadequate 
priming).45 The second problem is excessive pressure during 
pumping, which can be caused by high flow rates, small pipes, 
or inappropriate rheological properties of the concrete.

Although the velocity profile in concrete during pumping is 
complex, as particles move to form the lubrication layer near 
the pipe wall,46 relatively simple correlations between 
pumping pressure and plastic viscosity have been proposed.47 
The lower the viscosity of the concrete, the lower the pressure 
needed to pump (Fig. 5). If the viscosity is low, pumping 
pressure can increase when the yield stress increases (slump 
or slump flow decreases).48 It was shown that, in most cases, 
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viscosity is more dominant than yield stress to determine 
pumpability.49 

The most significant way to reduce pressure during 
pumping is by enlarging the pipe diameter. Increasing the pipe 
diameter from 4 to 5 in. (100 to 125 mm) can roughly 
decrease pumping pressure by a factor of two.50 Decreasing 
the flow rate and/or viscosity of the concrete are other 
alternatives to reduce pumping pressure. For conventional 
concrete, decreasing the yield stress (increasing the slump) 
can also reduce pressure.44

It should be noted, however, that the actual flow behavior 
in pipes is more complex. The reader is referred to recent, 
extensive studies on the characterization of the lubrication 
layer for more information.49,51

Formwork pressure 
In placing conventional concrete within formwork (and in 

general), vibration is required to achieve proper consolidation. 
As the vibration is applied, yield stress is lowered, allowing 
consolidation to occur. When the vibration is removed, the 
high thixotropic nature of normal concrete restores the high 
yield stress. Although the high yield stress of conventional 
concrete is responsible for requiring vibration, the high yield 
stress combined with high thixotropy is advantageous because 
it also results in low formwork pressure.12

SCC is a highly flowable concrete. However, an SCC 
mixture must be capable of handling high flow while 
providing adequate segregation resistance. Because of its high 
flowability, SCC does not require any external vibration to 
consolidate it; thus, faster casting rates can be achieved during 
construction. However, its low yield stress can result in high 
formwork pressure.12 Underestimating the pressure can lead to 
deformed formwork with malformed structures or, in the 
worst case, a formwork collapse. Overestimating the pressure 
is an economical issue due to the high share of formwork cost 
to overall cost of concrete construction.52 Besides the balance 
between formwork strength and cost, use of SCC in areas 
where formwork pressure is a concern requires careful 
attention to thixotropy. In other words, as the SCC rests in the 
form, yield stress and viscosity increase, reducing the amount 
of vertical pressure that is translated horizontally to the 
formwork. The faster this rate of increase in rheological 
properties occurs, the lower the formwork pressure. 

Increasing thixotropy from a mixture design perspective 
has been the focus of much recent research. Some ways to 
enhance thixotropy include the use of chemical admixtures 
(such as VMAs), SCMs (such as silica fume), and reducing 
w/cm.11,13,53,54

Quality of surface finish 
The quality of the surface finish of concrete is linked to a 

project’s aesthetic requirements. Primary aesthetic issues 
include the homogeneity of the color (or tint), roughness of 
the surface, reproduction of formwork details, and the 
presence and size of bug holes. Several standards define the 

surface finish of concrete or mortar (for example, NF P 18-503,55 
AMA Hus 9856 or BS 8110-1,57 and CIB No. 2458).

Surface finish is affected by a variety of parameters, 
including mixture proportions, setting time, formwork 
surfaces, type of release agent, casting technique, placement 
speed and temperature, yield stress, and plastic viscosity.59 
Figure 6 shows three zones defined by ranges of yield stress 
and plastic viscosity of SCC, illustrating that the fresh 
concrete behavior and surface finish are affected in different 
ways. If the plastic viscosity of the mixture is too low (Zone I), 
there can be an elevated risk for segregation during casting, 
especially in placements with large free-fall height and/or 
changes in the direction of concrete flow during casting. 
Segregation can affect the surface finish, as it can result in 
regions with very high or very low paste content. However, if 
the yield stress of the mixture is too high (Zone II), the 
mixture can stabilize large entrapped air bubbles, preventing 
them from leaving the system. In a non-SCC mixture, such 
issues can be alleviated by additional consolidation using 
vibration. This will temporarily lower the yield stress, thus 
enabling unwanted air bubbles to rise. The necessary 
consolidation energy is dependent on the yield stress and 
plastic viscosity of the mixture. However, because SCC 
mixtures do not warrant vibration, it is important to ensure 
that the balance between viscosity and yield stress is such that 
the mixture is in Zone III, as this will enable large entrapped 
air bubbles to rise to the surface. While mixtures in Zone III 
will generally have good surface quality, it should be noted 
that bubbles will rise slowly in mixtures with very high 
viscosity or in mixtures that exhibit high thixotropy (the static 
yield stress increases rapidly when the concrete is at rest).

A low yield stress with a balanced viscosity can be 
achieved through the use of SCMs or chemical admixtures 
(for example, water reducers), decreasing w/cm, or increasing 
the paste volume.61
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Conclusions 
The science of rheology can be used to gain a fundamental 

understanding of concrete workability. The rheological 
properties of concrete need to be balanced to achieve specific 
goals such as limiting segregation, producing a good surface 
finish, minimizing pumping pressure, or controlling formwork 
pressure. In other words, adjusting a property to achieve one 
goal can have detrimental effects on other goals. Reducing 
yield stress and plastic viscosity to reduce pumping pressure 
will result in an increased risk for segregation, and increasing 
the yield stress to reduce formwork pressure may result in the 
need for additional consolidation to obtain adequate surface finish.

Rheology can be an effective tool for specifying, 
designing, and managing concrete workability, revealing 
concrete characteristics that are not indicated by slump alone. 
Results from different rheometers can be correlated and can 
be used to describe multiple aspects of workability. In 
contrast, empirical tests, such as the slump test, measure a 
value that is specific to the test method and may not be 
sufficient to ensure proper performance for the multitude of 
processing steps (pumping, surface finish, formwork pressure, 
and so on) that a concrete mixture must endure. Consequently, 
it is difficult to compare results from one type of empirical 
test to another without conducting multiple tests to describe 
different aspects of workability. Using rheometers to 

determine rheological properties would provide more relevant 
information on the quality of the concrete.

Figure 7 summarizes the key points of this article:
 • Segregation can be controlled by increasing the yield stress 

or the plastic viscosity, but it should be noted that 
increasing both parameters too much will lead to very 
stiff concrete;

 • Good surface finish can be achieved by having adequate 
viscosity—not too low, as the risk for segregation 
increases, but not extremely high, as the air bubbles will 
not be able to escape. If the yield stress is elevated, 
consolidation is recommended to remove air; 

 • Pumping pressure mainly decreases with a decrease in 
viscosity. Decreasing the yield stress also decreases 
pumping pressure, but to a lesser extent; and

 • Formwork pressure can be reduced by using a high yield 
stress concrete, or using a highly thixotropic concrete in 
slow filling conditions.
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