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Abstract 

The Physical State of Water in Dormant Bacteria 

Michael DeLay 

Anomalous behaviour of water confined in nanoscale gaps influences many biological and 

technological processes.  However, due to the small size of confining structures, it is historically 

difficult to manipulate and study water’s dimension-dependent transport character.  Experimental 

studies of nanoconfined water are generally limited to artificial test structures, and/or single-file 

channels, and so transport behavior of biologically nanoconfined water remains elusive.  We utilize 

poroelastic bacterial spores coated onto a nanomechanical sensor to probe photo-thermal evaporative 

relaxation in a biological setting and report viscous water, 7 orders of magnitude larger than that of 

bulk liquid, and via thermodynamic investigations reveal an activation energy close to ice.  Overall, 

these experiments characterize transport behaviour of nanoconfined water in vivo, and highlight the 

dramatic effects of nanoscale confinement on water that could impact myriad natural and synthetic 

processes. 

 Following from this work, a hypothesis is pursued in which the bacterial lifecycle is intimately 

connected with transitions in the physical structure of the internal water.  We expand an initial idea 

proposed in Science, 1960 by J.C. Lewis, N.S. Snell and H.K. Burr that the low water content of the 

spore core is accomplished through compressive contraction during development2. During 

sporulation, the genetic material is packaged with chelating chemicals within a special water-

responsive, layered coating that electrostatically pulls the water out of the core. Together, these agents 

produce the extremely dehydrated, hydraulically tensioned, and stable spore-phase organism.  During 



 

germinative re-awakening, an event lacking a complete mechanistic theory of sensation, the core is 

rehydrated and the organism subsequently reanimated.  This work’s findings regarding the spore’s 

physically restrained but exchangeable water support the idea that the physical state of the water 

contributes significantly to tensioning the organisms into a ‘charged’ but dormant configuration.  This 

dormant but spring-loaded phase of the bacterial lifecycle is subject to awakening by agents (nutrient 

or otherwise) which disrupt surface tension including amino acids, salts, surfactants, and hydrostatic 

pressures.  In the least, it must be acknowledged that the slowed water observed herein enforces 

slowed biochemistry and thus dormancy.  

Taken together we present a picture where internal spore water, even that which is exchanged 

with the external environment, is nanoconfined and slowed under tremendous tension (negative 

pressure).  The mechanism governing this slow water appears to be unlike that any previously 

described, the majority of which are typically based upon crystalline surfaces, the likes of which are 

not found in the spore.  We consider that the spore water structure itself participates, in certain 

environments, in the signaling chain of the organism through stabilizing a delicately balanced and 

highly tensioned architecture.  Presently we are working toward testing the hypothesis and expanding 

our understanding with new methods, including additional structural mutants and expanded 

biophysical techniques.
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Preface 

 

“The [spore dormancy] hypothesis that the bare essentials of a vegetative cell-DNA and indispensable 

enzymes- are rendered hydrophobic or otherwise stabilized on a molecular level lacks simplicity and 

elegance [and so mechanics cannot be ignored]” – J.C. Lewis et al. Science, 1960 

 The authors of the above statement go on to suggest that “the speed and trigger-like action of 

physiological and mechanical germination seem inconsistent with a stripping of covalently bonded 

hydrophobic groups”.  The purpose of this work is to detail the physical state of internal spore water 

and thereby expand upon one hypothesis concerned the mechanical cause of spore germinant 

surveillance and the maintenance of dormancy.  Chapters 1 and 2 provide some background on spores 

and anomalous water behavior, respectively.  Chapters 3 and 4 contain findings that have been 

submitted for peer review as of October 5th, 2017, and detail the presence and character of ultraslow 

intraspore water, which is highly viscous, and of high intermolecular bond energy, in a geometry-

dependent fashion as the spore swells in response to ambient humidity.  Chapter 5 presents new 

methods and investigates this water structure as it appears in liquid, where germination is most often 

examined in the laboratory.  Notably, we find water transport remains slow in liquid, and is disturbed 

by chemical germinants, and so this method suggests an effective means to detail the contribution of 

the physical state of water to liquid germination in future work, which is suggested in Chapter 6. 

 This work should prove of interest not only to spore biologists, but also to physicists and 

physical chemists interested in experimental means of assessing water transport in conduits below the 

nanometer size scale.  Water is known to behave anomalously at these confinement lengths, however 

relevant experimental methods have not been achieved to date.  With the spore as an experimental 
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platform, one can directly tune the confinement length that water will experience by adjusting relative 

humidity.   Finally, we have tangentially worked for many years in the Sahin Lab on clean energy 

alternatives involving evaporative harvesting using spores, and thus, understanding transport kinetics 

will also be of use in refining our engineering endeavors. 

 This research was conducted at Columbia University and supported by awards from the NIH, 

Department of Energy, and Packard Foundation. 
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Chapter 1: The Spore as a Phase in a Lifecycle 

 

To endure scarcity of sustenance, specialized bacteria of 

the Firmicutes phylum enter a metabolically dormant phase 

known as the endospore or simply, the spore 3.  The bacterial 

spore is the longest-lived cellular structure known to exist4.  

Spores of diverse species can persist for hundreds of millions of 

years5.  This life-cycle of spore-producing bacteria is biphasic, 

with the bacterium undergoing a distinct physical transformation 

to dormancy as the organism is deactivated through a process 

known as sporulation, and then later re-activated through a 

process known as germination.  There are a range of metabolically 

dormant bacterial cell types, and this thesis will focus on that of 

the model organism, Bacillus subtilis (Fig 1.1).  Note that the cycle 

of B. subtilis is not reproductive, as it does not provide population 

growth but only stabilization (the spore is produced with a 1:1 

correspondence to the mother bacterium, which is lysed during 

sporulation).  This life-cycle begins with a vegetative bacterium, 

processes through sporulation mechanisms, resulting in the spore 

formation, and terminates through germination, by which the 

vegetative form is restored. The spore is formed and matured within a single bacterium known as the 

mother cell6.  The spores that emerge are resistant to a wide diversity of environmental assaults,  

including ultraviolet radiation, harsh chemicals (peroxide, bleach), desiccation, and other common 

Figure 

1.1  The 

spore is a 

variably 

dehydrat

ed, 

multilaye

red, 

bacteriu

m.   

Figure 1.1| The spore is a 
variably dehydrated, 
multilayered bacterium. 
cartoon represents the core 
(dark), cortex (grey), and coat 
(green) layers.  The spore is 
assembled from inside outward, 
beginning with compressive 
dehydration of the genetic 
material, where upon metabolism 
and transcription of the spore is 
paused.	

Figure	 1.1|	 The	 spore	 is	 a	 variably	
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disinfectants.  Their ability to persist appears virtually unlimited temporally, with groups claiming 

germination of spores that had been dormant for millions of years7.  The sporulation process is 

initiated by simple differential cell division.  The sporulating bacterium copies its genetic material and 

relocates each copy to alternate poles of the cell.  One pole of the cell, known as the forespore, is 

destined to develop into a mature spore, while the mother cell constituting the other pole is eventually 

lysed.  For other bacteria, such as Metabacterium polyspora, more than three separate spores can be 

formed inside of a single mother cell8. 

Figure	1.2		The	variably	hydrated	lifecycle	of	the	
Bacillus	bacterium. 

Figure 1.2|  The variably hydrated lifecycle of the Bacillus bacterium. Following from the 
McKenney et al, 2013 Coat review, this panel illustrates that the production of the coat and 
cortex are accompanied by a dehydration of the genetic material.  By reducing the size of the 
compartment during development, the core is pressurized and dehydrated.  	
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 In B. subtilis sporulation is a biochemical process that begins with the triggering of sensor 

kinases in response to nutrient depletion.9  These kinases phosphorylate the transcription factor 

known as Spo0A. Spo0A transcribes a wide range of target genes, including the spore-developing 

sigma factors, as well as those involved in the asymmetrically polarizing morphogenic program6.  The 

initiator of this cascade, KinA, is sufficient to initiate the entire process in the laboratory9.  This 

polarized cell, now comprised of the smaller forespore and the larger mother cell then proceeds 

through a process known as engulfment, whereby the former is formally taken up by the latter (Fig 

1.2).  At this point the forespore is contained within a double membrane inside of the mother cell.  As 

soon as this septum is formed, the sigma G family of transcription factors is activated, and this event 

is accompanied by the dehydration of the core10.  This procedure is accompanied by the creation of 

the protective structures known as the outer coat and cortex, which are deposited by the mother cell, 

after being activated by the daughter cell’s sigma G.  Once activated, the mother cell begins her sigma 

K program of cortex and coat production10.  The cortex is assembled between the inner and outer of 

the aforementioned double membrane, largely under the direction of the transpeptidase SpoVD11,12.  

Figure 1.3|  Cortex-deficient mutant spores a, b, reprinted SEM from Bukowska-Faniband 
& Hederstedt 2013, showing the depletion of the cortex layer in spores of B. subtilis inside of 
mother cells (WT in a) after genetic deletion of the transpeptidase, SpoVD in b.  c, shows AFM 
image of one cortex-deficient mutant we examined (sample thanks to Dworkin group) displaying 
the characteristic ‘shriveled’ appearance. 
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Mutants which lack this structure fail to develop appreciable cortex (see Fig 1.3).  We will consider 

cortex and coat function in depth throughout this work.  To summarize the cortex structure, we will 

begin by assuming it is comprised of layers of porous peptidoglycan, much more loosely cross-linked 

than that of the vegetative cell wall (Fig 1.4).   Atop the cortex is the coat, which is composed of more 

than 70 proteins.  Coat layers are placed onto the outside of the forespore in a coordinated fashion by 

the mother cell13.  

Figure	1.3		Cortex-deficient	mutant	spores 

Figure	1.4		Structure	of	spore	peptidoglycan	compared	to	that	of	vegetative	phase	cell 

Figure 1.4| Structure of spore peptidoglycan compared to that of vegetative phase cell. a,   
Vegetative cell wall peptidoglycan reprinted from Atrih et al 1999.  This structure diagram of the 
cortex pepditoglycan from spores in b reveals that ~50% of the MurNAc residues have lost 
peptide chains to simple muramic-∂-lactam.  All other residues are cleaved to single-Alanines or 
3-4 peptide strands that then undergo cross-linking between glycan strands.  This means only 3% 
of the total spore muramic acids end up cross-linking1.  It is plausible the abundance of externally 
exposed Alanine could participate in hydrogen bonding. 
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Emergence of the vegetative bacterium from dormancy in nature appears to result from 

environmental cues, which indirectly influence specific proteins at the spore’s core 14,15.  This activation 

during favorable (nutritious and moist) conditions triggers an irreversible cascade beginning with 

partial rehydration of the core and the release of dipicolinic acid, followed by activated hydrolysis of 

the cortex, complete core rehydration and eventual outgrowth. Germination has in fact been recently 

described precisely in these terms by Peter Setlow in the latest of his annual reviews on the subject as 

“events beginning at the time of addition of agents 

that trigger germination (germinants) and ending 

when spore core water content (25–45% of wet 

weight during dormancy) rises to 80% of wet 

weight.”16 Hydration is then essential to defining 

the reactivating transition of the bacterium.   

In addition to typical nutrient germinants, 

which we will discuss at length, spores respond to 

non-physiological triggers, which include CaDPA, 

cationic surfactants, electric pulses17, and very high 

pressures16.  Vegetative cell-wall fragments also 

can induce germination in an alternative pathway 

through activation of a Ser/Thr kinase18.     Many 

of these triggers could also be considered 

hydrostatic in that they are expected to affect the 

structure of water (CaDPA binds and sequesters 

free water).  Interestingly, the non-physiologic 

germination cues are highly conserved across all spore forming species. Lysozyme will also serve to 

Figure	1.5	Hydration	sensitive	sieving	of	the	spore	coat	&	
cortex. 

Figure 1.5| Hydration sensitive sieving of the 
spore coat & cortex.  a, The spore responds to 
humidity by extending its cortex/coat by 4-12%. b, 
this mechanism narrows the pore size of the 
cortex/coat material, and thereby closes off the spore 
to germinant sensing in the absence of sufficient 
hydration. 
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germinate the spore if the outer coat is rendered permeable. The coat/cortex are very diverse in their 

exact amino acid compositions and also differ significantly from the vegetative cell in composition 

(see Figure 1.4).  Importantly, the structure appears to serve some variable and complex sieving 

abilities, as small molecules face a high resistance to diffusion (into the spore) whilst in its most dried 

state where internal dimensions narrow to single water-molecule lengths (see Fig 1.4, 1.5, and also 

Chapters 2, 3).  The cortex and coat together appear to serve as a molecular sieve, with the coat sieving 

large molecules, including lysozyme19 and the cortex sieving smaller molecules. Chapters 3, 4, and 5 

of this work show that this sieving is tuned by structural changes to the spore as it responds to the 

variable hydration of its environment.  It generally appears that when the coat/cortex structure is 

actively destabilized after development, germination will proceed to some stage.  

Regarding physiological nutrient-sensation as a trigger of germination, much progress has been 

made to date, however a unified canonical signaling pathway, from ligand-binding to signal 

transduction has yet to be clearly established.  First, it is known that there exists a class of spore-

proteins that are in some way generally responsible for nutrient sensing during germination.  The field 

has termed this class Germinant Receptors (GRs).  It is worth noting that these are termed receptors 

though no direct interaction between the germinants and these proteins has been directly 

measured(*)18,20.  Setlow says, “Germinants are sensed by interactions with germination proteins, 

presumably by direct protein binding.  However this has generally not been shown but rather inferred from changes 

in germinant specificity or affinity due to mutations in suspected germinant-binding proteins”16(author 

emphasis).  These GRs are all generally found within the inner membrane of the spore, directly below, 

and tangential to, the cortex.  These GRs are expressed in very low quantities, only hundreds per 

                                                
* Binding possibilities to a GR have been suggested in theory for glucose and demonstrated for 
separate GR-independent Ser/Thr kinase for vegetative cell wall fragments, but not spore 
peptidoglycan.  We note that cell wall fragments may disrupt interfacial tension prior to any receptor 
binding events, and that kinase signaling requires mobile water within the core. 
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spore.  One bacterium, C. difficile and family, have no GRs whatsoever but happen to be activated 

directly exclusively by bile salts21.  The totality of the inner membrane GRs is termed the germinasome. 

The germanisome is organized through clusters of GRs22.  GRs seem to group together during 

dormancy and are required to be completely intact with all subunits present. GerD presence is 

necessary for the GRs to form clusters.  In addition to GR subunits and DPA channel subunit, 

SpoVAD, GerD does not appear to be exposed to external solution chemistry (biotinylation), 

however23.  Following some lag phase after germination addition (>30 minutes) the GR foci dissipate 

diffusely.  Of the B. subtilis GRs, GerD is degraded or lost immediately at the start of germination, 

prior to the raft dispersal of all germinasome foci24.   The variability in the lag time from germinant 

addition is so large that certain populations can be isolated which require days to germinate after 

addition of triggers.  These super-dormant spores may have less GR quantity in general25. 
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L-Alanine, a ubiquitous B. subtilis structural element is unique as a germinant in B. subtilis and 

other species, and is also a ubiquitous B. subtilis cortex structural element.  This is the same alanine 

found among the 20 amino acids encoded within the human genome, not the D-alanine that is a 

dominant component of bacterial cell walls.  It is, however, a highly common protein found in other 

eukaryotes, accounting for a large percentage of amino acids found in eukaryotic biological structures, 

second only to leucine in abundance26.  L-alanine is also found on as a single residue side chain on 20-

40% of the muramic acid residues within the cortex peptidoglycan27.  This contributes to the fact that 

only 3% of the side-chains in the cortex are able to form covalent peptide cross-links.  It raises the 

Figure	1.4		Co-localization	of	GRs	in	dormant	spores 

Figure 1.6| Co-localization of GRs in dormant spores.  Reprinted from Griffiths et al 2011,  
we see the overlapping spatial localization of GerK, GerA, GerB, and GerD.  Different proteins 
cluster independently of each other and require GerD for this, yet GerD clusters in the absence 
of other proteins. These rafts diffuse immediately upon germination. 
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possibility that the excess alanine side-chains could participate in hydrogen bonding, and/or 

electrostatic tensioning.  Interestingly, it was known early on that the spore peptidoglycan contained 

both D- and L-alanine of more or less equal proportions, and in great abundance28.  Interestingly, 

these alanines are usually found as sidechains (linkers) in the peptidoglycan, and so when they are 

isolated and purified they predominantly exist as exposed side chains.  There is some evidence that 

the germinating bacterium uses this as a template for the construction of its nascent cell wall29 

(vegetative peptidoglycan, see Fig 1.4).  D-alanine is known to competitively inhibit L-alanine.  This 

principle is often used by biologists to halt L-Ala induced germination30.  There is evidence that 

racemase enzymes in the coat of many species convert small amino acids, including Ala, from L- to 

D-31,32.  Racemases can help the bacterium quorum sense local density and adjust self- L-Ala levels to 

prevent colony overgrowth or, alternatively, to amplify low density germination levels.  Radiation also 

induces a stable free radical in alanine, so it is reasonable to assume that this could account for some 

part of the spore’s resistance to radiation33.  Alanine also has surfactant-like properties34 and therefore 

disrupts hydrogen-bonds and other transient electrostatic configurations. 

The only known molecular stimuli which singularly affects all spores of all species is a well-

known cationic surfactant, dodecylamine16,35.  Warmer temperatures also facilitate faster dodecylamine 

germination in WT spores36.  Surfactants by definition disrupt surface tension or interfacial tension.  

It is suggested that this particular surfactant mediates initiation of germination via the release of 

CaDPA, and that the SpoVA channel plays a role in this15.  To this end it was shown that dodecylamine 

germination was enhanced by increased channel density in the inner membrane.  It has also been 

shown that the conserved SpoVAC subunit of the SpoVA proteins, which outnumber other GRs by 

a factor of 6-fold, can act as a mechanosensative channel, in which activity is controlled by membrane 

tension37.  We expect the membrane to be under significant negative pressures due to finely balanced 

water chemistry38.  If the inner membrane has regained some fluidity (perhaps due to surfactants 
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disturbing the immobilizing hydrogen bonded water network), any SpoVAD channels already intact 

and present, should be expected to yield hydraulic flow.  There is some indication that the SpoVA 

channel is associated and possibly activated through interactions with GRs16.  Note that dodecylamine 

alone does not result in complete hydration of the core35.  Beyond these data, it is not clear whether 

there is any additional role of dodecylamine in the spore biochemistry.   

Alanine, a common germinant, can also act as a surfactant in both single molecule and 

polymeric form34.  It is interesting that alanine is often embedded into the cortex with its hydrophobic 

group exposed (see Fig 1.7)39.  This arrangement serves to pattern the predominantly hydrophilic 

cortex with small, semi-regular hydrophobic contacts.  In general, the spore’s outer layers appear to 

alternate heterogeneously between hydrophilic and hydrophobic domains, though a hydrophilic D-

Ala subunit must be included into most GRs in order for full activity to be observed16.  Generally, the 

spore cortex appears to supplement highly hydrophilic –OH and carbonyl groups with randomly 

patterned hydrophobic groups.  Compared to the vegetative cell, it has only 1/10th of the covalent 

cross links. 

Figure	1.5		Dodecylamine	(surfactant),	Alanine,	and	Peptidoglycan	Structural	Relationship 

Figure 1.7| Dodecylamine (surfactant), Alanine, and Peptidoglycan Structural 
Relationship.  a, Universal spore germinant, Dodecylamine (PubChem ID:13583) b, Spore 
germinant & cortex structural component, L-alanine (PCID:5950) c, one configuration of 
peptidoglycan’s pentapeptide group with regular hydrophobic Alanine-based side groups 
(PCID:4294676).  All images courtesy of the PubChem database. 
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While the spore undergoes development during sporulation, the lipid mobility of the 

germanisomic inner membrane abruptly decreases40.  This is fascinating, because during germination 

the viscosity of this inner membrane is lowered to that of a vegetative cell40.  In the vegetative cell, 

there is recent evidence for lipid raft domains using neutron-scattering techniques41, thus supporting 

the idea that altered fluidity of the inner membrane likely leads to novel arrangements of GR 

components. 

 Beyond physiological germination conditions, it is known that spores will germinate in 

response to moderately high pressures of 150 MPa and high pressures of >500MPa14.  For the higher-

pressure paradigm, this is thought to be in part due to the forcing of a mechanosensative dipicolinic 

acid receptor/channel (DPA), SpoVAC, which forms after the germination signals are received15,37.  

Lower pressure induced germination is shown to result from activation of the GR cascade42.  It is not 

understood, however, how this receptor/channel comes to be forced chemically in the natural world, 

where such external pressures are not expected.  Because SpoVAC is part of a larger SpoVA class of 

proteins, it is conceivable that the DPA channel is formed through transient assembly of physically 

separated subunits43.   In fact, the structure of the SpoVAC protein has been likened to various 

synthases, and there has been speculation in the literature that’s role during development may be able 

to package the DPA by acting as a receptor for the molecule.  This is intriguing when you consider 

that synthase processes are highly active during development but if against a diffusion gradient could 

run backward and release a significant quantity of energy:  the DPA-DNA complex is a very tight 

interaction, denser than either molecule alone 44 and may act as a compressed spring later during 

germination. 

It is known that there exists some humidity-dependency with respect to germination in several 

species45.  Also, spore killing by toxic compounds, which is thought to be indicative of permeability 
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to germinants and implies a humidity dependency of germination.  This phenomenon has been 

considered in relation to swelling; however, these explanations are based on container size 46,47.  In 

other words, if the vessel is large, it will be able to take in more liquid and hence more germinants 46.  

A closer inspection reveals this idea to be over-simplified:  Reduced diffusivity to container size does 

not explain speedy resumption of biologic activity alone (frozen-like to fluid-like transition).  Also, 

molecules from these studies, including formaldehyde and chlorine dioxide, are miniscule compared 

to known germinants such as amino acids, sugars and nucleic acids necessarily introduced from the 

Figure	1.6		The	Bacillus	germination	flow	diagram 

 

Figure 1.8| The Bacillus germination flow diagram. a, cross-sectional spore cartoon showing 
physical changes in the spore are coupled to the hydration of the inner structures.  b, Adapted 
from Setlow et al 2017, we see that the activation of inner membrane germination “receptors” 
(GRs) results in GR diffusion/delocalization and possible opening of the mechanosensative 
SpoVA channel, resulting in partial hydration of the core, and release of DPA.  This DPA activates 
lytic enzymes which degrade the coat/cortex and core protein mobility is re-established, whereby 
outgrowth proceeds.  A feedback loop results in amplification of core hydration and DPA 
displacement. 
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external environment during germination45.  Water within the spore, it should be noted, obeys no such 

idealized gas conditions when confined at the nanoscale.  Furthermore, as we shall see in the following 

Chapters 2 & 3, spore water is not treated to a simple ‘bag of gas’ experience within the spore where 

diffusion kinetics dominate.  

Once commitment to germination has been established, the path forward is fairly 

straightforward regardless of stimuli, and yet is highly species specific.  For B. subtilis, the initial signal-

transducing raft produces channel activity of SpoVA, which then leads to cortex hydrolysis via cortex 

embedded enzymes (see Figure 1.8).  DPA leakage feeds back, leads to further SpoVA activity, core 

swelling and all other phenotypes of fully realized germination.  Interestingly, when the cross-linking 

density of the cortex is increased, there is an increase in speed of response to germinants like alanine 

and dodecylamine, however once initiated DPA release is slowed48.  This might suggest that the core 

is untensioned by the reciprocal pulling of the more adhered coat.  CaDPA diffusion is then limited 

as porosity decreases.  The cortex is eventually hydrolyzed by embedded lytic proteases and pseudo-

proteases, and outgrowth proceeds.  It is thought that cortex hydrolysis may result from perturbations 

to the structure of the peptidoglycan itself, and can precede DPA release in some species16(see Fig 

1.8).  

 In summary, the spore is a dormant phase in the life-cycle of certain ancient lineage bacteria.  

The cell is de-activated and stable against environmental assaults through specialized and dynamic cell-

wall structures that develop during sporulation, which can then be actively catalyzed during outgrowth.  

The re-activation of the bacterium in nature is signaled largely by chemical triggers through an inner 

membrane complex of GRs.  Moderate hydrostatic pressures of ~150-200 MPa can accelerate GR 

germination rates.  Large hydrostatic pressures in excess of 500MPa directly produce germination.  All 

of these relays, chemical or physical, result in the hydration of the core’s genetic material and overall 
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re-animation of the organism’s biochemistry.  Because water is confined at the nanoscale within the 

spore where anomalous behavior is expected, and because water is intimately connected with the 

lifecycle of the organism, we seek to understand its behavior in greater detail.  Spore water state is 

controlled by environmental factors and appears to play a role in maintaining structural integrity and 

biochemistry, and hence, dormancy of the spore.  The correspondence between the physical state of 

water and spore dormancy are follows from a hypothesis proposed by Lewis et al, 1960.  The 

hypothesis is resolved by several historic lines of inquiry, including the known role of interfacial 

tension in germination, and that all known spore species are germinated by a particular surfactant.   
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Chapter 2:  Spore Hydromechanical Evolution  

Water is the most anomalous liquid and it is essential to the lifecycle of all biological organisms, 

including bacteria and the spore49.  This chapter will focus on the spore’s water responsive materials 

and relate this to anomalous water behavior observed throughout nature and biology.  Spores come 

from the Firmicutes phylum, which is historically marked by a thick peptidoglycan cell wall that causes 

them to be stained, in preponderance, Gram-positive.  A small minority of these species to do not 

stain as heavily due to the increased porosity of their wall structure.  Spores retain a peptidoglycan 

mesh in a specialized wall that separates their genetic material from the outer surfaces43.  Because this 

wall structure sits atop the genetic material at the core of the spore, it is referred to as the ‘cortex’.   It 

should be noted that the spore-forming Firmicutes are a particularly ancient class of bacteria, and so 

Figure	2.1		Spores	are	a	specialized	form	of	bacterial	from	the	Firmicutes	phylum	

Figure 2.1|  Spores are a specialized form of bacterial from the Firmicutes phylum, 
which is among the earliest branches of life on Earth.  Adapted from Wikimedia  creative 
commons “Phylogenetic Tree of Life” via data from Chiccarelli et al 2006. 
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behavior of this specialized structure must also be considered in this primordial context (see Fig 2.1)50.  

The Firmicutes’ early branch in the evolution of life on Earth is also relevant when evaluating possible 

mechanisms available to the organism’s unique two-phase life-cycle. 

The spore is multilayered, with the cortex and outer coat atop a core containing dehydrated 

genetic material.  The cortex and coat perform some environmental-sensation action in addition to 

their role as variable physical barrier for the genetic material: spores of several species have 

demonstrated a remarkable humidity-responsive capability, swelling up to 18% of their desiccated size 

through some as-of-yet poorly understood structural transformation (the volume of water taken up 

does not correspond directly to the swelling observed)47,51,52.  The precise evolutionary advantages that 

lead to the swelling behavior remain unclear, although several subsequent questions have been raised 

in the literature to that end 2,43,52.  It has been suggested that during development the spore’s water-

responsive (swelling) materials aid in the wicking-like dehydration of the core while the genetic 

material is simultaneously chelated by DPA16.  Other water-responsive biological actions, such as the 

ice plant’s daily unfolding53, show that the spore is not unique in its ability to harness water to change 

Figure	2.2		Humidity-responsive	spores 

 

Figure 2.2|   Humidity-responsive spores.  Spores rearrange their shapes as ambient 
humidity shifts.  This behavior is initialized during dehydration/coat production, where it 
produces the characteristic rucks and wrinkles seen on the spore surface as these materials adjust 
to the decreased internal dimensions.   This can lead to size changes of up to 18% in certain 
species across a full range (0-100%) of relative humidity.  
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shape and that this ability can be enlisted in functions including, but not limited to, environmental 

sensation53.  Other examples of this effect can be seen in pine cone seed dispersal and sap ascent in 

trees54,55.  The Argonaut nautilus is capable of manipulating water pressures to achieve variable 

buoyancy and navigate depth56.  

The spore appears to develop its swelling behavior as a direct result of dehydration during 

development after the initiation of the Sigma G/K programs.  Our group initially modeled that this 

dehydration produces the rucks or wrinkles in the coat as the coat (deposited in 100% hydration) 

responds to the decreasing volume of the inner spaces as they are tightened via crosslinking into 

place38.  It is assumed that the cortex layer also undergoes buckling-like behavior, although its macro 

geometry remains smooth and spheroidal in contrast to the rucks of the coat.  This may suggest that 

the tensile forces are distributed uniformly among the pores.  The dehydration process appears to be 

essential in tensioning the spore materials and may explain their extreme physical properties including 

high elastic modulus52 and viscous stabilization of the signal-sensitive inner membrane40.  It appears 

to be important in germination as well.  Recall from Chapter 1 that the appearance of membrane 

Figure	2.3		Humidity-dependent	strain	measurement	method	

Figure 2.3|   Humidity-dependent strain measurement method. a, Spores are examined 
by tapping mode AFM for height change in response to b, variable humidity directed precisely 
toward the scanning location. 
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tension-sensitive channels in this inner membrane is concurrent with the earliest phases during 

emergence from dormancy. 

Initially, spore-swelling in air was observed through automated scanning microscopes and 

ellipsoid-intensity models47.  For the purposes of this work, we have adopted a more physical approach 

to measurement through atomic force microscopy (AFM)38,52.  By directing a variably humid airflow 

at the scanning stage we can observe this swelling through a nanoscale force sensing cantilever (see 

Fig 2.3).  Alternatively, and arguably less subject to air/thermal noise, the entire AFM can be enclosed 

inside of a humidity controlled chamber.  The latter technique is used sparingly as it may risk damage 

to the scanner mechanism.  

The spore’s water-responsive behavior has, to date, been primarily ascribed to the 

cortex/coat47,52,57.  Others have argued that the core itself may have a certain ‘sponginess’58.  However, 

if this gel-core is present it could not exchange water with the external world and is therefore not 

directly involved in spore-swelling.  This understanding is based on core-water NMR studies where 

deuterium labeled, desiccated spores are left open to ambient exchange for weeks57.  In support of this 

Figure	2.4		Spore-layer-dependent	strain 

Figure 2.4|   Spore-layer-dependent strain. a, tapping mode image of WT and b, pair of 
SpoVD cortexless mutants along with strain measurements for various mutant spores.  Error 
bars equal standard error for at least 5 spores.  Two-tailed T-test, *p<.01 
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theory, my initial examinations of substructural mutants have shown that genetic deletion of the cortex 

is sufficient to maximally reduce humidity-responsiveness (75% of mean WT strain) [see Fig 4b].  

Deletion of cotE and saf A also seemed to diminish response.  Saf A transcribes proteins which may 

be involved in articulating the cortex to the coat59, while cotE encodes a bulky coat protein.  This may 

imply that in the saf A mutants the coat has become uncoupled and no longer transduces mechanical 

impulses from the cortex.  

The spore’s cortex layer is entirely comprised of peptidoglycan (murein) arranged into an 

unspecific, heterogeneously patterned, geometric architecture (see Fig 2.5).   Peptidoglycan is a 

regularly cross-linked sugar mesh found in the cell wall of vegetative bacteria and traditionally used to 

discern Gram-positive strains.  This structure lends itself to elastic responsiveness to turgor and to 

maintenance of structural integrity60. Developing spores receive this substance in an externally applied 

fashion while entirely occluded within the confines of a ‘mother’ bacterium6,61.  To date, due to the 

inaccessibility of the spore during development, nearly all structural coordination descriptions of its 

cortical peptidoglycan have relied upon the related vegetative isoform62.  Spore peptidoglycan is 

comprised, heterogeneously, of a chain of glycans with regularly-spaced protein branches.  Unlike the 

Figure	2.5		Repeat	polymeric	organization	in	bacterial	peptidoglycan	

Figure 2.5|   Repeat polymeric organization in bacterial peptidoglycan. a, NMR of 
synthetic peptidoglycan polymers yields this hypothetical lattice structure reprinted from 
Meroueh et al 2006 and supports the spring-like organization of rigid glycans (orange) and 
flexible protein cross-links (green) b, Hayhurst et al 2008 yield a coiled meso-structure via AFM 
imaging of cell wall peptidoglycan. 
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vegetative cell, the spore peptidoglycan is much more sparsely cross-linked; it contains about 1/10th 

the crosslinks.  This means only 3% of the total peptides are cross-linked.  The remaining peptides 

can be accounted for as follows:  ¼ of the peptides terminate in bare L-alanines, 1/4 are bulky unlinked 

acids (24 possible types), and half are hydrophilic delta lactams.  Precise arrangement of these chains 

is stochastic, resulting in a somewhat cloudy nanoscale picture of spore cortex peptidoglycan. 

Much of the sparse information available regarding the coordination of the cortex has come 

from AFM studies 63.  In one particular study (conducted in the usual hydrated conditions) we see a 

small 100nm window granted below the fractured outer sporecoat into what is possibly the outer crust 

of the cortex, which appears as a latticework of 10nm pores arranged into a hexagonal honeycomb 

pattern.   This data can be aligned with a pre-existing peptidoglycan model on the related vegetative 

isoform (Figure 2.5a)64.  This particular model is produced through examination of homogenous 

chains of synthetic ‘peptidoglycan’ with NMR and assigns geometry of sugars and peptides in a 

crystalline fashion, while native spore peptidoglycan is heterogeneous.  The authors present a model 

structure to include sheets of the honeycomb-like peptides arranged in layers and connected in the z-

dimension via the glycan spokes, although the spore is expected to be non-crystalline.  Figure 2.4 

simply serves to illustrate that the simplest arrangements of peptidoglycan produces a series of pores, 

on the order of a few nanometers.  These pores are both flexible and rigid depending on the structural 

coordination of the matrix.  The peculiarities among the arrangement of alternately hydrophobic and 

hydrophilic elements in peptidoglycan may also force water into certain behaviors. 

Water has been shown to perform biological functions through structural rearrangement in 

the higher ordered cellular systems of many species, such as seed dispersal in pinecones 53,54,65.  In the 

case of sap ascent in trees, water itself can bear the force of tension to perform work — evaporation 

actually pulls water skyward against gravity, thus perfusing the tree through a porous network of 
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confining capillaries55.  In this case, as in that of the spore’s cortical paradigm, the water is said to be 

under negative pressure; that is, the water is tensioned 52.  

Actually, within the coat/cortex of the spore, we expect confinement on the order of 0-1.5nm 

(see chapter 3 for calculations and discussion of this estimated pore size, d).  At these very small 

confinement lengths we expect the water to behave quite unlike the water we are accustomed to in its 

bulk form54,55,65-67.  When water is restrained at the nanoscale, it can exhibit altered viscosity, and the 

molecules proceed toward a more immobile state67-69.  This effect has been demonstrated 

experimentally in synthetic systems, such as water confined within porous clay, carbon nanotubes, and 

silica pores 68,69.  Nanoconfined phase shifts toward crystal ice have been modeled as between quartz 

surfaces when approaching two angstroms 70.   In effect, when water is trapped within a tight porous 

material, a dramatic slowing of its molecules’ respective motion is observed.  Note that ices have been 

observed in graphene when confined to single molecule layers (see Fig 2.6)71.   

Figure	2.6		Nanoconfinement	induces	dense	square	ice	in	graphene 
Figure 2.6|   Nanoconfinement induces dense square ice in graphene.   TEM and 
accompanying MD simulation of square ice appearance in graphene when between layers at 
~1GPa.  Adapted from Algara-Siller et al, 2015. 
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With its unique phase-density relationship and myriad contradictions to ontological 

conventions, water defies physical-chemical expectations at each occasion.  The hydrogen bond (HB) 

can be thought of as largely responsible for many of the anomalous properties of water.  This 

interaction can be defined as a local bond whereby in the interaction X-H•••A, X-H participates as a 

proton donor to A.  The bond energy can vary significantly over -0.2 to -40 kcal/mol18.  Water is quite 

unique among H-Bonding molecules due to the two lone-pair electrons on oxygen.  This geometry 

allows for up to four bonds formed at any given time as is found in traditional hexagonal ice.  The H-

bond strength and multiplicity is therein responsible for liquid water’s relatively lofty boiling point and 

solid water’s diminished density.   A recent paper from by Ceriotti et al. suggests that the quantum 

state of hydrogen-bonding protons in water can necessitate many observed oddities in nanoscale 

character72.   They imply that much of the reported ordering from the nano- to meso- scales may 

derive from perturbations in a vast quantum hydrogen-bonding network.  In such a case, the strength 

of the molecule comes from the whole of the bulk.  H-bond fluctuations are limited or enhanced in 

such a way that the network may assume a new order and the result could be seen macroscopically as 

a phase or density aberration.  

 Extreme conditions of confinement can lead to immobilized layers of crystalline water; 

essentially providing for a phase change in violation of traditional phase/temperature relationships for 

this magic molecule.  Maheshwari and colleagues (2013) eloquently illustrate this phenomenon in a 

model system where water is nanoconfined between layers of clay, marking the first observation of a 

phase transition above the bulk freeing temperature of water9.  This occurs in the temperate region, 

thermodynamically, between 280 and 290K.   In addition to this novel finding they suggest the 

presence of an additional low temperature transition (~240K), symptomatic of partial freezing of the 

confined water.  Perturbations of the HB network due to lack of exploratory freedom by individual 

molecules would lead to an inability to complete the crystal arrangement necessary for hexagonal ice.   
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In their experiment, the team uses NMR to retrieve chemical shifts and transverse relaxation times for 

the confined water protons relative to bulk phase.  They correlate their findings to data obtained from 

identical parameters through positron annihilation spectroscopy (PAS), making the identification of 

these new phase transition points a very compelling statement. A separate evaluation of the pros and 

cons of various water modeling MDs is given by Mao et al. (2012)11, 12.  Generally, these simulations 

produce parameters that are best accounted for by various models.  This reinforces the idea that water 

will behave very differently depending on its external environment. 

Hu et al. model thermal conductance properties of water layers in a similar nanoconfined 

environment and detail some intriguing effects6.  The scientists again make use of MD simulations to 

find that thermal conductance between two quartz surfaces is maximized at a particular length of 

about 2A of insulation.  This is an interesting finding, in that this is approximately the length of 

confined frozen water under the conditions in their simulation, while considering the alignment of 

vibration states between the water and the hydrophilic quartz surface hydroxyls.  It is of particular 

importance that in the optimally confined conditions, the authors indicate that almost all of the water 

molecules HB with at least one of the silanol head groups on both surfaces.  This interaction across 

the interfaced HB network creates glue that effectively forces the water into a more solid-like, less 

diffuse state.  

These data are suggestive of the aberrant behavior of confined water are fascinating, in 

particular the ability of water to undergo a phase transition and appear frozen above the bulk freezing 

point.   However, thus far we have not been able to empirically phrase the degree to which water 

molecules are immobilized as confinement is systematically imposed.  That is to say that it is difficult 

to tune and adjust the confinement length experimentally, and so simulations often prevail as the 

dominant research.  Chivazzo et al. provide this piece of puzzle by modeling the boundary conditions 
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of related nanoconfinement through a series of molecular dynamic simulations and produce a scaling 

factor to describe observed decreases in diffusion constant as the walls close in on the water molecules.  

For this modeling, they make use of nearly 60 separate cases with varied size and surface architecture 

of nanoparticles, nanopores, proteins, and nanotubes.  Additionally, they are able to fit results from 

many studies in the literature including silica nanopores (Milischuk, 2011), carbon nanotubes (Liu, 

2005) and myoglobin (Makarov, 1998).  All together they are able to produce a single linear scaling 

element to describe the self-diffusion of water in confined geometries.  Their scaling parameter is 

introduced as the ratio between the total water volume of influence and the total volume accessible to 

the water molecules.  This parameter, q, therefore ranges from zero in bulk water to one in totally 

confined, icy molecules.  As external validation, the scientists use their approach to accurately predict 

MRI relaxivity of iron oxide nanoparticles embedded in mesoporous silicon substrates.  Each of these 

findings are particularly noteworthy when one considers the standard behavior of water under pressure 

in bulk.  Taken together we obtain a very wide and complete view emerges of how water readily loses 

its liquid/vapor nature when backed into a corner.  But confinement is not the only physical constraint 

that specifies anomalous water behavior.   
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It has been long understood that water under extremely high pressures can lead to decreased 

densities and these conditions predict “ice” to exhibit abnormal crystal structures (see Fig 2.7)5.  Many 

of the models used to examine these configurations have recently been turned toward the examination 

of lattices available at negative pressures as well.  The TIP5P series of models, based on five-site 

coordination has been found success in predicting thermal conductivity, sheer viscosity, and 

temperature trends but not specific heat11.  Stanley et al. (2002) initially used this modeling algorithm 

to examine the effects of negative pressure on phase.  The authors concluded that when water is 

stretched there was a minimum density available and that this corresponded to ice.  In their model, 

further tugging across the molecules leads to H-bond destabilization and a reanimation of local self-

diffusion17.  In other words, there is a distinct threshold to the loss of the solid phase and this must 

be considered. 

Later in 2009 a study was published with a synergistic algorithm, which combined favorable 

aspects of the TIP models (see Fig 2.7)5.  These authors take the discussion one step farther by 

examining the configurations of various hypothetical ices in negative pressure regimes.  Their new 

model allows them to imagine hypothetical ice lattices, such as hydrates with the seed (guest) element 

Figure	2.7		Proposed	structures	of	negative	pressure	ices	

Figure 2.7|   Proposed structures of negative pressure ices adapted from Conde et al 2009. 
a, empty-hydrate type sI with disordered proton b, type sII with disordered protons and c, type 
sH with disordered proton 
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removed.  They are also able to provide several hypothetical phase diagrams.  The key features of each 

negative pressure ice are (1) densities below that of traditional Ih ice [i.e. the most stable phase for 

that temperature in bulk] and (2) virtual negative pressure ices do not obey the traditional hexagonal 

lattice arrangement and are subject to intramolecular rearrangements [i.e. proton disorder, loss of 

tetrahedral architecture].  Interestingly, the author’s novel modeling algorithm predicts the presence 

of standard ice during extremely pressures down to nearly -4000 bar before phase condition makes 

the shift into type sII, a lower density lattice based on an empty hydrate shell.  This stands in contrast 

to the TIP5 model, for which they also provide a phase diagram comparison (see Fig 2.8 for 

comparison of various hypothetical ices).  In the traditional TIP5 we see a more heterogeneous blend 

of phases, with ice i’ dominating at most temperatures and moderate negative pressures.  This is not 

remarkable, as i’ was among the first predicted negative pressure ice, based on lattices inferred 

“accidentally” from crystallography data5.  

In 2012, Azouzi corroborated the plausibility of the TIP5 series via cavitation threshold via 

experiments on water inclusions in quartz1.  They conclude the line of density maxima, prior to 

cavitation, peaks at 922.8 kg/m3 for ambient temperatures.  This finding implies a new constraint for 

the minimal density of negative pressure ices.  For instance, many of the hypothetical empty hydrates 

from the models by Conde et al. would be violate this experimentally defined parameter.  In other 

words, the H-bonds in water molecules are shown to tear apart, yielding vapor at the low molecular 

density required for many “virtual ices.”  This leaves us largely to the classically modeled dataset, and 

the ice i and i’ arrangements.  Interestingly, and perhaps satisfying previous discussions of H-bond 

proton shuttling, protons of these ices are predicted by the TIP5 simulations to be of regular order2.  

It could be extended that fluid proton nature of the H-bond network in liquid phase water is perturbed 
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by the opposing forces of negative pressures and crystallizes under favorable, though expanded and 

perhaps somewhat unexpected, thermal conditions.  Together these data provide a view of water as a 

fluid H-bond mosaic, which can seize up into different arrangements depending on how it is uniformly 

pulled or compressed.   Once more we can begin to see how these principals could appear in nature 

and perhaps our own bodies.  Consider the negative pressure systems within trees that allow the 

transport “pulling” of water from the very depth of root systems, hundreds of meters into the sky.  In 

Chapters, 3 and 4 we shall see that the spore, too utilizes negative pressure to its advantage. 

Bulk water when cooled can order into hexagonal lattices largely due to the tetrahedral nature 

of its intramolecular geometry during hydrogen bonding.  This crystal structure requires more space 

than the disordered liquid form and the resulting phase displays decreased density.  Recently, it has 

been hypothesized that a similar ordering of molecules could occur in single molecule layers with tight 

proximity to a hydrated substrate.  It is fascinating to imagine implications of this principle on the 

local density of water at these interfaces.  Work by Kimura et al. demonstrates this effect through 

Figure	2.8		Virtual	ices	and	their	predicted	densities 

Table 2.8| Virtual ices and their predicted densities from Conde et al.  (2009).  
Comparison of new integral TIP4P/2005 model with the TIP5P model for various ices, 
possibly suggesting parameters for configuring solid phase occurrences in “stretched-water” 
negative pressure conditions. 
 



 

 28 

frequency modulation analysis during AFM scanning8.  The team used this technique to acquire 

convincing layer-by-layer virtual images of this effect on a silica substrate. 

 The experiment was performed after Jarvis et al. 2000 discovered that while an AFM tip, 

oscillating in tapping mode, approached a solid surface in liquid water, there was a notable repulsive 

effect that seemed to be separated into regular steps of resistance7.    These steps of force dissipation 

turned out to yield a theoretical solvation shell separation of 2.2A; a value within reasonable bounds 

for the size of single water molecules.  Kimura expanded these findings twofold by manipulating the 

substrate and solution as well as creating a two-dimensional representation of the effect by scanning 

in the X-range for several nm in addition to the approach Z-range of approximately 1.1 nm.  At the 

SiO2 surface, there is some charge where Al has replaced one in four of the Si atoms.  As the water 

interacts with negative charges, a contrast is readily observed.  Because this muscovite/mica substrate 

crystal surface is arranged in a hexagonal lattice, there is a heterogeneous density distribution of 

molecules in the respective hydration shells mirroring this arrangement.  This is, of course, a result of 

Figure	2.9		Visualization	of	ordered	water	at	a	surface 

Figure 2.9|   Visualization of ordered water at a surface adapted from Kimura et al 2010. a, 
basic setup illustrating the scanning orientation for b, where we visualize the presence of force 
layers and presence of ionic impurities. 
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charge interactions between the water and substrate. At the first hydration layer, new forces arise, such 

as Coulomb interactions and van der Waals forces, which perturb the traditional thermal properties 

of the water molecules from those observed in bulk4.  The effect is most visible at the first and second 

layer.   In addition to these observations, the researchers introduced 1M potassium chloride into their 

aqueous solution.  The potassium ions are adsorbed onto the substrate and induce a noticeable regular 

effect on the hydration shells.  This may be thought of as a surfactant-like interaction.  Finally, they 

conclude by repeating their imaging motif on a crystalline array of biomolecules, using the 

bacteriorhodopsin from the archaea bacterium Halobacterium salinarum.  The lattice here is crystalline, 

unlike what would be found in a bacterial membrane.   

Given that this hydration shell ordering can be observed with controlled crystalline 

biomolecules, how might anomalous water behavior manifest in biological systems?  Martin Chaplin 

of the University of South Wales a long history of studying anomalous water behavior with respect to 

biology and publishes a regular review in Nature and an extensive website discussing biological 

implications of water in nature (see Fig 2.10)73,74.  In one particular example, Sheikh and Jarvis examine 

bio-interfaces via membrane hydration in lipid rafts16.  These studies were performed with artificial 

lipid membranes and underscore the important principal that differential arrangement of lipid head-

groups in the membrane can dictate patterned ordering of water at those interfaces.  In short, lipid 

rafts are regions of the cell membrane that exhibit increased solid phase behavior and are thought to 

contribute widely to surface molecule aggregation and myriad signaling applications.  The authors 

hypothesize that the specific size and arrangement of these rafts is, in turn, specified in some part as 

a result of the hydration shell ordering.  For instance, these two-layer hydration shells are observed 

only at the raft-water interface and within a 10nm annulus surrounding the raft, but not at the raft-
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nonraft border region.  An implication of this observation is that the ordering of water might limit the 

closest distance of adjoining rafts to 20nm as well as the actual size of the rafts themselves by 

preventing coalescence.  Additionally, this effect might slow the lateral diffusion rates of raft 

components as well as providing a non-negligible energy barrier to certain extracellular protein 

domains.  This is not to say that the hydration layers would prevent external protein interactions but 

Figure	2.10		Ordered	water	in	biological	sciences 

Figure 2.10| Ordered water in biological sciences from Chaplin, 2006.  Life cannot exist without 
water, and it was soon discovered that hydrogen bonding produces a wide array of anomalous 
behaviors relevant to biology including ‘iceberg’-like hydration structures around hydrophobic 
groups, pentagonal ice rings in protein folding, and is involved DNA-sequence recognition by 
transcription factors. 
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that they are certainly affected in terms of localization and kinetics.  All told, the authors provide an 

intriguing example of how biology makes use of ordered water. 

Based on the results of these studies one is compelled to imagine that anomalous behavior of 

water at surfaces and in relation to organic compounds may have vast implications in biology.  Indeed, 

water transport itself is tightly regulated in the body and diseases have been known to arise from 

subsequent disregulation19.  This has been extensively detailed through the understanding of 

aquaporins75,76.  Aquaporins actually provide a single file squirt-gun like effect where water is 

transported much faster than diffusion and viscosity is lowered significantly.  Furthermore, water 

diffusion is an integral aspect of diagnostic medicine, as evidenced by techniques such as diffusion 

magnetic resonance imaging (MRI).  A 2004 study by Paran et al. describes how in a xenograft model 

of breast cancer, the response to anti-estrogenic drug, tamoxifen methiodide (TMI), can be monitored 

through changes in volume fraction of slowly diffusing water13.   

Water is in fact observed to be involved in biological communication and signalling74,77.  Cells 

may indeed transmit information through water structures at great speeds through quantum 

delocalization, which makes for a much faster electronical communication when compared to long-

range diffusion.  An example of this is shown in electron transport where water structures mediate 

charge transfer78.  Sequence recognition of DNA has been shown to be highly dependent on in the 

interfacial water structures which mediate the interaction79.  In general, water organizes biology, which 

organizes water as into patterns and structures80 to help perform more biology.   

In fact, within the spore we see all of the criteria for anomalous water behavior:  patterned 

hydrophobic/hydrophilic surfaces, nanoconfinement, and negative pressure.  Water physics has 

recently been implicated in spore resistance to UV and peroxides81.  Spore biology increasingly 
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demonstrates the need to look beyond simple diffusion in order to understand the mechanics of the 

spore lifecycle. Water’s physical state may offer this explanation43.  

 In summary, the spore is a dormant phase in the lifecycle of an ancient bacterial lineage, and 

this gives us a window into conserved biological mechanisms of the earliest evolutionary periods 

available to history.  Spore-forming bacteria live in an intimate harmonic relationship with water 

throughout their dormat and waking life.  Using water they are capable of dramatic cellular 

rearrangement in response to the ambient hydration conditions.  These kinetics result from tension-

relaxation dynamics between the spore surface (i.e. coat/cortex) and the water’s diffusive potential in 

air (relative humidity).  This spore-water, being nanoconfined and highly tensioned, is expected to 

behave divergently from an idealized gas/liquid.  The divergent behavior or water under the conditions 

found within the spore can dramatically affect water transport and therefore the stability of 

biochemistry.  Thus, physically extreme conditions within the spore can be expected to promote 

anomalous water states that may play a role in dormancy. 
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Chapter 3: (S)poroelastic Water Transport   

 We have to this point seen how the spore evolved hydromechanical abilities.  The cortex/coat 

structure acts through some yet undetermined mechanism in the developmental dehydration of the 

core during sporulation to ensure long-term dormancy.  Deuterium NMR has shown that the 

remaining core water is inaccessible to external exchange with atmospheric water while the spore is 

dormant57. It is furthermore known that the first macroscale phenotypic observation in re-activation 

of the organism is the rapid increase in core-water content from less than 25% wet weight to greater 

than 80%16.  Also, the spore retains the ability to change its size in response to humidity gradients47, 

which can also affect its ability to germinate45.  Overall, water itself and the hydromechanical action 

by spore’s outer-most structures, primarily the cortex and coat, appear to play a significant role in the 

stabilization of dormancy and life-cycling of the spore-forming bacterium.  This chapter outlines 

experiments and theory utilized to understand transport kinetics, and detail water’s physical state.  

 In order to better understand the internal spore water itself, as well as how the outer spore-

structures interact with this water, a high temporal-resolution microcantilever sensor system was 

developed.  Microcantilever sensors have been studied previously for use in antibiotic resistance 

diagnostics82 and even to study other aspects of spore-water transport83.  The basic principle is 

illustrated in Fig 3.1, where spores are coated onto one side of a traditional AFM cantilever.  The 

microscale deflection of the cantilever is amplified by an AFM laser-photodetector system and is 

produced by the nanoscale contractions of the spores as they experience humidity cycling.  While the 

cantilever itself does respond also to the bilayer heating effect, these responses are extremely fast as 

the cantilever cools quickly84 compared to the relaxation of the spores, so this effect is negligible and 

not limiting.   
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 Cantilevers are coated with spores on only one side with a traditional airbrush spray-gun to 

produce the desired bi-layer actuation.  The spores naturally adhere to cantilevers.  The spore 

suspension is centrifuged to pellet the cells, whereby they are mixed 1:1 in water/ethanol before 

deposition.  A bottled nitrogen air source is used to maintain a clean mixture devoid of contaminants 

and the cantilevers are stored in clean boxes.  In order to secure the absence of spores on the backside 

of cantilevers, a donor cantilever chip was used as a mask, although several other masks were 

attempted in arriving at this protocol (see Fig 3.2). 

 In order to adjust the hydration parameters in contact with the spores atop the cantilevers, the 

entire AFM is housed inside of an environment control unit (ECU).  A stream of air is directed into 

the ECU opposite the AFM to vary the RH. Humidity is controlled by mixing dry air (~ 5% RH) 

provided by a laboratory air source with humid air (>90% RH) generated by passing the laboratory 

air through a bubbler (An air-stone from JW Pet Company is used to bubble air into water in an 

Erlenmeyer flask). A variable power computer fan is positioned approximately 10cm from the 

Figure	3.1		Microcantilever	design	for	studying	spore	water	transport 

Figure 3.1|  Microcantilever design for studying spore water transport.  a, spores change 
shape rapidly when equilibrating in the presence of humidity gradients.  b, Traditional AFM 
cantilevers are unilaminally coated in spores and their physical size change at the nanoscale results 
in deflection at the microscale (cantilever is ~200 µm in length). c, Cantilever tip is shown coated 
with spores through electron microscopy (SEM). 
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cantilever to facilitate evaporation and air mixture near the spores. A mild fan setting producing an air 

speed of 0.2 m/s is used, as further increases in fan power does not alone affect the time constants 

observed (see Chapter 4 for a more detailed schematic of the ECU).  The fact that the fan did not 

affect time constants alone, further reinforces the importance of pore size in scaling the transport 

speed.  

In order to evacuate the internal spore water so that kinetics could be observed, a variable 

power fiber-coupled 1000mA LED of wavelength 455nm (Thorlabs, Newton, NJ) is used to rapidly 

evaporate water from the spores and control cantilevers (see Figure 3.3). The LED provides ~ 1ºC 

change at the cantilever surface, and because temperature affects vapor saturation exponentially, this 

slight heating provides a dramatic change in the internal water content of the spore.  The LED is 

Figure	3.2		Spray	coating	of	cantilevers 

Figure 3.2| Spray coating of cantilevers.  a,  The air-brush spray-gun is positioned above 
the cantilever to be coated, which is masked with a donor chip as in b, to produce a unilaminal 
coating as shown in c.  Note the cantilevers shown in these panels are not of the dimensions 
used for the majority of the data collection and are specific to the preliminary set-up and AFM 
system used within that setup. 
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manipulated with a photography focusing-rail slider coupled to a stereotactic manipulator scavenged 

from a microscope stage such that the heat source may approach the cantilever within <1 mm.  The 

LED is positioned so as to allow maximal evaporative deflection. Finer manipulation and alignment 

of the LED to the cantilever is accomplished with endoscopes embedded within the ECU and 

positioned at the side and above the Multimode head. LED power is scaled manually such that the 

weaker deflection during dry conditions is comparable in amplitude to that of the more wetted 

conditions. 

 

A Labview routine times the triggering of the heat-pulse LED, as well as collects cantilever 

deflection, humidity, and temperature data. Phase shift signal, an indicator of mass exchange, is 

calculated in Labview in real-time. Data acquisition is timed via an external function generator and 

sampled with 5ms resolution once temperature and humidity are stabilized within +/- 0.5%/ °C. A 

Figure	3.3		Basic	micro-sensor	system	for	studying	water	sorption	during	hydration	re-
equilibration	of	spores 

Figure 3.3| Basic micro-sensor system for studying water sorption during hydration 
re-equilibration of spores.  a, LED is pulsed to rapidly evaporate water from the spore’s 
outer coat and cortex.  The inner core is inaccessible to external water.  b, the spore 
dimensions change at different relative humidity set-points, and this results in different 
transport kinetics. 
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three-second loop-time is utilized to allow ample re-equilibration of the cantilever under the slowest 

conditions. Five signal loops, consisting of a 600ms LED pulse, followed by a 2400ms recovery period 

are integrated.  

The relative magnitude of the photothermal 

effects on the chemical equilibrium state between the 

environment and porous spore material is shown in 

Figure 3.4 as characteristic cantilever frequency shift 

(spore water mass displacement) versus the total 

water uptake available throughout the experiment. 

As is clearly depicted, the evaporative perturbation 

from the heat source, even in the most hydrated 

environment, produces a minimal mass 

displacement and allows maintenance of the set-

point humidity for data collection at each step 

throughout the course of the study.  

As evident in Figure 3.3b, the speed of 

sorption in wet conditions is much faster than that 

of dry conditions.  This is, in fact, quite different 

from what would be expected were the spore simply a bag of water-vapor responding diffusively to 

the outside moisture.  In such a case, the relationship between the time of sorption and the chemical 

potential available (external relative humidity), would be linear, and opposite in polarity such that 

restoration of chemical equilibrium in dry conditions would be faster (less water to transport).  In fact, 

we observe the opposite with the spore sorption.  In the spore, dimensional changes of the pore 

Figure	3.4		Thermal	pulse	mass	
displacement	response	versus	wide	
humidity	range 

Figure 3.4|  Thermal pulse mass 
displacement response versus wide 
humidity range. The fundamental 
frequency of a cantilever coated with spores 
is shown in two water exchange cases:  (left) 
water mass displacement as a result of 
thermal pulse and (right) in response to full 
range humidity indicating that the 
evaporative perturbation deviation from set-
point is low relative to overall chemical 
potential available to the study. 
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appear to  result in faster transport as the pores 

are opened, and because this effect is non-

linear there appears to be some contribution 

from the fluid to hydraulic resistance as well. 

Several control organic polymeric 

substances were examined via the water-

transport cantilever sensor apparatus, 

including dextrose and methylcellulose (Figure 

3.5).  Because response speed seemed 

releatively fast in both hydrated and 

dehydrated conditions, it was inferred that the 

spore was behaving uniquely to limit water exchange.  In order to understand if the spore 

peptidoglycan alone could recapitulate this effect, this material as isolated from several species was 

examined, courtesy of Dr. Simon Foster (University of Sheffield, UK).  Interestingly, the isolated 

peptidoglycan was also able to produce an actuating 

effect, but failed to induce the wide ranging 

differences between transport in wet and dry 

conditions.   Again, this confirms that the 

dimensional changes during hydration are affecting 

the speed of transport but differently than within 

the intact spore (see Fig 3.6). 

In the spore, quite differently from purified 

materials, the humidity indeed appears to speed up 

Figure	3.5		Transport	kinetics	of	
isolated	peptidoglycan	from	
several	species 

Figure	3.6		Spore	transport	versus	
alternative	biopolymer	transport 

Figure 3.5|  Spore transport versus alternative 
biopolymer transport.  Methylcellulose also produces an 
actuating effect as shown above, however, it’s internal 
dimensions do not expand appreciably with humidity, 
unlike the spore, thus the speed is not attenuated as 
noticeably in the dehydrated state when compared to the 
spore.  Actuation is very fast for methylcellulose, indicating 
good exposure to atmosphere. 

 

Figure 3.6|  Transport kinetics of isolated 
peptidoglycan from several species.  The purified 
cell wall materials also respond to evaporation to 
produce an actuation and transport of water can be 
measured, however no appreciable differences could 
be seen between dry and wet conditions.  Generally, 
the response time was very slow for these materials, 
indicating that they provided poor atmosphereic 
exchange. 
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water transport non-linearly (see Fig 3.7).  The sorption curves actually follow an exponential decay 

function, similar to the charging of a capacitor, and so we can think of the non-linear shape 

analogously, where the hydromechanical re-charging (sorption) is limited by the capacity of the spore 

to hold water (humidity-state dependent as in Fig 3.7b) and some physical resistance of the water’s 

flow (either hydraulic or electrostatic).  For a capacitor charging event this ‘swelling’ time could be 

described as t~RC.  Because the spore’s water transport does not depend directly on its ability to hold 

water (capacity), there must be some resistive contribution of the water to its swelling time.   

Fortunately, for a porous material, such a theory has been developed, which can illuminate these 

viscous contributions to swelling.  

 Poroelastic theory was developed by Belgian-American engineer, Maurice Anthony Biot, to 

aid petroleum engineers in their efforts to maximize fluid flow from porous rocks.  The general theory 

is essentially a derivative of Darcy’s law.  In this form, it can be summarized as the change in fluid 

pressure with respect to time being dependent on the pore size, d, and the pressure propagation per 

displacement depth as follows: 

∂P
∂t = −

Bd(

µ
∂(P
∂x( 	 1  

where µ is the viscosity of the fluid, and B is bulk modulus of the resistive medium85.   Note 

that (≥2-6 Gpa), we treat this as the spore’s modulus which we derive experimentally later in the 

Chapter.  
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This theory allows us to treat internal spore water vapor-pressure in a diffusive manner, such 

that it propagates into the spore over time as the spore re-equilibrates to the ambient external 

environment.  

The poroelastic time can then be simplified as 

τ	~
αL(

D3
2  

which depends on poroelastic diffusivity, D3, the thickness of the region over which pressure 

spreads, L, and α, which is a prefactor that depends on the geometry of the system.  

 In this work, experimental time constant is determined by fitting normalized deflection signals 

with an exponential decay function. We examined phase signal versus deflection signal and at this 

timescale (<1s), the transport kinetics produce identical time constants.  As such, we assume that the 

Figure	3.7		Humidity-dependency	of	sorption	time	is	non-linear 

Figure 3.7| Humidity-dependency of sorption time is non-linear.  a,  Humidity is fixed to 
some setpoint value and then after photo-thermal perturbation, response kinetics of water 
transport are shown, such that swelling is faster in wetter conditions.  b, Transport time constant 
for each humidity state shows that this relationship is non-linear, and so the water transport 
speed appears to be affected by pore dimension changes as well as the effective viscosity of the 
water.  n=7 cantilevers, error bars are standard error of the mean. 
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deflection signals are proportional to the amount of water released from the spores, and we can 

determine an approximate relationship between the response time, diffusivity, and the thickness of 

coat and cortex layers. This is accomplished by solving the appropriate diffusion equation with the 

following mixed boundary conditions: (1) concentration (pressure) is constant at the outer surface of 

the spore and (2) no diffusion (spread of pressure) takes place across the core/cortex interface, i.e. an 

insulated boundary. Although the spore has an approximately circular cross section, we approximate 

the coat and cortex layers to be flat because the thickness of these layers is about three times smaller 

than the spore radius. By solving the one-dimensional diffusion equation (with pressure propagation 

instead of mass transfer) with these boundary conditions, one can show that the relative pressure in 

the spore is given by the following expression: 

∆𝑃 𝑡 = 1 −
8

𝜋( 2𝑛 + 1 ( 𝑒
=>? (@AB CDCE

FGC
H

@IJ

3  

Here ∆𝑃 is the relative mass of water (Pt/P∞), t is the time after a photo-thermal pulse, n is an 

integer, DP is the poroelastic diffusivity, and L is the total thickness of the coat and cortex layers. 

Numerically evaluating this expression and determining the time point when pressure reduces to 1/e 

gives the approximate relationship for time constant 𝜏 where 𝛼 is 0.32.  This allows proper scaling of 

Dp.  This is important for where D3 is also related to the properties of the porous material and the 

pore fluid such that 

D3 ∼
Ed(

η 4  

where E is the longitudinal elastic modulus of the poroelastic material, d is the effective pore 

diameter, and η is the viscosity of the fluid.  The longitudinal elastic modulus EL is related to the shear 

modulus G and Poisson’s ratio 𝜈 as follows: 
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𝐸G =
2𝐺 1 − 𝜈
1 − 2𝑣 5  

Poisson’s ratio scales the shear modulus between radially and longitudinally expansive 

materials such as a rubber (0.5) to cork (0).  To estimate the value of EL as a function of relative 

humidity, we take advantage of another parameter, H, that can be directly determined from the relative 

humidity dependent spore height measurements. H relates changes in pore fluid pressure to the 

relative change in volume. H is given by: 

𝐻 =
𝑉𝑑𝑃
𝑑𝑉 6  

Here V is the volume of the poroelastic material and P is the pore fluid pressure. H can be 

expressed as: 

𝐻 =
2𝐺 1 + 𝑣
3 1 − 2𝑣 7  

Hence, 

𝐻 =
1 + 𝑣

3 1 − 𝑣 𝐸G 8  

Note that for typical values of 𝑣, 𝐸G~	𝐻. Therefore, we determined H from the changes in 

spore volume with the changing effective pressure of spore water. The relative change in spore volume 

can be estimated from the AFM-based height measurements in Figure 3.8, which show an 

approximately linear relationship between spore diameter and relative humidity: 

𝑅 𝜌 ≈ 𝑅J + 𝛽 8  
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Here, R is the radius of the spore as a function of relative humidity, 𝜌. 𝑅J is the radius 

corresponding to 0% relative humidity and 𝛽 is the linear scaling ratio. Based on measurements shown 

in in Fig. 3.8,	𝑅J is 300 nm and 𝛽is 50 nm. 

The effective pore water pressure can be determined from the chemical equilibrium of water 

inside and outside the spores, which leads to the following relationship: 

𝑃abb 𝜌 ≈
𝑅𝑇
𝑉d

ln 𝜌 9  

Here 𝑃abb is the effective pressure of water in spore nanopores, R is the gas constant, T is 

temperature, 𝑉d is the molar volume of water in spore nanopores, and 𝜌 is the relative humidity. 

Although molar volume can vary slightly with effective pressure, we approximate it as constant for 

simplicity and use 𝑉d =	18 cm3.  

This relationship can be derived from the standard Gibbs relationship for chemical potential  

Figure	3.8		Humidity-dependency	height	change	is	approximately	
linear 

Figure 3.8| Humidity-dependency height change is approximately linear.  a,  WT 
spores of B. subtilis are shown as measured by height change in tapping-mode AFM.  b, mutant 
spores (Cot E ger E) lacking most of their coat structure are shown to expand slightly more 
overall.  n=15, error bars represent standard error. 
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𝜇i~	𝑅𝑇ln 𝐴 10  

 where 𝜇i is the chemical potential of the water, and water activity [A] is defined by relative 

humidity 𝜌,  

𝜇l~𝑃abb 𝜌 ∙ 11  

 Hence the effective pressure inside the pores is also in proportion to the relative humidity 

outside once equilibrium is achieved.   

By differentiating 𝑃abb and V we find the following approximate relationship between elastic 

modulus and relative humidity: 

𝐻 ≈ 𝐻J 1 +
𝑅J
𝛽𝜌 12  

 

Figure	3.9		Inverse-	poroelastic	relationship	in	the	spore 

Figure 3.9| Inverse-square poroelastic relationship in the spore.  WT spores (purple circle) 
are shown versus coatless mutants (orange square).  Pore size tunes transport speed non-linearly.  
Data and standard error are derived as described in Fig 3.8, 3.11. 
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Here,	𝐻J = 0.5𝑅𝑇 𝑉d . Note that the above relationship diverges as relative humidity 

approaches 0, and it is only used for 𝜌 values between 0.2 and 0.8.   

To illustrate that poroelastic theory is indeed appropriate for modeling the spore, we expect 

the inverse time constant to be proportional to the square of the pore diameter as it undergoes 

humidity-dependent swelling86(Figure 3.9). 

The effective diffusion length of water into the spore, L, is modeled as a composite of the 

water-responsive/accessible materials of the coat and cortex. We estimate the spore layer thicknesses 

from two modes of measurement using the calibrated scale bars and the ImageJ software package 

(NIH). First, we performed FIB-SEM on vacuum-dried WT spores and measured the depth of the 

cortex to be 68.82 +/- 3.35 nm.  90nm microtomed sections of the spores were produced and cortex 

thickness measured by standard tapping-mode AFM to be 72.72 +/-3.51 nm.  Published TEM images 

of WT spores indicate the coat and cortex to be of approximately equivalent lengths38,87,88. Together, 

Figure	3.10		Viscosity	depends	upon	the	confinement	length	in	each	
set-point	humidity	state 

Figure 3.10| Effective viscosity depends upon the confinement length in each set-
point humidity state.  The effective viscosity at each set-point is scaled by the elasticity of 
the porous spore coat/cortex material.  Note that the confinement length (deff) varies from 
about 1.5nm (100%RH) down to zero at 0% RH.  deff is estimated based on density of wet and 
dry spores versus total protein density as well as size exclusion of molecules through sieving 
effects.  See the end of Chapter 2 for more detailed calculations pertaining to estimations of 
d.  n=15 spores as in Fig 3.8 and error is standard error of the mean for the 7 cantilevers (data 
in Fig 3.7). 
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these measurements agree with TEM studies of detached WT spore coats indicate the coat to be 

approximately 66nm89.  

 These analyses suggest an effective viscosity of greater than 7 orders of magnitude that of 

liquid bulk phase water.  This of course implies that there is tremendously slow water inside of the 

spore, which can have vast implications on the spore biology.  In essence, slow water could reflect 

slow general biochemistry in the outer spore layers or it could indicate localized immobilization such 

as lipid domains, hydrostatic cross-links, or other small-scale structures.  Recent reports indicate that 

the viscosity of the inner signaling membrane in the spore is much greater than the vegetative form 

and that this fluidity is regained upon germination40.  We also see that viscosity depends on the elastic 

modulus as so the effective water viscosity is different at each set-point humidity as is shown in Figure 

3.10.   

Thus far we have treated the outer layers of the spore as a single homogenous object, and so 

it would be useful to test this assumption.  The mutant spores with deletions in cot E and ger E both 

Figure	3.11		The	effect	of	spore	coat	upon	water	transport	in	the	outer	layers 

Figure 3.11| The effect of spore coat upon water transport in the outer layers.   a, 
cantilever deflection traces are shown plotted for each set-point humidity for mutant spores 
lacking the outer coat (Cot E ger E) b, time constants are plotted for each humidity.  n=15, 
error bars represent standard error. 
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display coat deficiencies and the co-expression of 

both mutations yields a bacterium with spores 

devoid of all but a few nanometer layers of the coat.  

The cot E ger E mutants display greater strain, and 

faster time of swelling that WT (See Figure 3.11).	

Because the coat approximately doubles the radial 

dimensions of the spore, d, and due to the 

poroelastic relationship where the time constant is 

proportional to 1/d2, we can assume the coat 

material behaves similarly to the cortex. Although the 

actual architecture may differ significantly between 

coat and cortex matrices, poroelastic swelling of both 

materials appears to converge. It is noted that where 

the cot E ger E mutants do retain a small skin of coat 

layer we might observe this as the slight attenuation 

in time constant from the theoretical prediction (~5% slower). 

Figure 3.12 shows the stochastic effect of spore mass/cantilever on the sorption time constant. 

WT (square) and cotE gerE (circle) spores per cantilever estimates based upon Carrera et al 2008 spore 

mass of 1.96E-13 g and harmonic mass estimate:  2πƒ=√(4k/meff). Spore layer calculation is based 

upon estimating that spores occupy a cross-sectional area of 0.5 µm2 (one cantilever yields 18,000 

spores per layer). Spore-layer estimates closely approximate observed quantities from SEM. 

The force transducing interface between the spore and ambient water, responsible for its shape 

change, occurs at the coat/cortex surfaces.  We have examined the cortex directly using AFM (see 

Figure	3.12		Stochastic	effect	of	
additional	spores	upon	response	time	
of	the	system 

Figure 3.12| Stochastic effect of 
additional spores upon response time of 
the system. The lack of clear association 
between the cantilever response and the 
quantity of spores indicates that deflection is 
measuring behavior of individual spore 
hydration rather than bulk transport 
properties.  Mean t (RH 50%) for WT [square] 
is ~118 ms and ~47.1 ms for cotE gerE 
[circle] (n=6 cantilevers, Two tailed T, 
p=.015). 
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Figure 3.13).  This was accomplished by microtoming very thin 90nm sections of cortex and 

embedding these onto a TEM mesh.  Interestingly it was possible to observe some evidence of 

humidity responsiveness in the fine peptidoglycan structure, as has also been observed by others in 

vegetative cells90. Note the scale of imaged spores is not indicative of in vivo pore dimensions because 

the material naturally exists under great compression.  This compression is relieved as the material can 

expand unrestrained out of the sectionl field of view (spore material is filleted by a TEM).  The strands 

we observe are likely stitched together, electrostatically and/or through the water structure itself, at 

points which approach distances on the order of a nanometer. 
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Figure	3.13		Spore	cortex	depth	measurements 

Figure 3.13| Spore cortex depth measurements. a, spores are imaged via FIB-SEM and 
through microtomed sections on AFM.  These measurements allow determination of the 
cortex size within the spore’s water-responsive outer layers. b, the microtomed section retains 
some humidity responsive behavior, although nanopore size is not easily resolved, we see 
some microstructures and change in relation to in vivo is exaggerated due to the nature of the 
method, where z-expansion is unrestrained. 
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The transport of spore water has been examined in the past, however these studies, rely 

traditionally on NMR where immobilized water is not available to study58,91.  The studies are able to 

discuss the rotational relaxation times but admit that these rates cannot reveal water transport 

accurately.  This is because the core is essentially inaccessible to water and yet rotational relaxation can 

be provided nonetheless.  These rates indicate that the core is locked into a rotationally aligned state.  

This could result physically from an attempt by the molecules to maximize compressive surface 

dissipation (density gain) during dehydration of development.  Deuterium studies also can only reveal 

water which is indeed exchanged, and interestingly, studies were unable to show that water was 

exchanged at all in air after equilibration with the external atmosphere even after weeks57.  Generally, 

it is agreed between the NMR scientists that water exchange occurs on the order of less than a second.  

Recently, single-spore studies have been performed with chambered micro-cantilevers83.  The micro-

sensors are able to resolve transport as low as 200 ms (Cot E Ger E).  They also quantify the amount 

of water exchanged to be approximately ~100fg, which agrees with our estimates from the bilayer 

micro-sensor (harmonic mass estimate as in Fig. 3.12).  

 In summary, the spore’s structure is continually rearranged due to ambient hydration 

conditions.  An AFM-based cantilever system was developed here in order to probe these kinetics in 

relation to water transport.  The method may prove of use to water scientists interested in directly 

adjusting confinement lengths with nanometer resolution.  The observed structural rearrangements 

within the spore can confine the water to a single molecule paradigm during dry moments and at most 

2-3 water molecules when approaching full hydration, and these extreme physically restrictive milieus 

result in water transport behavior that is slower than bulk flow in effective viscosity by more than 7 

orders of magnitude.  This slowed water scenario improves the temporal resolution of existing spore-

water transport methods and has wide-ranging implications for the slowing of biochemistry both in 
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general and particularly within the spore at surfaces open to exchange with non-core water in the 

external environment. 
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Chapter 4: Thermodynamic Studies of Spore Water Bonding 

We have so far observed highly viscous water transport within the spore, yielding an average 

effective viscosity of water greater than 7 orders of magnitude that of liquid water in bulk.  It is known 

that viscosity depends upon hydrogen bonding92.  We can learn a lot about the macro-structure of 

spore water from the bond-coordination.  Can the inflated effective viscosity be accounted for in 

terms of intermolecular water-bond strength inside of the spore?   

 Stimuli responsive materials like the spore cortex remain in high demand for myriad 

applications within the fields of biomedicine, adaptive-architecture, robotics, and alternative energy 93-

96.  Previously, it has been demonstrated that the spore’s cortex possesses extraordinary ability to 

perform work in the presence of humidity gradients (see Figure 4.1)52.  The spore-water system is 

extremely energy dense, outperforming existing synthetic shape-change materials.   Cycling the spore 

through alternating wet and dry periods produces efficient, engine-like qualities analogous to the 

Carnot system52.  The cantilever is pre-loaded under constant humidity from I to II, and then force is 

held constant while it is hydrated so that the system can undergo isobaric principles of constant force 

and experience volume change exclusively due to heat dissipation as chemical equilibrium shifts 

(humidity change).  In this case, one can think of the spore-water as a piston and the water’s potential 

to equilibrate as the fuel.  In the case of this experiment, a cantilever preloads the system to maintain 

zero-force, isopsychric regimes, and work is performed by driving alternating humidity polarity.   At 
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the same time the water is being stretched, it is coupling the spore to the ambient environment and 

allowing work to be performed by the water due to heat-driven relative humidity flux.  This also 

implies that the water is expanding as well, which perhaps suggests some phase transition.  

Importantly, the spore is harvesting power from the environment.  

 

Figure	4.1		Spore	water	transport	provides	a	high	energy-density	work	cycle 

Figure 4.1| Spore water transport provides a high energy-density work cycle. a, From Chen et al 2013 
spores provide isobaric engine-like behavior in the presence of humidity gradients and expand along isobaric lines.  
The idealized plot, adapted from Wikipedia in b, is squared due to perfectly isochoric process due heat to input, Q, 
to the gaseous system and surroundings while actual work due to water exchange for spores is shown in c.  
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For the water to perform these pulling actions upon the spore, we understand that the water 

must act as an intermolecular chain97.  As this chain navigates nanoconfinement within the elastic 

Figure	4.2		Spore	water	thermodynamics	apparatus 

Figure 4.2| Spore water thermodynamics apparatus. a, Top-down view of the spore-coated 
cantilever inside the ECU.  Note the fiber-optic barrel is outlined in red dotted line while the 
cantilever is shown circled in solid yellow.  It is viewed and aligned through the endoscope at this 
vantage as well as from the side b, Chamber view shows the AFM head housed inside of the 
thermally isolated box.  Resistance-based heaters are in yellow.  c, shows the thermoelectric cooler 
arrangement with radiators and sensors are viewed from above in d (endoscopic camera for a was 
added after this photo was taken).	
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pores, one possible explanation for spore water’s particular strength and effective viscosity could be 

increased intermolecular bonding.  We can understand bond-coordination through intermolecular 

activation energy, which can be quantified through temperature dependence.  A greater degree of 

bonding means more bonds to break and a higher activation energy, with greater temperature 

dependence. 

To examine the bond coordination at each humidity/structure-state of the spore, a series of 

thermodynamic experiments were designed and performed in which humidity was held constant 

(isopsychric).  To detail molecular behavior, the spore-water set-up was adjusted to allow examination 

of water’s temperature dependence during transport. An environmental control unit (ECU) was 

constructed, as is shown in Figure 4.2, of insulating polystyrene to house the spore-coated cantilevers 

(mounted in the head of a Bruker Multimode AFM), sensors, temperature control elements, and heat 

pulse LED (see Figure 4.2a). Humidity inside the enclosure is measured using a Honeywell HIH-4021 

and temperature with a thermocouple (Agilent U1180A) along with a data acquisition card (National 

Instruments BNC-2110) coupled to the master Labview acquisition program.  Humidity can be 

adjusted through a bifurcating valve system where some portion of the airstream is bubbled through 

a liquid flask.  A heating supply was necessary below the flask in order to maintain the higher humidity 

measurements.  Temperature and humidity sensors were aligned within 1cm of the cantilever tip. 

  Endoscopic cameras were used to align the cantilever to the LED pulse.   To achieve fine 

temperature control within the ECU, a series of thermoelectric coolers (Eathtek, LLC, San Jose, CA) 

is arrayed in parallel and connected to a variable power supply.  Where sufficient cooling was not 

achieved via the TECs, -20°C, commercial ice-pack were used.  For the hotter end of the spectrum, 

an array of resistance-based heaters (WireKinetics Co. LTD, Taipei, Taiwan) was controlled via a 

separate power supply (see Figure 4.2d). 
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Using this setup, an isopsychric temperature dependence was observed.  The trend is expected, 

with liquids becoming less viscous as heat is added.  Water transport speed increased accordingly in 

warmer conditions (see Figure 4.3a).  The degree of this temperature dependence can tell us about the 

coordination of the molecular water.  This can be understood in that the temperature dependence 

simply implies that for a highly bound molecular ensemble, one would expect that raising overall 

temperature by a constant amount should produce massive viscous changes.  Consider that raising a 

block of ice by 1 degree would require considerably more energy than the equivalent volume of liquid.  

Therefore, by producing greater viscous changes across a fixed temperature difference, we are 

measuring higher bond energy, Q.  Again consider that more bonding in ice results in a higher Q than 

the less-bonded liquid form92. This can be quantified through the Arrhenius relationship, 

𝜂	~	𝑒
o
pq 13  

Figure	4.3		High-Q	transition	process	in	the	spore	water	

Figure	4.4		Spore	water	temperature	
dependence	is	relative	humidity	dependent	

Figure 4.3| Spore water temperature dependence is relative humidity dependent. a, 
a typical cantilever spectrum displaying temperature dependence with a fixed set-point 
humidity.  Warmer conditions produce a faster sorption trace of water transport b, this set-
point humidity provides a variable temperature dependence, where plotted as ln(t) vs. T-1, 
the slope reveals the activation energy of making and breaking intermolecular H-bonds.	
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where Q is the activation energy of making and breaking intermolecular bonds, R is the molar 

gas constant, and T is temperature.   

A range of these processes is shown plotted logarhythmically in 4.3b. where we observe the 

slope as a quantitative readout of the bond character, and activation energy of intermolecular mobility.  

We note that these values for spore water approach that of solid phase ice.  Recently, activation 

Figure 4.4| High-Q transition process in the spore water.  Below 25% relative humidity, 
a very low bond-coordination is observed, close to that of liquid water with activation energy, 
Q, at 5-6 kCal/mol.  With increased relative humidity, the spore water takes on a bond 
configuration approaching that of solid phase water (~4 H-bonds per molecule).  n=3 
cantilevers for each humidity, which corresponds to a complete temperature course as shown 
in Fig 4.3.  Q is derived from regression of temperature course with r2> 0.95.  Error bars are 
standard error of the mean.	
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energies echoing these measurements at comparable confinement lengths have been reported for 

water transport in carbon nanotubes98.  It can be seen that the slope and bond character increase with 

increased relative humidity.  We looked at some other natural polymers such as methylcellulose and 

dextrose. In particular, it was noted that the increase of Q with relative humidity persisted, however, 

the process appeared monotonic, whereas the spore produced a distinct S-shaped response (see Figure 

4.4). Here, there appears a step in Q between low and high humidity indicating that there are two 

separate processes being observed.  The nature of this transition is open to interpretation.  

With typical biopolymers, such as DNA99,100, we should indeed expect multiple small hydration 

events, as shells are layered onto the molecule.  This is the sort of smoothed constant response 

observed for methylcellulose.  For the spore, on the other hand, this two-step process (Fig 4.4) is 

more likely indicative of a change in the confinement paradigm.  Under this hypothesis, the water 

would be highly confined down to as low as 1 water per pore layer (low RH).  After 25%RH, a second 

water can fit into the space (>3Å) within the spore material.  At this point, the water present is now 

interacting with other waters and a sharp increase in bond-character is observed.  This also presents 

the possible onset of a meso-scale water structure (Fig 4.5b), and interestingly also directly corresponds 

to the physiological humidity range where vegetative bacteria are found45,101.  It is thus plausible that 

this first water ordering event indicates triggering of a humidity sensing behavior for the organism, by 

awakening a highly tensioned, highly bound water structure in the presence of physiologically relevant 

hydration environments. 
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This ordered water structure, available to the spore after 25%RH, is perhaps increasingly 

fragile, subject to perturbation, as the water is less dense than in bulk.  Where the water structure 

participates in H-bond cross-links within the spore material, it could subject the spore structure to 

failure if it were to disintegrate suddenly to fast liquid form.   

The spore increases in volume as it senses more and more humidity ambiently (Fig 4.5a).  

Because surface area increases only with a square of the radius, and volume increases cubically, the 

surface effects would be expected to eventually yield to hydraulic flow as the pores open and 

conditions approach 100%RH.  However, this is not possible, for water transport is not slowed in 

direct proportion, in accordance with the confinement paradigm detailed poroelastically in Chapter 3.  

Note that these water conduits within the spore are estimated at a range of only ~1-5 molecules 

diameter.  This means that surface effects extend from all sides radially, likely focusing and amplifying 

environmentally defined geometry to ~2.5 waters.   

Figure	4.5		Spore	water	structure 

 Figure 4.5| Spore water structure.  a, Shape-change ability of the spore water structure 
during humidity states b, Illustration of hypothesized spore water structure, highly bound (>3 
H-bonds), under great tension, and theoretically subject to perturbations by adulterants, 
pressures, and surfactants.  SEM adapted for cartoon in b from Chen et al, 2013. 
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In the alternative, the high energy water observed above 25%RH (Fig 4.4) could also be 

explained by a sort of molecular hopping event.  There is indication that the aspect ratio of pores is 

largely responsible for whether flow will be hydraulic or involve a liquid-vapor-liquid transition102.  

This multiple phase transition would also cost a lot of energy in the breaking and forming of new 

bonds during the transport process.  Under this hypothesis, the surface water would exist as a sort of 

film, whereby the water molecules would hop between hydrophilic domains of the spore material.  

Surfactants, including alanine,103 can also serve to organize water and join into the forming of regularly 

ordered structures.  Consider the simple soap bubble.  This process forms structures because the 

surfactant, soap, adsorbs water, which maximizes hydrogen bonding with its neighbors, thereby 

minimizing surface area.  The films coordinate at tetrahedral angels (Plateau borders) to one another, 

again maximizing bonding.   This simplest water structure is but a single surface, with area minimized, 

which is therefore spherical, and we call a bubble.  Any number of organic adulterants, including salt, 

are likely to destroy, but at the very least, rearrange a bubbled hydrated structure like this.  

In summary, the spore has evolved as an evaporation-harvesting machine, capable of 

leveraging forces greater than known synthetic shape-change materials, it is only natural to assume 

that the organism will put this effort to use.  The spore is strong (stiff) and can change shape 

dramatically and quickly due to ambient humidity.  This expanded spore form stretches and tensions 

water.  We know this must be the case from our understanding of poroelastic equilibration kinetics.  

Also, there are serious density/mass discrepancies in water absorption quantities. In order to 

understand how tensioned spore water is coordinated, particularly in the fully expanded spore 

structure, intermolecular bond-energy was examined through Arrhenius temperature dependence of 

viscosity.  This revealed absolute confinement likely for the dehydrated spore and a distinct highly 

bound structure close to the activation energy of ice at ~25% relative humidity.  These 

characterizations enlighten our understanding of the viscous spore water from Chapter 3, such that a 
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picture of a spore water structure emerges, which is first established when the spore encounters a 

favorable hydration environment in the physiological survival zone.  Once the tensioned spore water 

structure is erected and tensioned at the cost of naturally occurring evaporative flux, it remains 

remarkably stable and yet is theoretically subject to all known physical destabilizers of structured water 

including pressure, electro-static adulterants (salts, small molecules, etc..), and surfactants.  Stimuli 

known to germinate spores through unknown mechanisms satisfy these qualities.  
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Chapter 5:  Spore Slowed Water in Liquid Media & Germination  

Because slowed spore biochemistry could result from the observed slowed water transport, it 

is hypothesized this water structure may stabilize dormancy, either directly or through stabilization of 

the highly tensioned spore architecture.  Spore germination is typically observed in liquid cultures, and 

so in order to understand how the water structures detailed in the previous Chapters, could impact 

germination we must understand whether this transport character persists in the fully hydrated spore.  

It is important to bear in mind that spore germination in nature does not occur in liquid necessarily, 

for the model spore is a soil bacterium, and so a range of hydration steady-states are expected.  For 

this line of inquiry, a new biophysical apparatus was developed.  This setup allows examination of 

water transport as it is variably affected by addition of germinants, heat activation, and transport 

frequency (efficiency). 

 The basic method to biophysically examine the spore biology begins by immobilizing the spore 

so that it can withstand significant compression forces in liquid.  This was accomplished through the 

Figure	5.1		Tapping	mode	AFM	images	of	fully	hydrated	spores	embedded	in	epoxy 

Figure 5.1| Tapping mode AFM images of fully hydrated spores embedded in epoxy 
a, cured in epoxy NOA-89 did not retain enough surface above the of the epoxy layer.  
Similarly, in b, NOA-81, although able to avoid this issue required precise timing of the curing 
cycle in order to obtain adhered but optimally exposed spores as shown in c. 
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use of UV-curing epoxies (See Fig 5.1).  Several adhesives were attempted, however, NOA-81 was 

eventually selected (Norland Optical, Cranbury, NJ).  Immobilization was produced through radiative 

pre-curing the epoxy on an AFM disc substrate.  The optimization of this regime was accomplished 

empirically.  It was found that 3.5 minutes of pre-cured epoxy on steel substrate followed by the 

addition of a small 10µl spore suspension, followed by evaporation in air (or nitrogen stream), followed 

by additional curing of 5 minutes, produced the most effective sample preparation.  Several gentle 

washes in DI water removed spores that would otherwise float onto the tip or into the path of the 

scanning probe and laser signal to AFM. 

 It was then necessary to germinate spores.  Several common methods were investigated 

including L-alanine but because we were interested in how the nutrient sensation might relate to water 

transport, a nutrient broth known as AGFK (50 mM potassium phosphate buffer (pH 7) containing 

10 mM L-Ala (Ala-induced germination) or 50 mM potassium phosphate buffer (pH 7) containing 10 

mM L-Asn, 10 mM D-Glu, and 10 mM D-Fru)42.  was eventually used as it is a standard nutrient 

mixture in B. subtilis experiments104.  The spores are always pre-treated with heat at 70ºC for 30 minutes 

Figure	5.2		Verification	of	germination	by	phase	contrast	microscopy	

Figure 5.2| Verification of germination by phase contrast microscopy.   Spores are observed 
after 3 hours exposure in a, control (only heat) and  b, AGFK+heat and  c,  L-Alanine+heat. 
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prior to addition of germinants.  Figure 5.2 shows the characteristic darkened appearance of spores 

having been exposed to germinants when viewed through a phase-contrast microscope after 3 hours.  

Adhered spores could then we examined via AFM, while considering batch-matched replicates under 

phase contrast simultaneously for the appearance of germination.  AFM visualization of germination 

is shown in Figure 5.3. 

 After the spores were adhered with sufficient surface available to AFM examination in water, 

it was necessary to design a routine to collect water transport information.  Transport was assayed via 

force volume AFM as shown in Figure 5.4.  Force-volume AFM has a deep history of application in 

characterizing living cell systems in addition to serving traditional rheological material science 

applications86,105.  The principle underpinning this method is simple, where experimenters are generally 

interested in a material property known as elastic modulus or simply, stiffness.  Elastic modulus is a 

relation of stress applied to strain experienced by the material.  While similar to the Hookean spring 

constant, elastic modulus does not depend upon the material’s shape.  Most materials respond 

elastically through the force volume cycle to some limit, whereby a yield-strength is reached, and 

Figure	5.3		Visualization	of	Germination	by	tapping-mode	AFM 

Figure 5.3| Visualization of Germination by tapping-mode AFM.  a, spores are shown prior 
to addition of AGFK nutrient stimuli b, 3 hours post-AGFK addition structural changes are evident 
in the spores (cracks form, wrinkles gone) c, 24 hours post-AGFK shows significant deterioration 
of the coat and cortex. 
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permanent plastic deformation is achieved.  Most biological materials display some aspects of this 

elasticity and some aspects of fluid viscously where the applied force is partially dissipated through 

transport flow and heat losses.   

Note that the hysteresis present in Figure 5.4b, where the trace and retrace do not match paths 

precisely, is indicative of viscous losses in the material being assayed.  This can also be indicative of 

adhesion between the tip and sample during retraction and so care must be taken when examining 

data.  A perfectly elastic material would follow the identical approach and retract path.  The spore is 

expected to behave extremely elastically as it is very stiff and resists permanent deformations51,52.  

Adhered spores are pressed repeatedly at some nominal frequency, where the specific % duty of this 

cycle in direct contact with the spore has a characteristic timescale, whereby the inverse of this time is 

can be referred to as the forced transport frequency or simply, 𝜔T.  Initially, the transport frequency 

was estimated from spore water transport in air (Chapters 3 & 4), with maximally hydrated WT spores 

displaying a time constant approaching <50ms, or 𝜔T ~ 20Hz.   

Figure	5.4		Spores	water	transport	kinetics	are	examined	via	force	volume	
AFM 

Figure 5.4| Spores water transport kinetics are examined via force volume AFM.  a, schematic 
of the force volume method in liquid where the adhered spores are pressed repeatedly at some 
frequency by which the timescale of direct contact is described by the forced transport frequency, 𝜔T.  
Adapted from Chen et al 2013.  b, Force experienced by the cantilever (deflection signal) is shown 
plotted against displacement as the spore/substrate system approaches the tip. c, fluid-imaging cell 
inside of the Multi-mode AFM head chamber necessary for germinant addition. 
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 The hysteresis of the force distance curve can tell us about the water transport inside of the 

spore and where the water structure is absorbing the most energy.  For the purposes of standardizing 

analysis this hysteresis was normalized to the approach curve and hysteresis heat maps were generated 

as in Figure 5.5c,d.  We define the hysteresis viscoelastically as the energy losses to heat through the 

relation,  

𝑈 = 𝑄 +𝑊 14  

Where the U is the total internal energy of the spore before and after the cycle and 

𝑊 = 𝜎𝑑𝜀 15  

 and where 𝜀 is the strain in response to the stress 𝜎 applied through the cantilever tip.  By 

performing the same work on the system with the AFM in each cycle, we essentially measure 

differences in U (hysteresis), which are exclusively accounted for by Q.  This assumes we are 

approximating the compression in one dimension.   A purely elastic system would not display such 

losses dissipated as heat to its surroundings106.  In a typical polymer, these viscous losses are thought 

of as the molecular creep of long polymer chains as they return to equilibrium in the material.  For the 

spore, this viscous component cannot so readily be attributed in their entirety to the material, because 

these losses appear at least partially transport dependent, as we shall see later (and have seen in 

Chapters 3 and 4 for air-water exchange in the spores).  In fact, the spore appears to work across a 

wide range of character from viscous to elastic depending on the biological stimuli available, as was 

first observed for the liquid system during the described germination protocol. 
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Figure	5.5		Germinants	produce	mechanical	perturbations	to	the	viscoelasticity	of	the	
spore 

 Figure 5.5| Germinants produce mechanical perturbations to the viscoelasticity of the 
spore.  a, A single spore cell is imaged through tapping-mode AFM b, The spore is focused 
to a 500nm patch, which is then assayed through force-volume mode for viscous loss 
modulation before and after AGFK treatment as is depicted in c, and d, The mean hysteresis 
and standard deviations of 1024 force-volume cycles is shown plotted in e, as well as the 
resultant stiffness, which is shown in f, where the result is indicative of at least 3 separate 
experiments. 
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 Loss hysteresis is directly related to germination (see Fig 5.5e,f).  Although the timing of the 

events differs from spore to spore, it is always seen that germination in accompanied by increased 

energy losses.  Though such losses could be due to slowed sorption of liquid, it is more likely that this 

reflects the loss of structural integrity as we note the stiffness is also decreasing (see Fig 5.5f, 5.6).  

This trend is observed regardless of whether stiffness is considered via the approach or retract curves.  

The loss of stiffness within minutes of germinant addition is interesting because it occurs before any 

visible signs are apparent (i.e. coat cracking, wrinkle loss, etc..).  Along the viscoelastic continuum, the 

spore drifts toward viscous as it germinates.  

 Many cells displayed some heightened degree of hysteresis in response to heat treatment alone, 

which could be quantified as is shown in Figure 5.7.  This trend did not track with stiffness, which 

appeared unaffected by heat.  It should also be noted that ~25% of the WT cells also exhibit this 

activation without any heat treatment (experiment 1, Fig 5.7a). A similar proportion of cells did not 

respond at all (as exemplified by experiment 3, Fig 5.7a).  To that end, it was also noted that the 

Figure	5.6		Loss	of	stiffness	during	germination 

 Figure 5.6| Loss of stiffness during germination.  a, spores (here a single cell) are measured 
in DI water at and after addition of AGFK at b, 30 minutes c, 60 min d, 90 min.  3 measurement 
loops are shown for consecutive nanoscale patches on the ridge of a germinating spore.  
Approach is shown in purple and retract in red.  Stiffness is approximately proportional to the 
slope of these curves.  Data is representative of at least 3 separate experiments. 
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recovery from heat activation varied significantly from minutes to hours to days (see Fig 5.9).  There 

is some evidence to support the notion this reflects general variability of the natural distribution of 

the spore germination processess107.  It seems that some spores in a given population will require a 

higher heat activation temperature so this may result in the variable material properties we observe.  

 To the question of whether the spore water transport is the cause of this heat-activation related 

hysteresis, the answer appears to tend toward the negative.  Because this effect was long lived, on the 

order of hours or even days, the heat, more likely, served to unwind certain polymeric structures, thus 

inducing creep.  This can be deduced for two reasons.  First, the spores can be cooled on ice after the 

heat activation process, and are no doubt in thermal equilibrium with the bath in which the transport 

experiment in performed.  In other words, it is not expected that heat-induced molecular effects upon 

water’s effective viscosity would persist upon cooling.  Second, there is much evidence available in the 

literature that heat activation-like effects can be simulated chemically108.  This results in reduction of 

disulfide bridges or other denaturing events to the tertiary protein structures within the spore108.  

Figure	5.7		Heat	activation	alone	induces	transient	mechanical	effects	on	some	
spores 

 Figure 5.7| Heat activation alone induces transient mechanical effects on some spores.  
Spores are heated at 70°C for 30 minutes and a, single cells are shown where1024 FV curves are 
averaged.  Error bars or standard error of the mean b, transient nature of the effect is shown 
after 4 hours.  Spores hysteresis approached baseline by d4 and later time points, although 
significant germination at the sample obscured evaluation of the effects magnitude (n=8 no heat, 
n=12 heat). 
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Furthermore, it is possible that some heated spore material was ejected during imaging and contributed 

through increased tip-surface adhesion, which could also produce the transient hysteresis.  It is further 

noted that spores often germinate from heat treatment alone, and their shells can be seen during 

imaging.  

Viscous losses can be indicative of the water transport and heat dissipation, where tip 

adhesions, and mechanical disruption can be ruled out. Below a certain timescale, water cannot re-

enter the porous material as quickly as it is forcibly evacuated and a loss hysteresis is observed.   A 

material may behave very elastically and stiff if it is forced too quickly, such that the liquid cannot 

escape at all.  When the material is forced and relaxed very slowly, a second hysteresis may appear as 

a result of a more plastic deformation wherein the properties of anhydrous material is observed.  In 

order to understand where the spore water is transport limited in liquid, a frequency sweep of 

indentation/relaxation was performed as shown in Figure 5.8.  For these experiments, spores were 

adhered as described previously and imaged in water, but no heat activation or chemical treatment 

was performed.  Hysteresis was therefore observed only as a function of frequency of indentation. 

 The most interesting feature of the frequency sweep, is that the hysteresis is minimized after 

the indentation time of 100ms and seems to be maximized at about 50ms (Fig 5.8a, b).  In either case, 

the elasticity of the material seems to stabilized until about 800ms, where poroelastic theory suggests 

that we are thoroughly dehydrating the material and thus measuring a more permanent material 

deformation.  A 50ms transport time is very close to that which we measure in humid air as the relative 

humidity approaches 100% (𝜔T ~ 20Hz), and so it is very likely that in the case of this frequency sweep 

experiment, we are in fact measuring transport related losses.  In other words, within the spores 

studied, indentation hysteresis maxima correspond to predicted transport limited timescale.  It was 

furthermore noted that clean, rounded AFM tips produced the most pronounced dip in frequency 
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sweep results.  To this end, the cantilever tip radius was widened with application of silicon nitride for 

later experiments, and so the scale of the effect may have been diminished due to adhesions.  

Generally, the observation of increased losses due to transport viscosity below the predicted 

poroelastic frequency supports the notion that the spore poroelastically structures water in a high 

Figure	5.8		Frequency	dependency	of	loss	hysteresis 

 Figure 5.8| Frequency dependency of loss hysteresis.  a, wide spectrum of indentation 
frequency results in different viscous loss character.  The fast end of the spectrum follows the 
predicted poroelastic transport limitation from air measurements in Chapters 3 & 4.  n=7 
spores in separate experiments.  Error bars represent the standard error of the mean, each 
experiment is comprised of 1024 force volume cycles b, shows reduced bandwidth frequency 
sweep (single spore; error bars represent standard deviation for 1024 plots) c, substrate (error 
as in b). 
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energy micro-scale object.  That the structure retains its elasticity for a frequency roughly 

approximating the predicted transport from Chapter 3, supports the observation that the high energy 

water structure present within the spore.  It is recognized that this structure must rapidly deteriorate 

upon germination as evidenced increased transport hysteresis accompanied by stiffness losses. 

A catalyst, or enzyme, is a substance that modifies the transition state to lower the activation 

energy.  In the spore-water to spore system, the spore material is analogous to an anti-enzyme, 

whereby it acts to enhance the activation energy of internal water-water transition states.  Similarly, 

the spore water structures themselves could act to raise the activation energy of the transition from 

dormant bacterium (spore) into the vegetative form, thus qualifying the spore-water as an anti-enzyme 

to the spore biochemistry.  It has been repeatedly suggested that the signal-sensitive inner membrane 

is immobilized through some unknown mechanism16,109, compressed through some unknown 

mechanism110,111,  and so we advance the possibility that this is at least in part mediated by the high 

energy internal water structures, and that these water structures are susceptible to physical-chemical 

perturbation, in particular surfactants (universal germinants), thus lending credence to the idea that 

the structures function as a signal-sensitive extension of the native spore biology.  Even in the event 

of direct ligand-binding in cell-wall-triggered alternative germination112, it may first be necessary for 

certain amino acids in those fragments to relieve the spore’s physical tension via water and 

participating electrostatics.  More generally, immobilized biochemistry cannot function in signaling 

until it is unrestrained. 

 In summary, the spore’s structure is quickly rearranged during germination.  In these liquid-

AFM studies, this rearrangement is indicated by loss of elasticity through the force-volume method.  

Heat-activation, a necessary precursor to nutrient germination for many laboratory spores, including 

those studied here, produces mechanical effects on its own, though not through loss of elasticity, and 
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so is likely explained by transient polymer uncoiling within the spore material.  In liquid, the loss of 

elasticity can also tell us about the water transport, as the magnitude of hysteresis appears frequency 

dependent.  Importantly, the onset of this transition in the frequency domain for the spore in liquid 

corresponds to the predicted poroelastic time constant from chapter 3, where spore pores reach a 

maximum expansion.  In other words, the spore’s water structure dissipates heat most where transport 

is limited and water appears to remain slow.  The fact that evaporation cannot provide this 

immobilization will be addressed in the following chapter.  These findings overall support the idea 

that the spore contains a high energy water structure that persists in liquid, which may theoretically 

serve a biological signaling function within the bacterium.   
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Chapter 6:  Water State Sensation Hypothesis and Future 

Directions 

Taken as a whole, in this work I have developed an experimental apparatus to measure 

nanoscale water transport behavior in the bacterial spore, and observed unusually slow water with 

bond energy approaching that of ice, at room temperature.  These observations raise the possibility 

that spore cortex/coat-water system evolved in part to mechanically survey ambient conditions 

suitable to kick-start its lifecycle. The energy to accomplish this re-awakening in the absence of 

metabolism may be stored in part through water’s nanoscale interactions with itself and its 

environment (manuscript in submission), which physically manipulate the mechanical integrity of the 

Figure	6.1		Spore	water	sensation	hypothesis	for	
physiological	germination 

 Figure 6.1| Spore water sensation hypothesis for physiological germination.  a, Cross-section 
of highly tensioned dormant spore at left, with cortical water participating in structural integrity b, 
nutrient germinants help to disrupt water surface tension* releasing cortical tension c, signal 
sensitive inner membrane is shown with GR clusters, also stabilized through tensioned water and, 
released as shown in d either through cortical relaxation or directly through disruption of surface 
tension* by physiological germinants.  Release of tensioned inner membrane assists in diffusion of 
GR proteins as the lipid membrane regains its fluidity, initiating poration, core hydration, and 
downstream outgrowth program.  Un-tensioned, committed-to-germination spore is shown at right, 
where internal volume increase produces a pumping effect drawing water inward. 
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spore, either stabilizing dormancy structurally or are otherwise via physical contact with emergence-

from-dormancy biochemistry.  This expands an initial idea proposed in Science, 1960 by J.C. Lewis, 

N.S. Snell and H.K. Burr that the low water content of the spore core is accomplished through 

compressive contraction during development2. The hypothesized water structures are developed as 

the core is dehydrated in sporulation and contributes, along with the spore material, to a tremendous 

tension within the dormant organism.   This dehydration is accomplished through layered assembly 

of the highly hygroscopic cortex material and places the spore material under tensions in the range of 

hundreds of MPa.  When this tension is relieved the spore “pops”, much like a soap bubble.  This 

tension release within the hygroscopic materials allows lipid signaling structures at the sensitive inner 

membrane (IM) to diffuse and homogenize due to increased membrane fluidity.  This diffusion leads 

to IM poration and water influx from the cortex to the core.  The water-permeated core produces and 

amplifies a complex downstream cascade of events terminating in outgrowth of a vegetative cell.    

In general, the data indicate a physically slow spore-water paradigm, which cannot be ordered 

in the traditional sense, due to the heterogeneous nature of spore surfaces.  This has myriad 

implications for biology.  It has recently been proposed that spore water chemistry may explain how 

radiation-induced free-radicals are stabilized and sequestered from the core81.  The reliance of the 

water on high energy bonding raises the possibility that water, like the spore structure itself, is subject 

to physical environmental perturbations (temperature, pressure, volume, and 

electrostatics/chemistry).  The universal germinant across species, dodecylamine, is a chemical whose 

action consists of surface tension disruption16.  Under the hydrosensation hypothesis, disruption of 

the spore-water’s surface tension (surfactant replacement) would hydrostatically uncouple cross-linked 

hydrophilic spore structures and in some part un-tension the spore, such that the inner membrane 

regains fluidity, and through de-rafting and diffusion of GR clusters, results in the appearance of 

functional IM-channels serving DPA, water, and other biochemistry. It is widely shown that protein 
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surfaces adsorb water similar to surfactants and can be outcompeted by stronger, sterically 

appropriate, chemical surfactants.  At the very least, water is widely denoted as the universal biological 

solvent, and hydrodynamic immobilization of biochemistry is necessarily reinforced by the magnitude 

of water immobilization within the biomaterials observed through these experiments.  It is after all, a 

net hydrodynamic resistance term which by some nominal molecular motion threshold comes actually 

to define dormancy biologically as metabolic pause; metabolism of course requiring liquid solution 

chemistry. 

 Collapse of adsorbed water patterns under tension can be seen in ‘popping’ of a bubble. The 

spore water’s release of the tensioned spore structure participates in a first line of germination 

transmission, which sets off a chain reaction, eventually resulting in the reanimation of the organism.  

Thus, the spore architecture may act physical-chemically upon the water, raising the internal solution’s 

water-on-water activation.  Furthermore, it appears that this immobility is influenced by both 

nanoscale short-range solution/surface chemistry (germinants) as well as microscale sensory events 

(spore-swelling during hydration, stiffness change during germinant sensation).   

 In another instance of hydrosensation, in a physiologically relevant humidity range the spore 

pores expand to allow entrance of small, soluble germinants.  In the absence of any water, the spore 

does not physically accept molecules or other small particulates into its cortex/coat layers19.  The 

swelling behavior propagates down to the commensurate length scale of the heterogeneous transport 

lattice, where high energy water is tensioned across the expanded pores.  In this way, macroscopic 

hydration and nutrient chemistry alike can direct the variable immobility of this tensioned spore-water, 

which is of course responsible for directly solubilizing/stabilizing, and therefore transmitting kinetic 

impulse to the biological machinery governing the lifecycle of the bacterium.  The slow spore water 

may serve as part of a primal signaling apparatus comprised of simple water molecules.   
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Indeed, because the internal water is under extreme physical paradigms (i.e. tremendous 

negative pressure <150MPa, nanoconfinement <1.5nm), it is forcibly coordinated into highly 

activated configurations.  This behavior is totally unlike anything known to produce such anomalous 

water during confinement, as these surface ordering is produced by a commensurately scaled lattice.   

In the spore, the peptidoglycan polymer is heterogeneous at the surface level and so we must explain 

the slow water differently.  We see this spore 

water transport slow nonlinearly with macro-

dimensional excursions (as is expected during 

poroelastic confinement); however, this may 

not alone address how the spore remains slow 

when hydrated (fully expanded geometry).  

Here we offer that immobilization during 

variable hydration may result directly from a 

transition from total confinement (molecular 

isolation) to an activated, patterned water-

water phase, where water is clustered and 

slowed at regular but isolated hydrophilic 

spore moieties.  We observe this process 

energetically as a transition between two 

hydrogen bonding regimes near ~25%RH.  

The high-bond- arrangement may be explained in two ways, both of which we observe as the 

quantity of intramolecular bonds per molecule abruptly shifts, and both of which appear to assist in 

maintenance of a dormant biochemical environment.  Indeed, it has been suggested that pore diameter 

alone might directly specify the bifurcation between these two transport processes (Fig 6.2); absolute 

Figure	6.2		Proposed mechanisms for slowed water   

Figure 6.2| Proposed mechanisms for slowed 
water.  a, Water is confined and its viscosity is a 
result of absolute immobilization b, Water is 
organized by adsorbing to the hydrophilic regions of 
the spore material producing a tensioned structure 
where transport must involve molecular hopping 
and individual molecules transition from liquid to 
vapor band back to liquid.  
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hydraulic resistance and a liquid-vapor-liquid ‘hopping’ type water behavior102.  For this event, as the 

spore confinement paradigm is relaxed due to porous expansion, a high energy molecular ‘hopping’ 

transition is required.  In this case, the spore would switch between confinement at low humidity 

followed by a sublimation/deposition dominated state where the water is slowed locally at spore 

material moieties that can participate in hydrogen bonding.  Such a vapor-liquid-vapor transition is 

one energetically costly event that could account for the high temperature dependent water transport 

observed. At present, we are working to simulate conditions similar to the spore’s confinement 

paradigm using molecular dynamics, which might help us to refine our understanding of the exact 

nature of the real observed slow water.  In either case, regular patterning of water, between 

hydrophobic and hydrophilic islands within the spore might allow coordination of soluble 

biochemistry into very stable configurations by raising the energy barrier of water transport locally.  

The slow water we observe cannot be explained by traditional means, which rely upon crystal 

patterning at commensurately scaled molecular surfaces, which the spore does not contain.  It is at 

least possible that highly hydrogen-bonded, tensioned water may be produced within the organism to 

participate in sensing its environment while dormant and thus participate in the regulation of its 

lifecycle.  In the past few decades it has become increasingly clear that biology makes use of mechanics 

for signaling and sensation113.  Mechanosensing includes but is not limited to sensing the presence of 

other cells.  For the spore, the mechanosensing of favorable environments through changes to water-

state hypothesis satisfies the need for a primitive sensing mechanism in the absence of metabolism, 

particularly in light of the understanding that spore-forming organisms are among the most ancient 

life-forms in Earth’s biological record.   

Spore water signaling hypothesis extends a mechanical role for spore water physics in air alone, 

however we note that water transport appears to be similar speeds in liquid.  To that end, there are 



 

 79 

possible mechanisms, which we will investigate at length in future studies, to explain how the organism 

could retain a physically tensioned architecture, subject to physical destabilization by pressures, 

surfactants, and nutrient germinants in liquid.  Despite the lack of tension due to evaporation, the 

spore has indeed expanded maximally when dropped into liquid (it is presumably limited by the coat 

and/or extension of peptidoglycan polymers).  Beyond some critical threshold, the porous spore 

material has exposed all H-bonding and other electrostatically possibilities for maintaining tension 

within its architecture60.  The cell wall peptidoglycan is essentially a polyelectrolyte gel.  It is indeed 

possible that these electrostatic interactions dominate in liquid, but remain susceptible to hydrostatics 

(pressures, surfactants, electric field pulses).  Note that spores are ubiquitously germinated with pulsed 

electric fields17.  This observation implies that electrostatic integrity of the organism is essential for 

dormancy.  Also, the pulsing of a field will produce ponderomotive forces within the water, which 

will displace the dielectric molecules toward the region of greatest field density, potentially undoing 

tensile forces114 115.  With this in mind, it is worth re-emphasizing that ~50% of backbone peptides 

found in spore peptidoglycan are cleaved to single residues of hydrophilic lactam while 25% are 

cleaved to hydrophobic alanines, and the remainder exist as hydrophobic branches, such that only 

about 10% of the equivalent branches form covalently116.  This gives the cortex its flexibility, but the 

integrity and stiffness might be expected to arise from non-covalent interactions - hydrostatic or 

electrostatic. 

In the future, we will use our force volume AFM platform to examine effects of surfactant-

perturbation to mechanical properties of the cell.  We hope to resolve the timing of these events so 

as to know whether water tension release precedes germination and, if so, by how much.  This can be 

accomplished by placing a spherical indenting cantilever tip on the crest of a spore and repeatedly 

pressing on that location while adjusting the solution chemistry.  Structural mutants can be utilized in 

combination with this method to understand the physical contributions to germination behavior.  For 
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example, it is conceivable that mutants with larger pore diameter (less cortical cross-linking) may reveal 

divergent chemical germination thresholds. 

In summary, the spore’s lifecycle is harmonized with the formation and destruction of 

different water states.  In the future, studies will focus on the timing of the germination triggering and 

extension of this hypothesis to liquid germination. Together, this work has provided observations of 

slow spore water and provided plausible mechanisms to explain this behavior.  These observations 

support the hypothesis that the spore may utilize physical water states to navigate dormancy.   
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