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An Automated Microwell Platform 
for Large-Scale Single Cell RNA-Seq
Jinzhou Yuan1 & Peter A. Sims1,2,3

Recent developments have enabled rapid, inexpensive RNA sequencing of thousands of individual 
cells from a single specimen, raising the possibility of unbiased and comprehensive expression profiling 
from complex tissues. Microwell arrays are a particularly attractive microfluidic platform for single cell 
analysis due to their scalability, cell capture efficiency, and compatibility with imaging. We report an 
automated microwell array platform for single cell RNA-Seq with significantly improved performance 
over previous implementations. We demonstrate cell capture efficiencies of >50%, compatibility 
with commercially available barcoded mRNA capture beads, and parallel expression profiling from 
thousands of individual cells. We evaluate the level of cross-contamination in our platform by both 
tracking fluorescent cell lysate in sealed microwells and with a human-mouse mixed species RNA-Seq 
experiment. Finally, we apply our system to comprehensively assess heterogeneity in gene expression 
of patient-derived glioma neurospheres and uncover subpopulations similar to those observed in 
human glioma tissue.

Single cell RNA-Seq is a powerful approach to quantifying cellular heterogeneity with both basic and clinical 
research applications1–4. As a result, considerable effort has been devoted to increasing the throughput and 
accuracy of these methods including the introduction of unique molecular identifiers (UMIs)5 and barcoding 
techniques that facilitate pooled library construction6. Recent advances in single cell RNA-Seq have resulted 
in dramatically increased scalability with a concomitant reduction in library preparation costs7–11. Microfluidic 
technology has played a crucial role in the advancement of single cell expression analysis by reducing reagent 
volumes, allowing high-fidelity single cell isolation, and enabling robust and automated workflows for RNA 
extraction and amplification12–15. New tools for single cell RNA-Seq exploit highly scalable microfluidic plat-
forms, including aqueous droplets7,8,10 and microwell arrays9,11, and have facilitated miniaturization of split-pool 
barcoding methods for labeling cDNA libraries from hundreds or thousands of individual cells in parallel. These 
techniques are leading to new applications of single cell RNA-Seq including large-scale, unbiased analysis of tis-
sues and tumors without the need for cell sorting7.

We recently reported single cell RNA-Seq in a solid-state microwell array platform9. Microwell arrays have sev-
eral important advantages over droplet-based devices for single cell analysis including low sample and reagent dead 
volume, short cell loading time, and enhanced compatibility with short-term cell culture, cell perturbation assays, 
and optical imaging16–18. The last two features are particularly useful in minimizing sample degradation prior to 
cell lysis and allow the experimenter to examine and tune cell loading, identify multiplets or cell debris, and use 
fluorescence microscopy to determine marker composition and cell viability. In addition, high-efficiency capture 
of individual cells from a small sample is relatively straightforward with microwells, because cells and beads can be 
loaded into microwells by repeatedly flowing them over the array until all of them are captured by gravity. While 
our original system was capable of profiling a few hundred cells per experiment with library preparation costs of 
$0.10–$0.20 per cell, it suffered from several key drawbacks including low cell and molecular capture efficiency and 
a lack of automation9. Here, we report significant improvements of microwell-based single cell RNA-Seq in these 
three areas with no effect on overall cost. In addition, we demonstrate the compatibility of this system with the sim-
ple, 3′ -end library preparation scheme SCRB-Seq19 and the commercially available barcoded “Drop-Seq” capture 
beads reported by Macosko et al.7. The level of cross-contamination between wells is critically evaluated by both 
imaging fluorescently tracked cell lysate in oil sealed microwells and a human-mouse mixed species experiment. To 
demonstrate the utility of our method, we applied it to patient-derived glioma neurospheres and observed multiple 
phenotypic subpopulations that resemble features of intratumoral heterogeneity in glioblastoma.
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Results
An Automated Microwell Platform for Single Cell RNA-Seq. Microwell arrays are fabricated in poly-
dimethylsiloxame (PDMS) using standard soft lithography. Device design is highly flexible- we fabricate large 
arrays containing 15,000–150,000 microwells. Multiple arrays can be arranged as “lanes” on a single device for 
multiplexing9. In addition, the size of the microwells can be customized for different cell types. In the experi-
ments described here, we use devices containing 150,000 cylindrical microwells that are 50 μ m in diameter and 
58 μ m in height (~100 pL in volume), which accommodates most mammalian cell types. Figure 1 illustrates the 
experimental work flow. New devices are first wet with a detergent-containing buffer followed by gravity-assisted 
cell loading. When dealing with specimens containing a small number of cells such as core biopsies or subpop-
ulations isolated by flow sorting or laser capture microdissection, cell suspensions loaded into the device can be 
agitated with laminar flow to increase the fraction of cells captured by the microwell array. This process can be 
automated simply by connecting one end of the microwell flow cell to a standard syringe pump and reversing the 
flow direction repeatedly as the cells sink into the microwells (Fig. 2A,B, Supplementary Video S1). We have used 
this procedure to achieve cell capture efficiencies > 50%, making our system particularly useful for large-scale 
profiling from samples containing relatively few cells. To minimize the number of microwells containing more 
than one cell, we typically load < 10% of the microwells. After loading the microwells, cells can be imaged with 
an optical microscope to assess cell viability, multiplet capture rate, cell size distribution and morphology, and 
surface marker composition. For mRNA capture, we load polymer beads to which barcoded oligo(dT) primers 
have been attached. The diameter of the beads is larger than the microwell radius, making it unlikely for more 
than one bead to enter a microwell and therefore facilitating high-density loading (Fig. 2C). After both cells and 
beads have been loaded into the device, another scan of the device can be performed to measure bead loading rate 
and the number of cell/bead pairs. The 5′ -ends of the oligo(dT) primers contain a universal adapter sequence for 
amplification, a barcode sequence that is unique to the bead, and a second barcode sequence for uniquely labeling 
a captured cDNA molecule (unique molecular identifier or UMI)7,20,21. The beads can capture the poly(A) tails 
of mature mRNA messages from eukaryotic cells and solid-phase reverse transcription results in labeling of the 
cDNA product with a barcode. We have demonstrated single cell RNA-Seq in PDMS microwells using capture 
beads that contain specific barcode sequences generated by combinatorial primer extension9 and, in this report, 
using the random barcodes sequences generated by split-pool solid phase oligonucleotide synthesis7. While the 
former have the advantage of a pre-determined sequence that can be optimized for correcting sequencing errors 
and other features9, the latter are commercially available7.

As described above, cell-bead pairing occurs randomly when both entities are loaded by gravity. Once this 
manual step is complete, cell lysis and reverse transcription occur on a computerized fluidics and temperature 
control system (Fig. 2D). We use a thermoelectric module for temperature control and an electronic, rotary 
selector valve to introduce different solutions to the device and reversibly seal and unseal the microwell array9,17. 
In our original report, we sealed the microwell array after introducing a lysis buffer containing a mild detergent9. 
We then used freeze-thaw cycles to initiate cell lysis, trap individual cell lysates in the microwells, and capture the 
liberated mRNA on barcoded beads9. This approach is relatively inefficient and requires low temperatures that 
are incompatible with automation. For efficient cell lysis, a strongly denaturing buffer that can rapidly disrupt cell 
membranes and deactivate nucleases would be ideal, but rapid sealing of the microwells is essential to minimize 
material loss and cross-contamination. Our automated system allows multiple fluids to be introduced in rapid 
succession, enabling the use of efficient lysis buffers without significant material loss prior to sealing. For cell 
lysis, we introduce a denaturing lysis buffer containing guanadinium isothiocyanate. We then rapidly introduce 
perfluorinated oil to seal the microwell array22 before cell lysis occurs. Figure 2E shows the lysates of isolated, 
fluorescently labeled cells in a microwell array following automated cell lysis and sealing. On-chip fluorescence 
imaging facilitates quality-control of cell viability and lysis and microwell sealing quality while providing a simple 
means of counting the number of cell-bead pairs and multiplet loading rate in every experiment.

Following cell lysis and mRNA capture, we introduce a detergent-containing buffer to rapidly remove the 
oil sealant and cell lysates. At this point the barcoded beads with hybridized mRNA are exposed to the micro-
fluidic channel located above the microwells, and the automated system introduces all of the reagents required 
for reverse transcription at the appropriate temperature. Here, we use the SCRB-Seq protocol19 similar to what 
was reported for Drop-Seq7, and so the reverse transcription reaction also includes a template-switching step 
to generate full-length cDNA with universal sequence adapters on both the 3′ - and 5′ -ends. Once the reverse 
transcription reaction is complete, we disconnect the device, remove the beads from the microwells by gentle 
sonication, gravity, and detergent-containing buffer flow, and complete the library construction procedure as 
described previously7. The empty device is then imaged by microscopy to measure bead extraction efficiency, 
which typically exceeds 99%. Note that there are still a few steps of the library construction procedure that require 
human intervention, including two PCR reactions. Further system development is required to fully automate the 
library construction procedure.

High-Quality Large-Scale Single Cell RNA-Seq Profiling with an Automated Microwell System.  
To characterize the performance of our system, we obtained RNA-Seq profiles of ~3,000 individual cells from a 
mixture of the human glioma cell line U87-MG and the murine fibroblast cell line NIH-3T3 in a single exper-
iment. As shown previously, mixed species analysis is an effective approach to assessing cross-talk and purity, 
particularly in pooled single cell RNA-Seq experiments7,8. We chose the U87-MG and NIH-3T3 cell lines in order 
to compare the performance of our system to previous studies. We sequenced U87-MG cells in our initial report 
of microwell-based single cell RNA-Seq9 and NIH-3T3 cells were sequenced in the original report of Drop-Seq7.

Figure 3A shows a histogram of the fraction of molecules that uniquely aligned to either the human or murine 
transcriptome but that aligned best to the human transcriptome for each cell. The bimodal distribution indicates 
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that almost all of the molecules detected for roughly half of the cells originate from human mRNA versus murine 
mRNA for the remaining half. Because the original mixture was comprised of about 50% human and 50% murine 
cells, this implies that our single cell RNA-Seq profiles are quite pure (median purity of > 98.8%). Cell barcodes 
associated with a significant number of both human and murine transcripts (< 90% purity for the species with the 

Figure 1. Schematic depiction (not drawn to scale) of the work flow (left column) and multiple check 
points (right column) of the automated microwell array platform. The check points can be used to assess the 
quality of a run and acquire additional phenotypic information on the same cells to be sequenced.
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most transcripts) likely originate from “multiplets” or instances in which two or more cells of both species were 
captured in a single microwell (< 0.8% of cell barcodes).

An additional indicator of purity and performance is the ability to detect subtle phenotypic subpopulations. 
For example, expression heterogeneity due to cell cycle asynchrony is a hallmark of single cell RNA-Seq profiles 
of mitotic cells. Figure 3B,C show heatmaps containing cell cycle state scores for both human U87-MG cells and 
murine NIH-3T3 cells from this dataset (see Methods). Here, we can clearly distinguish cells in each of five stages 
of the cell cycle from each other as well as groups of cells transitioning between stages.

Figure 3D–G show the distributions of numbers of molecules and genes detected per cell as well as saturation 
curves for molecule and gene detection for U87-MG cells. In our original report, we detected an average of < 1,000 
genes per U87 cell9, but here we detect ~4,800 genes per U87 cell on average. Hence, our automated microwell sys-
tem has significantly higher molecular capture efficiency than our initially reported system. Similarly, Fig. 3H–K 
show the same analysis for individual murine NIH-3T3 cells. Our molecular and gene detection efficiencies are 
similar for the two cell lines. We detect ~25,000 molecules and ~4,600 genes per NIH-3T3 cell on average, similar 
to what was reported for Drop-Seq for the same cell line7. On average, we obtained ~208,000 raw reads per cell. 
Importantly, we note that neither our U87-MG nor our NIH-3T3 libraries have been sequenced to saturation. 
Therefore, this analysis represents an underestimate of our actual molecular and gene detection efficiencies.

We also compared our sensitivity to that of the Fluidigm C1 system for the same cell line using a publi-
cally available data set in which individual 3T3 cells were sequenced (Supplementary Fig. S4)7. Because UMIs 
were not implemented in these experiments, we cannot make a direct comparison of our molecular capture 
efficiency, but we can compare the number of genes detected per cell. We found that, at full coverage (~1 million 
uniquely aligned reads per cell), the Fluidigm system detected ~8,800 genes per cell on average. However, when 
we down-sampled the Fluidigm C1 data to ~42,000 uniquely aligned reads per cell (similar to what we obtained 
for 3T3 cells in this study), the Fluidigm system detected ~5,300 genes per cell. While this is comparable to the 
number of genes that we detected in this same cell line, the Fluidigm C1 libraries likely require more reads to 
reach saturation due to their full gene body coverage than our libraries in which we sequence only the 3′ -end. 
Hence, the Fluidigm C1 library complexity and detection efficiency are most likely considerably higher than those 
of our platform at saturating coverage.

Glioma Neurospheres Preserve Key Features of Intratumoral Heterogeneity based on 
Large-scale Single Cell RNA-Seq. We obtained RNA-Seq profiles of > 2,200 individual cells from a 
patient-derived glioma neurosphere culture in a single experiment. The performance of our automated microwell 
array platform with these neurospheres is summarized in Supplementary Fig. S3. The mean numbers of mole-
cules (Supplementary Fig. S3A) and genes (Supplementary Fig. S3B) detected per cell are ~14,000 and ~3,300 
respectively. On average, we obtained ~303,000 raw sequencing reads per cell for TS543 cells. Saturation analysis 
of both the numbers of detected molecules (Supplementary Fig. S3C) and genes (Supplementary Fig. S3D) sug-
gests that our current sequencing depth is close to saturation.

Figure 2. Efficient isolation of individual cells in microwells. (A) Schematic cross-section view of the device 
and the multi-round cell loading scheme. (B) Bright-field images of the same region of a device after several 
rounds (r) of cell loading. Red circles denote the loaded cells which increases monotonically with r. (C) Bright-
field images of a cell/bead-loaded device. (D) Design of the automation system. (E) Fluorescence image of an 
oil-sealed device with trapped fluorescent cell lysates and less fluorescent beads.
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Glioma neurospheres represent an important model system for brain tumors because, in many cases, 
they more effectively preserve the phenotypic and genotypic features of tumors than conventional monolayer  
cultures23. They have been widely used to study drug response, glioma stem cells, and tumor progression as 
xenograft models23–25. However, to our knowledge, glioma neurospheres have not been analyzed comprehen-
sively by single cell RNA-Seq to determine the extent of phenotypic heterogeneity and co-occurrence of cel-
lular subpopulations within a single culture. Expression profiling of surgical specimens from glioma patients 
by The Cancer Genome Atlas has established classifier gene sets that stratify tumors into distinct subtypes26. 
Recent studies employing bulk expression analysis of regional heterogeneity27 and single cell RNA-Seq28 have 
shown that gene signatures corresponding to different patient subtypes co-occur within individual gliomas. We 
analyzed single cell expression profiles obtained from TS543 cells, a glioma neurosphere line that most closely 
resembles the Proneural glioma subtype and harbors amplification of PDGFRA, a genetic alteration associated 
with Proneural gliomas29. We used unsupervised dimensionality reduction and density-based cluster assignment 
that was uninformed of the identities of the glioma classifier genes (taken from Table S3 of Verhaak et al.26) to 
show that individual TS543 cells are comprised of at least two clear phenotypic subpopulations (Fig. 4A). For 
simplicity, we refer to these subpopulations as the red cluster and blue cluster. The median number of molecules 
detected per cell in the red and blue clusters was 11,382 and 9,771, respectively, suggesting that coverage is not a 
major driver of the separation between these two subpopulations. As expected, we found that Proneural genes are 

Figure 3. Characterization of Single Cell RNA-Seq Performance. (A) Histogram of the fraction of molecules 
uniquely aligned to the human transcriptome for a mixed species analysis including human U87 and murine 
3T3 cells. The bimodal distribution peaked near zero and one indicate that our single cell profiles are of high 
purity. Cell-identifying barcodes with purities that deviate significantly from zero or one are indicative of 
multiplets (microwells containing two or more cells from both species). (B) Heat map of a cell cycle score for 
each U87 cell indicating the relative expression of genes associated with each of five cell cycle stages. The heat 
map shows that there are cells in all five cell cycle stages and cells that appear to be in specific intermediate 
transition states between stages. (C) Same as (B) but for individual 3T3 cells. (D) Histogram showing the 
number of uniquely aligned molecules per cell for human U87 cells. (E) Histogram showing the number of 
genes detected per cell for human U87 cells. (F) Sub-sampling saturation curve for the number of molecules 
detected per human U87 cell as a function of the number of uniquely aligned reads sampled. (G) Same as (F) for 
the number of genes detected per human U87 cell. (H–K) Same analysis as in (D–G) for murine 3T3 cells.
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more commonly expressed in the majority of TS543 cells than genes from either the Classical or Mesenchymal 
subtypes. However, when we project expression of subtype-specific genes onto our clustering analysis, we find 
considerable expression heterogeneity among the classifier genes. For example, above-median expression of the 
Proneural classifier genes (Fig. 4B) is significantly enriched in the blue cluster (p <  10−6, hypergeometric test) 
whereas above-median expression of both Classical (Fig. 4C) and Mesenchymal (Fig. 4D) genes is significantly 
enriched in the red cluster (p <  10−6 for both gene sets). This phenomenon is reminiscent of the “hybrid cellular 
states” observed in by Patel et al. among individual cells in human glioblastoma tissue specimens28. Hence, our 
results suggest that glioma neurosphere cultures can recapitulate the subtype-specific expression heterogeneity 
found in human glioma tissue.

Discussion
We have described a significantly improved microwell platform for single cell RNA-Seq. Previous reports of 
similar systems suffered from several key drawbacks. The system developed by Fan et al.11. was restricted to 
targeted analysis of specific transcripts rather than genome-wide RNA-Seq and could suffer from material loss 
and cross-contamination due to the lack of physical isolation between microwells. While the manual system 
that we reported previously was capable of unbiased RNA-Seq of individual cells, the gene detection and cell 
capture efficiencies were relatively low and the device had not been scaled for profiling thousands of cells in  
parallel9. Automation played an essential role in realizing the improvements demonstrated here. For example, the 
strongly denaturing lysis buffer employed here cannot be administered manually without significant material loss 
and cross contamination. An electronic fluidics system is required to introduce the buffer and rapidly seal the 
microwells before the cell contents escape. In addition, the Sepharose beads that we used previously for mRNA 
capture lack the monodispersity of the commercial mRNA capture beads used here7,9. Monodisperse beads of the 
appropriate size are essential for high efficiency cell capture because they allow us to load a single bead into most 
of the microwells. Mammalian cells are small enough that multiple cells can be trapped in a single microwell. 
Therefore, we must sparsely load the microwells with cells and rely on dense loading of the beads to maximize 
the frequency of cell-bead pairs in our array. The combination of monodisperse beads, the low dead volume of 
the microwell array device, and an efficient fluidic technique for cell loading allows us to capture > 50% of cells 
from a suspension.

In our previously reported system, we achieved library preparation costs of ~$0.10–$0.20/cell9. The data set 
presented here included > 5,000 cells from two experiments and was obtained with library preparation costs of 
$0.11/cell and sequencing costs of $0.48/cell. Taken together, the improvements described here have resulted in 
a microfluidic system for single cell RNA-Seq that is compatible with imaging and can detect thousands of genes 
across thousands of individual cells with a cell capture efficiency > 50% and library preparation costs that are 
almost negligible compared to the cost of sequencing. Due to the enormous barcoding capacity of the Drop-Seq 
beads7 and the parallel fashion in which cells and beads are loaded into our prefabricated microwells, throughput 
of our platform, when necessary, can be further scaled up to hundreds of thousands of cells per run simply by 
increasing the number of microwells in a single lane and the number of lanes on a single device while keeping the 
time required for cell/bead loading short which is important to minimize sample degradation prior to cell lysis.

Conventional approaches to single cell analysis such as microscopy and flow cytometry are routinely employed 
to analyze thousands of individual cells from complex tissues. With the development of new microfluidic tools7–11 
and an appreciation that important subpopulations can be identified with relatively shallow sequencing cover-
age14, genome-wide analysis of individual cells is beginning to reach a similar scale. As a result, new applications 
can be contemplated including comprehensive identification of cell types throughout an organism, simultaneous, 
unbiased characterization of transformed and stromal cells from solid tumors, and detection of rare cellular sub-
populations that give rise to drug resistance.

Figure 4. Phenotypic heterogeneity in glioma neurospheres reflects glioma patient subtypes. (A) t-SNE 
clustering analysis of > 2,200 individual TS543 glioma neurosphere cell expression profiles showing two 
distinct subpopulations of cells. Assignment of individual cells to the red or blue clusters was accomplished by 
nearest-neighbor density analysis (see Methods). (B) Same t-SNE clustering analysis shown in (A) but colorized 
according expression of classifier marker genes that are characteristic of the Proneural subtype of glioblastoma 
(see Methods for mathematical details). Red cells have high expression of the Proneural classifier genes and blue 
cells have low expression of the classifier genes. (C) Same as (B) but using the classifier marker genes that are 
characteristic of the Classical subtype of glioblastoma. (D) Same as (B) but using classifier marker genes that are 
characteristic of the Mesenchymal subtype of glioblastoma.
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Methods
Fabrication of PDMS Microwell Flow Cell Devices for Large-Scale Single Cell RNA-Seq. The 
devices are fabricated using standard SU-8 soft lithography30. SU-8 wafer molds are designed in Draftsight (http://
www.3ds.com/products-services/draftsight-cad-software/). The diameter, height of each well, and center-to-
center distance between neighbor wells are 50 μ m, 58 μ m and 75 μ m, respectively. The height of the flow cell 
is 112 μ m. Silanized SU-8 silicon wafer molds are obtained from FlowJEM (http://www.flowjem.com/). PDMS 
(Sylgard 184, Dow Corning) base and curing agent are thoroughly mixed at the ratio of 10:1, degassed under 
house vacuum in a desiccator (Z354074, Sigma-Aldrich) for 2 hours and poured onto the SU-8 wafer molds in 
containers made of aluminum foil (01-213-100, Fisher Scientific). The degassed PDMS mixture is then cured in 
a 90 °C oven (414004-556, VWR) for 2 hours. PDMS slabs are then gently peeled off from the molds. A 1.75 mm 
OD biopsy punch (15110-15, Ted Pella) is used to create inlet and outlet of flow cells. One PDMS slab with 
microwells and one PDMS slab with flow cell are treated in a plasma cleaner (PDC-32G, Harrick Plasma) for  
30 seconds and then covalently bonded together to form the final microwell flow cell device.

Computer-Controlled Automation for Microwell-Based Single Cell RNA-Seq. A schematic of the 
computer-controlled automation system is shown in Fig. 2D. The system consists of both temperature and fluidic 
control systems. Temperature control of the PDMS device is realized by directly mounting the PDMS device on 
top of a thermoelectric heater/cooler (CP-031, TE Technology) which is controlled through a bi-polar tempera-
ture controller (TC-36-25-RS232, TE Technology). A multi-channel selector valve (MLP777-605, IDEX Health 
& Science), located at the upstream of the PDMS device, is deployed to control which reservoir is connected to 
the device. A three-way solenoid valve (EW-01540-11, Cole-Parmer), located at the downstream of the PDMS 
device, is used as an on/off switch of the flow. Fluid flow is driven by a constant pressure source (3 psi) stabilized 
by a pressure regulator (AW20-F02, SMC Pneumatics). Because the on/off switch is located at the downstream of 
the device, the device is under a constant positive pressure during any incubation steps. This feature is crucial for 
preventing bubble formation in the device, especially at elevated temperatures such as during the reverse tran-
scription step. To minimize dead volume, tubing with small inner diameter (127 μ m, 37005T, Fisher Scientific) is 
used to connect reagent reservoirs and inlet of the device and that the length of the tubing is kept at minimum. 
This way, we are able to keep the dead volume below 10 μ L which is less than the total volume of the device itself 
(20 to 250 μ L depending on the number of wells the device has). The multi-channel selector valve is controlled by 
a USB digital I/O device (NI USB-6501, National Instruments). The three-way solenoid valve is controlled by the 
same USB digital I/O device, but through a homemade transistor-switch circuit. A C program is used to control 
the system.

Library Construction and Sequencing Protocol for Microwell-Based Single Cell RNA-Seq.  
TS543 cell line is cultured in Complete NeuroCultTM Proliferation Medium (STEM CELL Technologies) to form 
neurospheres. On the day before experiment, a new device is filled with wash buffer (20 mM Tris-HCl, 50 mM NaCl, 
0.1% Tween-20 (P9416-50ML, Sigma-Aldrich), pH 7.9) and stored in a humid chamber (a pipette tip box half-filled 
with water). On the day of experiment, TS543 neurospheres are dissociated into a single-cell suspension by pipet-
ting, re-suspended in TBS buffer, and stained with Calcein AM live stain dye (L3224, Thermo Fisher Scientific) 
at room temperature for 30 minutes. While the cells are being stained, fresh lysis buffer (1% 2-Mercaptoethanol 
(BP176-100, Fisher Scientific), 99% Buffer TCL (1031576, Qiagen)), RNase inhibitor doped wash buffer 
(0.02 U/μ L SUPERaseIN (AM2696, Thermo Fisher Scientific) in wash buffer), reverse transcription (RT) reac-
tion mix (1X Maxima RT buffer, 1 mM dNTPs, 1 U/uL SUPERaseIN, 2.5 μ M template switch oligo, 10 U/uL  
Maxima H Minus reverse transcriptase (EP0752, Thermo Fisher Scientific), 0.1% Tween-20), and perfluorinated 
oil (F3556-25ML, Sigma-Aldrich) are prepared and loaded into their designated reservoirs on the automated 
system. Throughout the experiment, reagents in all reservoirs are chilled on ice. Cells are kept on ice once the live 
stain is completed. The device is then washed by TBS buffer and loaded with live-stained single cell suspension. 
Cells are incubated in the device for 3 minutes. Uncaptured cells are then washed away by a gentle TBS buffer 
wash. When few cells are available (a few to a few tens of thousands of cells), a multi-cycle cell loading scheme 
(Fig. 2A,B) is employed to enhance cell capture efficiency. After a single cell suspension is loaded to the device, 
the inlet is connected to a TBS buffer-filled syringe pump (70–4501, Harvard Apparatus). The outlet of the device 
is connected to an open pipette tip which serves as a reservoir for overflow. The syringe pump’s operating mode 
is alternated between infusion and withdraw modes with a 1-minute stop time in between. We are able to achieve 
> 50% cell capturing efficiency with 4 loading cycles in 5 minutes. Cell capture efficiency is defined as the number 
of cells trapped in microwells divided by the total number of starting cells in a microcentrifuge tube. The cells are 
counted using a fluorescence microscope (Eclipse Ti-U, Nikon). In all cases, less than 10% of the wells are loaded 
with cells. This minimizes the number of wells with more than one cell (multiplet loading rate). Barcoded mRNA 
capture beads (MACOSKO-2011-10, ChemGenes) are then loaded to the wells with the same approach. We are 
able to load more than 97% of the wells with beads among which less than 5% has more than one bead (Fig. 2C). 
No cell is observed in wells containing more than one bead. The device is then connected to the automated system 
for library preparation steps.

The library preparation work flow is adopted from Macosko et al.7 with minor modifications. Lysis buffer is 
first flowed through the device for 6 seconds followed by an oil flow which seals each well into a tiny (~100 pL) 
isolated reactor. We observed a negligible amount of cell loss after cell lysis and oil sealing steps (< 2%). The device 
is then incubated at 50 °C for 20 minutes to enhance cell lysis and at 25 °C for 90 minutes to capture mRNA onto 
the beads. During this period, the device is temporarily disconnected from the fluidic system, scanned on a fluo-
rescence microscope (Eclipse Ti-U, Nikon), and then reconnected to the fluidic system. Fluorescent signal from 
the stained cell lysate is used to check sealing integrity. Since only a small fraction (< 10%) of the wells contains a 
live stained cell, we expect to see the same small fraction of wells filled with fluorescent dye and that the majority 

http://www.3ds.com/products-services/draftsight-cad-software/
http://www.3ds.com/products-services/draftsight-cad-software/
http://www.flowjem.com/
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of the wells to be dark if the oil sealing works well (Fig. 2E). In wells with a bead-cell pair, we expect to see a 
non-fluorescent bead surrounded by brightly fluorescent cell lysate (inserts in Fig. 2E). After the RNA capture 
step is completed, wash buffer supplemented with RNase inhibitor is flowed through the device to flush out the oil 
and mRNA-depleted cell lysate followed by an infusion of RT reaction mix. The device is then incubated at 25 °C 
for 30 minutes and at 42 °C for 90 minutes. At the end of the RT reaction, RNase inhibitor-doped wash buffer is 
used to flush out the RT reaction mix. The cDNA-coated beads are extracted from the device by a few rounds of 
30-second mild water batch sonication (FS-20, Fisher Scientific) and 1-mL fast wash-buffer flow applied manually 
through a syringe. Bead extraction efficiency typically exceeds 99% after three rounds of sonication and wash. The 
extracted beads are washed once with TE/SDS buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0), twice with TE/TW 
buffer (10 mM Tris-HCl, 1 mM EDTA, 0.01% Tween-20, pH 8.0), once with DI water before re-suspending in  
50 μ L of Exo-I reaction mix (1X Exo-I buffer, 1 U/μ L Exo-I (M0293L, New England Biolabs)) at 37 °C for 
30 minutes. The Exo-I treated beads are then washed once with TE/SDS buffer, twice with TE/TW buffer, once 
with DI water before splitting into multiple 50 μ L PCR reactions (1X Hifi Hot Start Ready mix (KK2601, Kapa 
Biosystems), 1 μ M SMRTpcr primer). We typically load about 100 cell-bead pairs per PCR reaction with 12 ampli-
fication cycles (95 °C 3 min, 4 cycles of (98 °C 20 s, 65 °C 45 s, 72 °C 3 min), 8 cycles of (98 °C 20 s, 67 °C 20 s, 72 °C 
3 min), 72 °C 5 min). PCR product is purified using the solid-phase reversible immobilization (SPRI) paramag-
netic bead technology (A63880, Beckman Coulter) with a 0.6:1 bead-to-sample volume ratio. Purified cDNA is 
then pooled together and used as input for Nextera tagmentation reactions (FC-131-1024, Illumina). We followed 
the standard Nextera tagmentation protocol provided by the vendor but with the following two modifications. 
First, 0.6 ng instead of 1 ng of cDNA is used as input per Nextera tagmentation reaction. Second, the i5 index 
primer is swapped with a custom primer to selectively amplify only fragments that contains the 5′  end of cDNA 
where cell barcodes and unique molecular identifiers (UMIs) are located. Nextera PCR product is purified in the 
same way as the cDNA PCR product to obtain sequencing-ready library. Representative Bioanalyzer (5067–4626, 
Agilent Technologies) traces of cDNA and sequencing-ready library obtained using our automated microwell 
platform are shown in Supplementary Fig. S1. The library is sequenced on a NextSeq 500 sequencer (Illumina) 
with 26 cycles on read 1 and 66 cycles on read 2. A custom sequencing primer is used for read 1. PhiX (FC-110-
3001, Illumina) spike-in library is loaded with the single cell RNA-Seq library at 20%. We used the same primers 
for library construction and sequencing that were reported in Macosko et al.7.

Data Processing Procedure for Microwell-Based Single Cell RNA-Seq. Cell and molecular bar-
coding information are both contained in read one of our raw sequencing data, whereas all genomic information 
is contained in read two. We first extract the bead- and molecule-specific barcode sequences from read one. 
We pre-process read two using fastx_clipper by removing all poly(A) tails from the 3′ -ends of each read and 
discarding any resulting fragment shorter than 25 nucleotides. We then map read two to either a pre-assembled 
human transcriptome (hg 19, UCSC known genes), murine transcriptome (mm 10, UCSC known genes), or a 
concatenated human-murine transcriptome using bwa-mem. We keep all reads with the correct strandedness 
that map uniquely to a specific gene with an alignment score that is greater than or equal to 85% of the length of 
the fragment. At this point, we associate an “address” with each non-discarded read comprised of the gene name, 
UMI sequence, and cell barcode sequence. In the absence of oligonucleotide synthesis, replication, or sequencing 
errors, each address theoretically represents a unique mRNA molecule. However, because both the cell barcode 
and UMI sequences are random, the address of two reads can differ simply because of sequencing errors. We first 
collapse all reads with the same address to a single read, keeping track of the number of reads associated with each 
address. Once we have assigned cell barcodes to read addresses, we examine the 8-nucletoide UMI sequences. For 
a given address, if there is a higher coverage address with a UMI sequence within an edit distance of one that con-
tains the same cell barcode-gene combination, we collapse them to the same address. At this point, we consider 
the number of addresses to be our estimate of the number of molecules captured for each gene from each cell. We 
use this estimate as the basis for all subsequent analysis.

Even after the filtering procedures described above, we obtain more cell barcodes than the number of cell-bead 
pairs loaded in our device. These additional cell barcodes arise from several sources including additional sequenc-
ing or synthesizer errors and the beads that are not paired with a cell, which can capture low levels of ambient 
RNA during the experiment. Nonetheless, as shown in Supplementary Fig. S2, we can readily identify a popula-
tion of very high coverage barcodes based on the distribution of captured molecules that is consistent with the 
number of cell-bead pairs imaged in our device. Similar observations have been made in previous studies7,9.

Cell Cycle Analysis. We adopted the cell cycle analysis method developed by Macosko et al.7. Please refer 
to the original paper for details. Briefly, the expression level of a set of genes that are known to reflect different 
phases of cell cycle were used to calculate a phase-specific score for each cell. Each cell is then classified into one 
of the ten patterns of phase-specific scores (including eight potential patterns along the cell cycle and two pat-
terns for equal scores of all phases (either all active or all inactive)) based on the maximal correlation of the cell’s 
phase-specific score with these ten patterns. Cells within each class were further ordered based on their relative 
correlation with the preceding and succeeding patterns. The set of genes used to calculate the phase-specific 
scores were obtained from the Supplemental Fig. 15 in Whitfield et al. which reflect five phases of cell cycle  
(G1/S, S, G2, G2/M, M/G1)31. The eight potential patterns along the cell cycle that the cells were classified into are: 
only G1/S is on, both G1/S and S are on, only S is on, both S and G2 are on, only G2 is on, both G2 and G2/M are 
on, only G2/M is on, both G2/M and M/G1 are on.

Clustering Analysis of Single Cell Expression Profiles. We clustered our TS543 single cell expression 
profiles using a set of highly variable genes identified based on a dispersion analysis of the entire data set. We 
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first normalized the molecular counts for each gene in each cell by the total number of molecules detected in 
that cell. We considered these normalized molecular counts to be expression levels. Next, we plotted the coef-
ficient of variation vs. mean expression across all genes detected in at least five cells and grouped the genes into 
50 evenly-spaced bins based on log-transformed expression levels. We computed a z-score for each bin and took 
genes with a z-score greater than three to be highly variable given their expression levels as long as they were 
detected in at least 10% of cells (see Supplementary Table S1 for a complete list). Hence, the variance in these 
genes is less likely to result from technical noise and more likely to result from real biological variation. We 
then computed a matrix of Pearson correlation coefficients between the log-transformed expression profiles of 
each cell using only the highly variable genes. Finally, we used this Pearson correlation matrix as input to the 
t-stochastic neighborhood embedding (t-SNE) algorithm32 for unsupervised clustering as implemented in the 
Python scikit-learn package. The results of the t-SNE clustering are displayed in Fig. 4. We assigned cells to dis-
crete clusters by density analysis with the DBSCAN function in scikit-learn using the Euclidean distance metric.

We used the following score, Ssubtype,i, to assess expression of glioma subtype-specific genes in an individual 
cell i:

=S
n

N n (1)
subtype i

subtype i

subtype genes i
,

,

,

where nsubtype,i is the number of subtype-specific genes detected in cell i, Nsubtype is the number of subtype-specific 
genes detected in the entire dataset, and ngenes,i is the number of genes detected in cell i.

Analysis of Single Cell RNA-Seq Data Generated by the Fluidigm C1 System. As described 
above, we sequenced NIH-3T3 murine fibroblasts as part of a performance test for our system. This same cell line 
was sequenced using the Fluidigm C1 system by Macoscko et al.7. We downloaded the raw SRA data for these 
experiments from GEO accession GSE701151 and converted these data to 192 fastq files, corresponding to 192 
single cell profiles using fastq-dump in the SRA Toolkit package. We then aligned each fastq file to a concate-
nated human-mouse pre-assembled transcriptome using bwa-mem and identified uniquely aligned reads just as 
described above. Because the Fluidigm C1 data set originated from a mixed species experiment in which human 
HEK cells were mixed with murine 3T3 cells, we identified cells with > 90% of the reads aligned to the murine 
transcriptome and quantified the number of genes detected per cell at two different read depths (Supplementary 
Fig. S4).
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