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ABSTRACT 

Towards the integration of structural and systems biology: structure-based studies 

of protein-protein interactions on a genome-wide scale 

Qiangfeng Cliff Zhang 

Knowledge of protein-protein interactions (PPIs) is essential to 

understanding regulatory processes in a cell. High-throughput experimental 

methods have made significant contributions to PPI determination, but they are 

known to have many false positives and fail to identify a signification portion of 

bona fide interactions. The same is true for the many computational tools that 

have been developed. Significantly, although protein structures provide atomic 

details of PPIs, they have had relatively little impact in large-scale PPI predictions 

and there has been only limited overlap between structural and systems biology. 

Here in this thesis, I present our progress in combining structural biology and 

systems biology in the context of studies analyzing, coarse-grained modeling and 

prediction of protein-protein interactions. 

I first report a comprehensive analysis of the degree to which the location 

of a protein interface is conserved in sets of proteins that share different levels of 

similarities. Our results show that while, in general, the interface conservation is 

most significant among close neighbors, it is still significant even for remote 



 

 

 

 

 

structural neighbors. Based on this finding, we designed PredUs, a method to 

predict protein interface simply by “mapping” the interface information from its 

structural neighbors (i.e., “templates”) to the target structure. We developed the 

PredUs web server to predict protein interfaces using this “template-based” 

method and a support vector machine (SVM) to further improve predictions. The 

PredUs webserver outperforms other state-of-the-art methods that are typically 

based on amino acid properties in terms of both prediction precision and recall. 

Meanwhile, PredUs runs very fast and can be used to study protein interfaces in a 

high throughput fashion. Maybe more importantly, it is not sensitive to local 

conformational changes and small errors in structures and thus can be applied to 

predict interface of protein homology models, when experimental structures are 

not available. 

I then describe a novel structural modeling method that uses geometric 

relationships between protein structures, including both PDB structures and 

homology models, to accurately predict PPIs on a genome-wide scale. We applied 

the method with considerable success to both the yeast and the human genomes. 

We found that the accuracy and the coverage of our structure-based prediction 

compare favorably with the methods derived from sequence and functional clues, 

e.g. sequence similarity, co-expression, phylogenetic similarity, etc. Results 

further improve when using a naive Bayesian classifier to combine structural 

information with non-structural clues (PREPPI), yielding predictions of 



 

 

 

 

 

comparable quality to high-throughput experiments. Our data further suggests that 

PREPPI predictions are substantially complementary to those by experimental 

methods thus providing a way to dissect interactions that would be hard to 

identify on a purely high-throughput experimental basis.  

We have for the first time designed a “template-based” method that 

predicts protein interface with high precision and recall. We have also for the first 

time used 3D structure as part of the repertoire of experimental and computational 

information and find a way to accurately infer PPIs on a large scale. The success 

of PredUs and PREPPI can be attributed to the exploitation of both the 

information contained in imperfect models and the remote structure-function 

relationships between proteins that have been usually considered to be unrelated. 

Our results constitute a significant paradigm shift in both structural and systems 

biology and suggest that they can be integrated to an extent that has not been 

possible in the past. 
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CHAPTER 1. INTRODUCTION 

1.1 From genomics to functional genomics: technology drives 

science 

Modern biological research is always driven by technology development. 

The past decades have witnessed how high-throughput genome-wide 

experimentation, most notably the next generation sequencing studies, have 

remarkably advanced our understanding of biological systems in many different 

aspects and at many different levels. Whole genome sequencing projects like the 

HGP (Human Genome Project, (Lander, Linton et al. 2001; Venter, Adams et al. 

2001)) have generated a plethora of DNA sequences for thousands of organisms. 

Genome annotation projects such as ENCODE (ENCyclopedia Of DNA Elements, 

(Birney, Stamatoyannopoulos et al. 2007; Myers, Stamatoyannopoulos et al. 

2011)) and modENCODE (Model Organism ENCODE, (Gerstein, Lu et al. 2010; 

Roy, Ernst et al. 2010; Elsner and Mak 2011; Muers 2011)) have been carried out 

that aim to find all functional elements in genomes using RNA-seq (RNA 

sequencing, (Mortazavi, Williams et al. 2008; Wang, Gerstein et al. 2009; Haas 

and Zody 2010)), CHIP-seq (Chromatin Immunoprecipitation  sequencing, 

(Mardis 2007; Kharchenko, Tolstorukov et al. 2008; Park 2009)), and MeDIP-seq 

(Methylated DNA immunoprecipitation sequencing, (Down, Rakyan et al. 2008)) 

techniques. And functional genomics, by its broadest definition, promises to 
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provide a complete picture of how these genetic elements function together to 

make a living organism. Ultimately, the ability to decipher the relationship 

between an organism's genome and its phenotype and to manipulate genetic 

circuits that dictate different cellular and organismal activity and behavior will 

have important implications for the understanding of genetic diseases and their 

treatment. 

Many systematic or genome-wide studies have been conducted to detect 

the functions of individual genetic elements and their interactions. Loss-of-

function studies, which systematically “knock out” genes one by one using 

mutagenesis (Brown and Balling 2001; Vidan and Snyder 2001; Bochner 2003) or 

RNAi (RNA interference, (Hannon 2002; Bartel 2009)) techniques can provide 

clues to the functions of the lost gene based on resulting phenotypes. More 

complicatedly, gene function can be investigated in the context of genetic 

interactions, which represent the degree to which the presence of a mutation in 

one gene modulates the phenotype of a mutation in a second gene. Systematic and 

quantitative approaches for measuring genetic interactions, such as SGA 

(Synthetic Genetic Arrays, (Tong, Evangelista et al. 2001; Tong, Lesage et al. 

2004), dSLAM (diploid Synthetic Lethality Analysis by Microarray (Ooi, 

Shoemaker et al. 2003)), and E-MAP (Epistatic MiniArray Profile, (Collins, 
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Miller et al. 2007; Roguev, Bandyopadhyay et al. 2008)), are effective tools to 

study genetic interactions.  

Traditionally, we think of phenotypes as observable characteristics or 

traits such as morphology, development, behavior, or biochemical or 

physiological properties. However, for many genes/organisms, an obvious 

phenotype is hard to define, or especially, hard to quantitatively characterize. 

Nevertheless, a gene is almost always transcribed into RNA molecules. And the 

abundance of the transcripts of a gene is usually tightly regulated by the interplay 

of mutations or polymorphisms in its DNA sequence and regulatory RNAs and/or 

proteins in the same cellular environment. Consequently, the expression levels of 

a gene could be used to quantitatively define a phenotype. The invention of 

microarray techniques that can probe the expression landscape of the entire 

genome and accomplish many genetic tests in parallel has dramatically changed 

our way to study gene functions (Brown and Botstein 1999; Heller 2002). 

Procedures to measure and analyze the expression of tens of thousands of genes 

simultaneously and under hundreds of different environmental conditions have 

been streamlined and could be conveniently carried out in thousands of 

laboratories all over the world.  

Many genes need to be translated into proteins to carry out their functions. 

As the workhorses of a cell factory, proteins take part in essentially every 
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structure and activity of life, by interacting with other proteins, DNA, RNA and 

small molecule ligands. Much effort has therefore been devoted to experimental 

determination of protein-protein interactions (PPIs) using both small scale pull-

down experiments or high-throughput approaches like yeast-two-hybrid 

screenings, affinity purifications, and protein-fragment complementation assays 

(see reviews in (Salwinski and Eisenberg 2003; Shoemaker and Panchenko 2007)), 

and protein–DNA interactions by DNA EMSA (Electrophoretic Mobility Shift 

Assay, (Hellman and Fried 2007)), ChIP (Chromatin Immunoprecipitation, 

(O'Neill and Turner 1996)) and its high-throughput variants ChIP-chip (Zhang, 

Guo et al. 2008) and ChIP-seq (Mardis 2007; Kharchenko, Tolstorukov et al. 

2008; Park 2009).  

 Three dimensional structures, obtained mainly using X-ray 

crystallography (Woolfson 1997) and NMR (Nuclear Magnetic Resonance) 

spectroscopy (Cavanagh 2007), are essential to a full understanding of protein 

functions. Since year 2000, structural genomics initiatives have been carried out 

that aim to solve 3-dimensional structures for a set of representative proteins and 

to draw a full image of the whole structural space with the aid of high-throughput 

structure determination pipelines (Baker and Sali 2001; Vitkup, Melamud et al. 

2001; Gerstein, Edwards et al. 2003; Chandonia and Brenner 2006; Terwilliger, 

Stuart et al. 2009). Together, the steady progress of traditional structural biology 
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and structural genomics efforts has generated many tens of thousands of 

structures deposited in the Protein Data Bank (PDB, (Berman, Westbrook et al. 

2000)) database, covering the majority of known protein families.  

A daunting quantity of data has been produced by these experimental 

techniques. This flood of information poses an array of challenges but also 

opportunities for biological scientists. The needs to store, organize, and analyze it 

demand new computational and informatics tools. More importantly, data by itself 

alone is not knowledge. Thus, to mine the data for biologically meaningful 

patterns that are comprehensible to humans is among the most challenging 

missions of functional genomics. Computational techniques based on sequence 

analysis, graph theory, machine learning, and statistical inference are crucial to 

this endeavor. 

1.2 From bioinformatics to systems biology: the whole is more 

than the sum of its parts 

Bioinformatics is the discipline that applies computational and informatics 

techniques to biological research. Conventionally, the major topics of 

bioinformatics include sequence alignment and assembly, gene and motif finding, 

protein structure modeling and docking, drug design, protein function prediction, 

gene expression analysis, disease gene finding, association mapping, and 

phylogenic tree reconstruction etc. (Jones and Pevzner 2004; Pevsner 2009). 
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Three decades of development of bioinformatics have generated a battery 

of databases, webservers and software that play key roles in almost all sub-

disciplines of biology. For example, it has been a routine for a scientist to search 

on the NCBI (National Center for Biotechnology Information) genome database 

for genes of similar sequences using the Basic Local Alignment Search Tool 

(BLAST, (Altschul, Madden et al. 1997)), when one is interested in an DNA 

sequence of unknown function. It is also very common for a researcher to 

generate testable hypotheses using a number of structure-based function 

annotation servers (Laskowski, Watson et al. 2005; Pal and Eisenberg 2005; 

Fischer, Zhang et al. 2011), if the structure of a protein is known or a reliable 

homology model can be built.  

For decades, biologists have been highly successful in studying biological 

systems through a reductionist approach, deconstructing systems into individual 

components and focusing on specific aspects of the systems. However, with the 

unprecedented growth of biological data and the development of analytic tools, 

the breadth and the depth of information and means available now have for the 

first time afforded us the ability to address biology at an integrative systems level. 

We have now reconstructed large physical and functional interaction networks for 

many cellular systems through biochemical, biophysical and genetic approaches. 

These networks, revealed by the connectivity of individual genes and proteins, 
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can help to identify repeating motifs of biological significance and modules of 

specific functions (Barabasi and Oltvai 2004). For example, Tang and colleagues 

(Ma, Trusina et al. 2009) found that among tens of thousands of all possible three-

node enzyme network topologies, only two major core motifs, a negative 

feedback loop with a buffering node and an incoherent feed-forward loop with a 

proportioner node, could perform biochemical adaptation, the ability to reset after 

responding to a stimulus. This phenomenon of adaption is a so-called emergent 

property of the whole system, i.e., it cannot be achieved and analyzed on the level 

of individual genes.  

The so-called “systems biology” may mean different things to different 

people. Some people think of systems biology as large-scale research, i.e., 

research at the “omics”-scale. Others may focus on quantitative modeling of 

relatively small systems. In spite of large-scale research or quantitative modeling, 

the idea of “integrative study” plays an essential role in systems biology. Indeed, 

Sauer and colleagues wrote that (Sauer, Heinemann et al. 2007): 

“…the pluralism of causes and effects in biological networks is better 

addressed by observing, through quantitative measures, multiple components 

simultaneously and by rigorous data integration with mathematical models.” 

Integration means gathering all relevant information on whole systems, 

which could be the same type of information on different individual components 
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or different types of information on the same system. For example, for complex 

diseases such as cancer, diagnosis could be difficult because a disease usually 

involves many different genes. Systems approaches are gaining increasingly 

important roles in identifying disease genes from the perspective of the whole 

networks of protein-protein interactions and protein-DNA interactions (Adler, Lin 

et al. 2006; Franke, van Bakel et al. 2006; Oti, Snel et al. 2006; Bergholdt, 

Storling et al. 2007; Ergun, Lawrence et al. 2007; Lage, Karlberg et al. 2007; 

Amit, Garber et al. 2009). Moreover, the integration of more types of information, 

like gene expression and genome variation profiles, may help to improve 

diagnostics or prognostics, or even elaborate the disease mechanism, such as how 

a handful of master regulators or driver genes could cause a complex disease 

(Calvano, Xiao et al. 2005; Tian, Greenberg et al. 2005; Anastassiou 2007; Mani, 

Lefebvre et al. 2008; Nibbe, Markowitz et al. 2009; Wang, Saito et al. 2009; 

Akavia, Litvin et al. 2010; Carro, Lim et al. 2010).  

Systems biology is more than reductionism but not its antithesis. For 

example, system-wide pathways or interaction maps are mainly built by 

integration of knowledge about individual genes and proteins. Also, systems 

biology is not only data-driven. Rather, it is an integrative framework to make 

discoveries, as well to build predictive models and testable hypotheses using 

system-wide data and perturbation techniques.   
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1.3 Structural biology meets systems biology 

To date, structural information has not been widely exploited in systems 

biology, mainly because of the limited number of protein structures available, 

especially of complexes which are particularly relevant to systems biology. 

However, combining techniques from computational structural biology and 

systems biology has the potential to address the shortcomings of each. On one 

hand, structural biology provides atomic level descriptions of protein function but 

studies tend to focus on only a few proteins at a time. On the other hand systems 

biology can generate functional hypotheses for large numbers of proteins 

simultaneously but with questionable reliability, a problem which could be 

addressed by using structural information to confirm, negate or suggest alternate 

hypotheses.  

Protein-protein interactions represent a key connection point between 

structural and systems biology (Aloy and Russell 2006; Kiel, Beltrao et al. 2008). 

In past years, there has been much interest in the generation of comprehensive 

networks of interacting proteins, i.e., “interactomes”, of different organisms, 

using large-scale, high-throughput experimental approaches (Uetz, Giot et al. 

2000; Ito, Chiba et al. 2001; Rain, Selig et al. 2001; Gavin, Bosche et al. 2002; Ho, 

Gruhler et al. 2002; Giot, Bader et al. 2003; Li, Armstrong et al. 2004; Butland, 

Peregrin-Alvarez et al. 2005; Rual, Venkatesan et al. 2005; Stelzl, Worm et al. 
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2005; Gavin, Aloy et al. 2006; Krogan, Cagney et al. 2006; Ewing, Chu et al. 

2007; Tarassov, Messier et al. 2008; Yu, Braun et al. 2008; Dreze, Carvunis et al. 

2011) and manual curation of small-scale experiments reported in the literature 

(Reguly, Breitkreutz et al. 2006; Cusick, Yu et al. 2009). In parallel, approaches 

that use indirect evidence such as sequence homology (Matthews, Vaglio et al. 

2001; Yu, Luscombe et al. 2004), gene co-expression (Qian, Dolled-Filhart et al. 

2001; Jansen, Greenbaum et al. 2002; Soong, Wrzeszczynski et al. 2008), 

function similarity (Wu, Zhu et al. 2006), gene fusion (Enright, Iliopoulos et al. 

1999; Marcotte, Pellegrini et al. 1999), genomic context (Dandekar, Snel et al. 

1998; Huynen, Snel et al. 2000), and phylogenetic profile/tree similarity (Huynen 

and Bork 1998; Pellegrini, Marcotte et al. 1999; Pazos and Valencia 2001; Goh 

and Cohen 2002) have also been developed to computationally infer PPIs on a 

large scale (see reviews (Valencia and Pazos 2002; Salwinski and Eisenberg 2003; 

Shoemaker and Panchenko 2007; Skrabanek, Saini et al. 2008)).  

Despite significant progress, however, comparative studies (Aloy and 

Russell 2002; Bader and Hogue 2002; von Mering, Krause et al. 2002; Sprinzak, 

Sattath et al. 2003; Braun, Tasan et al. 2009; Cusick, Yu et al. 2009; Salwinski, 

Licata et al. 2009) suggest that there is still a long way to go in developing a 

complete and error-free understanding of even the widely studied yeast and 

human interactomes. For example, high-throughput experimental approaches 
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produce many false positives while failing to identify the majority of true 

interactions. Indeed, while more than 75,000 PPIs for yeast can be extracted from 

existing databases, there is only limited overlap between PPI maps assembled by 

distinct groups (von Mering, Krause et al. 2002). It also has been suggested that 

the false negative may be quite high, for example in the 80% range for Y2H 

experiments (Yu, Braun et al. 2008). 

Can structural information be applied to the problem? At present, the PDB 

(Berman, Westbrook et al. 2000) structure database contains more than 70,000 

structures, which have been classified into different 4,198 SCOP families (ver 

1.75 as of June 2009; about 10,000 families in total are expected), or covered 

5,084 Pfam families (ver 24.0 as of Dec 2009; 11,912 in total). In addition, a big 

portion of the PDB structures are protein complexes of more than one protein 

chains. Currently, the PDB database contains about 37,000 protein complexes, 

representing >5,200 different pairs of Pfam families, based on the 3did database 

(Stein, Panjkovich et al. 2009). The large number of structures and complexes and 

the significant coverage on structural space suggest that approaches based on 

comparative complex modeling could be useful. Such approaches use 

experimentally determined protein complexes in the PDB and PQS (Protein 

Quaternary Structure, (Henrick and Thornton 1998)) databases as “templates” to 
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model potential interactions (Lu, Lu et al. 2002; Aloy and Russell 2003; Davis, 

Braberg et al. 2006).  

An important question, however, is how well these templates represent 

“interaction space” (Aloy and Russell 2004). Systematic studies have highlighted 

the variability of the binding modes for proteins of the same pair of families (Aloy, 

Ceulemans et al. 2003; Jefferson, Walsh et al. 2006; Kim, Henschel et al. 2006; 

Shoemaker, Panchenko et al. 2006), complicating the development of reliability 

measures for predictions, which may require accurate modeling; structure-based 

interaction prediction methods have thus tended to rely heavily on closely-related 

proteins, limiting the number of templates that may be used to model a particular 

interaction, and consequently the number predictions that can be made.  

Moreover, structures of protein complexes are indispensable towards a full 

understanding to these interactions. Many studies have been carried out to study 

the physico-chemical properties that govern PPIs, which have been used in 

computational protein docking, protein interface prediction, protein complex 

assembly and modeling (Chothia and Janin 1975; Jones and Thornton 1996; Jones 

and Thornton 1997; Lo Conte, Chothia et al. 1999; Nooren and Thornton 2003). 

In particular, our group has been studying the structural and energetic basis of 

PPIs for some time (Sheinerman and Honig 2002; Sheinerman, Al-Lazikani et al. 

2003) most recently in the context of specificity determinants in cadherins (Patel, 
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Chen et al. 2003; Chen, Posy et al. 2005; Patel, Ciatto et al. 2006; Shapiro and 

Honig 2007). However, this level of detail in structural modeling is not yet 

achievable on a genome-wide scale. 

1.4 Specific aims of this thesis 

Our lab has worked on the research area of homology modeling (Petrey 

and Honig 2005; Forrest, Tang et al. 2006; Xiang, Steinbach et al. 2007; Soto, 

Fasnacht et al. 2008; Zhu, Fan et al. 2008), the structural and energetic basis of 

PPIs (Sheinerman and Honig 2002; Sheinerman, Al-Lazikani et al. 2003), and the 

relationships of protein structures and functions (Petrey and Honig 2009; Petrey, 

Markus et al. 2009). In this thesis, I will describe my work related to the 

development of new methods to predict the function of a given protein based on 

its three-dimensional structure and the application of these methods to the study 

of networks of interacting proteins.  

1.4.1 High-throughput prediction of protein-protein interfaces from 

structural neighbors 

The ability to predict protein-protein interfaces from monomer structures 

is important for understanding their functions and further help to the prediction of 

PPIs. Early efforts in this area are represented by the work of Thornton and 

coworkers to predict surface patches overlapping with interfaces (Jones and 
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Thornton 1997). Since then, many papers have been published (Armon, Graur et 

al. 2001; Zhou and Shan 2001; Neuvirth, Raz et al. 2004; Bordner and Abagyan 

2005; Bradford and Westhead 2005; de Vries, van Dijk et al. 2006; Liang, Zhang 

et al. 2006; Ofran and Rost 2007; Porollo and Meller 2007), which use different 

sets of residue characteristics and different machine learning algorithms to predict 

protein interfaces.  

We studied protein interface conservation in sets of proteins that share 

varying degrees of sequence and structural similarities (Zhang, Petrey et al. 2010). 

Our results confirm the most significant conservation among close neighbors, but 

also find surprisingly high level of conservation even for remote structural 

neighbors. We used this finding to develop PredUs, a method to predict protein 

interface simply by “mapping” the interface information from its structural 

neighbors to the target structure. Our method outperforms other state-of-the-art 

methods that are typically based on amino acid properties. 

We also developed the PredUs web server to predict protein interfaces 

using this template-based method (Zhang, Deng et al. 2011). In the webserver, we 

use a support vector machine (SVM) to further improve interface predictions. The 

server allows users to visualize their predictions and interactively apply different 

ranking operators and different functional and structural filters to tailor the 

prediction to a particular hypothesis. 
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PredUs runs very fast and can be used to investigate protein interface in a 

high-throughput fashion. Moreover, it is not sensitive to local conformational 

changes and small errors in structures and thus could be applied to homology 

models. The success of PredUs suggests the possibility of using structural 

information as a basis for predicting PPIs on a genome-wide scale. 

1.4.2 Structure-based prediction of protein-protein interactions on a 

genome-wide scale 

Despite recent progress in exploiting the idea of using structural modeling 

to predict PPIs and to model protein complexes (Lu, Lu et al. 2002; Aloy, 

Bottcher et al. 2004; Davis, Braberg et al. 2006; Fukuhara, Go et al. 2007; 

Gunther, May et al. 2007), the number of interactions that could be identified 

remains small and the overlap of these predictions and the experimental 

interactions is very low.  

Advances in the understanding of the nature of protein sequence/ 

structure/function space offered an opportunity to integrate structural and systems 

biology methods in the context of PPI prediction. I have focused on exploiting 

protein homology models and remote structural relationships to increase the 

coverage of structural modeling methods for use in the prediction of PPIs. We 

developed a novel computational method based on geometric relationships 

between protein structures, which can be used to accurately predict PPI on a 
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genome-wide scale. Indeed, the comparative study shows that the coverage and 

the accuracy compare favorably with methods derived from sequence and 

functional clues. Moreover structural information provides orthogonal clues to 

these non-structure-based methods. We thus use a Bayesian evidence learning 

model to combine structural information with other non-structural clues. The 

resulting method, called PREPPI, yields surprisingly high quality predictions that 

are comparable to high-throughput experiments.  

The effectiveness of three-dimensional structural information can be 

attributed to the use of homology models combined with the exploitation of both 

close and remote geometric relationships between proteins. Our results suggest 

that Structural Biology and molecular systems biology can be integrated to an 

extent that has not been possible in the past. 

1.5 Thesis outline 

I will introduce the relevant biology and computer science background 

knowledge in Chapter 2, mainly focusing on experimental and computational 

methods that identify protein interface and PPIs. In Chapter 3, I present our study 

on protein interface conservation, and the idea of using it for the prediction of 

interface of a given protein. In Chapter 4, I describe the PredUs protein interface 

prediction webserver which based on interface conservation and a SVM. In 

Chapter 5, I present our work on PPI prediction using structural modeling and the 
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combine of structural information with other functional clues into a PPI prediction 

framework. Finally, in Chapter 6, I summarize my thesis and propose several 

potential future directions suggested by my work.  
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CHAPTER 2. GENERAL BACKGROUND 

2.1 Protein structure space 

The function of a protein is closely dependent on its three dimensional 

structure. Traditionally, there have primarily been two techniques that allow the 

determination of a protein structure at a resolution of the level of distinguishing 

individual atoms, i.e., X-ray crystallography (Woolfson 1997) and NMR 

technique (Cavanagh 2007). But recently, Cryo-electron microscopy (Cryo-EM) 

has become another important means of determining protein structures with high 

resolution (Liu, Jin et al. 2010; Zhang, Jin et al. 2010). With further improvement, 

it is expected to be a tool with increasing significance in the future, especially for 

solving structures of large protein complexes.  

Since the determination of the first protein structure, myoglobin, more 

than 50 years of effort has accumulated about 74,000 protein structures in the 

present PDB, among which around 90% are determined by X-ray crystallography 

(data of Aug. 2011). Comparative structural analyses show that many of these 

structures share similarities to some extent. How to detect and use these 

relationships is an intriguing aspect of the study of protein sequence/structure/ 

function space. One possible answer is to classify proteins into different levels of 

similarities based on both sequence and structural relatedness. For example, the 
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SCOP (Structural Classification of Proteins, (Andreeva, Howorth et al. 2004)) 

database classifies all protein structures into different classes, folds, superfamilies 

and families. Usually, structures in the same SCOP class only have some extent of 

similarities in the general structural architecture; those in the same fold share 

similar arrangement of regular secondary structures; and in the same superfamily, 

sufficient structural and functional similarity; in the same family, some extent of 

sequence homology. Currently, the SCOP database (ver 1.75 as of June 2009) 

contains 1195 folds, 1962 superfamilies and 3902 families. The number of folds 

has even surpassed its original speculation of one thousand structural folds in total 

(Chothia 1992), although in the last decade, the increase in SCOP categories has 

been slowing down (Levitt 2007). It appears that the structures in the current PDB 

database have covered a big portion of protein structure “space”.  

By organizing protein structures in an easily comprehensible hierarchical 

manner, efforts like SCOP and CATH (Protein Structure Classification, (Pearl, 

Bennett et al. 2003)) have helped researchers to easily locate their structures of 

interest in the sequence/structure/function space and identify proteins in their 

neighborhood. However, to classify proteins into families, superfamilies, folds 

and classes may obscure the relationships between different categories (Xie and 

Bourne 2008; Petrey and Honig 2009; Petrey, Markus et al. 2009; Skolnick, 

Arakaki et al. 2009). There have been many examples that protein structures in 
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different folds turn out to share significant geometric similarities detected by 

structural alignment tools (Shindyalov and Bourne 1998; Petrey and Honig 2003; 

Zhang and Skolnick 2005; Holm, Kaariainen et al. 2006). These geometric 

similarities often implicate important functional relationships. Increasingly, 

studies have suggested that, rather than a sum of different folds, protein structural 

space should be regarded as continuous.  

Protein structure is directly determined by its primary amino acid 

sequence, and similar sequences usually result in similar structures. This 

observations is the basis of homology modeling, a technique to develop three-

dimensional models for a target protein sequence based on the structures of 

homologous proteins (for reviews see (Marti-Renom, Stuart et al. 2000; Petrey 

and Honig 2005; Ginalski 2006; Zhang 2008)). Databases have been generated to 

store homology models of a much bigger number of proteins than those in the 

PDB database (Pieper, Eswar et al. 2006; Kiefer, Arnold et al. 2009; Lee, Li et al. 

2010). For example, our analysis shows that about one tenth of yeast proteins or 

one fifth of the human proteins have associated PDB structures. However, for 

both of them, about two thirds of them have reliable homology models in the 

ModBase (Pieper, Eswar et al. 2006) and the SkyBase (Lee, Li et al. 2010) 

databases. The increase of structural coverage on proteins of other less studied 

organisms from PDB structures to homology models is even much more 
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significant. For example, the current PFAM (protein family, (Finn, Mistry et al. 

2010)) database contains a little more than 12,000 sequence families among 

which about 5000 have PDB structures for at least one family member (ver 25.0 

as of Mar 2011). Since proteins in the same PFAM family are expected to have 

similar structures, this implies that millions of protein sequences could potentially 

been covered by homology models.  

2.2 Prediction of protein interfaces 

Identification of protein-protein interfaces is necessary for understanding 

how proteins interact with other molecules. Experimental methods of determining 

protein interfaces include in situ hybridization and mutation studies, both of 

which are labor intensive and time consuming, highlighting the need for 

computational approaches. 

Structural analyses of protein complexes revealed general principles that 

govern protein-protein interactions (Chothia and Janin 1975; Jones and Thornton 

1996; Jones and Thornton 1997; Lo Conte, Chothia et al. 1999; Nooren and 

Thornton 2003). It has been shown that protein interface share common properties 

that can distinguish them from the rest of protein surface. For example, protein 

interfaces are usually enriched of hydrophobic (and aromatic) residues and 

arginine, especially for obligate complexes (Lo Conte, Chothia et al. 1999; Glaser, 

Steinberg et al. 2001; Zhou and Shan 2001; Crowley and Golovin 2005). Interface 
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residues also appear to have higher side-chain energies (i.e. less stable) than the 

other surface residues (Cole and Warwicker 2002; Liang, Zhang et al. 2006). 

They also tend to be more conserved (Lichtarge, Bourne et al. 1996; Hu, Ma et al. 

2000; Valdar and Thornton 2001; Zhou and Shan 2001; Pupko, Bell et al. 2002), 

especially for those structural and functional important sites. Most interfaces are 

spatially continuous patches of a number of residues, which are often among the 

most planar and most accessible patches (Jones and Thornton 1997). And 

interestingly, they have a preference for β-sheets and relatively long non-

structured chains, but not for α-helices (Neuvirth, Raz et al. 2004).  

However, no single property is sufficient for complete and accurate 

prediction whether a surface residue is on interface or not. The characteristics 

distinguishing interface residues generally are weak and even, sometimes, 

controversial. For example, it has been shown that hydrophobicity at the 

interfaces of transient complexes is not as distinguishable from the remainder of 

the surface as hydrophobicity at the interfaces of the obligate complexes (Jones 

and Thornton 1996; Lo Conte, Chothia et al. 1999). It was also argued that 

interface is rarely significantly more conserved than other surface patches 

(Bradford and Westhead 2003; Caffrey, Somaroo et al. 2004), and transient 

interfaces evolve faster than obligate ones (Mintseris and Weng 2005).  
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A combination of different residue properties considered over surface 

patches of multiple residues is thus usually necessary for protein interface 

prediction. Many methods classify residues as interfacial or non-interfacial using 

different machine learning algorithms such as linear regression (de Vries, van 

Dijk et al. 2006; Liang, Zhang et al. 2006; Murakami and Jones 2006; Kufareva, 

Budagyan et al. 2007), neural network (Zhou and Shan 2001; Fariselli, Pazos et al. 

2002; Chen and Zhou 2005; Porollo and Meller 2007), support vector machines 

(Koike and Takagi 2004; Bordner and Abagyan 2005; Bradford and Westhead 

2005), Bayesian networks (Neuvirth, Raz et al. 2004; Bradford, Needham et al. 

2006), and random forest (Sikic, Tomic et al. 2009). These methods generally 

take a set of residue properties as input and train classifiers on a set of protein 

complexes.  

The computational prediction of protein interfaces has been a very hot 

topic in bioinformatics research. The reported performances of these different 

methods, however, are not directly comparable, because of the different 

benchmark datasets, different performance evaluation methods, and different 

definitions of protein interface used in their evaluations. A number of comparative 

studies have compared different prediction methods on the same benchmarks 

(Zhou and Qin 2007; de Vries and Bonvin 2008). It is shown that many of these 

methods have been very successful, especially for the prediction of some specific 
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types of interfaces, e.g. interfaces between enzymes and inhibitors. Yet challenges 

remain. For example, these methods generally do not perform very well for 

protein interfaces with large conformation changes during complex formation, 

and large interfaces that formed between large proteins or multiple binders.  

These methods rely on physical-chemical features of individual residues, 

and can be sensitive to their spatial positions. In addition, some interface residues 

may have very distinguishing characteristics while others may not. In this thesis, 

we report a protein interface prediction method that is mechanistically different 

from the above-mentioned methods. Our method, called PredUs, is a “template-

based” prediction method (by contrast, we may call the methods mentioned here 

“ab initio” methods), in which an interface for a given query protein is inferred 

based on some similarity to another protein or set of proteins with known 

interfaces. PredUs may overcome some difficulties of those “ab initio” methods. 

For example, it is capable of identifying interface residues of less distinguishing 

properties, as can be seen from the much higher prediction recalls. It also seems to 

be insensitive to conformational changes that occur upon binding, as can be seen 

from the small difference between the performances of PredUs on the bound and 

unbound CAPRI targets. Please see Chapter 3 and Chapter 4 for detailed 

discussion. 
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2.3 Experimental determination of protein-protein interactions 

A multitude of methods have been developed for the determination of 

direct physical interactions between proteins. As a community effort that aims to 

define exchange standards for molecular interaction data, HUPO’s (Human 

Proteome Organization) PSI-MI (Proteomics Standards Initiative – Molecular 

Interactions: (Hermjakob, Montecchi-Palazzi et al. 2004)) lists tens of different 

methods, which can be broadly classified into biochemical and biophysical 

methods (Kerrien, Orchard et al. 2007). Each method has its own strengths and 

weaknesses in identifying protein-protein interactions (PPIs). One method may 

identify some interactions but fail on others. Some methods may detect direct 

interactions between two proteins while others may only identify a group of 

proteins that form a complex. And some methods may be accurate but can only be 

carried out in small scale; others can be easily scaled up but are not as reliable. A 

number of reviews have been written that discuss these methods (Phizicky and 

Fields 1995; Aloy and Russell 2002; Deane, Salwinski et al. 2002; Fields 2005; 

Piehler 2005; Berggard, Linse et al. 2007; Gingras, Gstaiger et al. 2007; 

Shoemaker and Panchenko 2007). Here I only give a brief introduction to the 

yeast two-hybrid (Y2H) and the affinity purification followed by mass 

spectroscopy (AP-MS) methods, which are among the most important methods 

for high-throughput PPI screening.  



27 

 

 

 

 

 

 

The yeast two-hybrid (Y2H) method was originally developed by Fields 

and colleagues (Fields and Song 1989). It implements a system in which a 

functional transcription factor (TF) is split into two separate fragments, the DNA 

binding domain (DBD) and activating domain (AD), which are independently 

fused with a “bait” protein X and a “prey” protein Y in study. Upon the binding of 

proteins X and Y, the AD is brought in close proximity to its DBD counterpart 

and restores the TF’s function to activate the transcription of a reporter gene.  

There are many advantages of the Y2H systems. First of all, it is a 

eukaryotic in vivo technique, and is easily to be carried out. In addition, it can 

detect weak and transient interactions, and can be scaled up to apply on a genomic 

scale. However, there are also several disadvantages with the Y2H method. The 

main criticism is the possibility of a high number of false negative and false 

positive identifications. The reasons lie in the protocols of the systems. For 

examples, the testing is usually carried out in a heterologous environment such as 

yeast; the fusion proteins must be targeted to the nucleus; and the fusion itself 

may affect the structural conformation of the protein. However, both the false 

negative rate and the false positive rate are difficult to estimate due to the fact that 

our knowledge on PPIs is incomplete and noisy. 

In contrast to Y2H methods which detect direct physical interactions 

between a pair of proteins, affinity purification (AP) methods identify prey 
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proteins that form stable complexes with a selected bait protein by virtue of an 

affinity tag. The complexes are isolated from cell lysate through one or more AP 

steps and the components are then identified usually by a subsequent mass 

spectroscopy (MS) step.  

AP-MS methods capture PPIs in near physiological conditions. They can 

determine the quantitative composition of protein complexes, and can also be 

easily applied in large scale studies. However, AP-MS methods, by definition, 

identify protein complexes (i.e. usually involving more than two proteins). The 

data obtained from AP-MS experiments needs further processing to infer direct 

physical interactions, often using the “spoke” or the “matrix” model with some 

heuristic algorithms (Bader and Hogue 2002). They usually work very well in 

identification of stable complexes, but cannot detect transient interactions. It is 

also possible that the addition of an affinity tag brings errors into their results. 

Despite the problems and disadvantages, the invention of the Y2H and the 

AP-MS methods have revolutionized the way PPIs are detected, and have been 

the primary experimental techniques in genome-wide investigation of PPIs for 

many organisms (Uetz, Giot et al. 2000; Ito, Chiba et al. 2001; Rain, Selig et al. 

2001; Gavin, Bosche et al. 2002; Ho, Gruhler et al. 2002; Giot, Bader et al. 2003; 

Li, Armstrong et al. 2004; Butland, Peregrin-Alvarez et al. 2005; Rual, 

Venkatesan et al. 2005; Stelzl, Worm et al. 2005; Gavin, Aloy et al. 2006; Krogan, 
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Cagney et al. 2006; Ewing, Chu et al. 2007; Yu, Braun et al. 2008; Dreze, 

Carvunis et al. 2011). These high-throughput screenings aimed to generate large 

PPI interaction set in an unbiased fashion. However, comparative studies showed 

that their overlaps are surprisingly low, even if restricted to the same set of 

proteins (Bader and Hogue 2002; von Mering, Krause et al. 2002).  

2.4 Protein-protein interaction curation and databases 

In parallel to high throughput screenings, substantial efforts have been 

devoted to characterize protein-protein interactions (PPIs) with small-scale 

experiments. Since 1990s, some databases that originally focus on genomics of 

individual organisms, for example, the Yeast Proteome Database (YPD, (Garrels 

1996)), have started to include PPI information generated by these experiments 

from literature. As more and more interaction data accumulated, databases mainly 

dedicated to PPIs were created to systematically collect the information, for 

example the Munich Information Center for Protein Sequence (MIPS) protein 

interaction database (Mewes, Albermann et al. 1997), the Biomolecular 

Interaction Network Database (BIND, (Bader, Betel et al. 2003)),  the Database of 

Interacting Proteins (DIP, (Salwinski, Miller et al. 2004)), the Protein Interaction 

Database (IntAct, (Kerrien, Alam-Faruque et al. 2007)), the Molecular Interaction 

Database (MINT, (Chatr-aryamontri, Ceol et al. 2007)), the Human Protein 

Reference Database (HPRD, (Keshava Prasad, Goel et al. 2009)) and the 
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Biological General Repository for Interaction Datasets (BioGRID, (Stark, 

Breitkreutz et al. 2006)).  

As we mentioned, there have been community efforts in creating a 

common framework for standardizing PPI data representation and curation 

policies. The PSI-MI provided controlled vocabulary and data structure to reduce 

the ambiguities in data collection. The International Molecular Exchange 

Consortium (IMEx) organizes the collaboration between major public interaction 

data providers including all above-mentioned ones. These efforts have been vital 

to the curation quality and the easy-exchange of PPI data across different 

databases, and have made it possible to aggregate PPI data from different sources 

into large-scale systematic networks. 

Table 2-1 gives some statistics of the major PPI databases that are 

available to public as of Aug. 2011. Only direct “physical interactions” are 

considered here although some databases also contain information of “genetic 

interactions”. Redundancy has been removed, i.e., evidences of the same 

interactions have been merged. We use data from the curator’s website when 

available. Among these databases, DIP, IntAct and MINT are active members and 

BioGRID is an observer of the IMEx initiative. Some databases contain 

interactions of multiple organisms, among which IntAct is the most 

comprehensive one; and the others (MIPS and HPRD) only focus on interactions 
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of one organism (yeast and human respectively). PPIs in these databases include 

both high throughput screenings and small scale experiments, but not 

computational predictions (which will be discussed in the following sections). 

The majority of them account for proteins of yeast and human. Please see (Tsai, 

Rohl et al. 2006; Lehne and Schlitt 2009) for reviews.  

Table 2-1. PPI databases (Aug., 2011).  

Database Proteins Interactions Publications Organisms URL 

MIPS 4,162 9,119 668 1 http://www.mips.com/ 

DIP 23,201 71,276 4,607 372 http://dip.doe-mbi.ucla.edu 

IntAct 57,741 268,981 13,802 341 http://www.ebi.ac.uk/intact 

MINT 33,439 92,170 4,108 389 http://mint.bio.uniroma2.it/mint 

HPRD 30,047 39,194 20,074 1 http://www.hprd.org/ 

BioGRID 32,142 143,964 20,960 25 http://www.thebiogrid.org/ 

Similar to high-throughput studies, discrepancies have been noticed in 

different curation efforts (Reguly, Breitkreutz et al. 2006; Cusick, Yu et al. 2009; 

Lehne and Schlitt 2009; Turinsky, Razick et al. 2010). These discrepancies are 

mainly because different databases usually focus on different sets of publications. 

However, Wodak and colleagues showed that, even for the same set of 

publications, two databases only fully agree on 42% of the interactions and 62% 

of the proteins on average (Turinsky, Razick et al. 2010). The main reason for this 

is the use of different gene/protein identifiers in different databases, which 
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sometimes cannot be mapped in a perfect one-to-one match. Another reason is the 

different confidence sets or thresholds used to decide on interactions in different 

databases. Without any doubt that these interaction databases are crucial to 

systems biology studies, users should keep in mind that they contain some level of 

false interactions and they are largely incomplete for interactomes of most 

organisms. 

2.5 Computational prediction of protein-protein interactions 

As it is easy for experiments to produce many false positives and difficult 

to identify all true interactions, computational predictions are used both to 

validate experimentally identified interactions and to infer new interactions from 

indirect clues. 

2.5.1 Prediction using non-structural clues 

Information like sequence homology (Matthews, Vaglio et al. 2001; Yu, 

Luscombe et al. 2004), domain-domain interaction profile (Sprinzak and Margalit 

2001; Ng, Zhang et al. 2003), genomic context (Dandekar, Snel et al. 1998; 

Huynen, Snel et al. 2000), gene fusion (Enright, Iliopoulos et al. 1999; Marcotte, 

Pellegrini et al. 1999; Marcotte, Pellegrini et al. 1999), phylogenetic profile/tree 

similarity (Huynen and Bork 1998; Pellegrini, Marcotte et al. 1999; Pazos and 

Valencia 2001; Goh and Cohen 2002), gene co-expression (Qian, Dolled-Filhart 



33 

 

 

 

 

 

 

et al. 2001; Jansen, Greenbaum et al. 2002; Soong, Wrzeszczynski et al. 2008), 

and function similarity (Wu, Zhu et al. 2006) has been effectively exploited to 

predict protein-protein interactions (PPIs) in large scale. There have been several 

reviews that discuss the principles used in these methods and compare their 

advantages and disadvantages (Valencia and Pazos 2002; Salwinski and 

Eisenberg 2003; Szilagyi, Grimm et al. 2005; Musso, Zhang et al. 2007; 

Shoemaker and Panchenko 2007).  

Briefly, these methods are based on the following assumptions: 

 Sequence homology – PPIs can be transferred from some organism to 

another through the homology relationship between proteins. Interactions 

of homologous proteins in different organisms are sometimes called 

“interologs” and thus this method is also referred as “interolog” method. It 

has benefited from the dramatic increase of genomic data due to recent 

advances in DNA sequencing.  

 Domain-domain interaction profile – there are certain domains whose 

most common function is to mediate PPIs. Hence if two proteins each 

contain one of these domains, the chance that they will interact is higher.   

Information about domain-domain interactions can be obtained directly 

from structure complexes or inferred from PPI data. It can be regarded as a 
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development of sequence homology method in that the presence of 

domains is frequently determined by sequence similarity.  

 Genomic context – genes that are near each other on the chromosome 

tend to interact. This method is based on the concept of a transcription 

operon. It is usually useful for the prediction of PPIs in prokaryotes.    

 Gene fusion – proteins that interact in one organism may be fused into a 

single protein in another organism, thus protein pairs that are fused in 

other organisms tend to interact. 

 Phylogenetic profile/tree similarity – interacting proteins tend to co-

evolve. The co-occurrence of proteins in the same set of organisms thus is 

an indicative of PPI (phylogenetic profile similarity method). Taking a 

step further, the similarity between the phylogenetic trees of  a pair of 

proteins also suggests a higher likelihood for them to interact 

(phylogenetic tree similarity or mirror tree method).  

 Co-expression – interacting proteins tend to have a correlated expression 

pattern in different conditions, especially for permanent protein complexes. 

 Function similarity – proteins coordinate to perform functions thus 

similarity in function (e.g. GO annotation) is an indicative of PPI.  

Usually, every indirect evidence by itself is only a very weak PPI 

predictor; and predictions could be improved by integrating different evidences, 
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using a variety of machine learning methods such as logistic regression (Bader, 

Chaudhuri et al. 2004), decision tree (Zhang, Wong et al. 2004), random forest 

(Lin, Wu et al. 2004), naïve Bayes classifier (Jansen, Yu et al. 2003; Lefebvre, 

Lim et al. 2007), and support vector machines (Ben-Hur and Noble 2005).  

There have been online databases or servers that store or perform PPI 

predictions using the above-mentioned indirect interaction clues and machine 

learning methods, notably the STRING (Search Tool for the Retrieval of 

Interacting Genes/Proteins, (von Mering, Huynen et al. 2003)), PIPs (protein-

protein interactions predictions, (McDowall, Scott et al. 2009)), and PPISearch 

(Chen, Lin et al. 2009). STRING contains both experimentally solved PPIs from a 

variety of interaction databases and predicted PPIs using a naïve Bayes classifier 

to integrate interaction clues of mainly sequence homology, genomic context, 

gene fusion, phylogenetic profile similarity, and gene co-expression. The version 

9.0 of STRING has more than 57 million predictions covering more than 1,100 

organisms (Szklarczyk, Franceschini et al. 2010). The majority of these are 

predicted from phylogenetic profiles and thus are indicatives more of protein 

functional associations than of direct physical interactions. PIPs also used a naïve 

Bayes classifier to combine interaction clues including sequence homology, 

domain-domain interaction profile, gene co-expression and other information like 

protein co-localization, protein post-translational modification and interaction 
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network property. However, the server only focuses on human proteins and 

provides predictions of only ~80,000 interactions at the lowest cutoff. Different to 

STRING and PIPs, PPISearch is an online PPI prediction server which first 

performs sequence homology search and then filters the interologs for conserved 

domain–domain pairs and function pairs.  

According to our analysis, none of these prediction servers are satisfactory. 

The overlaps of the prediction results with known interaction reference datasets 

are small (data unpublished). This is consistent with some other observations, for 

example, Recent Dialog for Reverse Engineering and Assessment of Methods 

(DREAM) challenges have highlighted that the inference of PPIs is significantly 

less accurate and sensitive than the inference of other, for example transcriptional 

interactions (Stolovitzky, Prill et al. 2009). 

2.5.2 Prediction using structural clues 

Despite that structural information provides atomic details of PPIs, it has 

had relatively little impact in constructing protein-protein interactomes, primarily 

because there is a dramatic difference between the number of proteins with known 

sequence and those with an experimentally known structure. The discrepancy 

suggests that if structure is to be useful on a large scale, it is essential that 

modeling be exploited.  
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The traditional method is to use a procedure called “docking” that 

attempts to evaluate the interacting complex mainly on the basis of shape or 

electrostatic complementarity between monomer structures (Smith and Sternberg 

2002; Wodak and Mendez 2004; Gray 2006). The success of this methodology 

requires the availability of high resolution structures of both monomers, a fast 

way to generate a set of docking configurations which includes at least one nearly 

correct one and an accurate scoring function that reliably distinguishes nearly 

correct configurations from the others. However, despite some recent progress 

that takes advantage of known interfaces (Sacquin-Mora, Carbone et al. 2008) or 

identifies interaction partners from a distribution of docking scores of non-binders 

(Wass, Fuentes et al. 2011), the potential of using docking to predict PPIs on a 

genome-wide scale remains in question.  

Experimental structures of protein complexes can also possibly be used to 

predict interactions between sequence and structural homologs of the proteins 

involved by comparative modeling, since their binding modes tend to be similar 

as well (Aloy and Russell 2002; Lu, Lu et al. 2002; Aloy, Ceulemans et al. 2003; 

Davis, Braberg et al. 2006; Gunther, May et al. 2007; Singh, Park et al. 2010). In 

essence, such approaches align a pair of target proteins with their sequence or 

structural neighbors in a template complex, and evaluate the model with a set of 

empirical scoring functions. The success of this methodology, however, depends 
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on a number of factors: the availability of high quality protein complex structures 

that contain the close sequence and structural neighbors of the target proteins; 

correct alignments of the target proteins on the template chains and scoring 

functions that capture the characteristics of the interaction; and atomic details of 

the constructed model.  

As a consequence, the number of interactions that could be predicted by 

these methods and also the overlap of their predictions with the known PPI 

datasets are small, although the prediction accuracy based on structures is usually 

higher than those based on non-structural clues. There have been a number of 

prediction servers using structural modeling in PPI prediction, such as InterPreTS 

(Aloy and Russell 2003), PRISM (Ogmen, Keskin et al. 2005), 3D-partner (Chen, 

Lo et al. 2007), Struct2Net (Singh, Park et al. 2010), HOMCOS (Fukuhara and 

Kawabata 2008), and Protinfo PPC (Kittichotirat, Guerquin et al. 2009). However, 

structural information has only been used alone, and not contained in either of the 

above integrative servers, STRING and PIPs (STRING contains information of 

protein structure complex but it is used as evidence of experimental interactions 

but not as a basis for prediction).  

In Chapter 5, I present our approach to PPI prediction using structural 

information with two major improvements. First, predictions are not limited to 

pairs of proteins for which another pair with high sequence and/or structure 
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similarities exists in the PDB; instead, we seek local geometric relationships 

between groups of secondary structure elements identified by local structural 

alignment. Second, candidate interacting proteins were evaluated using empirical 

scores measuring features only weakly dependent on atomistic details. Our 

benchmarks show that the method has greatly increased the coverage on the 

whole interaction space and known interactions as well. In fact, the prediction 

coverage is now comparable to non-structural evidence and yet the prediction 

accuracy remains much higher.  

2.6 Machine learning and its applications in computational 

biology 

Machine learning is a branch of artificial intelligence that is concerned 

with the design and development of computer systems that automatically improve 

their performance based on empirical data or past experience (Mitchell 1997; 

Bishop 2006). Usually, these data are examples with attributes that illustrate 

relations between observed variables. Given a set of examples (referred as 

training set in machine learning terminology), a machine learning algorithm 

learns to capture characteristics of their unknown underlying probability 

distribution (this learning process is called training), which then could be applied 

to unseen examples and make predictions. In practice, the underlying probability 

distribution is usually too large to be covered by the set of observed examples or 
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is too complex to manually implement. For example, no simple algorithm can 

identify Mr. Bill Gates from photographs containing his picture, although it is a 

relatively easy task for most of us human beings. In this case, a machine learning 

algorithm must learn characteristics of Gates’ face from a set of his pictures so as 

to be able to recognize him in new photographs.  

There has been a long history of applying machine learning algorithms in 

computational biology. Early work includes the use of the perceptron, a type of 

artificial neural network, in the search of translation start sites in E. coli (Stormo, 

Schneider et al. 1982). In the intervening years, with the development of many 

different computational learning techniques and theories, machine learning has 

become an important tool in genomics, proteomics, and systems biology (for 

reviews please see (Larranaga, Calvo et al. 2006; Tarca, Carey et al. 2007)). For 

example, different machine learning techniques have been used to find protein-

coding and RNA genes from DNA sequences including gene boundaries, intron-

exon structures, and functional elements in non-coding regions as well (Mathe, 

Sagot et al. 2002; Bockhorst, Craven et al. 2003; Won, Prugel-Bennett et al. 2004; 

Das and Dai 2007). They also have been used to predict protein and RNA 

secondary structures (Rost and Sander 1993; Fogel, Porto et al. 2002) and protein 

functions (Troyanskaya, Dolinski et al. 2003; Lee, Date et al. 2004), and to 

analyze microarray profiles (Butte 2002; Allison, Cui et al. 2006). Recently, they 
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have also been exploited in systems biology including the reverse engineering of 

protein interaction networks, regulation networks, and signaling networks 

(Muggleton 2005; Kaski, Rousu et al. 2007). Essentially, machine learning 

techniques have been applied to almost all fields in computational biology.  

Although it can vary in different applications, a machine learning system 

usually consists of a learning element that receives and processes the input, a 

knowledge base that may contain some knowledge in the beginning and is able to 

update with new knowledge, a performance element that uses the knowledge base 

to perform some tasks and to produce the corresponding output, an idealized 

system that produces correct solutions for a set of training examples, and a 

feedback element that compares the outputs of the learning element and the 

idealized system and updates the knowledge base so as to produce the correct 

output (this process is called training).  

The knowledge base plays a key role in the whole process, and its 

representation affects the algorithms of learning. A multitude of different 

knowledge representation schema, including linear algebra, decision trees, 

artificial neural networks (ANN), logic programs, hidden Markov models (HMM), 

support vector machines (SVM), Bayesian networks, have been exploited in many 

different machine learning applications. Here we only briefly introduce SVMs 
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and Bayesian network classifiers (including Naïve Bayesian classifiers) in the 

context of protein interface and protein-protein interaction (PPIs) predictions.  

The problem of prediction protein interfaces and PPIs can be formulated 

as a classification problem, a type of the problem of supervised machine learning: 

given a training set of labeled instances of the form <a1, a2, …, an, c> (here ai is a 

property of a residue in the case of interface prediction or a property of a protein-

pair in the case of interaction prediction; and c is whether the residue is on 

interface or the protein-pair is an interaction), construct a classifier f that is 

capable of predicting the value of c, given an instance of < a1, a2, …, an >.   

2.6.1 SVM 

Originally invented by Vapnik and Cortes, the SVM algorithm is typically 

used to classify data (Cortes and Vapnik 1995). Suppose the given training data 

are a set of points in a p-dimensional space, and we want to separate these data 

points with a (p−1)-dimensional hyperplane (which is a line when p=2, Figure 2-1) 

so that those points in the same class are on the same side of the hyperplane. If 

such a hyperplane exists, we can use it to separate new data points of unknown 

classes in the future (Figure 2-1A). In the SVM method, we choose the 

hyperplane that represents the largest separation, or margin, between the two 

classes. The margin is defined as the shortest distance between a hyperplane and  
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Figure 2-1. SVM as classifiers. Data points belonging to two different classes are shown in 

blue and orange circles. Classifying hyperplanes are shown as blue lines within shadowed 

boxes. Margins are distances from classifying hyperplanes to the nearest data points of each 

side, shown as blue arrows. Support vectors are data points on the edge of the shadowed 

boxes. Here SVM classifiers are shown with (A) small margin; (B) maximum margin; (C) 

kernel function that transfer the original space to a high dimensional space where the 

separating line is a non-linear curve in the original space (Note that the original space but not 

high dimensional space is shown here); (D) soft margin where the data point with purple 

arrow will receive a penalty for being misclassified.   

A 

C 

B 

D 
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the training data points on each side (Figure 2-1A and B). The data points that lie 

on the margin are the support vectors, from which the name SVM comes.  

It is often possible that the given data points are not linearly separable 

using a (p−1)-dimensional hyperplane. More recent approaches to SVMs map the 

original vector space into a much higher-dimensional space using “kernel 

functions” where the data points may be linearly separable (Figure 2-1C). In 

addition, a SVM model often includes a penalty function that allows some data 

points to be misclassified (Figure 2-1D). The construction of a SVM model thus 

involves the training of the parameters associated with the penalty function and 

the kernel function.  

Thanks to the use of kernels, SVMs are especially suitable for biological 

data since they can easily handle high-dimensional, noisy, or non-vector 

biological data. They have been widely applied in computational biology for gene 

sequence and protein structure/function classification, protein functional site 

identification, PPI prediction, and microarray classification. Please see (Ben-Hur, 

Ong et al. 2008) for a review. In particular, SVM methods have been used to 

predict protein interface (Koike and Takagi 2004; Yan, Honavar et al. 2004; 

Bordner and Abagyan 2005; Bradford and Westhead 2005; Res, Mihalek et al. 

2005; Chung, Wang et al. 2006; Wang, Chen et al. 2006; Wang, Wong et al. 
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2006). In our study, we also used SVM to improve the prediction of protein 

interface based on conservation, please see Chapter 4 for details.  

2.6.2 Bayesian network classifiers 

A Bayesian network or belief network is a type of probabilistic graphical 

model that denotes a set of random variables and their conditional dependencies 

via a directed acyclic graph (Figure 2-2), where nodes represent random variables 

and edges represent conditional dependencies; each variable is conditionally 

independent of its non-descendants given the values of their parent variables 

nodes (Neapolitan 2004). Given a training set <a1, a2, …, an, c>, the problem of 

learning a Bayesian network is to learn the structure and parameters, i.e., the 

conditional dependencies and probabilities, of the graph that “best describes” the 

training data. 

An advantage of Bayesian networks is its great interpretability due to 

explicitly specifying direct dependencies and distributions of different variables. 

However, learning unrestricted Bayesian networks can be a difficult task, and 

may results in poor classifiers especially in case of many attributes. The 

alternative approaches is to design the network by experts (however, this is also 

difficult when the number of attributes is big) or to use restricted networks. The 

naïve Bayesian classifier is the simplest Bayesian network classifier where the 

only dependency is between the class variable C and all attributes (Figure 2-2A). 
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Figure 2-2. Bayesian network classifiers: (A) naïve Bayesian classifier; (B) tree augmented 

naïve Bayesian classifier; (C) naïve Bayesian classifier with a fully connected component (A2, 

A3, and A4).  

Despite the apparently over-simplified assumption and the simple design, naïve 

Bayes classifiers have worked surprisingly well in many complex real-world 

situations. Of course, it is also very common that the correlations between 

different attributes are too strong to be neglected. And thus there also have been 

many improvements on naïve Bayesian classifiers by adding correlations among 

attributes (e.g., tree augmented naïve Bayesian classifier, Figure 2-2B), or to 
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select a subset of independent attributes (e.g., selective Bayesian classifier). 

Sometimes, a subset of attributes are correlated to each other but to no other 

attribute, then they can be separated from others and form a fully connected 

component, where a joint distribution containing these variables can be used to 

describe their correlations and dependencies with the label C (Figure 2-2C). In 

our study of PPI structural modeling, we have used such a Bayesian classifier (see 

Chapter 5). 

Bayesian networks including naïve Bayes classifiers are becoming 

increasingly important in biological research, for example genome analysis 

(Sandberg, Winberg et al. 2001), protein interface prediction (Bradford, Needham 

et al. 2006), genetic data analysis (Beaumont and Rannala 2004), cellular network 

inference (Friedman 2004), and protein signaling pathway modeling (Sachs, Perez 

et al. 2005). In particular, the naïve Bayes classifier is widely used as an 

integrative method for protein function and especially PPI prediction due to its 

simplicity in algorithm implementation, its efficiency, its scalability to easily 

incorporate more types of information, and its interpretability for contribution of 

each component (Jansen, Yu et al. 2003; Troyanskaya, Dolinski et al. 2003; Lee, 

Date et al. 2004; Lefebvre, Rajbhandari et al. 2010). In our study of PPI 

prediction, we also used a naïve Bayesian classifier to combine different types of 

PPI evidences. Please see Chapter 5 for details.  
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CHAPTER 3. PROTEIN INTERFACE 

CONSERVATION ACROSS STRUCTURAL SPACE 

The following chapter is a paper published in the Proceedings of the 

National Academy of Sciences of the USA (Volume 107, Issue 24, 15 June 2010, 

pp. 10896-10901).  

3.1 Abstract 

With the advent of systems biology, the prediction of whether two proteins 

form a complex has become a problem of increased importance. A variety of 

experimental techniques have been applied to the problem but three-dimensional 

structural information has not been widely exploited. Here we explore the range 

of applicability of such information by analyzing the extent to which the location 

of binding sites on protein surfaces is conserved among structural neighbors. We 

find, as expected, that interface conservation is most significant among proteins 

that have a clear evolutionary relationship but that there is a significant level of 

conservation even among remote structural neighbors. This finding is consistent 

with recent evidence that information available from structural neighbors, 

independent of classification, should be exploited in the search for functional 

insights. The value of such structural information is highlighted through the 

development of a new protein interface prediction method, PredUs, that identifies 
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what residues on protein surfaces are likely to participate in complexes with other 

proteins. The performance of PredUs, as measured through comparisons with 

other methods, suggests that relationships across protein structure space can be 

successfully exploited in the prediction of protein-protein interactions. 

3.2 Introduction 

The knowledge of whether two proteins form a complex is a problem of 

central importance in the description of cellular networks and in a large number of 

other biological applications. Much effort has been devoted recently to high-

throughput experimental determination and literature curation of protein-protein 

interactions (see references (Shoemaker and Panchenko 2007; Shoemaker and 

Panchenko 2007) for a review) and the results have been deposited into numerous 

databases (Stark, Breitkreutz et al. 2006; Kerrien, Alam-Faruque et al. 2007). In 

addition, a variety of computational approaches have been developed to predict 

protein interaction partners (Salwinski and Eisenberg 2003; Fields 2005; 

Shoemaker and Panchenko 2007; Skrabanek, Saini et al. 2008). Three-

dimensional structural information has not been widely used in large scale studies, 

in part because the number of complexes for which such information is available 

is far smaller than the number of interactions that can be inferred by other 

techniques.  
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A number of groups have shown that the use of homologous relationships 

can expand the range of structural information by providing plausible models for 

a protein complex that can then be evaluated with other methods (Lu, Lu et al. 

2002; Aloy, Bottcher et al. 2004; Davis, Braberg et al. 2006). However, the extent 

to which a known 3D structure of a complex can be used reliably as a template for 

a model of two related proteins is unclear, especially if the relevant sequence 

and/or structural relationship is remote. Model reliability should, in general, 

increase if the proteins involved are closely related but the use of close homologs 

necessarily limits the number of possible interactions that can be detected. We 

have recently shown (Petrey, Fischer et al. 2009) that the use of remote structural 

relationships can detect functional relationships between proteins that are 

obscured by classification schemes. One of the aims of the current paper is to 

evaluate whether structural relationships that can go beyond classification can be 

exploited in the structure-based prediction of protein-protein interactions. Our 

longer range goal is to expand the range of applicability of structural information 

to the point that it can be used on a scale comparable to that of other, non-

structure-based methods.  

Most current methods that build models of complexes by homology rely in 

part on criteria for model reliability that have been established by comparative 

studies of different complexes (Bashton and Chothia 2002; Aloy, Ceulemans et al. 
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2003; Kim and Ison 2005; Korkin, Davis et al. 2005; Littler and Hubbard 2005; 

Han, Kerrison et al. 2006; Kim, Henschel et al. 2006; Shoemaker, Panchenko et al. 

2006). A nagging reality of such studies is that there is no unambiguous way of 

determining whether two complexes are similar. Figure 3-1 illustrates some of the 

underlying the issues. In the figure, a representative protein complex, A, is 

compared to three others (see the caption for general details on how this 

comparison is carried out). Although each of the complexes B, C, and D has some 

relationship with complex A, this will not necessarily be identified by every 

measure of similarity. For example, measures that rely on translations/rotations of 

individual subunits (Aloy, Ceulemans et al. 2003; Han, Kerrison et al. 2006; 

Jefferson, Walsh et al. 2006) would characterize A and B as similar complexes 

but not A and C since a 90 degree rotation would be required to superpose C2 on 

A2. Criteria that depend on the relative location of the centers of mass (Littler and 

Hubbard 2005) would characterize A and C as similar but not A and D.  

Other similarity measures rely on the equivalence of interfacial residues 

once the proteins in two complexes have been rotated into a common coordinate 

frame. Using a residue equivalency measure, A and B are clearly similar while A 

and C might also be considered similar since some of the residues on both sides of 

the interface are aligned. There is a relationship between complexes A and D 

since some interfacial residues in one of the monomers are well-aligned. This  
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Figure 3-1. Types of geometric conservation and their measures. Protein complex A is 

compared here to three other complexes B, C, and D. Typically one subunit is superposed on 

a structurally similar subunit in the complex to which it is being compared (i.e. A1 would be 

superposed on B1) and the transformation that relates the first subunits is applied to the 

second so that all proteins are in the same coordinate system. Measures of conservation 

generally involve calculating: the transformation (translation/rotation) required to optimally 

superimpose the second subunits on each other (brown/green arrows); distances and angles 

between the centers of mass of the second subunit (brown/green spheres); and the alignment 

(independent of residue identity) of interfacial residues in a primary sequence alignment of 

the two subunits (red squares).  Although there is some similarity between A and each of the 

other three complexes, recognizing it will depend on which measure is used (see text). 
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feature is a property of only one subunit of the complex and would only be 

recognized by a criterion such as the “localization index” introduced by Sali and 

coworkers (Korkin, Davis et al. 2005). Throughout the text we refer to this 

phenomenon as “interface conservation” and take it to mean that two proteins 

interact with their partners at geometrically similar locations (independent of the 

identity of the residues involved). 

In order to correlate structural relationships between complexes with 

standard measures of sequence and structural similarity, complexes have been 

classified based on the properties of the individual subunits. Using a measure of 

geometric conservation that depend on translations/rotations, Aloy et al. (Aloy, 

Ceulemans et al. 2003) found that below 30% pairwise sequence identity, little 

geometric conservation is expected. Other studies using different measures of 

interface similarity and protein classification have been reported (Han, Kerrison et 

al. 2006; Jefferson, Walsh et al. 2006; Kim, Henschel et al. 2006; Shoemaker, 

Panchenko et al. 2006) but general rules have been difficult to establish. 

Nevertheless, it seems clear from the reported results that little interface 

conservation is to be expected in the absence of an obvious evolutionary 

relationship between the proteins that form the two complexes. However, the type 

of relationship that exists between complexes A and D in Figure 3-1 (conservation 

of the interface locations in just one of the subunits) has not been extensively 
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studied. In this case, the underlying question is whether two proteins that share a 

geometric relationship, e.g. A1 and D1, use a common region of their surface to 

form an interface independent of the identity or orientation of the second member 

of the complex. Significant localization of interfaces has been found at the family 

(Korkin, Davis et al. 2005) and superfamily (Littler and Hubbard) level however 

there has not, to our knowledge, been a systematic study of the extent to which 

protein structural similarity can be used as a basis for predicting the interfacial 

residues.  

A number of studies have suggested that this may be possible. Nussinov 

and co-workers (Tsai, Lin et al. 1996; Keskin and Nussinov 2005) identified 

similarities in the relative positions of small sets of secondary structural elements 

within the interfaces of structurally dissimilar interacting proteins suggesting a 

relationship between patterns of secondary structure and interface formation. 

Russell et. al. (Russell, Sasieni et al. 1998) showed that groups of proteins 

classified as belonging to different superfamilies or folds interact with their 

ligands in structurally equivalent locations. Remote similarities such as these have 

been exploited in a wide range of applications including the prediction of protein-

ligand interactions (Brylinski and Skolnick 2008), protein-protein interactions (Lu, 

Lu et al. 2002), and function annotation (Friedberg and Godzik 2005; Petrey, 

Fischer et al. 2009). 
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In this study, we report a comprehensive analysis of the degree to which 

the location of protein-protein interaction sites is conserved in sets of proteins that 

share varying degrees of similarity. We start by identifying structural neighbors of 

the query protein independent of classification and then, using the statistical 

approach developed by Russell et al. (Russell, Sasieni et al. 1998), quantify 

interface conservation both among close homologs and among remote structural 

neighbors. Our results show that while, in general, the conservation of interface 

locations is greatest among close neighbors, significant information is also 

provided by remote structural neighbors that have no obvious evolutionary 

relationship to the query. Based on these findings we develop PredUs 

(http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:PredUs), a 

method for predicting a protein binding region on the surface of a query protein 

based entirely on information derived from structural neighbors. PredUs compares 

favorably with methods that, given a three-dimensional structure, predict 

interfacial regions based on specific features (e.g. sequence conservation, amino-

acid properties) of clusters of surface residues. Our findings have important 

implications, both regarding the nature of protein sequence/structure/function 

space and for the possibility of using structural information as a basis for 

predicting protein-protein interactions on a genome-wide scale. 

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:PredUs
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3.3 Results 

3.3.1 Interface conservation  

We used the procedure described in Methods to quantify interface 

conservation. Briefly, structural neighbors are identified for a given query protein, 

and the locations of interfacial residues of the neighbors that are part of a complex 

are “mapped” to residues in the query protein to generate a “contact map” 

associated with each structural neighbor. Interface conservation can be visualized 

by summing individual contact maps and generating a contact frequency heat map. 

Figure 3-2 shows the surface of the T-cell receptor protein CD8 (PDB code 1akj, 

chain D) with each residue colored according to the frequency with which 

interactions are mapped to it when structural neighbors are taken from the same 

SCOP (Structural Classification Of Proteins) family, superfamily and fold.  

Using the approach of Russell et al. (Russell, Sasieni et al. 1998), a Z-

score that reflects overlap in the set of contact maps (i.e., whether or not there is a 

set of residues in the query that preferentially has interactions mapped to it) is 

then calculated. Figure 3-3 shows the distribution of Z-scores for the proteins in 

our test set (188 protein chains curated from a docking benchmark dataset 

(Hwang, Pierce et al. 2008), see Methods). To ensure reasonable statistics, at least 

6 structural neighbors are needed to calculate Z-scores (83 structures had at least 

6 structural neighbors in the same family, 106 in the same superfamily, and 130 in  
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Figure 3-2. The surface of T-cell receptor protein CD8 (PDB code 1akj, chain D) colored 

according to the frequency with which interactions made by its structural neighbors are 

“mapped” to individual residues on its surface (red/white/blue = high/intermediate/low 

frequency). Each surface is colored based on a different set of structural neighbors: (A) 

SCOP family b.1.1.1; (B) superfamily b.1.1; (C) fold b.1; (D) PSD<0.6 (found by Ska); (E) 

PSD<0.6 in different families; (F) PSD<0.6 in different superfamilies; (G) PSD<0.6 in 

different folds. The red high contacting frequency regions show conserved protein interface. 

the same fold). As can be seen from the figure, most of the proteins in the test set 

have Z-scores larger than 3 which is our cutoff for statistical significance (78 out 

of 83, 95 out of 106 and 118 out of 130, for the same family, superfamily and fold 

respectively).  

As expected, less conservation is observed when more remote structural 

neighbors are considered, with average Z-scores decreasing as neighbors are 
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taken from the same family, superfamily, or fold (average Z-score 34, 25, 22, 

respectively). However, there are many individual cases where the opposite is true 

and the Z-scores are still significant, suggesting that while there is certainly 

increased variability in the location of interfaces in the more remote neighbors, 

significant interface conservation remains. Details about each query protein in our 

test set including individual Z-scores, the number of structural neighbors, and the 

highest residue contacting frequencies are given in SI Table S3-1 at 

http://honiglab.c2b2.columbia.edu/PredUs/html/pnas_si.html.  

We also identified structural neighbors using the structure alignment 

program Ska (Yang and Honig 2000; Petrey and Honig 2003) independent of 

classification into family, superfamily or fold groups. The average Z-score for the 

176 query proteins that had more than 5 structural neighbors is 28, and 166 have 

Z-score larger than 3 (see Figure 3-3 and SI Table S3-1). The set of structural 

neighbors identified by Ska was generally significantly larger than the number of 

proteins classified as belonging to a given grouping in SCOP and contained 

significant structural diversity. For example, Ska found 978 structure neighbors 

contained in at least one complex for the structure 1akj.D. These proteins came 

from 87 different SCOP families, 71 superfamilies and 57 folds. Despite the 

structural diversity, the difference in average Z-scores for structural neighbors 

identified independent of classification and for those classified as belonging to the  
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Figure 3-3. Distributions of Z-scores reflecting interface conservation. Each column in 

the graph shows a Z-score distribution when interface conservation for proteins in our 

docking benchmark set is calculated based on a different set of structural neighbors. The 

black bars and the width of each plot reflects the density of Z-scores near the corresponding 

value on the y-axis. Solid lines with green diamonds show the mean value of each distribution. 

The dashed line corresponds to a Z-score of 3 which we take as the cutoff of statistical 

significance. The individual plots have been scaled so that their areas are proportional to the 

number of proteins for which a valid Z-score could be calculated. 

same family, superfamily or fold was small. Since Z-scores reflect overlap in the 

contact maps calculated for each structural neighbor, these results suggest that 
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there are a significant number of structures classified differently whose protein-

protein interactions sites overlap those of even the close sequence neighbors of 

the query. 

It is possible, of course, that the results obtained independent of 

classification are due to the presence of family and superfamily members in the 

set of structural neighbors we identify for each query protein. In order to 

determine the contribution of neighbors outside of a particular grouping, we 

carried out a further analysis in which proteins belonging to a particular SCOP 

classification were excluded (structures with no SCOP annotation were also 

excluded). Although the Z-scores were not as high as for families, superfamilies 

and folds, they were still statistically significant (i.e. Z-score >3) with mean 

values of 13/11/9 (over 138/135/129 structures) when family, superfamily and 

fold were respectively excluded (see Figure 3-3 and SI Table S3-1 for details).  

As described above, this can be visualized using a heat map. For example, 

for the T-cell receptor CD8 (1akj.D), we identified 254 structural neighbors in 86 

families different from that of 1akj.D, 143 structures in 70 different superfamilies, 

and 90 structures in 56 different folds. Although all these structures come from 

different families, superfamilies and folds, there is still a well-defined set of 

residues which preferentially has interactions mapped to it and overlaps with that 

obtained by considering only more closely related structures (Figure 3-2).  
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3.3.2 Interface prediction  

Based on the above results, we developed a method, PredUs, to predict 

interfacial residues based entirely on structural neighbors (only the top 50 Ska hits 

are used, see Methods). Our approach was tested on the docking benchmark 

described in Materials and Methods and also on the set of structures used in the 

CAPRI exercise (Janin and Wodak 2007). Results were compared to the top three 

programs (cons-PPISP (Chen and Zhou 2005), PINUP (Liang, Zhang et al. 2006), 

and ProMate (Neuvirth, Raz et al. 2004)) reported in a recent comparative study 

of interface prediction methods (Zhou and Qin 2007), which also performed best 

in a small-scale evaluation we carried out. We also compared a random prediction 

in which surface residues are classified as interfacial with a probability of 0.25, 

which is roughly the portion of interface residues in our test set and is consistent 

with other studies (Chen and Zhou 2005).  

Results are summarized in Table 3-1 (see SI Tables S3-2 and S3-3 at 

http://honiglab.c2b2.columbia.edu/PredUs/html/pnas_si.html). PredUs results are 

clearly of comparable quality for both data sets and offer the best combination of 

precision and recall among all methods tested. This conclusion is based on 

inspection of Table 3-1 but it is also consistent with the Matthew’s Correlation 

Coefficient (MCC, SI Table S3-4 at http://honiglab.c2b2.columbia.edu/PredUs/ 

html/pnas_si.html). The precision of PredUs is similar to that of other methods  
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Table 3-1. Precision and recall averages of different interface prediction methods on the 

docking benchmark dataset and CAPRI bound/unbound targets. Here DKBM stands for 

the dataset of docking benchmark, Np and Nc stand for the numbers of total and correctly 

predicted interfacial residues. 

dataset 
prediction 

methods 
cases Np Nc 

precision 

average 

recall 

average 

DKBM 

PredUs 185 7,862 3,429 43.6% 45.7% 

Promate 90 689 322 46.7% 4.3% 

cons-PPISP 188 4,936 2,310 46.8% 30.8% 

PINUP 188 4,227 1,798 42.5% 24.0% 

Random 

prediction 
188 6,827 1,638 24.0% 21.9% 

CAPRI 

bound 

PredUs 56 2,221 921 41.5% 42.2% 

cons-PPISP 56 1,497 630 42.1% 28.9% 

PINUP 56 1,204 424 35.2% 19.4% 

Random 

prediction 
56 2,155 492 22.8% 22.6% 

CAPRI 

unbound 

PredUs 55 2,393 952 39.8% 44.6% 

cons-PPISP 56 1,542 618 40.1% 29.0% 

PINUP 56 1,320 466 35.3% 21.8% 

Random 

prediction 
56 2,167 544 25.1% 25.5% 

but its recall is significantly higher. In order to evaluate the results obtained based 

on classification, we used PredUs to make predictions but restricted structural 
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neighbors to members of the same family, superfamily and fold. Results are 

summarized in Table 3-2. As expected, the highest precision is obtained when 

only members of the same family are used, and precision decreases as more 

distant neighbors (superfamily, fold, and the top 50 Ska hits) are included. The 

trend of the recall value is in the opposite direction. The significant increase in 

recall when Ska50 is used reflects the additional information available by going 

beyond SCOP fold. On average, within the Ska50 set there are only 8.6/10.5/11.9 

neighbors from the same family/superfamily/fold, while 18.1/16.1/14.7 from 

different ones (unannotated proteins are excluded). 

Table 3-2. Precision and recall averages of PredUs when using structure neighbors from 

the same and different SCOP groupings on the docking benchmark dataset. Here Np and 

Nc stand for the numbers of total and correctly predicted interfacial residues. 

prediction methods cases Np Nc 
precision 

average 

recall 

average 

family 141 4,990 2,536 50.8% 33.8% 

superfamily 147 5, 907 2,710 45.9% 36.2% 

fold 153 6,948 2,904 41.8% 38.7% 

Ska50-family 162 8,338 2,541 30.5% 33.9% 

Ska50-superfamily 161 8,331 2,370 28.4% 31.6% 

Ska50-fold 159 8,603 2,497 29.0% 33.3% 
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In order to gain insight as to the contributions of increasingly remote 

structural neighbors to the results, we used PredUs to make predictions where 

neighbors identified by SCOP were progressively removed from the data set 

(unannotated proteins also removed). Predictions made in this way are indentified 

in Table 3-2 as Ska50-family, superfamily and fold, respectively. As is evident 

from Table 3-2, not considering close family members significantly decreases 

prediction accuracy but the results are very similar when members of the same 

fold and superfamily are also removed. Even when only considering members of 

a different fold the results are better than random. It is clear from Tables 3-1 and 

3-2 that the combined use of close and distant neighbors offers the best 

combination of precision and recall. Most importantly, only by combining in-fold 

and cross-fold information is it possible to increase recall to above 40%.  

Overall, PredUs performed very well for 125 out of 188 docking 

benchmark proteins. In particular, whenever a successful prediction was achieved 

using PredUs (both precision and recall better than random) the average precision 

and recall significantly outperformed other methods (see Table 3-3). There were 

also some cases where interface information could be extracted from the 

structural neighbors but where PredUs still made predictions with low precision 

and recall (26 of the docking benchmark chains). However, the performance in 

these cases was not due to poor interface conservation in the set of structural 
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Table 3-3. Precision and recall averages of PredUs good predictions, bad predictions 

and the others on the docking benchmark dataset. 

 prediction methods precision average recall average 

Good predictions 

(125 cases) 

Pred-us 60.2% 57.2% 

cons-PPISP 54.6% 36.5% 

PINUP 51.9% 29.0% 

ProMate 47.4% 12.1% 

Bad predictions 

(26 cases) 

Pred-us 7.3% 8.5% 

cons-PPISP 27.7% 24.6% 

PINUP 29.7% 24.5% 

ProMate 15.2% 5.1% 

Others (37 cases) 

Pred-us 24.4% 39.7% 

cons-PPISP 36.1% 30.5% 

PINUP 34.4% 24.2% 

ProMate 35.4% 13.5% 

neighbors (since the Z-scores were still significant for those cases), but seems to 

be due to the fact that the particular interface to be predicted for these cases was 

rarely seen in the set of structural neighbors. This issue is addressed below.  

3.4 Discussion 

The central result of this study is that there are localized regions on protein 

surfaces that are conserved among structural neighbors that participate in protein-

protein interactions. These regions are properties of a set of neighbors even 
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though the individual proteins will, in general, form complexes with different 

proteins using different interface geometries. Thus it is not the geometry of the 

complex that is conserved but rather the location of surface residues that 

participate in complexes. The neighbors may belong to the same family or 

superfamily, and thus bear a clear evolutionary relationship, or belong to the same 

fold or to different folds, in which case an evolutionary relationship may be 

present, but its existence is hard to prove. Our findings are consistent with 

previous work which identified cross-fold functional relationships that are 

properties of protein fragments and not of the entire structure (Russell, Sasieni et 

al. 1998; Friedberg and Godzik 2005; Keskin and Nussinov 2005; Petrey, Fischer 

et al. 2009).  

Our results do not imply that a set of structural neighbors will always 

interact with their partners at a single structurally equivalent patch. Since all 

interfaces from all structural neighbors are mapped to the query protein in the 

construction of the contact frequency map, this set of positions may be localized 

and contiguous or may consist of multiple disjoint patches. Thus, even if there are 

multiple, distinct protein-protein interactions observed in a set of structurally 

similar proteins, a high Z-score will be obtained as long as there are enough 

proteins in the set under consideration that interact with their partners at some set 

of structurally equivalent locations.  



68 

 

 

 

 

 

 

The results in Tables 3-1 and 3-2 highlight the advantages of basing an 

interface prediction method entirely on information about complexes formed by 

structural neighbors of a protein. While it is expected that PredUs yields good 

precision if it is based only on neighbors in the same family or superfamily, that 

precision is so high when all neighbors are considered seems quite remarkable, 

and reflects the conservation we describe above. Moreover, using remote 

structural neighbors produces a significant improvement in recall at the cost of 

only a moderate decrease in precision. This suggests, that current structural 

databases are surprisingly complete, in the sense that it generally possible to find 

representatives of the possible binding modes of a given protein within the 36,888 

complexes in the PQS (Protein Quaternary Structure) database (Henrick and 

Thornton 1998). This depends, however, on the large set of structural neighbors 

generated using our loose definitions of similarity as well as on the definition of 

conservation that we use.  

Structural information also appears to be a principal source of the 

improvement in recall of PredUs relative to methods that rely primarily on 

differences in characteristics (e.g. hydrophobicity, sequence conservation, 

interface propensity, accessibility, side-chain entropy (Neuvirth, Raz et al. 2004; 

Chen and Zhou 2005; Liang, Zhang et al. 2006)) between interfacial and non-

interfacial residues. Because it may be generally expected that not all of the 
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residues in a given interface will be distinct in terms of such characteristics, this 

factor may have a deleterious effect on recall. In our approach, all the interfacial 

residues from structural neighbors are mapped to the query protein regardless of 

their characteristics and this difficulty is thus avoided. Since the two approaches 

are quite distinct and use largely complementary information, it may be of value 

to combine them in some way in future work. 

There are potential drawbacks to the heavy reliance on structural 

neighbors implicit in our method, but they do not appear to be significant based 

on an analysis of our test sets. For example, only a small percentage of the 

proteins did not have enough structural neighbors to enable a prediction (3 in the 

docking benchmark and 1 in the CAPRI set). Some proteins may have multiple 

binding sites, and our method depends on identifying those locations which are 

most frequently associated with protein-protein interactions. An important 

question, then, is whether or not other approaches will perform better when 

predicting interfaces that are distinct from the most frequently observed ones. To 

determine this, we calculated the average precision and recall for the 26 cases 

where PredUs made bad predictions (both precision and recall are less than 

random). They were quite low (<10%, see Table 3-3) suggesting that the 

interfaces to be predicted in these cases are indeed distinct from that most 

frequently observed. While the other methods used in this study performed better 
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for these cases, only cons-PPISP made predictions that on average were even 

slightly better than random, suggesting that these interfaces are not only 

geometrically distinct, but also distinct in terms of the residue characteristics 

typically used to describe protein-protein interaction sites. Hence, there seems to 

be little cost to using the most frequently observed interface, at least compared to 

other approaches. Moreover, for the 125 cases where a successful prediction was 

made, using structure resulted in a significant increase in performance (Table 3-3).  

Our results have implications for how structural information may be used 

to analyze and characterize protein-protein interactions, especially on a large-

scale. Although there may be increased variability in the geometric binding 

properties of pairs of proteins with increasingly remote relationships, structural 

similarity can be effectively used to identify the sites of protein-protein 

interaction. As long as structural information is available for a given pair of 

proteins, the accuracy of our predictions suggests that the set of “template 

complexes” available in the current structural databases can be used to generate 

coarse-grained models of protein-protein interactions. Most importantly, we see 

that using remote structural neighbors produces a significant improvement in 

recall, which suggests that remote structural relationships have the potential to 

yield a much large number of hypotheses for protein-protein interactions than has 

been previously possible (Lu, Lu et al. 2002; Aloy, Bottcher et al. 2004; Davis, 
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Braberg et al. 2006). Together these results suggest that the use of remote 

structural similarity can potentially significantly increase the number of functional 

relationships that can be detected, modeled and evaluated.  

3.5 Materials and Methods  

Protein dataset and interface definition. We used a set of proteins originally 

created to evaluate protein docking methods by Hwang et. al. (Hwang, Pierce et al. 

2008). This dataset was designed to have significant diversity in both overall 

protein shape and binding mode and has been used by other groups to evaluate 

protein interface prediction methods (Liang, Zhang et al. 2006; Zhou and Qin 

2007). The benchmark contains 124 pairs of interacting structures, and 309 

protein chains. We created a non-redundant set at 40% sequence identity using the 

program cd-hit (Li and Godzik 2006) and also removed chains shorter than 50 

amino acids. This left 188 individual protein chains as our test dataset, coming 

from 137 SCOP families, 124 superfamilies, and 105 folds. The interface in each 

case is determined based on its interactions with all other members of its 

associated complex in PQS. A residue was defined to be on the surface if its 

solvent accessible surface area (calculated using the isolated chain) was ≥ 10Å
2
, 

and it was defined to be in the interface if the distance between any of its heavy 

atoms and any heavy atoms from a partner chain was ≤ 5 Å (Zhou and Qin 2007). 

In total, the 188 chains contained 39,780 residues and 7,496 in an interface. We 
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also tested our interface prediction method on targets T01~T27 from the Critical 

Assessment of Prediction of Interactions (CAPRI, (Janin and Wodak 2007)). 

These 56 bound/unbound chains contain 12,124/12,181 residues with 2,180/2,134 

in the interface. 

Structural neighbors. Structural neighbors were defined in two ways. Structural 

neighbors belonging to the same family, superfamily or fold were taken from the 

SCOP 1.73 database (Andreeva, Howorth et al. 2008). We also used the program 

Ska (Yang and Honig 2000; Petrey and Honig 2003), to identify neighbors 

independent of classification. Neighbors were defined based on a protein 

structural distance (PSD) (Yang and Honig 2000) from the query of less than 0.6. 

In the procedures described below, only structural neighbors that are involved in 

any PQS complex (36,888 as of Aug. 2009) are used and if a structural neighbor 

has multiple binding partners, all are considered. The complete PQS database was 

used to identify structural neighbors, but to avoid overcounting of highly similar 

complexes, we applied the following procedure: PQS chains were clustered using 

cd-hit at a 40% sequence identity cutoff. Given structural neighbors N1 and N2 of 

a protein and their interacting partners P1 and P2, if N1 belongs to the same cluster 

as N2, and P1 belongs to the same cluster as P2 only one structural 

neighbor/partner would be considered. 
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Z-score to evaluate interface conservation. To evaluate the degree of interface 

conservation, we used a variant of the statistical test introduced by Russell et al. 

(Russell, Sasieni et al. 1998) in an analysis of interactions between proteins and 

small molecules. For each query protein, Q, and each structural neighbor N, the 

interactions N makes with its partner, P, are “mapped” to the surface residues of 

Q to create the contact map for this particular structural neighbor. This procedure 

is repeated for all structure neighbors of Q and the contact maps are then summed 

to form the contact frequency map (see Figure 3-4 for detail). 

We then ask whether or not there is a statistically significant set of 

residues on the surface of the query protein that preferentially has interaction sites 

mapped to it. Following Russell et al. (Russell, Sasieni et al. 1998) the statistical 

significance is determined by counting the number of times any pair of contact 

maps overlap at a residue. This can be calculated as 


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where |S| is the number of structural neighbors, Oi is the number of surface 

residues in the query which interact with i structural neighbors. It was shown in 

(Russell, Sasieni et al. 1998) that this number is statistically equivalent to: 
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Figure 3-4. Calculating the contact map and contact frequency map. In the above 

example, a given query protein (Q, brown) with 7 residues has 5 residues on the surface. 

Structural neighbors (Ni, green lines) involved in protein complexes are superimposed on Q 

and the same transformation is applied to their interacting partners (Pi, green surfaces). 

Whenever a heavy atom from a residue of Pi is <5 angstroms of an atom of a surface residue 

of Q after applying the transformation, that residue is marked (red circles), generating a 

“contact map” for each structural neighbor (black boxes represent non-surface residues that 

are not included). The “contact frequency map” is generated by summing the individual 

contact maps. 
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X represents bias in the distribution of the Ois. To measure the statistical 

significance of X for a given query protein we calculate an approximate pivotal 

independent of the number of structural neighbors and the number of contacted 

residues: 
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where 2)( aiwi  , and Ei is the expected value of Oi under the assumption that 

the contact maps are randomly distributed over the surface of the query protein 

(calculated as described below). This score then essentially indicates the chance 

of observing the value X and can be used to evaluate degrees of interface 

conservation (please refer to (Russell, Sasieni et al. 1998) for detail). The larger 

the Z-score, the more significant the conservation will be. 

We estimated the values of Ei for each query protein by simulation. For 

each contact map generated for a structural neighbor of the query, we constructed 

a corresponding random surface patch that has the same number of contacting 

atoms using the subroutine MAKE_REGION of the program MODELLER (Sali 

and Blundell 1993). This is repeated 100 times and Ei is taken to be the average of 

the Oi’s generated in each run. Ideally, the simulation should be done that each 

contact map and its random maps have the same number of residues. We 
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compared the Z-scores from simulation of the same number of atoms and the 

same number of residues and found little difference. Because the generation of 

random maps with the same number contacting residues will take much more time, 

we generate random maps of the same number of contacting atoms in our 

simulation. 

Using conservation to predict interfaces. We exploited the observed 

conservation to develop an interface prediction method. Given a query structure, 

we first identified its structure neighbors using Ska, and kept only the 50 most 

similar neighbors that were also contained in complexes (for benchmarking 

purposes, complexes that contain the query protein were excluded). We calculated 

the contact frequency map as described above and turn the contact frequencies 

into residue-based interfacial scores using a logistic function: 
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Here f is the contacting frequency of a residue, and max(f) is its maximum value 

for the whole structure. We chose an interfacial score cutoff of 0.05 since this 

results in 20-25% of residues being predicted as interfacial (roughly the portion of 

interface residues in our datasets). Prediction accuracy is assessed in terms of 

recall=Nc/Ni and precision=Nc/Np where Nc= the number of correctly predicted 

interface residues, Ni= the number of real interface residues, and Np= the total 
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number of predicted interfacial residues. When comparing our approach to other 

methods, we used the web services Promate (http://bioinfo.weizmann.ac.il/ 

promate/many.html), and obtained the cons-PPISP and PINUP from the 

developers and ran them locally. 
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CHAPTER 4. PredUS: A WEB SERVER FOR 

PREDICTING PROTEIN INTERFACES USING 

STRUCTURAL NEIGHBORS 

The following chapter is a paper published in the Nucleic Acids Research 

(Volume 39, Web Server Issue, 23 May 2011, pp. W283-W287).  

4.1 Abstract 

We describe PredUs, an interactive web server for the prediction of 

protein-protein interfaces. Potential interfacial residues for a query protein are 

identified by “mapping” contacts from known interfaces of the query protein’s 

structural neighbors to surface residues of the query. We calculate a score for each 

residue to be interfacial with a support vector machine. Results can be visualized 

in a molecular viewer and a number of interactive features allow users to tailor a 

prediction to a particular hypothesis. The PredUs server is available at: 

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:PredUs.  

4.2 Introduction 

Prediction of the potential locations at which proteins interact with other 

proteins is essential to understanding their function and has been successfully 

exploited in many applications, including identification of an approximate binding 
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mode in protein-protein docking, as a guide in site-directed mutagenesis and in 

the identification of pharmacological targets. Approaches to interface prediction 

typically depend on the recognition of differences in the properties of amino acids 

(e.g., residue hydrophobicity and sequence conservation) in surface patches that 

interact with other molecules, as compared to other surface residues (Tsai, Lin et 

al. 1996; Jones and Thornton 1997; Lo Conte, Chothia et al. 1999; Zhou and Qin 

2007; de Vries and Bonvin 2008; Tuncbag, Kar et al. 2009).  

“Template-based” prediction, in which an interface for a given query 

protein is inferred based on some similarity to another protein or set of proteins 

with known interfaces has been less extensively used. This is especially true of 

remote similarities which may be due to the lack of data about conservation of the 

location of binding sites in remote neighbors. Recently, we reported a 

comprehensive analysis of the degree to which the location of a protein interface 

is conserved in sets of proteins that share varying degrees of similarities (Zhang, 

Petrey et al. 2010). Our results showed that while, in general, interface 

conservation is most significant among close neighbors, it is still significant even 

for remote structural neighbors. Based on this observation, we implemented a 

template-based protein interface prediction method and tested it on a docking 

benchmark and a set of CAPRI targets. Our method offered the best combination 

of prediction precision and recall among all methods tested, including PINUP 
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(Liang, Zhang et al. 2006), cons-PPISP (Chen and Zhou 2005), and ProMate 

(Neuvirth, Raz et al. 2004), which were suggested to be the top three standalone 

protein interface prediction programs in a recent comparative study of six 

interface prediction methods (Zhou and Qin 2007). 

Here we describe PredUs, an interactive web server using this template-

based protein interface prediction method. Given a query protein structure as 

input, we “map” interaction sites of structural neighbors involved in a complex to 

residues on the surface of the query. Based on the mapped contacting frequencies, 

we calculate a score for residues to be interfacial. In the version of our method 

implemented on the server we use a support vector machine (SVM) to calculate 

the score, which shows superior performance compared to the original score 

based on logistic regression (Zhang, Petrey et al. 2010) on the same benchmarks.  

4.3 PredUs Algorithms 

Given a protein structure, we first find its structural neighbors using the 

structural alignment program Ska (Petrey and Honig 2003). We use a PSD 

(protein structure distance, a measure of structural similarity (Yang and Honig 

2000)) cutoff of 0.6 which allows detection of both close and remote relationships. 

Structures that are involved in a PQS (Protein Quaternary Structures, (Henrick 

and Thornton 1998)) or PDB (Protein Data Bank, (Berman, Westbrook et al. 

2000)) complex are kept and ranked by structural alignment score, (Kolodny, 



82 

 

 

 

 

 

 

Koehl et al. 2005), which reflects a combination of structural similarity and 

alignment length.  

An interface from a structural neighbor is “mapped” to the query by 

placing any interacting partners of the structural neighbor in the coordinate 

system of the query, using the transformation that relates the structural neighbor 

to the query. If a heavy atom of a query residue is within 5.0 angstroms of an 

interacting partner after the transformation, we increment a counter associated 

with this residue with the sequence identity between the query and the structural 

neighbor. This is repeated for each structural neighbor ordered according to its 

structural alignment score. To avoid over counting of highly similar interfaces, we 

cluster PQS/PDB chains using cd-hit (Li and Godzik 2006) at 40% sequence 

identity cutoff. If two structural neighbors belong to a single cluster and their 

interacting partners also belong to a single cluster, only the structural neighbor 

with the higher structural alignment score will be considered. We sum the 

weighted contact frequencies at each residue of the query after interfaces of all 

structural neighbors have been mapped (see reference (Zhang, Petrey et al. 2010) 

for details). 

In the current version of the PredUs server, we use a support vector 

machine (SVM) to predict whether or not a surface residue is in an interface. The 

SVM is implemented with the package libsvm 3.0  using radial basis function as 
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the kernel. For each surface residue, we define a patch that includes the residue 

and its 14 spatially nearest surface residues. The contacting frequencies (freq) and 

solvent accessible surface areas (ASA) of the residues in the surface patch and the 

maximum contacting frequency of residues of the entire protein constitute a 

feature profile of length 31, i.e. [freqmax, freq0, freq1, …, freq14, ASA0, ASA1, …, 

ASA14]. These profiles are used as the input to the SVM and are mapped to vectors 

of a high-dimensional space using the kernel function. The SVM attempts to 

construct a hyperplane in that space that separates the vectors associated with 

interfacial residues from those that are non-interfacial. The interfacial score 

reflects the distance above (positive score) or below (negative score) this 

hyperplane. The higher the score the more likely a given residue is to be in an 

interface. By default, PredUs predicts all residues with positive score to be 

interfacial, but this cutoff is adjustable by the user.  

4.4 PredUs Features 

Input to the PredUs web server can be a protein structure file in PDB 

format, or a PDB code. PredUs will check the validity of the input structure, and 

once confirmed, submit it for prediction. Users can submit multiple structures, 

and provide a job title or email address to facilitate retrieval of results. 

As a unique feature, PredUs allows users to specify the structure of the 

binding partner. Once users provide another structure file or PDB code as  



84 

 

 

 

 

 

 

“Partner Structure”, PredUs will predict the interface specifically used in the 

binding of the provided partner by only mapping the interfaces between structural 

neighbors of the query protein and structural neighbors of the partner. 

A typical prediction takes a few minutes and almost all complete in no 

more than 30 minutes. The output consists of a list of residues and their associated 

 

Figure 4-1. PredUs prediction output. The left of the figure shows the submission details 

and prediction results. All residues with interfacial score higher than 0 are shown with scores 

in parentheses following residue number (in the PDB structure file) and residue name. On the 

right is the submitted structure with its molecular surface rendered in colors according to 

residue interfacial score. Residues of score higher than 0 are shown from light red to red as 

the score increases. 
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score to be in an interface for each submitted structure which can be downloaded 

in text format. Individual predictions can be visualized in the molecular viewer 

AstexViewer (Hartshorn 2002) by following the “View Structure” link. Surface 

residues are rendered in different colors according to their predicted interfacial 

score (Figure 4-1). 

Another unique feature of PredUs is that users can tailor a prediction to a 

particular hypothesis following the “Interactive prediction” link.  Figure 4-2 

shows structure-based sequence alignments between the query protein (on the top) 

and its structural neighbors on which the prediction is based. Below the alignment 

are tools that allow users to filter structural neighbors based on functional 

information including GO terms (Ashburner, Ball et al. 2000), or SCOP (Lo 

Conte, Ailey et al. 2000), PFAM (Finn, Mistry et al. 2010), and InterPro 

(Apweiler, Attwood et al. 2001) categories. It is well known that proteins can 

interact with different partners at distinct regions of their surfaces and these 

different interfaces can be associated with different functions (Keskin, Gursoy et 

al. 2008). By default, however, PredUs will map all interfaces of structural 

neighbors of a query protein without regard to sequence or functional 

relationships. Hence default predictions are indications of all possible places 

where the query may interact with other proteins and may initially be overly 

broad. Restricting the set of structural neighbors via filters to include only close  
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Figure 4-2. PredUs interactive prediction. The figure shows the structure-based sequence 

alignments of a query protein and its structural neighbors. Predicted interfacial residues in the 

query sequence are colored in red and the actual interfacial residues in the structural 

neighbors are indicated in purple. Functional terms populated in the set of structural 

neighbors are shown below the alignments. These can be used as functional filters to generate 

function-specific predictions by clicking the “Calculate Again” button. Gaps are shown as 

dashes. For brevity, insertions of more than one residue with respect to the query are shown 

as dots. 

sequence neighbors, for example, or remote homologs that are associated with a 

specific function should in many cases produce a more accurate prediction.  

On this page, users can also reorder the set of structural neighbors using 

different ranking operators shown above the alignments. Structural neighbors can 
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be ranked based on four scores: structural alignment score, the default; PSD; 

RMSD (root mean square deviation, based on aligned residues); and SID 

(sequence identity). With the different operators, users can compare predicted 

interfacial residues to real interfacial residues in structural neighbors ranked by 

different similarity measurements. 

The query protein can be further analyzed in our protein function 

annotation server MarkUs (Petrey, Fischer et al. 2009) provided by the link 

“MarkUs Annotation”. Interfaces predicted by PredUs can be examined in 

MarkUs and comparatively studied with other functional properties like ligand 

binding sites, enzymatic active sites and other residue and surface features, across 

a wide range of sequence and structural similarities. 

4.5 PredUs Benchmarks 

We used protein docking benchmark dataset of 188 chains in training and 

testing PredUs. As an independent test, we also used a set of CAPRI targets that 

contains 56 chains in both bound and unbound forms. Please see reference (Zhang, 

Petrey et al. 2010) for a detailed description of the datasets. 

To assess the predictions, we calculated a variety of quantities: 
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Here TP, FP, TN, FN are true positive, false positive, true negative, false 

negative predictions; MCC is Matthews’s correlation coefficient. We also drew 

the receiver operating characteristic (ROC) curve and calculated the area under 

the curve (AUC).  

We used 10-fold cross validation to test PredUs on the protein docking 

benchmark dataset. We tested the prediction performance of the SVM in terms of 

AUC value using different surface patch sizes ranging from 3 to 25 and found that 

the best performance was achieved with a 15-residue patch. No structural and 

functional filters were applied in benchmarking. All quantities except AUC were 

calculated using an interfacial score cutoff of 0 (in principle, a score higher than 0 

means the residue is more likely to be in an interface). These are also default 

settings in the PredUs server.  

As shown in Table 4-1, PredUs can achieve a high prediction precision 

and recall at the same time and achieves superior performance compared to our 

original study (Zhang, Petrey et al. 2010) as a result of the use of the SVM  
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Table 4-1. PredUs prediction performance averages on the docking benchmark dataset 

(DKBM3) and CAPRI bound/unbound targets. Quantities in each column are defined in 

the description of the PredUs benchmarks in the main text.  

dataset precision recall accuracy AUC MCC F1 

       

10 fold Cross-validation 

DKBM3 50.3% 57.5% 72.6% 0.739 0.345 0.530 

 

Independent test 

 

CAPRI bound 43.0% 53.0% 72.1% 0.713 0.290 0.474 

CAPRI unbound 43.3% 53.6% 73.2% 0.729 0.304 0.479 

classifier. In the current version of PredUs, we achieve a precision and recall of 

50% and 58%, compared to 44% and 46% using the original scoring scheme. 

Here and in the following test of CAPRI targets, we only compare with the 

original algorithm, which had been shown to offer the best combination of 

precision and recall among other methods we tested, including PINUP, cons-

PPISP, and ProMate (Zhang, Petrey et al. 2010).  

The SVM classifier trained on the whole docking benchmark set was 

applied to the CAPRI test sets. The results are summarized in Table 4-1 and the 

performance was again improved (prediction precision and recall are 43%/43% 

and 53%/54% vs. 42%/40% and 42%/45% in the original prediction for 

bound/unbound targets respectively, (Zhang, Petrey et al. 2010)).   
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4.6 Discussion  

PredUs predicts protein interfaces by mapping binding sites from 

structural neighbors. In contrast to methods based on residue properties, such as 

hydrophobicity and conservation, an advantage of this type of direct mapping is 

that it allows the identification of interfacial residues that are less distinctive in 

terms of such properties. This can be seen from the much higher recalls of the 

PredUs server than other protein interface prediction methods (Table 4-1 and 

reference (Zhang, Petrey et al. 2010)). This type of mapping also seems to be 

insensitive to conformational changes that may occur upon binding, as can be 

seen from the small difference between the performances of PredUs on the bound 

and unbound CAPRI targets (Table 4-1).  

The choice of structural neighbors is an important issue affecting the 

performance of template-based approaches and it might be expected that 

restricting the set of structural neighbors to closely related sequence homologs 

may produce more biologically relevant results. We have shown previously 

(Zhang, Petrey et al. 2010) that while such a limitation improves predictive 

accuracy it decreases the recall at the same time. As seen in Table 4-2, a general 

trend is that the number of cases for which we can make predictions and also the 

prediction recall improves as more remote neighbors are include with little 

sacrifice in precision. Consequently, the prediction strategy implemented in  
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Table 4-2. PredUs prediction performance averages when using structure neighbors 

from the same and different SCOP groupings on the docking benchmark dataset. 

Quantities in each column are defined in the description of the PredUs benchmarks in the 

main text. 

prediction methods cases precision average recall average 

PredUs(server) 185 50.3% 57.5% 

PredUs(original) 185 43.6% 45.7% 

family 141 50.8% 33.8% 

superfamily 147 45.9% 36.2% 

fold 153 41.8% 38.7% 

 

PredUs is to use the widest range of structural neighbors by default, since this 

appears to provide the best indication of the possible binding sites on a given 

protein. To limit the set of structural neighbors to those that a user thinks might be 

more biologically relevant, they can then apply the different evolutionary, 

structural and functional filters, or specify a binding partner, as well as directly 

compare actual interfacial residues in the structural neighbors to the predictions.   

A limitation of PredUs is that, for every query protein, structural 

neighbors in a complex are required to make predictions. By exploiting remote 

structural homology, however, this limitation is small with only about 5% the 

proteins in our benchmark having no structural neighbors with binding partners, 
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and this percentage should continue to decrease as more protein-protein 

complexes are characterized structurally.  

PredUs has been set up for half a year and has been tested extensively. In 

an application of genome-wide modeling of protein-protein interactions, we have 

used it to predict interfaces for all proteins with structural information in the yeast 

and human proteomes.  
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CHAPTER 5. STRUCTURE-BASED PREDICTION 

OF PROTEIN-PROTEIN INTERACTION ON A 

GENOME-WIDE SCALE 

5.1 Introduction 

 The genome-wide identification of pairs of interacting proteins is an 

important step in the elucidation of cell regulatory mechanisms (Bonetta 2010; 

Vidal, Cusick et al. 2011). Much of our current knowledge derives from high-

throughput techniques such as Yeast Two Hybrid and Affinity Purification 

(Shoemaker and Panchenko 2007), as well from manual curation of experiments 

on individual systems (Reguly, Breitkreutz et al. 2006). A variety of 

computational approaches based, for example, on sequence homology, gene co-

expression, and phylogenetic profiles have also been developed for the genome-

wide inference of PPIs (Salwinski and Eisenberg 2003; Shoemaker and 

Panchenko 2007). Yet, comparative studies suggest that the development of 

accurate and complete repertoires of protein-protein interactions (interactomes) is 

still in its early stages (Deane, Salwinski et al. 2002; von Mering, Krause et al. 

2002; Braun, Tasan et al. 2009).  

To date, structural information has had relatively little impact in 

constructing protein-protein interactomes, primarily because there is a dramatic 
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difference between the number of proteins with known sequence and those with 

an experimentally known structure. For example, the PDB (Protein Data Bank) 

provides structures for ~600 of the total complement of ~6,500 yeast proteins 

(~10%), while structural coverage of protein-protein complexes is even more 

sparse with only about 300 structures available out of the approximately 75,000 

PPIs (<0.5%) recorded in databases. Fortunately, however, ~3,600 additional 

yeast proteins have homology models in either the ModBase (Pieper, Eswar et al. 

2006) or SkyBase (Mirkovic, Li et al. 2007) databases. Moreover, as of early 

2010, there were about 37,000 protein-protein complexes taken from multiple 

organisms in the PDB and PQS (Henrick and Thornton 1998) (Protein Quaternary 

Structure) databases, that might be used to model PPIs. Clearly, if structure is to 

be useful on a large scale, it is essential that modeling of individual proteins and 

of complexes be exploited. 

A number of studies have used structurally characterized complexes as 

“templates” to construct models of complexes that might be formed between 

proteins that have obvious sequence and/or structural relationships to the proteins 

in the template (Aloy and Russell 2002; Lu, Lu et al. 2002; Davis, Braberg et al. 

2006). But this requirement inevitably limits the number of interactions that may 

be inferred. The alternative strategy adopted here is not to limit ourselves to 

proteins that have been classified as sequence or structurally related (for example 
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proteins in the same SCOP family, superfamily, or fold) but rather, to search more 

broadly for templates identified from geometric relationships between groups of 

secondary structure elements as revealed by structural alignment, independently 

of how they are classified. It has been demonstrated that even distantly related 

proteins often use regions of their surface with similar arrangements of secondary 

structure elements to bind to other proteins (Petrey, Fischer et al. 2009; Gao and 

Skolnick 2010; Zhang, Petrey et al. 2010), suggesting the possibility of 

significantly expanding the number of putative PPIs that can be identified.  

Here we show that three-dimensional structural information can be used to 

predict PPIs with an accuracy and coverage that are superior to predictions based 

on non-structural evidence. Moreover, combining structural information with 

other functional clues yields predictions of comparable quality to high-throughput 

experiments. The surprising effectiveness of three-dimensional structural 

information can be attributed to the use of homology models combined with the 

exploitation of both close and remote geometric relationships between proteins. 

Our results suggest that structural biology and molecular systems biology can be 

integrated at an extent that has not been possible in the past. 

5.2 Methods 

Our approach to the prediction of PPIs is embodied in an algorithm we 

have named PREPPI (Predicting Protein-Protein Interactions) that combines 
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structural and non-structural interaction clues using Bayesian statistics (see Figure 

5-1 and Supplementary Materials and Methods for details). The structural 

component of PREPPI involves a number of steps. Briefly, given a pair of query 

proteins (QA and QB), we first use sequence alignment to identify structural 

representatives for each (MA and MB) and then use structural alignment to find 

the set of both close and remote structural neighbors (NAi and NBj) of MA and 

MB (an average of ~1500 neighbors are found for each structure). Whenever two 

(e.g. NA1 and NB3) of the over 2 million pairs of neighbors of MA and MB form 

a complex reported in the PDB, this defines a template for modeling the 

interaction of QA and QB. Models of the complex are created by superimposing 

the representative structures on their corresponding structural neighbors in the 

template (i.e., MA on NA1 and MB on NB3). Using this procedure, we built 

structural models for about 2.4 million potential binary interactions involving 

about 3,900 proteins of yeast and about 36 million interactions involving about 

13,000 proteins of human (for a given interaction, there are on average 200 

models for yeast or 300 models for human). 

The approach we take to scoring these models is central to our entire 

strategy. Although our procedure produces a three dimensional model for every 

putative complex, we never actually evaluate the model itself with standard 

scoring functions (for example as used in docking (Wass, Fuentes et al. 2011)),  
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Figure 5-1. Predicting protein-protein interactions using PREPPI. Given a pair of query 

proteins that potentially interact (QA, QB), representative structures for the individual 

subunits (MA, MB) are taken from the PDB, where available, or from homology model 
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databases. For each subunit we find both close and remote structural neighbors. A “template” 

for the interaction exists whenever a PDB or PQS structure contains a pair of interacting 

chains (e.g. NA1-NB3) that are structural neighbors of MA and MB, respectively. A model is 

constructed by superposing the individual subunits, MA and MB, on their corresponding 

structural neighbors, NA1 and NB3. We assign five empirical structure-based scores to each 

interaction model (Figure S5-1) and then calculate an informative likelihood for each model 

to represent a true interaction by combining these scores using a Bayesian Network (Figure 

S5-2) trained on the HC and the N interaction reference sets. We finally combine the 

structure-derived score (SM) with non-structural evidence associated with the query proteins 

(e.g., co-expression, functional similarity) using a naïve Bayesian classifier. 

since the binding mode of the two interacting proteins may not be accurately 

reproduced. Rather, we use a set of five empirical scores (described in Figure S5-

1) that measure properties that are only weakly dependent on atomic detail. The 

first score, a), depends on the structural similarity between models of the two 

query proteins (i.e. MA and MB) and those in the template complex (i.e. NA1 and 

NB3). The next two scores determine whether the interface in the template 

complex actually exists in the model. They are calculated as b) the number and c) 

the fraction of interacting residue pairs in the template (e.g. NA1-NB3) that align 

to some pair of residues in the model (MA-MB). The final two scores reflect 

whether the residues that appear in the model interface have properties consistent 

with those that mediate known PPIs (e.g., residue type, evolutionary conservation, 
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or statistical propensity to be in protein-protein interfaces). This information is 

obtained from three publically available servers that predict interfacial residues 

based on the sequence and structure of the individual subunits of the model (Chen 

and Zhou 2005; Liang, Zhang et al. 2006; Zhang, Petrey et al. 2010). The scores 

are calculated as d), same as b) with the additional requirement that both residues 

in an interacting pair of the template align to predicted interfacial residues in MA 

and MB; and e) the number of template interfacial residues that align to predicted 

interfacial residues in MA and MB. 

These scores are combined using a Bayesian network (Figure S5-2) to 

assign a likelihood ratio (LR, see Supplementary Materials and Methods) that 

each candidate protein-protein complex represents a true interaction. The network 

is trained on positive and negative “gold standard” reference datasets. Similar to 

two recent studies of the yeast and human B-cell interactomes (Yu, Braun et al. 

2008; Lefebvre, Rajbhandari et al. 2010), we combine interaction data from 

multiple databases (73,787 PPIs for yeast and 58,772 for human, Table S5-1) to 

ensure the broadest coverage of true interactions in the positive reference set. We 

divide these sets into high-confidence (HC) and low-confidence (LC) subsets; the 

HC sets contain 11,851 yeast interactions and 7,409 human interactions which 

have more than one publication supporting their existence and the other 
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interactions with only one supporting publication compose the LC set. All 

interactions not in the HC+LC set form the negative (N) reference set.  

5.3 Results 

Figure 5-2A shows an example how an HC set interaction of 

serine/threonine-protein kinase D1 (PKD1) and protein kinase C epsilon type 

(PKCε) is recovered using homology models and remote structural relationships. 

Homology models of PKD1 and PKCε are superimposed on template structures 

taken from a crystal structure of an E2 enzyme/ubiquitin complex to produce a 

model of the PKD1/PKCε complex. That is, two proteins in the ubiquitin pathway 

(not kinases) are being used here to predict a PPI between two kinases. Note that 

PKD1 and PKCε are not sequence homologs of the two corresponding ubiquitin 

pathway proteins and are classified as belonging to different folds. The two 

kinases do however share some local structural similarity with their respective 

templates as is evident from the figure.  The model interface covers the template 

interface quite well and contains many residue pairs independently predicted to be 

interfacial. As a result, the interaction model has significant PREPPI scores and 

indeed has an LR of 130. 

To quantitatively assess the performance of structural modeling (SM), we 

compared it with a number of different clues previously used in the literature to 

infer PPIs (Jansen, Yu et al. 2003; von Mering, Jensen et al. 2005; Lefebvre, 
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Rajbhandari et al. 2010): a) essentiality of the proteins in the interacting pair; b) 

co-expression level; c) Gene Ontology (GO) functional similarity; d) MIPS 

functional similarity; and e) phylogenetic profile similarity. We developed our 

own phylogenetic profile algorithm and used the same algorithms or data for other 

clues as Gerstein and coworkers (Jansen, Yu et al. 2003) (see details in 

Supplementary Materials and Meth and Table S5-2).  

       

Figure 5-2. Models for the PPI formed between (A) PKD1 and PKCε, and (B) EF-1δ and 

pVHL using homology models and remote structural relationships. The same E2-

ubiquitin template complex (PDB code: 2fuh A and B chain, shown in blue and red 

respectively) was used in both cases. The structures of PKD1 and EF-1δ (shown in green and 

purple) are homology models from ModBase; the structure of PKCε (yellow) is a homology 

model from SkyBase; the structure of pVHL (cyan) is from PDB (1lm8 V chain). In each case, 

the relevant homology models are structurally superimposed on one of the two  templates in 

the E2-ubiqutin complex. 
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Figure 5-3. Receiver operating characteristic (ROC) curves for PPI prediction based on 

different clues and their combinations for yeast (A) and human (B). The curves here are 

calculated for subsets of protein pairs for which the indicated clues are available. ROC curves 
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for the full yeast and human proteomes and for subset of proteins for which structures and/or 

models are available are shown in Figure S5-3. The clues used are structural modeling (SM), 

GO and MIPS term similarities, protein essentiality (ES) relationship, co-expression (CE) and 

phylogenetics profile (PP) similarity. NS refers to Bayesian classifiers derived from non-

structure-based clues (GO, MIPS, ES, CE and PP for yeast; and GO, CE and PP human). 

PREPPI combines these clues with structural modeling. The inset in each figure magnifies the 

curves in the low false positive rate (FPR) region. 

Figure 5-3 presents ROC (receiver operating characteristic) plots of true 

positive rate (TPR) vs. false positive rate (FPR) for the yeast and human 

proteomes (results for yeast interaction were from 10-fold cross validation, for 

human interactions they were derived using the Bayesian network trained on yeast 

although virtually identical results were obtained with a cross validation on 

human data). As can be seen from the figure, SM yields comparable performance 

to other clues over the entire range of FPR but is considerably more effective at 

low FPR (see insets to Figures 5-3 and Figure S5-3). This is critical because the 

latter is the only range where predictions can be used effectively. Due to the very 

large number of possible PPIs, only very low FPR rates (e.g. FPR ≤ 0.1%) can 

produce an acceptable number of false positives. At low FPR, SM by itself 

outperforms even the naïve Bayesian classifiers that combine all non-structure-

based clues (NS). Each curve in Figure 5-3 is based on the subset of yeast protein 

pairs for which data are available for the corresponding clue, but our conclusions 
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remain the same independent of the data sets used to evaluate the predictions 

(Figure S5-4). Moreover, the definition of the N set results in significant 

overestimates for the computed false positive rate as any new correctly predicted 

interactions will be, by definition, in the negative reference set. Indeed, looking 

specifically at the thousands of SM predictions of high LR (>600) in the LC and 

the N sets, about 70% and 50%, respectively, of them share GO biological term at, 

or more specific than, the 6
th

 level of the GO hierarchy, suggesting that these 

interactions may be real (Figure S5-5).   

As mentioned above, PREPPI combines structural and non-structural clues 

using a naïve Bayesian network (Jansen, Yu et al. 2003; von Mering, Jensen et al. 

2005; Lefebvre, Rajbhandari et al. 2010). It is evident from the figure that 

PREPPI’s performance is superior to other methods over the entire range of false 

positive rates, with its performance at low FPRs, the most critical range, being 

due primarily to the inclusion of structural information (insets in Figure 5-3). As 

an independent test of PREPPI, we assessed its performance against one of the 

challenges in the 2009 DREAM (Dialogue for Reverse Engineering Assessments 

and Methods) workshop specifically aimed at protein-protein interaction 

predictions (Stolovitzky, Prill et al. 2009). As discussed in Table S5-3, PREPPI 

outperformed all other methods for cases where structural information is available.  
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In addition to comparisons to other computational predictions based on 

non-structural evidence, we have also compared the performance of PREPPI to 

that of high-throughput (HT) experimental techniques (Table S5-4). A detailed 

comparison of different HT techniques was reported by Vidal and coworkers (Yu, 

Braun et al. 2008). We used both their CCSB-BGS (Center for Cancer Systems 

Biology Binary Gold Standard, ~1,300 PPIs) and the CCSB-PRS (CCSB Positive 

Reference Set, a subset of CCSB-BGS of 188 highly reliable PPIs) datasets as 

definitions of true interactions and compiled a new negative reference set which 

consists of protein pairs where each protein in a pair is annotated as localized to a 

different cellular compartment (440,000 yeast and 1,750,000 human protein pairs, 

see Methods online). This was essential for comparison to experimental assays 

since, as constructed, our N set excludes data compiled from HT experiments, and 

hence the FPR for experimental assays is artificially, zero (see also related 

discussion in SOM of reference (Yu, Braun et al. 2008)).  

Figures 5-4A shows a ROC curve calculated based on this new negative 

reference set and the CCSB-PRS positive reference set. This data show that, 

surprisingly, PREPPI outperforms all HT methods yielding higher TPRs at 

corresponding FPRs. With a few exceptions, the same conclusion holds for the 

larger CCSB-BGS and the HC reference sets (Figure S5-7).  
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Figure 5-4B shows a Venn diagram based on an LR cutoff of 600 (FPR ≈ 

0.1%) while the HT results correspond to higher FPRs for yeast and lower for 

human (see Figure S5-7). Results for other LRs and additional reference sets are  

 

 

Figure 5-4. ROC curve (A) and Venn diagram (B) for PREPPI predictions and high-

throughput (HT) experiments for yeast. HT experiments are labeled with the first author of 

the relevant publication (Table S5-3). The number of interactions in each set is given after the 

set label in the Venn diagram. 
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shown in Figure S5-8. As can be seen in the Venn diagrams in Figures 5-4B and 

Figures S5-8, many of the interactions inferred by PREPPI are different from 

those identified by HT methods. This suggests that computational prediction 

provides complementary clues to existing experimental assays and that methods 

that combine computational and high-throughput sources of evidence may prove 

to be highly effective. Figure 5-2B describes a prediction of an LC set interaction 

between the elongation factor 1-delta (EF-1δ) and the von Hippel-Lindau tumor 

suppressor (pVHL) based on the same template (E2-ubiquitin complex) used in 

Figure 5-2A. Again, there is no sequence relationship between the target and the 

template proteins, and they are classified into different SCOP folds but, 

nevertheless, the interaction model has an LR of 70. (Parenthetically, SM 

provides the only computational clue that makes it possible to infer the two 

interactions in Figure 5-2).  We note that the two proteins in Figure 5-2B were 

found to interact in a high throughput study by mass spectroscopy (Ewing, Chu et 

al. 2007), a result that can now be taken with higher confidence given the PREPPI 

analysis.     

5.4 Discussion 

The accuracy and range of applicability of structural-based PPI prediction 

were unanticipated, but should not come as a complete surprise. Most protein 

complexes in the PDB have structural neighbors that share binding properties 
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(Zhang, Petrey et al. 2010), and protein interface space may well be close to 

“complete” in terms of the packing orientations of secondary structure elements 

(Gao and Skolnick 2010). Moreover, these elements can be identified with 

geometric alignment methods (Keskin, Nussinov et al. 2008; Zhang, Petrey et al. 

2010), a fact that has been exploited in the approach introduced here. Although 

the information required to predict whether two proteins interact thus often seems 

present in the PDB, the question has been how to mine it.  

Two key elements are responsible for our success. First, the wide 

exploitation of homology models significantly expands upon the number proteins 

for which interactions can be modeled. About 1,500 PDB structures but more than 

7,000 models are found as representatives of at least one domain of ~4,000 yeast 

proteins and ~8,500 PDB structures and more than 31,000 models for at least one 

domain of ~14,000 human proteins. Had we only used experimentally determined 

structures in our analysis of yeast, a total of only 65,614 PPIs could potentially 

have been identified, of which only 498 are found in our HC data set. In contrast, 

the corresponding numbers when homology models are used are about 2.4 million 

and 3,063. For human the amplification is almost equally dramatic (a total of 2.5 

million PPIs with 1,845 in the HC set using only crystal structures and 36 million 

PPIs and 4,032 in the HC set when homology models are used). 
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Second, it has been demonstrated that even distantly related proteins often 

use regions of their surface with similar arrangements of secondary structure 

elements to bind to other proteins (Petrey, Fischer et al. 2009; Gao and Skolnick 

2010; Zhang, Petrey et al. 2010), and the use of such relationships here greatly 

amplifies the number of putative interactions that can be modeled (see examples 

in Figure 5-2). In fact, had we limited our definition of structural neighbors to 

members of the same SCOP fold or superfamily, only about 300 interactions in 

the yeast HC set could potentially have been identified.  

The use of homology models and of remote structural relationships 

implies that each new structure that is determined experimentally can be used to 

detect large numbers of new functional relationships even if the protein in 

question is of only limited biological interest on its own. In this regard, our 

approach offers a rationale for structural genomics initiatives, which produced a 

large increase in the coverage of sequence families that did not have structural 

representatives (Levitt 2009). Moreover, since models can be built for every 

interaction inferred by our approach, it is now possible to predict the location of 

the interface on a protein surface for large numbers of protein-protein complexes 

and, consequently, to derive experimentally testable hypotheses as to the presence 

of a true physical interaction. For example, the interaction model of PKD1 and 

PKCε in Figure 5-2A not only predicts an interaction between the two kinases, it 
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also predicts that the interaction is mediated by the PKD1-PH domain and the 

PKCε-C1 domain, which is consistent with the observation that the PKD1-PH 

domain is required for  the formation of a complex of PKD1 and PKCη, another 

member of the novel PKC family (Waldron, Iglesias et al. 1999). In conclusion, 

our study suggests the ability to add a structural “face” for a large number of PPIs 

and that structural biology can now begin playing an important role in molecular 

systems biology.  
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Supplementary Materials and Methods 

Proteins and domains. We obtained the yeast proteome from UniProt (Apweiler, 

Bairoch et al. 2004), and parsed its 6,521 proteins into 7,792 domains using the 

SMART online server (Letunic, Doerks et al. 2009). Similarly, for human, we 

identified 20,318 unique proteome members, producing 49,851 individual 

domains.  
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Structures. Structural representatives of the entire protein or different individual 

domains were either taken directly from the PDB (Berman, Westbrook et al. 

2000), where available, or from the ModBase (Pieper, Eswar et al. 2006) and 

SkyBase (Mirkovic, Li et al. 2007) homology model databases. PDB structures 

were identified by sequence homology, using a single iteration of PSI-BLAST 

(Altschul, Madden et al. 1997) and an E-value cutoff 0.0001; further, we required 

that matching structures in the PDB have >90% sequence identity and cover >80% 

of the query target (the entire protein or any domain). Homology models were 

selected based on two criteria: a) an E-value less than 1e-6, or b) an E-value less 

than 1 and either a structure-based pG score ≥ 0.3, for SkyBase models (Sanchez 

and Sali 1998), or a ModPipe protein quality score MPQS ≥ 0.5, for ModBase 

models. When multiple structures were available for a target/domain we choose 

only one representative by: a) first, the PDB structure with the best resolution, if 

available; b) otherwise, the ModBase model with the highest MPQS score; or c) 

lastly, the SkyBase model with the highest pG score. Based on these criteria, we 

could identify 1,361 PDB structures and 7,222 homology models for 4,193 

different yeast proteins. Among these, 627 proteins could be matched to a PDB 

structure and 3,662 to a homology model, with some proteins having both. For 

human, 14,132 proteins were matched to 8,582 PDB structures and 30,912 models. 

Specifically, 4,286 proteins were matched to a PDB structure and 11,266 were 

matched to a homology model, with some proteins matched both. 
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Structural neighbors. We used a structural alignment tool Ska (Petrey and Honig 

2003) to identify structural neighbors for these structural representatives. Ska is a 

local alignment tool, which allows alignments to be considered significant even if 

only three secondary structural elements are well aligned. At a PSD (Yang and 

Honig 2000) (protein structure distance) cutoff of 0.6, we identified 1,448 

neighbors (both close and remote) per structure for 7,875 structures of 3,911 yeast 

proteins and 1,553 neighbors per structure for 36,743 structures of 13,545 human 

proteins. 

Template complexes. As of early 2010, there were about 37,000 protein-protein 

complexes involving multiple organisms in the PDB and PQS (Henrick and 

Thornton 1998) databases. We used 28,408 and 29,012 complexes as templates 

during our modeling of yeast and human interactions, respectively. PQS 

terminated updates after Aug. 2009, and has been replaced by the PISA (Protein 

interfaces, surfaces and assemblies) server (Krissinel and Henrick 2007) which 

will be used in future work.  

Interaction modeling. Given a pair of proteins or domains, we built their 

interaction model by superimposing their structures with the corresponding 

structural neighbors in the templates (Figure 5-1). For yeast, we built 550 million 

models for 2.4 million potential PPIs, which cover 11.3% of the total possible 

interaction space of all proteins (21 million), but 25.8% (3,063) of the HC 
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interactions. For human, we built 12 billion models for 36 million potential PPIs, 

which cover 17.5% of the total possible interaction space of all proteins (206 

million), but 54.4% (4,032) of the HC interactions.  

Interaction reference datasets. To ensure accurate and broad coverage of true 

interactions, we combined interaction data from multiple databases (Mewes, 

Albermann et al. 1997; Salwinski, Miller et al. 2004; Stark, Breitkreutz et al. 2006; 

Chatr-aryamontri, Ceol et al. 2007; Kerrien, Alam-Faruque et al. 2007; Keshava 

Prasad, Goel et al. 2009) and selected a subset of all high-confidence (HC) 

interactions that have multiple publications supporting their existence (11,851 

yeast and 7,409 human interactions). All protein pairs with no supporting 

publication form the negative (N) reference set. The HC and the N sets were used 

as our reference datasets in all training and validations. See Table S5-1 for details.  

Interaction model scoring. We calculated five empirical structure-based scores 

for each interaction model (Figure S5-1). We used a Bayesian network to 

combine these scores, into a likelihood ratio (LR) to evaluate an interaction model 

based on the HC and the N reference sets described above (Figure S5-2). Broadly, 

given some clue that reflects whether two proteins interact, the LR is an indicator 

of how likely it is that a pair of proteins with that clue will represent a true 

interaction.  
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Non-structural clues. For the yeast proteome, we downloaded the raw data for 

four different clues; protein essentiality (ES), co-expression (CE), GO (Ashburner, 

Ball et al. 2000) similarity and MIPS (Mewes, Albermann et al. 1997) similarity, 

from the Gerstein lab (http://networks.gersteinlab.org/intint/supplementary.htm). 

We also implemented a measure of phylogenetic profile (PP) similarity based on 

that introduced in reference (Huynen, Snel et al. 2000) (see below). We calculate 

a likelihood ratio (LR) for each non-structure clue based on our own reference 

sets, i.e., the HC and the N sets. Gerstein and coworkers expanded a set of 174 

protein complexes from the MIPS catalog into 8,617 binary interactions and used 

them as the positive reference set (Jansen, Yu et al. 2003). It should be noted, 

however, that this procedure made no distinction between direct physical 

interactions (i.e., A–B) and interactions mediated by other proteins (e.g., A–C–B). 

Since the focus of our study is on physical interactions, we used our HC reference 

set which is composed primarily of direct physical interactions. For the human 

proteome, we calculated three different clues following the protocol of Gerstein 

and colleagues for GO and CE and as described below for PP. For CE, we used 

the expression dataset (GDS1962), which is one of the most comprehensive 

microarray studies of 19,803 human genes under 180 different conditions (Sun, 

Hui et al. 2006), from the Gene Expression Omnibus (Barrett, Troup et al. 2011). 

http://networks.gersteinlab.org/intint/supplementary.htm
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Phylogenetic profile (PP) similarity. Similar to Enault et. al. (Enault, Suhre et al. 

2005), we calculated a continuous score between 0 and 1 to measure the 

occurrence of a protein and/or domain in 1,156 reference organisms of complete 

proteome information from UniProt. These scores form a phylogenetic profile 

vector (PPV), and the Pearson correlation coefficient (PCC) was used to define 

the similarity between two vectors. For proteins with multiple domains, each 

domain’s PPV is calculated independently, and the highest PCC score of different 

domain pairs is selected as the similarity score between two proteins. Similarity 

scores for pairs of proteins/domains with >40% sequence identity and, of course, 

for homomeric protein/domain pairs were not calculated.  

The Naïve Bayes Classifier. We combine the different types of clues with each 

other and structural modeling into a single Naïve Bayes PPI classifier (Jansen, Yu 

et al. 2003; von Mering, Jensen et al. 2005; Lefebvre, Rajbhandari et al. 2010):  





n

i

in cccc
1

21 )(LR),,,(LR 
 

10-fold cross validation. To test the ability of a classifier to accurately and 

specifically predict PPIs, we carried out a 10-fold cross validation. We randomly 

divided the positive and negative reference sets into 10 subsets of equal size. Each 

time, we used 9 subsets to train the classifier, and obtained the LR for each 

protein pair, i.e., interaction, in the excluded subset from the trained classifier. We 
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repeated the procedure 10 times using different subsets as training and testing 

datasets and finally obtained an LR for each interaction. We counted the number 

of true positives (predictions in the HC set) and false positives (predictions in the 

N set) and calculated the prediction TPR (true positive rate) =TP/(TP+FN) and 

the FPR (false positive rate) =FP/(FP+TN) to plot the receiver operating 

characteristic (ROC) curves. Note that in all prediction performance tests, we 

have removed structural interaction models based on a template that corresponds 

to an actual crystal structure of the two target proteins. 

Comparison with high-throughput (HT) experiments. We retrieved eight HT 

experiment datasets for yeast and three for human (Table S5-4). In our 

comparison, in addition to the HC sets, we also use the same reference interaction 

sets used in the comparative study of different HT techniques. These include 

~1,300 PPIs (CCSB-BGS) and a subset of 188 highly reliable PPIs that are 

referenced in at least four manuscripts (CCSB-PRS). We compiled a new negative 

reference set, which consists of 440,000 yeast and 1,750,000 human protein pairs 

where each protein in a pair is annotated as localized to a different cellular 

compartment (Figure S5-6). 
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Supplementary Figures and Tables 

Supplementary Figure S5-1. Interaction model evaluation scores. 

 

The top of the figure shows a template complex (TA,TB) and an 

interaction model (MA,MB) obtained as described in Figure 5-1 from the main 

text (i.e., TA = NA1 in Figure 5-1 and TB = NB3). Individual residues in the 

different chains of the template and model are shown as dots, colored to indicate 

whether they are interfacial (blue) or non-interfacial (white). We also show 

schematic representations of the amino acid sequences below their corresponding 

chain in the template and model. We determine whether residues are interfacial 
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using the following criteria. For the template, this is determined directly from the 

associated experimentally determined structure in the PDB using a 6.05 angstrom 

distance cutoff between heavy atoms (Davis and Sali 2005). We also identify 

interacting residue pairs (ta5/tb7, ta6/tb6, etc., black lines) in the template using the 

same cutoff. For the model, we predict interfacial residues in the individual query 

proteins using a combination of three programs: PredUs (Zhang, Deng et al. 2011), 

PINUP (Liang, Zhang et al. 2006) and cons-PPISP (Chen and Zhou 2005). Note 

that these programs use only the structures and sequences of the individual 

subunits in the model (i.e., MA by itself and MB by itself) and hence are totally 

independent of the modeled complex. In this example, MA has 3 predicted 

interfacial residues (ma2, ma5, etc.) and MB has 4 (mb2, mb3, etc.). In practice, 

interacting residue pairs and predicted interfacial residues are pre-calculated and 

stored for each template complex and query protein in order to allow efficient 

evaluation the of the billions of models we generate. Each interaction model is 

associated with two structure-based sequence alignments (i.e., MA aligned to TA 

and MB aligned to TB). We do not evaluate the 3-dimensional model directly but 

rather use a set of five criteria (designated SIM, SIZ, COV, OS, OL), calculated 

from the alignments as described below. 

 SIM: the geometric similarity between the protomers in the template and 

the model measured using protein structural distance (PSD, (Yang and 
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Honig 2000)). Since there are two geometric alignments obtained for each 

model (i.e., MA to TA and MB to TB), SIM is calculated as the average of 

PSD(TA,MA) and PSD(TB,MB).  

 SIZ and COV: the number and fraction of interacting residue pairs in the 

template that are preserved in the model. In this example, four of the seven 

interacting pairs present in the template are preserved in the model (ta7/tb5, 

ta8/tb4, ta9/tb3, ta10/tb2, highlighted in grey and indicated by grey lines). 

Hence SIZ=4 and COV=4/7=0.57.  

 OS: the same as SIZ, with the additional condition that each residue in the 

interacting pair aligns to a residue that is predicted to be interfacial in the 

model. In this example, although SIZ=4, only two of these interacting 

pairs (ta8/tb4 and ta9/tb3, highlighted in grey and blue) are present where 

each residue in the pair also aligns to a predicted interfacial residue in the 

model. Hence, OS=2. 

 OL: the number of predicted interfacial residues in the model that align to 

template interfacial residues. In this example, MA has 2 predicted 

interfacial residues that align to interfacial residues in TA (ma8 and ma9, 

highlighted in grey) MB has 3 that align to interfacial residues in TB. 

Hence, OL=3+2=5. 
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Supplementary Figure S5-2. Bayesian network for structural modeling. 

 

We used a Bayesian network to combine the five structure-based scores, 

i.e., SIM, COV, SIZ, OL, and OS (Figure S5-1), into a single term to evaluate an 

interaction model. We built a fully connected Bayesian network B4 for COV, SIZ, 

OL, and OS and combined it with the SIM score using the naïve Bayesian 

approach (NB). (Based on a calculation of the Pearson correlation coefficients for 

each pair of scores using all 550 million models built for yeast, COV, SIZ, OL, 

and OS were correlated with each other but SIM was only weakly correlated with 

the other four.) For each score, we defined discrete bins shown conceptually in 

the figure (bin sizes were adjusted manually to ensure adequate coverage of each 

bin). 
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To train the network using a set of PPIs, we assigned their associated 

interaction models to individual bins according to the model scores. For example, 

an interaction model with scores SIM=0, COV=0.9, SIZ=150, OL=120, and 

OS=80 will be assigned to bin[SIM=0~0.05] and bin[COV=0.8~1.0, SIZ=121~180, 

OL=0~160, OS=61~120] shown by red lines in the figure. An interaction can have 

multiple models, so it is important not to assign different models of the same 

interaction to the same bin multiple times. That is, if multiple models of a single 

interaction have the same set of scores, only one is counted in a given bin. The 

likelihood ratio (LR) for any bin is then determined using Bayes theorem: 

)|(

)|(
)(LR

NbinP

HCbinP

O

O
bin

prior

post
  

Here )|( HCbinP (and )|( NbinP , respectively) are the probabilities that an 

interactions in the HC set (the N sets) is in the bin. For an interaction model, we 

calculate its structure-based scores and determine the LR from the associated bin. 

The LR represents the increase of chance that an interaction with models of 

particular scores to be a positive PPI, compared with a random protein pair. The 

maximum LR is used when an interaction has multiple models.  
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Supplementary Figure S5-3. Number of predicted interactions vs. likelihood 

ratio (LR) using structural modeling and non-structure based clues. 

 

We examined different sources of information (i.e. structural modeling 

(SM), GO, protein essentiality (ES), MIPS, co-expression (CE), or phylogenetic 

profile (PP)) for their ability to predict PPIs. Any three lines of the same color and 

marker in the graph are associated with a particular clue and show numbers of 

predicted interactions with an LR above the cutoff, based on that clue. The total 

number of interactions predicted at a given cutoff is shown as a short-dashed line 

(P). The other two lines for a given clue correspond to whether the predictions are 

in the HC interaction set (solid line, TP), or in the union of the LC and HC 

interactions sets (long-dashed line, TP_ALL).  
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As shown in the figure, although in some cases it is possible to calculate a 

score for many more pairs of interactions for a given non-structural clue as 

compared to structural modeling, the numbers of interactions predicted with high-

likelihood ratio (LR) drops much more quickly for non-structural clues. Indeed, 

an important property of structural information is that it is particularly effective in 

making predictions at high LR regime, i.e., high confidence levels. 
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Supplementary Figure S5-4. ROC curves for yeast PPIs predicted based on 

different sources of information in different interaction spaces. 
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In Figure 5-2A, for yeast, we restrict each ROC curve in the plot to only 

those interactions for which the associated single clue or combination of clues 

was available. For completeness, we show here ROC curves for the different clues, 

but compare them using a single subset of protein pairs: (A) for the whole 

interaction space of 21 million protein pairs in yeast, (B) for the subset where 

information for all types of clues is available (116 thousand yeast protein pairs), 

(C) for the subset where structural information is available (2.4 million yeast 

interactions). The clues examined here are the same as those shown in Figure 5-

2A, i.e. structural modeling (SM), GO similarity, protein essentiality (ES) 

relationship, MIPS similarity, co-expression (CE), phylogenetic profile (PP) 

similarity, or their combinations (NS for the integration of all non-structure clues, 
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i.e. GO, ES, MIPS, CE, and PP, and PREPPI for all structural and non-structure 

clues).  

Figures S4A-C and Figure 5-2 consistently show that whatever data set is 

used, structural modeling (SM) yields comparable performance to other clues 

over the entire range of FPR but is considerably more effective at low FPR. In 

addition, the algorithm that combines structural modeling with other sources of 

evidence (PREPPI) shows superior performance to any method based on 

individual clues over the entire range of false positive rates. Obviously the 

performance of PREPPI at low FPRs is due primarily to structural information. 
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Supplementary Figure S5-5. Distributions of GO biological process (BP) 

similarity terms for yeast protein pairs. 

 

We define BP similarity for two proteins as the integer representing the 

level of their most recent common ancestor (MRCA) in the GO hierarchy, taking 

the maximum if multiple MRCAs are available. We extracted GO annotation for 

individual yeast proteins from UniProt and calculated the similarity for different 

sets of pairs. The purple line shows the random distribution of similarities, i.e., for 

all protein pairs in yeast for which we could find GO annotations. The green line 

shows the distribution for protein pairs in our HC set of true interactions. The bars 

show the distribution of similarities for pairs of interactions predicted by 

structural modeling (SM) at an LR cutoff of 600 that are also in different 

reference sets that we use: the HC (green), LC (blue), and N (orange) sets. 
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Only about 13% of random yeast interactions involve proteins that share 

an MRCA at least level 6 (the purple line). On the other hand, most true PPIs in 

the HC set (8,126 of 10,933, or 74%) share an MRCA level at least 6 (the green 

line). The MRCA levels for the SM predictions show similar shifts in the 

distribution. Specifically, at the LR cutoff 600, 434 of the predicted PPIs are in 

the HC data set, 363 in the LC data set and 2,640 in the N set. Of the 132 hetero-

dimeric pairs in the LC set with GO annotation, 94 contain proteins that share GO 

biological term at, or more specific than, the 6th level of the GO hierarchy (blue 

bars), providing supporting evidence that these interactions are real (in addition to 

their presence in the LC set). Similarly, 960 of the 1,946 hetero-dimeric 

predictions in the N set contain proteins that share GO terms at level 6 (orange 

bars), suggesting that there is at least a functional relationship which may involve 

protein-protein interactions.  
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Supplementary Figure S5-6. Negative interaction reference set constructed 

using proteins in different cellular compartments. 

 

We randomly chose a number of proteins based on their GO annotations 

and paired those from different cellular compartments to form the negative 

reference sets (shown as orange lines). There were several proteins annotated as 

belonging to two of these cellular compartments which we excluded.  A very 

small number of interactions were also contained in the positive reference sets 

(e.g., HC, CCSB-PRS, and CCSB-BGS) which were removed from the new 

negative reference sets (i.e., the final sizes of the negative reference sets are very 

close to but not exactly the same number as shown in the figure). 
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Supplementary Figure S5-7. ROC curves of PREPPI predictions and high-

throughput (HT) experiments on different interaction reference datasets. 

 

In Figure 5-3A, we show a ROC curve of PREPPI predictions and HT 

experiments using the CCSB-PRS reference set (reproduced here as panel A to 

facilitate comparisons). Here we show comparisons using additional positive 

reference sets: B) CCSB-BGS, and C) the yeast and D) human HC sets defined in 

the main text. Results from PREPPI are displayed as green curves, and the 

predictions at LR cutoff 600 are highlighted with green “X”. HT experiments are 
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shown as yellow diamonds with the datasets labeled with the name of the first 

author of the corresponding publications (Table S5-4). The unions of HT 

experiments are marked with yellow “X”. Our results consistently show that 

PREPPI predictions are comparable to most HT experimental studies.  
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Supplementary Figure S5-8. Venn diagrams of PREPPI predictions at 

different LR cutoffs, union of HT experiments, and different reference 

interaction datasets for yeast (A-F) and human (G-H). 
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In Figure 5-3B, we show a Venn diagram of PREPPI predictions at an LR 

cutoff of 600, unions of HT experiments, and the CCSB-PRS reference set 

(reproduced here as panel A for comparisons). Here we show the results of 

PREPPI predictions for additional positive reference sets defined in the figure 

along with the number of interactions they contain. The number after the label of 

a set shows the number of interaction in the set. The LR cutoff 600 was used in 
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(Jansen, Yu et al. 2003) based on the assumption that protein pairs with LR > 600 

have a better than 50% chance to be a true interaction. The number of interactions 

of the union of HT experiments depends on individual HT experiments, which 

generally results in different FPRs from those obtained from PREPPI predictions 

at an LR cutoff of 600. For this reason we also compared PREPPI predictions at 

the same FPRs as unions of the HT experiments, which correspond to an LR 

cutoff 120 for yeast and an LR cutoff 15,000 for human.  

As can be seen from the figure, PREPPI consistently predicts many 

interactions that are in the reference sets but not identified in any HT study. We 

define these interactions as the exclusive contribution of PREPPI to the reference 

sets (similarly, we define the exclusive contribution of the union of HT 

experiments to the reference sets). For most cases, the number of exclusive 

contributions of PREPPI is comparable to that of the union of HT experiments. 

The only exception is in the exclusive contributions to the yeast HC set. However, 

in this case the discrepancy is largely due to the fact that the yeast HC set mainly 

consists of interactions from HT studies (about 80% of the HC interactions are 

identified in at least one HT experiment). This of course biases the HC set so as to 

favor the evaluation of HT experiments.  
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Supplementary Table S5-1. Positive PPI reference sets for yeast (A) and 

human (B). 

(A) yeast 

Database MIPS DIP IntAct MINT BioGRID Overall 

MIPS 7,539 6,955 6,379 6,349 3,910 7,539 

DIP 
 

17,511 13,305 12,731 13,149 17,511 

IntAct 
  

48,009 16,680 19,316 48,009 

MINT 
   

24,083 17,082 24,083 

BioGRID 
    

42,650 42,650 

Overall      73,787 

(B) human 

Database HPRD DIP IntAct MINT BioGRID Overall 

HPRD 14,977 319 4,266 3,264 7,316 14,977 

DIP 
 

1,460 430 352 706 1,460 

IntAct 
  

27,911 7,235 11,357 27,911 

MINT 
   

12,099 5,044 12,099 

BioGRID 
    

32,071 32,071 

Overall      58,772 

The Training and evaluation of a PPI predictor requires accurate and broad 

coverage gold standards for both positive and negative interactions. Yet, 

achieving these competing goals can pose significant challenges. Some studies 

have used a single, well-annotated database (Jansen, Yu et al. 2003) but bias in 

individual databases has been described which can complicate evaluation of the 
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method (Myers, Barrett et al. 2006). On the other hand, the use of all available 

data can also be problematic because of issues related to the accuracy of databases 

that incorporate interactions determined, for example, by high-throughput 

approaches (von Mering, Krause et al. 2002). Similar to two recent studies of the 

yeast and human B-cell interactomes (Yu, Braun et al. 2008; Lefebvre, 

Rajbhandari et al. 2010), we combine interaction data from multiple databases 

and select the reliable ones to ensure accurate and broad coverage of true 

interactions in the positive reference set. For yeast, we used the interactions 

databases: MIPS (Mewes, Albermann et al. 1997), DIP (Salwinski, Miller et al. 

2004), BioGRID (Stark, Breitkreutz et al. 2006), intAct (Kerrien, Alam-Faruque 

et al. 2007) and MINT (Chatr-aryamontri, Ceol et al. 2007). We retrieved data 

deposited prior to Aug. 2009. For human, we used the databases: HPRD (Keshava 

Prasad, Goel et al. 2009), DIP, BioGRID, MINT and intAct, retrieving data 

deposited prior to Aug. 2010. We mapped different protein identifiers to UniProt 

accession numbers (AC) and used the pairs of accession numbers as the unique 

identifiers to all PPIs. Proteins without valid UniProt AC or not defined in the 

yeast and the human proteomes were removed (i.e., limited to the 6,521 proteins 

for yeast and the 20,318 proteins for human). The high confidence (HC) reference 

set for yeast contains 11,851 interactions with more than one supporting 

publication and the low confidence (LC) reference set contains 61,936 

interactions with only one supporting publication (73,787 in total). The HC set for 
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human contains 7,409 unique interactions, and the LC set contains 51,363 

interactions (58,772 in total). All the HC and the LC datasets are available at 

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:PREPPI. In 

the table below, cells on the diagonal represent the number of interactions taken 

from the corresponding database and the off-diagonal cells in the tables show the 

overlap between different data sources. 

  

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:PREPPI
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Supplementary Table S5-2. Availability of different clues for protein pairs in 

yeast. 

Method predictions Coverage HC recall 

SM 2398316 11.3% 3063 25.8% 

GO 2756276 13.0% 5036 42.5% 

ES 2925066 13.8% 4787 40.4% 

MIPS 5962511 28.0% 6915 58.3% 

CE 17967683 84.5% 11118 93.8% 

PP 17848620 83.9% 11273 95.1% 

Clues for GO similarity, protein essentiality (ES), MIPS similarity, and 

co-expression (CE) data were retrieved from (Jansen, Yu et al. 2003). We mapped 

the ORF names to UniProt accession numbers and only those defined in the yeast 

proteome were kept (i.e., limited to 6,521 yeast proteins). Coverage is the number 

of protein pairs for which a given clue (structural modeling (SM), GO, ES, MIPS, 

CE, and phylogenetic profile (PP) similarity) is available, divided by the total 

number of possible interactions (21 million); recall is the number of protein pairs 

in our HC set for which a given clue is available divided by the number of 

interactions in the HC set (11,851). 
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Supplementary Table S5-3. Predicting interactions in the DREAM exercise. 

Prediction 

Precision at n-th correct prediction 

AUPR AUROC 
1st 2nd 5th 

SM 1.00 0.67 0.71 0.49 0.74 

PREPPI 0.50 0.67 0.71 0.49 0.77 

Team1 1.00 1.00 1.00 0.70 0.82 

  Team1* 0.50 0.67 0.83 0.32 0.49 

Team2 0.20 0.20 0.12 0.15 0.48 

Team3 0.25 0.15 0.16 0.16 0.51 

Team4 0.50 0.67 0.14 0.18 0.49 

Team5 1.00 0.67 0.50 0.33 0.66 

DREAM evaluates computational reverse engineering methods in Systems 

Biology, using double blind assessments based on experimentally assessed data, 

similar to CASP. In DREAM2 (Stolovitzky, Prill et al. 2009), participants were 

asked to predict interactions among a set of 47 proteins; 48 true interactions 

among these proteins had been confirmed by the DREAM organizers in at least 

three independent Y2H experiments by the Vidal lab. We used the DREAM2 

evaluation program to benchmark all predictions. Here “precision at n-th correct 

prediction” is the precision calculated when a predictor correctly predicts the n-th 

PPI by ranking its predictions from the highest probability to the lowest. AUPR 

and AUROC is the area under the PR (precision-recall) curve and ROC (receiver 

operating characteristic) curve.  
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For this DREAM2 exercise, structural modeling (SM) generated models 

for 199 interactions between 28 proteins. Here we compare SM predictions and 

the prediction that integrates both structural and non-structural clues (PREPPI) 

with all DREAM2 participants in this subset of 199 interactions for the 28 

proteins. We use the most up-to-date information in the analysis (93 true positives 

according to current PPI databases) and re-evaluate the performance of each team 

based on this gold standard. As shown in the table, SM and PREPPI both perform 

much better than the other methods, except for Team1. However, the performance 

of Team1 seems to have been due to the fact that 19 of the true positive 

interactions between the target proteins were known in PPI databases at the time, 

and these interactions were submitted by Team1 (Chua, Hugo et al.) as 

“predictions” with very high probability, i.e., based only on the fact that they were 

present in the databases as opposed to an independent computational technique. 

The performance of Team1 when these interactions are removed from their 

predictions is significantly lower (Team1*).  
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Supplementary Table S5-4. High-throughput (HT) experiments.  

Dataset #interactions Type 
Source 

database 
Reference 

 Y
ea

st
 

Uetz 1437 Y2H intAct (Uetz, Giot et al. 2000) 

Ito 4447 Y2H intAct (Ito, Chiba et al. 2001) 

Yu 1626 Y2H intAct (Yu, Braun et al. 2008) 

Ho 3614 AP/MS intAct (Ho, Gruhler et al. 2002) 

Gavin02 3756 AP/MS intAct (Gavin, Bosche et al. 2002) 

Krogan 8183 AP/MS MINT (Krogan, Cagney et al. 2006) 

Gavin06 21242 AP/MS intAct (Gavin, Aloy et al. 2006) 

Tarassov 9601 PCA intAct (Tarassov, Messier et al. 2008) 

H
u

m
a
n

 Rual 2455 Y2H intAct (Rual, Venkatesan et al. 2005) 

Stelzl 2972 Y2H intAct (Stelzl, Worm et al. 2005) 

Ewing 5504 AP/MS intAct (Ewing, Chu et al. 2007) 

We retrieved eight HT experiment datasets for yeast and three for human 

from the intAct (Kerrien, Alam-Faruque et al. 2007) and the MINT databases 

(Chatr-aryamontri, Ceol et al. 2007). Database entries without valid UniProt 

(Apweiler, Bairoch et al. 2004) protein accession number or not defined in the 

yeast and the human proteomes are removed (i.e., limited to the 6,521 proteins for 

yeast and the 20,318 proteins for human).  

Abbreviations: Y2H, yeast two hybrid; AP/MS, affinity purification followed by 

mass spectroscopy; PCA, protein fragment complementation assay.
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CHAPTER 6. CONCLUSION 

6.1 Significance of research 

Systems biology seeks a quantitative understanding for a whole biological 

system by integrating data from diverse sources. Thanks to biotechnology 

development, we are now in a phase of unparalleled data growth, especially for 

DNA sequences and gene expression profiles. The wealth of information comes 

from disparate datasets and is being analyzed and integrated through 

computational techniques. However, to date, structural information has remained 

resistant to this integration, presumably because the use of structures usually 

depends on accurate modeling, which is time-consuming and more importantly, 

only possible for a limit number of proteins.  

In this thesis, I described my work that attempts to combine structural 

biology and systems biology by focusing on the development and the application 

of new methods that could use structural information in the study of protein-

protein interactions (PPIs) on a genome-wide scale. 

I began by introducing a comprehensive analysis that showed significant 

interface conservation in sets of proteins sharing varying degrees of similarities 

across whole structural space (Zhang, Petrey et al. 2010). We employed the 

conservation to design PredUs, a template-based protein-protein interface 
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prediction method which showed substantial improvement over existing 

techniques. We developed the PredUs web server to predict protein interfaces 

based on this method with a support vector machine (SVM) to further improve 

interface prediction performance (Zhang, Deng et al. 2011).  

The significance of the first part of my work is the finding of functional 

relationships among seemingly unrelated protein structures and the development 

of a fast and accurate method for the prediction of protein-protein binding 

interfaces, which is essential to our understanding of protein functions and has 

been successfully exploited in many applications. To our knowledge, PredUs is 

the first “template-based” method that predicts protein interfaces with high 

precision and recall. It is not sensitive to local conformational changes and small 

errors in structures and thus can be applied to predict protein interface for many 

proteins where only homology models are available. 

I then showed that 3D structure information can be used in a “high-

throughput” fashion to produce comprehensive maps of PPIs. I introduced a way 

to use 3D structural information to predict whether two proteins interact and 

applied the approach to both the yeast and the human genomes. I showed that 3D 

structural information is superior to other sources of evidence used to 

computationally infer interactions, and structural information combined with 

other evidence using a naive Bayesian classifier (PREPPI) identifies PPIs 
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comparable to high-throughput experimental approaches. Our data further 

suggests that PREPPI predictions are substantially complementary to PPI 

information generated by experimental methods. 

The significance of the second part of my work is the high throughput and 

accurate identification of protein-protein interactions, which is essential to 

understand regulatory processes in a cell and how their dysregulation may 

contribute to disease. Our success in using 3D structure to predict whether two 

proteins interact dramatically enhances the value of structural information and 

provides a computational prediction method that is competitive with the labor-

intensive high-throughput experimental approaches such as yeast two-hybrid in 

terms of both accuracy and coverage, and providing a way to dissect interactions 

that would be hard to identify on a purely high-throughput experimental basis. 

As mentioned, systems biology has evolved largely independently of 

structural biology. This thesis reports significant advances in both structural and 

systems biology and provides the first meaningful integration of these two 

disciplines. In terms of structural biology, we have achieved an enormous 

amplification of the information available from solved crystal structures through a 

novel approach that exploits imperfect homology models and that extracts 

functional information from geometric similarities between proteins that have 

generally been considered to be unrelated. From the perspective of systems 
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biology, we have for the first time used 3D structure as part of the repertoire of 

experimental and computational information and find a way to accurately infer 

protein interface and PPIs on a large scale. 

6.2 Future directions 

6.2.1 Construction of the PREPPI webserver  

 A more complete and accurate compendium of protein-protein interfaces 

and interactions would be of great interest to the biological community. This has 

been demonstrated by the success of PredUs, our protein-protein interface 

prediction server, which has been used by many hundred different users since its 

inception. It suggests that it would also be worthwhile to make PREPPI, our 

protein-protein interaction (PPI) prediction method, publicly available.  

We have set up a demo version of a webserver for the PREPPI software 

(http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:PREPPI). It 

contains all experimental interactions prior to Aug. 2011, and predicted 

interaction of LR higher than 100 for yeast and human. These interactions could 

be searched using UniProt accession number, or other commonly used names of 

participating genes and proteins. So far, the PREPPI webserver contains little 

information about the involved proteins and interactions, but we plan to include 

more so that PREPPI could be a “one-stop shop” for PPI studies. For example, for 

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:PREPPI
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experimental interactions, we will provide information about source databases and 

publications to facilitate further investigations; and for predicted interactions, we 

plan to include the associated likelihood ratio scores of each component and their 

integral, and reliable structural models as well, if available, for detailed studies.  

So far, we have only applied the PREPPI algorithms to the yeast and the 

human proteomes. In the future, we can use them to predict interactions for more 

model organisms. Some components of PREPPI, including our structural 

modeling techniques, can also be used for the study of interactions between 

different organisms, for example, the interactions between human host and 

pathogen proteins, which would be useful to the development of strategies to treat 

and prevent infectious diseases (Davis, Barkan et al. 2007; Tastan, Qi et al. 2009). 

Eventually, it is expected to offer in the future a functionality of predicting the 

interaction likelihood for any input pair of proteins. The PREPPI webserver 

would be an enabling technique for studies concerning PPIs and would potentially 

have big impact to the whole biological community. 

6.2.2 Improvement of PREPPI predictions  

By combining both structural and non-structural information, PREPPI has 

made itself so far the most accurate PPI prediction method. It can build billions of 

interaction models for millions of PPIs using imperfect homology models and 

remote structural relationships. Nevertheless, in order to evaluate this daunting 



148 

 

 

 

 

 

 

number of models in reasonable time and limited resources, we only calculated 

coarse-grained model parameters in residue level. In addition, our structural 

modeling scores mainly focus on model interfaces and only care whether model 

residues are aligned with template interfaces. In other words, residue identities are 

not considered and little attention is paid to the rest part of interaction models. 

Although our results suggest that our scoring function can distinguish good and 

bad interaction models to a great extent, it can be improved if we can evaluate 

interaction models in many more different aspects.   

For example, if residues or parts of the two target structures of one 

interaction model are not aligned to the template complex, they may overlap in 

3D space. Although proteins often change their conformations to avoid these 

clashes, large scale of positional overlaps will forbid them from forming a 

complex. This suggests that if we can detect and measure conformational clashes, 

we can filter out many impossible interaction models. However, this detection 

should be done in a very fast way so that it could be applied to billions of 

interaction models.  

Another issue is the potential over prediction of PPIs formed by the same 

pair of domains. If two domains D1 and D2 forming a complex, PREPPI often 

predicts that many proteins containing D1 interact with proteins containing D2. 

But in reality, bindings between different domains are often specific, i.e., proteins 
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containing D1 only bind to a very small set of proteins containing D2. This 

binding specificity is usually mediated by mutations of a few interfacial residues. 

We compared the predictions by our structural modeling method and a naïve 

method that simply predict all proteins containing D1 interact with proteins 

containing D2. We found that structural modeling did detect some of the specific 

bindings, i.e., giving higher scores to those true interactions. However, it is likely 

that it depends on whether the mutations affect protein structures, or more 

realistically, protein interfaces (and be captured by the three interface prediction 

programs). Since eventually the scoring function does not contain information of 

residue identities, for many cases we cannot tell the binding differences between 

proteins containing the same domains. Despite that predicting binding specificity 

between the same families of proteins is notoriously difficult studies focusing on 

interaction between some specific domains and their interacting peptides have 

shown promising results (Chen, Chang et al. 2008; Sanchez, Beltrao et al. 2008; 

Grigoryan, Reinke et al. 2009). We also expect that by incorporating residue 

evolutionary information in our structural modeling it can better distinguish 

specific interactions mediated by the same pair of domains. 

More importantly, many interactions are formed by domains where no 

appropriate template complex exists even based on remote structural relationships, 

or are mediated by unstructured peptides. The accurate prediction of these 
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interactions is beyond our current structural modeling method. It is expected that 

by utilizing the information of domain-domain or domain-peptide interaction 

profiles, we can improve PREPPI’s performance on these interactions.  

Improvements could also be gained by integrating more types of non-

structural information from independent sources. The current PREPPI only 

contains clues of phylogenetic profile similarity (Chapter 5, Supplementary 

Material and Methods). It is likely that combining the other genomic/evolutionary 

PPI clues such as gene fusion and genomic context (Section 2.5.1) would further 

improve the prediction.  

6.2.3 Applications of PREPPI interactomes 

The current release of PREPPI contains many predictions of new potential 

interactions for yeast and human; including some with structural details. These 

interactions and structural models could be targets of focused studies in the future 

to elaborate unknown functions or mechanisms of important proteins and 

biological processes. Although anyone can use the PREPPI webserver to search 

for interaction information for their own proteins of interests, there are a few 

types of interactions that could be particularly interesting targets for PREPPI 

follow-up studies.  
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For example, scaffold or adaptor proteins are proteins that usually mediate 

specific PPIs that drive the formation of protein complexes and transduce cellular 

signals. These proteins do not have any intrinsic enzymatic activity by themselves 

but instead contain domains that often bind other domains and proteins, e.g., Src 

homology 2 (SH2) and SH3 domains. Maybe because many structure complexes 

of these scaffolding interactions have been crystalized, it seems that PREPPI 

performs especially good at predicting interactions involving these adaptor 

proteins. For example, the growth factor receptor-bound protein 2, known as Grb2, 

is an adaptor protein that is widely expressed and is essential for cell proliferation 

and development. It has been shown to interact with many proteins. PREPPI can 

recover most of the known interactions and at the same time predict many 

unknown ones (http://bhapp.c2b2.columbia.edu/PREPPI/cgi-bin/search.cgi?query 

=grb2&protein=P62993). At the LR cutoff 6,000, PREPPI predicts 107 

interactions, among which 38 are validated by experiments. It would be very 

interesting to test whether the other predictions are true or not, and to further 

study their biological functions.  

Many important biological processes are accomplished by macro-

molecular complexes composed of a big number of proteins. In fact, cells are 

increasingly viewed as a collection of these modular complexes, each of which 

performs an independent, discrete biological function (Hartwell, Hopfield et al. 

http://bhapp.c2b2.columbia.edu/PREPPI/cgi-bin/search.cgi?query%20=grb2&protein=P62993
http://bhapp.c2b2.columbia.edu/PREPPI/cgi-bin/search.cgi?query%20=grb2&protein=P62993
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1999). Protein complexes can be inferred from PREPPI interaction networks by 

identifying clusters whose nodes (proteins) are densely interconnected. For 

example, the Califano group has identified a set of transcription factors including 

FOXM1 and c-MYB, which are involved in the regulation of genes that are 

differentially expressed in the germinal center (Lefebvre, Rajbhandari et al. 2010). 

Interestingly, about half of these genes encode proteins that seem to form a large 

supercomplex, combining the pre-replication complex with several mitotic 

proteins such as BUB1A/B and AURKA/B. It would be very interesting to test 

and to further study functions of this hypothetical complex, with the aid of 

information coming from available PREPPI structural interaction models. 

It is very much an open question of applying the PREPPI interactions in 

future studies; nevertheless it is expected that a more complete image of the 

interactome of any organism will lead to more accurate understandings to the 

relationship between its genome and phenotype and also implications for 

network-based diagnostics and prognostics of complex disease. 
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