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ABSTRACT

Dynamic Trading Strategies in the Presence of Market
Frictions

Mehmet Sağlam

This thesis studies the impact of various fundamental frictions in the microstructure of fi-

nancial markets. Specific market frictions we consider are latency in high-frequency trading,

transaction costs arising from price impact or commissions, unhedgeable inventory risks due

to stochastic volatility and time-varying liquidity costs. We explore the implications of each

of these frictions in rigorous theoretical models from an investor’s point of view and derive

analytical expressions or efficient computational procedures for dynamic strategies. Spe-

cific methodologies in computing these policies include stochastic control theory, dynamic

programming and tools from applied probability and stochastic processes.

In the first chapter, we describe a theoretical model for the quantitative valuation of

latency and its impact on the optimal dynamic trading strategy. Our model measures the

trading frictions created by the presence of latency, by considering the optimal execution

problem of a representative investor. Via a dynamic programming analysis, our model

provides a closed-form expression for the cost of latency in terms of well-known parameters

of the underlying asset. We implement our model by estimating the latency cost incurred by

trading on a human time scale. Examining NYSE common stocks from 1995 to 2005 shows

that median latency cost across our sample more than tripled during this time period.

In the second chapter, we provide a highly tractable dynamic trading policy for portfolio

choice problems with return predictability and transaction costs. Our rebalancing rule is

a linear function of the return predicting factors and can be utilized in a wide spectrum

of portfolio choice models with minimal assumptions. Linear rebalancing rules enable to

compute exact and efficient formulations of portfolio choice models with linear constraints,

proportional and nonlinear transaction costs, and quadratic utility function on the terminal



wealth. We illustrate the implementation of the best linear rebalancing rule in the context

of portfolio execution with positivity constraints in the presence of short-term predictability.

We show that there exists a considerable performance gain in using linear rebalancing rules

compared to static policies with shrinking horizon or a dynamic policy implied by the

solution of the dynamic program without the constraints.

Finally, in the last chapter, we propose a factor-based model that incorporates common

factor shocks for the security returns. Under these realistic factor dynamics, we solve

for the dynamic trading policy in the class of linear policies analytically. Our model can

accommodate stochastic volatility and liquidity costs as a function of factor exposures.

Calibrating our model with empirical data, we show that our trading policy achieves superior

performance in the presence of common factor shocks.
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Chapter 1

Introduction

Classical finance models are based on an assumption of frictionless markets in one-period

horizon. This simplicity usually provides ease in obtaining tractable models. However, it

is not usually clear whether the one-period solution will have similar properties with the

dynamic solution in the multi-period setting. Multi-period objective differs significantly

from single-period objective by incorporating the ability to have decision with recourse

which better reflects the actual objective of many investors in highly uncertain financial

markets.

Incorporating financial frictions into the model is certainly a step forward to the “true”

model of financial markets. Recent research that incorporates these frictions has shown us

that these frictions may explain various anomalies observed in financial markets such as

sudden liquidity dry-ups, the pricing of hard-to-borrow stocks, and valuation in over-the-

counter markets.

Aiming to address these two perspectives, this thesis studies how various market frictions

influence the investor’s optimal decisions dynamically when underlying states of the econ-

omy are stochastic. Specific market frictions I have considered are latency in high-frequency

trading, common and hidden factors in equity returns, transaction costs in portfolio rebal-

ancing, unhedgeable inventory and residual risks due to stochastic volatility. I explored

the implications of each of these frictions in rigorous theoretical models from an investor’s

point of view and derived analytical expressions or efficient computational procedures for

dynamic strategies. Specific methodologies in computing these policies include stochastic
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control theory, dynamic programming and tools from applied probability and stochastic

processes.

This thesis theoretically concerns with optimal (or near-optimal) dynamic decision mak-

ing in high-dimensional stochastic systems. My motivating research problems in this setting

have originated from financial markets, yet, they are intrinsically operational questions:

the impact of technological improvement in your trading system on your profit, the opti-

mal control of transaction costs while trading with return predicting signals, and utilizing

approximate trading rules when there are complex interactions between expected future

returns and volatility and liquidity.

This thesis provides insightful contributions by enhancing our understanding of the

implications of these frictions and suggests easy-to-implement strategies. In a nutshell, I

believe that my research can help

• quantify the explicit cost of latency in high frequency trading and shed light on the

very timely impact of speed in trading microstructure.

• characterize a near-optimal strategy to exploit return predictability while controlling

transaction costs,

• propose a closed-form approximate policy for strategic asset allocation when returns

exhibit factor driven covariance structure.

With these common distinguishing features, each chapter of my dissertation can be

studied further in detail. In each chapter, the impact of the friction on the dynamic trading

strategy is extensively studied, the dynamic problem is clearly posed and an optimal or

near-optimal dynamic decision rule is derived.

1.1. The Cost of Latency

A very recent friction quoted extensively in the popular media has been latency, the delay

between a trading decision and the resulting trade execution. As high frequency trading

has flourished and subsequent regulatory questions about this trading activity have become

a central focus of interest, thanks in part to the acclaimed “Flash Crash” on May 6th, 2010,
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a growing interest has appeared in exploring the implications of latency to various market

participants. Our first essay develops the first partial equilibrium model to concretely

quantify the impact of latency on the optimal order submission policy and its resulting cost

to the trader. In this essay, I first consider a stylized execution problem in the absence of

latency as a benchmark, and I incorporate latency by not allowing the trader to continuously

participate in the market. Trader’s limit orders reach the market with a fixed latency, and

the trader is forced to deviate from the benchmark policy in order to take into account

the uncertainty introduced by this delay. I quantify the cost of latency as the normalized

difference in expected payoffs between this model and the stylized model without latency. I

obtain an explicit closed-form solution for the cost of latency in the most interesting regime

of low-latency.

Our formulation of the latency model constitutes a powerful tool in computing the exact

latency cost. Our model is the first theoretical approach in the literature to quantify the

impact of latency on the optimal order submission policy and its resulting cost to the trader.

I first characterize the optimal order submission policy in the model by providing an explicit

recursion in a single variable. This recursion can efficiently be solved by numerical means

and the exact latency cost can easily be computed. Due to the uncertainty introduced by

latency, the optimal ordering policy becomes less aggressive compared to the benchmark

solution. The extent to which the optimal quote is adjusted may be expressed in well-known

market parameters, most evidently in the low latency regime. The highest order effect comes

from the volatility of the stock movement and to a lesser degree from the average bid-ask

spread. If the trader wishes to sell a share, the optimal premia that the trader sets decreases

linearly with the volatility of the stock.

Since the latency values observed in modern electronic markets are on the order of mil-

liseconds, I provide an asymptotic analysis for the low latency regime, in which I obtain an

explicit closed-form solutions. In this case, the trader’s optimal limit order policy becomes

time-independent and the latency cost can be computed exactly without resorting to back-

ward induction. If I interpret the cost of latency as a percentage of overall transaction costs

in the absence of any latency (i.e., a normalized measure of latency), then the latency cost

can be calculated in a simple closed-form expression. I find that latency cost is directly
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proportional to the ratio of volatility and the average bid-ask spread. Thus, latency cost

increases for more volatile or less liquid stocks. The dependence on the observed latency,

is more complex with the first order contribution coming from the variance of the stock

price during the latency interval and a second order adjustment that will enable to secure

execution in the asymptotic limit. In order to derive this cost empirically, I only need

to estimate the volatility, the average bid-ask spread of the stock and the intrinsic value

of latency. This is an elegant and practical result as the estimation procedures for these

quantities are readily abundant in the literature.

1.2. Linear Rebalancing Rules

One of the most well-studied market frictions is the impact of transaction costs on the

optimal portfolio choice of the investor. Furthermore, when the investor has predictions for

the expected future returns using return predicting factors such as market capitalization,

book-to-market ratio, lagged returns, dividend yields, determining an optimal dynamic

policy with realistic risk and trading constraints is almost certainly intractable.

Faced with this daunting task, this essay provides a highly tractable rebalancing rule for

dynamic portfolio choice problems with return predictability and transaction costs. This

rebalancing rule is a linear function of return predicting factors and can be utilized in a

wide spectrum of portfolio choice models with realistic considerations for risk measures,

transaction costs and constraints. As long as the starting dynamic portfolio optimization

problem is a convex programming problem, the modified optimization problem seeking the

optimal parameters of the linear decision rule will be a convex programming problem.

I provide a large class of dynamic portfolio choice models that differ in their modeling

of risk measures, transaction costs and constraints which can be formulated as determin-

istic convex optimization problems. Specifically, I compute the analytic expression of the

objective function in the cases with quadratic utility function on the terminal wealth or

proportional and nonlinear transaction cost functions. Finally, I derive efficient formula-

tions for incorporating linear equality and inequality constraints. If there does not exist an

analytic expression for the objective, the optimal parameters can be solved via the sampling
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techniques available from the sample average and stochastic approximation literature.

Finally, I implement the computation of the best linear policy in the context of portfolio

execution, the execution of a large long position in a single security. For this purpose, I

need positivity constraints on portfolio positions and the amount of shares sold in each

period in order to achieve a feasible execution. In order to compare the performance of

the best linear rebalancing rule, I use the identical discrete-time setup of Garleanu and

Pedersen [2012] for which a closed-form solution is available in the lack of constraints. I

calibrate the model parameters using two-days of transactions data on a liquid stock and

construct two predictors in a high-frequency setting with different mean reversion speeds.

The simulation implemented with these predictors and calibrated parameters reveal that

the best linear policy performs better than the deterministic policy, model predictive control

and a projected version of the optimal policy proposed by Garleanu and Pedersen [2012].

1.3. Common Factor Shocks in Strategic Asset Allocation

The foundations developed in the second chapter have been influential in analyzing the

impact of common factor shocks when there are transaction costs and return predictability.

In this essay, I take a deeper look at a particular dynamic portfolio choice problem with

common factor shocks driving security returns. I propose a new factor model for security

returns in which each security has its own return predicting factors based on short-term

reversal, momentum, and long term reversal. In this model, I correctly account for the

conditional variance of returns by allowing co-movements with factor exposures. I utilize

linear decision rules in past returns and factor exposures for our dynamic trading strategy.

I show that the optimal linear policy can be computed in closed-form in contrast to recent

parametric approaches that rely on numerical optimization.

Garleanu and Pedersen [2012] has been a break-through by combining trading frictions

with return predictability in a highly tractable model that actually allowed closed-form so-

lution. However, this tractability has emerged with an obvious cost, a significant departure

from standard dynamic portfolio choice literature. The simplifying assumption has been

using number of shares in the portfolio decision vector in order to linearize the state dy-
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namics. Using number of shares versus dollar holdings also required to model price changes

in dollars instead of percentage terms. This is clearly problematic as it allows for negative

prices. Furthermore, it is well-known that price changes are not stationary, cannot be es-

timated effectively using linear regression techniques. In this essay, I keep the nonlinear

structure in the wealth evolution but instead of trying to solve the problem to optimality, I

use linear policies in order to obtain a near-optimal policy. I obtain a closed-form solution

for our policy parameters which allows us to expand the universe of parameters quite easily.

I evaluate the performance of our linear policy in a well-calibrated simulation. Our

simulation study shows that best linear policy provides significant benefits compared to

other approximate policies recently studied in the literature, especially when the transac-

tion costs are high and returns evolve according to factor dependent covariance structure.

Unlike other parametric approaches, our modeling provides a closed form solution instead

of statistical fitting procedure. Analytical tractability allows us to expand our universe of

parameters which allows for greater flexibility in obtaining different policy rules for different

asset classes.

1.4. Organization of the Thesis

The balance of this thesis is organized as follows:

Chapter 2 provides a formal model to quantify the cost of latency. I present a stylized,

continuous-time trade execution problem in the absence of latency. I develop a variation

of the model with latency and provide a mathematical analysis of the optimal policy for

our problem. By contrasting the results in the presence and absence of latency, I am able

to quantitatively assess the cost of latency. In a later section, I consider some empirical

applications of the model.

Chapter 3 presents the abstract form of a dynamic portfolio choice model and provide vari-

ous specific problems that satisfy the assumptions of the abstract model. I formally describe

the class of linear decision rules and discuss solution techniques in order to find the optimal

parameters of the linear policy. I provide efficient and exact formulations of dynamic port-

folio choice models using linear decision rules. In this generalized approach, I incorporate
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linear equality and inequality constraints, proportional and nonlinear transaction costs and

a measure of terminal wealth risk. Finally, I apply our methodology in an optimal execution

problem and evaluate the performance of the best linear policy.

Chapter 4 provides a methodology that can address complex return predictability models in

multi-period settings with transaction costs. Our return predicting factors does not need to

follow any pre-specified model but instead can have arbitrary dynamics. I allow for factor

dependent covariance structure in returns driven by common factor shocks and illustrate in

a simulation study that linear policies perform very well in these intractable models.



CHAPTER 2. THE COST OF LATENCY 8

Chapter 2

The Cost of Latency

2.1. Introduction

In the past decade, electronic markets have become pervasive. Technological advances in

these markets have led to dramatic improvements in latency, or, the delay between a trading

decision and the resulting trade execution. In the past 30 years, the time scale over which

a trade is processed has gone from minutes1

One factor behind this trend has been competition between exchanges, as one mechanism

for differentiation between exchanges is latency. This competition is driven by a significant

demand amongst a class of investors, sometimes called “high frequency” traders, for low

latency trade execution. High frequency traders are thought to account for more than half

of all US equity trades.3 They expend significant resources in order to develop algorithms

and systems that are able to trade quickly. For example, on the time scale of milliseconds,

the speed of light can become a binding constraint on the delay in communications. Hence,

traders seeking low latency will “co-locate”, or house their computers in the same facility as

the exchange, in order eliminate delays due to a lack of physical proximity. This co-location
1NYSE, pre-1980 upgrade [Easley et al., 2008]. to milliseconds2 — “low latency” in a contemporary

electronic market would be qualified as under 10 milliseconds, “ultra low latency” as under 1 millisecond.

This change represents a dramatic reduction by five orders of magnitude. To put this in perspective, human

reaction time is thought to be in the hundreds of milliseconds.
3“Stock traders find speed pays, in milliseconds,” New York Times, July 23, 2009.
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comes at a significant expense, however it has been stated that a 1 millisecond advantage

can be worth $100 million to a major brokerage firm.4

There has been much discussion of the importance of latency among various market

participants, regulators, and academics. Despite the significant amount of recent interest,

however, latency remains poorly understood from a theoretical perspective. For example,

how does latency relate to transaction costs? Is latency only relevant to investors with

short time horizons, such as high frequency traders, or does latency also affect long term

investors such as pension funds and mutual funds? Many of these important questions have

been considered in anecdotal or ad hoc discussions. My goal here is to provide a framework

for quantitative analysis of these issues.

In particular, I wish to understand the benefit to a single trader in the marketplace

of lowering their latency, while holding everything else fixed. This is a different question

than understanding the social costs of latency, i.e., whether in equilibrium the collective

marketplace is better or worse off given lower latency. One might imagine, for example, that

the benefit to a individual agents of lower latency may diminish in an equilibrium setting.

Equilibrium or welfare analysis of low latency trading is a complex question with important

policy and regulatory implications. I believe that understanding the single-agent effects

of low latency trading, however, is an important first step which will inform my ultimate

understanding of collective effects.

The cost that a trader bears due to latency can take many different forms, depending

on the precise trading strategy. However, a number of broad themes can be identified,5

sometimes overlapping, as to why the ability to trade with low latency might be valuable

to an investor:

1. Contemporaneous decision making. A trader with significant latency will be

making trading decisions based on information that is stale.

For example, consider an automated trader implementing a market-making strategy

in an electronic limit order book. The trader will maintain active limit orders to buy

and sell. The prices at which the trader is willing to buy or sell will naturally depend
4“Wall Street’s quest to process data at the speed of light,” Information Week, April 21, 2007.
5See Cespa and Foucault [2008] for a related discussion.
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on, say, the limit orders submitted by other investors, the price of the asset on other

exchanges, the price of related assets, overall market factors, etc. If the trader cannot

update his orders in a timely fashion in response to new information, he may end up

trading at disadvantageous prices.

2. Comparative advantage/disadvantage. The ability to trade with low latency

in absolute terms may not be as important as the ability to trade with low relative

latency, that is, as compared to competitors.

For example, consider a program trader implementing an index arbitrage strategy,

seeking to profit on the difference between an index and its underlying components.

There may be many market participants pursuing such strategies and identifying the

same discrepancies. The challenge for the trader is to be able to act in the marketplace

to exploit a discrepancy before a price correction takes place, i.e., before competitors

are able to act. The means having a low relative latency.

3. Time priority rules. Many modern markets treat orders differentially based on the

time of arrival, and favor earlier orders.

For example, in an electronic limit order book, the limit orders on each side of the

market are prioritized in a particular way. When a market order to buy arrives, it is

matched against the limit orders to sell according to their priorities. Priority is first

determined by price, i.e., limit orders with more lower prices receive higher priority.

In many markets, however, prices are mandated to be discrete with a minimum tick

size. In these markets, there may be multiple limit orders at the same price, which

are then prioritized according to the time of their arrival. While a trader can always

increase the priority of his orders by decreasing price, this comes at an obvious cost. If

a trader can submit orders in a faster fashion, however, he can increase priority while

maintaining the same price. Higher priority can be valuable for two reasons: first,

higher priority orders have a higher likelihood of execution over any given time horizon.

To the extent that investors submitting limit orders have a desire to trade, and to

trade sooner rather than later, this is desirable. Second, higher priority orders at

the same price level experience less adverse selection [see, e.g., Glosten, 1994; Sandås,
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2001]. Hence, all things being equal, an investor who submits orders with lower

latency will benefit from higher priority than if that investor had higher latency. This

can be particularly important (in that a small improvement in latency can result in

a significant difference in priority) when an existing quote is about to change. For

example, consider the situation where a stock price is about to move up because of

trades or cancellations at the best offered price. One might expect the bid price to

rise as well, there will be a race among traders reacting to the same order book events

to establish time priority at the new bid.

In this chapter, I will quantify the cost of latency due to the first effect, a lack of

contemporaneous decision making. I do not consider effects of latency that arise from

strategic considerations, or from time priority rules or price discreteness. It is an open

question as to whether the other effects are more or less significant than the first, and their

relative importance may depend on the particular investor and their trading strategy. My

analysis does not speak to this point. However, in what follows I will demonstrate that,

by itself, the lack of contemporaneous decision making can induce trading costs that are of

the same order of magnitude as other execution costs faced by large investors, and hence

cannot be neglected.

Further, the importance of contemporaneous decision making will certainly vary from

investor to investor. I will focus on an aspect of this that is universal, however, which is

the importance of timely information for the execution of contingent orders. A contingent

order, such as a limit order in an electronic limit order book or a resting order in a dark pool,

presents the possibility of uncertain execution over an interval of time in exchange for price

improvement relative to a market order, which executes immediately and with certainty.

Specifically, when an investor employs a contingent order, the investor may be exposed to

the realization of new information (for example, in the form of price movements, news, etc.)

over the lifespan of the order. Latency, which prevents the investor from continuously and

instantaneously accessing the market so as to update the order, can thus adversely impact

the investor.

As a broad proxy for understanding the importance of latency in contingent order execu-

tion, I consider the effects of latency in an extremely simple yet fundamental trade execution
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problem: that of a risk-neutral investor who wishes to sell 1 share of stock (i.e., an atomic

unit) over a fixed, short time horizon (i.e., seconds) in a limit order book, and must decide

between market orders and limit orders. My problem formulation is reminiscent of barrier-

diffusion models for limit order execution [e.g., Harris, 1998]. It captures the fundamental

cost of immediacy of trading [e.g., Grossman and Miller, 1988; Chacko et al., 2008], that is,

the premium due to a patient liquidity supplier (who submits limit orders) relative to an

impatient demander of liquidity (who submits market orders). While this problem is quite

stylized, I will argue that it is broadly relevant since, at some level, all investors make such

a choice of immediacy. For example, it may not seem at first glance that my execution

problem is relevant for a pension fund that trades large blocks of stock over multiple days.

However, the execution of a block trade via algorithmic trading involves the division of a

large “parent” order into many atomic orders over the course of a day, each of these atomic

“child” orders can be executed as limit orders or as market orders.

In my problem, in the absence of latency, the optimal strategy of the seller is a “pegging”

strategy: the seller maintains a limit order at a constant spread above the bid price at any

instant in time. I consider this case as a benchmark. In the presence of latency, the seller

can no longer maintain continuous contact with the market so as to track the bid price in

the market. The seller is forced to deviate from the benchmark policy in order to take into

account the uncertainty introduced by the latency delay by incorporating a safety margin

and lowering his limit order prices. The friction introduced by latency thus results in a

loss of value to the seller. I will establish the difference in value to the seller between the

case with latency and the benchmark case via dynamic programming arguments, and thus

provide a quantification of the effects of latency.

The contributions of this essay are as follows:

• This essay mathematically quantifies the cost of latency.

The trading problem I consider (deciding between limit and market orders) is faced

by all large investors in modern equity markets, either directly (e.g., high frequency

traders) or indirectly (e.g., pension funds who execute large trades via providers of

automated execution services). My analysis suggests that latency impacts all of these

market participants, and that, all else being equal, the ability to trade with low
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latency results in quantifiably lower transaction costs. Further, when calibrated with

market data, the latency cost we measure can be significant. It is of the same order of

magnitude as other trading costs (e.g., commissions, exchange fees, etc.) faced by the

most cost efficient large investors. Moreover, it is consistent with the rents that are

extracted by agents who have made the requisite technological investments to trade

with ultra low latency. For example, the latency cost of my model is comparable to

the execution commissions charged by providers that offer algorithmic trade execution

services on an agency basis. It is also comparable to the reported profits of high

frequency traders.

To my knowledge, my model is the first to provide a quantification of the costs of

latency in trade execution.

• I provide a closed-form expression for the cost of latency as a function of well-known

parameters of the asset price process.

The cost of latency in my model can be computed numerically via dynamic program-

ming. However, in the regime of greatest interest, where the latency is close to zero,

I provide a closed-form asymptotic expression. In particular, define the latency cost

associated with an asset as the costs incurred due to latency as a fraction of the overall

cost of immediacy (the premium paid to a patient liquidity supplier by an impatient

demander of liquidity). Given a latency of ∆t, a price volatility of σ, and a bid-offer

spread of δ, the latency cost takes the form

(2.1) σ
√

∆t
δ

√
log δ2

2πσ2∆t

as ∆t→ 0.

• My method can provide qualitative insight into the importance of latency.

From (2.1), it is clear that the latency cost is an increasing function of the ratio of

the standard deviation of prices over the latency interval (i.e., σ
√

∆t) to the bid-offer

spread. Latency has a more important role when trading assets that are either more

volatile (σ large) or, alternatively, more liquid (δ small). Further, as the latency

approaches 0, the marginal benefit of latency reduction is increasing.
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• This chapter empirically demonstrates that latency cost incurred by trading on a hu-

man time scale has dramatically increased for U.S. equities and the implied latency

of a representative trader in this market decreased by approximately two orders of

magnitude.

I consider the cost due to the latency of trading on the time scale of human interac-

tion.Using the data-set of Aït-Sahalia and Yu [2009], I estimate the latency cost of

NYSE common stocks over the 1995–2005 period. I show that the median latency

cost more than tripled in this time. This coincides with a period of decreasing tick

sizes and increasing algorithmic and high frequency trading activity [Hendershott et

al., 2010].

An alternative perspective is to consider a hypothetical investor who fixes a target level

of cost due to latency, relative to the overall cost-of-immediacy. The representative

trader maintains this target over time through continual technological upgrades to

lower levels of latency. I determine the requisite level of implied latency for such a

trader, over time and across the aggregate market. Using the same data-set, I observe

that the median implied latency decreased by approximately two orders of magnitude

over this time frame.

The rest of this chapter is organized as follows: In Section 4.1.1, I review the related

literature. In Section 2.2, as a starting point, I present a stylized, continuous-time trade

execution problem in the absence of latency. I develop a variation of the model with

latency in Section 4.2. In Section 2.4, I provide a mathematical analysis of the optimal

policy for my problem. By contrasting the results in the presence and absence of latency,

I am able to quantitatively assess the cost of latency. In Section 2.5, I consider some

empirical applications of the model. Finally, in Section 3.6 I conclude and discuss some

future directions.

2.1.1. Related Literature

There has been a significant empirical literature studying, broadly speaking, the effects of

improvements in trading technology. Closest to the aspect I consider is the work of Easley
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et al. [2008]. They empirically test the hypothesis that latency affects asset prices and

liquidity by examining the time period around an upgrade to the New York Stock Exchange

technological infrastructure that reduced latency. Hendershott et al. [2010] explore the

more general, overall effects of algorithmic and high frequency trading. Hasbrouck and

Saar [2009] provide different evidence of changes in investor trading strategies that may be

a result of improved technology. In subsequent work, they further consider the impact of

measurements of low latency on market quality [Hasbrouck and Saar, 2010]. Hendershott

and Riordan [2009] analyze the impact of algorithmic trading on the price formation process

using a data set from Deutsche Börse and conclude that algorithmic trading assists in the

efficient price discovery without increasing the volatility. Kirilenko et al. [2010] consider the

impact of high frequency trading on the ‘flash crash’ of 2010, while Brogaard [2010] more

broadly examines the impact of high frequency traders on market quality.

On the theoretical front, Cespa and Foucault [2008] consider a rational expectations

equilibrium between investors with different access to past transaction data. Some investors

observe transactions in real-time, while others only observe transactions with a delay. This

model of latency focuses on latency of the price ticker of past transactions, as opposed to

latency in execution, which I consider here. Moreover, the goals of the two models differ

significantly: Cespa and Foucault [2008] seek to build intuition regarding the equilibrium

welfare implications of differential access to information via a structural model. I, on the

other hand, seek a reduced form model that can be used to directly estimate the value of

execution latency in a particular real world instance, given readily available data. Also

related is the work of Ready [1999] and Stoll and Schenzler [2006], who consider the ability

of intermediaries (e.g., specialists or dealers) to delay customer orders for their own benefit,

thus creating a “free option” in the presence of execution latency. Cohen and Szpruch [2011]

show that latency arbitrage exists between two traders with different speeds of trading in

the presence of a limit order book. Finally, Cvitanić and Kirilenko [2010] and Jarrow and

Protter [2011] consider the effect of high frequency traders on asset prices.

The trade execution problem I consider is that of an investor who wishes to sell a

single share of and must decide between market and limit orders. This problem has been

considered by many others [e.g., Angel, 1994; Harris, 1998; Lo et al., 2002]. My formulation
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is similar to the class of barrier-diffusion models considered by these authors; Hasbrouck

[2007] provides a good account of this line of work. For a broad survey on limit order

markets, see Parlour and Seppi [2008]. In my model, the inability to trade continuously

gives a limit order an option-like quality that relates execution cost, order duration, and

asset volatility. This idea goes as far back as the work of Copeland and Galai [1983].

Closely related is the concept of the cost of immediacy, or, the premium paid by a liquidity

demander via a market order to a liquidity supplier who posts a limit order. Grossman

and Miller [1988] and Chacko et al. [2008] develop theoretical explanations of the cost of

immediacy. For empirical evidence of the demand for immediacy in capital markets, see

Bacidore et al. [2003] and Werner [2003].

Finally, also related is work on the discrete-time hedging of contingent claims with or

without transaction costs [e.g., Boyle and Emanuel, 1980; Leland, 1985; Bertsimas et al.,

2000]. This literature addresses a different problem and draws different conclusions than my

chapter, however both relate to implications of a lack of continuous access to the market.

2.2. A Stylized Execution Model without Latency

My goal is to understand the impact on the trade execution of latency. To this end, I

will first describe a trade execution problem in the absence of latency. In Section 4.2, I

will revisit this model in the presence of latency, so as to understand the resulting trade

friction that is introduced. The spirit of my model it to consider an investor who wants to

trade, but at a price that depends on an informational process that evolves stochastically

and must be monitored continuously. I could directly consider such an abstract model of

investor behavior. Instead, however, I will motivate the informational dependence of the

trader through a specific optimal execution problem.

Consider the following stylized execution problem of an uninformed trader who must

sell exactly one share6 of a stock over a time horizon [0, T ]. At any time t ∈ [0, T ), the

6Note that the trade quantity of a single share is meant to represent an atomic unit of the asset, or

the smallest commonly traded lot size. The underlying assumption is that the desired trade execution will

ultimately be accomplished by a single transaction. In typical U.S. equity markets, for example, this atomic

unit might be a block of 100 shares.
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trader can take one of two actions:

1. The trader can submit a market order to sell. This order will execute at the best bid

price at time t, denoted by St. I assume that the bid price evolves according to

(2.2) St = S0 + σBt,

where the process (Bt)t∈[0,T ] is a standard Brownian motion and σ > 0 is an (additive)

volatility parameter. Here, the choice of Brownian motion is made for simplicity;

my model can be extended to the more general class of Markovian martingales, as

discussed in Section 2.4.4.

2. The trader can choose to submit a limit order to sell. In this case, the trader must

also decide the limit price associated with the order, which I denoted by Lt.

Once the trader sells one share, he exits the market. If the trader is not able to sell 1 share

before time T , however, I assume that he is forced sell via a market order at time T , and

therefore receives ST . Here, I imagine the time horizon T to be small, on the order of the

typical trade execution time (i.e., seconds).

2.2.1. Limit Order Execution

It remains to describe the execution of limit orders. In my setting, a limit order can execute

in one of the following two ways:

1. I assume that there are impatient buyers who arrive to the market according to a

Poisson process with rate µ. Denote by (Nt)t∈[0,T ) the cumulative arrival process for

impatient buyers. Each impatient buyer seeks to buy a single share. An arriving

impatient buyer arriving at time t has a reservation price St + zt, expressed as a

premium zt ≥ 0 above the bid price St that the buyer is willing to forgo in order

to achieve immediate execution. I assume that the premium zt is independent and

identically distributed with cumulative distribution function F : R+ → [0, 1]. In this

setting, the instantaneous arrival rate of impatient buyers at time t willing to pay a

limit order price of Lt is given by

(2.3) λ(ut) , µ(1− F (ut)),
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where ut , Lt − St is the instantaneous price premium of the limit order. In what

follows, I will be particularly interested in the special case where

(2.4) λ(ut) ,


µ if ut ≤ δ,

0 otherwise.

Here, I assume that every impatient buyer is willing to pay a price premium of at

most δ > 0. I assume that δ will be specific to the security and fixed for the trading

horizon. I will discuss the extension to the general case (2.3) in Section 2.4.4.

Given (2.4), an impatient buyer is willing to buy 1 share at a fixed premium δ > 0 to

the bid price at the time of their arrival. Hence, if a buyer arrives at time τ ∈ [0, T ),

and the trader has placed a limit order with price Lτ , the limit order will execute if

Lτ ≤ Sτ + δ.

2. Alternatively, a limit order will also execute at time τ if the bid price crosses the limit

order price, i.e., Sτ ≥ Lτ .

The execution of limit orders in the model is illustrated in Figure 2.1.

The limit order execution dynamics above can also be economically interpreted in the

spirit of the non-informational trade model of Roll [1984]. In particular, imagine that the

asset has a fundamental value Vt at time t, and that Vt evolves exogenously according to

the additive random walk

Vt = V0 + σBt.

If all investors observe this underlying value process and are symmetrically informed, com-

petitive market makers will always be willing to sell shares at a price of δ/2 above the

fundamental value or buy shares at a spread of δ/2 below the fundamental value. Here,

the quantity δ captures the per share operating costs of trade to the market markers. The

liquidating trader can thus sell at the bid price St = Vt − δ/2 at any time t. I assume that

all other traders in the market are impatient, and that these traders arrive according to the

Poisson dynamics described above. An arriving impatient buyer will choose to purchase

from the liquidating trader only at a price lower than that provided by the market makers,

i.e., only below the price of Vt+δ/2 = St+δ. In this way, I can interpret the parameter δ as
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t
0 T

St

Lt

Sτ1 + δ

τ1

Sτ2 + δ

τ2 τ3

market orders arrive

limit order executes

Figure 2.1: An illustration of the limit order execution in the stylized model over the time

horizon [0, T ]. Here, I assume the trader leaves a limit order with the (constant) price Lt and

St is the bid price process. If market orders arrive at times τ1 and τ2, the limit order would

execute at time τ2 but not time τ1, since the limit order price is in excess of δ to the best bid

price. The limit order would also execute at time τ3 in the absence of a market order arrival,

since the bid price crosses the limit order price at this time.

the prevailing bid-offer spread, that is, the bid-offer spread in the absence of the liquidating

trader.

2.2.2. Optimal Solution

Let P denote the random variable associated with the sale price. I assume the trader is

risk-neutral and seeks to maximize the expected sale price. Equivalently, I assume the

trader seeks to solve the optimization problem

(2.5) h̄0 , maximize E [P ]− S0.

Here, the maximization is over policies of market orders and limit orders which are non-

anticipating, i.e., which are adapted to the filtration generated by (Bt, Nt)t∈[0,T ]. This

objective is equivalent to minimizing implementation shortfall [Perold, 1988].

Note that, while this stylized problem may seem quite simplified, it seeks to answer a

fundamental question: at the level of an atomic unit of stock and over a short time horizon,

how should a risk-neutral investor choose between limit orders and market orders? This

problem is a central ingredient in more sophisticated optimal execution problems involving
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risk averse investors selling large quantities over longer time horizons.7 This is because, in a

typical algorithmic trading setting, a large “parent” order will be scheduled across time into

many very small “child” orders. Each of these “child” orders need to be executed optimally.

Since each child order is small and since there are many such child orders, it is reasonable

to view the investor as risk-neutral with respect to each child order.

The following lemma characterizes a simple strategy that is optimal for the execution

problem I have described:

Lemma 1. An optimal strategy is to employ only limit orders at times t ∈ [0, T ), with limit

price Lt = St + δ. In other words, the limit order price is “pegged” at a constant premium

δ above the bid price. This pegging strategy achieves the optimal value

(2.6) h̄0 = δ
(
1− e−µT

)
.

Proof. Consider a trader using an arbitrary strategy, and denote by τ ∈ [0, T ] the (random)

time at which the trader sells the share, and by τ1 ∈ [0,∞) the time at which the first

impatient buyer arriving to the market. Let E be the event that the trader sells via a limit

order to an impatient buyer at the price Lτ . Then, under the event Ec, the trader sells at

the bid price Sτ . Then, the sale price P can be written as8

P = Sτ IEc + Lτ IE ≤ Sτ IEc + (Sτ + δ)IE ≤ Sτ + δI{τ1<T}.(2.7)

Here, for the first inequality, I used the fact that an impatient buyer will only buy at time

τ is Lτ ≤ Sτ + δ, and, for the second inequality, I used the fact that the event E can only

occur if an impatient buyer arrives in the time interval [0, τ). Denote by h̄0 the value under

an optimal strategy. Using the fact that τ is a bounded stopping time and the fact that St
is a martingale, by the optional sampling theorem,

h̄0 ≤ E[P ]− S0 ≤ E[Sτ + δI{τ1<T}]− S0 = δP(τ1 < T ) = δ
(
1− e−µT

)
.

On the other hand, the hypothesized strategy results in equality in (2.7). Thus, the result

follows. �

7For example, see Bertsimas and Lo [1998] or Almgren and Chriss [2000]. These questions have also

recently been addressed by Back and Baruch [2007] and Pagnotta [2010] in equilibrium settings.
8I denote by IE the indicator function of the event E .
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t
0 T

St

Lt

Lt = St + δ

Figure 2.2: An illustration of an optimal strategy with no latency, over the time horizon [0, T ].

The trader uses only limit orders prior to end of the time T . The limit order price Lt is pegged

to the bid price St, with an additional premium corresponding to the bid-offer spread δ.

The optimal pegging strategy suggested by Lemma 1 is illustrated in Figure 2.2. This

policy can be interpreted intuitively as follows: since the trader is risk-neutral and the bid

price process is a martingale, the trader is indifferent between trading at time 0 at the bid

price or trading at any other time at the bid price. Via a limit order, however, the trader

can receive a price which is in excess of the bid price. The excess premium is limited to

δ, since an impatient buyer will not pay more than this. Hence, the trader maintains a

single limit order in the book, and continuously updates the price to track bid price, plus

an additional premium of δ.

Note that my stylized execution model captures only the behavior of a single agent.

My model does not capture the strategic response of other agents, either competing agents

submitting limit orders to sell, or contra-side impatient buyers. Both of these types of agents

might be expected to react to the activity of the limit order trader, and may diminish the

gains of the limit order trader. Separately, my model also exaggerates the gains to be earned

by placing limit orders rather than market orders, due to the fact I do not include adverse

selection costs incurred by limit orders.

However, at a high level, a trader in my model with a mandate to trade over a fixed time

horizon but with no private information as to the asset value prefers limit orders to market

orders. I believe this is representative of the situation of algorithmic traders executing large

“parent” orders in practice. When executing a “child” order over a short time horizon,
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such traders typically first submit limit orders, and then “clean up” with market orders as

time runs short. Hence, despite omissions of strategic considerations and other significant

simplifications, the resulting policies do capture representative features of real world trading,

if only at a stylized level. Moreover, my simplified single-agent mode enables us to address

the dynamic nature of trade execution and obtain a closed-form expression highlighting the

exact drivers of the latency cost.

2.3. A Model for Latency

The optimal policy for the stylized execution problem of Section 2.2 relied on the ability

of a trader to continuously track an informational process, namely, the bid price in the

market, and to update his order as the process evolves. Here, I will consider a variation

of that problem where the trader is unable to continuously participate in the market, but

faces a fixed latency ∆t > 0. 9 I am interested in quantifying the cost of this latency by

comparing the expected payoff in this model to that in the stylized model without latency.

Note that the model at hand is quite basic with regards to some of primitives (e.g., the

stochastic process describing the evolution of bid prices), I will discuss a number of tractable

extensions in Section 2.4.4, including more complicated models of the bid price process and

of limit order execution.

In general, latency that a trader experiences can take many forms. Minimally, for

example, there is the delay of the data feeds that deliver market price information to the

trader. There is the delay of the trader’s own decision making. Finally, there is the delay

of the trader’s resulting order reaching the marketplace. I assume that the trader makes

decisions instantaneously — we will see that this is reasonable since the optimal decision

rule for the trader will take a very simple form. Further, from the trader’s perspective, the

roundtrip delay (the total delay for an order to be processed by an exchange and reflected in

9Note that many modern exchanges explicitly allow for pegged orders; these orders obviate the need

for the trader to continually track the bid price in the manner I describe. However, more generally, when

tracking an alternative informational process such as the price on a different exchange, the fundamental

value (see Section 2.2), etc., a trader would still need to continuously monitor the market relative to the

informational process, and latency would be important.
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T0 = 0 Ti = i∆t Ti+1 Ti+2 T = n∆t· · · · · ·

`i−1
`i

`i+1

`0 `i `i+1 `i+2

Figure 2.3: An illustration of the model of latency. Here, the time horizon [0, T ] is divided into

n slots, each of duration equal to the latency ∆t. The limit order price `i is decided at the start

of the ith time slot, i.e., at time Ti. This price only takes effect ∆t units of time later, and is

active during the subsequent time interval [Ti+1, Ti+2).

the data feeds observed by the trader) cannot be decomposed into a delay to the exchange

and a delay from the exchange. Hence, without loss of generality, I will assume that the

trader is able to observe market price information with no delay or latency,10 but that the

trader’s orders experience a latency ∆t before they are processed by the exchange. This

latency is meant to capture, for example, networking or routing delays that are specific

to the trader, and that might be reduced through colocation or additional investment in

networking technology.

In my latency model, I consider an investor who maintains a limit order to sell one share

over the time horizon [0, T ] (the possibility of market orders will be discussed shortly), so

that once the limit order is executed, the investor immediately exits the market. The

time horizon [0, T ] is divided into n slots each of length ∆t, i.e., T = n∆t. For each

i ∈ {0, 1, . . . , n}, define Ti , i∆t.

At each time Ti, based on all information observed thus far, I assume that the trader

can instantaneously decide to update the limit order with a new price `i. Due to a latency

of ∆t, the updated price does not reach the market and take effect until the beginning of

the next time slot, i.e., Ti+1. This limit order price remains active until time Ti+2, at which

point it is superseded11 by the next price `i+1. This sequence of events is illustrated in
10Equivalently, we can assume that my definition of time corresponds to the trader’s clock.
11In practice, this ordering scheme might be achieved by a sequence of cancel-and-replace limit orders,

each of which cancels the prior limit order, and inserts a new limit order with the updated price. If the prior

limit order has already been filled when a subsequent cancel-and-replace order arrives, the new order will
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Figure 2.3. Between the time Ti, when the price `i is decided, and the time Ti+1, when the

updated order reaches the market, the following events can occur:

• E(1)
i : An impatient buyer arrives in the time interval (Ti, Ti+1) and `i−1 ≤ STi + δ,

i.e., the prior limit price `i−1, which is active at that time, is within a margin δ of

the bid price at the start of the interval. In this case, the limit order executes at the

price `i−1, and the investor leaves the market. Note that the updated limit price `i
never takes effect.

I assume that the probability that an impatient buyer arrives in any given time slot

is µ∆t, and that these arrivals occur independently of everything else.12 I assume

that ∆t < 1/µ so that this probability is well-defined. The bid price process evolves

according to the random walk (2.2).

• E(2)
i : Otherwise, if STi+1 ≥ `i, i.e., the bid price has crossed the order price `i at the

instant the order reaches the market, then the order immediately executes at price

STi+1 .

• E(3)
i : Otherwise, the limit order price `i is active over the time interval [Ti+1, Ti+2).

In order to consider the possibility of market orders, I allow the limit price `i = −∞.

By picking this price, the trader can guarantee that the bid price at time Ti+1 will cross the

order price, i.e., STi+1 ≥ `i with probability 1. Thus, the choice of `i = −∞ corresponds to a

certain execution at the bid price STi+1 , i.e., a market order. Similarly, the trader can make

the decision at time Ti not to trade by setting `i =∞. As in the model of Section 2.2, if the

investor has been unable to sell the share by the end of the time horizon T , the investor is

forced to sell via a ‘clean-up’ trade, i.e., a market order at time T . This is accomplished by

enforcing the constraint that `n−1 = −∞, which I will assume implicitly in what follows.

As before, if P is the random variable associated with the sale price, the trader is

risk-neutral and seeks to solve the optimization problem

(2.8) h0(∆t) , maximize
`0,...,`n−1

E [P ]− S0.

fail. Hence, the investor is guaranteed to sell at most one share.
12Note that this is simply a discrete-time Bernoulli arrival process that is analogous to the the Poisson

arrival process of Section 2.2.
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Here, the maximization is over the choice of limit order prices (`0, `1, . . . , `n−1). I assume

that the price decisions are non-anticipating, i.e., each `i is adapted to the filtration gener-

ated by the bid price process and the arrival of impatient buyers up to and including time

Ti. My goal is to analyze h0(∆t), which is the value under an optimal trading strategy

when the latency is ∆t.

Note that, as compared to the model of Section 2.2, my present model with latency differs

in two ways: First, the trader makes decisions at the beginning of discrete-time intervals of

length ∆t, as opposed to continuously. Second, the orders of the trader incur a latency or

delay of length ∆t before they reach the marketplace. I am interested in studying the impact

of the latter feature, latency, and I adopt the former feature, discrete-time decision making,

so as to admit a tractable dynamic programming analysis. In Section 2.4.3, however, we

will see that in the low latency regime in which we are most interested, the discrete-time

nature of my model has a negligible impact.

2.4. Analysis

In this section, I solve for the optimal policy for the trader in the latency model of Sec-

tion 4.2. This problem can be solved via a dynamic programming decomposition that is

presented in Section 2.4.1. While the exact dynamic programming solution can be com-

puted numerically, in Section 2.4.2 I will present an asymptotic analysis that provides a

closed-form analytic expression for the cost of latency in the low latency regime, where

∆t→ 0. In Section 2.4.3, I will consider the implications of the discrete-time nature of my

latency model. Finally, in Section 2.4.4, I will discuss a number of extensions of my latency

model.

2.4.1. Dynamic Programming Decomposition

The standard approach to solving the optimal control problem (2.8) is to employ dynamic

programming arguments. In Appendix A.1, I formally derive the optimal control policy

using these methods. In order to focus on the high level picture, however, for the moment

I will be content with summarizing those results.
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In particular, assume a fixed latency of ∆t. For each decision time Ti with 0 ≤ i < n,

define Ui to be the event that the trader’s limit order remains unfulfilled prior to time Ti+1,

i.e., none of the orders submitted at prices `0, . . . , `i−1 are executed. Note that if the event

Ui does not hold, then the limit order price `i to be decided at time Ti is irrelevant. This is

because, by the time that order arrives to the market, the trader would have already sold

a share. Define the quantity

(2.9) hi , maximize
`i,...,`n−1

E [P | STi , Ui]− STi .

Note that h0 = h0(∆t), where h0(∆t) is defined in (2.8), and thus my notation is consistent.

More generally, for i > 0, I can interpret hi to be the trader’s expected payoff at time Ti
relative to the current bid price STi under the optimal policy, the order does not get filled

prior to time Ti+1. Thus, hi can be interpreted as a continuation value in the dynamic

programming context.

The continuation values {hi} quantify the remaining value for a trader at each time

period if his order remains unfulfilled. Given the continuation values, at each time Ti,

the investor can make an optimal decision as to the limit order price `i by balancing the

benefits of execution in the time slot [Tt+1, Ti+2) with the value hi+1 that will be obtained

if the order is not executed. Moreover, the optimal decisions and continuation values can be

jointly computed via backward induction of a Bellman equation. This result is captured in

the following theorem. The proof, which is provided in Appendix A.1, follows from formal

dynamic programming arguments.

Theorem 1. Suppose {hi} satisfy, for 0 ≤ i < n− 1,

hi = max
ui

{
µ∆t

[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+ σ
√

∆t
(
φ

(
ui

σ
√

∆t

)
− φ

(
ui − δ
σ
√

∆t

))]
+hi+1

[
(1− µ∆t)Φ

(
ui

σ
√

∆t

)
+ µ∆tΦ

(
ui − δ
σ
√

∆t

)]}
,

(2.10)

and

(2.11) hn−1 = 0.

Here, φ and Φ are, respectively, the p.d.f. and c.d.f. of the standard normal distribution.

Then, {hi} correspond to the continuation values under the optimal policy.
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Suppose further that, for 0 ≤ i < n − 1, u∗i is a maximizer of (2.10). Then, a policy

which chooses limit order prices which are pegged to the bid prices according to the premia

defined by {u∗i }, i.e.,

`∗i = STi + u∗i , ∀ 0 ≤ i < n− 1,

is optimal.

Theorem 1 suggests a computational strategy for determining continuation values and an

optimal policy. Starting with the terminal condition hn−1 = 0, one proceeds via backward

induction, solving the single variable optimization problem (2.10) over the decision variable

ui once per time slot. So long as optimal solutions exist, they will determine the continuation

values and optimal policy. Moreover, the optimal policy is a pegging strategy. That is, the

limit order price is pegged at a deterministic (but time varying) premium above the current

bid price. These limit order premia are given by the maximizers {u∗i }.

In the following theorem, whose proof is provided in Appendix A.2, I establish the

existence and uniqueness of the optimal solutions to (2.10) and provide upper and lower

bounds for the resulting limit price premia, for small values of latency ∆t.

Theorem 2. Fix α > 1. If ∆t is sufficiently small, then there exists a unique optimal solution

{hi} to the dynamic programming equations (2.10)–(2.11). Moreover, the corresponding

optimal policy {u∗i } is unique. For 0 ≤ i < n − 1, this strategy chooses limit prices in the

range

`∗i ∈

Si + δ − σ

√
∆t log αL∆t , Si + δ − σ

√
∆t log R(∆t)

∆t

 ,
where

L ,
δ2

2πσ2 , R(∆t) , δ2(1− µ∆t)2n

2πσ2 .

Figure 2.4 illustrates the intuition behind Theorem 2, by considering the situation of a

trader at time t = 0, when the bid price is S0. In the absence of latency, the trader would

peg the limit order price at a fixed premium of δ, i.e., `0 = S0 + δ. This would result in a

trade with the next impatient buyer with probability 1. If there is latency present, however,

this limit price is not optimal. To see this, suppose that an impatient trader will arrive at
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t
0 ∆t 2∆tτ1

S0

S0 + σ
√

∆t

S0 − σ
√

∆t

`0 S0 + δ

`′0 S0 + δ − Cσ
√

∆t

`∗0 S0 + u∗0

Figure 2.4: An illustration of the optimal policy of Theorem 2. In the absence of latency, at

time t = 0, the trader would set the limit price at a premium of δ, i.e., `0 = S0 + δ. In an

environment with latency, the trader might set the limit price to be `′0, which lowers `0 by an

additional safety margin of C standard deviations. This serves to increase the likelihood of

trade execution in the interval (∆t, 2∆t). The optimal limit price `∗0 utilizes a safety margin

that is slightly larger.
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time τ1 ∈ (∆t, 2∆t). If the limit order price is set at `0, the probability that the trade does

not get executed is

P (`0 ≥ S∆t + δ) = P (S0 ≥ S∆t) = 1/2.

When ∆t is small, the probability of missing an execution can be significantly lowered at a

small cost by lowering `0 by an additional safety margin. If we set this safety margin to be

C standard deviations of the one-period price change, i.e., `′0 = S0 + δ − Cσ
√

∆t, then the

probability of missing execution becomes

P
(
`′0 ≥ S∆t + δ

)
= P

(
S0 − Cσ

√
∆t ≥ S∆t

)
= Φ(−C).

This probability can be made close to 0 by the choice of C. However, given a fixed choice

of C independent of ∆t, the probability remains constant (i.e., independent of ∆t) and

non-zero. The additional safety margin corresponding to the log term in Theorem 2 is a

second order adjustment. This is introduced so that, given the optimal limit price `∗0, the

probability of execution tends to 1 as ∆t→ 0.

2.4.2. Asymptotic Analysis

The dynamic programming decomposition developed in Section 2.4.1 allows the exact nu-

merical computation of the value h0(∆t), the value under an optimal policy of the latency

model introduced in Section 4.2, when the latency is ∆t. As discussed earlier, the latency

observed in modern electronic markets is extremely small, often on the time scale of millisec-

onds. Thus, we are most interested in the qualitative behavior of h0(∆t) in the asymptotic

regime where ∆t→ 0. The main result of this section is the following theorem, whose proof

is provided in Appendix A.3. It provides a closed-form expression for h0(∆t), which holds

asymptotically13 as ∆t→ 0.
13In what follows, given arbitrary functions f and g, and a positive function q, I will say that f(∆t) =

g(∆t) + O(q(∆t)) if lim sup∆t→0 |f(∆t) − g(∆t)|/q(∆t) < ∞, i.e., if the difference between f and g, as

∆t→ 0, is asymptotically bounded above by some positive multiple of q. Similarly, I will say that f(∆t) =

g(∆t) + o(q(∆t)) if lim∆t→0 |f(∆t)− g(∆t)|/q(∆t) = 0, i.e., if the difference between f and g, as ∆t→ 0, is

asymptotically dominated by every positive multiple of q. Finally, I will say that f(∆t) = g(∆t) + Θ(q(∆t))

if 0 < lim inf∆t→0 |f(∆t) − g(∆t)|/q(∆t) ≤ lim sup∆t→0 |f(∆t) − g(∆t)|/q(∆t) < ∞, i.e., if the difference

between f and g is asymptotically bounded above and below by positive multiples of q.
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Theorem 3. As ∆t→ 0,

h0(∆t) = h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

+ o
(√

∆t
)
,

where

h̄0 = δ
(
1− e−µT

)
is the optimal value for the stylized model without latency, i.e., the value defined by (2.5).

Theorem 3 is not surprising when considered in the context of Theorem 2. In the stylized

model without latency, the optimal strategy is to peg the limit order price at a premium

of δ, and this yields a value of h̄0. On the other hand, Theorem 2 suggests a trader facing

latency ∆t will lower this limit price premium by a factor of, approximately,

σ

δ

√
∆t log δ2

2πσ2∆t + o
(√

∆t
)
.

If this lowers the ultimate value proportionally, then the value of the optimal policy in the

presence of latency ∆t should approximately be

h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

+ o
(√

∆t
)
.

The proof of Theorem 3, provided in Appendix A.3, makes this intuition precise.

One implication of Theorem 3 is that h0(∆t) → h̄0 as ∆t → 0, i.e., the value of the

latency model converges to that of the stylized model without latency of Section 2.2. This

suggests the following definition:

Definition 1. Define the latency cost associated with latency ∆t by

(2.12) LC(∆t) , h̄0 − h∗0(∆t)
h̄0

.

Latency cost has an easy interpretation. Using h̄0, the value obtained in the stylized

model without latency as a benchmark, the numerator of (2.12) is the lost revenue incurred

due the the presence of latency. On the other hand, we can regard the denominator as

the cost of immediacy for an impatient investor in a time horizon of length T . This is

because, in the stylized model without latency, it is the difference in revenue obtained by
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a risk-neutral investor willing to patiently provide liquidity by employing limit orders over

the length of the time horizon, and an impatient investor who demands immediate liquidity

and sells at the bid price at time t = 0, cf. (2.5). Therefore, we can describe the latency cost

as the amount a trader forgoes due to latency, as a percentage of the cost of immediacy.

The following corollary restates the asymptotic approximation of Theorem 3 in terms

of latency cost.

Corollary 1. As ∆t→ 0,

LC(∆t) = σ
√

∆t
δ

√
log δ2

2πσ2∆t + o
(√

∆t
)
.

There are a number of interesting observations that can be made regarding the asymp-

totic approximation of Corollary 1. First of all, asymptotically, latency cost does not depend

on the length of the time horizon T or the arrival rate of impatient traders µ. As a function

of the remaining parameters, the asymptotic latency cost depends only on a composite pa-

rameter that is the ratio the one-period standard deviation of price changes σ
√

∆t to the

bid-offer spread δ. Both of these quantities are readily measurable empirically. Corollary 1

suggests that the latency cost increasing in this ratio. Thus, at the same level of latency,

the latency cost is most significant for assets which are very volatile or very liquid. Further,

Corollary 1 suggests that, when latency is low, there are increasing marginal benefits to

further reductions in latency, i.e., LC′′(∆t) < 0. In Section 2.5.1, I illustrate some of facts

numerically, as well as considering the accuracy of my approximation, as compared to the

exact latency cost.

2.4.3. Discreteness of Time vs. Latency

The latency model introduced in Section 4.2 differs from the the stylized model without

latency of Section 2.2 in two principal ways: (i) the trader faces a delay or latency between

the time that trading decisions are made and when they reach the marketplace, and (ii)

the latency model is formulated in discrete-time rather than continuous time. The latter

point refers to the facts that, in the model with latency, a trader is only able to update his

limit order at discrete intervals of time rather than continuously, impatient buyers arrive

according to a Bernoulli process rather than a Poisson process, etc. In order to disentangle
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these two effects, in this section I will briefly describe a trading model that is formulated in

discrete time but without latency. By considering this model, I will demonstrate that the

asymptotic latency cost derived in Section 2.4.2 is indeed due to latency effects and not due

to the discreteness of time.

To this end, consider a model in the discrete-time setting of Section 4.2 but with no

latency. Here, at each time Ti , i∆t, for i = 0, 1, . . . , n, the investor sets a limit order

price `i. This limit order price takes effect immediately. Between time Ti and time Ti+1 the

following events can occur:

• If STi ≤ `i, i.e., the bid price is less than the limit order price, the limit order imme-

diately executes at the price STi .

• Otherwise, suppose that an impatient buyer arrives in the time interval (Ti, Ti+1) and

`i ≤ STi + δ, i.e., the limit price `i is within a margin δ of the bid price at the start

of the interval. In this case, the limit order executes at the price `i. I assume that an

impatient buyer arrives with probability µ∆t, independent of everything else.

As before, if the investor is unable to sell the share by the end of the time interval, he is

forced to sell via a market order, i.e., `n = −∞. If P is the sale price, the optimal value for

the trader in this discrete model is given by

hD
0 (∆t) , maximize

`0,...,`n
E [P ]− S0.

I have the following result, whose proof is identical to the martingale argument used to

establish Lemma 1.

Lemma 2. An optimal strategy for the discrete model is to place limit orders at the price

`i = STi + δ, for i = 0, 1, . . . , n− 1. This strategy achieves the value

hD
0 (∆t) , δ (1− (1− µ∆t)n ).

Now, note that, for all 0 < ∆t < 1/µ,

e−µT−
1
2µ

2T∆t ≤ (1− µ∆t)T/∆t ≤ e−µT .
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Therefore, the difference in value between the continuous model of Section 2.2 and the

discrete model considered here is at most

|hD
0 (∆t)− h̄0 | ≤ δe−µT

(
1− e−

1
2µ

2T∆t
)
≤ 1

2δµ
2Te−µT∆t.

In other words, this difference is asymptotically O(∆t). By Theorem 3, however, the dif-

ference between the continuous model and the latency model is asymptotically

Θ(
√

∆t log(1/∆t)).

Hence, the asymptotic effect of latency dominates the asymptotic effect of the discreteness

of time.

2.4.4. Extensions

The analysis of the latency model that I have presented proceeded according to two high

level steps:

(i) First, in Section 2.4.1, a simplified dynamic programming decomposition was devel-

oped. In this decomposition, at each time, the trader’s value function is parameterized

by a single scalar, rather than being an arbitrary function of state. This allows the

Bellman equation to be solved through a system of n equations in n unknowns, given

by (2.10)–(2.11).

(ii) Second, in Section 2.4.2, an asymptotic analysis of the simplified dynamic program-

ming equations (2.10)–(2.11) was performed. This gave rise to the asymptotic latency

cost expression of Corollary 1.

The dynamic programming decomposition step (i) that is at the heart of my analysis can

be extended to a much broader set of stochastic primitives than the present setting. In each

of these cases, a different set of simplified dynamic programming equations, analogous to

(2.10)–(2.11) would arise, and would require a customized variation of asymptotic analysis

step (ii). In particular, consider the following tractable generalizations:

• Price process. In my model, the price process St is a Brownian motion. My dynamic

programming decomposition only requires that the St be a Markov process and a
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martingale. It would be straightforward to extend the dynamic programming step (i)

and consider other Markovian martingales, for example, allowing for non-Gaussian

processes, time-inhomogeneous volatility, or for jump processes.

On the other hand, the asymptotic analysis step (ii) I have presented is quite sensi-

tive to distributional assumptions of the price process, and would require specialized

analysis for any such generalization. In Appendix A.4, I consider one generalization

of particular interest, where the price dynamics also contain a jump component.

• Limit order execution. In my model, the execution of a limit order in the time slot

(Ti, Ti+1) required that the limit order price `i−1 be within a spread δ of the bid price

STi , and that an impatient trader arrive. More generally, my dynamic programming

decomposition only requires that the execution of this limit order, conditional on the

price difference `i−1− STi , be independent of everything else. This can accommodate

a number of generalizations, for example, the arrival rate of impatient buyers can

be time-varying. Further, the maximum premium above the bid price St that an

impatient buyer is willing to pay can be randomly distributed, as in (2.3). This would

allow models where a limit order that is priced aggressively low has a much higher

probability of execution. Such models could alternatively be interpreted, as discussed

in Section 2.2, as cases where the prevailing bid-offer spread is not constant, but is

independent and identically distributed, varying from period to period.

2.5. Empirical Estimation of Latency Cost

In this section, I will consider empirical applications of my model. First, I will illustrate the

optimal trading policy and the corresponding value function when the model parameters

are estimated from high frequency market data for a single stock. I will also compare the

exact latency cost (numerically computed via dynamic programming) to the approximation

provided by Corollary 1 in order to access the quality of my approximation. Subsequently,

I show the historical evolution of latency cost and implied latency across a range of U.S.

equities using cross-sectional data on volatilities and bid-offer spreads during the 1995–2005

period.



CHAPTER 2. THE COST OF LATENCY 35

My empirical analysis should be regarded as a first-order study to obtain a rough cali-

bration of my model. It will allow us to analyze the model in relevant parameter regimes,

as well as gaining a broad understanding the implications of my model for the trading of

U.S. equities. My empirical measurement of latency cost requires estimates of, in particular,

the high frequency price volatility σ and the prevailing bid-offer spread δ. Here, I make

a number of simplifications and rely on the recent empirical work of Aït-Sahalia and Yu

[2009] to obtain these quantities:

• I estimate price volatility σ using the maximum likelihood estimates of the volatility

of returns provided by Aït-Sahalia and Yu [2009]. Note that this estimation of high

frequency volatility aims to filter out the impact of microstructure noise and obtain an

unbiased estimate of daily volatility. However, for an investor with a trading horizon

of 1 second, microstructure noise needs to be incorporated as well. Therefore, the high

frequency volatility estimate that is used in my empirical analysis underestimates the

actual volatility faced by a high frequency trader with a very short trading horizon.

• Recall that the prevailing bid-offer spread, δ, equals the bid-offer spread in the absence

of the liquidating trader. In the empirical data, it is impossible to disentangle the

presence of liquidating traders. Moreover, the bid-offer spread will not be constant,

but will vary over the course of the trading day. As a proxy for δ, I use the average

bid-offer spread over the trading day.

Despite these shortcomings, I believe that my empirical analysis can shed light on the

importance of latency in the trading of U.S. equities.

2.5.1. The Optimal Policy and the Approximation Quality

In what follows, I will numerically evaluate the optimal policy in my model, the correspond-

ing value function, and the latency cost approximation. These numerical experiments are

meant to be illustrative of my model. I will use realistic model parameters estimated from

recent market data for a single stock. My methodology here is not meant to be authoritative

— there are many subtleties in the analysis of high frequency data; these are beyond the

scope of the work at hand. However, I do seek to demonstrate that my model parameters
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can be readily derived from commonly available data.

Specifically, the model parameters herein are estimated from trade-and-quote (TAQ)

data for a stock that is a representative example of a liquid name, Goldman Sachs Group,

Inc. (NYSE: GS), on the trading day of January 4, 2010. This data was obtained from the

Wharton Research and Data Services (WRDS) consolidated TAQ database. Only trades

and quotes originating from the primary exchange (NYSE) during regular trading hours

were considered. The model parameters were estimated as follows:

• Initial bid price: SGS
0 = $170.00. This was chosen to be the first transaction price on

the trading day.

• Bid-offer spread: δGS = $0.058, i.e., equivalently, 3.4 basis points relative to the initial

price SGS
0 . This was estimated by computing the average spread between bid and offer

quotes over the course of the trading day and rounding to the nearest cent.

• Arrival rate of market orders: µGS = 12.03 (per minute). This was estimated by

dividing the total number of NYSE trades by the length of the trading day.

• Price volatility: σGS = $1.92 (daily), i.e., approximately equivalent to an annualized

volatility of returns of 17.9%. These were estimated from the time series of transaction

prices over the course of the trading day, using maximum likelihood estimation as

described inAït-Sahalia and Yu [2009].

• Trading horizon: T = 10 (seconds).

Figure 2.5 illustrates the optimal limit order policy for GS under different values of

latency. If there is no latency, the limit orders are submitted at a constant premium of

δ. When there is latency, the optimal order policy is obtained using the exact dynamic

programming solution of (2.10)–(2.11). As the latency increases, the limit order premium

is reduced below δ so as to account for the increasing uncertainty of price movements over

the latency interval. Theorem 2 suggests that this reduction is approximately equal to

(2.13) σ

√
∆t log δ2

2πσ2∆t .
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Figure 2.5: An illustration of the optimal strategy for GS, expressed in terms of limit price

premium over the course of the time, for different choices of latency. In each case, the dashed

line illustrates the relative distance below the bid-offer spread δ of the price premium of the

final limit order, as a multiple of the standard deviation of prices over the latency interval.

In Figure 2.5, I see that, with a latency of 500 ms, this adjustment is up to approximately

1.4σ
√

∆t, i.e., 1.4 times the standard deviation of prices over the latency interval. When the

latency is reduced to 250 ms and to 50 ms, the adjustment increases to 1.6 and 2.1 standard

deviations, respectively. The fact that this adjustment, when measured as a multiple of the

uncertainty over the latency period, increases as the latency decreases is consistent with

(2.13).

In Figure 2.5, I also observe that as t increases and the trading deadline approaches, the

limit order premium u∗t becomes lower. This makes intuitive sense: the trader faced with a

terminal value of 0 since he is required to sell using market order at the end of the period.

As the deadline approaches, the trader is more willing to sacrifice the potential profits of a

limit order in order to increase the probability of execution.

Figure 2.6 illustrates the corresponding continuation value under the optimal policy for

GS, for different values of latency. Clearly, the trader’s expected payoff decreases as latency

increases or the end of the trading horizon approaches.
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Figure 2.6: An illustration for the evolution of the continuation value of the optimal policy

over time for GS, for different choices of latency. The expected value of the trader decreases

as latency increases or as the end of the trading horizon approaches. As the latency increases

from 0 ms to 500 ms, the trader loses more than 0.01 of the 0.05 cent spread, i.e., more than

20% of the spread.
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Figure 2.7: An illustration of the latency cost as a function of the latency. both the exact latency

cost and the asymptotic approximation are shown. The approximate latency cost closely aligns

with the exact latency cost across the entire range of latency values. This illustrates that my

closed-form formula can accurately approximate the exact latency cost for low values of latency.
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Finally, Figure 2.7 illustrates the latency cost as a function of latency. Both the exact

value of the latency cost, computed numerically via the dynamic programming decomposi-

tion (2.10)–(2.11), and the asymptotic latency cost approximation provided by Corollary 1

are shown. The latency costs decrease from approximately 20% of the cost of immediacy

to 5% of the cost of immediacy, as the latency decreases from 500 ms to 5 ms. Further,

the marginal benefit of reducing latency increases as the latency approaches zero. Finally,

I note that the approximate and exact latency costs are quite close across the entire range

of latency values. This suggests that the approximation is of very high quality in this case.

2.5.2. Historical Evolution of Latency Cost

In this section, I will examine the historical evolution of latency cost in U.S. equities. Here,

I consider the situation of a hypothetical investor with a fixed latency of 500 milliseconds.

This choice of latency is made approximately to reflect the reaction time of a very fast

human trader. I will use this as a proxy for the fastest possible trading on a “human time

scale”. By analyzing the evolution of the associated latency cost, I will get a sense of the

importance of latency over time.

My empirical analysis relies on the data set of Aït-Sahalia and Yu [2009]. Their data

set contains estimates for various liquidity measures for all NYSE common stocks on a

daily basis during the sample period of June 1, 1995 to December 31, 2005. The estimates

are derived from intraday transaction prices and quotes from the NYSE TAQ database.

I utilized only the volatility and bid-offer spread data as we have seen both analytically

(Corollary 1) and numerically (Figure 2.7) that latency cost can be approximated accurately

for low values of latency using only these two measures.

The data set contain volatility and bid-offer spread estimates for given stock on a par-

ticular day if the number of transactions on that day exceeds 200. The minimum, average,

and maximum number of stocks in the sample on any day are 61, 653, and 1,278, respec-

tively. In particular, earlier periods in the data set contain fewer stocks due to a smaller

number of firms and a lower volume of transactions. In this data set, the bid-offer spread

is estimated using only NYSE quotes in the regular trading hours. The volatility estimate

is obtained using maximum likelihood estimation in the presence of market microstructure
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noise. Maximum likelihood estimation is preferred over other nonparametric estimation

methods (e.g., “Two Scales Realized Volatility”) as a simulation study shows that maxi-

mum likelihood estimation provides robust estimators under reasonable stochastic volatility

and jump models in the underlying asset. The reader is urged to consult to Section 2.1 of

Aït-Sahalia and Yu [2009] for full details of their estimation procedure.

For each stock in the data set, on a daily basis, I compute the latency cost facing an

investor with a fixed latency of 500 ms using the asymptotic approximation of Corollary 1.

These daily latency costs are then averaged over each month. Figure 2.8 displays percentiles

of the monthly averages of latency cost over all of the stocks in the sample, as a function

of time. As a representative example of a liquid name, I also report the monthly averages

of latency cost of Goldman Sachs Group, Inc. (NYSE: GS). Note that the time series for

GS begins from its initial public offering in 1999. For reference, I have added an additional

point to this time series based on my estimation in Section 2.5.1 of the latency cost for GS

on January 4, 2010.

Figure 2.8 illustrates that latency costs have had an increasing trend over the 1995–2005

period. In particular, we observe that the median latency cost incurred by trading on a

human time scale roughly tripled, by increasing from approximately 3% to approximately

10%. One important factor in this increase has been the reduction of bid-offer spreads over

this time period. Instances during the period when the NYSE reduced the tick size (from

$1/8 to $1/16 in June 1997, and from $1/16 to $0.01 in January 2001) coincide with spikes in

latency cost. This is consistent with bid-offer spreads decreasing significantly and volatility

maintaining the same level at these times. This suggests that any future reduction in tick

sizes will result in increased latency costs.

Using a data set in a similar time-frame, from February 2001 to December 2005, Hender-

shott et al. [2010] conclude that in the post-decimalization era, the increase in algorithmic

trading activity had a positive impact on the level of liquidity. This result suggests that

the increase in algorithmic trading in and of itself elevated the importance of low latency

trading and increased the cost of latency.
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Figure 2.8: An illustration of the historical evolution of latency cost over the 1995–2005 time

period. Here, I consider a hypothetical “human time scale” investor with a fixed latency of

∆t = 500 (ms). Percentiles for the resulting latency cost are reported across NYSE common

stocks. The latency costs are computed from data set of Aït-Sahalia and Yu [2009]. The

latency cost for GS is also reported, beginning from its IPO. The dashed lines correspond to

dates where the NYSE tick size was reduced. We observe that latency cost had a consistent

increasing trend over the 1995–2005 period. Specifically, the median latency cost approximately

increased three-fold by reaching roughly to 10% from 3%.
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2.5.3. Historical Evolution of Implied Latency

An alternative perspective on the historical importance of latency comes from considering a

hypothetical investor with a target level for the cost of latency, relative to the overall cost-

of-immediacy. The representative trader maintains this target over time through continual

technological upgrades to lower levels of latency. I determine the requisite level of latency

for such a trader, over time and across the aggregate market. In other words, fixing the

latency cost percentage LC to the target level, we can solve the asymptotic approximation

(2.12) for the level of latency required at each time to achieve latency cost LC. I call this

the implied latency.

Figure 2.9 illustrates the implied latency values over the 1995–2005 period assuming

that the target level LC = 10% of overall transaction costs result from latency. We observe

that the median implied latency decreased by approximately two orders of magnitude over

this time frame. The 90th percentile of U.S. equities, for example, went from an implied

latency on the scale of seconds to an implied latency on the scale of tens of milliseconds.

2.5.4. Empirical Importance of Latency

My model captures the cost of latency due to a lack of contemporaneous information.

Figure 2.8 suggests that, when my model is calibrated to the topmost quartile of U.S.

equities, a investor with latency on the human time scale faces a latency cost of at 15% to

25%. In order to assess the significance of this, we can compare it to other trading costs.

Suppose we normalize the cost of immediacy to $0.01, which is the typical bid-offer spread

for a liquid U.S. equity. Then, my model suggests that the benefit of reducing latency

from a human time scale of 500 ms to an ultra low latency time scale of less than 1 ms is

approximately $0.0015–$0.0025 per share traded.

While this might seem very small as an absolute number, note that is of the same

order of magnitude as other trading costs faced by the most cost efficient institutional

investors. For example, a hedge fund would pay an average commission of $0.0007 per

share for market access.14 Furthermore, investors may pay an SEC fee of $0.0005 per share
14“U.S. Equity Trading: Low Touch Trends,” TABB Group, July 2010.
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Figure 2.9: An illustration of the historical evolution of implied latency over the 1995–2005 time

period. Here, I consider a hypothetical investor who makes sufficient technological investments

to ensure a constant latency cost of 10%. The implied latency is the level of latency required to

achieve this latency cost. Percentiles for the implied latency are reported across NYSE common

stocks. The implied latencies are computed from data set of Aït-Sahalia and Yu [2009]. The

implied latency for GS is also reported, beginning from its IPO. We observe that implied latency

has had a decreasing trend over the 1995–2005 period. Specifically, the median implied latency

decreased by approximately two orders of magnitude over this time frame.
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traded,15 and exchange fees or rebates of $0.0020–$0.0030 per share traded. To the extent

that a sophisticated institutional investor is cost sensitive and wishes to optimize these

other execution costs, they should also be concerned with latency. This isn’t to suggest

that latency cost is important to all investors. A typical retail investor, for example, may

pay a brokerage fee that is up to $0.10 per share traded.16 For this latter type of investor,

the cost of latency as described here is not a significant component of overall trading costs.

Alternatively, we can compare the $0.0015–$0.0025 per share traded latency cost to

the rents extracted by agents that have made the required technological investments to

trade on an ultra low latency time scale. For example, providers of automated algorithmic

trade execution services charge an average commission of $0.0033 per share traded for their

execution services, which leverage sophisticated low latency technological infrastructure.17

Note that this cost is comparable to the latency cost. Another class of agents with ultra

low latency trading capabilities are high frequency traders. Reported net profit numbers

for high frequency traders are in the range of $0.0010–$0.0020 per share traded.18 This is

of the same order of magnitude as the latency cost.

2.6. Conclusion and Future Directions

This chapter provides a model to quantify the cost of latency on transaction costs. I

consider a stylized execution problem, where a trader must sell an atomic unit of stock over

a fixed time horizon. I consider this model in the absence of latency as a benchmark, and
15As of January 21, 2011, the SEC fee is a fraction $0.0000192 of the proceeds of an equity sale. If we

assume a typical stock price of $50, this is approximately $0.0010 per share sold. Amortizing this cost

equally between buys and sells results in $0.0005 per share traded.
16For example, at the time of writing, the brokerage firm E-TRADE charges $10 per trade. Assuming a

typical trade of 100 shares, this cost is $0.10 per share traded.
17“U.S. Equity Trading: Low Touch Trends,” TABB Group, July 2010. Note that some institutional

investors pay significantly larger commissions for trade execution in order to compensate their brokers for

trading ideas or research services. The commission I quote here is for “non-idea driven” services that relate

purely to trade execution using the algorithms and technological platform of the broker.
18“Tradeworx, Inc. Public Commentary on SEC Market Structure Concept Release,” Tradeworx, Inc.,

April 2010.
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I incorporate latency by not allowing the trader to continuously participate in the market.

Orders submitted by the trader reach the market with a fixed latency, and the trader is

forced to deviate from the benchmark policy in order to take into account the uncertainty

introduced by this delay. I quantify the cost of latency as the normalized difference in

expected payoffs between this model and the stylized model without latency.

Since the latency values observed in modern electronic markets are on the order of mil-

liseconds, I provide an asymptotic analysis for the low latency regime, in which I obtain an

explicit closed-form solution. In order to compute this asymptotic latency cost empirically,

I only need to estimate the volatility and the average bid-offer spread of the stock. This is

an elegant and practical result as data sets and estimation procedures for these quantities

are readily abundant in the literature. Indeed, using an existing data set, I show that the

cost of latency incurred by trading on a human time scale (500 ms) increased three-fold over

the 1995–2005 time-frame. In addition, using the alternative approach of keeping a fixed

level of latency cost through continuous technological improvements, I compute the various

percentiles of the implied latency over this time frame. Using the same data set, I observe

that the median implied latency decreased by approximately two orders of magnitude.

My empirical analysis can also be utilized to compare the magnitude of latency cost to

other trading costs incurred by institutional investors. My results suggest that the difference

in payoff between trading with a human time scale (500 ms) and an automated trading

platform with ultra low latency (1 ms) is approximately of the same order of magnitude as

other trading costs faced by institutional investors. This observation certainly underlines

the significance of latency for such investors. In conclusion, my model is the first theoretical

approach in the literature to concretely quantify the impact of latency on the optimal order

submission policy and its resulting cost to the trader.

There are a number of interesting future directions for research. First, as discussed in

Section 2.4.4, there are a number of tractable extensions to the present model that can be

analyzed. One particularly interesting case would be where the bid price process is a jump

process. Here, my suspicion is that the cost of latency would decrease. This is because, even

in the absence of any latency, the trader cannot adjust his limit prices ahead of a jump.

More generally, in the introduction, I identified a number of broad themes to the costs
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that arise from latency. The model I have presented captures mainly costs due to a lack of

contemporaneous decision making. It does not capture the latency costs due to strategic

effects (i.e., comparative advantage/disadvantage relative to other investors) or due to time

priority rules. These remain important questions for future research.
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Chapter 3

Dynamic Portfolio Choice with Linear

Rebalancing Rules

3.1. Introduction

Dynamic portfolio optimization has been a central and essential objective for institutional

investors in active asset management. Real world portfolio allocation problems of practical

interest have a number of common features:

• Return predicability. At the heart of active portfolio management is the fact that a

manager will seek to predict future asset returns [Grinold and Kahn, 1999]. Such pre-

dictions are not limited to simple unconditional estimates of expected future returns.

A typical asset manager will make predictions on short- and long-term expected re-

turns using complex models, for example, including return predicting factors such as

market capitalization, book-to-market ratio, lagged returns, dividend yields, gross in-

dustrial production, and other security specific or macroeconomic variables [see, e.g.,

Chen et al., 1986; Fama and French, 1996; Goetzmann and Jorion, 1993].

• Transaction costs. Trading costs in dynamic portfolio management can arise from

sources ranging from the bid-offer spread or execution commissions, to price impact,

where the manager’s own trading affects the subsequent evolution of prices. The effi-

cient management of such costs is an important issue broadly, but becomes especially
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crucial in the setting of optimal execution. This particular class of portfolio optimiza-

tion problems seeks to optimally liquidate a given portfolio over a fixed time horizon

[Bertsimas and Lo, 1998; Almgren and Chriss, 2000].

• Portfolio or trade constraints. Often times managers cannot make arbitrary invest-

ment decisions, but rather face exogenous constraints on their trades or their resulting

portfolio. Examples of this include short-sale constraints, leverage constraints, or re-

strictions requiring market neutrality (or specific industry neutrality).

• Risk aversion. Portfolio managers seek to control the risk of their portfolios. In

practical settings, risk aversion is not accomplished by the specification of an abstract

utility function. Rather, managers specify limits or penalties for multiple summary

statistics that capture aspects of portfolio risk which are easy to interpret and are

known to be important. For example, a manager may both be interested in the risk of

the portfolio value changing over various intervals of time, including for example, both

short intervals (e.g., daily or weekly risk), as well as risk associated with the terminal

value of the portfolio. Such single period risk can be measured a number of ways

(e.g., variance, value-at-risk). A manager might further be interested in multiperiod

measures of portfolio risk, for example, the maximum drawdown of the portfolio.

Significantly complicating the analysis of portfolio choice is that the underlying problem

is multiperiod. Here, in general, the decision made by a manager at a given instant of time

might depend on all information realized up to that point. Traditional approaches to mul-

tiperiod portfolio choice, dating back at least to the work of Merton [1971], have focussed

on the analytically determining the optimal dynamic policy. While this work has brought

forth important structural insights, it is fundamentally quite restrictive: exact analytical

solutions require very specific assumptions investor objectives and market dynamics. These

assumptions cannot accommodate flexibility in, for example, the return generating pro-

cess, trading frictions, and constraints, and are often practically unrealistic. Absent such

restrictive assumptions, analytical solutions are not possible. Motivated by this, much of

the subsequent academic literature on portfolio choice seeks to develop modeling assump-

tions that allow for analytical solutions, however the resulting formulations are often not
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representative of real world problems of practical interest. Further, because of the ‘curse-of-

dimensionality’, exact numerical solutions are often intractable as well in cases of practical

interest, where the universe of tradeable assets is large.

In search of tractable alternatives, many practitioners eschew multiperiod formulations.

Instead, they consider portfolio choice problems in a myopic, single period setting, even

when underlying application is clearly multiperiod [e.g., Grinold and Kahn, 1999]. Another

tractable possibility is to consider portfolio choice problems that are multiperiod, but with-

out the possibility of recourse. Here, a fixed set of deterministic decisions for the entire

time horizon are made at the initial time. Both single period and deterministic portfolio

choice formulations are quite flexible, and can accommodate many of the features described

above. They are typically applied in a quasi-dynamic fashion through the method of model

predictive control. Here, at each time period, the simplified single period or deterministic

portfolio choice problem is resolved based on the latest available information. In general,

such methods are heuristics; in order to achieve tractability, they neglect the explicit con-

sideration of the possibility of future recourse. Hence, these methods may be significantly

suboptimal.

A second tractable alternative is the formulation of portfolio choice problems as a linear

quadratic control [e.g., Hora, 2006; Garleanu and Pedersen, 2012]. Since at least the 1950’s,

linear quadratic control problems have been an important class of tractable multiperiod

optimal control problems. In the setting of portfolio choice, if the return dynamics are linear

and the transaction costs and risk aversion penalties decomposed into per period quadratic

functions, and positions and trading decision are unconstrained, then these methods apply.

However, there are many important problem cases that simply do not fall into the linear

quadratic framework.

In this chapter, my central innovation is to propose a framework for multiperiod port-

folio optimization, which admits a broad class of problems including many with features

as described earlier. My formulation maintains tractability by restricting the problem to

determining the best policy out of a restricted class of linear rebalancing policies. Such

policies allow planning for future recourse, but only of a form that can be parsimoniously

parameterized in a specific affine fashion. In particular, the contributions of this chapter
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are as follows:

1. I define a flexible, general setting for portfolio optimization. My setting allows for

very general dynamics of asset prices, which an arbitrary dependence on a history of

‘return-predictive factors’. I allow for any convex constraints on trades and positions.

Finally, the objective is allowed to be an arbitrary concave function of the sample

path of positions. My framework admits, for example, many complex models for

transaction costs or risk aversion.

2. My portfolio optimization problem is computationally tractable. In my setting, deter-

mining the optimal linear rebalancing policy is a convex program. Convexity guar-

antees that the globally optimal policy can be tractably found in general. This is in

contrast to non-convex portfolio choice parametrizations [e.g., Brandt et al., 2009a],

where only local optimality can be guaranteed.

In my case, numerical solutions can be obtained via, for example, sample average ap-

proximation or stochastic approximation methods [see, e.g., Shapiro, 2003; Nemirovski

et al., 2009]. These methods can be applied in a data-driven fashion, with access only

to simulated trajectories and without an explicit model of system dynamics. In a

number of instances where the factor and return dynamics are driven by Gaussian

uncertainty, I illustrate that my portfolio optimization problem can be reduced to a

standard form of convex optimization program, such as a quadratic program or a sec-

ond order cone program. In such cases, the problem can be solved with off-the-shelf

commercial optimization solvers.

3. My class of linear rebalancing policies subsumes many common heuristic portfolio

policies. Both single period and deterministic policies are special cases of linear re-

balancing polices, however linear rebalancing polices are a broader class. Hence, the

optimal linear rebalancing policy will outperform policies from these more restricted

classes. Further, my method can also be applied in the context of model predictive con-

trol. Also, portfolio optimization problems that can be formulated as linear quadratic

control also fit in my setting, and their optimal policies are linear rebalancing rules.
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4. I demonstrate the practical benefits of my method in an optimal execution example.

I consider an optimal execution problem where an investor seeks to liquidate a posi-

tion In order to highlight the performance gain using linear decision rules, I use the

discrete-time linear quadratic control formulation of Garleanu and Pedersen [2012].

However, I further introduce linear inequality constraints that allow the trading de-

cisions to only be sales; such sale-only constraints are common in agency algorithmic

trading. I demonstrate that the best linear policy performs better than the best de-

terministic policy, model predictive control and a projected version of the optimal

policy proposed by Garleanu and Pedersen [2012]. Further, the performance of the

best linear policy is shown to be near optimal, by comparison to upper bounds on

optimal policy performance computed for the same problem.

The balance of this chapter is organized as follows: In Section 4.1.1, I review the related

literature. In Section 4.2, I present the abstract form of a dynamic portfolio choice model

and provide various specific problems that satisfy the assumptions of the abstract model.

I formally describe the class of linear decision rules in Section 3.3 and discuss solution

techniques in order to find the optimal parameters of the linear policy. In Section 3.4, I

provide efficient and exact formulations of dynamic portfolio choice models with Gaussian

uncertainty using linear decision models while incorporating linear equality and inequality

constraints, proportional and nonlinear transaction costs and a measure of terminal wealth

risk. In Section 3.5, I apply my methodology in an optimal execution problem and evaluate

the performance of the best linear policy. Finally, in Section 3.6 I conclude and discuss

some future directions.

3.1.1. Related Literature

My chapter is related to two different strands of literature: the literature of dynamic port-

folio choice with return predictability and transaction costs, and the literature on the use

of linear decision rules in the optimal control problems.

First, I consider the literature on dynamic portfolio choice. This vast body of work

begins choice starts with the seminal chapter of Merton [1971]. Following this chapter,

there has been a significant literature aiming to incorporate the impact of various frictions
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such as transaction costs on the optimal portfolio choice. For a survey on this literature,

see Cvitanic [2001]. The work of Constantinides [1986] is an early example that studies

the impact of proportional transaction costs on the optimal investment decision and the

liquidity premium in the context of CAPM. Davis and Norman [1990], Dumas and Luciano

[1991a], and Shreve and Soner [1994] provide the exact solution for the optimal investment

and consumption decision by formally characterizing the trade and no-trade regions. One

drawback of these papers is that the optimal solution is only computed in the case of a

single stock and bond. Liu [2004] extends these results to multiple assets with fixed and

proportional transaction costs in the case of uncorrelated asset prices. Detemple et al.

[2003] develop a simulation-based methodology for optimal portfolio choice in the presence

of return predictability.

There is also a significant literature on portfolio optimization that incorporates return

predictability [see, e.g., Campbell and Viceira, 2002]. My chapter is related to the liter-

ature that incorporates both return predictability with transaction costs. Balduzzi and

Lynch [1999] and Lynch and Balduzzi [2000] illustrate the impact of return predictability

and transaction costs on the utility costs and the optimal rebalancing rule by discretizing

the state space of the dynamic program. With a similar state space discretization, Lynch

and Tan [2010] model the dynamic portfolio decision with multiple risky assets under re-

turn predictability and transaction costs and provide numerical experiments with two risky

assets. One significant issue with this line of work is that discretization suffers from the

curse-of-dimensionality: the computational effort to determine an optimal policy scales ex-

ponentially with the dimension of the state space. When there are more than a few assets

or return predicting factors, discretization cannot be applied.

Much of the aforementioned literature seeks to find the best rebalancing policy out of

the universe of all possible rebalancing policies. As discussed earlier, this leads to highly

restrictive modeling primitives. On the other hand, my work is in the spirit of Brandt et

al. [2009a], allow for broader modeling flexibility at the expense of considering a restricted

class of rebalancing policies. The parameterize the rebalancing rule as a function of secu-

rity characteristics and estimates the parameters of the rule from empirical data without

modeling the distribution of the returns and the return predicting factors. Even though my
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approach is also a linear parametrization of return predicting factors, there are fundamental

differences between my approach and that of Brandt et al. [2009a]. First, the class of linear

polices I consider is much larger than the specific linear functional form in Brandt et al.

[2009a]. In my approach the parameters are time-varying and cross-sectionally different for

each security. Second, the extensions provided in Brandt et al. [2009a] for imposing posi-

tivity constraints and transaction costs are ad-hoc and cannot be generalized to arbitrary

convex constraints or transaction cost functions. Finally, the objective function of Brandt

et al. [2009a] is a non-convex function of the policy parameters. Hence, it is not possible,

in general to obtain the globally optimal set of parameters. My setting, on the other hand,

is convex, and hence globally optimal policies can be determined efficiently.

Garleanu and Pedersen [2012] achieve a closed-form solution for a model with linear

dynamics in return predictors and quadratic function for transaction costs and quadratic

penalty term for risk. However, the analytic solution is highly sensitive to the quadratic cost

structure with linear dynamics [see, e.g., Bertsekas, 2000]. This special case cannot handle

any inequality constraints on portfolio positions, non-quadratic transactions costs, or more

complicated risk considerations. On the other hand, my approach can be implemented

efficiently in these realistic scenarios and provides more flexibility in the objective function

of the investor and the constraints that the investor faces. Boyd et al. [2012] consider

an alternative generalization of the linear-quadratic case, using ideas from approximate

dynamic programming. Glasserman and Xu [2011] develop a linear-quadratic formulation

for portfolio optimization that offers robustness to modeling errors or mis-specifications.

Second, there is also a literature on the use of linear decision rules in optimal control

problems. This approximation technique has attracted considerable interest recently in

robust and two-stage adaptive optimization context [see, e.g., Ben-Tal et al., 2004, 2005;

Chen et al., 2007, 2008; Bertsimas et al., 2010; Bertsimas and Goyal, 2011]. Shapiro and

Nemirovski [2005] illustrate that linear decision rules can reduce the complexity of multi-

stage stochastic programming problems. Kuhn et al. [2009] proposes an efficient method to

estimate the loss of optimality incurred by linear decision rule approximation.

In this strand of literature, I believe the closest works to the methodology described in

my chapter are Calafiore [2009] and Skaf and Boyd [2010]. Both of these papers use linear
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decision rules to address dynamic portfolio choice problems with proportional transaction

costs without return predictability. Calafiore [2009] compute lower and upper bounds on

the expected transaction costs and solves two convex optimization problems to get upper

and lower bounds on the optimal value of the simplified dynamic optimization program with

linear decision rules. On the other hand, Skaf and Boyd [2010] study the dynamic portfolio

choice problem as an application to their general methodology of using affine controllers

on convex stochastic programs. They first linearize the dynamics of the wealth process

and then solve the resulting convex optimization via sampling techniques. The foremost

difference between my approach and these papers is the modeling of return predictability.

Hence, the optimal rebalancing rule in my model is a linear function of the predicting

factors. Furthermore, I derive exact reductions to deterministic convex programs in the

cases of proportional and nonlinear transaction costs.

3.2. Dynamic Portfolio Choice with Return Predictability and

Transaction Costs

I consider a dynamic portfolio choice problem with allowing general models for the pre-

dictability of security returns and for trading frictions. The number of investable securities

is N , time is discrete and indexed by t = 1, . . . , T , where T is the investment horizon. Each

security i has a price change1 of ri,t+1 from time t to t+ 1.

I collect these price changes in the return vector rt+1 , (r1,t+1, . . . , rN,t+1). I assume

that the investor has a predictive model of future security returns, and that these predic-

tions are made through a set of set of K return-predictive factors. These factors could be

security specific characteristics such as the market capitalization of the stock, the book-to-

market ratio of the stock, the lagged twelve month return of the stock [see, e.g., Fama and

French, 1996; Goetzmann and Jorion, 1993]. Alternatively, they could be macroeconomic

signals that affect the return of each security, such as inflation, treasury bill rate, industrial
1I choose to describe the evolution of asset prices in my framework in terms of absolute price changes,

and I will also refer to these as (absolute) returns. Note that this is without loss of generality: since the

return dynamics specified by Assumption 1 allow for an arbitrary dependence on history, my framework also

admits, for example, models which describe the rate of return of each security.
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production [see, e.g., Chen et al., 1986]. Denote by ft ∈ RK the vector of factor values at

time t. I assume very general dynamics, possibly nonlinear and with a general dependence

on history, for the evolution of returns and factors.

Assumption 1 (General return and factor dynamics). Over a complete filtered probability space

given by (Ω,F , {Ft}t≥0 ,P), I assume that factors and returns evolve according to

ft+1 = Gt+1(ft, . . . , f1, εt+1), rt+1 = Ht+1(ft, εt+1),

for each time t. Here, Gt+1(·) and Ht+1(·) are known functions that describe the evolution

of the factors and returns in terms of the history of factor values and the exogenous, i.i.d.

disturbances εt+1. I assume that the filtration F , {Ft}t≥0 is the natural filtration generated

by the exogenous noise terms {εt}.

Let xi,t denote the number of shares that the investor holds in ith security over the

time period t. I collect the portfolio holdings across all securities at time t in the vector

xt , (x1,t, . . . , xN,t), and I denote the fixed initial portfolio of the investor by x0. Similarly,

let the trade vector ut , (u1,t, . . . , uN,t) denote the amount of shares that the investor wants

to trade at the beginning of the tth period, when he inherits the portfolio xt−1 from the

prior period and observes the latest realization of factor values ft. Consequently, we have

the following linear dynamics for my position and trade vector: xt = xt−1 + ut, for each t.

Let the entire sample path of portfolio positions, factor realizations, and security re-

turns be denoted by x , (x1, . . . , xT ), , (f1, . . . , fT), and r , (r2, . . . , rT+1), respectively.

Similarly, the sample path of trades over time is denoted by u = (u1, . . . , uT ). I make the

following assumption on feasible sample paths of trades:

Assumption 2 (Convex trading constraints). The sample path of trades u are restricted to

the non-empty, closed, and convex set U ⊆ RN × . . .× RN .

The investor’s trading decisions are determined by a policy π that selects a sample path

of trades u in U for each realization of r and f . I let U be the set of all policies. I assume that

the investor’s trading decisions are non-anticipating in that the trade vector ut in period t

depends only on what is known at the beginning of period t. Formally, I require policies to
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be adapted to the filtration F, such that a policy’s selection of the trade vector ut at time

t must be measurable with respect to Ft. Let UF be the set of all non-anticipating policies.

The objective of the investor is to select a policy π ∈ UF that maximizes the expected

value of a total reward or payoff function p(·). Formally, I consider the following optimiza-

tion problem for the investor,

(3.1) sup
π∈UF

Eπ[p(x, f , r)],

where the real-valued reward function p(·) is a function of the entire sample path of portfolio

positions, x, the factor realization, f , and security returns r. For example, p(·) may have

the form

(3.2) p(x, f , r) ,W (x, r)− TC(u)− RA(x, f , r).

Here, W denotes the terminal wealth (total trading gains ignoring of transaction costs),

i.e.,

(3.3) W (x, r) ,W0 +
T∑
t=1

x>t rt+1,

where W0 is the initial wealth. TC(·) captures the transaction costs associated with a set

of trading decisions, and RA(·) is the penalty term that incorporates risk aversion.

I make the following assumption about my objective function:

Assumption 3 (Concave objective function). Given an arbitrary, fixed sample paths of factor

realizations f and security returns r, assume that the reward function p(x, f , r) is a concave

function of the sequence of positions x.

If p(·) has the specified form in (3.2), then Assumption 3 will be satisfied when the

transaction cost term TC(·) is a convex function of trades and the risk aversion term RA(·)

is a convex function of portfolio positions.

3.2.1. Examples

In this chapter, I consider dynamic portfolio choice models that satisfy Assumptions 1–3.

In order to illustrate the generality of this setting, I will now provide a number of specific

examples that satisfy these assumptions.
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Example 1 (Garleanu and Pedersen 2012). This model has the following dynamics, where

returns are driven by mean-reverting factors, that fit into my general framework:

ft+1 = (I − Φ) ft + ε
(1)
t+1, rt+1 = µt +Bft + ε

(2)
t+1,

for each time t ≥ 0. Here, µt is the deterministic ‘fair return’, e.g., derived from the

CAPM, while B is a matrix of constant factor loadings. The factor process ft is a vector

mean-reverting process, with Φ a matrix of mean reversion coefficients for the factors. It is

assumed that the i.i.d. disturbances εt+1 , (ε(1)
t+1, ε

(2)
t+1) are zero-mean with covariance given

by Var(ε(1)
t+1) = Ψ and Var(ε(2)

t+1) = Σ.

Trading is costly, and the transaction cost to execute ut = xt − xt−1 shares is given by

TCt(ut) , 1
2utΛut, where Λ ∈ RN×N is a positive semi-definite matrix that measures the

level of trading costs. There are no trading constraints (i.e., U , RN×T ). The investor’s

objective function is to choose a trading strategy to maximize discounted future expected

excess return, while accounting for transaction costs and adding a per-period penalty for

risk, i.e.,

(3.4) maximize
π∈UF

Eπ
[
T∑
t=1

(
x>t Bft − TCt(ut)− RAt(xt)

)]
.

where RAt(xt) , γ
2x
>
t Σxt is a per-period risk aversion penalty, with γ being a coefficient

of risk aversion. Garleanu and Pedersen [2012] suggest this objective function for an in-

vestor who is compensated based on his performance relative to a benchmark. Each x>t Bft
term measures the excess return over the benchmark, while each RAt(xt) term measures the

variance of the tracking error relative to the benchmark.2

The problem (3.4) clearly falls into my framework. The objective function is similar to

that of (3.2) with the minor variation expected excess return rather than expected wealth

is considered. Further, (3.4) has the further special property that total transaction costs

and penalty for risk aversion decompose over time:

RA(x, f , r) ,
N∑
t=1

RAt(xt), TC(u) ,
N∑
t=1

TCt(ut).

2See Garleanu and Pedersen [2012] for other interpretations.
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Note that this problem can be handled easily using the classical theory from the linear-

quadratic control (LQC) literature [see, e.g., Bertsekas, 2000]. This theory provides analyt-

ical characterization of optimal solution, for example, that the value function at any time t

is quadratic function the state (xt, ft), and that the optimal trade at each time is an affine

function of the state. Moreover, efficient computational procedures are available to solve

for the optimal policy.

On the other hand, the tractability of this model rests critically on three key require-

ments:

• The state variables (xt, ft) at each time t must evolve as linear functions of the control

ut and the i.i.d. disturbances εt (i.e., linear dynamics).

• Each control decision ut is unconstrained.

• The objective function must decompose across time into a positive definite quadratic

function of (xt, ut) at each time t.

These requirements are not satisfied by many real world examples, which may involve

portfolio position or trade constraints, different forms of transaction costs and risk measures,

and more complicated return dynamics. In the following examples, I will provide concrete

examples of many such cases that do not admit optimal solutions via the LQC methodology,

but remain within my framework.

Example 2 (Portfolio or trade constraints). In practice, a common constraint in constructing

equity portfolios is the short-sale restriction. Most of the mutual funds are enforced not to

have any short positions by law. This requires the portfolio optimization problem to include

the linear constraint

xt = x0 +
t∑

s=1
ut ≥ 0,

for each t. This is clearly a convex constraint on the set of feasible trade sequence u.

I observe a similar restriction when an execution desk needs to sell or buy a large portfolio

on behalf of an investor. Due to the regulatory rules in agency trading, the execution desk

is only allowed to sell or buy during the trading horizon. In the ‘pure-sell’ scenario, the
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execution desk needs to impose the negativity constraint

ut ≤ 0,

for each time t.

Simple linear constraints such as these fit easily in my framework, but cannot be ad-

dressed via traditional LQC methods.

Example 3 (Non-quadratic transaction costs). In practice, many trading costs such as the

bid-ask spread, broker commissions, and exchange fees are intrinsically proportional to the

trade size. Letting χi be the the proportional transaction cost rate (an aggregate sum of

bid-ask cost and commission fees, for example) for trading security i, the investor will incur

a total cost of

TC(u) ,
T∑
t=1

N∑
i=1

χi|ui,t|.

The proportional transaction costs are a classical cost structure that is well studied in the

literature [see, e.g., Constantinides, 1986].

Furthermore, other trading costs occur due to disadvantageous transaction price caused

by the price impact of the trade. The management of the trading costs due to price impact

has recently attracted considerable interest [see, e.g., Obizhaeva and Wang, 2005; Almgren

and Chriss, 2000]). Many models of transaction costs due to price impact imply a nonlinear

relationship between trade size and the resulting transaction cost, for example

TC(u) ,
T∑
t=1

N∑
i=1

χi|ui,t|β.

Here, β ≥ 13 and χi is a security specific proportionality constant.

In general, when the trade size is small relative to the total traded volume, proportional

costs will dominate. On the other hand, when the trade size is large, costs due to price

impact will dominate. Hence, both of these types of trading are important. However, the

LQC framework of Example 1 only allows quadratic transaction costs (i.e., β = 2).

Example 4 (Terminal wealth risk). The objective function of Example 1 includes a term to

penalize excessive risk. In particular, the per-period quadratic penalty, x>t Σxt, is used, in
3Gatheral [2010] notes that β = 3

2 is a typical assumption in practice.
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order to satisfy the requirements of the LQC model. However, penalizing additively risk in

a per-period fashion is nonstandard. Such a risk penalty does not correspond to traditional

forms of investor risk preferences, e.g., maximizing the utility of terminal wealth, and the

economic meaning of such a penalty is not clear. An investor is typically more interested

in the risk associated with the terminal wealth, rather than a sum of per-period penalties.

In order to account for terminal wealth risk, let ρ : R → R be a real-valued convex

function meant to penalize for excessive risk of terminal wealth (e.g., ρ(w) = 1
2w

2 for a

quadratic penalty) and consider the optimization problem

(3.5) maximize
π∈UF

Eπ
[
W (x, r)− TC(u)− γρ(W (x, r))

]
,

where γ > 0 is a risk-proportionality constant.

It is not difficult to see that the objective in (3.5) satisfies Assumption 3 and hence

fits into my model. However, even when the risk penalty function ρ(·) is quadratic, (3.5)

does not admit a tractable LQC solution, since the quadratic objective does not decompose

across time.

Example 5 (Maximum drawdown risk). In addition to the terminal measures of risk described

in Example 4, an investor might also be interested controlling intertemporal measures of risk

defined over the entire time trajectory. For example, a fund manager might be sensitive to

a string of successive losses that may lead to the withdrawal of assets under management.

One way to limit such losses is to control the maximum drawdown, defined as the worst loss

of the portfolio between any two points of time during the investment horizon 4. Formally,

MD(x, r) , max
1≤t1≤t2≤T

− t2∑
t=t1

x>t rt+1, 0

 .
It is easy to see that the maximum drawdown is a convex function of x. Hence, the portfolio

optimization problem

(3.6) maximize
π∈UF

Eπ [W (x, r)− TC(u)− γMD(x, r)],

where γ ≥ 0 is a constant controlling tradeoff between wealth and the maximum drawdown

penalty, satisfies Assumption 3. Moreover, standard convex optimization theory yields that
4For example, see Grossman and Zhou [1993] for an earlier example.
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the problem (3.6) is equivalent to solving the constrained problem

(3.7)
maximize

π∈UF
Eπ [W (x, r)− TC(u)]

subject to Eπ [MD(x, r)] ≤ C,

where C (which depends on the choice of γ) is a limit on the allowed expected maximum

drawdown.

Example 6 (Complex dynamics). I can also generalize the dynamics of Example 1. Consider

factor and return dynamics given by

ft+1 = (I − Φ) ft + ε
(1)
t+1, rt+1 = µt + (B + ξt+1)ft + ε

(2)
t+1,

for each time t ≥ 0. Here, each ξt+1 ∈ RN×K is an extra noise term which captures model

uncertainty regarding the factor loadings. I assume that

E [ (B + ξt+1) ft | Ft] = Bft, Var [(B + ξt+1) ft | Ft] = f>t Υft.

With this model, the conditional variance of returns becomes dependent on the factor struc-

ture and is time-varying, i.e., Var[rt+1|Ft] = f>t Υft + Σ. This is consistent with the em-

pirical work of Fama and French [1996], for example. In this setting, the per-period penalty

of risk analogous to that in (3.4) becomes RAt(x, f) = x>t

(
f>t Υft + Σ

)
xt. The resulting

optimal control problem no longer falls into the LQC framework.

The dynamics and the reward functions considered in these examples satisfy my basic

requirements of Assumptions 1–3. These examples illustrate that in many real-world prob-

lems with complex primitives for return predictability, transaction costs, risk measures and

constraints, the dynamic portfolio choice becomes difficult to solve analytically via LQC

methods.

3.3. Optimal Linear Model

The examples of Section 3.2.1 illustrated a broad range of practically important portfolio

optimization problems. Without special restrictions, such as those imposed in the LQC

framework, the optimal dynamic policy for such a broad set of problems cannot be computed
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either analytically or computationally. In this section, in order to obtain policies in a

computationally tractable way, I will consider a more modest goal. Instead of finding the

optimal policy amongst all admissible dynamic policies, I will restrict my search to a subset

of policies that are parsimoniously parameterized. That is, instead of solving for a globally

optimal policy, I will instead find an approximately optimal policy by finding the best policy

over the restricted subset of policies.

In order to simplify, I will assume that reward function of the investor’s optimization

(3.1) is a function only of the sample path of portfolio positions x and of factor realizations

f , and does not depend on the security returns r. In other words, I assume that the reward

function takes the form p(x, f). This is without loss of generality — given my general

specification for factors under Assumption 1, we can simply include each security return

as a factor. With this assumption, investor’s trading decisions will, in general, be a non-

anticipating function of the sample path of factor realizations f . However, consider the

following restricted set of policies, linear rebalancing policies, which are obtained by taking

the affine combinations of the factors:

Definition 2 (Linear rebalancing policy). A linear rebalancing policy π is a non-anticipating

policy parameterized by collection of vectors c , {ct ∈ RN , 1 ≤ t ≤ T} and a collection

of matrices E , {Es,t ∈ RN×K , 1 ≤ s ≤ t ≤ T}, that generates a sample path of trades

u , (u1, . . . , uT ) according to

(3.8) ut , ct +
t∑

s=1
Es,tfs,

for each time t = 1, 2, . . . , T .

Define C to be the set of parameters (E, c) such that the resulting sequence of trades u

is contained in the constraint set U , with probability 1, i.e., u is feasible. Denote by L ⊂ UF
the corresponding set of feasible linear policies.

Observe that linear rebalancing allow recourse, albeit in a restricted functional form.

The affine specification (3.8) includes several classes of polices of particular interest as

special cases:

• Deterministic policies. By taking Es,t , 0, for all 1 ≤ s ≤ t ≤ T , it is easy to see

that any deterministic policy is a linear rebalancing policy.
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• LQC optimal policies. Optimal portfolios for the LQC framework of Example 1 take

the form xt = Γx,txt−1 + Γf,tft, given matrices Γx,t ∈ RN×N , Γf,t ∈ RN×K , for all

1 ≤ t ≤ T , i.e., the optimal portfolio are linear in the previous position and the current

factor values. Equivalently, by induction on t,

xt =
(

t∏
s=1

Γx,s

)
x0 +

t∑
s=1

(
s−1∏
`=1

Γx,`

)
Γf,sfs.

Since ut = xt − xt−1, it is clear that the optimal trade ut is a linear function of the

fixed initial position x0, and the factor realizations {f1, . . . , ft}, and is therefore of the

form (3.8).

• Linear portfolio polices. Brandt et al. [2009a] suggest a class of policies where port-

folios are determined by adjusting a deterministic benchmark portfolio according to

a linear function of a vector of stochastic, time-varying firm characteristics. In my

setting, the firm characteristics would be interpreted as stochastic return predict-

ing factors. An analogous rule would determine the positions at each time t via

xt = x̄t + Θ>t (ft− f̄t). Here, f̄t is the expected factor realization at time t. The policy

is parameterized by x̄t, the deterministic benchmark portfolio at time t, and the ma-

trix Θt ∈ RN×K , which maps firm characteristics (standardized to be mean zero) to

adjustments to the benchmark portfolio. Such a portfolio rule is clearly of the form

(3.8).

• Policies based on basis functions. Instead of having policies that are directly affine

function of factor realizations, it is also possible to introduce basis functions. One

might consider, for example, ϕ : RK → RD, a collection of D (non-linear) functions

that capture particular features of the factor space that are important for good decision

making. Consider a class of policies of the form

ut , ct +
t∑

s=1
Es,tϕ(fs).

Such policies belong to the linear rebalancing class, if the factors are augmented

also to include the value of the basis functions. This is easily accommodated in my

framework, given the flexibility of Assumption 1. Similarly, policies which depend on
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the past security returns (in addition to factor realizations) can be accomodated by

augmenting the factors with past returns.

An alternative to solving the original optimal control problem (3.1) is to consider the

problem

(3.9) sup
π∈L

Eπ[p(x, f)],

which restricts to linear rebalancing rules. In general, (3.9) will not yield an optimal control.

The exception is if the optimal control for the problem is indeed a linear rebalancing rule

(e.g., in a LQC problem). However, (3.9) will yield the best possible linear rebalancing rule.

Further, in contrast to the original optimal control problem, (3.9) has the great advantage

of being tractable, as suggested by the following result:

Proposition 1. The optimization problem given by

(3.10)

maximize
E,c

E[p(x, f)]

subject to xt = xt−1 + ut, ∀ 1 ≤ t ≤ T,

ut = ct +
t∑

s=1
Es,tfs, ∀ 1 ≤ t ≤ T,

(E, c) ∈ C.

is a convex optimization problem, i.e., it involves the maximization of a concave function

subject to convex constraints.

Proof. Note that p(·, f) is concave for a fixed f by Assumption 3, and since x can be written

as an affine transformation of (E, c). Then, for each fixed f , the objective function is concave

in (E, c). Taking an expectation over f preserves this concavity. Finally, the convexity of

the constraint set C follows from the convexity of U , under Assumption 2. �

The problem (3.10) is a finite-dimensional, convex optimization problem that will yield

parameters for the optimal linear rebalancing policy. It is also a stochastic optimization

problem, in the sense that the objective is the expectation of a random quantity. In general,

there are a number of effective numerical methods that can been applied to solve such

problems:
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• Efficient exact formulation. In many cases, with further assumptions on the prob-

lem primitives (the reward function p(·), the dynamics of the factor realizations f ,

and the trading constraint set U), the objective E[p(x, f)] and the constraint set C

of the program (3.10) can be explicitly analytically expressed in terms of the deci-

sion variables (E, c). In some of these cases, the program (3.10) can be transformed

into a standard form of convex optimization program such as a quadratic program

or a second-order cone program. In such cases, off-the-shelf solvers specialized to

these standard forms [e.g., Grant and Boyd, 2011] can be used. Alternatively, generic

methods for constrained convex optimization such as interior point methods [see, e.g.,

Boyd and Vandenberghe, 2004] can be applied to efficiently solve large-scale instances

of (3.10). I will explore this topic further, developing a number of efficient exact

formulations in Section 3.4, and providing a numerical example in Section 3.5.

• Sample average approximation (SAA). In the absence of further structure on the

problem primitives, the program (3.10) can also be solved via Monte Carlo sampling.

Specifically, supposed that f (1), . . . , f (S) are S independent sample paths of factor

realization. The objective and constraints of (3.10) can be replaced with sampled

versions, to obtain

(3.11)

maximize
E,c

1
S

S∑
`=1

p
(
x(`), f (`)

)
subject to x

(`)
t = x

(`)
t−1 + u

(`)
t , ∀ 1 ≤ t ≤ T, 1 ≤ ` ≤ S,

u
(`)
t = ct +

t∑
s=1

Es,tf
(`)
s , ∀ 1 ≤ t ≤ T, 1 ≤ ` ≤ S,

u(`) ∈ U, ∀ 1 ≤ ` ≤ S.

The sample average approximation (3.11) can be solved via standard convex optimiza-

tion methods (e.g., interior point methods). Moreover, under appropriate regularity

conditions, convergence of the SAA (3.11) to the original program (3.10) can be es-

tablished as S → ∞, along with guarantees on the rate of convergence [Shapiro,

2003].

• Stochastic approximation. Denote the collection of decision variables in (3.10) by

z , (E, c), and, allowing a minor abuse of notation, define p(z, f) to be the reward
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when the sample path of factor realizations is given by f and the trading policy

is determined by z. Then, defining h(z) , p(z, f), the problem (3.10) is simply

to maximize h(z) subject to the constraint that z ∈ C. Under suitable technical

conditions, superdifferentials of h and p are related according to ∂h(z) = E[∂zp(z, f)].

Stochastic approximation methods are incremental methods that seek to estimate

ascent directions for h(·) from sampled ascent directions for p(·, f). For example,

given a sequence of i.i.d. sample paths of factor realizations f (1), f (2), . . ., a sequence

of parameter estimates z(1), z(2), . . . can be constructed according to

z(`+1) = ΠC
(
z(`) + γ`ζ`

)
,

where ΠC(·) is the projection onto the feasible set C, ζ` ∈ ∂zp(z(`), f (`) ) is a supergradi-

ent, and γ` > 0 is a step-size. Stochastic approximation methods have the advantage

of being incremental and thus requiring minimal memory relative to sample average

approximation, and are routinely applied in large scale convex stochastic optimization

[Nemirovski et al., 2009].

One attractive feature of the sample average approximation and stochastic approxima-

tion approaches is that they can be applied in a data-driven fashion. These methods need

access only to simulated trajectories of factors and returns — they do not need explicit

knowledge of the dynamics in Assumption 1 that drive these processes. Hence, an optimal

linear rebalancing policy can be determined using, for example, historical data to construct

simulated trajectories, without specifying and estimating an explicit functional form for the

factor and return dynamics.

Finally, observe that optimal linear policies can also be applied in concert with model

predictive control (MPC). Here, at each time step t, the program (3.10) is resolved beginning

from time t. This determines the optimal linear rebalancing rule from time t forward,

conditioned on the realized history up to time t. The resulting policy is only used to

determine the trading decision at the then current time t, and (3.10) is subsequently resolved

at each future time period. At the cost of an additional computational burden, the use of

optimal linear policies with MPC subsumes standard MPC approaches, such as resolving a

myopic variation of the portfolio optimization problem (and ignoring the true multiperiod
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nature) or solving a deterministic variation of the portfolio optimization problem (and

ignoring the possibility of future recourse).

3.4. Efficient Exact Formulations

In this section, I will provide efficient exact formulations of dynamic portfolio choice prob-

lems using the class of linear policies for my feasible set of policies. In particular, I will

consider a number of the examples of dynamic portfolio choice problems discussed in Sec-

tion 3.2.1. These examples include features such as constraints on portfolio holdings, trans-

action costs, and risk measures. In each case, I will demonstrate how the optimization

problem (3.10) can be transformed into a deterministic convex program by explicit analyt-

ical evaluation of the objective function E[p(·, f)] and the constraint set C.

Exact formulations require the evaluation of expectations taken over the sample path of

factor realizations f . In order to do this, I will make the following assumption for the rest

of this section:

Assumption 4 (Gaussian factors). Assume that the sample path f of factor realizations is

jointly Gaussian. In particular, denote by Ft , (f1, . . . , ft)> ∈ RKt the vector of all factors

observed by time t. I assume that Ft ∼ N(θt,Ωt), where θt ∈ RKt is the mean vector and

Ωt ∈ RKt×Kt is the covariance matrix.

With this assumption, the trades of any linear policy will also be jointly normally

distributed, as each such policy is affine transformations of the factors. Formally, let

(3.12) Mt ,
[
E1,t E2,t . . . Et,t

]
∈ RN×Kt

be the matrix of time t policy coefficients, so that the trade vector is given by ut = ct+MtFt.

With this representation, it is easy see that ut ∼ N(ūt, Vt), where the mean vector and

covariance matrix are given by

ūt , E[ut] = ct +Mtθt, Vt , Var(ut) = MtΩtM
>
t .(3.13)

Similarly, the portfolio xt at time t is normally distributed. I have that

(3.14) xt = x0 +
t∑
i=1

ui = x0 +
t∑
i=1

(
ci +

i∑
s=1

Es,ifs

)
= dt +

t∑
s=1

Js,tfs,
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where dt , x0 +
∑t
i=1 ci and Js,t ,

∑t
`=sEs,`. With this representation, it is easy see that

xt ∼ N(κt, Yt), where

κt , E[xt] = dt + Ptθt, Yt , Var(xt) = PtΩtP
>
t ,(3.15)

Pt ,
[
J1,t J2,t . . . Jt,t

]
.(3.16)

3.4.1. Linear Constraints

I will provide formulations for linear equality or inequality constraints on trades or positions,

in the context of linear rebalancing policies. These type of constraint appear frequently in

portfolio choice due to regulatory reasons such as short sale restriction, liquidation purposes

or diversification needs such as keeping a specific industry exposure under a certain limit.

3.4.1.1. Equality Constraints

Equality constraints appear often in portfolio choice, particularly in portfolio execution

problems when the investor needs to liquidate a certain portfolio (i.e., xT = 0) or construct

a certain target portfolio by the end of the time horizon (i.e., xT = x̄).

Suppose that for some time t, have a linear equality constraint on the trade vector ut,

of the form Aut = b. Here, A ∈ RM×N and b ∈ RN . This constraint can be written as

(3.17) Act +AMtFt = b.

Under Assumption 4, the left hand side of the (3.17) is normally distributed. Therefore,

for (3.17) to hold almost surely, I must have that the left hand side have mean b and zero

covariance. Thus, I require that

Act = b, AMt = 0.(3.18)

Thus, the linear equality constraint (3.17) on the trade vector ut is equivalent to the linear

equality constraint (3.18) on the policy coefficients (ct,Mt). Linear equality constraints on

the portfolio position xt can be handled similarly.
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3.4.1.2. Inequality Constraints

Inequality constraints on trades or positions are common as well. One example is a short-sale

constraint, which would require that xt ≥ 0 for all times t. When the factor realizations do

not have bounded support, inequality constraints cannot be enforced almost surely. This is

true in the Gaussian case: there is a chance, however small, that factors may take extreme

values, and if the policy if a linear function of the factors, this may cause an inequality

constraint to be violated.

In order to account for such constraints in a linear rebalancing policy, instead of enforcing

inequality constraints almost surely, we will enforce them at a given level of confidence. For

example, given a vector a ∈ RN and a scalar b, instead of enforcing the linear constraint

a>ut ≤ b, almost surely, we can consider a relaxation where seek to guarantee that it

is violated with small probability. In other words, we can impose the chance constraint

P(a>ut > b) ≤ η, for a small value of the parameter η. The following lemma, whose proof

can be found in the Online Supplement, illustrates that this can be accomplished explicitly:

Lemma 3. Given η ∈ [0, 1/2], a non-zero vector a ∈ RN , and a scalar b, the chance con-

straint P(a>ut > b) ≤ η is equivalent to the constraint

a> (ct +Mtθt)− b+ Φ−1(1− η)
∣∣∣∣∣∣Ω1/2

t M>t a
∣∣∣∣∣∣

2
≤ 0

on the policy coefficients (ct,Mt), where Φ−1(·) is the inverse cumulative normal distribu-

tion.

A similar approach be applied to incorporate linear inequality constraints on the port-

folio position xt with high confidence.

In many situations (e.g., short-sale constraints), it may not be sufficient to enforce an

inequality constraint only probabilistically. In such cases, when a linear rebalancing policy

is applied, the resulting trades can be projected onto the constraint set so as to ensure

that the constraints are always satisfied. When the linear policy is designed, however, it

is helpful to incorporate the desired constraints probabilistically so as to account for their

presence. I will demonstrate this idea in the application in Section 3.5.
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3.4.2. Transaction Costs

In this section, I will provide efficient exact formulations for the transaction cost functions

discussed in Section 3.2.1, in the context of linear rebalancing policies. In general, once

might consider a total transaction cost of

TC(u) ,
T∑
t=1

TCt(ut)

for executing the sample path of trades u, where TCt(ut) is the cost of executing the trade

vector ut at time t. As seen in Section 3.2.1, we typically wish to subtract an expected

transaction cost term from investor’s objective. Hence efficient exact formulations for trans-

action costs involve explicit analytical computation of E[TC(u)] =
∑T
t=1 E[TCt(ut)], when

each trade vector ut is specified by a linear policy.

Under a linear policy, ut ∼ N(ūt, Vt) is distributed as a normal random variable, with

mean and covariance (ūt, Vt) specified from the policy (E, c) coefficients through (3.13).

Then, the evaluation of expected transaction costs reduces to the evaluation of the expected

value of the per period transaction cost function TCt(·) for a Gaussian argument. This can

be handled on a case-by-case basis as follows:

• Quadratic transaction costs. In the case of quadratic transaction costs, as seen in Ex-

ample 1, the per period transaction cost function is given by TCt(ut) , 1
2u
>
t Λut, where

Λ ∈ RN×N is a positive definite matrix. In this case, E[TCt(ut)] = 1
2 (ūtΛūt + tr(ΛVt)) .

• Proportional transaction costs. In the case of proportional transaction costs, as

discussed in Example 3, the per period transaction cost function is given by

TCt(ut) ,
N∑
i=1

χi|ut,i|,

where χi > 0 is a proportionality constant specific to security i. Using the properties

of the folded normal distribution, I obtain

E[TCt(ut)] =
N∑
i=1

χi

√2Vt,i
π

exp
{
−
ū2
t,i

2Vt,i

}
+ ūt,i

{
1− 2Φ

(
− ūt,i√

Vt,i

)} ,
where Φ(·) is the cumulative distribution function of a standard normal random vari-

able.
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• Nonlinear transaction costs. In the case of nonlinear transaction costs, as discussed

in Example 3, the per period transaction cost function is given by

TCt(ut) ,
N∑
i=1

χi|ut,i|β,

where χi > 0 is a proportionality constant specific to security i, and β ≥ 1 is an

exponent capturing the degree of nonlinearity. As in the proportional case, evaluating

the Gaussian expectation explicitly results in

E[TCt(ut)] =
N∑
i=1

χiΓ
(1 + β

2

) (2Vt,i)
β
2

√
π

1F1

(
−β2 ; 1

2;−
ū2
t,i

2Vt,i

)
,

where Γ(·) is the gamma function and 1F1(·) is the confluent hypergeometric function

of the first kind.

3.4.3. Terminal Wealth and Risk Aversion

In many of the portfolio choice examples in Section 3.2.1, an investor wishes to maximize

expected wealth net of transaction costs, subject to a penalty for risk, i.e.,

(3.19) maximize
π∈UF

Eπ
[
W (x, r)− TC(u)− RA(x, f , r))

]
.

Here, W (·) is the terminal wealth associated with a sample path, TC(·) are the transaction

costs, and RA(·) is a penalty for risk aversions. Exact calculation of expected transaction

costs for linear policies were discussed in Section 3.4.2. Here, I will discuss exact calculation

of the expected terminal wealth and the risk aversion penalty.

To begin, note that the terminal wealth depends on realized returns in addition to factor

realizations. Hence, I will make the following assumption:

Assumption 5 (Gaussian returns). As in Example 1, assume that for each time t ≥ 0, returns

evolve according to

(3.20) rt+1 = µt +Bft + ε
(2)
t+1,

where µt is a deterministic vector, B is a matrix of factor loadings, and ε(2)
t are zero-mean

i.i.d. Gaussian disturbances with covariance Σ.
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Note that the critical assumption I am making here is that the factor realizations f and

the sample path of security returns r are jointly Gaussian. The particular form (3.20) is

chosen out of convenience but is not necessary.

We can calculate the expected terminal wealth as

E[W (x, r)] = W0 +
T∑
t=1

E[x>t rt+1] = W0 +
T∑
t=1

(
µ>t κt + E[x>t Bft]

)
,

= W0 +
T∑
t=1

(
µ>t κt + d>t Bδt +

t∑
s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sJ>s,tωs

)))
,

where ωs is the sth K ×K diagonal block matrix of Ωt.

For the risk aversion penalty, I consider two cases:

• Per period risk penalty. Consider risk aversion penalties that decompose over time

as

RA(x, f , r) =
N∑
t=1

RAt(xt),

where RAt(·) is a function which penalizes for risk aversion based on the positions held

at time t. One such case is the quadratic penalty RAt(xt) , γ
2x
>
t Σxt of Example 1,

where γ > 0 is a risk penalty proportionality constant. Here, the investor seeks to

penalize in proportion to the conditional per period variance of the portfolio value. So

long as the expectation of RAt(·) can be calculated for Gaussian arguments, then the

overall expected risk aversion penalty can be calculated exactly. This can be accom-

plished for a variety of functions. For example, quadratic penalties can be handled in

a manner analogous to the quadratic transaction costs discussed in Section 3.4.2.

• Terminal wealth risk penalty. Alternatively, as discussed in Example 4, a more

natural risk aversion criteria might be to penalize risk as a function of the terminal

wealth. Specifically, an investor with a quadratic utility function would consider

a risk aversion penalty RA(x, f , r) , −γ
2W (x, r)2, where γ > 0 is a risk penalty

proportionality constant. I show in the Online Supplement that E[W (x, r)2] can be

analytically computed and the resulting expression is a quadratic convex function of

policy coefficients. Note that handling this quadratic penalty enables to accommodate

mean-variance type objectives on the terminal wealth.
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3.5. Application: Equity Agency Trading

In this section, I provide an empirical application to illustrate the implementation and the

benefits of the optimal linear policy. As my example, I consider an important problem in

equity agency trading. Equity agency trading seeks to address the problem faced by large

investors such as pension funds, mutual funds, or hedge funds that need to update the

holdings of large portfolios. Here, the investor seeks to minimize the trading costs associ-

ated with a large portfolio adjustment. These costs, often labeled ‘execution costs’, consist

of commissions, bid-ask spreads, and, most importantly in the case of large trades, price

impact from trading. Efficient execution of large trades is accomplished via ‘algorithmic

trading’, and requires significant technical expertise and infrastructure. For this reason,

large investors utilize algorithmic trading service providers, such as execution desks in in-

vestment banks. Such services are often provided on an agency basis, where the execution

desk trades on behalf of the client, in exchange for a fee. The responsibility of the execution

desk is to find a feasible execution schedule over the client-specified trading horizon while

minimizing trading costs and aligning with the risk objectives of the client.

The problem of finding an optimal execution schedule has received a lot of attention in

the literature since the initial chapter of Bertsimas and Lo [1998]. In their model, when

price impact is proportional to the number of shares traded, the optimal execution schedule

is to trade equal number of shares at each trading time. There are number of papers that

extend this model to incorporate the risk of the execution strategy. For example, Almgren

and Chriss [2000] derive that risk averse agents need to liquidate their portfolio faster in

order to reduce the uncertainty of the execution cost.

The models described above seek mainly to minimize execution costs by accounting for

the price impact and supply/demand imbalances caused by the investor’s trading. Com-

plementary to this, an investor may also seek to exploit short-term predicability of stock

returns to inform the design of a trade schedule. As such, there is a growing interest to

model return predictability in intraday stock returns. Often called ‘short-term alpha mod-

els’, some of the predictive models are similar to well-known factor models for the study

of long-term stock returns, e.g., the Capital Asset Pricing Model (CAPM), or the Fama-

French Three Factor Model. Alternatively, short-term predictions can be developed from
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microstructure effects, for example the imbalance of orders in an electronic limit order book.

Heston et al. [2010] document that systematic trading as described in the examples above

and institutional fund flows lead to predictable patterns in intraday returns of common

stocks.

I will consider an agency trading optimal execution problem in the presence of short-

term predictability. One issue that arises here is that, due to the regulatory rules in agency

trading, the execution desk is only allowed to either sell or buy a particular security over

the course of the trading horizon, depending on whether the ultimate position adjustment

desired for that security is negative or positive. However, given a model for short-term

predictability, an optimal trading policy that minimizes execution cost may result in both

buy and sell trades for the same security as it seeks to exploit short-term signals. Hence, it

is necessary to impose constraints on the sign of trades, as in Example 2.

If an agency trading execution problem has price and factor dynamics which satisfy

Assumption 1 and an objective (including transaction costs, price impact, and risk aversion)

that satisfies Assumption 3, then we can compute the best execution schedule in the space

of linear execution schedules, i.e., the number of shares to trade at each time is a linear

function of the previous return predicting factors. I will consider a particular formulation

that involves linear price and factor dynamics and a quadratic objective function (as in

Example 1). Note that this example does not highlight the full generality of my framework

— more interesting cases would involve non-linear factor dynamics (e.g., microstructure-

based order imbalance signals) or a non-quadratic objective (e.g., transaction costs as in

Example 3). However, this example is intentionally chosen since, in the absence of the trade

sign constraint, the problem can be solved exactly with LQC methods. Hence, are able to

compare the optimal linear policy to policies derived from LQC methods applied to the

unconstrained problem.

The rest of this section is organized as follows. I present my optimal execution problem

formulation in Section 3.5.1. An exact, analytical solution is not available to this problem,

hence, in Section 3.5.2, I describe several approximate solution techniques, including finding

the best linear policy. In order to evaluate the quality of the approximate methods, in

Section 3.5.3, I describe several techniques for computing upper bounds on the performance
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of any policy for my execution problem. In Section 3.5.4, I describe the empirical calibration

of the parameters of my problem. Finally, in Section 3.5.5, I present and discuss the

numerical results.

3.5.1. Formulation

I follow the general framework of Section 4.2. Suppose that x0 ∈ RN denotes the number

of shares in each of N securities that we would like to sell before time T . I assume that

trades can occur at discrete times, t = 1, . . . , T . We define an execution schedule to be the

collection u , (u1, . . . , uT ), where each ut ∈ RN denotes the number of shares traded at

time t. Note that a negative (positive) value of ui,t denotes a sell (buy) trade of security i

at time t. The total position at time t is given by xt = x0 +
∑t
s=1 us.

The formulation of the agency trading optimal execution problem is as follows:

• Constraints. Without loss of generality, I will assume that the initial position is

positive, i.e., x0 > 0. The execution schedule must liquidate the entire initial position

by the end of the time horizon, thus

(3.21) xT = x0 +
T∑
t=1

ut = 0.

Further, agency trading regulations allow only sell trades, thus

(3.22) ut ≤ 0, t = 1, . . . , T.

Note that any schedule satisfying (3.21)–(3.22) will also satisfy

(3.23) xt = x0 +
t∑

s=1
us ≥ 0, t = 1, . . . , T.

I denote by U0
F the set of non-anticipating policies satisfying (3.21) almost surely, and

by UF the set of non-anticipating policies satisfying (3.21)–(3.23) almost surely.

• Return and factor dynamics. I follow the discrete time linear dynamics of Garleanu

and Pedersen [2012],5 as described in Example 1. I assume that the price change of
5Note that Garleanu and Pedersen [2012] consider an infinite horizon setting, while my setting is finite

horizon. Further, Garleanu and Pedersen [2012] solve for dynamic policies in the absence of the constraints

(3.21)–(3.23).
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each security from t to t+ 1 is given by the vector rt+1, and is predicted by K factors

collected in a vector ft. Furthermore, the evolution of factor realizations follow a

mean reverting process. Formally, I have the following dynamics for price changes

and factor realizations:

ft+1 = (I − Φ) ft + ε
(1)
t+1, rt+1 = µ+Bft + ε

(2)
t+1,

where B ∈ RN×K is a constant matrix of factor loadings, Φ ∈ RK×K is a diagonal

matrix of mean reversion coefficients for the factors, and µ ∈ RN is the mean return.

I assume that the noise terms are i.i.d., and normally distributed with zero-mean and

with covariance matrices given by. Var(ε(1)
t+1) = Ψ ∈ RN×N and Var(ε(2)

t+1) = Σ ∈

RK×K . I discuss the precise choice of return predicting factors and the calibration of

the dynamics shortly in Section 3.5.4.

• Objective. I assume that the investor is risk-neutral and seeks to maximize total

excess profits after quadratic transaction costs, i.e.,

(3.24) V∗ , maximize
π∈UF

Eπ
[
T∑
t=1

(
x>t Bft − 1

2u
>Λut

)]
,

where Λ ∈ RN×N is a matrix parameterizing the quadratic transaction costs.

Note that the problem (3.24) is a special case of the optimization program in Example 1,

with the exception of the constraints (3.21)–(3.23).

3.5.2. Approximate Policies

Since an exact, analytical solution is not available, I compare four approximate solution

techniques to solve the optimal execution problem in (3.24):

• Deterministic. Instead of allowing for a non-anticipating dynamic policy, where the

trade at each time t is allowed to depend on all events that have occurred before t,

we can solve for an optimal static policy, i.e., a deterministic sequence of trades over

the entire time horizon that is decided at the begininning of the time horizon. Here,

observe that at the beginning of the time horizon, the expected future factor vector

is given by E[ft|f0] = (I−Φ)tf0. Therefore, in order to find the optimal deterministic
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policy, given f0, I maximize the conditional expected value of the stochastic objective

in (3.24) by solving the quadratic program

(3.25)

maximize
u

T∑
t=1

(
x>t B(I − Φ)tf0 − 1

2u
>
t Λut

)
subject to ut = xt − xt−1, t = 1, . . . , T,

ut ≤ 0, xt ≥ 0, t = 1, . . . , T,

xT = 0,

to yield a deterministic sequence of trades u.

• Model predictive control. In this approximation, at each trading time, I solve for

the deterministic sequence of trades conditional on the available information and

implement only the first trade. Thus, this policy is an immediate extension of the

deterministic policy ,with the addition of resolving at each trading time. Formally, at

time t, I solve the quadratic program

(3.26)

maximize
ut,...,uT

T∑
s=t

(
x>s B(I − Φ)(s−t)ft − 1

2u
>
s Λus

)
subject to us = xs − xs−1, s = t, . . . , T,

us ≤ 0, xs ≥ 0, s = t, . . . , T,

xT = 0.

If (u∗t , . . . , u∗T ) is the optimal solution, then the investor trades u∗t at time t.

• Projected LQC. If the inequality constraints (3.22)–(3.23) are eliminated, the program

would reduce to the classical linear quadratic control problem

(3.27) maximize
π∈U0

F

Eπ
[
T∑
t=1

(
x>t Bft − 1

2u
>
t Λut

)]
.

The optimal dynamic policy for the program in (3.27) yields the trade

(3.28) ut = (Λ +Axx,t+1)−1 (Λxt−1 + (B +Axf,t+1 (I − Φ)) ft)− xt−1

at each time t as a function of the previous position xt−1 and the current factor values

ft. Here, the matrices Axx,t+1 and Axf,t+1 are derived in the Online Supplement.

The dynamic rule for ut in (3.28) of course will not be feasible for the constrained
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program (3.24), in general. This, the projected LQC policy seeks a trade decision,

ût, which is the projection of ut onto the constraint set (3.22)–(3.23), i.e., ûi,t =

max {−xi,t−1,min {0, ui,t}} , for each time t < T and for each security i.

• Optimal linear. As formulated in Definition 2, a linear rebalancing policy specifies

trades according to

ut , ct +
t∑

s=1
Es,tfs,

for each time t = 1, 2, . . . , T , given parameters (E, c). Due to the linear relationship

between position and trade vectors, I can represent the position vector in the similar

form, i.e., xt = dt +
∑t
s=1 Js,tfs where dt , x0 +

∑t
i=1 ci and Js,t ,

∑t
i=sEs,i. As

in Section 3.4.1.1, I implement the almost sure equality constraint (3.21) via equality

constraints on the policy parameters by setting dT = 0, and Jt,T = 0 for all t. I replace

the almost sure inequality constraints (3.22)–(3.23) with probabilistic relaxations, as

in Section 3.4.1.2. With these assumptions, I compute the parameters of the optimal

linear policy by solving the following stochastic program:

(3.29)

maximize
(E,c)

E

 T∑
t=1

(dt +
t∑

s=1
Js,tfs

)>
Bft − 1

2

(
ct +

t∑
s=1

Es,tfs

)>
Λ
(
ct +

t∑
s=1

Es,tfs

)
subject to dt = x0 +

t∑
i=1

ci, 1 ≤ t ≤ T,

Js,t =
t∑
i=s

Es,i, 1 ≤ s ≤ t ≤ T,

P
(
dt +

t∑
s=1

Js,tfs < 0
)
≤ η, 1 ≤ t ≤ T,

P
(
ct +

t∑
s=1

Es,tfs > 0
)
≤ η, 1 ≤ t ≤ T,

dT = 0,

Jt,T = 0, 1 ≤ t ≤ T.

Here, the parameter η ∈ (0, 1/2) controls the probability that the constraints (3.22)–

(3.23) are violated.6 Using the fact that the objective is an expectation of a quadratic

expression in Gaussian random variables and the fact that the chance constraints can
6I used the value η = 0.2 in my simulation results.
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be handled using Lemma 3, (3.29) can be explicitly written as a second-order cone

program. This calculation is detailed in the Online Supplement. Then, (3.29) can be

solved using an off-the-shelf convex optimization solver.

The solution of the (3.29) provides the desired linear policy, ut = ct +
∑t
s=1Es,tfs, in

the return predicting factors. However, due to the fact that some of the constraints

of the original program in (3.24) are only probabilistically enforced, ut may not be

feasible for the original program. The projected optimal linear policy seeks a trade

decision, ût, which is the projection of ut onto the constraint set (3.22)–(3.23), i.e.,

ûi,t = max {−xi,t−1,min {0, ui,t}} , for each time t < T and security i.

3.5.3. Upper Bounds

In order to evaluate the quality of the policies described in Section 3.5.2, I compute a

number of upper bounds on the performance of the any policy for the program (3.24), as

follows:

• Perfect foresight. In this upper bound, I compute the value of an optimal policy with

the perfect knowledge of future factor values. In particular, given a vector of factor

realizations f , consider the optimization problem

(3.30)

VPF(f) , maximize
u

T∑
t=1

(
x>t Bft − 1

2u
>
t Λut

)
subject to ut = xt − xt−1, t = 1, . . . , T,

ut ≤ 0, xt ≥ 0, t = 1, . . . , T,

xT = 0.

The value VPF(f) is the best that can be achieved with perfect foresight of a particular

sample path of factors f . Note that this can be readily computed by solving the

quadratic program (3.30). Since the non-anticipating policies of the original program

(3.24) are not able to utilize future factor information in making trading decisions, I

have the upper bound V∗ ≤ E[VPF(f)]. This upper bound can be computed via Monte

Carlo simulation over sample paths of factor realizations.

• Unconstrained LQC. The value of the LQC problem (3.27), where the inequality
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constraints (3.22)–(3.23) are relaxed, also provides an upper bound to (3.24). The

expected value of the relaxed program can be exactly computed and yields the upper

bound

(3.31) V∗ ≤ −1
2x
>
0 Axx,0x0 + 1

2

(
tr
(
Ω0(I − Φ)>Aff,0(I − Φ)

)
+
T−2∑
t=0

tr(ΨAff,t)
)
,

where the matrices Axx,0 and Aff,t are derived in the Online Supplement.

• Pathwise optimization. Given a sample path f of factor realizations and a sequence

ζ , (ζ1, . . . , ζT ) of vectors ζt ∈ RK for each t, consider the quadratic optimization

program

(3.32)

VPO(f , ζ) , maximize
u

T∑
t=1

(
x>t Bft − ζ>t ε

(1)
t − 1

2u
>
t Λut

)
subject to ε

(1)
t = ft − (I − Φ)ft−1, t = 1, . . . , T,

ut = xt − xt−1, t = 1, . . . , T,

ut ≤ 0, xt ≥ 0, t = 1, . . . , T,

xT = 0.

It can be established [Desai et al., 2011; Brown and Smith, 2010] that for any ζ,

the upper bound V∗ ≤ E[VPO(f , ζ)] holds — observe that the perfect foresight upper

bound is a special case of this when ζ is zero. Roughly speaking, this upper bound cor-

responds to a relaxation of the non-anticipating policy requirement, and ζ correspond

to a choice of Lagrange multipliers for this relaxation. The pathwise optimization

upper bound corresponds to making a choice for ζ that results in an optimal upper

bound, i.e., V∗ ≤ minζ E[VPO(f , ζ)]. This minimization involves a convex objective

function and can be computed via stochastic gradient descent; I refer the reader to

Desai et al. [2011] for details.

3.5.4. Model Calibration

In this section, I describe the calibration the parameters of the optimal execution problem

formulated in Section 3.5.1. I chose one of the most liquid stocks, Apple, Inc. (NASDAQ:

AAPL), for my empirical study. I set the execution horizon to be 1 hour and trade intervals

to be 5 minutes. Thus, setting a trade interval to be a one unit of time, I have a time
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horizon of T = 12, I assume that the the initial position to be liquidated is x0 = 100,000

shares.

In trade execution problems, the time horizon is typically a day, thus I will construct

a factor model in the same time-frequency. I will use the intraday transaction prices of

AAPL from the NYSE TAQ database on the trading days of January 4, 2010 (day 0) and

January 5, 2010 (day 1) to construct K = 2 return predicting factors, each with a different

mean reversion speed. I first divide each trading day into 78 time intervals, each 5 minutes

in length. For each 5 minute interval, I calculate the average transaction price from all

transactions in that interval. Let p(d)
t be the average price for interval t = 1, . . . , 78 on day

d = 0, 1. Let fk,t be the value of factor k = 1, 2 for interval t = 2, . . . , 78, defined as follows

f1,t , p
(1)
t − p

(1)
t−1, f2,t , p

(1)
t − p

(0)
t .

In other words, f1,t is the average price change over the previous 5 minute interval, while

f2,t is the average price change relative to the previous day. Here, I can interpret the factors

as the representations of value and momentum signals. Intuitively, the first factor can be

considered as a ‘momentum’-type signal with fast mean reversion and the second factor as

a ‘value’-type signal with slow mean reversion.

Given the price change of the security rt+1 , p
(1)
t+1− p

(1)
t , I can compute the estimate of

the factor loading matrix, B, using the following pooled regression:

rt+1 = 0.0726 + 0.3375 f1,t − 0.0720 f2,t + ε
(2)
t+1,

(1.96) (3.11) (−2.2)

where the OLS t-statistics are reported in brackets. Thus,

B =
[
0.3375 −0.072

]
.

Similarly, I obtain the mean reversion rates for the factors,

∆f1,t+1 = −0.0353 f1,t + ε
(1)
1,t+1, ∆f2,t+1 = −0.7146 f2,t + ε

(1)
2,t+1.

(−1.16) (−6.62)

Thus,

Φ =

0.0353 0

0 0.7146

 .
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The variance of the error terms is estimated to be

Σ , Var(ε(1)
t ) = 0.0428, Ψ , Var(ε(2)

t ) =

0.0378 0

0 0.0947

 .
The distribution of the initial factor realization, f0, is set to the stationary distribu-

tion under the given factor dynamics, i.e., f0 is normally distributed with zero mean and

covariance

Ω0 ,
∞∑
t=1

(I − Φ)t Ψ (I − Φ)t =

0.0412 0

0 1.3655

 .
A rough estimate of the transaction cost coefficient Λ = 2.14 × 10−5 is used — this

implies a transaction cost of $10 on a typical trade of 1,000 shares.

3.5.5. Numerical Results

Using the calibrated parameters from Section 3.5.4, I run a simulation with 50,000 trials to

estimate the performance of each of the approximate policies of Section 3.5.2. In each trial,

I sample the initial factor f0, solve for the resulting policy of each approximate method,

and compute its corresponding payoff. In order to evaluate the performance of each policy

effectively, I use the same set of simulation paths in each policy’s computation of average

payoff. I used CVX [Grant and Boyd, 2011], a package for solving convex optimization

problems in Matlab, to solve the optimization problems that occur in the computation of

the deterministic, model predictive control, and optimal linear policies.

Table 3.1 summarizes the performance of each policy. For each policy, I divide the total

payoff into two components, the alpha gains (i.e.,
∑T
t=1 x

>
t Bft) and the transaction costs

(i.e.,
∑T
t=1−u>t Λut). For each component as well as the total, I report the mean value

over all simulation trials and the associated standard error. Finally, I report the average

computation time (in seconds) required to evaluate each policy for a single simulation trial.

I observe that the optimal linear policy achieves the best performance. The gain of

the optimal linear policy is approximately 7% over the next closest policy, which is the

projected LQC policy. The performance of the other two policies is significantly worse.

Since the projected LQC policy has a closed form expression (given a one time solution of

recursive equations), its computation time per sample path is much smaller than that of the
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other policies, each of which involve solving at least one optimization problem per sample

path. The remaining policies have roughly the same order of magnitude in computation

time, with model predictive control (which solves a different optimization problem at every

time step) having the longest running time.

Despite the higher total payoff for the optimal linear policy as compared to the projected

LQC policy in Table 3.1, the relatively high standard errors preclude the immediate con-

clusion that the optimal linear policy achieves a statistically significant higher total payoff.

Thus, in order to provide a more careful comparison, for each simulation trial, I consider

the difference in alpha gains, transaction costs, and total payoff between these two policies.

Table 3.2 show the statistics of these differences, and establishes that the performance ben-

efit of the optimal linear policy is statistically significant. Moreover, Table 3.2 reveals that

the optimal linear policy achieves a better result by more carefully managing transaction

costs, at the expense of not achieving the alpha gains of the projected LQC policy.

Finally, observe that the bottom half of Table 3.1 reports upper bounds on the total

payoff of any policy, as computed using the methods described in Section 3.5.3. The path-

wise optimization method achieves the tightest upper bound. Comparing this with the

performance of the optimal linear policy, I conclude that the optimality gap of employing

the optimal linear policy is less than 5% of the optimal value of the original program in

(3.24).

3.6. Conclusion

This chapter provides a highly tractable formulation for determining rebalancing rules in

dynamic portfolio choice problems with involving complex models of return predictability.

My rebalancing rule is a linear function of past return predicting factors and can be utilized

in a wide spectrum of portfolio choice models with realistic considerations for risk measures,

transaction costs, and trading constraints. I illustrate the broad utility of my method by

showing its applicability across a broad range of modeling assumptions on these portfolio

optimization primitives. As long as the underlying dynamic portfolio optimization problem

is a convex programming problem (i.e., concave objective and convex decision constraints),
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Alpha TC Total CPU time (sec)

Policies



Deterministic
Mean 19.34 -15.81 3.53 0.82

S.E. 0.229 0.025 0.224

Model predictive control
Mean 21.25 -16.54 4.71 5.79

S.E. 0.233 0.023 0.225

Projected LQC
Mean 25.13 -19.40 5.73 0.02

S.E. 0.227 0.039 0.229

Optimal linear
Mean 23.24 -17.11 6.13 4.23

S.E. 0.233 0.025 0.224

Upper

Bounds



Pathwise optimization
Mean 6.46

S.E. 0.04

Perfect foresight
Mean 8.57

S.E. 0.223

Unconstrained LQC
Mean 12.58

S.E. n/a

Table 3.1: Summary of the performance statistics of each policy, along with upper bounds. In

the upper half of the table I consider the approximate policies. For each approximate policy,

I divide the total payoff into two components, the alpha gains and the transaction costs. For

each performance statistic, I report the mean value and the associated standard error. Finally,

I report the average computation time (in seconds) for each policy per simulation trial. In the

bottom half of the table, I report the computed upper bounds on the total payoff. For those

methods which involve Monte Carlo simulation, standard errors are also reported.
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(Optimal Linear)− (Projected LQC)

Alpha TC Total

Mean -1.89 2.29 0.40

S.E. 0.0137 0.0196 0.0095

Table 3.2: Detailed comparison between the alpha gains, transaction costs, and total perfor-

mance of the optimal linear policy and projected dynamic policy. I observe that the standard

error for the difference in total payoff is very small, thus, the performance gain by employing

the optimal linear policy is statistically significant.

the modified optimization problem seeking the optimal parameters of the linear decision

rule will be a convex programming problem that is tractable numerically. I demonstrate in

an optimal execution problem that such modeling flexibility can offer significant practical

benefits.
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Chapter 4

Common Factor Shocks in Strategic

Asset Allocation

4.1. Introduction

Strategic asset allocation has been a central objective for institutional investors in active

asset management due to changes in the estimates of expected future returns. With the

new estimates for the future returns, the asset manager needs to update the holdings of

the portfolio while aligning with the risk objectives of the fund and keeping trading costs

to a minimum. On top of these tradeoffs, expected future returns are often correlated

with various market conditions such as volatility and liquidity. Characterizing an optimal

rebalancing rule under these complex dynamics, interactions and restrictions is a daunting

task if not impossible.

Many dynamic portfolio choice models need to impose restrictive assumptions, yet often

unrealistic, about return generating model in order to achieve a tractable solution. A recent

simplifying assumption has been using number of shares in the portfolio decision vector in

order to linearize the state dynamics. Using number of shares versus dollar holdings also

required to use price changes in dollars instead of percentage terms. However, it is well-

known that price changes are not stationary, cannot be estimated effectively using linear

regression techniques. In this essay, I keep the nonlinear structure in the wealth evolution

but instead of trying to solve the problem to optimality, I use linear policies in order to
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obtain a near-optimal policy. I obtain a closed-form solution for our policy parameters

which allows us to expand the universe of parameters quite easily.

I have tremendous freedom in modeling the dynamics of the return predicting factors. In

a realistic framework, I allow for factor dependent covariance structure in returns driven by

common factor shocks i.e., stochastic volatility. Furthermore, I can also have time-varying

liquidity costs which are correlated with the expected returns of the factors. Our model

involves the standard wealth equation in dollars and nonlinear dynamics for the position

holdings due to the shocks to the existing wealth with current returns.

I provide a well-calibrated simulation study to analyze the performance metrics of our

approach. Our simulation study shows that best linear policy provides significant benefits

compared to other frequently used policies in the literature, especially when the transaction

costs are high and returns evolve according to factor dependent covariance structure. Unlike

other parametric approaches studied so far, our approach provides a closed form solution

and the driver of the policy dynamics can be analyzed in full detail.

4.1.1. Related literature

I addressed a similar review in the previous chapter but I will re-emphasize some of the

references again in this chapter’s context.

The vast literature on dynamic portfolio choice starts with the seminal paper by Merton

[1971] which studies the optimal dynamic allocation of one risky asset and one bond in the

portfolio in a continuous-time setting. Following this seminal paper, there has been a

significant literature aiming to incorporate the impact of various frictions on the optimal

portfolio choice. For a survey on this literature, see Cvitanic [2001]. Constantinides [1986]

studies the impact of proportional transaction costs on the optimal investment decision

and observes path dependence in the optimal policy. Similarly, Davis and Norman [1990],

and Dumas and Luciano [1991a] study the impact of transaction costs on the the optimal

investment and consumption decision by formally characterizing the trade and no-trade

regions. One drawback of all these papers is that the optimal solution is only computed in

the case of a single stock and bond. Liu [2004] extends this result to multiple assets but

assumes that asset returns are not correlated.
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There is a growing literature on portfolio selection that incorporates return predictability

with transaction costs. Balduzzi and Lynch [1999] and Lynch and Balduzzi [2000] illustrate

the impact of return predictability and transaction costs on the utility costs and the op-

timal rebalancing rule by discretizing the state space of the dynamic program. Recently,

Brown and Smith [2010] provides heuristic trading strategies and dual bounds for a general

dynamic portfolio optimization problem with transaction costs and return predictability.

Brandt et al. [2009a] parameterizes the rebalancing rule as a function of security charac-

teristics and estimates the parameters of the rule from empirical data without modeling

the distribution of the returns and the return predicting factors. Our approach is also a

linear parametrization of return predicting factors, but at the micro-level, I seek to obtain

a policy that is coherent with the update of the position holdings in a nonlinear fashion.

Thus, our linear policy uses the convolution of the factors with their corresponding returns

in order to correctly satisfy the wealth equation at all times. On a separate note, I solve

for the optimal policy in closed-form using a deterministic linear quadratic control and can

achieve greater flexibility in parameterizing the trading rule.

Garleanu and Pedersen [2012] achieve a closed-form solution for a model with linear

dynamics in return predictors and quadratic function for transaction costs and quadratic

penalty term for risk. However, the model for the security returns is given in price changes

which suffers highly from non-stationarity. This use of price changes is highly nonstandard

and cannot be accommodated with the existing models for return predictability that almost

always uses percentage returns.

4.2. Model

4.2.1. Security and factor dynamics

I consider a dynamic portfolio optimization problem with K factors and N securities. Let

Si,t be the discrete time dynamics for the price of the security that pays a dividend Di,t at

time t. I assume that the gross return to our security defined by Ri,t+1 = Si,t+1+Di,t+1
Si,t

have

the following form:

Ri,t+1 = g(t, B>i,t(Ft+1 + λ) + εi,t+1) i = 1, . . . , N



CHAPTER 4. COMMON FACTOR SHOCKS 89

for some family of functions g(t, ·) : R→ R, increasing in their second argument, and where

I further introduce the following notation:

• Bi,t is the (K, 1) vector of exposures to the factors.

• Ft+1 is the (K, 1) vector of random (as of time t) factor realizations, with mean 0 and

conditional covariance matrix Ωt,t+1.

• εi,t+1 is the idiosyncratic risk of stock i.

I assume that ε·,t+1 are mean zero, have a time-invariant covariance matrix Σε, and

are uncorrelated with the contemporaneous factor realizations.

• λt is the (K, 1) vector of conditional expected factor returns

I assume that Bi,t and λt are observable and follow some known dynamics, which for

now I leave unspecified (when I solve a special example below, I assume that λt is constant

and that the Bi,t follow a Gaussian AR(1) process, but our approach could apply to more

complex dynamics). As I show below, our approach can be extended to account for time

varying factor expected returns (i.e., λt could be stochastic), and non-normal factor or

idiosyncratic risk distributions (e.g., GARCH features can easily be added).

Note that this setting captures two standard return generating processes:

1. The “discrete exponential affine” model for security returns in which log-returns

are affine in factor realizations:1

logRi,t+1 = αi +B>i,t(Ft+1 + λ) + εi,t+1 −
1
2
(
σ2
i +B>i,tΩBi,t

)
2. The “linear affine factor model” where returns (and therefore also excess returns)

are affine in factor exposures:

ri,t+1 = αi +B>i,t(Ft+1 + λ) + εi,t+1

As I show below, our portfolio optimization approach is equally tractable for both these

return generating processes.
1The continuous time version of this model is due to Vasicek [1977], Cox et al. [1985], and generalized in

Duffie and Kan [1996]. The discrete time version is due to Gourieroux et al. [1993] and Le et al. [2010].
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4.2.2. Cash and stock position dynamics

I will assume discrete time dynamics for our cash (w(t)) position and dollar holdings (xi(t))

in stocks. I assume that

xi,t+1 = xi,tRi,t+1 + ui,t+1 i = 1, . . . , N

wt+1 = wtR0,t+1 −
N∑
i=1

ui,t+1 −
1
2

N∑
i=1

N∑
j=1

ui,t+1Λt+1(i, j)uj,t+1

where Ri,t+1 = Si,t+1+Di,t+1
Si,t

is the total gross return (capital gains plus dividends) on the

security i. I am here effectively assuming that each position in security i = 1, . . . , n is

financed by a short position in a (e.g., risk-free) benchmark security 0, which I assume can

be traded with no transaction costs. I denote by xi,t the dollar investment in asset i, by

wt the total cash balances (invested in the risk-free security S0), and ui,t+1 is the dollar

amount of security i I will trade at price Si,t+1. In vector notation,

xt+1 = xt ◦Rt+1 + ut+1(4.1)

wt+1 = wtR0,t+1 − 1>ut+1 −
1
2u
>
t+1Λt+1ut+1(4.2)

where the operator ◦ denotes element by element multiplication if the matrices are of same

size or if the operation involves a scalar and a matrix, then that scalar multiplies every

entry of the matrix.

The matrix Λt captures (possibly time-varying) quadratic transaction/price-impact costs,

so that 1
2u
>
t Λtut is the dollar cost paid when realizing a trade at time t of size ut. For sim-

plicity I assume this matrix is symmetric.2 Garleanu and Pedersen [2012] present some

micro-economic foundations for such quadratic costs. As they show, the quadratic form is

analytically very convenient.

4.2.3. Objective function

I assume that the investor’s objective function is to maximize a linear quadratic function

of his terminal cash and stock positions F (wT , xT ) = wT + a>xT − 1
2x
>
T b xT , net of a risk-

penalty which I take to be proportional to the per-period variance of the portfolio. I assume
2The symmetry assumption could easily be relaxed.
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a is a (N, 1) vector and b a (N,N) symmetric matrix.3 So I assume the objective function

is simply:

(4.3) max
u1,...,uT

E
[
F (wT , xT )−

T−1∑
t=0

γ

2x
>
t Σt→t+1xt

]
I define Σt→t+1 = Et[(Rt+1 − Et[Rt+1])(Rt+1 − Et[Rt+1])′] to be the conditional one-

period variance-covariance matrix of returns and γ can be interpreted as the coefficient of

risk aversion.

The F (·, ·) function parameters can be chosen to capture different objectives, such as

maximizing the terminal gross value of the position (wT +1>xT ) or the terminal liquidation

(i.e., net of transaction costs) value of the portfolio (wT + 1>xT − 1
2x
>
T ΛTxT ), or any

intermediate situation.

Assuming the investor starts with some initial cash balances w0 and an initial position

in individual stocks x0, note that xT and wT can be rewritten as:

xT = x0 ◦R0→T +
T∑
i=1

ut ◦Rt→T(4.4)

wT = w0R0,0→T −
T∑
i=1

(
u>t 1R0,t→T + 1

2u
>
t ΛtutR0,t→T

)
(4.5)

where I have defined the cumulative return between date t and T on security i as:

(4.6) Ri,t→T =
T∏

s=t+1
Ri,s

(with the convention that Ri,t→t = 1) and the corresponding N -dimensional vector Rt→T =

[R1,t→T ; . . . ;RN,t→T ].

Now note that

a>xT = (a ◦R0→T )>x0 +
T∑
i=1

(a ◦Rt→T )>ut(4.7)

x>T bxT = x>0 RbR0x0 +
T∑
t=1

u>t RbRtut + 2
T∑
t=1

x0 ◦R0,t→T bRtut(4.8)

where I define the (N,N)-matrix RbRt and bRtwith respective element:

{RbRt}ij = Ri,t→T bijRj,t→T(4.9)

{bRt}ij = bijRj,t→T(4.10)

3The symmetry assumption on b could easily be relaxed.



CHAPTER 4. COMMON FACTOR SHOCKS 92

Substituting I obtain the following:

F (wT , xT ) = F0 +
T∑
i=1

{
G>t ut −

1
2u
>
t Ptut

}
(4.11)

F0 = w0R0,0→T + (a ◦R0→T )>x0 −
1
2x
>
0 RbR0x0(4.12)

Gt = a ◦Rt→T + 1 ◦R0,t→T − x0 ◦R0,t→T bRt(4.13)

Pt = (RbRt + Λt ◦R0,t→T )(4.14)

Substituting into the objective function given in equation 4.3 it can be rewritten as:

(4.15) F0 + max
u1,...,uT

T−1∑
t=0

E
[
G>t+1ut+1 −

1
2u
>
t+1Pt+1ut+1 −

γ

2x
>
t Σt→t+1xt

]

subject to the non-linear dynamics given in equations 4.1 and 4.2.

I next describe our set of linear policies, which make this problem tractable. At this

stage it is convenient to introduce the following notation (inspired from matlab): I write

[A;B] (respectively [AB]) to denote the vertical (respectively horizontal) concatenation of

two matrices.

4.2.4. Linear policies

I consider a class of parametric linear policies that is richer than the one previously consid-

ered in the literature (see, e.g., Brandt et al. [2009b]), but nevertheless has the advantage

of leading to an explicit solution for the portfolio choice problem with transaction costs.

Thus, in contrast to the approach proposed in Brandt et al. [2009b]), I do not need to

perform a numerical optimization, and can handle transaction costs efficiently. Further, in

contrast to Garleanu and Pedersen [2012] I can handle more complex asset return dynamics

and explicitly formulate the problem in terms of dollar returns (as opposed to number of

shares), and yet retain the analytical flexibility of the linear-quadratic framework.

These benefits come at a cost, namely that of restricting our optimization to a specific

set of parametrized trading strategies. It is an empirical question whether the set I work

with is sufficiently large to deliver useful results. I present some empirical tests of our

approach in the next section. First, I describe the strategy set I consider. Then I explain

how the portfolio optimization can be done in closed-form, within that restricted set.
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I define our set of linear policies with a set of (K+1)-dimensional vectors of parameters,

πi,s,t and θi,s,t, defined for all i = 1, . . . , N and for all s ≤ t. The (previously defined) time

t trade of asset i (ui,t) of and dollar investment in asset i (xi,t) are given by:

(4.16) ui,t =
t∑

u=1
π>i,u,tBi,u,t

and

(4.17) xi,t =
t∑

u=1
θ>i,u,tBi,u,t

are then vector products of πi,s,t and θi,s,t and a (K + 1) vector

(4.18) Bi,u,t = [1;Bi,t]Ri,u→t .

Bi,u,t is seen to be the (K) vector of time t factor exposures, augmented with a “1”, and

all weighted by the cumulative return earned by security i between time u and t. In other

words, these policies allow trades at time t to depend on current factor exposures Bi,t, but

also on all past exposures weighted by their past holding period returns.

Intuitively, the dependence on current exposures, unweighted by lagged returns, is

clearly important. In fact, in a no-transaction cost affine portfolio optimization problem

where the optimal solution is well-known, the optimal solution will involve only current ex-

posures (see, e.g.,?). Note that this is also the choice made by Brandt et al. [2009b] for their

‘parameteric portfolio policies.’ However, while Brandt et al. [2009b] specify the loadings

on exposure of individual stocks to be identical, I allow two stocks with identical exposures

(and with perhaps different levels of idiosyncratic variance) to have different weights and

trades.4

With transaction costs, allowing portfolio weights and trades to depend on past reutrns

interacted with past exposures seems useful. The intuition for this comes from the path-

dependence I observe in known closed-form solutions [see Constantinides, 1986; Davis and

Norman, 1990; Dumas and Luciano, 1991b; Liu and Loewenstein, 2002, and others]

To proceed, I note that the assumed linear position and trading strategies in equa-

tions 4.42 and 4.41 have to satisfy the dynamics given in equations 4.1 and 4.2. It follows
4(Note, for the Brandt et al. [2009b] econometric approach it is useful to have fewer parameters. This is

not an issue with our approach as our solution is closed-form.
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that the parameter vectors πi,s,t and θi,s,t have to satisfy the following restrictions, for all

i = 1, . . . , N :

πi,s,t = θi,s,t − θi,s,t−1 for s < t(4.19)

πi,t,t = θi,t,t(4.20)

I can rewrite these policies in a concise matrix form. First, define the (N(K+1)t, 1) vectors

πt and θt as

πt = [π1,1,t; . . . ;πn,1,t;π1,2,t; . . . ;πn,2,t; . . . ;π1,t,t; . . . ;πn,t,t](4.21)

θt = [θ1,1,t; . . . ; θn,1,t; θ1,2,t; . . . ; θn,2,t; . . . ; θ1,t,t; . . . ; θn,t,t](4.22)

Further, let’s define the following (N(K + 1), N) matrices (defined for all 1 ≤ s ≤ t ≤ T )

as the diagonal concatenations of the N vectors Bi,s,t ∀i = 1, . . . , N :

Bs,t =



B1,s,t 0 0 . . . 0

0 B2,s,t 0 . . . 0

. . .

0 . . . 0 Bn,s,t


Then I can define the (N(K + 1)t,N) matrix Bt by stacking the t matrices Bs,t ∀s =

1, . . . , t:

Bt = [B1,t;B2,t, . . . ,Bt,t]

It is then straightforward to check that:

ut = B>t πt(4.23)

xt = B>t θt(4.24)

Further, in terms of these definitions the constraints on the parameter vector in 4.19 can

be rewritten concisely as:

(4.25) θt+1 − θ0
t = πt+1

where I define θ0
t = [θt; 0K+1] to be the vector θt stacked on top of a (K + 1, 1) vector of

zeros 0K+1.
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The usefulness of restricting ourselves to this set of ‘linear trading strategies’ is that

optimizing over this set amounts to optimizing over the parameter vectors πt and θt, and

that, as I show next, that problem reduces to a deterministic linear-quadratic control

problem, which can be solved in closed form.

Indeed, substituting the definition of our linear trading strategies from equation 4.23

into our objective function I may rewrite the original problem given in equation 4.15 as

follows.

F0 + max
π1,...,πT

T−1∑
t=0
G>t+1πt+1 −

1
2π
>
t+1Pt+1πt+1 −

γ

2 θ
>
t Qtθt(4.26)

s.t. θt+1 − θ0
t = πt+1(4.27)

and where I define the vectors Gt and the matrices Pt and Qt defined for all t = 0, . . . , T by

Gt = E[BtGt](4.28)

Pt = E[BtPtB>t ](4.29)

Qt = E[BtΣtB>t ](4.30)

Note that I choose the time indices for the matrices Gt,Pt,Qt to reflect their (identical)

size (index t denotes a square-matrix or vector of row-length N(K + 1)t. The matrices

Gt,Pt,Qt can be solved for explicitly or by simulation depending on the assumptions made

about the return generating process Rt and the factor dynamics Bi,t. But once these

expressions have been computed or simulated (and this only needs to be done once), then

the explicit solution for the optimal strategy can be derived using standard deterministic

linear-quadratic dynamic programming. I derive the solution next.

4.2.5. Closed form solution

Define the value function

V (n) = max
πn+1,...,πT

T−1∑
t=n
G>t+1πt+1 −

1
2π
>
t+1Pt+1πt+1 −

γ

2 θ
>
t Qtθt

Now at n = T − 1 I have

V (T − 1) = max
πT
G>T πT −

1
2π
>
T PTπT −

γ

2 θ
>
T−1QT−1θT−1,
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which yields the solution π∗T = P−1
T GT and the value function V (T − 1) = 1

2G
>
T P
−1
T−1GT −

γ
2θ
>
T−1QT−1θT−1. I therefore guess that the value function is of the form:

(4.31) V (n) = −1
2θ
>
nMnθn + L>n θn +Hn

The Hamilton-Jacobi-Bellman equation is

V (t) = max
πt+1

{
G>t+1πt+1 −

1
2π
>
t+1Pt+1πt+1 −

γ

2 θ
>
t Qtθt + V (t+ 1)

}
(4.32)

s.t. θt+1 − θ0
t = πt+1(4.33)

The first order condition is:

Gt+1 + Lt+1 − (Pt+1 +Mt+1)πt+1 = Mt+1θ
0
t

which gives the optimal trade (and corresponding) state equation:

πt+1 = [Pt+1 +Mt+1]−1(Gt+1 + Lt+1 −Mt+1θ
0
t )(4.34)

θt+1 = [Pt+1 +Mt+1]−1(Gt+1 + Lt+1 + Pt+1θ
0
t )(4.35)

The HJB equation can be rewritten with our guess as

V (t) = π>t+1

(
Gt+1 + Lt+1 −

1
2(Pt+1 +Mt+1)πt+1

)
−1

2θ
0
tMt+1(θ0

t )>−π>t+1Mt+1θ
0
t−

γ

2 θ
>
t Qtθt+Ht+1+L>t+1θ

0
t

Now, for a [N(K + 1)t,N(K + 1)t] dimensional square matrix Xt I define Xt to be the

upper left-hand corner square submatrix with dimensions [N(K+1)(t−1), N(K+1)(t−1)].

Using this definition and substituting the FOC I get:

V (t) = 1
2(Gt+1 + Lt+1 −Mt+1θ

0
t )>[Pt+1 +Mt+1]−1(Gt+1 + Lt+1 −Mt+1θ

0
t )−

1
2θ
>
t (M t+1 + γQt)θt

+Ht+1 + L>t+1θ
0
t

which I can simplify further:

V (t) = 1
2(Gt+1 + Lt+1)>[Pt+1 +Mt+1]−1(Gt+1 + Lt+1)− 1

2θ
>
t

(
M t+1 + γQt

−Mt+1[Pt+1 +Mt+1]−1Mt+1
)
θt +Ht+1 + (Lt+1 +Mt+1[Pt+1 +Mt+1]−1(Gt+1 + Lt+1))>θ0

t
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Thus I confirm our guess for the value function and find the system of recursive equa-

tions:

Mt = M t+1 + γQt −Mt+1[Pt+1 +Mt+1]−1Mt+1(4.36)

Lt = Lt+1 +M>t+1[Pt+1 +Mt+1]−1(Gt+1 + Lt+1)(4.37)

Ht = Ht+1 + 1
2(Gt+1 + Lt+1)>[Pt+1 +Mt+1]−1(Gt+1 + Lt+1)(4.38)

4.3. Experiment

In this section I present several experiments to illustrate the usefulness of our portfolio selec-

tion approach. I compare portfolio selection in a characteristics-based versus factors-based

return generating environment. As I show below the standard linear-quadratic portfolio

approach is well-suited to the characteristics-based environment, but in a factor-based en-

vironment, since it cannot adequately capture the systematic variation in the covariance

matrix due to variations in the exposures it is less successful. Instead, our approach can

handle this feature.

4.3.1. Characteristics versus Factor-based return generating model

I wish to compare the following two environments:

• The factor-based return generating process

(4.39) Ri,t+1 = αi +B>i,t(Ft+1 + λ) + εi,t+1

• The characteristics based return generating process:

(4.40) Ri,t+1 = αi +B>i,tλ+ ωi,t+1

where in both cases I assume that there are three return generating factors corresponding

to (1) short term (5-day) reversal, (2) medium term (1 year) momentum, (3) long-term (5

year) reversal (and potentially a common market factor).

Note the difference between the two frameworks. In the characteristics based framework,

the conditional covariance of returns is constant Σt→t+1 = Σω and is therefore not affected
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by the factor exposures. Instead, in the factor-based framework, the conditional covariance

matrix of returns is time varying: Σt→t+1 = BtΩB>t + Σε where Bt = [B>1,t;B>2,t; . . . ;B>n,t]

is the (N,K) matrix of factor exposures.

I assume that the half-life of the 5-day factor is 3 days, that of the one-year factor is

150 days, that of the 5-year factor is 700 days. I define the exposure dynamics using the

simple auto-regressive process:

Bk
i,t+1 = (1− φk)Bk

i,t + εi,t+1.

The value of φk is tied to its half-life (expressed in number of days) ĥk by the simple

relation φk = (1
2)ĥk .

For the case, where I investigate the ‘Characteristics based’ model I set the constant

covariance matrix Σω so that it matches the unconditional covariance matrix of the factor

based return generating process, i.e., I set

Σω = E[BtΩB>t + Σε]

Note that

BtΩB>t =
K∑

l,m=1
Ωl,mB

l
:,t(Bm

:,t)>

where Bk
:,t is the factor values of each asset corresponding to the kth factor at time t.

4.3.2. Calibration of main parameters

The number of assets in our experiment is 15. One can think of these as a collection

of portfolios instead of individual stocks, e.g., stock or commodity indices. Our trading

horizon is 26 weeks with weekly rebalancing. Our objective is to maximize net terminal

wealth minus penalty terms for excessive risk. This requires us to set a = 1 and b = 0 in

our objective function.

I calibrate the factor mean, λ, and covariance matrix, Ω, using Fama-French 10 portfolios

sorted on short-term reversal, momentum, and long term reversal. Using monthly returns,

I compute the performance of the long-short portfolio for the highest and lowest decile in

each factor data. Obtaining 3 long-short portfolios, I set λ to be its mean and Ω to be its

covariance matrix. Table 4.1 illustrates the estimated values for λ and Ω.
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Fama-French Moments

λ1 -0.00726

λ2 0.00182

λ3 -0.00323

Ω11 0.00103

Ω12 0.00051

Ω13 0.00154

Ω22 0.00050

Ω23 0.00081

Ω33 0.00162

Table 4.1: Calibration results for λ and Ω.

For our simulations, I assume that both F and ε vectors are serially independent and

normally distributed with zero mean and covariance matrix Ω and Σε, respectively. I assume

that Σε is a diagonal matrix e.g., diag(σε). Each entry in σε is set randomly at the beginning

of the simulation according to a normal distribution with mean 0.20 and standard deviation

0.05.

Initial distribution for Bk
i,0 is given by the unconditional stationary distribution of Bk

i,t

which is given by a normal distribution with mean zero and variance σ2
ε,i

2φ−φ2 .

Transaction cost matrix, Λ is assumed to be a constant multiple of Σω or Σε with propor-

tionality constant η in characteristics or factor-based return generating model respectively.

I use a rough estimate of η according to widely used transaction cost estimates reported in

the algorithmic trading community. I provide two regimes: low and high transaction cost

environment. The slippage values for these two regimes are assumed to be around 4bps

and 400bps respectively. Therefore, I expect that a trade with a notional value of $100, 000

results in $40 and $4000 of transaction costs in these regimes. In our model, ησ2
εu

2 measures

the corresponding transaction cost of trading u dollars. Using u = $100, 000 and σε = 0.20,

this yields that η is roughly around 5× 10−6 and 5× 10−4 for the low and high transaction

cost regimes respectively.
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Finally, I assume that the coefficient of risk aversion, γ equals 10−6, which I can think

of as corresponding to a relative risk aversion of 1 for an agent with 1 million dollars under

management.

4.3.3. Approximate policies

Due to the nonlinear dynamics in our wealth function, solving for the optimal policy even

in the case of concave objective function is intractable due to the curse of dimensionality.

In this section, I will provide various policies that will help us compare the performance of

the best linear policy to the existing approaches in the literature.

Garleanu & Pedersen Policy (GP): Using the methodology in Garleanu and Ped-

ersen [2012] , I can construct an approximate trading policy that will work in our current

set-up. A closed-form solution can be obtained if one works with linear dynamics in state

and control variables:

r̄t+1 = Ctft + εt+1

ft+1 = (I − Φ) ft + εt+1

where r̄t+1 stores dollar price changes. Then, our problem can be cast in their notation

with

max E
[
T∑
t=1

(
x>t−1r̄t −

γ

2x
>
t Σ̄txt −

1
2u
>
t Λ̄ut

)]

where Λ̄ and Σ̄t are deterministic and measured in dollars. The optimal solution to this is

given by

xt =
(
Λ̄ + γΣ̄t +Atxx

)−1 (
Λ̄xt−1 +

(
Atxf (I − Φ)

)
ft
)

with the following recursions:

At−1
xx = −Λ̄

(
Λ̄ + γΣ̄t +Atxx

)−1
Λ̄ + Λ̄

At−1
xf = Λ̄

(
Λ̄ + γΣ̄t +Atxx

)−1 (
Atxf (I − Φ)

)
+ Ct
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I use the following transformations in order to address our dynamics:

Ct = E[diag(St)]
(
λ> ⊗ IN×N

)
Λ̄ = E[StS>t ]Λ

Σ̄t = Var(r̄t+1)

Myopic Policy (MP): I can solve for the myopic policy using only one-period data. I

solve the myopic problem given by

max E
[(
x>t rt+1 −

γ

2x
>
t Σtxt −

1
2u
>
t Λut

)]
.

Using the dynamics for rt+1, the optimal myopic policy is given by

xt =
(
Λ + γ

(
BtΩB>t + Σε

))−1
(Btλ+ Λ (xt−1 ◦Rt))

Myopic Policy with Transaction Cost Aversion (MP-TC): Since myopic policy

only considers the current state of the return predicting factors, it realizes substantial

transaction costs. This policy can be significantly improved by considering an another

optimization problem on the transaction cost matrix which ultimately tries to control the

amount of transaction costs incurred by the policy. Thus, this policy uses

xt =
(
τ∗Λ + γ

(
BtΩB>t + Σε

))−1
(Btλ+ τ∗Λ (xt−1 ◦Rt))

where τ∗ is given by

argmax
τ

E
[(
x>t rt+1 −

γ

2x
>
t Σtxt −

1
2u
>
t Λut

)]
with

xt =
(
τΛ + γ

(
BtΩB>t + Σε

))−1
(Btλ+ τΛ (xt−1 ◦Rt))

Best Linear Policy (BL): Using the methodology in Section 4.2.4, I can find the

optimal linear policy that satisfies our nonlinear state evolution:

ut = B>t π∗t

xt = B>t θ∗t
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where π∗t and θ∗t solve the following program

max
π1,...,πT

T−1∑
t=0
G>t+1πt+1 −

1
2π
>
t+1Pt+1πt+1 −

γ

2 θ
>
t Qtθt

s.t. θt+1 − θ0
t = πt+1

Restricted Best Linear Policy (RBL): Instead of using the whole history of stochas-

tic factors in our policy, I can restrict the best linear policy to use only a fixed number of

periods. In this experiment, I will use only the last observed exposures in our position

vector, xt, and the last two period’s exposures and the last period’s return in our trade

vector, ut. Formally, I will let

(4.41) xi,t = θ>i,tBi,t,t,

and

(4.42) ui,t = π>i,1,tBi,t−1,t + π>i,2,tBi,t,t,

where I need

πi,2,t = θi,t

πi,1,t = −θi,t−1

πi,1,1 = 0,

in order to satisfy the nonlinear state dynamics in (4.1) and (4.2).

Myopic Policy without Transaction Costs (NTC): Without transaction costs, our

trading problem is easy to solve, namely, the myopic policy will be optimal. Thus, using

the myopic policy in the absence of transaction costs, i.e.,

xt =
(
γ
(
BtΩB>t + Σε

))−1
(Btλ)

and applying it to the objective function without the transaction cost terms will provide

us an upper bound for the optimal objective value of the original dynamic program. This

policy will help us to evaluate how suboptimal the approximate policies are in the worst

case.
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4.3.4. Simulation Results

I run the performance statistics of our approximate policies in the presence and lack of factor

noise and low and high transaction costs. I observe that in all of these cases, best linear

policy performs very well compared to the other approximate policies and when compared

to the upper bound it achieves near-optimal performance.

GP MP MP-TC RBL BL NTC

Avg Wealth 269 573 574.6 547.5 568.5 594.3

Avg Objective 108.1 281.9 282.4 281.1 291.0 297.0

Variance 1.21e+05 1.37e+05 1.37e+05 1.23e+05 1.30e+05 1.44e+05

TC 4.846 9.967 11.71 14.66 13.45 0

Sharpe with TC 1.094 2.188 2.196 2.207 2.231 2.215

Sharpe w/o TC 1.07 2.194 2.204 2.22 2.244 2.215

Weekly Sharpe with TC 2.205 3.39 3.393 3.383 3.443 3.453

Table 4.2: Summary of the performance statistics of each policy in the case of no common

factor noise and low transaction cost environment. For each policy, I report average terminal

wealth, average objective value, variance of the terminal wealth, average terminal sharpe ratio

in the presence and lack of transaction costs and average weekly sharpe ratio in the presence of

transaction costs. (Dollar values are in thousands of dollars.)

Table 4.2 illustrates that when transaction costs are relatively small, myopic policies are

also near-optimal but even in this case best linear policy dominates in terms of performance.

Garleanu & Pedersen policy does not perform very well mainly due to the return dynamics

expressed in percentage terms versus dollar units. Table 4.3 underlines the amount of

improvement introduced with the best linear policy. In this case, myopic policies perform

significantly worse than the best linear policy.

Table 4.4 and Table 4.5 depict the impact of common factor shocks in the terminal

wealth statistics. It is important to note that in this regime, sharpe ratios are significantly

lower. In both cases, best linear policy achieves the best objective value statistics.
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GP MP MP-TC RBL BL NTC

Avg Wealth 127.2 180.9 52.19 74.76 232.2 594.3

Avg Objective 29.51 -98.41 25.31 59.58 138.1 297

Variance 6.37e+04 1.72e+05 2.28e+04 3.77e+03 3.14e+04 1.44e+05

TC 29.16 7.744 0.2971 44.43 43.97 0

Sharpe with TC 0.713 0.6168 0.4886 1.722 1.853 2.215

Sharpe w/o TC 0.7758 0.5421 0.4896 2.222 1.94 2.215

Weekly Sharpe with TC 1.8 2.132 2.098 2.003 2.517 3.453

Table 4.3: Summary of the performance statistics of each policy in the case of no common

factor noise and high transaction cost environment. For each policy, I report average terminal

wealth, average objective value, variance of the terminal wealth, average terminal sharpe ratio

in the presence and lack of transaction costs and average weekly sharpe ratio in the presence of

transaction costs. (Dollar values are in thousands of dollars.)

4.4. Conclusion and Future Directions

In this essay, I provide a methodology that accommodates complex return predictability

models studied in the literature in multi-period models with transaction costs. Our return

predicting factors does not need to follow any pre-specified model but instead can have

arbitrary dynamics. I allow for factor dependent covariance structure in returns driven

by common factor shocks which is prevalent in the asset management literature. On an

interesting further study, I can also have time-varying liquidity costs which are correlated

with the expected returns of the factors.

Our simulation study shows that best linear policy provides significant benefits compared

to other frequently used policies in the literature, especially when the transaction costs are

high and returns evolve according to factor dependent covariance structure. Unlike other

parametric approaches studied so far, our approach provides a closed form solution and the

driver of the policy dynamics can be analyzed in full detail.
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GP MP MP-TC RBL BL NTC

Avg Wealth 39.9 38 39.44 19.3 39.23 41.81

Avg Objective -144.2 15.38 19.28 9.785 20.51 20.75

Variance 3.77e+04 2.25e+04 4.07e+03 2.04e+03 9.19e+03 4.21e+03

TC 0.9264 1.186 0.98 0.2683 1.785 0

Sharpe with TC 0.2907 0.3586 0.87 0.604 0.5786 0.911

Sharpe w/o TC 0.2932 0.8848 0.9 0.6121 0.586 0.911

Weekly Sharpe with TC 0.3693 0.9058 0.92 0.7347 0.8756 0.9436

Table 4.4: Summary of the performance statistics of each policy in the case of common fac-

tor noise and low transaction cost environment. For each policy, I report average terminal

wealth, average objective value, variance of the terminal wealth, average terminal sharpe ratio

in the presence and lack of transaction costs and average weekly sharpe ratio in the presence of

transaction costs. (Dollar values are in thousands of dollars.)

GP MP MP-TC RBL BL NTC

Avg Wealth 15.2 14.52 15.66 9.822 16.21 41.81

Avg Objective -50.36 3.77 5.68 5.851 9.133 20.75

Variance 1.32e+04 4.94e+04 1.07e+04 8.12e+02 1.63e+03 4.21e+03

TC 5.939 1.916 2.91 1.881 2.059 0

Sharpe with TC 0.187 0.2919 0.21 0.4873 0.5674 0.911

Sharpe w/o TC 0.2693 0.477 0.57 0.5738 0.6065 0.911

Weekly Sharpe with TC 0.3619 0.5267 0.57 0.619 0.7386 0.9436

Table 4.5: Summary of the performance statistics of each policy in the case of common fac-

tor noise and low transaction cost environment. For each policy, I report average terminal

wealth, average objective value, variance of the terminal wealth, average terminal sharpe ratio

in the presence and lack of transaction costs and average weekly sharpe ratio in the presence of

transaction costs. (Dollar values are in thousands of dollars.)
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Appendix A

The Cost of Latency

A.1. Dynamic Programming Decomposition

In order to solve the optimal control problem (2.8) via dynamic programming, note that we

can equivalently consider the objective of maximizing the sale price P . Consider a decision

time Ti with 0 ≤ i < n, and assume that the trader’s limit order remains unfilled at time Ti.

The state of the system consists of the current price, STi as well as the previously chosen

limit price,1 `i−1, since this price will become active at time Ti. We can define an optimal

value function Ji(STi , `i−1), as a function of this state, by optimizing the eventual sale price

over all future decisions. In other words,

(A.1) Ji(STi , `i−1) , maximize
`i,...,`n−1

E [P | STi , `i−1] .

At time T = Tn, the trader must sell via a market order, hence

(A.2) Jn(STn , `n−1) = STn .

Now, for 0 ≤ i < n, there are three mutually exclusive events one of which must

occur between time Ti and time Ti+1. These are the events E(1)
i , E(2)

i , and E(3)
i described

in Section 4.2. By considering cases corresponding to these events, we have the Bellman

equation

(A.3) Ji(STi , `i−1) , max
`i

E
[
IE(1)
i

`i−1 + IE(2)
i

STi+1 + IE(3)
i

Ji+1(STi+1 , `i)
∣∣∣∣ STi , `i−1

]
.

1I will assume that `−1 =∞, i.e., there is no limit order active at the beginning of the time horizon.
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Here, the first term corresponds to an execution at the prior price `i−1, the second term

corresponds to the price `i being crossed by the bid price upon arrival to the market, and

the third term corresponds to all other cases.

Define the function Qi, for 0 ≤ i ≤ n, by

Qi(STi , vi−1) , Ji(STi , STi + vi−1)− STi .

The function Qi is the premium of the value at time Ti, relative to the current bid price

STi . Similarly, vi−1 , `i−1 − STi is the premium of limit price decided at time Ti−1 relative

to the current bid price at time Ti. Then, applying (A.3), we have for 0 ≤ i < n,

Qi(STi , vi−1)

= max
`i

E
[
IE(1)
i

(STi + vi−1) + IE(2)
i

STi+1 + IE(3)
i

Ji+1(STi+1 , `i)
∣∣∣∣ STi , vi−1

]
− STi

= max
ui

E
[
IE(1)
i

vi−1 + IE(2)
i ∪E

(3)
i

Xi+1 + IE(3)
i

Qi+1(STi +Xi+1, ui −Xi+1)
∣∣∣∣ STi , vi−1

]
.

Here, Xi+1 , STi+1−STi ∼ N(0, σ2∆t) is the change in bid price from time Ti to time Ti+1.

I define ui , `i−STi as the premium of the limit price at time Ti (i.e., the decision variable)

relative to the current bid price STi . Note that the price change Xi+1 is zero mean under

the event

E(2)
i ∪ E

(3)
i =

(
E(1)
i

)c
,

by the assumption that the arrival of impatient buyers is independent of the bid price

process, hence

(A.4) Qi(STi , vi−1) = max
ui

E
[
IE(1)
i

vi−1 + IE(3)
i

Qi+1(STi +Xi+1, ui −Xi+1)
∣∣∣∣ STi , vi−1

]
.

Finally, by (A.2),

(A.5) Qn(STn , vn−1) = 0.

As should be clear from the above discussion, the Bellman equation (A.3) with terminal

condition (A.2) and the backward recursion (A.4) with terminal condition (A.5) are com-

pletely equivalent, up to a change in variables. Expressing these equations in the latter

form, however, brings significant simplifications, as the following lemma shows.
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Lemma 4. Suppose a collection of functions {Qi} satisfies the dynamic programming equa-

tions (A.4)–(A.5). Then, for each 0 ≤ i < n, Qi does not depend on the price STi, and

takes the form

(A.6) Qi(vi−1) = I{vi−1≤δ} [µ∆tvi−1 + (1− µ∆t)hi ] + I{vi−1>δ}hi,

where the scalar hi satisfies

(A.7) hi = max
ui

P(Xi+1 < ui)E [Qi+1(ui −Xi+1) | Xi+1 < ui] .

Proof. Observe that, for 0 ≤ i < n, (A.4) can be simplified according to

Qi(STi , vi−1)

= max
ui

µ∆tvi−1I{vi−1≤δ}

+
(
1− µ∆tvi−1I{vi−1≤δ}

)
E
[
I{Xi+1<ui}Qi+1(STi +Xi+1, ui −Xi+1)

∣∣∣ STi] ,

(A.8)

where I have used the definitions of the events E(1)
i and and E(3)

i .

Now, we proceed by backward induction. For the terminal case i = n − 1, from (A.8)

and the fact that Qn = 0 and un−1 = −∞ (i.e., the trader must use a market order at the

last time slot), we have that

Qn−1(STn−1 , vn−2) = µ∆tvn−2I{vn−2≤δ}.

In other words, Qn−1 satisfies the hypotheses of the lemma, with hn−1 = 0.

Now, suppose that the result holds for some 0 ≤ i + 1 < n. By (A.8), and since Qi+1

does not depend on STi+1 ,

Qi(STi , vi−1)

= max
ui

µ∆tvi−1I{vi−1≤δ} +
(
1− µ∆tvi−1I{vi−1≤δ}

)
E
[
I{Xi+1<ui}Qi+1(ui −Xi+1)

]
= µ∆tvi−1I{vi−1≤δ} +

(
1− µ∆tvi−1I{vi−1≤δ}

)
hi

= I{vi−1≤δ} [µ∆tvi−1 + (1− µ∆tvi−1)hi ] + I{vi−1>δ}hi.

Here, in the second equality, I define hi through (A.7). The result then follows. �
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Notice that, at the beginning of the trading horizon, there is no active limit order, i.e.,

u−1 =∞. From Lemma 4, I have that

h0 = Q0(∞) = maximize
`0,...,`n−1

E [P | S0]− S0.

In other words, h0 = h0(∆t), as defined in (2.8), and the notation is consistent. More

generally, for i > 0, from (A.7), I can interpret hi to be the trader’s expected payoff at time

Ti relative to the current bid price under the optimal policy, assuming that the limit order

does not get executed in that time slot. Thus, hi can be interpreted as a continuation value

in the dynamic programming context, as in (2.9).

The continuation values {hi} allow for a compact representation of the value function,

since they consist of only a single real number for each time slot, rather than a function of

the entire state space. Theorem 1 directly expresses the dynamic programming equations

(A.4)–(A.5) in terms of this representation. The proof follows by explicitly computing the

expectations in Lemma 4.

Theorem 1. Suppose {hi} satisfy, for 0 ≤ i < n− 1,

hi = max
ui

{
µ∆t

[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+ σ
√

∆t
(
φ

(
ui

σ
√

∆t

)
− φ

(
ui − δ
σ
√

∆t

))]
+hi+1

[
(1− µ∆t)Φ

(
ui

σ
√

∆t

)
+ µ∆tΦ

(
ui − δ
σ
√

∆t

)]}
,

(A.9)

and

(A.10) hn−1 = 0.

Here, φ and Φ are, respectively, the p.d.f. and c.d.f. of the standard normal distribution.

Then, {hi} correspond to the continuation values under the optimal policy. In other words,

the value functions {Qi} defined by {hi} via (A.6) solve the dynamic programming equations

(A.4)–(A.5).

Suppose further that, for 0 ≤ i < n − 1, u∗i is a maximizer of (A.9). Then, a policy

which chooses limit prices according to the premia defined by {u∗i }, i.e.,

`∗i = STi + u∗i , ∀ 0 ≤ i < n− 1,

is optimal.
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Proof. Suppose that I am given {hi} that satisfy the hypotheses of the theorem. Define

{Qi} by setting, for 0 ≤ i ≤ n− 1,

(A.11) Qi(vi−1) , I{vi−1≤δ} [µ∆tvi−1 + (1− µ∆t)hi ] + I{vi−1>δ}hi,

and Qn , 0. I wish to show that {Qi} solve the dynamic programming equations (A.4)–

(A.5).

Note that (A.5) holds by definition. For 0 ≤ i < n, we have that (A.4) is equivalent to

(A.8). Define Q̂i to be the right side of (A.8), i.e.,

Q̂i(vi−1) , µ∆tvi−1I{vi−1≤δ} +
(
1− µ∆tvi−1I{vi−1≤δ}

)
max
ui

E
[
I{Xi+1<ui}Qi+1(ui −Xi+1)

]
.

Comparing with (A.11), in order that the dynamic programming equation (A.8) hold (i.e.,

that Q̂i = Qi), we must have that

(A.12) hi = max
ui

E
[
I{Xi+1<ui}Qi+1(ui −Xi+1)

]
Using the definition of Qi+1 from (A.11), this is equivalent to

hi

= max
ui

E
[
I{Xi+1<ui}

(
I{ui−Xi+1≤δ} [µ∆t(ui −Xi+1) + (1− µ∆t)hi+1 ] + I{ui−Xi+1>δ}hi+1

)]
= max

ui
E
[
I{0<ui−Xi+1≤δ}µ∆t(ui −Xi+1) + I{Xi+1<ui}(1− µ∆t)hi+1 + I{ui−Xi+1>δ}µ∆thi+1

]
.

For the first term in the expectation, we have

E
[
I{0<ui−Xi+1≤δ}µ∆t(ui −Xi+1)

]
= µ∆t

∫ ui

−∞
(ui − x)I{ui−x≤δ}

1
σ
√

∆t
φ

(
x

σ
√

∆t

)
dx

= µ∆t
∫ ui

ui−δ
(ui − x) 1

σ
√

∆t
φ

(
x

σ
√

∆t

)
dx

= µ∆t
[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+
∫ ui

ui−δ

−x
σ
√

∆t
φ

(
x

σ
√

∆t

)
dx

]
= µ∆t

[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+ σ
√

∆t
(
φ

(
ui

σ
√

∆t

)
− φ

(
ui − δ
σ
√

∆t

))]
.

For the second term in the expectation, we have

E
[
I{Xi+1<ui}(1− µ∆t)hi+1

]
= (1− µ∆t)hi+1Φ

(
ui

σ
√

∆t

)
.
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finally, for the last term in the expectation, we have

E
[
I{ui−Xi+1>δ}µ∆thi+1

]
= µ∆thi+1Φ

(
ui − δ
σ
√

∆t

)
Combining all the terms, I obtain the desired recursion for hi.

The balance of the theorem (i.e., the optimality of the {u∗i } policy) follows from standard

dynamic programming arguments. �

A.2. Proof of Theorem 2

I begin with a preliminary lemma.

Lemma 5. Suppose that {hi : 0 ≤ i < n} solves the dynamic programming recursion

(2.10)–(2.11). Then, for 0 ≤ i < n,

(A.13) 0 ≤ hi ≤ δ (1− (1− µ∆t)n ) < δ.

Proof. First, note that the result is trivially true for i = n − 1, since hn−1 = 0. Now, if

0 ≤ i < n − 1, we can always choose ui = −∞, i.e., a market order, and this results in a

continuation value of 0. Thus, hi ≥ 0.

For the upper bound, consider the discrete model without latency described in Sec-

tion 2.4.3. Any strategy for the latency model is also feasible for the discrete model, since

the trader can simply delay the implementation of trading decisions by one period. There-

fore, at time Ti (with 0 ≤ i < n− 1), a policy with latency cannot achieve more value than

the optimal policy for the discrete model without latency. At time Ti, there are n − i − 1

trading decisions remaining. This corresponds to the initial time of a discrete model with

a total time horizon of (n− i− 1)∆t. Then, with reference to Lemma 2, we have that

hi ≤ δ (1− (1− µ∆t)n−i−1 ).

The result immediately follows. �

Theorem 2. Fix α > 1. If ∆t is sufficiently small, then there exists a unique optimal solution

{hi} to the dynamic programming equations (2.10)–(2.11). Moreover, the corresponding
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optimal policy {u∗i } is unique. For 0 ≤ i < n − 1, this strategy chooses limit prices in the

range

`∗i ∈

Si + δ − σ

√
∆t log αL∆t , Si + δ − σ

√
∆t log R(∆t)

∆t ,

 ,
where

L ,
δ2

2πσ2 , R(∆t) , δ2(1− µ∆t)2n

2πσ2 .

Proof. Assume that, for some 0 ≤ i < n − 1, a solution {hj : i + 1 ≤ j < n} exists to

(2.10)–(2.11). I will establish that, for ∆t sufficiently small (and not dependent on i), a

solution hi also exists and satisfies the conditions of the theorem. The result will follow by

backward induction. Note that the base case of the induction (i.e., the existence of hn−1)

is trivial.

To this end, define the auxiliary function f by

f(u, h) , µ∆t
[
u(Φ(Au)− Φ(Bu)) + σ

√
∆t(φ(Au)− φ(Bu))

]
+ h

[
(1− µ∆t)Φ(Au) + µ∆tΦ(Bu)

]
,

(A.14)

where

Au ,
u

σ
√

∆t
, Bu ,

u− δ
σ
√

∆t
.(A.15)

Then, from Theorem 1, for 0 ≤ i < n− 1, the dynamic programming recursion is given by

(A.16) hi = max
ui

f(ui, hi+1),

and I can establish the present theorem by proving that, for ∆t sufficiently small, (A.16)

has a unique maximizer u∗i ∈ (ûL, ûR), where

ûL , δ − σ

√
∆t log αL∆t , ûR , δ − σ

√
∆t log R(∆t)

∆t .(A.17)

Note that

(A.18) R(0) , lim
∆t→0

R(∆t) = lim
∆t→0

L(1− µ∆t)2T/dt = Le−2µT < αL.

Hence, there exists some ∆t > 0 so that if 0 < ∆t < ∆t, then

δ/2 < ûL < ûR < δ, and 0 < 1− µ∆t < 1.
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For the balance of the theorem, I will assume that 0 < ∆t < ∆t, in addition to whatever

other assumptions are made regarding the magnitude of ∆t.

The first and second derivatives of f(·, h) are given by

fu(u, h) = µ∆t
[
Φ(Au)− Φ(Bu) +Au (φ(Au)− φ(Bu))− uφ(Au) + (δ − u)φ(Bu)

σ
√

∆t

]
+ h

σ
√

∆t

[
(1− µ∆t)φ(Au) + µ∆tφ(Bu)

]
= (1− µ∆t)h

σ
√

∆t
φ(Au) + µ∆t

[
Φ(Au)− Φ(Bu)− δ

σ
√

∆t
φ(Bu)

]
+ hµ

√
∆t

σ
φ(Bu)

= (1− µ∆t)h
σ
√

∆t
φ(Au) + µ∆t[Φ(Au)− Φ(Bu)] + µ

√
∆t
σ

φ(Bu)(h− δ),

fuu(u, h) = −u(1− µ∆t)h
σ3∆t

√
∆t

φ(Au) + µ
√

∆t
σ

[φ(Au)− φ(Bu)] + µ(δ − u)
σ3
√

∆t
φ(Bu)(h− δ)

= φ(Au)
[
µ
√

∆t
σ
− u(1− µ∆t)h

σ3∆t3/2

]
+ φ(Bu)

[
µ(δ − u)
σ3
√

∆t
(h− δ)− µ

√
∆t
σ

]
.

(A.19)

First, I will show that, for ∆t sufficiently small, f(·, hi+1) has a local maximum u∗i in

the interval (ûL, ûR), and that this is the unique maximizer over the larger interval (δ/2, δ).

That is, u ∈ (δ/2, δ) and u 6= u∗i , then

(A.20) f(u, hi+1) < f(u∗i , hi+1), for all u ∈ (δ/2, δ), u 6= u∗i .

This is implied by the following claims, which I will demonstrate hold for ∆t sufficiently

small:

(i) fu(ûL, hi+1) > 0.

(ii) fu(ûR, hi+1) < 0.

(iii) fuu(u, hi+1) < 0, for all u ∈ (δ/2, δ).

Claim (i): Note that

fu(ûL, hi+1) = (1− µ∆t)hi+1

σ
√

∆t
φ(AûL) + µ∆t[Φ(AûL)− Φ(BûL)] + µ∆t

δ
√
α

(hi+1 − δ)

≥ µ∆t[Φ(AûL)− Φ(BûL)]− µ∆t√
α
,

(A.21)
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where I use the fact that hi+1 ≥ 0 (cf. Lemma 5). In order to calculate a lower bound

for Φ(AûL) − Φ(BûL), we need the following standard bound on the tail probabilities of

the normal distribution [see, e.g., Durrett, 2004]. Define Q to be the tail probability of a

standard normal distribution, i.e.,

Q(x) , 1− Φ(x) = 1√
2π

∫ ∞
x

e−
1
2u

2
du.

Then, for all x > 0,

(A.22) x2 − 1
x3
√

2π
e−

1
2x

2
≤ Q(x) ≤ 1

x
√

2π
e−

1
2x

2
.

Applying this to (A.21),

fu(ûL, hi+1) ≥ µ∆t
[
1−Q(AûL)−Q(−BûL)

]
+ µ∆t√

α

= µ∆t
(

1− 1√
α

)
− µ∆t[Q(AûL) +Q(−BûL)]

> µ∆t
(

1− 1√
α

)
− 2µ∆tQ(−BûL)

≥ µ∆t
(

1− 1√
α

)
− 2µ∆t3/2√

2παL log αL
∆t

> 0,

for sufficiently small ∆t. Here, I have used the fact that Q(−BûL) > Q(AûL).

Claim (ii): Similarly, for the other endpoint of the interval, I have

fu(ûR, hi+1) = (1− µ∆t)hi+1

σ
√

∆t
φ(AûR) + µ∆t[1−Q(AûR)−Q(−BûR)]

+ µ∆t
δ(1− µ∆t)n (hi+1 − δ)

≤ (1− µ∆t)hi+1

σ
√

∆t
φ(AûR) + µ∆t[1−Q(AûR)−Q(−BûR)]

+ µ∆t
δ(1− µ∆t)n [δ (1− (1− µ∆t)n)− δ]

= (1− µ∆t)hi+1

σ
√

∆t
φ(AûR) + µ∆t[1−Q(AûR)−Q(−BûR)]− µ∆t

= (1− µ∆t)hi+1

σ
√

∆t
φ(AûR)− µ∆t[Q(AûR) +Q(−BûR)]

≤ δ

σ
√

∆t
φ(AûR)− µ∆tQ(−BûR),
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where I have used the upper bound on hi+1 from Lemma 5. Using (A.18), for sufficiently

small ∆t, I have √
log R(∆t)

∆t <
δ

2σ
√

∆t
,

and thus

AûR ≥
δ

2σ
√

∆t
.

On the other hand, using (A.22),

Q(−BûR) ≥
[(

log R(∆t)
∆t

)−1/2
−
(

log R(∆t)
∆t

)−3/2]√ ∆t
2πR(∆t) .

Thus,

fu(ûR, hi+1) ≤ δ

σ
√

2π∆t
exp

(
−δ2

8σ2∆t

)

− µ∆t
[(

log R(∆t)
∆t

)−1/2
−
(

log R(∆t)
∆t

)−3/2]√ ∆t
2πR(∆t)

< 0,

for sufficiently small ∆t.

Claim (iii): Note that, for u ∈ (δ/2, δ),

φ

(
δ

σ
√

∆t

)
< φ(Au) < φ

(
δ

2σ
√

∆t

)
< φ(Bu) < φ(0).

Then, from (A.19), and using the fact that 0 ≤ hi+1 < δ (cf. Lemma 5), I have for ∆t

sufficiently small,

fuu(u, hi+1) ≤ φ(Au)µ
√

∆t
σ

+ φ(Bu)
[
µ(δ − u)
σ3
√

∆t
(hi+1 − δ)−

µ
√

∆t
σ

]

≤ φ(Bu)µ(δ − u)
σ3
√

∆t
(hi+1 − δ) < 0.

In order to complete the proof, it suffices to demonstrate that the local maximum u∗i ∈

(ûL, ûR) is the unique global maximum. Since u∗i achieves a higher value than any other

u ∈ (δ/2, δ), I will analyze cases where u /∈ (δ/2, δ) as follows:

• u ∈ [0, δ/2].
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Here,

φ

(
δ

σ
√

∆t

)
≤ φ(Bu) ≤ φ

(
δ

2σ
√

∆t

)
≤ φ(Au) ≤ φ(0).

Further, for ∆t sufficiently small,

Φ(Au)− Φ(Bu) ≥ Φ (0)− Φ
( −δ

2σ
√

∆t

)
≥ 1

4 .

Then, for ∆t sufficiently small,

fu(u, hi+1) ≥ (1− µ∆t)hi+1

σ
√

∆t
φ

(
δ

2σ
√

∆t

)
+ µ∆t

[
Φ (0)− Φ

( −δ
2σ
√

∆t

)]
+ µ
√

∆t
σ

φ

(
δ

2σ
√

∆t

)
(hi+1 − δ)

≥ hi+1

σ
√

∆t
φ

(
δ

2σ
√

∆t

)
+ µ∆t

[
Φ (0)− Φ

( −δ
2σ
√

∆t

)]
− δµ

√
∆t

σ
φ

(
δ

2σ
√

∆t

)
≥ µ∆t

4 − µδ
√

∆t√
2πσ

exp
(
−δ2

8σ2∆t

)
> 0.

(A.23)

Here, I have used the fact that hi+1 ≥ 0. Using (A.20) and the fact that f(·, hi+1) is

continuous, this implies that

(A.24) sup
u∈[0,δ/2]

f(u, hi+1) ≤ f(δ/2, hi+1) < f(u∗i , hi+1).

• u ∈ (−∞, 0).

In this case, since hi+1 ≥ 0 and Bu < Au < 0,

fu(u, hi+1) ≥ µ∆t [Φ(Au)− Φ(Bu)]− δµ
√

∆t
σ

φ(Bu)

= µ∆t
∫ Au

Bu
φ(z) dz − δµ

√
∆t

σ
φ(Bu)

> µ∆t(Au −Bu)φ(Bu)− δµ
√

∆t
σ

φ(Bu) = 0.

In conjunction with (A.24), this implies that

(A.25) sup
u∈(−∞,0)

f(u, hi+1) ≤ f(0, hi+1) < f(u∗i , hi+1).
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• u ∈ [δ,∞).

In this case, using the upper bound on hi+1 from Lemma 5,

fu(u, hi+1) ≤ δ

σ
√

∆t
φ(Au) + µ∆t [Φ(Au)− Φ(Bu)]

− µδ(1− µ∆t)n
√

∆t
σ

φ(Bu).
(A.26)

Consider two cases. First, assume that u > δ +
√

∆t. Then, applying (A.22),

fu(u, hi+1) ≤ δ

σ
√

∆t
φ(Au) + µ∆tQ(Bu)− µδ(1− µ∆t)n

√
∆t

σ
φ(Bu)

≤ δ

σ
√

∆t
φ(Au) + µσ∆t3/2

u− δ
φ(Bu)− µδ(1− µ∆t)n

√
∆t

σ
φ(Bu)

≤ φ(Bu)
[

δ

σ
√

∆t
exp

(
−δ2

2σ2∆t

)
+ µσ∆t− µδ(1− µ∆t)n

√
∆t

σ

]
.

Note that (1− µ∆t)n → e−µT as ∆t→ 0. Then, for ∆t sufficiently small,

(A.27) 1
2e
−µT < (1− µ∆t)n.

Hence, for ∆t sufficiently small,

fu(u, hi+1) ≤ φ(Bu)
[

δ

σ
√

∆t
exp

(
−δ2

2σ2∆t

)
+ µσ∆t− µδe−µT

√
∆t

2σ

]
< 0.

On the other hand, suppose that u ∈ [δ, δ +
√

∆t]. Then, from (A.26), (A.27), and

since 0 < Bu < Au, I have for ∆t sufficiently small,

fu(u, hi+1) ≤ δ

σ
√

∆t
φ(Au) + µ∆t

2 − µδ(1− µ∆t)n
√

∆t
σ

φ(Bu)

≤ δ

σ
√

∆t
φ(Au) + µ∆t

2 − µδe−µT
√

∆t
2σ φ(Bu)

≤ δ

σ
√

2π∆t
exp

(
− δ2

2σ2∆t

)
+ µ∆t

2 − µδe−µT
√

∆t
2σ
√

2π
exp

(
− 1

2σ2

)
< 0.

The above discussion, combined with (A.20) and the fact that f(·, hi+1) is continuous,

implies that

(A.28) sup
u∈[δ,∞)

f(u, hi+1) ≤ f(δ, hi+1) < f(u∗i , hi+1).

�
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A.3. Proof of Theorem 3

I will establish Theorem 3 via a sequence of lemmas. First, recall the function f(u, h)

defined in (A.14) and the quantities ûL and ûR defined in (A.17).

Lemma 6. (i) As ∆t→ 0,

max
u∈[ûL,ûR]
0≤i<n−1

|fuu(u, hi+1)| = O

(√
∆t log 1

∆t

)
.

(ii) For all h ∈ R and ∆t sufficiently small,

0 ≤ fh(ûR, h) ≤ 1.

Proof. I begin with (i). Recall Au and Bu from (A.15). Let u be in the interval [ûL, ûR].

Then, for 0 ≤ i < n− 1, from (A.19),

|fuu(u, hi+1)| ≤
∣∣∣∣∣φ(Au)

[
µ
√

∆t
σ
− u(1− µ∆t)hi+1

σ3∆t3/2

]
+ φ(Bu)

[
µ(δ − u)
σ3
√

∆t
(hi+1 − δ)−

µ
√

∆t
σ

]∣∣∣∣∣
≤ φ(Au)µ

√
∆t
σ

+ φ(Au) δ2

σ3∆t3/2
+ φ

(
δ − u
σ
√

∆t

)[
δµ(δ − u)
σ3
√

∆t
+ µ
√

∆t
σ

]
.

Here, I have used the fact that 0 ≤ u ≤ δ and 0 ≤ hi+1 < δ (cf. Lemma 5). Note that, for

∆t sufficiently small, ûL ≥ δ/2. Then,

max
u∈[ûL,ûR]

φ(Au) ≤ φ(Aδ/2) = 1√
2π

exp
(
− δ2

8σ2∆t

)
≤ c0∆t2,

for an appropriately chosen constant c0. Thus,

|fuu(u, hi+1)| ≤ c0µ

σ
∆t5/4 + c0δ

2

σ3

√
∆t+ φ

(
δ − u
σ
√

∆t

)[
δµ(δ − u)
σ3
√

∆t
+ µ
√

∆t
σ

]

≤ c0µ

σ
∆t5/4 + c0δ

2

σ3

√
∆t+ φ

(
δ − ûR
σ
√

∆t

)[
δµ(δ − ûL)
σ3
√

∆t
+ µ
√

∆t
σ

]

= c0µ

σ
∆t5/4 + c0δ

2

σ3

√
∆t+

√
∆t

2πR(∆t)

δµ
σ2

√
log αL∆t + µ

√
∆t
σ


≤ c0µ

σ
∆t5/4 + c0δ

2

σ3

√
∆t+ µ∆t

σ
√

2πR(∆t)
+ δµ

σ2
√

2πR(∆t)

√
∆t log αL∆t .

Since R(∆t)→ Le−2µT as ∆t→ 0, the last term asymptotically dominates and (i) follows.
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For (ii), note that Φ(AûR),Φ(BûR) ∈ (0, 1), so if ∆t < 1/µ, then for all h,

fh(ûR, h) = (1− µ∆t)Φ(AûR) + µ∆tΦ(BûR) ∈ (0, 1).

�

Lemma 7. As ∆t→ 0,

ûR − ûL = O

(√
∆t

log 1
∆t

)
.

Proof. Note that

ûR − ûL = σ
√

∆t

√log αL∆t −

√
log R(∆t)

∆t

 = σ
√

∆t
[
g(αL)− g(R(∆t))

]
,

where g(x) ,
√

log x
∆t . Then, by mean value theorem, for some z ∈ [R(∆t), αL],

ûR − ûL = σ
√

∆tg′(z)[αL−R(∆t)] = σ

2z [αL−R(∆t)]
√

∆t
log z

∆t
≤ σαL

2R(∆t)

√√√√ ∆t
log R(∆t)

∆t
.

The result follows since R(∆t)→ R(0) , Le−2µT as ∆t→ 0. �

Let {hi : 0 ≤ i < n−1} be the optimal solution to the dynamic programming recursion

(2.10)–(2.11), and let {u∗i : 0 ≤ i < n− 1} define the corresponding optimal policy. Define

{ĥi : 0 ≤ i ≤ n− 1} by the recursion

ĥi ,


f(ûR, ĥi+1) if 0 ≤ i < n− 1,

0 if i = n− 1.

Note that ĥi is the continuation value of the suboptimal policy that always chooses ui = ûR,

for 0 ≤ i < n− 1. I am interested in quantifying its difference to the optimal continuation

value.

Lemma 8. As ∆t→ 0,

0 ≤ h0 − ĥ0 = O

(√
∆t

log 1
∆t

)
.

Proof. For 0 ≤ i < n− 1, define ∆i , hi − ĥi. Clearly, ∆i ≥ 0.
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Using the mean value theorem,

∆i = f(u∗i , hi+1)− f(ûR, ĥi+1)

=
[
f(u∗i , hi+1)− f(ûR, hi+1)

]
+
[
f(ûR, hi+1)− f(ûR, ĥi+1)

]
= −1

2fuu(ū, hi+1)(ûR − u∗i )2 + fh(ûR, h̄)∆i+1.

where ū is some point on the interval (u∗i , ûR) and h̄ is some point on the interval (ĥi+1, hi+1).

Here, I have used the fact that the optimal solution u∗i satisfies the first order condition

fu(u∗i , hi+1) = 0.

Using Lemmas 6 and 7, for ∆t sufficiently small, there exist constants c1 and c2 so that

max
u∈[ûL,ûR]
0≤i<n−1

|fuu(u, hi+1)| ≤ c1

√
∆t log 1

∆t , ûR − ûL ≤ c2

√
∆t

log 1
∆t
.

Also, from Lemma 6, note that 0 ≤ fh(ûR, h̄) ≤ 1. Then, I obtain that, for ∆t sufficiently

small,

∆i ≤
c1(ûR − u∗i )2

2

√
∆t log 1

∆t + ∆i+1 ≤
c1c2

2
∆t3/2√
log 1

∆t

+ ∆i+1.

Then, since ∆n−1 = 0, I have that

∆0 ≤
(
T

∆t

)
c1c2

2
∆t3/2√
log 1

∆t

= c1c2T

2

√
∆t

log 1
∆t
.

�

Define the sequence {β̂i : 0 ≤ i ≤ n− 1} by the linear recursion

(A.29) β̂i ,


µ∆t(ûR − β̂i+1) + β̂i+1 if 0 ≤ i < n− 1,

0 if i = n− 1.

Here, β̂i is an approximation to the value ĥi. The next lemma bounds the approximation

error.

Lemma 9. As ∆t→ 0,

|ĥ0 − β̂0| = O

(√
∆t

log 1
∆t

)
.
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Proof. For 0 ≤ i < n− 1, define εi , ĥi− β̂i. Recall the following definition from the proof

of Theorem 2,

AûR ,
ûR

σ
√

∆t
, BûR ,

ûR − δ
σ
√

∆t
= −

√
log R(∆t)

∆t .

Then, by the recursive definitions of ĥi and β̂i, 0 ≤ i < n− 1,

εi = (1− µ∆t)εi+1 − µ∆tûR [1− Φ(AûR) + Φ(BûR)] + µσ∆t3/2 [φ(AûR)− φ(BûR)]

− (1− µ∆t)ĥi+1

[
1− Φ(AûR)− µ∆t

1− µ∆tΦ(BûR)
]
.

Since µ̂R is not the optimal policy, I have ĥi+1 ≤ hi+1 < δ (cf. Lemma 5). Further, for ∆t

sufficiently small, 0 < φ(AûR) ≤ φ(BûR). This implies that

|εi| ≤ (1− µ∆t)|εi+1|+ δµ∆t[1− Φ(AûR) + Φ(BûR)] + µσ∆t3/2φ(BûR)

+ δ

[
1− Φ(AûR) + µ∆t

1− µ∆tΦ(BûR)
]
.

Note that, except for the first term, there is no dependence on i in the right side of this

equality. Then, I can define

C(∆t) , δµ∆t[1− Φ(AûR) + Φ(BûR)] + µσ∆t3/2φ(BûR)

+ δ

[
1− Φ(AûR) + µ∆t

1− µ∆tΦ(BûR)
]
,

and I have that

|εi| ≤ (1− µ∆t)|εi+1|+ C(∆t).

Since εn−1 = 0, it is easy to verify by backward induction on i that

|εi| ≤
1− (1− µ∆t)n−i−1

µ∆t C(∆t).

Therefore,

|ε0| ≤
1− (1− µ∆t)n−1

µ∆t C(∆t) ≤ C(∆t)
µ∆t

= δ [1− Φ(AûR) + Φ(BûR)] + µσ
√

∆tφ(BûR) + δ

µ∆t

[
1− Φ(AûR) + µ∆t

1− µ∆tΦ(BûR)
]

= δ [Q(AûR) +Q(−BûR)] + µσ
√

∆tφ(BûR) + δ

µ∆t

[
Q(AûR) + µ∆t

1− µ∆tQ(−BûR)
]
.

(A.30)
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From (A.22), however,

Q(AûR) ≤ σ

ûR

√
∆t
2π exp

(
− û2

R

2σ∆t

)
.

Since ûR → δ as ∆t → 0, for ∆t sufficiently small, there exists constants a1 and a2, with

0 < a2 < δ2/2σ, so that

Q(AûR) ≤ a1
√

∆t exp
(
− a2

∆t

)
.

Also by (A.22),

Q(−BûR) ≤

√√√√ ∆t
2πR(∆t) log R(∆t)

∆t
.

Since and R(∆t) → R(0) , Le−2µT as ∆t → 0, for ∆t sufficiently small, there exists a

constant a3 so that

Q(−BûR) ≤ a3

√
∆t

log 1
∆t
.

Finally,

φ(BûR) =
√

∆t
2πR(∆t) ,

so for ∆t sufficiently small, there exists a constant a4 with

φ(BûR) ≤ a4
√

∆t.

Applying these bounds to (A.30), the result follows. �

Lemma 10. As ∆t→ 0,

β̂0 = ûR
(
1− e−µT

)
+O(∆t).

Proof. Note that the recurrence (A.29) can be explicitly solved to obtain

β̂0 =
n−2∑
i=0

(1− µ∆t)iµ∆t ûR = ûR
(
1− (1− µ∆t)n−1

)
= ûR

(
1− (1− µ∆t)T/∆t−1

)
.

The result follows since (1− µ∆t)T/∆t = e−µT +O(∆t) as ∆t→ 0. �

I am now ready to prove Theorem 3.

Theorem 3. As ∆t→ 0,

h0(∆t) = h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

+ o
(√

∆t
)
,
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where

h̄0 = δ
(
1− e−µT

)
is the optimal value for the stylized model without latency, i.e., the value defined by (2.5).

Proof. First, define

γ̂0 ,
(
1− e−µT

)δ − σ
√

∆t log δ2

2πσ2∆t

 .
Then, ∣∣∣∣∣∣h0 − h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

∣∣∣∣∣∣ = |h0 − γ̂0|

ÊÊ ≤ |h0 − ĥ0|+ |ĥ0 − β̂0|+ |β̂0 − γ̂0|.

(A.31)

I will bound each of the terms in the right side of (A.31). First, by Lemma 8,

(A.32) |h0 − ĥ0| = O

(√
∆t

log 1
∆t

)
.

Next, by Lemma 9,

(A.33) |ĥ0 − β̂0| = O

(√
∆t

log 1
∆t

)
.

Finally, by Lemma 10, for ∆t sufficiently small, there exists a constant c1 so that

|β̂0 − γ̂0| ≤ σ
(
1− e−µT

)ûR − δ +

√
∆t log L

∆t

+ c1∆t

≤ σ
(
1− e−µT

)ûR − δ +

√
∆t log αL∆t

+ c1∆t,

= σ
(
1− e−µT

)
(ûR − ûL) + c1∆t,

where α > 1 and L are defined by Theorem 2. Applying Lemma 7, I have that

(A.34) |β̂0 − γ̂0| = O

(√
∆t

log 1
∆t

)
.

By applying (A.32)–(A.34) to (A.31), I have that∣∣∣∣∣∣h0 − h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

∣∣∣∣∣∣ = O

(√
∆t

log 1
∆t

)
,

which implies the desired result. �
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A.4. Price Dynamics with Jumps

At a high level, the goal has been to understand and build intuition as to the impact of

a latency friction introduced by the lack of contemporaneous information. The spirit of

the model it to consider an investor who wants to trade, but at a price that depends on

an informational process that evolves stochastically and must be monitored continuously.

While I have principally interpreted the informational process to be the bid price process,

the model can alternatively be interpreted (as discussed in Section 2.2.1) in terms of a

fundamental value process.

Thus far, I have employed a diffusive model to describe informational innovations over

a short time horizon. There is significant empirical evidence that this is insufficient, par-

ticularly when modeling price processes, and that it is important to also allow for the

instantaneous arrival of information, i.e., jumps. For example, Barndorff-Nielsen et al.

[2010] propose the following compound Poisson process for high frequency price dynamics:

St = S0 +
Mt∑
i=1

Yi,

where Nt is a Poisson process counting the number of trades up to time t and Yi is the

potential jump movement at the ith trade time, having a distribution G.

On a short time horizon, innovations to fundamental value can be both instantaneous or

diffusive.2 In a recent empirical study, Aït-Sahalia and Jacod [2010] construct two formal

statistical tests to deduce whether there is a need for a Brownian motion in modeling high-

frequency data. Using individual high-frequency stock data, they conclude that both tests

suggest the necessity of including a continuous component driven by Brownian motion.

Motivated by these studies, I will generalize the price dynamics of Section 2.2 by includ-

ing both a continuous component (Brownian motion) and a jump component (governed by

a compound Poisson process). In particular, consider a price process that evolves according

2As an example, note that an instantaneous innovation may result from a news event. On the other hand,

the value of a stock will have a component that is driven by the market factor, i.e., an average of returns

across all stocks. Innovations to the market factor can have a diffusive component even if all individual stock

prices are discrete, by virtue of cross-sectional averaging.
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to

(A.35) St = S0 + σBt +
Mt∑
i=1

Yi,

where the process (Bt)t∈[0,T ] is a standard Brownian motion, σ > 0 is an (additive) volatility

parameter, and (Mt)t∈[0,T ] is a Poisson process with intensity λ. For now, I will further

assume that each jump Yi has an i.i.d. Gaussian distribution with zero mean and variance

ν2 — I revisit the assumption of Gaussian jump sizes at the end of this section.

In the context of the latency model of Section 4.2, I define the price increment Xi+1 ,

STi+1 − STi by the discrete time analog of (A.35),

(A.36) Xi+1 ∼


N(0, σ2∆t) with probability (1− λ∆t) ,

N(0, σ2∆t+ ν2) with probability λ∆t.

With this definition, the dynamic programming decomposition outlined in Lemma 4 holds

exactly as before. Incorporating jumps, I then obtain the following analog of Theorem 1,

that expresses dynamic programming equations (A.4)–(A.5) in terms of the continuation

values {hi}. The proof of this theorem follows steps identical to the proof of Theorem 1,

and is omitted.

Theorem 4. Define v2(∆t) , σ2∆t+ ν2. Suppose {hi} satisfy, for 0 ≤ i < n− 1,

hi = max
ui

{
(1− λ∆t)

(
µ∆t

[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+ σ
√

∆t
(
φ

(
ui

σ
√

∆t

)
− φ

(
ui − δ
σ
√

∆t

))]
+hi+1

[
(1− µ∆t)Φ

(
ui

σ
√

∆t

)
+ µ∆tΦ

(
ui − δ
σ
√

∆t

)])
+λ∆t

(
µ∆t

[
ui

(
Φ
(

ui
v(∆t)

)
− Φ

(
ui − δ
v(∆t)

))
+ v2(∆t)

(
φ

(
ui

v(∆t)

)
− φ

(
ui − δ
v(∆t)

))]
+hi+1

[
(1− µ∆t)Φ

(
ui

v(∆t)

)
+ µ∆tΦ

(
ui − δ
v(∆t)

)])}

(A.37)

and

(A.38) hn−1 = 0.

Suppose further that, for 0 ≤ i < n − 1, u∗i is a maximizer of (A.37). Then, a policy

which chooses limit prices according to the premia defined by {u∗i }, i.e.,

`∗i = STi + u∗i , ∀ 0 ≤ i < n− 1,
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is optimal.

The following theorem provides an analog of Theorem 2 that characterizes the optimal

solution for the dynamic programming equation in the low latency regime, with the presence

of jumps. The proof is similar to that of Theorem 2, and is again omitted.

Theorem 5. Fix α > 1 and define

κ , 1 + λδ

νµ
√

2π
.

If ∆t is sufficiently small, then there exists a unique optimal solution {hi} to the dynamic

programming equations (A.37)–(A.38). Moreover, the corresponding optimal policy {u∗i } is

unique. For 0 ≤ i < n− 1, this strategy chooses limit prices in the range

`∗i ∈

Si + δ − σ

√
∆t log αL∆t , Si + δ − σ

√
∆t log R(∆t)

∆t

 ,
where

L ,
δ2

2πσ2 , R(∆t) , δ2(1− µ∆t)2n

2πσ2κ2 .

Note that, when compared to Theorem 2, the addition of jump component in Theo-

rem 5 causes R(∆t) to decrease by a constant multiple. Thus, the range containing the

optimal solution is gets larger. However, the upper bound of the range is of the same order

asymptotically (as ∆t→ 0) as before. Hence, I can again provide a asymptotic closed-form

expression for h0(∆t), as is done by the following theorem, which is an analog of Theorem 3

and Corollary 1. (As before, I omit the proof.)

Theorem 6. As ∆t→ 0,

h0(∆t) = h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

+ o
(√

∆t
)
,

where

(A.39) h̄0 ,
δµ

µ+ λp

(
1− e−(µ+λp)T

)
,

is the zero latency limit of h0(∆t), and

p , 1− Φ
(
δ

ν

)
,
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the probability of a jump size greater than δ.

Furthermore, latency cost is unchanged with the introduction of the jump components in

the bid price dynamics, i.e., as ∆t→ 0,

LC(∆t) = σ
√

∆t
δ

√
log δ2

2πσ2∆t + o
(√

∆t
)
.

The analysis with the jump-diffusion model can be interpreted as follows. Theorem 6

illustrates that, when there is a jump component (i.e., λ > 0), the zero latency limit h̄0

has a lower value than in the absence of jumps, (i.e., λ = 0), all else being equal. In other

words, the presence of jumps is detrimental even in the absence of latency. To see why, note

that jumps are zero mean innovations in the price process. In the model, an investor only

earns excess value by waiting for an impatient buyer. Jumps may cause the bid price to

cross the investor’s limit order price and execute his share without giving him the chance

to revise his order. Thus, jumps reduce the probability of trading with an impatient buyer.

This intuition can be made precise by interpreting the zero latency limit in (A.39).

Observe that µ+λp is the combined arrival rate of impatient buyers asking for an immediate

execution, or positive jumps in the price of the stock that are larger than the bid-offer spread

and would result in trade execution. The quantity

µ

µ+ λp

(
1− e−(µ+λp)T

)
is the probability that there at least one such arrival, and that the first such arrival is that

of an impatient buyer. In this case, the trader earns a relative spread of δ. In all other

cases (i.e., no arrivals, or the case where the first arrival is a large positive jump), the trade

occurs at the bid price and the trader earns no spread. These two cases yield the expression

for h̄0.

Now, comparing with the earlier results, jumps also negatively impact the investor in the

presence of latency, for similar reasons as in the zero latency case. However, when measured

relative to the zero latency case, i.e., in term of latency cost, jumps create no additional

impact. That is, the latency cost expressions in Theorem 6 and Corollary 1 are identical.

Intuitively, in the model, jumps are instantaneous, and the investor cannot react to them

even in the absence of latency. Hence, latency cost, measured relatively, only depends on

the diffusive innovations.
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Note that I have thus far assumed Gaussian jump sizes. In Theorem 6, the only place

that this distribution or its parameter ν arises explicitly is the quantity p. This is the

probability that the jump will be larger than the prevailing bid-offer spread, δ, and hence

will cross with the limit order places by the investor. This leads us to conjecture (without

proof) the result in the non-Gaussian case: if the jump size Yi in (A.35) is an i.i.d. zero

mean random variable that has a cumulative distribution function G, then Theorem 6 holds

with p , 1−G(δ).
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Appendix B

Dynamic Portfolio Choice with Linear

Rebalancing Rules

B.1. Proof of Lemma 3

Lemma 3. Given η ∈ [0, 1/2], a non-zero vector a ∈ RN , and a scalar b, the chance con-

straint P(a>ut > b) ≤ η is equivalent to the second order cone constraint

a> (ct +Mtθt)− b+ Φ−1(1− η)
∣∣∣∣∣∣Ω1/2

t M>t a
∣∣∣∣∣∣

2
≤ 0

on the policy coefficients (ct,Mt), where Φ−1(·) is the inverse cumulative normal distribu-

tion.

Proof. This proof follows standard arguments in convex optimization [see, e.g., Boyd and

Vandenberghe, 2004]. Let ūt and Vt be the mean and the variance of ut as given in (3.13).

Then,

P(a>ut > b) = P(βt + σtZ > 0),

where

βt , a
>ūt − b, σt , ‖V 1/2

t a‖2 6= 0,

and Z is a standard normal random variable. Thus,

P(a>ut > b) = 1− Φ(−βt/σt).
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Note that the this probability is less than or equal to η if and only if

βt + Φ−1(1− η)σt ≤ 0.

Substituting (3.13) into definitions for βt and σt, we obtain the desired result. �

B.2. Exact Formulation of the Terminal Wealth Objective

Following the notation of Section 3.4, I will compute E[W (x, r)2] analytically and demon-

strate that the resulting expression is a quadratic convex function of the policy coefficients.

Without loss of generality, assume that W0 = 0 and µt = 0. Then, observe that

E
[
W (x, r)2

]
=

T∑
t=1

T∑
k=1

E
[
(x>t rt+1)(x>k rk+1)

]

=
T∑
t=1

E
[
x>t ε

(2)
t+1

(
ε
(2)
t+1

)>
xt

]
+

T∑
t=1

T∑
k=1

E
[
x>t Bftf

>
k B

>xk
]

=
T∑
t=1

E
[
x>t ε

(2)
t+1

(
ε
(2)
t+1

)>
xt

]
+

T∑
t=1

E
[
x>t Bftf

>
t B

>xt
]

+ 2
T∑
t=1

t∑
k=1

E
[
x>t Bftf

>
k B

>xk
]
.

(B.1)

I will consider each of the three terms in (B.1) separately.

The first term can be evaluated he first expectation, E
[
x>t ε

(2)
t+1

(
ε
(2)
t+1

)>
xt

]
, can be eval-

uated in the following form:

E
[
x>t ε

(2)
t+1

(
ε
(2)
t+1

)>
xt

]
= E

[
x>t E

[
ε
(2)
t+1

(
ε
(2)
t+1

)>
|Ft
]
xt

]
= E

[
x>t Σxt

]
= (dt + Ptθt)>Σ (dt + Ptθt) + tr

(
ΣPtΩtP

>
t

)
.

Using the representation for xt, I obtain

E
[
x>t Bftf

>
t B

>xt
]

= E

(dt +
t∑

s=1
Js,tfs

)>
Bftf

>
t B

>
(
dt +

t∑
s=1

Js,tfs

) ,
which can be simplified further to

E
{(

dt +
t−1∑
s=1

Js,tfs + Jt,t
(
(I − Φ)ft−1 + ε

(1)
t

)>)
B
(
(I − Φ)ft−1 + ε

(1)
t

) (
(I − Φ)ft−1 + ε

(1)
t

)>
B>

(
dt +

t−1∑
s=1

Js,tfs + Jt,t
(
(I − Φ)ft−1 + ε

(1)
t

))}
.
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The resulting computation deals with taking expectations of the product of jointly normal

random variables with integer exponents:

E

(dt +
t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)>
B(I − Φ)ft−1 (B(I − Φ)ft−1)>

(
dt +

t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)
+ E

(dt +
t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)>
ε
(1)
t

(
ε
(1)
t

)>(
dt +

t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)
+ E

[(
ε
(1)
t

)>
B(I − Φ)ft−1 (B(I − Φ)ft−1)> ε(1)

t

]
+ E

[(
ε
(1)
t

)>
ε
(1)
t

(
ε
(1)
t

)>
ε
(1)
t

]
First define

ψ2 , E
[(
ε
(1)
t

)>
ε
(1)
t

(
ε
(1)
t

)>
ε
(1)
t

]
=

K∑
i=1

3Ψii + 2
K∑
i=1

i∑
j=1

Ψij ,

where Ψij is the (i, j)th entry of the covariance matrix of the error terms for factor dynamics,

Ψ. Using iterated expectations by conditioning on the information up to t − 1, Ft−1,

E
[
x>t Bftf

>
t B

>xt
]

equals

E

(dt +
t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)>
B(I − Φ)ft−1 (B(I − Φ)ft−1)>

(
dt +

t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)
+
(
dt + P̄t−1θt−1

)>
Ψ
(
dt + P̄t−1θt−1

)
+tr

(
P̄t−1Ωt−1P̄

>
t−1

)
tr
(
B(I − Φ)Ωt−1

t (B(I − Φ))>Ψ
)
+ψ2.

where

(B.2) P̄t−i ,
[
J1,t J2,t . . . Jt−i−1,t J̄t−i,t

]
, J̄t−i,t ,

(
i∑

k=0
Jt−k,t(I − Φ)i−k

)
.

I continue conditioning in a recursive fashion, and finally obtain the deterministic form

E
[
x>t Bftf

>
t B

>xt
]

=
(
dt +

t∑
s=1

Js,t(I − Φ)sf0

)>
B(I − Φ)tf0

(
B(I − Φ)tf0

)>(
dt +

t∑
s=1

Js,t(I − Φ)sf0

)

+
t∑
i=1

((
dt + P̄t−iθt−i

)>
Ψ
(
dt + P̄t−iθt−i

)
+ tr

(
P̄t−iΩt−iP̄

>
t−i

)
tr
(
B(I − Φ)iΩt−i

t

(
B(I − Φ)i

)>
Ψ
)

+ ψ2
)
,

which is convex quadratic function of the linear policy parameters.

The third expectation, E
[
x>t Bftf

>
k B

>xk
]
, can be computed using the same procedure.
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B.3. Derivation of the LQC Policies

I can derive a closed form solution for the trading policy when the problem satisfies the LQC

framework. I guess a functional form for the value function and show that this functional

form is preserved at each time step.

Using dynamic programming principle and ut = (xt−xt−1), the value function Vt(xt−1, ft)

satisfies

Vt−1(xt−1, ft) = maximize
xt

(
x>t (Bft)−

1
2(xt − xt−1)>Λ(xt − xt−1) + E[Vt(xt, ft+1)]

)
.

I guess the following quadratic form for the value function:

Vt(xt, ft+1) = −1
2x
>
t Axx,txt + x>t Axf,tft+1 + 1

2f
>
t+1Aff,tft+1 + 1

2mt.

Then,

E[Vt(xt, ft+1)] = −1
2x
>
t Axx,txt+x>t Axf,t (I − Φ) ft+

1
2f
>
t (I − Φ)>Aff,t (I − Φ) ft+

1
2 (tr(ΨAff,t) +mt) .

At the the last period, I need xT = 0, and the value function equals

VT−1(xT−1, ft) = −1
2x
>
T−1ΛxT−1

which satisfies the functional form with

Axx,T−1 = Λ Axf,T−1 = 0 Aff,T−1 = 0 mT−1 = 0.

For all t < T − 1, I maximize the quadratic objective −1
2x
>
t Qtxt + x>t qt + bt where

Qt = Λ +Axx,t

qt = Λxt−1 + (B +Axf,t (I − Φ)) ft

bt = −1
2x
>
t−1Λxt−1 + 1

2f
>
t (I − Φ)>Aff,t (I − Φ) ft + tr(ΨAff,t) +mt

Then, the optimal xt is given by Q−1
t qt and xt and ut are given by

xt = (Λ +Axx,t)−1 (Λxt−1 + (B +Axf,t (I − Φ)) ft)

ut = (Λ +Axx,t)−1 (Λxt−1 + (B +Axf,t (I − Φ)) ft)− xt−1
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The maximum then occurs at 1
2q
>
t Q
−1
t qt + bt and I obtain the following recursions:

Axx,t−1 = −Λ (Λ +Axx,t)−1 Λ + Λ

Axf,t−1 = Λ (Λ +Axx,t)−1 (B +Axf,t (I − Φ))

Aff,t−1 = (B +Axf,t (I − Φ))> (Λ +Axx,t)−1 (B +Axf,t (I − Φ)) + (I − Φ)>Aff,t (I − Φ)

mt−1 = tr(ΨAff,t) +mt

Using these recursions, I can compute the optimal expected payoff of the dynamic pro-

gram. Using f0 = N(0,Ω0),

E[V0(x0, f1)] = E [E[V0(x0, f1)|f0]]

= E
[
−1

2x
>
0 Axx,0x0 + x>0 Axf,0 (I − Φ) f0 + 1

2f
>
0 (I − Φ)>Aff,0 (I − Φ) f0 + 1

2 (tr(Ω0Aff,0) +m0)
]

= −1
2x
>
0 Axx,0x0 + 1

2

(
tr
(
Ω0(I − Φ)>Aff,0(I − Φ)

)
+
T−2∑
t=0

tr(ΨAff,0)
)
.

B.4. Exact Formulation of Best Linear Execution Policy

I will first compute the expectation in the objective of (3.29) and write the equivalent de-

terministic form. I will then replace probabilistic constraints with deterministic constraints

using Lemma 3, and finally obtain the deterministic version of the stochastic program in

(3.29)

I start working with the expectation in the objective function. For each t, I have to

compute the expectation of the following two terms, E
[
x>t (Bft)

]
, and E

[
u>t Λut

]
. First, I

derive the statistics for ft, ut and xt. I first note that

ft = (I − Φ)tf0 +
t∑

s=1
(I − Φ)t−sε(1)

s .

Letting Ft , (f1, . . . , ft)>, Then, in vector form, I have the following representation

Ft =



(I − Φ)f0

(I − Φ)2f0
...

(I − Φ)t−1f0

(I − Φ)tf0


+



I 0 . . . 0 0

(I − Φ) I 0 . . . 0
... (I − Φ) . . . . . . 0

(I − Φ)t−1 . . .
. . . I 0

(I − Φ)t . . . (I − Φ) I


︸ ︷︷ ︸

,At



ε
(1)
1

ε
(1)
2
...

ε
(1)
t−1

ε
(1)
t


.
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Using this representation, I compute the mean

(B.3) θt , E[Ft] =



δ1

δ2
...

δt−1

δt


,



(I − Φ)f0

(I − Φ)2f0
...

(I − Φ)t−1f0

(I − Φ)tf0,


and the covariance matrix

(B.4) Ωt , Var[Ft] = At



Ψ 0 . . . 0 0

0 Ψ . . . 0
... . . . . . . 0

. . . Ψ 0

0 . . . 0 Ψ


A>t .

Note that Ωt is a block diagonal matrix with t blocks of size K ×K. Recall that in Section

3.4, I defined

(B.5) Mt ,
[
E1,t E2,t . . . Et,t

]
Then, ut = ct +MtFt and I have the following moments for ut:

µt , E[ut] = ct +Mtθt(B.6)

Vt , Var(ut) = MtΩtM
>
t .

Therefore, ut is normally distributed with mean µt and covariance matrix Vt. Similarly, I

can obtain the statistics for xt. Using (3.15),

κt , E[xt] = dt + Ptθt

Yt , Var(xt) = PtΩtP
>
t .

I note the following fact from multivariate statistics.

Fact 1. If z is a random vector with mean µ and variance Σ, and Q is positive definite

matrix, then

E[z>Qz] = tr(QΣ) + µ>Qµ.
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Using Fact 1, I can compute each term in the expectation.

E
[
x>t (Bft)

]
= E

[
d>t Bft +

t∑
s=1

f>s J
>
s,tBft

]

= d>t Bδt +
t∑

s=1
E
[
f>s J

>
s,tBE [ft|fs]

]

= d>t Bδt +
t∑

s=1
E
[
f>s J

>
s,tB(I − Φ)t−sfs

]

= d>t Bδt +
t∑

s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sJ>s,tωs

))
where ωs is the sth diagonal block matrix of Ωt having a size of K × K. Finally, for the

transaction cost terms,

E
[
u>t Λut

]
= E

[
(ct +MtFt)> Λ (ct +MtFt)

]
= (ct +Mtθt)> Λ (ct +Mtθt) + tr

(
ΛMtΩtM

>
t

)
Summing up all the terms, the final objective function in deterministic form equals

maximize
ct,Es,t

T∑
t=1

{
d>t Bδt +

t∑
s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sE>s,tωs

))
+ 1

2
(
(ct +Mtθt)> Λ (ct +Mtθt) + tr

(
ΛMtΩtM

>
t

))}
,

which is a quadratic function of the policy parameters.

I now rewrite the equality constraint, xT = 0 in terms of policy parameters. In order to

enforce this equality, I need

dT = 0 and Js,T = 0 s = 1, . . . , T.

Lastly, I replace probabilistic constraints with deterministic constraints using Lemma 3.

Note that P (xt ≤ 0) ≤ η can be written as P (−xt ≥ 0) ≤ η. Then, using Lemma 3,

(−dt − Ptθt) + Φ−1(1− η)
∣∣∣∣∣∣∣∣(PtΩtP

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0.

Similarly, I obtain that P (ut ≥ 0) ≤ η can be replaced by

(ct +Mtθt) + Φ−1(1− η)
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0.
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Combining all the results, I obtain the deterministic version of the stochastic program

in (3.29), a second-order cone program:

maximize
ct,Es,t

T∑
t=1

{
d>t Bδt +

t∑
s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sE>s,tωs

))
(B.7)

+ 1
2
(
(ct +Mtθt)> Λ (ct +Mtθt) + tr

(
M>t ΛMtΩt

))}

subject to dt = x0 +
t∑
i=1

ci t = 1, . . . , T,

Js,t =
t∑
i=s

Es,i 1 ≤ s ≤ t ≤ T,

(−dt − Ptθt) + Φ−1(1− η)
∣∣∣∣∣∣∣∣(PtΩtP

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0 t = 1, . . . , T,

(ct +Mtθt) + Φ−1(1− η)
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0 t = 1, . . . , T,

dT = 0 and Js,T = 0.

Note that the number of decision variables is considerably greater than that of the

original execution problem in (3.24). Total number of decision variables in a problem with

N securities, K factors and T periods equals 2NT +NKT (T + 1) which is on the order of

O(NKT 2).
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