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 ABSTRACT 

Non-overlapping neural networks in Hydra vulgaris 

Christophe Dupre 

 

 To understand the emergent properties of neural circuits it would be ideal to record the 

activity of every neuron in a behaving animal and decode how it relates to behavior. We have 

achieved this with the cnidarian Hydra vulgaris, using calcium imaging of genetically engineered 

animals to measure the activity of essentially all of its neurons. While the nervous system of Hydra 

is traditionally described as a simple nerve net, we surprisingly find instead a series of functional 

networks that are anatomically non-overlapping and are associated with specific behaviors. Three 

major functional networks extend through the entire animal and are activated selectively during 

longitudinal contractions, elongations in response to light and radial contractions, while an 

additional network is located near the hypostome and is active during nodding. Additionally, we 

show that the behavior of Hydra is made of regularly occurring radial contractions, which expel 

the content of the gastric cavity about every 45 minutes. These results demonstrate the functional 

sophistication of apparently simple nerve nets, and the potential of Hydra and other basal 

metazoans as a model system for neural circuit studies. 
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INTRODUCTION 

Anatomy 

The anatomy of Hydra is fairly simple when compared to most other multicellular animal models 

as it is radially symmetrical (Figure 1). The hypostome (unique opening of the gastric cavity) is 

surrounded with tentacles, and the body column forms a cylinder that attaches to the substrate via 

a peduncle. A cross-section of the body column reveals three layers of cells: endoderm, ectoderm 

and interstitial cells. The endoderm and ectoderm of the animal are made of epithelial cells that 

have muscular processes or myofilaments. The interstitial cells are made of multiple types of cells: 

gland cells, neurons and nematocytes[1]. A well-fed animal may measure up to 1.5 cm, whereas a 

starved animal can shrink down to less than a mm. Multiple other parameters such as the genetic 

strain and ambient temperature will affect the animal’s size. 
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Figure 1: Anatomy of Hydra 

A) Full animal, not sexually differentiated. A sexually differentiated animal will have one or 

multiple gonads, which will be testes and/or ovaries. B) Tissue section from the region boxed in 

A). The name of each cell type known to date is indicated, although there might be more cell 

types to be discovered. The connection between neurons in the endoderm and neurons in the 

ectoderm has not been identified yet. Reproduced from [1]. 

 

Physiology – Electrical recordings 

Before functional imaging was available, the method of choice for measuring neuronal activity 

was electrophysiology. L.M. Passano and C. B. MacCullough undertook a series of experiments 
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in the 1960s that aimed at recording electrical activity in Hydra (Figure 2). They used suction 

electrodes that they would attach to the body of Hydra under different conditions. They observed 

that at rest, the animal generates two different types of spikes: short spikes and tall spikes. The tall 

spikes are organized as bursts and their occurrence matches the expression of a very stereotyped 

behavior: the contraction burst. The short spikes can occur in the absence of any behavior and were 

called rhythmic potentials (RPs). The interval between 2 RPs is pretty constant, but it can be 

modulated by a photic stimulus. Indeed, if an animal is dark-habituated it will elongate as soon as 

it is exposed to light. Moreover, during this elongation one can observe a transient increase in RP 

frequency [2]. 

 

Figure 2: Electrical activity in Hydra 

The trace on the top is the electrical signal recorded by Passano and McCullough when they 

placed a suction electrode against the body of the animal. One can see two types of spikes, tall 

and short, in this recording. Additionally, even though the short spikes occur at a regular interval 

their frequency can be modulated by a brief exposure to light, when the animal has been 
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previously habituated to darkness. This brief exposure to light triggers a behavior called 

elongation response. The bottom drawings represent different behaviors that Hydra can execute. 

The elongation response is represented by the first three drawings, whereas somersaulting and 

contraction bursts are represented by the 4th-5th and last drawing, respectively. Reprinted from 

[3]. 

Physiology – synapses 

The type of synapse used by the neurons of Hydra in order to connect to each other has been 

studied mostly with electron microscopy. As a result, both chemical and electrical synapses were 

found (Figure 3), connecting neurons to each other but also connecting neurons with epithelial 

cells. These synapses were observed in multiple parts of the body of the animal, including the 

hypostome, peduncle and body column. The chemical synapses of Hydra seem to be using a high 

density of dense core vesicles when compared to mammalian chemical synapses, although small 

synaptic vesicles are also visible under electron microscopy. Another particularity of these 

synapses is that many of them seem to be bidirectional, i.e. containing vesicles in both the pre and 

postsynaptic compartments [4–8]. 
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Figure 3: Synapses in Hydra seen with electron microscopy 

Left: gap junction with high density of ribosomes nearby. Magnification x 118,000. Reproduced 

from [5]. Right: chemical synapse (S) with two neurites (A) and dense core vesicles (arrows). 

Reproduced from [4]. 

  

Discovery and early research 

Since its discovery in 1702 by Antony Van Leeuwenhoek [9], Hydra has been used as an animal 

model to improve our understanding of biological processes. In 1744, Trembley published his 

Mémoires book, where he described for the first time (together with experiments) asexual 

reproduction by budding, the first controlled experiments in animals on regeneration, the first 

successful animal grafts, first study of phototaxis in animals without eyes, and the first vital 

staining of tissues [10]. 

Ethel Browne also contributed major advances in our understanding of developmental biology as 

she was a graduate student. Indeed, working under Thomas Hunt Morgan she used Hydra to 

demonstrate the organizer phenomenon for the first time [11]. She showed that when grafting the 

tentacle of a Hydra onto the body column of another Hydra, one can trigger the growth of a new 
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Hydra at the grafting site. This new Hydra will develop normally as if it had been the result of 

budding or asexual reproduction. These experiments were done prior to the experiments by 

Spemann and Mangold, but did not receive the same amount of attention [11]. 

 

Hydra as an animal model in modern neurobiology 

 Understanding the function of any nervous system is a daunting task given the number of 

neurons involved and the difficulty in measuring and analyzing their activity. Cnidarians, as a 

sister group of bilaterians, are extant representative of some of the earliest animals in evolution to 

have nervous systems and thus offer an apparent simplicity that could help illuminate the structural 

and functional design principles of neural circuits. Among cnidarians, Hydra is convenient to 

maintain and manipulate in a laboratory and, consequently, has been studied for more than 300 

years [9]. The nervous system of Hydra is composed of a few hundred to a few thousand neurons, 

depending on the size of the animal [12]. Two main types of neurons have been reported: sensory 

cells, exposed to the external or gastric environment, and ganglion cells, which form a two-

dimensional lattice known as nerve net [8,13]. Hydra’s nerve net has actually two separate 

components: one in the endoderm and one in the ectoderm. The morphology of both sensory cells 

and ganglion cells can vary, in terms of the size of their cell body and the ramification of their 

neurites [14].  

 The function of nerve nets in Hydra is poorly understood. Extracellular recordings reported 

multiple types of electrical activity, some of which are associated with motion or occur in response 

to sensory stimulation. Specifically, longitudinal contraction of the ectoderm, which reduces the 

animal down to a tight ball, is associated with a type of extracellular electrical signals named 

longitudinal contraction bursts (CB) [2]. Tentacles sometimes also generate electrical pulses 
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(tentacle pulses), found during contractions [15,16]. But in addition, Hydra displays robust 

spontaneous electrical activity, i.e. activity in the apparent absence of any external stimulus and, 

sometimes, also in the absence of any clear behavior. One example of this are the rhythmic 

electrical potentials [2,17], which have been thought to propagate in the endoderm of the animal 

[18] and to increase in frequency during elongation of the body column [2]. Activation of the 

endoderm by rhythmic potentials is thought to cause radial contraction (reduction of the radius of 

the animal) and therefore elongation [19,20]. 

 Hydra has a limited and well-characterized behavioral repertoire, including photic response 

and feeding. A dark-habituated Hydra that is exposed to light will respond by elongating its body 

towards it, bending its hypostome-tentacle junction to produce a motion reminiscent of nodding 

[3,21], and eventually moving towards the light source by somersaulting [10]. Feeding includes a 

combination of tentacle motion to spear and paralyze the prey with nematocysts in order to bring 

the prey towards the mouth, which opens to ingest it [22]. A few hours after ingestion, the content 

of the body column is expelled through the mouth by a quick radial (as opposed to longitudinal) 

contraction of the body column after the mouth has opened [23]. 

 Elucidation of the links between neuronal activity, anatomy and behavior in Hydra has 

been difficult because of technical limitations. Single-cell recording approaches are difficult 

because Hydra neurons are small and scattered [24], although intracellular recordings reveal action 

potentials [25]. Extracellular studies have provided detailed descriptions of electrical signals but 

could not link them to a particular cell type. In fact, whether rhythmic potentials and longitudinal 

contraction bursts are conducted by neurons or by the muscle/epithelial cells is still under debate 

[18,26,27], and surgical isolations indicate that they can propagate along both axes of the 

epithelium [16]. Also, extracellular recordings, which could be more akin to electromyograms, can 
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be disrupted by the motion of the animal [17], and therefore cannot be carried out in certain types 

of behavior. Accordingly, one does not know how many networks exist in the nervous system of 

Hydra and to what behavior each of them participates. 

 The application of modern molecular methods to Hydra has the potential to greatly advance 

our understanding of these essential neurobiological questions. In particular, the recent sequencing 

of Hydra has revealed a surprisingly rich genome [28]. Indeed, in spite of its basal metazoan 

lineage, the Hydra genome is endowed with more than 20,000 genes including an extensive 

complement of neuronal molecular families such as sodium, potassium and calcium channels, and 

receptors for glutamate, GABA, Dopamine, 5HT, and many peptides. Many of these molecules 

are even present in animals that are evolutionary more basal than cnidarians, such as the poriferans 

(sponges) [29]. Also, stable transgenic lines have been achieved [30], enabling the use of a large 

range of modern molecular tools. Among these tools, genetically-encoded calcium indicators are 

particularly well suited for functional studies of the Hydra nerve net for many reasons. First, 

calcium imaging can track the action potential activity of neuronal populations [31]. Second, the 

small size of Hydra (500 µm to 1.5 cm in length) makes it possible to have an entire animal under 

the field of view of a traditional microscope. Third, Hydra is transparent and its scattered nerve-

net organization (disadvantageous for electrophysiological recordings) is advantageous for 

imaging. Indeed, it is rare that two neurons optically overlap during imaging so it is therefore easier 

to obtain single-neuron resolution. Fourth, Hydra does not age [32], so the same animal can be 

used in an indefinite number of experiments. This can reduce the number of confounding factors 

and make statistical interpretation more accurate. Fifth, Hydra regenerates which makes it more 

robust against photodamage. Other cnidarians are available, such as Hydractinia, Aglantha and 

Nematostella. These animals offer various advantages, such as the broad range of genetic tools 
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that are available in Nematostella [33]. In spite of the fact that these species might not have the 

same optical advantages as Hydra, running similar experiments in them would offer exciting 

comparative perspectives between the nervous system of anthozoans (e.g. Nematostella) and 

hydrozoans (e.g. Hydra). To take advantage of these properties and explore the possibility of 

performing neural circuit studies of Hydra, we created a line expressing a calcium indicator 

(GCaMP6s) in neurons. Using it, we attempted to link neuronal activity with the anatomy of the 

nerve net and the behavior of the animal. 

 

RESULTS 

Imaging the complete activity of the nervous system of Hydra 

 In order to record the activity of the entire nervous system of Hydra simultaneously we 

first generated a line of transgenic animals expressing a genetic calcium indicator and then 

developed a method to image whole individuals. To generate the transgenic line, we modified a 

plasmid initially designed by R. Steele (UC Irvine; Addgene cat#34789) [34] and which expresses 

GFP under the control of an actin promoter. In the sequence of this plasmid, we substituted 

GCaMP6s for GFP (see Supplemental Material). We then injected the plasmid in fertilized Hydra 

eggs (Figure 4A) according to an established procedure [35] (see also Supplemental Experimental 

Procedures), with the goal of incorporating the plasmid into the interstitial cell lines, which give 

rise to the neuronal lineage. 

 Animals generated were mosaic, with transgenic stem cells randomly scattered throughout 

the body. By repeatedly selecting buds that formed on a region of the parent that has higher 

concentration of transgenic stem cells than the rest of the body of the parent, we progressively 

increased the percentage of transgenic neurons in our colony. Once the percentage of transgenic 
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neurons seemed to have reached a steady-state, we measured it by immunostaining animals for 

GCaMP6s (using a GFP antibody) and acetylated alpha tubulin, a pan-neuronal marker [36]. In 

these animals, 96 ±3 (SEM) % of cells positive for acetylated alpha tubulin also expressed 

GCaMP6s (see Figure S1). Since it is likely that a small percentage of neurons might not have 

been stained for GFP and/or for anti-acetylated alpha tubulin during the immunohistochemistry 

procedure, we concluded that the transgenic lines expressed GCaMP6s in essentially all of its 

neurons. 

 To image the activity of every neuron in the animal, we mounted specimens between two 

coverslips separated by a 100µm spacer, which is the average width of a small Hydra (Figure 4B) 

and imaged in wide-field mode at max 33Hz frame rate (Movie S1; cf experimental procedures). 

In such preparation, the animal can be considered as a hollow cylinder that is imaged from the 

side, between the top coverslip (top layer in Figure 4B), and the bottom coverslip (bottom layer in 

Figure 4B). Consequently, we expected to see two layers of neurons (the two sides of the cylinder) 

slide on top of each other as the animal is moving in this chamber. Indeed, we could identify the 

two body walls by measuring the trajectory of 8 neurons in a given region of interest, and plotting 

these trajectories on top of each other (Figure 4C, left and middle panels). Accordingly, the 8 

trajectories essentially followed two different directions corresponding to the motion of the two 

layers of the animal. Moreover, we could detect calcium transients from neurons in both layers 

(Figure 4C, right panel). We ruled out the possibility that these fluorescence transients come from 

motion of the cells in and out of focus by comparing them to the signal we acquired from animals 

expressing GFP (rather than GCaMP6s) in neurons (Figure S2). For these reasons, we can 

conclude that our preparation allows us to image neuronal activity through the entire animal 

simultaneously. 
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 In order to extract neuronal activity in spite of the motion of the animal, we manually 

tracked the trajectory of each neuron and measured their fluorescence intensity at each frame (cf 

experimental procedures; Figure 4D and Movie S2). Additionally, we attempted to correlate 

calcium signal with electrical activity of the neurons by approaching extracellular electrodes 

(Figure 5A). We were not able to record the electrical activity of CB neurons, because whenever 

they fired the electrical signal generated by the contracting muscles overwhelmed any other signal 

(Figure 5B). However, we were able to record electrical signals from rhythmic potentials neurons, 

because they can occur when the animal does not move. The calcium transients we observed all 

had the same amplitude, and the electrical activity that corresponded to them always involved a 

single spike (Figure 5C-D). Therefore, each RP calcium transient corresponded to one action 

potential. 

 Using these traces for each neuron, we built rasterplots representing the activity of every 

neuron over hundreds of frames (Figure 4D). Note that each animal can have a different number 

of neurons, as Hydra can grow and shrink depending on its food intake [12]. In addition, we tested 

how fast and for how long we could image these animals in our preparation. The duration of 

recording was limited by photobleaching and phototoxicity, which we assessed by measuring 

fluorescence intensity and neuronal activity, respectively. The speed of recording in our 

preparation was limited by the minimum acquisition time of the camera (30ms). At this maximum 

speed, it was possible to continuously record neuronal activity for more than one hour without any 

apparent toxicity and little bleaching (Figure 4E). Because our staining indicates that every neuron 

was transgenic and our recording technique could image both layers of the animal, we believe to 

be close to imaging the activity of every neuron of Hydra simultaneously. Using these recordings, 
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we classified the neurons of Hydra according to their morphologies, activity patterns, or any 

behavior observed. 

  



 
 

13 
 
 

 

  



 
 

14 
 
 

 



 
 

15 
 
 

Figure 4: Imaging the entire nervous system activity of Hydra 

A. To create the transgenic line, we injected into fertilized Hydra eggs (left) a plasmid that 

causes expression of GCaMP6s (right). B. Imaging preparation (left) and sample cross-section 

(right). C. Left: trajectory of 5 representative neurons. Middle: close-up on the trajectory of the 8 

tracked neurons, showing a difference in direction of the neurons of the top layer (blue) versus 

the neurons of the bottom layer (red). Right: Single calcium spikes in neurons from both layers 

(top; see also Figure S2), with manual detection of coactivation events (bottom). D. First frame 

(top left), trajectory of all neurons (top right), close-up on the position of 2 representative 

neurons (bottom left) and fluorescence (bottom right) of all the detected neurons during a typical 

recording. Measurements were made on the first 20 seconds (real time, i.e. 1.6 seconds of movie 

time) of Movie S1. E. Entire animal (left) imaged for more than one hour at 30 frames per 

second, with fluorescence signal (right) coming from the cell circled in yellow. See also Figures 

S1, S2 and S4 and Movies S1 and S2. 
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Figure 5: Simultaneous recording of electrical activity and calcium imaging 

A. Preparation (scale bar = 20 µm). Electrode comes from the top and is slightly out of focus B. 

Extracellular electrode placed near a contraction burst neuron, with fluorescence signal recorded 

from that contraction neuron. Contractions produce overwhelming electrical signal. C. 

Extracellular electrode was placed close to a neuron from one RP network (RPa, which could be 

either RP1 or RP2) and far from a neuron from the other RP network (RPb). Accordingly, the 

spikes recorded in electrical activity match calcium spikes of neuron A (blue trace) but not 

neuron B (red trace). Note that there is cross-contamination between the fluorescence signals 

from neuron A and B, but one can distinguish them because of their amplitude difference (large 

spikes in neuron A result in small spikes in neuron B and vice-versa). D. Superimposition of nine 

spikes from extracellular recording and their corresponding calcium traces for neuron A. The 

color of each electrical trace matches the color of the corresponding fluorescence trace. In B-D, 

the fluorescence traces are in arbitrary units. 
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Functional networks of neurons in Hydra  

 We define functional networks as groups of neurons that participate in a common function 

such as a particular behavior. Among these functional networks, we observed three of them where 

neurons spanning the entire body of the animal were coactive (Figure 6A, red, green and blue 

dots). Here, we define coactive as firing within the same 100ms frame (Movie S1), acknowledging 

that with a higher temporal resolution we might be able to measure a delay between the activation 

of different neurons. Interestingly, these three networks were non-overlapping, i.e. any neuron 

belonging to one network did not belong to any of the other two networks. Additionally, we 

observed small functional networks of neurons located under the tentacles-hypostome junction and 

individual neurons showing slower calcium transients rather than spikes (Figure 6A, yellow dots). 

We extracted every spike and slow calcium transients of the neurons recorded in a segment of the 

movie (Figure 6B). Accordingly, we reported in that segment a total of 14 activity epochs, 4 of 

them belonging to the coactive circuits.  

One of the coactive networks involved neurons which became active during a longitudinal 

contraction burst (CB), which is one of the most commonly described behaviors of Hydra [17,37]. 

Such bursts happened on average once every 4.4 min (±53 sec (SEM), n = 6 animals). In addition, 

we found networks of neurons active spontaneously, apparently corresponding to the rhythmic 

potentials (RPs) [17]. Unexpectedly, we found not one but two independent networks of cells 

generating these rhythmic potentials (Figure 6A, green and red dots), which we named RP1 and 

RP2 and which fired on average once every 167 sec (± 102 sec (SEM), n = 8 animals) and 143 sec 

(± 21 sec (SEM), n = 8 animals), respectively. 

 Interactions between rhythmic potentials and longitudinal contraction bursts have been 

described previously [3]. Since they only assumed the existence of one RP system, we explored 
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whether this was true for both RP networks. To examine this, we extracted the activation events 

of the CB, RP1 and RP2 in longer movies (up to one hour) in multiple animals and computed their 

cross-correlation (see Supplemental Experimental Procedures). Indeed, RP1 showed short-term 

interruptions when CB became active (see arrows under spike train in Figure 6C), which results in 

a dip at T=0 in the cross-correlogram between RP1 and CB (Figure 6C middle) and a decrease in 

RP1 frequency when CB frequency increases (cf. leftward inclination of the loops in Figure 6C 

right). This indicates an antagonistic interaction between RP1 and CB and was present in 7 animals 

(Figure 6D middle). At the same time, no detectable relationship was found between RP1 and RP2 

(left) or between RP2 and CB (right). 
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Figure 6: The nervous system of Hydra includes three major networks 

A. Topographical distribution of neurons in Hydra (same dataset as Figure 4D), grouped in 5 

categories: rhythmic potentials #1 (RP1, green), rhythmic potentials #2 (RP2, red), longitudinal 

contraction bursts (CB, blue) and other neurons (others, yellow). CB’ indicates neurons of the 

tentacles which did not fire during the two CB events of this time window, but fired during 

another CB event. B. Spikes (black) and slow calcium transients (grey) of the 559 cells shown in 

A. Neurons are grouped by identity (colored dots on the right), and activity events are marked 

with an arrow (top). Note the difference in scale between the y axis of the top and bottom plots, 

due to the large number of neurons belonging to RP1, RP2 and CB. Also, note that the 2 activity 

epochs labeled as CB are the last 2 spikes of a longitudinal contraction burst. C. Top: Spiking 

activity of the three networks in one representative animal. Each spike represents the 

coactivation of the neurons of one network (RP1, RP2 or CB). Arrows indicate decrease in RP1 

frequency during a longitudinal contraction burst. Middle: Cross-correlation between RP1 and 

CB. Bottom: plot of the firing frequency over time of the three networks. Numbers indicate 

longitudinal contraction bursts. D. Cumulated (over 7 animals) cross-correlation between RP1-

RP2 (top), RP1-CB (middle) and RP2-CB (bottom).  
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RP1 and CB networks are ectodermal while RP2 is endodermal 

 We then examined the anatomical characteristics of the three widespread networks. Since 

neurons of a given network fire within the same frame (up to 30 ms in our fastest recordings) we 

assumed they must be connected into the same circuits either via chemical or electrical synapses. 

Since no neuronal connection has been described in Hydra between the endodermal and the 

ectodermal nerve net [38], we assumed that each of RP1, RP2 and CB can only exist in one nerve 

net (either endodermal or ectodermal). We reasoned that the CB system should be in the ectoderm 

because ectodermal neurons innervate the longitudinal (vertical) muscle fibers of the ectodermal 

skin cells in order to cause body wall longitudinal contractions. In addition, previous studies 

showed that the rhythmic potentials exist in the endodermal nerve net [18] and cause longitudinal 

contractions of the endoderm [20] which has been interpreted as producing elongation of the body 

column of the animal [19], because endodermal muscle cells are arranged circularly (horizontally). 

However, if rhythmic potentials were generated by the endodermal nerve net, they would not be 

able to interact with CB neurons (as shown in Figure 6D) which are in the ectoderm. Thus, we 

hypothesized that RP1 is in the ectoderm, which allows it to interact with CB, whereas RP2 should 

be in the endoderm, which prevents it from interacting with CB and RP1. 

  To test this hypothesis, we measured the presence of neurons belonging to the three 

networks in regions of our recordings that only contain the ectoderm of the animal, by taking 

advantage of the fact that, in our preparation, the animal is laid flat between 2 coverslips. Thus, 

when imaged from the objective, there is an area at the edge of the animal composed of ectoderm 

only, whereas the rest of the animal is a superimposition of both endoderm and ectoderm (dashed 

lines in Figure 7A). Accordingly, we only found RP1 neurons in areas containing ectoderm only 

(arrows), whereas we found RP1 and RP2 neurons in areas containing both endoderm and 
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ectoderm. We concluded that RP1 is in the ectodermal nerve net whereas RP2 is in the endodermal 

nerve net.  

 We then tested whether neurons of RP1, RP2 and CB had different morphological features 

by comparing their soma size, number of primary neurites, and orientation of primary neurites 

(Figure 7B). We also measured these parameters for the individual neurons that did not participate 

in these three networks (“other” cells). The somata of CB neurons was larger when compared to 

all other categories (10.73 µm ± 0.62 (SEM); P<0.01, unpaired T-Test) (Figure 7C). Meanwhile, 

the number of primary neurites was higher (P<0.01, unpaired T-Test) in RP2 neurons (3.2 ± 0.1) 

than in RP1 (2.78 ± 0.1), CB (2.9 ± 0.06) and other neurons (0.86 ± 0.2) (Figure 7D). The number 

of primary neurites of the other neurons was significantly smaller than all other networks (P<0.01, 

unpaired T-Test). Some of these neurons possessed one short branch (Figure 7B), a feature that is 

very characteristic of the sensory neurons which have been reconstructed from serial section 

electron microscopy [8]. The orientation of the primary neurites was also measured (Figure 7E), 

by using the oral-aboral axis as a reference (top-left panel). No specific orientation was found for 

any of the three major networks.  

 To further identify the spatial structure of the three networks, we first examined the overall 

distribution of neurons, finding that the overall density of neurons was higher in the hypostome 

(3679 ± 401 neurons/mm2) than in any other part of the animal (P<0.05, Paired T-test, n=5) and 

higher in the peduncle (2668.5 ± 264) than in the body column (1339.7 ± 234) (P<0.05, Paired T-

test, n=5; Figure 7F). These measurements match previous studies [14,39], where the authors 

dissociated specific parts of Hydra (hypostome, body column and peduncle) and measured the 

ratio between neurons and skin cells in each part. Other studies using staining methods came to 

similar conclusions [40–43]. Using these measurements, we calculated that CB and RP1 neurons 
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involved a large proportion of the neurons in the animal (36.8% ± 1.87 and 37.1 ± 1.6), as 

compared with RP2 (16 ± 2) and single other cells (9.93 ± 1.17) (P<0.05, paired T-Test; Figure 

7G). This quantification also supports that RP2 is generated by the endodermal nerve net, since 

previous studies [14] showed a 1/5 ratio (20%) between endodermal and ectodermal neurons, 

which is similar to the ratio we found (22%) between the number of neurons participating in RP2, 

as compared with the sum of neurons in the RP1 and CB networks (see Figure S3). Additionally, 

this quantification supports our earlier claim that the other neurons are probably sensory cells, 

since previous studies [8] also reported a very small proportion of sensory cells, as compared with 

ganglion cells. 

 Taken together, our data indicate that CB and RP1 networks are composed of two 

independent sets of ectodermal neurons, whereas the RP2 network is endodermal. Cells that are 

not part of these networks are likely to be sensory neurons. 
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Figure 7: Anatomical differences between the three major networks 

A. Pseudocolored (cf methods) RP1 and RP2 networks in an animal's body column. Top: RP1 

only, middle: RP2 only, bottom: RP1 + RP2. Areas containing the ectoderm only and the 

endoderm + ectoderm are delineated with white dashed lines and six example neurons present in 

the "ectoderm only" area are marked with an arrow. B. Pseudocolored neurons representative of 

each of the 4 main categories. C. Soma size. D. Number of primary neurites. Note that jitter was 

added to the data points so that they do not overlap exactly on the plot. E. Orientation of primary 

neurites in neurons of the three main networks. The method to measure the angle at each neurite 

is described in the top-left panel. F. Neuron density in various body areas. G. Percentage of 

neurons belonging to each network. Data are represented as mean ± SEM. * indicates P<0.05 

(unpaired T-Test). See also Figure S3. 
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RP1 is associated with elongations and RP2 with radial contractions 

 We then examined whether the activity of these non-overlapping networks correlated with 

any behavior. As stated, CB activity was clearly associated with the longitudinal contraction bursts 

of the animal. Also, as rhythmic potentials were thought to be in the endodermal nerve net, their 

activation should cause contraction of endodermal muscles and elongation of the body in response 

to a photic stimulus. For these reasons, since we found that RP1 is ectodermal, we hypothesized 

that the RP circuit mediating photic response was RP2. To test this we measured the activity of the 

nervous system of Hydra following photic stimulation. We induced light response by first dark-

habituating animals overnight under dim infra-red light (Figure 8A). When we switched to 

fluorescence imaging, the light emitted by the arc lamp caused photic stimulation which resulted 

in elongation response (Figure 8B, where dashed lines mark contour of animal before elongation; 

Movie S3). To our surprise, while all three networks were mostly silent during at least 40 seconds 

before elongation onset, only RP1, and not RP2, became active after elongation onset (Figure 8C). 

Therefore, we concluded that RP1, rather than RP2, is correlated with elongations. This is in fact 

consistent with the fact that neurons of the tentacles are connected to photosensors [36,44] and 

RP2 is not present in the tentacles (Figure 6A). Also, the fact that RP1 neurons cause elongation 

and CB neurons cause longitudinal contraction is consistent with the anti-correlation that we 

observed between them (Figure 6D) and hints at a push-pull mechanism where the morphology of 

the animal results from a combination of the activity of two opposed neural ectodermal networks. 

It is important to note that, as observed previously [2], the RP1 network is also active 

independently of the elongation response to light, which suggests that it might be correlated with 

other behaviors. 
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 We then turned our attention to the functional role of RP2. To our surprise, we discovered 

that radial contraction was also linked to a change in the frequency of rhythmic potentials, but that 

this change was specific to RP2. The slow radial contraction behavior was readily noticed in our 

time-lapse movies, if we played them at various speeds to recognize changes in animal morphology 

that happen at slower time scales (Figure 8D-E; see also Movie S4). Indeed, the frequency of RP2 

decreased significantly after radial contraction (P < 0.012, paired T-Test), whereas the activity of 

the other networks did not change. Additionally, the frequency of RP2 was on average 10 times 

higher than RP1 and CB, which indicates a particularly high level of excitation before radial 

contraction. Therefore, we concluded that RP2 participates in radial contraction. This is consistent 

with the fact that RP2 is located in the endoderm (Figure 7A), and that endodermal neurons are 

connected to sensory cells which are exposed to the gastric environment [8]. In this context, RP2 

neurons could act as an integrator of information about the gastric environment which would put 

them in a position to decide when radial contraction has to occur. If we consider the body column 

of Hydra as a cylinder, the relaxation of the ectodermal longitudinal fibers by RP1 during 

elongation would change its length whereas the activation of the endodermal circular fibers by 

RP2 during radial contraction would change its diameter. 

 Thus, we concluded that the three networks are involved in three different behaviors 

selectively: the longitudinal contraction bursts are correlated with the activity of CB, the 

elongation response to light with RP1 and the radial contraction with RP2. Thus, rather than being 

a single network, the nerve net of Hydra creates different behaviors by using anatomically separate 

networks of neurons. 
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Figure 8: Behavioral association of two rhythmic potentials networks 

A. Dark-habituated animal at rest. B: elongation response during exposure to blue light (see 

Movie S3). Dashed line marks body contour of animal at rest. C: spike trains of RP1, RP2 and 

CB neurons in 4 animals, where t=0 indicates onset of elongation. Histograms compare firing 

frequency before vs during elongation response. D: Animal before radial contraction, a behavior 

that also occurs in unrestrained preparations (Movie S5). E: animal after radial contraction (see 

Movie S4). Dashed line marks body contour of animal before radial contraction. F: Spike trains 

of RP1, RP2 and CB neurons in 8 animals, where t=0 indicates radial contraction. Histograms 

compare firing frequency before vs after radial contraction. Data are represented as mean ± 

SEM. * indicates (P < 0.05, paired T-Test). See also Movies S3-S5. 
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Subtentacle network is associated with nodding 

 Besides the three animal-wide networks (CB, RP1 and RP2), where synchronous activation 

of neurons occurred throughout the body of the animal, we also observed local activation of 

neurons in some experiments. In particular, there was one local network that did not belong to 

either RP1, RP2 or CB and that was correlated with nodding behavior, i.e., gentle swaying of the 

hypostome of the animal and its tentacles to one side but without turning the rest of the body. This 

network was located just under the tentacles and we decided to call it the subtentacle network 

(STN). Specifically, the STN was located at the junction between the tentacle and the body column 

(Figure 9A). In the STN, calcium signal could propagate downward (Figure 9B) but also upward 

(Figure 9C). Note that in the example shown in Figure 9 neuron 1 is only activated when the signal 

propagates downward, which indicates that the activation of the STN circuit does not always 

recruit all of its neurons. The propagation speed of the calcium signal was 251 µm/sec ±54.6 (SEM, 

n=5). 

The behavioral correlation of the STN with nodding was robust: when activated, the animal 

always nodded (4 out of 4 animals). To quantify this, we measured the angle formed between the 

hypostome and the body column (Figure 9D left) as the fluorescence of the STN neurons changes 

and observed that the hypostome of the animal starts nodding at the same time as the neurons get 

activated (Figure 9D right). We did not notice any difference in nodding when the activation was 

upward or downward. 
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Figure 9: Subtentacle network (STN) causes nodding behavior and can conduct signal in 
both directions 

A. Representative Hydra. White square marks area containing a STN. Arrows mark the two 

directions of propagation: upward and downward. B. Left: Region boxed in A during downward 

propagation, with 4 neurons marked with a white square. Right: Calcium trace of the 4 neurons 

during downward propagation. C. Same as B but for upward propagation. D. Left: representative 

Hydra at the end of nodding. θ marks angle, arrow marks one STN neuron. Right: evolution of 

angle and STN neuron activity over time. 
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Neuronal activity can propagate in 2 directions and at 2 different speeds in tentacles 

 In addition to the STN, we found another example of a local activation of neurons in the 

tentacles, where propagation can be bidirectional and occur at multiple propagation speeds. 

Specifically, in the tentacles of 4 animals we detected calcium signal which propagates slowly, 

enabling us to determine the exact direction of propagation of activity. We observed that activity 

could flow upward or downward (Figure 10A and 10B, first part of the traces) and, interestingly, 

in both cases slow propagation was followed by coactivation of all regions of interest (Figures 10A 

and 7B, second part of the traces). The average speed of the slow propagating activity was 63 ± 30 

µm/sec (SEM, n=4), whereas during coactivation, the speed of signal propagation could not be 

measured at our resolution of 33Hz (here on a field of view of 130x130 µm). This speed was 

therefore higher than 7 mm/sec, consistent with previous electrophysiological measurements that 

indicated 4.6 cm/sec [17]. However, since we cannot measure the speed of this signal propagation, 

it is possible that these different regions of interest are not activated in the same sequence and 

instead are activated in a random fashion. In all 4 observations, the neurons mediating slow 

propagation and coactivation were also part of the CB network, and coactivation corresponded to 

a longitudinal contraction burst.  
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Figure 10: Signal propagates in both directions and at two different speeds in tentacles 

A. Left: Representative tentacle during upward propagation, with 6 example neurons boxed and 

numbered in white. Right: Calcium signal of the 6 neurons during slow propagation and 

coactivation. B. Same as A but for downward propagation. 
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DISCUSSION 

Hydra as a novel preparation for whole nervous system imaging  

As opposed to conventional electrical circuits, the brain is made of neurons that receive 

and send connections to a large number of other neurons in many different regions at the same 

time. This organization appears ideal for the generation of emergent functional properties, built 

with the aggregate spatiotemporal activity of a large number of cells, and these emergent functional 

states, such as attractors, could be used to implement memories and many computations [45,46].  

To capture these emergent states of function, it seems ideal to be able to measure “every 

spike from every neuron” and build a “Brain Activity Map” [47], as a step towards deciphering 

the role of these emergent states in the function of the nervous system or in the generation of 

behavior or internal brain states. In this regard, whole-brain imaging methods have been recently 

successful in measuring the activity of large numbers of neurons in animal models such as the 

worm [48–51], fruit fly [52,53] and zebrafish [54–59]. Work on these species could provide critical 

insights relevant to understanding the function of the nervous system of mammals and humans. 

 Here we introduce Hydra as an alternative for large-scale measurements of neural activity 

and to capture and investigate the emergent properties of neural systems. The choice of each animal 

model has pluses and minuses. While one cannot apply to Hydra traditional genetic tools, through 

the recent sequencing of its genome [28] and the development of successful transgenesis [30] one 

can have access to many of the modern molecular approaches standard in other fields of 

neuroscience. Also, as a preparation, Hydra offers some significant advantages for imaging entire 

nervous systems. Firstly, it is a cnidarian, and thus represents some of the first nervous systems in 

evolution, which could enable the elucidation of basic principles of neural circuits more easily. 

Secondly, Hydra can reproduce asexually by budding, enabling the generation of clonal 
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individuals and the examination of the structural and functional generation of a new animal. 

Thirdly, its nervous system is distributed without any ganglia, and the animal is transparent, so 

every neuron can be imaged in isolation. Fourthly, because the body of Hydra is flexible, it is 

possible to place it between two coverslips separated by 100 µm and keep the animal alive for 

weeks without observing any sign of injury. The behaviors we measured in this study, longitudinal 

contraction bursts, elongation response to light and nodding do occur in Hydra's natural habitat 

[2,3,17,21]. Because the definition of radial contraction is vague, we verified it by ourselves in an 

unrestrained preparation (Movie S5). However, in our restrained preparation these behaviors might 

be expressed in a different way. Typically, nodding and elongation response to light will only be 

possible on the plane that is parallel to the coverslips. Also, longitudinal and radial contractions 

could be somewhat slowed down because of friction of the animal against the coverslips, and the 

deformation of the body of the animal could be altered. To test this, we measured the duration of 

both types of contractions and resulting change in width of the animal (Figure S4), and did not 

detect any significant difference between these behaviors in an unrestrained preparation and 

between two coverslips. 

When used with low-magnification objectives, such preparation allows having the entire 

network of neurons in focus and alleviates the need for scanning multiple planes in z. Therefore, 

it is possible to observe the activity of the entire nervous system of Hydra with a higher temporal 

resolution while keeping a spatial resolution of single neurons. These advantages make it easier to 

measure single calcium transients in a behaving animal and attribute them correctly to the neurons 

that generated them, getting to the ideal of measuring every spike from every neuron [47]. In fact, 

using immunocytochemistry we estimate that we are indeed recording the activity of essentially 
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every neuron in the animal. Moreover, at least for many neurons, we are likely also imaging 

individual calcium transients. 

As an animal model for circuit neuroscience, Hydra is amenable for imaging and offers a 

small repertoire of behaviors to study. We presented the activity of the nervous system during 

longitudinal contraction bursts, elongation response to light, radial contraction and nodding, but 

other behaviors exist such as somersaulting and feeding. Both of these behaviors add another layer 

of complexity, because they happen in multiple steps which require coordination of activity across 

the entire animal. For instance, feeding behavior engages first a concerted motion of the tentacles, 

after which the prey is brought to the mouth in order to be swallowed and digested through 

peristaltic motion of the body column. Therefore, imaging Hydra during these behaviors would 

help exploring coordination of activity across different parts of its nervous system. 

 

Nonoverlapping coactive networks of neurons in the nerve nets of Hydra   

Using calcium imaging, we perform the first functional measurements of neurons in Hydra 

and can associate previously recorded electrical signal such as RPs and CBs to specific populations 

of neurons. Also, a striking feature of the RP1, RP2 and CB networks is the fact that their neurons 

are coactive (they fire simultaneously or at least within 100ms). We are still ignorant about the 

exact connectivity of these neurons, and the joint activity could be the result of either gap junctions 

connecting every neuron, strong chemical synapses that have a very low failure rate, or inputs from 

another circuit that is connected to every neuron of this network. Indeed, both chemical synapses 

and gap junctions have been found in Hydra [4,5], but a third circuit mediating coactivation seems 

less likely since we do not observe activity of any other circuit that is simultaneous to RP1, RP2 

or CB.  
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But regardless of the exact mechanisms of coactivation, we have discovered that the 

nervous system of Hydra is divided into networks that are non-overlapping structurally and 

functionally, i.e., where individual neurons participate selectively in specific networks and no 

neuron belongs to more than one network. Moreover, these networks (CB, RP1, RP2 and STN) 

are associated with specific behaviors of the animal (longitudinal contractions, elongation, radial 

contraction, and nodding, respectively). As mentioned above, most neurotransmitters can be found 

in the Hydra genome, so there could be a molecular identification to the networks of neurons we 

identified functionally.  

 The finding of non-overlapping networks indicates that the nervous system of Hydra, and 

perhaps other cnidarians, is not a single nerve net but is built out of distinct networks which activity 

can be linked to specific behaviors. Thus, evolution has carved out a behavioral repertoire by 

selectively linking subsets of neurons out of a tapestry of apparently similar cells, since each subset 

of neurons is associated with a specific behavior. This carving could occur by selectively 

connecting neurons into subcircuits, or by modifying synaptic strengths. Future work combining 

connectomics with functional imaging could examine these mechanisms of functional specificity. 

Two rhythmic potentials networks 

 The use of whole-brain calcium imaging has also allowed us to identify two networks 

associated with the rhythmic potentials, previously described using extracellular recordings [3]. 

These two networks (RP1 and RP2) are located in the ectoderm and endoderm of the animal 

respectively. A previous study reported that rhythmic potentials are only generated in the 

endoderm [18] by showing their absence in an area where the endoderm had been surgically 

removed. However, in that study the authors reported having recorded in rare instances rhythmic 

potentials in the ectoderm but they attributed this signal to an incomplete removal of the endoderm 



 
 

42 
 
 

in the recorded region. According to our present results it is likely that in most cases the authors 

recorded the endodermal RP2 signal and in rare instances they recorded the ectodermal RP1 signal. 

Also, our report that contraction of the endoderm causes radial contraction is in apparent 

contradiction with the report that rhythmic potentials could cause contraction of the endoderm 

[20]. Indeed, since a change in the frequency of rhythmic potentials was observed during 

elongation response [2], it was concluded that contraction of endodermal cells would cause 

elongation of the animal. However, based on our data, we suggest that the contractions observed 

by [20] originated in the endodermal RP2 system which is correlated with radial contraction, 

whereas the response to light in [2] arose from the ectodermal RP1 which is correlated with 

elongation.  

 Interestingly, although RP1 and RP2 are associated with elongation and radial contraction, 

respectively, since changes in their frequency of activation were clearly associated with behavior, 

there was no clear cut temporal correspondence between the activity of RP1 and elongation or 

between the activation or RP2 and radial contraction (Figure 8). Thus, we hypothesize that, rather 

than directly triggering or controlling behavior, these two rhythmic potential networks may 

integrate sensory information which then subsequently triggers the behavioral response, through a 

different cellular element, perhaps even through epithelial cells. 
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Bidirectional propagation in the subtentacle network 

  Slow potentials that occur simultaneously to asymmetric longitudinal contraction of the 

body column were reported in [2]. However, in their experiments it was not possible to prove or 

exclude the participation of neurons. Here, we describe the activity of a specific network of 

neurons (the STN) that are located under the base of the tentacles and which are activated during 

such behavior.  

 The sequence of activation of the STN can either initiate in the body column and travel 

towards the tentacles, or initiate in the tentacle-hypostome junction and travel downward. This 

flexibility could have a role, such as fine-tuning the resulting motor output by changing which part 

of the body should bend first. Also, it may have no specific function but arise from the fact that 

the STN can be activated by different neurons. Indeed, it is possible that activity in the body 

column and in the hypostome can initiate STN activity. Then, depending on which one happens, 

the STN will start either at the hypostome-tentacle junction or in the body column. 

 

Multiple conduction speeds  

 The existence of multiple conduction speeds within the same network has been described 

in other hydrozoans such as Aequorea [24] (p.482) and anthozoans such as Calliactis [60]. For 

instance, in the hydrozoan Aequorea, the radial conduction system is slow (0.002-0.02 m/sec, i.e. 

2-20 mm/sec) whereas the swimming beat system is much faster (0.9 m/sec). In our experiments, 

we observed that in the tentacles of Hydra there are calcium transients that travel at 63 ± 30 µm/sec 

(SEM, n=4) and others that might travel at more than 7 mm/sec which differs by two orders of 

magnitude. As mentioned above, the neurons where slow and fast propagation was observed are 

part of CB and it is only during fast propagation that longitudinal contraction occurred. Therefore, 
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slow propagation could be the result of a different type of activity that is initiated in one neuron 

and travels to its neighbors. Such activity could increase the excitability of ganglion and sensory 

neurons, but could even affect the sensory structures such as nematocytes to which they are 

connected. In this regard, measuring calcium transients in nematocytes would provide valuable 

information to study their interactions with neurons. 

 

Broader relevance to neuroscience 

 The findings presented here may extend to understand the structure and function of the 

nervous systems of other cnidarians and basal metazoans. The electrical activity and behaviors of 

other polyps and medusae has been studied before [24] and many similarities are shared among 

animals of this phylum. Such similarities include the existence of nerve nets, the spontaneous 

longitudinal contractions and the characteristic sequence in feeding behavior. Accordingly, the 

presence of two networks in the ectodermal nerve net and one network in the endodermal nerve 

net could be a general feature of the polyp form of cnidarians. From a different perspective one 

could take advantage of the subtle differences between polyps of different species, which change 

in size, shape and in the type of prey they feed on. In such comparative studies, one could test the 

role of a specific feature on the anatomy, electrical activity and behavior, in an animal where most 

of the other parameters are essentially the same. 

  In addition to the interest in the neurobiology of basal metazoans, studies on the nervous 

system of Hydra could have relevance to understand neural circuits in bilaterian species. Indeed, 

coordinated spontaneous activity, robustly present in Hydra, is common to all nervous systems 

observed, including visual cortex [61] and human EEGs. Additionally, it has been proposed that 

brain waves have evolved from an early form of spontaneous activity such as the one observed in 
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Hydra [62]. Also, our finding that the activity of the endodermal nerve net is correlated with the 

activity of the gastric cavity (radial contraction, Figure 8B) is reminiscent of the enteric nervous 

system controlling the gastro-intestinal tract of higher animals. More generally, the study of 

simpler organisms could enable to discern some basic principles such as emergent properties of 

neural circuits, analyze the anatomical, biophysical and synaptic mechanisms that generate them, 

and understand how they relate to behavior or internal brain states. 

 

GRASS FELLOWSHIP PROJECT – ARC CYCLES 

Introduction 

The two different types of contractions that have been presented in this work can occur both in 

unrestrained and in restrained animals. We have shown that they are correlated with the activity of 

specific circuits in the nervous system of Hydra, and that their execution can be influenced by 

various stimuli such as light and touch. One missing piece of information relates to how frequently 

these behaviors occur, and whether there is an pattern in the display of these behaviors. Most 

animals follow cycles, which can be related to the presence of food or simply the circadian 

alternation of day and night. In this project, I attempted at testing whether such cycles exist in 

Hydra simply by measuring the occurrence of both contractile behaviors over long periods of time. 

Method 

The simplest way to measure the occurrence of a behavior is to measure a parameter that is related 

to it. Fortunately, the thickness of the animal is a good correlate for both types of contractions 

since it will change drastically during their occurrence. Indeed, during longitudinal contractions 

the reduction in length of the animal causes tissue squeezing in the middle of the body column 
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which makes it enlarge especially in the middle of the animal. During a radial contraction though, 

the thickness will abruptly decrease since the diameter of the body column is reduced. 

An algorithm called local thickness is available in Fiji [63] which measures the thickness of an 

object over the duration of a movie. Some image preprocessing is necessary in order to gather a 

sufficient signal-to-noise ratio and enables the algorithm to detect the object. Fortunately, in our 

case the operation contrast enhancement is most of the time good enough. 

Once the preprocessing is done, the algorithm can be run and the output looks like in Figure 11. 

Changes in the animal thickness can be seen as spikes and ramps on the right part of Figure 11, 

which plots the average thickness at each time point over the whole duration of a movie. Spikes 

correspond to longitudinal contraction bursts and ramps correspond to radial contractions. 

 

Figure 11: Thickness measurement 

(Left) Raw movie. (Middle) Output of the algorithm. (Right) Average thickness in each frame over 

the whole movie, with the vertical bar indicating the time point that corresponds to the frames 

shown in the middle and on the left. 
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The next step in the procedure is to use the changes in animal thickness in order to detect both 

behaviors (radial and longitudinal contractions). This can be done using an algorithm in MATLAB 

that will read the progression of the animal’s thickness over the movie and detect both spikes and 

ramps. Ramps are more challenging to detect and in order to do so I used a method called sliding 

window. For each time point, the sliding window measures the average thickness over the previous 

15 minutes and subtracts it from the average thickness of the following 15 minutes as shown in 

Figure 12. As a result, the maximum value of the sliding window will be at the end of the ramp, 

which is precisely when a radial contraction occurs. 

 

Figure 12: Detection of radial contractions 

By using a sliding window which measures for each time point the difference between the average 

thickness of the past 15 minutes and the average thickness of the following 15 minutes, one can 

find the time point at which a ramp ends. Top row: average thickness over time. 2nd row: output 

of the sliding window. 3rd row: automated detection of the radial contraction behavior, simply done 
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by marking the maxima of the 2nd row. 4th row: manual detection of radial contractions done by 

just watching the movie. Accordingly, in this example, one mistake was made by the algorithm 

out of 14 events. 

It is easier to detect longitudinal contraction bursts as they show up as spikes in the thickness 

measurements. Therefore, with MATLAB one can simply use the function findpeaks in order to 

mark the events of longitudinal contractions as shown in Figure 13. 

 

Figure 13: Detection of longitudinal contractions 

Top row: thickness measurement. 2nd row: detection of longitudinal contractions using findpeaks. 

3rd row: manual detection, done by simply watching the movie. 4th row: correct detections, i.e. 

detections made by the algorithm which match the manual detections. 5th row: erroneous 

detections, i.e. detections missed by the algorithm and detections made by the algorithm which do 

not match the manual detection. Accordingly, in this example again the percentage of erroneous 

detections is below 10% of the events detected manually. 
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As a result, such algorithm detects with about 90% accuracy the occurrence of longitudinal 

contractions, which is a performance that is similar to the detection of radial contractions shown 

above. With such a tool one can now measure the occurrence of both types of contractions for an 

arbitrary amount of time since it can be done automatically. This should help searching for 

temporal patterns in the behavior of Hydra such as sleep and circadian cycles, which is the goal 

that was proposed for this project. 

Results 

When displaying the average thickness of an animal over multiple days, one can look for patterns 

in the behavior. To look for circadian cycles, one can separate such recording in 12 hours time 

windows (9am to 9pm and vice-versa) which corresponds to day and night, i.e. when the animal 

was exposed to the daylight or in the dark. When doing so, I was not able to observe any obvious 

change in the frequency of longitudinal and radial contractions when comparing day versus night 

(Figure 14). However, it appeared that the ramps that end with a radial contraction always followed 

each other, without any interval. Indeed, it seems like the animal is always in the process of 

intaking water and therefore swelling, until a certain point where a radial contraction is triggered 

thereby expelling that water. I decided to describe these as absorption-radial contraction cycles, or 

simply ARC cycles, and to use them as an elementary unit to describe the temporal structure in the 

behavior of Hydra. 
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Figure 14: Continuous thickness measurement over 3 days 

I used the algorithm presented above to measure the thickness of an animal over 3 days and detect 

changes in the occurrence of both types of contractions. Each day is separated between the daytime 

and the nighttime. Although there is no apparent difference in the activity during the day versus 

the night, a simple type of temporal structure is apparent: the ramps that constitute an absorption 

of medium followed by a radial contraction of the animal (ARC) succeed each other without any 

interval. By definition, this constitutes a cycle which we can refer to as ARC cycle. 

 

Discussion 

Temporal structure in the behavior of an animal can help inform about its intentions and how its 

decisions are made. 
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Here, I have presented a method to automatically detect the occurrence of two behaviors in Hydra 

which are fundamental within the behavioral repertoire of the animal: longitudinal and radial 

contractions. Both of these behaviors can be expressed in the absence of an external stimulus, but 

can also be triggered by touch (for longitudinal contractions) and feeding (for radial contractions). 

With this method I could observe that both behaviors can indeed be expressed by the animal in the 

absence of any external stimulus, but more surprisingly this happens over periods of multiple days 

in a constant environment. Such constant environment is in fact the same preparation as was used 

for calcium imaging in published work [64]. i.e. confinement between two coverslips separated by 

a 100µm spacer. 

This method enabled to observe that the animal continuously absorbs medium which causes 

swelling, and every so often expels that medium through a radial contraction. Because there is no 

interruption in the process of medium absorption, each ramp ends with the beginning of the next 

one, hereby forming absorption-radial contraction (ARC) cycles. Such cycles can be considered 

as an elementary temporal unit and be used to test the effect of various perturbations such as a 

change in osmolarity (which should change the process of medium absorption) on the behavior of 

the animal. 

In the future, considering that we have been able to record the behavior of Hydra over long 

periods of time, it would be useful to record the activity of its nervous system for these 

prolonged periods of time. Since one can observe cycles in the behavior of the animal, it is very 

likely that one can observe cycles in the activity of its nervous system as well.  

However, as well as it was necessary to develop a method for automatically detecting behaviors 

in Hydra over long periods of time, it will also be necessary to develop algorithms to detect 
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activity in the nervous system of Hydra over long periods of time. Such algorithms could use 

machine vision in order to track all the neurons while the animal is moving. 

 

 

CONCLUSION AND FUTURE DIRECTIONS 

In this work we have seen that the nervous system of Hydra is amenable for calcium imaging 

mostly because this animal is transparent and its neurons are spaced rather than clustered. This 

gives the convenience of a high signal-to-noise ratio and the possibility to distinguish between 

every neuron, i.e. have single neuron resolution. Thanks to these properties it has been possible 

to observe the activity of the entire nervous system of Hydra while the animal was behaving, and 

subsequently associate circuits with specific behaviors. 

Conserved features in the nerve net 

In the phylum of cnidarians, there are other animal models for which transgenic manipulations 

are possible. For instance, Hydractinia and Nematostella have been used repetitively to create 

lines expressing a transgene (Figure 15). This means that it might be possible in the future to test 

whether what we have learned in Hydra is also valid in other cnidarians. For instance, do we also 

have 3 large groups of coactive neurons in these other animals? If yes, do they fulfill the same 

roles, and do they use the same molecules in order to fulfill these roles? Do they possess the 

same types of synapse? 

If one can perform calcium imaging in Hydra, one can certainly perform calcium imaging in 

Hydractinia and Nematostella. However, the quality of the recordings might not be the same. 

Indeed, in the case of Hydractinia, the thickness of the animal is going to be significantly higher 
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than in Hydra, since this is a colonial hydrozoan and multiple animals are stuck together. In the 

case of Nematostella, there are pigments in the epithelium of the animal which will attenuate the 

fluorescence light and therefore reduce the signal to noise ratio. 

Also, when it comes to comparing the nervous system of multiple animals, one major difference 

between Hydra and these two other species of cnidarians is that Hydra lives in freshwater, 

whereas both Hydractinia and Nematostella live in salt water. This will unavoidably have major 

consequences on the ion channels that they express on the surface of their cells in order to 

establish the right intracellular ion concentrations. Still, one would expect that this transition can 

be made while keeping the various functions of the nervous system. 

Hopefully, these experiments will turn out to be pretty straightforward and one will be able to 

tell to what extent the nervous system of Hydra is stereotypical of the nervous system of 

cnidarians. The parameters that are the same could then represent fundamental organizational 

principles of the nervous system.  

  

 

  

 

Figure 15: Other cnidarians have transgenic capabilities 

Left: Hydractinia (credit: nicotralab.org). Right: Nematostella (credit: thomsenlab.org). These 

animals could turn out to be very useful to test whether what we have learned from Hydra also 

applies to other nerve nets. 
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EXPERIMENTAL PROCEDURES 

Hydra maintenance 

Hydra were maintained in the dark at 18C and were fed freshly hatched Artemia nauplii once a 

week or more frequently when necessary. 

Transgenics 

Transgenic lines were created according to Juliano et al, 2014 using a modified version of the 

pHyVec1 plasmid (Addgene cat#34789) [34] where we replaced the GFP sequence with a 

GCaMP6s sequence that was codon-optimized for Hydra (DNA2.0, Menlo Park, CA). By 

embryo microinjection one gets mosaic animals, where ectoderm, endoderm and interstitial 

lineages can become transgenic separately [65]. We selected animals only expressing GCaMP6s 

in the interstitial cell lineage. Also, interstitial cell lineage includes neurons, cnidocytes and 

gland cells. However, it was possible to discriminate them from neurons in our movies because 

of their morphological features (only neurons have neurites). 

Imaging 

In order to record the activity of the nervous system of Hydra, we developed a new preparation 

for functional imaging. Animals were placed between two coverslips that are separated by one 

100um spacer to keep them on focus. In this preparation, animals might not behave as they 

would in their natural habitat. However, it makes it convenient to look at the activity of the 

nervous system of Hydra during specific behaviors. Imaging was performed using a fluorescence 

dissecting microscope (Leica M165) equipped with a long-pass GFP filter set (Leica filter set ET 

GFP M205FA/M165FC), a 1.6x Planapo objective and a sCMOS camera (Hamamatsu ORCA-

Flash 4.0) or an Olympus IX-70 inverted microscope equipped with 10x water immersion 

objective, a U-MIWIB2 GFP filter cube and an EM-CCD (Hamamatsu EM-CCD C9100-12). In 
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both setups, illumination came from a mercury arc lamp and the software micromanager [66] 

controlled the microscope. Single neurons were tracked manually, frame by frame, using the 

graphic user interface of TrackMate [63] and no automated tracking algorithm was ever used 

(Movie S2). Such single neuron tracking was only performed to generate Figure 4D and 6B and 

show that the three circuits of neurons (RP1, RP2 and CB) are mutually exclusive. When a 

neuron was particularly challenging to track (cf blue circle in Figure 4D bottom left), visual 

landmarks from the surrounding tissue were used as guiding points. For the rest of the 

manuscript, we only measured at which frame these (RP1, RP2 and CB) networks of neurons 

fire, which we call “coactivation events” (Figure 4C (right)). This is much more straightforward 

to measure for two reasons. First, whenever any of these circuits is activated, a larger number of 

neurons fire during the same frame which makes it easy to detect. Second, each circuit is easily 

recognizable: activation of CB always results in longitudinal contraction and RP1 but not RP2 

invades the tentacles. Data coming from these measurements was then plotted as a spike train 

(Figure 4C (right, green bars), Figure 6 and Figure 8), where each spike indicates coactivation of 

all the neurons of that circuit. All the collected data was handled with MATLAB (The 

Mathworks, Natick, MA). The main advantage of this preparation is the fact that there is no need 

to scan in the z axis, and therefore the acquisition speed is only limited by the camera. The main 

disadvantage is the fact that by using widefield imaging rather than confocal or 2-photon 

imaging, the spatial resolution is worse (about 1µm for widefield when compared to less than 0.4 

µm for the others). This can result in cross-contamination between regions of interest, and for 

instance increase in fluorescence of some RP1 neurons during a CB event because of light 

scattering coming from CB neurons lying in close proximity of the recorded RP1 neuron (e.g. in 

Figure 5C). This cross-contamination makes it difficult to tell whether a neuron is firing based on 
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fluorescence trace alone. However, it is easy to tell in movies when a neuron is firing because its 

neurites are also lighting up. For this reason, the spike times were manually measured in the 

movies for each neuron. 

Pseudocoloring 

We used pseudocoloring as a method for identifying neurons that fired during the same frame 

(e.g. in Figure 7A). For a given firing event, using ImageJ [67] we subtracted the frame before 

neurons fired from the frame during which neurons fired. We then added the result of this 

subtraction in a specific color to the frame before neurons fired.  

Electrophysiology 

Sharp electrodes were pulled from borosillicate glass (Sutter cat# BF150-86-10) with a Sutter p-

97 pipet puller in order to obtain a resistance of 50-100 MΩ. They were then filled with 3M KCl 

and 40µM Alexa488. Animals were impaled under visualization with calcium imaging using a 

similar setup as in the previous experiments, except that the microscope was an upright Olympus 

BX51WI. Electrical signal was acquired with a MultiClamp 700B (Axon Instruments) and the 

software PackIO (packio.org).  

Statistical methods 

Statistics are indicated as average ± SEM in figures and in the text. Cross-correlation was 

computed between spike trains using the MATLAB function xcorr. To compare the number of 

spikes before vs after radial contraction, we ran a two-tailed paired T-test assuming equal 

variance using Microsoft Excel. To compare morphological parameters, 2-tailed, paired or 

unpaired student T-tests were used as specified in text.  
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APPENDIX A: SUPPLEMENTAL FIGURES 

 

 

 

 

 

 

 

 

Figure S 1: Percentage of transgenic neurons. Related to Figure 4 

Left: Immunostaining with acetylated alpha-tubulin antibody only. Middle: Immunostaining with 

both GCaMP6s and acetylated alpha-tubulin antibodies. Right: Overlap between the two 

stainings. Error bars indicate SEM. 
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Figure S 2: Fluorescence transients in cells expressing GFP compared to GCaMP6s. 

Related to Figure 4 

The green, red and blue traces correspond to neurons expressing GCaMP6s which belong to the 

RP1, RP2 and CB groups, respectively. The black traces correspond to 5 neurons of another 

transgenic line expressing GFP in neurons. Both GFP and GCaMP6s signals were recorded 

during the same behavioral sequence: the last two pulses of a contraction burst, followed by 

about 15 seconds of elongation. 
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Figure S 3: Distribution of neuronal density. Related to Figure 7 

Neuronal density in different animal parts, according to each cell type (A) and when RP1 and CB 

are combined (B). A. The density of RP1 and CB neurons is higher in the hypostome and the 

peduncle than in the body column. The density of RP2 neurons is not significantly different 

between the peduncle and the body column, but higher in the hypostome. B. RP1 + CB versus 

RP2 give density patterns similar to the patterns reported in Epp and Tardent (1978) for 

ectoderm versus endoderm. n = 1023 neurons compared over 5 animals. Wide bars indicate 

mean, narrow bars indicate SEM 
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Figure S 4: Differences in behavior between restrained and unrestrained preparation. 

Related to Figure 4 

A) Duration of radial and longitudinal contractions in restrained vs unrestrained preparation. B) 

Change in width of the animal following radial and longitudinal contractions in restrained vs 

unrestrained preparation. Unpaired T-Test was used, with n.s = not significant (P>0.05). 
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APPENDIX B: SUPPLEMENTAL MOVIES LEGENDS 

Movie S1. Calcium imaging in Hydra, Related to Figure 1 

The animal is placed between two coverslips separated by a 100µm spacer and imaged with a 

fluorescence dissecting microscope with an exposure time of 100ms. To generate this movie, the 

raw movie was averaged by 5 frames bins and then converted into mp4 format. One second in 

the movie corresponds to 12.5 seconds in real time. Calcium traces shown in Figure 1 were 

extracted from the first 200 frames of the raw movie, which correspond to the first 40 frames of 

this movie. Scale bar = 100 µm. 

 
Movie S2. Tracking neurons during behavior, Related to Figure 1 

The position of the 620 neurons was tracked over 20 seconds using TrackMate. Each circle 

marks one neuron, and the color corresponds to the functional group. Green = RP1, Red = RP2, 

Blue = CB, light blue = CB2, yellow = others, including subtentacle network, white = 

nematocytes. 1 second in the movie corresponds to 5 seconds in real time. Scale bar = 100 µm. 

 
Movie S3. Elongation response to light, Related to Figure 5 

A dark habituated Hydra responds to a light stimulus by elongating its body column. The 

frequency of the RP1 system is very low before elongation, and increases sharply at the onset of 

elongation and stays high during elongation. One second in the movie corresponds to 25 seconds 

in real time. Scale bar = 200 µm 

 
Movie S4. 3 examples of radial contraction, Related to Figure 5 

Radial contraction behavior includes opening of the mouth of the animal, followed by a rapid 

contraction of the body column in the medial-lateral plane. The frequency of the RP2 system 
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increases until radial contraction, after which it decreases sharply. One second in the movie 

corresponds to 25 seconds in real time. Scale bar = 100 µm. 

 
Movie S5. Behavior in unrestrained environment, Related to Figure 5 

Radial contraction is a behavior that is more difficult to observe because it cannot be triggered 

easily. This movie shows that in addition to occurring when the animal is restrained between two 

coverslips (Figure 4), it also happens in an unrestrained animal. 1 second in the movie 

corresponds to 2.4 seconds in real time. Radial contraction happens at T = 3 sec. Scale bar = 100 

µm. 

 


