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ABSTRACT

Property Testing and Probability Distributions: New Techniques, New Models, and New Goals

Clément L. Canonne

In order to study the real world, scientists (and computer scientists) develop simplified models that attempt

to capture the essential features of the observed system. Understanding the power and limitations of these

models, when they apply or fail to fully capture the situation at hand, is therefore of uttermost importance.

In this thesis, we investigate the role of some of these models in property testing of probability distributions

(distribution testing), as well as in related areas. We introduce natural extensions of the standard model (which

only allows access to independent draws from the underlying distribution), in order to circumvent some of its

limitations or draw new insights about the problems they aim at capturing. Our results are organized in three

main directions:

(i) We provide systematic approaches to tackle distribution testing questions. Specifically, we provide

two general algorithmic frameworks that apply to a wide range of properties, and yield efficient and

near-optimal results for many of them. We complement these by introducing two methodologies to

prove information-theoretic lower bounds in distribution testing, which enable us to derive hardness

results in a clean and unified way.

(ii) We introduce and investigate two new models of access to the unknown distributions, which both

generalize the standard sampling model in different ways and allow testing algorithms to achieve

significantly better efficiency. Our study of the power and limitations of algorithms in these models

shows how these could lead to faster algorithms in practical situations, and yields a better understanding

of the underlying bottlenecks in the standard sampling setting.

(iii) We then leave the field of distribution testing to explore areas adjacent to property testing. We define

a new algorithmic primitive of sampling correction, which in some sense lies in between distribution

learning and testing and aims to capture settings where data originates from imperfect or noisy sources.

Our work sets out to model these situations in a rigorous and abstracted way, in order to enable the

development of systematic methods to address these issues.



Contents

List of Figures iv

List of Tables v

Acknowledgments vi

Introduction 1

1 Set up and Preliminaries 5

1.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Property testing, distributions, and metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Classes of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Previous tools from the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Tools from Analysis and Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Discrete Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Error-Correcting Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Testing Classes of Distributions: Upper Bounds from Swiss Army Knives 18

2.1 The Shape Restrictions Knife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 The General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Structural Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.4 Going Further: Reducing the Support Size . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.5 A Generic Tolerant Testing Upper Bound . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.6 Proof of Theorem 2.1.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.7 Proofs from Section 2.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 The Fourier Knife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2.2 Testing Effective Fourier Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.3 The Projection Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.4 The SIIRV Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

i



2.2.5 The General Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.2.6 The PMD Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.2.7 The Discrete Log-Concavity Tester . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.2.8 Lower Bound for PMD Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.2.9 Learning Discrete Log-Concave Distributions in Hellinger Distance . . . . . . . . . 87

3 Testing Properties of Distributions: Lower Bounds from Reductions 95

3.1 The Agnostic Learning Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.1.1 Tolerant Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 The Communication Complexity Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.2.3 The Methodology: From Communication Complexity to Distribution Testing . . . . 112

3.2.4 The Basic Reduction: The Case of Uniformity . . . . . . . . . . . . . . . . . . . . 114

3.2.5 The K-Functional: An Unexpected Journey . . . . . . . . . . . . . . . . . . . . . . 118

3.2.6 Identity Testing, revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.2.7 Lower Bounds on Other Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.2.8 Testing with Conditional Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4 Testing Properties of Distributions: Changing the Rules 140

4.1 Conditional Sampling: Focusing on What Matters . . . . . . . . . . . . . . . . . . . . . . . 141

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.1.2 Some useful procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.1.3 Algorithms and lower bounds for testing uniformity . . . . . . . . . . . . . . . . . 162

4.1.4 Testing equivalence to a known distribution p∗ . . . . . . . . . . . . . . . . . . . . 168

4.1.5 Testing equality between two unknown distributions . . . . . . . . . . . . . . . . . 185

4.1.6 An algorithm for estimating the distance to uniformity . . . . . . . . . . . . . . . . 193

4.1.7 A Õ
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Introduction

“The thing can be done,” said the Butcher, “I think.

The thing must be done, I am sure.

The thing shall be done! Bring me paper and ink,

The best there is time to procure.”

Lewis Carroll, The Hunting of the Snark

This dissertation revolves around discrete probability distributions: the wild and empirical ones, found in

the “real world” wherever data can be found; or the familiar and abstract ones, which underly our (idealized)

models of that very same world and let us reason about it. The practical details of the situations in which these

distributions show up will not be of too much concern for us: instead, we will take their presence as a given,

seeing them as an abstract source of data, values – “samples.”

And indeed, inferring information from the probability distribution underlying available data is a funda-

mental problem in Statistics and data analysis, with applications and ramifications in countless other fields.

One may want to approximate that distribution in its entirety; or, less ambitiously, to check whether it is

consistent with a prespecified model; one may even only want to approximate some simple parameters such

as its mean or first few moments. But this decades-old inference question, regardless of its specific variant,

has undergone a significant shift these past few years: the amount of data to analyze has grown huge, and

our distributions now are often over a very large domain. So huge and so large, in fact, that the seasoned and

well-studied methods from Statistics and learning theory are no longer practical; and one has to look for faster,

more sample-efficient techniques and algorithms.

We may not be able to obtain these in general. But in many situations, we are only interested in figuring

out some very specific information about our probability distribution: we made an assumption or formulated a

hypothesis, and want to check whether we were right. To get this one bit of information, and this bit only, it

may just be possible to overcome the formidable complexity of the task. Understanding when it is, and how, is

precisely what the field of distribution testing is about.

Distribution testing, as first explicitly introduced in [22], is a branch of property testing [156, 103]: in

the latter, access to an unknown “huge object” is presented to an algorithm via the ability to perform local

“inspections.” By making only a small number of such queries to the object, the algorithm must determine

with high probability whether the object exhibits some prespecified property of interest, or is far from every

object with the property. (For a more detailed presentation and overview of the field of property testing, the

reader is referred to [95, 150, 149, 101, 100, 28].)
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In distribution testing, this “huge object” is an unknown probability distribution (or a collection thereof)

over some known (usually discrete) domain Ω; and the type of access granted to this distribution is (usually)

access to independent samples drawn from that distribution. The question now becomes to bound the number

of samples required to test a given statistical property – as a function of the domain size and the “farness”

parameter:

Given a property of distributions P and access to an arbitrary distribution p, distinguish between

the case that (a) p ∈ P , versus (b) dTV(p,p′) > ε for all p′ ∈ P .

Here, dTV denotes the total variation distance, also known as statistical distance. (We note that the focus is

explicitly on the sample complexity: the running time of the algorithm is usually only a secondary concern,

even though obtaining time-efficient testers is an explicit goal in many works.) Distribution testing has been

a very active area over the past fifteen years, with a flurry1 of variants and exciting developments: starting

with [104, 20, 21], this includes the testing of symmetric properties [146, 174, 171, 172], of structured

families [19, 117, 2, 44, 3, 51, 43], as well as testing under some assumption on the unknown instance [155,

74, 82, 81]. Tight upper and lower bounds on the sample complexity have been obtained for a vast number of

properties such as uniformity, identity to a specified distribution, monotonicity, independence, and many more.

We refer the reader of this thesis to the surveys [154, 42], and the book [100], for a more complete picture; and

will focus afterwards on our narrow contribution to this field.

Our contributions

Before delving into the specific and technical details, we provide a high-level overview of our contributions.

As we shall see, they are organized in three main axes:

Beyond the standard distribution testing techniques

As aforementioned, distribution testing has been the focus of a significant body of works over recent years,

culminating in a full understanding of the complexity for a large number of testing questions. However, while

many of these questions have seen their sample complexity fully resolved, these advances have for a large

part been the result of distinct, ad hoc techniques tailored to the specific problems they were meant to solve.

Overall, we still lack general tools to tackle distribution testing questions – both to establish (algorithmic)

upper and (information-theoretic) lower bounds.

The first contribution of this thesis is to establish both general algorithmic frameworks (“Swiss Army

knives”) and lower bound techniques (“easy reductions”) to attack these questions, in Chapters 2 and 3

respectively. Our results are widely applicable, and yield optimal or near-optimal bounds for a variety of

(arguably) fundamental testing questions. In this sense, our work can be viewed as building up a user-friendly

toolbox for distribution testing, which should come in handy to anyone in the field.

1I immensely enjoy the word “flurry.”
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Beyond the standard distribution testing techniques

One of the takeaway messages of the aforementioned recent flurry of results in distribution testing is that

achieving a sublinear sample complexity with regard to the domain size is possible for most properties of

interest. Another takeaway, however, is that this sublinear sample complexity has to be polynomial in this

domain size n, i.e. of the form nΩ(1) – which, in many real-world settings, turns out to still be prohibitively

high. Thus, it is reasonable to consider natural extensions of the standard “sample-only” model, where

algorithms now get to have a stronger type of access to the unknown probability distribution – and see if this

additional power allows them to achieve a significant better sample complexity.

In Chapter 4 of this thesis, we introduce and study two such generalizations (along with some of their

variants), which we argue can be implemented in practical situations. The main message is that, whenever these

new models are applicable, one can perform much better than in the standard sampling model – sometimes

with a sample complexity independent of the domain size. Moreover, such stronger models can also help us in

understanding what exactly makes these questions “hard” in the standard sampling model in the first place,

and therefore hopefully guide implementations even of “standard” testing algorithms by adapting them on a

case-by-case basis.

Beyond the standard distribution testing techniques

So far, we stayed within the realm of distribution testing: focusing on a specific property of distributions, how

to decide whether the unknown one we have access to indeed satisfies this property. This, however, may not

be the end goal: for instance, what if after running such a test, we knew the distribution is close to having that

property – yet are not guaranteed it does exactly? What if a subsequent algorithm, or application, requires such

a guarantee? To handle such questions, we introduce in Chapter 5 the notion of a sampling corrector, which

(broadly speaking) acts as a filter between a source of imperfect samples and an algorithm to provide access

to “corrected samples” – whose distribution is close to the original one, but now does satisfy the property

of interest. We further explore this new paradigm of simple correction (and its weaker variant of sampling

improvement), and study its connections to distribution testing and learning – showing two-way implications

that may prove fruitful in establishing new upper and lower bound in either direction.

Organization of the dissertation

In Chapter 1, we lay down the necessary notation and definitions that will be used throughout this thesis, and

state some results from the literature that we shall need afterwards. We will also prove there several simple

results that will be relied upon in the other chapters, and more generally set up the board and pieces. Chapter 2

then will be concerned with general strategies to play the game; or, put differently, with unified frameworks

to obtain algorithmic upper bounds on distribution testing questions. In more detail, Section 2.1 describes

a unified approach for testing membership in classes of distributions, particularly relevant for classes of

3



shape-restricted distributions; while Section 2.2 contains a different approach for this question, well-suited

for those classes of distributions which enjoy “nice” Fourier spectra. The first is based on joint work with

Ilias Diakonikolas, Themis Gouleakis, and Ronitt Rubinfeld [51], and the second on the paper [45] with Ilias

Diakonikolas and Alistair Stewart.

In Chapter 3, we complement these algorithmic frameworks by describing new general approaches to

obtaining information-theoretic lower bounds in distribution testing. Section 3.1, based on [51], describes

a reduction technique which allows us to lift hardness of testing a sub-property P ′ ⊆ P to that of testing P

itself, modulo a mild learnability condition on the latter. As a corollary, we obtain new (as well as previously

known) lower bounds for many distribution classes, in a clean and unified way. Section 3.2 (based on the

paper [34] with Eric Blais and Tom Gur) then provides another framework to easily establish distribution

testing lower bounds, this time by carrying over lower bounds from communication complexity. We show how

this reduction from communication complexity, besides enabling us to easily derive lower bounds for a variety

of distribution testing questions, can also shed light on existing results, leading to an unexpected connection

between distribution testing and the seemingly unrelated field of interpolation theory.

In these two chapters, we were concerned with the “standard” setting of distribution testing, which only

assumes access to independent samples; and developed general methods to tackle questions in this setting.

In Chapter 4, we take a different path: instead of finding new strategies to play the game, we change the rules

themselves – granting the testing algorithms a more powerful type of access to the unknown distribution. Based

on a work with Dana Ron and Rocco Servedio [49], Section 4.1 introduces and studies the conditional sampling

model, in which the algorithm can get samples from the underlying probability distribution conditioned on

subsets of events of its choosing. In Section 4.2, we define and study two different settings, the dual access and

cumulative dual access models, in which one can both draw independent samples from the distribution and

query the value on any point of the domain of either its probability mass function or cumulative distribution

function. (This is based on the paper [50], with Ronitt Rubinfeld.) Both sections thus consider testing

algorithms that are at least as powerful as those from the standard sampling setting; the question is to quantify

how much more powerful these algorithms can be, and what limitations remain.

Finally, in Chapter 5 we venture out of property testing to explore a different – albeit related – paradigm:

that of distribution correcting. Changing now the goal of the game, we introduce the notion of sampling

corrector: granted access to independent samples from a probability distribution only close to having some

property P of interest, one must provide access to samples from a “corrected” distribution which, while still

being close to the original distribution, does satisfy P . We prove general results on this new algorithmic

primitive, and study its relation to both distribution learning and testing; before focusing specifically on

correction of a well-studied property of distributions, monotonicity. This last chapter contains material

from [46], joint work with Themis Gouleakis and Ronitt Rubinfeld.
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Chapter 1

Set up and Preliminaries

“Skip all that!” cried the Bellman in haste.

If it once becomes dark, there’s no chance of a Snark–

We have hardly a minute to waste!”

Lewis Carroll, The Hunting of the Snark

1.1 Notation.

All throughout this thesis, we denote by [n] the set {1, . . . , n}, and by JnK the set {0, . . . , n − 1}. We will

write log (resp. ln) for the binary logarithm (resp. the natural logarithm). Besides the standard asymptotic

conventions, we use the notations Õ(f), Ω̃(f) to hide polylogarithmic dependencies on the argument, and will

sometimes write Oε(f) to signify that the hidden constant depends on the parameter ε (while f does not).

We now formally introduce the main actor of this dissertation. A probability distribution over a (countable)

domain1 Ω is a non-negative function p : Ω → [0, 1] such that
∑
x∈Ω p(x) = 1. We denote by ∆(Ω) the

(convex) polytope of all such distributions, and by u(Ω) the uniform distribution on Ω (when well-defined);

when clear from context, we may sometimes omit the domain and simply write u. Given a distribution p over

Ω and a set S ⊆ Ω, we write p(S) for the total probability weight
∑
x∈S p(x) assigned to S by p. Moreover,

for S ⊆ Ω such that p(S) > 0, we denote by pS the conditional distribution of p restricted to S, that is

pS(x) = p(x)
p(S) for x ∈ S and pS(x) = 0 otherwise. We also let supp(p) def= { x ∈ Ω : p(x) > 0 } be the

(effective) support of the distribution, i.e. the subset of the domain to which p assigns non-zero probability

weight . Finally, for a probability distribution p ∈ ∆(Ω) and integer m, we write p⊗m ∈ ∆(Ωm) for the

m-fold product distribution obtained by drawing m independent samples s1, . . . , sm ∼ p and outputting

(s1, . . . , sm).

When the domain is a subset of the natural numbers N, we shall often abuse notation and identify a

distribution p ∈ ∆(Ω) with the sequence (pi)i∈Ω ∈ `1 corresponding to its probability mass function (pmf).

1For the sake of this thesis, all distributions will be supported on a finite or at least discrete domain; thus, we do not consider the fully
general definitions from measure theory.
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1.2 Property testing, distributions, and metrics.

As is usual in property testing of distributions, throughout this dissertation the distance between two distribu-

tions p1,p2 ∈ ∆(Ω) will be the total variation distance:

dTV(p1,p2) def= max
S⊆Ω

(p1(S)− p2(S)) = 1
2
∑
x∈Ω
|p1(x)− p2(x)| = 1

2‖p1 − p2‖1 (1.1)

which takes value in [0, 1]. (Due to the equivalence between total variation and `1 distances, we will sometimes

phrase our results in terms of the latter, and ask the reader for their forgiveness.) In some cases, it is useful to

consider – either as a proxy towards total variation, or for the sake of the analysis – different metrics, such as

`2, Kolmogorov, or Hellinger distances. More on these can be found in Section 1.4.

A propertyP of distributions over Ω is then simply a subset of ∆(Ω), consisting of all distributions that have

the property. The distance from p to a property P , denoted dTV(p,P), is then defined as infp′∈P dTV(p,p′).

Given a distribution p and a property P , we say that p is ε-close to P if dTV(p,P) ≤ ε; otherwise, p is ε-far

from P . We shall oftentimes refer to some properties as “classes” of distribution, trading P for the symbol

C; specifically, this will be the case for structured properties of distributions, in keeping with the existing

literature.

We recall the standard definition of testing algorithms for properties of distributions over Ω, where n is the

relevant parameter for Ω (i.e., in most cases, its size |Ω|). To be consistent with the rest of this dissertation,

we chose to phrase it in the most general setting possible, with regard to how the unknown distribution is

“queried”: and will specify this aspect further in the relevant chapters (sampling access, conditional access,

etc.).

Definition 1.2.1. Let P be a property of distributions over Ω. Let ORACLEp be an oracle providing some

type of access to p. A q-query testing algorithm for P (for this type of oracle) is a randomized algorithm T

which takes as input n ∈ N, ε ∈ (0, 1), as well as access to ORACLEp. After making at most q(ε, n) calls to

the oracle, T either outputs accept or reject, such that the following holds:

• if p ∈ P , then with probability at least 2/3, T outputs accept;

• if dTV(p,P) > ε, then with probability at least 2/3, T outputs reject;

where the probability is taken over the algorithm’s randomness and (if any) the randomness from the oracle’s

answers.

The most common type of oracle is the “sampling oracle,” which provides access to independent sam-

ples drawn from p. Besides this standard definition of testing algorithms, we will also be interested in a

generalization, that of tolerant testers – roughly, algorithms robust to a relaxation of the first item above:

Definition 1.2.2. Let P and ORACLEp be as above. A q-query tolerant testing algorithm for P is a random-

ized algorithm T which takes as input n ∈ N, 0 ≤ ε1 < ε2 ≤ 1, as well as access to ORACLED. After
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making at most q(ε1, ε2, n) calls to the oracle, T outputs either accept or reject, such that the following

holds:

• if dTV(p,P) ≤ ε1, then with probability at least 2/3, T outputs accept;

• if dTV(p,P) ≥ ε2, then with probability at least 2/3, T outputs reject;

where the probability is taken over the algorithm’s randomness and (if any) the randomness from the oracle’s

answers.

Note that these definitions in particular do not specify the behavior of the algorithms when dTV(p,P) ∈

(0, ε) (resp. dTV(p,P) ∈ (ε1, ε2)): in this case, any answer from the tester is considered valid. Furthermore,

we stress that the two definitions above only deal with the query complexity, and not the running time. Almost

every lower bound will however apply to computationally unbounded algorithms, while most upper bounds

we will cover are achieved by testing algorithms whose running time is polynomial in the number of queries

they make.

P P

Figure 1.1: Testing vs. tolerant testing: the algorithm is off the hook whenever the unknown distribution
belongs to the gray area. It looks like eggs, really.

A related notion is that of distance estimators; that is, of algorithms which compute an approximation of

the distance of the unknown distribution to a property.

Definition 1.2.3. Let P and ORACLEp be as above. A q-query distance estimation algorithm for P is a

randomized algorithmA which takes as input n ∈ N, ε ∈ (0, 1], as well as access to ORACLED. After making

at most q(ε, n) calls to the oracle, T outputs a value γ ∈ [0, 1] such that, with probability at least 2/3, it holds

that dTV(p,P) ∈ [γ − ε, γ + ε].

Remark 1.2.4 (Tolerant testing and distance approximation). Parnas, Ron, and Rubinfeld define and formalize

in [140] the notion of tolerant testing, and show that distance approximation and (fully)2 tolerant testing are

equivalent, up to a logarithmic factor in 1/ε in the sample complexity (Claims 1 and 2, Section 3.1).

1Note that, as standard in property testing, the threshold 2/3 is arbitrary: any 1 − δ confidence can be achieved at the cost of a
multiplicative factor log(1/δ) in the query complexity, by repeating the test and outputting the majority vote.

2I.e., tolerant testing algorithms as above that allow any inputs 0 ≤ ε1 < ε2 ≤ 1, without further restriction on the range of
authorized values.
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The last notion we shall require is that of distribution learning (also referred to as density estimation).

The exact formalization of what learning a probability distribution means has been considered in Kearns et

al. [120]. We note that in their language, the variant of learning this thesis considers is learning to generate.3

We give the precise definition below:

Definition 1.2.5. Let C ⊆ ∆(Ω) be a class of probability distributions and p ∈ C be an unknown distribution.

Let also H be a hypothesis class of distributions. A q-sample learning algorithm for C is a randomized

algorithm L which, given sample access to p and parameters ε, δ ∈ (0, 1), outputs the description of a

distribution p̂ ∈ H such that with probability at least 1− δ one has dTV(p, p̂) ≤ ε.

If in additionH ⊆ C, then we say L is a proper learning algorithm.

The above definition assumes that the probability distribution to be approximated belongs to a known

class C. However, in many cases and applications this assumption may not be exactly satisfied – this is often

referred to as “model misspecification.” In that case, one may still ask for a learning algorithm which would

approximate p “as well as the best distribution from C.” This generalization of the above notion of distribution

learning is known as agnostic learning:

Definition 1.2.6. Let C andH be as above. A (semi-)agnostic learning algorithm for C (using hypothesis class

H) is an algorithm A which, given sample access to an arbitrary distribution p and parameters ε, δ ∈ (0, 1),

outputs a hypothesis p̂ ∈ H such that, with probability at least 1− δ,

dTV(p, p̂) ≤ c · OPTC,p + ε

where OPTC,p
def= infp′∈C dTV(p′,p) and c ≥ 1 is an absolute constant (if c = 1, the learner is said to be

agnostic).

Generalization. These definitions can easily be extended to cover situations in which there are two (or

more) “unknown” distributions p1,p2 that are accessible respectively via ORACLEp1 and ORACLEp2 oracles.

For instance, we shall consider algorithms for testing whether p1 = p2 versus dTV(p1,p2) > ε in such a

setting, the property now being formally a subset of ∆(Ω)×∆(Ω).

On adaptivity and one-sidedness. As usual in property testing, it is possible to specialize these definitions

for some classes of algorithms. In particular, a tester which never errs when p ∈ P (but is only allowed to

be wrong with probability 1/3 when p is far from P) is said to be one-sided; as defined above, testers are

two-sided.4 More important in this thesis is the notion of adaptive testers: if an algorithm’s queries do not

depend on the previous answers made to the oracle(s), it is said to be non-adaptive. However, if the i-th

3We remark that the notion of distance Kearns et al. considered was that of Kullback–Leibler (KL) divergence; while here – as in
most of the recent distribution learning literature – we focus on total variation distance.

4Most of the algorithms we shall be concerned with will be two-sided: this follows from the simple observation that, for almost any
property of interest, in the standard sampling model one-sided testers are information-theoretically impossible (see e.g. [100, Chapter 11]).
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query can be a function of the j-th answer for j < i, then it is adaptive. (Roughly speaking, a non-adaptive

algorithm is one that can write down all the queries it is going to make “in advance,” only after tossing its own

random coins).

1.3 Classes of distributions

We give here the formal descriptions of the classes of distributions that shall appear in this dissertation, starting

with that of monotone distributions.

Definition 1.3.1 (monotone). A distribution p over [n] is monotone (non-increasing) if its probability mass

function (pmf) satisfies p(1) ≥ p(2) ≥ . . .p(n).

A natural generalization of the classMn of monotone distributions is the set of t-modal distributions, i.e.

distributions whose pmf can go “up and down” or “down and up” up to t times:5

Definition 1.3.2 (t-modal). Fix any distribution p over [n], and integer t. p is said to have t modes if there

exists a sequence i0 < · · · < it+1 such that either (−1)jp(ij) < (−1)jp(ij+1) for all 0 ≤ j ≤ t, or

(−1)jp(ij) > (−1)jp(ij+1) for all 0 ≤ j ≤ t. We call p t-modal if it has at most t modes, and writeMn,t

for the class of all t-modal distributions. The particular case of t = 1 corresponds to the setMn,1 of unimodal

distributions.

Definition 1.3.3 (Log-concave). A distribution p over [n] is said to be log-concave if it satisfies the following

conditions: (i) for any 1 ≤ i < j < k ≤ n such that p(i)p(k) > 0, p(j) > 0; and (ii) for all 1 < k < n,

p(k)2 ≥ p(k − 1)p(k + 1). We write LCVn for the class of all log-concave distributions.

Definition 1.3.4 (Concave and Convex). A distribution p over [n] is said to be concave if it satisfies the

following conditions: (i) for any 1 ≤ i < j < k ≤ n such that p(i)p(k) > 0, p(j) > 0; and (ii) for all

1 < k < n such that p(k − 1)p(k + 1) > 0, 2p(k) ≥ p(k − 1) + p(k + 1); it is convex if the reverse

inequality holds in (ii). We write K−n (resp. K+
n ) for the class of all concave (resp. convex) distributions.

It is easy to see that convex and concave distributions are unimodal; moreover, every concave distribution

is also log-concave, i.e. K−n ⊆ LCVn. Note that in both Definition 1.3.3 and Definition 1.3.4, condition (i) is

equivalent to enforcing that the distribution be supported on an interval.

Definition 1.3.5 (Monotone Hazard Rate). A distribution p over [n] is said to have monotone hazard rate

(MHR) if its hazard rate H(i) def= p(i)∑n

j=i
p(j)

is a non-decreasing function. We writeMHRn for the class of

all MHR distributions.

It is known that every log-concave distribution is both unimodal and MHR (see e.g. [9, Proposition 10]),

and that monotone distributions are MHR. Two other classes of distributions have elicited significant interest in

5Note that this slightly deviates from the Statistics literature, where only the peaks are counted as modes (so that what is usually
referred to as a bimodal distribution is, according to our definition, 3-modal).
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the context of density estimation, those of histograms (piecewise constant) and piecewise polynomial densities:

Definition 1.3.6 (Piecewise Polynomials [55]). A distribution p over [n] is said to be a t-piecewise degree-d

distribution if there is a partition of [n] into t disjoint intervals I1, . . . , It such that p(i) = pj(i) for all

i ∈ Ij , where each p1, . . . pt is a univariate polynomial of degree at most d. We write Pn,t,d for the class of

all t-piecewise degree-d distributions. (We note that t-piecewise degree-0 distributions are also commonly

referred to as t-histograms, and writeHn,t for Pn,t,0.)

Finally, we recall the definition of the two following classes, which both extend the family of Binomial

distributions BINn: the first, by removing the need for each of the independent Bernoulli summands to share

the same bias parameter.

Definition 1.3.7. A random variable X is said to follow a Poisson Binomial Distribution (with parameter

n ∈ N) if it can be written as X =
∑n
k=1Xk, where X1 . . . , Xn are independent, non-necessarily identi-

cally distributed Bernoulli random variables. We denote by PBDn the class of all such Poisson Binomial

Distributions.

It is not hard to show that Poisson Binomial Distributions are in particular log-concave. One can generalize

even further, by allowing each random variable of the summation to be integer-valued:

Definition 1.3.8. Fix any k ≥ 0. We say a random variable X is a k-Sum of Independent Integer Random

Variables with parameter n ∈ N ((n, k)-SIIRV) if it can be written as X =
∑n
j=1Xj , where X1 . . . , Xn

are independent, non-necessarily identically distributed random variables taking value in JkK. We denote by

SIIRVn,k the class of all such (n, k)-SIIRVs.

(The class of Poisson Binomial Distributions thus corresponds to the case k = 2, that is (n, 2)-SIIRVS.) A

different type of generalization is that of Poisson Multinomial Distributions, where each summand is a random

variable supported on the k vectors of the standard basis of Rk, instead of [k]:

Definition 1.3.9. Fix any k ≥ 0. We say a random variable X is a (n, k)-Poisson Multinomial Distribution

((n, k)-PMD) with parameter n ∈ N if it can be written as X =
∑n
j=1Xj , where X1 . . . , Xn are independent,

non-necessarily identically distributed random variables taking value in {e1, . . . , ek} (where (ei)i∈[k] is the

canonical basis of Rk). We denote by PMDn,k the class of all such (n, k)-PMDs.

1.4 Previous tools from the literature.

As previously mentioned, in this thesis we will be concerned with the total variation distance between

distributions. Of interest for the analysis of some of our algorithms, and assuming Ω is totally ordered (in our

case, Ω = [n]), one can also define the Kolmogorov distance between p1 and p2 as

dK(p1,p2) def= max
x∈Ω
|F1(x)− F2(x)| (1.2)
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where F1 and F2 are the respective cumulative distribution functions (cdf) of p1 and p2. Thus, the Kolmogorov

distance is the `∞ distance between the cdf’s; and dK(p1,p2) ≤ dTV(p1,p2) ∈ [0, 1].

We will also occasionally rely on the Hellinger distance, a third metric on ∆(Ω) defined as

dH(p1,p2) =
√

1
2
∑
x∈Ω

(√
p1(x)−

√
p2(x)

)2
=
√

1−
∑
x∈Ω

√
p1(x)

√
p2(x) = 1√

2
‖√p1 −

√p2‖2

which also takes values in [0, 1]. One particularly useful feature of the Hellinger distance is its close relation

to total variation:

Fact 1.4.1 ([14, Corollary 2.39]). For any probability distributions p1, p2 as above,

dTV(p1,p2)2 ≤ dH(p1,p2)2 ≤ dTV(p1,p2) (1.3)

For more on the Kolmogorov and Hellinger distances and their relation to total variation, we refer the reader

to [42, Appendix C].

On several occasions we will use the data processing inequality for variation distance. This intuitive yet

fundamental result says that for any two distributions p, p′, applying any (possibly randomized) function to

both p and p′ can never increase their statistical distance; see e.g. part (iv) of [147, Lemma 2] for a proof of

this lemma.

Fact 1.4.2 (Data Processing Inequality for Total Variation Distance). Let p1, p2 be two distributions over a

domain Ω. Fix any randomized function6 F on Ω, and let F (p1) be the distribution such that a draw from

F (p1) is obtained by drawing independently x from p1 and f from F and then outputting f(x) (likewise for

F (p2)). Then we have

dTV(F (p1), F (p2)) ≤ dTV(p1,p2).

Finally, we recall below a fundamental fact from probability theory that will be useful to us, the Dvoretzky–

Kiefer–Wolfowitz (DKW) inequality. Informally, this result says that one can learn the cumulative distribution

function of a distribution up to an additive error ε in `∞ distance, by taking only O
(
1/ε2) samples from it.

Theorem 1.4.3 ([91, 131]). Let p be a distribution over [n]. Given m independent samples x1, . . . , xm from

p, define the empirical distribution p̂ as follows:

p̂(i) def= |{ j ∈ [m] : xj = i }|
m

, i ∈ [n].

Then, for all ε > 0, Pr[ dK(p, p̂) > ε ] ≤ 2e−2mε2 , where the probability is taken over the samples.

In particular, setting m = Θ
(

log(1/δ)
ε2

)
we get that dK(p, p̂) ≤ ε with probability at least 1− δ.

6Which can be seen as a distribution over functions over Ω.
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Flattenings. For a distribution p and a partition of [n] into intervals I = (I1, . . . , I`), we define the

flattening of p with relation to I as the distribution ΨI(p), where ΨI(p)(i) = p(Ik)/|Ik| for all k ∈ [`] and

i ∈ Ik. A straightforward computation shows that such flattening cannot increase the distance between two

distributions, i.e.,

dTV(ΨI(p1),ΨI(p2)) ≤ dTV(p1,p2). (1.4)

Proof of Eq. (1.4). Fix a partition I of [n] into ` intervals I1, . . . , I`, and let p1, p2 be two arbitrary distribu-

tions on [n]. Recall that ΨI(p) is the flattening of distribution pj (with relation to the partition I).

2dTV(ΨI(p1),ΨI(p2)) =
n∑
i=1
|ΨI(p1)(i)−ΨI(p2)(i)| =

∑̀
k=1

∑
i∈Ik

∣∣∣∣p1(Ik)
|Ik|

− p2(Ik)
|Ik|

∣∣∣∣
=
∑̀
k=1
|p1(Ik)− p2(Ik)| =

∑̀
k=1

∣∣∣∣∣∑
i∈Ik

(p1(i)− p2(i))

∣∣∣∣∣
≤
∑̀
k=1

∑
i∈Ik

|p1(i)− p2(i)| =
n∑
i=1
|p1(i)− p2(i)| = 2dTV(p1,p2).

(we remark that Eq. (1.4) could also be obtained directly by applying the data processing inequality for total

variation distance (Fact 1.4.2) to p1, p2, for the transformation ΨI(·).)

We state here a few facts about monotone distributions, namely that they admit a succinct approximation,

itself monotone, close in total variation distance. This theorem, originally from [32], has recently been pivotal

in several results on learning and testing k-modal distributions [63, 74].

Definition 1.4.4 (Birgé decomposition). Given a parameter α > 0, the corresponding (oblivious) Birgé

decomposition of [n] is the partition Iα = (I1, . . . , I`), where ` = O
(

ln(αn+1)
α

)
= O

(
logn
α

)
and |Ik| =⌊

(1 + α)k
⌋
, 1 ≤ k ≤ `.

Note that this partition consists of logarithmically many intervals and crucially only depends on n

and ε (and not on any specific distribution p): for this reason, we will often refer to it as the “oblivious”

decomposition.

For a distribution p and parameter α, define Φα(p) to be the “flattened” distribution with relation to the

oblivious decomposition Iα, that is Φα(p) = ΨIα(p). The next theorem states that every monotone

distribution can be well-approximated by its flattening on the Birgé decomposition’s intervals:

Theorem 1.4.5 ([32, 74]). If p is monotone, then dTV(p,Φα(p)) ≤ α.

As a corollary, one can extend the theorem to distributions only promised to be close to monotone:

Corollary 1.4.6. Suppose p is ε-close to monotone, and let α > 0. Then dTV(p,Φα(p)) ≤ 2ε + α.

Furthermore, Φα(p) is also ε-close to monotone.

Proof of Corollary 1.4.6. Let p be ε-close to monotone, and p′ be a monotone distribution such that dTV(p,p′) =
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η ≤ ε. By Eq. (1.4), we have

dTV(Φα(p),Φα(p′)) ≤ dTV(p,p′) = η (1.5)

proving the last part of the claim (since Φα(p′) is easily seen to be monotone).

Now, by the triangle inequality,

dTV(p,Φα(p′)) ≤ dTV(p,p′) + dTV(p′,Φα(p′)) + dTV(Φα(p′),Φα(p))

≤ η + α+ η

≤ 2ε+ α

where the last inequality uses the assumption on p′ and Theorem 1.4.5 applied to it.

We now restate a result of Batu et al. relating closeness to uniformity in `2 and `1 norms to “overall flatness”

of the probability mass function, and which will be one of the ingredients of the proof of Theorem 2.1.1:

Lemma 1.4.7 ([22, 21]). Let p be a distribution on a domain S. (a) If maxi∈S p(i) ≤ (1 + ε) mini∈S p(i),

then ‖p‖22 ≤ (1 + ε2)/ |S|. (b) If ‖p‖22 ≤ (1 + ε2)/ |S|, then ‖p− uS‖1 ≤ ε.

Some of our algorithms will need to check that condition (b) above holds. To do so, they rely on the following,

which one can derive from the techniques in [82] and whose proof we defer to the appendix (p. 306):

Lemma 1.4.8 (Adapted from [82, Theorem 11]). There exists an algorithm CHECK-SMALL-`2 which, given

parameters ε, δ ∈ (0, 1) and c ·
√
|I|/ε2 log(1/δ) independent samples from a distribution p over I (for some

absolute constant c > 0), outputs either yes or no, and satisfies the following.

• If ‖p− uI‖2 > ε/
√
|I|, then the algorithm outputs no with probability at least 1− δ;

• If ‖p− uI‖2 ≤ ε/2
√
|I|, then the algorithm outputs yes with probability at least 1− δ.

Finally, recall the following well-known result on distinguishing biased coins (which can for instance be

derived from Eq. (2.15) and (2.16) of [6]), that shall come in handy in proving our lower bounds:

Fact 1.4.9. Let p ∈ [η, 1− η] for some fixed constant η > 0, and suppose m ≤ cη
ε2 , with cη a sufficiently small

constant and ε < η. Then,

dTV(Bin(m, p) ,Bin(m, p+ ε)) < 1
3 .

1.4.1 Tools from Analysis and Probability

We first give several variants of the Chernoff bounds (see e.g. [134, Chapter 4]), which we will use extensively

in this thesis.

Theorem 1.4.10. Let Y1, . . . , Ym be m independent random variables that take on values in [0, 1], where
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E[Yi] = pi, and
∑m
i=1 pi = P . For any γ ∈ (0, 1] we have

(additive bound) Pr
[

m∑
i=1

Yi > P + γm

]
, Pr

[
m∑
i=1

Yi < P − γm

]
≤ exp(−2γ2m) (1.6)

(multiplicative bound) Pr
[

m∑
i=1

Yi > (1 + γ)P
]
< exp(−γ2P/3) (1.7)

and

(multiplicative bound) Pr
[

m∑
i=1

Yi < (1− γ)P
]
< exp(−γ2P/2). (1.8)

The bound in Eq. (1.7) is derived from the following more general bound, which holds from any γ > 0:

Pr
[

m∑
i=1

Yi > (1 + γ)P
]
≤
(

eγ

(1 + γ)1+γ

)P
, (1.9)

and which also implies that for any B > 2eP ,

Pr
[

m∑
i=1

Yi > B

]
≤ 2−B . (1.10)

The following extension of the multiplicative bound is useful when we only have upper and/or lower

bounds on P (see e.g. [89, Exercise 1.1]):

Claim 1.4.11. In the setting of Theorem 1.4.10 suppose that PL ≤ P ≤ PH . Then for any γ ∈ (0, 1], we have

Pr
[

m∑
i=1

Yi > (1 + γ)PH

]
< exp(−γ2PH/3) (1.11)

Pr
[

m∑
i=1

Yi < (1− γ)PL

]
< exp(−γ2PL/2) (1.12)

We will also rely on the following corollary of Theorem 1.4.10:

Corollary 1.4.12. Let 0 ≤ w1, . . . , wm ∈ R be such that wi ≤ κ for all i ∈ [m], where κ ∈ (0, 1]. Let

X1, . . . , Xm be i.i.d. Bernoulli random variables with Pr[Xi = 1] = 1/2 for all i, and let X =
∑m
i=1 wiXi

and W =
∑m
i=1 wi. For any γ ∈ (0, 1],

Pr
[
X > (1 + γ)W2

]
< exp

(
−γ2W

6κ

)
and Pr

[
X < (1− γ)W2

]
< exp

(
−γ2W

4κ

)
,

and for any B > e ·W ,

Pr[X > B] < 2−B/κ .

Proof. Let w′i
def= wi/κ (so that w′i ∈ [0, 1]), W ′ def=

∑m
i=1 w

′
i = W/κ, and for each i ∈ [m] let Yi

def= w′iXi,

so that Yi takes on values in [0, 1] and E[Yi] = w′i/2. Let X ′ =
∑m
i=1 w

′
iXi =

∑m
i=1 Yi, so that E[X ′] =
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W ′/2. By the definitions of W ′ and X ′ and by Eq. (1.7), for any γ ∈ (0, 1],

Pr
[
X > (1 + γ)W2

]
= Pr

[
X ′ > (1 + γ)W

′

2

]
< exp

(
−γ2W

′

6

)
= exp

(
−γ2W

6κ

)
,

and similarly by Eq. (1.8)

Pr
[
X < (1− γ)W2

]
< exp

(
−γ2W

4κ

)
.

For B > e ·W = 2e ·W/2 we apply Eq. (1.10) and get

Pr[X > B ] = Pr[X ′ > B/κ ] < 2−B/κ,

as claimed.

Next, we state a standard probabilistic result that some of our proofs will rely on, the Paley–Zygmund

anticoncentration inequality:

Theorem 1.4.13 (Paley–Zygmund inequality). Let X be a non-negative random variable with finite variance.

Then, for any θ ∈ [0, 1],

Pr[X > θE[X] ] ≥ (1− θ)2E[X]2

E[X2] .

We also recall a classical inequality for sums of independent random variables, due to Bennett [38, Chapter

2]:

Theorem 1.4.14 (Bennett’s inequality). Let X =
∑n
i=1Xi, where X1, . . . , Xn are independent random

variables such that (i) E[Xi] = 0 and (ii) |Xi| ≤ α almost surely for all 1 ≤ i ≤ n. Letting σ2 = Var[X], we

have, for every t ≥ 0,

Pr[X > t] ≤ exp
(
−Var[X]

α2 ϑ

(
αt

Var[X]

))
where ϑ(x) = (1 + x) ln(1 + x)− x.

We will also require the following version of the rearrangement inequality, due to Hardy and Littlewood

(cf. for instance [25, Theorem 2.2]):

Theorem 1.4.15 (Hardy–Littlewood Inequality). Fix any f, g : R→ [0,∞) such that lim±∞ f = lim±∞ g =

0. Then, ∫
R
fg ≤

∫
R
f∗g∗

where f∗, g∗ denote the symmetric decreasing rearrangements of f, g respectively.

1.4.2 Discrete Fourier transform

For our SIIRV testing algorithm, we will need the following definition of the Fourier transform.
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Definition 1.4.16 (Discrete Fourier Transform). For x ∈ R, we let e(x) def= exp(−2iπx). The Discrete

Fourier Transform (DFT) modulo M of a function F : JnK→ C is the function F̂ : JMK→ C defined as

F̂ (ξ) =
n−1∑
j=0

e

(
ξj

M

)
F (j)

for ξ ∈ JMK. The DFT modulo M of a distribution p, p̂, is then the DFT modulo M of its probability

mass function (note that one can then equivalently see p̂(ξ) as the expectation p̂(ξ) = EX∼F [e
(
ξX
M

)
], for

ξ ∈ JMK).

The inverse DFT modulo M onto the range [m,m+M − 1] of F̂ : JMK→ C, is the function F : [m,m+

M − 1] ∩ Z→ C defined by

F (j) = 1
M

M−1∑
ξ=0

e

(
− ξj
M

)
F̂ (ξ),

for j ∈ [m,m+M − 1] ∩ Z.

Note that the DFT (modulo M ) is a linear operator; moreover, we recall the standard fact relating the

norms of a function and of its Fourier transform, that we will use extensively:

Theorem 1.4.17 (Plancherel’s Theorem). For M ≥ 1 and F,G : JnK→ C, we have (i)
∑n−1
j=0 F (j)G(j) =

1
M

∑M−1
ξ=0 F̂ (ξ)Ĝ(ξ); and (ii) ‖F‖2 = 1√

M
‖F̂‖2, where F̂ , Ĝ are the DFT modulo M of F,G, respectively.

(The latter equality is sometimes referred to as Parseval’s theorem.) We also note that later, for our PMD

testing result, we shall need the appropriate generalization of the Fourier transform to the multivariate setting.

We leave this generalization to the corresponding section, Section 2.2.6.

1.5 Error-Correcting Codes.

For an alphabet Σ, we denote the projection of x ∈ Σn to a subset of coordinates I ⊆ [n] by x|I . For

i ∈ [n], we write xi = x|{i} to denote the projection to a singleton. We denote the relative Hamming distance,

over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn by dist(x, y) def= |{ xi 6= yi : i ∈ [n] }| /n.

Analogously to the distribution case, we say that x is ε-close to y if dist(x, y) ≤ ε, and otherwise we say that

x is ε-far from y. Similarly, we denote the relative Hamming distance of x from a non-empty set S ⊆ Σn by

dist(x, S) def= miny∈S dist(x, y)). If dist(x, S) ≤ ε, we say that x is ε-close to S, and otherwise we say that

x is ε-far from S.

Let k, n ∈ N, and let Σ be a finite alphabet. A code is a one-to-one function C : Σk → Σn that maps

messages to codewords, where k and n are called the code’s dimension and block length, respectively. The

rate of the code, measuring the redundancy of the encoding, is defined to be ρ def= k/n. We will sometime

identify the code C with its image C(Σk). In particular, we shall write c ∈ C to indicate that there exists

x ∈ {0, 1}k such that c = C(x), and say that c is a codeword of C. The relative distance of a code is the

minimal relative distance between two codewords of C, and is denoted by δ def= minc6=c′∈C{dist(c, c′)}.
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We say that C is an asymptotically good code if it has constant rate and constant relative distance. We shall

make an extensive use of asymptotically good codes that are balanced, that is, codes in which each codeword

consists of the same number of 0’s and 1’s

Proposition 1.5.1 (Good Balanced Codes). For any constant δ ∈ [0, 1/3), there exists a good balanced code

C : {0, 1}k → {0, 1}n with relative distance δ and constant rate. Namely, there exists a constant ρ > 0 such

that the following holds.

(i) Balance: |C(x)| = n
2 for all x ∈ {0, 1}k;

(ii) Relative distance: dist(C(x), C(y)) > δ for all distinct x, y ∈ {0, 1}k;

(iii) Constant rate: k
n ≥ ρ.

Proof. Fix any code C ′ with linear distance δ and constant rate (denoted ρ′). We transform C ′ : {0, 1}k →

{0, 1}n′ to a balanced code C : {0, 1}k → {0, 1}2n′ by representing 0 and 1 as the balanced strings 01 and

10 (respectively). More accurately, we let C(x) def= C ′(x) � C ′(x) ∈ {0, 1}n for all x ∈ {0, 1}k, where �

denotes the concatenation and z̄ is the bitwise negation of z. It is immediate to check that this transformation

preserves the distance, and that C is a balanced code with rate ρ def= 2ρ′.

On uniformity. For the sake of notation and clarity, throughout this dissertation we define all algorithms

and objects non-uniformly. Namely, we fix the relevant parameter (typically n ∈ N), and restrict ourselves to

inputs or domains of size n (for instance, probability distributions over domain [n]). However, we still view it

as a generic parameter and allow ourselves to write asymptotic expressions such as O(n). Moreover, although

our results are stated in terms of non-uniform algorithms, they can be extended to the uniform setting in a

straightforward manner.

On the domain and parameters. Unless specified otherwise, Ω will hereafter by default be the n-element

set [n]. When stating the results, the accuracy parameter ε ∈ (0, 1] is to be understood as taking small values,

either a fixed (small) constant or a quantity tending to 0 as n→∞; however, the actual parameter of interest

will always be n, viewed as “going to infinity.” Hence any dependence on n, no matter how mild, shall be

considered as more expensive than any function of ε only.
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Chapter 2

Testing Classes of Distributions: Upper Bounds from Swiss Army Knives

“Should we meet with a Jubjub, that desperate bird,

We shall need all our strength for the job!”

Lewis Carroll, The Hunting of the Snark

In this chapter, we focus on obtaining algorithmic upper bounds in distribution testing. Our goal, however,

departs from most of the previous literature, in that it is not to solve a specific testing problem by coming up

with a tailor-made algorithm for that task. We take instead a different path, and set out to provide general

algorithms applicable across-the-board to a variety of problems at once. Marginally more formally, here is the

objective we seek to address:

Problem 2.0.1. Design general-purpose testing algorithms, that when applied to a property P would have

(tight, or near-tight, or not absolutely laughable) sample complexity q(ε, τ) as long as P satisfies some

“structural assumption” Sτ parameterized by τ .

For instance, one could think of Sτ as “every p ∈ P is close to some piecewise-constant distribution on 1/τ

intervals” (as is e.g. the case for monotone distributions, with τ = 1
poly(logn,1/ε) by Theorem 1.4.5); or, in

another vein, “all p ∈ P have ‖p‖17/4 ≤ τ” (technically, one could think of that one).

We make significant progress in this direction by providing two unified frameworks for the question of

testing various properties of probability distributions. First, we describe in Section 2.1 a meta-algorithm to test

membership in any distribution class, particularly well-suited to any class (including monotone, log-concave,

t-modal, piecewise-polynomial, and Poisson Binomial distributions) which satisfies a “shape constraint.”

(Broadly speaking, whenever any distribution in the class is well-approximated, in a strong `2-type sense, by a

piecewise-constant distribution on relatively few pieces.)

In Section 2.2, we detail our second general technique, based on an entirely different type of structural

assumption. Namely, this approach now leverages purported properties of the Fourier transform of the

distributions, and performs particularly well for those classes containing distributions with sparse Fourier

transform – such as, for instance, the classes of Poisson Binomial distributions and SIIRVs.

Our two frameworks yield near-sample-optimal and computationally efficient testers for a wide range of

distribution families; for most of these, we provide the first non-trivial tester in the literature.
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2.1 The Shape Restrictions Knife

2.1.1 Introduction

In many situations, it is natural to assume that the data exhibits some simple structure because of known

properties of the origin of the data, and in fact these assumptions are crucial in making the problem tractable.

Such assumptions translate as constraints on the probability distribution – e.g., it is supposed to be Gaussian,

or to meet a smoothness or “fat tail” condition (see e.g., [130, 114, 165]).

As a result, the problem of deciding whether a distribution possesses such a structural property has been

widely investigated both in theory and practice, in the context of shape restricted inference [17, 164] and model

selection [132]. Here, it is guaranteed or thought that the unknown distribution satisfies a shape constraint,

such as having a monotone or log-concave probability density function [162, 13, 175, 79].

In this work, we consider this decision question from the Theoretical Computer Science viewpoint, namely

in the context of distribution testing. We provide a unified framework for the question of testing various “shape

restricted” properties of probability distributions – more specifically, we describe a generic technique to obtain

upper bounds on the sample complexity of this question, which applies to a broad range of structured classes.

Our technique yields sample near-optimal and computationally efficient testers for a wide range of distribution

families. Conversely, we also develop a general approach to prove lower bounds on these sample complexities,

and use it to derive tight or nearly tight bounds for many of these classes. (This lower bound approach will be

covered in the next chapter, Section 3.1.)

Related work Batu et al. [19] initiated the study of efficient property testers for monotonicity and

obtained (nearly) matching upper and lower bounds for this problem; while [2] later considered testing the

class of Poisson Binomial Distributions, and settled the sample complexity of this problem (up to the precise

dependence on ε). Indyk, Levi, and Rubinfeld [117], focusing on distributions that are piecewise constant on

t intervals (“t-histograms”) described a Õ(
√
tn/ε5)-sample algorithm for testing membership in this class.

Another body of work by [23], [19], and [74] shows how assumptions on the shape of the distributions can

lead to significantly more efficient algorithms. They describe such improvements in the case of identity and

closeness testing as well as for entropy estimation, under monotonicity or k-modality constraints. Specifically,

Batu et al. show in [19] how to obtain a O
(
log3 n/ε3)-sample tester for closeness in this setting, in stark

contrast to the Ω
(
n2/3) general lower bound. Daskalakis et al. [74] later gave O(

√
logn) and O(log2/3 n)-

sample testing algorithms for testing respectively identity and closeness of monotone distributions, and

obtained similar results for k-modal distributions. Finally, we briefly mention two related results, due

respectively to [23] and [63]. The first one states that for the task of getting a multiplicative estimate of

the entropy of a distribution, assuming monotonicity enables exponential savings in sample complexity –

O
(
log6 n

)
, instead of Ω(nc) for the general case. The second describes how to test if an unknown k-modal

distribution is in fact monotone, using only O
(
k/ε2) samples. Note that the latter line of work differs from

ours in that it presupposes the distributions satisfy some structural property, and uses this knowledge to test
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something else about the distribution; while we are given a priori arbitrary distributions, and must check

whether the structural property holds. Except for the properties of monotonicity and being a PBD, nothing

was previously known on testing the shape restricted properties that we study.

Moreover, for the specific problems of identity and closeness testing,1 recent results of [82, 81] describe a

general algorithm which applies to a large range of shape or structural constraints, and yields optimal identity

testers for classes of distributions that satisfy them. We observe that while the question they answer can be

cast as a specialized instance of membership testing, our results are incomparable to theirs, both because of

the distinction above (testing with versus testing for structure) and as the structural assumptions they rely on

are fundamentally different from ours.

Concurrent and followup work Independently and concurrently to the initial conference publication

of this work, Acharya, Daskalakis, and Kamath [3] obtained a sample near-optimal efficient algorithm for

testing log-concavity, as well as sample-optimal algorithms for testing the classes of monotone, unimodal, and

monotone hazard rate distributions (along with matching lower bounds on the sample complexity of these

tasks). Their work builds on ideas from [2] and their techniques are orthogonal to ours: namely, while at some

level both works follow a “testing-by-learning” paradigm, theirs rely on first learning in the (more stringent)

χ2 distance, then applying a testing algorithm which is robust to some amount of noise (i.e., tolerant testing)

in this χ2 sense (as opposed to noise in an `1 sense, which is known to be impossible without a near-linear

number of samples [167]).

Subsequent to the publication of the conference version of this work, [43] improved on both [117] and

our results for the specific class of t-histograms, providing nearly tight upper and lower bounds on testing

membership in this class. Specifically, it obtains an upper bound of Õ(
√
n/ε2 + t/ε3), complemented with an

Ω(
√
n/ε2 + t/(ε log t)) lower bound on the sample complexity.

Building on our work, Fischer, Lachish, and Vasudev recently generalized in [96] our approach and

algorithm to the conditional sampling model of [54, 49], obtaining analogues of our testing results in this

different setting of distribution testing where the algorithm is allowed to condition the samples it receives

on subsets of the domain of its choosing. In the “standard” sampling setting, [96] additionally provides an

alternative to the first subroutine of our testing algorithm: this yields a simpler and non-recursive algorithm,

with a factor logn shaved off at the price of a worse dependency on the distance parameter ε. (Namely, their

sample complexity is dominated by O(
√
nL log2(1/ε)/ε5), to be compared to the O(

√
nL logn/ε3) term

of Theorem 2.1.15.)

2.1.1.1 Results and Techniques

A natural way to tackle our membership testing problem would be to first learn the unknown distribution p

as if it satisfied the property, before checking if the hypothesis obtained is indeed both close to the original

1Recall that the identity testing problem asks, given the explicit description of a distribution p∗ and sample access to an unknown
distribution p, to decide whether p is equal to p∗ or far from it; while in closeness testing both distributions to compare are unknown.
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distribution and to the property. Taking advantage of the purported structure, the first step could presumably

be conducted with a small number of samples; things break down, however, in the second step. Indeed, most

approximation results leading to the improved learning algorithms one would apply in the first stage only

provide very weak guarantees, that is in the `1 sense only. For this reason, they lack the robustness that would

be required for the second part, where it becomes necessary to perform tolerant testing between the hypothesis

and p – a task that would then entail a number of samples almost linear in the domain size. To overcome

this difficulty, we need to move away from these global `1 closeness results and instead work with stronger

requirements, this time in `2 norm.

At the core of our approach is an idea of Batu et al. [19], which show that monotone distributions can be

well-approximated (in a certain technical sense) by piecewise constant densities on a suitable interval partition

of the domain; and leverage this fact to reduce monotonicity testing to uniformity testing on each interval

of this partition. While the argument of [19] is tailored specifically for the setting of monotonicity testing,

we are able to abstract the key ingredients, and obtain a generic membership tester that applies to a wide

range of distribution families. In more detail, we provide a testing algorithm which applies to any class of

distributions which admit succinct approximate decompositions – that is, each distribution in the class can

be well-approximated (in a strong `2 sense) by piecewise constant densities on a small number of intervals

(we hereafter refer to this approximation property, formally defined in Definition 2.1.13, as (Succinctness);

and extend the notation to apply to any class C of distributions for which all p ∈ C satisfy (Succinctness)).

Crucially, the algorithm does not care about how these decompositions can be obtained: for the purpose of

testing these structural properties we only need to establish their existence. Specific examples are given in

the corollaries below. Informally, our main algorithmic result, informally stated (see Theorem 2.1.15 for a

detailed formal statement), is as follows:

Theorem 2.1.1 (Main Theorem). There exists an algorithm TESTSPLITTABLE which, given sampling access

to an unknown distribution p over [n] and parameter ε ∈ (0, 1], can distinguish with probability 2/3 between

(a) p ∈ P versus (b) `1(p,P) > ε, for any property P that satisfies the above natural structural criterion

(Succinctness).

Moreover, we remark that for many such properties this algorithm is computationally efficient, and its sample

complexity is optimal (up to logarithmic factors and the exact dependence on ε). We instantiate this result to

obtain “out-of-the-box” computationally efficient testers for several classes of distributions, by showing that

they satisfy the premise of our theorem (the definition of these classes is given in Section 1.3):

Corollary 2.1.2. The algorithm TESTSPLITTABLE can test the classes of monotone, unimodal, log-concave,

concave, convex, and monotone hazard rate (MHR) distributions, with Õ
(√
n/ε7/2) samples.

Corollary 2.1.3. The algorithm TESTSPLITTABLE can test the class of t-modal distributions, with Õ
(√
tn/ε7/2)

samples.
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Corollary 2.1.4. The algorithm TESTSPLITTABLE can test the classes of t-histograms and t-piecewise

degree-d distributions, with Õ
(√
tn/ε3) and Õ

(√
t(d+ 1)n/ε7/2 + t(d+ 1)/ε3

)
samples respectively.

Corollary 2.1.5. The algorithm TESTSPLITTABLE can test the classes of Binomial and Poisson Binomial

Distributions, with Õ
(
n1/4/ε7/2) samples.

Class Upperbound Lowerbound

Monotone Õ

(√
n
ε6

)
[19], Õ

( √
n

ε7/2

)
(Corollary 2.1.2), O

(√
n
ε2

)
[3](‡) Ω

(√
n
ε2

)
[19], Ω

(√
n
ε2

)
(Corollary 2.1.6)

Unimodal Õ

( √
n

ε7/2

)
(Corollary 2.1.2), O

(√
n
ε2

)
[3](‡) Ω

(√
n
ε2

)
(Corollary 2.1.6)

t-modal Õ

(√
tn

ε7/2

)
(Corollary 2.1.3) Ω

(√
n
ε2

)
(Corollary 2.1.6)

Concave, convex Õ

( √
n

ε7/2

)
(Corollary 2.1.2) Ω

(√
n
ε2

)
(Corollary 2.1.6)

Log-concave Õ

( √
n

ε7/2

)
(Corollary 2.1.2), O

(√
n
ε2

)
[3](‡) Ω

(√
n
ε2

)
(Corollary 2.1.6)

Monotone Hazard Rate
(MHR) Õ

( √
n

ε7/2

)
(Corollary 2.1.2), O

(√
n
ε2

)
[3](‡) Ω

(√
n
ε2

)
(Corollary 2.1.6)

Binomial, Poisson Bino-
mial (PBD)

Õ

(
n1/4

ε2
+ 1
ε6

)
[2],

Õ

(
n1/4

ε7/2

)
(Corollary 2.1.5)

Ω
(
n1/4

ε2

)
([2], Corollary 2.1.7)

t-histograms
Õ

(√
tn
ε5

)
[117], Õ

(√
n
ε2

+ t
ε3

)
[43](‡),

Õ

(√
tn
ε3

)
(Corollary 2.1.4)

Ω
(√

tn
)

(for t ≤ 1
ε

) [117],

Ω
(√

n
ε2

+ t
ε

)
[43](‡),

Ω
(√

n
ε2

)
(Corollary 2.1.6)

t-piecewise degree-d Õ

(√
t(d+1)n
ε7/2 + t(d+1)

ε3

)
(Corollary 2.1.4) Ω

(√
n
ε2

)
(Corollary 2.1.6)

(n, k)-SIIRV O

(
k1/2n1/4

ε2
log1/4 1

ε

)
+ Õ

(
k2

ε2

)
(Theorem 2.2.1, [45])(‡) Ω

(
k1/2n1/4

ε2

)
(Corollary 2.1.8)

Table 2.1: Summary of results obtained via our first general class testing framework (Theorem 2.1.1). The
corresponding lower bounds stated in this table originate from the technique covered in the next chapter
(specifically, Section 3.1); while the symbol (‡) indicates a result independent of or subsequent to our work.

We remark that the aforementioned sample upper bounds are information-theoretically near-optimal in the

domain size n (up to logarithmic factors). See Table 2.1 and the following chapter for the corresponding lower

bounds. We did not attempt to optimize the dependence on the parameter ε, though a more careful analysis

might lead to such improvements.

We stress that prior to our work, no non-trivial testing bound was known for most of these classes –

specifically, our nearly-tight bounds for t-modal with t > 1, log-concave, concave, convex, MHR, and

piecewise polynomial distributions are new. Moreover, although a few of our applications were known in the

literature (the Õ
(√
n/ε6) upper and Ω

(√
n/ε2) lower bounds on testing monotonicity can be found in [19],

while the Θ
(
n1/4) sample complexity of testing PBDs was recently given2 in [2], and the task of testing

t-histograms is considered in [117]), the crux here is that we are able to derive them in a unified way, by

applying the same generic algorithm to all these different distribution families. We note that our upper bound

for t-histograms (Corollary 2.1.4) also significantly improves on the previous Õ
(√
tn/ε5)-sample tester with

regard to the dependence on the proximity parameter ε. In addition to its generality, our framework yields
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much cleaner and conceptually simpler proofs of the upper and lower bounds from [2].

Lower Bounds To complement our upper bounds, we also give a generic framework for proving lower

bounds against testing classes of distributions. While this framework will be the focus of the next chapter,

we state here some of the results it enables us to derive for specific structured distribution families; the

reader is referred to Section 3.1 (and specifically Theorem 3.1.1) for the details and formal statement of our

reduction-based lower bound theorem.

Corollary 2.1.6. Testing log-concavity, convexity, concavity, MHR, unimodality, t-modality, t-histograms,

and t-piecewise degree-d distributions each require Ω
(√
n/ε2) samples (the last three for t = o(

√
n) and

t(d+ 1) = o(
√
n), respectively), for any ε ≥ 1/nO(1).3

Corollary 2.1.7. Testing the classes of Binomial and Poisson Binomial Distributions each require Ω
(
n1/4/ε2)

samples, for any ε ≥ 1/nO(1).

Corollary 2.1.8. There exist absolute constants c > 0 and ε0 > 0 such that testing the class of (n, k)-SIIRV

distributions requires Ω
(
k1/2n1/4/ε2) samples, for any k = o(nc) and 1/nO(1) ≤ ε ≤ ε0.

Tolerant Testing Using our techniques, we also establish nearly–tight upper and lower bounds on

tolerant testing for shape restrictions. Similarly, our upper and lower bounds are matching as a function of the

domain size. More specifically, we give a simple generic upper bound approach (namely, a learning followed

by tolerant testing algorithm). Our tolerant testing lower bounds follow the same reduction-based approach as

in the non-tolerant case, and will be covered in the next chapter, Chapter 3. In more detail, our results are as

follows (see Section 2.1.5 for the upper bounds, and further down the road Section 3.1 for the lower bounds):

Corollary 2.1.9. Tolerant testing of log-concavity, convexity, concavity, MHR, unimodality, and t-modality

can be performed with O
( 1

(ε2−ε1)2
n

logn
)

samples, for ε2 ≥ Cε1 (where C > 2 is an absolute constant).

Corollary 2.1.10. Tolerant testing of the classes of Binomial and Poisson Binomial Distributions can be

performed with O
( 1

(ε2−ε1)2

√
n log(1/ε1)

logn
)

samples, for ε2 ≥ Cε1 (where C > 2 is an absolute constant).

Corollary 2.1.11. Tolerant testing of log-concavity, convexity, concavity, MHR, unimodality, and t-modality

each require Ω
(

1
(ε2−ε1)

n
logn

)
samples (the latter for t = o(n)).

2For the sample complexity of testing monotonicity, [19] originally states an Õ
(√

n/ε4
)

upper bound, but the proof seems to only

result in an Õ
(√

n/ε6
)

bound. Regarding the class of PBDs, Acharya and Daskalakis [2] obtain an n1/4 · Õ
(
1/ε2

)
+ Õ
(
1/ε6

)
sample complexity, to be compared with our Õ

(
n1/4/ε7/2) +O

(
log4 n/ε4

)
upper bound; and this is complemented (also in [2]) by

an Ω
(
n1/4/ε2

)
lower bound.

3Here, the restriction on ε should be read as “for each of these distribution classes, there exists an absolute constant c > 0 (which
may depend on the corresponding class) such that the result applies for every ε ≥ 1

nc
.”
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Corollary 2.1.12. Tolerant testing of the classes of Binomial and Poisson Binomial Distributions each require

Ω
(

1
(ε2−ε1)

√
n

logn

)
samples.

On the scope of our results We point out that our main theorem is likely to apply to many other classes

of structured distributions, due to the mild structural assumptions it requires. However, we did not attempt

here to be comprehensive; but rather to illustrate the generality of our approach. Moreover, for all properties

considered in this paper the generic upper and lower bounds we derive through our methods turn out to

be optimal up to at most polylogarithmic factors (with regard to the support size). The reader is referred

to Table 2.1 for a summary of our results and related work.

2.1.1.2 Organization of the Section

We begin by establishing our main result, the proof of Theorem 2.1.1 (our general testing algorithm), in Sec-

tion 2.1.2. In Section 2.1.3, we establish the necessary structural theorems for each class of distributions

considered, enabling us to derive the upper bounds of Table 2.1. Section 2.1.4 introduces a slight modification

of our algorithm which yields stronger testing results for classes of distributions with small effective support,

and use it to derive Corollary 2.1.5, our upper bound for Poisson Binomial distributions. (The details of

our lower bound methodology and of its applications to the classes of Table 2.1, however, are deferred

to Chapter 3.) Finally, Section 3.1.1 is concerned with the extension of this methodology to tolerant testing, of

which Section 2.1.5 describes a generic upper bound counterpart.

2.1.2 The General Algorithm

In this section, we obtain our main result, restated below:

Theorem 2.1.1 (Main Theorem). There exists an algorithm TESTSPLITTABLE which, given sampling access

to an unknown distribution p over [n] and parameter ε ∈ (0, 1], can distinguish with probability 2/3 between

(a) p ∈ P versus (b) `1(p,P) > ε, for any property P that satisfies the above natural structural criterion

(Succinctness).

Intuition Before diving into the proof of this theorem, we first provide a high-level description of the

argument. The algorithm proceeds in 3 stages: the first, the decomposition step, attempts to recursively

construct a partition of the domain in a small number of intervals, with a very strong guarantee. If the

decomposition succeeds, then the unknown distribution p will be close (in `1 distance) to its “flattening” on

the partition; while if it fails (too many intervals have to be created), this serves as evidence that p does not

belong to the class and we can reject. The second stage, the approximation step, then learns this flattening of

the distribution – which can be done with few samples since by construction we do not have many intervals.

The last stage is purely computational, the projection step: where we verify that the flattening we have learned

is indeed close to the class C. If all three stages succeed, then by the triangle inequality it must be the case
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that p is close to C; and by the structural assumption on the class, if p ∈ C then it will admit succinct enough

partitions, and all three stages will go through.

Turning to the proof, we start by defining formally the “structural criterion” we shall rely on, before describing

the algorithm at the heart of our result in Section 2.1.2.1. (We note that a modification of this algorithm will

be described in Section 2.1.4, and will allow us to derive Corollary 2.1.5.)

Definition 2.1.13 (Decompositions). Let γ, ζ > 0 and L = L(γ, ζ, n) ≥ 1. A class of distributions C on

[n] is said to be (γ, ζ, L)-decomposable if for every p ∈ C there exists ` ≤ L and a partition I(γ, ζ,p) =

(I1, . . . , I`) of the interval [1, n] such that, for all j ∈ [`], one of the following holds:

(i) p(Ij) ≤ ζ
L ; or

(ii) max
i∈Ij

p(i) ≤ (1 + γ) ·min
i∈Ij

p(i).

Further, if I(γ, ζ,p) is dyadic (i.e., each Ik is of the form [j · 2i + 1, (j + 1) · 2i] for some integers i, j,

corresponding to the leaves of a recursive bisection of [n]), then C is said to be (γ, ζ, L)-splittable.

Lemma 2.1.14. If C is (γ, ζ, L)-decomposable, then it is (γ, ζ, L′)-splittable for L′(γ, ζ, n) = O(logn) ·

L(γ, ζ
2(logn+1) , n).

Proof. We will begin by proving a claim that for every partition I = {I1, I2, ..., IL} of the interval [1, n] into

L intervals, there exists a refinement of that partition which consists of at most L ·O(logn) dyadic intervals.

So, it suffices to prove that every interval [a, b] ⊆ [1, n] can be partitioned in at most O(logn) dyadic intervals.

Indeed, let ` be the largest integer such that 2` ≤ b−a
2 and let m be the smallest integer such that m · 2` ≥ a.

If follows that m · 2` ≤ a+ b−a
2 = a+b

2 and (m+ 1) · 2` ≤ b. So, the interval I = [m · 2` + 1, (m+ 1) · 2`]

is fully contained in [a, b] and has size at least b−a4 .

We will also use the fact that, for every `′ ≤ `,

m · 2` = m · 2`−`
′
· 2`
′

= m′ · 2`
′

(2.1)

Now consider the following procedure: Starting from right (resp. left) side of the interval I , we add the

largest interval which is adjacent to it and fully contained in [a, b] and recurse until we cover the whole interval

[(m+ 1) · 2` + 1, b] (resp. [a,m · 2`]). Clearly, at the end of this procedure, the whole interval [a, b] is covered

by dyadic intervals. It remains to show that the procedure takes O(logn) steps. Indeed, using Eq. (2.1), we

can see that at least half of the remaining left or right interval is covered in each step (except maybe for the first

2 steps where it is at least a quarter). Thus, the procedure will take at most 2 logn+ 2 = O(logn) steps in

total. From the above, we can see that each of the L intervals of the partition I can be covered with O(logn)

dyadic intervals, which completes the proof of the claim.

In order to complete the proof of the lemma, notice that the two conditions in Definition 2.1.13 are closed

under taking subsets: so that the second is immediately verified, while for the first we have that for any of the

“new” intervals I that p(I) ≤ ζ
L ≤

ζ·(2 logn+2)
L′ .
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2.1.2.1 The algorithm

Theorem 2.1.1, and with it Corollary 2.1.2, Corollary 2.1.3, and Corollary 2.1.4 will follow from the theorem

below, combined with the structural theorems from Section 2.1.3:

Theorem 2.1.15. Let C be a class of distributions over [n] for which the following holds.

1. C is (γ, ζ, L(γ, ζ, n))-splittable;

2. there exists a procedure PROJECTIONDISTC which, given as input a parameter α ∈ (0, 1) and the

explicit description of a distribution p over [n], returns yes if the distance `1(p, C) to C is at most α/10,

and no if `1(p, C) ≥ 9α/10 (and either yes or no otherwise).

Then the algorithm TESTSPLITTABLE (Algorithm 1) is a O
(

max
(√

nL logn/ε3, L/ε2
))

-sample tester

for C, for L = L(O(ε), O(ε), n). (Moreover, if PROJECTIONDISTC is computationally efficient, then so is

TESTSPLITTABLE.)

Algorithm 1 TESTSPLITTABLE

Require: Domain I (interval), sample access to p over I; subroutine PROJECTIONDISTC
Input: Parameters ε and “splittable” function LC(·, ·, ·).

1: SETTING UP
2: Define γ def= ε

80 , L def= LC(γ, γ, |I|), κ def= ε
160L , δ def= 1

10L ; and c > 0 be as in Lemma 1.4.8.

3: Set m def= C ·max
(

1
κ ,

√
L|I|
ε3

)
· log |I| = Õ

(√
L|I|
ε3 + L

ε

)
. C is an absolute constant.

4: Obtain a sequence s of m independent samples from p. . For any J ⊆ I , let mJ be the num-
ber of samples falling in J .

5:
6: DECOMPOSITION

7: while mI ≥ max
(
c ·
√
|I|
ε2 log 1

δ , κm

)
and at most L splits have been performed do

8: Run CHECK-SMALL-`2 (from Lemma 1.4.8) with parameters ε
40 and δ, using the samples of s

belonging to I .
9: if CHECK-SMALL-`2 outputs no then

10: Bisect I , and recurse on both halves (using the same samples).
11: end if
12: end while
13: if more than L splits have been performed then
14: return reject
15: else
16: Let I def= (I1, . . . , I`) be the partition of [n] from the leaves of the recursion. . ` ≤ L.
17: end if
18:
19: APPROXIMATION
20: Learn the flattening Φ(p, I) of p to `1 error ε

20 (with probability 1/10), using O
(
`/ε2) new samples.

Let p̃ be the resulting hypothesis. . p̃ is an `-histogram.
21:
22: OFFLINE CHECK
23: return accept if and only if PROJECTIONDISTC(ε, p̃) returns yes. . No samples needed.
24:
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2.1.2.2 Proof of Theorem 2.1.15

We now give the proof of our main result (Theorem 2.1.15), first analyzing the sample complexity of Al-

gorithm 1 before arguing its correctness. For the latter, we will need the following simple fact from [117],

restated below:

Fact 2.1.16 ([117, Fact 1]). Let p be a distribution over [n], and δ ∈ (0, 1]. Given m ≥ C · log n
δ

η independent

samples from p (for some absolute constant C > 0), with probability at least 1− δ we have that, for every

interval I ⊆ [n]:

(i) if p(I) ≥ η
4 , then p(I)

2 ≤ mI
m ≤

3p(I)
2 ;

(ii) if mIm ≥
η
2 , then p(I) > η

4 ;

(iii) if mIm < η
2 , then p(I) < η;

where mI
def= |{ j ∈ [m] : xj ∈ I }| is the number of the samples falling into I .

2.1.2.3 Sample complexity.

The sample complexity is immediate, and comes from Steps 4 and 20. The total number of samples is

m+O

(
`

ε2

)
= O

(√
|I| · L
ε3 log |I|+ L

ε
log |I|+ L

ε2

)
= O

(√
|I| · L
ε3 log |I|+ L

ε2

)
.

2.1.2.4 Correctness.

Say an interval I considered during the execution of the “Decomposition” step is heavy if mI is big enough on

Step 7, and light otherwise; and let H and L denote the sets of heavy and light intervals respectively. By choice

of m, we can assume that with probability at least 9/10 the guarantees of Fact 2.1.16 hold simultaneously for

all intervals considered. We hereafter condition on this event.

We first argue that if the algorithm does not reject in Step 13, then with probability at least 9/10 we have

‖p− Φ(p, I)‖1 ≤ ε/20 (where Φ(p, I) denotes the flattening of p over the partition I). Indeed, we can

write

‖p− Φ(p, I)‖1 =
∑

k : Ik∈L

p(Ik) · ‖pIk − uIk‖1 +
∑

k : Ik∈H

p(Ik) · ‖pIk − uIk‖1

≤ 2
∑

k : Ik∈L

p(Ik) +
∑

k : Ik∈H

p(Ik) · ‖pIk − uIk‖1 .

Let us bound the two terms separately.

• If I ′ ∈ H, then by our choice of threshold we can apply Lemma 1.4.8 with δ = 1
10L ; conditioning on

all of the (at most L) events happening, which overall fails with probability at most 1/10 by a union

bound, we get

‖pI′‖22 = ‖pI′ − uI′‖22 + 1
|I ′|
≤
(

1 + ε2

1600

)
1
|I ′|
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as CHECK-SMALL-`2 returned yes; and by Lemma 1.4.7 this implies ‖pI′ − uI′‖1 ≤ ε/40.

• If I ′ ∈ L, then we claim that p(I ′) ≤ max(κ, 2c ·
√
|I′|

mε2 log 1
δ ). Clearly, this is true if p(I ′) ≤ κ, so it

only remains to show that p(I ′) ≤ 2c ·
√
|I′|

mε2 log 1
δ . But this follows from Fact 2.1.16 (i), as if we had

p(I ′) > 2c ·
√
|I′|

mε2 log 1
δ then mI′ would have been big enough, and I ′ /∈ L. Overall,

∑
I′∈L

p(I ′) ≤
∑
I′∈L

(
κ+ 2c ·

√
|I ′|

mε2 log 1
δ

)
≤ Lκ+2

∑
I′∈L

c·
√
|I ′|

mε2 log 1
δ
≤ ε

160

(
1 +

∑
I′∈L

√
|I ′|
|I|L

)
≤ ε

80

for a sufficiently big choice of constant C > 0 in the definition of m; where we first used that |L| ≤ L,

and then that
∑
I′∈L

√
|I′|
|I| ≤

√
L by Jensen’s inequality.

Putting it together, this yields

‖p− Φ(p, I)‖1 ≤ 2 · ε80 + ε

40
∑
I′∈H

p(Ik) ≤ ε/40 + ε/40 = ε/20.

Soundness. By contrapositive, we argue that if the test returns accept, then (with probability at least 2/3) p

is ε-close to C. Indeed, conditioning on p̃ being ε/20-close to Φ(p, I), we get by the triangle inequality

that

‖p− C‖1 ≤ ‖p− Φ(p, I)‖1 + ‖Φ(p, I)− p̃‖1 + dist(p̃, C)

≤ ε

20 + ε

20 + 9ε
10 = ε.

Overall, this happens except with probability at most 1/10 + 1/10 + 1/10 < 1/3.

Completeness. Assume p ∈ C. Then the choice of of γ and L ensures the existence of a good dyadic

partition I(γ, γ,p) in the sense of Definition 2.1.13. For any I in this partition for which (i) holds

(p(I) ≤ γ
L <

κ
2 ), I will have mI

m < κ and be kept as a “light leaf” (this by contrapositive of Fact 2.1.16

(ii)). For the other ones, (ii) holds: let I be one of these (at most L) intervals.

• If mI is too small on Step 7, then I is kept as “light leaf.”

• Otherwise, then by our choice of constants we can use Lemma 1.4.7 and apply Lemma 1.4.8

with δ = 1
10L ; conditioning on all of the (at most L) events happening, which overall fails with

probability at most 1/10 by a union bound, CHECK-SMALL-`2 will output yes, as

‖pI − uI‖22 = ‖pI‖22 −
1
|I|
≤
(

1 + ε2

6400

)
1
|I|
− 1
|I|

= ε2

6400 |I|

and I is kept as “flat leaf.”

Therefore, as I(γ, γ,p) is dyadic the DECOMPOSITION stage is guaranteed to stop within at most L

splits (in the worst case, it goes on until I(γ, γ,p) is considered, at which point it succeeds).4 Thus

Step 13 passes, and the algorithm reaches the APPROXIMATION stage. By the foregoing discussion, this
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implies Φ(p, I) is ε/20-close to p (and hence to C); p̃ is then (except with probability at most 1/10)

( ε20 + ε
20 = ε

10 )-close to C, and the algorithm returns accept.

2.1.3 Structural Theorems

In this section, we show that a wide range of natural distribution families are succinctly decomposable, and

provide efficient projection algorithms for each class.

2.1.3.1 Existence of Structural Decompositions

Theorem 2.1.17 (Monotonicity). For all γ, ζ > 0, the classMn of monotone distributions on [n] is (γ, ζ, L)-

splittable for L def= O

(
log2 n

ζ

γ

)
.

Note that this proof can already be found in [19, Theorem 10], interwoven with the analysis of their algorithm.

For the sake of being self-contained, we reproduce the structural part of their argument, removing its

algorithmic aspects:

Proof of Theorem 2.1.17. We define the I recursively as follows: I(0) = ([1, n]), and for j ≥ 0 the partition

I(j+1) is obtained from I(j) = (I(j)
1 , . . . , I

(j)
`j

) by going over the I(j)
i = [a(j)

i , b
(j)
i ] in order, and:

(a) if p(I(j)
i ) ≤ ζ

L , then I(j)
i is added as element of I(j+1) (“marked as leaf”);

(b) else, if p(a(j)
i ) ≤ (1 + γ)p(b(j)i ), then I(j)

i is added as element of I(j+1) (“marked as leaf”);

(c) otherwise, bisect I(j) in I(j)
L , I(j)

R (with
∣∣∣I(j)

L

∣∣∣ =
⌈∣∣I(j)

∣∣ /2⌉) and add both I(j)
L and I(j)

R as elements of

I(j+1).

and repeat until convergence (that is, whenever the last item is not applied for any of the intervals). Clearly,

this process is well-defined, and will eventually terminate (as (`j)j is a non-decreasing sequence of natural

numbers, upper bounded by n). Let I = (I1, . . . , I`) (with Ii = [ai, ai+1)) be its outcome, so that the Ii’s

are consecutive intervals all satisfying either (a) or (b). As (b) clearly implies (ii), we only need to show

that ` ≤ L; for this purpose, we shall leverage as in [19] the fact that p is monotone to bound the number of

recursion steps.

The recursion above defines a complete binary tree (with the leaves being the intervals satisfying (a) or (b),

and the internal nodes the other ones). Let t be the number of recursion steps the process goes through before

converging to I (height of the tree); as mentioned above, we have t ≤ logn (as we start with an interval of

size n, and the length is halved at each step.). Observe further that if at any point an interval I(j)
i = [a(j)

i , b
(j)
i ]

4In more detail, we want to argue that if p is in the class, then a decomposition with at most L pieces is found by the algorithm.
Since there is a dyadic decomposition with at most L pieces (namely, I(γ, γ,p) = (I1, . . . , It)), it suffices to argue that the algorithm
will never split one of the Ij ’s (as every single Ij will eventually be considered by the recursive binary splitting, unless the algorithm
stopped recursing in this “path” before even considering Ij , which is even better). But this is the case by the above argument, which
ensures each such Ij will be recognized as satisfying one of the two conditions for “good decomposition” (being either close to uniform
in `2 distance, or having very little mass).
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has p(a(j)
i ) ≤ ζ

nL , then it immediately (as well as all the I(j)
k ’s for k ≥ i by monotonicity) satisfies (a) and is

no longer split (“becomes a leaf”). So at any j ≤ t, the number of intervals ij for which neither (a) nor (b)

holds must satisfy

1 ≥ p(a(j)
1 ) > (1 + γ)p(a(j)

2 ) > (1 + γ)2p(a(j)
3 ) > · · · > (1 + γ)ij−1p(a(j)

ij
) ≥ (1 + γ)ij−1 ζ

nL

where ak denotes the beginning of the k-th interval (again we use monotonicity to argue that the extrema were

reached at the ends of each interval), so that ij ≤ 1 + log nL
ζ

log(1+γ) . In particular, the total number of internal

nodes is then
t∑
i=1

ij ≤ t ·

(
1 +

log nL
ζ

log(1 + γ)

)
≤

2 log2 n
ζ

log(1 + γ) ≤ L .

This implies the same bound on the number of leaves `.

Corollary 2.1.18 (Unimodality). For all γ, ζ > 0, the class Mn,1 of unimodal distributions on [n] is

(γ, ζ, L)-decomposable for L def= O

(
log2 n

ζ

γ

)
.

Proof. For any p ∈Mn,1, [n] can be partitioned in two intervals I , J such that pI , pJ are either monotone

non-increasing or non-decreasing. Applying Theorem 2.1.17 to pI and pJ and taking the union of both

partitions yields a (no longer necessarily dyadic) partition of [n].

The same argument yields an analogous statement for t-modal distributions:

Corollary 2.1.19 (t-modality). For any t ≥ 1 and all γ, ζ > 0, the classMn,t of t-modal distributions on

[n] is (γ, ζ, L)-decomposable for L def= O

(
t log2 n

ζ

γ

)
.

Corollary 2.1.20 (Log-concavity, concavity and convexity). For all γ, ζ > 0, the classes LCVn, K−n and K+
n

of log-concave, concave and convex distributions on [n] are (γ, ζ, L)-decomposable for L def= O

(
log2 n

ζ

γ

)
.

Proof. This is directly implied by Corollary 2.1.18, recalling that log-concave, concave and convex distribu-

tions are unimodal.

Theorem 2.1.21 (Monotone Hazard Rate). For all γ, ζ > 0, the classMHRn of MHR distributions on [n] is

(γ, ζ, L)-decomposable for L def= O
( log n

ζ

γ

)
.

Proof. This follows from adapting the proof of [56], which establishes that every MHR distribution can be

approximated in `1 distance by a O(log(n/ε)/ε)-histogram. For completeness, we reproduce their argument,

suitably modified to our purposes, in Section 2.1.6.

Theorem 2.1.22 (Piecewise Polynomials). For all γ, ζ > 0, t, d ≥ 0, the class Pn,t,d of t-piecewise degree-

d distributions on [n] is (γ, ζ, L)-decomposable for L def= O
(
t(d+1)
γ log2 n

ζ

)
. (Moreover, for the class of

t-histogramsHn,t (d = 0) one can take L = t.)
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Proof. The last part of the statement is obvious, so we focus on the first claim. Observing that each of the

t pieces of a distribution p ∈ Pn,t,d can be subdivided in at most d + 1 intervals on which p is monotone

(being degree-d polynomial on each such piece), we obtain a partition of [n] into at most t(d+ 1) intervals. p

being monotone on each of them, we can apply an argument almost identical to that of Theorem 2.1.17 to

argue that each interval can be further split into O(log2 n/γ) subintervals, yielding a good decomposition

with O(t(d+ 1) log2(n/ζ)/γ) pieces.

2.1.3.2 Projection Step: computing the distances

This section contains details of the distance estimation procedures for these classes, required in the last stage

of Algorithm 1. (Note that some of these results are phrased in terms of distance approximation, as estimating

the distance `1(p, C) to sufficient accuracy in particular yields an algorithm for this stage.)

We focus in this section on achieving the sample complexities stated in Corollary 2.1.2, Corollary 2.1.3,

and Corollary 2.1.4 – that is, our procedures will not require any additional sample from the distribution. While

almost all the distance estimation procedures we give in this section are efficient, running in time polynomial

in all the parameters or even with only a polylogarithmic dependence on n, there are two exceptions – namely,

the procedures for monotone hazard rate (Lemma 2.1.25) and log-concave (Lemma 2.1.26) distributions. We

do describe computationally efficient procedures for these two cases as well in Section 2.1.3.2, at a modest

additive cost in the sample complexity (that is, these more efficient procedures will require some additional

samples from the distribution).

Lemma 2.1.23 (Monotonicity [19, Lemma 8]). There exists a procedure PROJECTIONDISTMn
that, on

input n as well as the full (succinct) specification of an `-histogram p on [n], computes the (exact) distance

`1(p,Mn) in time poly(`).

A straightforward modification of the algorithm above (e.g., by adapting the underlying linear program to

take as input the location m ∈ [`] of the mode of the distribution; then trying all ` possibilities, running the

subroutine ` times and picking the minimum value) results in a similar claim for unimodal distributions:

Lemma 2.1.24 (Unimodality). There exists a procedure PROJECTIONDISTMn,1 that, on input n as well as

the full (succinct) specification of an `-histogram p on [n], computes the (exact) distance `1(p,Mn,1) in time

poly(`).

A similar result can easily be obtained for the class of t-modal distributions as well, with a poly(`, t)-time

algorithm based on a combination of dynamic and linear programming. Analogous statements hold for the

classes of concave and convex distributions K+
n ,K−n , also based on linear programming (specifically, on

runningO
(
n2) different linear programs – one for each possible support [a, b] ⊆ [n] – and taking the minimum

over them).

Lemma 2.1.25 (MHR). There exists a (non-efficient) procedure PROJECTIONDISTMHRn that, on input n,
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ε, as well as the full specification of a distribution p on [n], distinguishes between `1(p,MHRn) ≤ ε and

`1(p,MHRn) > 2ε in time 2Õε(n).

Lemma 2.1.26 (Log-concavity). There exists a (non-efficient) procedure PROJECTIONDISTLCVn that, on

input n, ε, as well as the full specification of a distribution p on [n], distinguishes between `1(p,LCVn) ≤ ε

and `1(p,LCVn) > 2ε in time 2Õε(n).

Proof of Lemma 2.1.25 and Lemma 2.1.26. We here give a naive algorithm for these two problems, based on

an exhaustive search over a (huge) ε-cover S of distributions over [n]. Essentially, S contains all possible

distributions whose probabilities p1, . . . , pn are of the form jε/n, for j ∈ {0, . . . , n/ε} (so that |S| =

O((n/ε)n)). It is not hard to see that this indeed defines an ε-cover of the set of all distributions, and moreover

that it can be computed in time poly(|S|). To approximate the distance from an explicit distribution p to

the class C (eitherMHRn or LCVn), it is enough to go over every element S of S, checking (this time,

efficiently) if ‖S − p‖1 ≤ ε and if there is a distribution P ∈ C close to S (this time, pointwise, that is

|P (i)− S(i)| ≤ ε/n for all i) – which also implies ‖S − P‖1 ≤ ε and thus ‖P − p‖1 ≤ 2ε. The test for

pointwise closeness can be done by checking feasibility of a linear program with variables corresponding

to the logarithm of probabilities, i.e. xi ≡ lnP (i). Indeed, this formulation allows to rephrase the log-

concave and MHR constraints as linear constraints, and pointwise approximation is simply enforcing that

ln(S(i)− ε/n) ≤ xi ≤ ln(S(i) + ε/n) for all i. At the end of this enumeration, the procedure accepts if and

only if for some S both ‖S − p‖1 ≤ ε and the corresponding linear program was feasible.

Lemma 2.1.27 (Piecewise Polynomials). There exists a procedure PROJECTIONDISTPn,t,d that, on input n

as well as the full specification of an `-histogram p on [n], computes an approximation ∆ of the distance

`1(p,Pn,t,d) such that `1(p,Pn,t,d) ≤ ∆ ≤ 3`1(p,Pn,t,d) + ε, and runs in time O
(
n3) · poly(`, t, d, 1

ε ).

Moreover, for the special case of t-histograms (d = 0) there exists a procedure PROJECTIONDISTHn,t ,

which, given inputs as above, computes an approximation ∆ of the distance `1(p,Hn,t) such that `1(p,Hn,t) ≤

∆ ≤ 4`1(p,Hn,t) + ε, and runs in time poly(`, t, 1
ε ), independent of n.

Proof. We begin with PROJECTIONDISTHn,t . Fix any distribution p on [n]. Given any explicit partition of

[n] into intervals I = (I1, . . . , It), one can easily show that ‖p− Φ(p, I)‖1 ≤ 2OPTI , where OPTI is the

optimal distance of p to any histogram on I (recall that we write Φ(p, I) for the flattening of p over the

partition I). To get a 2-approximation of `1(p,Hn,t), it thus suffices to find the minimum, over all possible

partitionings I of [n] into t intervals, of the quantity ‖p− Φ(p, I)‖1 (which itself can be computed in time

T = O(min(t`, n))). By a simple dynamic programming approach, this can be performed in time O
(
tn2 · T

)
.

The quadratic dependence on n, which follows from allowing the endpoints of the t intervals to be at any point

of the domain, is however far from optimal and can be reduced to (t/ε)2, as we show below.

For η > 0, define an η-granular decomposition of a distribution p over [n] to be a partition of [n] into

s = O(1/η) intervals J1, . . . , Js such that each interval Ji is either a singleton or satisfies p(Ji) ≤ η. (Note

that if p is a known `-histogram, one can compute an η-granular decomposition of p in time O(`/η) in a
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greedy fashion.)

Claim 2.1.28. Let p be a distribution over [n], and J = (J1, . . . , Js) be an η-granular decomposition of p

(with s ≥ t). Then, there exists a partition of [n] into t intervals I = (I1, . . . , It) and a t-histogram H on I

such that ‖p−H‖1 ≤ 2`1(p,Hn,t) + 2tη, and I is a coarsening of J .

Before proving it, we describe how this will enable us to get the desired time complexity for PROJECTIONDISTHn,t .

Phrased differently, the claim above allows us to run our dynamic program using the O(1/η) endpoints of

the O(1/η) instead of the n points of the domain, paying only an additive error O(tη). Setting η = ε
4t , the

guarantee for PROJECTIONDISTHn,t follows.

Proof of Claim 2.1.28. Let J = (J1, . . . , Js) be an η-granular decomposition of p, and H∗ ∈ Hn,t be a his-

togram achieving OPT = `1(p,Hn,t). Denote further by I∗ = (I∗1 , . . . , I∗t ) the partition of [n] corresponding

to H∗. Consider now the r ≤ t endpoints of the I∗i ’s that do not fall on one of the endpoints of the Ji’s: let

Ji1 , . . . , Jir be the respective intervals in which they fall (in particular, these cannot be singleton intervals), and

S = ∪rj=1Jij their union. By definition of η-granularity, p(S) ≤ tη, and it follows that H∗(S) ≤ tη + 1
2 OPT.

We define H from H∗ in two stages: first, we obtain a (sub)distribution H ′ by modifying H∗ on S, setting

for each x ∈ Jij the value of H to be the minimum value (among the two options) that H∗ takes on Jij . H
′

is thus a t-histogram, and the endpoints of its intervals are endpoints of J as wished; but it may not sum to

one. However, by construction we have that H ′([n]) ≥ 1 −H∗(S) ≥ 1 − tη − 1
2 OPT. Using this, we can

finally define our t-histogram distribution H as the renormalization of H ′. It is easy to check that H is a valid

t-histogram on a coarsening of J , and

‖p−H‖1 ≤ ‖p−H
′‖1 + (1−H ′([n])) ≤ ‖p−H∗‖1 + ‖H∗ −H ′‖1 + tη + 1

2 OPT ≤ 2OPT + 2tη

as stated.

Turning now to PROJECTIONDISTPn,t,d , we apply the same initial dynamic programming approach, which

will result on a running time of O
(
n2t · T

)
, where T is the time required to estimate (to sufficient accuracy)

the distance of a given (sub)distribution over an interval I onto the space Pn,d of degree-d polynomials.

Specifically, we will invoke the following result, adapted from [55] to our setting:

Theorem 2.1.29. Let p be an `-histogram over [−1, 1). There is an algorithm PROJECTSINGLEPOLY(d, η)

which runs in time poly(`, d+ 1, 1/η), and outputs a degree-d polynomial q which defines a pdf over [−1, 1)

such that ‖p− q‖1 ≤ 3`1(p,Pn,d) +O(η).

The proof of this modification of [55, Theorem 9] is deferred to Section 2.1.7. Applying it as a blackbox

with η set to O(ε/t) and noting that computing the `1 distance to our explicit distribution on a given interval

of the degree-d polynomial returned incurs an additional O(n) factor, we obtain the claimed guarantee and

running time.
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Computationally Efficient Procedures for Log-concave and MHR Distributions We now describe how

to obtain efficient testing for the classes LCVn andMHRn – that is, how to obtain polynomial-time distance

estimation procedures for these two classes, unlike the ones described in the previous section. At a very

high-level, the idea is in both cases to write down a linear program on variables related logarithmically to the

probabilities we are searching, as enforcing the log-concave and MHR constraints on these new variables can

be done linearly. The catch now becomes the `1 objective function (and, to a lesser extent, the fact that the

probabilities must sum to one), now highly non-linear.

The first insight is to leverage the structure of log-concave (resp. monotone hazard rate) distributions to

express this objective as slightly stronger constraints, specifically pointwise (1± ε)-multiplicative closeness,

much easier to enforce in our “logarithmic formulation.” Even so, doing this naively fails, essentially because

of a too weak distance guarantee between our explicit histogram p̂ and the unknown distribution we are trying

to find: in the completeness case, we are only promised ε-closeness in `1, while we would also require good

additive pointwise closeness of the order ε2 or ε3.

The second insight is thus to observe that we “almost” have this for free: indeed, if we do not reject

in the first stage of the testing algorithm, we do obtain an explicit k-histogram p̂ with the guarantee that

p is ε-close to the distribution P to test. However, we also implicitly have another distribution p̂′ that is√
ε/k-close to P in Kolmogorov distance: as in the recursive descent we take enough samples to use the

DKW inequality (Theorem 1.4.3) with this parameter, i.e. an additive overhead of O(k/ε) samples (on top

of the Õ(
√
kn/ε7/2)). If we are willing to increase this overhead by just a small amount, that is to take

Õ
(
max(k/ε, 1/ε4)

)
, we can guarantee that p̂′ be also Õ

(
ε2)-close to P in Kolmogorov distance.

Combining these ideas yield the following distance estimation lemmas:

Lemma 2.1.30 (Monotone Hazard Rate). There exists a procedure PROJECTIONDIST∗MHRn that, on input n

as well as the full specification of a k-histogram distribution p on [n] and of an `-histogram distribution p′ on

[n], runs in time poly(n, 1/ε), and satisfies the following.

• If there is P ∈MHRn such that ‖p− P‖1 ≤ ε and dK(p′, P ) ≤ ε3, then the procedure returns yes;

• If `1(p,MHRn) > 100ε, then the procedure returns no.

Lemma 2.1.31 (Log-concavity). There exists a procedure PROJECTIONDIST∗LCVn that, on input n as well as

the full specifications of a k-histogram distribution p on [n] and an `-histogram distribution p′ on [n], runs in

time poly(n, k, `, 1/ε), and satisfies the following.

• If there is P ∈ LCVn such that ‖p− P‖1 ≤ ε and dK(p′, P ) ≤ ε2

log2(1/ε) , then the procedure

returns yes;

• If `1(p,LCVn) ≥ 100ε, then the procedure returns no.

The proofs of these two lemmas are quite technical and deferred to Section 2.1.7. With these in hand, a

simple modification of our main algorithm (specifically, setting m = Õ(max(
√
L |I|/ε3, L/ε2, 1/εc)) for c
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either 4 or 6 instead of Õ(max(
√
L |I|/ε3, L/ε2)), to get the desired Kolmogorov distance guarantee; and

providing the empirical histogram defined by these m samples along to the distance estimation procedure)

suffices to obtain the following counterpart to Corollary 2.1.2:

Corollary 2.1.32. The algorithm TESTSPLITTABLE, after this modification, can efficiently test the classes

of log-concave and monotone hazard rate (MHR) distributions, with respectively Õ
(√
n/ε7/2 + 1/ε4) and

Õ
(√
n/ε7/2 + 1/ε6) samples.

We observe that Lemma 2.1.30 and Lemma 2.1.31 actually imply efficient proper learning algorithms

for the classes of respectively MHR and log-concave distributions, with sample complexity O
(
1/ε4) and

O
(
1/ε6). Along with analogous subroutines of [3], these were the first proper learning algorithms (albeit with

suboptimal sample complexity) for these classes. (Subsequent work of Diakonikolas, Kane, and Steward [83]

recently obtained, through a completely different approach, a sample-optimal and efficient learning algorithm

for the class of log-concave distributions which is both proper and agnostic.)

2.1.4 Going Further: Reducing the Support Size

The general approach we have been following so far gives, out-of-the-box, an efficient testing algorithm with

sample complexity Õ(
√
n) for a large range of properties. However, this sample complexity can for some

classes P be brought down a lot more, by taking advantage in a preprocessing step of good concentration

guarantees of distributions in P .

As a motivating example, consider the class of Poisson Binomial Distributions (PBD). It is well-known

(see e.g. [121, Section 2]) that PBDs are unimodal, and more specifically that PBDn ⊆ LCVn ⊆ Mn,1.

Therefore, using our generic framework we can test Poisson Binomial Distributions with Õ(
√
n) samples.

This is, however, far from optimal: as shown in [2], a sample complexity of Θ
(
n1/4) is both necessary and

sufficient. The reason our general algorithm ends up making quadratically too many queries can be explained

as follows. PBDs are tightly concentrated around their expectation, so that they “morally” live on a support of

size m = O(
√
n). Yet, instead of testing them on this very small support, in the above we still consider the

entire range [n], and thus end up paying a dependence
√
n – instead of

√
m.

If we could use that observation to first reduce the domain to the effective support of the distribution, then

we could call our testing algorithm on this reduced domain of size O(
√
n). In the rest of this section, we

formalize and develop this idea, and in Section 2.1.4.2 will obtain as a direct application a Õ
(
n1/4)-query

testing algorithm for PBDn.

Definition 2.1.33. Given ε > 0, the ε-effective support of a distribution p is the smallest interval I such that

p(I) ≥ 1− ε.

The last definition we shall require is that of the conditioned distributions of a class C:

Definition 2.1.34. For any class of distributions C over [n], define the set of conditioned distributions of C
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(with respect to ε > 0 and interval I ⊆ [n]) as Cε,I def= { pI : p ∈ C,p(I) ≥ 1− ε }.

Finally, we will require the following simple result:

Lemma 2.1.35. Let p be a distribution over [n], and I ⊆ [n] an interval such that p(I) ≥ 1− ε
10 . Then,

• If p ∈ C, then pI ∈ C
ε
10 ,I ;

• If `1(p, C) > ε, then `1(pI , C
ε
10 ,I) > 7ε

10 .

Proof. The first item is obvious. As for the second, let P ∈ C be any distribution with P (I) ≥ 1− ε
10 . By

assumption, ‖p− P‖1 > ε: but we have, writing α = 1/10,

‖pI − PI‖1 =
∑
i∈I

∣∣∣∣ p(i)
p(I) −

P (i)
P (I)

∣∣∣∣ = 1
p(I)

∑
i∈I

∣∣∣∣p(i)− P (i) + P (i)
(

1− p(I)
P (I)

)∣∣∣∣
≥ 1

p(I)
(∑
i∈I
|p(i)− P (i)| −

∣∣∣∣1− p(I)
P (I)

∣∣∣∣∑
i∈I

P (i)
)

= 1
p(I)

(∑
i∈I
|p(i)− P (i)| − |P (I)− p(I)|

)
≥ 1

p(I)
(∑
i∈I
|p(i)− P (i)| − αε

)
≥ 1

p(I)
(
‖p− P‖1 −

∑
i/∈I

|p(i)− P (i)| − αε
)
≥ 1

p(I)
(
‖p− P‖1 − 3αε

)
> (1− 3α)ε = 7

10ε.

We now proceed to state and prove our result – namely, efficient testing of structured classes of distributions

with nice concentration properties.

Theorem 2.1.36. Let C be a class of distributions over [n] for which the following holds.

1. there is a function M(·, ·) such that each p ∈ C has ε-effective support of size at most M(n, ε);

2. for every ε ∈ [0, 1] and interval I ⊆ [n], Cε,I is (γ, ζ, L)-splittable;

3. there exists an efficient procedure PROJECTIONDISTCε,I which, given as input the explicit description

of a distribution p over [n] and interval I ⊆ [n], computes the distance `1(pI , Cε,I).

Then, the algorithm TESTEFFECTIVESPLITTABLE (Algorithm 2) is a O
(

max
(

1
ε3

√
m` logm, `ε2

))
-sample

tester for C, where m = M(n, ε60 ) and ` = L( ε
1200 ,

ε
1200 ,m).
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Algorithm 2 TESTEFFECTIVESPLITTABLE

Require: Domain Ω (interval of size n), sample access to p over Ω; subroutine PROJECTIONDISTCε,I
Input: Parameters ε ∈ (0, 1], function L(·, ·, ·), and upper bound function M(·, ·) for the effective support of

the class C.
1: Set m def= O

(
1/ε2), τ def= M(n, ε60 ).

2: EFFECTIVE SUPPORT
3: Compute p̂, an empirical estimate of p, by drawing m independent samples from p.
4: Let J be the largest interval of the form {1, . . . , j} such that p̂(J) ≤ ε

30 .
5: Let K be the largest interval of the form {k, . . . , n} such that p̂(K) ≤ ε

30 .
6: Set I ← [n] \ (J ∪K).
7: if |I| > τ then return reject
8: end if
9:

10: TESTING
11: Call TESTSPLITTABLE with I (providing simulated access to pI by rejection sampling, returning fail

if the number of samples q from pI required by the subroutine is not obtained after O(q) samples from

p), PROJECTIONDISTCε,I , parameters ε′ def= 7ε
10 and L(·, ·, ·).

12: return accept if TESTSPLITTABLE accepts, reject otherwise.
13:

2.1.4.1 Proof of Theorem 2.1.36

By the choice ofm and the DKW inequality, with probability at least 23/24 the estimate p̂ satisfies dK(p, p̂) ≤
ε
60 . Conditioning on that from now on, we get that p(I) ≥ p̂(I)− ε

30 ≥ 1− ε
10 . Furthermore, denoting by j

and k the two inner endpoints of J andK in Steps 4 and 5, we have p(J∪{j+1}) ≥ p̂(J∪{j+1})− ε
60 >

ε
60

(similarly for p(K ∪ {k − 1})), so that I has size at most σ + 1, where σ is the ε
60 -effective support size of p.

Finally, note that since p(I) = Ω(1) by our conditioning, the simulation of samples by rejection sampling

will succeed with probability at least 23/24 and the algorithm will not output fail.

Sample complexity The sample complexity is the sum of the O
(
1/ε2) in Step 3 and the O(q) in

Step 11. From Theorem 2.1.1 and the choice of I , this latter quantity is O
(

max
(

1
ε3

√
m` logm, `ε2

))
where

m = M(n, ε60 ) and ` = L( ε
1200 ,

ε
1200 ,M(n, ε60 )).

Correctness If p ∈ C, then by the setting of τ (set to be an upper bound on the ε
60 -effective support size

of any distribution in C) the algorithm will go beyond Step 6. The call to TESTSPLITTABLE will then end up

in the algorithm returning accept in Step 12, with probability at least 2/3 by Lemma 2.1.35, Theorem 2.1.1

and our choice of parameters.

Similarly, if p is ε-far from C, then either its effective support is too large (and then the test on Step 6 fails),

or the main tester will detect that its conditional distribution on I is 7ε
10 -far from C and output reject in Step 12.

Overall, in either case the algorithm is correct except with probability at most 1/24 + 1/24 + 1/3 = 5/12

(by a union bound). Repeating constantly many times and outputting the majority vote brings the probability

of failure down to 1/3.
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2.1.4.2 Application: Testing Poisson Binomial Distributions

In this section, we illustrate the use of our generic two-stage approach to test the class of Poisson Binomial

Distributions. Specifically, we prove the following result:

Corollary 2.1.37. The class of Poisson Binomial Distributions can be tested with Õ
(
n1/4/ε7/2)+Õ(log2 n/ε3)

samples, using Algorithm 2.

This is a direct consequence of Theorem 2.1.36 and the lemmas below. The first one states that, indeed,

PBDs have small effective support:

Fact 2.1.38. For any ε > 0, a PBD has ε-effective support of size O
(√

n log(1/ε)
)

.

Proof. By an additive Chernoff Bound, any random variable X following a Poisson Binomial Distribution

has Pr[ |X − EX| > γn ] ≤ 2e−2γ2n. Taking γ def=
√

1
2n ln 2

ε , we get that Pr[X ∈ I ] ≥ 1 − ε, where

I
def= [EX −

√
n
2 ln 2

ε ,EX +
√

n
2 ln 2

ε ].

It is clear that if p ∈ PBDn (and therefore is unimodal), then for any interval I ⊆ [n] the conditional distri-

bution pI is still unimodal, and thus the class of conditioned PBDsPBDε,In
def= { pI : p ∈ PBDn,p(I) ≥ 1− ε }

falls under Corollary 2.1.18. The last piece we need to apply our generic testing framework is the existence of

an algorithm to compute the distance between an (explicit) distribution and the class of conditioned PBDs.

This is provided by our next lemma:

Claim 2.1.39. There exists a procedure PROJECTIONDISTPBDε,In that, on input n and ε ∈ [0, 1], I ⊆ [n]

as well as the full specification of a distribution p on [n], computes a value τ such that τ ∈ [1 ± 2ε] ·

`1(p,PBDε,In )± ε
100 , in time n2 (1/ε)O(log 1/ε).

Proof. The goal is to find a γ = Θ(ε)-approximation of the minimum value of
∑
i∈I

∣∣∣ P (i)
P (I) −

p(i)
p(I)

∣∣∣, subject

to P (I) =
∑
i∈I P (i) ≥ 1 − ε and P ∈ PBDn. We first note that, given the parameters n ∈ N and

p1, . . . , pn ∈ [0, 1] of a PBD P , the vector of (n+ 1) probabilities P (0), . . . , P (n) can be obtained in time

O
(
n2) by dynamic programming. Therefore, computing the `1 distance between p and any PBD with known

parameters can be done efficiently. To conclude, we invoke a result of Diakonikolas, Kane, and Stewart, that

guarantees the existence of a succinct (proper) cover of PBDn:

Theorem 2.1.40 ([85, Theorem 4] (rephrased)). For all n, γ > 0, there exists a set Sγ ⊆ PBDn such that:

(i) Sγ is a γ-cover ofPBDn; that is, for all p ∈ PBDn there exists some p′ ∈ Sγ such that ‖p− p′‖1 ≤ γ

(ii) |Sγ | ≤ n (1/γ)O(log 1/γ)

(iii) Sγ can be computed in time n (1/γ)O(log 1/γ)

and each p ∈ Sγ is explicitly described by its set of parameters.

We further observe that the factor n in both the size of the cover and running time can be easily removed in

our case, as we know a good approximation of the support size of the candidate PBDs. (That is, we only need
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to enumerate over a subset of the cover of [85], that of the PBDs with effective support compatible with our

distribution p.)

Set γ def= ε
250 . Fix P ∈ PBDn such that P (I) ≥ 1−ε, andQ ∈ Sγ such that ‖P −Q‖1 ≤ γ. In particular,

it is easy to see via the correspondence between `1 and total variation distance that |P (I)−Q(I)| ≤ γ/2. By

a calculation similar to that of Lemma 2.1.35, we have

‖PI −QI‖1 =
∑
i∈I

∣∣∣∣ P (i)
P (I) −

Q(i)
Q(I)

∣∣∣∣ =
∑
i∈I

∣∣∣∣ P (i)
P (I) −

Q(i)
P (I) +Q(i)

(
1

P (I) −
1

Q(I)

)∣∣∣∣
=
∑
i∈I

∣∣∣∣ P (i)
P (I) −

Q(i)
P (I)

∣∣∣∣±∑
i∈I

Q(i)
∣∣∣∣ 1
P (I) −

1
Q(I)

∣∣∣∣ = 1
P (I)

(∑
i∈I
|P (i)−Q(i)| ± |P (I)−Q(I)|

)

= 1
P (I)

(∑
i∈I
|P (i)−Q(i)| ± γ

2

)
= 1
P (I)

(
‖P −Q‖1 ±

5γ
2

)
∈ [‖P −Q‖1 − 5γ/2, (1 + 2ε) (‖P −Q‖1 + 5γ/2)]

where we used the fact that
∑
i/∈I |P (i)−Q(i)| = 2

(∑
i/∈I : P (i)>Q(i)(P (i)−Q(i))

)
+ Q(I) − P (I) ∈

[−2γ, 2γ]. By the triangle inequality, this implies that the minimum of ‖PI − pI‖1 over the distributions

P of Sε with P (I) ≥ 1 − (ε + γ/2) will be within an additive O(ε) of `1(p,PBDε,In ). The fact that

the former can be found (by enumerating over the cover of size (1/ε)O(log 1/ε) by the above discussion,

and for each distribution in the cover computing the vector of probabilities and the distance to p) in time

O(n2) · |Sε| = n2 · (1/ε)O(log 1/ε) concludes the proof.

As previously mentioned, this approximation guarantee for `1(p,PBDε,In ) is sufficient for the purpose

of Algorithm 1.

Proof of Corollary 2.1.37. Combining the above, we invoke Theorem 2.1.36 withM(n, ε) = O(
√
n log(1/ε))

(Fact 2.1.38) and L(γ, ζ,m) = O
( 1
γ log2 m

ζ

)
(Corollary 2.1.18). This yields the claimed sample complexity;

finally, the efficiency is a direct consequence of Claim 2.1.39.

2.1.5 A Generic Tolerant Testing Upper Bound

To conclude this work, we address the question of tolerant testing of distribution classes. In the same spirit

as before, we focus on describing a generic approach to obtain such bounds, in a clean conceptual manner.

The most general statement of the result we prove in this section is stated below, which we then instantiate to

match the lower bounds from Section 3.1.1:

Theorem 2.1.41. Let C be a class of distributions over [n] for which the following holds:

(i) there exists a semi-agnostic learner L for C, with sample complexity qL(n, ε, δ) and “agnostic con-

stant” c;
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(ii) for any η ∈ [0, 1], every distribution in C has η-effective support of size at most M(n, η).

Then, there exists an algorithm that, for any fixed κ > 1 and on input ε1, ε2 ∈ (0, 1) such that ε2 ≥ Cε1, has

the following guarantee (where C > 2 depends on c and κ only). The algorithm takes O
(

1
(ε2−ε1)2

m
logm

)
+

qL(n, ε2−ε1κ , 1
10 ) samples (where m = M(n, ε1)), and with probability at least 2/3 distinguishes between (a)

`1(p, C) ≤ ε1 and (b) `1(p, C) > ε2. (Moreover, one can take C = (1 + (5c+ 6) κ
κ−1 ).)

Corollary 2.1.9. Tolerant testing of log-concavity, convexity, concavity, MHR, unimodality, and t-modality

can be performed with O
( 1

(ε2−ε1)2
n

logn
)

samples, for ε2 ≥ Cε1 (where C > 2 is an absolute constant).

Applying now the theorem withM(n, ε) =
√
n log(1/ε) (as per Corollary 2.1.37), we obtain an improved

upper bound for Binomial and Poisson Binomial distributions:

Corollary 2.1.10. Tolerant testing of the classes of Binomial and Poisson Binomial Distributions can be

performed with O
( 1

(ε2−ε1)2

√
n log(1/ε1)

logn
)

samples, for ε2 ≥ Cε1 (where C > 2 is an absolute constant).

High-level idea Somewhat similar to the lower bound framework described later in Section 2.1.5, the

gist of the approach is to reduce the problem of tolerant testing membership of p to the class C to that of

tolerant testing identity to a known distribution – namely, the distribution p̂ obtained after trying to agnostically

learn p. Intuitively, an agnostic learner for C should result in a good enough hypothesis p̂ (i.e., p̂ close enough

to both p and C) when p is ε1-close to C; but output a p̂ that is significantly far from either p or C when p is

ε2-far from C – sufficiently for us to be able to tell. Besides the many technical details one has to control for

the parameters to work out, one key element is the use of a tolerant testing algorithm for closeness of two

distributions due to [172], whose (tight) sample complexity scales as n/ logn for a domain of size n. In order

to get the right dependence on the effective support (required in particular for Corollary 2.1.10), we have to

perform a first test to identify the effective support of the distribution and check its size, in order to only call

this tolerant closeness testing algorithm on this much smaller subset. (This additional preprocessing step itself

has to be carefully done, and comes at the price of a slightly worse constant C = C(c, κ) in the statement of

the theorem.)

2.1.5.1 Proof of Theorem 2.1.41

As described in the preceding section, the algorithm will rely on the ability to perform tolerant testing of

equivalence between two unknown distributions (over some known domain of size m). This is ensured by an

algorithm of Valiant and Valiant, restated below:

Theorem 2.1.42 ([172, Theorem 3 and 4]). There exists an algorithm E which, given sampling access to two

unknown distributions p1,p2 over [m], satisfies the following. On input ε ∈ (0, 1], it takesO( 1
ε2

m
logm ) samples

from p1 and p2, and outputs a value ∆ such that |‖p1 − p2‖1 −∆| ≤ ε with probability 1 − 1/ poly(m).

(Furthermore, E runs in time poly(m).)
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For the proof, we will also need this fact, similar to Lemma 2.1.35, which relates the distance of two

distributions to that of their conditional distributions on a subset of the domain:

Fact 2.1.43. Let p and P be distributions over [n], and I ⊆ [n] an interval such that p(I) ≥ 1 − α and

P (I) ≥ 1− β. Then,

• ‖pI − PI‖1 ≤
3
2
‖p−P‖1

p(I) ≤ 3‖p− P‖1 (the last inequality for α ≤ 1
2 ); and

• ‖pI − PI‖1 ≥ ‖p− P‖1 − 2(α+ β).

Proof. To establish the first item, write:

‖pI − PI‖1 =
∑
i∈I

∣∣∣∣ p(i)
p(I) −

P (i)
P (I)

∣∣∣∣ = 1
p(I)

∑
i∈I

∣∣∣∣p(i)− P (i) + P (i)
(
1− p(I)

P (I)
)∣∣∣∣

≤ 1
p(I)

(∑
i∈I
|p(i)− P (i)|+

∣∣∣∣1− p(I)
P (I)

∣∣∣∣∑
i∈I

P (i)
)

= 1
p(I)

(∑
i∈I
|p(i)− P (i)|+ |P (I)− p(I)|

)
≤ 1

p(I)
(∑
i∈I
|p(i)− P (i)|+ 1

2‖p− P‖1
)

≤ 1
p(I) ·

3
2‖p− P‖1

where we used the fact that |P (I)− p(I)| ≤ dTV(p, P ) = 1
2‖p− P‖1. Turning now to the second item, we

have:

‖pI − PI‖1 = 1
p(I)

∑
i∈I

∣∣∣∣p(i)− P (i) + P (i)
(

1− p(I)
P (I)

)∣∣∣∣ ≥ 1
p(I)

(∑
i∈I
|p(i)− P (i)| −

∣∣∣∣1− p(I)
P (I)

∣∣∣∣∑
i∈I

P (i)
)

= 1
p(I)

(∑
i∈I
|p(i)− P (i)| − |P (I)− p(I)|

)
≥ 1

p(I)
(∑
i∈I
|p(i)− P (i)| − (α+ β)

)
≥ 1

p(I)
(
‖p− P‖1 −

∑
i/∈I

|p(i)− P (i)| − (α+ β)
)
≥ 1

p(I)
(
‖p− P‖1 − 2(α+ β)

)
≥ ‖p− P‖1 − 2(α+ β).

With these two ingredients, we are in position to establish our theorem:

Proof of Theorem 2.1.41. The algorithm proceeds as follows, where we set ε def= ε2−ε1
17κ , θ def= ε2 − ((6 +

c)ε1 + 11ε), and τ def= 2 (3+c)ε1+5ε
2 :

(1) using O( 1
ε2 ) samples, get (with probability at least 1−1/10, by Theorem 1.4.3) a distribution p̃ ε

2 -close

to p in Kolmogorov distance; and let I ⊆ [n] be the smallest interval such that p̃(I) > 1 − 3
2ε1 − ε.

Output reject if |I| > M(n, ε1).

(2) invoke L on p with parameters ε and failure probability 1
10 , to obtain a hypothesis p̂;

(3) call E (from Theorem 2.1.42) on pI , p̂I with parameter ε6 to get an estimate ∆̂ of ‖pI − p̂I‖1;
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(4) output reject if p̂(I) < 1− τ ;

(5) compute “offline” (an estimate accurate within ε of) `1(p̂, C), denoted ∆;

(6) output reject is ∆ + ∆̂ > θ, and output accept otherwise.

The claimed sample complexity is immediate from Steps (2) and (3), along with Theorem 2.1.42. Turning

to correctness, we condition on both subroutines meeting their guarantee (i.e., ‖p− p̂‖1 ≤ c · OPT + ε and

‖p− p̂‖1 ∈ [∆̂− ε, ∆̂ + ε]), which happens with probability at least 8/10− 1/ poly(n) ≥ 3/4 by a union

bound.

Completeness If `1(p, C) ≤ ε1, then p is ε1-close to some P ∈ C, for which there exists an interval

J ⊆ [n] of size at most M(n, ε1) such that P (J) ≥ 1 − ε1. It follows that p(J) ≥ 1 − 3
2ε1 (since

|p(J)− P (J)| ≤ ε1
2 ) and p̃(J) ≥ 1− 3

2ε1 − 2 · ε2ε; establishing existence of a good interval I to be found

(and Step (1) does not end with reject). Additionally, ‖p− p̂‖1 ≤ c · ε1 + ε and by the triangle inequality

this implies `1(p̂, C) ≤ (1 + c)ε1 + ε.

Moreover, as p(I) ≥ p̃(I)− 2 · ε2 ≥ 1− 3
2ε1 − 2ε and |p̂(I)− p(I)| ≤ 1

2‖p− p̂‖1, we do have

p̂(I) ≥ 1− 3
2ε1 − 2ε− cε1

2 −
ε

2 = 1− τ

and the algorithm does not reject in Step (4). To conclude, one has by Fact 2.1.43 that

‖pI − p̂I‖1 ≤
3
2
‖p− p̂‖1

p(I) ≤ 3
2

(cε1 + ε)
1− 3

2ε1 − 2ε
≤ 3(cε1 + ε) (for ε1 < 1/4, as ε < 1/17)

Therefore, ∆ + ∆̂ ≤ `1(p̂, C) + ε+ ‖pI − p̂I‖1 + ε ≤ (4c+ 1)ε1 + 6ε ≤ ε2 − ((6 + c)ε1 + 11ε) = θ (the

last inequality by the assumption on ε2, ε1), and the tester accepts.

Soundness If `1(p, C) > ε2, then we must have ‖p− p̂‖1 + `1(p̂, C) > ε2. If the algorithm does not

already reject in Step (4), then p̂(I) ≥ 1− τ . But, by Fact 2.1.43,

‖pI − p̂I‖1 ≥ ‖p− p̂‖1 − 2(p(Ic) + p̂(Ic)) ≥ ‖pI − p̂I‖1 − 2
(3

2ε1 + 2ε+ τ
)

= ‖p− p̂‖1 − ((6 + c)ε1 + 9ε)

we then have ‖pI − p̂I‖1+`1(p̂, C) > ε2−((6+c)ε1+9ε). This implies ∆+∆̂ > ε2−((6+c)ε1+9ε)−2ε =

ε2−((6+c)ε1+11ε) = θ, and the tester rejects. Finally, the testing algorithm defined above is computationally

efficient as long as both the learning algorithm (Step (2)) and the estimation procedure (Step (5)) are.

2.1.6 Proof of Theorem 2.1.21

In this section, we prove our structural result for MHR distributions, Theorem 2.1.21:
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Theorem 2.1.21 (Monotone Hazard Rate). For all γ, ζ > 0, the classMHRn of MHR distributions on [n] is

(γ, ζ, L)-decomposable for L def= O
( log n

ζ

γ

)
.

Proof. We reproduce and adapt the argument of [56, Section 5.1] to meet our definition of decomposability

(which, albeit related, is incomparable to theirs). First, we modify the algorithm at the core of their constructive

proof, in Algorithm 4: note that the only two changes are in Steps 2 and 3, where we use parameters respectively
ζ
n and ζ

n2 . Following the structure of their proof, we write Q = {I1, . . . , I|Q|} with Ii = [ai, bi], and define

Algorithm 3 RIGHT-INTERVAL(p, J, τ)
Require: explicit description of distribution p over [n]; interval J = [a, b] ⊆ [n]; threshold τ > 0

1: if p(b) > τ then
2: Set i′ ← b
3: else
4: Set i′ ← min { a ≤ i ≤ b : p([i, b]) ≤ τ }
5: end if
6: return [i′, b]

Algorithm 4 DECOMPOSE-MHR′(p, γ)
Require: explicit description of MHR distribution p over [n]; accuracy parameter γ > 0

1: Set J ← [n] and Q ← ∅.
2: Let I ← RIGHT-INTERVAL(p, J, ζn ) and I ′ ← RIGHT-INTERVAL(p, J \ I, ζn ). Set J ← J \ (I ∪ I ′).
3: Set i ∈ J to be the smallest integer such that p(i) ≥ ζ

n2 . If no such i exists, let I ′′ ← J and go to Step 9.
Otherwise, let I ′′ ← {1, . . . , i− 1} and J ← J \ I ′′.

4: while J 6= ∅ do
5: Let j ∈ J bet the smallest integer such that p(j) /∈ [ 1

1+γ , 1 + γ]p(i). If no such j exists, let I ′′′ ← J ;
otherwise let I ′′′ ← {i, . . . , j − 1}.

6: Add I ′′′ to Q and set J ← J \ I ′′′.
7: Let i← j.
8: end while
9: return Q∪ {I, I ′, I ′′}

.

Q′ = { Ii ∈ Q : p(ai) > p(ai+1) }, Q′′ = { Ii ∈ Q : p(ai) ≤ p(ai+1) }.

We immediately obtain the analogues of their Lemmas 5.2 and 5.3:

Lemma 2.1.44. We have
∏
Ii∈Q′

p(ai)
p(ai+1) ≤

n
ζ .

Lemma 2.1.45. Step 4 of Algorithm 4 adds at most O
(

1
γ log n

ζ

)
intervals to Q.

Sketch. This derives from observing that now p(I ∪ I ′) ≥ ζ/n, which as in [56, Lemma 5.3] in turn implies

1 ≥ ζ

n
(1 + γ)|Q

′|−1

so that |Q′| = O
(

1
γ log n

ζ

)
.
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Again following their argument, we also get

p(a|Q|+1)
p(a1) =

∏
Ii∈Q′′

p(ai+1)
p(ai)

·
∏
Ii∈Q′

p(ai+1)
p(ai)

by combining Lemma 2.1.44 with the fact that p(a|Q|+1 ≤ 1 and that by construction p(ai) ≥ ζ/n2, we get

∏
Ii∈Q′′

p(ai+1)
p(ai)

≤ n

ζ
· n

2

ζ
= n3

ζ2 .

But since each term in the product is at least (1 + γ) (by construction of Q and the definition of Q′′), this

leads to

(1 + γ)|Q
′′| ≤ n3

ζ2

and thus |Q′′| = O
(

1
γ log n

ζ

)
as well.

It remains to show thatQ∪{I, I ′, I ′′} is indeed a good decomposition of [n] for p, as per Definition 2.1.13.

Since by construction every interval in Q satisfies Item (ii), we only are left with the case of I , I ′ and I ′′. For

the first two, as they were returned by RIGHT-INTERVAL either (a) they are singletons, in which case Item (ii)

trivially holds; or (b) they have at least two elements, in which case they have probability mass at most ζn (by

the choice of parameters for RIGHT-INTERVAL) and thus Item (i) is satisfied. Finally, it is immediate to see

that by construction p(I ′′) ≤ n · ζ/n2 = ζ/n, and Item (i) holds in this case as well.

2.1.7 Proofs from Section 2.1.3

This section contains the proofs omitted from Section 2.1.3, namely the distance estimation procedures for

t-piecewise degree-d (Theorem 2.1.29), monotone hazard rate (Lemma 2.1.30), and log-concave distributions

(Lemma 2.1.31).

2.1.7.1 Proof of Theorem 2.1.29

In this section, we prove the following:

Theorem 2.1.46 (Theorem 2.1.29, restated). Let p be an `-histogram over [−1, 1). There is an algorithm

PROJECTSINGLEPOLY(d, ε) which runs in time poly(`, d + 1, 1/ε), and outputs a degree-d polynomial q

which defines a pdf over [−1, 1) such that ‖p− q‖1 ≤ 3`1(p,Pn,d) +O(ε).

As mentioned in Section 2.1.3, the proof of this statement is a rather straightforward adaptation of the

proof of [55, Theorem 9], with two differences: first, in our setting there is no uncertainty or probabilistic

argument due to sampling, as we are provided with an explicit description of the histogram p. Second, Chan et

al. require some “well-behavedness” assumption on the distribution p (for technical reasons essentially due to

the sampling access), that we remove here. Besides these two points, the proof is almost identical to theirs,
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and we only reproduce (our modification of) it here for the sake of completeness. (Any error introduced in the

process, however, is solely our responsibility.)

Proof. Some preliminary definitions will be helpful:

Definition 2.1.47 (Uniform partition). Let p be a subdistribution on an interval I ⊆ [−1, 1). A partition

I = {I1, . . . , I`} of I is (p, η)-uniform if p(Ij) ≤ η for all 1 ≤ j ≤ `.

We will also use the following notation: For this subsection, let I = [−1, 1) (I will denote a subinterval of

[−1, 1) when the results are applied in the next subsection). We write ‖f‖(I)1 to denote
∫
I
|f(x)|dx, and we

write d(I)
TV(p, q) to denote ‖p− q‖(I)1 /2. We write OPT

(I)
1,d to denote the infimum of the distance ‖p− g‖(I)1

between p and any degree-d subdistribution g on I that satisfies g(I) = p(I).

The key step of PROJECTSINGLEPOLY is Step 2 where it calls the FINDSINGLEPOLY procedure. In this

procedure Ti(x) denotes the degree-i Chebychev polynomial of the first kind. The function FINDSINGLEPOLY

should be thought of as the CDF of a “quasi-distribution” f ; we say that f = F ′ is a “quasi-distribution” and

not a bona fide probability distribution because it is not guaranteed to be non-negative everywhere on [−1, 1).

Step 2 of FINDSINGLEPOLY processes f slightly to obtain a polynomial q which is an actual distribution over

[−1, 1).

Algorithm 5 PROJECTSINGLEPOLY

Require: parameters d, ε; and the full description of an `-histogram p over [−1, 1).
Ensure: a degree-d distribution q such that dTV(p, q) ≤ 3 · OPT1,d +O(ε)

1: Partition [−1, 1) into z = Θ((d + 1)/ε) intervals I0 = [i0, i1), . . . , Iz−1 = [iz−1, iz), where i0 = −1
and iz = 1, such that for each j ∈ {1, . . . , z} we have p(Ij) = Θ(ε/(d + 1)) or (|Ij | = 1 and
p(Ij) = Ω(ε/(d+ 1))).

2: Call FINDSINGLEPOLY(d, ε, η := Θ(ε/(d+ 1)), {I0, . . . , Iz−1}, p and output the hypothesis q that it
returns.

The rest of this subsection gives the proof of Theorem 2.1.29. The claimed running time bound is

obvious (the computation is dominated by solving the poly(d, 1/ε)-size LP in PROJECTSINGLEPOLY, with an

additional term linear in ` when partitioning [−1, 1) in the initial first step), so it suffices to prove correctness.

Before launching into the proof we give some intuition for the linear program. Intuitively F (x) represents

the cdf of a degree-d polynomial distribution f where f = F ′. Constraint (a) captures the endpoint constraints

that any cdf must obey if it has the same total weight as p. Intuitively, constraint (b) ensures that for each

interval [ij , ik), the value F (ik)− F (ij) (which we may alternately write as f([ij , ik))) is close to the weight

p([ij , ik)) that the distribution puts on the interval. Recall that by assumption p is OPT1,d-close to some

degree-d polynomial r. Intuitively the variable w` represents
∫

[i`,i`+1)(r − p) (note that these values sum to

zero by constraint (c)(2.3), and y` represents the absolute value of w` (see constraint (c)(2.4)). The value τ ,

which by constraint (c)(2.5) is at least the sum of the y`’s, represents a lower bound on OPT1,d. The constraints

in (d) and (e) reflect the fact that as a cdf, F should be bounded between 0 and 1 (more on this below), and

the (f) constraints reflect the fact that the pdf f = F ′ should be everywhere nonnegative (again more on this

below).
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Algorithm 6 FINDSINGLEPOLY

Require: degree parameter d; error parameter ε; parameter η; (p, η)-uniform partition II = {I1, . . . , Iz} of
interval I into z intervals such that

√
εz · η ≤ ε/2; a subdistribution p on I

Ensure: a number τ and a degree-d subdistribution q on I such that q(I) = p(I),

OPT
(I)
1,d ≤ ‖p− q‖

(I)
1 ≤ 3OPT

(I)
1,d +

√
εz(d+ 1) · η + error,

0 ≤ τ ≤ OPT
(I)
1,d and error = O((d+ 1)η).

1: Let τ be the solution to the following LP:

minimize τ subject to the following constraints:

(Below F (x) =
∑d+1
i=0 ciTi(x) where Ti(x) is the degree-i Chebychev polynomial of the first kind, and

f(x) = F ′(x) =
∑d+1
i=0 ciT

′
i (x).)

(a) F (−1) = 0 and F (1) = p(I);
(b) For each 0 ≤ j < k ≤ z,∣∣∣∣∣∣

p([ij , ik)) +
∑
j≤`<k

w`

− (F (ik)− F (ij))

∣∣∣∣∣∣ ≤√ε · (k − j) · η; (2.2)

(c) ∑
0≤`<z

w` = 0, (2.3)

−y` ≤ w` ≤ y` for all 0 ≤ ` < z, (2.4)∑
0≤`<z

y` ≤ τ ; (2.5)

(d) The constraints |ci| ≤
√

2 for i = 0, . . . , d+ 1;
(e) The constraints

0 ≤ F (z) ≤ 1 for all z ∈ J,

where J is a set of O
(
(d+ 1)6) equally spaced points across [−1, 1);

(f) The constraints
d∑
i=0

ciT
′
i (x) ≥ 0 for all x ∈ K,

where K is a set of O((d+ 1)2/ε) equally spaced points across [−1, 1).

2: Define q(x) = εf(I)/ |I|+ (1− ε)f(x). Output q as the hypothesis pdf.
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We begin by observing that PROJECTSINGLEPOLY calls FINDSINGLEPOLY with input parameters that

satisfy FINDSINGLEPOLY’s input requirements:

(I) the non-singleton intervals I0, . . . , Iz−1 are (p, η)-uniform; and

(II) the singleton intervals each have weight at least η
10 .

We then proceed to show that, from there, FINDSINGLEPOLY’s LP is feasible and has a high-quality

optimal solution.

Lemma 2.1.48. Suppose p is an `-histogram over [−1, 1), so that conditions (I) and (II) above hold; then the

LP defined in Step 1 of FINDSINGLEPOLY is feasible; and the optimal solution τ is at most OPT1,d.

Proof. As above, let r be a degree-d polynomial pdf such that OPT1,d = ‖p− r‖1 and r(I) = p(I).We exhibit

a feasible solution as follows: take F to be the cdf of r (a degree d polynomial). Take w` to be
∫

[i`,i`+1)(r − p),

and take y` to be |w`|. Finally, take τ to be
∑

0≤`<z y`.

We first argue feasibility of the above solution. We first take care of the easy constraints: since F is the cdf

of a subdistribution over I it is clear that constraints (a) and (e) are satisfied, and since both r and p are pdfs

with the same total weight it is clear that constraints (c)(2.3) and (f) are both satisfied. Constraints (c)(2.4)

and (c)(2.5) also hold. So it remains to argue constraints (b) and (d).

Note that constraint (b) is equivalent to p + (r − p) = r and r satisfying (I, ε/(d + 1), ε)-inequalities,

therefore this constraint is satisfied.

To see that constraint (d) is satisfied we recall some of the analysis of Arora and Khot [10, Section 3].

This analysis shows that since F is a cumulative distribution function (and in particular a function bounded

between 0 and 1 on I) each of its Chebychev coefficients is at most
√

2 in magnitude.

To conclude the proof of the lemma we need to argue that τ ≤ OPT1,d. Since w` =
∫

[i`,i`+1)(r − p) it is

easy to see that τ =
∑

0≤`<z y` =
∑

0≤`<z |w`| ≤ ‖p− r‖1, and hence indeed τ ≤ OPT1,d as required.

Having established that with high probability the LP is indeed feasible, henceforth we let τ denote

the optimal solution to the LP and F , f , w`, ci, y` denote the values in the optimal solution. A simple

argument (see e.g. the proof of [10, Theorem 8]) gives that ‖F‖∞ ≤ 2. Given this bound on ‖F‖∞, the

Bernstein–Markov inequality implies that ‖f‖∞ = ‖F ′‖∞ ≤ O((d+ 1)2). Together with (f) this implies that

f(z) ≥ −ε/2 for all z ∈ [−1, 1). Consequently q(z) ≥ 0 for all z ∈ [−1, 1), and

∫ 1

−1
q(x)dx = ε+ (1− ε)

∫ 1

−1
f(x)dx = ε+ (1− ε)(F (1)− F (−1)) = 1.

So q(x) is indeed a degree-d pdf. To prove Theorem 2.1.29 it remains to show that ‖p− q‖1 ≤ 3OPT1,d+O(ε).

We sketch the argument that we shall use to bound ‖p− q‖1. A key step in achieving this bound is to

bound the ‖·‖A distance between f and p̂m + w where A = Ad+1 is the class of all unions of d+ 1 intervals

and w is a function based on the w` values (see (2.8) below). If we can bound ‖(p+w)− f‖A ≤ O(ε) then it

will not be difficult to show that ‖r−f‖A ≤ OPT1,d+O(ε).. Since r and f are both degree-d polynomials we
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have ‖r − f‖1 = 2‖r− f‖A ≤ 2OPT1,d +O(ε), so the triangle inequality (recalling that ‖p− r‖1 = OPT1,d)

gives ‖p− f‖1 ≤ 3OPT1,d + O(ε). From this point a simple argument (Proposition 2.1.50) gives that

‖p− q‖1 ≤ ‖p− f‖1 +O(ε), which gives the theorem.

We will use the following lemma that translates (I, η, ε)-inequalities into a bound on Ad+1 distance.

Lemma 2.1.49. Let I = {I0 = [i0, i1), . . . , Iz−1 = [iz−1, iz)} be a (p, η)-uniform partition of I , possibly

augmented with singleton intervals. If h : I → R and p satisfy the (I, η, ε)-inequalities, then

‖p− h‖(I)Ad+1
≤
√
εz(d+ 1) · η + error,

where error = O((d+ 1)η).

Proof. To analyze ‖p − h‖Ad+1
, consider any union of d+ 1 disjoint non-overlapping intervals S = J1 ∪

· · · ∪ Jd+1. We will bound ‖p− h‖Ad+1
by bounding |p(S)− h(S)|.

We lengthen intervals in S slightly to obtain T = J ′1 ∪ · · · ∪ J ′d+1 so that each J ′j is a union of intervals

of the form [i`, i`+1). Formally, if Jj = [a, b), then J ′j = [a′, b′), where a′ = max` { i` : i` ≤ a } and

b′ = min` { i` : i` ≥ b }. We claim that

|p(S)− h(S)| ≤ O((d+ 1)η) + |p(T )− f(T )| . (2.6)

Indeed, consider any interval of the form J = [i`, i`+1) such that J ∩ S 6= J ∩ T (in particular, such an

interval cannot be one of the singletons). We have

|p(J ∩ S)− p(J ∩ T )| ≤ p(J) ≤ O(η), (2.7)

where the first inequality uses non-negativity of p and the second inequality follows from the bound

p([i`, i`+1)) ≤ η. The (I, η, ε)-inequalities (between h and p) implies that the inequalities in (2.7) also

hold with h in place of p. Now (2.6) follows by adding (2.7) across all J = [i`, i`+1) such that J ∩S 6= J ∩T

(there are at most 2(d+ 1) such intervals J), since each interval Jj in S can change at most two such J’s

when lengthened.

Now rewrite T as a disjoint union of s ≤ d+ 1 intervals [iL1 , iR1) ∪ · · · ∪ [iLs , iRs). We have

|p(T )− h(T )| ≤
s∑
j=1

√
Rj − Lj ·

√
εη

by (I, η, ε)-inequalities between p and h. Now observing that that 0 ≤ L1 ≤ R1 · · · ≤ Ls ≤ Rs ≤ t =

O((d+ 1)/ε), we get that the largest possible value of
∑s
j=1

√
Rj − Lj is

√
sz ≤

√
(d+ 1)z, so the RHS

of (2.6) is at most O((d+ 1)η) +
√

(d+ 1)zεη, as desired.
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Recall from above that F , f , w`, ci, y`, τ denote the values in the optimal solution. We claim that

‖(p+ w)− f‖A = O(ε), (2.8)

where w is the subdistribution which is constant on each [i`, i`+1) and has weight w` there, so in particular

‖w‖1 ≤ τ ≤ OPT1,d. Indeed, this equality follows by applying Lemma 2.1.49 with h = f − w. The lemma

requires h and p to satisfy (I, η, ε)-inequalities, which follows from constraint (b) ((I, η, ε)-inequalities

between p+ w and f ) and observing that (p+ w)− f = p− (f − w). We have also used η = Θ(ε/(d+ 1))

to bound the error term of the lemma by O(ε).

Next, by the triangle inequality we have (writing A for Ad+1)

‖r − f‖A ≤ ‖r − (p+ w)‖A + ‖(p+ w)− f‖A.

The last term on the RHS has just been shown to be O(ε). The first term is bounded by

‖r − (p+ w)‖A ≤
1
2‖r − (p+ w)‖1 ≤

1
2(‖r − p‖1 + ‖w‖1) ≤ OPT1,d.

Altogether, we get that ‖r − f‖A ≤ OPT1,d +O(ε).

Since r and f are degree d polynomials, ‖r − f‖1 = 2‖r − f‖A ≤ 2OPT1,d + O(ε). This implies

‖p− f‖1 ≤ ‖p− r‖1 + ‖r − f‖1 ≤ 3OPT1,d + O(ε). Finally, we turn our quasidistribution f which has

value ≥ −ε/2 everywhere into a distribution q (which is nonnegative), by redistributing the weight. The

following simple proposition bounds the error incurred.

Proposition 2.1.50. Let f and p be any sub-quasidistribution on I . If q = εf(I)/ |I|+ (1− ε)f , then

‖q − p‖1 ≤ ‖f − p‖1 + ε(f(I) + p(I)).

Proof. We have

q − p = ε(f(I)/ |I| − p) + (1− ε)(f − p).

Therefore

‖q − p‖1 ≤ ε‖f(I)/|I| − p‖1 + (1− ε)‖f − p‖1 ≤ ε(f(I) + p(I)) + ‖f − p‖1.

We now have ‖p− q‖1 ≤ ‖p− f‖1 +O(ε) by Proposition 2.1.50, concluding the proof of Theorem 2.1.29.

2.1.7.2 Proof of Lemma 2.1.30

Lemma 2.1.30 (Monotone Hazard Rate). There exists a procedure PROJECTIONDIST∗MHRn that, on input n

as well as the full specification of a k-histogram distribution p on [n] and of an `-histogram distribution p′ on

[n], runs in time poly(n, 1/ε), and satisfies the following.
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• If there is P ∈MHRn such that ‖p− P‖1 ≤ ε and dK(p′, P ) ≤ ε3, then the procedure returns yes;

• If `1(p,MHRn) > 100ε, then the procedure returns no.

Proof. For convenience, let α def= ε3; we also write [i, j] instead of {i, . . . , j}.

First, we note that it is easy to reduce our problem to the case where, in the completeness case, we have

P ∈MHRn such that ‖p− P‖1 ≤ 2ε and dK(p, P ) ≤ 2α; while in the soundness case `1(p,MHRn) ≥

99ε. Indeed, this can be done with a linear program on poly(k, `) variables, asking to find a (k+ `)-histogram

p′′ on a refinement of p and p′ minimizing the `1 distance to p, under the constraint that the Kolmogorov

distance to p′ be bounded by ε. (In the completeness case, clearly a feasible solution exists, as P is one.) We

therefore follow with this new formulation: either

(a) p is ε-close to a monotone hazard rate distribution P (in `1 distance) and p is α-close to P (in

Kolmogorov distance); and

(b) p is 32ε-far from monotone hazard rate

where p is a (k + `)-histogram.

We then proceed by observing the following easy fact: suppose P is a MHR distribution on [n], i.e. such

that the quantity hi
def= P (i)∑n

j=i
P (i)

, i ∈ [n] is non-increasing. Then, we have

P (i) = hi

i−1∏
j=1

(1− hj), i ∈ [n]. (2.9)

and there is a bijective correspondence between P and (hi)i∈[n].

We will write a linear program with variables y1, . . . , yn, with the correspondence yi
def= ln(1− hi). Note

that with this parameterization, we get that if the (yi)i∈[n] correspond to a MHR distribution P , then for

i ∈ [n]

P ([i, n]) =
i−1∏
j=1

eyj = e

∑i−1
j=1

yj

and asking that ln(1− ε) ≤
∑i−1
j=1 yj − ln p([i, n]) ≤ ln(1 + ε) amounts to requiring

P ([i, n]) ∈ [1± ε]p([i, n]).

We focus first on the completeness case, to provide intuition for the linear program. Suppose there

exists P ∈ MHRn such P ∈ MHRn such that ‖p− P‖1 ≤ ε and dK(p′, P ) ≤ α. This implies that

for all i ∈ [n], |P ([i, n])− p([i, n])| ≤ 2α. Define I = {b + 1, . . . , n} to be the longest interval such that

p({b+ 1, . . . , n}) ≤ ε
2 . It follows that for every i ∈ [n] \ I ,

P ([i, n])
p([i, n]) ≤

p([i, n]) + 2α
p([i, n]) ≤ 1 + 2α

ε/2 = 1 + 4ε2 ≤ 1 + ε (2.10)
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and similarly P ([i,n])
p([i,n]) ≥

p([i,n])−2α
p([i,n] ≥ 1−ε. This means that for the points i in [n]\I , we can write constraints

asking for multiplicative closeness (within 1± ε) between e
∑i−1

j=1
yj and p([i, n]), which is very easy to write

down as linear constraints on the yi’s.

The linear program Let T and S be respectively the sets of “light” and “heavy” points, defined as

T =
{
i ∈ {1, . . . , b} : p(i) ≤ ε2 } and S =

{
i ∈ {1, . . . , b} : p(i) > ε2 }, where b is as above. (In

particular, |S| ≤ 1/ε2.)

Algorithm 7 Linear Program

Find y1, . . . , yb

s.t.
yi ≤ 0 (2.11)
yi+1 ≤ yi ∀i ∈ {1, . . . , b− 1} (2.12)

ln(1− ε) ≤
i−1∑
j=1

yj − ln p([i, n]) ≤ ln(1 + ε) ∀i ∈ {1, . . . , b} (2.13)

p(i)− εi
(1 + ε)p[i, n] ≤ −yi ≤ (1 + 4ε) p(i) + εi

(1− ε)p[i, n] ∀i ∈ T (2.14)∑
i∈T

εi ≤ ε (2.15)

0 ≤ εi ≤ 2α ∀i ∈ T (2.16)

ln
(

1− p(i) + 2α
(1− ε)p[i, n]

)
≤ yi ≤ ln

(
1− p(i)− 2α

(1 + ε)p[i, n]

)
∀i ∈ S (2.17)

Given a solution to the linear program above, define P̃ (a non-normalized probability distribution) by

setting P̃ (i) = (1 − eyi)e
∑i−1

j=1
yj for i ∈ {1, . . . , b}, and P̃ (i) = 0 for i ∈ I = {b + 1, . . . , n}. A MHR

distribution is then obtained by normalizing P̃ .

Completeness Suppose P ∈ MHRn is as promised. In particular, by the Kolmogorov distance

assumption we know that every i ∈ T has P (i) ≤ ε2 + 2α < 2ε2.

• For any i ∈ T , we have that P (i)
P [i,n] ≤

2ε2
(1−ε)ε ≤ 4ε, and

p(i)− εi
(1 + ε)p[i, n] ≤

P (i)
P [i, n] ≤ − ln(1− P (i)

P [i, n] )︸ ︷︷ ︸
−yi

≤ (1+4ε) P (i)
P [i, n] = (1+4ε)p(i) + εi

P [i, n] ≤
1 + 4ε
1− ε

p(i) + εi
p[i, n]

(2.18)

where we used Eq. (2.10) for the two outer inequalities; and so (2.14), (2.15), and (2.16) would follow

from setting εi
def= |P (i)− p(i)| (along with the guarantees on `1 and Kolmogorov distances between

P and p).

• For i ∈ S, Constraint (2.17) is also met, as P (i)
P ([i,n]) ∈

[
p(i)−2α
P ([i,n]) ,

p(i)+2α
P ([i,n])

]
⊆
[

p(i)−2α
(1+ε)p([i,n]) ,

p(i)+2α
(1−ε)p([i,n])

]
.
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Soundness Assume a feasible solution to the linear program is found. We argue that this implies p is

O(ε)-close to some MHR distribution, namely to the distribution obtained by renormalizing P̃ .

In order to do so, we bound separately the `1 distance between p and P̃ , from I , S, and T . First,∑
i∈I
∣∣p(i)− P̃ (i)

∣∣ =
∑
i∈I p(i) ≤ ε

2 by construction. For i ∈ T , we have p(i)
p[i,n] ≤ ε, and

P̃ (i) = (1− eyi))e
∑i−1

j=1
yj ∈ [1± ε] (1− eyi)p([i, n]).

Now,

1− (1− ε) p(i)− εi
(1 + ε)p[i, n] ≥ e

− p(i)−εi
(1+ε)p[i,n] ≥ eyi ≥ e−(1+4ε) p(i)+εi

(1−ε)p[i,n] ≥ 1− (1 + 4ε) p(i) + εi
(1− ε)p[i, n]

so that

(1− ε) (1− ε)
(1 + ε) (p(i)− εi) ≤ P̃ (i) ≤ (1 + 4ε) (1 + ε)

(1− ε) (p(i) + εi)

which implies

(1− 10ε)(p(i)− εi) ≤ P̃ (i) ≤ (1 + 10ε)(p(i) + εi)

so that
∑
i∈T

∣∣p(i)− P̃ (i)
∣∣ ≤ 10ε

∑
i∈T p(i) + (1 + 10ε)

∑
i∈T εi ≤ 10ε + (1 + 10ε)ε ≤ 20ε where the

last inequality follows from Constraint (2.15).

To analyze the contribution from S, we observe that Constraint (2.17) implies that, for any i ∈ S,

p(i)− 2α
(1 + ε)p([i, n]) ≤

P̃ (i)
P̃ ([i, n])

≤ p(i) + 2α
(1− ε)p([i, n])

which combined with Constraint (2.13) guarantees

p(i)− 2α
(1 + ε)2P̃ ([i, n])

≤ P̃ (i)
P̃ ([i, n])

≤ p(i) + 2α
(1− ε)2P̃ ([i, n])

which in turn implies that
∣∣P̃ (i)− p(i)

∣∣ ≤ 3εP̃ (i) + 2α. Recalling that |S| ≤ 1
ε2 and α = ε3, this yields∑

i∈S
∣∣p(i)− P̃ (i)

∣∣ ≤ 3ε
∑
i∈S P̃ (i)+2ε ≤ 3ε(1+ε)+2ε ≤ 8ε. Summing up, we get

∑n
i=1
∣∣p(i)− P̃ (i)

∣∣ ≤
30ε which finally implies by the triangle inequality that the `1 distance between p and the normalized version

of P̃ (a valid MHR distribution) is at most 32ε.

Running time The running time is immediate, from executing the two linear programs on poly(n, 1/ε)

variables and constraints.

2.1.7.3 Proof of Lemma 2.1.31

Lemma 2.1.31 (Log-concavity). There exists a procedure PROJECTIONDIST∗LCVn that, on input n as well as

the full specifications of a k-histogram distribution p on [n] and an `-histogram distribution p′ on [n], runs in

time poly(n, k, `, 1/ε), and satisfies the following.
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• If there is P ∈ LCVn such that ‖p− P‖1 ≤ ε and dK(p′, P ) ≤ ε2

log2(1/ε) , then the procedure

returns yes;

• If `1(p,LCVn) ≥ 100ε, then the procedure returns no.

Proof. We set α def= ε2

log2(1/ε) , β def= ε2

log(1/ε) , and γ def= ε2

10 (so that α� β � γ � ε),

Given the explicit description of a distribution p on [n], which a k-histogram over a partition I =

(I1, . . . , Ik) of [n] with k = poly(logn, 1/ε) and the explicit description of a distribution p′ on [n], one must

efficiently distinguish between:

(a) p is ε-close to a log-concave P (in `1 distance) and p′ is α-close to P (in Kolmogorov distance); and

(b) p is 100ε-far from log-concave.

If we are willing to pay an extra factor of O(n), we can assume without loss of generality that we know the

mode of the closest log-concave distribution (which is implicitly assumed in the following: the final algorithm

will simply try all possible modes).

Outline First, we argue that we can simplify to the case where p is unimodal. Then, reduce to the case

where where p and p′ are only one distribution, satisfying both requirements from the completeness case.

Both can be done efficiently (Section 2.1.7.3), and make the rest much easier. Then, perform some ad hoc

partitioning of [n], using our knowledge of p, into Õ
(
1/ε2) pieces such that each piece is either a “heavy”

singleton, or an interval I with weight very close (multiplicatively) to p(I) under the target log-concave

distribution, if it exists (Section 2.1.7.3). This in particular simplifies the type of log-concave distribution we

are looking for: it is sufficient to look for distributions putting that very specific weight on each piece, up

to a (1 + o(1)) factor. Then, in Section 2.1.7.3, we write and solve a linear program to try and find such a

“simplified” log-concave distribution, and reject if no feasible solution exists.

Note that the first two sections allow us to argue that instead of additive (in `1) closeness, we can

enforce constraints on multiplicative (within a (1 + ε) factor) closeness between p and the target log-concave

distribution. This is what enables a linear program with variables being the logarithm of the probabilities,

which plays very nicely with the log-concavity constraints.

We will require the following result of Chan, Diakonikolas, Servedio, and Sun:

Theorem 2.1.51 ([56, Lemma 4.1]). Let p be a distribution over [n], log-concave and non-decreasing over

{1, . . . , b} ⊆ [n]. Let a ≤ b such that σ = p({1, . . . , a − 1}) > 0, and write τ = p({a, . . . , b}). Then
p(b)
p(a) ≤ 1 + τ

σ .

Step 1

Reducing to p unimodal Using a linear program, find a closest unimodal distribution p̃ to p (also a

k-histogram on I) under the constraint that dK(p, P ) ≤ α: this can be done in time poly(k). If ‖p− p̃‖1 > ε,

output reject.
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• If p is ε-close to a log-concave distribution P as above, then it is in particular ε-close to unimodal and

we do not reject. Moreover, by the triangle inequality ‖p̃− P‖1 ≤ 2ε and dK(p̃, P ) ≤ 2α.

• If p is 100ε-far from log-concave and we do not reject, then `1(p̃,LCVn) ≥ 99ε.

Reducing to p = p′ First, we note that it is easy to reduce our problem to the case where, in the

completeness case, we have P ∈ LCVn such that ‖p− P‖1 ≤ 4ε and dK(p, P ) ≤ 4α; while in the

soundness case `1(p,LCVn) ≥ 97ε. Indeed, this can be done with a linear program on poly(k, `) variables

and constraints, asking to find a (k + `)-histogram p′′ on a refinement of p and p′ minimizing the `1 distance

to p, under the constraint that the Kolmogorov distance to p′ be bounded by 2α. (In the completeness case,

clearly a feasible solution exists, as (the flattening on this (k+ `)-interval partition) of P is one.) We therefore

follow with this new formulation: either

(a) p is 4ε-close to a log-concave P (in `1 distance) and p is 4α-close to P (in Kolmogorov distance); and

(b) p is 97ε-far from log-concave;

where p is a (k + `)-histogram.

This way, we have reduced the problem to a slightly more convenient one, that of Section 2.1.7.3.

Reducing to knowing the support [a, b] The next step is to compute a good approximation of the

support of any target log-concave distribution. This is easily obtained in time O(k) as the interval {a, · · · , b}

such that

• p({1, . . . , a− 1}) ≤ α but p({1, . . . , a}) > α; and

• p({b+ 1, . . . , }n) ≤ α but p({b, . . . , n}) > α.

Any log-concave distribution that is α-close to p must include {a, · · · , b} in its support, since otherwise the `1

distance between p and P is already greater than α. Conversely, if P is a log-concave distribution α-close to

p, it is easy to see that the distribution obtained by setting P to be zero outside {a, · · · , b} and renormalizing

the result is still log-concave, and O(α)-close to p.

Step 2 Given the explicit description of a unimodal distribution p on [n], which a k-histogram over a

partition I = (I1, . . . , Ik) of [n] with k = poly(logn, 1/ε), one must efficiently distinguish between:

(a) p is ε-close to a log-concave P (in `1 distance) and α-close to P (in Kolmogorov distance); and

(b) p is 24ε-far from log-concave,

assuming we know the mode of the closest log-concave distribution, which has support [n].

In this stage, we compute a partition J of [n] into Õ
(
1/ε2) intervals (here, we implicitly use the knowledge

of the mode of the closest log-concave distribution, in order to apply Theorem 2.1.51 differently on two

intervals of the support, corresponding to the non-decreasing and non-increasing parts of the target log-concave

distribution).
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As p is unimodal, we can efficiently (O(log k)) find the interval S of heavy points, that is

S
def= { x ∈ [n] : p(x) ≥ β } .

Each point in S will form a singleton interval in our partition. Let T def= [n] \ S be its complement (T is

the union of at most two intervals T1, T2 on which p is monotone, the head and tail of the distribution). For

convenience, we focus on only one of these two intervals, without loss of generality the “head” T1 (on which

p is non-decreasing).

1. Greedily find J = {1, . . . , a}, the smallest prefix of the distribution satisfying p(J) ∈
[
ε
10 − β,

ε
10
]
.

2. Similarly, partition T1 \ J into intervals I ′1, . . . , I
′
s (with s = O(1/γ) = O

(
1/ε2)) such that γ

10 ≤

p(I ′j) ≤ 9
10γ for all 1 ≤ j ≤ s− 1, and γ

10 ≤ p(I ′s) ≤ γ. This is possible as all points not in S have

weight less than β, and β � γ.

Discussion: why doing this? We focus on the completeness case: let P ∈ LCVn be a log-concave

distribution such that ‖p− P‖1 ≤ ε and dK(p, P ) ≤ α. Applying Theorem 2.1.51 on J and the I ′j’s, we

obtain (using the fact that
∣∣P (I ′j)− p(I ′j)

∣∣ ≤ 2α) that:

maxx∈I′
j
P (x)

minx∈I′
j
P (x) ≤ 1 +

p(I ′j) + 2α
p(J)− 2α ≤ 1 + γ + 2α

ε
10 − 2α = 1 + ε+O

(
ε2

log2(1/ε)

)
def= 1 + κ.

Moreover, we also get that each resulting interval I ′j will satisfy

p(I ′j)(1− κj) = p(I ′j)− 2α ≤ P (I ′j) ≤ p(I ′j) + 2α = p(I ′j)(1 + κj)

with κj
def= 2α

p(I′
j
) = Θ

(
1/ log2(1/ε)

)
.

Summing up, we have a partition of [n] into |S|+ 2 = Õ
(
1/ε2) intervals such that:

• The (at most) two end intervals have p(J) ∈
[
ε
10 − β,

ε
10
]
, and thus P (J) ∈

[
ε
10 − β − 2α, ε10 + 2α

]
;

• the Õ
(
1/ε2) singleton-intervals from S are points x with p(x) ≥ β, so that P (x) ≥ β − 2α ≥ β

2 ;

• each other interval I = I ′j satisfies

(1− κj)p(I) ≤ P (I) ≤ (1 + κj)p(I) (2.19)

with κj = O
(
1/ log2(1/ε)

)
; and

maxx∈I P (x)
minx∈I P (x) ≤ 1 + κ < 1 + 3

2ε. (2.20)

We will use in the constraints of the linear program the fact that (1+ 3
2ε)(1+κj) ≤ 1+2ε, and 1−κj

1+ 3
2 ε
≥ 1

1+2ε .
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Step 3 We start by computing the partition J = (J1, . . . , J`) as in Section 2.1.7.3; with ` = Õ
(
1/ε2);

and write Jj = {aj , . . . , bj} for all j ∈ [`]. We further denote by S and T the set of heavy and light points,

following the notations from Section 2.1.7.3; and let T ′ def= T1 ∪ T2 be the set obtained by removing the two

“end intervals” (called J in the previous section) from T .

Algorithm 8 Linear Program

Find x1, . . . , xn, ε1, . . . , ε|S|

s.t.
xi ≤ 0 (2.21)
xi − xi−1 ≥ xi+1 − xi ∀i ∈ [n] (2.22)
− ln(1 + 2ε) ≤ xi − µj ≤ ln(1 + 2ε), ∀j ∈ T ′,∀i ∈ Jj (2.23)

− 2 εi
p(i) ≤ xi − ln p(i) ≤ εi

p(i) , ∀i ∈ S (2.24)∑
i∈S

εi ≤ ε (2.25)

0 ≤ εi ≤ 2α ∀i ∈ S (2.26)
(2.27)

where µj
def= ln p(Jj)

|Jj | for j ∈ T ′.

Lemma 2.1.52 (Soundness). If the linear program (Algorithm 8) has a feasible solution, then `1(p,LCVn) ≤

O(ε).

Proof. A feasible solution to this linear program will define (setting pi = exi ) a sequence p = (p1, . . . , pn) ∈

(0, 1]n such that

• p takes values in (0, 1] (from (2.21));

• p is log-concave (from (2.22));

• p is “(1 +O(ε))-multiplicatively constant” on each interval Jj (from (2.23));

• p puts roughly the right amount of weight on each Ji:

– weight (1±O(ε))p(J) on every J from T (from (2.23)), so that the `1 distance between p and p

coming from T ′ is at most O(ε);

– it puts weight approximately p(J) on every singleton J from S, i.e. such that p(J) ≥ β. To

see why, observe that each εi is in [0, 2α] by constraints (2.26). In particular, this means that
εi

p(i) ≤ 2αβ � 1, and we have

p(i)− 4εi ≤ p(i) · e−4 εi
p(i) ≤ pi = exi ≤ p(i) · e2 εi

p(i) ≤ p(i) + 4εi

and together with (2.25) this guarantees that the `1 distance between p and p coming from S is at

most ε.
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Note that the solution obtained this way may not sum to one – i.e., is not necessarily a probability distribution.

However, it is easy to renormalize p to obtain a bona fide probability distribution P̃ as follows: set P̃ =
p(i)∑

i∈S∪T ′
p(i)

for all i ∈ S ∪ T ′, and p(i) = 0 for i ∈ T \ T ′.

Since by the above discussion we know that p(S∪T ′) is withinO(ε) of p(S∪T ′) (itself in [1− 9ε
5 , 1+ 9ε

5 ]

by construction of T ′), P̃ is a log-concave distribution such that ‖P̃ − p‖1 = O(ε).

Lemma 2.1.53 (Completeness). If there is P in LCVn such that ‖p− P‖1 ≤ ε and dK(p, P ) ≤ α, then the

linear program (Algorithm 8) has a feasible solution.

Proof. Let P ∈ LCVn such that ‖p− P‖1 ≤ ε and dK(p, P ) ≤ α. Define xi
def= lnP (i) for all i ∈

[n]. Constraints (2.21) and (2.22) are immediately satisfied, since P is log-concave. By the discussion

from Section 2.1.7.3 (more specifically, Eq. (2.19) and (2.20)), constraint (2.23) holds as well.

Letting εi
def= |P (i)− p(i)| for i ∈ S, we also immediately have (2.25) and (2.26) (since ‖P − p‖1 ≤ ε

and dK(p, P ) ≤ α by assumption). Finally, to see why (2.24) is satisfied, we rewrite

xi − ln p(i) = ln P (i)
p(i) = ln p(i)± εi

p(i) = ln(1± εi
p(i) )

and use the fact that ln(1+x) ≤ x and ln(1−x) ≥ −2x (the latter for x < 1
2 , along with εi

p(i) ≤
2α
β � 1).

Putting it all together: Proof of Lemma 2.1.31 The algorithm is as follows (keeping the notations from Sec-

tion 2.1.7.3 to Section 2.1.7.3):

• Set α, β, γ as above.

• Follow Section 2.1.7.3 to reduce it to the case where p is unimodal and satisfies the conditions for

Kolmogorov and `1 distance; and a good [a, b] approximation of the support is known

• For each of the O(n) possible modes c ∈ [a, b]:

– Run the linear program Algorithm 8, return accept if a feasible solution is found

• None of the linear programs was feasible: return reject.

The correctness comes from Lemma 2.1.52 and Lemma 2.1.53 and the discussions in Section 2.1.7.3

to Section 2.1.7.3; as for the claimed running time, it is immediate from the algorithm and the fact that the

linear program executed each step has poly(n, 1/ε) constraints and variables.

2.2 The Fourier Knife

The upper bound framework presented in the previous section relied on a shape condition on the distributions

of the property to be tested, which made it particularly appealing when considering shape-restricted properties

such as monotonicity or convexity. In this section, we pursue a different direction, focusing on a completely

orthogonal type of structural property: namely, one capturing the sparsity of the (discrete) Fourier transform.
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As an illustration of the difference between the two approaches: monotone distributions admit, as we saw

earlier, very succinct decompositions (in the sense of Definition 2.1.13); yet in general their discrete Fourier

transform need not be sparse by any means. On the other hand, it is easy to see that, for k > 2, (n, k)-SIIRVs

cannot be well-approximated by succinct decompositions; however, as we shall see they enjoy very good

sparsity in the “Fourier world.”

Our two Swiss Army Knife approaches – the shape restriction one from the previous section, and the

“Fourier knife” we are about to describe – can thus be seen as complementary; in conjunction, they provide a

thorough and widely applicable toolbox to tackle distribution testing questions.

2.2.1 Introduction

As before, let P be a family of discrete distributions over a total order (e.g., [n]) or a partial order (e.g., [n]k).

Recall that the problem of membership testing for P is the following: Given sample access to an unknown

distribution p (effectively supported on the same domain as P), we want to distinguish between the case that

p ∈ P versus dTV(p,P) ≥ ε. Clearly, the sample complexity of this problem depends on the underlying

family P . For example, if P contains a single distribution over a domain of size n, the sample complexity of

the testing problem is Θ
(
n1/2/ε2) [138, 58, 82]; while if P is the set of all probability distributions over this

domain, the sample complexity drops quite drastically to zero. Thus, in view of Problem 2.0.1 our goal is to

abstract a minimal set of structural assumptions on P that captures this sample complexity.

We give a general technique to test membership in various distribution families over discrete domains,

based on properties of the Fourier spectrum of the distributions they contain. Before we state our results in

full generality, we present concrete applications to a number of well-studied distribution families.

2.2.1.1 Our Results

Our first concrete application is a nearly sample-optimal algorithm for testing sums of independent integer

random variables (SIIRVs). Recall from Section 1.3 that an (n, k)-SIIRV is a sum of independent integer

random variables, each supported in JkK = {0, . . . , k − 1}. SIIRVs comprise a rich class of distributions

that arise in many settings. The special case of k = 2, SIIRVn,2, was first considered by Poisson [142] as

a non-trivial extension of the Binomial distribution, and is known as Poisson binomial distribution (PBD).

In application domains, SIIRVs have many uses in research areas such as survey sampling, case-control

studies, and survival analysis, see e.g., [60] for a survey of the many practical uses of these distributions. We

remark that these distributions are of fundamental interest and have been extensively studied in probability

and statistics [62, 112, 89, 144, 123, 16, 59]. We show the following:

Theorem 2.2.1 (Testing SIIRVs). Given parameters k, n ∈ N, ε ∈ (0, 1], and sample access to a distribution

p over N, there exists an algorithm (Algorithm 9) which outputs either accept or reject, and satisfies the

following:

1. if p ∈ SIIRVn,k, then it outputs accept with probability at least 3/5;
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2. if dTV(p,SIIRVn,k) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takesO
(
kn1/4

ε2 log1/4 1
ε + k2

ε2 log2 k
ε

)
samples from p, and runs in time n(k/ε)O(k log(k/ε)).

Prior to our work, no non-trivial tester was known for (n, k)-SIIRVs for any k > 2. Canonne et al. [51]

showed a sample lower bound of Ω
(
k1/2n1/4

ε2

)
, that we shall cover in Chapter 3; however, their techniques did

not yield a corresponding sample upper bound. The special case of PBDs (k = 2) was studied by Acharya and

Daskalakis [2] who obtained a tester with sample complexity O
(
n1/4

ε2

√
log 1/ε+ log5/2 1/ε

ε6

)
(and running

time O
(
n1/4

ε2

√
log 1/ε+ (1/ε)O(log2 1/ε)

)
and a sample lower bound of Ω(n1/4/ε2). Our techniques also

yield the following corollary:

Theorem 2.2.2 (Testing PBDs). Given parameters n ∈ N, ε ∈ (0, 1], and sample access to a distribution

p over N, there exists an algorithm (Algorithm 9) which outputs either accept or reject, and satisfies the

following.

1. if p ∈ PBDn, then it outputs accept with probability at least 3/5;

2. if dTV(p,PBDn) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takesO
(
n1/4

ε2 log1/4 1
ε + log2 1/ε

ε2

)
samples from p, and runs in time n1/4 ·Õ

(
1/ε2)+

(1/ε)O(log log(1/ε)).

The sample complexity in the theorem above follows from Theorem 2.2.1, for k = 2. The improved

running time relies on a more efficient computational “projection step” in our general framework, which

builds on the geometric structure of Poisson Binomial distributions and allows us to avoid an (1/ε)O(log(1/ε))

dependence. In summary, as a special case of Theorem 2.2.1, we obtain a tester for PBDs whose sample

complexity is optimal as a function of both n and 1/ε (up to a logarithmic factor).

We further remark that the guarantees provided by the above two theorems are actually stronger than the

usual property testing one; namely, whenever the algorithm returns accept, then it also provides a (proper)

hypothesis h such that dTV(p,h) ≤ ε with probability at least 3/5.

An alternate generalization of PBDs to the high-dimensional setting is the family of Poisson Multinomial

Distributions (PMDs). Formally, an (n, k)-PMD is any random variable of the form X =
∑n
i=1Xi, where

the Xi’s are independent random vectors supported on the set {e1, e2, . . . , ek} of standard basis vectors in

Rk. PMDs comprise a broad class of discrete distributions of fundamental importance in computer science,

probability, and statistics. A large body of work in the probability and statistics literature has been devoted

to the study of the behavior of PMDs under various structural conditions [15, 126, 16, 26, 152, 151]. PMDs

generalize the familiar multinomial distribution, and describe many distributions commonly encountered in

computer science (see, e.g., [69, 70, 174, 171]). Recent years have witnessed a flurry of research activity

on PMDs and related distributions, from several perspectives of theoretical computer science, including

learning [65, 73, 85, 67, 86], property testing [174, 167, 171], computational game theory [69, 70, 37, 71, 68,

99, 61], and derandomization [106, 27, 75, 105].
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Theorem 2.2.3 (Testing PMDs). Given parameters k, n ∈ N, ε ∈ (0, 1], and sample access to a distribution

p over N, there exists an algorithm (Algorithm 15) which outputs either accept or reject, and satisfies the

following.

1. if p ∈ PMDn,k, then it outputs accept with probability at least 3/5;

2. if dTV(p,PMDn,k) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takesO
(
n(k−1)/4k2k log(k/ε)k

ε2

)
samples from p, and runs in time nO(k3)·(1/ε)O(k3 log(k/ε)

log log(k/ε) )k−1

or alternatively in time nO(k) · 2O(k5k log(1/ε)k+2).

We also show a nearly matching sample lower bound5 of Ωk(n(k−1)/4/ε2) (Theorem 2.2.28). Finally, we

demonstrate the versatility of our techniques by obtaining in Section 2.2.7 a testing algorithm for discrete

log-concavity with sample complexity O(
√
n/ε2 + (log(1/ε)/ε)5/2); improving on the previous bounds

of O
(√
n/ε2 + 1/ε5) [3] and Õ

(√
n/ε7/2) [51].

2.2.1.2 Our Techniques and Comparison to Previous Work

The common property of these distribution families P that allows for our unified testing approach is the

following: Let p be the probability mass function of any distribution in P . Then the Fourier transform of p is

approximately sparse, in a well-defined sense.

For concreteness and due to space limitations, we elaborate for the case of SIIRVs. The starting point of

our approach is the observation from [85] that (n, k)-SIIRVs, in addition to having a relatively small effective

support, also enjoy an approximately sparse Fourier representation. Roughly speaking, most of their Fourier

mass is concentrated on a small subset of Fourier coefficients, which can be computed efficiently.

This suggests the following natural approach to testing (n, k)-SIIRVs: first, identify the effective support

I of the distribution p and check that it is as small as it ought to be. Then, compute the corresponding small

subset S of the Fourier domain, and check that almost no Fourier mass of p lies outside S (otherwise, one

can safely reject, as this is a certificate that p is not an (n, k)-SIIRV). Combining the two, one can show that

learning (in L2 norm) the Fourier transform of p on this small subset S only, is sufficient to learn p itself in

total variation distance. The former goal can be performed with relatively few samples, as S is sufficiently

small.

Doing so results in a distribution h, represented succinctly by its Fourier transform on S, such that p and

h are close in total variation distance. It only remains to perform a computational “projection step” to verify

that h itself is close to some (n, k)-SIIRV. This will clearly be the case if indeed p ∈ SIIRVn,k.

We note that although the above idea is at the core of the SIIRV testing algorithm of Algorithm 12,

the actual tester has to address separately the case where p has small variance, which can be handled by a

brute-force learning-and-testing approach. Our main contribution is thus to describe how to efficiently perform

the second step, i.e., the Fourier sparsity testing. This is done in Theorem 2.2.4, which describes a simple

5As mentioned in Chapter 1, we use the notation Ωk(·), Ok(·) to indicate that the parameter k is seen as a constant, focusing on the
asymptotics with regard to n, ε.
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algorithm to perform this step: essentially, by considering the Fourier coefficients of the empirical distribution

obtained by taking a small number of samples. Interestingly, the main idea underlying Theorem 2.2.4 is to

avoid analyzing directly the behavior of these Fourier coefficients – which would naively require too high

a time complexity. Instead, we rely on Plancherel’s identity and reduce the problem to the analysis of a

different task: that of the sample complexity of L2 identity testing (Proposition 2.2.5). By a tight analysis of

this L2 tester, we get as a byproduct that several Fourier quantities of interest (of our empirical distribution)

simultaneously enjoy good concentration – while arguing concentration of each of these terms separately

would yield a suboptimal time complexity.

A nearly identical method works for PMDs as well. Moreover, our approach can be abstracted to yield a

general testing framework, as we explain in Section 2.2.5. It is interesting to remark that the Fourier transform

has been used to learn PMDs and SIIRVs [85, 67, 86, 72], and therefore it may not be entirely surprising that

it has applications to testing as well. However, testing membership in a class using the Fourier transform

is significantly more challenging than learning: a fundamental reason being that, in contrast to the learning

setting, we need to handle distributions that are not SIIRVs and PMDs (but, indeed, are far from those). The

learning algorithms, on the other hand, work under the promise that the distribution is in the class, and thus can

leverage the specific structure of SIIRVs and PMDs. Moreover, our Fourier testing techniques gives improved

algorithms for other structured families as well, e.g., log-concavity, for which no Fourier learning algorithm

was known.

Learning and testing the Fourier transform: the advantage One may wonder how the detour via the

Fourier transform enables us to obtain better sample complexity than an approach purely based on L2 testing.

Indeed, all distributions in the classes we consider, crucially, have a small L2 norm: for testing identity to such

a distribution p, the standard L2 identity tester (see, e.g., [58] or Proposition 2.2.5), which works by checking

how large the L2 distance between the empirical and the hypothesis distribution is, will be optimal. We can

thus test membership of a class of such distributions by (i) learning p assuming it belongs to the class, and

then (ii) test whether what we learned is indeed close to p using the L2 identity tester. The catch is to get

guarantees in L1 distance out of this, applying Cauchy–Schwarz would require us to learn to very small L2

distance. Namely, if p has support size n, we would have to learn to L2 distance ε√
n

in (i), and then in (ii) test

that we are within L2 distance ε√
n

of the learned hypothesis.

However, if a distribution p has a sparse discrete Fourier transform whose effective support is known, then

it is enough to estimate only these few Fourier coefficients [85, 87]. This enables us to learn p in (i) not just to

within L1 distance ε but indeed crucially within L2 distance ε√
n

with good sample complexity. Additionally,

the identity tester algorithm can be put into a simpler form for a hypothesis with sparse Fourier transform,

as previously mentioned. Now, the tester has a higher sample complexity, roughly
√
n/ε2; but if it passes,

then we have learned the distribution p to within ε total variation distance, with much fewer samples than the

Ω
(
n/ε2) required for arbitrary distributions over support size n.

Lastly, we note that instead of
√
n/ε2 in the sample complexity above, we can get n1/4/ε2 for (n, k)-
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SIIRVs by considering the effective support of the distribution.

2.2.2 Testing Effective Fourier Support

In this section, we prove the following theorem, which will be invoked as a crucial ingredient of our testing

algorithms. Broadly speaking, the theorem ensures one can efficiently test whether an unknown distribution q

has its Fourier transform concentrated on some (small) effective support S (and if this is the case, learn the

vector q̂1S , the restriction of this Fourier transform to S, in L2 distance).

Theorem 2.2.4. Given parameters M ≥ 1, ε, b ∈ (0, 1], as well as a subset S ⊆ JMK and sample access

to a distribution q over JMK, Algorithm 9 outputs either reject or a collection of Fourier coefficients

ĥ′ = (ĥ′(ξ))ξ∈S such that with probability at least 7/10, all the following statements hold simultaneously.

1. if ‖q‖22 > 2b, then it outputs reject;

2. if ‖q‖22 ≤ 2b and every function q∗ : JMK → R with q̂∗ supported entirely on S is such that

‖q − q∗‖2 > ε, then it outputs reject;

3. if ‖q‖22 ≤ b and there exists a function q∗ : JMK → R with q̂∗ supported entirely on S such that

‖q − q∗‖2 ≤
ε
2 , then it does not output reject;

4. if it does not output reject, then ‖q̂1S − ĥ′‖2 ≤
ε
√
M

10 and the inverse Fourier transform (modulo M )

h′ of the Fourier coefficients ĥ′ it outputs satisfies ‖q − h′‖2 ≤
6ε
5 .

Moreover, the algorithm takes m = O
(√

b
ε2 + |S|

Mε2 +
√
M
)

samples from q, and runs in time O(m |S|).

Note that the rejection condition in Item 2 is equivalent to ‖q̂1S̄‖2 > ε
√
M , that is to having Fourier mass

more than ε2 outside of S; this is because for any q∗ supported on S,

M‖q − q∗‖22 = ‖q̂ − q̂∗‖
2
2 = ‖q̂1S − q̂∗1S‖

2
2 + ‖q̂1S̄ − q̂∗1S̄‖

2
2 ≥ ‖q̂1S̄ − q̂∗1S̄‖

2
2 = ‖q̂1S̄‖

2
2

and the inequality is tight for q∗ being the inverse Fourier transform (modulo M ) of q̂1S .

High-level idea. Let q be an unknown distribution supported on M consecutive integers (we will later apply

this to q def= p mod M ), and S ⊆ JMK be a set of Fourier coefficients (symmetric with regard to M : ξ ∈ S

implies −ξ mod M ∈ S) such that 0 ∈ S. We can further assume that we know b ≥ 0 such that ‖q‖22 ≤ b.

Given q, we can consider its “truncated Fourier expansion” (with respect to S) ĥ = q̂1S defined as

ĥ(ξ) def=

q̂(ξ) if ξ ∈ S

0 otherwise

for ξ ∈ JMK; and let h be the inverse Fourier transform (modulo M ) of ĥ. Note that h is no longer in general

a probability distribution.
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To obtain the guarantees of Theorem 2.2.4, a natural idea is to take some number m of samples from

q, and consider the empirical distribution q′ they induce over JMK. By computing the Fourier coefficients

(restricted to S) of this q′, as well as the Fourier mass “missed” when doing so (i.e., the Fourier mass ‖q̂′1S̄‖
2
2

that q′ puts outside of S) to sufficient accuracy, one may hope to prove Theorem 2.2.4 with a reasonable

bound on m.

The issue is that analyzing separately the behavior of ‖q̂′1S̄‖
2
2 and ‖q̂′1S − q̂′1S‖

2
2 to show that they are

both estimated sufficiently accurately, and both small enough, is not immediate. Instead, we will get a bound

on both at the same time, by arguing concentration in a different manner – namely, by analyzing a different

tester for tolerant identity testing in L2 norm.

In more detail, letting h be as above, we have by Plancherel that

∑
i∈JMK

(q′(i)− h(i))2 = ‖q′ − h‖22 = 1
M
‖q̂′ − ĥ‖

2
2 = 1

M

M−1∑
ξ=0
|q̂′(ξ)− ĥ(ξ)|2

and, expanding the definition of ĥ and using Plancherel again, this can be rewritten as

M
∑
i∈JMK

(q′(i)− h(i))2 = ‖q̂1S − q̂′1S‖
2
2 + ‖q′‖22 − ‖q̂′1S‖

2
2.

(The full derivation will be given in the proof.) The left-hand side has two non-negative compound terms: the

first, ‖p̂1S − q̂′1S‖
2
2, corresponds to the L2 error obtained when learning the Fourier coefficients of q on S.

The second, ‖q′‖22 − ‖q̂′1S‖
2
2 = ‖q̂′1S̄‖

2
2, is the Fourier mass that our empirical q′ puts “outside of S.”

So if the LHS is small (say, order ε2), then in particular both terms of the RHS will be small as well,

effectively giving us bounds on our two quantities in one shot. But this very same LHS is very reminiscent of

a known statistic [58] for testing identity of distributions in L2. So, one can analyze the number of samples

required by analyzing such an L2 tester instead. This is what we will do in Proposition 2.2.5.

Algorithm 9 Testing the Fourier Transform Effective Support
Require: parameters M ≥ 1, b, ε ∈ (0, 1]; set S ⊆ JMK; sample access to distribution q over JMK

1: Set m←
⌈
C(
√
b

ε2 + |S|
Mε2 +

√
M)
⌉

. C > 0 is an absolute constant
2: Draw m′ ← Poisson(m); if m′ > 2m, return reject
3: Draw m′ samples from q, and let q′ be the corresponding empirical distribution over JMK
4: Compute ‖q′‖22, q̂′(ξ) for every ξ ∈ S, and ‖q̂′1S‖

2
2 . Takes time O(m |S|)

5: if m′2‖q′‖22 −m′ >
3
2bm

2 then return reject

6: else if ‖q′‖22 −
1
M ‖q̂′1S‖

2
2 ≥ 3ε2

(
m′

m

)2
+ 1

m′ then return reject
7: else
8: return ĥ′ = (q̂′(ξ))ξ∈S
9: end if

Proof of Theorem 2.2.4. Given m′ ∼ Poisson(m) samples from q, let q′ be the empirical distribution they

define. We first observe that with probability 2−Ω(ε2m/b) < 1
100 , we have m′ ∈ [1 ± ε

100
√
b
]m and thus
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the algorithm does not output reject in Step 1 (this follows from standard concentration bounds on Poisson

random variables). We will afterwards assume this holds. By Plancherel, we have

∑
i∈JMK

(q′(i)− h(i))2 = ‖q′ − h‖22 = 1
M
‖q̂′ − ĥ‖

2
2 = 1

M

M−1∑
ξ=0
|q̂′(ξ)− ĥ(ξ)|2

and, expanding the definition of ĥ, this yields

∑
i∈JMK

(q′(i)− h(i))2 = 1
M

∑
ξ∈S

|q̂′(ξ)− ĥ(ξ)|2 + 1
M

∑
ξ/∈S

|q̂′(ξ)|2

= 1
M

∑
ξ∈S

|q̂′(ξ)− q̂(ξ)|2 + 1
M

M−1∑
ξ=0
|q̂′(ξ)|2 − 1

M

∑
ξ∈S

|q̂′(ξ)|2

= 1
M

(
‖q̂1S − q̂′1S‖

2
2 + ‖q̂′‖

2
2 − ‖q̂′1S‖

2
2

)
= 1
M
‖q̂1S − q̂′1S‖

2
2 + ‖q′‖22 −

1
M
‖q̂′1S‖

2
2 (2.28)

where in the last step we invoked Plancherel again to argue that 1
M ‖q̂′‖

2
2 = ‖q′‖22.

To analyze the correctness of the algorithm (specifically, the completeness), we will adopt the point of view

suggested by (2.28) and analyze instead the statistic
∑
i∈JMK(q′(i)− h(i))2, when h is an explicit (pseudo)

distribution on JMK assumed known, and q′ is the empirical distribution obtained by drawing Poisson(m)

samples from some unknown distribution q. (Namely, we want to see this as a tolerant L2 identity tester

between q and h.)

• We first show that, given that m′ = Ω
(
|S|
Mε2

)
, with probability at least 99

100 we have ‖q̂1S − ĥ′‖2 ≤
√
Mε
10 . We note that m′q̂′(ξ) is an sum of m′ i.i.d. numbers each of absolute value 1 and mean

q̂(ξ) (which has absolute value less than 1). If X is one of these numbers, |X − q̂(ξ)| ≤ 2 with

probability 1 and so the variance of the real and imaginary parts of X is at most 4. Thus the variance

of the real and imaginary parts of m′q̂′(ξ) is at most 4m′. Then we have E[|q̂(ξ) − q̂′(ξ)|2] =

E[(<(q̂(ξ)− q̂′(ξ)))2 + (=(q̂(ξ)− q̂′(ξ)))2] ≤ 8/m′. Summing over S, using that q′ and h′ have the

same Fourier coefficients there, yields

E

∑
ξ∈S

∣∣∣q̂(ξ)− ĥ′(ξ)
∣∣∣2
 ≤ 8|S|

m′
≤ Mε2

10000

and by Markov’s inequality we get Pr
[
‖q̂1S − ĥ′‖

2
2 ≤

Mε2

100

]
= Pr

[∑
ξ∈S

∣∣∣q̂(ξ)− ĥ′(ξ)
∣∣∣2 ≤ Mε2

100

]
≥

1
100 , concluding the proof.

• Then, let us consider Item 1: assume ‖q‖22 > 2b, and set X def= m′2‖q′‖22 −m′. Then,

E[X] =
M∑
i=1

E[m′2q′(i)2]−
M∑
i=1

E[m′q′(i)] =
M∑
i=1

(mq(i) +m2q(i)2)−
M∑
i=1

mq(i) = m2‖q‖22
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since the m′q′(i) are distributed as Poisson(mq(i)). As all m′q′(i)’s are independent by Poissoniza-

tion, we also have

Var[X] =
M∑
i=1

Var[m′2q′(i)2 −m′q′(i)] =
M∑
i=1

(2m2q(i)2 + 4m3q(i)3) = 2m2‖q‖22 + 4m3‖q‖33

and by Chebyshev,

Pr[X ≤ 3
2m

2b] ≤ Pr
[
|X − E[X]| > 1

4E[X]
]
≤ 16Var[X]

E[X]2 ≤
32

m2‖q‖22
+

64‖q‖33
m‖q‖42

Since q is supported on JMK, ‖q‖22 ≥
1
M and the first term is at most 32M

m2 . The second term, by

monotonicity of `p-norms, is at most 64‖q‖32
m‖q‖42

= 48
m‖q‖2

≤ 48
√
M

m . The RHS is then at most 1
100 for a

large enough choice of C > 0 in the definition of m. Thus, with probability at least 1− 1
100 we have

m′2‖q′‖22 −m′ >
3
2b, and the algorithm outputs reject in Step 5.

Moreover, if ‖q‖22 ≤ b, then the same analysis shows that

Pr[X >
3
2m

2b] ≤ Pr
[
|X − E[X]| > 1

2E[X]
]
≤ 4Var[X]

E[X]2 ≤
1

100

and with probability at least 1− 1
100 the algorithm does not output reject in Step 4.

• Turning now to Items 2 to 4: we assume that the algorithm does not output reject in Step 4 (which by

the above happens with probability 99/100 if ‖q‖22 ≤ b; and can be assumed without loss of generality

otherwise, since we then want to argue that the algorithm does reject at some point in that case).

By the remark following the statement of the theorem, it is sufficient to show that the algorithm outputs

reject (with high probability) if ‖q̂1S̄‖
2
2 > ε2M , and that if both ‖q‖22 ≤ b and ‖q̂1S̄‖

2
2 ≤

ε2

4 M then it

does not output reject; and that whenever the algorithm does not output reject, then ‖q̂ − ĥ‖2 ≤ ε2M .

Observe that calling Algorithm 10 with our m′ = Poisson(m) samples from q (distribution over JMK),

parameters ε
2 and 2b, and the explicit description of the pseudo distribution p∗ def= m′

m h (which one

would obtain for h being the inverse Fourier transform of q̂1S) would result by Proposition 2.2.5 (since

m ≥ c
√

2b
(ε/2)2 = 244

√
2
√
b

ε2 , where c is as in Proposition 2.2.5) in having the following guarantees on
√
Z
m , where Z is the statistic defined in Algorithm 10

– if ‖q − p∗‖2 ≤
ε
2 , then

√
Z
m ≤

√
2.9ε with probability at least 3/4;

– if ‖q − p∗‖2 ≥ ε, then
√
Z
m ≥

√
3.1ε with probability at least 3/4;

as ‖q‖22 ≤ 2b (note that then ‖h‖22 ≤ b as well). Since
√
M‖q − p∗‖2 = ‖q̂ − p̂∗‖2 = ‖q̂ − m

m′ q̂1S‖2
and

Z

m′2
=

M∑
i=1

(
(q′(i)− m

m′
p∗(i))2 − q′(i)

m′

)
=

M∑
i=1

(q′(i)− h(i))2 − 1
m′

which is equal to 1
M ‖q̂1S − q̂′1S‖

2
2 + ‖q′‖22 −

1
M ‖q̂′1S‖

2
2 −

1
m′ by Eq. (2.28), we thus get the
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following.

– if ‖q̂1S̄‖
2
2 ≤

ε2M
9 , then ‖q̂ − q̂1S‖2 ≤

ε
3
√
M , and

√
M‖p∗ − q‖2 = ‖p̂∗ − q̂‖2 ≤ ‖p̂∗ − q̂1S‖2+‖q̂1S − q̂‖2 =

∣∣∣m
m′
− 1
∣∣∣ ‖q̂1S‖2+‖q̂ − q̂1S‖2

Since we have m′ ∈ [1 ± ε
100
√
b
]m by the above discussion and ‖q̂1S‖2 ≤

√
2b
√
M , the RHS

is upper bounded by ε
6
√
M + ε

3
√
M = ε

2
√
M , and ‖p∗ − q‖2 ≤

ε
2 . Then 1

M ‖q̂1S − q̂′1S‖
2
2 +

‖q′‖22 −
1
M ‖q̂′1S‖

2
2 = Z

m′2 + 1
m′ ≤ 2.9ε2

(
m′

m

)2
+ 1

m′ with probability at least 3/4, and in

particular ‖q′‖22 −
1
M ‖q̂′1S‖

2
2 ≤ 2.9ε2

(
m′

m

)2
+ 1

m′ < 3ε2
(
m′

m

)2
+ 1

m′ ;

– if ‖q̂1S̄‖
2
2 > ε2M , then 1

M ‖q̂1S − q̂′1S‖
2
2 +‖q′‖22−

1
M ‖q̂′1S‖

2
2 = Z

m′2 + 1
m′ > 3.1ε2

(
m′

m

)2
+

1
m′ with probability at least 3/4; since by the first part we established we have ‖q̂1S − q̂′1S‖

2
2 ≤

ε2M
100 , this implies ‖q′‖22 −

1
M ‖q̂′1S‖

2
2 > 3.1ε2

(
m′

m

)2
+ 1

m′ −
ε2

100 > 3ε2
(
m′

m

)2
+ 1

m′ .

This immediately takes care of Items 2 and 3; moreover, this implies that whenever Algorithm 9 does

not output reject, then the inverse Fourier transform h′ of the collection of Fourier coefficients it returns

(which are supported on S) satisfies

‖q − h′‖22 = 1
M
‖q̂ − ĥ′‖

2
2 = 1

M
‖q̂1S − ĥ′‖

2
2 + 1

M
‖q̂1S̄‖

2
2

≤ ε2

100 + 1
M
‖q̂1S̄‖

2
2

≤ ε2

100 + ε2 = 101
100ε

2

and thus ‖q − h′‖2 ≤
√

101
100ε <

6
5ε which establishes Item 4. Finally, by a union bound, all the above

holds except with probability 1
100 + 1

100 + 1
100 + 1

4 <
3
10 . This concludes the proof.

2.2.2.1 A tolerant L2 tester for identity to a pseudodistribution

As previously mentioned, one building block in the proof of Theorem 2.2.4 (and a result that may be of

independent interest) is an optimal L2 identity testing algorithm. Our tester and its analysis are very similar to

the tolerant L2 closeness testing algorithm of Chan et al. [58], with the obvious simplifications pertaining to

identity (instead of closeness). The main difference is that we emphasize here the fact that p∗ need not be an

actual distribution: any p∗ : [r]→ R would do, even taking negative values. This will turn out to be crucial

for our applications.

Proposition 2.2.5. There exists an absolute constant c > 0 such that the above algorithm (Algorithm 10),

when given Poisson(m) samples drawn from a distribution p and an explicit function p∗ : [r]→ R will, with

probability at least 3/4, distinguishes between (a) ‖p− p∗‖2 ≤ ε and (b) ‖p− p∗‖2 ≥ 2ε provided that
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Algorithm 10 Tolerant L2 identity tester
Require: ε ∈ (0, 1), m samples from distributions p over [r], with Xi denoting the number of occurrences of

the i-th domain elements in the samples from p, and p∗ being a fixed, known pseudo distribution over [r].
Ensure: Returns accept if ‖p− p∗‖2 ≤ ε and reject if ‖p− p∗‖2 ≥ 2ε.

Define Z =
∑r
i=1(Xi −mp∗(i))2 −Xi. . Can actually be computed in O(m) time

Return reject if
√
Z
m >

√
3ε, accept otherwise.

m ≥ c
√
b

ε2 , where b is an upper bound on ‖p‖22, ‖p∗‖
2
2. (Moreover, one can take c = 61.)

Moreover, we have the following stronger statement: in case (a), the statistic Z computed in the algorithm

satisfies
√
Z
m ≤

√
2.9ε with probability at least 3/4, while in case (b) we have

√
Z
m ≥

√
3.1ε with probability

at least 3/4.

Proof. Letting Xi denote the number of occurrences of the i-th domain element in the samples from p, define

Zi = (Xi −mp∗(i))2 −Xi. Since Xi is distributed as Poisson(mp(i)), E[Zi] = m2(p(i)− p∗(i))2; thus,

Z is an unbiased estimator for m2‖p− p∗‖22. (Note that this holds even when p∗ is allowed to take negative

values.)

We compute the variance of Zi via a straightforward calculation involving standard expressions for the

moments of a Poisson distribution: getting

Var[Z] =
r∑
i=1

Var[Zi] =
r∑
i=1

(
4m3(p(i)− p∗(i))2p(i) + 2m2p(i)2) .

By Cauchy–Schwarz, and since
∑r
i=1 p(i)2 ≤ b by assumption, we have

r∑
i=1

(p(i)− p∗(i))2p(i) =
r∑
i=1

(p(i)− p∗(i)) · (p(i)− p∗(i))p(i)

≤

√√√√ r∑
i=1

(p(i)− p∗(i))2
r∑
i=1

p(i)2(p(i)− p∗(i))2

≤

√√√√ r∑
i=1

(p(i)− p∗(i))2b

r∑
i=1

(p(i)− p∗(i))2 =
√
b‖p− p∗‖22

and so

Var[Z] ≤ 4m3
√
b‖p− p∗‖22 + 2m2b.

For convenience, let η def= 1
10 , and write ρ def= ‖p−p∗‖2

ε – so that we need to distinguish ρ ≤ 1 from ρ ≥ 2. If

ρ ≤ 1, i.e. E[Z] ≤ m2ε2, then

Pr[Z > (3− η)m2ε2] = Pr[|Z − E[Z]| > m2ε2(((3− η)− γ)− ρ2)]
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while if ρ ≥ 2, i.e. E[Z] ≥ 4m2ε2, then

Pr[Z < (3+η)m2ε2] = Pr[E[Z]−Z > m2(‖p−q‖22−(3+η)ε2)] ≤ Pr[|Z−E[Z]| > m2ε2(ρ2−(3+η))].

In both cases, by Chebyshev’s inequality, the test will be correct with probability at least 3/4 provided

m ≥ c
√
b/ε2 for some suitable choice of c > 0, since (where

Pr[|Z − E[Z]| > m2ε2|ρ2 − (3± η)|] ≤ Var[Z]
m4ε4(ρ2 − (3± η))2

≤ 4m3
√
bρ2ε2 + 2m2b

m4ε4(ρ2 − (3± η))2 = ρ2

(ρ2 − (3± η))2 ·
4
√
b

mε2 + 1
(ρ2 − (3± η))2 ·

2b
m2ε4

≤ 20
√
b

mε2 + 5b
2m2ε4 ≤

20
c

+ 5
2c2 ≤

1
3

as maxρ∈[0,1]
ρ2

(ρ2−(3±η))2 ≤ 5 and maxρ∈[0,1]
1

(ρ2−(3±η))2 ≤ 5
4 and the last inequality holds for c ≥ 61.

2.2.3 The Projection Subroutine

2.2.3.1 The projection step for (n, k)-SIIRVs

We can use the proper ε-cover given in [85] to find a (n, k)-SIIRV near p by looking at ĥ.

Algorithm 11 Algorithm Project-k-SIIRV

Require: Parameters n,ε; the approximate Fourier coefficients (ĥ(ξ))ξ∈S modulo M , of a distribution p
known to be effectively supported on I and to have a Fourier transform effectively supported on S of the
form given in Step 13 of Algorithm 12, with σ̃2 and µ̃, an approximation to EX∼p[X] to within half a
standard deviation.

1: Compute C, an ε

5
√
|S|

-cover in total variation distance of all (n, k)-SIIRVs.

2: for each q ∈ C do
3: if the mean µq and variance σq of q satisfy |µ̃ − µq| ≤ σ̃ and 2(σq + 1) ≥ σ̃ + 1 ≥ (σq + 1)/2

then
4: Compute q̂(ξ) for ξ ∈ S.
5: if

∑
ξ∈S |ĥ− q̂|2 ≤ ε2

5 then return accept
6: end if
7: end if
8: end for
9: return reject . we did not return accept for any q ∈ C

Lemma 2.2.6. If Algorithm Project-k-SIIRV is given inputs that satisfy its assumptions and we have that∑
ξ∈S |ĥ− p̂|2 ≤ (3ε/25)2, dTV(p,h) ≤ 6ε/25, and that if p ∈ SIIRVn,k then σ̃2 is a factor-1.5 approxi-

mation to VarX∼p[X]+1, then it distinguishes between (i) p ∈ SIIRVn,k and (ii) dTV(p,SIIRVn,k) > ε.

The algorithm runs in time n (k/ε)O(k log(k/ε)).

Proof. By Theorem 3.7 of [85], there is an algorithm that can compute an ε-cover of all (n, k)-SIIRVs of

size n (k/ε)O(k log(1/ε)) that runs in time n (k/ε)O(k log(1/ε)). Note the way the cover is given, allows us to

compute the Fourier coefficients q̂(ξ) for any ξ for each q ∈ C in time poly(k/ε).

68



Since ε/
√
|S| = 1/ poly(k/ε), Step 1 takes time n (k/ε)O(k log(k/ε)) and outputs a cover of size

n (k/ε)O(k log(k/ε)). As each iteration takes time |S|, the whole algorithm takes n (k/ε)O(k log(k/ε)) time.

Note that each q that passes Step 3 is effectively supported on I by (2.30) and has Fourier transform

supported on S by Claim 2.2.14.

• Suppose that p ∈ SIIRVn,k. Then there is a (n, k)-SIIRV q ∈ C with dTV(p,q) ≤ ε/5
√
|S|.

We need to show that if the algorithm considers q, it accepts. From standard concentration bounds,

one gets that the expectations of p and q are within O(ε
√

log(1/ε)) standard deviations of p and

the variances of p and q are within O(ε log(1/ε)) multiplicative error. Thus q passes the condition

of Step 3. Since dTV(p,q) ≤ ε/(5
√
|S|), we have that |p̂(ξ) − q̂(ξ)| ≤ ε/(5

√
|S|) for all ξ. In

particular, we have
∑
ξ∈S |ĥ − q̂|2 ≤ ε2/25. Thus by the triangle inequality for L2 norm, we have∑

ξ∈S |ĥ− q̂|2 ≤ (ε/5 + 3ε/25)2 ≤ (ε/
√

5)2. Thus the algorithm accepts.

• Now suppose that the algorithm accepts. We need to show that p has total variation distance at most

ε from some (n, k)-SIIRV. We will show that dTV(p,q) ≤ ε for the q which causes the algorithm

to accept. Since the algorithm accepts,
∑
ξ∈S |ĥ − q̂|2 ≤ ε2/25. For x /∈ S, ĥ(ξ) = 0 and so∑

ξ/∈S |ĥ − q̂|2 =
∑
ξ/∈S |q̂|2 ≤ ε2/100 by Claim 2.2.14. By Plancherel, the distributions q′ def=

q mod M , h′ def= h mod M satisfy

‖q′ − h′‖22 = 1
M

M−1∑
ξ=0
|ĥ− q̂|2 ≤ ε2

20M .

Thus dTV(q′,h′) ≤ ε
4 . By definition h has probability 0 outside I and by (2.30), q has at most ε5

probability outside I , Thus dTV(q,h) ≤ ε
4 + ε

5 ≤
ε
2 and by the triangle inequality dTV(p,q) ≤

dTV(q,h) + dTV(p,h) ≤ ε/2 + 6ε/25 ≤ ε as required.

2.2.3.2 The case k = 2

For the important case of Poisson Binomial distributions, that is (n, 2)-SIIRVs, we can dispense with us-

ing a cover at all. [86] gives an algorithm that can properly learn Poisson binomial distributions in time

(1/ε)O(log log 1/ε). The algorithm works by first learning the Fourier coefficients in S, which we have already

computed here, and checks if one of many systems of polynomial inequalities has a solution: if the Fourier

coefficients are close to those of a (n, 2)-SIIRV, then there will be a solution to one of these systems. This

allows us to test whether or not we are close to a (n, 2)-SIIRV.

More precisely, we can handle this in two cases: the first, when the variance s2 of p is relatively small,

corresponding to σ̃ ≤ α/ε2 (for some absolute constant α > 0).

Lemma 2.2.7. Let p be a distribution with variance O(1/ε2). Let µ̃ and σ̃2 be approximations to the mean

µ and variance s2 of p with |µ̃− µ| ≤ σ̃ and 2(σ + 1) ≥ σ̃ + 1 ≥ (σ + 1)/2. Suppose that p is effectively
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supported on an interval I and that its DFT modulo M is effectively supported on S, the set of integers

ξ ≤ `
def= O(log(1/ε)). Let ĥ(ξ) be approximations to p̂(ξ) for all ξ ∈ S with

∑
ξ∈S |ĥ(ξ) − p̂(ξ)|2 ≤ ε2

16

. There is an algorithm that, given n,ε,µ̃, σ̃ and ĥ(ξ), distinguishes between (i) p ∈ PBDn and (ii)

dTV(p,PBDn) > ε, in time at most (1/ε)O(log log 1/ε).

Proof. We use Steps 4 and 5 of Algorithm Proper-Learn-PBD in [86]. Step 5 checks if one of a system

of polynomials has a solution. If such a solution is found, it corresponds to an (n, 2)-SIIRV q that has∑
|ξ|≤` |ĥ(ξ)− q̂(ξ)|2 ≤ ε2/4 and so we accept. If no systems have a solution, then there is no such (n, 2)-

SIIRV and so we reject. The conditions of this lemma are enough to satisfy the conditions of Theorem 11

of [86], though we need that the constant C ′ used to define |S| is sufficiently large to cover the ` = O(log(1/ε)

from that paper. This theorem means that if p is a (n, 2)-SIIRV, then we accept.

We need to show that if the algorithm finds a solution, then it is within ε of a Poisson Binomial distribution.

The system of equations ensures that
∑
|ξ|≤` |ĥ(ξ)− q̂(ξ)|2 ≤ ε2/4. Now the argument is similar to that for

(n, k)-SIIRVs. For x /∈ S, ĥ(ξ) = 0 and so
∑
ξ/∈S |ĥ − q̂|2 =

∑
ξ/∈S |q̂|2 ≤ ε2/100 by Claim 2.2.14. By

Plancherel, the distributions q′ def= q mod M , h′ def= h mod M satisfy

‖q′ − h′‖22 = 1
M

M−1∑
ξ=0
|ĥ− q̂|2 ≤ ε2

20M .

Thus dTV(q′,h′) ≤ ε
4 . By definition h has probability 0 outside I and by (2.30), q has at most ε5 proba-

bility outside I , Thus dTV(q,h) ≤ ε
4 + ε

5 ≤
ε
2 and by the triangle inequality dTV(p,q) ≤ dTV(q,h) +

dTV(p,h) ≤ ε/2 + 6ε/25 ≤ ε as required.

If σ̃ ≥ α/ε2 (corresponding to a “big variance” s2 = Ω(1/ε2)), then we take an additionalO(|S|/ε2) sam-

ples from p and use them to learn a shifted binomial using algorithms Learn-Poisson and Locate-Binomial

from [65] that is within O(ε/
√
|S|) total variation distance from p. If these succeed, we can check if its

Fourier coefficients are close using the method in Algorithm 11 (Project-k-SIIRV). As we can compute

the Fourier coefficients of a shifted binomial easily, this overall takes time poly(1/ε).

2.2.4 The SIIRV Tester

We are now ready to describe the algorithm behind Theorem 2.2.1, and establish the theorem.

2.2.4.1 Analyzing the subroutines

We start with some useful structural results, which will be necessary to our analysis. The first is the following

lemma from [85]:

Lemma 2.2.8 ([85, Lemma 2.3]). Let p ∈ SIIRVn,k with
√

VarX∼p[X] = s, 1/2 > δ > 0, and M ∈ Z+

with M > s. Let p̂ be the discrete Fourier transform of p modulo M . Then, we have
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Algorithm 12 Algorithm Test-SIIRV

Require: sample access to a distribution p ∈ ∆(N), parameters n, k ≥ 1 and ε ∈ (0, 1]
1: . Let C,C ′, C ′′ be sufficiently large universal constants
2: Draw O(k) samples from p and compute as in Claim 2.2.11: (a) σ̃2, a tentative factor-2 approximation to

VarX∼p[X] + 1, and (b) µ̃, a tentative approximation to EX∼p[X] to within one standard deviation.
3: if If σ̃ > 2k

√
n then

4: return reject . Blatant violation of (n, k)-SIIRV-iness
5: end if
6: if σ̃ ≤ 2k

√
ln 10

ε then
7: Set M ← 1 + 2

⌈
15k ln 10

ε

⌉
, and let I ← [bµ̃c − M−1

2 , bµ̃c+ M−1
2 ]; and S ← JMK

8: Draw O(1/ε) samples from p, to distinguish between p(I) ≤ 1− ε
4 and p(I) > 1− ε

5 . If the former
is detected, return reject

9: Take N = C
(
|S|
ε2

)
= O

(
k
ε2 log 1

ε

)
samples from p to get an empirical distribution h

10: else
11: Set M ← 1 + 2

⌈
4σ̃
√

ln(4/ε)
⌉

, and let I ← [bµ̃c − M−1
2 , bµ̃c+ M−1

2 ]
12: Draw O(1/ε) samples from p, to distinguish between p(I) ≤ 1− ε

4 and p(I) > 1− ε
5 . If the former

is detected, return reject
13: Let δ ← ε

C′′
√
k log k

ε

, and

S ←

{
ξ ∈ [M − 1] : ∃a, b ∈ Z, 0 ≤ a ≤ b < k s.t. |ξ/M − a/b| ≤ C ′

√
ln(1/δ)
4σ̃

}
.

14: Simulating sample access to p′ def= p mod M , call Algorithm 9 on p′ with parameters M , ε
5
√
M

,

b = 16k
σ̃

, and S. If it outputs reject, then return reject; otherwise, let ĥ = (ĥ(ξ))ξ∈S denote the
collection of Fourier coefficients it outputs, and h their inverse Fourier transform (modulo M ) . Do not
actually compute h

15: end if
16: Projection Step: Check whether dTV(h,SIIRVn,k) ≤ ε

2 (as in Section 2.2.3), and return accept if it
is the case. If not, return reject. . Mostly computational step

(i) LetL = L(δ,M, s) def=
{
ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| <

√
ln(1/δ)
2s

}
.

Then, |p̂(ξ)| ≤ δ for all ξ ∈ [M − 1] \ L. That is, |p̂(ξ)| > δ for at most |L| ≤ Mk2s−1
√

log(1/δ)

values of ξ .

(ii) At most 4Mks−1
√

log(1/δ) many integers 0 ≤ ξ ≤M − 1 have |p̂(ξ)| > δ .

Next, we provide a simple structural lemma, bounding the `2 norm of any (n, k)-SIIRV as a function of k

and its variance only:

Lemma 2.2.9 (Any (n, k)-SIIRV modulo M has small `2 norm). If p ∈ Sn,k has variance s2, then the

distribution p′ defined as p′ def= p mod M satisfies ‖p′‖2 ≤
√

8k
s .

Proof of Lemma 2.2.9. By Plancherel, we have ‖p′‖22 = 1
M

∑M−1
ξ=0 |p̂′(ξ)|2 = 1

M

∑M−1
ξ=0 |p̂(ξ)|2, the second
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equality due to the definition of p̂′. Indeed, for any ξ ∈ JMK,

p̂′(ξ) =
M−1∑
j=0

e−2iπ jξM p′(j) =
M−1∑
j=0

e−2iπ jξM
∑
j′∈N

j′=j mod M

p(j′) =
M−1∑
j=0

∑
j′∈N

j′=j mod M

e−2iπ j
′ξ
M p(j′)

=
∑
j∈N

e−2iπ j
′ξ
M p(j′) = p̂(ξ)

as u 7→ e−2iπu is 1-periodic. Since |p̂(ξ)| ≤ 1 for every ξ ∈ JMK (as p̂(ξ) = Ej∼p[e−2iπ jξM ]), we can upper

bound the RHS as

1
M

M−1∑
ξ=0
|p̂(ξ)|2 ≤ 1

M

∑
r≥0

∑
ξ: 1

2r+1<|p̂(ξ)|≤ 1
2r

|p̂(ξ)|2 ≤ 1
M

∑
r≥0

1
22r

∣∣∣∣{ ξ ∈ JMK : 1
2r+1 < |p̂(ξ)|

}∣∣∣∣ .
Invoking Lemma 2.2.8(ii) with parameter δ set to 1

2r+1 , we get that
∣∣{ ξ ∈ JMK : 1

2r+1 < |p̂(ξ)|
}∣∣ ≤

4Mks−1√r + 1, from which

‖p′‖22 ≤
4k
s

∑
r≥0

√
r + 1
22r ≤ 8k

s

as desired.

Finally, we will use the simple fact below – which follows immediately from [85, Claim 2.4] – to bound

the running time of our algorithm:

Fact 2.2.10. For S as defined in Step 13, we have

|S| ≤Mk2C
′

2σ̃

√
ln 1
δ
≤ 100C ′k2

√
ln 4
ε

√
ln k
ε

+ log log k
ε

+ 1
2 ln(16C ′′) ≤ C ′′k2 log2 k

ε

for a suitably large choice of the constant C ′′ > 0; from which we get δ ≤ 1
4
√
|S|

.

With this in hand, we argue that with high probability, the estimates obtained in Step 2 will be accurate

enough for our purposes. (The somewhat odd statement below, stating two distinct guarantees where the

second implies the first, is due to the following: Eq. (2.29) will be the guarantee that (the completeness

analysis of) our algorithm relies on, while the second, slightly stronger one, will only be used in the particular

implementation of the “projection step” (Step 16) from Section 2.2.3.)

Claim 2.2.11 (Estimating the first two moments (if p is a SIIRV)). With probability at least 19/20 over

the O(k) draws from p in Step 2, the following holds. If p ∈ SIIRVn,k, the estimates σ̃, µ̃ defined as the

empirical mean and (unbiased) empirical variance meet the guarantees stated in Step 2 of the algorithm,

namely
1
2 ≤

σ̃2

VarX∼p[X] + 1 ≤ 2, |µ̃− EX∼p[X]| ≤
√

VarX∼p[X] (2.29)

We even have a quantitatively slightly stronger guarantee: 2
3 ≤

σ̃2

VarX∼p[X]+1 ≤
3
2 , and |µ̃− EX∼p[X]| ≤
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1
2
√

VarX∼p[X].

Proof. We handle the estimation of the mean and variance separately.

Estimating the mean. µ̃ will be the usual empirical estimator, namely µ̃ def= 1
m

∑m
i=1Xi for X1, . . . , Xm

independently drawn from p. Since E[µ̃] = EX∼p[X] and Var[µ̃] = 1
m VarX∼p[X], Chebyshev’s

inequality guarantees that

Pr[|µ̃− EX∼p[X]| > 1
2

√
VarX∼p[X]] ≤ 4

m

which can be made at most 1/200 by choosing m ≥ 800.

Estimating the variance. The variance estimation is exactly the same as in [65, Lemma 6], observing

that their argument only requires that p be the distribution of a sum of independent random vari-

ables (not necessarily a Poisson Binomial distribution). Namely, they establish that,6 letting σ̃2 def=
1

m−1
∑m
i=1(Xi − 1

m

∑m
j=1Xj)2 be the (unbiased) sample variances, and s2 def= VarX∼p[X],

Pr[
∣∣σ̃2 − s2∣∣ > α(1 + s2)] ≤ 4s4 + k2s2

α2(1 + s2)2
1
m
≤ 4s4 + s2

α2(1 + s2)2 ·
k2

m
≤ 4k2

α2m

which for α = 1/3 is at most 9/200 by choosing m ≥ 800k.

A union bound completes the proof, giving a probability of error at most 1
200 + 9

200 = 1
20 .

Claim 2.2.12 (Checking the effective support). With probability at least 19/20 over the draws from p in

Step 12, the following holds.

• if p ∈ SIIRVn,k and (2.29) holds, then p(I) ≥ 1 − ε
5 and the algorithm does not output reject in

Step 8 nor 12;

• if p puts probability mass more than ε
4 outside of I , then the algorithm outputs reject in Step 8 or 12.

Proof. Suppose first p ∈ SIIRVn,k and (2.29) holds, and set s def=
√

VarX∼p[X] and µ def= EX∼p[X] as

before. By Bennett’s inequality applied to X , we have

Pr[X > µ+ t] ≤ exp
(
− s

2

k2ϑ

(
kt

s2

))
(2.30)

for any t > 0, where ϑ : R∗+ → R is defined by ϑ(x) = (1 + x) ln(1 + x)− x.

• If the algorithm reaches Step 8, then s ≤ 4k
√

ln 10
ε . Setting t = α · k ln 10

ε in Eq. (2.30) (for α > 0 to

be determined shortly), and u = kt
s2 = αk

2

s2 ln 10
ε ≥

α
16 ,

s2

k2ϑ

(
kt

s2

)
= α ln 10

ε
· ϑ (u)

u
≥
(

16ϑ
( α

16

))
ln 10

ε
≥ ln 10

ε

6[65, Lemma 6] actually only deals with the case k = 2; but the bound we state follows immediately from their proof and the simple
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since ϑ(x)
x ≥ ϑ(α/16)

α/16 for all x ≥ α
16 ; the last inequality for α ≥ α∗ ' 2.08 chosen to be the solution

to 16ϑ
(
α∗

16

)
= 1. Thus, Pr[X > µ + t] ≤ ε

10 . Similarly, we have Pr[X < µ − t] ≤ ε
10 . As

µ− 2t ≤ µ− s ≤ µ̃ ≤ µ+ s ≤ µ+ 2t, we get Pr[X ∈ I] ≥ 1− ε
5 as claimed.

• If the algorithm reaches Step 12, then s ≥ k
√

ln 10
ε andM = 1+2

⌈
6σ̃
√

ln 10
ε )
⌉
≥ 1+2

⌈
3s
√

ln 10
ε )
⌉

.

Setting t = βs
√

ln 10
ε in Eq. (2.30) (for β > 0 to be determined shortly), and u = kt

s2 = β ks

√
ln 10

ε ≤

β,
s2

k2ϑ

(
kt

s2

)
= t2

s2 ·
ϑ (u)
u2 = β2 ln 10

ε
· ϑ (u)
u2 ≥ ln 10

ε

since ϑ(x)
x2 ≥ ϑ(β)

β2 for all x ∈ (0, β]; the last inequality for β = e− 1 ' 1.72 chosen to be the solution

to ϑ (β) = 1. Thus, Pr[X > µ + t] ≤ ε
10 . Similarly, it holds Pr[X < µ − t] ≤ ε

10 . Now note that

bµ̃c+ (M − 1)/2 ≥ (µ− s) + d2s
√

ln 10
ε )e ≥ µ+ t and bµ̃c − (M − 1)/2 ≤ µ− t, implying that X

is in [bµ̃c − (M − 1)/2, bµ̃c+ (M − 1)/2] with probability at least 1− ε
5 as desired.

To conclude and establish the conclusion of the first item, as well as the second item, recall that dis-

tinguishing with probability 19/20 between the cases p(Ī) ≤ ε
5 and p(Ī) > ε

4 can be done with O(1/ε)

samples.

Claim 2.2.13 (Learning when the effective support is small). If p satisfies p(I) ≥ 1 − ε
4 , and the “If”

statement at Step 6 holds, then with probability at least 19/20 the empirical distribution h obtained in Step 9

satisfies (i) dTV(p,h) ≤ ε
2 and (ii) ‖p̂− ĥ‖2 ≤

ε2

100 .

Proof. The first item, (i), follows from standard bounds on the rate of convergence of the empirical distribution

(namely, thatO(r/ε2) samples suffice for it to approximate an arbitrary distribution over support of size r up to

total variation distance ε). Recalling that in this branch of the algorithm, S = JMK with M = O(k log(1/ε)),

the second item, (ii), is proven by the same argument as in (the first bullet in) the proof of Theorem 2.2.4.

Claim 2.2.14 (Any (n, k)-SIIRV puts near all its Fourier mass in S). If p ∈ SIIRVn,k and (2.29) holds,

then ‖p̂1S̄‖
2
2 =

∑
ξ/∈S |p̂(ξ)|2 ≤ ε2

100 .

Proof. Since p ∈ SIIRVn,k, our assumptions imply that (with the notations of Lemma 2.2.8) the set of large

Fourier coefficients satisfies { ξ ∈ [M − 1] : |p̂(ξ)| > δ } ⊆ L(δ,M, s) ⊆ S. Therefore, ξ /∈ S implies

|p̂(ξ)| ≤ δ. We then can conclude as follows: applying Lemma 2.2.8 (ii) with parameter δ2−r−1 for each

r ≥ 0, this is at most

∑
r≥0

(δ2−r)2 ∣∣{ ξ : |p̂(ξ)| > δ2−r−1 }∣∣ ≤ 4Mkδ2

s

∑
r≥0

4−r
√

log(2r+2/δ)

≤ 4Mkδ2

s

√
log 1

δ

∑
r≥0

4−r
√

log(2r+1)

≤ 12Mkδ2

s

√
log 1

δ
= O

(
ε2) (2.31)
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again at most ε2

100 for big enough C ′′ in the definition of δ.

2.2.4.2 Putting it together

In what follows, we implicitly assume that I (as defined in Step 11 of Algorithm 12) is equal to JMK. This

can be done without loss of generality, as this is just a shifting of the interval and all our Fourier arguments are

made modulo M .

Lemma 2.2.15 (Putting it together: completeness). If p ∈ SIIRVn,k, then the algorithm outputs accept

with probability at least 3/5.

Proof. Assume p ∈ SIIRVn,k. We condition on the estimates obtained in Step 2 to meet their accuracy

guarantees, which by Claim 2.2.11 holds with probability at least 19/20: that is, we hereafter assume Eq. (2.29)

holds. Since the variance of any (n, k)-SIIRV is at most s2 ≤ nk2, we consequently have σ̃ ≤ 2k
√
n and the

algorithm does not output reject in Step 3.

• Case 1: the branch in Step 6 is taken. In this case, by Claim 2.2.12 the algorithm does not output reject

in Step 8 with probability 19/20. Since p(I) ≥ 1− ε
4 , by Claim 2.2.13 we get that with probability at

least 19/20 it is the case that dTV(p,h) ≤ ε
2 , and therefore the computational check in Step 16 will

succeed, and return accept. Overall, by a union bound the algorithm is successful with probability at

least 1− 3/20 > 3/5.

• Case 2: the branch in Step 10 is taken. In this case, by Claim 2.2.12 the algorithm does not output

reject in Step 12 with probability 19/20. From Lemma 2.2.9, we know that p′ as defined in Step 14

satisfies ‖p′‖22 ≤
8k
s ≤

16k
σ̃

= b. Moreover, Claim 2.2.14 guarantees that ‖p̂′1S̄‖2 ≤
ε

10
√
M

= ε′

2 (for

ε′ = ε
5
√
M

). Since Step 14 calls Algorithm 9 with parameters M, ε′, b, and S, Item 3 of Theorem 2.2.4

ensures that (with probability at least 7/10) the algorithm will not output reject in Step 14, but instead

return the S-sparse Fourier transform of some h supported on JMK with ‖p′ − h‖2 ≤
6
5ε
′ = 6ε

25
√
M

.

By Cauchy–Schwarz, we then have ‖p′ − h‖1 ≤
√
M‖p′ − h‖2 ≤

6ε
25 , i.e. dTV(p′,h) ≤ 3ε

25 . But

since dTV(p,p′) ≤ ε
4 , we get dTV(p,h) ≤ ε

4 + 3ε
25 <

ε
2 , and the computational check in Step 16 will

succeed, and return accept. Overall, by a union bound the algorithm accepts with probability at least

1− (1/20 + 1/20 + 3/10) = 3/5.

Lemma 2.2.16 (Putting it together: soundness). If dTV(p,SIIRVn,k) > ε, then the algorithm outputs

reject with probability at least 3/5.

Proof. We will proceed by contrapositive, and show that if the algorithm returns accept with probability at

least 3/5 then dTV(p,SIIRVn,k) ≤ ε. Depending on the branch of the algorithm followed, we assume the

samples taken either in
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• Steps 2, 8, 9, meet the guarantees of Claims 2.2.11 to 2.2.13 (by a union bound, this happens with

probability at least 1− 3/20 > 2/3); or

• Steps 2, 12, 14 meet the guarantees of Claims 2.2.11 and 2.2.12 and Theorem 2.2.4 (by a union bound,

this happens with probability at least 1− (1/20 + 1/20 + 3/10) = 3/5).

In particular, we hereafter assume that σ̃ ≤ 2k
√
n.

• Case 1: the branch in Step 6 is taken.

By the above discussion, we have p(I) ≥ 1− ε
4 by Claim 2.2.12 so Claim 2.2.13 and our conditioning

ensure that the empirical distribution h is such that dTV(p,h) ≤ ε
2 . Since the algorithm did not

reject in Step 16, there exists a (n, k)-SIIRV p∗ such that dTV(h,p∗) ≤ ε
2 : by the triangle inequality,

dTV(p,SIIRVn,k) ≤ dTV(p,q∗) ≤ ε.

• Case 2: the branch in Step 10 is taken.

In this case, we have p(I) ≥ 1 − ε
4 by Claim 2.2.12. Furthermore, as the algorithm did not output

reject on Step 14, by Theorem 2.2.4 we know that the inverse Fourier transform (modulo M ) h

of the S-sparse collection of Fourier coefficients ĥ returned satisfies ‖h− p′‖2 ≤
6ε

25
√
M

which by

Cauchy–Schwarz implies, as both h and p′ are supported on JMK, that ‖h− p′‖1 ≤
6ε
25 , or equivalently

dTV(h,p′) ≤ 3ε
25 .

Finally, since the algorithm outputted accept in Step 16, there exists p∗ ∈ SIIRVn,k (supported on

JMK) such that dTV(h,p∗) ≤ ε
2 , and by the triangle inequality

dTV(p,p∗) ≤ dTV(p,p′) + dTV(h,p′) + dTV(h,p∗) ≤ ε

4 + 3ε
25 + ε

2 ≤ ε

and thus dTV(p,SIIRVn,k) ≤ dTV(p,p∗) ≤ ε.

Lemma 2.2.17 (Putting it together: sample complexity). The algorithm has sample complexityO
(
kn1/4

ε2 log1/4 1
ε + k2

ε2 log2 k
ε

)
.

Proof. Algorithm 12 takes samples in Steps 2, 8, 12, and 14. The sample complexity is dominated by Steps 9

and 14, which take respectively N and

O

( √
b

(ε/
√
M)2

+ |S|
M(ε/

√
M)2

+
√
M

)
= O

(√
kσ̃

ε2
4

√
log 1

ε
+ |S|
ε2 +

√
σ̃

4

√
log 1

ε

)

= O

(
kn1/4

ε2 log1/4 1
ε

+ k2

ε2 log2 k

ε

)

samples; recalling that Step 3 ensured that σ̃ ≤ 2k
√
n and that |S| = O

(
k2 log2 k

ε

)
by Fact 2.2.10.

Lemma 2.2.18 (Putting it together: time complexity). The algorithm runs in time O
(
k4n1/4

ε2 log4 k
ε

)
+

observation that the excess kurtosis κ of an (n, k)-SIIRV with variance s2 is at most k2/s2.

76



T (n, k, ε), where T (n, k, ε) = n(k/ε)O(k log(k/ε)) is the running time of the projection subroutine of Step 16.

Proof. The running time, depending on the branch taken, is either O(N) + T (n, k, ε) for the first or

O
(
|S|
(
kn1/4

ε2 log1/4 1
ε + k2

ε2 log2 k
ε

))
+ T (n, k, ε) for the second (the latter from the running time of Algo-

rithm 9). Recalling that |S| = O
(
k2 log2 k

ε

)
by Fact 2.2.10 yields the claimed running time.

2.2.5 The General Tester

In this section, we abstract the ideas underlying the (n, k)-SIIRV from Section 2.2.4, to provide a general

testing framework. In more detail, our theorem (Theorem 2.2.19) has the following flavor: if P is a property of

distributions such that every p ∈ P has both (i) small effective support and (ii) sparse effective Fourier support,

then one can test membership in P with O(
√
sM/ε2 + s/ε2) samples (where M and s are the bounds on

the effective support and effective Fourier support, respectively). As a caveat, we do require that the sparse

effective Fourier support S be independent of p ∈ P , i.e., is a characteristic of the class P itself.

The high-level idea is then quite simple: the algorithm proceeds in three stages, namely the effective

support test, the Fourier effective support test, and the projection step. In the first, it takes some samples from

p to identify what should be the effective support I of p, if p did have the property: and then checks that

indeed |I| ≤M (as it should) and that p puts probability mass 1−O(ε) on I .

In the second stage, it invokes the Fourier testing algorithm of Section 2.2.2 to verify that p̂ indeed

puts very little Fourier mass outside of S; and, having verified this, learns very accurately the set of Fourier

coefficients of p on this set S, in L2 distance.

At this point, either the algorithm has detected that p violates some required characteristic of the distribu-

tions in P , in which case it has rejected already; or is guaranteed to have learned a good approximation h of

p, by the Fourier learning performed in the second stage. It only remains to perform the third stage, which

“projects” this good approximation h of p onto P to verify that h is close to some distribution p∗ ∈ P (as it

should if indeed p ∈ P).

Theorem 2.2.19 (General Testing Statement). Assume P ⊆ ∆(N) is a property of distributions satisfying the

following. There exist S : (0, 1]→ 2N, M : (0, 1]→ N, and qI : (0, 1]→ N such that, for every ε ∈ (0, 1],

1. Fourier sparsity: for all p ∈ P , the Fourier transform (modulo M(ε)) of p is concentrated on S(ε):

namely, ‖p̂1
S(ε)‖

2
2
≤ ε2

100 .

2. Support sparsity: for all p ∈ P , there exists an interval I(p) ⊆ N with |I(p)| ≤M(ε) such that (i) p

is concentrated on I(p): namely, p(I(p)) ≥ 1− ε
5 and (ii) I(p) can be identified with probability at

least 19/20 from qI(ε) samples from p.

3. Projection: there exists a procedure PROJECTP which, on input ε ∈ (0, 1] and the explicit description

of a distribution h ∈ ∆(N), runs in time T (ε); and outputs accept if dTV(h,P) ≤ 2ε
5 , and reject if

dTV(h,P) > ε
2 (and can answer either otherwise).

4. (Optional) L2-norm bound: there exists b ∈ (0, 1] such that, for all p ∈ P , ‖p‖22 ≤ b.
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Algorithm 13 Algorithm Test-Fourier-Sparse-Class

Require: sample access to a distribution p ∈ ∆(N), parameter ε ∈ (0, 1], b ∈ (0, 1], functions S : (0, 1]→
2N, M : (0, 1]→ N, qI : (0, 1]→ N, and procedure PROJECTP as in Theorem 2.2.19

1: Effective Support
2: Take qI(ε) samples from p to identify a “candidate set” I . . Guaranteed to work w.p. 19/20 if p ∈ P .
3: Draw O(1/ε) samples from p, to distinguish between p(I) ≥ 1− ε

5 and p(I) < 1− ε
4 . . Correct

w.p. 19/20.
4: if |I| > M(ε) or we detected that p(I) > ε

4 then
5: return reject
6: end if
7:
8: Fourier Effective Support
9: Simulating sample access to p′ def= p mod M(ε), call Algorithm 9 on p′ with parameters M(ε),

ε

5
√
M(ε)

, b, and S(ε).

10: if Algorithm 9 returned reject then
11: return reject
12: end if
13: Let ĥ = (ĥ(ξ))ξ∈S(ε) denote the collection of Fourier coefficients it outputs, and h their inverse

Fourier transform (modulo M(ε)) . Do not actually compute h here.
14:
15: Projection Step
16: Call PROJECTP on parameters ε and h, and return accept if it does, reject otherwise.
17:

Then, there exists a testing algorithm for P , in the usual standard sense: it outputs either accept or reject,

and satisfies the following.

1. if p ∈ P , then it outputs accept with probability at least 3/5;

2. if dTV(p,P) > ε, then it outputs reject with probability at least 3/5.

The algorithm takes

O

(√
|S(ε)|M(ε)

ε2 + |S(ε)|
ε2 + qI(ε)

)

samples from p (if Item 4 holds, one can replace the above bound by O
(√

bM(ε)
ε2 + |S(ε)|

ε2 + qI(ε)
)

); and runs

in time O(m |S|+ T (ε)), where m is the sample complexity.

Moreover, whenever the algorithm outputs accept, it also learns p; that is, it provides a hypothesis h such

that dTV(p,h) ≤ ε with probability at least 3/5.

We remark that the statement of Theorem 2.2.19 can be made slightly more general; specifically, one can

allow the procedure PROJECTP to have sample access to p and err with small probability, and further provide

it with the Fourier coefficients ĥ learnt in the previous step.

Proof of Theorem 2.2.19. For convenience, we hereafter write S and M instead of S(ε) and M(ε), respec-

tively. Before establishing the theorem, which will be a generalization of (the second branch of) Algorithm 12,

we note that it is sufficient to prove the version including Item 4. This is because, if no bound b is provided,
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one can fall back to setting b def= |S|+1
M : indeed, for any p ∈ P ,

‖p‖22 = ‖p̂‖22 = ‖p̂1S‖22 + ‖p̂1S̄‖
2
2 = 1

M

∑
ξ∈S

|p̂(ξ)|2 + ‖p̂1S̄‖
2
2 ≤
|S|
M

+ ε2

100M =
|S|+ ε2

100
M

(2.32)

from Item 1 and the fact that |p̂(ξ)| ≤ 1 for any ξ ∈ JMK. Then, we have
√
bM ≤

√
2 |S|MM =

√
2 |S|M ,

concluding the remark.

The algorithm is given in Algorithm 13. Its sample complexity and running time are immediate from the

assumptions on the input parameters, and its description; we thus focus on establishing its correctness.

• Completeness: suppose p ∈ P . Then, by definition of qI and M (Item 2 of the theorem), we have that

with probability at least 19/20 the interval I identified in Step 2 satisfies p(I) ≥ 1− ε
5 and |I| ≤M .

In this case, also with probability at least 19/20 the check in Step 3 succeeds, and the algorithm does

not output reject there.

The call to Algorithm 9 in Step 9 then, with probability at least 7/10, does not output reject, but instead

Fourier coefficients Ĥ (supported on S) of some h such that h′ = h mod M satisfies ‖h′ − p′‖2 ≤
6
5 ·

ε
5
√
M

= 6ε
25
√
M

(this is because of the definition of b and Item 1, which ensure the assumptions

of Theorem 2.2.4 are met). Thus ‖h′ − p′‖1 ≤
√
M‖h′ − p′‖2 ≤

6ε
25 . Since ‖p− p′‖2 ≤ 2 · ε4 (as

p(I) ≥ 1− ε
4 and p′ = p mod M ), by the triangle inequality

dTV(p,h′) = 1
2‖h

′ − p′‖1 ≤
3ε
25 + ε

4 <
2ε
5

and the algorithm returns accept in Step 16 (as promised by Item 3).

Overall, by a union bound the algorithm is correct with probability at least 1− ( 1
20 + 1

20 + 3
10 ) ≥ 3

5 .

• Soundness: we proceed by contrapositive, and show that if the algorithm returns accept with probability

at least 3/5 then dTV(p,P) ≤ ε. We hereafter assume the guarantees of Steps 2, 3, and 9 hold, which

by a union bound is the case with probability at least 1− ( 1
20 + 1

20 + 3
10 ) ≥ 3

5 .

Since the algorithm passed Step 5, we have p(I) ≥ 1− ε
4 and |I| ≤M . Furthermore, as the algorithm

did not output reject on Step 9, by Theorem 2.2.4 we know that the inverse Fourier transform (modulo

M ) h of the S-sparse collection of Fourier coefficients ĥ returned satisfies, for h′ def= h mod M ,

‖h′ − p′‖2 ≤
6ε

25
√
M

which by Cauchy–Schwarz implies that ‖h− p′‖1 ≤
6ε
25 , or equivalently dTV(h,p′) ≤ 3ε

25 .

Finally, since the algorithm outputted accept in Step 16, there exists p∗ ∈ P (supported on JMK) such

that dTV(h,p∗) ≤ ε
2 , and by the triangle inequality

dTV(p,p∗) ≤ dTV(p,p′) + dTV(h,p′) + dTV(h,p∗) ≤ ε

4 + 3ε
25 + ε

2 ≤ ε
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and thus dTV(p,P) ≤ dTV(p,p∗) ≤ ε.

2.2.6 The PMD Tester

In this section, we generalize our Fourier testing approach to higher dimensions, and leverage it to design a

testing algorithm for the class of Poisson Multinomial distributions – thus establishing Theorem 2.2.3 (restated

below).

Theorem 2.2.20 (Testing PMDs). Given parameters k, n ∈ N, ε ∈ (0, 1], and sample access to a distribution

p over N, there exists an algorithm (Algorithm 15) which outputs either accept or reject, and satisfies the

following.

1. if p ∈ PMDn,k, then it outputs accept with probability at least 3/5;

2. if dTV(p,PMDn,k) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takesO
(
n(k−1)/4k2k log(k/ε)k

ε2

)
samples from p, and runs in time nO(k3)·(1/ε)O(k3 log(k/ε)

log log(k/ε) )k−1

or alternatively in time nO(k) · 2O(k5k log(1/ε)k+2
.

The reason for the two different running times is that, for the projection step, one can use either the

cover given by [86] or that given by [72], which yield the two statements. In contrast to Section 2.2.4

and Section 2.2.5, for PMDs we will have to use a multidimensional Fourier transform, which is a little more

complicated – and we define next.

Let M ∈ Zk×k be an integer k × k matrix. We consider the integer lattice L = L(M) = MZk def= {p ∈

Zk | p = Mq, q ∈ Zk}, and its dual lattice L∗ = L∗(M) def=
{
ξ ∈ Rk : ξ · x ∈ Z for all x ∈ L

}
. Note

that L∗ = (MT )−1Zk, and that L∗ is not necessarily integral. The quotient Zk/L is the set of equivalence

classes of points in Zk such that two points x, y ∈ Zk are in the same equivalence class if, and only if,

x− y ∈ L. Similarly, the quotient L∗/Zk is the set of equivalence classes of points in L∗ such that any two

points x, y ∈ L∗ are in the same equivalence class if, and only if, x− y ∈ Zk.

The Discrete Fourier Transform (DFT) modulo M , M ∈ Zk×k, of a function F : Zk → C is the function

F̂M : L∗/Zk → C defined as F̂M (ξ) def=
∑
x∈Zk e(ξ · x)F (x). (We will omit the subscript M when it is clear

from the context.) Similarly, for the case that F is a probability mass function, we can equivalently write

F̂ (ξ) = EX∼F [e(ξ ·X)] . The inverse DFT of a function Ĝ : L∗/Zk → C is the function G : A→ C defined

on a fundamental domain A of L(M) as follows: G(x) = 1
| det(M)|

∑
ξ∈L∗/Zk Ĝ(x)e(−ξ ·x). Note that these

operations are inverse of each other, namely for any function F : A→ C, the inverse DFT of F̂ is identified

with F .

With this in hand, Algorithm 9 easily generalizes to high dimension:

Crucially, we observe that the proof of Theorem 2.2.4 nowhere requires that JMK be a set ofM consecutive

integers, but only that it is a fundamental domain of the lattice used in the DFT. Consequently, Theorem 2.2.4

also applies in this high dimensional setting, with appropriate notation. Note that the size of any fundamental
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Algorithm 14 Testing the Fourier Transform Effective Support in high dimension
Require: parameters, a k × k matrix M , b, ε ∈ (0, 1]; a fundamental domain A of L(M); sample access to

distribution q over A
1: Set m←

⌈
C(
√
b

ε2 +
√

det(M))
⌉

. C > 0 is an absolute constant; C = 2000 works.
2: Draw m′ ← Poisson(m); if m′ > 2m, return reject
3: Draw m′ samples from q, and let q′ be the corresponding empirical distribution over JMK
4: Compute ‖q′‖22, q̂′(ξ) for every ξ ∈ S, and ‖q̂′1S‖

2
2 . Takes time O(m |S|)

5: if m′2‖q′‖22 −m′ >
3
2bm

2 then return reject

6: else if ‖q′‖22 − ‖q̂′1S‖
2
2 ≥ 3ε2 + 1

m′ then return reject
7: else
8: return (q̂′(ξ))ξ∈S
9: end if

domain is det(M) which appears in place of M in the sample complexity.

Algorithm 15 Algorithm Test-PMD

Require: sample access to a distribution p ∈ ∆
(
Nk
)
, parameters n, k ≥ 1 and ε ∈ (0, 1]

1: . Let C,C ′, C ′′ be sufficiently large universal constants
2: Draw m0 = O(k4) samples from X , and let µ̂ be the sample mean and Σ̂ the sample covariance matrix.
3: Compute an approximate spectral decomposition of Σ̂, i.e., an orthonormal eigenbasis vi with correspond-

ing eigenvalues λi, i ∈ [k].
4: Set M ∈ Zk×k to be the matrix whose ith column is the closest integer point to the vector

C

(√
k log(k/ε)λi + k2 log2(k/ε)

)
vi.

5: Set I ← Zk ∩ (µ̂+M · (−1/2, 1/2]k)
6: Draw O(1/ε) samples from p, and return reject if any falls outside of I
7: Let S ⊆ (R/Z)k to be the set of points ξ = (ξ1, . . . , ξk) of the form ξ = (MT )−1 · v+Zk, for some
v ∈ Zk with ‖v‖2 ≤ C2k2 log(k/ε).

8: Define p mod M to be the distribution obtained by samplingX from p and if it lies outside in I , returning
X , else returning X +Mb for the uniwue b ∈ Zk such that X +Mb ∈ I .

9: Simulating sample access to p′ def= p mod M , call Algorithm 14 on p′ with parameters M , ε

5
√

det(M)
,

b = |S|+1
det(M) , and S. If it outputs reject, then return reject; otherwise, let ĥ = (ĥ(ξ))ξ∈S denote the

collection of Fourier coefficients it outputs, and h their inverse Fourier transform (modulo M ) onto I . .
Do not actually compute h

10: Compute a proper ε/6
√
|S|-cover C of all PMDs using the algorithm from [87].

11: for each q ∈ C do
12: if the mean µq and covariance matrix Σq satisfy (µ̂−µq)T (Σ+ I)−1(µ̂−µq) ≤ 1 and 2(Σq + I) ≥

Σ̂ + I ≥ (Σq + I)/2. then
13: Compute q̂(ξ) for ξ ∈ S.
14: if

∑
ξ∈S |ĥ− q̂|2 ≤ ε2/16 then return accept

15: end if
16: end if
17: end for
18: return reject if we do not accept for any q ∈ C.

The proof of correctness of Algorithm 15 is very similar to that of Algorithm 12, except that we need

results from the proof of correctness of the PMD Fourier learning algorithm of [87]; we will only sketch

these ingredients here. That I is an effective support of a PMD whose mean and covariance matrix we

have estimated to within approprate error with high probability follows from Lemmas 3.3–3.6 of [87], the
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last of which gives that the probability mass outside of I is at most ε/10, smaller than that claimed for

I in the (n, k)-SIIRV algorithm. Lemma 3.3 gives, if p is a PMD, that the mean and covariance satisfy

(µ̂− µ)T (Σ + I)−1(µ̂− µ) = O(1) and 2(Σq + I) ≥ Σ̂ + I ≥ (Σq + I)/2. Again, with more samples, we

can strengthen this to (µ̂− µ)T (Σ + I)−1(µ̂− µ) = 1
2 and (3/2)(Σ + I) ≥ Σ̂ + I ≥ (Σ + I)/(3/2) with

O(k4) samples.

The effective support of the Fourier transform of a PMD is given by the following proposition:

Proposition 2.2.21 (Proposition 2.4 of [87]). Let S be as in the algorithm. With probability at least 99/100,

the Fourier coefficients of p outside S satisfy
∑
ξ∈(L∗/Zk)\S |p̂(ξ)| < ε/10.

This holds not just for p, but any (n, k)-PMD q whose mean µq and covariance matrix Σq satisfy

(µ̂− µq)T (Σ + I)−1(µ̂− µ) = O(1) and 2(Σq + I) ≥ Σ̂ + I ≥ (Σq + I)/2.

We need to show that this L1 bound is stronger than the L2 bound we need. Since every individual ξ /∈ S

has |p̂(ξ)| < ε/10, we have

∑
ξ∈(L∗/Zk)\S

|p̂(ξ)|2 ≤
∑

ξ∈(L∗/Zk)\S

ε|p̂(ξ)|/10 ≤ ε2/100

and so S is an effective support of the DFT modulo M .

To show that the value of b is indeed a bound on ‖p‖22, we can use (2.32), yielding that ‖p‖22 ≤

(|S|+ 1)/ det(M) = b, where det(M) here is indeed the size of I .

The proof of correctness of the algorithm and the projection step is now very similar to the (n, k)-SIIRV

case. We need to get bounds on the sample and time complexity. We can bound the size of S using

|S| ≤
∣∣{ v ∈ Zk : ‖v‖2 ≤ C2k2 log(k/ε)

}∣∣ ≤ ∣∣{ v ∈ Zk : ‖v‖∞ ≤ C2k2 log(k/ε)
}∣∣

=
(
1 + 2bC2k2 log(k/ε)c

)k = O(k2 log(k/ε))k

We can bound det(M) in terms of the L2 norms of its columns using Hadamard’s inequality

det(M) ≤
k∏
i=1
‖Mi‖2 ≤

k∏
i=1

(
C

(√
k log(k/ε)λi + k2 log2(k/ε)

)
+
√
k

)

recalling that λi are the eigenvalues of Σ̂ which satisfies 2(Σq + I) ≥ Σ̂ + I . We need a bound on ‖Σ‖2.

Each individual summand k-CRV (categorical random variable) is supported on unit vectors, the distance

between any two of which is
√

2. Therefore we have that ‖Σ‖2 ≤ 2n. Then λi ≤ 4n+ 1 for every 1 ≤ i ≤ k;

moreover, since the k coordinates must sum to n, Σ̂ has rank at most k − 1 and so at least one of the λi’s is

zero. Combining these observations, we obtain

det(M) ≤
√
k2 log2 k

ε
·
(
C2k(4n+ 2) log k

ε
+ k2 log2 k

ε

) k−1
2

= k log k
ε
·O
(
nk2 log k

ε

) k−1
2

.
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With high constant probability, the number of samples we need is then

O

(√
|S|detM
ε2 + |S|

ε2 + qI(ε)
)

= 1
ε2

√
k log k

ε
·O
(
nk2 log k

ε

) k−1
4

+ O(k2 log(k/ε))k

ε2 +O(k4)

= O(n(k−1)/4k2k log(k/ε)k/ε2)

The time complexity of the algorithm is dominated by the projection step. By Proposition 4.9 and Corollary

4.12 of [87], we can produce a proper ε-cover of PMDn,k of size nO(k3) · (1/ε)O(k3 log(k/ε)
log log(k/ε) )k−1

in time

also nO(k3) · (1/ε)O(k3 log(k/ε)
log log(k/ε) )k−1

. Note that producing an (ε/6
√
|S|)-cover, as = ε/O(k2 log(k/ε))k/2,

takes time nO(k3) · (1/ε)O(k3 log(k/ε)
log log(k/ε) )k−1

(which is also the size of the resulting cover). Hence the running

time of the algorithm is at most nO(k3) · (1/ε)O(k3 log(k/ε)
log log(k/ε) )k−1

.

Alternatively, [72] gives an ε-cover of size nO(k) · min 2poly(k/ε), 2O(k5k log(1/ε)k+2
that can also be

constructed in polynomial time. By using this result, one needs to take time n|S|poly(log(1/ε)) to compute

the Fourier coefficients. Applying this to get an ε/O(k2 log(k/ε))k/2-cover means that unfortunately we are

always doubly exponential in k. In this case, the running time of the algorithm is nO(k) · 2O(k5k log(1/ε)k+2
.

2.2.7 The Discrete Log-Concavity Tester

Theorem 2.2.22 (Testing Log-Concavity). Given parameters n ∈ N, ε ∈ (0, 1], and sample access to a

distribution p over Z, there exists an algorithm which outputs either accept or reject, and satisfies the

following.

1. if p ∈ LCVn, then it outputs accept with probability at least 3/5;

2. if dTV(p,LCVn) > ε, then it outputs reject with probability at least 3/5.

where LCVn denotes the class of (discrete) log-concave distributions over JnK. Moreover, the algorithm takes

O(
√
n/ε2) + Õ

(
(log(n/ε)/ε)5/2) samples from p; and runs in time O(

√
n · poly(1/ε)).

We will sketch the proof and algorithm here. We first remark that the Maximum Likelihood Estimator

(MLE) for log-concave distributions can be formulated as a convex program [90], which can be solved in

sample polynomial time. One advantage of the MLE for log-concave distributions is that it properly learns log-

concave distributions (over support size M ) to within Hellinger distance ε using Õ
(
(logM)/ε5/2) samples7.

Note that the squared Hellinger distance satisfies:

dH(p,q)2 =
∑
x

(
√

(p(x)−
√

q(x))2 =
∑
x

(p(x)− q(x))2

(√p +√q)2 ≥
‖p− q‖2

2 max{p(x),q(x)} .

Further, it is known that a log-concave distribution with variance σ2 is effectively supported in an interval of

7We note that a similar, slightly stronger result is already known for continuous log-concave distributions, which can be learned
to Hellinger distance ε from only O(ε−5/2) samples [122]. The proof of this result, however, does not seem to generalize to discrete
log-concave distributions, which is our focus here; thus, we establish in Section 2.2.9 the learning result we require, namely an upper
bound on the sample complexity of the MLE estimator for learning the class of log-concave distributions over JMK in Hellinger distance
(Theorem 2.2.32).
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lengthM = O(log(1/ε)σ) centered at the mean, and that its maximum probability isO(1/σ) (See Fact 2.2.27).

Thus, by learning a log-concave distribution properly to within ε/ log(1/ε) Hellinger distance, one also learns

it to within ε√
M
L2-distance.

A log-concave distribution p has L2 norm bounded by ‖p‖22 ≤ maxx p(x) ≤ O(1/σ). It is easy to

show using standard concentration bounds that p mod M also has L2 norm O(1/
√
σ). We will prove

in Proposition 2.2.23 that its DFT modulo M is effectively supported on a known set S of size |S| =

O(log(1/ε)2/ε2).

Thus our algorithm will work as follows: First we estimate the mean and variance under the assumption

of log-concavity. We construct an interval I of length M = O(log(1/ε)σ) which would be containing

the effective support if we were log-concave; and reject if it is not the case, i.e., too much probability

mass falls outside I . Then we properly learn p to within ε/ log(1/ε) Hellinger distance using the MLE

of Õ
(
(logM)/ε5/2) samples,8 giving a hypothesis h. At this point, we reject if our estimates for the

mean and variance are far from that of h. Then we run an L2 identity tester between p and h, i.e., test

whether the empirical distribution q of O(M/σε2) samples is large. To do this efficiently, we compute

‖q‖22 − ‖q̂1S‖
2
2/M + ‖q̂1S − ĥ1S‖

2
2/M (since we know ĥ is supported on S).

To do this in time O(
√
n ·poly(1/ε), we need to compute the Fourier coefficients efficiently. The MLE for

log-concave distributions is a piecewise exponential distribution with a number of pieces at most the number of

samples [90], which is Õ
(
(logM)/ε5/2) in this case. Using the expression for the integral of an exponential

function gives a simple closed-form expression for h(ξ) that we can compute in time Õ
(
(logM)/ε5/2).

Proposition 2.2.23. Let p be a discrete log-concave distribution with variance σ2 and M = O(log(1/ε)σ)

be the size of its effective support. Then its Discrete Fourier transform is effectively supported on a known set

S of size |S| = O(log(1/ε)2/ε2).

Proof. First we show that for any unimodal distribution, we can relate the maximum probability to the size of

the effective support.

Lemma 2.2.24. Let p be a unimodal distribution supported on Z such that the probability of the mode is

pmax. Then the DFT modulo M of p at ξ ∈ [−M/2,M/2) has p̂(ξ) = O(pmaxM/|ξ|).

Proof. Let m be the mode of p. Then we have

p̂(ξ) =
m−1∑
j=−∞

p(j) exp
(
−2πi ξj

M

)
+
∞∑
j=m

p(j) exp
(
−2πi ξj

M

)
.

We will apply summation by parts to these two series. Let g(x) =
∑x
j=m+1 exp(−2πiξj/M) and g(m) = 0.

By a standard result on geometric series, we have g(x) = − exp(−2πiξ(x+1)/M)−exp(−2πiξ(m+1)/M)
1−exp(−2πiξ/M) .

8Note that we here invoke the MLE estimator not on the full domain, but on the effective support, which contains at least 1−O(ε2)
probability mass. This conditioning overall does not affect the sample complexity nor the distances, as it can only cause O(ε2) error in
total variation (and thus O(ε) in Hellinger distance).
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Claim 2.2.25. |g(x)| = O(M/ξ) for all integers x ≥ m.

Proof. The modulus of the numerator | exp(−2πiξ(x+ 1)/M)− exp(−2πiξ(m+ 1)/M)| is at most 2. We

thus only need to find a lower bound for |1− exp(−2πiξ/M |.

|1− exp(−2πiξ/M)|2 = (1− cos(2πξ/M))2 + sin(2πξ/M)2 = 2− 2 cos(2πξ/M) = Ω((ξ/M)2) ,

and so |g(x)| ≤ 2/
√

Ω((ξ/M)2) = O(M/|ξ|).

Now consider the following, for any n > m:

n∑
j=m+1

p(j)(g(j)− g(j − 1)) +
n∑

j=m+1
g(j)(p(j + 1)− p(j)) = p(n+ 1)g(n)− p(m+ 1)g(m) .

Now g(m) = 0 and p(n+ 1)→ 0 as n→∞ while g(n+ 1) is bounded for all n. Hence, the RHS tends to 0

as n→∞ and we have:

|
∞∑

j=m+1
p(j) exp(−2πiξj/M)| = |

∞∑
j=m+1

p(j)(g(j)− g(j − 1))| = |
∞∑

j=m+1
g(j)(p(j + 1)− p(j))|

≤ O(M/ξ) ·
∞∑

j=m+1
(p(j)− p(j + 1)) = O(pmaxM/ξ) .

Similarly, we can show that
∑m−1
j=−∞ p(j) exp(−2πiξj/M) = O(pmaxM/ξ) since p is monotone there as

well.

Then we can get a bound on the size of the effective support:

Lemma 2.2.26. Let p be a unimodal distribution supported on Z such that the probability of the mode is pmax

and let ε ≤ 1/M . Then the DFT modulo M of p has
∑
|ξ|>` |p̂|2 ≤ ε2/100, where ` = Θ

(
p2

maxM
2/ε2).

Proof.

∑
|ξ|>`

|P̂ |2 ≤ 2
M/2∑
ξ=`+1

O(pmaxM/ξ)2 ≤ O(pmaxM)2
∞∑

ξ=`+1
1/ξ2 ≤ O(p2

maxM
2/`) ≤ ε2

100 .

For log-concave distributions, we can relate pmax and M as follows,

Fact 2.2.27. Let p be a discrete log-concave distribution with mean µ and variance σ2. Then

• p is unimodal;

• its probability mass function satisfies p(x) = exp(−O((x− µ)/σ))/σ; and

• Pr[|X − µ| ≥ Ω(σ log(1/ε))] ≤ ε.

85



Since pmax = O(1/σ), we can take M = O(σ log(1/ε))) = O(log(1/ε)/pmax). Substituting this into

Lemma 2.2.26 completes the proof of the proposition.

2.2.8 Lower Bound for PMD Testing

In this section, we obtain a lower bound to complement our upper bound for testing Poisson Multinomial

Distributions. Namely, we prove the following:

Theorem 2.2.28. There exists an absolute constant c ∈ (0, 1) such that the following holds. For any k ≤ nc,

any testing algorithm for the class of PMDn,k must have sample complexity Ω
(( 4π

k

)k/4 n(k−1)/4

ε2

)
.

The proof will rely on the lower bound framework of [51], reducing testing PMDn,k to testing identity to

some suitable hard distribution p∗ ∈ PMDn,k. To do so, we need to (a) choose a convenient p∗ ∈ PMDn,k;

(b) prove that testing identity to p∗ requires that many samples (we shall do so by invoking the [169] instance-

by-instance lower bound method); (c) provide an agnostic learning algorithm for PMDn,k with small enough

sample complexity, for the reduction to go through. Invoking [51, Theorem 18] with these ingredients will

then conclude the argument.

Proof of Theorem 2.2.28. In what follows, we choose our “hard instance” p∗ ∈ PMDn,k to be the PMD

obtained by summing n i.i.d. random variables, all uniformly distributed on {e1, . . . , ek}. This takes care of

point (a) above.

To show (b), we will rely on a result of Valiant and Valiant, which showed in [169] that testing identity to

any discrete distribution p required Ω
(
‖p−max
−ε ‖2/3/ε2

)
samples, where p−max

−ε is the vector obtained by

zeroing out the largest entry of p, as well as a cumulative ε mass of the smallest entries. Since ‖p−max
−ε ‖2/3 is

rather cumbersome to analyze, we shall instead use a slightly looser bound, considering ‖p‖2 as a proxy.

Fact 2.2.29. For any discrete distribution p, we have ‖p‖2/3 ≥
1
‖p‖2

. More generally, for any vector x we

have ‖x‖2/3 ≥
‖x‖21
‖x‖2

.

Proof. It is sufficient to prove the second statement, which implies the first. This is in turn a straightforward ap-

plication of Hölder’s inequality, with parameters (4, 4
3 ): ‖x‖1 =

∑
i |x|

1/2
i |x|1/2i ≤

(∑
i |x|

2
i

)1/4 (
|x|2/3i

)3/4
.

Squaring both sides yields the claim.

Fact 2.2.30. For our distribution p∗, we have ‖p∗‖2 = Θ
(

kk/4

(4πn)(k−1)/4

)
.

Proof. It is not hard to see that, from any n = (n1, . . . , nk) ∈ Nk such that
∑k
i=1 ni = n, p∗(n) =

1
kn

(
n

n1,...,nk

)
(where

(
n

n1,...,nk

)
denotes the multinomial coefficient). From there, we have

‖p∗‖22 = 1
k2n

∑
n1+···+nk=n

(
n

n1, . . . , nk

)2
∼

n→∞

1
k2n · k

2n kk/2

(4πn)(k−1)/2

where the equivalent is due to Richmond and Shallit [148].

86



However, from Fact 2.2.29 we want to get a hold on ‖p∗−max
−ε ‖2, not ‖p∗‖2 (since ‖p∗−max

−ε ‖21 ≥ 1− Ω(ε),

we then will have our lower bound on ‖p∗−max
−ε ‖2/3). Fortunately, the two are related: namely, ‖p∗−max

−ε ‖2 ≤

‖p∗‖2, so 1
‖p∗−max
−ε ‖

2
≥ 1
‖p∗‖2

which is the direction we need.

Combining the three facts above establishes (b), providing a lower bound of qhard(n, k, ε) = Ω
(

(4πn)(k−1)/4

kk/4ε2

)
for testing identity to p∗. It only remains to establish (c):

Lemma 2.2.31. There exists a (not necessarily efficient) agnostic learner for PMDn,k, with sample com-

plexity qagn(n, k, ε) = 1
ε2

(
O(k2 logn) +O

(
k log(k/ε)

log log(k/ε)

)k)
.

Proof. This is implied by a result of [87], which establishes the existence of a (proper) ε-cover Mn,k,ε

of PMDn,k such that |Mn,k,ε| ≤ nO(k2) · (1/ε)O
(
k log(k/ε)

log log(k/ε)

)k−1

. By standard arguments, this yields

information-theoretically an agnostic learner with sample complexity O
(

log|Mn,k,ε|
ε2

)
.

Having (a), (b), and (c), an application of [51, Theorem 18] yields that, as long as qagn(n, k, ε) =

o(qhard(n, k, ε)) then testing membership in PMDn,k requires Ω(qhard(n, k, ε)) samples as well. This in

particular holds for k = o(nc) (where e.g. c < 1/9) and ε = 1/2O(n).

2.2.9 Learning Discrete Log-Concave Distributions in Hellinger Distance

Recall that the Hellinger distance between two probability distributions over a domain Ω is defined as

dH(p, q) def= 1√
2
‖√p−√q‖2

where the 2-norm is to be interpreted as either the `2 distance or L2 distance between the pmf or pdf’s of p, q,

depending on whether Ω is Z or R. In particular, one can extend this metric to the set of pseudo-distributions

over Ω, relaxing the requirement that the measures sum to one. We letFΩ denote the set of pseudo-distributions

over Ω. The bracketing entropy of a family of functions G ⊆ RΩ with respect to the Hellinger distance (for

parameter ε) if then the minimum cardinality of a collection C of pairs (gL, gU ) ∈ F2
Ω such that every f ∈ G

is “bracketed” between the elements of some pair in C:

N[](ε,G,dH) def= min
{
N ∈ N : ∃C ⊆ F2

Ω, |C| = N, ∀f ∈ G,∃(gL, gU ) ∈ C s.t. gL ≤ f ≤ gU and dH(gL, gH) ≤ ε
}

Theorem 2.2.32. Let p̂m denote the maximum likelihood estimator (MLE) for discrete log-concave distribu-

tions on a sample of size m. Then, the minimax supremum risk satisfies

sup
p∈LCVn

Ep[dH(p̂m, p)2] = O

(
log4/5(mn)

m4/5

)
.

Note that it is known that for continuous log-concave distributions over R, the rate of the MLE is

O(m−4/5) [122]; this result, however, does not generalize to discrete log-concavity, as it crucially relies on
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a scaling argument which does not work in the discrete case. On the other hand, one can derive a rate of

convergence to learn discrete log-concave distributions in total variation distance (using another estimator

than the MLE), getting again O(m−4/5) in that case [83]. However, due to the loose upper bound relating total

variation and Hellinger distance, this latter result only implies an O(m−2/5) convergence rate in Hellinger

distance, which is quadratically worse than what we would hope for.

Thus, the result above, while involving a logarithmic dependence on the support size, has the advantage of

getting the “right” rate of convergence. (While this additional dependence does not matter for our purposes,

we believe a modification of our techniques would allow one to get rid of it, obtaining a rate of Õ
(
m−4/5)

instead.) We however conjecture that the tight rate of convergence should be O(m−4/5), as in the continuous

case (i.e., without the dependence on the domain size n nor the extra logarithmic factors in m).

In order to prove Theorem 2.2.32, we obtain along the way several interesting results on discrete (and

continuous) log-concave distributions, namely a bound on their bracketing entropy (Theorem 2.2.33) and an

approximation result (Theorem 2.2.34), which we believe are of independent interest.

In what follows, Ω will denote either R or Z; we let LCVΩ denote the set of log-concave distributions over

Ω, and LCVn ⊆ LCVZ be the subset of log-concave distributions supported on JnK.

Theorem 2.2.33. For every ε ∈ (0, 1),

N[](ε,LCVn,dH) ≤
(n
ε

)O(1/
√
ε)

A crucial element in to establish Theorem 2.2.33 will be the following theorem, which shows that log-

concave distributions are well-approximated (in Hellinger distance) by piecewise-constant pseudo-distributions

with few pieces:

Theorem 2.2.34. Let Ω be either R or Z. For every p ∈ LCVΩ and ε ∈ (0, 1), there exists a pseudo-

distribution g such that (i) g is piecewise-linear with O(1/
√
ε) pieces; (ii) g is supported on an interval [a, b]

with p(Ω \ [a, b]) = O(ε2); and (iii) dH(p, g) ≤ ε. (Moreover, one can choose to enforce g ≤ p, or p ≤ g, on

[a, b]).

The proof of Theorem 2.2.34 will be very similar to that of [83, Theorem 12]; specifically, we will use the

following (reformulation of a) lemma due to Diakonikolas, Kane, and Stewart:

Lemma 2.2.35 ([83, Lemma 14], rephrased). Let Ω be either R or Z. Let f be a log-concave function defined

on an interval I ⊆ Ω, and suppose that f(I) ⊆ [a, 2a] for some constant a > 0. Furthermore, suppose that

the logarithmic derivative of f (or, if Ω = Z, the log-finite difference of f ) varies by at most 1/ |I| on I; then,

for any ε ∈ (0, 1) there exists two piecewise linear functions g`, gu : I 7→ R with O(1/
√
ε) pieces such that

∣∣f(x)− gj(x)
∣∣ = O(ε)f(x), j ∈ {`, u} (2.33)

for all x ∈ I , and with g` ≤ f ≤ gu.
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Proof. Observe that it suffices to establish Eq. (2.33) for a piecewise linear function g : I 7→ R with O(1/
√
ε)

pieces; indeed, then in order to obtain g`, gu from g, it will be sufficient to scale it by respectively (1 + αε)−1

and (1 +αε) (for a suitably big absolute constant α > 0), thus ensuring both Eq. (2.33) and g` ≤ f ≤ gu. We

therefore focus hereafter on obtaining such a pseudo-distribution g.

For ease of notation, we write h for the logarithmic derivative (or log-finite difference) of f (e.g., in the

continuous case, h = (ln f)′). By rescaling f , we may assume without loss of generality that a = 1. Note that

h is then bounded on I , i.e. |h| ≤ c/|I| for some absolute constant c > 0. We now partition I into subintervals

J1, J2, . . . , J` so that (i) each Ji has length at most ε1/2 |I|, and (ii) h varies by at most ε1/2/ |I| on each Ji.

This can be achieved with ` = O(1/
√
ε) by placing an interval boundary every ε1/2 |I| distance as well as

every time h passes a multiple of ε1/2/ |I|.

We now claim that on each interval Ji there exists a linear function gi so that |gi(x)− f(x)| = O(ε)f(x)

for all x ∈ Ji. Letting g be gi on Ji will complete the proof. Fix any i, and write Ji = [si, ti]. Letting

α0 ∈ h(Ji) be an arbitrary value in the range spanned by h on Ji, observe that for any x ∈ Ji there exists

αx ∈ h(Ji) such that

f(x) = f(si)eαx(x−si)

from which we have

f(x) = f(si)eα0(x−si)+(αx−α0)(x−si) = f(si)eα0(x−si)e(αx−α0)(x−si)

= f(si) (1 + α0(x− si) +O(ε)) (1 +O((αx − α0)(x− si)))

= f(si) (1 + α0(x− si) +O(ε)) (1 +O(ε))

= f(si) + α0f(si)(x− si) +O(ε)

recalling that |α0| , |αx| = O(1/ |I|), |x− si| ≤ ε1/2 |I|, and |αx − α0| ≤ ε1/2/ |I|, so that |α0(x− si)| =

O(ε1/2) and |(αx − α0)(x− si)| = O(ε). This motivates defining the affine function gi as

gi(x) def= f(si) + α0f(si)(x− si), x ∈ Ji

from which∣∣∣∣f(x)− gi(x)
f(x)

∣∣∣∣ =
∣∣∣∣1− f(si) + α0f(si)(x− si)

f(si)eαx(x−si)

∣∣∣∣ =
∣∣∣∣1− 1 + α0(x− si)

eαx(x−si)

∣∣∣∣
=
∣∣∣∣1− 1 + α0(x− si)

1 + αx(x− si) +O(ε)

∣∣∣∣ = |1− (1 + α0(x− si)) (1− αx(x− si) +O(ε))|

= |(αx − α0)(x− si) +O(ε)| = O(ε)

as claimed. This concludes the proof.

We will also rely on the following proposition, from the same paper:
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Proposition 2.2.36 ([83, Proposition 15]). Let f be a log-concave distribution on Ω (as before, either R or

Z). Then there exists a partition of Ω into disjoint intervals I1, I2, . . . and a constant C > 0 such that

• f satisfies the hypotheses of Lemma 2.2.35 on each Ii.

• For each m, there are most Cm values of i so that f(Ii) > 2−m.

(Moreover, f is monotone on each Ii.)

We are now ready to prove Theorem 2.2.34:

Proof of Theorem 2.2.34. Fix any ε ∈ (0, 1), and p ∈ LCVΩ. We divide Ω into intervals as described

in Proposition 2.2.36. Call these intervals I1, I2, . . . sorted so that p(Ii) is decreasing in i. Therefore, we have

that p(Im) ≤ 2−m/C .

For 1 ≤ m ≤M def= 2C log(1/ε), let εm
def= ε2m/(3C); we use Lemma 2.2.35 to approximate p in Im by

two piecewise linear functions g`m, g
u
m so that (i) gjm has at most O(1/√εm) pieces and (ii) p and gjm are, on

Im, within a multiplicative (1± O(εm)) factor with g`m ≤ p ≤ gum. For j ∈ {`, u}, let gj be the piecewise

linear function that is gjm on Im for 1 ≤ m ≤M , and 0 elsewhere. gj is then piecewise linear on

M∑
m=1

O(ε−1/2
m ) =

M∑
m=1

O
(
ε−1/22− m

6C

)
= O(ε−1/2)

intervals.

Let I be defined as the smallest interval such that
⋃M
m=1 Im ⊆ I . By definition, g is 0 outside of I , and

moreover the total mass of p there is

∞∑
m=M+1

p(Im) ≤
∞∑

m=M+1

1
2m/C

= O
(

2−M/C
)

= O
(
ε2)

By replacing gj by max(gj , 0), we may ensure that it is non-negative (while at most doubling the number of

pieces without increasing the distance from p). This establishes the first two items of the theorem; we now

turn to the third.
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The Hellinger distance between p and gj satisfies, letting J def=
⋃M
m=1 Im,

2dH
(
p, gj

)2 = ‖√p−
√
gj‖

2
2 =

∫
Ω

(√
p(x)−

√
gj(x)

)2
µ(dx)

=
∫

Ω\J

(√
p(x)−

√
gj(x)

)2
µ(dx) +

∫
J

(√
p(x)−

√
gj(x)

)2
µ(dx)

=
∫

Ω\J
p(x)µ(dx) +

M∑
m=1

∫
Im

p(x)
(

1−
√

1±O(εm)
)2
µ(dx)

≤ O(ε2) +
M∑
m=1

∫
Im

p(x)
(

1−
√

1±O(εm)
)2
µ(dx)

= O(ε2) +
M∑
m=1

∫
Im

p(x)O(ε2
m)µ(dx) = O(ε2) +

M∑
m=1

O
(
ε2
mp(Im)

)
= O(ε2) +

M∑
m=1

O
(
ε22 2m

3C 2
−m
C

)
= O(ε2) +

M∑
m=1

O
(
ε22

−m
3C

)
= O(ε2) +O(ε2) = O(ε2)

establishing the third item. (By dividing ε by a sufficiently big absolute constant before applying the above,

one gets (i), (ii), and (iii) with dH
(
p, gj

)
≤ ε as desired.) For technical reasons (that we will need in the proof

of Theorem 2.2.33), instead of defining [a, b] to be our interval I , we choose [a, b] to be I augmented with up

to two of the remaining Im’s (those directly on the left and right of I , defining g`m, g
u
m on these two additional

pieces as before by Lemma 2.2.35). This does not change the fact that the piecewise linear function obtained

on [a, b] has O(ε−1/2) pieces (we only added o(ε−1/2) pieces), and p(Ω\ [a, b]) ≤ p(Ω\ I) = O(ε2). Finally,

it is easy to see that this only changes, as per the computation above, the Hellinger distance by O(ε2) as well.

(The advantage of this technicality is that now, the two end intervals in the union constituting [a, b] have each

total probability mass O(ε2) under p, which will come in handy later.) It then only remains to choose g to be

either g` or gu, depending on whether one wants a lower- or upperbound on f (on [a, b]).

We can finally prove Theorem 2.2.33:

Proof of Theorem 2.2.33. We can slightly strengthen the proof of Theorem 2.2.34 for the case of LCVn, by

imposing some restriction on the form of the ‘approximating distributions” g. Namely, for any ε ∈ (0, 1), fix

any p ∈ LCVn and consider the construction of g`, gu as in the proof of Theorem 2.2.34. Clearly, we can

assume [a, b] ⊆ JnK.

Now, we modify gj as follows (for j ∈ {`, u}): for 1 ≤ m ≤M , consider the interval Im = [am, bm], and

the corresponding “piece” gjm of g on Im. We let g̃jm be the pseudo-distribution defined from gjm as follows: it

is affine on Im, with

g̃um(am) def=
⌈
gu(am)M |Im|2ε2

⌉
2ε2

M |Im|
, g̃um(am) def=

⌈
gu(bm)M |Im|2ε2

⌉
2ε2

M |Im|
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and

g̃`m(am) def=
⌊
g`(am)M |Im|2ε2

⌋
2ε2

M |Im|
, g̃`m(am) def=

⌊
g`(bm)M |Im|2ε2

⌋
2ε2

M |Im|

i.e. gjm is g “rounded up” (resp. down) to the near multiple of ε2

M |Im| on the endpoints. We then let g̃j be the

correspond piecewise-affine pseudo-distribution defined by piecing together the g̃jm’s. Clearly, by construction

g̃` and g̃u still satisfies (i) and (ii) of Theorem 2.2.34, and g̃` ≤ p ≤ g̃u. As for (iii), observe that at all

1 ≤ m ≤M and k ∈ Im we have
∣∣g̃j(k)− gj(k)

∣∣ ≤ 2ε2
M |Im| , from which

dH
(
p, g̃j

)
≤ dH

(
p, gj

)
+ dH

(
g, g̃j

)
≤ ε+

√
dTV(gj , g̃j) ≤ ε+

√√√√1
2

M∑
m=1
|Im| ·

2ε2

M |Im|
= 2ε

showing that we get (up to a constant factor loss in the distance) (iii) as well. Given this, we get that specifying

(g̃`, g̃u) can be done by the list of the O(1/
√
ε) endpoints along with the value of each g̃j for all of these

endpoints. Now, given the two endpoints, one gets the size of the corresponding interval Im (which is at most

n), and the two values to specify are a multiple of ε2/(M |Im|) in [0, 1]. (If we were to stop here, we would

get the existence of an ε-cover C′ε of LCVn in Hellinger distance of size (n/ε)O(1/
√
ε).)

One last step: outside [a, b] To get the bracketing bound we seek, we need to do one last modification to

our pair (g̃`, g̃u). Specifically, in the above we have one issue when approximating p: namely, that outside of

their common support {a, . . . , b}, both g̃j’s are 0. While this is fine for the lower bound g̃`, this is not for g̃u,

as it needs to dominate p outside of {a, . . . , b} as well, where p may have O(ε2) probability mass. Thus, we

need to adapt the construction above, as follows (we treat the setting of g̃u on {b+ 1, . . . , n}, the definition

on JaK is similar).

First, observe if p(b + 1) = 0, we are done, as then by monotonicity we must have (k) = 0 for all

k ≥ b+ 1, and so setting g̃u = 0 on {b+ 1, . . . , n} suffices. Thus, we hereafter assume p(b+ 1) > 0; and,

for b+ 1 ≤ k ≤ n, set

g̃u(k) def= αeβ(k−(b+1))

where α def=
⌈
p(b+ 1) n

2ε2
⌉ 2ε2

n and β def=
⌈
n
ε ln p(b+2)

p(b+1)

⌉
ε
n (so that β ≤ 0). Then g̃u(b+ 1) ≥ p(b+ 1), and

for b+ 1 < k ≤ n
g̃u(k)

g̃u(k − 1) = eβ ≥ p(b+ 2)
p(b+ 1) ≥

p(k)
p(k − 1)

(the last inequality due to the log-concavity of p). This implies g̃u ≥ p on {b + 1, . . . , n} as desired; and,

thanks to the rounding, there are only O(n/ε2) different possibilities for the tail of g̃u. In view of bounding

the Hellinger distance between p and g̃u added by this modification, which is upper bounded by the (square

root) of the total variation distance this added, recall that p({b+ 1, . . . , n}) = O(ε2) by construction, and that

g̃u({b+ 1, . . . , n}) =
n∑

k=b+1
αeβ(k−(b+1)) = α

1− eβ .
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Thus, the Hellinger distance incurred on {b+ 1, . . . , n} is at most
√
O(ε2) + α

1−eβ ; and to conclude, it only

remains to show that α
1−eβ = O(ε2).

To show this last point, let Im = [c, b] be the rightmost interval in the decomposition from Proposi-

tion 2.2.36. Recall that we are guaranteed that p is non-increasing on Im; further, by inspection of the proof

of [83, Proposition 15], we also have that Im is maximal, in the sense that b is the rightmost point k such that

[c, k] satisfies the assumptions of Lemma 2.2.35. Using first the monotoncity, we have

p(b+ 1) ≤ p(b) ≤ p(Im)
b− c

≤ O(ε2)
b− c

that last inequality by construction (from the technicality we enforced in the end of the proof of Theo-

rem 2.2.34); and therefore α ≤ O(ε2)
b−c + ε2

n = O(ε2)
b−c .

In order to obtain an upper bound on β, we rely on the maximality of Im, leading to two cases to consider:

• The first is that p(b+ 1) < p(c)
2 ; in which case p(b+ 2) ≤ p(b+ 1) < p(c)

2 ; which implies that

1
2 >

p(b+ 2)
p(c) = p(b+ 2)

p(b+ 1) ·
p(b+ 1)
p(b) · · · p(c+ 1)

p(c) ≥
(
p(b+ 2)
p(b+ 1)

)b−c+2

the last inequality by log-concavity. In turn, we get

β ≤ ln p(b+ 2)
p(b+ 1) + ε

n
≤ − ln 2

b− c+ 2 + ε

n
.

• The second is that ln p(c+1)
p(c) − ln p(b+1)

p(b) > 1
b−c+1 . In this case,

ln p(b+ 2)
p(b+ 1) ≤ ln p(b+ 1)

p(b) < ln p(c+ 1)
p(c) − 1

b− c+ 1 ≤ −
1

b− c+ 1 < − ln 2
b− c+ 2

(the last inequality as b− c ≥ 0) and therefore β ≤ − ln 2
b−c+2 + ε

n as in the first case.

Combining these two bounds, we obtain

α

1− eβ ≤
O(ε2)
b− c

· 1
1− e εn e−

ln 2
b−c+2

= O(ε2)

the last inequality for ε < ln 2
2 (using the fact that 1 ≤ b − c ≤ n). This concludes the proof: as dis-

cussed, we then have that our setting of ḡu outside of [a, b] only causes an addition Hellinger distance of√
O(ε2) + α

1−eβ =
√
O(ε2) = O(ε).

We are, at last, ready to prove our main theorem:

Proof of Theorem 2.2.32. Recall the following theorem, due to Wong and Shen [178] (see also [98, Theorem

7.4], [122, Theorem 17]):
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Theorem 2.2.37 ([178, Theorem 2]). There exist positive constants τ1, τ2, τ3, τ4 > 0 such that, for all

ε ∈ (0, 1), if ∫ √2ε

ε2/28

√
N[](u/τ1,G,dH) du ≤ τ2m1/2ε2 (2.34)

and p̃n is an estimator that approximates p̂m within error η (i.e., solves the maximization problem within

additive error η) with η ≤ τ3ε2, then

Pr[ dH(p̃m, p) ≥ ε ] ≤ 5 exp(−τ4mε2).

To apply this theorem, define the function Jn : (0, 1)→ R by J(x) def=
∫ x
x2

√
ln n

uu
−1/4 du. By (tedious)

computations, one can verify that Jn(x) ∼x→0
4
3x

3/4√ln n
x ; this, combined with the bound of Theo-

rem 2.2.33, yields that for any ε ∈ (0, 1)

∫ √2ε

ε2/28

√
N[](u/τ1,LCVn,dH) du = O

(
ε3/4

√
ln n
ε

)
.

Thus, setting, for m ≥ 1, εm
def= Cm−2/5(ln(mn))2/5 for a sufficiently big absolute constant C > 0 ensures

that εm satisfies (2.34). Let ρm
def= 1/εm. It follows that any estimator which, on a sample of size m,

approximates the log-concave MLE to within an additive ηm
def= τ3ε

2
m has minimax error

ρ2
m sup
p∈LCVn

Ep[dH(p̃m, p)2] = sup
p∈LCVn

∫ ∞
0

Pr
[
ρ2
mdH(p̃n, p)2 ≥ t

]
dt

= sup
p∈LCVn

∫ ∞
0

Pr
[

dH(p̃n, p) ≥
√
tρ−1
m

]
dt

≤ 1 + sup
p∈LCVn

∫ ∞
1

Pr
[

dH(p̃n, p) ≥
√
tρ−1
m

]
dt

= 1 + sup
p∈LCVn

∫ ∞
1

Pr
[

dH(p̃n, p) ≥
√
tεm

]
dt

≤= 1 + 5 sup
p∈LCVn

∫ ∞
1

exp(−τ4mtε2
m) dt

= 1 + 5 sup
p∈LCVn

∫ ∞
1

exp(−τ4Cm1/2 ln(mn)t) dt

= O(1)

where we used the fact that if εt > εm, then εt satisfies (2.34) as well (and applied it to εt =
√
tεm). This

concludes the proof.
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Chapter 3

Testing Properties of Distributions: Lower Bounds from Reductions

(“That’s exactly the method,” the Bellman bold

In a hasty parenthesis cried,

“That’s exactly the way I have always been told

That the capture of Snarks should be tried!”)

Lewis Carroll, The Hunting of the Snark

In spite of the considerable interest distribution testing has experienced in recent years, our arsenal of tools

for proving lower bounds on the sample complexity of testing problems remains sorely limited. There are

only a handful of standard techniques to prove such hardness results; and indeed the vast majority of the lower

bounds in the literature are shown via Le Cam’s two-point method (also known as the “easy direction” of Yao’s

minimax principle) [180, 143].1 In view of this scarcity, there has been in recent years a trend towards trying

to obtain more, or simpler to use, techniques [174, 80]; however, this state of affairs largely remains the same.

In this chapter, we set out to remedy this situation, by providing two general frameworks to establish

distribution testing lower bounds. As we shall see, both are reduction-based frameworks – put differently,

general techniques enabling us to capitalize on someone else’s hard work from a different setting or area, and

carry over their impossibility results to our distribution testing problem.

• Section 3.1 describes our first reduction, which establishes a simple criterion under which hardness of

testing a subproperty P ′ ⊆ P carries over to testing P itself. This intuitive and seemingly “obvious”

result – “testing a class is at least as hard as testing anything it contains” – turns out to be false in

general, as is easy to see even for some trivial cases. To remedy this unfortunate state of affairs, we

identify a relatively benign assumption sufficient to make it hold; and show how this assumption is

satisfied by a large number of natural properties.

• In Section 3.2, we reveal a connection between distribution testing and the simultaneous message

passing communication model, leading to our second methodology for proving distribution testing

lower bounds. Extending the property testing lower bound framework of Blais, Brody, and Matulef [33],

we show a simple way of reducing communication problems to distribution testing ones. (Or, in other

words, how to harness Alice and Bob’s communication issues in order to prove distribution testing lower

bounds.)

1In this method, one first defines two distributions Y and N over distributions that are respectively yes-instances (having the
property) and no-instances (far from having the property). Then it remains to show that with high probability over the choice of the
instance, every tester that can distinguish between pyes ∼ Y and pno ∼ N must use at least a certain number of samples.
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As an application, these two reduction-based approaches will allow us to show in a clean and painless fashion

that most of the upper bounds obtained in Chapter 2 are optimal or near-optimal, and cannot be significantly

improved upon. In an unexpected turn of events, our second reduction will also reveal a connection between

distribution testing and the field of interpolation theory, shedding light on an “instance-optimal” testing result

of Valiant and Valiant [169].

3.1 The Agnostic Learning Reduction

In this section, we describe our first generic framework for proving lower bounds against testing classes of

distributions. Specifically, we describe how to reduce – under a mild assumption on the property C – the

problem of testing membership in C (“does p ∈ C?”) to testing identity to p∗ (“does p = p∗?”), for any

explicit distribution p∗ in C. While these two problems need not in general be related,2 we show that our

reduction-based approach applies to a large number of natural properties, and obtain lower bounds that nearly

match our upper bounds for all of them. Moreover, this lets us derive a simple proof of the lower bound

of [2] on testing the class of PBDs. The reader is referred to Theorem 3.1.1 for the formal statement of our

reduction-based lower bound theorem; before proceeding further, we restate below some of the corollaries it

lets us to easily derive, both in the standard and tolerant testing settings:

Corollary 2.1.6. Testing log-concavity, convexity, concavity, MHR, unimodality, t-modality, t-histograms,

and t-piecewise degree-d distributions each require Ω
(√
n/ε2) samples (the last three for t = o(

√
n) and

t(d+ 1) = o(
√
n), respectively), for any ε ≥ 1/nO(1).3

Corollary 2.1.7. Testing the classes of Binomial and Poisson Binomial Distributions each require Ω
(
n1/4/ε2)

samples, for any ε ≥ 1/nO(1).

Corollary 2.1.8. There exist absolute constants c > 0 and ε0 > 0 such that testing the class of (n, k)-SIIRV

distributions requires Ω
(
k1/2n1/4/ε2) samples, for any k = o(nc) and 1/nO(1) ≤ ε ≤ ε0.

Corollary 2.1.11. Tolerant testing of log-concavity, convexity, concavity, MHR, unimodality, and t-modality

each require Ω
(

1
(ε2−ε1)

n
logn

)
samples (the latter for t = o(n)).

Corollary 2.1.12. Tolerant testing of the classes of Binomial and Poisson Binomial Distributions each require

Ω
(

1
(ε2−ε1)

√
n

logn

)
samples.

In order to state our results, we will require the usual definition of agnostic learning. Recall that an

algorithm is said to be a semi-agnostic learner for a class C if it satisfies the following. Given sample access

to an arbitrary distribution p and parameter ε, it outputs a hypothesis p̂ which (with high probability) does

2As a simple example, consider the class C of all distributions, for which testing membership is trivial.
3Here, the restriction on ε should be read as “for each of these distribution classes, there exists an absolute constant c > 0 (which

may depend on the corresponding class) such that the result applies for every ε ≥ 1
nc

.”
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“almost as well as it gets”:

‖p− p̂‖1 ≤ c · OPTC,p +O(ε)

where OPTC,p
def= infp′∈C `1(p′,p), and c ≥ 1 is some absolute constant (if c = 1, the learner is said to be

agnostic).

High-level idea. The motivation for our result is the observation of [19] that “monotonicity is at least as hard

as uniformity.” Unfortunately, their specific argument does not generalize easily to other classes of distributions,

making it impossible to extend it readily. The starting point of our approach is to observe that while uniformity

testing is hard in general, it becomes very easy under the promise that the distribution is monotone, or even

only close to monotone (namely, O
(
1/ε2) samples suffice.)4 This can give an alternate proof of the lower

bound for monotonicity testing, via a different reduction: first, test if the unknown distribution is monotone; if

it is, test whether it is uniform, now assuming closeness to monotone.

More generally, this idea applies to any class C which (a) contains the uniform distribution, and (b) for

which we have a o(
√
n)-sample agnostic learner L, as follows. Assuming we have a tester T for C with

sample complexity o(
√
n), define a uniformity tester as below.

• test if p ∈ C using T ; if not, reject (as u ∈ C, p cannot be uniform);

• otherwise, agnostically learn p with L (since p is close to C), and obtain hypothesis p̂;

• check offline if p̂ is close to uniform.

By assumption, T and L each use o(
√
n) samples, so does the whole process; but this contradicts the lower

bound of [22, 138] on uniformity testing. Hence, T must use Ω(
√
n) samples.

This “testing-by-narrowing” reduction argument can be further extended to other properties than to

uniformity, as we show below:

Theorem 3.1.1. Let C be a class of distributions over [n] for which the following holds:

(i) there exists a semi-agnostic learner L for C, with sample complexity qL(n, ε, δ) and “agnostic con-

stant” c;

(ii) there exists a subclass CHard ⊆ C such that testing CHard requires qH(n, ε) samples.

Suppose further that qL(n, ε, 1/6) = o(qH(n, ε)). Then, any tester for C must use Ω(qH(n, ε)) samples.

Proof. The above theorem relies on the reduction outlined above, which we rigorously detail here. Assuming

C, CHard, L as above (with semi-agnostic constant c ≥ 1), and a tester T for C with sample complexity

qT (n, ε), we define a tester THard for CHard. On input ε ∈ (0, 1] and given sample access to a distribution p

on [n], THard acts as follows:

• call T with parameters n, ε
′

c (where ε′ def= ε
3 ) and failure probability 1/6, to ε′

c -test if p ∈ C. If not,

4Indeed, it is not hard to show that a monotone distribution can only be ε-far from uniform if it puts probability weight 1/2 + Ω(ε)
on the first half of the domain. Estimating this probability weight to an additive O(ε) is thus sufficient to conclude.
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reject.

• otherwise, agnostically learn a hypothesis p̂ for p, with L called with parameters n, ε′ and failure

probability 1/6;

• check offline if p̂ is ε′-close to CHard, accept if and only if this is the case.

We condition on both calls (to T and L) to be successful, which overall happens with probability at least

2/3 by a union bound. The completeness is immediate: if p ∈ CHard ⊆ C, T accepts, and the hypothesis p̂

satisfies ‖p̂− p‖1 ≤ ε′. Therefore, `1(p̂, CHard) ≤ ε′, and THard accepts.

For the soundness, we proceed by contrapositive. Suppose THard accepts; it means that each step was

successful. In particular, `1(p̂, C) ≤ ε′/c; so that the hypothesis outputted by the agnostic learner satisfies

‖p̂− p‖1 ≤ c · OPT + ε′ ≤ 2ε′. In turn, since the last step passed and by a triangle inequality we get, as

claimed, `1(p, CHard) ≤ 2ε′ + `1(p̂, CHard) ≤ 3ε′ = ε.

Observing that the overall sample complexity is qT (n, ε
′

c ) + qL(n, ε′, 1
6 ) = qT (n, ε

′

c ) + o(qH(n, ε′))

concludes the proof.

Taking CHard to be the singleton consisting of the uniform distribution, and from the semi-agnostic learners

of [56, 55] (each with sample complexity either poly(1/ε) or poly(logn, 1/ε)), we obtain the following:5

Corollary 2.1.6. Testing log-concavity, convexity, concavity, MHR, unimodality, t-modality, t-histograms,

and t-piecewise degree-d distributions each require Ω
(√
n/ε2) samples (the last three for t = o(

√
n) and

t(d+ 1) = o(
√
n), respectively), for any ε ≥ 1/nO(1).6

Similarly, we can use another result of [64] which shows how to agnostically learn Poisson Binomial

Distributions with Õ
(
1/ε2) samples.7 Taking CHard to be the single Bin(n, 1/2) distribution (along with the

testing lower bound of [169]), this yields the following:

Corollary 2.1.7. Testing the classes of Binomial and Poisson Binomial Distributions each require Ω
(
n1/4/ε2)

samples, for any ε ≥ 1/nO(1).

Finally, we derive a lower bound on testing k-SIIRVs from the agnostic learner of [73] (which has sample

complexity poly(k, 1/ε), independent of n):

Corollary 2.1.8. There exist absolute constants c > 0 and ε0 > 0 such that testing the class of (n, k)-SIIRV

distributions requires Ω
(
k1/2n1/4/ε2) samples, for any k = o(nc) and 1/nO(1) ≤ ε ≤ ε0.

Proof of Corollary 2.1.8. To prove this result, it is enough by Theorem 3.1.1 to exhibit a particular k-SIIRV

S such that testing identity to S requires this many samples. Moreover, from [169] this last part amounts to

5Specifically, these lower bounds hold as long as ε = Ω(1/nα) for some absolute constant α > 0 (so that the sample complexity of
the agnostic learner is indeed negligible in front of

√
n/ε2).

6Here, the restriction on ε should be read as “for each of these distribution classes, there exists an absolute constant c > 0 (which
may depend on the corresponding class) such that the result applies for every ε ≥ 1

nc
.”

7Note the quasi-quadratic dependence on ε of the learner, which allows us to get ε into our lower bound for n� poly log(1/ε).
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proving that the (truncated) 2/3-norm ‖S−max
−ε ‖2/3 of S is Ω

(
k1/2n1/4) (for every ε ∈ (0, ε0), for some small

ε0 > 0). Our hard instance S will be defined as follows: it is defined as the distribution ofX1+· · ·+Xn, where

theXi’s are independent integer random variables uniform on JkK (in particular, for k = 2 we get a Bin(n, 1/2)

distribution). It is straightforward to verify that ES = n(k−1)
2 and σ2 def= VarS = (k2−1)n

12 = Θ
(
k2n

)
;

moreover, S is log-concave (as the convolution of n uniform distributions). From this last point, we get that (i)

the maximum probability of S, attained at its mode, is ‖S‖∞ = Θ(1/σ); and (ii) for every j in an interval I

of length 2σ centered at this mode, S(j) ≥ Ω(‖S‖∞) (see e.g. [84, Lemma 5.7] for the latter point). Define

now ε0 as an absolute constant such that 2ε0 ≤ p(I) = Ω(1).

We want to lower bound ‖S−max
−ε ‖2/3, for ε ≤ ε0; as by the above the “−max” part can only change the

value by ‖S‖∞ = o(1), we can ignore it. Turning to the −ε part, i.e. the removal of the ε probability mass of

the elements with smallest probability, note that this can only result in zeroing out at most ε
p(I) |I| ≤

1
2 |I|

elements in I (call these Jε ⊆ I). From this, we obtain that

‖S−max
−ε ‖2/3 ≥

( ∑
j∈I\Jε

S(j)2/3
)3/2

≥
(

1
2 · 2σ · Ω(1/σ)2/3

)3/2
= Ω

(
σ1/2

)
= Ω

(
k1/2n1/4

)

which concludes the proof.

3.1.1 Tolerant Testing

This lower bound framework from the previous section carries to tolerant testing as well, resulting in this

analogue to Theorem 3.1.1:

Theorem 3.1.2. Let C be a class of distributions over [n] for which the following holds:

(i) there exists a semi-agnostic learner L for C, with sample complexity qL(n, ε, δ) and “agnostic con-

stant” c;

(ii) there exists a subclass CHard ⊆ C such that tolerant testing CHard requires qH(n, ε1, ε2) samples for

some parameters ε2 > (4c+ 1)ε1.

Suppose further that qL(n, ε2 − ε1, 1/10) = o(qH(n, ε1, ε2)). Then, any tolerant tester for C must use

Ω(qH(n, ε1, ε2)) samples (for some explicit parameters ε′1, ε
′
2).

Proof. The argument follows the same ideas as for Theorem 3.1.1, up to the details of the parameters.

Assuming C, CHard, L as above (with semi-agnostic constant c ≥ 1), and a tolerant tester T for C with

sample complexity q(n, ε1, ε2), we define a tolerant tester THard for CHard. On input 0 < ε1 < ε2 ≤ 1 with

ε2 > (4c + 1)ε1, and given sample access to a distribution p on [n], THard acts as follows. After setting

ε′1
def= ε2−ε1

4 , ε′2
def= ε2−ε1

2 , ε′ def= ε2−ε1
16 and τ def= 6ε2+10ε1

16 ,

• call T with parameters n, ε
′
1
c , ε

′
2
c and failure probability 1/6, to tolerantly test if p ∈ C. If `1(p, C) >

ε′2/c, reject.

• otherwise, agnostically learn a hypothesis p̂ for p, with L called with parameters n, ε′ and failure
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probability 1/6;

• check offline if p̂ is τ -close to CHard, accept if and only if this is the case.

We condition on both calls (to T and L) to be successful, which overall happens with probability at least 2/3

by a union bound. We first argue completeness: assume `1(p, CHard) ≤ ε1. This implies `1(p, C) ≤ ε1, so

that T accepts as ε1 ≤ ε′1/c (which is the case because ε2 > (4c + 1)ε1). Thus, the hypothesis p̂ satisfies

‖p̂− p‖1 ≤ c ·ε′1/c+ε′ = ε′1 +ε′. Therefore, `1(p̂, CHard) ≤ ‖p̂− p‖1 + `1(p, CHard) ≤ ε′1 +ε′+ε1 < τ ,

and THard accepts.

For the soundness, we again proceed by contrapositive. Suppose THard accepts; it means that each step

was successful. In particular, `1(p̂, C) ≤ ε′2/c; so that the hypothesis outputted by the agnostic learner satisfies

‖p̂− p‖1 ≤ c · OPT + ε′ ≤ ε′2 + ε′. In turn, since the last step passed and by a triangle inequality we get, as

claimed, `1(p, CHard) ≤ ε′2 + ε′ + `1(p̂, CHard) ≤ ε′2 + ε′ + τ < ε2.

Observing that the overall sample complexity is qT (n, ε
′
1
c ,

ε′2
c ) + qL(n, ε′, 1

10 ) = qT (n, ε
′

c ) + o(qH(n, ε′))

concludes the proof.

As before, we instantiate the general theorem to obtain specific lower bounds for tolerant testing of the

classes we covered in this paper. That is, taking CHard to be the singleton consisting of the uniform distribution

(combined with the tolerant testing lower bound of [167] (restated in Theorem 3.1.6), which states that tolerant

testing of uniformity over [n] requires Ω
(

n
logn

)
samples), and again from the semi-agnostic learners of [56,

55] (each with sample complexity either poly(1/ε) or poly(logn, 1/ε)), we obtain the following:

Corollary 2.1.11. Tolerant testing of log-concavity, convexity, concavity, MHR, unimodality, and t-modality

each require Ω
(

1
(ε2−ε1)

n
logn

)
samples (the latter for t = o(n)).

Similarly, we again turn to the class of Poisson Binomial Distributions, for which we can invoke as

before the Õ
(
1/ε2)-sample agnostic learner of [64]. As before, we would like to choose for CHard the single

Bin(n, 1/2) distribution; however, as no tolerant testing lower bound for this distribution exists – to the best

of our knowledge – in the literature, we first need to establish the lower bound we will rely upon:

Theorem 3.1.3. There exists an absolute constant ε0 > 0 such that the following holds. Any algorithm which,

given sampling access to an unknown distribution p on Ω and parameter ε ∈ (0, ε0), distinguishes with

probability at least 2/3 between (i) ‖p− Bin(n, 1/2) ‖1 ≤ ε and (ii) ‖p− Bin(n, 1/2) ‖1 ≥ 100ε must use

Ω
(

1
ε

√
n

logn

)
samples.

The proof relies on a reduction from tolerant testing of uniformity, drawing on a result of Valiant and

Valiant [167]; and is deferred to Section 3.1.1.1. With Theorem 3.1.3 in hand, we can apply Theorem 3.1.2 to

obtain the desired lower bound:

Corollary 2.1.12. Tolerant testing of the classes of Binomial and Poisson Binomial Distributions each require

Ω
(

1
(ε2−ε1)

√
n

logn

)
samples.
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We observe that both Corollary 2.1.11 and Corollary 2.1.12 are tight (with regard to the dependence on n), as

was shown in the previous chapter (Section 2.1.5).

3.1.1.1 Proof of Theorem 3.1.3

The theorem will be a consequence of the (slightly) more general result below:

Theorem 3.1.4. There exist absolute constants ε0 > 0 and λ > 0 such that the following holds. Any algorithm

which, given sample access to an unknown distribution p on Ω and parameter ε ∈ (0, ε0), distinguishes with

probability at least 2/3 between (i) ‖p− Bin
(
n, 1

2
)
‖1 ≤ ε and (ii) ‖p− Bin

(
n, 1

2
)
‖1 ≥ λε

1/3 − ε must use

Ω
(
ε
√
n

log(εn)

)
samples.

By choosing a suitable ε and working out the corresponding parameters, this for instance enables us to derive

the following:

Corollary 3.1.5. There exists an absolute constant ε0 ∈ (0, 1/1000) such that the following holds. Any

algorithm which, given sample access to an unknown distribution p on Ω, distinguishes with probability

at least 2/3 between (i) ‖p− Bin
(
n, 1

2
)
‖1 ≤ ε0 and (ii) ‖p− Bin

(
n, 1

2
)
‖1 ≥ 100ε0 must use Ω

( √
n

logn

)
samples.

Proof of Corollary 3.1.5. The corollary follows from the proof of Theorem 3.1.4, by choosing ε0 > 0

sufficiently small so that λε
1/3
0 −ε0
ε0

≥ 100.

By standard techniques, this will in turn imply Theorem 3.1.3.8

Proof of Theorem 3.1.4. Hereafter, we write for convenience Bn
def= Bin

(
n, 1

2
)
. To prove this lower bound,

we will rely on the following:

Theorem 3.1.6 ([167, Theorem 1]). For any constant φ ∈ (0, 1/4), following holds. Any algorithm which,

given sample access to an unknown distribution p on {1, . . . , N}, distinguishes with probability at least 2/3

between (i) ‖p− uN‖1 ≤ φ and (ii) ‖p− uN‖1 ≥
1
2 − φ, must have sample complexity at least φ

32
N

logN .

Without loss of generality, assume n is even (so that Bn has only one mode located at n2 ). For c > 0, we

write In,c for the interval {n2 − c
√
n, . . . , n2 + c

√
n} and Jn,c

def= Ω \ In,c.

Fact 3.1.7. For any c > 0,
Bn(n2 + c

√
n)

Bn(n/2) ,
Bn(n2 − c

√
n)

Bn(n/2) ∼
n→∞

e−2c2

and

Bn(In,c) ∈ (1± o(1)) · [e−2c2 , 1] · 2c
√

2
π

= Θ(c) .

8Namely, for ε ∈ (0, ε0), define the mixture pε
def= ε

ε0
p + (1 − ε

ε0
) Bin(n, 1/2). Being able to distinguish

‖pε − Bin(n, 1/2) ‖1 ≤ ε from ‖pε − Bin(n, 1/2) ‖1 ≥ 100ε in q samples then allows one to distinguish ‖p− Bin(n, 1/2) ‖1 ≤
ε0 from ‖p− Bin(n, 1/2) ‖1 ≥ 100ε0 in O(ε · q) samples.
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The reduction proceeds as follows: given sampling access to p on [N ], we can simulate sampling access

to a distribution p′ on [n] (where n = Θ
(
N2)) such that

• if ‖p− uN‖1 ≤ φ, then ‖p′ −Bn‖1 < ε;

• if ‖p− uN‖1 ≥
1
2 − φ, then ‖p′ −Bn‖1 > ε′ − ε

for ε def= Θ(φ3/2) and ε′ def= Θ(φ 1
2 ); in a way that preserves the sample complexity. The high-level idea is that

(by the above fact) the Binomial distribution over Ω is almost uniform on the middle O(
√
n) elements, and

has a constant fraction of its probability mass there: we can therefore “embed” the tolerant uniformity testing

lower bound (for support O(
√
n)) into this middle interval.

More precisely, define c def=
√

1
2 ln 1

1−φ = Θ
(√
φ
)

(so that φ = 1 − e−2c2) and n such that |In,c| = N

(that is, n = (N/(2c))2 = Θ
(
N2/φ

)
). From now on, we can therefore identify [N ] to In,c in the obvious

way, and see a draw from p as an element in In,c.

Let p def= Bn(In,c) = Θ
(√
φ
)
, and Bn,c, B̄n,c respectively denote the conditional distributions induced by

Bn on In,c and Jn,c. Intuitively, we want p to be mapped to the conditional distribution of p′ on In,c, and the

conditional distribution of p′ on Jn,c to be exactly B̄n,c. This is achieved by defining p′ by the process below:

• with probability p, we draw a sample from p (seen as an element of In,c);

• with probability 1− p, we draw a sample from B̄n,c.

Let B̃n be defined as the distribution which exactly matches Bn on Jn,c, but is uniform on In,c:

B̃n(i) =


p
|In,c| i ∈ In,c

Bn(i) i ∈ Jn,c

From the above, we have that ‖p′ − B̃n‖1 = p · ‖p− uN‖1. Furthermore, by Fact 3.1.7, Lemma 1.4.7 and

the definition of In,c, we get that ‖Bn − B̃n‖1 = p · ‖(Bn)In,c − uIn,c‖1 ≤ p · φ. Putting it all together,

• If ‖p− uN‖1 ≤ φ, then by the triangle inequality ‖p′ −Bn‖1 ≤ p(φ+ φ) = 2pφ;

• If ‖p− uN‖1 ≥
1
2 − φ, then similarly ‖p′ −Bn‖1 ≥ p(

1
2 − φ− φ) = p

4 − 2pφ.

Recalling that p = Θ
(√
φ
)

and setting ε def= 2pφ concludes the reduction. From Theorem 3.1.6, we conclude

that
φ

32
N

logN = Ω
(
φ

√
φn

log(φn)

)
= Ω

(
ε

√
n

log(εn)

)
samples are necessary.
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3.2 The Communication Complexity Reduction

3.2.1 Introduction

In this section, we reveal a connection between distribution testing and the simultaneous message passing

(SMP) communication model, which in turn leads to a new methodology for proving distribution testing

lower bounds. Recall that in a private-coin SMP protocol, Alice and Bob are given strings x, y ∈ {0, 1}k

(respectively), and each of the players is allowed to send a message to a referee (which depends on the player’s

input and private randomness) who is then required to decide whether f(x, y) = 1 by only looking at the

players’ messages and flipping coins.

Figure 3.1: Communicating has been somewhat hard for Alice and Bob lately.

Extending the framework of Blais, Brody, and Matulef [33], we show a simple way of reducing (private-

coin) SMP problems to distribution testing problems. This foregoing methodology allows us to prove new

distribution testing lower bounds, as well as to provide simpler proofs of known lower bounds for problems

such as testing uniformity, monotonicity, and k-modality (see Section 3.2.7).

Our main result is a characterization of the sample complexity of the distribution identity testing problem

in terms of a key operator in the study of interpolation spaces, which arises naturally from our reduction and

for which we are able to provide an intuitive interpretation. Recall that in this problem, the goal is to determine

whether a distribution q over domain Ω (denoted q ∈ ∆(Ω)) is identical to a fixed distribution p; that is, given

a full description of p ∈ ∆(Ω), we ask how many independent samples from q are needed to decide whether

q = p, or whether q is ε-far in `1-distance from p.9

9Note that this is in fact a family of massively parameterized properties {Πp}p∈∆(Ω), where Πp is the property of being identical to
p. See [135] for an excellent survey concerning massively parameterized properties.
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Property Our results Previous bounds

Uniformity Ω̃
(√

n
)

Θ
(√

n
)

[104, 138]

Identity to p Ω
(
κ−1

p (1− ε)
)
, O
(
κ−1

p (1− c · ε)
)

Ω
(
‖p−max

ε ‖2/3
)
, O
(
‖p−max

c′·ε ‖2/3
)

[169]

Monotonicity Ω̃
(√

n
)

Θ
(√

n
)

[19, 3, 51]

k-modal Ω̃
(√

n
)

Ω̃
(
max(

√
n, k)

)
[43]

Log-concavity, Monotone Hazard
Rate

Ω̃
(√

n
)

Θ
(√

n
)

[3, 51]

Binomial, Poisson Binomial Ω̃
(
n1/4) Θ

(
n1/4) ([2, 51]

Symmetric sparse support Ω̃
(√

n
)

Junta distributions (PAIRCOND
model)

Ω(k)

Table 3.1: Summary of results obtained via our communication complexity methodology. All the bounds are
stated for constant proximity parameter ε.

In a recent and influential work, Valiant and Valiant [169] showed that the sample complexity of the

foregoing question is closely related to the `2/3-quasinorm of p, defined as ‖p‖2/3 =
(∑

ω∈Ω |p(ω)|2/3
)3/2

.

That is, viewing a distribution p ∈ ∆(Ω) as an |Ω|-dimensional vector of probabilities, let p−max
−ε be the

vector obtained from p by zeroing out the largest entry as well as the set of smallest entries summing to ε (note

that p−max
−ε is no longer a probability distribution). Valiant and Valiant gave an ε-tester10 for testing identity

to p with sample complexity O
(
‖p−max
−cε ‖2/3

)
, where c > 0 is a universal constant, and complemented this

result with a lower bound of Ω
(
‖p−max
−ε ‖2/3

)
.11

In this work, using our new methodology, we show alternative and similarly tight bounds on the complexity

of identity testing, in terms of a more intuitive measure (as we discuss below) and using simpler arguments.

Specifically, we prove that the sample complexity is essentially determined by a fundamental quantity in

the theory of interpolation of Banach spaces, known as Peetre’s K-functional. Formally, for a distribution

p ∈ ∆(Ω), the K-functional between `1 and `2 spaces is the operator defined for t > 0 by

κp(t) = inf
p′+p′′=p

‖p′‖1 + t‖p′′‖2.

This operator can be thought of as an interpolation norm between the `1 and `2 norms of the distribution

p (controlled by the parameter t), naturally inducing a partition of p into two sub-distributions: p′, which

consists of “heavy hitters” in `1-norm, and p′′, which has a bounded `2-norm. Indeed, the approach of isolating

elements with large mass and testing in `2-norm seems inherent to the problem of identity testing, and is the

core component of both early works [104, 21] and more recent ones [82, 80, 102]. As a further connection to

the identity testing question, we provide an easily interpretable proxy for this measure κp, showing that the

10Throughout the introduction, we fix ε to be small constant and refer to a tester with respect to proximity parameter ε as an ε-tester.
11We remark that for certain p’s, the asymptotic behavior ofO

(
‖p−max
−cε ‖2/3

)
strongly depends on the constant c, and so it cannot be

omitted from the expression. We further remark that this result was referred to by Valiant and Valiant as “instance-optimal identity testing”
as the resulting bounds are phrased as a function of the distribution p itself – instead of the standard parameter which is the domain size n.
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K-functional between the `1 and `2 norms of the distribution p is closely related to the size of the effective

support of p, which is the number of supported elements that constitute the vast majority of the mass of p; that

is, we say that p has ε-effective support of size T if 1−O(ε) of the mass of p is concentrated on T elements

(see Section 3.2.2.4 for details).

Having defined the K-functional, we can proceed to state the lower bound we derive for the problem.12

Theorem 3.2.1 (Informally stated). Any ε-tester of identity to p ∈ ∆(Ω) must have sample complexity

Ω
(
κ−1

p (1− 2ε)
)
.

In particular, straightforward calculations show that for the uniform distribution we obtain a tight lower bound

of Ω(
√
n), and for the Binomial distribution we obtain a tight lower bound of Ω

(
n1/4).

To show that tightness of the lower bound above, we complement it with a nearly matching upper bound,

also expressed in terms of the K-functional.

Theorem 3.2.2 (Informally stated). There exist an absolute constant c > 0 and an ε-tester of identity to

p ∈ ∆(Ω) that uses O
(
κ−1

p (1− cε)
)

samples.13

We remark that for some distributions the bounds in Theorems 3.2.1 and 3.2.2 are tighter than the bounds in

[169], whereas for other distributions it is the other way around (see discussion in Section 3.2.5).

In the following section, we provide an overview of our new methodology as well as the proofs for the

above theorems. We also further discuss the interpretability of the K-functional and show its close connection

to the effective support size. We conclude this section by outlining a couple of extensions of our methodology.

Dealing with sub-constant values of the proximity parameter. Similarly to the communication com-

plexity methodology for proving property testing lower bounds [33], our method inherently excels in the

regime of constant values of the proximity parameter ε. Therefore, in this work we indeed focus on the

constant proximity regime. However, in Section 3.2.4.1 we demonstrate how to obtain lower bounds that

asymptotically increase as ε tends to zero, via an extension of our general reduction.

Extending the methodology to testing with conditional samples. Testers with sample access are by

far the most commonly studied algorithms for distribution testing. However, many scenarios that arise both

in theory and practice are not fully captured by this model. In a recent line of works [54, 49, 1, 94, 97],

testers with access to conditional samples were considered, addressing situations in which one can control

the samples that are obtained by requesting samples conditioned on membership on subsets of the domain.

In Section 3.2.8, we give an example showing that it is possible to extend our methodology to obtain lower

bounds in the conditional sampling model.

12As stated, this result is a slight strengthening of our communication complexity reduction, which yields a lower bound of
Ω
(
κ−1

p (1− 2ε)/ logn
)

. This strengthening is described in Section 3.2.6.3.

13Similarly to the [169] bound, for certain p’s, the asymptotic behavior of O
(
κ−1

p (1− 2ε)
)

depends on the constant c, and so it
cannot be omitted from the expression.
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3.2.1.1 Organization

We first give a technical overview in Section 3.2.2, demonstrating the new methodology and presenting our

bounds on identity testing. In Section 3.2.3 we formally state and analyze the SMP reduction methodology for

proving distribution testing lower bounds. In Section 3.2.4, we instantiate the basic reduction, obtaining a

lower bound on uniformity testing, and in Section 3.2.4.1 show how to extend the methodology to deal with

sub-constant values of the proximity parameter. (We stress that Section 3.2.4.1 is not a prerequisite for the rest

of the sections, and can be skipped at the reader’s convenience.) In Section 3.2.5 we provide an exposition

to the K-functional and generalize inequalities that we shall need for the following sections. Section 3.2.6

then contains the proofs of both lower and upper bounds on the problem of identity testing, in terms of the

K-functional. In Section 3.2.7, we demonstrate how to easily obtain lower bounds for other distribution testing

problems. Finally, in Section 3.2.8 we discuss extensions to our methodology; specifically, we explain how to

obtain lower bounds in various metrics, and show a reduction from communication complexity to distribution

testing in the conditional sampling model.

3.2.2 Technical Overview

In this section we provide an overview of the proof of our main result, which consists of new lower and upper

bounds on the sample complexity of testing identity to a given distribution, expressed in terms of an intuitive,

easily interpretable measure. To do so, we first introduce the key component of this proof, the methodology for

proving lower bounds on distribution testing problems via reductions from SMP communication complexity.

We then explain how the relation to the theory of interpolation spaces and the so-called K-functional naturally

arises when applying this methodology to the identity testing problem.

For the sake of simplicity, throughout the overview we fix the domain Ω = [n] and fix the proximity

parameter ε to be a small constant. We begin in Section 3.2.2.1 by describing a simple “vanilla” reduction

for showing an Ω̃(
√
n) lower bound on the complexity of testing that a distribution is uniform. Then,

in Section 3.2.2.2 we extend the foregoing approach to obtain a new lower bound on the problem of testing

identity to a fixed distribution. This lower bound depends on the best rate obtainable by a special type

of error-correcting codes, which we call p-weighted codes. In Section 3.2.2.3, we show how to relate the

construction of such codes to concentration of measure inequalities for weighted sums of Rademacher random

variables; furthermore, we discuss how the use of the K-functional, an interpolation norm between `1 and `2

spaces, leads to stronger concentration inequalities than the ones derived by Chernoff bounds or the central

limit theorem. Finally, in Section 3.2.2.4 we establish nearly matching upper bounds for testing distribution

identity in terms of this K-functional, using a proxy known as the Q-norm. We then infer that the sample

complexity of testing identity to a distribution p is roughly determined by the size of the effective support of p

(which is, loosely speaking, the number of supported elements which together account for the vast majority of

the mass of p).
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3.2.2.1 Warmup: Uniformity Testing.

Consider the problem of testing whether a distribution q ∈ ∆([n]) is the uniform distribution; that is, how

many (independent) samples from q are needed to decide whether q is the uniform distribution over [n], or

whether q is ε-far in `1-distance from it. We reduce the SMP communication complexity problem of equality

to the distribution testing problem of uniformity testing.

Recall that in a private-coin SMP protocol for equality, Alice and Bob are given strings x, y ∈ {0, 1}k

(respectively), and each of the players is allowed to send a message to a referee (which depends on the player’s

input and private randomness) who is then required to decide whether x = y by only looking at the players’

messages and flipping coins.

Figure 3.2: The reduction from equality in the SMP model to uniformity testing of distributions. In (A) we see
that the uniform distribution is obtained when x = y, whereas in (B) we see that when x 6= y, we obtain a
distribution that is “far” from uniform.

The reduction is as follows. Assume there exists a uniformity tester with sample complexity s. Each of the

players encodes its input string via a balanced asymptotically good code C (that is, C : {0, 1}k → {0, 1}n

is an error-correcting code with constant rate and relative distance δ = Ω(1), which satisfies the property

that each codeword of C contains the same number of 0’s and 1’s). Denote by A ⊂ [n] the locations in

which C(x) takes the value 1 (i.e., A = { i ∈ [n] : C(x)i = 1 }), and denote by B ⊂ [n] the locations in

which C(y) takes the value 0 (i.e., B = { i ∈ [n] : C(y)i = 0 }). Alice and Bob each send O(s) uniformly

distributed samples from A and B, respectively. Finally, the referee invokes the uniformity tester with respect
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to the distribution q = (uA + uB) /2, emulating each draw from q by tossing a random coin and deciding

accordingly whether to use a sample by Alice or Bob. See Fig. 3.2.

The idea is that if x = y, then C(x) = C(y), and so A and B are a partition of the set [n]. Furthermore,

since |C(x)| = |C(y)| = n/2, this is a equipartition. Now, since Alice and Bob send uniform samples from

an equipartition of [n], the distribution q that the referee emulates is in fact the uniform distribution over

[n], and so the uniformity tester will accept. On the other hand, if x 6= y, then C(x) and C(y) disagree on

a constant fraction of the domain. Thus, A and B intersect on δ/2 elements, as well as do not cover δ/2.

Therefore q is uniform on a (1− δ)-fraction of the domain, unsupported on a (δ/2)-fraction of the domain,

and has “double” weight 2/n on the remaining (δ/2)-fraction. In particular, since δ = Ω(1), the emulated

distribution q is Ω(1)-far (in `1-distance) from uniform, and it will be rejected by the uniformity tester.

As each sample sent by either Alice or Bob was encoded with O(logn) bits, the above constitutes an

SMP protocol for equality with communication complexity O(s log(n)). Yet it is well known [136] that

the players must communicate Ω(
√
k) bits to solve this problem (see Section 3.2.3), and so we deduce that

s = Ω(
√
k/ log(n)) = Ω̃(

√
n).

3.2.2.2 Revisiting Distribution Identity Testing: A New Lower Bound

Next, consider the problem of testing whether a distribution q ∈ ∆([n]) is identical to a fixed distribution

p, provided as a (massive) parameter; that is, given a full description of p ∈ ∆([n]), we ask how many

independent samples from q are needed to decide whether q = p, or whether q is ε-far in `1-distance from

p. As mentioned earlier, Valiant and Valiant [169] established both upper and lower bounds on this problem,

involving the `2/3-quasinorm of p. We revisit this question, and show different – and more interpretable – upper

and lower bounds. First, by applying our new communication complexity methodology to the distribution

identity problem, we obtain a simple lower bound expressed in terms of a new parameter, which is closely

related to the effective support size of p.

Consider any fixed p ∈ ∆([n]). As a first idea, it is tempting to reduce equality in the SMP model

to testing identity to p by following the uniformity reduction described in Section 3.2.2.1, only instead of

having Alice and Bob send uniform samples from A and B, respectively, we have them send samples from p

conditioned on membership in A and B respectively. That is, as before Alice and Bob encode their inputs

x and y via a balanced, asymptotically good code C to obtain the sets A = { i ∈ [n] : C(x)i = 1 } and

B = { i ∈ [n] : C(y)i = 0 }, which partition [n] if x = y, and intersect on Ω(n) elements (as well as fail to

cover Ω(n) elements of [n]) if x 6= y. Only now, Alice sends samples independently drawn from p|A, i.e., p

conditioned on the samples belonging to A, and Bob sends samples independently drawn from p|B , i.e., p

conditioned on the samples belonging to B; and the referee emulates the distribution q = (p|A + p|B)/2.

However, two problems arise in the foregoing approach. The first is that while indeed when x = y the

reduction induces an equipartition A,B of the domain, the resulting weights p(A) and p(B) in the mixture

may still be dramatically different, in which case the referee will need much more samples from one of the
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parties to emulate p. The second is a bit more subtle, and has to do with the fact that the properties of this

partitioning are with respect to the size of the symmetric difference A∆B, while really we are concerned about

its mass under the emulated distribution q (and although both are proportional to each other in the case of the

uniform distribution, for general p we have no such guarantee). Namely, when x 6= y the domain elements

which are responsible for the distance from p (that is, the elements which are covered by both parties (A ∩B)

and by neither of the parties ([n] \ (A∪B)) may only have a small mass according to p, and thus the emulated

distribution q will not be sufficiently far from p. A natural attempt to address these two problems would be to

preprocess p by discarding its light elements, focusing only on the part of the domain where p puts enough

mass pointwise; yet this approach can also be shown to fail, as in this case the reduction may still not generate

enough distance.14

Instead, we take a different route. The key idea is to consider a new type of codes, which we call

p-weighted codes, which will allow us to circumvent the second obstacle. These are code whose distance

guarantee is weighted according to the distribution p; that is, instead of requiring that every two codewords

c, c′ in a code C satisfy dist(x, y) def=
∑n
i=1 |xi − yi| ≥ δ, we consider a code Cp : {0, 1}k → {0, 1}n such

that every c, c′ ∈ Cp satisfy

distp(x, y) def=
n∑
i=1

p(i) · |xi − yi| ≥ δ.

Furthermore, to handle the first issue, we adapt the “balance” property accordingly, requiring that each

codeword be balanced according to p, that is, every c ∈ Cp satisfies
∑n
i=1 p(i) · ci = 1/2.

It is straightforward to see that if we invoke the above reduction while letting the parties encode their

inputs via a balance p-weighted code Cp, then both of the aforementioned problems are resolved; that is,

by the p-balance property the weights p(A) and p(B) are equal, and by the p-distance of Cp we obtain

that for x 6= y the distribution q = (pA + pB)/2 is Ω(1)-far from p. Hence we obtain a lower bound of

Ω
(√

k/ log(n)
)

on the query complexity of testing identity to p. To complete the argument, it remains to

construct such codes, and determine what the best rate k/n that can be obtained by p-weighted codes is.

3.2.2.3 Detour: p-weighted Codes, Peetre’s K-functional, and beating the CLT

The discussion of previous section left us with the task of constructing high-rate p-weighted codes. Note that

unlike standard (uniformly weighted) codes, for which we can easily obtain constant rate, there exist some p’s

for which high rate is impossible (for example, if p ∈ ∆([n]) is only supported on one element, we can only

obtain rate 1/n). In particular, by the sphere packing bound, every p-weighted code C : {0, 1}k → {0, 1}n

with distance δ must satisfy

2k︸︷︷︸
#codewords

≤ 2n

VolFn2 ,distp(δ/2) ,

14In more detail, this approach would consider the distribution p′ obtained by iteratively removing the lightest elements of p until
a total of ε probability mass was removed. This way, every element i in the support of p′ is guaranteed to have mass p′i ≥ ε/n: this
implies that the weights p′(A) and p′(B) are proportional, and that each element that is either covered by both parties or not covered at
all will contribute ε/n to the distance from p′. However, the total distance of q from p would only be Ω(| supp(p′) | · ε/n); and this
only suffices if p and p′ have comparable support size, i.e. | supp(p) | = O(| supp(p′) |).
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where VolFn2 ,distp(r) is the volume of the p-ball of radius r in the n-dimensional hypercube, given by

VolFn2 ,distp(r) def=

∣∣∣∣∣
{
w ∈ Fn2 :

n∑
i=1

pi · wi ≤ r
}∣∣∣∣∣ .

Hence, we must have k ≤ n− log VolFn2 ,distp(δ/2).

In Section 3.2.6.1 we show that there exist (roughly) balanced p-weighted codes with nearly-optimal

rate,15 and so it remains to determine the volume of the p-ball of radius ε in the n-dimensional hypercube,

where recall that ε is the proximity parameter of the test. To this end, it will be convenient to represent this

quantity as a concentration inequality of sums of weighted Rademacher random variables, as follows

VolFn2 ,distp(ε) = 2n Pr
Y∼{0,1}n

[
n∑
i=1

piYi ≤ ε
]

= 2n Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2ε
]
. (3.1)

Applying standard tail bounds derived from the central limit theorem (CLT), we have that

Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2ε
]
≤ e

−(1−2ε)2

2‖p‖22 , (3.2)

and so we can obtain a p-weighted code Cp : {0, 1}k → {0, 1}n with dimension k = O(1/‖p‖22), which in

turn, by the reduction described in Section 3.2.2.2, implies a lower bound of Ω(1/(‖p‖2 · log(n))) on the

complexity of testing identity to p.

Unfortunately, the above lower bound is not as strong as hoped, and in particular, far weaker than the

‖p−max
−ε ‖2/3 bound of [169].16 Indeed, it turns out that the CLT-based bound in Eq. (3.2) is only tight for

distributions satisfying ‖p‖∞ = O(‖p‖22), and is in general too crude for our purposes. Instead, we look for

stronger concentration of measure inequalities that “beat” the CLT. To this end, we shall use powerful tools

from the theory of interpolation spaces. Specifically, we consider Peetre’s K-functional between `1 and `2

spaces. Loosely speaking, this is the operator defined for t > 0 by

κp(t) = inf
p′+p′′=p

‖p′‖1 + t‖p′′‖2.17

This K-functional can be thought of as an interpolation norm between the `1 and `2 norms of the

distribution p (and accordingly, for any fixed t it defines a norm on the space `1 + `2). In particular, note

15We remark that since these codes are not perfectly p-balanced, a minor modification to the reduction needs to be done.
See Section 3.2.6.1 for details.

16For example, fix α ∈ (0, 1), and consider the distribution p ∈ ∆([n]) in which n/2 elements are of mass 1/n, and nα/2 elements
are of mass 1/nα. It is straightforward to verify that ‖p‖−1

2 = Θ
(
(
√
n)α
)

, whereas ‖p‖2/3 = Θ
(√

n
)

. (Intuitively, this is because
the `2-norm is mostly determined by the few heavy elements, whereas the `2/3-quasinorm is mostly determined by the numerous light
elements.)

17Interestingly, Holmstedt [113] showed that the infimum is approximately obtained by partitioning p = (p′,p′′) such that p′
consists of the heaviest t2 coordinates of p and p′′ consists of the rest (for more detail, see Proposition 3.2.12).
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that for large values of t the function κp(t) is close to ‖p‖1, whereas for small values of t it will behave like

t‖p‖2.

The foregoing connection is due to Montgomery-Smith [133], who established the following concentration

of measure inequality for weighted sums of Rademacher random variables,

Pr
[

n∑
i=1

piXi ≥ κp(t)
]
≤ e− t

2
2 . (3.3)

Furthermore, he proved that this concentration bound is essentially tight (see Section 3.2.5 for a precise

statement). Plugging (3.3) into (3.1), we obtain a lower bound of Ω(κ−1
p (1− 2ε)/ log(n)) on the complexity

of testing identity to p.

To understand and complement this result, we describe in the next subsection a nearly tight upper bound

for this problem, also expressed in terms of this K-functional; implying that this unexpected connection is in

fact not a coincidence, but instead capturing an intrinsic aspect of the identity testing question. We also give a

natural interpretation of this bound, showing that the size of the effective support of p (roughly, the number

of supported elements that constitute the vast majority of the mass of p) is a good proxy for this parameter

κ−1
p (1− 2ε) – and thus for the complexity of testing identity to p.

3.2.2.4 Using the Q-norm Proxy to Obtain an Upper Bound

To the end of obtaining an upper bound on the sample complexity of testing identity to p, in terms of the

K-functional, it will actually be convenient to look at a related quantity, known as the Q-norm [133]. At a

high-level, the Q-norm of a distribution p, for a given parameter T ∈ N, is the maximum one can reach by

partitioning the domain of p into T sets and taking the sum of the `2 norms of these T subvectors. That is

‖p‖Q(T )
def= sup


T∑
j=1

∑
i∈Aj

p2
i

1/2

: (Aj)1≤j≤T partition of N

 .

Astashkin [11], following up Montgomery-Smith [133], showed that the Q-norm constitutes a good

approximation of K-functional, by proving that

‖p‖Q(t2) ≤ κp(t) ≤
√

2‖p‖Q(t2).

In Section 3.2.5 we further generalize this claim and show it is possible to get a tradeoff in the upper bound;

specifically, we prove that κp(t) ≤ ‖p‖Q(2t2). Thus, it suffices to prove an upper bound on distribution

identity testing in terms of the Q-norm.

From an algorithmic point of view, it is not immediately clear that switching to this Q-norm is of any

help. However, we will argue that this value captures – in a very quantitative sense – the notion of the

sparsity of p. As a first step, observe that if ‖p‖Q(T ) = 1, then the distribution p is supported on at most T
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elements. To see this, denote by pAj the restriction of the sequence p to the indices in Aj , and note that if

‖p‖Q(T )
def=
∑T
j=1 ‖pAj‖2 = 1, then by the monotonicity of `p norms and since

∑T
j=1 ‖pAj‖1 = ‖p‖1 = 1

we have that
T∑
j=1

(‖pAj‖1 − ‖pAj‖2︸ ︷︷ ︸
≥0

) = 0,

which implies that ‖pAj‖1 = ‖pAj‖2 for all j ∈ [T ].

Now, it turns out that it is possible to obtain a robust version of the foregoing observation, yielding

a sparsity lemma that, roughly speaking, shows thats if ‖p‖Q(T ) ≥ 1 − ε, then 1 − O(ε) of the mass of

p is concentrated on T elements: in this case we say that p has O(ε)-effective support of size T . (See

Lemma 3.2.28 for precise statement of the sparsity lemma.)

This property of theQ-norm suggests the following natural test for identity to a distribution p: Simply fix T

such that ‖p‖Q(T ) = 1− ε, and apply one of the standard procedures for testing identity to a distribution with

support size T , which require O(
√
T ) samples. But by the previous discussion, we have ‖p‖Q(2t2) ≥ κp(t),

so that setting T = 2t2 for the “right” choice of t = κ−1
p (1 − 2ε) will translate to an O(t) upper bound –

which is what we were aiming for.

3.2.3 The Methodology: From Communication Complexity to Distribution Testing

In this section we adapt the methodology for proving property testing lower bounds via reductions from

communication complexity, due to Blais, Brody, and Matulef [33], to the setting of distribution testing. As

observed in [33, 40], to prove lower bounds on the query complexity of non-adaptive testers it suffices to

reduce from one-sided communication complexity. We show that for distribution testers (which are inherently

non-adaptive), it suffices to reduce from the more restricted communication complexity model of private-coin

simultaneous message passing (SMP).

Recall that a private-coin SMP protocol for a communication complexity predicate f : {0, 1}k×{0, 1}k →

{0, 1} consists of three computationally unbounded parties: Two players (commonly referred to as Alice

and Bob), and a Referee. Alice and Bob receive inputs x, y ∈ {0, 1}k. Each of the players simultaneously

(and independently) sends a message to the referee, based on its input and (private) randomness. The referee

is then required to successfully compute f(x, y) with probability at least 2/3, using its private randomness

and the messages received from Alice and Bob. The communication complexity of an SMP protocol is the

total number of bits sent by Alice and Bob. The private-coin SMP complexity of f , denoted SMP(f), is the

minimum communication complexity of all SMP protocols that solve f with probability at least 2/3.

Generally, to reduce an SMP problem f to ε-testing a distribution property Π, Alice and Bob can

send messages mA(x, rA, ε) and mB(y, rB , ε) (respectively) to the Referee, where rA and rB are the private

random strings of Alice and Bob. Subsequently, the Referee uses the messagesmA(x, rA, ε) andmA(y, rB , ε),

as well as its own private randomness, to feed the property tester samples from a distribution p that satisfies

the following conditions: (1) completeness: if f(x, y) = 1, then p ∈ Π; and (2) soundness: if f(x, y) = 0,
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then p is ε-far from Π in `1-distance.

We shall focus on a special type of the foregoing reductions, which is particularly convenient to work

with and suffices for all of the our lower bounds. Loosely speaking, in these reductions Alice and Bob both

send the prover samples from sub-distributions that can be combined by the Referee to obtain samples from a

distribution that satisfies the completeness and soundness conditions. The following lemma gives a framework

for proving lower bounds based on such reductions.

Lemma 3.2.3. Let ε > 0, and let Ω be a finite domain of cardinality n. Fix a property Π ⊆ ∆(Ω) and a

communication complexity predicate f : {0, 1}k × {0, 1}k → {0, 1}. Suppose that there exists a mapping

p : {0, 1}k × {0, 1}k → ∆(Ω) that satisfies the following conditions.

1. Decomposability: For every x, y ∈ {0, 1}k, there exist constants α = α(x), β = β(y) ∈ [0, 1] and

distributions pA(x),pB(y) such that

p(x, y) = α

α+ β
· pA(x) + β

α+ β
· pB(y)

and α, β can each be encoded with O(logn) bits.

2. Completeness: For every (x, y) ∈ f−1(1), it holds that p(x, y) ∈ Π.

3. Soundness: For every (x, y) ∈ f−1(0), it holds that p(x, y) is ε-far from Π in `1 distance.

Then, every ε-tester for Π needs Ω
(

SMP(f)
log(n)

)
samples.

Proof. Supose there exists an ε-tester for Π with sample complexity s′; assume without loss of generality

that the soundness of the foregoing tester is 5/6, at the cost of increasing the query complexity to s = O(s′).

Let x, y ∈ {0, 1}k be the inputs of Alice and Bob (respectively) for the SMP problem. Alice computes the

distribution pA(x) and the “decomposability parameter" α = α(x) and sends 6s independent samples from

pA(x), as well as the parameter α. Analogously, Bob computes pB(y) and its parameter β = β(y), and

sends 6s independent samples from pB(y) as well as the parameter β. Subsequently, the referee generates a

sequence of q independent samples from p(x, y), where each sample is drawn as follows: with probability
α

α+β use a (fresh) sample from Alice’s samples, and with probability 1− α
α+β use a (fresh) sample from Bob’s

samples. Finally the referee feeds the generated samples to the ε-tester for Π.

By Markov’s inequality, the above procedure indeed allows the referee to retrieve, with probability at

least 1− αs
6s ≥

5
6 , at least s independent samples from the distribution α

α+β · pA(x) + β
α+β · pB(y), which

equals to p(x, y), by the decomposability condition. If (x, y) = f−1(1), then by the completeness condition

p(x, y) ∈ Π, and so the ε-tester for Π is successful with probability at least 5
6 ·

5
6 . Similarly, if (x, y) = f−1(0),

then by the soundness condition p(x, y) is ε-far from Π, and so the ε-tester for Π is successful with probability

at least 5
6 ·

5
6 . Finally, note that since each one of the samples provided by Alice and Bob requires sending

logn bits, the total communication complexity of the protocol is 12s logn+O(logn) (the last term from the

cost of sending α, β), hence s′ = Ω
(

SMP(f)
log(n)

)
.
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We conclude this section by stating a well-known SMP lower bound on the equality problem. Let

EQk : {0, 1}k × {0, 1}k → {0, 1} be the equality predicate, i.e., EQk(x, y) = 1 if and only if x = y. In this

work, we shall frequently use the following (tight) lower bound on the EQk predicate:

Theorem 3.2.4 (Newman and Szegedy [136]). For every k ∈ N it holds that SMP(EQk) = Ω
(√

k
)

.

3.2.4 The Basic Reduction: The Case of Uniformity

Theorem 3.2.5. For any ε ∈ (0, 1/2) and finite domain Ω, testing that p ∈ ∆(Ω) is uniform, with respect to

proximity parameter ε, requires Ω̃(
√
n) samples, where n = |Ω|.

Proof. Assume there exists a q-query ε-tester for the uniform distribution, with error probability 1/6. For a

sufficiently large k ∈ N, let C : {0, 1}k → {0, 1}n be a balanced code as promised by Proposition 1.5.1 with

distance ε. Namely, there exists an absolute constant ρ > 0 such that

(i) |C(x)| = n
2 for all x ∈ {0, 1}k;

(ii) dist(C(x), C(y)) > ε for all distinct x, y ∈ {0, 1}k;

(iii) k
n ≥ ρ.

Given their respective inputs x, y ∈ {0, 1}k from EQk, Alice and Bob separately create inputs (C(x), C(y)) ∈

{0, 1}n×{0, 1}n, and the corresponding sets A def= { i ∈ [n] : C(x)i = 1 }, B def= { i ∈ [n] : C(y)i = 0 }.

We then invoke the general reduction of Lemma 3.2.3 as follows: we set α = β = 1
2 , and pA(x) ∈ ∆(Ω)

(respectively pB(y) ∈ ∆(Ω)) to be the uniform distribution on the set A (respectively B). It is clear that

the decomposability condition of the lemma is satisfied for p(x, y) = α
α+β · pA(x) + β

α+β · pB(y) =
1
2 (pA(x) + pB(y)); we thus turn to the second and third conditions.

Completeness. If (x, y) ∈ EQ−1
k (1), then C(x) = C(y) and A = [n]\B. This implies that p(x, y) is indeed

the uniform distribution on [n], as desired.

Soundness. If (x, y) ∈ EQ−1
k (0), then dist(C(x), C(y)) > ε, and therefore |A4B̄| > εn by construction.

Since p(x, y) assigns mass 2/n to each element in A ∩ B = A \ B̄, and mass 0 to any element in

Ā ∩ B̄ = B̄ \A, we have ‖p(x, y)− u‖1 = 1
n · |A4B̄| > ε; that is, p(x, y) is ε-far from uniform.

The desired Ω
( √

n
logn

)
lower bound then immediately follows from Lemma 3.2.3 and Theorem 3.2.4.

3.2.4.1 Obtaining ε-Dependency

In this section, we explain how to generalize the reduction from the previous section to obtain some dependence

(albeit non optimal) on the distance parameter ε in the lower bound. This generalization will rely on an

extension of the methodology of Lemma 3.2.3: instead of having the referee define the distribution p(x, y) as

a mixture of pA(x) and pB(y) (namely, p(x, y) = α(x)
α(x)+β(y)pA(x) + β(y)

α(x)+β(y)pB(y)), he will instead use

a (random) combination function Fε, function of ε and its private coins only. Given this function, which maps
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a larger domain of size m = Θ
(
n/ε2) to [n], p(x, y) will be defined as the mixture

p(x, y) = α(x)
α(x) + β(y)pA(x) ◦ F−1

ε + β(y)
α(x) + β(y)pB(y) ◦ F−1

ε .

More simply, this allows Alice and Bob to send to the referee samples from their respective distributions

on a much larger domain m � n; the referee, who has on its side chosen how to randomly partition this

large domain into only n different “buckets,” converts these draws from Alice and Bob into samples from the

induced distributions on the n buckets, and takes a mixture of these two distributions instead. By choosing

each bucket to chave size roughly 1/ε2, we expect this random “coarsening” of Alice and Bob’s distributions

to yield a distribution at distance only Ω(ε) from uniformity (instead of constant distance) in the no-case; but

now letting us get a lower bound on the original support size m, i.e. Ω̃
(√

n/ε2
)

, instead of Ω̃(
√
n) as before.

Theorem 3.2.6. For any ε ∈ (0, 1/2) and finite domain Ω, testing that p ∈ ∆(Ω) is uniform, with respect to

proximity parameter ε, requires Ω̃(
√
n/ε) samples, where n = |Ω|.

Proof of Theorem 3.2.6. We will reduce from EQk, where k ∈ N is again assumed big enough (in particular,

with regard to 1/ε2). Alice and Bob act as in Section 3.2.4, separately creating (a, b) = (C(x), C(y)) ∈

{0, 1}m× ∈ {0, 1}m from their respective inputs x, y ∈ {0, 1}k (where C : {0, 1}k → {0, 1}m is a balanced

code with linear rate and distance δ def= 1/3). As before, they consider the sets A def= { i ∈ [m] : C(x)i = 1 },

B
def= { i ∈ [m] : C(y)i = 0 }, set α = β = 1

2 , and consider the distributions pA(x),pB(y) ∈ ∆([m])

which are uniform respectively on A and B.

This is where we deviate from the proof of Theorem 3.2.5: indeed, setting n def= cε2m (where c > 0 is

an absolute constant determined later), the referee will combine the samples from pA(x) and pB(y) in a

different way to emulate a distribution p(x, y) ∈ ∆([n]) – that is, with a much smaller support than that of

pA(x),pB(y) (instead of setting p(x, y) to be, as before, a mixture of the two).

To do so, the referee randomly partitions [m] into n sets B1, . . . , Bn of equal size r def= |Bj | = m
n = 1

cε2 ,

j ∈ [n], by choosing a uniformly random equipartition of [m]. He then defines the distribution p = p(x, y) ∈

∆([n]) by p(j) = Pr[ i ∈ Bj ] (where i ∈ [m] is received from either Alice or Bob). Viewed differently, the

random equipartition chosen by the referee induces a mapping Fε : [m] → [n] such that
∣∣F−1(j)

∣∣ = r for

all j ∈ [n]; and, setting p′(x, y) = 1
2 (pA(x) + pB(y)) ∈ ∆([m]), we obtain p(x, y) as the coarsening of

p′(x, y) defined as

p(x, y)(j) =
∑

i∈F−1
ε (j)

p′(x, y)(i) = p′(x, y)(F−1
ε (j)) = 1

2
(
pA(x)(F−1

ε (j)) + pB(y)(F−1
ε (j))

)
, j ∈ [n].

Note furthermore that each sample sent by Alice and Bob (who have no knowledge of the randomly chosen

Fε) can be encoded with O(logm) = O(log n
ε ) bits.

We then turn to establish the analogue in this generalized reduction of the last two conditions of Lemma 3.2.3,

i.e. the completeness and soundness. The former, formally stated below, will be an easy consequence of the
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previous section.

Claim 3.2.7. If x = y, then p(x, y) is uniform on [n].

Proof. As in the proof of Theorem 3.2.5, in this case the distribution p′(x, y) = 1
2 (pA(x)+pB(y)) ∈ ∆([m])

is uniform; since each “bucket”Bj = F−1
ε (j) has the same size, this implies that p(x, y)(j) = p′(x, y)(Bj) =

1
n for all j ∈ [n].

Establishing the soundness, however, is not as straightforward:

Claim 3.2.8. If x 6= y, then with probability at least 1/100 (over the choice of the equipartition (B1, . . . , Bn)),

p(x, y) is ε-far from uniform.

Proof. Before delving into the proof, we provide a high-level idea of why this holds. Since the partition

was chosen uniformly at random, on expectation each element j ∈ [n] will have probability E[p(x, y)(j)] =

E[p′(x, y)(Bj)] = 1
n . However, since a constant fraction of elements i ∈ [m] (before the random partition) has

probability mass either 0 or 2/m (as in the proof of Theorem 3.2.5), and each bucket Bj contains r = 1/(cε2)

many elements chosen uniformly at random, we expect the fluctuations of p′(x, y)(Bj) around its expectation

to be of the order of Ω(
√
r/m) = Ω(ε/n) with constant probability, and summing over all j’s this will give

us the distance Ω(ε) we want.

To make this argument precise, we assume x 6= y, so that A4B̄ > δm; and define H def= A ∩ B,L def=

Ā∩ B̄ (so that |H| = |L| > δ
2m). For any j ∈ [n], we then let the random variables H(j), L(j) be the number

of “high” and ”low” elements of [m] in the bucket Bj , respectively:

H(j) def= |Bj ∩H| , L(j) def= |Bj ∩ L| .

From the definition, we get that p = p(x, y) satisfies p(j) = 1
m

(
2H(j) + (r −H(j) − L(j)) = r

m +
H(j)−L(j)

m for j ∈ [n]. Furthermore, it is easy to see that E[p(j)] = r
m = 1

n for all j ∈ [n], where the

expectation is over the choice of the equipartition by the referee.

As previously discussed, we will analyze the deviation from this expectation; more precisely, we want

to show that with good probability, a constant fraction of the j’s will be such that p(j) deviates from 1/n

by at least an additive Ω(
√
r/m) = ε/n. This anticoncentration guarantee will be a consequence of the

Paley–Zygmund inequality (Theorem 1.4.13) to Z(j) def= (H(j) − L(j))2 ≥ 0; in view of applying it, we need

to analyze the first two moments of this random variable.

Lemma 3.2.9. For any j ∈ [n], we have the following. (i) E
[
(H(j) − L(j))2] = δrm−rm−1 , and (ii) E

[
(H(j) − L(j))4] =

3(1 + o(1))δ2r2.

Proof. Fix any j ∈ [n]. We write for convenience X and Y for respectively H(j) and L(j). The distribution
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of (X,Y, r − (X − Y )) is then a multivariate hypergeometric distribution [176] with 3 classes:

(X,Y, r − (X + Y )) ∼ MultivHypergeom3(( 1
2δm,

1
2δm, (1− δ)m)︸ ︷︷ ︸

(K1,K2,K3)

,m, r).

Conditioning on U def= X + Y , we have that E[X | U ] follows a hypergeometric distribution, specifically

E[X | U ] ∼ Hypergeom(U, 1
2δm, δm). Moreover, U itself is hypergeometrically distributed, with U ∼

Hypergeom(r, δm,m). We can thus write

E
[
(X − Y )2] = E

[
E
[
(X − Y )2 | U

]]
= E

[
E
[
(2X − U)2 | U

]]
and

E
[
(X − Y )4] = E

[
E
[
(X − Y )4 | U

]]
= E

[
E
[
(2X − U)4 | U

]]
.

By straightforward, yet tedious, calculations involving the computation of E
[
(2X − U)2 | U

]
and

E
[
(2X − U)4 | U

]
(after expanding and using the known moments of the hypergeometric distribution),18 we

obtain

E
[
(X − Y )2] = δr

m− r
m− 1 =

m→∞
(1 + o(1))δr

E
[
(X − Y )4] =

(δr(r −m)((−1 + 3δ(m− 1)−m)m+ 6r2( 1
2δm− 1)− 6rm( 1

2δm− 1)))
(m− 3)(m− 2)(m− 1)

−−−−→
m→∞

3δ2r2 + (1− 3δ)δr = 3δ2r2

the last equality as δ = 1/3.

We can now apply the Paley–Zygmund inequality to Z(j). Doing so, we obtain that for r ≤ m
4 (with some

slack), and any θ ∈ [0, 1],

Pr
[ ∣∣∣H(j) − L(j)

∣∣∣ ≥ θ√1
2δr

]
≥ Pr

[ ∣∣∣H(j) − L(j)
∣∣∣ ≥ θ√δrm− r

m− 1

]
≥ (1− θ2)2E

[
(H(j) − L(j))2]2

E
[
(H(j) − L(j))4

] .
By the lemma above, the RHS converges to (1−θ2)2

3 when m→∞, and therefore is at least (1−θ2)2

4 for m big

enough. We set θ def= 1/
√

2 to obtain the following: there exists M ≥ 0 such that

Pr
[ ∣∣∣H(j) − L(j)

∣∣∣ ≥√δr

4

]
≥ 1

16 (3.4)

18One can also use a formal computation system, e.g. Mathematica:

Expectation[ Expectation[(2 X - U)^2, {X \[Distributed] HypergeometricDistribution[U, a*m, 2 a*m]}],
{U \[Distributed] HypergeometricDistribution[r, 2*a*m, m]}]

Expectation[ Expectation[(2 X - U)^4, {X \[Distributed] HypergeometricDistribution[U, a*m, 2 a*m]}],
{U \[Distributed] HypergeometricDistribution[r, 2*a*m, m]}]
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for every m ≥M .

Eq. (3.4) implies that the number K of good indices j ∈ [n] satisfying
∣∣H(j) − L(j)

∣∣ ≥ √ δr
4 is on

expectation at least n
16 , and by an averaging argument19 we get that K ≥ n

20 with probability at least
1
76 >

1
100 .

Whenever this happens, the distance from p to uniform is at least

∑
j good

∣∣∣∣p(j)− 1
n

∣∣∣∣ =
∑
j good

∣∣H(j) − L(j)
∣∣

m
≥ n

20 ·

√
δr
4

m
=
√
δr

40
n

m
=
√
c

40
√

3
ε

and choosing c ≥ 4800 so that
√
c

40
√

3 ≥ 1 yields the claim.

From this lemma, we can complete the reduction: given a tester T for uniformity with query complexity q,

we first convert it by standard amplification into a tester T ′ with failure probability δ def= 1/1000 and sample

complexity O(q). The referee can provide samples from the distribution p(x, t), and on input ε:

• If x = y, then T ′ will return reject with probability at most 1/200;

• If x 6= y, then T ′ will return reject with probability at least 199/200 · 1/100 > 1/200;

so repeating independently the protocol a constant (fixed in advance) number of times and taking a majority

vote enables the referee to solve EQk with probability at least 2/3. Since Ω
(√

k
)

= Ω
(√

n/ε2
)

bits of

communication are required for this, and each sample sent by Alice or Bob to the referee only requires

Θ
(
log n

ε

)
bits, we get a lower bound of

Ω
( √

n

ε log n
ε

)
= Ω̃

(√
n

ε

)

on the sample complexity of T ′, and therefore of T .

3.2.5 The K-Functional: An Unexpected Journey

A quantity that will play a major role in our results is the K-functional between `1 and `2, a specific case of

the key operator in interpolation theory introduced by Peetre [141]. We start by recalling below the definition

and some of its properties, before establishing (for our particular setting) results that will be crucial to us. (For

more on the K-functional and its use in functional analysis, the reader is referred to [25] and [11].)

Definition 3.2.10 (K-functional). Fix any two Banach spaces (X0, ‖·‖0), (X1, ‖·‖1). The K-functional

between X0 and X1 is the function KX0,X1 : (X0 +X1)× (0,∞)→ [0,∞) defined by

KX0,X1(x, t) def= inf
(x0,x1)∈X0×X1

x0+x1=x

‖x0‖0 + t‖x1‖1.

19Applying Markov’s inequality: Pr
[
K < n

20

]
= Pr

[
n−K > 19n

20

]
≤ n−E[K]

19n/20 ≤
15/16
19/20 = 75

76 .
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For a ∈ `1 + `2, we denote by κa the function t 7→ K`1,`2(a, t).

In other terms, as t varies the quantity κa(t) interpolates between the `1 and `2 norms of the sequence

a (and accordingly, for any fixed t it defines a norm on `1 + `2). In particular, note that for large values of

t the function κa(t) is close to ‖x‖1, whereas for small values of t the function κa(t) is close to t‖x‖2 (see

Corollary 3.2.14). We henceforth focus on the case of K`1,`2 , although some of the results mentioned hold for

the general setting of arbitrary Banach X0, X1.

Proposition 3.2.11 ([25, Proposition 1.2]). For any a ∈ `1 + `2, κa is continuous, increasing, and concave.

Moreover, the function t ∈ (0, 1) 7→ κa
t is decreasing.

Although no closed-form expression is known for κa, it will be necessary for us to understand its behavior,

and therefore seek good upper and lower bounds on its value. We start with the following inequality, due

to Holmstedt [113], which, loosely speaking, shows that the infimum in the definition of κa(t) is roughly

obtained by partitioning a = (a1, a2) such that a1 consists of heaviest t2 coordinates of a, and a2 consists of

the rest.

Proposition 3.2.12 ([11, Proposition 2.2], after [113, Theorem 4.2]). For any a ∈ `2 and t > 0,

1
4

bt
2c∑

i=1
a∗i + t

 ∞∑
i=bt2c+1

a∗i
2

 1
2
 ≤ κa(t) ≤

bt2c∑
i=1

a∗i + t

 ∞∑
i=bt2c+1

a∗i
2

 1
2

(3.5)

where a∗ is a non-increasing permutation of the sequence (|ai|)i∈N.

(We remark that for our purposes, this constant factor gap between left-hand and right-hand side is not

innocuous, as we will later need to study te behavior of the inverse of the function κa.)

Incomparable bounds on κa were obtained [133], relating it to a different quantity, the “Q-norm,” which

we discuss and generalize next.

3.2.5.1 Approximating the K-Functional by the Q-norm

Loosely speaking, the Q-norm of a vector a (for a given parameter T ) is a mixed `1/`2 norm: it is the

maximum one can reach by partitioning the components of a into T sets, and taking the sum of the `2 norms

of these T subvectors. Although not straightforward to interpret, this intuitively captures the notion of sparsity

of a: indeed, if a is supported on k elements then its Q-norm becomes equal to the `1 norm for parameter

T ≥ k.

Proposition 3.2.13 ([11, Lemma 2.2], after [133, Lemma 2]). For arbitrary a ∈ `2 and t ∈ N, define the

norm

‖a‖Q(t)
def= sup


t∑

j=1

∑
i∈Aj

a2
i

1/2

: (Aj)1≤j≤t partition of N

 .
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Then, for any a ∈ `2, and t > 0 such that t2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤
√

2‖a‖Q(t2). (3.6)

As we shall see shortly, one can generalize this result further, obtaining a tradeoff in the upper bound.

Before turning to this extension in Lemma 3.2.15 and Lemma 3.2.18, we first state several other properties of

the K-functional implied by the above:

Corollary 3.2.14. For any a ∈ `2,

(i) κa(t) = t‖a‖2 for all t ∈ (0, 1)

(ii) limt→0+ κa(t) = 0

(iii) 1
4‖a‖1 ≤ limt→∞ κa(t) ≤ ‖a‖1.

Moreover, for a supported on finitely many elements, it is the case that limt→∞ κa(t) = ‖a‖1.

Proof. The first two points follow by definition; turning to Item (iii), we first note the upper bound is

a direct consequence of the definition of κa as an infimum (as, for all t > 0, κa(t) ≤ ‖a‖1). (This

itself ensures the limit as t → ∞ exists by monotone convergence, as κa is a non-decreasing bounded

function.) The lower bound follows from that of Proposition 3.2.12, which guarantees that for all t > 0

κa(t) ≥ 1
4
∑bt2c
i=1 a

∗
i −−−→t→∞

1
4‖a‖1. Finally, the last point can be obtained immediately from, e.g., the lower

bound side of Proposition 3.2.13 and the upper bound given on Item (iii) above.

Lemma 3.2.15. For any a ∈ `2 and t such that t2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤ ‖a‖Q(2t2). (3.7)

Proof of Lemma 3.2.15. We follow and adapt the proof of [11, Lemma 2.2] (itself similar to that of [133,

Lemma 2]). The first inequality is immediate: indeed, for any sequence c ∈ `2, by the definition of ‖a‖Q(t2)

and the monotonicity of the p-norms, we have ‖c‖Q(t2) ≤ ‖c‖1; and by Cauchy–Schwarz, for any partition

(Aj)1≤j≤t2 of N,
t2∑
j=1

∑
i∈Aj

c2i

1/2

≤ t

 t2∑
j=1

∑
i∈Aj

c2i

1/2

= t‖c‖2

and thus ‖c‖Q(t2) ≤ t‖c‖2. This yields the lower bound, as

κa(t) = inf
a′+a′′=a

a′∈`1,a′′∈`2

‖a′‖1 + t‖a′′‖2 ≥ inf
a′+a′′=a

a′∈`1,a′′∈`2

‖a′‖Q(t2) + ‖a′′‖Q(t2) ≥ ‖a‖Q(t2)

by the triangle inequality.

We turn to the upper bound. As `2(R) is a symmetric space and κa = κ|a|, without loss of generality, we

can assume that (ak)k∈N is non-negative and monotone non-increasing, i.e. a1 ≥ a2 ≥ · · · ≥ ak ≥ . . . . We
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will rely on the characterization of κa as

κa(t) = sup
{ ∞∑

k=1
akbk : b ∈ `2,max(‖b‖∞, t

−1‖b‖2) ≤ 1
}
, t > 0

(see e.g. [11, Lemma 2.2] for a proof). The first step is to establish the existence of a “nice” sequence b ∈ `2
arbitrarily close to this supremum:

Claim 3.2.16. For any δ > 0, there exists a non-increasing, non-negative sequence b∗ ∈ `2 with max(‖b∗‖∞, t−1‖b∗‖2) ≤

1 such that

(1− δ)κa ≤
∞∑
k=1

akb
∗
k.

Proof. By the above characterization, there exists a sequence b ∈ `2 with max(‖b‖∞, t−1‖b‖2) ≤ 1 such

that (1 − δ)κa ≤
∑∞
k=1 akbk. We now claim that we can further take b to be non-negative and monotone

non-increasing as well. The first part is immediate, as replacing negative terms by their absolute values can

only increase the sum (since a is itself non-negative). For the second part, we will invoke the Hardy–Littlewood

rearrangement inequality (Theorem 1.4.15), which states that for any two non-negative functions f, g vanishing

at infinity, the integral
∫
R fg is maximized when f and g are non-increasing. We now apply this inequality to

a, b, letting a∗, b∗ be the non-increasing rearrangements of a, b (in particular, we have a = a∗) and introducing

the functions fa, fb:

fa =
∞∑
j=1

aj1(j−1,j], fb =
∞∑
j=1

bj1(j−1,j]

which satisfy the hypotheses of Theorem 1.4.15. Thus, we get
∫
R fafb ≤

∫
R f
∗
af
∗
b ; as it is easily seen that

f∗a = fa∗ and f∗b = fb∗ , this yields

∞∑
k=1

akbk =
∫
R
fafb ≤

∫
R
f∗af

∗
b =

∞∑
k=1

a∗kb
∗
k =

∞∑
k=1

akb
∗
k.

Moreover, it is immediate to check that max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1.

The next step is to relate the inner product
∑∞
k=1 akb

∗
k to the Q-norm of a:

Claim 3.2.17. Fix t > 0 such that t2 ∈ N, and let b∗ ∈ `2 be any non-increasing, non-negative sequence with

max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1. Then
∞∑
k=1

akb
∗
k ≤ ‖a‖Q(2t2).

Proof. We proceed constructively, by exhibiting a partition of N into 2t2 sets A1, . . . , A2t2 satisfying∑∞
k=1 akb

∗
k ≤

∑2t2
j=1

(∑
i∈Aj b

∗
i

2
)1/2

. This will prove the claim, by definition of ‖a‖Q(2t2) as the supremum

over all such partitions.

Specifically, we inductively choose n0, n1, . . . , nT ∈ {0, . . . ,∞} as follows, where T def= t2

c for some
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c > 0 to be chosen later (satisfying T ∈ N). If 0 = n0 < n1 < · · · < nm are already set, then

nm+1
def= 1 + sup

{
` ≥ nm :

∑̀
i=nm+1

b∗i
2 ≤ c

}
.

From ‖b∗‖2 ≤ t, it follows that nT =∞. Let m∗ be the first index such that nm∗+1 > nm∗ + 1. Note that

this implies (by monotonicity of b∗) that b∗i
2 > c for all i ≤ nm∗ , and b∗i

2 ≤ c for all i ≥ nm∗ + 1. We can

write
∞∑
i=1

aib
∗
i =

T∑
m=1

nm∑
i=nm−1+1

aib
∗
i =

nm∗∑
i=1

aib
∗
i +

T∑
m=m∗+1

nm∑
i=nm−1+1

aib
∗
i

Since ‖b∗‖∞ ≤ 1 and nm−1 + 1 = nm for all m ≤ m∗, the first term can be bounded as

nm∗∑
i=1

aib
∗
i ≤

nm∗∑
i=1

√
a2
i =

m∗∑
m=1

 nm∑
i=nm−1+1

a2
i

1/2

.

Turning to the second term, we recall that b∗i
2 ≤ c for all i ≥ nm∗ + 1, so that

∑nm
i=nm−1+1 b

∗
i

2 ≤ 2c for

all m ≥ m∗ + 1. This allows us to bound the second term as

T∑
m=m∗+1

nm∑
i=nm−1+1

aib
∗
i ≤

T∑
m=m∗+1

 nm∑
i=nm−1+1

b∗i
2

1/2 nm∑
i=nm−1+1

a2
i

1/2

≤
√

2c
T∑

m=m∗+1

 nm∑
i=nm−1+1

a2
i

1/2

Therefore, by combining the two we get that

(1− δ)κa(t) ≤
m∗∑
m=1

 nm∑
i=nm−1+1

a2
i

1/2

+
√

2c
T∑

m=m∗+1

 nm∑
i=nm−1+1

a2
i

1/2

≤ max(1,
√

2c)
T∑

m=1

 nm∑
i=nm−1+1

a2
i

1/2

≤ max(1,
√

2c)‖a‖Q(T ) = ‖a‖Q(2t2)

the last equality by choosing c def= 1
2 .

We now fix an arbitrary δ > 0, and let b∗ be as promised by Claim 3.2.16. As this sequence satisfies the

assumptions of Claim 3.2.17, putting the two results together leads to

(1− δ)κa(t) ≤
∞∑
k=1

akb
∗
k ≤ ‖a‖Q(2t2).

Since this holds for all δ > 0, taking the limit as δ ↘ 0 gives the (upper bound of the) lemma.

We observe that, with similar techniques, one can also establish the following generalization of Proposi-

tion 3.2.13:

Lemma 3.2.18 (Generalization of Proposition 3.2.13). For any a ∈ `2, t, and α ∈ [1,∞) such that t2, αt2 ∈
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N, we have

‖a‖Q(t2) ≤ κa(t) ≤
√

1 + α−1‖a‖Q(αt2). (3.8)

Proof of Lemma 3.2.18 (Sketch). We again follow the proof of [11, Lemma 2.2], up to the inductive definition

of n1, . . . , nj , which we change as

nm+1 = 1 + sup
{
` ≥ nm :

∑̀
i=nm+1

b2i ≤
1
α

}
.

Since ‖b‖∞ ≤ 1, we have
∑nm+1
i=nm+1 b

2
i ≤ 1 + 1

α . From ‖b‖2 ≤ t, it follows that nαt2 =∞. Therefore, for

any δ > 0,

(1− δ)κa(t) ≤
∞∑
i=1

aibi ≤
T∑

m=1

 nm∑
i=nm−1+1

b2i

1/2 nm∑
i=nm−1+1

a2
i

1/2

≤
√

1 + 1
α
‖a‖Q(αt2).

Since this holds for all δ > 0, taking the limit gives the (upper bound of the) lemma.

We note that further inequalities relating κa to other functionals of a were obtained in [111].

3.2.5.2 Concentration Inequalities for Weighted Rademacher Sums

The connection between the K-functional and tail bounds on weighted sums of Rademacher random variables

was first made by Montgomery-Smith [133], to which the following result is due (we here state a version with

slightly improved constants):

Theorem 3.2.19. Let (Xi)i∈N be a sequence of independent Rademacher random variables, i.e. uniform on

{−1, 1}. Then, for any a ∈ `2 and t > 0,

Pr
[ ∞∑
i=1

aiXi ≥ κa(t)
]
≤ e− t

2
2 . (3.9)

and, for any fixed c > 0 and all t ≥ 1,

Pr
[ ∞∑
i=1

aiXi ≥
1

1 + c
κa(t)

]
≥ e−

(
2
c ln

√
6(1+c)
c

)
(t2+c)

. (3.10)

In particular,

Pr
[ ∞∑
i=1

aiXi ≥
1
2κa(t)

]
≥ e−(ln 24)(t2+1) ≥ e−(2 ln 24)t2 .

One can intepret the above theorem as stating that the (inverse of the) K-functional κa is the “right”

parameter to consider in these tail bounds; while standard Chernoff or Hoeffding bounds will depend instead on

the quantity ‖a‖2. Before giving the proof of this theorem, we remark that similar statements or improvements

can be found in [111] and [11]; below, we closely follow the argument of the latter.
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Proof of Theorem 3.2.19. The upper bound can be found in e.g. [133], or [11, Theorem 2.2]. For the lower

bound, we mimic the proof due to Astashkin, improving the parameters of some of the lemmas it relies on.

Lemma 3.2.20 (Small improvement of (2.14) in [11, Lemma 2.3]). If a = (ak)k≥1 ∈ `2, then, for any

λ ∈ (0, 1),

Pr

 ∣∣∣∣∣
∞∑
k=1

akXk

∣∣∣∣∣
2

≥ λ
∞∑
k=1

a2
k

 ≥ 1
3(1− λ)2. (3.11)

Proof of Lemma 3.2.20. The proof is exactly the same, but when invoking (1.10) for p = 4 we use the actual

tight version proven there for p = 2m (instead of the more general version that also applies to odd values of

p): since m = 2, we get (2m)!
2mm! = 3, and E[f ]2 ≥ 1

3E
[
f2] in the proof (instead of (p2 + 1)−

p
2 = 1

9 ).

Using the lemma above along with Lemma 3.2.15 in the proof of [11, Theorem 2.2], we can strenghten

it as follows: letting T def= t2

c , for arbitrary δ > 0 we fix a partition A1, . . . , AT of N such that ‖a‖Q(T ) ≤

(1 + δ)
∑T
j=1

(∑
k∈Aj a

2
k

)1/2
,

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥ Pr

[ ∞∑
k=1

akXk >
1√

1 + c
‖a‖Q(T )

]
(by (3.7))

≥ Pr

 T∑
j=1

∑
k∈Aj

akXk >
1 + δ√
1 + c

T∑
j=1

∑
k∈Aj

a2
k

1/2


≥
T∏
j=1

Pr

 ∑
k∈Aj

akXk >
1 + δ√
1 + c

∑
k∈Aj

a2
k

1/2


=
T∏
j=1

1
2 Pr


∣∣∣∣∣∣
∑
k∈Aj

akXk

∣∣∣∣∣∣
2

>

(
1 + δ√
1 + c

)2
∑
k∈Aj

a2
k


 (symmetry)

≥
T∏
j=1

1
6

(
1− (1 + δ)2

1 + c

)2

. (Lemma 3.2.20)

By taking the limit as δ → 0+, we then obtain

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥

(
1
6

(
1− 1

1 + c

)2
)T

=
(

c√
6(1 + c)

) 2t2
c

= e
−
(

2
c ln

√
6(1+c)
c

)
t2
.

(3.12)

This takes care of the case where t2

c is an integer. If this is not the case, we consider s def=
√
c
(⌊
t2

c

⌋
+ 1
)
,

so that t2 ≤ s2 ≤ t2 + c. The monotonicity of κa then ensures that

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥ Pr

[ ∞∑
k=1

akXk >
1

1 + c
κa(s)

]
≥

(3.12)
e
−
(

2
c ln

√
6(1+c)
c

)
s2 ≥ e−

(
2
c ln

√
6(1+c)
c

)
(t2+c)
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which concludes the proof.

3.2.5.3 Some Examples

To gain intuition about the behavior of κa, we now compute tight asymptotic expressions for it in several

instructive cases, specifically for some natural examples of probability distributions in ∆(Ω).

From the lower bound of Proposition 3.2.13 and the fact that κp ≤ ‖p‖1 for any p ∈ `1, it is clear that as

soon as t ≥
√
n, κp(t) = 1 for any p ∈ ∆(Ω). It suffices then to consider the case 0 ≤ t ≤

√
n.

The uniform distribution. We let p be the uniform distribution on [n]: pk = 1
n for all i ∈ [n]. By

considering a partition of [n] into t2 sets of size n
t2 , the lower bound of Proposition 3.2.13 yields κp(t) ≥

‖p‖Q(t2) ≥
t√
n

. On the other hand, by definition κp(t) = infp′+p′′=p ‖p′‖1 + t‖p′′‖2 ≤ t‖p‖2 = t√
n

, and

thus

κp(t) =


t√
n

if t ≤
√
n

1 if t ≥
√
n.

We remark that in this case, the upper bound of Holmstedt from Proposition 3.2.12 only results in

κp(t) ≤ t2

n
+ t

√
n− t2
n2 = f

(
t√
n

)

where f : x ∈ [0, 1] 7→ x2 + x
√

1− x2. It is instructive to note this shows that this could not possibly have

been the right upper bound (and therefore that Proposition 3.2.12 cannot be tight in general), as f is neither

concave nor non-decreasing, and not even bounded by 1:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

x

f(x), κp(x
√
n)

Figure 3.3: Example of the K-functional for the uniform distribution over [n]: Holmstedt’s upper bound (in
blue) vs. true behavior of κp (in red).

From the above, we can now compare the behavior of κ−1
p (1−2ε) to the “2/3-norm functional” introduced
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by Valiant and Valiant [169]: for ε ∈ (0, 1/2),

κ−1
p (1− 2ε) = (1− 2ε)

√
n, ‖p−max

−ε ‖2/3 = (1− ε)3/2√n+ o(1). (3.13)

The Harmonic distribution. We now consider the case of the (truncated) Harmonic distribution, letting

p ∈ ∆([n]) be defined as pk = 1
kHn

for all i ∈ [n] (Hn being the n-th Harmonic number). By considering a

partition of [n] into t2 − 1 sets of size 1 and one of size n− t2, the lower bound of Proposition 3.2.13 yields

Hnκp(t) ≥ ‖p‖Q(t2) ≥
t2−1∑
k=1

1
k

+

√√√√ n∑
k=t2

1
k2

while Holmstedt’s upper bound gives

Hnκp(t) ≤
t2−1∑
k=1

1
k

+ t

√√√√ n∑
k=t2

1
k2 .

For t = O(1), this implies that κp(t) = o(1); however, for t = ω(1) (but still less than
√
n), an asymptotic

development of both upper and lower bounds shows that

κp(t) = 2 ln t+O(1)
lnn .

Using this expression, we can again compare the behavior of κ−1
p (1− 2ε) to the 2/3-norm functional of [169]:

for ε ∈ (0, 1/2),

κ−1
p (1− 2ε) = Θ

(
n

1
2−ε
)
, ‖p−max

−ε ‖2/3 = Θ
(
n

1−ε
2

logn

)
= Θ

(
n

1−ε
2 −o(1)

)
. (3.14)

3.2.6 Identity Testing, revisited

For any x ∈ (0, 1/2) and sequence a ∈ `1, we let tx
def= κ−1

a (1 − 2x), where κa is the K-functional of

a as previously defined. Armed with the results and characterizations from the previous section, we will

first in Section 3.2.6.1 describe an elegant reduction from communication complexity leading to a lower

bound on instance-optimal identity testing parameterized by the quantity tε. Guided by this lower bound,

we then will in Section 3.2.6.2 consider this result from the upper bound viewpoint, and in Theorem 3.2.27

establish that indeed this parameter captures the sample complexity of this problem. Finally, Section 3.2.6.3 is

concerned with tightening our lower bound by using different arguments: specifically, showing that the bound

that appeared naturally as a consequence of our communication complexity approach can, in hindsight, be

established and slightly strenghtened with standard distribution testing arguments.
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3.2.6.1 The Communication Complexity Lower Bound

In this subsection we prove the following lower bound on identity testing, via reduction from SMP communi-

cation complexity.

Theorem 3.2.21. Let Ω be a finite domain, and let p = (p1, . . . ,pn) ∈ ∆(Ω) be a distribution, given as

a parameter. Let ε ∈ (0, 1/5), and set tε
def= κ−1

p (1 − 2ε). Then, given sample access to a distribution

q = (q1, . . . ,qn) ∈ ∆(Ω), testing p = q versus ‖p− q‖1 > ε requires Ω(tε/ log(n)) samples from q.

We will follow the argument outlined in Section 3.2.2.2: namely, applying the same overall idea as in the

reduction for uniformity testing, but with an error-correcting code specifically designed for the distribution p

instead of a standard Hamming one. To prove Theorem 3.2.21 we thus first need to define and obtain codes

with properties that are tailored for our reduction; which we do next.

Balanced p-weighted codes Recall that in our reductions so far, the first step is for Alice and Bob to apply

a code to their inputs; typically, we chose that code to be a balanced code with constant rate, and linear

distance with respect to the uniform distribution (i.e., with good Hamming distance). In order to obtain better

bounds on a case-by-case basis, it will be useful to consider a generalization of these codes, under a different

distribution:

Definition 3.2.22 (p-distance). For any n ∈ N, given a probability distribution p ∈ ∆([n]) we define the

p-distance on {0, 1}n, denoted distp, as the weighted Hamming distance

distp(x, y) def=
n∑
i=1

p(i) · |xi − yi|

for x, y ∈ {0, 1}n. (In particular, this is a pseudometric on {0, 1}n.) The p-weight of x ∈ {0, 1}n is given by

weightp(x) def= distp(x, 0n).

A p-weighted code is a code whose distance guarantee is with respect to the p-distance.

Definition 3.2.23 (p-weighted codes). Fix a probability distribution p ∈ ∆([n]). We say that C : {0, 1}k →

{0, 1}n is a (binary) p-weighted code with relative distance γ = γ(n) and rate ρ = k/n if

distp(C(x), C(y)) > γ

for all distinct x, y ∈ {0, 1}k.

Recall that the “vanilla” reduction in Section 3.2.4 relies on balanced codes. We generalize the balance

property to the p-distance and allow the following relaxation.

Definition 3.2.24 (p-weighted τ -balance). A p-weighted code C : {0, 1}k → {0, 1}n is τ -balanced if there

exists τ ∈ (0, 1) such that weightp(C(x)) ∈
( 1

2 − τ,
1
2 + τ

)
for all x ∈ {0, 1}k.
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Now, for a distribution p, the volume of the p-ball in {0, 1}n is given by

VolFn2 ,distp(ε) def=
∣∣{ w ∈ Fn2 : weightp(w) ≤ ε

}∣∣ .
Next, we show that there exist nearly balanced p-weighted codes with constant relative distance and nearly

optimal rate.

Proposition 3.2.25 (Existence of nearly balanced p-weighted codes). Fix a probability distribution p ∈

∆([n]), constants γ, τ ∈ (0, 1
3 ), and ε = max{γ, 1

2 − τ}. There exists a p-weighted τ -balanced code

C : {0, 1}k → {0, 1}n with relative distance γ such that k = Ω(n− log VolFn2 ,distp(ε)).

In contrast, by the sphere packing bound, every p-weighted code C : {0, 1}k → {0, 1}n with distance γ

satisfies

2k︸︷︷︸
#codewords

≤ 2n

VolFn2 ,distp(γ/2) .

Hence, we have k ≤ n− log VolFn2 ,distp(γ/2).

Proof of Proposition 3.2.25. Note that

VolFn2 ,distp(ε) =
∣∣{ w ∈ Fn2 : weightp(w) ≤ ε

}∣∣ = 2n · Pr
w∼{0,1}n

[
n∑
i=1

piwi ≤ ε
]
.

The probability that a randomly chosen code C : {0, 1}k → {0, 1}n does not have distance γ is

Pr
C

[
∃x, y ∈ {0, 1}k such that distp(C(x), C(y)) ≤ γ

]
≤ 22k · Pr

w,w′∼{0,1}n
[ distp(w,w′) ≤ γ ]

≤ 22k · Pr
w∼{0,1}n

[
n∑
i=1

piwi ≤ ε
]

=
VolFn2 ,distp(ε)

2n−2k .

Hence, for sufficiently small k = Ω(n − log VolFn2 ,distp(ε)), the probability that a random code is a p-

weighted code with relative distance γ is at least 2/3; fix such k. Similarly, the probability that a random code

C : {0, 1}k → {0, 1}n is not τ -balanced (under the p-distance) is

Pr
C

[
∃x ∈ {0, 1}k such that weightp(C(x)) /∈

(
1
2 − τ,

1
2 + τ

)]
≤ 2k · Pr

w∈{0,1}n

[ ∣∣∣∣weightp(w)− 1
2

∣∣∣∣ > τ

]
≤ 2k+1 · Pr

w∈{0,1}n

[
n∑
i=1

piwi < ε

]

≤
VolFn2 ,distp(ε)

2n−k−1 .

Thus, the probability that a random code is τ -balanced (under the p-distance) is at least 2/3, and so, with

probability at least 1
3 , a random code satisfies the proposition’s hypothesis.
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We now establish a connection between the rate of p-weighted codes and the K-functional of p, as

introduced in Section 3.2.5:

Claim 3.2.26. Let p ∈ ∆(Ω) be a probability distribution. Then, for any γ ∈ (0, 1
2 ) we have

n− log VolFn2 ,distp(γ) ≥ 1
2 ln 2κ

−1
p (1− 2γ)2

where κ−1
p (u) = inf { t ∈ (0,∞) : κa(t) ≥ u } for u ∈ [0,∞).

Proof. From the definition,

VolFn2 ,distp(γ) =
∣∣{ w ∈ Fn2 : weightp(w) ≤ γ

}∣∣ =

∣∣∣∣∣
{
w ∈ Fn2 :

n∑
i=1

piwi ≤ γ
}∣∣∣∣∣ = 2n Pr

Y∼{0,1}n

[
n∑
i=1

piYi ≤ γ
]

= 2n Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2γ
]

= 2n Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ κp(uγ)
]

where we set uγ
def= κ−1

p (1− 2γ). From Theorem 3.2.19, we then get VolFn2 ,distp(γ) ≤ 2ne−
u2
γ
2 , from which

n− log VolFn2 ,distp(γ) ≥ − log e−
u2
γ
2 = 1

2 ln 2u
2
γ

as claimed.

The Reduction Equipped with the nearly balanced p-weighted codes in Proposition 3.2.25, we are ready to

prove Theorem 3.2.21. Assume there exists an s-sample ε-tester for identity to p, with error probability 1/6,

and assume, without loss of generality, that ε is a constant (independent of n).

Fix γ = ε and τ = (1− 2ε)/2. For a sufficiently large k ∈ N, let C : {0, 1}k → {0, 1}n be a τ -balanced

p-weighted code with relative distance γ, as guaranteed by Proposition 3.2.25; namely, the code C satisfies

the following conditions.

(i) Balance: weightp(C(x)) ∈
( 1

2 − τ,
1
2 + τ

)
for all x ∈ {0, 1}k;

(ii) Distance: distp(C(x), C(y)) > γ for all distinct x, y ∈ {0, 1}k;

(iii) Rate: k = Ω(n− log VolFn2 ,distp(ε)).

We reduce from the problem of equality in the (private coin) SMP model. Given their respective inputs

x, y ∈ {0, 1}k× ∈ {0, 1}k from EQk, Alice and Bob separately create inputs (a, b) = (C(x), C(y)) ∈

{0, 1}n× ∈ {0, 1}n. Let A ⊆ [n] denote the set indicated by a, and let B ⊆ [n] denote the set indicated

by b̄. Alice and Bob then each send to the referee the p-weight of their encoded input, weightp(a) = p(A)

and weightp
(
b̄
)

= p(B) respectively,20 as well as a sequence of 6cs samples independently drawn from the

distribution p restricted to the subsets A and B respectively, where c is the constant such that 1
cp(B)· ≤

20A standard argument shows it suffices to specify p(A) and p(B) with precision roughly 1/n2, and so sending the weights only
costs O(logn) bits.
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p(A) ≤ c · p(B), guaranteed by the balance property of C. Finally, the referee checks that p(A) + p(B) = 1

(and otherwise rejects) and generates a sequence of q samples by choosing independently, for each of them,

Alice’s element with probability p(A) and Bob’s with probability p(B), and feeds these samples to the ε-tester

for identity to p.

By Markov’s inequality, the above procedure indeed allows the referee to retrieve, with probability at least

1− cs
6cs = 5

6 , at least s independent samples from the distribution

q
def= p(A) · p|A + p(B) · p|B ,

at the cost of O(s logn) bits of communication in total.

For correctness, note that if x = y, then A = B̄, which implies q = p. On the other hand, if x 6= y, by

the (p-weighted) distance of C we have distp(C(x), C(y)) > γ, and so p(A ∩B) + p(A ∪B) > γ. Note

that every i ∈ A ∩ B satisfies qi = 2pi and every i ∈ A ∪B is not supported in q. Therefore, we have

‖p− q‖1 > ε. The referee can therefore invoke the identity testing algorithm to distinguish between p and q

with probability 1− ( 1
6 + 1

6 ) = 2
3 . This implies that the number of samples q used by any such tester must

satisfy s logn = Ω
(√

k
)

. Finally, by Claim 3.2.26 we have

k = Ω
(
n− log VolFn2 ,distp(ε)

)
= Ω

(
κ−1

p (1− 2ε)2),
and therefore we obtain a lower bound of s = Ω(tε/ log(n)).

3.2.6.2 The Upper Bound

Inspired by the results of the previous section, it is natural to wonder whether the dependence on tε of the

lower bound is the “right” one. Our next theorem shows that this is the case: the parameter tε does, in fact,

capture the sample complexity of the problem.

Theorem 3.2.27. There exists an absolute constant c > 0 such that the following holds. Given any fixed

distribution p ∈ ∆([n]) and parameter ε ∈ (0, 1], and granted sample access to an unknown distribution

q ∈ ∆([n]), one can test p = q vs. ‖p− q‖1 > ε with O
(
max

(
tcε
ε2 ,

1
ε

))
samples from q. (Moreover, one

can take c = 1
18 ).

High-level idea As discussed in Section 3.2.2.4, the starting point of the proof is the connection between the

K-functional and the “Q-norm” obtained in Lemma 3.2.15: indeed, this result ensures that for T = 2t2O(ε),

there exists a partition of the domain into sets A1, . . . , AT such that

1−O(ε) ≤ ‖p‖Q(T ) =
T∑
j=1

√∑
i∈Aj

p2
i =

T∑
j=1
‖pAj‖2
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where pAj is the restriction of the sequence p to the indices in Aj . But by the monotonicity of `p norms, we

know that
∑T
j=1 ‖pAj‖2 ≤

∑T
j=1 ‖pAj‖1 =

∑T
j=1

∑
i∈Aj pi = ‖p‖1 = 1. Therefore, what we obtain is in

fact that

0 ≤
T∑
j=1

(‖pAj‖1 − ‖pAj‖2︸ ︷︷ ︸
≥0

) ≤ O(ε).

Now, if the right-hand side were exactly 0, then this would imply ‖pAj‖1 = ‖pAj‖2 for all j, and thus that p

has (at most) one non-zero element in each Aj . Therefore, testing identity to p would boil down to testing

identity on a distribution with support size T , which can be done with O(
√
T/ε2) samples.

This is not actually the case, of course: the right-hand-side is only small and not exactly zero. Yet, one can

show that a robust version of the above holds, making this intuition precise: in Lemma 3.2.28, we show that

on average, most of the probability mass of p is concentrated on a single point from each Aj . This sparsity

implies that testing identity to p on this set of T points is indeed enough – leading to the theorem.

Proof of Theorem 3.2.27 Let p ∈ ∆([n]) be a fixed, known distribution, assumed monotone non-increasing

without loss of generality: p1 ≥ p2 ≥ · · · ≥ pn. Given ε ∈ (0, 1/2), we let tε be as above, namely such that

κp(tε) ≥ 1− 2ε.

From this, it follows by Lemma 3.2.15 that

‖p‖Q(T ) ≥ 1− 2ε, (3.15)

where we set T def= 2t2ε. Choose A1, . . . , AT to be a partition of [n] achieving the maximum (since we are in

the finite, discrete case) defining ‖p‖Q(T ); and let p̃ be the subdistribution on T elements defined as follows.

For each j ∈ [T ], choose ij
def= arg maxi∈Aj pi, and set p̃(j) def= p(ij).

Lemma 3.2.28 (Sparsity Lemma). There exists an absolute constant κ > 0 such that p̃([T ]) =
∑T
j=1 p(ij) ≥

1− κε. (Moreover, one can take κ def= 2
3−
√

7 ' 5.65.)

Proof. Fix any j ∈ [T ], and for convenience let A def= Aj . Write a∗ for the maximum element for p in A,

so that p(ij) = maxa∈A p(a) = p(a∗). We have by monotonicity p(A) ≥
√∑

a∈A p(a)2, and moreover,

letting α def= p(A)− p(a∗) = p(A \ {a∗}),

p(A)−
√∑
a∈A

p(a)2 = p(a∗) + α−
√

p(a∗)2 +
∑
a 6=a∗

p(a)2 ≥ p(a∗) + α−
√

p(a∗)2 + α2.

We let s > 1 be a (non-integer) parameter to be chosen later. Suppose first that α ≤ s
s+1p(A), or equivalenty
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α ≤ sp(a∗). In that case, we have

p(A)−
√∑
a∈A

p(a)2 ≥ p(a∗) + α− p(a∗)

√
1 +

(
α

p(a∗)

)2
≥ p(a∗) + α− p(a∗)

(
1 +
√
s2 + 1− 1

s

α

p(a∗)

)

=
(

1−
√
s2 + 1− 1

s

)
α

def= L1(s)α

where we relied on the inequality
√

1 + x2 ≤ 1 +
√
s2+1−1
s x for x ∈ [0, s]. However, if α > sp(a∗), then we

have

p(A)−
√∑
a∈A

p(a)2 = p(a∗) + α−
√

p(a∗)2 +
∑
a 6=a∗

p(a)2 ≥ α−
√∑
a6=a∗

p(a)2

≥ α−

√
bsc
(α
s

)2
+ 1 ·

(
α− bsc

s
α

)2
=

1−

√
bsc
s2 +

(
1− bsc

s

)2
α

def= L2(s)α.

using the fact that p(a∗) is the maximum probability value of any element, so that the total α has to be spread

among at least bsc + 1 elements (recall that s will be chosen not to be an integer). Optimizing these two

bounds leads to the choice of s def= 4+
√

7
3 /∈ N, for which L1(s) = L2(s) = 3−

√
7 ' 0.35.

Putting it together, we obtain, summing over all j ∈ [T ], that

1− ‖p‖Q(T ) =
T∑
j=1

p(Aj)−
T∑
j=1

√∑
i∈Aj

p(i)2 =
T∑
j=1

p(Aj)−
√∑
i∈Aj

p(i)2

 ≥ (3−
√

7)
T∑
j=1

(p(Aj)− p(ij))

= (3−
√

7) (1− p̃([T ]))

which implies p̃([T ]) ≥ 1
3−
√

7‖p‖Q(T ) −
1

3−
√

7 + 1 ≥ 1− 2
3−
√

7ε by Eq. (3.15).

Lemma 3.2.29. Fix p, ε as above, let S def= {i1, . . . , iT } be the corresponding set of T elements, and take κ as

in Lemma 3.2.28. For any q ∈ ∆([n]), if (i)
∑T
j=1 q(ij) ≥ 1− (κ+ 1

3 )ε and (ii)
∑T
j=1

∣∣∣ p̃(j)
p(S) −

q̃(j)
q(S)

∣∣∣ ≤ 1
3ε,

then ‖p− q‖1 ≤ (3κ+ 1)ε.
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Proof. Unrolling the definition, and as p(S̄) ≤ κε by Lemma 3.2.28,

‖p− q‖1 =
n∑
i=1
|p(i)− q(i)| =

T∑
j=1
|p(ij)− q(ij)|+

∑
i/∈S

|p(i)− q(i)| ≤
T∑
j=1
|p(ij)− q(ij)|+ p(S̄) + q(S̄)

≤
T∑
j=1
|p(ij)− q(ij)|+ κε+ (κ+ 1

3 )ε =
T∑
j=1

∣∣∣∣p(S) p̃(j)
p(S) − q(S) q̃(j)

q(S)

∣∣∣∣+ (2κ+ 1
3 )ε

≤ p(S)
T∑
j=1

∣∣∣∣ p̃(j)
p(S) −

q̃(j)
q(S)

∣∣∣∣+
T∑
j=1

q̃(j)
q(S) |p(S)− q(S)|+ (2κ+ 1

3 )ε

= p(S) ·
T∑
j=1

∣∣∣∣ p̃(j)
p(S) −

q̃(j)
q(S)

∣∣∣∣+ |p(S)− q(S)|+ (2κ+ 1
3 )ε

≤ 1
3ε+ (κ+ 1

3 )ε+ (2κ+ 1
3 )ε = (3κ+ 1)ε

concluding the proof of the lemma.

Let κ > 0 be the constant from Lemma 3.2.28. We let ε′ def= ε
3κ+1 , and T def= 2t2ε′ , {i1, . . . , iT } ⊆ [n] the

corresponding value and elements (i.e., T and the ij’s are as in the foregoing discussion (chosen with regard to

ε′ and the known distribution p)). For convenience, denote by q̃ the (unknown) subdistribution on [T ] defined

by q̃(j) def= q(ij) for j ∈ [T ].

We first verify that q̃([T ]) ≥ 1− κε′, with O(1/ε′) samples (specifically, we distinguish, with probability

at least 9/10, between q̃([T ]) ≥ 1− κε′ and q̃([T ]) ≤ 1− (κ+ 1
3 )ε′; and reject in the latter case). Once this

is done, we apply one of the known identity testing algorithms to p̄, q̄ ∈ ∆([T ]), renormalized versions of

p̃, q̃:

p̄ = p̃
p̃([T ]) , q̄ = q̃

q̃([T ])

using rejection sampling (note that we have the explicit description of p̄; and, since q̃([T ]) ≥ 1− (κ+ 1
3 )ε′

(conditioning on the first test meeting its guarantee), we can obtain m independent samples from q̄ with an

expected O(m) number of samples from q). This is done with parameter ε′ and failure probability 1/10; and

costs O
(√

T
ε′2

)
= O

(
tε′
ε′2

)
samples from q.

Turning to the correctness: we condition on both tests meeting their guarantees, which by a union bound

holds with probability at least 4/5.

• If p = q, then q(S) = p(S) ≥ 1− κε′, and q̄ = p̄: neither the first nor the second test reject, and the

overall algorithm accepts.

• If the algorithm accepts, then q(S) ≥ 1− (κ+ 1
3 )ε′ (by the first test) and

∑T
j=1

∣∣∣ p̃(j)
p(S) −

q̃(j)
p(S)

∣∣∣ ≤ ε′

(by the second): Lemma 3.2.29 then guarantees that ‖p− q‖1 ≤ 3κ+ 1ε′ = ε.

Observing that for κ = 2
3−
√

7 (as suggested by Lemma 3.2.28) we have 3κ+ 1 ≤ 18 establishes the last part

of the theorem.

Remark 3.2.30. We observe that, although efficiently computing κp(·) (and a fortiori κ−1
p (·)) or ‖p‖Q(·) is not
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immediate, the above algorithm is efficient, and can be implemented to run in time O(n+ T logn+
√
T/ε2).

The reason is that knowing beforehand the value of T is not necessary: given p (e.g., as an unsorted sequence

of n values) and ε, it is enough to retrieve the biggest values of p until they sum to 1−O(ε): the number of

elements retrieved will, by our proof, be at most T (and this can be done in time O(n + T logn) by using

e.g. a max-heap). It only remains to apply the above testing algorithm to the set of (at most) T elements thus

obtained.

3.2.6.3 Tightening the Lower Bound

As a last step, one may want to strenghten the lower bound obtained by the communication complexity

reduction of Theorem 3.2.21. We here describe how this can be achieved using more standard arguments from

distribution testing. However, we stress that these arguments in some sense are applicable “‘after the fact,”

that is after Section 3.2.6.1 revealed the connection to the K-functional, and the bound we should aim for.

Specifically, we prove the following:

Theorem 3.2.31. For any p ∈ ∆([n]), and any ε ∈ (0, 1/2) any algorithm testing identity to p must have

sample complexity Ω
(
tε
ε

)
.

Proof. Fix p ∈ ∆(Ω) and ε ∈ (0, 1/2) as above, and consider the corresponding value tε; we assume that

tε ≥ 2, as otherwise there is nothing to prove.21 Without loss of generality – as we could always consider a

sufficiently small approximation, and take the limit in the end, we further assume the infimum defining κp is

attained: let h, ` ∈ [0, 1]n be such that p = h+ ` and κp(tε) = ‖h‖1 + tε‖`‖2 = 1− 2ε.

Since ‖`‖1 = 1−‖h‖1, from the definition of h, `, we have that 1− 2ε = 1−‖`‖1 + tε‖`‖2, from which

0 < ‖`‖2 =
‖`‖1 − 2ε

tε
≤ 1
tε

(3.16)

(note that the right inequality is strict because ε > 0: since if ‖`‖2 = 0, then ‖`‖1 = 0 and h = p; but then

κtε = ‖p‖1 = 1.) In particular, this implies ‖`‖1 − 2ε > 0.

With this in hand, we will apply the following theorem, due to Valiant and Valiant:

Theorem 3.2.32 ([169, Theorem 4]). Given a distribution p ∈ ∆(Ω), and associated values (εi)i∈[n] such

that εi ∈ [0,pi] for each i, define the distribution over distributions Q by the process: independently for each

domain element i, set uniformly at random qi = pi ± εi, and then normalize q to be a distribution. Then

there exists a constant c > 0 such that is takes at least c
(∑n

i=1 ε
4
i /p2

i

)−1/2
samples to distinguish p from Q

with success probability 2/3. Further, with probability at least 1/2 the `1 distance between p and a uniformly

random distribution from Q is at least min
(∑n

i=1 εi −maxi εi, 1
2
∑n
i=1 εi

)
.

We want to invoke the above theorem with ` being, roughly speaking, the “random perturbation” to p.

Indeed, since ` has small `2 norm of order O(1/tε) by (3.16) (which gives a good lower bound) and has `1

21Indeed, an immediate lower bound of Ω(1/ε) on this problem holds.
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sum Ω(ε) (which gives distance), this seems to be a natural choice.

In view of this, set α def= 2ε
‖`‖1
∈ (0, 1) and, for i ∈ [n], εi

def= α`i ≤ `i ∈ [0,pi]. Theorem 3.2.31 will then be

a direct consequence of the next two claims:

Claim 3.2.33 (Distance). We have min
(∑n

i=1 εi −maxi εi, 1
2
∑n
i=1 εi

)
≥ ε.

Proof. Since by our choice of α it is immediate that
∑n
i=1 εi = 2ε

‖`‖1

∑n
i=1 `i = 2ε, it suffices to show that

maxi εi ≤ ε, or equivalently that maxi `i ≤ 1
2‖`‖1. But this follows from the fact that ‖`‖∞ ≤ ‖`‖2 ≤

‖`‖1
tε

,

and our assumption that tε ≥ 2.

It then remains to analyze the lower bound obtained through the application of Theorem 3.2.32:

Claim 3.2.34 (Lower bound). With the εi’s defined as before,
(∑n

i=1 ε
4
i /p2

i

)−1/2 ≥ 2tε
ε .

Proof. Unrolling the definition of the εi’s,

n∑
i=1

ε4
i

p2
i

= α4
n∑
i=1

`4i
p2
i

= α4
n∑
i=1

`2i
p2
i

`2i ≤ α4
n∑
i=1

`2i = 24ε4

‖`‖41
‖`‖22 =

(
4ε2

‖`‖21

‖`‖1 − 2ε
tε

)2

where the last equality is (3.16). This yields

(
n∑
i=1

ε4
i

p2
i

)−1/2

≥ tε
4ε2 ·

‖`‖21
‖`‖1 − 2ε = tε

2ε ·

(
‖`‖1
2ε

)2

‖`‖1
2ε − 1

≥ 2tε
ε

where the last inequality comes from f : x > 1 7→ x2

x−1 achieving its minimum, 4, at x = 2.

Combining the two claims with Theorem 3.2.32 implies, by a standard argument, the lower bound

of Theorem 3.2.31.

Remark 3.2.35. A straightforward modification of the proof of Theorem 3.2.31 allows one to prove a

somewhat more general statement, namely a lower bound of Ω
(
γtγ/ε

2) for any γ ∈ [ε, 1/2] such that tγ ≥ 2.

In particular, this implies an incomparable bound of Ω
(
t1/4/ε

2) as long as p does not put almost all its

probability weight on O(1) elements.

On the optimality of our bound. We conclude this section by briefly discussing the optimality of

our bound, and specifically whether one could hope to strenghten Theorem 3.2.31 to obtain an Ω
(
tε/ε

2)
lower bound. Unfortunately, it is easy to come up with simple (albeit contrived) counterexamples: e.g., fix

ε ∈ (0, 1/3), and let p ∈ ∆([n]) be the distribution that puts mass 1− 3ε on the first element and uniformly

spreads the rest among the remaining n − 1 elements. A straightforward calculation shows that, for this

distribution p = p(ε), one has κ−1
p (1 − 2ε) = Θ(

√
n); and it is not hard to check that one can indeed test

identity to p with O(
√
n/ε) samples only,22 and so the Ω(tε/ε) lower bound is tight in this case.

22Indeed, any distribution q such that ‖q − p‖1 > εmust either be such that |p(1)− q(1)| = Ω(ε) or
∣∣p|[n]\{1} − q|[n]\{1}

∣∣ =
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Although this specific instance is somewhat unnatural, as it fails to be a counterexample for any distance

parameter ε′ � ε, it does rule out an improvement of Theorem 3.2.31 for the full range of parameters. On

the other hand, it is also immediate to see that the upper bound O
(
tε/ε

2) cannot be improved in general,

as demonstrated by choosing p to be the uniform distribution (yet, in this case, the extension provided

by Remark 3.2.35 does provide the optimal bound).

3.2.7 Lower Bounds on Other Properties

In this section we demonstrate how our methodology can be used to easily obtain lower bounds on the sample

complexity of various properties of distributions. To this end, we provide sketches of proofs of lower bounds

for monotonicity testing, k-modality, and the “symmetric sparse support” property (that we define below). We

remark that using minor variations on the reductions presented in Section 3.2.4 and Section 3.2.6, it is also

straightforward to obtain lower bounds for properties of distributions such as being binomially distributed,

Poisson binomially distributed, and having a log-concave probability mass function. Throughout this section,

we fix ε to be a small constant and refer to testing with respect to proximity Θ(ε).

Monotonicity on the integer line and the Boolean hypercube. We start with the problem of testing

monotonicity on the integer line, that is, testing whether a distribution p ∈ ∆([n]) has a monotone probability

mass function. Consider the “vanilla” reduction, presented in Section 3.2.4. Note that for yes-instances, we

obtain the uniform distribution, which is monotone. For no-instances, however, we obtain a distribution p that

has mass 1/n on a (1− ε)-fraction of the domain, is unsupported on a (ε/2)-fraction of the domain, and has

mass 2/n on the remaining (ε/2)-fraction. Typically, p is Ω(1)-far from being monotone; however, it could

be the case that the first (respectively, last) εn/2 elements are of 0 mass, and the last (respectively, first) εn/2

elements are of mass 2/n, in which case p is perfectly monotone. To remedy this, all we have to do is let the

referee emulate a distribution p′ ∈ ∆([3n]) such that p′i =


1
3pi−n i ∈ {n+ 1, . . . , 2n}

1
3n otherwise

. It is immediate

to see that the probability mass functions of p′ is (ε/3)-far from monotone.

The idea above can be extended to monotonicity over the hypercube as follows. We start with the

uniformity reduction, this time over the domain {0, 1}n. As before, yes-instances will be mapped to the

uniform distribution over the hypercube, which is monotone, and no-instances will be mapped to a distribution

that has mass 1/2n on a (1− ε)-fraction of the domain, is unsupported on a (ε/2)-fraction of the domain, and

has mass 1/2n−1 on the remaining (ε/2)-fraction – but could potentially be monotonously strictly increasing

(or decreasing). This time, however, the “boundary“ is larger than the “edges” of the integer line, and we

cannot afford to pad it with elements of weight 1/2n. Instead, the referee, who receives for the players

samples drawn from a distribution p ∈ ∆({0, 1}n), emulates a distribution p′′ ∈ ∆
(
{0, 1}n+1) over a

larger hypercube whose additional coordinate determines between a negated or regular copy of p; that is,

Ω(1). The first case only takes O(1/ε) samples, while the second can be achieved by rejection sampling with O(1/ε) ·O(
√
n) samples.
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p′(z) =

p(z) z1 = 0

1
2n−1 − p(z) z1 = 1

(where the referee chooses z1 ∈ {0, 1} independently and uniformly at

random for each new sample). Hence, even if p is monotonously increasing (or decreasing), the emulated

distribution p′′ is Ω(ε)-far from monotone. By the above, we obtain Ω̃(
√
n) and Ω̃(2n/2) lower bounds on the

sample complexity of testing monotonicity on the line and on the hypercube, respectively.

k-modality. Recall that a distribution p ∈ ∆([n]) is said to be k-modal if its probability mass function

has at most k “peaks” and “valleys.” Such distributions are natural generalizations of monotone (for k = 0)

and unimodal (for k = 1) distributions. Fix a sublinear k, and consider the uniformity reduction presented

in Section 3.2.4, with the additional step of letting the prover apply a random permutation to the domain

[n] (similarly to the reduction shown in Section 3.2.4.1). Note that yes-instances are still mapped to the

uniform distribution (which is clearly k-modal), and no-instances are mapped to distributions with mass

1/n, 2/n, and 0 on a (1− ε), (ε/2), and (ε/2) (respectively) fractions of the domain. Intuitively, applying

a random permutation of the domain to such a distribution “spreads” the elements with masses 0 and 2/n

nearly uniformly, causing many level changes (i.e., high modality); indeed, it is straightforward to verify

that with high probability over the choice of a random permutation of the domain, such a distribution will

indeed be Ω(ε)-far from k-modal. This yields an Ω̃(
√
n) lower bound on the sample complexity of testing

k-modality, nearly matching the best known lower bound of Ω(max(
√
n, k/ log k)) following from [43], for

k/ log(k) = O(
√
n).

Symmetric sparse support. Consider the property of distributions p ∈ ∆([n]) such that when projected

to its support, p is mirrored around the middle of the domain. That is, p is said to have a symmetric sparse

support if there exists S = {i0 < i2 < · · · < i2`} ⊆ [n] with i` = n
2 such that: (1) p(i) = 0 for all i ∈ [n]\S,

and (2) p(i`+1−j) = p(i`+j) for all 0 ≤ j ≤ `. We sketch a proof of an Ω̃(
√
n) lower bound on the sample

complexity of testing this property. Once again, we shall begin with the uniformity reduction presented

in Section 3.2.4, obtaining samples from a distribution p ∈ ∆([n/2]). Then the referee emulates samples

from the distribution p′ ∈ ∆([n]) that is distributed as p on its left half, and uniformly distributed on its

right half; that is, p′i =

pi/2 i ∈ [n]

1/n otherwise
. Note that yes-instances are mapped to the uniform distribution,

which has symmetric sparse support, and no-instances are mapped to distributions in which the right half is

uniformly distributed and the left half contains εn/2 elements of mass 2/n, and hence it is Ω(ε)-far from

having symmetric sparse support.

Other properties. As aforementioned, similar techniques as in the reductions above (as well as in the

identity testing reduction of Section 3.2.6, invoked on a specific p, e.g., the Bin(n, 1/2) distribution) can

be applied to obtain nearly-tight lower bounds of Ω̃(
√
n) (respectively Ω̃

(
n1/4)) for the properties of being

log-concave and monotone hazard rate (respectively Binomially and Poisson Binomially distributed). See
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e.g., [51] for the formal definitions of these properties.

3.2.8 Testing with Conditional Samples

In this section we show that reductions from communication complexity protocols can be used to obtain lower

bounds on the sample complexity of distribution testers that are augmented with conditional samples. These

testing algorithms, first introduced in [54, 48], aim to address scenarios that arise both in theory and practice

yet are not fully captured by the standard distribution testing model.

In more detail, algorithms for testing with conditional samples are distribution testers that, in addition to

sample access to a distribution p ∈ ∆(Ω), can ask for samples from p conditioned on the sample belonging to

a subset S ⊆ Ω. It turns out that testers with conditional samples are much stronger than standard distribution

testers, leading in many cases to exponential savings (or even more) in the sample complexity. In fact, these

testing algorithms can often maintain their power even if they only have the ability to query subsets of a

particular structure.

One of the most commonly studied restricted conditional samples models is the PAIRCOND model [49].

In this model, the testers can either obtain standard samples from p, or specify two distinct indices i, j ∈ Ω

and get a sample from p conditioned on membership in S = {i, j}. As shown in [49, 42], even under this

restriction one can obtain constant- or poly log(n)-query testers for many properties, such as uniformity,

identity, closeness, and monotonicity (all of which require Ω(
√
n) or more samples in the standard sampling

setting). This, along with the inherent difficulty of proving hardness results against adaptive algorithms, makes

proving lower bounds in this setting a challenging task; and indeed the PAIRCOND lower bounds established

in the aforementioned works are quite complex and intricate.

We will prove, via a reduction from communication complexity, a strong lower bound on the sample

complexity of any PAIRCOND algorithm for testing junta distributions, a class of distributions introduced

in [8] (see definition below).

Since PAIRCOND algorithms are stronger than standard distribution testers (in particular, they can make

adaptive queries), we shall reduce from the general randomized communication complexity model (rather

than from the SMP model, as we did for standard distribution testers). In this model, Alice and Bob are given

inputs x and y as well as a common random string, and the parties aim to compute a function f(x, y) using

the minimum amount of communication.

We say that a distribution p ∈ ∆({0, 1}n) is a k-junta distribution (with respect to the uniform distribution)

if its probability mass function is only influenced by k of its variables. We outline below a proof of the

following lower bound.

Theorem 3.2.36. Every PAIRCOND algorithm for testing k-junta distributions must make Ω(k) queries.

Sketch of proof. We closely follow the k-linearity lower bound in [33] and reduce from the unique (k/2)-

disjointness problem. In this promise problem, Alice and Bob get inputs x ∈ {0, 1}n and y ∈ {0, 1}n
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(respectively) of Hamming weight k/2 each, and the parties are required to decide whether
∑n
i=1 xiyi = 1

or
∑n
i=1 xiyi = 0. It is well-known that in every randomized protocol for this problem the parties must

communicate Ω(k) bits.

Assume there exists a PAIRCOND algorithm for testing k-junta distributions, with query complexity

q. The reduction is as follows. Alice sets A = { i ∈ [n] : xi = 1 } and considers the character function

χA(z) = ⊕i∈Azi, and similarly Bob sets B = { i ∈ [n] : yi = 1 } and considers the character function

χB(z) = ⊕i∈Bzi. Both players then invoke the tester for k-junta distributions, feeding it samples emulated

from the distribution p ∈ ∆({0, 1}n) given by p(z) = χA4B(z)/2n−1 (where χA4B(z) = ⊕i∈A4Bzi);

note that since the non-zero character functions are balanced, p is indeed a probability distribution. Recall that

each query of a PAIRCOND algorithm is performed by either setting S = {0, 1}n, or choosing z, z′ ∈ {0, 1}n

and setting S = {z, z′}, then sampling from p|S . The players emulate each PAIRCOND query by the

following rejection sampling procedure:

Sampling query (S = {0, 1}n): Alice and Bob proceed as follows.

1. Choose z ∈ S uniformly at random, using shared randomness;

2. Exchange χA(z) and χB(z) between the players, and compute χA4B(z) = χA(z) · χB(z);

3. If χA4B(z) = 1, feed the tester with the sample z. Otherwise repeat the process.

Note that since χA4B(z) is a balanced function, then on expectation each PAIRCOND query to p can

be emulated by exchanging O(1) bits.

Pairwise query (S = {z, z′} for some z, z′ ∈ {0, 1}n): exchange χA(z), χA(z′) and χB(z), χB(z′) between

the players, compute χA4B(z) and χA4B(z′), and use shared randomness to sample from S with the

corresponding (now fully known) conditional probabilities.

The above gives a protocol with expected communication complexity O(q), correct with probability 5/6. To

convert it to a honest-to-goodness protocol with communication complexity O(q) and success probability

2/3, it suffices for Alice and Bob to run the above protocol and stop (and output reject) as soon as they go

over Ck bits of communication, for some absolute constant C > 0. An application of Markov’s inequality

guarantees that this happens with probability at most 1/6, yielding the claimed bound on the error probability

of the protocol.

Finally, note that on the one hand, if (x, y) is such that
∑n
i=1 xiyi = 0, then χA4B(z) is a degree-k

character, and in particular, a k-junta. Hence, by definition p is a k-junta distribution. On the other hand, if

(x, y) is such that
∑n
i=1 xiyi = 1, then χA4B(z) is a degree-(k − 2) character, which in particular disagrees

with every k-junta on Ω(1)-fraction of the inputs. Therefore, since p is uniform over its support, we can

deduce that that p is Ω(1)-far in `1-distance from any k-junta distribution.
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Chapter 4

Testing Properties of Distributions: Changing the Rules

You may seek it with thimbles—and seek it with care;

You may hunt it with forks and hope;

You may threaten its life with a railway-share;

You may charm it with smiles and soap–

Lewis Carroll, The Hunting of the Snark

In the standard distribution testing setting considered so far, the “massive object” is an arbitrary probability

distribution p over an n-element set, and the algorithm accesses the distribution by drawing independent

samples from it. One broad insight that has emerged from this past decade of work in this setting is that,

while sublinear-sample algorithms do exist for many distribution testing problems, the number of samples

required remains in general quite large. Indeed, even the basic problem of testing whether p is the uniform

distribution u over [n] versus ε-far from uniform requires Ωε(
√
n) samples, and most other problems have

sample complexities at least this high, and in some cases almost linear in the domain size n [146, 174, 172].

Since such sample complexities could be and routinely are prohibitively high in real-world settings where n

can be extremely large (see e.g. [22, 104, 127, 154], and references within), it is natural to explore problem

variants where it may be possible for algorithms to succeed using fewer samples.

Indeed, researchers have studied distribution testing in settings where the unknown distribution is guaran-

teed to have some special structure, such as being monotone, k-modal or a “k-histogram” over [n] [19, 74,

117], or being monotone over {0, 1}n [155] or over other posets [30], and have obtained significantly more

sample-efficient algorithms using these additional assumptions.

In this chapter we pursue a different line of investigation: rather than restricting the class of probability

distributions under consideration, we consider testing algorithms that may use a more powerful form of access

to the unknown distribution p. In particular, we introduce and analyze two of these stronger types of access,

the conditional and extended models (and some of their variants), where the algorithm can respectively obtain

samples conditioned on certain events of its choosing, and inspect directly the probability mass or cumulative

distribution function of the unknown probability distribution. The conditional sampling model will be the

focus of Section 4.1; then, Section 4.2 contains the details of our work on the extended access model.
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4.1 Conditional Sampling: Focusing on What Matters

4.1.1 Introduction

In this section, we consider our first generalization of the standard sampling model of distribution testing,

granting the testing algorithms a more flexible access to the underlying probability distribution. This is a

conditional sampling oracle, which allows the algorithm to obtain a draw from pS , the conditional distribution

of p restricted to a subset S of the domain (where S is specified by the algorithm). More precisely, we have:

Definition 4.1.1. Fix a distribution p over [n]. A COND oracle for p, denoted CONDp, is defined as follows:

The oracle is given as input a query set S ⊆ [n], chosen by the algorithm, that has p(S) > 0. The oracle returns

an element i ∈ S, where the probability that element i is returned is pS(i) = p(i)/p(S), independently of all

previous calls to the oracle.1

We remark that a recent work of Chakraborty et al. [54] introduced a very similar conditional model; we

discuss their results and how they relate to ours in Section 4.1.1.2. For compatibility with our CONDp notation

we will write SAMPp to denote an oracle that takes no input and, each time it is invoked, returns an element

from [n] drawn according to p independently from all previous draws. This is the sample access to p that is

used in the standard model of testing distributions, and this is of course the same as a call to CONDp([n]).

Motivation and Discussion. One purely theoretical motivation for the study of the COND model is that

it may further our understanding regarding what forms of information (beyond standard sampling) can be

helpful for testing properties of distributions. In both learning and property testing it is generally interesting

to understand how much power algorithms can gain by making queries, and COND queries are a natural

type of query to investigate in the context of distributions. As we discuss in more detail below, in several of

our results we actually consider restricted versions of COND queries that do not require the full power of

obtaining conditional samples from arbitrary sets.

A second attractive feature of the COND model is that it enables a new level of richness for algorithms

that deal with probability distributions. In the standard model where only access to SAMPp is provided, all

algorithms must necessarily be non-adaptive, with the same initial step of simply drawing a sample of points

from SAMPp, and the difference between two algorithms comes only from how they process their samples. In

contrast, the essence of the COND model is to allow algorithms to adaptively determine later query sets S

based on the outcomes of earlier queries.

A natural question about the COND model is its plausibility: are there settings in which an investigator

could actually make conditional samples from a distribution of interest? We feel that the COND framework

1Note that as described above the behavior of CONDp(S) is undefined if p(S) = 0, i.e., the set S has zero probability under
p. While various definitional choices could be made to deal with this, we shall assume that in such a case, the oracle (and hence the
algorithm) outputs “failure” and terminates. This will not be a problem for us throughout this paper, as (a) our lower bounds deal only
with distributions that have p(i) > 0 for all i ∈ [n], and (b) in our algorithms CONDp(S) will only ever be called on sets S which are
“guaranteed” to have p(S) > 0. (More precisely, each time an algorithm calls CONDp(S) it will either be on the set S = [n], or will be
on a set S which contains an element i which has been returned as the output of an earlier call to CONDp.)
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provides a reasonable first approximation for scenarios that arise in application areas (e.g., in biology or

chemistry) where the parameters of an experiment can be adjusted so as to restrict the range of possible

outcomes. For example, a scientist growing bacteria or yeast cells in a controlled environment may be able

to deliberately introduce environmental factors that allow only cells with certain desired characteristics to

survive, thus restricting the distribution of all experimental outcomes to a pre-specified subset. We further

note that techniques which are broadly reminiscent of COND sampling have long been employed in statistics

and polling design under the name of “stratified sampling” (see e.g. [177, 137]). We thus feel that the study of

distribution testing in the COND model is well motivated both by theoretical and practical considerations.

Given the above motivations, the central question is whether the COND model enables significantly more

efficient algorithms than are possible in the weaker SAMP model. Our results (see Section 4.1.1.1) show that

this is indeed the case.

Before detailing our results, we note that several of them will in fact deal with a weaker variant of the

COND model, which we now describe. In designing COND-model algorithms it is obviously desirable to

have algorithms that only invoke the COND oracle on query sets S which are “simple” in some sense. Of

course there are many possible notions of simplicity; in this work we consider the size of a set as a measure of

its simplicity, and consider algorithms which only query small sets. More precisely, we consider the following

restriction of the general COND model:

PAIRCOND oracle: We define a PAIRCOND (short for “pair-cond”) oracle for p is a restricted version of

CONDp that only accepts input sets S which are either S = [n] (thus providing the power of a SAMPp

oracle) or S = {i, j} for some i, j ∈ [n], i.e. sets of size two. The PAIRCOND oracle may be viewed

as a minimalist variant of COND that essentially permits an algorithm to compare the relative weights

of two items under p (and to draw random samples from p, by setting S = [n]).

INTCOND oracle: We define an INTCOND (short for “interval-cond”) oracle for p as a restricted version

of CONDp that only accepts input sets S which are intervals S = [a, b] = {a, a+ 1, . . . , b} for some

a ≤ b ∈ [n] (note that taking a = 1, b = n this provides the power of a SAMPp oracle). This is a

natural restriction on COND queries in settings where the n points are endowed with a total order.

To motivate the PAIRCOND model (which essentially gives the ability to compare two elements), one

may consider a setting in which a human domain expert can provide an estimate of the relative likelihood of

two distinct outcomes in a limited-information prediction scenario.

4.1.1.1 Our results

We give a detailed study of a range of natural distribution testing problems in the COND model and its variants

described above, establishing both upper and lower bounds on their query complexity. Our results show that

the ability to do conditional sampling provides a significant amount of power to property testers, enabling

polylog(n)-query, or even constant-query, algorithms for problems whose sample complexities in the standard
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Problem Our results Standard model

Is p uniform?

CONDp Ω
( 1
ε2

)
PAIRCONDp Õ

( 1
ε2

)
INTCONDp

Õ
(

log3 n
ε3

)
Θ
(√

n
ε2

)
[104, 20, 138]

Ω
(

logn
log logn

)

Is p = p∗ for a known p∗?
CONDp Õ

( 1
ε4

)
PAIRCONDp

Õ
(

log4 n
ε4

)
Θ
(√

n
ε2

)
[21, 138, 169]

Ω
(√

logn
log logn

)
Are p1,p2 (both unknown)
equivalent?

CONDp1,p2 Õ
(

log5 n
ε4

)
Θ
(

max
(
n2/3

ε4/3 ,
√
n
ε2

))
[20, 174,

58]PAIRCONDp1,p2 Õ
(

log6 n
ε21

)
How far is p from uniform? PAIRCONDp Õ

( 1
ε20

) O
(

1
ε2

n
logn

)
[172, 170]

Ω
(

n
logn

)
[172, 167]

Table 4.1: Comparison between the COND model and the standard model on a variety of distribution testing
problems over [n]. The upper bounds for the first three problems are for testing whether the property holds
(i.e. dTV = 0) versus dTV ≥ ε, and for the last problem the upper bound is for estimating the distance to
uniformity to within an additive ±ε.

model are nΩ(1); see Table 4.1. While we have considered a variety of distribution testing problems in the

COND model, our results are certainly not exhaustive, and many directions remain to be explored; we discuss

some of these in Section 4.1.9.

Testing distributions over unstructured domains In this early work on the COND model our main focus

has been on the simplest (and, we think, most fundamental) problems in distribution testing, such as testing

whether p is the uniform distribution u; testing whether p = p∗ for an explicitly provided p∗; testing whether

p1 = p2 given CONDp1 and CONDp2 oracles; and estimating the variation distance between p and the

uniform distribution. In what follows dTV denotes the variation distance.

Testing uniformity. We give a PAIRCONDp algorithm that tests whether p = u versus dTV(p,u) ≥ ε

using Õ(1/ε2) calls to PAIRCONDp, independent of n. We show that this PAIRCONDp algorithm is nearly

optimal by proving that any CONDp tester (which may use arbitrary subsets S ⊆ [n] as its query sets) requires

Ω(1/ε2) queries for this testing problem.

Testing equivalence to a known distribution. As stated above, for the simple problem of testing

uniformity we have an essentially optimal PAIRCOND testing algorithm and a matching lower bound. A more

general and challenging problem is that of testing whether p (accessible via a PAIRCOND or COND oracle) is

equivalent to p∗, where p∗ is an arbitrary “known” distribution over [n] that is explicitly provided to the testing

algorithm at no cost (say as a vector (p∗(1), . . . ,p∗(n)) of probability values). For this “known p∗” problem,
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we give a PAIRCONDp algorithm testing whether p = p∗ versus dTV(p,p∗) ≥ ε using Õ((logn)4/ε4)

queries. We further show that the (logn)Ω(1) query complexity of our PAIRCONDp algorithm is inherent

in the problem, by proving that any PAIRCONDp algorithm for this problem must use
√

log(n)/ log log(n)

queries for constant ε.

Given these (logn)Θ(1) upper and lower bounds on the query complexity of PAIRCONDp-testing equiva-

lence to a known distribution, it is natural to ask whether the full CONDp oracle provides more power for this

problem. We show that this is indeed the case, by giving a Õ(1/ε4)-query algorithm (independent of n) that

uses unrestricted CONDp queries.

Testing equivalence between two unknown distributions. We next consider the more challenging

problem of testing whether two unknown distributions p1,p2 over [n] (available via CONDp1 and CONDp2

oracles) are identical versus ε-far. We give two very different algorithms for this problem. The first uses

PAIRCOND oracles and has query complexity Õ((logn)6/ε21), while the second uses COND oracles and

has query complexity Õ((logn)5/ε4). We believe that the proof technique of the second algorithm is of

independent interest, since it shows how a CONDp oracle can efficiently simulate an “approximate EVALp

oracle.” (An EVALp oracle takes as input a point i ∈ [n] and outputs the probability mass p(i) that p puts on

i; we briefly explain our notion of approximating such an oracle in Section 4.1.1.1.)

Estimating the distance to uniformity. We also consider the problem of estimating the variation

distance between p and the uniform distribution u over [n], to within an additive error of ±ε. In the standard

SAMPp model this is known to be a very difficult problem, with an Ω(n/ logn) lower bound established in

[172, 167]. In contrast, we give a PAIRCONDp algorithm that makes only Õ(1/ε20) queries, independent of

n.

Testing distributions over structured domains In the final portion of the section we view the domain

[n] as an ordered set 1 ≤ · · · ≤ n. (Note that in all the testing problems and results described previously,

the domain could just as well have been viewed as an unstructured set of abstract points x1, . . . , xn.) With

this perspective it is natural to consider an additional oracle. We define an INTCOND (short for “interval-

cond”) oracle for p as a restricted version of CONDp, which only accepts input sets S that are intervals

S = [a, b] = {a, a+ 1, . . . , b} for some a ≤ b ∈ [n] (note that taking a = 1, b = n this provides the power of

a SAMPp oracle).

We give an Õ((logn)3/ε3)-query INTCONDp algorithm for testing whether p is uniform versus ε-

far from uniform. We show that a (logn)Ω(1) query complexity is inherent for uniformity testing using

INTCONDp, by proving an Ω (logn/ log logn)-query INTCONDp lower bound.

Along the way to establishing our main testing results described above, we develop several powerful tools

for analyzing distributions in the COND and PAIRCOND models, which we believe may be of independent

interest and utility in subsequent work on the COND and PAIRCOND models. These include as mentioned
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above a procedure for approximately simulating an “evaluation oracle”, as well as a procedure for estimating

the weight of the “neighborhood” of a given point in the domain of the distribution. (See further discussion of

these tools in Section 4.1.1.1.)

A high-level discussion of our algorithms To maintain focus here we describe only the ideas behind our

algorithms; intuition for each of our lower bounds can be found in an informal discussion preceding the formal

proof, see the beginnings of Sections 4.1.3.2, 4.1.4.2 and 4.1.8. As can be seen in the following discussion, our

algorithms share some common themes, though each has its own unique idea/technique, which we emphasize

below.

Our simplest testing algorithm is the algorithm for testing whether p is uniform over [n] (using

PAIRCONDp queries). The algorithm is based on the observation that if a distribution is ε-far from uniform,

then the total weight (according to p) of points y ∈ [n] for which p(y) ≥ (1 + Ω(ε))/n is Ω(ε), and the

fraction of points x ∈ [n] for which p(x) ≤ (1− Ω(ε))/n is Ω(ε). If we obtain such a pair of points (x, y),

then we can detect this deviation from uniformity by performing Θ(1/ε2) PAIRCONDp queries on the pair.

Such a pair can be obtained with high probability by making Θ(1/ε) SAMPp queries (so as to obtain y)

as well as selecting Θ(1/ε) points uniformly (so as to obtain x). This approach yields an algorithm whose

complexity grows like 1/ε4. To actually get an algorithm with query complexity Õ(1/ε2) (which, as our

lower bound shows, is tight), a slightly more refined approach is applied.

When we take the next step to testing equality to an arbitrary (but fully specified) distribution p∗, the

abovementioned observation generalizes so as to imply that if we sample Θ(1/ε) points from p and Θ(1/ε)

from p∗, then with high probability we shall obtain a pair of points (x, y) such that p(x)/p(y) differs by at

least (1± Ω(ε)) from p∗(x)/p∗(y). Unfortunately, this cannot necessarily be detected by a small number of

PAIRCONDp queries since (as opposed to the uniform case), p∗(x)/p∗(y) may be very large or very small.

However, we show that by sampling from both p and p∗ and allowing the number of samples to grow with

logn, with high probability we either obtain a pair of points as described above for which p∗(x)/p∗(y) is a

constant, or we detect that for some set of points B we have that |p(B)− p∗(B)| is relatively large.2

As noted previously, we prove a lower bound showing that a polynomial dependence on logn is unavoidable

if only PAIRCONDp queries (in addition to standard sampling) are allowed. To obtain our more efficient

poly(1/ε)-queries algorithm, which uses more general CONDp queries, we extend the observation from the

uniform case in a different way. Specifically, rather than comparing the relative weight of pairs of points,

we compare the relative weight of pairs in which one element is a point and the other is a subset of points.

Roughly speaking, we show how points can be paired with subsets of points of comparable weight (according

to p∗) such that the following holds. If p is far from p∗, then by taking Õ(1/ε) samples from p and selecting

subsets of points in an appropriate manner (depending on p∗), we can obtain (with high probability) a point x

and a subset Y such that p(x)/p(Y ) differs significantly from p∗(x)/p∗(Y ) and p∗(x)/p∗(Y ) is a constant.

2Here we use B for “Bucket”, as we consider a bucketing of the points in [n] based on their weight according to p∗. We note that
bucketing has been used extensively in the context of testing properties of distributions, see e.g. [20, 21].
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In our next step, to testing equality between two unknown distributions p1 and p2, we need to cope

with the fact that we no longer “have a hold” on a known distribution. Our PAIRCOND algorithm can be

viewed as creating such a hold in the following sense. By sampling from p1 we obtain (with high probability)

a (relatively small) set of points R that cover the distribution p1. By “covering” we mean that except for a

subset having small weight according to p1, all points y in [n] have a representative r ∈ R, i.e. a point r such

that p1(y) is close to p1(r). We then show that if p2 is far from p1, then one of the following must hold: (1)

There is relatively large weight, either according to p1 or according to p2, on points y such that for some

r ∈ R we have that p1(y) is close to p1(r) but p2(y) is not sufficiently close to p2(r); (2) There exists a

point r ∈ R such that the set of points y for which p1(y) is close to p1(r) has significantly different weight

according to p2 as compared to p1. We note that this algorithm can be viewed as a variant of the PAIRCOND

algorithm for the case when one of the distributions is known (where the “buckets” B, which were defined by

p∗ in that algorithm (and were disjoint), are now defined by the points in R (and are not necessarily disjoint)).

As noted previously, our (general) COND algorithm for testing the equality of two (unknown) distributions

is based on a subroutine that estimates p(x) (to within (1±O(ε))) for a given point x given access to CONDp.

Obtaining such an estimate for every x ∈ [n] cannot be done efficiently for some distributions.3 However, we

show that if we allow the algorithm to output unknown on some subset of points with total weight O(ε), then

the relaxed task can be performed using poly(logn, 1/ε) queries, by performing a kind of randomized binary

search “with exceptions”. This relaxed version, which we refer to as an approximate EVAL oracle, suffices for

our needs in distinguishing between the case that p1 and p2 are the same distribution and the case in which

they are far from each other. It is possible that this procedure will be useful for other tasks as well.

The algorithm for estimating the distance to uniformity (which uses poly(1/ε) PAIRCONDp queries)

is based on a subroutine for finding a reference point x together with an estimate p̂(x) of p(x). A reference

point should be such that p(x) is relatively close to 1/n (if such a point cannot be found then it is evidence

that p is very far from uniform). Given a reference point x (together with p̂(x)) it is possible to estimate the

distance to uniformity by obtaining (using PAIRCOND queries) estimates of the ratio between p(x) and p(y)

for poly(1/ε) uniformly selected points y. The procedure for finding a reference point x together with p̂(x) is

based on estimating both the weight and the size of a subset of points y such that p(y) is close to p(x). The

procedure shares a common subroutine, ESTIMATE-NEIGHBORHOOD, with the PAIRCOND algorithm for

testing equivalence between two unknown distributions.

Finally, the INTCONDp algorithm for testing uniformity is based on a version of the approximate EVAL

oracle mentioned previously, which on one hand uses only INTCONDp (rather than general CONDp) queries,

and on the other hand exploits the fact that we are dealing with the uniform distribution rather than an arbitrary

distribution.

3As an extreme case consider a distribution p for which p(1) = 1− φ and p(2) = · · · = p(n) = φ/(n− 1) for some very small
φ (which in particular may depend on n), and for which we are interested in estimating p(2). This requires Ω(1/φ) queries.
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4.1.1.2 The work of Chakraborty et al. [54]

Chakraborty et al. [54] proposed essentially the same COND model that we study, differing only in what

happens on query sets S such that p(S) = 0. In our model such a query causes the COND oracle and

algorithm to return fail, while in their model such a query returns a uniform random i ∈ S.

Related to testing equality of distributions, [54] provides an (adaptive) algorithm for testing whether p

is equivalent to a specified distribution p∗ using poly(log∗ n, 1/ε) COND queries. Recall that we give an

algorithm for this problem that performs Õ(1/ε4) COND queries. [54] also gives a non-adaptive algorithm

for this problem that performs poly(logn, 1/ε) COND queries.4 Testing equivalence between two unknown

distributions is not considered in [54], and the same is true for testing in the PAIRCOND model.

[54] also presents additional results for a range of other problems, which we discuss below:

• An (adaptive) algorithm for testing uniformity that performs poly(1/ε) queries.5 The sets on which

the algorithms performs COND queries are of size linear in 1/ε. Recall that our algorithm for this

problem performs Õ(1/ε2) PAIRCOND queries and that we show that every algorithm must perform

Ω(1/ε2) queries (when there is no restriction on the types of queries). We note that their analysis uses

the same observation that ours does regarding distributions that are far from uniform (see the discussion

in Section 4.1.1.1), but exploits it in a different manner.

They also give a non-adaptive algorithm for this problem that performs poly(logn, 1/ε) COND queries

and show that Ω(log logn) is a lower bound on the necessary number of queries for non-adaptive

algorithms.

• An (adaptive) algorithm for testing whether p is equivalent to a specified distribution p∗ using

poly(log∗ n, 1/ε) COND queries. Recall that we give an algorithm for this problem that performs

Õ(1/ε4) COND queries.

They also give a non-adaptive algorithm for this problem that performs poly(logn, 1/ε) COND queries.

• An (adaptive) algorithm for testing any label-invariant (i.e., invariant under permutations of the domain)

property that performs poly(logn, 1/ε) COND queries. As noted in [54], this in particular implies

an algorithm with this complexity for estimating the distance to uniformity. Recall that we give an

algorithm for this estimation problem that performs poly(1/ε) PAIRCOND queries.

The algorithm for testing any label-invariant property is based on learning a certain approximation of

the distribution p and in this process defining some sort of approximate EVAL oracle. To the best of our

understanding, our notion of an approximate EVAL oracle (which is used to obtain one of our results for

testing equivalence between two unknown distributions) is quite different.

They also show that there exists a label-invariant property for which any adaptive algorithm must

4We note that it is only possible for them to give a non-adaptive algorithm because their model is more permissive than ours if a
query set S is proposed for which p(S) = 0, their model returns a uniform random element of S while our model returns fail). In our
stricter model, any non-adaptive algorithm which queries a proper subset S ( [n] would output fail on some distribution p.

5The precise polynomial is not specified – we believe it is roughly 1/ε4 as it follows from an application of the identity tester of [21]
with distance Θ(ε2) on a domain of size O(1/ε).
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perform Ω(
√

log logn) COND queries.

• Finally they show that there exist general properties that require Ω(n) COND queries.

4.1.2 Some useful procedures

In this section we describe some procedures that will be used by our algorithms. On a first pass the reader may

wish to focus on the explanatory prose and performance guarantees of these procedures (i.e., the statements

of Lemma 4.1.2 and Lemma 4.1.3, as well as Definition 4.1.4 and Theorem 4.1.5) and otherwise skip to p.162;

the internal details of the proofs are not necessary for the subsequent sections that use these procedures.

4.1.2.1 The procedure COMPARE

We start by describing a procedure that estimates the ratio between the weights of two disjoint sets of points

by performing COND queries on the union of the sets. More precisely, it estimates the ratio (to within 1± η)

if the ratio is not too high and not too low. Otherwise, it may output high or low, accordingly. In the special

case when each set is of size one, the queries performed are PAIRCOND queries.

Algorithm 16 COMPARE

Require: COND query access to a distribution p over [n], disjoint subsets X,Y ⊂ [n], parameter η ∈ (0, 1],
K ≥ 1, and δ ∈ (0, 1/2].

1: Perform Θ
(
K log(1/δ)

η2

)
CONDp queries on the set S = X ∪ Y , and let µ̂ be the fraction of times that a

point y ∈ Y is returned.
2: if µ̂ < 2

3 ·
1

K+1 then return low.
3: else if 1− µ̂ < 2

3 ·
1

K+1 then return high.
4: else
5: return ρ = µ̂

1−µ̂
6: end if

Lemma 4.1.2. Given as input two disjoint subsets of points X,Y together with parameters η ∈ (0, 1], K ≥ 1,

and δ ∈ (0, 1/2], as well as COND query access to a distribution p, the procedure COMPARE (Algorithm 16)

either outputs a value ρ > 0 or outputs high or low, and satisfies the following:

1. If p(X)/K ≤ p(Y ) ≤ K · p(X) then with probability at least 1 − δ the procedure outputs a value

ρ ∈ [1− η, 1 + η]p(Y )/p(X);

2. If p(Y ) > K · p(X) then with probability at least 1− δ the procedure outputs either high or a value

ρ ∈ [1− η, 1 + η]p(Y )/p(X);

3. If p(Y ) < p(X)/K then with probability at least 1 − δ the procedure outputs either low or a value

ρ ∈ [1− η, 1 + η]p(Y )/p(X).

The procedure performs O
(
K log(1/δ)

η2

)
COND queries on the set X ∪ Y .

Proof. The bound on the number of queries performed by the algorithm follows directly from the description

of the algorithm, and hence we turn to establish its correctness.

148



Let w(X) = p(X)
p(X)+p(Y ) and let w(Y ) = p(Y )

p(X)+p(Y ) . Observe that w(Y )
w(X) = p(Y )

p(X) and that for µ̂ as

defined in Line 1 of the algorithm, E[µ̂] = w(Y ) and E[1− µ̂] = w(X). Also observe that for any B ≥ 1, if

p(Y ) ≥ p(X)/B, then w(Y ) ≥ 1
B+1 and if p(Y ) ≤ B · p(X), then w(X) ≥ 1

B+1 .

Let E1 be the event that µ̂ ∈ [1− η/3, 1 + η/3]w(Y ) and let E2 be the event that (1− µ̂) ∈ [1− η/3, 1 +

η/3]w(X). Given the number of COND queries performed on the set X ∪ Y , by applying a multiplicative

Chernoff bound (see Theorem 1.4.10), if w(Y ) ≥ 1
4K then with probability at least 1 − δ/2 the event E1

holds, and if w(X) ≥ 1
4K , then with probability at least 1− δ/2 the event E2 holds. We next consider the

three cases in the lemma statement.

1. If p(X)/K ≤ p(Y ) ≤ Kp(X), then by the discussion above, w(Y ) ≥ 1
K+1 , w(X) ≥ 1

K+1 , and with

probability at least 1−δ we have that µ̂ ∈ [1−η/3, 1+η/3]w(Y ) and (1−µ̂) ∈ [1−η/3, 1+η/3]w(X).

Conditioned on these bounds holding,

µ̂ ≥ 1− η/3
K + 1 ≥

2
3 ·

1
K + 1 and 1− µ̂ ≥ 2

3 ·
1

K + 1 .

It follows that the procedure outputs a value ρ = µ̂
1−µ̂ ∈ [1− η, 1 + η]w(Y )

w(X) as required by Item 1.

2. If p(Y ) > K · p(X), then we consider two subcases.

a) If p(Y ) > 3K · p(X), then w(X) < 1
3K+1 , so that by a multiplicative Chernoff bound (stated

in Claim 1.4.11), with probability at least 1− δ we have that

1− µ̂ < 1 + η/3
3K + 1 ≤

4
3 ·

1
3K + 1 ≤

2
3 ·

1
K + 1 ,

causing the algorithm to output high. Thus Item 2 is established for this subcase.

b) If K · p(X) < p(Y ) ≤ 3K · p(X), then w(X) ≥ 1
3K+1 and w(Y ) ≥ 1

2 , so that the events

E1 and E2 both hold with probability at least 1 − δ. Assume that these events in fact hold.

This implies that µ̂ ≥ 1−η/3
2 ≥ 2

3 ·
1

K+1 , and the algorithm either outputs high or outputs

ρ = µ̂
1−µ̂ ∈ [1− η, 1 + η]w(Y )

w(X) , so Item 2 is established for this subcase as well.

3. If p(Y ) < p(X)/K, so that p(X) > K · p(Y ), then the exact same arguments are applied as in the

previous case, just switching the roles of Y and X and the roles of µ̂ and 1− µ̂ so as to establish Item 3.

We have thus established all items in the lemma.

4.1.2.2 The procedure ESTIMATE-NEIGHBORHOOD

In this subsection we describe a procedure that, given a point x, provides an estimate of the weight of a set of

points y such that p(y) is similar to p(x). In order to specify the behavior of the procedure more precisely, we

introduce the following notation. For a distribution p over [n], a point x ∈ [n] and a parameter γ ∈ [0, 1], let

Up
γ (x) def=

{
y ∈ [n] : 1

1 + γ
p(x) ≤ p(y) ≤ (1 + γ)p(x)

}
(4.1)
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denote the set of points whose weight is “γ-close” to the weight of x. If we take a sample of points distributed

according to p, then the expected fraction of these points that belong to Up
γ (x) is p(Up

γ (x)). If this value

is not too small, then the actual fraction in the sample is close to the expected value. Hence, if we could

efficiently determine for any given point y whether or not it belongs to Up
γ (x), then we could obtain a good

estimate of p(Up
γ (x)). The difficulty is that it is not possible to perform this task efficiently for “boundary”

points y such that p(y) is very close to (1 + γ)p(x) or to 1
1+γp(x). However, for our purposes, it is not

important that we obtain the weight and size of Up
γ (x) for a specific γ, but rather it suffices to do so for γ in

a given range, as stated in the next lemma. The parameter β in the lemma is the threshold above which we

expect the algorithm to provide an estimate of the weight, while [κ, 2κ) is the range in which γ is permitted to

lie; finally, η is the desired (multiplicative) accuracy of the estimate, while δ is a bound on the probability of

error allowed to the subroutine.

Lemma 4.1.3. Given as input a point x together with parameters κ, β, η, δ ∈ (0, 1/2] as well as PAIRCOND

query access to a distribution p, the procedure ESTIMATE-NEIGHBORHOOD (Algorithm 17) outputs a pair

(ŵ, α) ∈ [0, 1]× (κ, 2κ) such that α is uniformly distributed in {κ+ iθ}κ/θ−1
i=0 for θ = κηβδ

64 , and such that

the following holds:

1. If p(Up
α (x)) ≥ β, then with probability at least 1− δ we have ŵ ∈ [1 − η, 1 + η] · p(Up

α (x)), and

p(Up
α+θ(x) \ Up

α (x)) ≤ ηβ/16;

2. If p(Up
α (x)) < β, then with probability at least 1−δ we have ŵ ≤ (1+η)·β, and p(Up

α+θ(x)\Up
α (x)) ≤

ηβ/16.

The number of PAIRCOND queries performed by the procedure is O
(

log(1/δ)·log(log(1/δ)/(δβη2))
κ2η4β3δ2

)
.

Algorithm 17 ESTIMATE-NEIGHBORHOOD

Require: PAIRCOND query access to a distribution p over [n], a point x ∈ [n] and parameters κ, β, η, δ ∈
(0, 1/2]

1: Set θ = κηβδ
64 and r = κ

θ = 64
ηβδ .

2: Select a value α ∈ {κ+ iθ}r−1
i=0 uniformly at random.

3: Call the SAMPp oracle Θ(log(1/δ)/(βη2)) times and let S be the set of points obtained.
4: For each point y in S call COMPAREp({x}, {y}, θ/4, 4, δ/(4|S|)) (if a point y appears more than once in
S, then COMPARE is called only once on y).

5: Let ŵ be the fraction of occurrences of points y in S for which COMPARE returned a value ρ(y) ∈
[1/(1 + α+ θ/2), (1 + α+ θ/2)]. (That is, S is viewed as a multiset.)

6: Return (ŵ, α).

Proof of Lemma 4.1.3. The number of PAIRCOND queries performed by ESTIMATE-NEIGHBORHOOD is

the size of S times the number of PAIRCOND queries performed in each call to COMPARE. By the setting

of the parameters in the calls to COMPARE, the total number of PAIRCOND queries is O
(

(|S|)·log |S|/δ)
θ2

)
=

O
(

log(1/δ)·log(log(1/δ)/(δβη2))
κ2η4β3δ2

)
. We now turn to establishing the correctness of the procedure.

Since p and x are fixed, in what follows we shall use the shorthand Uγ for Up
γ (x). For α ∈ {κ+ iθ}r−1

i=0 ,

let ∆α
def= Uα+θ \ Uα. We next define several “desirable” events. In all that follows we view S as a multiset.
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1. Let E1 be the event that p(∆α) ≤ 4/(δr). Since there are r disjoint sets ∆α for α ∈ {κ+ iθ}r−1
i=0 , the

probability that E1 occurs (taken over the uniform choice of α) is at least 1− δ/4. From this point on

we fix α and assume E1 holds.

2. The eventE2 is that |S∩∆α|/|S| ≤ 8/(δr) (that is, at most twice the upper bound on the expected value).

By applying the multiplicative Chernoff bound using the fact that |S| = Θ(log(1/δ)/(βη2)) = Ω(log(1/δ) · (δr)),

we have that PrS [E2] ≥ 1− δ/4.

3. The eventE3 is defined as follows: If p(Uα) ≥ β, then |S∩Uα|/|S| ∈ [1−η/2, 1+η/2] ·p(Uα), and if

p(Uα) < β, then |S ∩Uα|/|S| < (1 + η/2) ·β. Once again applying the multiplicative Chernoff bound

(for both cases) and using that fact that |S| = Θ(log(1/δ)/(βη2)), we have that PrS [E3] ≥ 1− δ/4.

4. Let E4 be the event that all calls to COMPARE return an output as specified in Lemma 4.1.2. Given the

setting of the confidence parameter in the calls to COMPARE we have that Pr[E4] ≥ 1− δ/4 as well.

Assume from this point on that events E1 through E4 all hold where this occurs with probability at least

1− δ. By the definition of ∆α and E1 we have that p(Uα+θ \ Uα) ≤ 4/(δr) = ηβ/16, as required (in both

items of the lemma). Let T be the (multi-)subset of points y in S for which COMPARE returned a value

ρ(y) ∈ [1/(1+α+θ/2), (1+α+θ/2)] (so that ŵ, as defined in the algorithm, equals |T |/|S|). Note first that

conditioned on E4 we have that for every y ∈ U2κ it holds that the output of COMPARE when called on {x}

and {y}, denoted ρ(y), satisfies ρ(y) ∈ [1− θ/4, 1 + θ/4](p(y)/p(x)), while for y /∈ U2κ either COMPARE

outputs high or low or it outputs a value ρ(y) ∈ [1− θ/4, 1 + θ/4](p(y)/p(x)). This implies that if y ∈ Uα,

then ρ(y) ≤ (1 + α) · (1 + θ/4) ≤ 1 + α+ θ/2 and ρ(y) ≥ (1 + α)−1 · (1− θ/4) ≥ (1 + α+ θ/2)−1, so

that S ∩Uα ⊆ T . On the other hand, if y /∈ Uα+θ then either ρ(y) > (1 + α+ θ) · (1− θ/4) ≥ 1 + α+ θ/2

or ρ(y) < (1 +α+ θ)−1 · (1 + θ/4) ≤ (1 +α+ θ/2)−1 so that T ⊆ S ∩Uα+θ. Combining the two we have:

S ∩ Uα ⊆ T ⊆ S ∩ Uα+θ . (4.2)

Recalling that ŵ = |T |
|S| , the left-hand side of Eq. (4.2) implies that

ŵ ≥ |S ∩ Uα|
|S|

, (4.3)

and by E1 and E2, the right-hand-side of Eq. (4.2) implies that

ŵ ≤ |S ∩ Uα|
|S|

+ 8
δr
≤ |S ∩ Uα|

|S|
+ βη

8 . (4.4)

We consider the two cases stated in the lemma:

1. If p(Uα) ≥ β, then by Eq. (4.3), Eq. (4.4) and (the first part of) E3, we have that ŵ ∈ [1− η, 1 + η] ·

p(Uα).

2. If p(Uα) < β, then by Eq. (4.4) and (the second part of) E3, we have that ŵ ≤ (1 + η)β.
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The lemma is thus established.

4.1.2.3 The procedure APPROX-EVAL-SIMULATOR

Approximate EVAL oracles. We begin by defining the notion of an “approximate EVAL oracle” that we

will use. Intuitively this is an oracle which gives a multiplicatively (1± ε)-accurate estimate of the value of

p(i) for all i in a fixed set of probability weight at least 1− ε under p. More precisely, we have the following

definition:

Definition 4.1.4. Let p be a distribution over [n]. An (ε, δ)-approximate EVALp simulator is a randomized

procedure ORACLE with the following property: For each 0 < ε < 1, there is a fixed set S(ε,p) ( [n] with

p(S(ε,p)) < ε for which the following holds. Given as input an element i∗ ∈ [n], the procedure ORACLE

either outputs a value α ∈ [0, 1] or outputs unknown or fail. The following holds for all i∗ ∈ [n]:

(i) If i∗ /∈ S(ε,p) then with probability at least 1− δ the output of ORACLE on input i∗ is a value α ∈ [0, 1]

such that α ∈ [1− ε, 1 + ε]p(i∗);

(i) If i∗ ∈ S(ε,p) then with probability at least 1− δ the procedure either outputs unknown or outputs a

value α ∈ [0, 1] such that α ∈ [1− ε, 1 + ε]p(i∗).

We note that according to the above definition, it may be the case that different calls to ORACLE on the

same input element i∗ ∈ [n] may return different values. However, the “low-weight” set S(ε,p) is an a priori

fixed set that does not depend in any way on the input point i∗ given to the algorithm. The key property of an

(ε, δ)-approximate EVAL p oracle is that it reliably gives a multiplicatively (1± ε)-accurate estimate of the

value of p(i) for all i in some fixed set of probability weight at least 1− ε under p.

Constructing an approximate EVALp simulator using CONDp In this subsection we show that a CONDp

oracle can be used to obtain an approximate EVAL simulator:

Theorem 4.1.5. Let p be any distribution over [n] and let 0 < ε, δ < 1. The algorithm APPROX-EVAL-

SIMULATOR has the following properties: It uses

Õ

(
(logn)5 · (log(1/δ))2

ε3

)

calls to CONDp and it is an (ε, δ)-approximate EVALp simulator.

A few notes: First, in the proof we give below of Theorem 4.1.5 we assume throughout that 0 < ε ≤ 1/40.

This incurs no loss of generality because if the desired ε parameter is in (1/40, 1) then the parameter can

simply be set to 1/40. We further note that in keeping with our requirement on a CONDp algorithm, the

algorithm APPROX-EVAL-SIMULATOR only ever calls the CONDp oracle on sets S which are either S = [n]

or else contain at least one element i that has been returned as the output of an earlier call to CONDp. To see

this, note that Line 6 is the only line when CONDp queries are performed. In the first execution of the outer
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“For” loop clearly all COND queries are on set S0 = [n]. In subsequent stages the only way a set Sj is formed

is if either (i) Sj is set to {i∗} in Line 10, in which case clearly i∗ was previously received as the response

of a CONDp(Sj−1) query, or else (ii) a nonzero fraction of elements i1, . . . , im received as responses to

CONDp(Sj−1) queries belong to Sj (see Line 19).

A preliminary simplification. Fix a distribution p over [n]. Let Z denote supp(p), i.e. Z = {i ∈ [n] :

p(i) > 0}. We first claim that in proving Theorem 4.1.5 we may assume without loss of generality that no

two distinct elements i, j ∈ Z have p(i) = p(j) – in other words, we shall prove the theorem under this

assumption on p, and we claim that this implies the general result. To see this, observe that if Z contains

elements i 6= j with p(i) = p(j), then for any arbitrarily small ξ > 0 and any arbitrarily large M we can

perturb the weights of elements in Z to obtain a distribution p′ supported on Z such that (i) no two elements of

Z have the same probability under p′, and (ii) for every S ⊆ [n], S ∩ Z 6= ∅ we have dTV(pS ,p′S) ≤ ξ/M.

Since the variation distance between p′S and pS is at most ξ/M for an arbitrarily small ξ, the variation

distance between (a) the execution of any M -query COND algorithm run on p and (b) the execution of any

M -query COND algorithm run on p′ will be at most ξ. Since ξ can be made arbitrarily small this means that

indeed without loss of generality we may work with p′ in what follows. Thus, we henceforth assume that the

distribution p has no two elements in supp(p) with the same weight. For such a distribution we can explicitly

describe the set S(ε,p) from Definition 4.1.4 that our analysis will deal with. Let π : {1, . . . , |Z|} → Z

be the bijection such that p(π(1)) > · · · > p(π(|Z|)) (note that the bijection π is uniquely defined by the

assumption that p(i) 6= p(j) for all distinct i, j ∈ Z). Given a value 0 < τ < 1 we define the set Lτ,D to

be ([n] \ Z) ∪ {π(s), . . . , π(|Z|)} where s is the smallest index in {1, . . . , |Z|} such that
∑|Z|
j=s p(π(j)) < τ

(if p(π(|Z|)) itself is at least τ then we define Lτ,p = [n] \ Z). Thus intuitively Lτ,p contains the τ fraction

(w.r.t. p) of [n] consisting of the lightest elements. The desired set S(ε,p) is precisely Lε,p.

Intuition for the algorithm. The high-level idea of the EVALD simulation is the following: Let i∗ ∈ [n]

be the input element given to the EVALp simulator. The algorithm works in a sequence of stages. Before

performing the j-th stage it maintains a set Sj−1 that contains i∗, and it has a high-accuracy estimate p̂(Sj−1)

of the value of p(Sj−1). (The initial set S0 is simply [n] and the initial estimate p̂(S0) is of course 1.) In the

j-th stage the algorithm attempts to construct a subset Sj of Sj−1 in such a way that (i) i∗ ∈ Sj , and (ii) it is

possible to obtain a high-accuracy estimate of p(Sj)/p(Sj−1) (and thus a high-accuracy estimate of p(Sj)).

If the algorithm cannot construct such a set Sj then it outputs unknown; otherwise, after at most (essentially)

O(logn) stages, it reaches a situation where Sj = {i∗} and so the high-accuracy estimate of p(Sj) = p(i∗)

is the desired value.

A natural first idea towards implementing this high-level plan is simply to split Sj−1 randomly into two

pieces and use one of them as Sj . However this simple approach may not work; for example, if Sj−1 has one

or more elements which are very heavy compared to i∗, then with a random split it may not be possible to
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efficiently estimate p(Sj)/p(Sj−1) as required in (ii) above. Thus we follow a more careful approach which

first identifies and removes “heavy” elements from Sj−1 in each stage.

In more detail, during the j-th stage, the algorithm first performs CONDp queries on the set Sj−1 to

identify a set Hj ⊆ Sj−1 of “heavy” elements; this set essentially consists of all elements which individually

each contribute at least a κ fraction of the total mass p(Sj−1). (Here κ is a “not-too-small” quantity

but it is significantly less than ε.) Next, the algorithm performs additional CONDp queries to estimate

p(i∗)/p(Sj−1). If this fraction exceeds κ/20 then it is straightforward to estimate p(i∗)/p(Sj−1) to high

accuracy, so using p̂(Sj−1) it is possible to obtain a high-quality estimate of p(i∗) and the algorithm can

conclude. However, the typical case is that p(i∗)/p(Sj−1) < κ/20. In this case, the algorithm next estimates

p(Hj)/p(Sj−1). If this is larger than 1 − ε/10 then the algorithm outputs unknown (see below for more

discussion of this). If p(Hj)/p(Sj−1) is less than 1 − ε/10 then p(Sj−1 \Hj)/p(Sj−1) ≥ ε/10 (and so

p(Sj−1 \Hj)/p(Sj−1) can be efficiently estimated to high accuracy), but each element k of Sj−1 \Hj has

p(k)/p(Sj−1) ≤ κ� ε/10 ≤ p(Sj−1 \Hj)/p(Sj−1). Thus it must be the case that the weight under p of

Sj−1 \Hj is “spread out” over many “light” elements.

Given that this is the situation, the algorithm next chooses S′j to be a random subset of Sj−1 \ (Hj ∪{i∗}),

and sets Sj to be S′j ∪ {i∗}. It can be shown that with high probability (over the random choice of Sj)

it will be the case that p(Sj) ≥ 1
3p(Sj−1 \ Hj) (this relies crucially on the fact that the weight under p

of Sj−1 \ Hj is “spread out” over many “light” elements). This makes it possible to efficiently estimate

p(Sj)/p(Sj−1 \Hj); together with the high-accuracy estimate of p(Sj−1 \Hj)/p(Sj−1) noted above, and

the high-accuracy estimate p̂(Sj−1) of p(Sj−1), this means it is possible to efficiently estimate p(Sj) to high

accuracy as required for the next stage. (We note that after defining Sj but before proceeding to the next

stage, the algorithm actually checks to be sure that Sj contains at least one point that was returned from the

CONDp(Sj−1) calls made in the past stage. This check ensures that whenever the algorithm calls CONDp(S)

on a set S, it is guaranteed that p(S) > 0 as required by our CONDp model. Our analysis shows that doing

this check does not affect correctness of the algorithm since with high probability the check always passes.)

Intuition for the analysis. We require some definitions to give the intuition for the analysis establishing

correctness. Fix a nonempty subset S ⊆ [n]. Let πS be the bijection mapping {1, . . . , |S|} to S in such a way

that pS(πS(1)) > · · · > pS(πS(|S|)), i.e. πS(1), . . . , πS(|S|) is a listing of the elements of S in order from

heaviest under pS to lightest under pS . Given j ∈ S, we define the S-rank of j, denoted rankS(j), to be the

value
∑
i:pS(π(i))≤pS(j) pS(π(i)), i.e. rankS(j) is the sum of the weights (under pS) of all the elements in S

that are no heavier than j under pS . Note that having i∗ /∈ Lε,n implies that rank[n](i∗) ≥ ε.

We first sketch the argument for correctness. (It is easy to show that the algorithm only outputs fail with

very small probability so we ignore this possibility below.) Suppose first that i∗ /∈ Lε,p. A key lemma shows

that if i∗ /∈ Lε,p (and hence rank[n](i∗) ≥ ε), then with high probability every set Sj−1 constructed by the

algorithm is such that rankSj−1(i∗) ≥ ε/2. (In other words, if i∗ is not initially among the ε-fraction lightest

elements (under p), then for any j it never “falls too far” from becoming part of the ε/2-fraction lightest
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elements of Sj−1 (under pSj−1 ).) Given that (with high probability) i∗ always satisfies rankSj−1(i∗) ≥ ε/2, it

must be the case that (with high probability) the procedure does not output unknown (and hence it must (with

high probability) output a numerical value). This is because there are only two places where the procedure can

output unknown, in Lines 14 and 19; we consider both cases below.

1. In order for the procedure to output unknown in Line 14, it must be the case that the elements of Hj

– each of which individually has weight at least κ/2 under pSj−1 – collectively have weight at least

1−3ε/20 under pSj−1 by Line 13. But i∗ has weight at most 3κ/40 under pSj−1 (because the procedure

did not go to Line 2 in Line 10), and thus i∗ would need to be in the bottom 3ε/20 of the lightest

elements, i.e. it would need to have rankSj−1(i∗) ≤ 3ε/20; but this contradicts rankSj−1(i∗) ≥ ε/2.

2. In order for the procedure to output unknown in Line 19, it must be the case that all elements i1, . . . , im

drawn in Line 6 are not chosen for inclusion in Sj . In order for the algorithm to reach Line 19, though,

it must be the case that at least (ε/10− κ/20)m of these draws do not belong to Hj ∪ {i∗}; since these

draws do not belong to Hj each one occurs only a small number of times among the m draws, so there

must be many distinct values, and hence the probability that none of these distinct values is chosen for

inclusion in S′j is very low.

Thus we have seen that if i∗ /∈ Lε,p, then with high probability the procedure outputs a numerical value;

it remains to show that with high probability this value is a high-accuracy estimate of p(i∗). However, this

follows easily from the fact that we inductively maintain a high-quality estimate of p(Sj−1) and the fact

that the algorithm ultimately constructs its estimate of p̂(i∗) only when it additionally has a high-quality

estimate of p(i∗)/p(Sj−1). This fact also handles the case in which i∗ ∈ Lε,p – in such a case it is allowable

for the algorithm to output unknown, so since the algorithm with high probability outputs a high-accuracy

estimate when it outputs a numerical value, this means the algorithm performs as required in Case (ii) of

Definition 4.1.4.

We now sketch the argument for query complexity. We will show that the heavy elements can be identified

in each stage using poly(logn, 1/ε) queries. Since the algorithm constructs Sj by taking a random subset of

Sj−1 (together with i∗) at each stage, the number of stages is easily bounded by (essentially) O(logn). Since

the final probability estimate for p(i∗) is a product of O(logn) conditional probabilities, it suffices to estimate

each of these conditional probabilities to within a multiplicative factor of (1±O
(

ε
logn

)
). We show that each

conditional probability estimate can be carried out to this required precision using only poly(logn, 1/ε) calls

to CONDp; given this, the overall poly(logn, 1/ε) query bound follows straightforwardly.

Now we enter into the actual proof. We begin our analysis with a simple but useful lemma about the

“heavy” elements identified in Line 7.

Lemma 4.1.6. With probability at least 1− δ/9, every set Hj that is ever constructed in Line 7 satisfies the

following for all ` ∈ Sj−1:

(i) If p(`)/p(Sj−1) > κ, then ` ∈ Hj;
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Algorithm 18 APPROX-EVAL-SIMULATOR

Require: access to CONDp; parameters 0 < ε, δ < 1; input element i∗ ∈ [n]
1: Set S0 = [n] and p̂(S0) = 1. Set M = logn+ log(9/δ) + 1. Set κ = Θ(ε/(M2 log(M/δ))).
2: for j = 1 to M do
3: if |Sj−1| = 1 then
4: return p̂(Sj−1) (and exit)
5: end if
6: Perform m = Θ(max{M2 log(M/δ)/(ε2κ), log(M/(δκ))/κ2}) CONDp queries on Sj−1 to obtain

points i1, . . . , im ∈ Sj−1.
7: Let Hj = {k ∈ [n] : k appears at least 3

4κm times in the list i1, . . . , im}
8: Let p̂Sj−1(i∗) denote the fraction of times that i∗ appears in i1, . . . , im
9: if p̂Sj−1(i∗) ≥ κ

20 then
10: Set Sj = {i∗}, set p̂(Sj) = p̂Sj−1(i∗) · p̂(Sj−1), increment j, and go to Line 2.
11: end if
12: Let p̂Sj−1(Hj) denote the fraction of elements among i1, . . . , im that belong to Hj .
13: if p̂Sj−1(Hj) > 1− ε/10 then
14: return unknown (and exit)
15: end if
16: Set S′j to be a uniform random subset of Sj−1 \ (Hj ∪ {i∗}) and set Sj to be S′j ∪ {i∗}.
17: Let p̂Sj−1(Sj) denote the fraction of elements among i1, . . . , im that belong to Sj
18: if p̂Sj−1(Sj) = 0 then
19: return unknown (and exit)
20: end if
21: Set p̂(Sj) = p̂Sj−1(Sj) · p̂(Sj−1)
22: end for
23: return fail.

(ii) If p(`)/p(Sj−1) < κ/2 then ` /∈ Hj .

Proof. Fix an iteration j. By Line 7 in the algorithm, a point ` is included in Hj if it appears at least 3
4κm

times among i1, . . . , im (which are the output of CONDp queries on Sj−1). For the first item, fix an element

` such that p(`)/p(Sj−1) > κ. Recall that m = Ω(M2 log(M/δ)/(ε2κ)) = Ω(log(Mn/δ)/κ) (since

M = Ω(log(n))). By a multiplicative Chernoff bound, the probability (over the choice of i1, . . . , im in Sj−1)

that ` appears less than 3
4κm times among i1, . . . , im (that is, less than 3/4 times the lower bound on the

expected value) is at most δ/(9Mn) (for an appropriate constant in the setting of m). On the other hand, for

each fixed ` such that p(`)/p(Sj−1) < κ/2, the probability that ` appears at least 3
4κm times (that is, at least

3/2 times the upper bound on the expected value) is at most δ/(9Mn) as well. The lemma follows by taking

a union bound over all (at most n) points considered above and over all M settings of j.

Next we show that with high probability Algorithm APPROX-EVAL-SIMULATOR returns either unknown

or a numerical value (as opposed to outputting fail in Line 23):

Lemma 4.1.7. For any p, ε, δ and i∗, Algorithm APPROX-EVAL-SIMULATOR outputs fail with probability at

most δ/9.

Proof. Fix any element i 6= i∗. The probability (taken only over the choice of the random subset in each

execution of Line 16) that i is placed in S′j in each of the first logn+log(9/δ) executions of Line 16 is at most
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δ
9n . Taking a union bound over all n− 1 points i 6= i∗, the probability that any point other than i∗ remains in

Sj−1 through all of the first logn+ log(9/δ) executions of the outer “for” loop is at most δ9 . Assuming that

this holds, then in the execution of the outer “for” loop when j = logn+ log(9/δ) + 1, the algorithm will

return p̂(Sj−1) = p̂(i∗) in Line 4.

For the rest of the analysis it will be helpful for us to define several “desirable” events and show that they

all hold with high probability:

1. Let E1 denote the event that every set Hj that is ever constructed in Line 7 satisfies both properties (i)

and (ii) stated in Lemma 4.1.6. By Lemma 4.1.6 the event E1 holds with probability at least 1− δ/9.

2. Let E2 denote the event that in every execution of Line 8, the estimate p̂Sj−1(i∗) is within an ad-

ditive ± κ
40 of the true value of p(i∗)/p(Sj−1). By the choice of m in Line 6 (i.e., using m =

Ω(log(M/δ)/κ2)), an additive Chernoff bound, and a union bound over all iterations, the event E2

holds with probability at least 1− δ/9.

3. LetE3 denote the event that if Line 10 is executed, the resulting value p̂Sj−1(i∗) lies in [1− ε
2M , 1 + ε

2M ]p(i∗)/p(Sj−1).

Assuming that event E2 holds, if Line 10 is reached then the true value of p(i∗)/p(Sj−1) must be

at least κ/40, and consequently a multiplicative Chernoff bound and the choice of m (i.e. using

m = Ω(M2 log(M/δ)/(ε2κ))) together imply that p̂Sj−1(i∗) lies in [1− ε
2M , 1 + ε

2M ]p(i∗)/p(Sj−1)

except with failure probability at most δ/9.

4. Let E4 denote the event that in every execution of Line 12, the estimate p̂Sj−1(Hj) is within an

additive error of ± ε
20 from the true value of p(Hj)/p(Sj−1). By the choice of m in Line 6 (i.e., using

m = Ω(log(M/δ)/ε2)) and an additive Chernoff bound, the event E4 holds with probability at least

1− δ/9.

The above arguments show that E1, E2, E3 and E4 all hold with probability at least 1− 4δ/9.

LetE5 denote the event that in every execution of Line 16, the set S′j which is drawn satisfies p(S′j)/p(Sj−1 \ (Hj ∪ {i∗})) ≥ 1/3.

The following lemma says that conditioned onE1 throughE4 all holding, eventE5 holds with high probability:

Lemma 4.1.8. Conditioned on E1 through E4 the probability that E5 holds is at least 1− δ/9.

Proof. Fix a value of j and consider the j-th iteration of Line 16. Since events E2 and E4 hold, it must be

the case that p(Sj−1 \ (Hj ∪ {i∗}))/p(Sj−1) ≥ ε/40. Since event E1 holds, it must be the case that every

i ∈ (Sj−1 \ (Hj ∪ {i∗})) has p(i)/p(Sj−1) ≤ κ. Now since S′j is chosen by independently including each

element of Sj−1 \ (Hj ∪ {i∗}) with probability 1/2, we can apply the first part of Corollary 1.4.12 and get

Pr
[
p(S′j) <

1
3p(Sj−1 \ (Hj ∪ {i∗}))

]
≤ e−4ε/(40·9·4κ) <

δ

9M ,

where the last inequality follows by the setting of κ = Ω(ε/(M2 log(1/δ))).

Thus we have established that E1 through E5 all hold with probability at least 1− 5δ/9.
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Next, let E6 denote the event that the algorithm never returns unknown and exits in Line 19. Our next

lemma shows that conditioned on events E1 through E5, the probability of E6 is at least 1− δ/9:

Lemma 4.1.9. Conditioned on E1 through E5 the probability that E6 holds is at least 1− δ/9.

Proof. Fix any iteration j of the outer “For” loop. In order for the algorithm to reach Line 18 in this iteration,

it must be the case (by Lines 9 and 13) that at least (ε/10− κ/20)m > (ε/20)m points in i1, . . . , im do not

belong to Hj ∪ {i∗}. Since each point not in Hj appears at most 3
4κm times in the list i1, . . . , im, there must

be at least ε
15κ distinct such values. Hence the probability that none of these values is selected to belong to S′j

is at most 1/2ε/(15κ) < δ/(9M). A union bound over all (at most M ) values of j gives that the probability

the algorithm ever returns unknown and exits in Line 19 is at most δ/9, so the lemma is proved.

Now let E7 denote the event that in every execution of Line 17, the estimate p̂Sj−1(Sj) lies in [1− ε
2M , 1+

ε
2M ]p(Sj)/p(Sj−1). The following lemma says that conditioned on E1 through E5, event E7 holds with

probability at least 1− δ/9:

Lemma 4.1.10. Conditioned on E1 through E5, the probability that E7 holds is at least 1− δ/9.

Proof. Fix a value of j and consider the j-th iteration of Line 17.The expected value of p̂Sj−1(Sj) is precisely

p(Sj)
p(Sj−1) = p(Sj)

p(Sj−1 \ (Hj ∪ {i∗}))
· p(Sj−1 \ (Hj ∪ {i∗}))

p(Sj−1) . (4.5)

Since events E2 and E4 hold we have that p(Sj−1\(Hj∪{i∗}))
p(Sj−1) ≥ ε/40, and since event E5 holds we have that

p(Sj)
p(Sj−1\(Hj∪{i∗})) ≥ 1/3 (note that p(Sj) ≥ p(S′j)). Thus we have that (4.5) is at least ε/120. Recalling the

value of m (i.e., using m = Ω(M2 log(M/δ)/ε2κ) = Ω(M2 log(M/δ)/ε3)) a multiplicative Chernoff bound

gives that indeed p̂Sj−1(Sj) ∈ [1− ε
2M , 1 + ε

2M ]p(Sj)/p(Sj−1) with failure probability at most δ/(9M). A

union bound over all M possible values of j finishes the proof.

At this point we have established that events E1 through E7 all hold with probability at least 1− 7δ/9.

We can now argue that each estimate p̂(Sj) is indeed a high-accuracy estimate of the true value p(Sj):

Lemma 4.1.11. With probability at least 1 − 7δ/9 each estimate p̂(Sj) constructed by APPROX-EVAL-

SIMULATOR lies in [(1− ε
2M )j , (1 + ε

2M )j ]p(Sj).

Proof. We prove the lemma by showing that if all events E1 through E7 hold, then the conclusion of the

lemma (denoted (*) for the sake of succinctness) holds: each estimate p̂(Sj) constructed by APPROX-EVAL-

SIMULATOR lies in [(1− ε
2M )j , (1 + ε

2M )j ]p(Sj). Thus for the rest of the proof we assume that indeed all

events E1 through E7 hold.

The claim (*) is clearly true for j = 0. We prove (*) by induction on j assuming it holds for j − 1. The

only places in the algorithm where p̂(Sj) may be set are Lines 10 and 21. If p̂(Sj) is set in Line 21 then (*)

follows from the inductive claim for j − 1 and Lemma 4.1.10. If p̂(Sj) is set in Line 10, then (*) follows from

the inductive claim for j − 1 and the fact that event E3 holds. This concludes the proof of the lemma.
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Finally, we require the following crucial lemma which establishes that if i∗ /∈ Lε,n (and hence the initial

rank rank[n] of i∗ is at least ε), then with very high probability the rank of i∗ never becomes too low during

the execution of the algorithm:

Lemma 4.1.12. Suppose i∗ /∈ Lε,n. Then with probability at least 1− δ/9, every set Sj−1 constructed by the

algorithm has rankSj−1(i∗) ≥ ε/2.

We prove Lemma 4.1.12 in Section 4.1.2.3 below.

With these pieces in place we are ready to prove Theorem 4.1.5.

Proof of Theorem 4.1.5: It is straightforward to verify that algorithm APPROX-EVAL-SIMULATOR has

the claimed query complexity. We now argue that APPROX-EVAL-SIMULATOR meets the two requirements

(i) and (ii) of Definition 4.1.4. Throughout the discussion below we assume that all the “favorable events”

in the above analysis (i.e. events E1 through E7, Lemma 4.1.7, and Lemma 4.1.12) indeed hold as desired

(incurring an overall failure probability of at most δ).

Suppose first that i∗ /∈ Lε,p. We claim that by Lemma 4.1.12 it must be the case that the algorithm does

not return unknown in Line 14. To verify this, observe that in order to reach Line 14 it would need to be

the case that p(i∗)/p(Sj−1) ≤ 3κ/40 (so the algorithm does not instead go to Line 2 in Line 10). Since

by Lemma 4.1.6 every element k in Hj satisfies p(k)/p(Sj−1) ≥ κ/2, this means that i∗ does not belong

to Hj . In order to reach Line 14, by event E4 we must have p(Hj)/p(Sj−1) ≥ 1 − 3ε/20. Since every

element of Hj has more mass under p (at least κ/2) than i∗ (which has at most 3κ/40), this would imply that

rankSj−1(i∗)≤3ε/20, contradicting Lemma 4.1.12. Furthermore, by Lemma 4.1.9 it must be the case that

the algorithm does not return unknown in Line 19. Thus the algorithm terminates by returning an estimate

p̂(Sj) = p̂(i∗) which, by Lemma 4.1.11, lies in [(1− ε
2M )j , (1 + ε

2M )j ]p(i∗). Since j ≤ M this estimate

lies in [1− ε, 1 + ε]p(i∗) as required.

Now suppose that i∗ ∈ Lε,p. By Lemma 4.1.7 we may assume that the algorithm either outputs unknown

or a numerical value. As above, Lemma 4.1.11 implies that if the algorithm outputs a numerical value then the

value lies in [1− ε, 1 + ε]p(i∗) as desired. This concludes the proof of Theorem 4.1.5.

Proof of Lemma 4.1.12. The key to proving Lemma 4.1.12 will be proving the next lemma. (In the

following, for S a set of real numbers we write sum(S) to denote
∑
α∈S α.)

Lemma 4.1.13. Fix 0 < ε ≤ 1/40. Set κ = Θ(ε/(M2 log(M/δ))). Let T = {α1, . . . , αn} be a set of values

α1 < · · · < αn such that sum(T ) = 1. Fix ` ∈ [n] and let TL = {α1, . . . , α`} and let TR = {α`+1, . . . , αn},

so TL ∪ TR = T. Assume that sum(TL) ≥ ε/2 and that α` ≤ κ/10.

Fix H to be any subset of T satisfying the following two properties: (i) H includes every αj such that

αj ≥ κ; and (ii) H includes no αj such that αj < κ/2. (Note that consequently H does not intersect TL.)

Let T ′ be a subset of (T \ (H ∪ {α`}) selected uniformly at random. Let T ′L = T ′ ∩ TL and let

T ′R = T ′ ∩ TR.
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Then we have the following:

1. If sum(TL) ≥ 20ε, then with probability at least 1− δ/M (over the random choice of T ′) it holds that

sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

≥ 9ε;

2. If ε/2 ≤ sum(TL) < 20ε, then with probability at least 1 − δ/M (over the random choice of T ′) it

holds that
sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

≥ sum(TL) (1− ρ) ,

where ρ = ln 2
M .

Proof of Lemma 4.1.12 using Lemma 4.1.13: We apply Lemma 4.1.13 repeatedly at each iteration j

of the outer “For” loop. The set H of Lemma 4.1.13 corresponds to the set Hj of “heavy” elements that

are removed at a given iteration, the set of values T corresponds to the values p(i)/p(Sj−1) for i ∈ Sj−1,

and the element α` of Lemma 4.1.13 corresponds to p(i∗)/p(Sj−1). The value sum(TL) corresponds to

rankSj−1(i∗) and the value
sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

corresponds to rankSj (i∗). Observe that since i∗ /∈ Lε,n we know that initially rank[n](i∗) ≥ ε, which means

that the first time we apply Lemma 4.1.13 (with T = {p(i) : i ∈ [n]}) we have sum(TL) ≥ ε.

By Lemma 4.1.13 the probability of failure in any of the (at mostM ) iterations is at most δ/9, so we assume

that there is never a failure. Consequently for all j we have that if rankSj−1(i∗) ≥ 20ε then rankSj (i∗) ≥ 9ε,

and if ε/2 ≤ rankSj−1(i∗) < 20ε then rankSj (i∗) ≥ rankSj (i∗) · (1− ρ) . Since rankS0(i∗) ≥ ε, it follows

that for all j ≤M we have rankSj (i∗) ≥ ε · (1− ρ)M > ε/2.

Proof of Lemma 4.1.13. We begin with the following claim:

Claim 4.1.14. With probability at least 1− δ/(2M) (over the random choice of T ′) it holds that sum(T ′L) ≥
1
2 · sum(TL) · (1− ρ/2).

Proof. Recall from the setup that every element αi ∈ TL satisfies αi ≤ κ/10, and sum(TL) ≥ ε/2. Also

recall that κ = O(ε/(M2 log(M/δ))) and that ρ = ln 2
M , so that ρ2ε/(6κ) ≥ ln(2M/δ). The claim follows

by applying the first part of Corollary 1.4.12 (with γ = ρ/2).

Part (1) of Lemma 4.1.13 is an immediate consequence of Claim 4.1.14, since in part (1) we have

sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

≥ sum(T ′L) ≥ 1
2 · sum(TL) ·

(
1− ρ

2

)
≥ 1

2 · 20ε ·
(

1− ρ

2

)
≥ 9ε.

It remains to prove Part (2) of the lemma. We will do this using the following claim:
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Claim 4.1.15. Suppose ε/2 ≤ sum(TL) ≤ 20ε. Then with probability at least 1− δ/(2M) (over the random

choice of T ′) it holds that sum(T ′R) ≤ 1
2 sum(TR) · (1 + ρ/2).

Proof. Observe first that αi < κ for each αi ∈ TR \H . We consider two cases.

If sum(TR \H) ≥ 4ε, then we apply the first part of Corollary 1.4.12 to the αi’s in TR \H and get that

Pr
[
sum(T ′R) > 1

2 sum(TR) · (1 + ρ/2)
]
≤ Pr

[
sum(T ′R) > 1

2 sum(TR \H) · (1 + ρ/2)
]

< exp(−ρ2 sum(TR \H)/24κ) (4.6)

≤ exp(−ρ2ε/(6κ)) ≤ δ

2M (4.7)

(recall from the proof of Claim 4.1.14 that ρ2ε/(6κ) ≥ ln(2M/δ)).

If sum(TR\H) < 4ε, (so that the expected value of sum(T ′R) is less than 2ε) then we can apply the second

part of Corollary 1.4.12 as we explain next. Observe that by the premise of the lemma, sum(TR) ≥ 1− 20ε

which is at least 1/2 (recalling that ε is at most 1/40). Consequently, the event “sum(T ′R) ≥ 1
2 · sum(TR) ·

(1 + ρ/2)” implies the event “sum(T ′R) ≥ 1
4 ”, and by applying the second part of Corollary 1.4.12 we get

Pr
[
sum(T ′R) > 1

2 sum(TR) · (1 + ρ/2)
]
≤ Pr

[
sum(T ′R) > 1

4

]
< 2−1/4κ <

δ

2M , (4.8)

as required.

Now we can prove Lemma 4.1.13. Using Claims 4.1.14 and 4.1.15 we have that with probability at least

1− δ/M ,

sum(T ′L) ≥ 1
2 · sum(TL) · (1− ρ/2) and sum(T ′R) ≤ 1

2 sum(TR) · (1 + ρ/2);

we assume that both these inequalities hold going forth. Since

sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

= sum(T ′L) + α`
sum(T ′) + α`

>
sum(T ′L)
sum(T ′) ,

it is sufficient to show that sum(T ′L)
sum(T ′) ≥ sum(TL)(1−ρ); we now show this. As sum(T ′) = sum(T ′L) + sum(T ′R),

sum(T ′L)
sum(T ′) = sum(T ′L)

sum(T ′L) + sum(T ′R) = 1
1 + sum(T ′

R
)

sum(T ′
L

)

≥ 1
1 + (1/2)·sum(TR)·(1+ρ/2)

(1/2)·sum(TL)·(1−ρ/2)

= sum(TL) · (1− ρ/2)
sum(TL) · (1− ρ/2) + sum(TR) · (1 + ρ/2)

≥ sum(TL) · (1− ρ/2)
sum(TL) · (1 + ρ/2) + sum(TR) · (1 + ρ/2)

= sum(TL) · 1− ρ/2
1 + ρ/2 > sum(TL) · (1− ρ).
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This concludes the proof of Lemma 4.1.13.

4.1.3 Algorithms and lower bounds for testing uniformity

4.1.3.1 A Õ(1/ε2)-query PAIRCOND algorithm for testing uniformity

In this subsection we present an algorithm PAIRCONDp-TEST-UNIFORM and prove the following theorem:

Theorem 4.1.16. PAIRCONDp-TEST-UNIFORM is a Õ(1/ε2)-query PAIRCONDp testing algorithm for

uniformity, i.e. it outputs accept with probability at least 2/3 if p = u and outputs reject with probability at

least 2/3 if dTV(p,u) ≥ ε.

Intuition. For the sake of intuition we first describe a simpler approach that yields a Õ(1/ε4)-query

algorithm, and then build on those ideas to obtain our real algorithm with its improved Õ(1/ε2) bound. Fix p

to be a distribution over [n] that is ε-far from uniform. Let

H =
{
h ∈ [n] : p(h) ≥ 1

n

}
and L =

{
` ∈ [n] : p(`) < 1

n

}
.

It is easy to see that since p is ε-far from uniform, we have

∑
h∈H

(
p(h)− 1

n

)
=
∑
`∈L

(
1
n
− p(`)

)
≥ ε

2 . (4.9)

From this it is not hard to show that

(i) many elements of [n] must be “significantly light” in the following sense: Define L′ ⊆ L to be

L′ =
{
` ∈ [n] : p(`) < 1

n −
ε

4n
}

. Then it must be the case that |L′| ≥ (ε/4)n.

(ii) p places significant weight on elements that are “significantly heavy” in the following sense: Define

H ′ ⊆ H to be H ′ =
{
h ∈ [n] : p(h) ≥ 1

n + ε
4n
}

. Then it must be the case that p(H ′) ≥ (ε/4).

Using (i) and (ii) it is fairly straightforward to give a Õ
(
1/ε4)-query PAIRCONDp testing algorithm as

follows: we can get a point in L′ with high probability by randomly sampling O(1/ε) points uniformly at

random from [n], and we can get a point in H ′ with high probability by drawing O(1/ε) points from SAMPp.

Then at least one of the O(1/ε2) pairs that have one point from the first sample and one point from the second

will have a multiplicative factor difference of 1 + Ω(ε) between the weight under p of the two points, and this

can be detected by calling the procedure COMPARE (see Section 4.1.2.1). Since there are O(1/ε2) pairs and

for each one the invocation of COMPARE uses Õ(1/ε2) queries, the overall sample complexity of this simple

approach is Õ(1/ε4).

Our actual algorithm PAIRCONDp-TEST-UNIFORM for testing uniformity extends the above ideas to

get a Õ(1/ε2)-query algorithm. More precisely, the algorithm works as follows: it first draws a “reference

sample” of O(1) points uniformly from [n]. Next, repeatedly for O
(
log 1

ε

)
iterations, the algorithm draws

two other samples, one uniformly from [n] and the other from SAMPp. (These samples have different sizes
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at different iterations; intuitively, each iteration is meant to deal with a different “scale” of probability mass

that points could have under p.) At each iteration it then uses COMPARE to do comparisons between pairs of

elements, one from the reference sample and the other from one of the two other samples. If p is ε-far from

uniform, then with high probability at some iteration the algorithm will either draw a point from SAMPp that

has “very big” mass under p, or draw a point from the uniform distribution over [n] that has “very small” mass

under p, and this will be detected by the comparisons to the reference points. Choosing the sample sizes and

parameters for the COMPARE calls carefully at each iteration yields the improved query bound.

Algorithm 19 PAIRCONDp-TEST-UNIFORM

Require: error parameter ε > 0; query access to PAIRCONDp oracle
1: Set t = log(4

ε ) + 1.
2: Select q = Θ(1) points i1, . . . , iq independently and uniformly from [n].
3: for j = 1 to t do
4: Call the SAMPp oracle sj = Θ

(
2j · t

)
times to obtain points h1, . . . , hsj distributed according to p.

5: Select sj points `1, . . . , `sj independently and uniformly from [n].
6: for all pairs (x, y) = (ir, hr′) and (x, y) = (ir, `r′) (where 1 ≤ r ≤ q, 1 ≤ r′ ≤ sj) do
7: Call COMPAREp({x}, {y},Θ(ε2j), 2, exp(−Θ(t))).
8: if the COMPARE call does not return a value in [1− 2j−5 ε

4 , 1 + 2j−5 ε
4 ] then

9: return reject (and exit).
10: end if
11: end for
12: end for
13: return accept

Proof of Theorem 4.1.16. Let mj denote the number of PAIRCONDp queries used to run COMPAREp in a

given execution of Line 7 during the j-th iteration of the outer loop. By the setting of the parameters in each

such call and Lemma 4.1.2, mj = O
(

t
ε222j

)
. It is easy to see that the algorithm only performs PAIRCONDp

queries and that the total number of queries that the algorithm performs is

O

 t∑
j=1

q · sj ·mj

 = O

 t∑
j=1

2j log
(

1
ε

)
·

log( 1
ε )

ε222j

 = O

( (log( 1
ε ))2

ε2

)
.

We prove Theorem 4.1.16 by arguing completeness and soundness below.

Completeness: Suppose that p is the uniform distribution. Then for any fixed pair of points (x, y),

Lemma 4.1.2 implies that the call to COMPARE on {x}, {y} in Line 7 causes the algorithm to output reject in

Line 9 with probability at most e−Θ(t) = poly(ε). By taking a union bound over all poly(1/ε) pairs of points

considered by the algorithm, the algorithm will accept with probability at least 2/3, as required.

Soundness: Now suppose that p is ε-far from uniform (we assume throughout the analysis that ε = 1/2k

for some integer k, which is clearly without loss of generality). We define H,L as above and further partition
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H and L into “buckets” as follows: for j = 1, . . . , t− 1 = log( 4
ε ), let

Hj
def=
{
h :

(
1 + 2j−1 · ε4

)
· 1
n
≤ p(h) <

(
1 + 2j · ε4

)
· 1
n

}
,

and for j = 1, . . . , t− 2 let

Lj
def=
{
` :

(
1− 2j · ε4

)
· 1
n
< p(`) ≤

(
1− 2j−1 · ε4

)
· 1
n

}
.

Also define

H0
def=
{
h : 1

n
≤ p(h) <

(
1 + ε

4

)
· 1
n

}
, L0

def=
{
` :

(
1− ε

4

)
· 1
n
< p(`) < 1

n

}
,

and

Ht
def=
{
h : p(h) ≥ 2

n

}
, Lt−1

def=
{
` : p(`) ≤ 1

2n

}
.

First observe that by the definition of H0 and L0, we have

∑
h∈H0

(
p(h)− 1

n

)
≤ ε

4 and
∑
`∈L0

(
1
n
− p(`)

)
≤ ε

4 .

Therefore (by Eq. (4.9)) we have

t∑
j=1

∑
h∈Hj

(
p(h)− 1

n

)
≥ ε

4 and
t−1∑
j=1

∑
`∈Lj

(
1
n
− p(`)

)
≥ ε

4 .

This implies that for some 1 ≤ j(H) ≤ t, and some 1 ≤ j(L) ≤ t− 1, we have

∑
h∈Hj(H)

(
p(h)− 1

n

)
≥ ε

4t and
∑

`∈Lj(L)

(
1
n
− p(`)

)
≥ ε

4t . (4.10)

The rest of the analysis is divided into two cases depending on whether |L| ≥ n
2 or |H| > n

2 .

Case 1: |L| ≥ n
2 . In this case, with probability at least 99/100, in Line 2 the algorithm will select at

least one point ir ∈ L. We consider two subcases: j(H) = t, and j(H) ≤ t− 1.

• j(H) = t: In this subcase, by Eq. (4.10) we have that
∑
h∈Hj(H)

p(h) ≥ ε
4t . This implies that when

j = j(H) = t = log( 4
ε ) + 1, so that sj = st = Θ

(
t
ε

)
, with probability at least 99/100 the algorithm

selects a point hr′ ∈ Ht in Line 4. Assume that indeed such a point hr′ is selected. Since p(hr′) ≥ 2
n ,

while p(ir) < 1
n , Lemma 4.1.2 implies that with probability at least 1− poly(ε) the COMPARE call in

Line 7 outputs either high or a value that is at least 7
12 = 1

2 + 1
12 . Since 7

12 >
1
2 + 2j−5 ε

4 for j = t, the

algorithm will output reject in Line 9.
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• j(H) < t: By Eq. (4.10) and the definition of the buckets, we have

∑
h∈Hj(H)

((
1 + 2j(H) ε

4

) 1
n
− 1
n

)
≥ ε

4t ,

implying that
∣∣Hj(H)

∣∣ ≥ n
2j(H)t

so that p(Hj(H)) ≥ 1
2j(H)t

. Therefore, when j = j(H) so that

sj = Θ
(
2j(H)t

)
, with probability at least 99/100 the algorithm will get a point hr′ ∈ Hj(H) in Line 4.

Assume that indeed such a point hr′ is selected. Since p(hr′) ≥
(
1 + 2j(H)−1 ε

4
) 1
n , while p(ir) ≤ 1

n ,

for αj(H) = 2j(H)−1 ε
4 , we have

p(hr′)
p(ir)

≥ 1 + αj(H) .

Since COMPARE is called in Line 7 on the pair {ir}, {hr′} with the “δ” parameter set to Θ(ε2j), with

probability 1− poly(ε) the algorithm outputs reject as a result of this COMPARE call.

Case 2: |H| > n
2 . This proceeds similarly to Case 1. In this case we have that with high constant

probability the algorithm selects a point ir ∈ H in Line 2. Here we consider the subcases j(L) = t− 1 and

j(L) ≤ t− 2. In the first subcase we have that
∑
`∈Lt

1
n ≥

ε
4t , so that |Lt| ≥ ( ε4t )n, and in the second case

we have that
∑
`∈Lj(L)

(2j(L) ε
4 ) 1
n ≥

ε
4t , so that

∣∣Lj(L)
∣∣ ≥ n

2j(L)t
. The analysis of each subcase is similar to

Case 1. This concludes the proof of Theorem 4.1.16.

4.1.3.2 An Ω(1/ε2) lower bound for CONDp algorithms that test uniformity

In this subsection we give a lower bound showing that the query complexity of the PAIRCONDp algorithm of

the previous subsection is essentially optimal, even for algorithms that may make general CONDp queries:

Theorem 4.1.17. Any CONDp algorithm for testing whether p = u versus dTV(p,u) ≥ ε must make

Ω(1/ε2) queries.

The high-level idea behind Theorem 4.1.17 is to reduce it to the well-known fact that distinguishing a fair

coin from a ( 1
2 + 4ε)-biased coin requires Ω

( 1
ε2

)
coin tosses. We show that any q-query algorithm CONDp

testing algorithm A can be transformed into an algorithm A′ that successfully distinguishes q tosses of a fair

coin from q tosses of a ( 1
2 + 4ε)-biased coin.

Proof of Theorem 4.1.17: First note that we may assume without loss of generality that 0 < ε ≤ 1/8.

Let A be any q-query algorithm that makes CONDp queries and tests whether p = u versus dTV(p,u) ≥ ε.

We may assume without loss of generality that in every possible execution algorithm A makes precisely q

queries (this will be convenient later).

Let pno be the distribution that has pno(i) = 1+2ε
n for each i ∈

[
1, n2

]
and has pno(i) = 1−2ε

n for each

i ∈
[
n
2 + 1, n

]
. (This is the “no”-distribution for our lower bound; it is ε-far in variation distance from the
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uniform distribution u.) By the guarantee of a testing algorithm, it must be the case that

Z :=
∣∣Pr
[
ACONDpno outputs accept

]
− Pr

[
ACONDu outputs accept

]∣∣ ≥ 1/3.

The proof works by showing that given A as described above, there must exist an algorithm A′ with

the following properties: A′ is given as input a q-bit string (b1, . . . , bq) ∈ {0, 1}q. Let p0 denote the

uniform distribution over {0, 1}q and let p4ε denote the distribution over {0, 1}q in which each coordinate is

independently set to 1 with probability 1/2 + 4ε. Then algorithm A′ has∣∣∣∣ Pr
b∼p0

[A′(b) outputs accept]− | Pr
b∼p4ε

[A′(b) outputs accept]
∣∣∣∣ = Z. (4.11)

Given (4.11), by the data processing inequality for total variation distance (Fact 1.4.2) we have that Z ≤

dTV(p0,p4ε). It is easy to see that dTV(p0,p4ε) is precisely equal to the variation distance dTV(Bin(q, 1/2) ,Bin(q, 1/2 + 4ε)).

However, in order for the variation distance between these two binomial distributions to be as large as 1/3 it

must be the case that q ≥ Ω(1/ε2):

Fact 4.1.18 (Distinguishing Fair from Biased Coin). Suppose m ≤ c
ε2 , with c a sufficiently small constant

and ε ≤ 1/8. Then,

dTV

(
Bin
(
m,

1
2

)
,Bin

(
m,

1
2 + 4ε

))
≤ 1

3 .

(Fact 4.1.18 is well known; it follows, for example, as an immediate consequence of Equations (2.15)

and (2.16) of [6].) Thus to prove Theorem 4.1.17 it remains only to describe algorithm A′ and prove Eq. (4.11).

As suggested above, algorithm A′ uses algorithm A; in order to do this, it must perfectly simulate the

CONDp oracle that A requires, both in the case when p = u and in the case when p = pno. We show below

that when its input b is drawn from p0 then A′ can perfectly simulate the execution of A when it is run on the

CONDu oracle, and when b is drawn from p4ε then A′ can perfectly simulate the execution of A when it is

run on the CONDpno oracle.

Fix any step 1 ≤ t ≤ q. We now describe how A′ perfectly simulates the t-th step of the execution of A

(i.e. the t-th call to CONDp that A makes, and the response of CONDp). We may inductively assume that A′

has perfectly simulated the first t− 1 steps of the execution of A.

For each possible prefix of t− 1 query-response pairs to CONDp

PREFIX = ((S1, s1), ..., (St−1, st−1))

(where each Si ⊆ [n] and each si ∈ Si), there is some distribution ¶A,PREFIX over possible t-th query sets

St that A would make given that its first t − 1 query-response pairs were PREFIX . So for a set St ⊆ [n]

and a possible prefix PREFIX , the value PA,PREFIX(St) is the probability that algorithm A, having had

the transcript of its execution thus far be PREFIX , generates set St as its t-th query set. For any query set

S ⊆ [n], let us write S as a disjoint union S = S0 t S1, where S0 = S ∩
[
1, n2

]
and S1 = S ∩ [n2 + 1, n]. We
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may assume that every query S ever used by A has |S0| , |S1| ≥ 1 (for otherwise A could perfectly simulate

the response of CONDp(S) whether p were u or pno by simply choosing a uniform point from S, so there

would be no need to call CONDp on such an S). Thus we may assume that PA,PREFIX(S) is nonzero only

for sets S that have |S0|, |S1| ≥ 1.

Consider the bit bt ∈ {0, 1}. As noted above, we inductively have that (whether p is u or pno) the

algorithm A′ has perfectly simulated the execution of A for its first t − 1 query-response pairs; in this

simulation some prefix PREFIX = ((S1, s1), . . . , (St−1, st−1)) of query-response pairs has been constructed.

If b = (b1, . . . , bq) is distributed according to p0 then PREFIX is distributed exactly according to the

distribution of A’s prefixes of length t− 1 when A is run with CONDu, and if b = (b1, . . . , bq) is distributed

according to p4ε then the distribution of PREFIX is exactly the distribution of A’s prefixes of length t− 1

when A is run with CONDpno .

Algorithm A′ simulates the t-th stage of the execution of A as follows:

1. Randomly choose a set S ⊆ [n] according to the distribution PA,PREFIX ; let S = S0 t S1 be the set

that is selected. Let us write α(S) to denote |S1|/|S0| (so α(S) ∈ [2/n, n/2]).

2. If bt = 1 then set the bit σ ∈ {0, 1} to be 1 with probability ut and to be 0 with probability 1− ut. If

bt = 0 then set σ to be 1 with probability vt and to be 0 with probability 1− vt. (We specify the exact

values of ut, vt below.)

3. Set s to be a uniform random element of Sσ. Output the query-response pair (St, st) = (S, s).

It is clear that Step 1 above perfectly simulates the t-th query that algorithm A would make (no matter

what is the distribution p). To show that the t-th response is simulated perfectly, we must show that

(i) if bt is uniform random over {0, 1} then s is distributed exactly as it would be distributed if A were

being run on CONDu and had just proposed S as a query to CONDu; i.e. we must show that s is a

uniform random element of S1 with probability p(α) def= α
α+1 and is a uniform random element of S0

with probability 1− p(α).

(ii) if bt ∈ {0, 1} has Pr[bt = 1] = 1/2 + 4ε, then s is distributed exactly as it would be distributed if A

were being run on CONDpno and had just proposed S as a query to CONDu; i.e. we must show that s is

a uniform random element of S1 with probability q(α) def= α
α+(1+2ε)/(1−2ε) and is a uniform random

element of S0 with probability 1− q(α).

By (i), we require that
ut
2 + vt

2 = p(α) = α

α+ 1 , (4.12)

and by (ii) we require that

(
1
2 + 4ε

)
ut +

(
1
2 − 4ε

)
vt = q(α) = α

α+ 1+2ε
1−2ε

(4.13)
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It is straightforward to check that

ut = α

α+ 1

(
1− 1

2((1− 2ε)α+ 1 + 2ε)

)
, vt = α

α+ 1

(
1 + 1

2((1− 2ε)α+ 1 + 2ε)

)

satisfy the above equations, and that for 0 < α, 0 < ε ≤ 1/8 we have 0 ≤ ut, vt ≤ 1. So indeed A′ perfectly

simulates the execution of A in all stages t = 1, . . . , q. Finally, after simulating the t-th stage algorithm A′

outputs whatever is output by its simulation of A, so Equation (4.11) indeed holds. This concludes the proof

of Theorem 4.1.17.

4.1.4 Testing equivalence to a known distribution p∗

4.1.4.1 A poly(logn, 1/ε)-query PAIRCONDp algorithm

In this subsection we present an algorithm PAIRCOND-TEST-KNOWN and prove the following theorem:

Theorem 4.1.19. PAIRCOND-TEST-KNOWN is a Õ((logn)4/ε4)-query PAIRCONDp testing algorithm for

testing equivalence to a known distribution p∗. That is, for every pair of distributions p,p∗ over [n] (such that

p∗ is fully specified and there is PAIRCOND query access to p) the algorithm outputs accept with probability

at least 2/3 if p = p∗ and outputs reject with probability at least 2/3 if dTV(p,p∗) ≥ ε.

Intuition. Let p∗ be a fully specified distribution, and let p be a distribution that may be accessed via a

PAIRCONDp oracle. The high-level idea of the PAIRCOND-TEST-KNOWN algorithm is the following: As in

the case of testing uniformity, we shall try to “catch” a pair of points x, y such that p(x)
p(y) differs significantly

from p∗(x)
p∗(y) (so that calling COMPAREp on {x}, {y} will reveal this difference). In the uniformity case, where

p∗(z) = 1/n for every z (so that p∗(x)
p∗(x)+p∗(y) = 1/2), to get a poly(1/ε)-query algorithm it was sufficient to

show that sampling Θ(1/ε) points uniformly (i.e., according to p∗) with high probability yields a point x for

which p(x) < p∗(x)− Ω(ε/n), and that sampling Θ(1/ε) points from SAMPp with high probability yields

a point y for which p(x) > p∗(y) + Ω(ε/n). However, for general p∗ it is not sufficient to get such a pair

because it is possible that p∗(y) could be much larger than p∗(x). If this were the case then it might happen

that both p∗(x)
p∗(y) and p(x)

p(y) are very small, so calling COMPAREp on {x}, {y} cannot efficiently demonstrate

that p∗(x)
p∗(y) differs from p(x)

p(y) .

To address this issue we partition the points into O(logn/ε) “buckets” so that within each bucket all

points have similar probability according to p∗. We show that if p is ε-far from p∗, then either the probability

weight of one of these buckets according to p differs significantly from what it is according to p∗ (which can

be observed by sampling from p), or we can get a pair {x, y} that belong to the same bucket and for which

p(x) is sufficiently smaller than p∗(x) and p(y) is sufficiently larger than p∗(y). For such a pair COMPARE

will efficiently give evidence that p differs from p∗.
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The algorithm and its analysis. We define some quantities that are used in the algorithm and its analysis.

Let η def= ε/c for some sufficiently large constant c that will be determined later. As described above we

partition the domain elements [n] into “buckets” according to their probability weight in p∗. Specifically, for

j = 1, . . . , dlog(n/η) + 1e, we let

Bj
def=
{
x ∈ [n] : 2j−1 · η/n ≤ p∗(x) < 2j · η/n

}
(4.14)

and we let B0
def= {x ∈ [n] : p∗(x) < η/n}. Let b def= dlog(n/η) + 1e+ 1 denote the number of buckets.

We further define Jh def= {j : p∗(Bj) ≥ η/b} to denote the set of indices of “heavy” buckets, and let

J`
def= { j : p∗(Bj) < η/b } denote the set of indices of “light” buckets. Note that we have

∑
j∈J`∪{0}

p∗(Bj) < 2η. (4.15)

Algorithm 20 PAIRCONDp-TEST-KNOWN

Require: error parameter ε > 0; query access to PAIRCONDp oracle; explicit description (p∗(1), . . . ,p∗(n))
of distribution p∗

1: Call the SAMPp oracle m = Θ(b2(log b)/η2) times to obtain points h1, . . . , hm distributed according to
p.

2: for j = 0 to b do
3: Let p̂(Bj) be the fraction of points h1, . . . , hm that lie in Bj (where the buckets Bj are as defined

in Eq. (4.14)).
4: if some j has |p∗(Bj)− p̂(Bj)| > η/b then
5: return reject and exit
6: end if
7: end for
8: Select s = Θ(b/ε) points x1, . . . , xs independently from p∗.
9: Call the SAMPp oracle s = Θ(b/ε) times to obtain points y1, . . . , ys distributed according to p.

10: for all pairs (xi, yj) (where 1 ≤ i, j ≤ s) such that D
∗(x)

D∗(y) ∈ [1/2, 2] do
11: Call COMPARE({x}, {y}, η/(4b), 2, 1/(10s2))
12: if COMPARE returns low or a value smaller than (1− η/(2b)) · D

∗(x)
D∗(y) then

13: return reject (and exit)
14: end if
15: end for
16: return accept

The query complexity of the algorithm is dominated by the number of PAIRCONDp queries performed in

the executions of COMPARE, which by Lemma 4.1.2 is upper bounded by

O(s2 · b2 · (log s)/η2) = O

(
(log n

ε )4 · log
(
(log n

ε )/ε
)

ε4

)
.

We argue completeness and soundness below.
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Completeness: Suppose that p = p∗. Since the expected value of p̂(Bj) (defined in Line 3) is precisely

p∗(Bj), for any fixed value of j ∈ {0, . . . , dlog(n/η) + 1e} an additive Chernoff bound implies that

|p∗(Bj)− p̂(Bj)|>η/b with failure probability at most 1/(10b). By a union bound over all b values of j,

the algorithm outputs reject in Line 5 with probability at most 1/10. Later in the algorithm, since p = p∗,

no matter what points xi, yj are sampled from p∗ and p respectively, the following holds for each pair

(xi, yj) such that p∗(x)/p∗(y) ∈ [1/2, 2]. By Lemma 4.1.2 (and the setting of the parameters in the calls to

COMPARE), the probability that COMPARE returns low or a value smaller than (1− δ/(2b)) · (p∗(x)/p∗(y)),

is at most 1/(10s2). A union bound over all (at most s2) pairs (xi, yj) for which p∗(x)/p∗(y) ∈ [1/2, 2],

gives that the probability of outputting reject in Line 13 is at most 1/10. Thus with overall probability at least

8/10 the algorithm outputs accept.

Soundness: Now suppose that dTV(p,p∗) ≥ ε; our goal is to show that the algorithm rejects with

probability at least 2/3. Since the algorithm rejects if any estimate p̂(Bj) obtained in Line 3 deviates from

p∗(Bj) by more than ±η/b, we may assume that all these estimates are indeed ±η/b-close to the values

p∗(Bj) as required. Moreover, by an additive Chernoff bound (as in the completeness analysis), we have that

with overall failure probability at most 1/10, each j has |p̂(Bj)− p(Bj)| ≤ η/b; we condition on this event

going forth. Thus, for every 0 ≤ j ≤ b,

p∗(Bj)− 2η/b ≤ p(Bj) ≤ p∗(Bj) + 2η/b . (4.16)

Recalling the definition of J` and Eq. (4.15), we see that

∑
j∈J`∪{0}

p(Bj) < 4η . (4.17)

Let

dj
def=

∑
x∈Bj

|p∗(x)− p(x)| , (4.18)

so that ‖p∗ − p‖1 =
∑
j dj . By Eqs. (4.15) and (4.17), we have

∑
j∈J`∪{0}

dj ≤
∑

j∈J`∪{0}

(p∗(Bj) + p(Bj)) ≤ 6η . (4.19)

Since we have (by assumption) that ‖p∗ − p‖1 = 2 dTV(p∗,p) ≥ 2ε, we get that

∑
j∈Jh\{0}

dj > 2ε− 6η . (4.20)

Let Nj
def= |Bj | and observe that Nj ≤ p∗(Bj)/pj ≤ 1/pj , where pj

def= 2j−1 · η/n is the lower

bound on the probability (under p∗) of all elements in Bj . For each Bj such that j ∈ Jh \ {0}, let
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Hj
def= {x ∈ Bj : p(x) > p∗(x)} and Lj

def= {x ∈ Bj : p(x) < p∗(x)}. Similarly to the “testing uniformity”

analysis, we have that ∑
x∈Lj

(p∗(x)− p(x)) +
∑
x∈Hj

(p(x)− p∗(x)) = dj . (4.21)

Eq. (4.16) may be rewritten as∣∣∣∣∣∣
∑
x∈Lj

(p∗(x)− p(x))−
∑
x∈Hj

(p(x)− p∗(x))

∣∣∣∣∣∣ ≤ 2η/b , (4.22)

and so we have both

∑
x∈Lj

(p∗(x)− p(x)) ≥ dj/2− η/b and
∑
x∈Hj

(p(x)− p∗(x)) ≥ dj/2− η/b . (4.23)

Also similarly to what we had before, let H ′j
def= {x ∈ Bj : p(x) > p∗(x) + η/(bNj)}, and L′j

def= {x ∈

Bj : p(x) < p∗(x)− η/(bNj)} (recall that Nj = |Bj |); these are the elements of Bj that are “significantly

heavier” (lighter, respectively) under p than under p∗. We have

∑
x∈Lj\L′j

(p∗(x)− p(x)) ≤ η/b and
∑

x∈Hj\H′j

(p(x)− p∗(x)) ≤ η/b . (4.24)

By Eq. (4.20), there exists j∗ ∈ Jh \{0} for which dj∗ ≥ (2ε−6η)/b. For this index, applying Eqs. (4.23)

and (4.24), we get that

∑
x∈L′

j∗

p∗(x) ≥
∑
x∈L′

j∗

(p∗(x)− p(x)) ≥ (ε− 5η)/b , (4.25)

and similarly, ∑
x∈H′

j∗

p(x) ≥
∑
x∈H′

j∗

(p(x)− p∗(x)) ≥ (ε− 5η)/b . (4.26)

Recalling that η = ε/c and setting the constant c to 6, we have that (ε− 5η)/b = ε/6b. Since s = Θ(b/ε),

with probability at least 9/10 it is the case both that some xi drawn in Line 8 belongs to L′j∗ and that some yi′

drawn in Line 9 belongs to H ′j∗ . By the definitions of L′j∗ and H ′j∗ and the fact for each j > 0 it holds that

Nj ≤ 1/pj and pj ≤ p∗(x) < 2pj for each xi ∈ Bj , we have that

p(xi) < p∗(xi)− η/(bNj∗) ≤ p∗(xi)− (η/b)pj∗ ≤ (1− η/(2b))p∗(xi) (4.27)

and

p(yi′) > p∗(yi′) + η/(bNj∗) ≥ p∗(yi′) + (η/b)pj ≥ (1 + η/(2b))p∗(yi′) . (4.28)
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Therefore,
p(xi)
p(yi′)

<
1− η/(2b)
1 + η/(2b) ·

p∗(xi)
p∗(yi′)

<

(
1− 3η

4b

)
· p∗(xi)

p∗(yi′)
. (4.29)

By Lemma 4.1.2, with probability at least 1− 1/(10s2), the output of COMPARE is either low or is at most(
1− 3η

4b
)
·
(
1 + η

4b
)
<
(
1− η

2b
)
, causing the algorithm to reject. Thus the overall probability that the

algorithm outputs reject is at least 8/10− 1/(10s2) > 2/3, and the theorem is proved.

4.1.4.2 A (logn)Ω(1) lower bound for PAIRCONDp

In this subsection we prove that any PAIRCONDp algorithm for testing equivalence to a known distribution

must have query complexity at least (logn)Ω(1):

Theorem 4.1.20. Fix ε = 1/2. There is a distribution p∗ over [n] (described below), which is such that

any PAIRCONDp algorithm for testing whether p = p∗ versus dTV(p,p∗) ≥ ε must make Ω
(√

logn
log logn

)
queries.

The distribution p∗. Fix parameters r = Θ
(

logn
log logn

)
and K = Θ(logn). We partition [n] from left

(1) to right (n) into 2r consecutive intervals B1, . . . , B2r, which we henceforth refer to as “buckets.” The

i-th bucket has |Bi| = Ki (we may assume without loss of generality that n is of the form
∑2r
i=1K

i). The

distribution p∗ assigns equal probability weight to each bucket, so p∗(Bi) = 1/(2r) for all 1 ≤ i ≤ 2r.

Moreover p∗ is uniform within each bucket, so for all j ∈ Bi we have p∗(j) = 1/(2rKi). This completes

the specification of p∗.

To prove the lower bound we construct a probability distribution Dno over possible no-distributions.

To define the distribution Dno it will be useful to have the notion of a “bucket-pair.” A bucket-pair Ui is

Ui = B2i−1 ∪B2i, i.e. the union of the i-th pair of consecutive buckets.

A distribution p drawn from Dno is obtained by selecting a string π = (π1, . . . , πr) uniformly at random

from {↓↑, ↑↓}r and setting p to be pπ, which we now define. The distribution pπ is obtained by perturbing

p∗ in the following way: for each bucket-pair Ui = (B2i−1, B2i),

• If πi =↑↓ then the weight of B2i−1 is uniformly “scaled up” from 1/(2r) to 3/(4r) (keeping the

distribution uniform within B2i−1) and the weight of B2i is uniformly “scaled down” from 1/(2r) to

1/(4r) (likewise keeping the distribution uniform within B2i).

• If πi =↓↑ then the weight of B2i−1 is uniformly “scaled down” from 1/(2r) to 1/(4r) and the weight

of B2i is uniformly “scaled up” from 1/(2r) to 3/(4r).

Note that for any distribution p in the support of Dno and any 1 ≤ i ≤ r we have that p(Ui) = p∗(Ui) =

1/r.

Every distribution p in the support of Dno has dTV(p∗,p) = 1/2. Thus Theorem 4.1.20 follows immedi-

ately from the following:

Theorem 4.1.21. Let A be any (possibly adaptive) algorithm. which makes at most q ≤ 1
3 ·
√
r calls to
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PAIRCONDp. Then∣∣∣∣ Pr
D←Dno

[
APAIRCONDp outputs accept

]
− Pr

[
APAIRCONDp∗ outputs accept

]∣∣∣∣ ≤ 1/5. (4.30)

Note that in the first probability of Eq. (4.30) the randomness is over the draw of p from Dno, the internal

randomness of A in selecting its query sets, and the randomness of the responses to the PAIRCONDp queries.

In the second probability the randomness is just over the internal coin tosses of A and the randomness of the

responses to the PAIRCONDp queries.

Intuition for Theorem 4.1.21. A very high-level intuition for the lower bound is that PAIRCONDp

queries are only useful for “comparing” points whose probabilities are within a reasonable multiplicative ratio

of each other. But p∗ and every distribution p in the support of Dno are such that every two points either have

the same probability mass under all of these distributions (so a PAIRCONDp query is not informative), or

else the ratio of their probabilities is so skewed that a small number of PAIRCONDp queries is not useful for

comparing them.

In more detail, we may suppose without loss of generality that in every possible execution, algorithm A

first makes q calls to SAMPp and then makes q (possibly adaptive) calls to PAIRCONDp. The more detailed

intuition for the lower bound is as follows: First consider the SAMPp calls. Since every possible p (whether

p∗ or a distribution drawn from Dno) puts weight 1/r on each bucket-pair U1, . . . , Ur, a birthday paradox

argument implies that in both scenarios, with probability at least 9/10 (over the randomness in the responses

to the SAMPp queries) no two of the q ≤ 1
3
√
r calls to SAMPp return points from the same bucket-pair.

Conditioned on this, the distribution of responses to the SAMPp queries is exactly the same under p∗ and

under p where p is drawn randomly from Dno.

For the pair queries, the intuition is that in either setting (whether the distribution p is p∗ or a randomly

chosen distribution from Dno), making q pair queries will with 1− o(1) probability provide no information

that the tester could not simulate for itself. This is because any pair query PAIRCONDp({x, y}) either has

x, y in the same bucket Bi or in different buckets Bi 6= Bj with i < j. If x, y are both in the same bucket Bi

then in either setting PAIRCONDp({x, y}) is equally likely to return x or y. If they belong to buckets Bi, Bj

with i < j then in either setting PAIRCONDp({x, y}) will return the one that belongs to Pi with probability

1− 1/Θ(Kj−i) ≥ 1− 1/Ω(K).

Proof of Theorem 4.1.21: As described above, we may fix A to be any PAIRCONDp algorithm that

makes exactly q calls to SAMPp followed by exactly q adaptive calls to PAIRCONDp.

A transcript for A is a full specification of the sequence of interactions that A has with the PAIRCONDp

oracle in a given execution. More precisely, it is a pair (Y,Z) where Y = (s1, . . . , sq) ∈ [n]q and Z =

(({x1, y1}, p1), . . . , ({xq, yq}, pq)), where pi ∈ {xi, yi} and xi, yi ∈ [n]. The idea is that Y is a possible

sequence of responses that A might receive to the initial q SAMPp queries, {xi, yi} is a possible pair that
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could be the input to an i-th PAIRCONDp query, and pi is a possible response that could be received from

that query.

We say that a length-i transcript prefix is a pair (Y,Zi) where Y is as above andZi = (({x1, y1}, p1), . . . , ({xi, yi}, pi)).

A PAIRCOND algorithm A may be viewed as a collection of distributions over pairs {x, y} in the following

way: for each length-i transcript-prefix (Y,Zi) (0 ≤ i ≤ q− 1), there is a distribution over pairs {xi+1, yi+1}

that A would use to select the (i+ 1)-st query pair for PAIRCONDp given that the length-i transcript prefix

of A’s execution thus far was (Y,Zi). We write T(Y,Zi) to denote this distribution over pairs.

Let ¶∗ denote the distribution over transcripts induced by running A with oracle PAIRCONDD∗ . Let ¶no

denote the distribution over transcripts induced by first (i) drawing p from Dno, and then (ii) running A with

oracle PAIRCONDp. To prove Theorem 4.1.21 it is sufficient to prove that the distribution over transcripts of

A is statistically close whether the oracle is p∗ or is a random p drawn from Dno, i.e. it is sufficient to prove

that

dTV(¶∗,¶no) ≤ 1/5. (4.31)

For our analysis we will need to consider variants of algorithm A that, rather than making q calls to

PAIRCONDp, instead “fake” the final q− k of these PAIRCONDp queries as described below. For 0 ≤ k ≤ q

we define A(k) to be the algorithm that works as follows:

1. A(k) exactly simulates the execution of A in making an initial q SAMPp calls and making the first k

PAIRCONDp queries precisely like A. Let (Y,Zk) be the length-k transcript prefix of A’s execution

thus obtained.

2. Exactly like A, algorithm A(k) draws a pair {xk+1, yk+1} from T(Y,Zk). However, instead of calling

PAIRCONDp({xk+1, yk+1}) to obtain pk+1, algorithm A(k) generates pk+1 in the following manner:

(i) If xk+1 and yk+1 both belong to the same bucket B` then pk+1 is chosen uniformly from

{xk+1, yk+1}.

(ii) If one of {xk+1, yk+1} belongs to B` and the other belongs to B`′ for some ` < `′, then pk+1 is

set to be the element of {xk+1, yk+1} that belongs to B`.

Let (Y, Zk+1) be the length-(k + 1) transcript prefix obtained by appending ({xk+1, yk+1}, pk+1) to

Zk. Algorithm A(k) continues in this way for a total of q − k stages; i.e. it next draws {xk+2, yk+2}

from T(Y,Zk+1) and generates pk+2 as described above; then (Y, Zk+2) is the length-(k + 2) transcript

prefix obtained by appending ({xk+2, yk+2}, pk+2) to Zk+1; and so on. At the end of the process a

transcript (Y, Zq) has been constructed.

Let ¶∗,(k) denote the distribution over final transcripts (Y,Zq) that are obtained by running A(k) on a

PAIRCONDp∗ oracle. Let ¶no,(k) denote the distribution over final transcripts (Y,Zq) that are obtained by (i)

first drawing p from Dno, and then (ii) running A(k) on a PAIRCONDp oracle. Note that ¶∗,(q) is identical

to ¶∗ and ¶no,(q) is identical to ¶no (since algorithm A(q), which does not fake any queries, is identical to

algorithm A).
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Recall that our goal is to prove Eq. (4.31). Since ¶∗,(q) = ¶∗ and ¶no,(q) = ¶no, Eq. (4.31) is an immediate

consequence (using the triangle inequality for total variation distance) of the following two lemmas, which we

prove below:

Lemma 4.1.22. dTV(¶∗,(0),¶no,(0)) ≤ 1/10.

Lemma 4.1.23. For all 0 ≤ k < q, we have dTV(¶∗,(k),¶∗,(k+1)) ≤ 1/(20q) and dTV(¶no,(k),¶no,(k+1)) ≤

1/(20q).

Proof of Lemma 4.1.22: Define ¶∗0 to be the distribution over outcomes of the q calls to SAMPp (i.e.

over length-0 transcript prefixes) when p = p∗. Define ¶no to be the distribution over outcomes of the q

calls to SAMPp when p is drawn from Dno. We begin by noting that by the data processing inequality for

total variation distance (Fact 1.4.2), we have dTV(¶∗,(0),¶no,(0)) ≤ dTV(¶∗0,¶no
0 ) (indeed, after the calls to

respectively SAMPp and SAMPp∗ , the same randomized function F – which fakes all remaining oracle calls

– is applied to the two resulting distributions over length-0 transcript prefixes ¶∗0 and ¶no
0 ). In the rest of the

proof we show that dTV(¶∗0,¶no
0 ) ≤ 1/10.

Let E denote the event that the q calls to SAMPp yield points s1, . . . , sq such that no bucket-pair Ui

contains more than one of these points. Since p∗(Ui) = 1/r for all i,

¶∗0(E) =
q−1∏
j=0

(
1− j

r

)
≥ 9/10 , (4.32)

where Eq. (4.32) follows from a standard birthday paradox analysis and the fact that q ≤ 1
3
√
r. Since for each

possible outcome of p drawn from Dno we have p(Ui) = 1/r for all i, we further have that also

¶no
0 (E) =

q−1∏
j=0

(
1− j

r

)
. (4.33)

We moreover claim that the two conditional distributions (¶∗0|E) and (¶no
0 |E) are identical, i.e.

(¶∗0|E) = (¶no
0 |E). (4.34)

To see this, fix any sequence (`1, . . . , `q) ∈ [r]q such that `i 6= `j for all i 6= j. Let (s1, . . . , sq) ∈ [n]q

denote a draw from (¶∗0|E). The probability that (si ∈ U`i for all 1 ≤ i ≤ q) is precisely (r − q)!/r!. Now

given that si ∈ U`i for all i, it is clear that si is equally likely to lie in B2`i−1 and in B2`i , and given that it

lies in a particular one of the two buckets, it is equally likely to be any element in that bucket. This is true

independently for all 1 ≤ i ≤ q.

Now let (s1, . . . , sq) ∈ [n]q denote a draw from (¶no
0 |E). Since each distribution p in the support of

Dno has p(Ui) = 1/r for all i, we likewise have that the probability that (si ∈ U`i for all 1 ≤ i ≤ q) is

precisely (r − q)!/r!. Now given that si ∈ U`i for all i, we have that si is equally likely to lie in B2`i−1
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and in B2`i ; this is because πi (recall that π determines p = pπ) is equally likely to be ↑↓ (in which case

p(B2`i−1) = 3/(4r) and p(B2`i) = 1/(4r)) as it is to be ↓↑ (in which case p(B2`i−1) = 1/(4r) and

p(B2`i) = 3/(4r)). Additionally, given that si lies in a particular one of the two buckets, it is equally likely

to be any element in that bucket. This is true independently for all 1 ≤ i ≤ q (because conditioning on E

ensures that no two elements of s1, . . . , sq lie in the same bucket-pair, so there is “fresh randomness for each

i”), and so indeed the two conditional distributions (¶∗0|E) and (¶no
0 |E) are identical.

Finally, the claimed bound dTV(¶∗0,¶no
0 ) ≤ 1/10 follows directly from Eqs. (4.32) to (4.34).

Proof of Lemma 4.1.23: Consider first the claim that dTV(¶∗,(k),¶∗,(k+1)) ≤ 1/(20q). Fix any

0 ≤ k < q. The data processing inequality for total variation distance implies that dTV(¶∗,(k),¶∗,(k+1)) is at

most the variation distance between random variables X and X ′, where

• X is the random variable obtained by running A on CONDp∗ to obtain a length-k transcript prefix

(Y,Zk), then drawing {xk+1, yk+1} from T(Y,Zk), then setting pk+1 to be the output of PAIRCONDp∗({xk+1, yk+1});

and

• X ′ is the random variable obtained by running A on CONDp∗ to obtain a length-k transcript prefix

(Y,Zk), then drawing {xk+1, yk+1} from T(Y,Zk), then setting pk+1 according to the aforementioned

rules 2(i) and 2(ii).

Consider any fixed outcome of (Y,Zk) and {xk+1, yk+1}. If rule 2(i) is applied (xk+1 and yk+1 are in the

same bucket), then there is zero contribution to the variation distance between X and X ′, because choosing

a uniform element of {xk+1, yk+1} is a perfect simulation of PAIRCONDp({xk+1, yk+1}). If rule 2(ii) is

applied, then the contribution is upper bounded by O(1/K) < 1/20q, because PAIRCONDp∗({xk+1yk+1})

would return a different outcome from rule 2(ii) with probability 1/Θ(K`′−`) = O(1/K). Averaging over all

possible outcomes of (Y,Zk) and {xk+1, yk+1} we get that the variation distance between X and X ′ is at

most 1/20q as claimed.

An identical argument shows that similarly dTV(¶no,(k),¶no,(k+1)) ≤ 1/(20q). The key observation is

that for any distribution p in the support of Dno, as with p∗ it is the case that points in the same bucket

have equal probability under p and for a pair of points {x, y} such that x ∈ B` and y ∈ B`′ for `′ > `,

the probability that a call to PAIRCONDp({x, y}) returns y is only 1/Θ(K`′−`). This concludes the proof

of Lemma 4.1.23 and of Theorem 4.1.20.

4.1.4.3 A poly(1/ε)-query CONDp algorithm

In this subsection we present an algorithm COND-TEST-KNOWN and prove the following theorem:

Theorem 4.1.24. COND-TEST-KNOWN is a Õ(1/ε4)-query CONDp testing algorithm for testing equiva-

lence to a known distribution p∗. That is, for every pair of distributions p,p∗ over [n] (such that p∗ is fully

specified and there is COND query access to p), the algorithm outputs accept with probability at least 2/3 if

p = p∗ and outputs reject with probability at least 2/3 if dTV(p,p∗) ≥ ε.
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This constant-query testing algorithm stands in interesting contrast to the (logn)Ω(1)-query lower bound

for PAIRCONDp algorithms for this problem.

High-level overview of the algorithm and its analysis: First, we note that by reordering elements of

[n] we may assume without loss of generality that p∗(1) ≤ · · · ≤ p∗(n); this will be convenient for us.

Our (logn)Ω(1) query lower bound for PAIRCONDp algorithms exploited the intuition that comparing

two points using the PAIRCONDp oracle might not provide much information (e.g. if one of the two points

was a priori “known” to be much heavier than the other). In contrast, with a general CONDp oracle at our

disposal, we can compare a given point j ∈ [n] with any subset of [n] \ {j}. Thus the following definition will

be useful:

Definition 4.1.25 (comparable points). Fix 0 < λ ≤ 1. A point j ∈ supp(D∗) is said to be λ-comparable if

there exists a set S ⊆ ([n] \ {j}) such that

p∗(j) ∈ [λp∗(S),p∗(S)/λ].

Such a set S is then said to be a λ-comparable-witness for j (according to p∗), which is denoted S ∼=∗ j. We

say that a set T ⊆ [n] is λ-comparable if every i ∈ T is λ-comparable.

We stress that the notion of being λ-comparable deals only with the known distribution p∗; this will be

important later.

Fix ε1 = Θ(ε) (we specify ε1 precisely in Eq. (4.37) below). Our analysis and algorithm consider

two possible cases for the distribution p∗ (where it is not hard to verify, and we provide an explanation

subsequently, that one of the two cases must hold):

1. The first case is that for some i∗ ∈ [n] we have

p∗({1, . . . , i∗}) > 2ε1 but p∗({1, . . . , i∗ − 1}) ≤ ε1. (4.35)

In this case 1 − ε1 of the total probability mass of p∗ must lie on a set of at most 1/ε1 elements,

and in such a situation it is easy to efficiently test whether p = p∗ using poly(1/ε) queries (see

Algorithm CONDp-TEST-KNOWN-HEAVY and Lemma 4.1.29).

2. The second case is that there exists an element k∗ ∈ [n] such that

ε1 < p∗({1, . . . , k∗}) ≤ 2ε1 < D∗({1, . . . , k∗ + 1}). (4.36)

This is the more challenging (and typical) case. In this case, it can be shown that every element j > k∗

has at least one ε1-comparable-witness within {1, . . . , j}. In fact, we show (see Claim 4.1.26) that either

(a) {1, . . . , j − 1} is an ε1-comparable witness for j, or (b) the set {1, . . . , j − 1} can be partitioned
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into disjoint sets6 S1, . . . , St such that each Si, 1 ≤ i ≤ t, is a 1
2 -comparable-witness for j. Case (a) is

relatively easy to handle so we focus on (b) in our informal description below.

The partition S1, . . . , St is useful to us for the following reason: Suppose that dTV(p,p∗) ≥ ε. It is not

difficult to show (see Claim 4.1.28) that unless p({1, . . . , k∗}) > 3ε1 (which can be easily detected and

provides evidence that the tester should reject), a random sample of Θ(1/ε) draws from p will with high

probability contain a “heavy” point j > k∗, that is, a point j > k∗ such that p(j) ≥ (1 + ε2)p∗(j) (where

ε2 = Θ(ε)). Given such a point j, there are two possibilities:

1. The first possibility is that a significant fraction of the sets S1, . . . , St have p(j)/p(Si) “noticeably

different” from p∗(j)/p∗(Si). (Observe that since each set Si is a 1
2 -comparable witness for j, it is

possible to efficiently check whether this is the case.) If this is the case then our tester should reject

since this is evidence that p 6= p∗.

2. The second possibility is that almost every Si has p(j)/p(Si) very close to p∗(j)/p∗(Si). If this is the

case, though, then since p(j) ≥ (1 + ε2)p∗(j) and the union of S1, . . . , St is {1, . . . , j − 1}, it must

be the case that p({1, . . . , j}) is “significantly larger” than p∗({1, . . . , j}). This will be revealed by

random sampling from p and thus our testing algorithm can reject in this case as well.

Key quantities and useful claims. We define some quantities that are used in the algorithm and its

analysis. Let

ε1
def= ε

10 ; ε2
def= ε

2 ; ε3
def= ε

48 ; ε4
def= ε

6 . (4.37)

Claim 4.1.26. Suppose there exists an element k∗ ∈ [n] that satisfies Eq. (4.36). Fix any j > k∗. Then

1. If p∗(j) ≥ ε1, then S1
def= {1, . . . , j − 1} is an ε1-comparable witness for j;

2. If p∗(j) < ε1 then the set {1, . . . , j − 1} can be partitioned into disjoint sets S1, . . . , St such that each

Si, 1 ≤ i ≤ t, is a 1
2 -comparable-witness for j.

Proof. First consider the case that p∗(j) ≥ ε1. In this case S1 = {1, . . . , j−1} is an ε1-comparable witness for

j because p∗(j) ≥ ε1 ≥ ε1p∗({1, . . . , j−1}) and p∗(j) ≤ 1 ≤ 1
ε1

p∗({1, . . . , k∗}) ≤ 1
ε1

p∗({1, . . . , j−1}),

where the last inequality holds since k∗ ≤ j − 1.

Next, consider the case that p∗(j) < ε1. In this case we build our intervals iteratively from right to left, as

follows. Let j1 = j − 1 and let j2 be the minimum index in Jj1K such that

p∗({j2 + 1, . . . , j1}) ≤ p∗(j).

(Observe that we must have j2 ≥ 1, because p∗({1, . . . , k∗}) > ε1 > p∗(j).) Since p∗({j2, . . . , j1}) > p∗(j)

6In fact the sets are intervals (under the assumption p∗(1) ≤ · · · ≤ p∗(n)), but that is not really important for our arguments.
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and the function p∗(·) is monotonically increasing, it must be the case that

1
2p∗(j) ≤ p∗({j2 + 1, . . . , j1}) ≤ p∗(j).

Thus the interval S1
def= {j2 + 1, . . . , j1} is a 1

2 -comparable witness for j as desired.

We continue in this fashion from right to left; i.e. if we have defined j2, . . . , jt as above and there is an

index j′ ∈ JjtK such that p∗({j′ + 1, . . . , jt}) > p∗(j), then we define jt+1 to be the minimum index in JjtK

such that

p∗({jt+1 + 1, . . . , jt}) ≤ p∗(j),

and we define St to be the interval {jt+1 + 1, . . . , jt}. The argument of the previous paragraph tells us that

1
2p∗(j) ≤ p∗({jt+1 + 1, . . . , jt}) ≤ p∗(j) (4.38)

and hence St is an 1
2 -comparable witness for j.

At some point, after intervals S1 = {j2 + 1, . . . , j1}, . . . , St = {jt+1 + 1, . . . , jt} have been defined

in this way, it will be the case that there is no index j′ ∈ Jjt+1K such that p∗({j′ + 1, . . . , jt+1}) > p∗(j).

At this point there are two possibilities: first, if jt+1 + 1 = 1, then S1, . . . , St give the desired partition of

{1, . . . , j − 1}. If jt+1 + 1 > 1 then it must be the case that p∗({1, . . . , jt+1}) ≤ p∗(j). In this case we

simply add the elements {1, . . . , jt+1} to St, i.e. we redefine St to be {1, . . . , jt}. By Eq. (4.38) we have that

1
2p∗(j) ≤ p∗(St) ≤ 2p∗(j)

and thus St is an 1
2 -comparable witness for j as desired. This concludes the proof.

Definition 4.1.27 (Heavy points). A point j ∈ supp(D∗) is said to be η-heavy if p(j) ≥ (1 + η)D∗(j).

Claim 4.1.28. Suppose that dTV(p, D∗) ≥ ε and Eq. (4.36) holds. Suppose moreover that p({1, . . . , k∗}) ≤

4ε1. Let i1, . . . , i` be i.i.d. points drawn from p. Then for ` = Θ(1/ε), with probability at least 99/100 (over

the i.i.d. draws of i1, . . . , i` ∼ p) there is some point ij ∈ {i1, . . . , i`} such that ij > k∗ and ij is ε2-heavy.

Proof. Define H1 to be the set of all ε2-heavy points and H2 to be the set of all “slightly lighter” points as

follows:

H1 = { i ∈ [n] : p(i) ≥ (1 + ε2)D∗(i) }

H2 = { i ∈ [n] : (1 + ε2)D∗(i) > p(i) ≥ p∗(i) }

179



By definition of the total variation distance, we have

ε ≤ dTV(p, D∗) =
∑

i:p(i)≥p∗(i)

(p(i)− p∗(i)) = (p(H1)− p∗(H1)) + (p(H2)− p∗(H2))

≤ p(H1) + ((1 + ε2)D∗(H2)− p∗(H2))

= p(H1) + ε2p∗(H2) < p(H1) + ε2 = p(H1) + ε

2 .

So it must be the case that p(H1) ≥ ε/2 = 5ε1. Since by assumption we have p({1, . . . , k∗}) ≤ 4ε1, it must

be the case that p(H1 \ {1, . . . , k∗}) ≥ ε1. The claim follows from the definition of H1 and the size, `, of the

sample.

Algorithm 21 CONDp-TEST-KNOWN

Require: error parameter ε > 0; query access to CONDp oracle; explicit description (p∗(1), . . . ,p∗(n)) of
distribution p∗ satisfying p∗(1) ≤ · · · ≤ p∗(n)

1: Let i∗ be the minimum index i ∈ [n] such that p∗({1, . . . , i}) > 2ε1.
2: if p∗({1, . . . , i∗ − 1}) ≤ ε1 then
3: Call algorithm CONDp-Test-Known-Heavy(ε,CONDp,p∗, i∗) (and exit)
4: else
5: Call algorithm CONDp-Test-Known-Main(ε,CONDp,p∗, i∗ − 1) (and exit).
6: end if

Algorithm 22 CONDp-TEST-KNOWN-HEAVY

Require: error parameter ε > 0; query access to CONDp oracle; explicit description (p∗(1), . . . ,p∗(n))
of distribution p∗ satisfying p∗(1) ≤ · · · ≤ p∗(n); value i∗ ∈ [n] satisfying p∗({1, . . . , i∗ − 1}) ≤ ε1,
p∗({1, . . . , i∗}) > 2ε1

1: Call the SAMPp oracle m = Θ((log(1/ε))/ε4) times. For each i ∈ [i∗, n] let p̂(i) be the fraction of the
m calls to SAMPp that returned i. Let p̂′ = 1−

∑
i∈[i∗,n] p̂(i) be the fraction of the m calls that returned

values in {1, . . . , i∗ − 1}.
2: if either (any i ∈ [i∗, n] has |p̂(i)− p∗(i)| > ε1

2) or (p̂′ − p∗({1, . . . , i∗ − 1}) > ε1) then
3: return reject (and exit)
4: end if
5: return accept

Proof of Theorem 4.1.24 It is straightforward to verify that the query complexity of CONDp-Test-Known-

Heavy is Õ(1/ε4) and the query complexity of CONDp-Test-Known-Main is also Õ(1/ε4), so the overall

query complexity of COND-TEST-KNOWN is as claimed.

By the definition of i∗ (in the first line of the algorithm), either Eq. (4.35) holds for this setting of i∗,

or Eq. (4.36) holds for k∗ = i∗ − 1. To prove correctness of the algorithm, we first deal with the simpler case,

which is that Eq. (4.35) holds:

Lemma 4.1.29. Suppose that p∗ is such that p∗({1, . . . , i∗}) > 2ε1 but p∗({1, . . . , i∗ − 1}) ≤ ε1. Then

CONDp-TEST-KNOWN-HEAVY(ε,CONDD,p∗, i∗) returns accept with probability at least 2/3 if p = p∗

and returns reject with probability at least 2/3 if dTV(p,p∗) ≥ ε.
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Algorithm 23 CONDp-TEST-KNOWN-MAIN

Require: error parameter ε > 0; query access to CONDp oracle; explicit description (p∗(1), . . . ,p∗(n))
of distribution p∗ satisfying p∗(1) ≤ · · · ≤ p∗(n); value k∗ ∈ [n] satisfying ε1 < p∗({1, . . . , k∗}) ≤
2ε1 < p∗({1, . . . , k∗ + 1})

1: Call the SAMPp oracle Θ(1/ε2) times and let p̂({1, . . . , k∗}) denote the fraction of responses that lie in
{1, . . . , k∗}. If p̂({1, . . . , k∗}) /∈ [ ε12 ,

5ε1
2 ] then return reject (and exit).

2: Call the SAMPp oracle ` = Θ(1/ε) times to obtain points i1, . . . , i`.
3: for all j ∈ {1, . . . , `} such that ij > k∗ do
4: Call the SAMPp oraclem = Θ(log(1/ε)/ε2) times and let p̂({1, . . . , ij}) be the fraction of responses

that lie in {1, . . . , ij}. If p̂({1, . . . , ij}) /∈ [1− ε3, 1 + ε3]p∗({1, . . . , ij}) then return reject (and exit).
5: if p∗(ij) ≥ ε1 then
6: Run COMPARE({ij}, {1, . . . , ij − 1}, ε216 ,

2
ε1
, 1

10` ) and let v denote its output. If v /∈ [1− ε2
8 , 1 +

ε2
8 ] p∗({1,...,ij−1})

p∗({ij}) then return reject (and exit).
7: else
8: Let S1, . . . , St be the partition of {1, . . . , ij − 1} such that each Si is an ε1-comparable witness

for ij , which is provided by Claim 4.1.26.
9: Select a list of h = Θ(1/ε) elements Sa1 , . . . , Sah independently and uniformly from
{S1, . . . , Sj}.

10: For each Sar , 1 ≤ r ≤ h, run COMPARE({ij}, Sar , ε48 , 4,
1

10`h ) and let v denote its output. If
v /∈ [1− ε4

4 , 1 + ε4
4 ] p∗(Sar )

p∗({ij}) then return reject (and exit).
11: end if
12: end for
13: return accept.

Proof. The conditions of Lemma 4.1.29, together with the fact that p∗(·) is monotone non-decreasing, imply

that each i ≥ i∗ has p∗(i) ≥ ε1. Thus there can be at most 1/ε1 many values i ∈ {i∗, . . . , n}, i.e. it must

be the case that i∗ ≥ n − 1/ε1 + 1. Since the expected value of p̂(i) (defined in Line 1 of CONDp-TEST-

KNOWN-HEAVY) is precisely p(i), for any fixed value of i ∈ {i∗, . . . , n} an additive Chernoff bound implies

that |p(i)− p̂(i)| ≤ (ε1)2 with failure probability at most 1
10
(

1+ 1
ε1

) . Similarly |p̂′−p({1, . . . , i∗−1})| ≤ ε1

with failure probability at most 1
10
(

1+ 1
ε1

) . A union bound over all failure events gives that with probability at

least 9/10 each value i ∈ {i∗, . . . , n} has |p(i)− p̂(i)| ≤ ε1
2 and additionally |p̂′−p({1, . . . , i∗−1})| ≤ ε1;

we refer to this compound event as (*).

If p∗ = p, by (*) the algorithm outputs accept with probability at least 9/10.

Now suppose that dTV(p,p∗) ≥ ε. With probability at least 9/10 we have (*) so we suppose that indeed

(*) holds. In this case we have

ε ≤ dTV(p,p∗) =
∑
i<i∗

|p(i)− p∗(i)|+
∑
i≥i∗
|p(i)− p∗(i)|

≤
∑
i<i∗

(p(i) + p∗(i)) +
∑
i≥i∗
|p(i)− p∗(i)|

≤ p({1, . . . , i∗ − 1}) + ε1 +
∑
i≥i∗

(
|p̂(i)− p∗(i)|+ ε1

2)
≤ p̂′ + ε1 + 2ε1 +

∑
i≥i∗

(|p̂(i)− p∗(i)|)
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where the first inequality is by the triangle inequality, the second is by (*) and the fact that p∗({1, . . . , i∗ −

1}) ≤ ε1, and the third inequality is by (*) and the fact that there are at most 1/ε1 elements in {i∗, . . . , n}.

Since ε1 = ε/10, the above inequality implies that

7
10ε ≤ p̂′ +

∑
i≥i∗

(|p̂(i)− p∗(i)|) .

If any i ∈ {i∗, . . . , n} has |p̂(i)− p∗(i)| > (ε1)2 then the algorithm outputs reject so we may assume that

|p̂(i)− p∗(i)| ≤ ε1
2 for all i. This implies that

6ε1 = 6
10ε ≤ p̂′

but since p∗({1, . . . , i∗ − 1}) ≤ ε1 the algorithm must reject.

Now we turn to the more difficult (and typical) case, that Eq. (4.36) holds (for k∗ = i∗ − 1), i.e.

ε1 < p∗({1, . . . , k∗}) ≤ 2ε1 < p∗({1, . . . , k∗ + 1}).

With the claims we have already established it is straightforward to argue completeness:

Lemma 4.1.30. Suppose that p = p∗ and Eq. (4.36) holds. Then with probability at least 2/3 algorithm

CONDp-TEST-KNOWN-MAIN outputs accept.

Proof. We first observe that the expected value of the quantity p̂({1, . . . , k∗}) defined in Line 1 is precisely

p({1, . . . , k∗}) = p∗({1, . . . , k∗}) and hence lies in [ε1, 2ε1] by Eq. (4.36). The additive Chernoff bound

implies that the probability the algorithm outputs reject in Line 1 is at most 1/10. Thus we may assume the

algorithm continues to Line 2.

In any given execution of Line 4, since the expected value of p̂({1, . . . , ij}) is precisely p({1, . . . , ij}) =

p∗({1, . . . , ij}) > ε1, a multiplicative Chernoff bound gives that the algorithm outputs reject with probability

at most 1/(10`). Thus the probability that the algorithm outputs reject in any execution of Line 4 is at most

1/10. We henceforth assume that the algorithm never outputs reject in this step.

Fix a setting of j ∈ {1, . . . , `} such that ij > k∗. Consider first the case that p∗(ij) ≥ ε1 so the algorithm

enters Line 6. By item (1) of Claim 4.1.26 and item (1) of Lemma 4.1.2, we have that with probability at least

1− 1
10` COMPARE outputs a value v in the range [1− ε2

16 , 1 + ε2
16 ] p∗({1,...,ij−1})

p∗({ij}) (recall that p = p∗), so the

algorithm does not output reject in Line 6. Now suppose that p∗(ij) < ε1 so the algorithm enters Line 8. Fix

a value 1 ≤ r ≤ h in Line 10. By Claim 4.1.26 we have that Sar is a 1
2 -comparable witness for ij . By item

(1) of Lemma 4.1.2, we have that with probability at least 1− 1
10`h COMPARE outputs a value v in the range

[1− ε4
4 , 1 + ε4

4 ] p∗(Sar )
p∗({ij}) (recall that p = p∗). A union bound over all h values of r gives that the algorithm

outputs reject in Line 10 with probability at most 1/(10`). So in either case, for this setting of j, the algorithm

outputs reject on that iteration of the outer loop with probability at most 1/(10`). A union bound over all `
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iterations of the outer loop gives that the algorithm outputs reject at any execution of Line 6 or Line 10 is at

most 1/10.

Thus the overall probability that the algorithm outputs reject is at most 3/10, and the lemma is proved.

Next we argue soundness:

Lemma 4.1.31. Suppose that dTV(p,p∗) ≥ ε and Eq. (4.36) holds. Then with probability at least 2/3

algorithm CONDp-TEST-KNOWN-MAIN outputs reject.

Proof. If p({1, . . . , k∗}) /∈ [ε1/3, 3ε1] then a standard additive Chernoff bound implies that the algorithm

outputs reject in Line 1 with probability at least 9/10. Thus we may assume going forward in the argument that

p({1, . . . , k∗}) ∈ [ε1/3, 3ε1]. As a result we may apply Claim 4.1.28, and we have that with probability at least

99/100 there is an element ij ∈ {i1, . . . , i`} such that ij > k∗ and ij is ε2-heavy, i.e. p(ij) ≥ (1+ε2)p∗(ij).

We condition on this event going forward (the rest of our analysis will deal with this specific element ij).

We now consider two cases:

Case 1: Distribution p has p({1, . . . , ij}) /∈ [1 − 3ε3, 1 + 3ε3]p∗({1, . . . , ij}). Since the quantity

p̂({1, . . . , ij}) obtained in Line 4 has expected value p({1, . . . , ij}) ≥ p({1, . . . , k∗}) ≥ ε1/3, applying

the multiplicative Chernoff bound implies that p̂({1, . . . , ij}) ∈ [1− ε3, 1 + ε3]p({1, . . . , ij}) except with

failure probability at most ε/10 ≤ 1/10. If this failure event does not occur then since p({1, . . . , ij}) /∈

[1 − 3ε3, 1 + 3ε3]p∗({1, . . . , ij}) it must hold that p̂({1, . . . , ij}) /∈ [1 − ε3, 1 + ε3]p∗({1, . . . , ij}) and

consequently the algorithm outputs reject. Thus in Case 1 the algorithm outputs reject with overall failure

probability at least 89/100.

Case 2: Distribution p has p({1, . . . , ij}) ∈ [1 − 3ε3, 1 + 3ε3]p∗({1, . . . , ij}). This case is divided

into two sub-cases depending on the value of p∗(ij).

Case 2(a): p∗(ij) ≥ ε1. In this case the algorithm reaches Line 6. e use the following claim:

Claim 4.1.32. In Case 2(a), suppose that ij > k∗ is such that p(ij) ≥ (1 + ε2)p∗(ij), and p({1, . . . , ij}) ∈

[1− 3ε3, 1 + 3ε3]p∗({1, . . . , ij}). Then

p({1, . . . , ij − 1})
p(ij)

≤
(

1− ε2

4

)
· p∗({1, . . . , ij − 1})

p∗(ij)
.

Proof. To simplify notation we write

a
def= p(ij); b

def= p∗(ij); c
def= p({1, . . . , ij − 1}); d

def= p∗({1, . . . , ij − 1}).

We have that

a ≥ (1 + ε2)b and a+ c ≤ (1 + 3ε3)(b+ d). (4.39)

183



This gives

c ≤ (1 + 3ε3)(b+ d)− (1 + ε2)b = (1 + 3ε3)d+ (3ε3 − ε2)b < (1 + 3ε3)d , (4.40)

where in the last inequality we used ε2 > 3ε3. Recalling that a ≥ (1 + ε2)b and using ε3 = ε2/24 we get

c

a
<

(1 + 3ε3)d
(1 + ε2)b = d

b
· 1 + ε2/8

1 + ε2
<
d

b
·
(

1− ε2

4

)
. (4.41)

This proves the claim.

Applying Claim 4.1.32, we get that in Line 6 we have

p({1, . . . , ij − 1})
p(ij)

≤
(

1− ε2

4

)
· p∗({1, . . . , ij − 1})

p∗(ij)
. (4.42)

Recalling that by the premise of this case p∗(ij) ≥ ε1, by applying Claim 4.1.26 we have that {1, . . . , ij − 1}

is an ε1-comparable witness for ij . Therefore, by Lemma 4.1.2, with probability at least 1− 1
10` the call to

COMPARE({ij}, {1, . . . , ij − 1}, ε216 ,
2
ε1
, 1

10` ) in Line 6 either outputs an element of {high, low} or outputs a

value v ≤ (1 − ε2
4 )(1 + ε2

16 ) p∗({1,...,ij−1})
p∗(ij) < (1 − ε2

8 ) p∗({1,...,ij−1})
p∗(ij) . In either case the algorithm outputs

reject in Line 6, so we are done with Case 2(a).

Case 2(b): p∗(ij) < ε1. In this case the algorithm reaches Line 10, and by item 2 of Claim 4.1.26, we

have that S1, . . . , St is a partition of {1, . . . , ij − 1} and each set S1, . . . , St is a 1
2 -comparable witness for ij ,

i.e.,

for all i ∈ {1, . . . , t}, 1
2p∗(ij) ≤ p∗(Si) ≤ 2p∗(ij). (4.43)

We use the following claim:

Claim 4.1.33. In Case 2(b) suppose ij > k∗ is such that p(ij) ≥ (1 + ε2)p∗(ij) and p({1, . . . , ij}) ∈

[1− 3ε3, 1 + 3ε3]p∗({1, . . . , ij}). Then at least (ε4/8)-fraction of the sets S1, . . . , St are such that

p(Si) ≤ (1 + ε4)p∗(Si).

Proof. The proof is by contradiction. Let ρ = 1 − ε4/8 and suppose that there are w sets (without loss of

generality we call them S1, . . . , Sw) that satisfy p(Si) > (1+ε4)p∗(Si), where ρ′ = w
t > ρ.We first observe

that the weight of the w subsets S1, . . . , Sw under p∗, as a fraction of p∗({1, . . . , ij − 1}), is at least

p∗(S1 ∪ · · · ∪ Sw)
p∗(S1 ∪ · · · ∪ Sw) + (t− w) · 2p∗(ij)

≥
w

p∗(ij)
2

w
p∗(ij)

2 + (t− w) · 2p∗(ij)
= w

4t− 3w = ρ′

4− 3ρ′ ,

where we used the right inequality in Eq. (4.43) on Sw+1, . . . , St to obtain the leftmost expression above, and

the left inequality in Eq. (4.43) (together with the fact that x
x+c is an increasing function of x for all c > 0) to
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obtain the inequality above. This implies that

p({1, . . . , ij − 1}) =
w∑
i=1

p(Si) +
t∑

i=w+1
p(Si) ≥ (1 + ε4)

w∑
i=1

p∗(Si) +
t∑

i=w+1
p(Si)

≥ (1 + ε4) ρ′

4− 3ρ′p
∗({1, . . . , ij − 1})

≥ (1 + ε4) ρ

4− 3ρp∗({1, . . . , ij − 1}) . (4.44)

From Section 4.1.4.3 we have

p({1, . . . , ij}) ≥ (1 + ε4) ρ

4− 3ρp∗({1, . . . , ij − 1}) + (1 + ε2)p∗(ij)

≥
(

1 + 3ε4

8

)
p∗({1, . . . , ij − 1}) + (1 + ε2)p∗(ij)

where for the first inequality above we used p(ij) ≥ (1 + ε2)p∗(ij) and for the second inequality we used

(1 + ε4) ρ
4−3ρ ≥ 1 + 3ε4

8 . This implies that

p({1, . . . , ij}) >
(

1 + 3ε4

8

)
p∗({1, . . . , ij − 1}) +

(
1 + 3ε4

8

)
p∗(ij) =

(
1 + 3ε4

8

)
p∗({1, . . . , ij})

where the inequality follows from ε2 >
3ε4
8 . Since 3ε4

8 = 3ε3, though, this is a contradiction and the claim is

proved.

Applying Claim 4.1.33, and recalling that h = Θ(1/ε) = Θ(1/ε4) sets are chosen randomly in Line 9, we

have that with probability at least 9/10 there is some r ∈ {1, . . . , h} such that p(Sar ) ≤ (1 + ε4)p∗(Sar ).

Combining this with p(ij) ≥ (1 + ε2)p∗(ij), we get that

p(Sar )
p(ij)

≤ 1 + ε4

1 + ε2
· p∗(Sar )

p∗(ij)
≤
(

1− ε4

2

)
· p∗(Sar )

p∗(ij)
.

By Lemma 4.1.2, with probability at least 1− 1
10`h the call to COMPARE({ij}, Sar , ε48 , 4,

1
10`h ) in Line 10

either outputs an element of {high, low} or outputs a value v ≤ (1− ε4
2 )(1 + ε4

8 ) p∗(Sar )
p∗(ij) < (1− ε4

4 ) p∗(Sar )
p∗(ij) .

In either case the algorithm outputs reject in Line 10, so we are done in Case 2(b). This concludes the proof

of soundness and the proof of Theorem 4.1.19.

4.1.5 Testing equality between two unknown distributions

4.1.5.1 An approach based on PAIRCOND queries

In this subsection we consider the problem of testing whether two unknown distributions p1,p2 are identical

versus ε-far, given PAIRCOND access to these distributions. Although this is known to require Ω
(
n2/3)

many samples in the standard model [20, 174], we are able to give a poly(logn, 1/ε)-query algorithm using

PAIRCOND queries, by taking advantage of comparisons to perform some sort of clustering of the domain.
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On a high level the algorithm works as follows. First it obtains (with high probability) a small set of

points R such that almost every element in [n], except possibly for some negligible subset according to p1,

has probability weight (under p1) close to some “representative” in R. Next, for each representative r in

R it obtains an estimate of the weight, according to p1, of a set of points U(r) such that p1(u) is close to

p1(r) for each u in U(r) (i.e., r’s “neighborhood under p1”). This is done using the procedure ESTIMATE-

NEIGHBORHOOD from Section 4.1.2.2. Note that these neighborhoods can be interpreted roughly as a succinct

cover of the support of p1 into (not necessarily disjoint) sets of points, where within each set the points have

similar weight (according to p1). Our algorithm is based on the observation that, if p1 and p2 are far from

each other, it must be the case that one of these sets, denoted U(r∗), reflects it in one of the following ways: (1)

p2(U(r∗)) differs significantly from p1(U(r∗)); (2) U(r∗) contains a subset of points V (r∗) such that p2(v)

differs significantly from p2(r∗) for each v in V (r∗), and either p1(V (r∗)) is relatively large or p2(V (r∗))

is relatively large. (This structural result is made precise in Lemma 4.1.36). We thus take additional samples,

both from p1 and from p2, and compare the weight (according to both distributions) of each point in these

samples to the representatives in R (using the procedure COMPARE from Section 4.1.2.1). In this manner we

detect (with high probability) that either (1) or (2) holds.

We begin by formalizing the notion of a cover discussed above:

Definition 4.1.34 (Weight-Cover). Given a distribution p on [n] and a parameter ε1 > 0, we say that a

point i ∈ [n] is ε1-covered by a set R = {r1, . . . , rt} ⊆ [n] if there exists a point rj ∈ R such that

p(i) ∈ [1/(1 + ε1), 1 + ε1]p(rj). Let the set of points in [n] that are ε1-covered by R be denoted by Up
ε1(R).

We say that R is an (ε1, ε2)-cover for p if p([n] \ Up
ε1(R)) ≤ ε2.

For a singleton set R = {r} we slightly abuse notation and write Up
ε (r) to denote Up

ε (R); note that this

aligns with the notation established in (4.1).

The following lemma says that a small sample of points drawn from p gives a cover with high probability:

Lemma 4.1.35. Let p be any distribution over [n]. Given any fixed c > 0, there exists a constant c′ > 0 such

that with probability at least 99/100, a sample R of size m = c′ log(n/ε)
ε2 · log

(
log(n/ε)

ε

)
drawn according to

distribution p is an (ε/c, ε/c)-cover for p.

Proof. Let t denote dln(2cn/ε) · cεe. We define t “buckets” of points with similar weight under p as follows:

for i = 0, 1, . . . , t− 1, define Bi ⊆ [n] to be

Bi
def=
{
x ∈ [n] : 1

(1 + ε/c)i+1 < p(x) ≤ 1
(1 + ε/c)i

}
.

Let L be the set of points x which are not in any of B0, . . . , Bt−1 (because p(x) is too small); since every

point in L has p(x) < ε
2cn , one can see that p(L) ≤ ε

2c .

It is easy to see that if the sampleR contains a point from a bucketBj then every point y ∈ Bj is εc -covered

by R. We say that bucket Bi is insignificant if p(Bi) ≤ ε
2ct ; otherwise bucket Bi is significant. It is clear that
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the total weight under p of all insignificant buckets is at most ε/2c. Thus if we can show that for the claimed

sample size, with probability at least 99/100 every significant bucket has at least one of its points in R, we

will have established the lemma.

This is a simple probabilistic calculation: fix any significant bucket Bj . The probability that m random

draws from p all miss Bj is at most (1− ε
2ct )

m, which is at most 1
100t for a suitable (absolute constant) choice

of c′. Thus a union bound over all (at most t) significant buckets gives that with probability at least 99/100,

no significant bucket is missed by R.

Lemma 4.1.36. Suppose dTV(p1,p2) ≥ ε, and let R = {r1, . . . , rt} be an (ε̃, ε̃)-cover for p1 where ε̃ ≤

ε/100. Then, there exists j ∈ [t] such that at least one of the following conditions holds for every α ∈ [ε̃, 2ε̃]:

1. p1(Up1
α (rj)) ≥ ε̃

t and p2(Up1
α (rj)) /∈ [1−ε̃, 1+ε̃]p1(Up1

α (rj)), or p1(Up1
α (rj)) < ε̃

t and p2(Up1
α (rj)) > 2ε̃

t ;

2. p1(Up1
α (rj)) ≥ ε̃

t , and at least a ε̃-fraction of the points i inUp1
α (rj) satisfy p2(i)

p2(rj) /∈ [1/(1 + α+ ε̃), 1 + α+ ε̃];

3. p1(Up1
α (rj)) ≥ ε̃

t , and the total weight according to p2 of the points i in Up1
α (rj) for which

p2(i)
p2(rj) /∈ [1/(1 + α+ ε̃), 1 + α+ ε̃] is at least ε̃

2

t ;

Proof. Without loss of generality, we can assume that ε ≤ 1/4. Suppose, contrary to the claim, that for each

rj there exists αj ∈ [ε̃, 2ε̃] such that if we let Uj
def= Up1

αj (rj), then the following holds:

1. If p1(Uj) < ε̃
t , then p2(Uj) ≤ 2ε̃

t ;

2. If p1(Uj) ≥ ε̃
t , then:

a) p2(Uj) ∈ [1− ε̃, 1 + ε̃]p1(Uj);

b) Less than an ε̃-fraction of the points y in Uj satisfy p2(y)
p2(rj) /∈ [1/(1 + αj + ε̃), 1 + αj + ε̃];

c) The total weight according to p2 of the points y inUj for which p2(y)
p2(rj) /∈ [1/(1 + αj + ε̃), 1 + αj + ε̃]

is at most ε̃
2

t ;

We show that in such a case dTV(p1, D2) < ε, contrary to the premise of the claim.

Consider each point rj ∈ R such that p1(Uj) ≥ ε̃
t . By the foregoing discussion (point 2(a)), p2(Uj) ∈ [1− ε̃, 1 + ε̃]p1(Uj).

By the definition of Uj (and since αj ≤ 2ε̃),

p1(rj) ∈ [1/(1 + 2ε̃), 1 + 2ε̃] p1(Uj)
|Uj |

. (4.45)

Turning to bound p2(rj), on one hand (by 2(b))

p2(Uj) =
∑
y∈Uj

p2(y) ≥ ε̃|Uj | · 0 + (1− ε̃)|Uj | ·
p2(rj)
1 + 3ε̃ , (4.46)

and so

p2(rj) ≤
(1 + 3ε̃)p2(Uj)

(1− ε̃) |Uj |
≤ (1 + 6ε̃)p1(Uj)

|Uj |
. (4.47)
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On the other hand (by 2(c)),

p2(Uj) =
∑
y∈Uj

p2(y) ≤ ε̃2

t
+ |Uj | · (1 + 3ε̃)p2(rj) , (4.48)

and so

p2(rj) ≥
p2(Uj)− ε̃2/t

(1 + 3ε̃) |Uj |
≥ (1− ε̃)p1(Uj)− ε̃p1(Uj)

(1 + 3ε̃) |Uj |
≥ (1− 5ε̃)p1(Uj)

|Uj |
. (4.49)

Therefore, for each such rj we have

p2(rj) ∈ [1− 8ε̃, 1 + 10ε̃]p1(rj) . (4.50)

Let C def=
⋃t
j=1 Uj . We next partition the points in C so that each point i ∈ C is assigned to some rj(i) such

that i ∈ Uj(i). We define the following “bad” subsets of points in [n]:

1. B1
def= [n] \ C, so that p1(B1) ≤ ε̃ (we later bound p2(B1));

2. B2
def=
{
i ∈ C : p1(Uj(i)) < ε̃/t

}
, so that p1(B2) ≤ ε̃ and p2(B2) ≤ 2ε̃;

3. B3
def=
{
i ∈ C \B2 : p2(i) /∈ [1/(1 + 3ε̃), 1 + 3ε̃]p2(rj(i))

}
, so that p1(B3) ≤ 2ε̃ and p2(B3) ≤ ε̃2.

Let B def= B1 ∪B2 ∪B3. Observe that for each i ∈ [n] \B we have that

p2(i) ∈ [1/(1 + 3ε̃), 1 + 3ε̃]p2(rj(i)) ⊂ [1− 15ε̃, 1 + 15ε̃]p1(rj(i)) ⊂ [1− 23ε̃, 1 + 23ε̃]p1(i) , (4.51)

where the first containment follows from the fact that i /∈ B, the second follows from Eq. (4.50), and the third

from the fact that i ∈ Uj(i). In order to complete the proof we need a bound on p2(B1), which we obtain next.

p2(B1) = 1− p2([n] \B1) ≤ 1− p2([n] \B) ≤ 1− (1− 23ε̃)p1([n] \B)

≤ 1− (1− 23ε̃)(1− 4ε̃) ≤ 27ε̃ . (4.52)

Therefore,

dTV(p1,p2) = 1
2

n∑
i=1
|p1(i)− p2(i)|

≤ 1
2

(
p1(B) + p2(B) +

∑
i/∈B

23ε̃p1(i)
)

< ε , (4.53)

and we have reached a contradiction.

Theorem 4.1.37. If p1 = p2 then with probability at least 2/3 Algorithm PAIRCOND-TEST-EQUALITY-

UNKNOWN returns accept, and if dTV(p1,p2) ≥ ε, then with probability at least 2/3 Algorithm PAIRCOND-

TEST-EQUALITY-UNKNOWN returns reject. The number of PAIRCOND queries performed by the algorithm

is Õ
(

log6 n
ε21

)
.
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Algorithm 24 Algorithm PAIRCONDp1,p2 -TEST-EQUALITY-UNKNOWN

Require: PAIRCOND query access to distributions p1 and p2 and a parameter ε.
1: Set ε̃ = ε/100.
2: Draw a sample R of size t = Θ̃

(
logn
ε2

)
from p1.

3: for all rj ∈ R do
4: Call ESTIMATE-NEIGHBORHOODp1 on rj with κ = ε̃, η = ε̃

8 , β = ε̃
2t , δ = 1

100t and let the output
be denoted by (ŵ(1)

j , αj).
5: Set θ = κηβδ/64 = Θ̃(ε7/ log2 n).
6: Draw a sample S1 from p1, of size s1 = Θ

(
t
ε2

)
= Θ̃

(
logn
ε4

)
.

7: Draw a sample S2 from p2, of size s2 = Θ
(
t log t
ε3

)
= Θ̃

(
logn
ε5

)
.

8: For each point i ∈ S1 ∪ S2 call COMPAREp1({rj}, {i}, θ/4, 4, 1/(200t(s1 + s2))) and
COMPAREp2({rj}, {i}, θ/4, 4, 1/(200t(s1 + s2))), and let the outputs be denoted ρ(1)

rj (i) and ρ(2)
rj (i),

respectively (where in particular these outputs may be high or low).
9: Let ŵ(2)

j be the fraction of occurrences of i ∈ S2 such that ρ(1)
rj (i) ∈ [1/(1+αj +θ/2), 1+αj +θ/2].

10: if ( ŵ(1)
j ≤ 3

4
ε̃
t and ŵ(2)

j > 3
2
ε̃
t ) or ( ŵ(1)

j > 3
4
ε̃
t and ŵ(2)

j /ŵ
(1)
j /∈ [1− ε̃/2, 1 + ε̃/2] ) then

11: return reject
12: end if
13: if there exists i ∈ S1 ∪ S2 such that ρ(1)

rj (i) ∈ [1/(αj + ε̃/2), 1 + αj + ε̃/2] and ρ(2)
rj (i) /∈ [1/(αj +

3ε̃/2), 1 + αj + 3ε̃/2], then
14: return reject
15: end if
16: end for
17: return accept.

Proof. The number of queries performed by the algorithm is the sum of: (1) t times the number of queries per-

formed in each execution of ESTIMATE-NEIGHBORHOOD (in Line 4) and (2) t ·(s1 +s2) = O(t ·s2) times the

number of queries performed in each execution of COMPARE (in Line 8). By Lemma 4.1.3 (and the settings of

the parameters in the calls to ESTIMATE-NEIGHBORHOOD), the first term isO
(
t · log(1/δ)·log(log(1/δ)/(δβη2))

κ2η4β3δ2

)
=

Õ
(

log6 n
ε21

)
, and by Lemma 4.1.2 (and the settings of the parameters in the calls to COMPARE), the second

term is O
(
t · s2 · log(t·s2)

θ2

)
= Õ

(
log6 n
ε21

)
, so that we get the bound stated in the theorem.

We now turn to establishing the correctness of the algorithm. We shall use the shorthand Uj for Up1
αj (rj),

and U ′j for Up1
αj+θ(rj). We consider the following “desirable” events.

1. The event E1 is that the sample R is a (ε̃, ε̃)-weight-cover for p1 (for ε̃ = ε/100). By Lemma 4.1.35

(and an appropriate constant in the Θ(·) notation for the size of R), the probability that E1 holds is at

least 99/100.

2. The eventE2 is that all calls to the procedure ESTIMATE-NEIGHBORHOOD are as specified by Lemma 4.1.3.

By the setting of the confidence parameter in the calls to the procedure, the event E2 holds with proba-

bility at least 99/100.

3. The event E3 is that all calls to the procedure COMPARE are as specified by Lemma 4.1.2. By the setting

of the confidence parameter in the calls to the procedure, the event E3 holds with probability at least

99/100.
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4. The event E4 is that p2(U ′j \ Uj) ≤ ηβ/16 = ε̃2/(256t) for each j. If p2 = p1 then this event follows

from E2. Otherwise, it holds with probability at least 99/100 by the setting of θ and the choice of αj

(as shown in the proof of Lemma 4.1.3 in the analysis of the event E1 there.

5. The event E5 is defined as follows. For each j, if p2(Uj) ≥ ε̃/(4t), then |S2 ∩ Uj |/|S2| ∈ [1 −

ε̃/10, 1 + ε̃/10]p2(Uj), and if p2(Uj) < ε̃/(4t) then |S2 ∩ Uj |/|S2| < (1 + ε̃/10)ε̃/(4t). This event

holds with probability at least 99/100 by applying a multiplicative Chernoff bound in the first case,

and Claim 1.4.11 in the second.

6. The event E6 is that for each j we have |S2 ∩ (U ′j \ Uj)|/|S2| ≤ ε̃2/(128t). Conditioned on E4, the

event E6 holds with probability at least 99/100 by applying Claim 1.4.11.

From this point on we assume that events E1 − E6 all hold. Note that in particular this implies the following:

1. By E2, for every j:

• If p1(Uj) ≥ β = ε̃/(2t), then ŵ(1)
j ∈ [1− η, 1 + η]p1(Uj) = [1− ε̃/8, 1 + ε̃/8]p1(Uj).

• If p1(Uj) < ε̃/(2t), then ŵ(1)
j ≤ (1 + ε̃/8)(ε̃/(2t)).

2. By E3, for every j and for each point i ∈ S1 ∪ S2:

• If i ∈ Uj , then ρ(1)
rj (i) ∈ [1/(1 + αj + θ

2 ), 1 + αj + θ
2 ].

• If i /∈ U ′j , then ρ(1)
rj (i) /∈ [1/(1 + αj + θ

2 ), 1 + αj + θ
2 ].

3. By the previous item and E4–E6:

• If p2(Uj) ≥ ε̃/(4t), then ŵ(2)
j ≥ (1− ε̃/10)p2(Uj) and ŵ(2)

j ≤ (1+ ε̃/10)p2(Uj)+ ε̃2/(128t) ≤

(1 + ε̃/8)p2(Uj).

• If p2(Uj) < ε̃/(4t) then ŵ(2)
j ≤ (1 + ε̃/10)ε̃/(4t) + ε̃2/(128t) ≤ (1 + ε̃/4)(ε̃/(4t)).

Completeness. Assume p1 and p2 are the same distribution p. For each j, if p(Uj) ≥ ε̃/t, then by

the foregoing discussion, ŵ(1)
j ≥ (1 − ε̃/8)p(Uj) > 3ε̃/(4t) and ŵ(2)

j /ŵ
(1)
j ∈ [(1 − ε̃/8)2, (1 + ε̃/8)2] ⊂

[1− ε̃/2, 1 + ε̃/2], so that the algorithm does not reject in Line 10. Otherwise (i.e., p(Uj) < ε̃/t), we consider

two subcases. Either p(Uj) ≤ ε̃/(2t), in which case ŵ(1)
j ≤ 3ε̃/(4t), or ε̃/(2t) < p(Uj) < ε̃/t, and then

ŵ
(1)
j ∈ [1− ε̃/8, 1+ ε̃/8]p1(Uj). Since in both cases ŵ(2)

j ≤ 3ε̃/(2t), the algorithm does not reject in Line 10.

By E3, the algorithm does not reject in Line 13 either. We next turn to establish soundness.

Soundness. Assume dTV(p1,p2) ≥ ε. By applying Lemma 4.1.36 on R (and using E1), there exists an

index j for which one of the items in the lemma holds. We denote this index by j∗, and consider the three

items in the lemma.

1. If Item 1 holds, then we consider its two cases:

a) In the first case, p1(Uj∗) ≥ ε̃/t and p2(Uj∗) /∈ [1− ε̃, 1 + ε̃]p1(Uj∗). Due to the lower bound on

p1(Uj∗) we have that ŵ(1)
j∗ ∈ [1− ε̃/8, 1 + ε̃/8]p1(Uj∗), so that in particular ŵ(1)

j∗ > 3ε̃/(4t). As
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for ŵ(2)
j∗ , either ŵ(2)

j∗ < (1 − ε̃)(1 + ε̃/8)p1(Uj∗) (this holds both when p2(Uj∗) ≥ ε̃/(4t) and

when p2(Uj∗) < ε̃/(4t)) or ŵ(2)
j∗ > (1 + ε̃)(1− ε̃/10)p1(Uj∗). In either (sub)case ŵ(2)

j∗ /ŵ
(1)
j∗ /∈

[1− ε̃/2, 1 + ε̃/2], causing the algorithm to reject in (the second part of ) Line 10.

b) In the second case, p1(Uj∗) < ε̃/t and p2(Uj∗) > 2ε̃/t. Due to the lower bound on p2(Uj∗) we

have that ŵ(2)
j∗ ≥ (1− ε̃/10)p2(Uj∗) > (1− ε̃/10)(2ε̃/t), so that in particular ŵ(2)

j∗ > (3ε̃/(2t)).

As for ŵ(1)
j∗ , if p1(Uj∗) ≤ ε̃/(2t), then ŵ(1)

j∗ ≤ 3ε̃/(4t), causing the algorithm to reject in (the

first part of) Line 10. If ε̃/(2t) < p1(Uj∗) ≤ ε̃/t, then ŵ(1)
j∗ ∈ [1 − ε̃/8, 1 + ε̃/8]p1(Uj∗) ≤

(1 + ε̃/8)(ε̃/t), so that ŵ(2)
j∗ /ŵ

(1)
j∗ ≥

(1−ε̃/10)(2ε̃/t)
(1+ε̃/8)ε̃/t > (1 + ε̃/2), causing the algorithm to reject

in (either the first or second part of) Line 10.

2. If Item 2 holds, then, by the choice of the size of S1, which is Θ(t/ε̃2), and since all points in Uj∗ have

approximately the same weight according to p1, with probability at least 99/100, the sample S1 will

contain a point i for which p2(i)
p2(rj∗ ) /∈ [1/(1 + αj∗ + ε̃), 1 + αj∗ + ε̃], and by E3 this will be detected

in Line 13.

3. Similarly, if Item 3 holds, then by the choice of the size of S2, with probability at least 99/100, the

sample S2 will contain a point i for which p2(i)
p2(rj∗ ) /∈ [1/(1 + αj∗ + ε̃), 1 + αj∗ + ε̃], and by E3 this

will be detected in Line 13.

The theorem is thus established.

4.1.5.2 An approach based on simulating EVAL

In this subsection we present an alternate approach for testing whether two unknown distributions p1,p2 are

identical versus ε-far. We prove the following theorem:

Theorem 4.1.38. There exists an algorithm that has the following properties: given query access to CONDp1

and CONDp2 oracles for any two distributions p1,p2 over [n], the algorithm outputs accept with probability

at least 2/3 if p1 = p2 and outputs reject with probability at least 2/3 if dTV(p1,p2) ≥ ε. The algorithm

performs

Õ

(
(logn)5

ε4

)
queries.

At the heart of this result is our efficient simulation of an “approximate EVALp oracle” using a CONDp

oracle. (Recall that an EVALp oracle is an oracle which, given as input an element i ∈ [n], outputs the

numerical value p(i).) We feel that this efficient simulation of an approximate EVAL oracle using a COND

oracle is of independent interest since it sheds light on the relative power of the COND and EVAL models.

In more detail, the starting point of our approach to prove Theorem 4.1.38 is a simple algorithm from

[155] that uses an EVALp oracle to test equality between p and a known distribution p∗. We first show

(see Theorem 4.1.39) that a modified version of the algorithm, which uses a SAMP oracle and an “approximate”

EVAL oracle, can be used to efficiently test equality between two unknown distributions p1 and p2. As we
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show (in Section 4.1.2.3) the required “approximate” EVAL oracle can be efficiently implemented using a

COND oracle, and so Theorem 4.1.38 follows straightforwardly by combining Theorems 4.1.39 and 4.1.5.

Testing equality between p1 and p2 using an approximate EVAL oracle. We now show how an approx-

imate EVALp1 oracle, an approximate EVALp2 oracle, and a SAMPp1 oracle can be used together to test

whether p1 = p2 versus dTV(p1,p2) ≥ ε. As mentioned earlier, the approach is a simple extension of the

EVAL algorithm given in [155, Observation 24].

Theorem 4.1.39. Let ORACLE1 be an (ε/100, ε/100)-approximate EVALp1 simulator and let ORACLE2 be

an (ε/100, ε/100)-approximate EVALp2 simulator. There is an algorithm TEST-EQUALITY-UNKNOWN with

the following properties: for any distributions p1,p2 over [n], algorithm TEST-EQUALITY-UNKNOWN makes

O(1/ε) queries to ORACLE1, ORACLE2, SAMPp1 , SAMPp2 , and it outputs accept with probability at least

7/10 if p1 = p2 and outputs reject with probability at least 7/10 if dTV(p1,p2) ≥ ε.

Algorithm 25 TEST-EQUALITY-UNKNOWN

Require: query access to ORACLE1, to ORACLE2, and access to SAMPp1 , SAMPp2 oracles
1: Call the SAMPp1 oracle m = 5/ε times to obtain points h1, . . . , hm distributed according to p1.
2: Call the SAMPp2 oracle m = 5/ε times to obtain points hm+1, . . . , h2m distributed according to p2.
3: for j = 1 to 2m do
4: Call ORACLE1(hj). If it returns unknown then return reject, otherwise let v1,i ∈ [0, 1] be the value

it outputs.
5: Call ORACLE2(hj). If it returns unknown then return reject, otherwise let v2,i ∈ [0, 1] be the value

it outputs.
6: if v1,j /∈ [1− ε/8, 1 + ε/8]v2,j then
7: return reject and exit
8: end if
9: end for

10: return accept

It is clear that TEST-EQUALITY-UNKNOWN makes O(1/ε) queries as claimed. To prove Theorem 4.1.39

we argue completeness and soundness below.

Completeness: Suppose that p1 = p2. Since ORACLE1 is an (ε/100, ε/100)-approximate EVALp1

simulator, the probability that any of the 2m = 10/ε points h1, . . . , h2m drawn in Lines 1 and 2 lies in

S(ε/100,p1) is at most 1/10. Going forth, let us assume that all points hi indeed lie outside S(ε/100,p1). Then

for each execution of Line 4 we have that with probability at least 1− ε/100 the call to ORACLE(hi) yields a

value v1,i satisfying v1,i ∈ [1− ε
100 , 1 + ε

100 ]p1(i). The same holds for each execution of Line 5. Since there

are 20/ε total executions of Lines 4 and 5, with overall probability at least 7/10 we have that each 1 ≤ j ≤ m

has v1,j , v2,j ∈ [1− ε
100 , 1 + ε

100 ]p1(i). If this is the case then v1,j , v2,j pass the check in Line 6, and thus

the algorithm outputs accept with overall probability at least 7/10.
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Soundness: Now suppose that dTV(p1,p2) ≥ ε. Let us say that i ∈ [n] is good if p1(i) ∈ [1− ε/5, 1 +

ε/5]p2(i). Let BAD ⊆ [n] denote the set of all i ∈ [n] that are not good. We have

2 dTV(p1,p2) =
∑
i is good

|p1(i)− p2(i)|+
∑
i is bad

|p1(i)− p2(i)| ≥ 2ε.

Since ∑
i is good

|p1(i)− p2(i)| ≤
∑
i is good

ε

5 |p2(i)| ≤ ε

5 ,

we have ∑
i is bad

(|p1(i)|+ |p2(i)|) ≥
∑
i is bad

|p1(i)− p2(i)| ≥ 9
5ε.

Consequently it must be the case that either p1(BAD) ≥ 9
10ε or p2(BAD) ≥ 9

10ε. For the rest of the argument

we suppose that p1(BAD) ≥ 9
10ε (by the symmetry of the algorithm, an identical argument to the one we give

below but with the roles of p1 and p2 flipped throughout handles the other case).

Since p1(BAD) ≥ 9
10ε, a simple calculation shows that with probability at least 98/100 at least one

of the 5/ε points h1, . . . , hm drawn in Line 1 belongs to BAD. For the rest of the argument we suppose

that indeed (at least) one of these points is in BAD; let hi∗ be such a point. Now consider the execution of

Line 4 when ORACLE1 is called on hi∗ . By Definition 4.1.4, whether or not i∗ belongs to S(ε/100,p1), with

probability at least 1 − ε/100 the call to ORACLE1 either causes TEST-EQUALITY-UNKNOWN to reject

in Line 4 (because ORACLE1 returns unknown) or it returns a value v1,i∗ ∈ [1− ε
100 , 1 + ε

100 ]p1(i∗). We

may suppose that it returns a value v1,i∗ ∈ [1 − ε
100 , 1 + ε

100 ]p1(i∗). Similarly, in the execution of Line 5

when ORACLE2 is called on hi∗ , whether or not i∗ belongs to S(ε/100,p2), with probability at least 1− ε/100

the call to ORACLE2 either causes TEST-EQUALITY-UNKNOWN to reject in Line 5 or it returns a value

v2,i∗ ∈ [1 − ε
100 , 1 + ε

100 ]p2(i∗). We may suppose that it returns a value v2,i∗ ∈ [1 − ε
100 , 1 + ε

100 ]p2(i∗).

But recalling that i∗ ∈ BAD, an easy calculation shows that the values v1,i∗ and v2,i∗ must be multiplicatively

far enough from each other that the algorithm will output reject in Line 7. Thus with overall probability at

least 96/100 the algorithm outputs reject.

4.1.6 An algorithm for estimating the distance to uniformity

In this section we describe an algorithm that estimates the distance between a distribution p and the uniform

distribution u by performing poly(1/ε) PAIRCOND (and SAMP) queries. We start by giving a high level

description of the algorithm.

By the definition of the variation distance (and the uniform distribution),

dTV(p,u) =
∑

i:p(i)<1/n

(
1
n
− p(i)

)
. (4.54)
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We define the following function over [n]:

ψp(i) = (1− n · p(i)) for p(i) < 1
n
, and ψp(i) = 0 for p(i) ≥ 1

n
. (4.55)

Observe that ψp(i) ∈ [0, 1] for every i ∈ [n] and

dTV(p,u) = 1
n

n∑
i=1

ψp(i) . (4.56)

Thus dTV(p,u) can be viewed as an average value of a function whose range is in [0, 1]. Since p is fixed

throughout this subsection, we shall use the shorthand ψ(i) instead of ψp(i). Suppose we were able to

compute ψ(i) exactly for any i of our choice. Then we could obtain an estimate d̂ of dTV(p,u) to within an

additive error of ε/2 by simply selecting Θ(1/ε2) points in [n] uniformly at random and setting d̂ to be the

average value of ψ(·) on the sampled points. By an additive Chernoff bound (for an appropriate constant in the

Θ(·) notation), with high constant probability the estimate d̂ would deviate by at most ε/2 from dTV(p,u).

Suppose next that instead of being able to compute ψ(i) exactly, we were able to compute an estimate

ψ̂(i) such that |ψ̂(i)− ψ(i)| ≤ ε/2. By using ψ̂(i) instead of ψ(i) for each of the Θ(1/ε2) sampled points

we would incur an additional additive error of at most ε/2. Observe first that for i such that p(i) ≤ ε/(2n)

we have that ψ(i) ≥ 1 − ε/2, so the estimate ψ̂(i) = 1 meets our requirements. Similarly, for i such that

p(i) ≥ 1/n, any estimate ψ̂(i) ∈ [0, ε/2] can be used. Finally, for i such that p(i) ∈ [ε/(2n), 1/n], if we can

obtain an estimate p̂(i) such that p̂(i) ∈ [1− ε/2, 1 + ε/2]p(i), then we can use ψ̂(i) = 1− n · p̂(i).

In order to obtain such estimates ψ̂(i), we shall be interested in finding a reference point x. Namely, we

shall be interested in finding a pair (x, p̂(x)) such that p̂(x) ∈ [1− ε/c, 1 + ε/c]p(x) for some sufficiently

large constant c, and such that p(x) = Ω(ε/n) and p(x) = O(1/(εn)). In Section 4.1.6.1 we describe a

procedure for finding such a reference point. More precisely, the procedure is required to find such a reference

point (with high constant probability) only under a certain condition on p. It is not hard to verify (and we

show this subsequently), that if this condition is not met, then dTV(p,u) is very close to 1. In order to state

the lemma we introduce the following notation. For γ ∈ [0, 1], let

Hp
γ

def=
{
i : p(i) ≥ 1

γn

}
. (4.57)

Lemma 4.1.40. Given an input parameter κ ∈ (0, 1/4] as well as SAMP and PAIRCOND query access to

a distribution p, the procedure FIND-REFERENCE (Section 4.1.6.1) either returns a pair (x, p̂(x)) where

x ∈ [n] and p̂(x) ∈ [0, 1] or returns No-Pair. The procedure satisfies the following:

1. If p(Hp
κ ) ≤ 1− κ, then with probability at least 9/10, the procedure returns a pair (x, p̂(x)) such that

p̂(x) ∈ [1− 2κ, 1 + 3κ]p(x) and p(x) ∈
[
κ
8 ,

4
κ

]
· 1
n .
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2. If p(Hp
κ ) > 1−κ, then with probability at least 9/10, the procedure either returns No-Pair or it returns

a pair (x, p̂(x)) such that p̂(x) ∈ [1− 2κ, 1 + 3κ]p(x) and p(x) ∈
[
κ
8 ,

4
κ

]
· 1
n .

The procedure performs Õ
(
1/κ20) PAIRCOND and SAMP queries.

Once we have a reference point x we can use it to obtain an estimate ψ̂(i) for any i of our choice, using

the procedure COMPARE, whose properties are stated in Lemma 4.1.2 (see Section 4.1.2.1).

Algorithm 26 Estimating the Distance to Uniformity
Require: PAIRCOND and SAMP query access to a distribution p and a parameter ε ∈ [0, 1].

1: Call the procedure FIND-REFERENCE (Section 4.1.6.1) with κ set to ε/8. If it returns No-Pair, then
output d̂ = 1 as the estimate for the distance to uniformity. Otherwise, let (x, p̂(x)) be its output.

2: Select a sample S of Θ(1/ε2) points uniformly.

3: Let K = max
{

2/n
p̂(x)

, p̂(x)
ε/(4n)

}
.

4: for all point y ∈ S do
5: Call COMPARE

(
{x}, {y}, κ,K, 1

10|S|

)
.

6: if COMPARE returns high or it returns a value ρ(y) such that ρ(y) · p̂(x) ≥ 1/n then
7: set ψ̂(y) = 0
8: else if COMPARE returns low or it returns a value ρ(y) such that ρ(y) · p̂(x) ≤ ε/4n then
9: set ψ̂(y) = 1;

10: else
11: set ψ̂(y) = 1− n · ρ(y) · p̂(x)
12: end if
13: end for
14: return d̂ = 1

|S|
∑
y∈S ψ̂(y).

Theorem 4.1.41. With probability at least 2/3, the estimate d̂ returned by Algorithm 26 satisfies d̂ =

dTV(p,u)± ε. The number of queries performed by the algorithm is Õ(1/ε20).

Proof. In what follows we shall use the shorthand Hγ instead of Hp
γ . Let E0 denote the event that the proce-

dure FIND-REFERENCE (Section 4.1.6.1) obeys the requirements in Lemma 4.1.40, where by Lemma 4.1.40

the event E0 holds with probability at least 9/10. Conditioned on E0, the algorithm outputs d̂ = 1 right after

calling the procedure (because the procedure returns No-Pair) only when p(Hκ) > 1 − κ = 1 − ε/8. We

claim that in this case dTV(p,u) ≥ 1− 2ε/8 = 1− ε/4. To verify this, observe that

dTV(p,u) =
∑

i:p(i)>1/n

(
p(i)− 1

n

)
≥
∑
i∈Hκ

(
p(i)− 1

n

)
= p(Hκ)− |Hκ|

n
≥ p(Hκ)− κ . (4.58)

Thus, in this case the estimate d̂ is as required.

We turn to the case in which the procedure FIND-REFERENCE returns a pair (x, p̂(x)) such that p̂(x) ∈

[1− 2κ, 1 + 3κ]p(x) and p(x) ∈
[
κ
8 ,

4
κ

]
· 1
n .

We start by defining two more “desirable” events, which hold (simultaneously) with high constant

probability, and then show that conditioned on these events holding (as well as E0), the output of the algorithm
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is as required. Let E1 be the event that the sample S satisfies∣∣∣∣∣∣ 1
|S|
∑
y∈S

ψ(y)− dTV(p,u)

∣∣∣∣∣∣ ≤ ε/2 . (4.59)

By an additive Chernoff bound, the event E1 holds with probability at least 9/10.

Next, letE2 be the event that all calls to the procedure COMPARE return answers as specified in Lemma 4.1.2.

Since COMPARE is called |S| times, and for each call the probability that it does not return an answer as

specified in the lemma is at most 1/(10|S|), by the union bound the probability that E2 holds is at least 9/10.

From this point on assume eventsE0,E1 andE2 all occur, which holds with probability at least 1−3/10 ≥

2/3. Since E2 holds, we get the following.

1. When COMPARE returns high for y ∈ S (so that ψ̂(y) is set to 0) we have that

p(y) > K · p(x) ≥ 2/n
p̂(x) · p(x) > 1

n
, (4.60)

implying that ψ̂(y) = ψ(y).

2. When COMPARE returns low for y ∈ S (so that ψ̂(y) is set to 1) we have that

p(y) < p(x)
K
≤ p(x)

p̂(x)/(ε/4n) ≤
ε

2n , (4.61)

implying that ψ̂(y) ≤ ψ(y) + ε/2 (and clearly ψ(y) ≤ ψ̂(y)).

3. When COMPARE returns a value ρ(y) it holds that ρ(y) ∈ [1−κ, 1+κ](p(y)/p(x)), so that ρ(y)·p̂(x) ∈

[(1− κ)(1− 2κ), (1 + κ)(1 + 3κ)]p(y). Since κ = ε/8, if ρ(y) · p̂(x) ≥ 1/n (so that ψ̂(y) is set to 0),

then ψ(y) < ε/2, if ρ(y) · p̂(x) ≤ ε/4n (so that ψ̂(y) is set to 1), then ψ(y) ≥ 1− ε/2, and otherwise

|ψ̂(y)− ψ(y)| ≤ ε/2.

It follows that

d̂ = 1
|S|
∑
y∈S

ψ̂(y) ∈

 1
|S|
∑
y∈S

ψ(y)− ε/2, 1
|S|
∑
y∈S

ψ(y) + ε/2

 ⊆ [dTV(p,u)−ε, dTV(p,u)+ε] (4.62)

as required.

The number of queries performed by the algorithm is the number of queries performed by the procedure

FIND-REFERENCE, which is Õ
(
1/ε20), plus Θ(1/ε2) times the number of queries performed in each call

to COMPARE. The procedure COMPARE is called with the parameter K, which is bounded by O(1/ε2), the

parameter η, which is Ω(ε), and δ, which is Ω(1/ε2). By Lemma 4.1.2, the number of queries performed in

each call to COMPARE is O(log(1/ε)/ε4). The total number of queries performed is hence Õ
(
1/ε20).
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4.1.6.1 Finding a reference point

In this subsection we prove Lemma 4.1.40. We start by giving the high-level idea behind the procedure.

For a point x ∈ [n] and γ ∈ [0, 1], let Up
γ (x) be as defined in Eq. (4.1). Since p is fixed throughout this

subsection, we shall use the shorthand Uγ(x) instead of Up
γ (x). Recall that κ is a parameter given to the

procedure. Assume we had a point x for which p(Uκ(x)) ≥ κd1 and |Uκ(x)| ≥ κd2n for some constants

d1 and d2 (so that necessarily p(x) = Ω(κd1/n) and p(x) = O(1/(κd2n)). It is not hard to verify (and we

show this in detail subsequently), that if p(H) ≤ 1 − κ, then a sample of size Θ(1/ poly(κ)) distributed

according to p will contain such a point x with high constant probability. Now suppose that we could obtain

an estimate ŵ of p(Uκ(x)) such that ŵ ∈ [1 − κ, 1 + κ]p(Uκ(x)) and an estimate û of |Uκ(x)| such that

û ∈ [1− κ, 1 + κ]|Uκ(x)|. By the definition of Uκ(x) we have that (ŵ/û) ∈ [1−O(κ), 1 +O(κ)]p(x).

Obtaining good estimates of p(Uκ(x)) and |Uκ(x)| (for x such that both |Uκ(x)| and p(Uκ(x)) are

sufficiently large) might be infeasible. This is due to the possible existence of many points y for which p(y) is

very close to (1 + κ)p(x) or p(x)/(1 + κ) which define the boundaries of the set Uκ(x). For such points it is

not possible to efficiently distinguish between those among them that belong to Uκ(x) (so that they are within

the borders of the set) and those that do not belong to Uκ(x) (so that they are just outside the borders of the

set). However, for our purposes it suffices to estimate the weight and size of some set Uα(x) such that α ≥ κ

(so that Uκ(x) ⊆ Uα(x)) and α is not much larger than κ (e.g., α ≤ 2κ)). To this end we can apply Procedure

ESTIMATE-NEIGHBORHOOD (see Section 4.1.2.2), which (conditioned on p(Uκ(x)) being above a certain

threshold), returns a pair (ŵ(x), α) such that ŵ(x) is a good estimate of p(Uα(x)). Furthermore, α is such

that for α′ slightly larger than α, the weight of Uα′(x) \ Uα(x) is small, allowing us to obtain also a good

estimate µ̂(x) of |Uα(x)|/n.

Proof of Lemma 4.1.40. We first introduce the following notation.

L
def=
{
i : p(i) < κ

2n

}
, M

def=
{
i : κ

2n ≤ p(i) < 1
κn

}
. (4.63)

Let H = Hp
κ where Hp

κ is as defined in Eq. (4.57). Observe that p(L) < κ/2, so that if p(H) ≤ 1− κ, then

p(M) ≥ κ/2. Consider further partitioning the set M of “medium weight” points into buckets M1, . . . ,Mr

where r = log1+κ(2/κ2) = Θ(log(1/κ)/κ) and the bucket Mj is defined as follows:

Mj
def=
{
i : (1 + κ)j−1 · κ2n ≤ p(i) < (1 + κ)j · κ2n

}
. (4.64)

We consider the following “desirable” events.

1. Let E1 be the event that conditioned on the existence of a bucket Mj such that p(Mj) ≥ κ/2r =

Ω(κ2/ log(1/κ)), there exists a point x∗ ∈ X that belongs to Mj . By the setting of the size of the

sample X , the (conditional) event E1 holds with probability at least 1− 1/40.

2. Let E2 be the event that all calls to ESTIMATE-NEIGHBORHOOD return an output as specified
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Algorithm 27 Procedure FIND-REFERENCE

Require: PAIRCOND and SAMP query access to a distribution p and a parameter κ ∈ (0, 1/4]
1: Select a sample X of Θ(log(1/κ)/κ2) points distributed according to p.
2: for all x ∈ X do
3: Call ESTIMATE-NEIGHBORHOOD with the parameters κ as in the input to FIND-REFERENCE,
β = κ2/(40 log(1/κ)), η = κ, and δ = 1/(40|X|).

4: Let θ = κηβδ/64 = Θ(κ6/ log2(1/κ)) (as in FIND-REFERENCE).
5: if ESTIMATE-NEIGHBORHOOD returns a pair (ŵ(x), α(x)) such that ŵ(x) < κ2/20 log(1/κ) then

go to Line 2 and continue with the next x ∈ X .
6: end if
7: Select a sample Yx of size Θ(log2(1/κ)/κ5) distributed uniformly.
8: for all y ∈ Yx do
9: call COMPARE({x}, {y}, θ/4, 4, 1/40|X||Yx|), and let the output be denoted ρx(y)

10: end for
11: Let µ̂(x) be the fraction of occurrences of y ∈ Yx such that ρx(y) ∈ [1/(1 + α+ θ/2), 1 + α+ θ/2].
12: Set p̂(x) = ŵ(x)/(µ̂(x)n).
13: end for
14: if for some point x ∈ X we have ŵ(x) ≥ κ2/20 log(1/κ), µ̂(x) ≥ κ3/20 log(1/κ), and κ/4n ≤ p̂(x) ≤

2/(κn), then
15: return (x, p̂(x))
16: else
17: return No-Pair
18: end if

by Lemma 4.1.3. By Lemma 4.1.3, the setting of the confidence parameter δ in each call and a

union bound over all |X| calls, E2 holds with probability at least 1− 1/40.

3. Let E3 be the event that for each x ∈ X we have the following.

a) If |Uα(x)(x)|
n ≥ κ3

40 log(1/κ) , then |Yx∩Uα(x)(x)|
|Yx| ∈ [1− η/2, 1 + η/2] |Uα(x)(x)|

n ;

If |Uα(x)(x)|
n < κ3

40 log(1/κ) , then |Yx∩Uα(x)(x)|
|Yx| < κ3

30 log(1/κ) ;

b) Let ∆α(x),θ(x) def= Uα(x)+θ(x) \ Uα(x)(x) (where θ is as specified by the algorithm).

If |∆α(x),θ(x)|
n ≥ κ4

240 log(1/κ) , then |Yx∩∆α(x),θ(x)|
|Yx| ≤ 2 · |∆α(x),θ(x)|

n ;

If |∆α(x),θ(x)|
n < κ4

240 log(1/κ) , then |Yx∩∆α(x),θ(x)|
|Yx| < κ4

120 log(1/κ) .

By the size of each set Yx and a union bound over all x ∈ X , the event E3 holds with probability at

least 1− 1/40.

4. LetE4 be the event that all calls to COMPARE return an output as specified by Lemma 4.1.2. By Lemma 4.1.2,

the setting of the confidence parameter δ in each call and a union bound over all (at most) |X| · |Y | calls,

E3 holds with probability at least 1− 1/40.

Assuming events E1–E4 all hold (which occurs with probability at least 9/10) we have the following.

1. By E2, for each x ∈ X such that ŵ(x) ≥ κ2/20 log(1/κ) (so that x may be selected for the output of

the procedure) we have that p(Uα(x)(x)) ≥ κ2/40 log(1/κ).

The event E2 also implies that for each x ∈ X we have that p(∆α(x),θ(x)) ≤ ηβ/16 ≤ (η/16) ·
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p(Uα(x)(x)), so that

|∆α(x),θ(x)|
n

≤ η(1 + α(x))(1 + α(x) + θ)
16 ·

|Uα(x)(x)|
n

≤ η

6 ·
|Uα(x)(x)|

n
. (4.65)

2. Consider any x ∈ X such that ŵ(x) ≥ κ2/20 log(1/κ). Let Tx
def= { y ∈ Yx : ρx(y) ∈ [1/(1 + α+ θ/2), (1 + α+ θ/2] },

so that µ̂(x) = |Tx|/|Yx|. ByE4, for each y ∈ Yx∩Uα(x)(x) we have that ρx(y) ≤ (1+α)(1+θ/4) ≤

(1 + α + θ/2) and ρx(y) ≥ (1 + α)−1(1 − θ/4) ≥ (1 + α + θ/2)−1, so that y ∈ Tx. On the other

hand, for each y /∈ Yx ∩ Uα(x)+θ(x) we have that ρx(y) > (1 + α + θ)(1 − θ/4) ≥ 1 + α + θ/2 or

ρx(y) < (1 + α+ θ)−1(1− θ/4) < (1 + α+ θ/2)−1, so that y /∈ Tx. It follows that

Yx ∩ Uα(x)(x) ⊆ Tx ⊆ Yx ∩ (Uα(x)(x) ∪∆α(x),θ(x)) . (4.66)

By E3, when µ̂(x) = |Tx|/|Yx| ≥ κ3/20 log(1/κ), then necessarily µ̂(x) ∈ [1−η, 1+η]|Uα(x)(x)|/n.

To verify this consider the following cases.

a) If |Uα(x)(x)|
n ≥ κ3

40 log(1/κ) , then (by the left-hand-side of Eq. (4.66)) and the definition of E3) we

get that µ̂(x) ≥ (1− η/2) |Uα(x)(x)|
n , and (by the right-hand-side of Eq. (4.66), Eq. (4.65), and E3)

we get that µ̂(x) ≤ (1 + η/2) |Uα(x)(x)|
n + 2(η/6) |Uα(x)(x)|

n < (1 + η) |Uα(x)(x)|
n .

b) If |Uα(x)(x)|
n < κ3

40 log(1/κ) , then (by the right-hand-side of Eq. (4.66), Eq. (4.65), and E3) we get

that µ̂(x) < κ3

30 log(1/κ) + κ4

120 log(1/κ) < κ3/20 log(1/κ).

3. If p(H) ≤ 1 − κ, so that p(M) ≥ κ/2, then there exists at least one bucket Mj such that p(Mj) ≥

κ/2r = Ω(κ2/ log(1/κ)). By E1, the sample X contains a point x∗ ∈ Mj . By the definition of

the buckets, for this point x∗ we have that p(Uκ(x∗)) ≥ κ/2r ≥ κ2/(10 log(1/κ)) and |Uκ(x∗)| ≥

(κ2/2r)n ≥ κ3/(10 log(1/κ))n.

By the first two items above and the setting η = κ we have that for each x such that ŵ(x) ≥ κ2/20 log(1/κ)

and µ̂(x) ≥ κ3/20 log(1/κ),

p̂(x) ∈
[

1− κ
1 + κ

,
1 + κ

1− κ

]
p(x) ⊂ [1− 2κ, 1 + 3κ]p(x) .

Thus, if the algorithm outputs a pair (x, p̂(x)) then it satisfies the condition stated in both items of the lemma.

This establishes the second item in the lemma. By combining all three items we get that if p(H) ≥ 1 − κ

then the algorithm outputs a pair (x, p̂(x)) (where possibly, but not necessarily, x = x∗), and the first item is

established as well.

Turning to the query complexity, the total number of PAIRCOND queries performed in the |X| = O(log(1/κ)/κ2)

calls to ESTIMATE-NEIGHBORHOOD is O
(
|X| log(1/δ)2 log(1/(βη))

κ2η4β3δ2

)
= Õ

(
1/κ18), and the total number of

PAIRCOND queries performed in the calls to COMPARE (for at most all pairs x ∈ X and y ∈ Yx) is

Õ
(
1/κ20).
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4.1.7 A Õ
(
(log3 n)/ε3

)
-query INTCONDp algorithm for testing uniformity

In this and the next section we consider INTCOND algorithms for testing whether an unknown distribu-

tion p over [n] is the uniform distribution versus ε-far from uniform. Our results show that INTCOND

algorithms are not as powerful as PAIRCOND algorithms for this basic testing problem; in this section we

give a poly(logn, 1/ε)-query INTCONDp algorithm, and in the next section we prove that any INTCONDp

algorithm must make Ω̃(logn) queries.

In more detail, in this section we describe an algorithm INTCONDp-TEST-UNIFORM and prove the

following theorem:

Theorem 4.1.42. INTCONDp-TEST-UNIFORM is a Õ
(

log3 n
ε3

)
-query INTCONDp testing algorithm for

uniformity, i.e. it outputs accept with probability at least 2/3 if p = u and outputs reject with probability at

least 2/3 if dTV(p,u) ≥ ε.

Intuition. Recall that, as mentioned in Section 4.1.3.1, any distribution p which is ε-far from uniform

must put Ω(ε) probability mass on “significantly heavy” elements (that is, if we defineH ′ =
{
h ∈ [n] : p(h) ≥ 1

n + ε
4n
}

,

it must hold that p(H ′) ≥ ε/4). Consequently a sample of O(1/ε) points drawn from p will contain such a

point with high probability. Thus, a natural approach to testing whether p is uniform is to devise a procedure

that, given an input point y, can distinguish between the case that y ∈ H ′ and the case that p(y) = 1/n (as it

is when p = u).

We give such a procedure, which uses the INTCONDp oracle to perform a sort of binary search over intervals.

The procedure successively “weighs” narrower and narrower intervals until it converges on the single point

y. In more detail, we consider the interval tree whose root is the whole domain [n], with two children

{1, . . . , n/2} and {n/2+1, . . . , n}, and so on, with a single point at each of the n leaves. Our algorithm starts

at the root of the tree and goes down the path that corresponds to y; at each child node it uses COMPARE to

compare the weight of the current node to the weight of its sibling under p. If at any point the estimate deviates

significantly from the value it should have if p were uniform (namely the weights should be essentially equal,

with slight deviations because of even/odd issues), then the algorithm rejects. Assuming the algorithm does

not reject, it provides a (1±O(ε))-accurate multiplicative estimate of p(y), and the algorithm checks whether

this estimate is sufficiently close to 1/n (rejecting if this is not the case). If no point in a sample of Θ(1/ε)

points (drawn according to p) causes rejection, then the algorithm accepts.

The algorithm we use to perform the “binary search” described above is Algorithm 28, BINARY-DESCENT.

We begin by proving correctness for it:

Lemma 4.1.43. Suppose the algorithm BINARY-DESCENT is run with inputs ε ∈ (0, 1], a = 1, b = n, and

y ∈ [n], and is provided INTCOND oracle access to distribution p over [n]. It performs Õ
(
log3 n/ε2)

queries and either outputs a value p̂(y) or reject, where the following holds:

1. if p(y) ≥ 1
n + ε

4n , then with probability at least 1− ε
100 the procedure either outputs a value p̂(y) ∈

[1− ε/12, 1 + ε/12]p(y) or reject;
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Algorithm 28 BINARY-DESCENT

Require: parameter ε > 0; integers 1 ≤ a ≤ b ≤ n; y ∈ [a, b]; query access to INTCONDp oracle
1: if a = b then return 1
2: end if
3: Let c =

⌊
a+b

2
⌋
; ∆ = (b− a+ 1)/2.

4: if y ≤ c then
5: Define Iy = {a, . . . , c}, Iȳ = {c+ 1, . . . , b} and ρ = d∆e/b∆c
6: else
7: Define Iȳ = {a, . . . , c}, Iy = {c+ 1, . . . , b} and ρ = b∆c/d∆e
8: end if
9: Call COMPARE on Iy, Iȳ with parameters η = ε

48 logn , K = 2, δ = ε
100(1+logn) to get an estimate ρ̂ of

p(Iy)/p(Iȳ)
10: if ρ̂ /∈ [1− ε

48 logn , 1 + ε
48 logn ] · ρ (this includes the case that ρ̂ is high or low) then return reject

11: end if
12: Call recursively BINARY-DESCENT on input (ε, the endpoints of Iy , y);
13: if BINARY-DESCENT returns a value ν then return ρ̂

1+ρ̂ · ν
14: elsereturn reject
15: end if

Algorithm 29 INTCONDp-TEST-UNIFORM

Require: error parameter ε > 0; query access to INTCONDp oracle
1: Draw t = 20

ε points y1, . . . , yt from SAMPp.
2: for j = 1 to t do
3: Call BINARY-DESCENT(ε, 1, n, yj) and return reject if it rejects, otherwise let d̂j be the value it

returns as its estimate of p(yj)
4: if d̂j /∈ [1− ε

12 , 1 + ε
12 ] · 1

n then return reject
5: end if
6: end forreturn accept

2. if p = u, then with probability at least 1− ε
100 the procedure outputs a value p̂(y) ∈ [1− ε/12, 1 +

ε/12] · 1
n .

Proof of Lemma 4.1.43. The claimed query bound is easily verified, since the recursion depth is at most

1 + logn and the only queries made are during calls to COMPARE, each of which performs O(log(1/δ)/η2) =

Õ
(
log2 n/ε2) queries.

Let E0 be the event that all calls to COMPARE satisfy the conditions in Lemma 4.1.2; since each of them

succeeds with probability at least 1−δ = 1− ε
100(1+logn) , a union bound shows that E0 holds with probability

at least 1− ε/100. We hereafter condition on E0.

We first prove the second part of the lemma where p = u. Fix any specific recursive call, say the

j-th, during the execution of the procedure. The intervals I(j)
y , I

(j)
ȳ used in that execution of the algorithm

are easily seen to satisfy p(Iy)/p(Iȳ) ∈ [1/K,K] (for K = 2), so by event E0 it must be the case that

COMPARE returns an estimate ρ̂j ∈ [1− ε
48 logn , 1 + ε

48 logn ] · p(I(j)
y )/p(I(j)

ȳ ). Since p = U , we have that

p(I(j)
y )/p(I(j)

ȳ ) = ρ(j), so the overall procedure returns a numerical value rather than reject.

Let M = dlogne be the number of recursive calls (i.e., the number of executions of Line 12). Note that
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we can write p(y) as a product

p(y) =
M∏
j=1

p(I(j)
y )

p(I(j)
y ) + p(I(j)

ȳ )
=

M∏
j=1

p(I(j)
y )/p(I(j)

ȳ )
p(I(j)

y )/p(I(j)
ȳ ) + 1

. (4.67)

We next observe that for any 0 ≤ ε′ < 1 and ρ, d > 0, if ρ̂ ∈ [1 − ε′, 1 + ε′]d then we have ρ̂
ρ̂+1 ∈

[1− ε′

2 , 1 + ε′] d
d+1 (by straightforward algebra). Applying this M times, we get

M∏
j=1

ρ̂j
ρ̂j + 1 ∈

[(
1− ε

96 logn

)M
,

(
1 + ε

48 logn

)M]
·
M∏
j=1

p(I(j)
y )/p(I(j)

ȳ )
p(I(j)

y )/p(I(j)
ȳ ) + 1

∈

[(
1− ε

96 logn

)M
,

(
1 + ε

48 logn

)M]
· p(y)

∈
[
1− ε

12 , 1 + ε

12

]
p(y).

Since
∏M
j=1

ρ̂j
ρ̂j+1 is the value that the procedure outputs, the second part of the lemma is proved.

The proof of the first part of the lemma is virtually identical. The only difference is that now it is

possible that COMPARE outputs high or low at some call (since p is not uniform it need not be the case that

p(I(j)
y )/p(I(j)

ȳ ) = ρ(j)), but this is not a problem for (i) since in that case BINARY-DESCENT would output

reject.

See Algorithm 28 for a description of the testing algorithm INTCONDp-TEST-UNIFORM. We now

prove Theorem 4.1.42:

Proof of Theorem 4.1.42. Define E1 to be the event that all calls to BINARY-DESCENT satisfy the conclusions

of Lemma 4.1.43. With a union bound over all these t = 20/ε calls, we have Pr[E1] ≥ 8/10.

Completeness: Suppose p = u, and condition again on E1. Since this implies that BINARY-DESCENT

will always return a value, the only case INTCONDp-TEST-UNIFORM might reject is by reach-

ing Line 4. However, since it is the case that every value d̂j returned by the procedure satisfies

p̂(y) ∈ [1− ε/12, 1 + ε/12] · 1
n , this can never happen.

Soundness: Suppose dTV(p,u) ≥ ε. Let E2 be the event that at least one of the yi’s drawn in Line 1 belongs

to H ′. As p(H ′) ≥ ε/4, we have Pr[E2] ≥ 1− (1− ε/4)20/ε ≥ 9/10. Conditioning on both E1 and

E2, for such a yj , one of two cases below holds:

• either the call to BINARY-DESCENT outputs reject and INTCONDp-TEST-UNIFORM outputs

reject;

• or a value d̂j is returned, for which d̂j ≥ (1− ε
12 )(1 + ε

4 ) · 1
n > (1 + ε/12)/n (where we used

the fact that E1 holds); and INTCONDp-TEST-UNIFORM reaches Line 4 and rejects.
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Since Pr[E1 ∪E2] ≥ 7/10, INTCONDp-TEST-UNIFORM is correct with probability at least 2/3. Finally,

the claimed query complexity directly follows from the t = Θ(1/ε) calls to BINARY-DESCENT, each of which

makes Õ
(
log3 n/ε2) queries to INTCONDp.

4.1.8 An Ω(logn/ log logn) lower bound for INTCONDp algorithms that test uniformity

In this section we prove that any INTCONDp algorithm that ε-tests uniformity even for constant ε must have

query complexity Ω̃(logn). This shows that our algorithm in the previous subsection is not too far from

optimal, and sheds light on a key difference between INTCOND and PAIRCOND oracles.

Theorem 4.1.44. Fix ε = 1/3. Any INTCONDp algorithm for testing whether p = u versus dTV(p,p∗) ≥ ε

must make Ω
(

logn
log logn

)
queries.

To prove this lower bound we define a probability distribution Dno over possible no-distributions (i.e.

distributions that have variation distance at least 1/3 from u). A distribution drawn from Dno is constructed

as follows: first (assuming without loss of generality that n is a power of 2), we partition [n] into b = 2X

consecutive intervals of the same size ∆ = n
2X , which we refer to as “blocks”, where X is a random variable

distributed uniformly on the set { 1
3 logn, 1

3 logn+ 1, . . . , 2
3 logn}. Once the block size ∆ is determined, a

random offset y is drawn uniformly at random in [n], and all block endpoints are shifted by y modulo [n]

(intuitively, this prevents the testing algorithm from “knowing” a priori that specific points are endpoints of

blocks). Finally, independently for each block, a fair coin is thrown to determine its profile: with probability

1/2, each point in the first half of the block will have probability weight 1−2ε
n and each point in the second

half will have probability 1+2ε
n (such a block is said to be a low-high block, with profile ↓↑). With probability

1/2 the reverse is true: each point in the first half has probability 1+2ε
n and each point in the second half has

probability 1−2ε
n (a high-low block ↑↓). It is clear that each distribution p in the support of Dno defined in this

way indeed has dTV(p,u) = ε.

To summarize, each no-distribution p in the support of Dno is parameterized by (b+ 2) parameters: its

block size ∆, offset y, and profile ϑ ∈ {↓↑, ↑↓}b. Note that regardless of the profile vector, each block always

has weight exactly ∆/n.

We note that while there is only one yes-distribution u, it will sometimes be convenient for the analysis

to think of u as resulting from the same initial process of picking a block size and offset, but without the

subsequent choice of a profile vector. We sometimes refer to this as the “fake construction” of the uniform

distribution u (the reason for this will be clear later).

The proof of Theorem 4.1.44 will be carried out in two steps. First we shall restrict the analysis to

non-adaptive algorithms, and prove the lower bound for such algorithms. This result will then be extended to

the general setting by introducing (similarly to Section 4.1.4.2) the notion of a query-faking algorithm, and

reducing the behavior of adaptive algorithms to non-adaptive ones through an appropriate sequence of such

query-faking algorithms.

Before proceeding, we define the transcript of the interaction between an algorithm and a INTCONDp
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oracle. Informally, the transcript captures the entire history of interaction between the algorithm and the

INTCONDp oracle during the whole sequence of queries.

Definition 4.1.45. Fix any (possibly adaptive) testing algorithm A that queries an INTCONDp oracle. The

transcript ofA is a sequence T = (I`, s`)`∈N∗ of pairs, where I` is the `-th interval provided by the algorithm

as input to INTCONDp, and s` ∈ I` is the response that INTCONDp provides to this query. Given a transcript

T , we shall denote by T |k the partial transcript induced by the first k queries, i.e. T |k = (I`, s`)1≤`≤k.

Equipped with these definitions, we now turn to proving the theorem in the special case of non-adaptive

testing algorithms. Observe that there are three different sources of randomness in our arguments: (i) the draw

of the no-instance from Dno, (ii) the internal randomness of the testing algorithm; and (iii) the random draws

from the oracle. Whenever there could be confusion we shall explicitly state which probability space is under

discussion.

4.1.8.1 A lower bound against non-adaptive algorithms

Throughout this subsection we assume that A is an arbitrary, fixed, non-adaptive, randomized algorithm that

makes exactly q ≤ τ · logn
log logn queries to INTCONDp; here τ ∈ (0, 1) is some absolute constant that will be

determined in the course of the analysis. (The assumption that A always makes exactly q queries is without

loss of generality since if in some execution the algorithm makes q′ < q queries, it can perform additional

“dummy” queries). In this setting algorithm A corresponds to a distribution PA over q-tuples Ī = (I1, . . . , Iq)

of query intervals. The following theorem will directly imply Theorem 4.1.44 in the case of non-adaptive

algorithms:

Theorem 4.1.46.∣∣∣∣ Pr
p∼Dno

[AINTCONDp outputs accept]− Pr[AINTCONDu outputs accept]
∣∣∣∣ ≤ 1/5. (4.68)

Observe that in the first probability of Equation (4.68) the randomness is taken over the draw of p from

Dno, the draw of Ī ∼ PA that A performs to select its sequence of query intervals, and the randomness of the

INTCONDp oracle. In the second one the randomness is just over the draw of Ī from PA and the randomness

of the INTCONDu oracle.

Intuition for Theorem 4.1.46. The high-level idea is that the algorithm will not be able to distinguish between

the uniform distribution and a no-distribution unless it manages to learn something about the “structure” of the

blocks in the no-case, either by guessing (roughly) the right block size, or by guessing (roughly) the location

of a block endpoint and querying a short interval containing such an endpoint.

In more detail, we define the following “bad events” (over the choice of p and the points si) for a

fixed sequence Ī = (I1, . . . , Iq) of queries (the dependence on Ī is omitted in the notation for the sake of
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readability):

Bn
size =

{
∃` ∈ [q] : ∆/ logn ≤ |I`| ≤ ∆ · (logn)2 }

Bn
boundary = { ∃` ∈ [q] : |I`| < ∆/ logn and I` intersects two blocks }

Bn
middle = { ∃` ∈ [q] : |I`| < ∆/ logn and I` intersects both halves of the same block }

Bn
`,outer = {∆ · (logn)2 < |I`| and s` belongs to a block not contained entirely in I`} ` ∈ [q]

Bn
`,collide = {∆ · (logn)2 < |I`| and ∃j < `, s` and sj belong to the same block} ` ∈ [q]

The first three events depend only on the draw of p from Dno, which determines ∆ and y, while the last

2q events also depend on the random draws of s` from the INTCONDp oracle. We define in the same fashion

the corresponding bad events for the yes-instance (i.e. the uniform distribution u) BY
size, BY

boundary, BY
middle,

BY
`,outer and BY

`,collide, using the notion of the “fake construction” of u mentioned above.

Events Bn
size and BY

size correspond to the possibility, mentioned above, that algorithm A “guesses” essen-

tially the right block size, and events Bn
boundary, BY

boundary and Bn
middle, BY

middle correspond to the possibility

that algorithm A “guesses” a short interval containing respectively a block endpoint or a block midpoint.

The final bad events correspond to A guessing a “too-large” block size but “getting lucky” with the sample

returned by INTCOND, either because the sample belongs to one of the (at most two) outer blocks not entirely

contained in the query interval, or because A has already received a sample from the same block as the current

sample.

We can now describe the failure events for both the uniform distribution and for a no-distribution as the

union of the corresponding bad events:

Bn
(Ī) = Bn

size ∪Bn
boundary ∪Bn

middle ∪

(
q⋃
`=1

Bn
`,outer

)
∪

(
q⋃
`=1

Bn
`,collide

)

BY
(Ī) = BY

size ∪BY
boundary ∪BY

middle ∪

(
q⋃
`=1

BY
`,outer

)
∪

(
q⋃
`=1

BY
`,collide

)

These failure events can be interpreted, from the point of view of the algorithm A, as the “opportunity to

potentially learn something;” we shall argue below that if the failure events do not occur then the algorithm

gains no information about whether it is interacting with the uniform distribution or with a no-distribution.

Structure of the proof of Theorem 4.1.46. First, observe that since the transcript is the result of the

interaction of the algorithm and the oracle on a randomly chosen distribution, it is itself a random variable;

we will be interested in the distribution over this random variable induced by the draws from the oracle and

the choice of p. More precisely, for a fixed sequence of query sets Ī , let Zn
Ī

denote the random variable over

no-transcripts generated when p is drawn from Dno. Note that this is a random variable over the probability

space defined by the random draw of p and the draws of si by INTCONDp(I`). We define An
Ī

as the resulting

distribution over these no-transcripts. Similarly, ZY
Ī

will be the random variable over yes-transcripts, with
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corresponding distribution AY
Ī

.

As noted earlier, the nonadaptive algorithm A corresponds to a distribution PA over q-tuples Ī of query

intervals. We define An as the distribution over transcripts corresponding to first drawing Ī from PA and then

making a draw from An
Ī
. Similarly, we define AY as the distribution over transcripts corresponding to first

drawing Ī from PA and then making a draw from AY
Ī

.

To prove Theorem 4.1.46 it is sufficient to show that the two distributions over transcripts described above

are statistically close:

Lemma 4.1.47. dTV
(
AY,An) ≤ 1/5.

The proof of this lemma is structured as follows: first, for any fixed sequence of q queries Ī , we bound the

probability of the failure events, both for the uniform and the no-distributions:

Claim 4.1.48. For each fixed sequence Ī of q query intervals, we have

Pr
[
BY

(Ī)
]
≤ 1/10 and Pr

p←Dno

[
Bn

(Ī)
]
≤ 1/10.

(Note that the first probability above is taken over the randomness of the INTCONDu responses and the

choice of offset and size in the “fake construction” of u, while the second is over the random draw of p ∼ Dno

and over the INTCONDp responses.)

Next we show that, provided the failure events do not occur, the distribution over transcripts is exactly the

same in both cases:

Claim 4.1.49. Fix any sequence Ī = (I1, . . . , Iq) of q queries. Then, conditioned on their respective failure

events not happening, Zn
Ī

and ZY
Ī

are identically distributed:

for every transcript T = ((I1, s1), . . . , (Iq, sq)), Pr
[
Zn
Ī

= T
∣∣∣ Bn

(Ī)

]
= Pr

[
ZY
Ī

= T
∣∣∣ BY

(Ī)

]
.

Finally we combine these two claims to show that the two overall distributions of transcripts are statistically

close:

Claim 4.1.50. Fix any sequence of q queries Ī = (I1, . . . , Iq). Then dTV
(
An
Ī
,AY

Ī

)
≤ 1/5.

Lemma 4.1.47 (and thus Theorem 4.1.46) directly follows from Claim 4.1.50 since, using the notation

s̄ = (s1, . . . , sq) for a sequence of q answers to a sequence Ī = (I1, . . . , Iq) of q queries, which together

define a transcript T (Ī , s̄) = ((I1, s1), . . . , (Iq, sq)),

dTV
(
AY,An) = 1

2
∑
Ī

∑
s̄

∣∣PA(Ī) · Pr
[
ZY
Ī

= T (Ī , s̄)
]
− PA(Ī) · Pr

[
ZN
Ī

= T (Ī , s̄)
]∣∣

= 1
2
∑
Ī

PA(Ī) ·
∑
s̄

∣∣Pr
[
ZY
Ī

= T (Ī , s̄)
]
− Pr

[
ZN
Ī

= T (Ī , s̄)
]∣∣

≤ max
Ī

{
dTV

(
AY
Ī
,An

Ī

)}
≤ 1/5 . (4.69)
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This concludes the proof of Lemma 4.1.47 modulo the proofs of the above claims; we give those proofs in

Section 4.1.8.1 below.

Proof of Claims 4.1.48 to 4.1.50 To prove Claim 4.1.48 we bound the probability of each of the bad events

separately, starting with the no-case.

(i) Defining the event Bn
`,size as

Bn
`,size = {∆/ logn ≤ |I`| ≤ ∆ · (logn)2} ,

we can use a union bound to get Pr[Bn
size] ≤

∑q
`=1 Pr[Bn

`,size]. For any fixed setting of I` there are

O(log logn) values of ∆ ∈ { n2X |X ∈ {
1
3 logn, . . . , 2

3 logn}} for which ∆/ logn ≤ I` ≤ ∆ · (logn)2.

Hence we have Pr[Bn
`,size] = O((log logn)/ logn), and consequently Pr[Bn

size] = O(q(log logn)/ logn).

(ii) Similarly, defining the event Bn
`,boundary as

Bn
`,boundary = {|I`| < ∆/ logn and I` intersects two blocks} ,

we have Pr[Bn
boundary] ≤

∑q
`=1 Pr[Bn

`,boundary]. For any fixed setting of I`, recalling the choice of

a uniform random offset y ∈ [n] for the blocks, we have that Pr[Bn
`,boundary] ≤ O(1/ logn), and

consequently Pr[Bn
boundary] = O(q/ logn).

(iii) The analysis of Bn
middle is identical (by considering the midpoint of a block instead of its endpoint),

yielding directly Pr[Bn
middle] = O(q/ logn).

(iv) Fix ` ∈ [q] and recall that Bn
`,outer = {∆ · (logn)2 < |I`| and s` is drawn from a block ( I`}. Fix any

outcome for ∆ such that ∆ · (logn)2 < |I`| and let us consider only the randomness over the draw of

s` from I`. Since there are Ω((logn)2) blocks contained entirely in I`, the probability that s` is drawn

from a block not contained entirely in I` (there are at most two such blocks, one at each end of I`) is

O(1/(logn)2). Hence we have Pr[Bn
`,outer] ≤ O(1)/(logn)2.

(v) Finally, recall that

Bn
`,collide = {∆ · (logn)2 < |I`| and ∃j < ` s.t. s` and sj belong to the same block } .

Fix ` ∈ [q] and a query interval I`. Let r` be the number of blocks in I` within which resides some

previously sampled point sj , j ∈ [`− 1]. Since there are Ω((logn)2) blocks in I` and r` ≤ `− 1, the

probability that s` is drawn from a block containing any sj , j < `, is O(`/(logn)2). Hence we have

Pr[Bn
`,collide] = O(`/(logn)2).

With these probability bounds for bad events in hand, we can prove Claim 4.1.48:
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Proof of Claim 4.1.48. Recall that q ≤ τ · logn
log logn . Recalling the definition of Bn

(Ī), a union bound yields

Pr[Bn
(Ī)] ≤ Pr[Bn

size] + Pr[Bn
boundary] + Pr[Bn

middle] +
q∑
`=1

Pr[Bn
`,outer] +

q∑
`=1

Pr[Bn
`,collide]

= O

(
q · log logn

logn

)
+O

(
q

logn

)
+O

(
q

logn

)
+

q∑
`=1

O

(
1

(logn)2

)
+

q∑
`=1

O

(
`

(logn)2

)
≤ 1

10 ,

where the last inequality holds for a sufficiently small choice of the absolute constant τ.

The same analysis applies unchanged for Pr[BY
size], Pr[BY

middle] and Pr[BY
boundary], using the “fake

construction” view of u as described earlier. The arguments for Pr[BY
`,outer] and Pr[BY

`,collide] go through

unchanged as well, and Claim 4.1.48 is proved.

Proof of Claim 4.1.49. Fix any Ī = (I1, . . . , Iq) and any transcript T = ((I1, s1), . . . , (Iq, sq)). Recall that

the length-` partial transcript T |` is defined to be ((I1, s1), . . . , (I`, s`)). We define the random variables Zn
Ī,`

and ZY
Ī,`

to be the length-` prefixes of Zn
Ī

and ZY
Ī

respectively. We prove Claim 4.1.49 by establishing the

following, which we prove by induction on `:

Pr
[
Zn
Ī,`

= T |`
∣∣∣ Bn

(Ī)

]
= Pr

[
ZY
Ī,`

= T |`
∣∣∣ BY

(Ī)

]
. (4.70)

For the base case, it is clear that (4.70) holds with ` = 0. For the inductive step, suppose (4.70) holds for all

k ∈ [`− 1]. When querying I` at the `-th step, one of the following cases must hold (since we conditioned on

the “bad events” not happening):

(1) I` is contained within a half-block (more precisely, either entirely within the first half of a block or

entirely within the second half). In this case the “yes” and “no” distribution oracles behave exactly the

same since both generate s` by sampling uniformly from I`.

(2) The point s` belongs to a block, contained entirely in I`, which is “fresh” in the sense that it contains

no sj , j < `. In the no-case this block may either be high-low or low-high; but since both outcomes

have the same probability, there is another transcript with equal probability in which the two profiles are

switched. Consequently (over the randomness in the draw of p ∼ Pno) the probability of picking s` in

the no-distribution case is the same as in the uniform distribution case (i.e., uniform on the fresh blocks

contained in I`).

This concludes the proof of Claim 4.1.49.

Proof of Claim 4.1.50. Given Claims 4.1.48 and 4.1.49, Claim 4.1.50 is an immediate consequence of the

following basic fact:

Fact 4.1.51. Let p1, p2 be two distributions over the same finite set X . Let E1, E2, be two events
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such that pi[Ei] = αi ≤ α for i = 1, 2 and the conditional distributions (pi)Ei are identical, i.e.

dTV((p1)E1
, (p2)E2

) = 0. Then dTV(p1,p2) ≤ α.

Proof. We first observe that since (p2)E2
(E2) = 0 and (p1)E1

is identical to (p2)E2
, it must be the case that

(p1)E1
(E2) = 0, and likewise (p2)E2

(E1) = 0. This implies that p1(E2 \E1) = p2(E1 \E2) = 0. Now let

us write

2 dTV(p1,p2) =
∑

x∈X\(E1∪E2)

|p1(x)− p2(x)|+
∑

x∈E1∩E2

|p1(x)− p2(x)|+

∑
x∈E1\E2

|p1(x)− p2(x)|+
∑

x∈E2\E1

|p1(x)− p2(x)|.

We may upper bound
∑
x∈E1∩E2

|p1(x)−p2(x)| by
∑
x∈E1∩E2

(p1(x)+p2(x)) = p1(E1∩E2)+p2(E1∩

E2), and the above discussion gives
∑
x∈E1\E2

|p1(x) − p2(x)| = p1(E1 \ E2) and
∑
x∈E2\E1

|p1(x) −

p2(x)| = p2(E2 \ E1). We thus have

2 dTV(p1,p2) ≤
∑

x∈X\(E1∪E2)

|p1(x)− p2(x)|+ p1(E1) + p2(E2)

≤
∑

x∈X\(E1∪E2)

|p1(x)− p2(x)|+ α1 + α2.

Finally, since dTV((p1)E1
, (p2)E2

) = 0, we have

∑
x∈X\(E1∪E2)

|p1(x)− p2(x)| = |p1(X \ (E1 ∪ E2))− p2(X \ (E1 ∪ E2))|

=
∣∣p1(E1)− p2(E2)

∣∣ = |α1 − α2|.

Thus 2 dTV(p1,p2) ≤ |α1 − α2|+ α1 + α2 = 2 max{α1, α2} ≤ 2α, and the fact is established.

This concludes the proof of Claim 4.1.50.

4.1.8.2 A lower bound against adaptive algorithms: Outline of the proof of Theorem 4.1.44

Throughout this subsection A denotes a general adaptive algorithm that makes q ≤ τ · logn
log logn queries, where

as before τ ∈ (0, 1) is an absolute constant. Theorem 4.1.44 is a consequence of the following theorem, which

deals with adaptive algorithms:

Theorem 4.1.52.∣∣∣∣ Pr
p∼Dno

[AINTCONDp outputs accept]− Pr[AINTCONDu outputs accept]
∣∣∣∣ ≤ 1/5. (4.71)

The idea here is to extend the previous analysis for non-adaptive algorithms, and argue that “adaptiveness
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does not really help” to distinguish between p = u and p ∼ Dno given access to INTCONDp.

As in the non-adaptive case, in order to prove Theorem 4.1.52, it is sufficient to prove that the transcripts

for uniform and no-distributions are close in total variation distance; i.e., that

dTV
(
AY,An) ≤ 1/5. (4.72)

The key idea used to prove this will be to introduce a sequence A
(k),n
otf of distributions over transcripts (where

“otf” stands for “on the fly”), for 0 ≤ k ≤ q, such that (i) A(0),n
otf = AY and A

(q),n
otf = An, and (ii) the distance

dTV

(
A

(k),n
otf ,A

(k+1),n
otf

)
for each 0 ≤ k ≤ q − 1 is “small”. This will enable us to conclude by the triangle

inequality, as

dTV
(
An,AY) = dTV

(
A

(0),n
otf ,A

(q),n
otf

)
≤

q−1∑
k=0

dTV

(
A

(k),n
otf ,A

(k+1),n
otf

)
. (4.73)

To define this sequence, in the next subsection we will introduce the notion of an extended transcript,

which in addition to the queries and samples includes additional information about the “local structure”

of the distribution at the endpoints of the query intervals and the sample points. Intuitively, this extra

information will help us analyze the interaction between the adaptive algorithm and the oracle. We will then

describe an alternative process according to which a “faking algorithm” (reminiscent of the similar notion

from Section 4.1.4.2) can interact with an oracle to generate such an extended transcript. More precisely,

we shall define a sequence of such faking algorithms, paramaterized by “how much faking” they perform.

For both the original (“non-faking”) algorithm A and for the faking algorithms, we will show how extended

transcripts can be generated “on the fly”. The aforementioned distributions A(k),n
otf over (regular) transcripts

are obtained by truncating the extended transcripts that are generated on the fly (i.e., discarding the extra

information), and we shall argue that they satisfy requirements (i) and (ii) above.

Before turning to the precise definitions and the analysis of extended transcripts and faking algorithms, we

provide the following variant of Fact 4.1.51, which will come in handy when we bound the right hand side of

Equation (4.73).

Fact 4.1.53. Let p1, p2 be two distributions over the same finite set X . Let E be an event such that

pi[E] = αi ≤ α for i = 1, 2 and the conditional distributions (p1)E and (p2)E are statistically close, i.e.

dTV((p1)E , (p2)E) = β. Then dTV(p1,p2) ≤ α+ β.

Proof. As in the proof of Fact 4.1.51, let us write

2 dTV(p1,p2) =
∑

x∈X\E

|p1(x)− p2(x)|+
∑
x∈E
|p1(x)− p2(x)|.

We may upper bound
∑
x∈E |p1(x) − p2(x)| by

∑
x∈E(p1(x) + p2(x)) = p1(E) + p2(E) = α1 + α2;
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furthermore,

∑
x∈Ē

|p1(x)− p2(x)| =
∑
x∈Ē

∣∣(p1)Ē(x) · p1(Ē)− (p2)Ē(x) · p2(Ē)
∣∣

≤ p1(Ē) ·
∑
x∈Ē

|(p1)Ē(x)− (p2)Ē(x)|+
∣∣p1(Ē)− p2(Ē)

∣∣ · (p2)Ē(Ē)

≤ (1− α1) · (2β) + |α2 − α1| · 1 ≤ 2β + |α2 − α1|

Thus 2 dTV(p1,p2) ≤ 2β + |α1 − α2| + α1 + α2 = 2β + 2 max{α1, α2} ≤ 2(α + β), and the fact is

established.

4.1.8.3 Extended transcripts and drawing p ∼ Dno on the fly.

Observe that the testing algorithm, seeing only pairs of queries and answers, does not have direct access to all

the underlying information – namely, in the case of a no-distribution, whether the profile of the block that

the sample point comes from is ↓↑ or ↑↓. It will be useful for us to consider an “extended” version of the

transcripts, which includes this information along with information about the profile of the “boundary” blocks

for each queried interval, even though this information is not directly available to the algorithm.

Definition 4.1.54. With the same notation as in Definition 4.1.45, the extended transcript of a sequence of

queries made by A and the corresponding responses is a sequence E = (I`, s`, b`)`∈[q] of triples, where I`

and s` are as before, and b` = (bL` , b
samp
` , bR` ) ∈ {↓↑, ↑↓}3 is a triple defined as follows: Let BiL , . . . , BiR be

the blocks that I` intersects, going from left to right. Then

1. bL` is the profile of the block BiL ;

2. bR` is the profile of the block BiR ;

3. bsamp
` is the profile of the block B` ∈ {BiL , . . . , BiR} that s` belongs to.

We define E|k to be the length-k prefix of an extended transcript E .

As was briefly discussed prior to the current subsection, we shall be interested in considering algorithms

that fake some answers to their queries. Specifically, given an adaptive algorithm A, we define A(1) as the

algorithm that fakes its first query, in the following sense: If the first query made by A to the oracle is some

interval I , then the algorithm A(1) does not call INTCOND on I but instead chooses a point s uniformly

at random from I and then behaves exactly as A would behave if the INTCOND oracle had returned s in

response to the query I . More generally, we define A(k) for all 0 ≤ k ≤ q as the algorithm behaving like A

but faking its first k queries (note that A(0) = A).

In Section 4.1.8.3 we explain how extended transcripts can be generated for A(0) = A in an “on the fly”

fashion so that the resulting distribution over extended transcripts is the same as the one that would result from

first drawing p from Dno and then running algorithm A on it. It follows that when we remove the extension

to the transcript so as to obtain a regular transcript, we get a distribution over transcripts that is identical to
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An. In Section 4.1.8.3 we explain how to generate extended transcripts for A(k) where 0 ≤ k ≤ q. We note

that for k ≥ 1 the resulting distribution over extended transcripts is not the same as the one that would result

from first drawing p from Dno and then running algorithm A(k) on it. However, this is not necessary for our

purposes. For our purposes it is sufficient that the distributions corresponding to pairs of consecutive indices

(k, k + 1) are similar (including the pair (0, 1)), and that for k = q the distribution over regular transcripts

obtained by removing the extension to the transcript is identical to AY.

Extended transcripts for A = A(0) Our proof of Equation (4.72) takes advantage of the fact that one can

view the draw of a no-distribution from Dno as being done “on the fly” during the course of algorithm A’s

execution. First, the size ∆ and the offset y are drawn at the very beginning, but we may view the profile

vector ϑ as having its components chosen independently, coordinate by coordinate, only as A interacts with

INTCOND – each time an element s` is obtained in response to the `-th query I`, only then are the elements

of the profile vector ϑ corresponding to the three coordinates of b` chosen (if they were not already completely

determined by previous calls to INTCOND). More precise details follow.

Consider the `-th query I` that A makes to INTCONDp. Inductively some coordinates of ϑ may have

been already set by previous queries. Let BiL , . . . , BiR be the blocks that I` intersects. First, if the coordinate

of ϑ corresponding to block BiL was not already set by a previous query, a fair coin is tossed to choose a

setting from {↓↑, ↑↓} for this coordinate. Likewise, if the coordinate of ϑ corresponding to block BiR was

not already set (either by a previous query or because iR = iL), a fair coin is tossed to choose a setting from

{↓↑, ↑↓} for this coordinate.

At this point, the values of bL` and bR` have been set. A simple but important observation is that these

outcomes of bL` and bR` completely determine the probabilities (call them αL and αR respectively) that the

block B` from which s` will be chosen is BiL (is BiR respectively), as we explain in more detail next. If

iR = iL then there is no choice to be made, and so assume that iR > iL. ForK ∈ {L,R} let ρK1 ·∆ be the size

of the intersection of I` with the first (left) half of BiK and let ρK2 ·∆ be the size of the intersection of I` with

the second (right) half of BiK . Note that 0 < ρK1 + ρK2 ≤ 1 and that ρL1 = 0 when ρL2 ≤ 1/2 and similarly

ρR2 = 0 when ρR1 ≤ 1/2. If bK` =↑↓ then let wK = ρK1 · (1+2ε)+ρK2 · (1−2ε) = ρK1 +ρK2 +2ε(ρK1 −ρK2 ),

and if bK` =↓↑ then let wK = ρK1 + ρK2 − 2ε(ρK1 − ρK2 ). We now set αK = wK

wL+wR+(iL−iR−1) . The block

BiL is selected with probability αL, the block BiR is selected with probability αR, and for iR ≥ iL + 2, each

of the other blocks is selected with equal probability, 1
wL+wR+(iL−iR−1) .

Given the selection of the block B` as described above, the element s` and the profile bsamp
` of the block

to which it belongs are selected as follows. If the coordinate of ϑ corresponding to B` has already been

determined, then bsamp
` is set to this value and s` is drawn from B` as determined by the ↓↑ or ↑↓ setting

of bsamp
` . Otherwise, a fair coin is tossed, bsamp

` is set either to ↓↑ or to ↑↓ depending on the outcome, and

s` is drawn from B` as in the previous case (as determined by the setting of bsamp
` ). Now all of I`, s`,

and b` = (bL` , b
samp
` , bR` ) have been determined and the triple (I`, s`, b`) is taken as the `-th element of the

extended transcript.
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We now define A(0),n
otf as follows. A draw from this distribution over (non-extended) transcripts is obtained

by first drawing an extended transcript (I1, s1, b1), . . . , (Iq, sq, bq) from the on-the-fly process described

above, and then removing the third element of each triple to yield (I1, s1), . . . , (Iq, sq). This is exactly the

distribution over transcripts that is obtained by first drawing p from Dno and then running A on it.

Extended transcripts for A(k), k ≥ 0 In this subsection we define the distribution A
(k),n
otf for 0 ≤ k ≤ q

(the definition we give below will coincide with our definition from the previous subsection for k = 0). Here

too the size ∆ and the offset y are drawn at the very beginning, and the coordinates of the profile vector ϑ are

chosen on the fly, together with the sample points. For each ` > k, the pair (s`, b`) is selected exactly as was

described for A, conditioned on the length-k prefix of the extended transcript and the new query I` (as well as

the choice of (∆, y)). It remains to explain how the selection is made for 1 ≤ ` ≤ k.

Consider a value 1 ≤ ` ≤ k and the `-th query interval I`. As in our description of the “on-the-fly” process

for A, inductively some coordinates of ϑ may have been already set by previous queries. Let BiL , . . . , BiR be

the blocks that I` intersects. As in the process for A, if the coordinate of ϑ corresponding to block BiL was

not already set by a previous query, a fair coin is tossed to choose a setting from {↓↑, ↑↓} for this coordinate.

Likewise, if the coordinate of ϑ corresponding to block BiR was not already set (either by a previous query or

because iL = iR), a fair coin is tossed to choose a setting from {↓↑, ↑↓} for this coordinate. Hence, bL` and bR`

are set exactly the same as described for A.

We now explain how to set the probabilities αL and αR of selecting the blockB` (from which s` is chosen)

to be BiL and BiR , respectively. Since the “faking” process should choose s` to be a uniform point from I`,

the probability αL is simply |BiL ∩ I`|/|I`|, and similarly for αR. (If iL = iR we take αL = 1 and αR = 0.)

Thus the values of αL and αR are completely determined by the number of blocks j and the relative sizes

of the intersection of I` with BiL and with BiR . Now, with probability αL the block B` is chosen to be BiL ,

with probability αR it is chosen to be BiR and with probability 1− αL − αR it is chosen uniformly among

{BiL+1, . . . , BiR−1}.

Given the selection of the block B` as described above, s` is chosen to be a uniform random element of

B` ∩ I`. The profile bsamp
` of B` is selected as follows:

1. If the coordinate of ϑ corresponding to B` has already been determined (either by a previous query or

because B` ∈ {BiL , BiR}), then bsamp
` is set accordingly.

2. Otherwise, the profile ofB` was not already set; note that in this case it must hold thatB` /∈ {BiL , BiR}.

We look at the half of B` that s` belongs to, and toss a biased coin to set its profile bsamp
` ∈ {↓↑, ↑↓}: If

s` belongs to the first half, then the coin toss’s probabilities are ((1− 2ε)/2, (1 + 2ε)/2); otherwise,

they are ((1 + 2ε)/2, (1− 2ε)/2).

Let E(k),n
otf denote the distribution induced by the above process over extended transcripts, and let A(k),n

otf be the

corresponding distribution over regular transcripts (that is, when removing the profiles from the transcript). As

noted in Section 4.1.8.3, for k = 0 we have that A(0),n
otf = A

n. In the other extreme, for k = q, since each point
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s` is selected uniformly in I` (with no dependence on the selected profiles) we have that A(q),n
otf = A

Y. In the

next subsection we bound the total variation distance between A
(k),n
otf and A

(k+1),n
otf for every 0 ≤ k ≤ q − 1

by bounding the distance between the corresponding distributions E(k),n
otf and E

(k+1),n
otf . Roughly speaking, the

only difference between the two (for each 0 ≤ k ≤ q − 1) is in the distribution over (sk+1, b
samp
k+1 ). As we

argue in more detail and formally in the next subsection, conditioned on certain events (determined, among

other things, by the choice of (∆, y)), we have that (sk+1, b
samp
k+1 ) are distributed the same under E(k),n

otf and

E
(k+1),n
otf .

4.1.8.4 Bounding dTV

(
A

(k),n
otf ,A

(k+1),n
otf

)
As per the foregoing discussion, we can focus on bounding the total variation distance between extended

transcripts

dTV

(
E

(k),n
otf ,E

(k+1),n
otf

)
for arbitrary fixed k ∈ {0, . . . , q − 1}. Before diving into the proof, we start by defining the probability space

we shall be working in, as well as explaining the different sources of randomness that are in play and how they

fit into the random processes we end up analyzing.

The probability space. Recall the definition of an extended transcript: for notational convenience, we

reserve the notation E = (I`, s`, b`)`∈[q] for extended transcript valued random variables, and will write

E = (ι`, σ`, π`)`∈[q] for a fixed outcome. We denote by Σ the space of all such tuples E, and by Λ the set

of all possible outcomes for (∆, y). The sample space we are considering is now defined as X def= Σ × Λ:

that is, an extended transcript along with the underlying choice of block size and offset7. The two probability

measures on X we shall consider will be induced by the execution of A(k) and A(k+1), as per the process

detailed below.

A key thing to observe is that, as we focus on two “adjacent” faking algorithms A(k) and A(k+1), it will

be sufficient to consider the following equivalent view of the way an extended transcript is generated:

1. up to (and including) stage k, the faking algorithm generates on its own both the queries ι` and the

uniformly distributed samples σ` ∈ ι`; it also chooses its (k + 1)-st query ιk+1;

2. then, at that point only is the choice of (∆, y) made; and the profiles π` (1 ≤ ` ≤ k) of the previous

blocks decided upon, as described in Section 4.1.8.3;

3. after this, the sampling and block profile selection is made exactly according to the previous “on-the-fly

process” description.

The reason that we can defer the choice of (∆, y) and the setting of the profiles in the manner described

above is the following: For both A(k) and A(k+1), the choice of each σ` for 1 ≤ ` ≤ k depends only on ι`

7We emphasize the fact that the algorithm, whether faking or not, has access neither to the “extended” part of the transcript nor to the
choice of (∆, y); however, these elements are part of the events we analyze.
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and the choice of each ι` for 1 ≤ ` ≤ k + 1 depends only on (ι1, σ1), . . . , (ι`−1, σ`−1). That is, there is no

dependence on (∆, y) nor on any π`′ for `′ ≤ `. By deferring the choice of the pair (∆, y) we may consider

the randomness coming in its draw only at the (k + 1)-st stage (which is the pivotal stage here). Note that,

both for A(k) and A(k+1), the resulting distribution over X induced by the description above exactly matches

the one from the “on-the-fly” process. In the next paragraph, we go into more detail, and break down further

the randomness and choices happening in this new view.

Sources of randomness. To define the probability measure on this space, we describe the process that,

up to stage k + 1, generates the corresponding part of the extended transcript and the (∆, y) for A(m) (where

m ∈ {k, k + 1}) (see the previous subsections for precise descriptions of how the following random choices

are made):

(R1) A(m) draws ι1, σ1, . . . , ιk, σk and finally ιk+1 by itself;

(R2) the outcome of (∆, y) is chosen: this “retroactively” fixes the partition of the ι`’s (1 ≤ ` ≤ k + 1) into

blocks B(`)
iL
, . . . , B

(`)
iR

;

(R3) the profiles of B(`)
iL

, B(`)
iR

and B` (i.e., the values of the triples π`, for 1 ≤ ` ≤ k) are drawn;

(R4) the profiles of B(k+1)
iL

, B(k+1)
iR

are chosen;

(R5) the block selection (choice of the block Bk+1 to which σk+1 will belong to) is made:

a) whether it will be one of the two end blocks, or one of the inner ones (for A(k+1) this is based on

the respective sizes of the end blocks, and for A(k) this is based on the weights of the end blocks,

using the profiles of the end blocks);

b) the choice of the block itself is performed:

• if the block has to be one of the outer ones, draw it based on either the respective sizes (for

A(k+1)) or the respective weights (for A(k), using the profiles of the end blocks)

• if the block has to be one of the inner ones, draw it uniformly at random among all inner

blocks;

(R6) the sample σk+1 and the profile πsamp
k+1 are chosen;

(R7) the rest of the transcript, for k + 1, . . . , q, is iteratively chosen (in the same way for A(k) and A(k+1))

according to the on-the-fly process discussed before.

Note that the only differences between the processes for A(k) and A(k+1) lie in steps (R5a), (R5b) and (R6)

of the (k + 1)-st stage.

Bad events and outline of the argument LetG(ιk+1) (where ‘G’ stands for ‘Good’) denote the settings

of (∆, y) that satisfy the following: Either (i) |ιk+1| > ∆ · (logn)2 or (ii) |ιk+1| < ∆/ logn and ιk+1 is

contained entirely within a single half block. We next define three indicator random variables for a given

element ω = (E, (∆, y)) of the sample space X , where E = ((ι1, σ1, π1), . . . , (ιq, σq, πq)). The first, Γ1, is
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zero when (∆, y) /∈ G(ιk+1). Note that the randomness for Γ1 is over the choice of (∆, y) and the choice of

ιk+1. The second, Γ2, is zero when ιk+1 intersects at least two blocks and the block Bk+1 is one of the two

extreme blocks intersected by ιk+1. The third, Γ3, is zero when ιk+1 is not contained entirely within a single

half block and Bk+1 is a block whose profile had already been set (either because it contains a selected point

σ` for ` ≤ k or because it belongs to one of the two extreme blocks for some queried interval ι` for ` ≤ k).

For notational ease we write Γ(E) to denote the triple (Γ1,Γ2,Γ3). Observe that these indicator variables

are well defined, and correspond to events that are indeed subsets of our space X: given any element ω ∈ X ,

whether Γi(ω) = 1 (for i ∈ {1, 2, 3}) is fully determined.

Define p1, p2 as the two distributions over X induced by the executions of respectively A(k) and A(k+1)

(in particular, by only keeping the first marginal of p1 we get back E(k),n). Applying Fact 4.1.53 to p1 and

p2, we obtain that

dTV(p1,p2) ≤ Pr
[

Γ 6= (1, 1, 1)
]

+ dTV
(
p1 | Γ = (1, 1, 1),p2 | Γ = (1, 1, 1)

)
≤ Pr[ Γ1 = 0 ] + Pr[ Γ2 = 0 | Γ1 = 1 ] + Pr[ Γ3 = 0 | Γ1 = Γ2 = 1 ]

+ dTV
(
p1 | Γ = (1, 1, 1),p2 | Γ = (1, 1, 1)

)
. (4.74)

To conclude, we can now deal which each of these 4 summands separately:

Claim 4.1.55. We have that Pr[ Γ1 = 0 ] ≤ η(n), where η(n) = O
(

log logn
logn

)
.

Proof. Similarly to the proof of Claim 4.1.48, for any fixed setting of ιk+1, there are O(log logn) values

of ∆ ∈
{

n
2j : j ∈ { 1

3 logn, . . . , 2
3 logn}

}
for which ∆/ logn ≤ ιk+1 ≤ ∆ · (logn)2. Therefore, the prob-

ability that one of these (“bad”) values of ∆ is selected is O
(

log logn
logn

)
. If the choice of ∆ is such that

|ιk+1| < ∆/ logn, then, by the choice of the random offset y, the probability that ιk+1 is not entirely

contained within a single half block is O(1/ logn). The claim follows.

Claim 4.1.56. We have that Pr[ Γ2 = 0 | Γ1 = 1 ] ≤ η(n).

Proof. If Γ1 = 1 because |ιk+1| < ∆/(logn)2 and ιk+1 is entirely contained within a single half block,

then Γ2 = 1 (with probability 1). Otherwise, |ιk+1| > ∆ · (logn)2, so that ιk+1 intersects at least (logn)2

blocks. The probability that one of the two extreme blocks is selected is hence O(1/(logn)2), and the claim

follows.

Claim 4.1.57. We have that Pr[ Γ3 = 0 | Γ1 = Γ2 = 1 ] ≤ η(n).

Proof. If Γ1 = 1 because |ιk+1| < ∆/(logn)2 and ιk+1 is entirely contained within a single half block, then

Γ3 = 1 (with probability 1). Otherwise, |ιk+1| > ∆ · (logn)2, so that ιk+1 intersects at least (logn)2 blocks.

Since Γ2 = 1, the block Bk+1 is uniformly selected from (logn)2 − 2 non-extreme blocks. Among them

there are at most 3k = O
(

logn
log logn

)
blocks whose profiles were already set. The probability that one of them

is selected (so that Γ3 = 1) is O
(

1
logn log logn

)
= O

(
log logn

logn

)
, and the claim follows.
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We are left with only the last term, dTV
(
p1 | Γ = (1, 1, 1),p2 | Γ = (1, 1, 1)

)
. But as we are now ruling

out all the “bad events” that would induce a difference between the distributions of the extended transcripts

under A(k) and A(k+1), it becomes possible to argue that this distance is actually zero:

Claim 4.1.58. dTV
(
p1 | Γ = (1, 1, 1),p2 | Γ = (1, 1, 1)

)
= 0.

Proof. Unrolling the definition, we can write dTV
(
p1 | Γ = (1, 1, 1),p2 | Γ = (1, 1, 1)

)
as

∑
E,(∆,y)

∣∣∣Pr
[
E(k) = E,Y(m) = (∆, y)

∣∣∣ Γ = (1, 1, 1)
]
− Pr

[
E(k+1) = E,Y(m) = (∆, y)

∣∣∣ Γ = (1, 1, 1)
]∣∣∣ .

where Y(m) denotes the Λ-valued random variable corresponding to A(m). In order to bound this sum, we

will show that each of its terms is zero: i.e., that for any fixed (E, (∆, y)) ∈ Σ× Λ we have

Pr
[
E(k) = E,Y(k) = (∆, y)

∣∣∣ Γ = (1, 1, 1)
]

= Pr
[
E(k+1) = E,Y(k+1) = (∆, y)

∣∣∣ Γ = (1, 1, 1)
]
.

We start by observing that, for m ∈ {k, k + 1},

Pr
[
E(m) = E,Y(m) = (∆, y)

∣∣∣ Γ = (1, 1, 1)
]

= Pr
[
E(m) = E

∣∣∣ Γ = (1, 1, 1),Y(m) = (∆, y)
]

Pr
[
Y(m) = (∆, y)

∣∣∣ Γ = (1, 1, 1)
]

and that the term Pr
[
Y(m) = (∆, y)

∣∣ Γ = (1, 1, 1)
]

= Pr
[
Y(m) = (∆, y)

]
is identical for m = k and

m = k + 1. Therefore, it is sufficient to show that

Pr
[
E(k) = E

∣∣∣ Γ = (1, 1, 1),Y(k) = (∆, y)
]

= Pr
[
E(k+1) = E

∣∣∣ Γ = (1, 1, 1),Y(k+1) = (∆, y)
]
.

Let ω = (E, (∆, y)) ∈ X be arbitrary, with E = ((ι1, σ1, π1), . . . , (ιq, σq, πq)) ∈ Σ, and let m ∈ {k, k+ 1}.

We can express Φ(m)(ω) def= Pr
[
E(m) = E

∣∣ Γ = (1, 1, 1),Y(m) = (∆, y)
]

as the product of the following 5

terms:

(T1) p(m),int,samp
k (ω), defined as

p
(m),int,samp
k (ω) def= Pr

[
E(m),int,samp|k = Eint,samp|k

∣∣∣ Γ = (1, 1, 1),Y(m) = (∆, y)
]

= Pr
[
E(m),int,samp|k = Eint,samp|k

]
,

where Eint,samp
` denotes (ι`, σ`) and Eint,samp|k denotes (Eint,samp

1 , . . . , Eint,samp
k );

(T2) p(m),prof
k (ω), defined as

p
(m),prof
k (ω) def= Pr

[
E(m),prof |k = Eprof |k

∣∣∣ E(m),int,samp|k = Eint,samp|k,Γ = (1, 1, 1),Y(m) = (∆, y)
]

= Pr
[
E(m),prof |k = Eprof |k

∣∣∣ E(m),int,samp|k = Eint,samp|k,Y(m) = (∆, y)
]
,
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where Eprof |k denotes (π1, . . . , πk);

(T3) p(m),int
k+1 (ω), defined as

p
(m),int
k+1 (ω) def= Pr

[
Ik+1 = ιk+1

∣∣∣ E(m),int,samp|k = Eint,samp|k,Γ = (1, 1, 1),Y(m) = (∆, y)
]

= Pr
[
Ik+1 = ιk+1

∣∣∣ E(m),int,samp|k = Eint,samp|k
]

;

(T4) p(m),samp,prof
k+1 (ω), defined as

p
(m),samp,prof
k+1 (ω)

def= Pr
[

(sk+1, bk+1) = (σk+1, πk+1)
∣∣∣ Ik+1 = ιk+1, E|(m)

k = E|k,Γ = (1, 1, 1),Y(m) = (∆, y)
]

;

(T5) and the last term p
(m)
k+2(ω), defined as

p
(m)
k+2(ω) def= Pr

[
E(m)|k+2,...,q = E|k+2,...,q

∣∣∣ E(m)|k+1 = E|k+1,Γ = (1, 1, 1),Y(m) = (∆, y)
]
,

where E|k+1 = ((ιk+1, σk+1, πk+1), . . . , (ιq, σq, πq)).

Note that we could remove the conditioning on Γ̄ for the first three terms, as they only depend on the length-k

prefix of the (extended) transcript and the choice of ιk+1, that is, on the randomness from (R1). The important

observation is that the above probabilities are independent of whether m = k or m = k + 1. We first verify

this for (T1), (T2), (T3) and (T5), and then turn to the slightly less straightforward term (T4). This is true

for p(m),int,samp
k (E) because A(k) and A(k+1) select their interval queries in exactly the same manner, and

for 1 ≤ ` ≤ k, the `-th sample point is uniformly selected in the `-th queried interval. Similarly we get

that p(k),int
k+1 (E) = p

(k+1),int
k+1 (E). The probabilities p(k),prof

k (E) and p(k+1),prof
k (E) are induced in the same

manner by (R2) and (R3), and p(k)
k+2(E) = p

(k+1)
k+2 (E) since for both A(k) and A(k+1), the pair (s`, b`) is

distributed the same for every ` ≥ k+ 2 (conditioned on any length-(k+ 1) prefix of the (extended) transcript

and the choice of (∆, y)).

Turning to (T4), observe that Γ1 = Γ2 = Γ3 = 1 (by conditioning). Consider first the case that Γ1 = 1

because |ιk+1| < ∆/ logn and ιk+1 is contained entirely within a single half block. For this case there are

two subcases. In the first subcase, the profile of the block that contains ιk+1 was already set. This implies

that bk+1 is fully determined (in the same manner) for both m = k and m = k + 1. In the second subcase,

the profile of the block that contains ιk+1 (which is an extreme block) is set independently and with equal

probability to either ↓↑ or ↑↓ for both m = k and m = k + 1. In either subcase, sk+1 is uniformly distributed

in ιk+1 for both m = k and m = k + 1.

Next, consider the remaining case that Γ1 = 1 because |ιk+1| > ∆ · (logn)2. In this case, since Γ2 = 1,

the block Bk+1 is not an extreme block, and since Γ3 = 1, the profile of the block Bk+1 was not previously

set. Given this, it follows from the discussion at the end of Section 4.1.8.3 that the distribution of (sk+1, bk+1)

is identical whether m = k (and A(m) does not fake the (k + 1)-th query) or m = k + 1 (and A(m) fakes the
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(k + 1)-th query).

Assembling the pieces, the 4 claims above together with Equation (4.74) yield dTV
(
E(k),n,E(k+1),n) ≤

dTV(p1,p2) ≤ 3η(n), and finally

dTV
(
An,AY) = dTV

(
A

(0),n
otf ,A

(q),n
otf

)
≤

q−1∑
k=0

dTV

(
A

(k),n
otf ,A

(k+1),n
otf

)
≤

q−1∑
k=0

dTV

(
E(k),n,E(k+1),n

)
≤ 3q · η(n)

≤ 1/5

for a suitable choice of the absolute constant τ .

4.1.9 Conclusion

We have introduced a new conditional sampling framework for testing probability distributions and shown that

it allows significantly more query-efficient algorithms than the standard framework for a range of problems.

This new framework presents many potential directions for future work.

One specific goal is to strengthen the upper and lower bounds for problems studied in this paper. As a

concrete question along these lines, we conjecture that COND algorithms for testing equality of two unknown

distributions p1 and p2 over [n] require (logn)Ω(1) queries. A broader goal is to study more properties of

distributions beyond those considered in this paper; natural candidates here, which have been well-studied

in the standard model, are monotonicity (for which we have preliminary results), independence between

marginals of a joint distribution, and entropy. Yet another goal is to study distributions over other structured

domains such as the Boolean hypercube {0, 1}n – here it would seem natural to consider “subcube” queries,

analogous to the INTCOND queries we considered when the structured domain is the linearly ordered set [n].

A final broad goal is to study distribution learning (rather than testing) problems in the conditional sampling

framework.8

4.2 Dual Sampling: When You Can Query Too

4.2.1 Introduction

In this section, we consider the power of two natural oracles, again generalizing (although in a different and

incomparable direction than the conditional sampling model of Section 4.1) the standard sampling setting.

8We note that, subsequent to our work and concurrent to the writing of this thesis, some of the directions and questions outlined here
were addressed in several papers, some by the author of this dissertation. Specifically, our conjecture on the query complexity of testing
identity of two unknown distributions was answered in the affirmative, and resolved up to a quadratic factor [1, 94]. Monotonicity testing
of distributions under the COND, PAIRCOND, and INTCOND models (as well as in the oracle models we shall cover in Section 4.2)
was studied in [44] and [42]. Finally, recent work of Bhattacharyya and Chakraborty [31] set out to pursue the particular direction of
“subcube queries” over {0, 1}n, and more generally Σn.
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The first is a dual oracle, which combines the standard model for distributions and the familiar one commonly

assumed for testing Boolean and real-valued functions. In more detail, the testing algorithm is granted access

to the unknown distribution p through two independent oracles, one providing samples of the distribution,

while the other, on query i in the domain of the distribution, provides the value of the probability density

function at i.9

Definition 4.2.1 (Dual access model). Let p be a fixed distribution over [n] = {1, . . . , n}. A dual oracle

for p is a pair of oracles (SAMPp,EVALp) defined as follows: when queried, the sampling oracle SAMPp

returns an element i ∈ [n], where the probability that i is returned is p(i) independently of all previous calls

to any oracle; while the evaluation oracle EVALp takes as input a query element j ∈ [n], and returns the

probability weight p(j) that the distribution puts on j.

It is worth noting that this type of dual access to a distribution has been considered (under the name

combined oracle) in [23] and [108], where they address the task of estimating (multiplicatively) the entropy of

the distribution, or the f -divergence between two of them (see Section 4.2.3 for a discussion of their results).

The second oracle that we consider provides samples of the distribution as well as queries to the cumulative

distribution function (cdf) at any point in the domain.10

Definition 4.2.2 (Cumulative Dual access model). Let p be a fixed distribution over [n]. A cumulative dual

oracle for p is a pair of oracles (SAMPp,CEVALp) defined as follows: the sampling oracle SAMPp behaves

as before, while the evaluation oracle CEVALp takes as input a query element j ∈ [n], and returns the

probability weight that the distribution puts on [j], that is p([j]) =
∑j
i=1 p(i) .

Remark 4.2.3. We will sometimes refer as a multiplicatively noisy EVALp (or similarly for CEVALp) to an

evaluation oracle with takes an additional input parameter τ > 0 and returns a value d̂i within a multiplicative

factor (1 + τ) of the true p(i). Note however that this notion of noisy oracle does not preserve the two-query

simulation of a dual oracle by a cumulative dual one.

4.2.1.1 Motivation and discussion

As a first motivation to this hybrid model, consider the following scenario: There is a huge and freely available

dataset, which a computationally-limited party – call it Arthur – needs to process. Albeit all the data is public

and Arthur can view any element of his choosing, extracting further information from the dataset (such as

the number of occurrences of a particular element) takes too much time. However, a third-party, Merlin, has

already spent resources in preprocessing this dataset and is willing to disclose such information – yet at a price.

This leaves Arthur with the following question: how can he get his work done as quickly as possible, paying as

9Note that in both definitions, one can decide to disregard the corresponding evaluation oracle, which in effect amounts to falling
back to the standard sampling model; moreover, for our domain [n], any EVALp query can be simulated by (at most) two queries to a
CEVALp oracle – in other terms, the cumulative dual model is at least as powerful as the dual one.

10We observe that such a cumulative evaluation oracle CEVAL appears in [19, Section 8].
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little as possible? This type of question is captured by our new model, and can be analyzed in this framework.

For instance, if the samples are stored in sorted order, implementing either of our oracles becomes possible

with only a logarithmic overhead per query. It is worth noting that Google has published their N -gram models,

which describe their distribution model on 5-word sequences in the English language. In addition, they have

made available the texts on which their model was constructed. Thus, samples of the distribution in addition

to query access to probabilities of specific domain elements may be extracted from the Google model.

A second and entirely theoretical motivation for studying distribution testing in these two dual oracle

settings arises from attempting to understand the limitations and underlying difficulties of the standard sampling

model. Indeed, by circumventing the lower bound, one may get a better grasp on the core issues whence the

hardness stemmed in the first place. Another motivation arises from data privacy, when a curator administers a

database of highly sensitive records (e.g, healthcare information, or financial records). Differential privacy [88,

93, 92] studies mechanisms which allow the curator to release relevant information about its database without

without jeopardizing the privacy of the individual records. In particular, mechanisms have been considered

that enable the curator to release a sanitized approximation p̃ of its database p, which “behaves” essentially

the same for all queries of a certain type – such as counting or interval queries [35].11 Specifically, if the user

needs to test a property of a database, it is sufficient to test whether the sanitized database has the property,

using now both samples and interval (i.e., CEVAL) or counting (EVAL) queries. As long as the tester has

some tolerance (in that it accepts databases that are close to having the property), it is then possible to decide

whether the true database itself is close to having the property of interest.

Finally, a further motivation is the tight connection between the dual access model and the data-stream

model, as shown by Guha et al. ([108, Theorem 25]): more precisely, they prove that any (multiplicative)

approximation algorithm for a large class of functions of the distribution (functions that are invariant by

relabeling of any two elements of the support) in the dual access model yields a space-efficient, O(1)-pass

approximation algorithm for the same function in the data-stream model.

4.2.1.2 Our results and techniques

We focus here on four fundamental and pervasive problems in distribution testing, which are testing uniformity,

identity to a known distribution p∗, closeness between two (unknown) distributions p1, p2, and finally

entropy and support size. As usual in the distribution testing literature, the notion of distance we use is the

total variation distance (or statistical distance), which is essentially the `1 distance between the probability

distributions. Testing closeness is thus the problem of deciding if two distributions are equal or far from each

other in total variation distance; while tolerant testing aims at deciding whether they are sufficiently close

versus far from each other.

As shown in Table 4.2, which summarizes our results and compares them to the corresponding bounds

for the standard sampling-only (SAMP), evaluation-only (EVAL) and conditional sampling (COND) models,

11A counting query is of the form “how many records in the database satisfy predicate χ?” – or, equivalently, “what is the probability
that a random record drawn from the database satisfies χ?”.
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we indeed manage to bypass the aforementioned limitations of the sampling model, and give (often tight)

algorithms with sample complexity either constant (with relation to n) or logarithmic, where a polynomial

dependence was required in the standard setting.

Our main finding overall is that both dual models allow testing algorithms to significantly outperform both

SAMP and COND algorithms, either with relation to the dependence on n or, for the latter, in 1/ε; further,

these testing algorithms are significantly simpler, both conceptually and in their analysis, and can often be

made robust to some multiplicative noise in the evaluation oracle. Another key observation is that this new

flexibility not only allows us to tell whether two distributions are close or far, but also to efficiently estimate

their distance.12

In more detail, we show that for the problem of testing equivalence between distributions, both our models

allow to get rid of any dependence on n, with a (tight) sample complexity of Θ(1/ε). The upper bound is

achieved by adapting an EVAL-only algorithm of [155] (for identity testing) to our setting, while the lower

bound is obtained by designing a far-from-uniform instance which “defeats” simultaneously both oracles of

our models. Turning to tolerant testing of equivalence, we describe algorithms whose sample complexity

is again independent of n, in sharp contrast with the n1−o(1) lower bound of the standard sampling model.

Moreover, we are able to show that, at least in the Dual access model, our quadratic dependence on ε is

optimal. The same notable improvements apply to the query complexity of estimating the support size of the

distribution, which becomes constant (with relation to n) in both of our access models – versus quasilinear if

one only allows sampling.

As for the task of (additively) estimating the entropy of an arbitrary distribution, we give an algorithm

whose sample complexity is only polylogarithmic in n, and show that this is tight in the Dual access model, up

to the exponent of the logarithm. Once more, this is to be compared to the n1−o(1) lower bound for sampling.

Problem SAMP COND [49, 48] EVAL Dual Cumulative Dual

Testing uniformity Θ
(√

n

ε2

)
[104, 20, 138] Õ

(
1
ε2

)
, Ω
(

1
ε2

)
O
(

1
ε

)
[155], Ω

(
1
ε

)∗
Θ
(

1
ε

)
(†) Θ

(
1
ε

)
(†)Testing≡ p∗ Θ̃

(√
n

ε2

)
[21, 138] Õ

(
1
ε4

)
Testing p1 ≡ p2 Θ

(
(max

(
N2/3

ε4/3 ,
√
N
ε2

))
[20, 174, 58] Õ

(
log5 n
ε4

)
Ω
(

1
ε

)∗
Tolerant uniformity

O
(

1
(ε2−ε1)2

n
logn

)
[172, 170]

Ω
(

n
logn

)
[172, 167]

Õ
(

1
(ε2−ε1)20

)
Ω
(

1
(ε2−ε1)2

)∗
Θ
(

1
(ε2−ε1)2

)
(†) O

(
1

(ε2−ε1)2

)
(†)

Tolerant p∗
Ω
(

n
logn

)
[172, 167]

Tolerant p1,p2

Estimating entropy to
±∆ Θ

(
n

logn

)
[172, 167] O

(
log2 n

∆
∆2

)
(†), Ω(logn) O

(
log2 n

∆
∆2

)
(†)

Estimating support size
to±εn Θ

(
n

logn

)
[172, 167] Θ

(
1
ε2

)
O
(

1
ε2

)
Table 4.2: Summary of results in the dual and cumulative dual models. (†) stands for “robust to multiplicative
noise”. The bounds with an asterisk are those which, in spite of being for different models, derive from the
results of the last two columns.

While it is not clear, looking at these problems, whether the additional flexibility that the Cumulative Dual

12For details on the equivalence between tolerant testing and distance estimation, the reader is referred to [140].
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access grants over the Dual one can unconditionally yield strictly more sample-efficient testing algorithms, we

do provide a separation between the two models in Section 4.2.3.2 by showing an exponential improvement in

the query complexity for estimating the entropy of a distribution given the promise that the latter is (close to)

monotone. This leads us to suspect that for the task of testing monotonicity (for which we have preliminary

results), under a structural assumption on the distribution, or more generally for properties intrinsically related

to the underlying total order of the domain, such a speedup holds. Moreover, we stress out the fact that our

Ω
(
1/(ε2 − ε1)2) lower bound for tolerant identity testing does not apply to the Cumulative Dual setting.

One of the main techniques we use for algorithms in the dual model is a general approach13 for estimating

very efficiently any quantity of the form Ei∼p [Φ(i,p(i))], for any bounded function Φ. In particular, in the

light of our lower bounds, this technique is both an intrinsic and defining feature of the Dual model, as it gives

essentially tight upper bounds for the problems we consider.

On the other hand, for the task of proving lower bounds, we no longer can take advantage of the systematic

characterizations known for the sampling model (see e.g. [14], Sect. 2.4.1). For this reason, we have

to rely on reductions from known-to-be-hard problems (such as estimating the bias of a coin), or prove

indistinguishability in a customized fashion.

4.2.1.3 Organization

We begin with the first three problems of testing equivalence of distributions in Section 4.2.2, where we

describe our testing upper and lower bounds. We then turn to the harder problem of tolerant testing. Finally,

we tackle in Section 4.2.3 the task of performing entropy and support size estimation, and give for the latter

matching upper and lower bounds.

4.2.2 Uniformity and identity of distributions

4.2.2.1 Testing

In this section, we consider the three following testing problems, each of them a generalization of the previous:

Uniformity testing: given oracle access to p, decide whether p = u (the uniform distribution on [n]) or is

far from it;

Identity testing: given oracle access to p and the full description of a fixed p∗, decide whether p = p∗ or is

far from it;

Closeness testing: given independent oracle accesses to p1, p2 (both unknown), decide whether p1 = p2 or

p1, p2 are far from each other.

We begin by stating here two results from the literature that transpose straightforwardly in our setting.

Observe that since the problem of testing closeness between two unknown distributions p1,p2 in particular

13We note that a similar method was utilized in [23], albeit in a less systematic way.
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encompasses the identity to known p∗ testing (and a fortiori the uniformity testing) one, this upper bound

automatically applies to these as well.

Theorem 4.2.4 ([155, Theorem 24]). In the query access model, there exists a tester for identity to a known

distribution p∗ with query complexity O
( 1
ε

)
.

Note that the tester given in [155] is neither tolerant nor robust; however, it only uses query access. [49]

later adapt this algorithm to give a tester for closeness between two unknown distributions, in a setting which

can be seen as “relaxed” dual access model:14

Theorem 4.2.5 ([49, Theorem 12], and Theorem 4.1.39). In the dual access model, there exists a tester for

closeness between two unknown distributions p1, p2 with sample complexity O
( 1
ε

)
.

It is worth noting that the algorithm in question is conceptually very simple – namely, it consists in drawing

samples from both distributions and then querying the respective probability mass both distributions put on

them, hoping to detect a violation.

Remark 4.2.6. As mentioned, the setting of the theorem is slightly more general than stated – indeed, it only

assumes “approximate” query access to p1, p2 (in their terminology, this refers to an evaluation oracle that

outputs, on query x ∈ [n], a good multiplicative estimate of pi(x), for most of the points x).

Lower bound Getting more efficient testing seems unlikely – the dependence on 1/ε being “as good as

it gets.” The following result formalizes this, showing that indeed both Theorems 4.2.4 and 4.2.5 are tight,

even for the least challenging task of testing uniformity:

Theorem 4.2.7 (Lower bound for dual oracle testers). In the dual access model, any tester for uniformity

must have query complexity Ω
( 1
ε

)
.

Although the lower bound above applies only to the dual model, one can slightly adapt the proof to get the

following improvement:

Theorem 4.2.8 (Lower bound for cumulative dual oracle testers). In the cumulative dual access model, any

tester for uniformity must have sample complexity Ω
( 1
ε

)
.

Sketch. Theorem 4.2.8 directly implies Theorem 4.2.7, so we focus on the former. The high-level idea is to

trick the algorithm by somehow “disabling” the additional flexibility coming from the oracles.

To do so, we start with a distribution that is far from uniform, but easy to recognize when given evaluation

queries. We then shuffle its support randomly in such a way that (a) sampling will not, with overwhelming

probability, reveal anything, while (b) evaluation queries essentially need to find a needle in a haystack. Note

that the choice of the shuffling must be done carefully, as the tester has access to the cumulative distribution

14In the sense that the evaluation oracle, being simulated via another type of oracle, is not only noisy but also allowed to err on a small
set of points.
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function of any no-instance p: in particular, using a random permutation will not work. Indeed, it is crucial

for the cumulative distribution function to be as close as the linear function x ∈ [n] 7→ x
n as possible;

meaning that the set of elements on which p differs from u had better be a consecutive “chunk” (otherwise,

looking at the value of the cdf at a uniformly random point would give away the difference with uniform with

non-negligible probability: such a point x is likely to have at least a “perturbed point” before and after it, so

that
∑
i≤x p(x) 6= x

n ).

Fix any ε ∈ (0, 1
2 ]; for n ≥ 1

ε , set m def= (1− ε)n− 1, and consider testing a distribution p on [n] which

is either (a) the uniform distribution or (b) chosen uniformly at random amongst the family of distributions

(pr)0≤r≤m, defined this way: for any offset 0 ≤ r < m, pr is obtained as follows:

1. Set p(1) = ε+ 1
n , p(2) = · · · = p(εn+ 1) = 0, and p(k) = 1

n for the remaining m = (1− ε)n− 1

points;

2. Shift the whole support (modulo n) by adding r.

At a high-level, what this does is keeping the “chunk” on which the cdf of the no-instance grouped together,

and just place it at a uniformly random position; outside this interval, the cdf’s are exactly the same, and the

only way to detect a difference with CEVAL is to make a query in the “chunk.” Furthermore, it is not hard to

see that any no-instance distribution will be exactly ε-far from uniform, so that any tester T must distinguish

between cases (a) and (b) with probability at least 2/3.

Suppose by contradiction that there exists a tester T making q = o
( 1
ε

)
queries (without loss of generality,

we can further assume T makes exactly q queries; and that for any SAMP query, the tester also gets “for

free” the result of an evaluation query on the sample). Given dual access to a p = pr generated as in case

(b), observe first that, since the outputs of the sample queries are independent of the results of the evaluation

queries, one can assume that some evaluation queries are performed first, followed by some sample queries,

before further evaluation queries (where the evaluation points may depend arbitrarily on the sample query

results) are made. That is, we subdivide the queries in 3: first, q1 consecutive EVAL queries, then a sequence

of q2 SAMP queries, and finally q3 EVAL queries. Define the following “bad” events:

• E1: one of the first q1 evaluation queries falls outside the set G def= {εn+ 2 + r, . . . , n+ r} mod n;

• E2: one of the q2 sampling queries returns a sample outside G, conditioned on E1;

• E3: one of the q3 evaluation queries is on a point outside G, conditioned on E1 ∩ E2.

It is clear that, conditioned on E1 ∩E2 ∩E3, all the tester sees is exactly what its view would have been in

case (a) (probabilities equal to 1
n for any EVAL query, and uniform sample from G for any SAMP one). It is

thus sufficient to show that Pr
[
E1 ∩ E2 ∩ E3

]
= 1− o(1).

• As r is chosen uniformly at random, Pr[E1 ] ≤ q1
n−m
n = q1(ε+ 1

n );

• since p(G) = m
n = 1− ε− 1

n ≥ 1− 2ε, Pr[E2 ] ≤ 1− (1− 2ε)q2 ;

• finally, Pr[E3 ] ≤ q3(ε+ 1
n );

we therefore have Pr[E1 ∪ E2 ∪ E3 ] ≤ (q1 + q3)(ε+ 1
n ) + 1− (1−2ε)q2 = O(qε) = o(1), as claimed.
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4.2.2.2 Tolerant testing

In this section, we describe tolerant testing algorithms for the three problems of uniformity, identity and

closeness; note that by a standard reduction (see Parnas et al. ([140], Section 3.1), this is equivalent to

estimating the distance between the corresponding distributions. As hinted in the introduction, our algorithm

relies on a general estimation approach that will be illustrated further in Section 4.2.3, and which constitutes

a fundamental feature of the dual oracle: namely, the ability to estimate cheaply quantities of the form

Ei∼p [Φ(i,p(i))] for any bounded function Φ.

Theorem 4.2.9. In the dual access model, there exists a tolerant tester for uniformity with query complexity

O
(

1
(ε2−ε1)2

)
.

Proof. We describe such a tester T ; it will start by estimating the quantity 2dTV(p,u) up to some additive

γ
def= ε2 − ε1 (and then accept if and only if its estimate d̂ is at most 2ε1 + γ = ε1 + ε2).

In order to approximate this quantity, observe that15

dTV(p,u) = 1
2
∑
i∈[n]

∣∣∣∣p(i)− 1
n

∣∣∣∣ =
∑

i:p(i)> 1
n

(
p(i)− 1

n

)
=

∑
i:p(i)> 1

n

(
1− 1

np(i)

)
· p(i)

= Ei∼p

[(
1− 1

np(i)

)
1{p(i)> 1

n}

]
(4.75)

where 1E stands for the indicator function of set (or event) E; thus, T only has to do get an empirical estimate

of this expected value, which can be done by taking m = O
(
1/(ε2 − ε1)2) samples si from p, querying p(si)

and computing Xi =
(

1− 1
np(si)

)
1{p(si)> 1

n} (cf. Algorithm 30).

Algorithm 30 Tester T : ESTIMATE-L1
Require: SAMPp and EVALp oracle access, parameters 0 ≤ ε1 < ε2

Set m def= Θ
(

1
γ2

)
, where γ def= ε2−ε1

2 .
Draw s1, . . . , sm from p
for i = 1 to m do

With EVAL, get Xi
def=
(

1− 1
np(si)

)
1{p(si)> 1

n}
end for
Compute d̂ def= 1

m

∑m
i=1Xi.

if d̂ ≤ ε1+ε2
2 then

return accept
else

return reject
end if

15Note that dividing by p(i) is “legal”, since if p(i) = 0 for some i ∈ [n], this point will never be sampled, and thus no division by 0
will ever occur.
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Analysis Define the random variable Xi as above; from Eq.(4.75), we can write its expectation as

E[Xi] =
n∑
k=1

p(k)
∣∣∣∣1− 1

np(k)

∣∣∣∣1{p(k)> 1
n} = dTV(p,u). (4.76)

Since the Xi’s are independent and take value in [0, 1], an additive Chernoff bound ensures that

Pr
[ ∣∣∣d̂− dTV(p,u)

∣∣∣ ≥ γ ] ≤ 2e−2γ2m (4.77)

which is at most 1/3 by our choice of m. Conditioning from now on on the event
∣∣∣d̂− dTV(p,u)

∣∣∣ < γ:

• if dTV(p,u) ≤ ε1, then d̂ ≤ ε1 + γ, and T outputs accept;

• if dTV(p,u) > ε2, then d̂ > ε2 − γ, and T outputs reject.

Furthermore, the algorithm makes m SAMP queries, and m EVAL queries.

Remark 4.2.10. Note that we can also do it with EVAL queries only (same query complexity), by internally

drawing uniform samples: indeed,

2dTV(p,u) =
∑
i∈[n]

∣∣∣∣p(i)− 1
n

∣∣∣∣ =
∑
i∈[n]

|np(i)− 1| · 1
n

= 2Ex∼u

[
|np(x)− 1|1{ 1

n>p(x)}
]

This also applies to the first corollary below, as long as the known distribution is efficiently samplable by the

algorithm.

Indeed, the proof above can be easily extended to other distributions than uniform, and even to the case of

two unknown distributions:

Corollary 4.2.11. In the dual access model, there exists a tolerant tester for identity to a known distribution

with query complexity O
(

1
(ε2−ε1)2

)
.

Corollary 4.2.12. In the dual access model, there exists a tolerant tester for closeness between two unknown

distributions with query complexity O
(

1
(ε2−ε1)2

)
. As noted in the next subsection, this is optimal (up to

constant factors).

Interestingly, this tester can be made robust to multiplicative noise, i.e. can be shown to work even when the

answers to the EVAL queries are only accurate up to a factor (1 + γ) for γ > 0: it suffices to set γ = ε/2,

getting on each point p̂(i) ∈ [(1+γ)−1, 1+γ]p(i), and work with Xi = (1− p∗(si)/p̂(si))1{p̂(si)>p∗(si)}

and estimate the expectation up to ±γ (or, for closeness between two unknown distributions, setting γ = ε/4).

4.2.2.3 Lower bound

In this subsection, we show that the upper bounds of Theorem 4.2.9 and Corollaries 4.2.11 and 4.2.12 are tight.

Theorem 4.2.13. In the dual access model, performing (ε1, ε2)-testing for uniformity requires sample
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complexity Ω
(

1
(ε2−ε1)2

)
(the bound holds even when only asking ε1 to be Ω(1)).

Proof. The overall idea lies on a reduction from distinguishing between two types of biased coins to tolerant

testing for uniformity. In more detail, given access to samples from a fixed coin (promised to be of one of

these two types), we define a probability distribution as follows: the domain [n] is randomly partitioned into

K = 1/ε2 pairs of buckets, each bucket having same number of elements; the distribution is uniform within

each bucket, and the two buckets of each pair are balanced to have total weight 2/K. However, within each

pair of buckets (A,B), the probability mass is divided according to a coin toss (performed “on-the-fly” when

a query is made by the tolerant tester), so that either (a) p(A) = (1 + α)/K and p(B) = (1 − α)/K, or

(b) p(A) = p(B) = 1/K. Depending on whether the coin used for this choice is fair or ( 1
2 + ε))biased, the

resulting distribution will (with high probability) have different distance from uniformity – sufficiently for a

tolerant tester to distinguish between the two cases.

Construction We start by defining the instances of distributions we shall consider. Fix any ε ∈ (0, 1
100 );

without loss of generality, assume n is even, and n � 1/ε. Define α = 1/(1 + ε) ∈ (0, 1), K = 1/ε2,

p+ = (1 + ε)/2 and p− = (1 + 30ε)/2, and consider the family of distributions D+ (resp. D−) defined by

the following construction:

• pick uniformly at random a partition16 of [n] in 2K sets of size n/(2K) A1, . . . , AK , B1, . . . , BK ;

• for all k ∈ [K], draw independently at random Xk ∼ Bern(p+) (resp. Xk ∼ Bern(p−)), and set for

all x ∈ Ak, y ∈ Bk

p+(x) =


1+α
n if Xi = 1

1
n o.w.

and p+(y) =


1−α
n if Xi = 1

1
n o.w.

(the pairing between Ak and Bk ensures the final measure indeed sums to one). Regardless of the choice of the

initial partition, but with fluctuations over the random coin tosses X1, . . . , Xk, we have that the total variation

distance between a distribution p+ ∈ D+ (resp. p− ∈ D−) and uniform is on expectation what we aimed for:

E
[
dTV

(
p+,u

)]
= 1

2 · 2 ·
K∑
k=1

n

2K ·
α

n
p+ = 1

2αp
+ = 1

4

E
[
dTV

(
p−,u

)]
= 1

2p
−α = 1 + 30ε

1 + ε
· 1

4 >
1
4 + 7ε

16For convenience, it will be easier to think of the Ai’s and Bi’s as consecutive intervals, the first ones covering [n2 ] while the former
cover [n] \ [n2 ] (see Fig. 4.1).
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and with an additive Chernoff bound on the sum of K = 1/ε2 i.i.d. choices for the Xk’s, we have that for

(p+,p−): for any choice of the initial partition Π = (Ak, Bk)k∈[K], with probability at least 99/100,

dTV
(
p+

Π,u
)
<

1
4 + 3ε

dTV
(
p−Π ,u

)
>

1
4 + 4ε

where by p±Π we denote the distribution defined as above, but fixing the partition for the initial step to be Π.

We will further implicitly condition on this event happening; any tolerant tester for uniformity called with

(ε′, ε′ + cε) must therefore distinguish between p+ and p−. Suppose we have such a tester T , with (without

loss of generality) exact sample complexity q = q(ε) = o
( 1
ε2

)
.

p+(i)

i

1+α
n

1−α
n

n
2

n1
A1 B1A2 B2A3 B3AK BK

Figure 4.1: Lower bound for tolerant uniformity testing in the dual access model: The yes-instance p+ (for a
fixed Π, taken to be consecutive intervals).

Reduction We will reduce the problem of distinguishing between (a) a p+- and (b) a p−-biased coin to

telling p+ and p− apart.

Given SAMPcoin access to i.i.d. coin tosses coming either from one of those two situations, define a

distinguisher A as follows:

• choose uniformly at random a partition Π = (A0
k, A

1
k)k∈[K] of [n]; for convenience, for any i ∈ [n], we

shall write π(i) for the index k ∈ [K] such that i ∈ A0
k ∪A1

k, and ς(i) ∈ {0, 1} for the part in which it

belongs – so that i ∈ Aς(i)π(i) for all i;

• run T , maintaining a set C of triples17 (k,p0
k,p1

k) (initially empty), containing the information about

the (A0
k, A

1
k) for which the probabilities have already be decided;

• EVAL: whenever asked an evaluation query on some i ∈ [n]:

– if π(i) ∈ C, return pς(i)π(i);

– otherwise, let k = π(i); ask a fresh sample bk from SAMPcoin and draw a uniform random bit b′k;

17Abusing the notation, we will sometimes write “k ∈ C” for “there is a triple in C with first component k.”
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set

(p0
k,p1

k) =


( 1
n ,

1
n ) if bk = 0

( 1+α
n , 1−α

n ) if bk = 1, b′k = 1

( 1−α
n , 1+α

n ) if bk = 1, b′k = 0

(“Choosing the profile”)

then add (k,p0
k,p1

k) to C; and return pς(i)k .

• SAMP: whenever asked a sample: let γ = n
2K
∑
k∈C dk the current probability mass of the “committed

points”; observe that the distribution pC induced by the dk’s on { i ∈ [n] : π(i) ∈ C } is fully known

by A;

– with probability γ, A draws i ∼ pC and returns it;

– otherwise, A draws k ∼ u([K] \ C). As before, it gets bk from SAMPcoin and a uniform random

bit b′k; gets (p0
k,p1

k) as in the EVAL case, commits to it as above by (k,p0
k,p1

k) to C. Finally, it

draws a random sample i from the piecewise constant distribution induced by (p0
k,p1

k) onA0
k∪A1

k,

where each j ∈ A0
k (resp. A1

k) has equal probability mass p0
k · n

2K (resp. p1
k · n

2K ), and returns i.

Observe that A makes at most q queries to SAMPcoin; provided we can argue that A answers T ’s queries

consistently to what a corresponding p± (depending on whether we are in case (a) or (b)) would look like, we

can conclude.

This is the case, as (i) A is always consistent with what its previous answers induce on the distribution

(because of the maintaining of the set C); (ii) any EVAL query on a new point exactly simulates the “on-the-fly”

construction of a p±; and any SAMP query is either consistent with the part of p± already built, or in case of

a new point gets a sample exactly distributed according to the p± built “on-the-fly”; this is because in any

p±, every Ak ∪Bk has same probability mass 1/(2K); therefore, in order to get one sample, tossing K i.i.d.

coins to decide the “profiles” of every Ak ∪Bk before sampling from the overall support [n] is equivalent to

first choosing uniformly at random a particular S = Ak ∪Bk, tossing one coin to decide only its particular

profile, and then drawing a point accordingly from S.

In other terms, A will distinguish, with only o
(
1/ε2) i.i.d. samples, between cases (a) ( 1

2 -biased coin) and

(b) ( 1
2 + Ω(ε))-biased coin with probability at least 6/10 – task which, for ε sufficiently small, is known to

require Ω
(
1/ε2) samples (cf. Fact 1.4.9), thus leading to a contradiction.

4.2.3 Entropy and support size

4.2.3.1 Additive and multiplicative estimations of entropy

In this section, we describe simple algorithms to perform both additive and multiplicative estimation (which in

turns directly implies tolerant testing) of the entropy H(p) of the unknown distribution p, defined as

H(p) def= −
∑
i∈[n]

p(i) log p(i) ∈ [0, logn]
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We remark that Batu et al. ([23, Theorem 14]) gives a similar algorithm, based on essentially the same

approach but relying on a Chebyshev bound, yielding a (1 + γ)-multiplicative approximation algorithm for

entropy with sample complexity O
(
(1 + γ)2 log2 n/γ2h2), given a lower bound h > 0 on H(p).

Guha et al. ([108, Theorem 5.2]) then refined their result, using as above a threshold for the estimation

along with a multiplicative Chernoff bound to get the sample complexity down to O
(
logn/γ2h

)
– thus

matching the Ω(logn/γ(2 + γ)h) lower bound of [23, Theorem 18]; we recall their results for multiplicative

estimation of the entropy below.18

Theorem 4.2.14 (Upper bound [108, Theorem 5.2]]). Fix γ > 0. In the dual access model, there exists an

algorithm that, given a parameter h > 0 and the promise that H(p) ≥ h, estimates the entropy within a

multiplicative (1 + γ) factor, with sample complexity Θ
(

logn
γ2h

)
.

Theorem 4.2.15 (Lower bound [23, Theorem 18]). Fix γ > 0. In the dual access model, any algorithm that,

given a parameter h > 0 and the promise that H(p) = Ω(h), estimates the entropy within a multiplicative

(1 + γ) factor must have sample complexity Ω
(

logn
γ(2+γ)h

)
.

Observe that the additive bound we give (based on a different cutoff threshold), however, still performs

better in many cases, e.g. ∆ = γh > 1 and h > 1; and does not require any a priori knowledge on a

lower bound h > 0. Moreover, we believe that this constitutes a good illustration of the more general

technique used, and a good example of what the dual model allows: approximation of quantities of the form

Ei∼p [Φ(i,p(i))], where Φ is any bounded function of both an element of the domain and its probability mass

under the distribution p.

Additive estimate The key idea is to observe that for a distribution p, the entropy H(p) can be rewritten

as

H(p) =
∑
x∈[n]

p(x) log 1
p(x) = Ex∼p

[
log 1

p(x)

]
(4.78)

The quantity log 1
p(x) cannot be easily upperbounded, which we need for concentration results. However,

recalling that the function x 7→ x log(1/x) is increasing for x ∈ (0, 1
e ) (and has limit 0 when x→ 0+), one

can refine the above identity as follows: for any cutoff threshold τ ∈ (0, 1
e ), write

H(p) =
∑

x:p(x)≥τ

p(x) log 1
p(x) +

∑
x:p(x)<τ

p(x) log 1
p(x) (4.79)

so that

H(p) ≥
∑

x:p(x)≥τ

p(x) log 1
p(x) ≥ H(p)−

∑
x:p(x)<τ

p(x) log 1
p(x)

≥ H(p)− n · τ log 1
τ

18In particular, note that translating their lower bound for additive estimation implies that the dependence on n of our algorithm is tight.
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Without loss of generality, assume ∆
n < 1

2 . Fix τ def=
∆
n

10 log n
∆

, so that n · τ log 1
τ ≤

∆
2 ; and set

ϕ : y 7→ log 1
y
1{y≥τ}

Then, the above discussion gives us

H(p) ≥ Ex∼p[ϕ(p(x))] ≥ H(p)− ∆
2 (4.80)

and getting an additive ∆/2-approximation of Ex∼p[ϕ(p(x))] is enough for estimating H(p) within ±∆;

further, we now have

0 ≤ ϕ(p(x)) ≤ log 1
τ
∼ log n

∆ a.s. (4.81)

so using an additive Chernoff bound, taking m = Θ
(

log2 n
∆

∆2

)
samples x1, . . . , xm from SAMPD and comput-

ing the quantities ϕ(p(xi)) using EVALp implies

Pr
[ ∣∣∣∣∣ 1
m

m∑
i=1

ϕ(p(xi))− Ex∼p[ϕ(p(x))

∣∣∣∣∣] ≥ ∆
2

]
≤ 2e

− ∆2m
log2 1

τ ≤ 1
3

This leads to the following theorem:

Theorem 4.2.16. In the dual access model, there exists an algorithm estimating the entropy up to an additive

∆, with sample complexity Θ
(

log2 n
∆

∆2

)
.

or, in terms of tolerant testing:

Corollary 4.2.17. In the dual access model, there exists an (∆1,∆2)-tolerant tester for entropy with sample

complexity Θ̃
(

log2 n
(∆1−∆2)2

)
.

Proof. We describe such a T in Algorithm 31; the claimed query complexity is straightforward.
Algorithm 31 Tester T : ESTIMATE-ENTROPY

Require: SAMPp and EVALp oracle access, parameters 0 ≤ ∆ ≤ n
2

Ensure: Outputs Ĥ s.t. w.p. at least 2/3, Ĥ ∈ [H(p)−∆, H(p) + ∆/2]
Set τ def=

∆
n

10 log n
∆

and m =
⌈ ln 6

∆2 log2 1
τ

⌉
.

Draw s1, . . . , sm from p
for i = 1 to m do

With EVAL, get Xi
def= log 1

p(si)1{p(si)≥τ}
end for
return Ĥ def= 1

m

∑m
i=1Xi

Remark 4.2.18. The tester above can easily be adapted to be made multiplicatively robust; indeed, it is enough

that the EVAL oracle only provide (1 + γ)-accurate estimates p̂(i) of the probabilities p(i), where γ is chosen

to be γ def= min(2∆/3−1, 1) so that the algorithm will output with high probability an additive (∆/2)-estimate
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of a quantity

H(p) ≥ Ex∼p [ϕ̂(x)] ≥
∑

x:p(x)≥(1+γ)τ

p(x) log 1
p(x) − log(1 +γ) ≥ H(p) +n ·(1 + γ)τ log(1 + γ)τ︸ ︷︷ ︸

≥−2τ log 1
2τ

−∆
3

and taking for instance τ def=
∆
n

30 log n
∆

ensures the right-hand-side is at least H(p)− ∆
6 −

∆
3 = H(p)− ∆

2 .

4.2.3.2 Additive estimation of entropy for monotone distributions

In the previous section, we saw how to obtain an additive estimate of the entropy of the unknown distribution,

using essentially O
(
log2 n

)
sampling and evaluation queries; moreover, this dependence on n is optimal.

However, one may wonder if, by taking advantage of cumulative queries, it becomes possible to obtain a better

query complexity. We partially answer this question, focusing on a particular class of distributions for which

the cumulative dual query access seems particularly well-suited: namely the class of monotone distributions.19

Before describing how this assumption can be leveraged to obtain an exponential improvement in the

sample complexity for cumulative dual query algorithms, we first show that given only dual access to a distri-

bution promised to be o(1)-close to monotone, no such speedup can hold. By establishing (see Remark 4.2.22)

that the savings obtained for (close to) monotone distributions are only possible with cumulative dual access,

this will yield a separation between the two oracles, proving the latter is strictly more powerful.

4.2.3.3 Lower bound for dual oracles

Theorem 4.2.19. In the dual access model, any algorithm that estimates the entropy of distributions

O(1/ logn)-close to monotone even to an additive constant must make Ω(logn) queries to the oracle.

Proof. We will define two families of distributions, D1 and D2, such that for any two p1, p2 drawn uniformly

at random from D1 and D2:

1. p1 and p2 are (2/ logn)-close to monotone;

2. |H(p1)−H(p2)| = 1/4;

3. no algorithm making o(logn) queries to a dual oracle can distinguish between p1 and p2 with constant

probability.

In more detail, the families are defined by the following process: for Kn
def= n1/4, `n

def= logn and γn
def=

1/ logn,

• Draw a subset S ⊂ {2, . . . , n} of size `n uniformly at random;

• Set p1(1) = 1− γn, and p1(i) = γn/`n = 1/ log2 n for all i ∈ S.

(p2 is obtained similarly, but with a subset S of size Kn`n = n1/4 logn and p2(i) = γn/(`nKn)) Roughly,

both distributions have a very heavy first element (whose role is to “disable” sampling queries by hogging

them with high probability), and then a random subset of size respectively logarithmic or polynomial, on

19Recall that a distribution p over a totally ordered domain is said to be monotone if for all i ∈ [n− 1] p(i) ≥ p(i+ 1)
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which they are uniform. To determine whether a distribution is drawn from D1 or D2, intuitively a testing

algorithm has to find a point i > 1 with non-zero mass – and making a query on this point then gives away the

type of distribution. However, since sampling queries will almost always return the very first element, finding

such a i > 1 amounts to finding a needle in a haystack (without sampling) or to sampling many times (to get a

non-trivial element) – and thus requires many queries. Before formalizing this intuition, we prove the first two

items of the above claims:

Distance to monotonicity By moving all elements of S at the beginning of the support (points 2, . . . , |S|+

1), the distribution would be monotone; so in particular

dTV(pi,MONOTONE) ≤ 1
2 · 2 |S| ·

γn
|S|

= 2γn = 2
logn, i ∈ {1, 2}

Difference of entropy By their definition, for any two p1, p2, we have

|H(p1)−H(p2)| =

∣∣∣∣∣
n∑
i=2

p1(i) log p1(i)−
n∑
i=2

p2(i) log p2(i)

∣∣∣∣∣ = γn logKn = 1
4 .

We now turn to the main item, the indistinguishability:

Telling p1 and p2 apart Assume we have an algorithm T , which can estimate entropy of distributions

that are O(1/ logn)-close to monotone up to an additive 1/3 making q(n) = o(logn) queries; we claim that

T cannot be correct with probability 2/3. As argued before, we can further assume without loss of generality

that T makes exactly 2q queries, q sampling queries and q evaluation ones; and that for any SAMP query, it

gets “for free” the result of an evaluation query on the sample. Finally, and as the sampling queries are by

definition non-adaptive, this also allows us to assume that T starts by making its q SAMP queries.

Let B1 be the event that one of the q first queries results in sampling an element i > 1 (that is, B1 is the

event that the “hogging element” fails its role). Clearly, B1 has same probability no matter with of the two

families the unknown distribution belongs to, and

Pr[B1 ] = 1− (1− γn)q = 1− 2q log(1−1/ logn) ≤ 1− 2−2q/ logn = O(q/ logn) = o(1) (4.82)

so with probability 1− o(1), B̄1 holds. We further condition on this: i.e., the testing algorithm only saw the

first element (which does not convey any information) after the sampling stage.

The situation is now as follows: unless one of its queries hits one of the relevant points in the uniform set S

(call this event B2), the algorithm will see in both case the same thing – a sequence of points with probability

zero. But by construction, in both cases, the probability over the (uniform) choice of the support S to hit a

relevant point with one query is either `n/(n− 1) = logn/(n− 1) or Kn`n/(n− 1) = n1/4 logn/(n− 1);
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so that the probability of finding such a point in n queries is at most

Pr[B2 ] ≤ 1−
(

1− Kn`n
n− 1

)q
= O

(
q logn
n3/4

)
= o(1) (4.83)

Conditioning on B̄1 ∪ B̄2, we get that T sees exactly the same transcript if the distribution is drawn from D1

or D2; so overall, with probability 1− o(1) it cannot distinguish between the two cases – contradicting the

assumption.

4.2.3.4 Upper bound: exponential speedup for cumulative dual oracles

We now establish the positive result in the case of algorithms given cumulative dual query access. Note that

Batu et al. [23] already consider the problem of getting a (multiplicative) estimate of the entropy of p, under

the assumption that the distribution is monotone; and describe (both in the evaluation-only and sample-only

models) polylog(n)-query algorithms for this task, which work by recursively splitting the domain in a

suitable fashion to get a partition into near uniform and negligible intervals.

The main insight here (in addition to the mere fact that we allow ourself a stronger type of access to p)

is to use, instead of an ad hoc partition of the domain, a specific one tailored for monotone distributions,

introduced by Birgé [32] – and which crucially does not depend on the distribution itself. Namely, for a given

parameter ε we will rely on the oblivious (Birgé) decomposition Iε from Definition 1.4.4, and the flattened

distribution Φε(p) of p with relation to this partition, as defined in Section 1.4:

∀k ∈ [`],∀i ∈ Ik, Φε(p)(i) = p(Ik)
|Ik|

We insist that while Φε(p) (obviously) depends on p, the partition Iε itself does not; in particular, it can be

computed prior to getting any sample or information about p. Before proceeding further, we recall one of the

main properties of this “Birgé flattening”:

Corollary 1.4.6. Suppose p is ε-close to monotone, and let α > 0. Then dTV(p,Φα(p)) ≤ 2ε + α.

Furthermore, Φα(p) is also ε-close to monotone.

Finally, we shall also need the following well-known result relating total variation distance and difference

of entropies (see e.g. [181], Eq. (4)):

Fact 4.2.20 (Total variation and Entropy). Let p1, p2 be two distributions on [n] such that dTV(p1,p2) ≤ α,

for α ∈ [0, 1]. Then |H(p1)−H(p2)| ≤ α log(n− 1) + h2(α) ≤ α log n
α + (1− α) log 1

1−α , where h2 is

the binary entropy function.20

High-level idea Suppose we use the oblivious decomposition from Definition 1.4.4, with small parameter

α (to be determined later), to reduce the domain into ` = o(n) intervals. Then, we can set out to approximate

20That is, h2(p) = −p log p− (1− p) log(1− p) is the entropy of a Bernoulli random variable with parameter p.
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the entropy of the induced flat distribution – that we can efficiently simulate from the cumulative dual oracles,

roughly reducing the complexity parameter from n to `; it only remains to use the previous approach, slightly

adapted, on this flat distribution. Of course, we have to be careful not to incur too much a loss at each step,

where we first approximate H(D) by H(p̄), and then specify our cutoff threshold to only consider significant

contributions to H(p̄).

Details Consider the Birgé decomposition of [n] into ` = Θ(log(nα)/α) intervals (for α to be defined

shortly). Theorem 1.4.5 ensures the corresponding (unknown) flattened distribution p̄ is α-close to p; which,

by the fact above, implies that

|H(p̄)−H(D)| ≤ α
(

log n
α

+ 2
)

(4.84)

Taking α def= Θ(∆/ logn), the right-hand-side is at most ∆/2; so that it is now sufficient to estimate H(p̄) to

±∆/2, where both sampling and evaluation access to p̄ can easily be simulated from the CEVALp and SAMPp

oracles. But although p̄ is a distribution on [n], its “actual” support is morally only the ` = Θ̃
(
log2 n/∆

)
.

Indeed, we may write the entropy of p̄ as

H(p̄) =
∑̀
k=1

∑
x∈Ik

p̄(x) log 1
p̄(x) =

∑̀
k=1

∑
x∈Ik

p(Ik)
|Ik|

log |Ik|p(Ik) =
∑̀
k=1

p(Ik) log |Ik|p(Ik) = Ek∼p̄

[
log 1

pk

]

where dk = p(Ik)
|Ik| ≈ (1 + α)−kp(Ik).

As in the previous section, we can then define a cutoff threshold τ (for dk) and only estimate Ek∼p̄

[
log 1

pk1{pk≥τ}

]
,

for this purpose, we need ` · τ log 1/τ to be at most ∆/4, i.e.

τ
def= Θ

(
∆/`

log ∆/`

)
= Θ̃

(
∆2

log2 n

)

and to get with high probability a ∆/4-approximation, it is as before sufficient to makem = O
(
∆2/ log2(1/τ)

)
=

Õ
(

log2 logn
∆

∆2

)
queries.

Theorem 4.2.21. In the cumulative dual access model, there exists an algorithm for monotone distributions

estimating the entropy up to an additive ∆, with sample complexity Õ
(

log2 logn
∆ /∆2

)
.

Remark 4.2.22. We remark that the above result and algorithm (after some minor changes in the constants)

still applies if p is only guaranteed to be O(1/ logn)-close to monotone; indeed, as stated in Corollary 1.4.6,

the oblivious decomposition is (crucially) robust, and p̄ will still be O(ε)-close to p.

4.2.3.5 Additive estimation of support size

We now turn to the task of estimating the effective support size of the distribution: given the promise that p

puts on every element of the domain either no weight or at least some minimum probability mass 1/n > 0,

the goal is to output a good estimate (up to ±εn) of the number of elements in the latter situation.
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Theorem 4.2.23. In the dual access model, there exists an algorithm ESTIMATE-SUPPORT that, on input

a threshold n ∈ N∗ and a parameter ε > 0, and given access to a distribution p (over an arbitrary set)

satisfying

min
x∈supp(p)

p(x) ≥ 1
n

estimates the support size |supp(p)| up to an additive εn, with query complexity O
( 1
ε2

)
.

Proof. Write k def= |supp(p)|. We describe ESTIMATE-SUPPORT which outputs (w.p. at least 2/3) an estimate

as required:

If ε > 2√
n ln 3n : The algorithm will draw m =

⌈ 4
ε2

⌉
samples x1, . . . , xm from p, query their probability mass

p(xi), and output k̂ = dY e, where

Y
def= 1

m

m∑
i=1

1{p(xi)≥ 1
n}

p(xi)

If ε ≤ 2√
n ln 3n : in this case, ESTIMATE-SUPPORT just draws m = n ln 3n = O

( 1
ε2

)
samples x1, . . . , xm

from p, and returns the number k̂ of distincts elements it got (no query access is needed in this case).

Analysis In the first (and interesting) case, let φ be the function defined over the coset of p by φ(x) =
1

p(x) · 1{p(x)≥ 1
n}, so that Ex∼p[φ(x)] =

∑
x:p(x)> 1

n
p(x) · 1

p(x) =
∣∣{ x : p(x) > 1

n

}∣∣ = k; and as the r.v.

φ(x1), . . . , φ(xm) are i.i.d. and taking value in [0, n], an additive Chernoff bound yields

Pr
[
|Y − k| > εn

2

]
≤ 2e− ε

2m
2 <

1
3

Conditioned on this not happening, k + ε
2n ≤ Y ≤ k̂ ≤ Y + 1 ≤ k + ε

2n+ 1 ≤ k + εn (as ε > 2
n ), and k̂ is

as stated.

Turning now to the second case, observe first that the promise on p implies that 1 ≤ k ≤ n. It is sufficient

to bound the probability that an element of the support is never seen during the m draws – let F denote this

event. By a union bound,

Pr[F ] ≤ k ·
(

1− 1
n

)m
≤ nen ln(3n) ln(1− 1

n ) ≤ ne− ln 3n = 1
3

so w.p. at least 2/3, every element of the support is drawn, and ESTIMATE-SUPPORT returns (exactly) k.

4.2.3.6 Lower bound

In this subsection, we show that the upper bound of Theorem 4.2.23 is tight.

Theorem 4.2.24. In the dual access model, ε-additively estimating support size requires query complexity

Ω
( 1
ε2

)
.
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Proof. Without loss of generality, suppose n is even, and let k = n
2 . For any p ∈ [0, 1], consider the following

process Φp, which yields a random distribution pp on [n] (See Fig. 4.2):

• draw k i.i.d. random variables X1, . . . , Xk ∼ Bern(p);

• for i ∈ [k], set p(i) = 1
n (1 +Xi) and p(n− i) = 1

n (1−Xi)

Note that by construction p(i) + p(n− i) = 2
n for all i ∈ [k].

pp(i)

i

2
n

1
n

n
2

n1

Figure 4.2: Lower bound for support size estimation in the dual model: An instance of distribution pp with
p = 4/10.

Define now, for any ε ∈ (0, 1/6), the families of distributions D+ and D− induced the above construction,

taking p to be respectively p+ def= 1
2 and p− def= 1

2 − 6ε. Hereafter, by p+ (resp. p−), we refer to a distribution

from D+ (resp. D−) generated randomly as above (we assume further, without loss of generality, that

n� 1/ε2):

E
[
supp

(
p+)] = n− kp+ = n

(
1− p+

2

)
= 3

4n

E
[
supp

(
p−
)]

= n− kp− = n

(
1− p−

2

)
=
(

3
4 + 3ε

)
n

and, with an additive Chernoff bound,

Pr
[

supp
(
p+) ≥ 3

4n+ ε

2n
]
≤ e− ε

2n
2 <

1
100

Pr
[

supp
(
p−
)
≤ 3

4n+ 5ε
2 n

]
≤ e− ε

2n
2 <

1
100

We hereafter condition on these events E+ and E− every time we consider a given p+ or p−, and set for

convenience s+ def= 3
4 (n+ 2ε), s− def= 3

4 (n+ 10ε).

Reduction We shall once again reduce the problem of distinguishing between (a) a fair coin and (b) an

( 1
2 − 6ε)-biased coin to the problem of approximating the support size: suppose by contradiction we have a

tester T for the latter problem, making q = o
( 1
ε2

)
queries on input ε.

Given parameter ε ∈ (0, 1/100) and SAMPcoin access to i.i.d. coin tosses coming from one of those two

situations ((p+ = 1
2 , or p− = 1

2 − 6ε), define a distinguisher A as follows:
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• after picking an even integer n� 1/ε2, A will maintain a set C ⊆ [n]× {0, 1
n ,

2
n} (initially empty),

and run T as a subroutine with parameter ε;

• EVAL: when T makes an evaluation query on a point i ∈ [n]

– if i has already been committed to (there is a pair (i, di) in C), it returns di;

– otherwise, it asks for a sample b from SAMPcoin, and sets

di =


1
n if b = 0

2
n if b = 1 and i ∈ [k]

0 if b = 1 and i ∈ [n] \ [k]

before adding (i, di) and (n− i, 2
n − di) to C and returning di.

• SAMP: when T makes an sampling query, A draws u.a.r. i ∼ [k], and then proceeds as in the EVAL

case to get di and dn−i (that is, if they are not in C, it first generates them from a SAMPcoin query and

commits to them); and then, it returns i w.p. (ndi)/2, and n− i w.p. (ndn−i)/2.

It is easy to see that the process above exactly simulates dual access to a distribution p generated either

according to Φp+ or Φp− – in particular, this is true of the sampling queries because each pair (i, n− i) has

same total mass 2
n under any such distribution, so drawing from p is equivalent to drawing uniformly i ∈ [k],

and then returning at random i or n− i according to the conditional distribution of p on {i, n− i}.

Furthermore, the number of queries to SAMPcoin is at most the number of queries made by T to A, that is

o
( 1
ε2

)
. Conditioning on E+ (or E−, depending on whether we are in case (a) or (b)), the distribution p has

support size at most s+ (resp. at least s−). As the estimate ŝ that T will output will, with probability at least

2/3, be εn-close to the real support size, and as s− − s+ = 2εn, A will distinguish between cases (a) and (b)

with probability at least 2/3− 2/100 > 6/10 – contradicting the fact that Ω
(
1/ε2) samples are required to

distinguish between a fair and a ( 1
2 − 6ε)-biased coin with this probability.
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Chapter 5

Correcting Properties of Distributions: Changing the Goal

“For the Snark’s a peculiar creature, that won’t

Be caught in a commonplace way.

Do all that you know, and try all that you don’t:

Not a chance must be wasted to-day!”

Lewis Carroll, The Hunting of the Snark

5.1 Introduction

Data consisting of samples from distributions is notorious for reliability issues: Sample data can be greatly

affected by noise, calibration problems or other faults in the sample recording process; portions of data may

be lost; extraneous samples may be erroneously recorded. Such noise may be completely random, or may

have some underlying structure. To give a sense of the range of difficulties one might have with sample data,

we mention some examples: A sensor network which tracks traffic data may have dead sensors which transmit

no data at all, or other sensors that are defective and transmit arbitrary numbers. Sample data from surveys

may suffer from response rates that are correlated with location or socioeconomic factors. Sample data from

species distribution models are prone togeographic location errors [110].

Statisticians have grappled with defining a methodology for working with distributions in the presence

of noise by correcting the samples. If, for example, you know that the uncorrupted distribution is Gaussian,

then it would be natural to correct the samples of the distribution to the nearest Gaussian. The challenge in

defining this methodology is: how do you correct the samples if you do not know much about the original

uncorrupted distribution? To analyze distributions with noise in a principled way, approaches have included

imputation [125, 160, 157] for the case of missing or incomplete data, and outlier detection and removal [109,

18, 115] to handle “extreme points” deviating significantly from the underlying distribution. More generally,

the question of coping with the sampling bias inherent to many strategies (such as opportunity sampling)

used in studying rare events or species, or with inaccuracies in the reported data, is a key challenge in many

of the natural and social sciences (see e.g. [163, 161, 139]). While these problems are usually dealt with

drawing on additional knowledge or by using specific modeling assumptions, no general procedure is known

that addresses them in a systematic fashion.

In this work, we propose a methodology which is based on using known structural properties of the

distribution to design sampling correctors which “correct” the sample data. While assuming these structural
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properties is in itself a type of modeling, it is in general much weaker than postulating a strict form of the data

(e.g., that it follows a linear model perturbed by Gaussian noise). Examples of structural properties which

might be used to correct samples include the property of being bimodal, a mixture of several Gaussians, a

mixture of piecewise-polynomial distributions, or an independent joint distribution. Within this methodology,

the main question is: how best can one output samples of a distribution in which on one hand, the structural

properties are restored, and on the other hand, the corrected distribution is close to the original distribution?

We show that this task is intimately connected to distribution learning tasks, but we also give instances in

which such tasks can be performed strictly more efficiently.

5.1.1 Our model

We introduce two (related) notions of algorithms to correct distributions: sampling correctors and sampling

improvers. Although the precise definitions are deferred to Section 5.2, we describe and state informally what

we mean by these. In what follows, Ω is a finite domain, P is any fixed property of distributions, i.e., a subset

of distributions, over Ω and distances between distributions are measured according to their total variation

distance.

A sampling corrector for P is a randomized algorithm which gets samples from a distribution p guaranteed

to be ε-close to having property P , and outputs a sample from a “corrected distribution” p̃ which, with high

probability, (a) has the property; and (b) is still close to the original distribution p (i.e., within distance ε1).

The sample complexity of such a corrector is the number of samples it needs to obtain from p in order to

output one from p̃.

To make things concrete, we give a simple example of correcting independence of distributions over a

product space [n]× [m]. For each pair of samples (x, y) and (x′, y′) from a distribution p which is ε-close to

independent, output one sample (x, y′). As x and y′ are independent, the resulting distribution clearly has the

property; and it can be shown that if p was indeed ε-close to independent, then the distribution of (x, y′) will

indeed be 3ε-close to p [158]. (Whether this sample complexity can be reduced further to q < 2, even on

average, is an open question.)

Note that in some settings it may be too much to ask for complete correction (or may even not be the most

desirable option). For this reason, we also consider the weaker notion of sampling improvers, which is similar

to a sampling corrector but is only required to transform the distribution into a new distribution which is closer

to having the property P .

One naive way to solve these problems, the “learning approach,” is to approximate the probability mass

function of p, and find a candidate p̃ ∈ P . Since we assume we have a complete description of p̃, we can then

output samples according to p̃ without further access to p. In general, such an approach can be very inefficient

in terms of time complexity. However, if there is an efficient agnostic proper learning algorithm1 for P , we

show that this approach can lead to efficient sampling correctors. For example, we use such an approach to

give sampling correctors for the class of monotone distributions.
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p

Corrector Algorithm

p̃

s1, . . . , sk ∼ p s1, . . . , sm ∼ p̃

Figure 5.1: A sampling corrector acts as a filter being an imperfect source of data p, which is only close to
having a prespecified property P , and an algorithm which requires data from a source with this property.

In our model, we wish to optimize the following two parameters of our correcting algorithms: The first

parameter is the number of samples of p needed to output samples of p̃. The second parameter is the number of

additional truly random bits needed for outputting samples of p̃. Note that in the above learning approach, the

dependence on each of these parameters could be quite large. Although these parameters are not independent

of each other (if p is of high enough entropy, then it can be used to simulate truly random bits), they can

be thought of as complementary, as one typically will aim at a tradeoff between the two. Furthermore, a

parsimonious use of extra random bits may be crucial for some applications, while in others the correction of

the data itself is the key factor; for this reason, we track each of the parameters separately. For any property P ,

the main question is whether one can achieve improved complexity in terms of these parameters over the use

of the naive (agnostic) learning approach for P .

5.1.2 Our results

Throughout this paper, we will focus on two particular properties of interest, namely uniformity and monotonic-

ity. The first one, arguably one of the most natural and illustrative properties to be considered, is nonetheless

deeply challenging in the setting of randomness scarcity. As for the second, not only does it provide insight

in the workings of sampling correctors as well as non-trivial connections and algorithmic results, but is also

one of the most-studied classes of distributions in the statistics and probability literature, with a body of work

covering several decades (see e.g. [107, 32, 19, 63], or [74] for a detailed list of references). Moreover, recent

work on distribution testing [74, 51] shows strong connections between monotonicity and a wide range of other

properties, such as for instance log-concavity, Monotone Hazard Risk and Poisson Binomial Distributions.

This gives evidence that the study of monotone distributions may have direct implications for correction of

many of these “shape-constrained properties.”

1Recall that a learning algorithm for a class of distributions C is an algorithm which gets independent samples from an unknown
distribution p ∈ C; and on input ε must, with high probability, output a hypothesis which is ε-close to p in total variation distance. If the
hypotheses the algorithm produces are guaranteed to belong to C as well, we call it a proper learning algorithm. Finally, if the – not-
necessarily proper – algorithm is able to learn distributions that are only close to C, returning a hypothesis at a distance at most OPT + ε
from p – where OPT is the distance from p to the class, it is said to be agnostic. For a formal definition of these concepts, the reader is
referred to Section 1.2 and Section 5.4.2.
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Sampling correctors, learning algorithms and property testing algorithms We begin by showing impli-

cations of the existence of sampling correctors for the existence of various types of learning and property

testing algorithms in other models. We first show in Theorem 5.4.1 that learning algorithms for a distribution

class imply sampling correctors for distributions in this class (under any property to correct) with the same

sample complexity, though not necessarily the same running time dependency. However, when efficient

agnostic proper learning algorithms for a distribution class exist, we show that there are efficient sampling

correctors for the same class. In [32, 55] efficient algorithms for agnostic learning of concise representations

for several families of distributions are given, including distributions that are monotone, k-histograms, Poisson

binomial, and sums of k independent random variables. Not all of these algorithms are proper.

Next, we show in Theorem 5.4.4 that the existence of (a) an efficient learning algorithm, as e.g. in [117,

56, 64, 73], and (b) an efficient sampling corrector for a class of distributions implies an efficient agnostic

learning algorithm for the same class of distributions. It is well known that agnostic learning can be much

harder than non-agnostic learning, as in the latter the algorithm is able to leverage structural properties of the

class C. Thus, by the above result we also get that any agnostic learning lower bounds can be used to obtain

sampling corrector lower bounds.

Our third result in this section, Theorem 5.4.7, shows that an efficient property tester, an efficient distance

estimator (which computes an additive estimate of the distance between two distributions) and an efficient

sampling corrector for a distribution class imply a tolerant property tester with complexity equal to the

complexity of correcting the number of samples required to run both the tester and estimator.2 As tolerant

property testing can be much more difficult than property testing [104, 20, 138, 167], this gives a general

purpose way of getting both upper bounds on tolerant property testing and lower bounds on sampling correctors.

We describe how these results can be employed in Section 5.4, where we give specific applications in achieving

improved property testers for various properties.

Is sampling correction easier than learning? We next turn to the question of whether there are natural

examples of sampling correctors whose query complexity is asymptotically smaller than that of distribution

learning algorithms for the same class. While the sample complexity of learning monotone distributions

is known to be Ω(logn) [32] (this lower bound on the sample and query complexity holds even when the

algorithm is allowed both to make queries to the cumulative distribution function as well as to access samples

of the distribution), we present in Section 5.5.2 an oblivious sampling corrector for monotone distributions

whose sample complexity is O(1) and that corrects error that is smaller than ε ≤ O
(
1/ log2 n

)
. This is done

by first implicitly approximating the distribution by a “histogram” on only a small number of intervals, using

ingredients from [32]. This (very close) approximation can then be combined, still in an oblivious way, with

a carefully chosen slowly decreasing distribution, so that the resulting mixture is not only guaranteed to be

2Recall that the difference between testing and tolerant testing lies in that the former asks to distinguish whether an unknown
distribution has a property, or is far from it, while the latter requires to decide whether the distribution is close to the property versus far
from it. (See Section 1.2 for the rigorous definition.)
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monotone, but also close to the original distribution.

It is open whether there exist sampling correctors for monotone distributions with sample complexity

o
(
(logn)/ε3) that can correct arbitrary error ε ∈ (0, 1), thus beating the sample complexity of the “learning

approach.” (We note however that a logarithmic dependence on n is inherent when ε = ω(1/ logn), as pointed

out to us by Paul Valiant [173].)

Assuming a stronger type of access to the unknown distribution – namely, query access to its cumulative

distribution function (cdf) as in [23, 50], we describe in Section 5.5.3 a sampling corrector for monotonicity

with (expected) query complexity O
(√

logn
)

which works for arbitrary ε ∈ (0, 1). At a high-level, our

algorithm combines the “succinct histogram” technique mentioned above with a two-level bucketing approach

to correct the distribution first at a very coarse level only (on “superbuckets”), and defer the finer corrections

(within a given superbucket) to be made on-the-go at query time. The challenge in this last part is that one

must ensure that all of these disjoint local corrections are consistent with each other – and crucially, with all

future sample corrections. To achieve this, we use a “boundary correction” subroutine which fixes potential

violations between two neighboring superbuckets by evening out the boundary differences. To make it possible,

we use rejection sampling to allocate adaptively an extra “budget” to each superbucket that this subroutine can

use for corrections.

Restricted error models Since many of the sampling correction problems are difficult to solve in general,

we suggest error models for which more efficient sampling correction algorithms may exist. A first class of

error models, which we refer to as missing data errors, is introduced in Section 5.6 and defined as follows –

given a distribution over [n], all samples in some interval [i, j] for 1 < i < j < n are deleted. Such errors could

correspond to samples from a sensor network where one of the sensors ran out of power; emails mistakenly

deleted by a spam filter; or samples from a study in which some of the paperwork got lost. Whenever the input

distribution p, whose distance from monotonicity is ε ∈ (0, 1), falls under this model, we give a sampling

improver that is able to find a distribution both ε2-close to monotone and O(ε)-close to the original using

Õ
(
1/ε3

2
)

samples. The improver works in two stages. In the “preprocessing stage,” we detect the location of

the missing interval (when the missing weight is sufficiently large) and then estimate its missing weight, using

a “learning through testing” approach from [63] to keep the sample complexity under control. In the second

stage, we give a procedure by which the algorithm can use its knowledge of the estimated missing interval to

correct the distribution by rejection sampling.

Randomness Scarcity We then consider the case where only a limited amount of randomness (other than

the input distribution) is available, and optimizing its use, possibly at the cost of worse parameters and/or

sample complexity of our sampling improvers, is crucial. This captures situations where generating the random

bits the algorithm use is either expensive3 (as in the case of physical implementations relying on devices,

such as Geiger counters or Zener diodes) or undesirable (e.g., when we want the output distribution to be a

3On this topic, see for instance the discussion in [124, 116], and references therein.
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deterministic function of the input data, for the sake of reproducibility or parallelization). We focus on this

setting in Section 5.7, and provide sampling correctors and improvers for uniformity that use samples only

from the input distribution. For example, we give a sampling improver that, given access to distribution ε-close

to uniform, grants access to a distribution ε2-close to uniform distribution and has constant sample complexity

Oε,ε2(1). We achieve this by exploiting the fact that the uniform distribution is not only an absorbing element

for convolution in Abelian groups, but also an attractive fixed point with high convergence rate. That is, by

convolving a distribution with itself (i.e., summing independent samples modulo the order of the group) one

gets very quickly close to uniform. Combining this idea with a different type of improvement (based on a von

Neumann-type “trick”) allows us to obtain an essentially optimal tradeoff between closeness to uniform and to

the original distribution.

5.1.3 Open problems

Correcting vs. Learning A main direction of interest would be to obtain more examples of properties for

which correcting is strictly more efficient than (agnostic or non-agnostic) learning. Such examples would be

insightful even if they are more efficient only in terms of the number of samples required from the original

distribution, without considering the additional randomness requirements for generating the distribution. More

specifically, one may ask whether there exists a sampling corrector for monotonicity of distributions (i.e., one

that beats the learning bound from Lemma 5.5.1) for all ε < 1 which uses at most o
(
(logn)/ε3) samples from

the original distribution per sample output of the corrected distribution. Other properties of interest, among

many, include log-concavity of distributions, having a piecewise-constant density (i.e., being a k-histogram

for some fixed value k), or being a Poisson Binomial Distribution.

The power of additional queries Following the line of work pursued in [54, 48, 50] (in the setting of

distribution testing), it is natural in many situations to consider additional types of queries to the input

distribution: e.g., either conditional queries (getting a sample conditioned on a specific subset of the domain)

or cumulative queries (granting query access to the cumulative distribution function, besides the usual

sampling). By providing algorithms with this extended access to the underlying probability distribution,

can one obtain faster sampling correctors for specific properties, as we do in Section 5.5.3 in the case of

monotonicity?

Confidence boosting Suppose that there exists, for some property P , a sampling improver A that only

guarantees a success probability4 of 2/3. Using A as a black-box, can one design a sampling improver A′

which succeeds with probability 1− δ, for any δ?

More precisely, letA be a batch improver for P which, when queried, makes q(ε1, ε2) queries and provides

4We note that the case of interest here is of batch sampling improvers: indeed, in order to generate a single draw, a sampling improver
acts in a non-trivial way only if the parameter ε is greater than its failure probability δ. If not, a draw from the original distribution already
satisfies the requirements.
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t ≥ 1 samples, with success probability at least 2/3. Having black-box access to A, can we obtain a batch

improverA′ which on input δ > 0 provides t′ ≥ 1 samples, with success probability at least 1− δ? If so, what

is the best t′ one can achieve, and what is the minimum query complexity of A′ one can get (as a function of

q(·, ·), t′ and δ)?

This is known for property testing (by running the testing algorithm independently O(log(1/δ)) times and

taking the majority vote), as well as for learning (again, by running the learning algorithm many times, and

then doing hypothesis testing, e.g. à la [66, Theorem 19]). However, these approaches do not straightforwardly

generalize to sampling improvers or correctors, respectively because the output is not a single bit, and as we

only obtain a sequence of samples (instead of an actual, fully-specified hypothesis distribution).

5.1.4 Previous work

Dealing with noisy or incomplete datasets has been a challenge in Statistics and data sciences, and many

methods have been proposed to handle them. One of the most widely used, multiple imputation (one of many

variants of the general paradigm of imputation) was first introduced by Rubin [153] and consists of the creation

of several complete datasets from an incomplete one. Specifically, one first obtains these new datasets by

filling in the missing values randomly according to a maximum likelihood distribution computed from the

observations and a modeling assumption made on the data. The parameters of this model are then updated using

the new datasets and the ML distribution is computed again. This resembles the Expectation-Maximization

(EM) algorithm, which can also be used for similar problems, as e.g. in [76]. After a few iterations, one can get

both accurate parameter estimates and the right distribution to sample data from. Assuming the assumptions

chosen to model the data did indeed reflect its true distribution, and that the number of these new datasets was

large enough, this can be shown to yield statistically accurate and unbiased results [160, 125].

From a Theoretical Computer Science perspective, the problem of local correction of data has received

much attention in the contexts of self-correcting programs, locally correctable codes, and local filters for

graphs and functions over [n]d (some examples include [36, 179, 7, 159, 29, 118]). To the best of our

knowledge, this is the first work to address the correction of data from distributions. (We observe that

Chakraborty et al. consider in [53] a different question, although of a similar distributional flavor: namely,

given query access to a Boolean function f : {0, 1}n → {0, 1} which is close to a k-junta f∗, they show how

to approximately generate uniform PAC-style samples of the form 〈x, g∗(x)〉 where x ∈ {0, 1}k and g∗ is

the function underlying f∗. They then describe how to apply this “noisy sampler” primitive to test whether a

function is close to being a junta.)

In this work, we show that the problem of estimating distances between distributions is related. There has

been much work on this topic, but we note the following result: [74] show how to estimate the total variation

distance between k-modal probability distributions.5 The authors give a reduction of their problem into one

5A probability distribution p is k-modal if there exists a partition of [n] in k intervals such that p is monotone (increasing or
decreasing) on each.
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with logarithmic size, using a result by Birgé on monotone distributions [32]. In particular, one can partition

the domain Ω = [n] into logn/ε intervals in a oblivious way, such that the “flattening” of any monotone

distribution according to that interval is O(ε)-close to the original one. We use similar ideas in order to obtain

some of the results in the present paper.

It is instructive to compare the goal of our model of distribution sampling correctors to that of extractors:

in spite of many similarities, the two have essential differences and the results are in many cases incomparable.

We defer this discussion to Section 5.7.1.

5.2 Our model: definitions

In this section, we state the precise definitions of sampling correctors, improvers and batch sampling improvers.

To get an intuition, the reader may think for instance of the parameter ε1 below as being 2ε, and the error

probability δ as 1/3. Although all definitions are presented in terms of the total variation distance, analogous

definitions in terms of other distances can also be made.

Definition 5.2.1 (Sampling Corrector). Fix a given property P of distributions on Ω. An (ε, ε1)-sampling

corrector for P is a randomized algorithm which is given parameters ε, ε1 ∈ (0, 1] such that ε1 ≥ ε and

δ ∈ [0, 1], as well as sampling access to a distribution p. Under the promise that dTV(p,P) ≤ ε, the algorithm

must provide, with probability at least 1− δ over the samples it draws and its internal randomness, sampling

access to a distribution p̃ such that

(i) p̃ is close to p: dTV(p̃,p) ≤ ε1;

(ii) p̃ has the property: p̃ ∈ P .

In other terms, with high probability the algorithm will simulate exactly a sampling oracle for p̃. The query

complexity q = q(ε, ε1, δ,Ω) of the algorithm is the number of samples from p it takes per query in the worst

case.

One can define a more general notion, which allows the algorithm to only get “closer” to the desired

property, and convert some type of access ORACLE1 into some other type of access ORACLE2 (e.g., from

sampling to evaluation access):

Definition 5.2.2 (Sampling Improver (general definition)). Fix a given property P over distributions on Ω. A

sampling improver for P (from ORACLE1 to ORACLE2) is a randomized algorithm which, given parameter

ε ∈ (0, 1] and ORACLE1 access to a distribution p with the promise that dTV(p,P) ≤ ε as well as parameters

ε1, ε2 ∈ [0, 1] satisfying ε1 +ε2 ≥ ε, provides, with probability at least 1−δ over the answers from ORACLE1

and its internal randomness, ORACLE2 access to a distribution p̃ such that

dTV(p̃,p) ≤ ε1 (Close to p)

dTV(p̃,P) ≤ ε2 (Close to P)
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In other terms, with high probability the algorithm will simulate exactly ORACLE2 access to p̃. The query

complexity q = q(ε, ε1, ε2, δ,Ω) of the algorithm is the number of queries it makes to ORACLE1 in the worst

case.

Finally, one may ask for such an improver to provide many samples from the (same) improved distribution,6

where “many” is a number committed in advance. We refer to such an algorithm as a batch sampling improver

(or, similarly, batch sampling corrector):

Definition 5.2.3 (Batch Sampling Improver). For P , p, ε, ε1, ε2 ∈ [0, 1] as above, and parameter m ∈ N, a

batch sampling improver for P (from ORACLE1 to ORACLE2) is a sampling improver which provides, with

probability at least 1− δ, ORACLE2 access to p̃ for as many as m queries, in between which it is allowed to

maintain some internal state ensuring consistency. The query complexity of the algorithm is now allowed to

depend on m as well.

Note that, in particular, when providing sampling access to p̃ the batch improver must guarantee independence

of them samples. When ε2 is set to 0 in the above definition, we will refer to the algorithm as a batch sampling

corrector.

Remark 5.2.4 (On parameters of interest.). We observe that the regime of interest of our correctors and

improvers is when the number of corrected samples to output is at least of the order Ω(1/ε). Indeed, if fewer

samples are required, then the assumption that the distribution p be ε-close to having the property implies

that – with high probability – a small number of samples from p will be indistinguishable from the closest

distribution having the property. (So that, intuitively, they are already “as good as it gets,” and need not be

corrected.)

Remark 5.2.5 (On testing lower bounds). A similar observation holds for properties P that are known to be

hard to test, that is for which some lower bound of q(n, ε) samples holds to decide whether a given distribution

satisfies P , or is ε-far from it. In light of such a lower bound, one may wonder whether there is something to

be gained in correcting m < q(n, ε) samples, instead of simply using m samples from the original distribution

altogether. However, such a result only states that there exists some worst-case instance p∗ that is at distance ε

from the property P , yet requires this many samples to be distinguished from it: so that any algorithm relying

on samples from distributions satisfying P could be fed q(n, ε)− 1 samples from this particular p∗ without

complaining. Yet, for “typical” distributions that are ε-close to P , far fewer samples are required to reveal their

deviation from it: for many, as few as O(1/ε) suffice. Thus, an algorithm that expects to get say q(n, ε).99

samples from a honest-to-goodness distribution from P , but instead is provided with samples from one that is

merely ε-close to it, may break down very quickly. Our corrector, in this very regime of o(q(n, ε)) samples,

guarantees this will not happen.

6Indeed, observe that as sampling correctors and improvers are randomized algorithms with access to their “own” coins, there is no
guarantee that fixing the input distribution p would lead to the same output distribution p̃. This is particularly important when providing
other types of access (e.g., evaluation queries) to p̃ than only sampling.
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We conclude this section by introducing a relaxation of the notion of sampling corrector, where instead

of asking the unknown distribution be close to the class it is corrected for we instead decouple the two. For

instance, one may require the unknown distribution to be close to a Binomial distribution, but only correct it to

be unimodal. This leads to the following definition of a non-proper corrector:

Definition 5.2.6 (Non-Proper Sampling Corrector). Fix two given properties P , P ′ of distributions on Ω. An

(ε, ε1)-non-proper sampling corrector for P ′ assuming P is a randomized algorithm which is given parameters

ε, ε1 ∈ (0, 1] such that ε1 ≥ ε and δ ∈ [0, 1], as well as sampling access to a distribution p. Under the promise

that dTV(p,P) ≤ ε, the algorithm must provide, with probability at least 1− δ over the samples it draws and

its internal randomness, sampling access to a distribution p̃ such that

(i) p̃ is close to p: dTV(p̃,p) ≤ ε1;

(ii) p̃ has the (target) property: p̃ ∈ P ′.

In other terms, with high probability the algorithm will simulate exactly a sampling oracle for p̃. The query

complexity q = q(ε, ε1, δ,Ω) of the algorithm is the number of samples from p it takes per query in the worst

case.

Note that if there exists p close to P such that every p′ ∈ P ′ is far from p, this may not be achievable.

Hence, the above definition requires that some relation between P and P ′ hold: for instance, that any

neighborhood of a distribution from P intersects P ′. Similarly, we extend this definition to non-proper

improvers and batch improvers.

5.3 A warmup: non-proper correcting of histograms

To illustrate these ideas, we start with a toy example: non-proper correcting of regular histograms. Recall

that a distribution p over [n] is said to be a k-histogram if its probability mass function is piecewise-constant

with at most k “pieces:” that is, if there exists a partition I = (I1, . . . , Ik) of [n] into k intervals such that p is

constant on each Ij .

Letting Hk denote the class of all k-histograms over [n], we start with the following question: given

samples from a distribution close toHk, can we efficiently provide sample access to a corrected distribution

p̃ ∈ H`, for some ` = `(k, ε)? I.e., is there a non-proper corrector forH` assumingHk?

In this short section, we show how to design such a corrector, under some additional assumption on the

min-entropy of the unknown distribution to correct. Namely, we will require the following definition: given

some constant c ≥ 1, we say that a distribution p is c-regular if p(i) ≤ c
n for all i ∈ [n], i.e. ‖p‖∞ ≤

c
n .

Proposition 5.3.1 (Correcting regular histograms). Fix any constant c > 0. For any ε, ε1 ≥ 4ε and ε2 = 0

as in the definition, there exists ` = O(k/ε) and a non-proper sampling corrector forH` assumingHk with

sample complexity O(1), under the assumption that the unknown distribution is c-regular.

Proof. The algorithm works as follows: setting K def= ck
ε , it first divides the domain into K ≤ L ≤ K + 1
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intervals I1, . . . , IL of size less than or equal to
⌊
n
K

⌋
. Then, the corrected distribution is the “flattening” p̄

of p on these intervals: to output a sample from the L-histogram p̄, the algorithm draws a sample s ∼ p,

checks which of the Ii’s this sample s belongs to, and then outputs s′ drawn uniformly from this interval. The

sample complexity is clearly constant, as outputting one sample of p̄ only requires one from p; and being an

L-histogram, p̄ ∈ H` for ` ≤ ck
ε + 1.

We now turn to proving that dTV(p, p̄) ≤ 4ε. Denote byH the closest k-histogram to p, i.e. H ∈ Hk such

that α def= dTV(p, H) = dTV(p,Hk); and let B be the union of the (at most k) intervals among I1, . . . , IL

where H is not constant. Since p is c-regular, we do have p(B) ≤ k · cn ·
n
K = ε. Then, since H is α-close to

p we get H(B) ≤ ε+ α.

Now, let p̄ (resp. H̄) be the L-histogram obtained by “flattening” p (resp. H) on I1, . . . , IL. By the data

processing inequality (Fact 1.4.2), we obtain

dTV
(
p̄, H̄

)
≤ dTV(p, H).

Therefore, by the triangle inequality,

dTV(p, p̄) ≤ dTV(p, H) + dTV
(
H, H̄

)
+ dTV

(
H̄, p̄

)
≤ 2dTV(p, H) + dTV

(
H, H̄

)
.

Furthermore, as H and H̄ can only differ on B, and since the flattening operation preserve the probability

weight on each interval of I, we obtain

dTV
(
H, H̄

)
= 1

2‖H − H̄‖1 = 1
2
∑
i∈B

∣∣H(i)− H̄(i)
∣∣ ≤ 1

2
(
H(B) + H̄(B)

)
= H(B) ≤ ε+ α

which, once plugged back in the previous expression, yields

dTV(p, p̄) ≤ 2dTV(p, H) + ε+ α = 3α+ ε ≤ 4ε

since α ≤ ε by assumption.

5.4 Connections to learning and testing

In this section, we draw connections between sampling improvers and other areas, namely testing and learning.

These connections shed light on the relation between our model and these other lines of work, and provide a

way to derive new algorithms and impossibility results for both testing or learning problems. (For the formal

definition of the testing and learning notions used in this section, the reader is referred to Section 1.2 and the

relevant subsections.)
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5.4.1 From learning to correcting

As a first observation, it is not difficult to see that, under the assumption that the unknown distribution p

belongs to some specific class C, correcting (or improving) a property P requires at most as many samples as

learning the class C; that is, learning (a class of distributions) is at least as hard as correcting (distributions of

this class). Here, P and C need not be related.

Indeed, assuming there exists a learning algorithm L for C, it then suffices to run L on the unknown

distribution p ∈ C to learn (with high probability) a hypothesis p̂ such that p and p̂ are at most at distance
ε1−ε

2 . In particular, p̂ is at most ε1+ε
2 -far from P . One can then (e.g., by exhaustive search) find a distribution

p̃ in P which is closest to p̂ (and therefore at most ε1-far from p), and use it to produce as many “corrected

samples” as wanted:

Theorem 5.4.1. Let C a class of probability distributions over Ω. Suppose there exists a learning algorithm L

for C with sample complexity qL. Then, for any property P of distributions, there exists a (not-necessarily

computationally efficient) sampling corrector for P with sample complexity q(ε, ε1, δ) = qL
(
ε1−ε

2 , δ
)
, under

the promise that p ∈ C.

Furthermore, if the (efficient) learning algorithm L has the additional guarantee that its hypothesis class is

a subset of P (i.e., the hypotheses it produces always belong to P) and that the hypotheses it contains allow

efficient generation of samples, then we immediately obtain a computationally efficient sampling corrector:

indeed, in this case p̂ ∈ P already. Furthermore, as mentioned in the introduction, when efficient agnostic

proper learning algorithms for distribution classes exist, then there are efficient sampling correctors for the

same classes. It is however worth pointing out that this correcting-by-learning approach is quite inefficient

with regard to the amount of extra randomness needed: indeed, every sample generated from p̃ requires fresh

new random bits.

To illustrate this theorem, we give two easy corollaries. The first follows from Chan et al., who showed

in [56] that monotone hazard risk distributions can be learned to accuracy ε using Õ
(
logn/ε4) samples;

moreover, the hypothesis obtained is a O
(
log(n/ε)/ε2)-histogram.

Corollary 5.4.2. Let C be the class of monotone hazard risk distributions over [n], and P be the property of

being a histogram with (at most)
√
n pieces. Then, under the promise that p ∈ C and as long as ε = Ω̃(1/

√
n),

there is a sampling corrector for P with sample complexity Õ
(

logn
(ε1−ε)4

)
.

Our next example however demonstrates that this learning approach is not always optimal:

Corollary 5.4.3. Let C be the class of monotone distributions over [n], and P be the property of being a

histogram with (at most)
√
n pieces. Then, under the promise that p ∈ C and as long as ε = Ω̃(1/

√
n), there

is a sampling corrector for P with sample complexity O
(

logn
(ε1−ε)3

)
.

Indeed, for learning monotone distributions Θ
(
logn/ε3) samples are known to be necessary and sufficient [32].

Yet, one can also correct the distribution by simulating samples directly from its flattening on the corresponding
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Birgé decomposition (as per Definition 1.4.4); and every sample from this correction-by-simulation costs

exactly one sample from the original distribution.

5.4.2 From correcting to agnostic learning

Let C and H be two classes of probability distributions over Ω. Recall that a (semi-)agnostic learner for C

(using hypothesis classH) is a learning algorithm A which, given sample access to an arbitrary distribution

p and parameter ε, outputs a hypothesis p̂ ∈ H such that, with high probability, p̂ does “as well as the best

approximation from C:”

dTV(p, p̂) ≤ c · OPTC,p +O(ε)

where OPTC,p
def= infpC∈C dTV(pC ,p) and c ≥ 1 is some absolute constant (if c = 1, the learner is said to be

agnostic).

We first describe how to combine a (non-agnostic) learning algorithm with a sampling corrector in order

to obtain an agnostic learner, under the strong assumption that a (rough) estimate of OPT is known. Then,

we explain how to get rid of this extra requirement, using machinery from the distribution learning literature

(namely, an efficient hypothesis selection procedure).

Theorem 5.4.4. Let C be as above. Suppose there exists a learning algorithm L for C with sample complexity

qL, and a batch sampling correctorA for C with sample complexity qA. Suppose further that a constant-factor

estimate ÔPT of OPTC,p is known (up to a multiplicative c).

Then, there exists a semi-agnostic learner for C with sample complexity q(ε, δ) = qA(ÔPT, ÔPT +

ε, qL(ε, δ2 ), δ2 ) (where the constant in front of OPTC,p is c).

Proof. Let c be the constant such OPTC,p ≤ ÔPT ≤ c · OPTC,p. The agnostic learner L′ for P , on input

ε ∈ (0, 1], works as follows:

- Run A on p with parameters (ÔPT, ÔPT + ε, δ2 ) to get qL(ε, δ2 ) samples distributed according to some

distribution p̃.

- Run L on these samples, with parameters ε, δ2 , and output its hypothesis p̂.

We hereafter condition on both algorithms succeeding (which, by a union bound, happens with probability at

least 1− δ). Since p is ÔPT-close to C, and therefore by correctness of the sampling corrector we have both

p̃ ∈ C and dTV(p, p̃) ≤ ÔPT + ε. Hence, the output p̂ of the learning algorithm satisfies dTV(p̃, p̂) ≤ ε,

which implies

dTV(p, p̂) ≤ ÔPT + 2ε ≤ c · OPTC,p + 2ε (5.1)

for some absolute constant c, as claimed (using the assumption on ÔPT).

It is worth noting that in the case the learning algorithm is proper (meaning the hypotheses it outputs

belong to the target class C: that is, H ⊆ C), then so is the agnostic learner obtained with Theorem 5.4.4.
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This turns out to be a very strong guarantee: specifically, getting (computationally efficient) proper agnostic

learning algorithms remains a challenge for many classes of interest – see e.g. [64], which mentions efficient

proper learning of Poisson Binomial Distributions as an open problem.

We stress that the above can be viewed as a generic framework to obtain efficient agnostic learning

results from known efficient learning algorithms. For the sake of illustration, let us consider the simple

case of Binomial distributions: it is known, for instance as a consequence of the aforementioned results

on PBDs, that learning such distributions can be performed with Õ
(
1/ε2) samples (and that Ω

(
1/ε2) are

required). Our theorem then provides a simple way to obtain agnostic learning of Binomial distributions with

sample complexity Õ
(
1/ε2): namely, by designing an efficient sampling corrector for this class with sample

complexity poly(log 1
ε , log 1

ε1
).

Corollary 5.4.5. Suppose there exists a batch sampling corrector A for the class B of Binomial distributions

over [n], with sample complexity qA(ε, ε1,m, δ) = polylog( 1
ε ,

1
ε1
,m, 1

δ ). Then, there exists a semi-agnostic

learner for B, which, given access to an unknown distribution p promised to be ε-close to some Binomial

distribution, takes Õ
( 1
ε2

)
samples from p and outputs a distribution B̂ ∈ B such that

dTV

(
p, B̂

)
≤ 3ε

with probability at least 2/3.

To the best of our knowledge, an agnostic learning algorithm for the class of Binomial distributions with

sample complexity Õ
(
1/ε2) is not explicitly known, although the results of [55] do imply a Õ

(
1/ε3) upper

bound and a modification of [64] (to make their algorithm agnostic) seems to yield one. The above suggests

an approach which would lead to the (essentially optimal) sample complexity. (Since publication of our work,

we have learned that [4] provides such a result unconditionally.)

5.4.2.1 Removing the assumption on knowing ÔPT

In the absence of such an estimate ÔPT within a constant factor of OPTC,p given as input, one can apply the

following strategy, inspired of [57, Theorem 6]. In the first stage, we try to repeatly “guess” a good ÔPT, and

run the agnostic learner of Theorem 5.4.4 with this value to obtain a hypothesis. After this stage, we have

generated a succinct list H of hypotheses, one for each ÔPT that we tried: the second stage is then to run a

hypothesis selection procedure to pick the best h ∈ H: as long as one of the guesses was good, this h will be

an accurate hypothesis.

More precisely, suppose we run the agnostic learner of Theorem 5.4.4 a total of log(1/ε) times, setting

at the kth iteration ÔPTk
def= 2kε and δ′ def= δ/(2 log(1/ε)). For the first k such that 2k−1ε ≤ OPTC,p < 2kε,

ÔPTk is in [OPTC,p, 2 · OPTC,p]. Therefore, by a union bound on all runs of the learner at least one of the

hypotheses p̂k will have the agnostic learning guarantee we want to achieve; i.e. will satisfy (5.1), with c = 2.

Conditioned on this being the case, it remains to determine which hypothesis achieves the guarantee of
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being (2OPT + O(ε))-close to the distribution p. This is where we apply a hypothesis selection algorithm

– a variant of the similar “tournament” procedures from [77, 66, 5] – to our N = log(1/ε) candidates, with

accuracy parameter ε and failure probability δ/2. This algorithm has the following guarantee:

Proposition 5.4.6 ([119]). There exists a procedure TOURNAMENT that, given sample access to an unknown

distribution p and both sample and evaluation access toN hypothesesH1, . . . ,HN , has the following behavior.

TOURNAMENT makes a total of Õ
(
log(N/δ)/ε2) queries to p, H1, . . . ,HN , runs in timeO

(
N log(N/δ)/ε2),

and outputs a hypothesis Hi such that, with probability at least 1− δ,

dTV(p, Hi) ≤ 9.1 min
j∈[N ]

dTV(p, Hj) +O(ε).

Summary Using this result in the approach outlined above, we get with probability at least 1− δ, we will

obtain a hypothesis p̂k∗ doing “almost as well as the best pk”; that is,

dTV(p, p̂k∗) ≤ 18.2 · OPTC,p +O(ε)

The overall sample complexity is

log(1/ε)∑
k=1

qA

(
2kε, (2k + 1)ε, qL

(
ε,

δ

4 log(1/ε)

)
,

δ

4 log(1/ε)

)
+ Õ

(
1
ε2 log 1

δ

)

where the first term comes from the log(1/ε) runs of the learner from Theorem 5.4.4, and the second is the

overhead due to the hypothesis selection tournament.

5.4.3 From correcting to tolerant testing

We observe that the existence of sampling correctors for a given property P , along with an efficient distance

estimation procedure, allows one to convert any distribution testing algorithm into a tolerant distribution

testing algorithm. This is similar to the connection between “local reconstructors” and tolerant testing of

graphs described in [39, Theorem 3.1] and [41, Theorem 3.1]. That is, if a property P has both a distance

estimator and a sampling corrector, then one can perform tolerant testing of P in the time required to generate

enough corrected samples for both the estimator and a (non-tolerant) tester.

We first state our theorem in all generality, before instantiating it in several corollaries. For the sake of

clarity, the reader may wish to focus on these on a first pass.

Theorem 5.4.7. Let C be a class of distributions, and P ⊆ C a property. Suppose there exists an (ε, ε1)-batch

sampling corrector A for P with complexity qA, and a distance estimator E for C with complexity qE – that is,

given sample access to p1,p2 ∈ C and parameters ε, δ, E draws qE(ε, δ) samples from p1,p2 and outputs a

value d̂ such that
∣∣∣d̂− dTV(p1,p2)

∣∣∣ ≤ ε with probability at least 1− δ.

Then, from any property tester T for P with sample complexity qT , one can get a tolerant tester T ′ with
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query complexity q(ε′, ε, δ) = qA

(
ε′,Θ(ε), qE( ε−ε

′

4 , δ3 ) + qT ( ε−ε
′

4 , δ3 ), δ3
)

.

Proof. The tolerant tester T ′ for P , on input 0 ≤ ε′ < ε ≤ 1, works as follows, setting β def= ε−ε′
4 and

ε1
def= ε′ + β:

- RunA on p with parameters (ε′, ε1, δ/3) to get qE(β, δ/3) + qT (β, δ/3) samples distributed according

to some distribution p̃. Using these samples:

1. Estimate dTV(p, p̃) to within an additive β, and reject if this estimate is more than ε1 +β = ε+ε′
2 ;

2. Otherwise, run T on p̃ with parameter β and accept if and only if T outputs accept.

We hereafter condition on all 3 algorithms succeeding (which, by a union bound, happens with probability

at least 1− δ).

If p is ε′-close to P , then the corrector ensures that p̃ is ε1-close to p, so the estimate of dTV(p, p̃) is at most

ε1 + β: Step 1 thus passes, and as p̃ ∈ P the tester outputs accept in Step 2.

On the other hand, if p is ε-far from P , then either (a) dTV(p, p̃) > ε1 + 2β (in which case we output reject

in Step 1, since the estimate exceeds ε1 +β), or (b) dTV(p̃,P) > ε− (ε1 + 2β) = β, in which case T outputs

reject in Step 2.

Remark 5.4.8. Only asking that the distance estimation procedure E be specific to the class C is not innocent;

indeed, it is known ([171]) that for general distributions, distance estimation has sample complexity n1−o(1).

However, the task becomes significantly easier for certain classes of distributions: and for instance can

be performed with only Õ(k logn) samples, if the distributions are guaranteed to be k-modal [74]. This

observation can be leveraged in cases when one knows that the distribution has a specific property, but does

not quite satisfy a second property: e.g. is known to be k-modal but not known to be, say, log-concave.

The reduction above can be useful both as a black-box way to derive upper bounds for tolerant testing,

as well as to prove lower bounds for either testing or distance estimation. For the first use, we give two

applications of our theorem to provide tolerant monotonicity testers for k-modal distributions. The first is

a conditional result, showing that the existence of good monotonicity correctors yield tolerant testers. The

second, while unconditional, only guarantees a weaker form of tolerance (guaranteeing acceptance only of

distributions that are very close to monotone); and relies on a corrector we describe in Section 5.5.2. As we

detail shortly after stating these two results, even this weak tolerance improves upon the one provided by

currently known testing algorithms.

Corollary 5.4.9. Suppose there exists an (ε, ε1)-batch sampling corrector for monotonicity with complexity

q. Then, for any k = O(logn/ log logn), there exists an algorithm that distinguishes whether a k-modal

distribution is (a) ε-close to monotone or (b) 5ε-far from monotone with success probability 2/3, and sample

complexity

q

(
ε, 2ε, C k logn

ε4 log logn,
1
9

)
where C is an absolute constant.
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Proof. We combine the distance estimator of [74] with the monotonicity tester of [63, Section 3.4], which both

apply to the class of k-modal distributions. As their respective sample complexity is, for distance parameter

α and failure probability δ, O
((

k2

α4 + k logn
α4 log(k logn)

)
log 1

δ

)
and O

(
k
α2 log 1

δ

)
, the choice of parameters

(δ = 1/3, ε and 5ε) and the assumption on k yield

O

(
k

ε2

)
+O

(
k2

ε4 + k logn
ε4 log(k logn)

)
= O

(
k logn

ε4 log(k logn)

)

and we obtain by Theorem 5.4.7 a tolerant tester with sample complexity q
(
ε, 2ε,O

(
k logn

ε4 log(k logn)

)
, 1

9

)
, as

claimed.

Another application of this theorem, but this time taking advantage of a result from Section 5.5.1, allows

us to derive an explicit tolerant tester for monotonicity of k-modal distributions:

Corollary 5.4.10. For any k ≥ 1, there exists an algorithm that distinguishes whether a k-modal distribution

is (a) O
(
ε3/ log2 n

)
-close to monotone or (b) ε-far from monotone with success probability 2/3, and sample

complexity

O

(
1
ε4

k logn
log(k logn) + k2

ε4

)
.

In particular, for k = O(logn/ log logn) this yields a (weakly) tolerant tester with sample complexity

O
(

1
ε4

k logn
log logn

)
.

Proof. We again use the distance estimator of [74] and the monotonicity tester of [63], which both apply to

the class of k-modal distributions, this time with the monotonicity corrector we describe in Corollary 5.5.5,

which works for any ε1 and ε = O
(
ε3

1/ log2 n
)

and has constant-rate sample complexity (that is, it takes

O(q) samples from the original distribution to output q samples). Similarly to Corollary 5.4.9, the sample

complexity is a straightforward application of Theorem 5.4.7.

Note that, to the best of our knowledge, no tolerant tester for monotonicity of k-modal distributions was

previously known, though using the (regular) O
(
k/ε2)-sample tester of [63] and standard arguments, one can

achieve a weak tolerance on the order of O
(
ε2/k

)
. While the sample complexity obtained in Corollary 5.4.10

is worse by a polylog(n) factor, it has better tolerance for k = Ω(log2 n/ε).

5.5 Sample complexity of correcting monotonicity

In this section, we focus on the sample complexity aspect of correcting, considering the specific example of

monotonicity correction. As a first result, we show in Section 5.5.1 how to design a simple batch corrector for

monotonicity which, after a preprocessing step costing logarithmically many samples, is able to answer an

arbitrary number of queries. This corrector follows the “learning approach” described in Section 5.4.1, and in

particular provides a very efficient way to amortize the cost of making many queries to a corrected distribution.

A natural question is then whether one can “beat” this approach, and correct the distribution without
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approximating it as a whole beforehand. Section 5.5.2 answers it by the affirmative: namely, we show that one

can correct distributions that are guaranteed to be (1/ log2 n)-close to monotone in a completely oblivious

fashion, with a non-adaptive approach that does not require to learn anything about the distribution.

Finally, we give in Section 5.5.3 a corrector for monotonicity with no restriction on the range of parameters,

but assuming a stronger type of query access to the original distribution. Specifically, our algorithm leverages

the ability to make cdf queries to the distribution p, in order to generate independent samples from a corrected

p̃. This sampling corrector also outperforms the one from Section 5.5.1, making only O
(√

logn
)

queries per

sample on expectation.

A parenthesis: non-proper correcting We note that it is easy to obtain a non-proper corrector for k(n, ε)-

histograms assuming monotonicity with constant sample complexity, for k(n, ε) = Θ
(

logn
ε

)
. Indeed, this

follows from the oblivious Birgé decomposition (see Definition 1.4.4) we shall be using many times through

this section, which ensures that “flattening” a monotone distribution yields a k(n, ε)-histogram that remains

close to the original distribution.

5.5.1 A natural approach: correcting by learning

Our first corrector works in a straightforward fashion: it learns a good approximation of the distribution

to correct, which is also concisely represented. It then uses this approximation to build a sufficiently good

monotone distribution M ′ “offline,” by searching for the closest monotone distribution, which in this case can

be achieved via linear programming. Any query made to the corrector is then answered according to the latter

distribution, at no additional cost.

Lemma 5.5.1 (Correcting by learning). Fix any constant c > 0. For any ε, ε1 ≥ (3 + c)ε and ε2 = 0 as in

the definition, any type of oracle ORACLE and any number of queries m, there exists a sampling corrector

for monotonicity from sampling to ORACLE with sample complexity O
(
logn/ε3).

Proof. Consider the Birgé decomposition Iα = (I1, . . . , I`) with parameter α def= cε
3 which partitions the

domain [n] into O
(

logn
ε

)
intervals. By Corollary 1.4.6 and the learning result of [32], we can learn with

O
(

logn
ε3

)
samples a O

(
logn
ε

)
-histogram p̄ such that:

dTV(p, p̄) ≤ 2ε+ α. (5.2)

Also, let M be the closest monotone distribution to p. From Eq. (1.4), we get the following: lettingM denote

the set of monotone distributions,

dTV(p̄,M) = dTV(Φα(p),M) ≤ dTV(Φα(p),Φα(M)) ≤ dTV(p,M) ≤ ε (5.3)

where the first inequality follows from the fact that Φε(M) is monotone. Thus, p̄ is ε-close to monotone,
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which implies that p̄′ is (ε + α)-close to monotone. Furthermore, it is easy to see that, without loss of

generality, one can assume the closest monotone distribution p̄′ to be piecewise constant with relation to

the same partition (e.g., using again Eq. (1.4)). It is therefore sufficient to find such a piecewise constant

distribution: to do so, consider the following linear program which finds exactly this: a monotone M ′, closest

to p̄′ and piecewise constant on Iα:

minimize
∑̀
j=1

∣∣∣∣xj − p̄′(Ij)
|Ij |

∣∣∣∣ · |Ij |
subject to 1 ≥ x1 ≥ x2 ≥ · · · ≥ xl ≥ 0∑̀

j=1
xj |Ij | = 1

This linear program has O
(

logn
ε

)
variables and so it can be solved in time poly(logn, 1

ε ) .

After finding a solution (xj)j∈[`] to this linear program,7 we define the distribution M ′ : [n]→ [0, 1] as

follows: M ′(i) = xind(i), where ind(i) is the index of the interval of Iα which i belongs to. This implies that

dTV(p̄′,M ′) ≤ ε+ α

and by the triangle inequality we finally get:

dTV(p,M∗) ≤ dTV(p, p̄) + dTV(p̄, p̄′) + dTV(p̄′,M ′) ≤ 3ε+ 3α = (3 + c)ε.

5.5.2 Oblivious correcting of distributions which are very close to monotone

We now turn to our second monotonicity corrector, which achieves constant sample complexity for distributions

already (1/ log2 n)-close to monotone. Note that this is a very strong assumption, as if one draws less than

log2 n samples one does not expect to see any difference between such a distribution p and its closest monotone

distribution. Still, our construction actually yields a stronger guarantee: namely, given evaluation (query)

access to p, it can answer evaluation queries to the corrected distribution as well. See Remark 5.5.6 for a more

detailed statement.

The high-level idea is to treat the distribution as a k-histogram on the Birgé decomposition (for k =

O(logn)), thus “implicitly approximating” it; and to correct this histogram by adding a certain amount of

probability weight to every interval, so that each gets slightly more than the next one. By choosing these

quantities carefully, this ensures that any violation of monotonicity gets corrected in the process, without ever

having to find out where they actually occur.

7To see why a good solution always exists, consider the closest monotone distribution to p̄, and apply Φα to it. This distribution
satisfies all the constraints.
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We start by stating the general correcting approach for general k-histograms satisfying a certain property

(namely, the ratio between two consecutive intervals is constant).

Lemma 5.5.2. Let I = (I1, . . . , Ik) be a decomposition of [n] in consecutive intervals such that |Ij+1| / |Ij | =

1 + c for all j, and p be a k-histogram distribution on I that is ε-close to monotone. Then, there is a

monotone distribution p̃ which can be sampled from in constant time given oracle access to p, such that

dTV(p, p̃) = O
(
εk2). Further, p̃ is also a k-histogram distribution on I.

Proof. We will argue that no interval can have significantly more total weight than the previous one, as it

would otherwise contradict the bound on the closeness to monotonicity. This bound on the “jump” between two

consecutive intervals enables us to define a new distribution p̂ which is a mixture of p with an arithmetically

decreasing k-histogram (which only depends on ε and k); it can be shown that for the proper choice of

parameters, p̂ is now monotone.

We start with the following claim, which leverages the distance to monotonicity in order to give a bound

on the total violation between two consecutive intervals of the partition:

Claim 5.5.3. Let p be a k-histogram distribution on I that is ε-close to monotone. Then, for any j ∈

{1, . . . , k − 1},

p(Ij+1) ≤ (1 + c)p(Ij) + ε(2 + c). (5.4)

Proof. First, observe that without loss of generality, one can assume the monotone distribution closest to p to

be a k-histogram on I as well (e.g., by a direct application of Fact 1.4.2 to the flattening on I of the monotone

distribution closest to p). Assume there exists an index j ∈ {1, . . . , k − 1} contradicting (5.4); then,

p(Ij+1)
|Ij+1|

> (1 + c)p(Ij)
|Ij |

· |Ij |
|Ij+1|

+ ε
2 + c

|Ij+1|
= p(Ij)
|Ij |

+ ε
2 + c

|Ij+1|
.

But any monotone distribution M which is a k-histogram on I must satisfy M(Ij+1)
|Ij+1| ≤

M(Ij)
|Ij | ; so that at

least ε(2 + c) total weight has to be “redistributed” to fix this violation. Indeed, it is not hard to see8 that the

minimum amount of probability weight to “move” in order to do so is at least what is needed to uniformize p

on Ij and Ij+1. This latter process yields a distribution p′ which puts weight (p(Ij) + p(Ij+1))/((2 + c) |Ij |)

on each element of Ij ∪ Ij+1, and the total variation distance between p and p′ (a lower bound on its distance

to monotonicity) is then

dTV(p,p′) = p(Ij+1) + p(Ij)
2 + c

− p(Ij) = p(Ij+1)− (1 + c)p(Ij)
2 + c

>
ε(2 + c)

2 + c
= ε

which is a contradiction.

This suggests immediately the following correcting scheme: to output samples according to p̃, k-histogram

8E.g., by writing the `1 cost as the sum of the weight added/removed from “outside” the two buckets and the weight moved between
the two buckets in order to satisfy the monotonicity condition, and minimizing this function.
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on I defined by

p̃(Ik) = λ (p(Ik))

p̃(Ik−1) = λ (p(Ik−1) + (2 + c)ε)
...

p̃(Ik−j) = λ (p(Ik−j) + j(2 + c)ε)

that is

p̃(Ij) = λ

p(Ij) + ε

k−1∑
i=j

(
1 + |Ij+1|

|Ij |

) 1 ≤ j ≤ k

where the normalizing factor is λ def=
(

1 + ε(2 + c)k(k−1)
2

)−1
. As, by Claim 5.5.3, adding weight decreasing

by (2 + c)ε at each step fixes any pair of adjacent intervals whose average weights are not monotone, p̃/λ is

a non-increasing non-negative function. The normalization by λ preserving the monotonicity, p̃ is indeed a

monotone distribution, as claimed.

It only remains to bound dTV(p, p̃):

2dTV(p, p̃) =
k∑
j=1
|p(Ij)− p̃(Ij)| =

k∑
j=1

∣∣∣∣∣∣(1− λ)p(Ij)− λε
k−1∑
i=j

(2 + c)

∣∣∣∣∣∣
≤ (1− λ)

k∑
j=1

p(Ij) + λε

k∑
j=1

k−1∑
i=j

(2 + c) = 1−
1− ε(2 + c)k(k−1)

2

1 + ε(2 + c)k(k−1)
2

.

Finally, note that p̃ is a mixture of p (with weight λ) and an explicit arithmetically non-increasing distribution;

sampling from p̃ is thus straightforward, and needs at most one sample from p for each draw.

Remark 5.5.4. The above scheme can be easily adapted to the case where the ratio between consecutive

intervals is not always the same, but is instead |Ij+1| / |Ij | = 1 + cj for some known cj ∈ [C1, C2]; the result

then depends on the ratio C2/C1 = Θ(1) as well.

As a direct corollary, this describes how to correct distributions which are promised to be (very) close to

monotone, in a completely oblivious fashion: that is, the behavior of the corrector does not depend on what

the input distribution is; furthermore, the probability of failure is null (i.e., δ = 0).

Corollary 5.5.5 (Oblivious correcting of monotonicity). For every ε′ ∈ (0, 1), there exists an (oblivious)

sampling corrector for monotonicity, with parameters ε = O
(
ε′

3
/ log2 n

)
, ε1 = ε′ and sample complexity

O(1).

Proof. We will apply Lemma 5.5.2 for k = O(logn/ε′) and I being the corresponding Birgé decomposition
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(with parameter ε′/2). The idea is then to work with the “flattening” p̄ of p: since p is ε-close to monotone, it

is also (ε′/2)-close, and p̄ is both (ε′/2)-close to p and ε-close to monotone. Applying the correcting scheme

with our value of k and c set to ε′, the corrected distribution p̃ is monotone, and

dTV(p̄, p̃) ≤ 1−
1− ε(2 + ε′)k(k−1)

2

1 + ε(2 + ε′)k(k−1)
2

≤ ε′

2

where the last inequality derives from the fact that k2ε = O(ε′). This in turn implies by a triangle inequality

that p̃ is ε′-close to p. Finally, observe that, as stated in the lemma, p̃ can be easily simulated given access to

p, using either 0 or 1 draw: indeed, p̃ is a mixture with known weights of an explicit distribution and p̄, and

access to the latter can be obtained from p.

Remark 5.5.6. An interesting feature of the above construction is that does not only yields a O(1)-query

corrector from sampling to sampling: it similarly implies a corrector from ORACLE to ORACLE with query

complexity O(1), for ORACLE being (for instance) an evaluation or Cumulative Dual oracle (cf. Section 4.2).

This follows from the fact that the corrected distribution p̃ is of the form p̃ = λp + (1− λ)P , where both λ

and P are fully known.

5.5.3 Correcting with Cumulative Dual access

In this section we prove the following result, which shows that correcting monotonicity with o(logn) queries

(on expectation) is possible when one allows a stronger type of access to the original distribution. In particular,

recall that in the Cumulative Dual model (as defined in Section 4.2) the algorithm is allowed to make, in

addition to the usual draws from the distribution, evaluation queries to its cumulative distribution function.9

Theorem 5.5.7. For any ε ∈ (0, 1], any number of queries m and ε1 = O(ε) as in the definition, there exists

a sampling corrector for monotonicity from Cumulative Dual to SAMP with expected sample complexity

O
(√

m logn/ε
)

.

In particular, since learning distributions in the Cumulative Dual model is easily seen to have query complexity

Θ(logn/ε) (e.g., by considering the lower bound instance of [32]), the above corrector beats the “learning

approach” as long as m = o(logn/ε).

Remark 5.5.8. One may look at this ability to correct up to o(logn/ε) samples cautiously, as it is well-known

that the lower bound for testing monotonicity of distributions is Ω
(√
n/ε2) already [19]. However, this

lower bound only establishes a worst-case indistinguishability: as pointed out in Remark 5.2.5, for many

“typical” distributions that are ε-close to monotone, as few as O(1/ε) samples would be sufficient to detect the

discrepancy from monotone (and compromise the correctness of any algorithm relying on these uncorrected

samples).

9We remark that our algorithm will in fact only use this latter type of access, and will not rely on its ability to draw samples from p.
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5.5.3.1 Overview and discussion

A natural idea would be to first group the elements into consecutive intervals (the “buckets”), and correct

this distribution (now a histogram over these buckets) at two levels. That is, start by correcting it optimally

at a coarse level (the “superbuckets,” each of them being a group of consecutive buckets); then, every time

a sample has to be generated, draw a superbucket from this coarse distribution and correct at a finer level

inside this superbucket, before outputting a sample from the corrected local distribution (i.e. conditional on

the superbucket that was drawn and corrected). While this approach seems tantalizing, the main difficulty with

it lies in the possible boundary violations between superbuckets: that is, even if the average weights of the

superbuckets are non-increasing, and the distribution over buckets is non-decreasing inside each superbucket,

it might still be the case that there are local violations between adjacent superbuckets. (I.e., the boundaries

are bad.) A simple illustration is the sequence 〈.5, .1, .3, .1〉, where the first “superbucket” is (.5, .1) and

the second (.3, .1). The average weight is decreasing, and the sequence is locally decreasing inside each

superbucket; yet overall the sequence is not monotone.

Thus, we have to consider 3 kinds of violations:

(i) global superbucket violations: the average weight of the superbuckets is not monotone.

(ii) local bucket violations: the distribution of the buckets inside some superbucket is not monotone.

(iii) superbucket boundary violations: the probability of the last bucket of a superbucket is lower than the

probability of the first bucket of the next superbucket.

The ideas underlying our sampling corrector (which is granted both sampling and cumulative query access

to the distribution, as defined in the Cumulative Dual access model) are quite simple: after reducing via

standard techniques the problem to that of correcting a histogram supported of logarithmically many intervals

(the “Birgé decomposition”), we group these ` intervals in K “superbuckets,” each containing L consecutive

intervals from that histogram (“buckets”). (As a guiding remark, our overall goal is to output samples from a

corrected distribution using o(`) queries, as otherwise we would already use enough queries to actually learn

the distribution.) This two-level approach will allow us to keep most of the corrected distribution implicit,

only figuring out (and paying queries for that) the portions from which we will ending up outputting samples.

By performing K queries, we can exactly learn the coarse distribution on superbuckets, and correct it

for monotonicity (optimally, e.g. by a linear program ensuring the average weights of the superbuckets are

monotone), solving the issues of type (i). In order to fix the boundary violations (iii) on-the-go, the idea is

to allocate to each superbucket an extra budget of probability weight that can be used for these boundary

corrections. Importantly, if this budget is not entirely used the sampling process restarts from the beginning

with a probability corresponding with the remaining budget. This effectively ends up simulating a distribution

where each superbucket was assigned an extra weight matching exactly what was needed for the correction,

without having to figure out all these quantities beforehand (as this would cost too many queries).

Essentially, each superbucket is selected according to its “potential weight,” that includes both the actual
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probability weight it has and the extra budget it is allowed to use for corrections. Whenever a superbucket Si is

selected this way, we first perform optimal local corrections of type (ii) both on it and the previous superbucket

Si−1 making a cdf query at every boundary point between buckets in order to get the weights of all 2L buckets

they contain, and then computing the optimal fix: at this point, the distribution is monotone inside Si (and

inside Si−1). After this, we turn to the possible boundary violations of type (iii) between Si−1 and Si, by

“pouring” some of the weight from Si’s budget to fill “valleys” in the last part of Si−1. Once this water-filling

has ended,10 we may not have used all of Si’s budget (but as we shall see we make sure we never run out of

it): the remaining portion is thus redistributed to the whole distribution by restarting the sampling process

from the beginning with the corresponding probability. Note that as soon as we know the weights of all 2L

Birgé buckets, no more cdf queries are needed to proceed.

5.5.3.2 Preliminary steps (preprocessing)

First step: reducing to p to a histogram. Given cdfsamp access (i.e., granting both SAMP and cumulative

distribution function (cdf) query access) to an unknown distribution p over [n] which is ε-close to

monotone, we can simulate cdfsamp access to its Birgé flattening p(1) def= Φε(p), also ε-close to

monotone and 3ε-close to p (by Corollary 1.4.6). For this reason, we hereafter work with p(1) instead

of p, as it has the advantage of being an `-histogram for ` = O(logn/ε). Because of this first reduction,

it becomes sufficient to perform cdf queries on the buckets (and not the individual elements of [n]),

which altogether entirely define p(1).

Second step: global correcting of the superbuckets. By making K cdf queries, we can figure out exactly

the quantities p(1)(S1), . . . ,p(1)(SK). By running a linear program, we can re-weight them to obtain

a distribution p(2) such that (a) the averages p(2)(Sj)
|Sj | are non-increasing; (b) the conditional distribu-

tions of p(1) and p(2) on each superbucket are identical (p(2)
Sj = p(1)

Sj for all j ∈ [K]); and (c)∑
j

∣∣p(2)(Sj)− p(1)(Sj)
∣∣ is minimized.

Third step: allocating budgets to superbuckets. For reasons that will become clear in the subsequent,

“water-filling” step, we want to give each superbucket Sj a budget bj of “extra weight” added to

its first bucket Sj,1 that can be used for local corrections when needed – if it uses only part of this

budget during the local correction, it will need to “give back” the surplus. To do so, define p(3) as the

distribution such that

• p(3)(Sj) = λ(3)(p(2)(Sj) + bj), j ∈ [K] (where bj
def= p(2)(Sj)/(1 + ε) for j ∈ [K]; and

λ(3) def= (1 +
∑
j bj)−1 is a normalization factor). Note that

∑
j bj = 1/(1 + ε) ∈ [1/2, 1], so

that λ(3) ∈ [1, 2].

• The conditional distribution on Sj \ Sj,1 satisfy p(3)
Sj\Sj,1 = p(2)

Sj\Sj,1 for all j ∈ [K].

10We borrow this graphic analogy with the process of pouring water from [7], which employs it in a different context (in order to
bound the running time of an algorithm by a potential-based argument.).

263



That is, p(3) is a version of p(2) where each superbucket is re-weighted, but “locally” looks the same

inside each superbucket except for the first bucket of each superbucket, that received the additional

“budget weight.” Observe that since the size |Sj | of the superbuckets is multiplicatively increasing

by an (1 + ε) factor (as a consequence of Birgé bucketing), the averages p(3)(Sj)/ |Sj | will remain

non-increasing. That is, the average changes by less for “big” values of j’s than for small values, as the

budget is spread over more elements.

Remark 5.5.9. p(3) is uniquely determined by ε, n and p, and can be explicitly computed using K cdf

queries.

5.5.3.3 Sampling steps (correcting while sampling)

Before going further, we describe a procedure that will be necessary for our fourth step, as it will be the core

subroutine allowing us to perform local corrections between superbuckets.

Water-filling Partition each superbucket Si into range Hi, Mi and Li where (assuming the buckets in Si

are monotone):

- mi = p(3)(Si)/|Si| is the initial value of the average value of superbucket Si [this does not change

throughout the procedure]

- Hi are the (leftmost) elements whose value is greater than mi [these elements may move to Mi or stay

in Hi]

- Mi are the (middle) elements whose value is equal to mi [these elements stay in Mi]

- Li are the (rightmost) elements whose value is less than mi [these elements may move to Mi or stay in

Li]

- mini is the minimum probability value in superbucket Si [this updates throughout the procedure]

- maxi is the maximum probability value in superbucket Si [this updates throughout the procedure]

Let ei
def=
∑
x∈Hi(p(x)−mi) to be the surplus (so that if ei = 0 then Hi = ∅ and the superbucket is said to

be dry) and di
def=
∑
x∈Li(mi − p(x)) to be the deficit (if di = 0 then Li = ∅ and the superbucket is said to

be full).

Algorithm 32 Procedure water-fill
1: take an infinitesimal amount ∂p from the top of the max, leftmost buckets of Hi+1, in superbucket Si+1

(this would be from the first bucket and any other buckets that have the same probability)
2: pour ∂p into superbucket Si (this would land in the min, rightmost buckets of Li, in superbucket Si and

spread to the left, to buckets that have the same probability, just like water)
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Algorithm 33 Procedure front-fill
1: while the surplus ei+1 is greater than the extra budget bi+1 allocated in Section 5.5.3.2 do
2: take an infinitesimal amount ∂p from the top of the max, leftmost elements of Hi+1, in superbucket
Si+1 (this would be from the first bucket and any other buckets that have the same probability)

3: pour ∂p into the very first bucket of the domain, S1,1.
4: end while
5: return the total amount fi of weight poured into S1,1.

Algorithm 34 Procedure water-boundary-correction
Require: Superbucket index j = i+ 1, with initial weight p(3)(Si+1).

1: move weight from the surplus of Hi+1 into Li using water-fill until:
(a) maxi+1 ≤ mini; or
(b) Li = ∅ (Si is full) – i.e. mini = mi; or
(c) Hi+1 = ∅ (Si+1 is dry) – this can only happen if ei+1 < di . This should never happen

because of the “budget allocation” step.
2: Note that the distribution might not yet be monotone on Si ∪ Si+1, if one of the last two conditions is

reached first. If this is the case, then do further correction:
(a) if Li = ∅ then do front-fill until maxi+1 ≤ mini (this will happen before Hi+1 = ∅)
(b) if Hi+1 = ∅ then abort and return fail . This should never happen because of the “budget

allocation” step.

3: return the list B1, . . . , Bs of buckets in Ti
def= Li ∪ Si+1, along with the weights w1, . . . , ws they have

from w after the redistribution and the portion εi of the budget that was not used and the portion fi that
was moved by front-fill (so that λ(3)εi + fi +

∑s
t=1 wt = p(3)(Si+1)).

Sampling procedure Recall that we now start and work with p(3), as obtained in Section 5.5.3.2.

• Draw a superbucket Si+1 according to the distribution p(3)(S1), p(3)(SK) on [K].

• If Si+1 6= S1 (we did not land in the first superbucket):

– Obtain (via cdf queries, if they were not previously known) the 2L values p(3)(Si,j) p(3)(Si+1,j)

(j ∈ [L]) of the buckets in superbuckets Si, Si+1.

– Correct them (separately for each of the two superbuckets) optimally for monotonicity, e.g.

via linear programming (if that was not done in a prior stage of sample generation), ignoring

the extra budget bi and bi+1 on the first bucket of each superbucket. Compute Hi,Mi, Li and

Hi+1,Mi+1, Li+1.

– Call water-boundary-correction on (i+ 1) using the extra budget only if Si+1 becomes dry and

not counting it while trying to satisfy condition (a).11

• If Si+1 = S1 (we landed in the first superbucket), we proceed similarly as per the steps above, except

for the water-boundary-correction. That is, we only correct locally S1 for monotonicity.

11At this point, the “new” distribution p(4) (which is at least partly implicit, as only known at a very coarse level over superbuckets
and locally for some buckets inside Si ∪ Si+1) obtained is monotone over the superbuckets (water-boundary-correction does not
violate the invariant that the distribution over superbuckets is monotone), is monotone inside both Si and Si+1, and furthermore is
monotone over Si ∪ Si+1. Even more important, the fact that mini ≥ maxi+1 will ensure applying the same process in the future, e.g.
to Si+2, will remain consistent with regard to monotonicity.
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• During the execution of water-boundary-correction, the water-filling procedure may have used some

of the initial “allocated budget” bi+1 to pour into Li. Let εi ∈ [0, bi+1] be the amount of the budget

remaining (not used).

– with probability pi
def= λ(3)εi/p(3)(Si+1), restart the sampling process from the beginning (this

is the “budget redistribution step,” which ensures the correction only uses what it needs for each

superbucket).

– with probability qi
def= fi/p(3)(Si+1), where fi is the weight moved by the procedure front-fill,

output from the very first bucket of the domain.

– with the remaining probability, output a sample from the new (conditional) distribution on the

buckets in Ti
def= Li ∪ Si+1. This is the conditional distribution defined on Ti by the weights

w1, . . . , ws, as returned by water-boundary-correction.

Note that the distribution we output from if we initially select the superbucket Si+1, is supported on Li ∪Si+1.

Moreover, conditioning on Mi+1 ∪ Li+1 we get exactly the conditional distribution p(3)
Mi+1∪Li+1

. (This

ensures that from each bucket there is a unique superbucket that has to be picked initially for the bucket’s

weight to be modified.) Observe that as defined above, buckets from Li ⊆ Si can be outputted from either

because superbucket Si was picked, or because Si+1 was drawn and some of its weight was reassigned to

Li by water-boundary-correction. The probability of outputting any bucket in Li is then the sum of the

probabilities of the two types of events.

5.5.3.4 Analysis

The first observation is that the distribution of any sample output by the sampling process described above is

not only consistent, but completely determined by n, ε and p:

Claim 5.5.10. The process described in Section 5.5.3.2 and 5.5.3.3 uniquely defines a distribution p̃, which is

a function of p, n and ε ∈ (0, 1) only.

Claim 5.5.11. The expected number of queries necessary to output m samples from p̃ is upper bounded by

K + 4mLε.

Proof. The number of queries for the preliminary stage is K; after this, generating a sample requires X

queries, where X is a random variable satisfying

X ≤ 2L+RX ′

where X,X ′ are independent and identically distributed, and R is a Bernoulli random variable independent

of X ′ and with parameter ∆ (itself a random variable depending on X: ∆ takes value pi when the first

draw selects superbucket i+ 1), corresponding to the probability of restarting the sampling process from the
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beginning. It follows that

E[X] ≤ 2L+ E[R]E[X] = 2L+ E[∆]E[X] .

Using the fact that E[∆] =
∑
i∈[K] p(3)(Si+1)pi =

∑
i∈[K] p(3)(Si+1) λ(3)εi

p(3)(Si+1) ≤ λ(3)∑
i∈[K] bi ∈

[1/3, 1/2] and rearranging, we get E[X] ≤ 4L.

Lemma 5.5.12. If p is a distribution on [n] satisfying dTV(p,M) ≤ ε, then the distribution p̃ defined above

is monotone.

Proof. Observe that as the average weights of the superbuckets in p(2) are non-increasing, the definition of

p(3) along with the fact that the lengths of the superbuckets are (multiplicatively) increasing implies that the

average weights of the superbuckets in p(3) are also non-increasing. In more detail, fix 1 ≤ i ≤ K − 1; we

have
p(2)(Si)
|Si|

≥ p(2)(Si+1)
(1 + ε) |Si|

using the fact that |Sj | = (1 + ε) |Sj−1|. From there, we get that

(1 + ε)p(2)(Si) ≥ p(2)(Si+1)

or equivalently

bi + p(2)(Si)
|Si|

= p(2)(Si) + (1 + ε)p(2)(Si)
(1 + ε) |Si|

≥ p(2)(Si+1) + (1 + ε)p(2)(Si+1)
(1 + ε)2 |Si|

= bi+1 + p(2)(Si+1)
|Si+1|

showing that before renormalization (and therefore after as well) the average weights of the superbuckets in

p(3) are indeed non-increasing. Rephrased, this means that the sequence of mi’s, for i ∈ [K], is monotone.

Moreover, notice that by construction the distribution p̃ is monotone within each superbucket: indeed, it is

explicitly made so one superbucket at a time, in the third step of the sampling procedure. After a superbucket

has been made monotone this way, it only be changed by water-filling which by design can never introduce

new violations: the weight is always moved “to the left,” with the values mi’s acting as boundary conditions

to stop the waterfilling process and prevent new violations, or moved to the first element of the domain.

It only remains to argue that monotonicity is not violated at the boundary of two consecutive superbuckets.

But since the water-boundary-correction, if it does not abort, guarantees that the distribution is monotone

between consecutive buckets as well (as mi+1 ≤ maxi+1 ≤ mini ≤ mi), it it sufficient to show that water-

boundary-correction never returns fail. This is ensured by the “budget allocation” step, which by providing

Hi+1 with up to an additional bi+1 to spread into Li guarantees it will become dry. Indeed, if this happened

then it would mean that correcting this particular violation (before the budget allocation, which only affects the

first elements of the superbuckets) in p(2) required to move more than bi+1 weight, contradicting the fact that

the average weights of the superbuckets in p(2) were non-increasing. In more detail, the maximum amount of

weight to “pour” in order to fill Li is in the case where Hi+1 is empty (i.e., the distribution on Si+1 is already
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uniform) but Li is (almost) all of Si (i.e., all the weight in Si is in the first bucket). To correct this with our

waterfilling procedure, one would have to pour |Si| · p(2)(Si+1)
|Si+1| = p(2)(Si+1)

1+ε weight in Li, which is exactly

our choice of value for bi+1.

Lemma 5.5.13. If p is a distribution on [n] satisfying dTV(p,M) ≤ ε, then dTV(p, p̃) = O(ε).

Proof. We will bound separately the distances p to p(1), p(1) to p(2) and p(2) to p̃, and conclude by the

triangle inequality.

• First of all, the distance dTV
(
p,p(1)) is at most 3ε, by properties of the Birgé decomposition (and as

dTV(p,M) ≤ ε).

• We now turn to dTV
(
p(1),p(2)), showing that it is at most ε: in order to do so, we introduce p′, the

piecewise-constant distribution obtained by “flattening” p(1) on each of the K superbuckets (so that

p′(Sj) = p(1)(Sj) for all j). It is not hard to see, e.g. by the data processing inequality for total

variation distance, that p′ is also ε-close to monotone, and additionally that the closest monotone

distribution M ′ can also be assumed to be constant on each superbucket.

Consider now the transformation that re-weights in p′ each superbucket Sj by a factor αj > 0 to

obtain M ′; it is straightforward to see from Section 5.5.3.2 that this transformation maps p(1) to p(2).

Therefore,

2dTV

(
p(1),p(2)

)
=
∑
j∈[K]

∑
x∈Sj

∣∣∣p(1)(x)− p(2)(x)
∣∣∣ =

∑
j∈[K]

∑
x∈Sj

∣∣∣p(1)(x)− αjp(1)(x)
∣∣∣

=
∑
j∈[K]

∑
x∈Sj

p(1)(x) · |1− αj | =
∑
j∈[K]

p(1)(Sj) · |1− αj |

=
∑
j∈[K]

∑
x∈Sj

p(1)(x) · |1− αj | =
∑
j∈[K]

p(1)(Sj) ·
∣∣∣∣1− M ′(Sj)

p′(Sj)

∣∣∣∣
=
∑
j∈[K]

|p′(Sj)−M ′(Sj)| = 2dTV(p′,M ′) ≤ 2ε.

• To bound dTV
(
p(2), p̃

)
, first consider the distribution p′′ obtained by correcting optimally p(2) for

monotonicity inside each superbucket separately. That is, p′′ is the distribution satisfying monotonicity

on each Sj (separately) and p′′(Sj) = p(2)(Sj) for each j ∈ [K]; and minimizing

∑
j∈[K]

∑
i∈[L]

∣∣∣p′′(Sj,i)− p(2)(Sj,i)
∣∣∣

(or, equivalently, minimizing
∑
i∈[L]

∣∣p′′(Sj,i)− p(2)(Sj,i)
∣∣ for all j ∈ [K]). The first step is to prove

that p′′ is close to p(2): recall first that by the triangle inequality, our previous argument implies that p(2)

is (2ε)-close to monotone. Therefore, the (related) optimization problem asking to find a non-negative

function P that minimizes the same objective, but under the different constraints “P is monotone on [n]

and P ([n]) = p(2)([n])” has a solution P whose total variation distance from p(2) is at most 2ε.
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But P can be used to obtain P ′, solution to the original problem, by re-weighting each superbucket Sj

the following way:

P ′(x) def= P (x) · p(2)(Sj)
P (Sj)

, x ∈ Sj .

Clearly, P ′ satisfies the constraints of the first optimization problem; moreover,

2dTV

(
P ′,p(2)

)
=
∑
j∈[K]

∑
x∈Sj

∣∣∣P ′(x)− p(2)(x)
∣∣∣ =

∑
j∈[K]

∑
x∈Sj

∣∣∣∣P (x)p(2)(Sj)
P (Sj)

− p(2)(x)
∣∣∣∣

≤
∑
j∈[K]

∑
x∈Sj

∣∣∣P (x)− p(2)(x)
∣∣∣+

∑
j∈[K]

∑
x∈Sj

P (x)
∣∣∣∣p(2)(Sj)
P (Sj)

− 1
∣∣∣∣

= 2dTV

(
P,p(2)

)
+
∑
j∈[K]

∣∣∣p(2)(Sj)− P (Sj)
∣∣∣ ≤ 4dTV

(
P,p(2)

)
≤ 8ε,

where we used the fact that
∑
j∈[K]

∣∣p(2)(Sj)− P (Sj)
∣∣ =

∑
j∈[K]

∣∣∣∑x∈Sj

(
p(2)(x)− P (x)

)∣∣∣ ≤∑
j∈[K]

∑
x∈Sj

∣∣p(2)(x)− P (x)
∣∣. As dTV

(
P ′,p(2)) is an upperbound on the optimal value of the

optimization problem, we get dTV
(
p′′,p(2)) ≤ 4ε.

The next and last step is to bound dTV(p′′, p̃), and show that it is O(ε) as well. To see why this

will allow us to conclude, note that p′′ is the intermediate distribution that the sampling process we

follow would define, it there was neither extra budget allocated nor water-boundary-correction. Put

differently, p̃ is derived from p′′ by adding the “right amount of extra budget b′j ∈ [0, bj ]” to Sj , then

pouring it to Sj−1 by waterfilling and front-filling; and normalizing afterwards by (1 +
∑
j∈[K] b

′
j)−1.

Writing p̃′′ for the result of the transformation above before the last renormalization step, we can bound

dTV(p′′, p̃) by

2dTV(p′′, p̃) = ‖p′′ − p̃‖1 ≤ ‖p
′′ − p̃′′‖1 + ‖p̃′′ − p̃‖1

≤
∑
j∈[K]

b′j +
∑
j∈[K]

fj +
∑
x∈[n]

∣∣∣∣∣∣
(

1 +
∑
j∈[K]

b′j

)
p̃(x)− p̃(x)

∣∣∣∣∣∣
≤
∑
j∈[K]

b′j +
∑
j∈[K]

fj + |
(

1 +
∑
j∈[K]

b′j

)
− 1| = 2

∑
j∈[K]

b′j +
∑
j∈[K]

fj

where fj ≥ 0 is defined as the amount of weight moved from Hj to the first element of the domain

during the execution of water-boundary-correction, if front-fill is called, and the bound on ‖p′′ − p̃′′‖1
comes from the fact that p̃′′ pointwise dominates p′′, and has a total additional

∑
j∈[K] b

′
j weight.

It then suffices to bound the quantities
∑
j∈[K] fj and

∑
j∈[K] b

′
j , using for this the fact that by the

triangle inequality p′′ is itself (6ε)-close to monotone. The at most K intervals where p′′ violates

monotonicity (which are fixed by using the b′j’s) are disjoint, and centered at the boundaries between

consecutive superbuckets: i.e., each of them is in a interval Vj ⊆ Lj−1 ∪Hj ( Sj−1 ∪ Sj . Because of

269



this disjointness, each transformation of p′′ into a monotone distribution must add weight in Vj ∩ Lj−1

or subtract some from Vj ∩Hj to remove the corresponding violation. By definition of b′j (as minimum

amount of additional weight to bring to Lj−1 when spreading weight from Hj to Lj−1), this implies

that any such transformation has to “pay” at least b′j/2 (in total variation distance) to fix violation

Vj . From the bound on dTV(p′′,M), we then get
∑
j∈[K] b

′
j ≤ 12ε. A similar argument shows than∑

j∈[K] fj ≤ 12ε as well, which in turn yields dTV(p′′, p̃) ≤ 18ε.

• Putting these bounds together, we obtain

dTV(p, p̃) ≤ dTV

(
p,p(1)

)
+ dTV

(
p(1),p(2)

)
+ dTV

(
p(2),p′′

)
+ dTV(p′′, p̃)

≤ 3ε+ ε+ 4ε+ 18ε = 26ε.

We are finally in position of proving the main result of the section:

Proof of Theorem 5.5.7. The theorem follows from Claim 5.5.10, Claim 5.5.11, Lemma 5.5.12 and Lemma 5.5.13,

setting K = mL =
√
m` (where ` = O(logn/ε) as defined in the Birgé decomposition).

5.6 Constrained Error Models

In the previous sections, no assumption was made on the form of the error, only on the amount. In this section,

we suggest a model of errors capturing the deletion of a whole “chunk” of the distribution. We refer to this

model as the missing data model, where we assume that some ε probability is removed by taking out all

the weight of an arbitrary interval [i, j] for 1 ≤ i < j ≤ n and redistributing it on the rest of the domain

as per rejection sampling.12 We show that one can design sampling improvers for monotone distributions

with arbitrarily large amounts of error. Hereafter, p will denote the original (monotone) distribution (before

the deletion error occured), and p′ = pi,j the resulting (faulty) one, to which the sampling improver has

access. Our sampling improver follows what could be called the “learning-just-enough” approach: instead of

attempting to approximate the whole unaltered original distribution, it only tries to learn the values of i, j;

and then generates samples “on-the-fly.” At a high level, the algorithm works by (i) detecting the location of

the missing interval (drawing a large (but still independent of n) number of samples), then (ii) estimating the

weight of this interval under the original, unaltered distribution; and finally (iii) filling this gap uniformly by

moving the right amount of probability weight from the end of the domain. To perform the first stage, we shall

follow a paradigm first appeared in [63], and utilize testing as a subroutine to detect “when enough learning

has been done.”

12That is, if p was the original distribution, the faulty one p(i,j) is formally defined as (1 + ε)1[n]\[i,j] · p − ε · u[i,j], where
ε = p([i, j]).
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Theorem 5.6.1. For the class of distributions following the “missing data” error model, there exists a batch

sampling improver MISSING-DATA-IMPROVER, that, on input ε, q, δ and α, achieves parameters ε1 = O(ε)

and any ε2 < ε; and has sample complexity Õ
(

1
ε32

log 1
δ

)
independent of ε.

The detailed proof of our approach, as well as the description of MISSING-DATA-IMPROVER, are given in the

next subsection.

5.6.1 Proof of Theorem 5.6.1

Before describing further the way to implement our 3-stage approach, we will need the following lemmata.

The first examines the influence of adding or removing probability weight ε from a distribution, as it is the

case in the missing data model:

Lemma 5.6.2. Let p be a distribution over [n] and ε > 0. Suppose p′ def= (1+ε)p−εp1, for some distribution

p1. Then dTV(p,p′) ≤ ε.

The proof follows from a simple application of the triangle inequality to the `1 distance between p and p′. We

note that the same bound applies if p′ = (1− ε)p + εp1.

The next two lemmata show that the distance to monotonicity of distributions falling into this error model

can be bounded in terms of the probability weight right after the missing interval.

Lemma 5.6.3. Let p be a monotone distribution and p′ = p(i,j) be the faulty distribution. If p([j + 1, 2j −

i+ 1]) > ε, then p′ is ε/2-far from monotone.

Proof. Let L def= j − i be the length of the interval where the deletion occurred. Since the interval [j + 1, 2j −

i+ 1] has the same length as [i, j] and weight p > ε, the average weight of an element is at least ε
L . Every

monotone distribution M should also be monotone on the interval [i, 2j − i+ 1]: therefore, one must have

M([i, j]) ≥ M([j + 1, 2j − i + 1]). Let q def= M([i, j]). As p′([i, j]) = 0, we get that 2dTV(p′, p̃) ≥ q.

On one hand, if q < p then at least q − p weight must have been “removed” from [i, 2j − i+ 1] to achieve

monotonicity, and altogether 2dTV(p′,M) ≥ q + (p− q) = p. On the other hand, if q ≥ p we directly get

2dTV(p′,M) ≥ q ≥ p. In both cases,

dTV(p′,M) ≥ p/2 ≥ ε/2

and p′ is ε/2-far from monotone.

Lemma 5.6.4. Let p be a monotone distribution and p′ = p(i,j) as above. If p′([j + 1, 2j − i+ 1]) < ε/2,

then p′ is ε-close to monotone.

Proof. We will constructively define a monotone distribution M which will be ε-close to p′. Let p def=

p′([j + 1, 2j − i+ 1]) < ε/2. According to the missing data model, p′ should be monotone on the intervals
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[1, i− 1] and [j+ 1, n]. In particular, the probability weight of the last element of [j+ 1, 2j− i+ 1] should be

below the average weight of the interval, i.e. for all k ≥ 2j − i+ 1 one has p′(k) ≤ p′(2j − i+ 1) < p
j−i+1 .

So, if we let the distribution M (that we are constructing) be uniform on the interval [j + 1, 2j − i+ 1]

and have also total weight p there, monotonicity will not be violated at the right endpoint of the interval; and

the `1 distance between p′ and M in that interval will be at most 2p. ”Taking” another p probability weight

from the very end of the domain and moving it to the interval [i, j] (where it is then uniformly spread) to finish

the construction of M adds at most another 2p to the `1 distance. Therefore, 2dTV(p′,M) ≤ 2p+ 2p < 2ε;

and M is monotone as claimed.

The sampling improver is described in Algorithm 35.

Algorithm 35 MISSING-DATA-IMPROVER

Require: ε, ε2 < ε, δ ∈ (0, 1) and q ≥ 1, sample access to p′.
1: Start . PREPROCESSING
2: Draw m

def= Θ̃
(

1
ε32

log 1
δ

)
samples from p′ = pi,j .

3: Run the algorithm of Lemma 5.6.5 on them to get an estimate (a, b) of the unknown (i, j) or the value
close.

4: Run the algorithm of Lemma 5.6.6 on them to get an estimate γ of p′([b+ 1, 2b− a+ 1]), and values
c, γ′ such that |p′([c, n])− γ′| ≤ ε3/2

2 .
5: End
6: Start . GENERATING
7: for i from 1 to q do
8: Draw si from p′.
9: if the second step of PREPROCESSING returned close, or γ < 5ε3/2

2 then
10: return si . The distribution is already ε2-close to monotone; do not change it.
11: end if
12: if si ∈ [c, n] then . Move γ weight from the end to [a, b]
13: With probability γ/γ′, return a uniform sample from [a, b]
14: Otherwise, return si
15: else if si ∈ [b+ 1, 2b− a+ 1] then
16: return a uniform sample from [b+ 1, 2b− a+ 1]
17: else
18: return si . Do not change the part of p′ that need not be changed.
19: end if
20: end for
21: End

Implementing (i): detecting the gap

Lemma 5.6.5 (Lemma (i)). There exists an algorithm that, on input α ∈ (0, 1/3) and δ ∈ (0, 1), takes

Õ
( 1
α6 log 1

δ

)
samples from p′ = pi,j and outputs either two elements a, b ∈ [n] or close such that the

following holds. With probability at least 1− δ,

• if it outputs elements a, b, then (a) [i, j] ⊆ [a, b] and (b) p′([a, b]) ≤ 3α2;

• if it outputs close, then p′ is α2-close to monotone.
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Proof. Inspired by techniques from [63], we first partition the domain into t = O
(
1/α2) intervals I1, . . . , It

of roughly equal weight as follows. By taking O
( 1
α6 log 1

δ

)
samples, the DKW inequality ensures that with

probability at least 1− δ/2 we obtain an approximation p̂ of p′, close up to α3/5 in Kolmogorov distance.

We hereafter assume this holds. For our partitioning to succeed, we first have to take care of the “big elements,”

which by assumption on p′ (which originates from a monotone distribution) must all be at the beginning. In

more detail, let

r
def= max

{
x ∈ [n] : p̂(x) ≥ 4α3

5

}
and B def= {1, . . . , r} be the set of potentially big elements. Note that if p′(x) ≥ α3, then necessarily x ∈ B.

This leaves us with two cases, depending on whether the “missing data interval” is amidst the big elements, or

in the tail part of the support.

• If [i, j] ⊆ B: it is then straightforward to exactly find i, j, and output them as a, b. Indeed all elements

x ∈ B have, by monotonicity, either p′(x) ≥ p′(r) ≥ 3α3

5 , or p′(x) = 0 (the latter if and only if

x ∈ [i, j]). Thus, one can distinguish between x ∈ [i, j] (for which p̂(x) ≤ α3/5) and x /∈ [i, j] (in

which case p̂(x) ≥ 2α3/5).

• If [i, j] 6⊆ B: then, as r /∈ [i, j] (since p′(r) > 0), it must be the case that [i, j] ⊆ B̄ = {r + 1, . . . , n}.

Moreover, every point x ∈ B̄ is “light:” p′(x) < α3 and p̂(x) < 4α3

5 . We iteratively define I1, . . . , It ⊆

B̄, where Ii = [ri + 1, ri+1]: r1
def= r + 1, rt+1

def= n, and for 1 ≤ i ≤ t− 1

ri+1
def= min

{
s > ri : p̂([ri + 1, x]) ≥ α2 } .

This guarantees that, for all i ∈ [t], p′(Ii) ∈ [α2− 2α3

5 , α2 + 4α3

5 + 2α3

5 ] ⊂ [α2− 3α3

2 , α2 + 3α3

2 ]. (And

in turn that t = O
(
1/α2) as claimed.) Observing that the definition of the missing data error model

implies p′ is 2-modal, we can now use the monotonicity tester of [63, Section 3.4]. This algorithm takes

only O
(
k
ε2 log 1

δ

)
samples (crucially, no dependence on n) to distinguish with probability at least 1− δ

whether a k-modal distribution is monotone versus ε-far from it.

We iteratively apply this tester with parameters k = 2, ε = α2/4 and δ′ = O(δ/t), to each of the at

most t prefixes of the form P`
def= ∪`i=1Ii; a union bound ensures that with probability at least 1−δ/2 all

tests are correct. Conditioning on this, we are able to detect the first interval I`∗ which either contains or

falls after j (if no such interval is found, then the input distribution is already α2-close to monotone and

we output close). In more detail, suppose first no run of the tester rejects (so that close is outputted).

Then, by Lemma 5.6.3, we must have p([j + 1, 2j − i + 1]) ≤ 2 · α2/4 = α2/2, and Lemma 5.6.4

guarantees p′ is then α2-close to monotone.

Suppose now that it rejects on some prefix P`∗ (and accepted for all ` < `∗). As p′ is non-increasing on

[1, j], we must have [i, j] ⊂ P`∗ . Moreover, the tester will by Lemma 5.6.3 reject as soon as an interval

[j + 1, s] ⊆ [j + 1, 2j − i+ 1] of weight α2/2 is added to the current prefix. This implies, as each I`

has weight at least α2/2, that [i, j] ⊆ I`∗−1 ∪ `∗ = [a, b].
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Finally, observe that the above can be performed with O
( 1
α2 · 1

α4 · log t
)

= Õ
( 1
α6 log 1

δ

)
samples, as

claimed (where the first 1/α2 factor comes from doing rejection sampling to run the tester with domain

P` only, which by construction is guaranteed to have weight Ω
(
1/α2)). The overall probability of

failure is at most δ/2 + δ/2 = δ, as claimed.

Implementing (ii): estimating the missing weight Conditioning on the output a, b of Lemma 5.6.5 being

correct, the next lemma explains how to get a good estimate of the total weight we should put back in [a, b] in

order to fix the deletion error.

Lemma 5.6.6. Given p′, α as above, δ ∈ (0, 1) and a, b such that [i, j] ⊆ [a, b] and p′([a, b]) ≤ 3α2, there

exists an algorithm which takes O
( 1
α6 log 1

δ

)
samples from p′ and outputs values γ, γ′ and c such that the

following holds with probability at least 1− δ:

(i) |p′([b+ 1, 2b− a+ 1])− γ| ≤ α3;

(ii) |p′([c, n])− γ′| ≤ α3 and γ′ ≥ γ;

(iii) p′([c, n]) ≥ p′([b+ 1, 2b− a+ 1])− 2α3 and p′([c+ 1, n]) < p′([b+ 1, 2b− a+ 1]) + 2α3;

(iv) γ ≤ 2ε+ 4α3.

Proof. Again by invoking the DKW inequality, we can obtain (with probability at least 1−δ) an approximation

p̂ of p′, close up to α3/2 in Kolmogorov distance. This provides us with an estimate γ of p′([b+1, 2b−a+1])

satisfying the first item (as, for any interval [r, s], p̂([r, s]) is within an additive α3/2 of p′([r, s])). Then,

setting

c
def= max { x ∈ [n] : p̂([x, n]) ≥ γ }

and γ′ def= p̂([c, n]), items (ii) and (iii) follow. The last bound of (iv) derives from an argument identical as

of Lemma 5.6.3 and the promise that p′ is ε-close to monotone: indeed, one must then have p′([b+ 1, 2b−

a+ 1]) ≤ p′([a, b]) + 2ε ≤ 2ε+ 3α2, which with (i) concludes the argument.

To finish the proof of Theorem 5.6.1, we apply the above lemmata with α def= Θ
(√
ε2
)
; and need to show that

the algorithm generates samples from a distribution that is ε2 = O
(
α2)-close to monotone. This is done by

bounding the error encountered (due to approximation errors) in the following parts of the algorithm: when

estimating the weight γ of an interval of equal length adjacent to the interval [a, b], uniformizing its weight on

that interval, and estimating the last γ-quantile of the distribution, in order to move the weight needed to fill

the gap from there. If we could have perfect estimates of the gap ([a, b] = [i, j]), the missing weight γ and

the point c such that p′([c, n]) = γ, the corrected distribution would be monotone, as the probability mass

function in both the gap and the next interval would be at the same “level” (that is, γ
b−a+1 ).

By choice of m, with probability at least 1 − δ the two subroutines of the PREPROCESSING stage

(from Lemma 5.6.5 and Lemma 5.6.6) behave as expected. We hereafter condition on this being the case.
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For convenience, we write I = [a, b], J = [b+ 1, 2b− a+ 1] and K = [c, n], where a, b, c and γ, γ′ are the

outcome of the preprocessing phase.

If the test in Line 9 passes If the preprocessing stage returned either close, or a value γ < 5ε3/2
2 = 5α3,

then we claim that p′ is already O
(
α2)-close to monotone. The first case is by correctness of Lemma 5.6.5; as

for the second, observe that it implies p′(J) < 6α3. Thus, “putting back” (from the tail of the support) weight

at most 6α3 in [i, j] would be sufficient to correct the violation of monotonicity; which yields an O
(
α3)

upperbound on the distance of p′ to monotone.

Otherwise This implies in particular that γ ≥ 5α3, and thus p′(J) ≥ 4α3. By Lemma 5.6.6 (iii), it is then

also the case that p′(K) ≥ 2α3. Then, denoting by p̃ the corrected distribution, we have

p̃(x) =



p′(x) + γ
γ′ ·

p′(K)
|I| if x ∈ I

p′(J)
|J| if x ∈ J

p′(x) · (1− γ
γ′ ) if x ∈ K

p′(x) otherwise.

Distance to p′ From the expression above, we get that

2dTV(p̃,p′) ≤ γ

γ′
p′(K) + 2p′(J) + γ

γ′
p′(K) = 2

(
γ

γ′
p′(K) + p′(J)

)
.

From Lemma 5.6.6, we also know that p′(J) ≤ γ + α3, p′(K) ≤ γ′ + α3 and γ/γ′ ≤ 1, so that

dTV(p̃,p′) ≤ γ

γ′
(γ′ + α3) + γ + α3 ≤ 2(γ + α3) ≤ 4ε+ 10α3 = O(ε).

(Where, for the last inequality, we used Lemma 5.6.6 (iv); and finally the fact that ε2 ≤ ε).

Distance to monotone Consider the distributions M defined as

M(x) =



p′(x) + p′(J)
|I| if x ∈ I

p′(J)
|J| if x ∈ J

p′(x) ·
(

1− p′(J)
p′(K)

)
if x ∈ K

p′(x) otherwise.

We first claim that M is O
(
α2)-close to monotone. Indeed, M is monotone on [a, n] by construction

(and as p′ was monotone on [b, n]). The only possible violations of monotonicity are on [1, b], due to the

approximation of (i, j) by (a, b) – that is, it is possible for the interval [a, i] to now have too much weight,

with M(a− 1) < M(a). But as we have p′([a, b]) ≤ 3α2, the total extra weight of this “violating bump” is
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O
(
α2).
Moreover, the distance between M and p̃ can be upperbounded by their difference on J and K:

2dTV(p̃,M) ≤ 2
∣∣∣∣p′(J)− γ

γ′
p′(K)

∣∣∣∣ ≤ 2α3
1 + α3

p′(K)

1− α3

p′(K)
≤ 6α3

where we used the fact that γ
γ′ ∈

[
p′(J)−α3

p′(K)+α3 ,
p′(J)+α3

p′(K)−α3

]
, and that p′(K) ≥ 2α3. By the triangle inequality, p̃

is then itself O
(
α2)-close to monotone. This concludes the proof of Theorem 5.6.1.

5.7 Focusing on randomness scarcity

5.7.1 Correcting uniformity

In order to illustrate the challenges and main aspects of this section, we shall focus on what is arguably the

most natural property of interest, “being uniform” (i.e. P = {un}). As a first observation, we note that when

one is interested in correcting uniformity on an arbitrary domain Ω, allowing arbitrary amounts of additional

randomness makes the task almost trivial: by using roughly log |Ω| random bits per query, it is possible to

interpolate arbitrarily between p and the uniform distribution. One can naturally ask whether the same can be

achieved while using no – or very little – additional randomness besides the draws from the sampling oracle

itself. As we show below, this is possible, at the price of a slightly worse query complexity. We hereafter focus

once again on the case Ω = [n], and give constructions which achieve different trade-offs between the level of

correction (of p to uniform), the fidelity to the original data (closeness to p) and the sample complexity. We

then show how to combine these constructions to achieve reasonable performance in terms of all the above

parameters. In Section 5.7.1.1, we turn to the related problem of correcting uniformity on an (unknown)

subgroup of the domain, and extend our results to this setting. Finally, we discuss the differences and relations

with extractors in Section 5.7.2.

High-level ideas The first algorithm we describe (Theorem 5.7.1) is a sampling corrector based on a “von

Neumann-type” approach: by seeing very crudely the distribution p as a distribution over two points (the first

and second half of the support [n]), one can leverage the closeness of p to uniform to obtain with overwhelming

probability a sequence of uniform random bits; and use them to generate a uniform element of [n]. The

drawback of this approach lies in the number of samples required from p: namely, Θ̃(logn).

The second approach we consider relies on viewing [n] as the Abelian group Zn, and leverages crucial

properties of the convolution of distributions. Using a robust version of the fact that the uniform distribution is

the absorbing element for this operation, we are able to argue that taking a constant number of samples from

p and outputting their sum obeys a distribution p̃ exponentially closer to uniform (Theorem 5.7.2). This result,

however efficient in terms of getting closer to uniform, does not guarantee anything non-trivial about the

distance p̃ to the input distribution p. More precisely, starting from p which is at a distance ε from uniform, it
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is possible to end up with p̃ at a distance ε′ from uniform, but ε+ Ω(ε′) from p (see Claim 5.8.4 for more

details). In other terms, this improver does get us closer to uniform, but somehow can overshoot in the process,

getting too far from the input distribution.

The third improver we describe (in Theorem 5.7.3) yields slightly different parameters: it essentially

enables one to get “midway” between p and the uniform distribution, and to sample from a distribution p̃

(almost) (ε/2)-close to both the input and the uniform distributions. It achieves so by combining both previous

ideas: using p to generate a (roughly) unbiased coin toss, and deciding based on the outcome whether to

output a sample from p or from the improver of Theorem 5.7.2.

Finally, by “bootstrapping” the hybrid approach described above, one can provide sampling access to an

improved p̂ both arbitrarily close to uniform and (almost) optimally close to the original distribution p (up to

an additive O
(
ε3)), as described in Theorem 5.7.4. Note that this is at a price of an extra log(1/ε2) factor in

the sample complexity, compared to Theorem 5.7.2: in a sense, the price of “staying faithful to the input data.”

Theorem 5.7.1 (von Neumann Sampling Corrector). For any ε < 0.49 (and ε1 = ε) as in the definition, there

exists a sampling corrector for uniformity with query complexity O(logn(log logn+ log(1/δ))) (where δ is

the probability of failure per sample).

Proof. Let p be a distribution over [n] such that dTV(p,u) ≤ ε < 1/2 − c for some absolute constant

c < 1/2 (e.g., c = 0.49), and let S0, S1 denote respectively the sets {1, . . . , n/2} and {n/2 + 1, . . . , n}. The

high-level idea is to see a draw from p as a (biased) coin toss, depending on whether the sample lands in

S0 or S1; by applying von Neumann’s method, we then can retrieve a truly uniform bit at a time (with high

probability). Repeating this logn times will yield a uniform draw from [n]. More precisely, it is immediate by

definition of the total variation distance that |p(S0)− p(S1)| ≤ 2ε, so in particular (setting p def= p(S0)) we

have access to a Bernoulli random variable with parameter p ∈
[ 1

2 − ε,
1
2 + ε

]
.

To generate one uniform random bit (with probability of failure at most δ′ = δ/ logn), it is sufficient to

take in the worst case m def=
⌈
(log 1

1−c )
−1 log 2

δ′

⌉
samples, and stop as soon as a sequence S0S1 or S1S0 is

seen (giving respectively a bit 0 or 1). If it does not happen, then the corrector VN–IMPROVERn outputs fail;

the probability of failure is therefore

Pr[ VN–IMPROVERn outputs fail ] = pm + (1− p)m ≤ 2 · (1− c)m ≤ δ′ = δ

logn.

By a union bound over the logn bits to extract, VN–IMPROVERn indeed outputs a uniform random number

s ∈ [n] with probability at least 1 − δ, using at most m logn = O
(

logn log logn
δ

)
samples—and, in

expectation, only O((logn)/p) = O(logn).

As previously mentioned, we hereafter work modulo n, equating [n] to the Abelian group (Zn,+). This

convenient (and equivalent) view will allow us to use properties of convolutions of distributions over Abelian
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groups,13 in particular the fact that the uniform distribution on Zn is (roughly speaking) an attractive fixed

point for this operation. In particular, taking p to be the (unknown) distribution promised to be ε-close to

uniform, Fact 5.8.3 guarantees that by drawing two independent samples x, y ∼ p and computing z = x+ y

mod n, the distribution of z is (2ε2)-close to the uniform distribution on JnK. This key observation is the

basis for our next result:

Theorem 5.7.2 (Convolution Improver). For any ε < 1√
2 , ε2 and ε1 = ε+ ε2 as in the definition, there exists

a sampling improver for uniformity with query complexity O
(

log 1
ε2

log 1
ε

)
.

Proof. Extending by induction the observation above to a sum of finitely many independent samples, we get

that by drawing k def=
log 1

ε2
−1

log 1
ε−1 independent elements s1, . . . , sk from p and computing

s =
(

k∑
`=1

s` mod n

)
+ 1 ∈ [n]

the distribution p̃ of s is ( 1
2 (2ε)k)-close to uniform; and by choice of k, ( 1

2 (2ε)k) = ε2. As dTV(p, p̃) ≤

dTV(p,u) + dTV(u, p̃) ≤ ε+ ε2, the vacuous bound on the distance between p and p̃ is as stated.

This triggers a natural question: namely, can this “vacuous bound” be improved? That is, setting

ε
def= dTV(p,u) and p(k) def= p ∗ · · · ∗p (k-fold convolution), what can be said about dTV

(
p,p(k)) as a

function of ε and k? Trivially, the triangle inequality asserts that

ε− 2k−1εk ≤ dTV

(
p,p(k)

)
≤ ε+ 2k−1εk ;

but can the right-hand side be tightened further? For instance, one might hope to achieve ε. Unfortunately,

this is not the case: even for k = 2, one cannot get better than ε+ Ω
(
ε2) as an upper bound. Indeed, one can

show that for ε ∈ (0, 1
2 ), there exists a distribution p on Zn such that dTV(p,u) = ε, yet dTV(p,p ∗p) =

ε+ 3
4ε

2 +O
(
ε3) (see Claim 5.8.4 in the appendix).

Theorem 5.7.3 (Hybrid Improver). For any ε ≤ 1
2 , ε1 = ε

2 +2ε3 +ε′ and ε2 = ε
2 +ε′, there exists a sampling

improver for uniformity with query complexity O
(

log 1
ε′

log 1
ε

)
.

Proof. Let p be a distribution over [n] such that dTV(p,u) = ε, and write d0 (resp. d1) for p({1, . . . , n/2})

(resp. p({n/2 + 1, . . . , n})). By definition, |d0 − d1| ≤ 2ε. Define the Bernoulli random variable X by

taking two independent samples s1, s2 from p, and setting X to 0 if both land in the same half of the support

(both in {1, . . . , n/2}, or both in {n/2 + 1, . . . , n}). It follows that p0
def= Pr[X = 0 ] = d2

0 + d2
1 and

p1
def= Pr[X = 1 ] = 2d0d1, i.e. 0 ≤ p0 − p1 = (d1 − d2)2 ≤ 4ε2. In other terms, X ∼ Bern(p0) with

1
2 ≤ p0 ≤ 1

2 + 2ε2.

13For more detail on this topic, the reader is referred to Section 5.8.
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Consider now the distribution

p̃ def= (1− p0)p + p0p(k)

where p(k) =
k times︷ ︸︸ ︷

p ∗ . . . ∗p as in Theorem 5.7.2. Observe than getting a sample from p̃ only requires at most

k + 2 queries14 to the oracle for p. Moreover,

dTV(p̃,u) ≤ (1−p0)dTV(p,u)+p0dTV

(
p(k),u

)
≤ (1−p0)ε+p02k−1εk ≤ ε

2+
(

1
4 + ε2

)
(2ε)k ≤ ε

2+1
2(2ε)k

while

dTV(p̃,p) ≤ p0dTV

(
p(k),p

)
≤ p0

(
ε+ 2k−1εk

)
≤
(

1
2 + 2ε2

)(
ε+ 2k−1εk

)
≤ ε

2 + 2ε3 + 1
2(2ε)k

(recalling for the rightmost step of each inequality that ε ≤ 1
2 ). Taking k = 3, one obtains, with a sample

complexity at most 5, a distribution p̃ satisfying

dTV(p̃,u) ≤ ε

2 + 4ε3, dTV(p̃,p) ≤ ε

2 + 6ε3 .

(Note that assuming ε < 1/4, one can get the more convenient – yet looser – bounds dTV(p̃,u) ≤ 21
32ε <

2ε
3 ,

dTV(p̃,p) ≤ 97ε
128 <

4ε
5 .)

Theorem 5.7.4 (Bootstrapping Improver). For any ε ≤ 1
2 , 0 < ε2 < ε and ε1 = ε− ε2 +O

(
ε3), there exists

a sampling improver for uniformity with query complexity O
(

log2 1
ε2

log 1
ε

)
.

Proof. We show how to obtain such a guarantee – note that the constant 27 in the O
(
ε3) is not tight, and can

be reduced at the price of a more cumbersome analysis. Let α > 0 be a parameter (to be determined later)

satisfying α < ε2, and k be the number of bootstrapping steps – i.e., the number of time one recursively apply

the construction of Theorem 5.7.3 with α. We write pj for the distribution obtained after the jth recursive step,

so that p0 = p and p̂ = pk; and let uj (resp. vj) denote an upper bound on dTV(pj ,u) (resp. dTV(pj ,p)).

Note that by the guarantee of Theorem 5.7.3 and applying a triangle inequality for vj , one gets the following

recurrence relations for (uj)0≤j≤k and (vj)0≤j≤k:

u0 = ε, uj+1 = 1
2uj + α

v0 = 0, vj+1 =
(

1
2uj + 2u3

j + α

)
+ vj

Solving this recurrence for uk gives

uk = ε

2k + 2
(

1− 1
2k

)
α <

ε

2k + 2α (5.5)

14More precisely, 3 with probability 1− p0, and k + 2 with probability p0, for an expected number (k − 1)p0 + 3 ' k/2.
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while one gets an upper bound on vk by writing

vk = vk − v0 =
k−1∑
j=0

(vj+1 − vj) = kα+ 1
2

k−1∑
j=0

uj + 2
k−1∑
j=0

u3
j

= 2kα+
(

1− 1
2k

)
ε− 2

(
1− 1

2k

)
α+ 2

k−1∑
j=0

u3
j

<

(
1− 1

2k

)
ε+ 2

(
k − 1 + 1

2k

)
α︸ ︷︷ ︸

≤kα

+
(
3ε3 + 16ε2α+ 48εα2 + 16kα3)

where we used the expression (5.5) for uj . Since α < ε2 ≤ 1
4 , we can bound the rightmost terms as

16kα3 ≤ kα, 48εα2 < 48ε5 and 16ε2α < 16ε4, so that

vk <

(
1− 1

2k

)
ε+ 3kα+ 3ε3 + 16ε4 + 48ε5 <

(
1− 1

2k

)
ε+ 3kα+ 23ε3 (5.6)

It remains to choose k and α; to get uk ≤ ε2, set k def=
⌈
log ε

ε2(1−ε2)

⌉
≤ log 4ε

3ε2 + 1 and α def= 1
2ε2ε

2, so that
ε

2k ≤ (1− ε2)ε2 and 2α ≤ ε2ε2. Plugging these values in (5.6),

vk <
(ε2<ε)

(
1− ε2(1− ε2)

ε

)
ε+ 3

2kε2ε
2 + 23ε3 = ε− ε2 + 3

2kε2ε
2 + 24ε3 < ε− ε2 + 27ε3

where the last inequality comes from the fact that 3
2k

ε2
ε ≤

3
2 log 8ε

3ε2 ·
ε2
ε ≤ 3. Therefore, we have

dTV(pk,u) ≤ ε2, dTV(pk,p) ≤ ε− ε2 + 27ε3 as claimed. We turn to the number m of queries made along

those k steps; from Theorem 5.7.3, this is at most

m ≤
k−1∑
j=0

⌈
log 1

α − 1
log 1

uj
− 1

⌉
≤ k ·

⌈ log 1
α − 1

log 1
ε − 1

⌉
= O

(
log2 1

ε2

log 1
ε

)

which concludes the proof.

Note that in all four cases, as our improvers do not use any randomness of their own, they always output

according to the same improved distribution: that is, after fixing the parameters ε, ε2 and the unknown

distribution p, then p̂ is uniquely determined, even across independent calls to the improver.

5.7.1.1 Correcting uniformity on a subgroup

Outline It is easy to observe that all the results above still hold when replacing Zn by any finite Abelian

group G. Thus, a natural question to turn to is whether one can generalize these results to the case where the

unknown distribution is close to the uniform distribution on an arbitrary, unknown, subgroup H of the domain

G.

To do so, a first observation is that if H were known, and if furthermore a constant (expected) fraction of the

samples were to fall within it, then one could directly apply our previous results by conditioning samples on
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being in H , using rejection sampling. The results of this section show how to achieve this “identification” of

the subgroup with only a log(1/ε) overhead in the sample complexity. At a high-level, the idea is to take a

few samples, and argue that their greatest common divisor will (with high probability) be a generator of the

subgroup.

Details Let G be a finite cyclic Abelian group of order n, and H ⊆ G a subgroup of order m. We denote by

uH the uniform distribution on this subgroup. Moreover, for a distribution p over G, we write pH for the

conditional distribution it induces on H , that is

∀x ∈ G, pH(x) = p(x)
p(H)1H(x)

which is defined as long as p puts non-zero weight on H . The following lemma shows that if p is close to uH ,

then so is pH :

Lemma 5.7.5. Assume dTV(p,uH) < 1. Then dTV(pH ,uH) ≤ dTV(p,uH).

Proof. First, observe that the assumption implies pH is well-defined: indeed, as dTV(p,uH) = supS⊆G (uH(S)− p(S)),

taking S = H yields 1 > dTV(p,uH) ≥ uH(H)− p(H) = 1− p(H), and thus p(H) > 0.

Rewriting the definition of dTV(pH ,uH), one gets dTV(p,uH) = 1
2

(∑
x∈H

∣∣∣p(x)− 1
|H|

∣∣∣+
∑
x/∈H p(x)

)
;

so that

2dTV(pH ,uH) =
∑
x∈H

∣∣∣∣pH(x)− 1
|H|

∣∣∣∣ ≤∑
x∈H
|pH(x)− p(x)|+

∑
x∈H

∣∣∣∣p(x)− 1
|H|

∣∣∣∣
=
∑
x∈H
|pH(x)− p(x)|+

(
2dTV(p,uH)−

∑
x/∈H

p(x)
)

=
∑
x∈H

p(x)
∣∣∣∣ 1
p(H) − 1

∣∣∣∣+ 2dTV(p,uH)− (1− p(H))

= p(H)
∣∣∣∣ 1
p(H) − 1

∣∣∣∣+ 2dTV(p,uH)− (1− p(H))

= |1− p(H)|+ 2dTV(p,uH)− (1− p(H))

= 2dTV(p,uH).

Let p be a distribution on G promised to be ε-close to the uniform distribution uH on some unknown

subgroup H , for ε < 1
2 − c. For the sake of presentation, we hereafter without loss of generality identify

G to Zn. Let h be the generator of H with smallest absolute values (when seen as an integer), so that

H = {0, h, 2h, 3h, . . . , (m− 1)h}.

Observe that p(H) > 1− 2ε, as 2dTV(p,uH) =
∑
x∈H

∣∣∣p(x)− 1
|H|

∣∣∣+ p(Hc); therefore, if H were known

one could efficiently simulate sample access to pH via rejection sampling, with only a constant factor overhead
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(in expectation) per sample. It would then become possible, as hinted in the foregoing discussion, to correct

uniformity on pH (which is ε-close to uH by Lemma 5.7.5) via one of the previous algorithms for Abelian

groups. The question remains to show how to find H; or, equivalently, h.

Algorithm 36 Algorithm FIND-GENERATOR-SUBGROUP

Require: ε ∈ (0, 1
2 − c], SAMPD with p ε-close to uniform on some subgroup H ⊆ Zn

Ensure: Outputs a generator ĥ of H with probability 1− Õ(ε)
Draw k independent samples s1, . . . , sk from p, for k def= O

(
log 1

ε

)
Compute ĥ = gcd(s1, . . . , sk)
return ĥ

Lemma 5.7.6. Let G, H be as before. There exists an algorithm (Algorithm 36) which, given ε < 0.49 as well

as sample access to some distribution p over G, makes O
(
log 1

ε

)
calls to the oracle and returns an element of

G. Further, if dTV(p,uH) ≤ ε, then with probability at least 1− Õ(ε) its output is a generator of H .

Proof. In order to argue correctness of the algorithm, we will need the following well-known facts:

Fact 5.7.7. Fix any k ≥ 1, and let pn,k be the probability that k independent numbers drawn uniformly at

random from [n] be relatively prime. Then pn,k −−−−→
n→∞

1
ζ(k) (where ζ is the Riemann zeta function).

Fact 5.7.8. One has ζ(x) =
x→∞

1 + 1
2x + o

( 1
2x
)
; and in particular 1

ζ(k) =
k→∞

1− 1
2k + o

( 1
2k
)
.

With this in hand, let k def= O
(
log 1

ε

)
, chosen so that εk = Θ

( 1
2k
)

= Θ
(

ε
log 1

ε

)
. We break the analysis of our

subgroup-finding algorithm in two cases:

Case 1: |H| = Θ(1) This is the easy case: if H only contains constantly many elements (m is a constant of

n and ε), then after taking k samples s1, . . . , sk ∼ p, we have

• s1, . . . , sk ∈ H (event E1) with probability at least (1− ε)k = 1−O(kε);

• the probability that there exists an element of H not hit by any of the si’s is at most, by a union bound,

∑
x∈H

(1− p(x))k ≤ m
(

1− 1
m

+ ε

)k
= 2−Ω(k)

for ε sufficiently small (ε� 1
m ). Let E2 be the event each element of H appears amongst the samples.

Overall, with probability 1 − O(kε) (conditioning on E1 and E2), our set of samples is exactly H , and

gcd(s1, . . . , sk) = gcd(H) = h.

Case 2: |H| = ω(1) This amounts to saying that h = o(n). In this case, taking again k samples s1, . . . , sk ∼

p and denoting by ĥ their greatest common divisor:

• s1, . . . , sk ∈ H (event E1) with probability at least (1− ε)k = 1−O(kε) as before;

• conditioned on E1, note that if the si’s were uniformly distributed in H , then the probability that ĥ = h
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would be exactly pn
h ,k

– as gcd(ha, . . . , hb) = h if and only if gcd(a, . . . , b) = 1, i.e. if a, . . . , b are

relatively prime. In this ideal scenario, therefore, we would have

Pr[ gcd(s1, . . . , sk) = h | E1 ] = pn
h ,k
−−−−→
n→∞

1
ζ(k) = 1−O

(
1
2k

)

by Fact 5.7.7 and our assumption h = o(n).

To adapt this result to our case – where s1, . . . , sk ∼ pH (as we conditioned on E1), it is sufficient to

observe that by the Data Processing Inequality for total variation distance,∣∣∣∣ Pr
s1,...,sk∼pH

[ gcd(s1, . . . , sk) = h ]− Pr
s1,...,sk∼uH

[ gcd(s1, . . . , sk) = h ]
∣∣∣∣ ≤ dTV

(
p⊗kH ,u⊗kH

)
≤ kε

so that in our case

Pr[ gcd(s1, . . . , sk) = h | E1 ] ≥ pn
h ,k
− kε −−−−→

n→∞

1
ζ(k) − kε = 1−O

(
1
2k

)
= 1−O

(
ε

log 1
ε

)
(5.7)

In either case, with probability at least 1 − Õ(ε), we find a generator h of H , acting as a (succinct)

representation of H which allows us to perform rejection sampling.

This directly implies the theorem below: any sampling improver for uniformity on a group directly yields

an improver for uniformity on an unknown subgroup, with essentially the same complexity.

Theorem 5.7.9. Suppose we have an (ε, ε1, ε2)-sampling improver for uniformity over Abelian finite cyclic

groups, with query complexity q(ε, ε1, ε2). Then there exists an (ε, ε1, ε2)-sampling improver for uniformity

on subgroups, with query complexity

O

(
log 1

ε
+ q(ε, ε1, ε2) log q(ε, ε1, ε2)

)

Proof. Proof is straightforward (rejection sampling over the subgroup, once identified: constant probability of

hitting it, so by trying at most O(log q) draws per samples before outputting fail, one can provide a sample

from pH to the original algorithm with probability 1− 1/10q, for each of the (at most) q queries).

5.7.2 Comparison with randomness extractors

In the randomness extractor model, one is provided with a source of imperfect random bits (and sometimes an

additional source of completely random bits), and the goal is to output as many random bits as possible that

are close to uniformly distributed. In the distribution corrector model, one is provided with a distribution that

is close to having a property P , and the goal is to have the ability to generate a similar distribution that has

property P .

One could therefore view extractors as sampling improvers for the property of uniformity of distributions
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(i.e. P = {un}): indeed, both sampling correctors and extractors attempt to minimize the use of extra

randomness. However, there are significant differences between the two settings. A first difference is that

randomness extractors assume a lower bound on the min-entropy15 of the input distribution, whereas sampling

improvers assume the distribution to be ε-close to uniform in total variation distance. Note that the two

assumptions are not comparable.16Secondly, in both the extractor and sampling improver models, since the

entropy of the output distribution should be larger, one would either need more random bits from the weak

random source or additional uniform random bits. Our sampling improvers do not use any extra random bits,

which is also the case in deterministic extractors, but not in other extractor constructions. However, unlike the

extractor model, in the sampling improver model, there is no bound on the number of independent samples

one can take from the original distribution. Tight bounds and impossibility results are known for both general

and deterministic extractors [166, 145], in particular in terms of the amount of additional randomness required.

Because of the aforementioned differences in both the assumptions on and access to the input distribution,

these lower bounds do not apply to our setting – which explains why our sampling improvers avoid this need

for extra random bits.

5.7.3 Monotone distributions and randomness scarcity

In this section, we describe how to utilize a (close-to-monotone) input distribution to obtain the uniform

random samples some of our previous correctors and improvers need. This is at the price of a Õ(logn)-sample

overhead per draw, and follows the same general approach as in Theorem 5.7.1. We observe that even if

this seems to defeat the goal (as, with this many samples, one could even learn the distribution, as stated

in Lemma 5.5.1), this is not actually the case: indeed, the procedure below is meant as a subroutine for these

very same correctors, emancipating them from the need for truly additional randomness – which they would

require otherwise, e.g. to generate samples from the corrected or learnt distribution.

Lemma 5.7.10 (Randomness from (almost) monotone). There exists a procedure which, which, given ε ∈

[0, 1/3) and δ > 0, as well as sample access to a distribution p guaranteed to be ε-close to monotone, either

returns

• “point mass,” if p is ε-close to the point distribution17 on the first element;

• or a uniform random sample from [n];

with probability of failure at most δ. The procedure makes O
( 1
ε2 log 1

δ

)
samples from p in the first case, and

O
(

logn
ε log logn

δ

)
in the second.

15The min-entropy of a distribution p is defined as H∞(p) = log 1
maxi p(i) .

16For example, the min-entropy of a distribution which is ε-close to uniform can range from log(1/ε) to Ω(logn). Conversely, the
distance to uniformity of a distribution which has high min-entropy can also vary significantly: there exist distributions with min-entropy
Ω(logn) but which are respectively Ω(1)-far from and O(1/n)-close to uniform.

17The Dirac distribution δ1 defined by δ1(1) = 1, which can be trivially sampled from without the use for any randomness by always
outputting 1.
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Proof. By taking O
(
log(1/δ)/ε2) samples, the algorithm starts by approximating by F̂ the cdf F of the

distribution up to an additive ε
4 in `∞. Then, defining

m
def= min

{
i ∈ [n] : F̂ (i) ≥ 1− ε

2

}
so that F (m) ≥ 1− 3ε

4 . According to the value of m, we consider two cases:

• If m = 1, then p is ε-close to the (monotone) distribution δ1 which has all weight on the first element;

this means we have effectively learnt the distribution, and can thereafter consider, for all purposes, δ1 in

lieu of p.

• If m > 1, then p(1) < 1 − ε
4 and we can partition the domain in two sets S0

def= {1, . . . , k} and

S1
def= {k, . . . , n}, by setting

k
def= min

{
i ∈ [n] : F̂ (i) < 1− ε

2

}
By our previous check we know that this quantity is well-defined. Further, this implies that p(S0) < 1− ε

4

and p(S1) > ε
4 (the actual values being known up to ± ε4 ). p being ε-close to monotone, it also must be the

case that

p(S0) ≥ k

k + 1

(
1− 3ε

4

)
− 2ε ≥ 1

2

(
1− 3ε

4

)
− 2ε ≥ 1

2 −
19ε
8

since F̂ (k+1) ≥ 1− ε
2 implies p({1, . . . , k})+p(k) = p({1, . . . , k+1}) ≥ 1− 3ε

4 . By setting p def= p(S0),

this means we have access to a Bernoulli random variable with parameter p ∈
[ 1

2 − 3ε, 1− ε
4
]
. As in the proof

of Theorem 5.7.1 (the constant c being replaced by min
(
ε
4 ,

1
2 − 3ε

)
), one can then leverage this to output with

probability at least 1− δ a uniform random number s ∈ [n] using O
(

logn
ε log logn

δ

)
samples—and O

(
logn
ε

)
in expectation.

5.8 On convolutions of distributions over an Abelian finite cyclic group

Definition 5.8.1. For any two probability distributions p1, p2 over a finite group G (not necessarily Abelian),

the convolution of p1 and p2, denoted p1 ∗p2, is the distribution on G defined by

p1 ∗p2(x) =
∑
g∈G

p1(xg−1)p2(g)

In particular, if G is Abelian, p1 ∗p2 = p2 ∗p1.

Fact 5.8.2. The convolution satisfies the following properties:

(i) it is associative:

∀p1,p2,p3, p1 ∗(p2 ∗p3) = (p1 ∗p2) ∗p3 = p1 ∗p2 ∗p3 (5.8)
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(ii) it has a (unique) absorbing element, the uniform distribution u(G):

∀p, u(G) ∗p = u(G) (5.9)

(iii) it can only decrease the total variation:

∀p1,p2,p3, dTV(p1 ∗p2,p1 ∗p3) ≤ dTV(p2,p3) (5.10)

For more on convolutions of distributions over finite groups, see for instance [78] or [24].

Fact 5.8.3 ([129]). Let G be a finite Abelian group, and p1, p2 two probability distributions over G. Then,

the convolution of p1 and p2 satisfies

dTV(u(G) ,p1 ∗p2) ≤ 2dTV(u(G) ,p1)dTV(u(G) ,p2) (5.11)

where u(G) denotes the uniform distribution on G. Furthermore, this bound is tight.

Claim 5.8.4. For ε ∈ (0, 1
2 ), there exists a distribution p on Zn such that dTV(p,u) = ε, yet dTV(p,p ∗p) =

ε+ 3
4ε

2 +O
(
ε3) > ε.

Proof. Inspired by—and following—a question on MathOverflow ([128]). Setting δ = 1 − ε > 1/2, and

taking pA to be uniform on a subset A of Zn with |A| = δn, one gets that dTV(pA,u) = ε, and yet

dTV(pA,pA ∗pA) = 1
2‖pA − pA ∗pA‖1 = 1

2
∑
g∈G

∣∣∣∣∣1A(g)
|A|

− r(g)
|A|2

∣∣∣∣∣ = 1− 1
|A|2

∑
a∈A

r(a)

where r(g) is the number of representations of g as a sum of two elements of A (as one can show that

pA ∗pA(g) = |A|−2
r(g)). Fix A to be the interval of length δn centered around n/2, that is A = {`, . . . , L}

with

`
def= 1− δ

2 n, L
def= 1 + δ

2 n

Computing the quantity
∑
a∈A r(a) amounts to counting the number of pairs (a, b) ∈ A × A whose sum

(modulo n) lies in A. For convenience, define k = (1− δ)n and K = δn:

• for k ≤ a ≤ K, a + b ranges from ` + a ≤ L to L + a ≥ ` + n, so that modulo n exactly

|A| − |Ac| = (2δ − 1)n elements of A are reached (each of them exactly once);

• for ` ≤ a < k, a+ b ranges from `+ a < L to L+ a < `+ n, so that the elements of A not obtained

are those in the interval {`, `+ a− 1} – there are a of them – and again the others are obtained exactly

once;

• for K < a ≤ L, a+ b ranges from L < `+ a ≤ n to L+ a ≤ K + n, so that the elements of A not

obtained are those in the interval {L + a − n + 1, L} – there are n − a of them – and as before the
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others are hit exactly once.

It follows that

∑
a∈A

r(a) = (K − k + 1)(2δ − 1)n+
k−1∑
a=`

(δn− a) +
L∑

a=K+1
(δn− (n− a))

= (2δ − 1)(2δ − 1)n2 +
k−1∑
a=`

(δn− a) +
L∑

a=K+1
(a− (1− δ)n) (the 2 sums are equal)

= (2δ − 1)2n2 + 2 · n
2

8 (7δ − 3)(1− δ) +O(n)

= 1
4
(
4(4δ2 − 4δ + 1) + (7δ − 3)(1− δ)

)
n2 +O(n) = 1

4
(
9δ2 − 6δ + 1

)
n2 +O(n)

=
(

1− 3ε+ 9
4ε

2
)
n2 +O(n)

and thus

dTV(pA,pA ∗pA) = 1− 1
|A|2

∑
a∈A

r(a) = 1−
1− 3ε+ 9

4ε
2

(1− ε)2 +O

(
1
n

)
= ε+ 3

4ε
2 +O

(
ε3)

(as ε = ω(1/ 3
√
n)).

287



Conclusion

For the Snark was a Boojum, you see.

Lewis Carroll, The Hunting of the Snark

In this dissertation, we have pursued a three-pronged approach towards a better understanding of distribu-

tion testing and what lies beyond. First, placing ourselves in the standard setting of distribution testing, we

advocated for a paradigm shift: by, instead of tackling each new distribution testing problem in an ad hoc way,

developing general tools and algorithms that can be used for any of these problems. We contributed to that

shift by providing two widely applicable algorithmic approaches – one based on shape constraints, the other

on properties of the Fourier transform, as well as two lower bound frameworks – one based on reductions

between distribution testing questions, and the other from communication complexity.

Second, we departed from this standard “sample-only” setting, which – albeit the most natural and

conservative – fails to capture many situations of interest, and can be for those significantly too conservative.

We introduced two incomparable generalizations of this setting, respectively the conditional and extended

oracle access models; and explored the power and limitations of testing algorithms in these new models, for a

wide range of fundamental questions.

Finally, we went beyond distribution testing and described a new algorithmic primitive, that of a sampling

corrector. We studied some of the applications of this new notion, and investigated its relation to the fields

of distribution testing and learning. Of an exploratory nature, our work opens the door to an entirely new

research direction, which we believe will lead to new insights and applications in learning theory.

Open questions and future work

In spite of the length of this dissertation and our best efforts, the results we obtained here leave many promising

questions unanswered, of which we list a few below.

Instance-optimality, communication complexity, and interpolation theory In Section 3.2, we instanti-

ated our communication complexity methodology to obtain an “instance-optimal” lower bound on the problem

of identity testing. This lower bound allowed us to establish a connection between distribution testing and the

seemingly unrelated field of interpolation theory from functional analysis, leading to new insights on a result

of Valiant and Valiant [169]. Two questions immediately come to mind:
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Question 5.8.5. Can one leverage this methodology to obtain lower bounds on closeness testing18 via a

reduction from communication complexity?

Question 5.8.6. What other connections between distribution testing and interpolation theory can be made?

As a concrete example, is there a analogous characterization of the sample complexity of tolerant identity

testing in terms of the K-functional between some `p and `q spaces?

As an aside, we remark that defining what “instance-optimality” should mean in the case of identity testing

(or even in the case of testing a given property P exhibiting some obvious structure) is rather intuitive: namely,

the parameter should now be a functional of the (known) reference distribution p, instead of the (also known)

domain size n. Defining instance-optimality for closeness testing, however, is less straightforward: indeed,

there is no longer any reference distribution, as both “players” p,q are unknown. This leads to our next

question:

Question 5.8.7. How to define “instance-optimality” for closeness testing of two distributions in a meaningful

and robust way? Does such a notion inherently require adaptivity from the testing algorithms?

(We note that Diakonikolas and Kane do study this question in [80]; it is not entirely obvious to us, however,

that the notion of instance-optimality they rely on is the “right” one.)

Coding Theory The results of Section 3.2 crucially hinged on the use of “good” codes, with quite specific

requirements – which conveniently happened to exist. In a recent work with Tom Gur [47] on property (not

distribution) testing, we established an “adaptivity hierarchy theorem” for property testing: there too, several

crucial arguments were contingent on the existence of error-correcting codes satisfying a plethora of unlikely

conditions. There too, such codes turned out to be waiting for us in the literature, and the proofs went through.

Question 5.8.8. Can we find more applications of coding theory in property (and specifically distribution)

testing, or even two-way connections between testing and error-correcting codes?

Sampling correction In Chapter 5, we introduced the notions of sampling correctors and improvers, and

studied some of their applications. We believe investigating further this new paradigm and its interplay with

other areas of computational learning to be a fruitful research direction; specifically, we ask the following two

questions.

Question 5.8.9. Is there a sampling corrector (or even improver) for independence of probability distributions

over [n]d with (amortized) rate r < 1/d, in the sub-learning regime? That is, is there a sampling corrector

which, on average, requires strictly fewer than d samples from a close-to-product distribution p on [n]d

to produce one sample from a corrected product distribution p′ (and does not do so by first learning the

distribution p)?

18Recall that closeness testing problem asks to distinguish p = q from dTV(p,q) > ε, where both p,q ∈ ∆([n]) are unknown.
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The second leans towards more applied considerations; we consider it of significant practical interest:

Question 5.8.10. Can one revisit the existing literature on data imputation under the viewpoint of sampling

correction, and leverage results in the latter to obtain new methods to systematically and rigorously handle

missing data?

Lower bounds for conditional sampling One punchline from Chapter 4 is that proving lower bounds in

the conditional sampling model is hard. Although the reduction technique from Section 3.2, or the concept of

“adaptive core tester” from [54] (see also [1]) can be used to obtain such results, we have staggeringly few

methods to argue about what adaptivity allows the testing algorithms to do.

Question 5.8.11. Can we develop a general information-theoretic characterization of what an algorithm learns

by interacting with a conditional sampling (COND) oracle? Further, can we exploit this characterization to

obtain a general lower bound technique in the conditional sampling setting?

Distribution testing beyond the discrete setting In contrast with the situation in distribution learning,

there is no clear notion of how to generalize distribution testing to continuous distributions. Indeed, the

stringency of the total variation metric implies that, for a naïve extension from the discrete to the continuous

case, the sample complexity of most testing questions immediately becomes infinite. One workaround would

be to restrict the class of probability distributions, asking that the unknown distribution p be “smooth enough”

(instead of arbitrary). This solution, however, strikes us as lacking in generality; instead, we believe changing

the metric to be a more elegant path.

Question 5.8.12. Let ∆([0, 1]) be the set of continuous probability distributions on [0, 1], without smoothness

assumptions. What is the “right” notion of metric to consider for distribution testing over ∆([0, 1])?

We note that a natural and promising idea is the Earth mover’s distance (also known as Wasserstein), e.g. with

regard to L1.19 We would welcome a general theory of distribution testing of continuous distributions in Earth

mover’s distance with open arms, and great interest.

19The use of Earth mover’s distance (EMD) in distribution testing was considered in [12]; however, the authors rely on discretization
of the domain and use total variation as a proxy for testing in EMD, which strikes us as somehow sidestepping the question.
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Most of the contents of this dissertation have appeared somewhere in some form.
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submission; a technical report is available at [45].

Chapter 3 is again based on two papers: the first is [51]. The second, “Distribution Testing Lower Bounds

via Reductions from Communication Complexity,” is joint work with Eric Blais and Tom Gur, and appeared

in the Proceedings of the 32nd Computational Complexity Conference [34].

Chapter 4 once more contains research from two papers. The first, “Testing probability distributions using

conditional samples,” is joint work with Dana Ron and Rocco Servedio, and appeared in the SIAM Journal on

Computing [49]. The second, “Testing Probability Distributions Underlying Aggregated Data,” is joint work

with Ronitt Rubinfeld, and appeared in the Proceedings of the 41st International Colloquium on Automata,

Languages and Programming [50].
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Deferred proofs

We here give the proof of Lemma 1.4.8, restated below:

Lemma 1.4.8 (Adapted from [82, Theorem 11]). There exists an algorithm CHECK-SMALL-`2 which, given
parameters ε, δ ∈ (0, 1) and c ·

√
|I|/ε2 log(1/δ) independent samples from a distribution p over I (for some

absolute constant c > 0), outputs either yes or no, and satisfies the following.

• If ‖p− uI‖2 > ε/
√
|I|, then the algorithm outputs no with probability at least 1− δ;

• If ‖p− uI‖2 ≤ ε/2
√
|I|, then the algorithm outputs yes with probability at least 1− δ.

Proof. We first describe an algorithm that distinguishes between ‖p− u‖22 ≥ ε2/n and ‖p− u‖22 < ε2/(2n)
with probability at least 2/3, using C ·

√
n
ε2 samples. Boosting the success probability to 1− δ at the price of a

multiplicative log 1
δ factor can then be achieved by standard techniques.

Similarly as in the proof of Theorem 11 (whose algorithm we use, but with a threshold τ def= 3
4
m2ε2

n instead
of 4m√

n
), define the quantities

Zk
def=
(
Xk −

m

n

)2
−Xk, k ∈ [n]

and Z def=
∑n
k=1 Zk, where the Xk’s (and thus the Zk’s) are independent by Poissonization, and Xk ∼

Poisson(mp(k)). It is not hard to see that EZk = ∆2
k, where ∆k

def= ( 1
n −p(k)), so that EZ = m2‖p− u‖22.

Furthermore, we also get

VarZk = 2m2
(

1
n
−∆k

)2
+ 4m3

(
1
n
−∆k

)
∆k

so that

VarZ = 2m2

(
n∑
k=1

∆2
k + 1

n
− 2m

n∑
k=1

∆3
k

)
(12)

(after expanding and since
∑n
k=1 ∆k = 0).

Soundness Almost straight from [82], but the threshold has changed. Assume ∆2 def= ‖p− u‖22 ≥
ε2/n; we will show that Pr[Z < τ ] ≤ 1/3. By Chebyshev’s inequality, it is sufficient to show that τ ≤
EZ −

√
3
√

VarZ, as
Pr
[
EZ − Z >

√
3
√

VarZ
]
≤ 1/3 .

As τ < 3
4EZ, arguing that

√
3
√

VarZ ≤ 1
4EZ is enough, i.e. that 48 VarZ ≤ (EZ)2. From (12), this is

equivalent to showing

∆2 + 1
n
− 2m

n∑
k=1

∆3
k ≤

m2∆4

96 .

We bound the LHS term by term.

• As ∆2 ≥ ε2

n , we get m2∆2 ≥ C2

ε2 , and thus m2∆4

288 ≥
C2

288ε2 ∆2 ≥ ∆2 (as C ≥ 17 and ε ≤ 1).

• Similarly, m
2∆4

288 ≥
C2

288ε2 ·
ε2

n ≥
1
n .
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• Finally, recalling that20

n∑
k=1
|∆k|3 ≤

(
n∑
k=1
|∆k|2

)3/2

= ∆3

we get that
∣∣∣2m∑n

k=1 |∆k|3
∣∣∣ ≤ 2m∆3 = m2∆4

288 ·
2·288
m∆ ≤

m2∆4

288 , using the fact that m∆
2·288 ≥

C
576ε ≥ 1

(by choice of C ≥ 576).

Overall, the LHS is at most 3 · m
2∆4

288 = m2∆4

96 , as claimed.

Completeness Assume ∆2 = ‖p− u‖22 < ε2/(4n). We need to show that Pr[Z ≥ τ ] ≤ 1/3. Cheby-
shev’s inequality implies

Pr
[
Z − EZ >

√
3
√

VarZ
]
≤ 1/3

and therefore it is sufficient to show that

τ ≥ EZ +
√

3
√

VarZ

Recalling the expressions of EZ and VarZ from (12), this is tantamount to showing

3
4
m2ε2

n
≥ m2∆2 +

√
6m

√√√√∆2 + 1
n
− 2m

n∑
k=1

∆3
k

or equivalently

3
4
m√
n
ε2 ≥ m

√
n∆2 +

√
6

√√√√1 + n∆2 − 2nm
n∑
k=1

∆3
k .

Since
√

1 + n∆2 − 2nm
∑n
k=1 ∆3

k ≤
√

1 + n∆2 ≤
√

1 + ε2/4 ≤
√

5/4, we get that the second term is
at most

√
30/4 < 3. All that remains is to show that m

√
n∆2 ≥ 3m ε2

4
√
n
− 3. But as ∆2 < ε2/(4n),

m
√
n∆2 ≤ m ε2

4
√
n

; and our choice of m ≥ C ·
√
n
ε2 for some absolute constant C ≥ 6 ensures this holds.

20For any sequence x = (x1, . . . , xn) ∈ Rn, p > 0 7→ ‖x‖p is non-increasing. In particular, for 0 < p ≤ q <∞,(∑
i

|xi|q
)1/q

= ‖x‖q ≤ ‖x‖p =

(∑
i

|xi|p
)1/p

.

To see why, one can easily prove that if ‖x‖p = 1, then ‖x‖qq ≤ 1 (bounding each term |xi|q ≤ |xi|p), and therefore ‖x‖q ≤ 1 = ‖x‖p.
Next, for the general case, apply this to y = x/‖x‖p, which has unit `p norm, and conclude by homogeneity of the norm.
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