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ABSTRACT

Quantitative approaches for profiling the T cell
receptor repertoire in human tissues

Boris Grinshpun

The study of B and T cell receptor repertoires from high throughput sequencing is a recent

development that allows for unprecedented resolution and quantification of the adaptive

immune response. The immense diversity and long tailed distribution of these repertoires

has up until now limited such studies to expanded clonal signatures or to analysis of imprecise

signals with limited dynamic range collected by techniques such as radioactive and fluorescent

labeling. This thesis presents a number of quantitative methods to characterize the repertoire

and examine the questions of sequence diversity and inter-repertoire divergence of T cell

repertoires. These approaches attempt to accurately parametrize the inherent distribution of

T cell clones drawing from statistical tools derived from ecological literature and information

theory.

The methods presented are applied to T cell analyses of various tissue compartments

of the human body, including peripheral blood mononucleocytes, thymic tissues, spleen,

inguinal lymph nodes, lung lymph nodes and the brain. A number of applications are

explored with strong implications for translational use in medicine. Novel insights are made

into the mechanism of maintenance and compartmentalization of naïve T cells from human

donors of many different ages. Diversity and divergence of the tumor infiltrating sequence

repertoire is measured in low grade gliomas and glioblastomas from cancer patients, and



potential sequence based biomarkers are assessed for studying glioma phenotype progression.

A careful investigation of the immune response to allogeneic stimulus reveals the effect of

HLA on sequence sharing and diversity of the alloresponse, and quantifies for the first time

using sequence data the fraction of T cells in a repertoire that are alloreactive.

The use of repertoire sequencing and mathematical models within immunology is a new

and emerging concept within the rapidly expanding field of systems immunology and will

undoubtedly have a profound impact on the future of immunology research. It is hoped

that the tools presented in this thesis will give insight into how to quantitatively explore the

breadth and depth of the T cell receptor repertoire, and provide future directions for TCR

repertoire analysis.
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Chapter 1

Introduction

The field of immunology began with the realization that infectious diseases have a microbial

origin. This germ theory of disease first became accepted in the later half of the 19th

century, proposed separately by Louis Pasteur, who isolated the microbe responsible for

causing rabies, and by Robert Koch who identified the infectious agents responsible for both

anthrax and tuberculosis [49]. In 1885, on the heels of this paradigm shift, Elie Metchnikoff,

the discoverer of macrophages, posited the concept of a cellular immune system, the hosts’

response to these pathogens. In 1897 his contemporary Paul Ehrlich put forth the theory

that specialized molecules, which he called antibodies, targetted and eliminated pathogens

with a lock and key specificity. Together Metchnikoff and Ehrlich first described the two

branches of immunity, innate and adaptive, for which they shared the Nobel Prize in 1908

[76].

Intially, these ideas of cellular and humoral immunity were at odds with one another.

While Metchnikoff arrived at the concept of immunity from the point of view of an evolu-

tionary biologist, as a mechanism by which the cells of an organism distinguish self from

non-self, Ehrlich came to his conclusion as a biochemist, postulating that the immune sys-

tem is an antigen driven “natural selection” process in which cell surface receptors adapt

to defend against disease causing agents. In 1957, Sir MacFarlane Burnet, published his
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clonal selection theory, in which he combined the two ideas, hypothesizing that the cell was

responsible for generating antibodies via a genetic mechanism (which we now know is VDJ

recombination), Based on reinfection studies in animals he further introduced the idea that

different cells produce different antibodies, and the concepts of immunological memory and

antibody maturation [1, 15, 76], asserting that “Antibody production can continue long af-

ter the antigen responsible has disappeared from the body” and “Antibody production is a

function not only of the cell originally stimulated but of its descendants” [15].

More than fifty years later, it is well understood by most immunologists that the immune

system is incredibly complex and carries out a wide range of functions including pathogen

recognition and elimination, memory, and self-regulation. New cell types and markers are

discovered on a regular basis as anyone who has been to an immunology conference knows.

Moreover, the composition of immune cells varies between individuals and across tissue types,

and changes over the course of a lifetime. This variability is particularly pronounced in the

B and T cells of the adaptive immune system. The enormous sequence space of antigen

recognition receptors across these cell types results in specific subsets of the population

expanding and differentiating in response to stimulation by antigen, and contracting as the

result of competition and regulatory mechanisms designed to maintain homeostasis in a

healthy organism.

Despite the gamut of functions and the sheer diversity that comprises the immune system,

until recently the study of immunity, just as the rest of biology, has been a largely qualitative

science. Geneticists focused on knocking out target genes in mice and other model organisms,

biochemists on isolating their desired proteins. Knowledge of the components of the immune

system came from histological staining, vaccination, and immunohistochemistry. The large

amount of structural, genomic, and proteomic data that can now be generated allows for

previously impossible statistical analyses and robust modeling that can identify complex

new structures and nonlinear relationships, which are testable in a laboratory setting. [36,

9].
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The first published analyses of the receptor repertoire, the focus of this dissertation,

were obtained using the canon of biochemical assays including immunopreciptation, gel

electrophoresis, and mass spectroscopy, identifying underlying cell surface protein structures,

their variable and constant domains, and families of related proteins [2, 61, 80]. By the

1990’s spectratyping assays combined with Sanger sequencing provided improved resolution,

quantifying distributions of receptor length and the precise composition of nucleotides that

encoded the receptor protein complex [3, 70]. Nonetheless, these methods were limited in

their throughput, forcing researchers to characterize only select subsets of the full repertoire.

High throughput sequence analysis of B and T cell receptor repertoires was realized in

2009 [82, 102], allowing for the first comprehensive screenshots of the diversity and antigen

recognition potential of the adaptive immune system. In recent years, high throughput

sequencing studies, including profiling of B and T cell receptors, have become a key feature

within the growing fields of systems immunology and translational medicine. Many labs

around the world now focus on the best way to probe at the diversity and dynamics of the

immune response, and companies small and large seek to develop new diagnostic tools and

targetted therapies.

This thesis consists of three aims (1) to discuss the goals and challenges of T cell receptor

(TCR) repertoire sequencing (2) to describe new quantititative approaches for analysis of

sequenced TCR repertoires with general advice and guidelines arrived at from first hand

experience and (3) to present novel biological results from studies of T cells in human tis-

sues performed in collaboration with experimental researchers. In the remainder of this

introduction I will provide, for motivational purposes, a brief description of some relevant

applications and “hot” topics within the growing field of systems immunology in order to

elucidate how the field and the approaches described herein will improve our understanding

of the immune system and our ability to treat disease in the future.
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1.1 “Hot” Topics in Systems Immunology

1.1.1 Vaccination against infectious disease

Among the many scientific achievements of the 20th century have been the eradication of

smallpox, and the near eradication of polio. Infectious diseases are no longer the leading

cause of death among developed nations. Despite this progress infectious diseases continue

to infect and claim many lives every year Table 1.1. There are instances of disease outbreaks

like the 2014 spread of ebola virus in Western Africa, which causes deadly hemmorhagic

fever and claimed over eleven thousand lives over three years [25], and the 2015 spread of

mosquitoe-borne Zika virus which was found to cause microcephaly in newborns.

In developed countries like the United States, the effectiveness of the vaccine against

seasonal influenza virus varies from year to year depending on which strain is dominant,

and among senior citizens is only 50-60% effective, with significantly reduced efficacy [26].

Pathogens with high antigen variability (e.g. malaria) or that target the immune system

itself (e.g. HIV) are also difficult to prevent against with conventional methods. Lastly,

there is increasing concern of superbugs with antibiotic resistance developing due to human

imposed selective pressure.

An important direction in systems immunology is understanding how the immune system

responds to any given infection: recognition properties, downstream molecular signaling,

formation of memory, and other complex molecular interactions which can be utilized to

develop more effective and robust vaccines [14, 86]. There is further focus on understanding

the means by which pathogens disrupt or evade the immune system, and developing novel

treatments which undermine these mechanisms, thereby increasing vaccine success rates, as

well as recovery and clearance rates for infected individuals [71, 40, 90].
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Table 1.1: Global infectious disease statistics for 2015

Disease Total New Cases Total Deaths
HIV/AIDS 2.0e6 1.1e6
Tuberculosis 10.4e6 1.4e6
Influenza 3-5e6 2.5-5e5
Hepatitic C 3-4e6** ~7e5
Meningococcal meningitis 2.4e4 1903*

*from 2014, **from 2010 All data compiled from [68]

1.1.2 Treatment of autoimmune disease

Autoimmune diseases result from the immune system reacting to self tissues of the body as

though they were foreign agents. B and T cells of the adaptive immune system trigger an

immune response that leads to inflammation and tissue damage. Examples of autoimmune

diseases include type 1 diabetes, Crohns disease, rheumatoid arthritis, and Grave’s disease.

In 2012 Approximately 23.5 million people in the United States suffered from at least one of

the more than 80 recognized autoimmune disorders [31] and rates have continued to increase

among developing countries. In most cases the exact mechanism by which an autoimmune

response is triggered is unknown, and such diseases cannot be cured with conventional meth-

ods. The best current therapeutic treatments for most autoimmune diseases are targetted

immunosuppressants and anti-inflammatory drugs that must be taken for the entire lifetime

to suppress this deleterious immune response and reduce risk of subsequent flare ups.

Systems immunology approaches are being utilized to identify the complex pathways and

molecular interactions leading to the formation of autoimmunity and to use this information

to develop more effective treatments. Recently, pharmaceutical companies have begun to

design monoclonal antibodies to target specific components of the autoimmune pathway.

Examples include the drugs Remicade (infliximab) and Humira (adalimumab) which have

been used with large success in patients with Crohn’s disease and rheumatoid arthritis.

There is still a great deal of work left to do to identify novel targetted therapies, identify
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individuals with increased risk, and perhaps find cures or effective preventative measures for

these diseases.

1.1.3 Cancer immunotherapy

In 2013, the journal Science declared cancer immunotherapy the breakthrough of the year

[19]. The article described an experimental treatment for metastatic melanoma using a

monoclonal antibody that targetted the CTLA-4 receptor on T cells. CTLA-4 functions as

a brake on the destructive abilities of T cells. Many cancers, including melanoma produce a

ligand that binds the CTLA-4 receptor thereby supressing the protective immune response.

While the immune system plays a crucial role in the recognition and destruction of malignant

cells, a large number of cancers are able to evade the body’s natural defenses by altering

their surrounding microenvironment to become hostile to immune cells or to dysregulate the

signaling pathways that modulate immune response. For a review on this topic see Vinay,

et .al. [100].

Since the Science article was published several more monoclonal antibody treatments,

collectively called “checkpoint inhibitors”, have been developed to target genes like PD-

1 and CTLA-4 and block their ligand binding. Cancer therapy was again the theme of

Science journal’s 2017 issue for the week of March 17th, highlighting a number of potential

therapeutic targets such as the RAS oncogene, PARP1 and 2, and other components involved

in cancer signaling pathways [4, 21].

Another approach to cancer immunotherapy is the design of T cells with specific recog-

nition sequences that strongly bind cancer antigens. These cells are grown in vitro, and

then introduced into the body of the patient. In a 2010 trial, patients with leukemia were

treated using T cells with engineered receptor sequences called chimeric antigen receptors

(CARs) [19]. A number of other therapies have been tested to treat cancers [See Table 1.2].

In general, these approaches attempt to (1) prevent suppression of the immune response by

cancer cells (2) increase tissue infilitration by the immune system, particularly T cells, into
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Table 1.2: Current Approaches To Immunotherapy

Type Mode of Action Examples

Monoclonal Antibodies

Antibodies are manufactured – KRAS inactivation
to downregulate suppressive – Checkpoint inhibitors
signaling or stimulate response
against a cancer antigen.

Adoptive T cell transfer

– Naturally occuring host T
T cells are cultured in a lab cells
and then administered into – Genetically modified T cells
the patient. – Chimeric antigen receptors

(CARs)

Cytokines
Immune signaling molecules – Interferon signaling
are introduced to enhance and – IL-2 signaling and related
coordinate immune activity. cytokines.

Vaccines

Specific cells or proteins are – Patient tumor derived
introduced which prime the proteins
immune system against – Cell line derived proteins
cancer cells. – Dendritic cell activation

the tumor and (3) boost the anti-tumor activity of these cells.

Currently, many of these treatments have only been tested in a laboratory setting or are in

the clinical trial phase. Among FDA approved drugs, which are largely monoclonal antibody

based, success rates vary wildly across individuals and cancer types, with undesirable and

sometimes fatal side effects leading to their use only as a last resort. However, a great

deal of time and funding continues to be devoted towards identifying new and improved

immunotherapeutic approaches. Reseachers have looked at transcriptomic, metabolomic,

and epigenetic data to identify pathways of T cell activation and suppression in the tumor

microenvironment in search of new drug targets [109, 37, 17, 72]. A plethora of studies in

the last thirty years have focused on quantifying T cell subsets among tumor infiltrating

lymphocyte populations as a marker of patients’ response to cancer [33, 101, 69]. More

recently the resolution provided by high throughput sequencing has yielded comprehensive

receptor profiling studies that identifed sequence specific attributes among tumor infilitrating

T cell populations [51, 88, 83]. The discovery of a cancer associated T cell signature or a
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new drug target is perhaps the fastest growing and most lucrative application within the

field of systems immunology.

1.1.4 Transplantation

According to the Mayo clinic, the five year success rate for a kidney transplant from a living

donor is over 80%, and over 90% for liver transplants [58]. Surgeons are able to perform

transplantation for various tissues and organs including heart and intestines, with varying

levels of long term success. The biggest risk to the recipient is transplant rejection, where

the immune system of the recipient attacks and damages the transplanted tissue. For this

reason, transplant donor and recepient must be closely HLA matched (See Chapter 2), and

the recepient is required to take immunosupressive drugs for some time after transplantion.

Transplant rejection results from the hosts immune response to the introduced tissue.

The immune response to tissues from other members of the same species is known as allore-

activity. Despite the success of transplantation in the hospital setting our knowledge of the

human alloresponse is limited. It is not well understood why some patients have lower levels

of alloreactivity than others that are similarly HLA matched and on the same drug regimens.

Similarly, we do not fully appreciate why certain organs have lower rates of rejection than

others. The answer lies in the complex dynamic interplay of the immune system, including

the distribution of cell types, variation in cytokine signaling, and individual differences like

age, infection history, and repertoire composition. The resolution offered by current tech-

nologies allows us to probe these questions, and down the line will lead to the development

of better surgical techniques, more effective drugs, and patient tailored drug regimens.

1.2 Thesis Outline

The rest of this thesis will be organized into six chapters:

Background material is presented in Chapter 2 in which all topics relevant to the original

research of Chapters 3-6 will be introduced and key concepts and ideas will be explained.
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The chapter will be broken down into (1) An overview of αβ–T cell maturation, functional

subtypes, and role in the immune response, (2) Discussion of approaches to T cell sequencing

and sequence analysis and (3) Overview of important statistical methods and formulas.

Chapter 3 will provide a discussion of the frequency distribution of the TCR reper-

toire. Using known properties of this distribution, the chapter will present and validate

a semi-parametric method for analyzing clonal expansions from stimulated populations.

A manuscript, Quantifying the Size and Diversity of the Human Alloresponse via High-

Throughput T Cell Receptor Sequencing,is currently being prepared.

A study of the naïve repertoire from healthy donor lymphoid tissues is presented in

Chapter 4. This is the first comprehensive study of naïve repertoire in healthy lymphoid

tissues, looking at the effects that human aging has on thymic output and naïive repertoire

diversity, as well as using sequenced repertoire data to investigate comparmentalization and

maintenance of the repertoire in the tissues. Results have been published in [94]

Chapter 5 presents analysis of the T cell receptor repertoire in gliomas, and uses methods

for analyzing TCR diversity and divergence to uncover previous unseen phenotypes associ-

ated with gliomas, as well a potential blood biomarker for tracking glioma status. Results

are published in [89].

Chapter 6 quantifies the strength and diversity of the human alloresponse, providing

some of the first estimates for the strength of the alloresponse and the role of HLA matching

from TCR sequencing data. Results from this study are included in the above mentioned

manuscript currently in preparation.

Chapter 7 will present overall conclusions and summarize points of interest. It will also

discuss future research directions within the field of TCR repertoire profiling, for which the

work presented in this thesis are a starting point.
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Chapter 2

Background

This chapter provides an overview of key biological and mathematical concepts that are

applied throughout the main chapters of the thesis. Section 2.1 discusses how mature T

cells are formed and their effector function within the immune system. Section 2.2 dis-

cusses the current technology utilized to profile T cell receptor repertoires, and the benefits

and drawbacks of these approaches. Section 2.3 gives an overview of statistical formulas,

methods, and considerations applied to the study of diverse repertoires sampled from large

populations.

2.1 αβ–T Cell Biology
T cells comprise the cell mediated branch of adaptive immunity. Specialized cell surface

receptors function to bind and recognize distinct epitopes with high specificity initiating a

robust immune response. The diversity of the αβ-T cell repertoire is estimated to comprise

as many as 108–1011 distinct receptors out of a theoretical maximum 1015–1020 [82, 62]. Each

T cell commonly presents only a single receptor type, and the identity of this receptor is de-

termined during the maturation phase of the T cell in a process called V(D)J recombination.

T cells circulating throughout human
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Figure 2.1: T cell progenitors migrate from the bone marrow into the thymus where they
undergo V(D)J recombination and clonal selection to form mature naïve T cells.

tissues are capable of recognizing and responding to a nearly unlimited range of foreign

peptides.

2.1.1 T cell maturation

All immune cells originate from multipotent hemapoetric stem cells that reside in the bone

marrow [66]. Cells destined to become fully mature T cells migrate into the thymus and

are referred to as thymocytes. It is within the unique microvenvironment of the thymus

that thymocytes activate a transcriptional program which turns them into mature naïve

T cells (Figure 2.1). During the maturation step rigorous selection processes remove cells

with deleterious or unreactive receptors, leaving the survivors to circulate throughout the

tissues of the body and survey for antigens. Thus, the two most crucial components of this

transformation are V(D)J recombination and clonal selection.

V(D)J recombination is a cut and paste process in which genetic segments, also called

cassettes, are selected and stitched together to form a complete genetic sequence encoding a

T cell receptor chain (Figure 2.2). During this process, nucleotide deletions and insertions

are introduced at the site of cassette joining, resulting in a great degree of sequence vari-
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Figure 2.2: A. V(D)J recombination forms the α (left) and β (right) chains of the TCR reper-
toire. Distinct genetic segments are joined together with insertions and deletions introduced
at the recombination junctions. These two events are responsible for the enormous repertoire
divercity of T cell receptors. B. Every T cell encodes a distinct receptor heterodimer which
is displayed as a protein on the cell surface.

ability in the junctions. The recombination occurs on chromosome 7 to form the β chain,

and on chromosome 14 to form the α chain of the receptor heterodimer. Both chromo-

somes encode many distinct, but evolutionarily related variable (V) cassettes and joining

(J) cassettes. The β chain also has two diversity (D) segments [See Table 2.1]. While we

have comperehensive annotation for these cassettes in the human and mouse populations

[97], it is important to note that this region, and the relatively long V cassette in particu-

lar, contain pseudogenes, related sequence families, and distinct allelic differences, so both

annotation and receptor profiling techniques continue to be further curated and improved

[20]. More recently, there has been increasing interest in identifying the cassette sequences

of other animals for use in many applications, including the growing of organs for human

transplantation and development of new immunotherapies [43, 79].

12



Table 2.1: Numbers of human αβ – T cell receptor cassettes

Element α (chr 14) β (chr 7)
Always Never Allele Always Never Allele

Functional Functional Dependent Functional Functional Dependent
Variable (V) 43 9 2 42 29 6
Diversity (D) 0 0 0 2 0 0
Joining (J) 50 11 0 12 1 1
Compiled from [97]

V(D)J recombination, first β then α, is catalyzed by specialized enzymes encoded by

recombination-activating genes (RAGs) that bind regions of double stranded DNA known as

recombination signal sequences. These bound RAG proteins then bind to each other, creating

a DNA hairpin loop that brings into proximity previously distant gene segments. The RAGs

then induce DNA cleavage via random single strand nicks, cutting away unused cassettes

within the loop. The adjacent gene segments are further processed and ligated together

by enzymes involved in DNA repair, with insertions and deletions introduced by terminal

deoxynucleotidyl transferase (TdT) [66]. The mature T cell expresses the recombined genes

(and many other T cell specific proteins), forming a heterodimeric receptor on the cell

surface. In addition to V, D and J gene segments, a constant (C) region is present which

serves to tether the protein chains to the T cell surface. The process of clonal selection, which

will not be described here in detail, eliminates all T cells that do not express functional T

cell receptors or are strongly reactive to self peptides. This ensures that all T cells that

exit the thymus and circulate throughout peripheral tissues are able to recognize foreign

antigens without attacking the tissues of the body. Only 2-5% of all thymocytes pass clonal

selection and exit the thymus as mature naïve T cells [64]. The ability to sample self-

peptides of various tissues from all over the human body is a property unique to the thymic

microenvironment and the mechanism is still not well understood.

Generation of new T cells decreases with age as the thymus undergoes a process of

involution in which functional regions are converted into fatty tissue. The loss of naïve
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diversity in human adults due to deterioration of the thymus is discussed in Chapter 4.

2.1.2 T cell recognition

T cells survey the body’s tissues, sampling antigens displayed on cell surfaces. When the T

cell binds an epitope belonging to a foreign antigen a transcriptional program is turned on,

activating effector functions involved in destruction of the antigen source. However, in order

for the T cell to be activated it must recognize both the epitope and the self-molecule to

which it is bound, called the major histocompatibility complex (MHC), which in humans is

encoded on chromosome 6 and is also known as the human leukocyte antigen (HLA). Only

if the entire complex is detected will the T cell be activated (Figure 2.3A). Certain types

of immune cells, dendritic cells in particular, are known as antigen presenting cells (APCs)

and have a large number of MHC-peptide molecules on their cell surface for the purpose of

activating T cells. The genetic region encoding the MHC is both polygenic and polymorphic,

and as a result there is a great deal of variation of MHC composition across populations.

Therefore, it is important to keep in mind that an individual’s MHC composition can have

a strong impact on how the immune system responds to a threat, and therefore should be

taken into account in any study of T cell interactions.

The part of the T cell hetetodimer that recognizes the MHC molecule is located primarily

on the V cassette, split across two regions called complementarity determining regions 1 and

2 (CDR1 and CDR2), which are close together in the folded protein structure. The epitope

binds to complementarity determining region 3 (CDR3) which includes the end portions of

both the V and J cassettes, and the junctions, making it the most diverse of the three and

the main target for sequencing. All three CDRs are present on both the α and β chain,

producing six hairpin loops in total, two CDR3 loops in the center, and two loops each for

CDR1 and CDR2 on the outside, responsible for binding the bound peptide and the MHC

molecule respectively [107, 6] (Figure 2.3B).

Several other cell surface signaling molecules are also necessary for successful T cell acti-
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Figure 2.3: A. Peptide antigen is bound to the major histocompatibility complex (MHC)
and presented on the surface of antigen presenting cells. Activation of the T cell requires
both antigen and MHC to be bound by the TCR. B. Both chains of the TCR encode three
hypervariable regions (CDR1, CDR2, CDR3). In the folded protein structure these regions
come together at the ends of the heterodimer and are responsible for binding the MHC-
peptide complex. The protein structure is reprinted from Figure 1 in [6]. C. Activated
T cells undergo rapid clonal expansion. Upon clearance of the infection the majority of
activated T cells die off with a small subset converting to a memory phenotype.

vation. The most important of these are the CD4+ and CD8+ receptors, which are discussed

in Subsection 2.1.3. Upon activation, the T cell undergoes rapid expansion, which typically

peaks 7-15 days after initial antigen stimulation, creating many clones with identical cell

surface recognition receptors. For a given disease, multiple different foreign peptides are

presented to the T cells. Additionally, antigen recognition does not function like a lock and

key mechanism; instead, both the receptor chains and the peptide are flexible. As a result,

during immune challenge, different T cells will respond and clonaly expand to varying de-

grees, producing subpopulations of T cell clones. Once the foreign antigen is cleared, most of
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the activated T cells die off and the overall population decreases, in most cases leaving only a

small fraction, 5–10%, of remaining activated T cells with a memory subtype (Figure 2.3C)

[73].

2.1.3 T cell subsets and functions

There are many different T cell subsets that are defined based on their expression profiles,

cell surface proteins, and specialized functions within the immune system. The nuanced and

often imprecise differences between T cells makes classification very challenging, and will

benefit in the future from careful single cell analysis and computational approaches. For the

purposes of this thesis ,the key distinctions are CD4+ vs CD8+, naïve vs effector memory,

and circulating vs resident.

All T cells exiting the thymus are antigen-inexperienced naïve cells. They are classified

into two distinct categories, CD4+ T cells and CD8+ T cells depending on which of these

cell surface receptors is present (double positives exist only in the thymus prior to clonal

selection). In addition to the MHC-peptide being bound by TCR, activation of T cells

also requires these co-receptors to interact with MHC. CD4+ T cells bind MHC class II,

while CD8+ T cells interact with class I. The CD4 + subset of T cells is known as helper T

cells and fall into several subclasses, all of which serve the primary role of releasing chemical

messengers (cytokines) that activate or suppress components of the immune system including

other T cells, B cells, and macrophages. The CD8+ T cells are known as cytotoxic T cells,

and function by releasing cytotoxins including perforins and granzymes which lead directly

to the death of targetted cells via apoptosis.

Both CD4+ and CD8+ T cell subsets have a memory phenotype created from a small

group of activated T cells that remain post immune challenge Figure 2.3C. Memory T

cells have a long lifespan with an average half life of 8–15 years [42]. Having previously

encountered antigen, these T cells initiate a rapid and much stronger response if the antigen

is encountered a second time. There is another subdivision of memory cells into T cell effector
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Table 2.2: T cell subsets

Subset Function Cell Surface Markers

CD4+ Helper T cells. Cytokine secretion CD4+

for immune regulation.

CD8+
Cytotoxic T cells. Destruction of, CD8+

infected or otherwise compromised
cells, including cancer cells.

Naive
Antigen inexperienced cells. Survey CCR7+, CD45RA+,
the body’s tissues. Mostly present CD45RO−
in lymphoid tissues.

TEM
Cells remaining from previous T cell. CCR7−, CD45RA−,
response. Found in various peripheral CD69−, CD103−,
tissues. CD45RO+

TCM
Cells remaining from previous T cell. CCR7+, CD45RA−,
response. Largely present in lymphoid CD69−, CD103−,
tissues. CD45RO+

Resident Non-circulating cells that are resident CCR7−, CD45RA−,
to a specific tissue site. CD69+, CD103+

Circulating Cells that circulate between tissues. CD69−, CD103−

Compiled from [32]

memory (TEM) and central memory (TCM) characterized by the expression of homing

receptors, which determine the tissues they migrate into, and their circulation between

tissue sites [84]. The extent of circulation between sites depends on how the T cells respond

to chemokine signaling and can be categorized as tissue resident if they remain in a specific

tissue for most of their lifetime, or circulating if they migrate between tissues.

Table 2.3: Numbers of T cells in human tissues

Tissue Total CD4+( x109) Total CD8+( x109)
Blood 5 2.5
Lymph nodes 95 38
Spleen 14 21
Thymus 37.5 12.5
Lamina propria of 30 15
gut and lung
Data taken with permission of Elsevier, from Table 3 of [35]
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Figure 2.4: Frequencies of naïve and memory T cell subsets in different tissues separated by
age group. Naive T cells are present within blood and lymphoid tissues, but are gradually
replaced by memory T cells in adulthood. Also indicated are biases in T cell specificity for
specific pathogen-derived antigens. Reprinted with permission of Nature Publishing Group,
from Figure 4 in [32].

In the laboratory setting T cell subsets are typically identified and sorted into their sub-

sets using cell surface proteins as biomarkers. As mentioned earlier, because gene expression

is not a binary process this approach is not error-free, but generally reliable for studying bulk

populations of cells. An overview of these subsets and their associated markers is presented

in Table 2.2.

In addition to functional differences between T cells, tissues also employ distinct mecha-

nisms for the homing and homeostatic maintenance of these T cell subsets, and the overall

prevalence of these populations changes over time [35, 32, 93]. Estimates of overall CD4+,

CD8+ T cell numbers in a typical young adult are indicated in Table 2.3 and further sub-

division by subtypes is given in Figure 2.4. Thus, studies involving T cell populations must
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Figure 2.5: Each chain of the T cell receptor is approximately 720 nucleotides (240 amino
acids long), with the variable region comprising approximately half the total length. The
CDR3 region on average comprises fifteen amino acids and can be identified by a conserved
cysteine (C) from the V gene and an FGXG motif from the J gene, where X can vary. Length
information comes from the The T Cell Receptor FactsBook [50].

also consider the age of the subject and the location from which samples are collected.

2.2 TCR repertoire sequencing

The goal of TCR sequencing is to uniquely identify the αβ–T cell receptor chains present

in a sample and determine its population wide clonal distribution. A way to uniquely

define the T cell receptor that captures all elements contributing to its diversity is to use

the combination of germline V and J segments, and the non-germline CDR3 region (See

Figure 2.5). The non-germline CDR3 region is on average fifteen amino acids in length and

defined by a conserved cysteine residue on the V gene segment, and an FGXG motif on

the J gene segment, where X can vary. Due to the large diversity of TCRs a comprehensive

survey of the population requires targetted amplification approaches to boost the TCR signal

among all the other nucleotide fragments present in DNA sequencing. Similarly, an RNA

sequencing approach will identify only highly abundant TCR transcripts, typically from

active cells, and is therefore only useful in a limited subset of studies focused on populations

with large monoclonal or oligoclonal expansions. This section discusses several sequencing

approaches that have been developed to comprehensively sequence the bulk TCR repertoire.
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2.2.1 Overview of current repertoire sequencing approaches

The 5’ RACE (Rapid Amplification of cDNA Ends) system is used to amplify the RNA tran-

script encoding the TCR. Library preparation begins with isolating the T cells and RNA

extraction. The RNA is reverse transcribed into cDNA and specialized sequencing primers

are attached to the 3’ end (template switching). A specially designed primer corresponding

to the constant region of either α or β chains is attached to the 5’ end of the cDNA molecule.

PCR amplification is carried out from both ends, starting with the sequence template at-

tached to the 3’ end, and the primed 5’ end on the constant region. This preferentially

amplifies and selects the TCR sequences that are then used to prepare a final sequencing

library. This approach was used in early TCR sequencing studies including Freeman, et.al

[34]. Currently the company Clontech Laboratories, Inc. uses this approach for sequencing

of the α and β chains of the TCR.

A second strategy for sequencing the TCR requires design of specialized primers that

are complementary to the V and J recombination cassettes. Following primer annealing and

extension, sequencing primers are attached to generate the library. This approach can be

applied to both cDNA and genomic DNA and primer kits have been developed by several

companies including Adaptive Biotechnologies and iRepertoire, Inc.

2.2.2 Comparisons and limitations

There are several considerations that must be taken into account when using these sequencing

methodologies. The first is whether to use DNA or cDNA to prepare the sequencing library.

Each T cell only contains a single recombined TCR genomic sequence for either chain. As

a result, heavy amplification is necessary to create a sufficiently large library, but accurate

quantification is possible using unique molecular identifiers to determine the true number

of starting molecular templates. Because of the intron present between the variable and

constant regions 5’RACE cannot be used for this task. Another difficulty then is to design

unique primers for all the known V and J segments, taking into account related subfamilies
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and degenerate sequences, and to then correct for PCR errors due to differences in primer

annealing rates. Additionally, this approach has been limited to only β chain sequencing,

due to "leaky" allelic exclusion of the α chain, which makes it difficult to ensure that the

amplified DNA captures all recombined alpha chains.

In contrast, using cDNA produces more genetic material and requires less amplification,

and will accurately capture α chain proportions. However, collecting cDNA requires the

extra step of using an enzyme to carry out reverse transcription (RT), and the fidelity and

processivity of this enzyme must be taken into account. Additionally, transcript numbers will

be proportional to T cell activity, and precise quantification is therefore far more challenging

in a bulk sequencing experiment. In using cDNA a second consideration is whether to use

5’RACE or VJ priming. Due to degeneracy in V cassette sequences, at least 100 base pairs

of the V cassette upstream of the CDR3 must be sequenced for accurate identification, which

requires far longer sequence lengths if starting from the constant region. However, this avoids

having to develop specialized primers for all V, J cassettes and accounting for differences in

annealing rates. 5’RACE can potentially be used to identify new cassettes and alleles since

the annealing sequences are not specifically designed for known segments.

For a thorough review see Woodsworth, et.al [106].

2.2.3 Single cell sequencing

Analysis of T cell repertoire is inherently a single cell challenge. Sequencing every T cell

individually avoids the major difficulties involved in accurately quantifying CDR3 numbers.

It also allows for the α and β chains of a specific T cell to be paired together. Currently,

the major challenge of using single cell technology is the time and cost of achieving the

throughput required to accurately represent the size and diversity of the repertoire.
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2.3 Population statistics
Statistical approaches for T cell receptor repertoire analysis borrow heavily from ecological

literature studying the properties of animal and insect populations. In both cases it is nec-

essary to deal with the challenge of having many diverse species of which only a small subset

can be observed. There is interest in developing methods to effectively quantify population

diversity, make reliable comparisons across samples and environmental conditions, and to

develop inference techniques that fill in the gaps in the observed data. While ecological stud-

ies must account for imprecision in taxonomic classification, one of the key computational

challenges of TCR sequencing is to account for errors from the need to isolate and amplify

molecules for sequencing and inherent biases from the different technologies available to ac-

complish this task as discussed in Subsection 2.2.2. This section discusses the mathematical

assumptions and methods used to perform the data analyses described in the remaining

chapters of this thesis.

2.3.1 Power Laws

Datasets from several different collaborations that are discussed in further chapters has

suggested that the bulk of clonal frequencies in the TCR repertoire is well described by a

discrete power law distribution. This agrees with findings from several other quantitative

and modeling studies of TCR repertoire [10, 23, 22]. Various types of power law distri-

butions have been observed in a number of natural phenomena including studies of word

frequencies, earthquake magnitudes, neuronal avalanches, protein networks, populations of

bird and insect species, and other cases in which most observed elements are exceedingly

rare [111, 92, 28, 47, 103, 75, 48, 110].

The power law is a long tailed distribution, with several definitons all of which have

the property that when plotted on a log-log scale there is a linear relationship between

the dependent and independent variable. Zipf’s law describes the relationship between the

rank of an element and its frequency of occurence in the population, f = p(r) = r−s∑
r−s . A
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Figure 2.6: A. The Zipf rank distribution, B. The power law distribution before and after
normalization. Note that the slope is unaffected by this transformation, and C. The pareto
distribution. The linear fits are plotted in red with the slope as indicated.

parametric relationship describes the functional relationship between the number of elements

at a given place, time, frequency, etc, y = f(x) = x−α and can be turned into a proper

probability distribution by normalization. A related version of the power law distribution is

known as the Pareto distribution which describes the cumulative number of such elements

y = P (X > x) = x−k. Examples of all three with linear fits is shown in Figure 2.6 taken

from a TCR repertoire of healthy blood.

Power laws are difficult to study because of their scale free nature. The only useful point

estimate for these distributions is the power law exponent, which gives the value of the linear

slope. Both the mean and variance are not guaranteed to exist under all values of this slope.

In most cases the mean is small and variance is very large, and therefore are not useful

for making statistical inferences. Moreover, real data often deviates from the powerlaw at

one or both ends of the distribution, further complicating the analyses. However, we use
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reasonable estimates of the slope validated by simulations to make conclusions about the

TCR repertoire that are presented in Chapter 3.

2.3.2 Measurements of Diversity

The concept of diversity has many different formal definitions, and the correct one to use

depends on the application. When studying species in an ecosystem, word usages, TCR

sequences, or other large populations, one typically considers the richness (number of distinct

elements) and evenness (frequency of observed elements) of the observed sample. Measures

of diversity seek to describe both of these quantities with a single metric that provides insight

into how these populations are distributed and allows for meaningful comparisons.

A common definition of diversity is the "true" diversity [46], which takes the form,

qD =
( s∑
i=1

pqi

)(1/(1−q))

where the superscript q is the order of diversity. When q = 0 this gives exactly the

species richness without any consideration for species evenness. At q = ∞ the diversity is

defined as the largest observed frequency. Values in between give different weights to the

richness and evenness with higher values of q putting more emphasis on larger frequencies in

the population. The limit at q=1 is the exponent of Shannon entropy, and strikes an equal

balance between richness and evenness. Shannon entropy is often the selected measure of

diversity because of this balance and its relationship to other quantities from information

theory. It is defined as

H = −
∑
i

pi log2 pi

where pi is the frequency of clone i in the sample. Even more appealing is the property

that entropy can be added for independent elements, H(X, Y ) = H(X) +H(Y ) if X and Y

are independent [67]. Using q = 1 returns exp(H) as the true diversity. Shannon entropy is a

measure of information uncertainty, which under the base of log2 corresponds to the minimum

number of binary questions required to precisely select an element from the population based
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on its frequency. An entropy H=0 means that there is no information uncertainty and the

first guess is always correct, whereas larger entropies correspond to a population where it is

more difficult to determine a unique clone within a specified frequency range.

However, it must be kept in mind that smaller values of the exponent q are more heavily

affected by sample size and evenness. The maximum entropy is given by log2N where

N is the number of elements observed (species richness), and thus two samples cannot be

directly compared if their sample sizes differ by a large amount. Therefore, a number of

TCR studies use a normalized value of entropy to measure the clonality of the population

[24, 18]. Clonality is defined as

CL = 1− H

Hmax

A clonality of 1 indicates no diversity (H = 0), while 0 is the maximum possible diversity

(H = Hmax). Clonality depends on accurate measurements of maximum entropy, and there-

fore is still affected by sampling, particularly if most clones are rare and likely not observed

in the sample as is the case with the power law. In applying either entropy or clonality it

may be useful to perform subsampling or run simulations to ensure minimum bias.

Two final measures of diversity considered for TCR repertoire analysis are the R20 and

R50 statistics. This corresponds to the fraction of clones, starting with the largest, that

respectively encompasses 20% or 50% of the entire cell population. Smaller values of R20

and R50 correspond to lower diversity, where most cells correspond to a few select clones.

In general an RX measure can be defined as follows:

RX =
⌈
N(mX)
N(m100)

⌉
where N(mX) is the number of clones found within the top X% of cells (m).

Python code to compute these diversity measures is available and can be downloaded from

GitHub at github.com/ShenLab/TCR/blob/master/simulation/src/diversitymeasures.py. The

theory chapters of this thesis will discuss the preferred measures of diversity for exploring a

variety of questions within TCR reperotire analysis.
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Table 2.4: Measures of true diversity

q Name Interpretation
0 Richness Total number of species
1 Shannon entropy Equal weights for richness and evenness
2 Simpson index Probability of observing an element twice
...
∞ Berger-Parker Index Maximum frequency

2.3.3 Measurements of Divergence

Although two populations may have the same diversity, this does not ensure that they have

the same distribution. Two populations can consist of similar frequency values belonging

to entirely different clones. In such cases a measure of population divergence is needed

to compare how similar two distributions are. The Kullback Leibler (KL) metric from

information theory accomplishes this task

DKL(p||q) =
∑
i

pi log2
pi
qi

The KL measures how much information about one distribution, q, is encoded in another,

p. Populations that are identically distributed will have KL = 0. As with entropy, the

KL divergence does not have the same maximum for all distributions. Additionally, the

information that p provides about q is not necessarily the same as the information q gives

about p. This lack of symmetry or a well defined maximum makes it difficult to compare

values of divergence. This metric is best applied when looking at two populations derived

from a single larger population. Both subpopulations are then compared relative to the same

standard and comparing their divergences has meaning.

One way of normalizing the KL divergence to produce a more meaningful divergence

metric is to combine distributions p and q into a new distribution m = p+q
2 . This Jensen

Shannon (JS) divergence is defined as
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DJS(p||q) = 1
2DKL(p||m) + 1

2DKL(q||m)

The Jensen Shannon divergence is symmetric and takes on a range of values from 0

(identical distributions) to 1 (maximum difference). A simple calculation also shows that

DJS can be expressed in terms of entropies.

DJS = H(m)− 0.5
[
H(p) +H(q)

]
Taking the square root satisfies the triangle inequality, transforming the Jensen Shannon

divergence into a true distance measure (JSD) [30].
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Chapter 3

A Semi-parametric Method for

Unseen Clones

3.1 Introduction

This chapter presents a method for estimating the total frequency of cells corresponding

to the unseen clones in a sample of the TCR repertoire. The average frequency of unseen

clones in an expanded population is obtained by obtaining power law parameters to model

the distribution of the TCR repertoire. A non-parametric approach is used to estimate the

number of such clones, thus resulting in a "semi-parametric" approach for estimating the sum

frequency. This method is applied to the analysis of the alloreactive repertoire described in

Chapter 6.

3.2 TCR Distribution

While many bulk properties of a repertoire can be well estimated by maximum likelihood

measures of diversity and divergence, such as entropy, KL divergence, and others mentioned

in Chapter 2, significantly more insight can be gained by identifying the appropriate distri-

bution that describe the data, and estimating its corresponding parameters. Obtaining such

a parametric estimate makes it possible to generate new data points and to infer missing or
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biased data. It also offers the possiblity of decomposing a complex dataset into distinct clus-

ters of subsets with different parametrizations, and thereby gaining insight into population

heterogeneity and dynamics.

In many cases obtaining the correct distribution and its parameters is not possible from

the data obtained; however, as discussed in Subsection 2.3.1 the bulk of the TCR distribution

is observed to very strongly follow a power law. However, the repertoire also consists of

expanded clones which do not follow any easily defined distribution (Figure 3.1A). One

possible explanation for this power law nature could have been that PCR and sequencing

errors artificially inflated numbers of rare clones; therefore large clones are more likely to

produce to spurious singletons (clones of copy number 1) . However, a single nucleotide

difference occuring during V(D)J recombination can change the amino acid composition of

the CDR3 chain and thereby generate a real clone with distinct binding properties. Using

hamming distance, which measures the number of single nucleotide mismatches between

two sequences, sequences from expanded clones and from rare clones were compared. Clones

with hamming distance of 1 and 2 were removed from the sample. It can be seen that some

of the removed rare clones shared sequence similarity with the expanded clones, suggesting

that there may exist low levels of sequence error; but, removing these did not change the

observed power laws nor their slopes (Figure 3.1B). Thus we conclude that that the T cell

sequence repertoire consists of an expanded component and a power law component.

The slope of the power law can then be obtained by a linear fit on the log-log axis. The

main remaining challenge is to define where the power law ends and the expanded portion

begins. Expanded clones typically have unique copy number, corresponding to a count of 1

on the y-axis of the abundance plot. Therefore, initially the power law slope is defined as the

linear fit of the distribution starting from the smallest frequency and ending at the minimum

frequency at which a unique clone copy number is observed. When dealing with datasets

where the number of unique clones sequenced was very small (<1000), this definition often

failed to provide a good fit due to a lack of data. Thereby, a more careful definition was
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Figure 3.1: A. The typical plot of TCR abundance consists of a powerlaw component and an
expanded component. The red line represents a linear fit of the data from which a slope can
be obtained. B. Left, in cyan, are clones remaining after all clones with hamming distance of
1 are removed and right, in red are all clones remaining after removing clones with hamming
distance of both 1 and 2.

selected, selecting the first two unique clones as the right end of the power law, provided that

the second was close to the first on the log scale. A log distance <1 was found to provide

the best results.

3.3 The semi-parametric method

The general problem is constructed as follows. Two samples are collected from a large

population of T cells. One sample undergoes activation and clonal expansion due to a

stimulus while the other remains unchanged. We call these populations unstimulated and

stimulated respectively. Both populations are then sequenced (Figure Figure 3.2A). Since

most clones are rare, the majority of cloes are captured in only one of the two samples and

the overlap between them is small (Figure Figure 3.2B) while the number of stimulated

clones not observed in the unstimulated population is much larger. The challenge then is to

estimate the true fraction of cells in the unstimulated population that underwent expansion.

A power law is fit to the abundance plot of the subset of clones that are observed in both

activated and unstimulated populations (Figure Figure 3.2C). The number of such unseen

clones is used to draw a horizontal line that intercepts this power law. The x-axis value of
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Figure 3.2: A. Two samples are collected from a larger pool of T cells. The unstimulated
population is shown in gray, and the alloreactive in green undergoes avtivating stimulation.
The two share a small overlap shown in blue. B. A histogram of the abundane distribution
of the unstimulated populated and in blue the subset that is observed in the stimulated
population. The green bar indicates the number of unseen clones. C. Construction of the
semi-parametric method. A power law fit of the shared clone abundance intersects the
number of unseen stimulated clone shown by the horizontal green dashed line The x-axis at
the point of intersection corresponds to the average clone frequency of the unseen stimulated
clones.

31



the intercept gives the average frequency of an unseen clone.

If we let N represent the number of unshared clones in the stimulated sample, and x∗

represent their average frequency in the unstimulated population, then for a power law with

slope α and K, the value of x∗ can be obtained mathematically from the definition of the

slope of a line, with values transformed on the log scale:

x∗ = exp
{ log(N)−K

α

}
This result arises from redistributing the standard formulation for the slope of a line

α = y2 − y1

x2 − x1

and solving for xz = x1. The resulting unseen frequency is then given by

funseen = N · x∗

3.4 Validation by simulation

3.4.1 Method

Validation of the semi-parametric method was performed by taking two samples from a

deeply sequenced repertoire. One sample represented the unstimulated population, and a

portion of it is was further subsampled to produce the shared population. The other sam-

ple is the stimulated population minus the shared piece, corresponding to all the unseen

clones. The semi-parametric method is then applied to the shared region, and the result-

ing frequency of unseen clones is compared to the true unseen frequency of the unshared

stimulated population Figure 3.3.

Due to the deviation from power law at large frequencies, which is particularly pro-

nounced among populations undergoing strongly polyclonal expansion, a de novo simulation,

in which the initial population is generated from a theoretical powerlaw distribution, does

not accurately depict the observation of subsampled real data. One future area to explore
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Figure 3.3: Templates from a deeply sequenced dataset, in purple, are subsampled twice.
The first subsample (second row, left, in blue) represents an unstimulated population and
the second subsample (second row, right, in blue) represents a stimulated population. Sub-
sampled numbers are selected to correspond to our numbers from a typical experiment. The
unstimulated sample is futher subsampled to produce a shared portion of clones, and the
three resulting populations (third row) are indicated, with unstimulated in green, stimu-
lated in orange, and shared as a mixture of the two. A venn diagram is presented to further
highlight the relationship between the three subsampled populations.

would be to construct a mathematical model to accurately describe the process of repertoire

expansion, but at present this task has proven a significant challenge. Instead, the initial

population from which subsamples are drawn comes from deeply sequenced reference data

sets of peripheral blood mononucleocyte (PBMC) derived T cells, downloaded from Adaptive

Biotechnologies and publicly accessible under the project name TCRB Time Course. Nine

datasets were selected from the same time point, corresponding to three technical replicates

from three different subjects.

Samples sequenced by earlier versions of Adaptive’s ImmunoSeq platform are available

only in read counts which do not lend themselves to a power law fit. In contrast, the samples

that are presented in this thesis are obtained from newer versions of the sequencing platform
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Table 3.1: Summary of TCRB time course data – Three replicates from three subjects.
Number of reads and clones is provided in the downloaded data. Read depth is inferred by
simulated annealing and used to compute template numbers and slope values.

Subject Replicate Id Templates Reads Clones Power Law Slope Read Depth
Subject01 110819 628121 25124827 445325 -2.88 40
Subject01 111014 702840 23193700 510910 -2.97 33
Subject01 110915 554826 24412302 417830 -3.06 44
Subject02 110811 272942 15011757 207898 -2.65 55
Subject02 110908 300539 20737164 226771 -2.83 69
Subject02 111006 210599 18111432 155165 -2.83 86
Subject03 110812 271342 21707348 218939 -2.43 80
Subject03 110909 350652 22792374 233694 -2.35 65
Subject03 111007 332762 22461415 210025 -2.46 67.5

which use unique molecular identifiers (UIDs) to produce template information as a proxy

for true cell counts. The TCRB time course data therefore had to be converted from reads

into template counts, which was accomplished using simulated annealing, discussed in detail

in Section 3.6. Each sample contained approximately 300,000 clones on average, with 20

million reads per sample Table 3.1.

3.4.2 Results

Public time course data was converted from reads to templates (Figure 3.4A) and subsampled

with replacement using the method summarized in Figure 3.3. The semiparametric method

was applied to the shared subset of clones to compute average unseen frequency. Estimated

total unseen frequency was computed and compared to the true value of unseen frequency, as

calculated from the data. For each of the time course datasets, this procedure was repeated

ten times to check that results were independent of sampling. Both estimated values and the

true frequencies after sampling remained stable across subsample runs, and the two values

were in close agreement. The differences between estimated and true unseen frequency values

were of magnitude 10−2 or less in all cases tested Subsection 3.4.2. Abundance plots from

several test cases are included, providing a visual comparison between the true unseen clone

frequency and the result of the semi-parametric method (Figure 3.4B).
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Figure 3.4: A. Conversion from reads to templates for an example TCR repertoire from the
time course data set B. Estimated average frequency for unseen clones from three subsam-
pling runs of three time course subjects . Abundance plots for the unstimulated sample are
shown in black, with the shared population in orange and a slope fit in red. The number of
unseen stimulated clones is displayed as a horizontal green line. The intersection between
the slope fit and the unseen clones is indicated by a filled green circle, from which a green
line is dropped to the x-axis at the estimated value of the average unseen frequency. The
true unseen frequency is shown by the vertical blue line.

3.5 Validation by replicates

The semi-parametric method was applied to a biological replicate, where two samples from

the same unstimulated pool underwent polyclonal expansion due to an alloresponse (Fig-

ure 3.5A) . The exact method for this experiment is discussed in Chapter 6. The semi-

parametric method was applied to each of the two populations of alloreactive clones and

the unseen clonal frequency was computed (Figure 3.5B top). Similarly, the unseen clonal

frequency was computed for a combined sample with the two replicates pooled into a single
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Figure 3.5: A. Venn diagram indicating the overlap between the two alloreactive replicates
and corresponding unstimulated sample. B. Clone numbers for shared replicates (top) and
clone numbers for the combined sample (bottom).

larger sample (Figure 3.5B bottom). The unseen frequency computation was performed as

follows:

freplicate1+replicate2 = 8.50e− 07 ∗ 17724 = 0.015

fcombined = 9.7e− 07 ∗ 3656 + 9.02e− 07 ∗ 4524 + (9.70e− 07 + 9.02e− 07)(9544/2) = 0.0166

where the average unseen frequency in the overlap between the two alloreactive samples

was averaged. Adding the two replicates individually produced an average unseen clone

frequency of 0.0166, compared to 0.0151 from the combined sample, an overestimate of only

0.15% demonstrating that there is little loss of accuracy due to subsampling, and validating

the efficacy of the semi-parametric method.
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3.6 Obtaining template counts by simulated

annealing
Starting with an initially power law distributed repertoire the PCR amplification step to

generate reads was mathematically described by the gamma-Poisson mixture. In the gamma-

Poisson mixture, the cell count of every clone is sampled from a Poisson distribution, where

the rate, λ, obeys the gamma distribution. For a known sampling rate, the probability of

finding a clone consisting of n cells is described by:

P (λ)P (N = n|λ) =

Γ(λ|α,β)︷ ︸︸ ︷[
αβ

Γ(β)λ
β−1e−αλ

] Poiss(n|λ)︷ ︸︸ ︷[
e−λλn

n!

]

In the limiting case of the gamma-Poisson mixture, where λ is unknown, we can take an

integral to obtain the average probability independent of the sampling rate. Evaluating the

integral produces the relationship

P (N = n) =
∫ ∞

0
P (λ)P (N = n|λ)dλ =

(
n+ β − 1

n

)(
α

α + 1

)β( 1
α + 1

)n
which describes a negative binomial. The average sampling rate for read counts is related

to average sampling rate for cell counts by the average amplification depth, µ=λ D. Then,

the negative binomial mean and variance for selecting each clone from a larger sample is

given by the following relationships:

µ = λD

σ2 = µ+ 1
s
µ2

where s describes overdispersion from the Poisson. This negative binomial approxima-

tion of read depth is frequently chosen for analysis of mean and variance from read counts

collected from RNA sequencing experiments [56].
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Figure 3.6: CD4+ and CD8+ samples of TCR from two individual healthy PBMC controls
with known template numbers are shown alongside fits obtained from read counts for those
same samples. True template abundance is depicted in black, while counts obtained by
starting with reads and running the simulated annealing procedure are colored in blue, for
CD4+ and in red for CD8+ samples. Template slope and estimed slope from simulated
annealing are presented in each plot.

The simulated annealing algorithm belongs to the Markov Chain Monte Carlo family

of methods for finding locally optimal parameters. It consists of doing a random walk

through the space of possible parameter values and evaluating a "goodness-of-fit" function

that provides a readout for the success of the optimization. As the value of the readout

improves the step size for the random walk becomes smaller, allowing estimated of paramater

values to be fine tuned. The procedure is repeated multiple times, to allow different local

optima to be captured, with the best parameters corresponding to the best optimum across

runs.

For converting reads (R) to templates (T) , the key parameters were depth, D, and

39



overdispersion, s. At each step of optimization templates numbers were computed as follows:

T =
⌈
R/D

⌉
The power law slope was estimated from the templates as discussed in Section 3.2. A

discrete power law with this slope was then simulated containing roughly the same number

of clones as in the observed data set. Reads were sampled from the negative binomial with

mean and variance given by the equations above. Finally KL divergence, DKL(p||q), was

used as the goodness-of-fit function, computed between the simulated distribution, p, and

the true distribution, q. The values of D and s were allowed to change according to a random

walk with predefined step size, with the step accepted if DKL decreased and a probability

of acceptance exp(Lprev−Lnew

T
) if it increased, where T serves as a temperature parameter.

The starting value of DKL was recorded, and the temperature parameter T and step sizes

were decreased each time a new computed DKL fell below an experimentally determined

threshhold of Dnew
KL

Dinit
KL
≤ 0.75. This divergence was then recorded as the new "initial value"

and the optimization continued until convergence, with a burn in period of 1000 steps.

Convergence required the change in DKL to be less than 1e − 4 for 100 consecutive steps.

Values of DKL varied by sample but were generally on the order of 1e− 2.

The simulated annealing algorithm was tested on samples for which both read and tem-

plate data was available to validate its usefulness and produced reasonable estimates of

template repertoire and slope. Figure 3.6 shows the results from these test cases.

3.7 Conclusion
We use the power law to describe the bulk distribution of a TCR repertoire. While modeling

of the TCR repertoire is a complex task because typical point estimates like the mean and

variance are not useful in analysis of power laws, the slope of the power law is powerful tool for

investigating questions of repertoire size and diversity, but requires precise measurements

of template counts. Using this template information where available, and estimating it

from reads where required, a semi-parametric method was found to accurately measure the
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unseen frequency of cells from a pair of samples. The validity of this sample was tested

by analysis of subsamples taken from deeply sequenced TCR data and by investigating

stability among sample replicates. The use of the semi-parametric method makes it possible

to answer a question often asked by immunologists and highly relevant for development

of new therapies, namely the frequency of a repertoire that is expanded when undergoing

olgiclonal or polyclonal expansion due to antigen stimulation.

3.8 Discussion

Quantitative analysis of both B and T cell repertoires can be greatly improved by obtaining

good parameter estimates to fitt the correct distribution. Several papers have proposed

power law fitting of the TCR repertoire [10, 23, 22], but there is virtually no published

literature to utilize such a fit. Much of the difficulty comes from the fact that, until recently,

there was a lack of accurate template data and observations were reliant upon rank based

distributions like Zipf law, rather than counts based estimates. Without a sufficiently large

dataset the accuracy of power law fitting is further reduced and methods are difficult to

validate. This work utilized the recent switch from read information to template counts, and

converted reads to templates via simulated annealing where necessary, with template counts

as the golden standard used to obtain optimal parameters for performing the converstion.

While TCR repertoire analysis is inherently a single cell challenge, in the next few years

bulk amplicon sequencing will continue to be the standard for capturing repertoire size and

diversity, and as this technology continues to improve, parametric methods will become

increasingly more useful.

For the work discussed in this chapter, several improvements can be made. While the

power law fits obtained here were sufficient for making comparisons between subjects, a

more systematic approach for power law fitting, such as by using expectation maximization,

may yield more accurate estimates with less depedence on ad-hoc cut-off criteria. This is a

significant challenge, because neither the mean nor variance are well defined for power laws,
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and the expanded portion does not appear to follow any well-described distribution and

contains only a few clones. Additionally, for unsorted repertoires, we obtained an average

slope, but there are likely multiple distinct distributions present, corresponding to different

TCR subsets. Ideally, with a sufficiently large dataset of TCR repertoire cell abundance,

it may be possible both to differentiate distinct populations of T cells, and to accurately

describe their distributions, allowing for deep insights into repertoire size, diversity, and

divergence to be made from the repertoire alone.
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Chapter 4

Long-term maintenance of human

naïve T cells through in situ

homeostasis in lymphoid tissue sites

4.1 Introduction

Subsection 2.1.1 gave an overview of T cell development in the thymus that generates the

mature nav̈e repertoire. Most naïve T cells are found in the spleen and lymph nodes whereas

the most accessible compartment in humans is blood, of which the naïve T cell repertoire

represents only 2-3% of the total peripheral blood mononucleocyte (PBMC) derived T cell

population [35]. Most of our understanding of naïve T cell maintenance and diversity comes

from mouse studies where the lymphoid organs are readily accessible in the laboratory. It is

reasonable to consider that the difference in lifespan and size of the mouse suggests differences

in naïve T cell maintenance as compared to humans. Indeed, naïve cell maintenance in mice

has been found to be largely driven by thymic output, whereas in humans the evidence

points to a homeostatic process of maintenance within peripheral sites [11]. The naïve

population in humans is also known to decline with age as a result of thymic involution and
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increasing numbers of memory T cells, with high frequency circulating clones in CD4+ and

CD8+ subsets [95, 94]. Thus, there is great interest in understanding how the fraction of

naïve reprertoire within lymphoid tissues changes over the lifespan of a typical human adult,

and to gain further insight into this maintenance mechanism. This chapter presents an in

depth analysis of the naïve T cell repertoire from human lymphoid tissues obtained from

organ donors through collaboration with the organ procurement organization for the New

York metropolitan area (LiveOnNY). Experimental work was performed by several different

people in the lab of Dr. Donna Farber, but the majority of the analysis and figures were

performed by Joseph Thome, PhD. and Brahma Kumar, while statistical analysis of TCR

repertoire forms the focus of this thesis. For completeness, both components of the research

are described. The results discussed have been published in the Science Immunology journal

[94].

4.2 Experimental analysis of naïve T cells over

multiple age ranges

This section describes experimental results from work performed by collaborators, but is

presented here in order to give a complete story. Naïve T cells were collected from over 70

donors aged from 2 months to 73 years from many different tissues including thymus, spleen

(SP), inguinal lymph nodes (ILN), lung lymph nodes (LLN) and mesenteric lymph nodes

(MLN).

4.2.1 Analysis of thymic function

Thymic involution with age was looked at by histological analysis, using hematoxylin and

eosin staining to look at Hassal corpuscles, a structure associated with functional thymic

activity. Younger donors had larger numbers of Hassal corupscles present at high density,

compared with significantly fewer Hassal corpuscles of larger size in adults (Figure 4.2A,B).

Thymic activity was further tracked by looking at numbers of FACS sorted double pos-
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Figure 4.1: Staining of Hassal corpuscles. A. Histological staining for Hassal corpuscles in
thymic tissue at 10x magnification (top) and 40x (bottom). The pink circular structures are
Hassal corpuscles. B. The average number of these structures in pediatric donors (<2 years
old) compared with adults [94]. Images taken by Joseph Thome, PhD.

Figure 4.2: A. Representative flow cytometry plots showing numbers of DP thymocytes for
different ages B. DP thymocyte percentage across all donors separated by age [94]. Figure
by Joseph Thome, PhD.

itive (DP) CD4+ and CD8+ thymocytes from functional thymic tissue. As discussed in

Chapter 2, DP thymocytes are present in the thymus prior to clonal selection. The highest

frequencies of DP thymocytes were found in younger donors, and lower frequencies in older

donors (Figure 4.2A,B). In both male and female donors the number of DP thymocytes

declined sharply after 40 years of age.
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Figure 4.3: Gating strategy for naïve T cells [94]. Figure by Joseph Thome, PhD.

4.2.2 Changes in naïve T cell numbers in lymphoid tissues

Fraction of naïve T cells in the different lymphoid compartments was analyzed by flow

cytometry. The gating strategy is presented in Figure 4.3 showing numbers of CD4+ and

CD8+ T cells sorted for naïve subsets based on cell surface markers discussed in Table 2.2.

Consistent with Figure 2.4, at all ages most naïve T cells are found in the blood, spleen

and lymph nodes, with few cells of this phenotype in the intestinal tissues (jejunum, ileum,

and colon). However, the fraction of naïve T cells is seen to decrease with age. The largest

numbers, as high as 80% of all T cells, have the naïve phenotype among samples taken from

pediatric donors. In contrast this drops to 40% or less for CD4+ and 60% or less for CD8+

in donors over 40 years of age (See Figure 4.4).

This decrease in naïve T cell fraction with age is particularly evident when plotting each

individual as a separate point stratified by age. By age 40, the splenic repertoire drops to
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Figure 4.4: Mean percentages of naïve T cells at various tissues sites by age [94]. Figure by
Brahma Kumar and Joseph Thome, PhD.

Figure 4.5: Individual percentages of naïve T cells across tissue sites by age [94]. Figure by
Brahma Kumar and Joseph Thome, PhD.

nearly zero, recapitulating the loss of thymic output. The spleen serves as a filter for blood,

giving evidence that while the repertoire is maintained at low levels in lymphoid tissue sites,

the blood and spleen repertoire is largely devoid of this phenotype in the older age group

(See Figure 4.5).

4.2.3 Thymic output and naïve T cell function

Histological staining of the thymus, sorting of DP thymocytes, and quantification of naïve T

cell numbers all point to a loss of diversity in adults, becoming particularly pronounced after

age 40. Another way to assess these waning T cell numbers in the tissue sites is to directly

47



Figure 4.6: A. Decrease of TREC levels with age for forty donors. B. Greatest difference
between tissues for each donor for CD4+ and CD8+ subtypes [94].Figure by Joseph Thome,
PhD. and Gregory Sempowski, PhD.

quantify thymic output by production of recent thymic emigrants (RTEs) – naïve T that

have recently entered the peripheral tissues from the thymus. These can be quantified using

TCR excision circles (TRECs) which are remnants of V(D)J rearrangement that are diluted

out over multiple round of cell division that occur as part of the T cell maintenance process

in the tissues. Analysis of TREC numbers similarly shows the drop of with age, becoming

particularly pronounced by age 40. Although there were no significant differences in CD4+

vs CD8+, younger individuals showed greater variation of TREC levels in different lymphoid

tissue sites, suggesting potential differences in RTE seeding and naïve T cell maintenance

(Figure 4.6).
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Figure 4.7: Levels of IL-2 and IFN-γ for three tissue sites (spleen, lung lymph node, inguinal
lymph node), for sorted CD4+ and CD8+ naïve T cells. Donors <35 years of age are in
white and >50 years of age are in black.

In light of the decreasing output of new naïve T cells and overall decrease in naïve T cell

fraction, the functonality of the repertoire was studied to determine whether the functional

phenotype had features of effector memory (TEM) T cells in older individuals. This was done

by assessing their levels of cytokine production when activated with anti-CD3/CD28/CD2

beads. While antigen experienced TEM cells produce large numbers of INF-γ, IL-4 and IL-

10 upon activation, antigen inexperienced naïve T cells produced predominantly IL-2 with

low levels of these other cytokines. The results, summarized in Figure 4.7, indicate that the

cells obtained from the older donors correspond to a strongly naïve phenotype.

4.3 Statistical analysis of sequence data

Following experimental quantification of T cells a subset of donor tissues were sequenced

by Adaptive Biotechnologies. For these donors β chains of both naïve and effector memory

T cells from spleen, lung lymph nodes and inguinal lymph node tissues were sequenced for

CD4+ and CD8+ subsets. These samples are summarized in Table 4.1 and can be downloaded

http://adaptivebiotech.com/pub/Farber-2016-SciImmunol. This section describes the sta-

tistical analysis of TCR repertoire diversity and divergence in human tissues to further

investigate the compartmentalization and maintenance of the naïve repertoire.
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Table
4.1:

Sequenced
donor

T
C
R

data

C
D

4
+

D
onor

T
issue

R
eads

C
lones

E
ntropy

C
lonality

Sim
pson

index

NAÏVE DONORS

D
99

ILN
512666

16626
13.59

0.030
9.84e-5

D
100

ILN
649404

23000
14.02

0.032
7.43e-5

D
115

ILN
LLN
SP

D
125

ILN
314186

7678
12.39

0.040
2.3e-4

LLN
227204
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10.49

0.053
9.2e-4

SP
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11.53

0.055
4.7e-4

D
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ILN
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0.053
2.5e-4

LLN
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13.57
0.045

1.1e-4
D
139

ILN
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12.39

0.053
2.6e-4

D
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ILN

D
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ILN
866857

57973
15.44

0.024
2.75e-5

SP
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49286
15.11

0.031
3.57e-5

D
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ILN
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48041
15.26

0.019
2.90e-5

LLN
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54184
15.25

0.030
3.27e-5

SP
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9014
12.81

0.025
1.6e-4

D
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ILN
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2836
11.14

0.028
5.1e-4

LLN
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0.038

1.3e-3

D
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15.30
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D
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14.22
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1.1e-4

SP
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0.040
7.03e-5

TEM DONORS

D
72
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1.05e-4

LLN
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0.044
8.76e-5

SP
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2.15e-4

D
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1.34e-4

LLN
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1.04e-4

SP
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D
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D
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0.066
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D
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0.096
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D
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5.97e-4

LLN
761650

32269
13.97

0.0670
5.13e-4
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0.030

1.29e-4
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13.26

0.036
1.31e-4

314150
5363

11.81
0.046

3.66e-4
551707

13466
13.10

0.045
1.54e-4

332714
3756

11.20
0.057

5.92e-4
270314

9165
12.65

0.039
1.96e-4

318147
13916

13.00
0.055

1.79e-4
131403

2646
10.69

0.060
8.44e-4

459948
6861

12.18
0.044

2.85e-4
780510

16531
13.42

0.043
1.23e-4

643360
20679

13.73
0.043

1.00e-4
160460

5160
11.44

0.073
5.31e-4

710430
9587

12.29
0.071

1.32e-3

409254
44597

14.95
0.032

4.18e-5
93814

2767
11.12

0.027
5.20-4

49448
3061

11.19
0.034

5.14e-4
289309

7729
11.80

0.086
5.41e-3

35805
892

9.43
0.038

1.86e-3
362810

19556
13.71

0.038
1.96e-4

51088
2471

10.72
0.049

1.40e-3
801288

49967
15.39

0.020
2.91e-5

2346619
120293

16.46
0.25

1.49e-5
639176

53431
15.26

0.028
3.35e-5

106063
3404

11.11
0.053

6.60e-4
29611

3416
10.15

0.136
3.00e-3

199030
16270

12.98
0.072

2.61e-4

4056501
7677

10.82
0.162

2.53e-3
6657759

8757
9.55

0.270
3.72e-2

4144747
8903

10.56
0.195

3.75e-3
3230208

5816
8.03

0.358
4.89e-2

2225157
8320

9.45
0.275

9.27e-3
4117270

5011
8.12

0.339
1.65e-2

3669324
14137

10.45
0.242

1.16e-2
4058300

12870
9.79

0.283
2.00-2

967815
6278

8.64
0.315

2.29e-2
2165991

5237
9.76

0.210
1.01e-2

2024061
6815

10.83
0.149

3.11e-3
9104434

8657
9.94

0.240
1.08e-2

2537491
8518

9.22
0.294

8.88e03
1967586

6659
8.52

0.330
1.71e-2

2558884
6246

8.70
0.310

1.12e-2
241762

2031
8.57

0.220
1.18e-2

225814
3534

9.99
0.152

6.05e-3
469019

5653
9.27

0.257
9.59e-3

1802110
23775

10.96
0.246

1.01e-2
2553091

17209
9.84

0.301
9.39e-3

49814
1311

9.24
0.108

5.19e-3
109116

3401
10.07

0.141
4.66e-3

98979
1672

8.87
0.172

1.35e-2

121286
3090

9.57
0.175

5.10e-3
184427

4092
9.72

0.190
4.84e-3

453061
4757

10.00
0.181

8.28e-3
723093

19458
11.80

0.172
3.70e-3

773821
13735

10.17
0.260

1.16e-2

50



4.3.1 Decrease in T cell diversity over lifetime

For all sequenced donors the nucleotide diversity was computed using Simpson index (Fig-

ure 4.8A). The abundance distribution indicated that the naïve repertoire did not contain

large expansions. Therefore, for the number of reads collected, a higher order of true diver-

sity was most informative for comparing the different T cell subsets. The Simpson index

decreased significantly with age for the CD4+ subset of the naïve repertoire, with significant

loss of diversity in many of the donors after age 40, consistent with the loss of T cell fraction

and thymic output previously described. A similar, though less pronounced trend was found

in CD8+ naïve T cells, again consistent with the somewhat smaller differences observed in

T cell fraction. However, the CD8+ repertoire had lower diversity overall at all ages, with

the least diversity among older donors.

Figure 4.8: A. Repertoire diversity quantified by Simpson index for CD4+ (left) and CD8+

(right) T cells separated by age and tissue. B. Maximum clonal frequencies for all donors
and tissues separated by T cell subset. P-values were computed using the t-test [94].

Diversity in both repertoires was further analyzed by maximum frequency and compared

to the TEM repertoire (Figure 4.8B), showing much larger expansions in TEM subsets

compared to naïve, as expected based on the large clone sizes found in [95]. Interestingly,
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Figure 4.9: Shannon entropy of VJ usage CD4+ (left) and CD8+ (right) for each cassette
pair plotted vs the number of clones generated from those cassettes. The maximum diversity
is indicated by the black dashed curve [94].

slightly higher maximum frequency values were also found in CD8+ T cells of the naïve

repertoire as compared with CD4+.

VJ diversity was looked at using Shannon entropy. This metric is the the best to use

for looking at VJ cassette usage because the space of VJ pairs is many orders of magnitude

smaller than the sequence space of CDR3s, thus producing more accurate frequency values,

and because the distribution has more evenness. The VJ entropy was lower for TEM than

for naïve T cells for both CD4+ and CD8+ subtypes, indicating a less diverse repertoire of

VJ usage. The naïve diversity was close to the maximum possible entropy, whereas TEM

shows presence of VJ cassettes from large expansions, particularly evident among the CD8+

subset.

4.3.2 Analysis of clonal overlap between tissues

Having quantified the loss of naïve T cell diversity with age an analysis of clonal overlap was

done to determine how the cells are maintained between distinct lymphoid tisue sites. The

overlap among the TEM subsets was used as a point of comparison. An analysis of the top

1000 clonal sequences from all tissues showed a striking lack of overlap among naïve T cells

at all ages and in both CD4+ and CD8+ subsets. In contrast there was significantly more
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Figure 4.10: Inter-tissue sequence overlap among top 1000 clones [94].
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Figure 4.11: Overlap as a function of read count. Each plot represents a pair of tissues X-Y,
and represents the fraction of overlap of clones in tissue Y with a subset of clones at a given
read count in tissue X. The x-axis is binned and the transparency and size of the circles are
proportional to the number of clones in each bin. Two representative donors of disparate
ages, (21 and 51 years old) are shown in A. , while all donors are pooled together for B.
Naïve T cells are showin on orange, and TEM in blue. [94]

sequence overlap between tissues within the TEM repertoire (Figure 4.10). The evidence

therefore strongly suggests that regardless of thymic activity, functional naïve T cells have

significantly less circulation between tissues compared to memory, in contrast with prior

expectation.

Most clones are rare and many of the unseen shared clones may occur at low numbers,

especially since TEM frequencies are typically higher overall. The overlap was therefore

further quantified by read count to see if overlap is frequency dependent. In this case TEM

still shared significantly more overlap at all read counts (Figure 4.11), with the trend more
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Figure 4.12: Inter-tissue VJ distance as a function of donor age for CD4+ and CD8+ subtypes.
Each point represents the distance for a distinct pair of tissues as indicated. P-values are
computed by a Wilcoxon rank test [94].

obvious among the CD4+ subset. This was further confirmed using replicate overlap as a

baseline.

4.3.3 Site specific maintenance of the naïve repertoire

Lack of overlap was further measured by VJ usage, using the Jensen Shannon Distance

(JSD). The lack of tissue sharing, and depleted seeding of new cells from thymic output

suggested the presence of a tissue specific maintenance mechanism for naïve T cells. We

observed a significant increase of inter-tissue JSD for the CD4+ subset and a similar trend

between pediatric and older donors in CD8+, suggesting that this may indeed be the case

(Figure 4.12).

4.4 Methods

Detailed methods are provided in Thome, Grinshpun, et.al. [94]
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4.4.1 Organ tissue acquisition and experimental analysis

The research presented here focused on capturing an accurate representation of the aïve

T cell receptor repertoire from lymphoid tissue sites. Therefore all tissues were obtained

from diseased (brain-dead) human donors at the time of organ procurement for transplan-

tation. Donors were selected to be free of chronic disease and cancers, and tested negative

for Hepatitis B and C, and HIV. All organs were flushed with cold preservation solution

after extraction. Additional thymic tissue was collected by cardiothoracic surgeons during

perdiatric cardiac surgery. A range of ages was selected from 2 months of age to 73 years to

ensure accuracy for investigating longitudinal changes.

Histological analysis of thymic tissue was performed from slices of stained and cryop-

reserved tissue, with Hassal corpuscles counted from three separate tissue sections at 10x

magnification. T cells from each tissue were sorted into CD4+ and CD8+ subtypes by flow

cytometry and analyzed for cytokine content by cytometric bead array. TRECS numbers

were obtained from sorted cells by real-time PCR.

All TCRβ sequencing was performed by Adaptive Biotechnologies using their proprietary

ImmunoSeq platform [81], obtained from DNA in sorted cells.

4.4.2 Statistical Analysis of TCR receptor repertoire

Sequenced CDR3 sequences were filtered and selected for productive sequences as indicated

by the Adaptive processing pipeline. Nucleotide, amino acid, V and J gene, and read data

was used for all the analysis. At the time the analysis was done, few of the datasets provided

template information, and performing conversion from reads to templates was not readily

available. Clones were further filtered by sorting error, under the assumptions that a par-

ticular CDR3 sequence belongs to either the CD4+ or CD8+ subset. A minimum two-fold

difference was required between CD4+ and CD8+ to identify a clone as belong to one or the

other subset. Ambiguous clones were discarded. In total, <0.4% of clones in naïve sam-

ples were discarded and <1.5% in TEM samples, consistent with the roughly 99% accuracy
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during cell sorting.

Analysis of clonal overlap for top clones looked at the top 1000 clones by read count,

thereby producing slightly more than 1000 clones in those cases where the smallest read

number was shared by multiple distinct sequences. Analysis of overlap fraction by read count

used replicate data from both naïve and TEM cells as a baseline for clonal overlap. The

overlap fraction was computed with the denominator determined by the clonal abundance of

the sample on the x-axis at the specified read count. Clones were binned on the log10 scale

to avoid inflated overlap fractions due to low clone counts among larger frequencies.

Statistical analyses utilized Simpson index, entropy, and Jensen Shannon distance, as

described in Chapter 2.

4.5 Conclusion

This is a novel study that comprehensively investigated the naïve T cell repertoire within

human lymphoid tissues. Thymic function and output was assessed, as well as age related

change in naïve T cell fraction. The data showed that there was virtually no thymic out-

put in healthy individuals over age 40, while a small fraction of functionally naïve T cells

was homeostatically maintained in the tissues. Studies of diversity and divergence of TCR

sequence repertoire further confirmed these findings, and also established that naïve T cells

have significantly less inter-tissue sharing when compared to TEM. Slightly higher diversity

and sharing was found in the CD8+ subsets as compared to CD4+, but in both cases the

evidence suggests tissue specific maintenance in the lymph nodes. This understanding of

how the naïve repertoire is affected by aging is an important aspect of human immunity to

consider and explore further when designing vaccines and developing new immunotherapies.

4.6 Discussion

One of the key challenges in performing this analysis was determining the appropriate meth-

ods for diversity analysis. The naïve repertoire contains few clonal expansions and the
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samples obtained were often small (only a few thousand clones). Measurements of entropy

and clonality remained useful when looking at VJ combinations, where combinations are

limited, and frequency calculations reliable. However, these measures were not stable for

the nucleotide counts available. In such a situation, the best approach is to use the minimum

value of true diversity, q, that provides an informative measure of the data. The Simpson

index, at q=2, provided a reliable measure that captured trends in the repertoire diversity

across different age groups, and indicated that for older donors there were increased num-

bers of small clonal expansions . Measures such as maximum frequency can capture such

differences, but are not able to provide such a complete explanation for the observed trends.

The Jensen Shannon divergence was used as a measure of divergence in VJ cassette

analysis, but not in nucleotide analysis. This again is due to the decrease in theoretical

diversity of VJ pairings compared to CDR3. JSD assumes that both datasets derive from

a larger distribution in which all elements are represented. Due to the uncertain dynamics

of naïve T cell seeding in the lymphoid tissues, as indicated by the lack of overlap, this

measure could not be reliably applied even to tissues from the same donor. All of these

considerations are described to highight how imperative it is that sample size, distribution,

and the assumptions inherent in use of the statistical methods are considered prior to running

data analysis of TCR repertoires and other highly diverse populations.
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Chapter 5

Diversity and Divergence of the

glioma infiltrating T cell repertoire

5.1 Introduction

Gliomas are the most common type of brain and spinal cancers, arising from the transfor-

mation of glial cells. The most severe and aggressive of these is glioblastoma (GBM), which

accounts for more than half of diagnoses and typically has poor rates of survival (1-2 years

with treatment) [77]. Although prognosis is typically done base on histological analysis of

biopsies, it is now known that the molecular origins of the disease vary, with distinct glial

cells of origin and affected gene pathways [74, 99, 45]. Typical treatment involves surgical

tumor resection followed by chemotherapy. However, despite all of these treatment proto-

cols, glioblastoma survival rates remain poor, in large part because GBMs employ a number

of strategies that suppress the immune response [78]. Researchers seek to understand the

exact mechanisms involved in immunosuppression and to develop novel immunotherapeutic

treatments that target the dysregulated pathways [44].

This chapter outlines the application of diversity and divergence methods previously de-

scribed in Subsection 2.3.2 to the study of the tumor infiltrating lymphocyte (TILs) sequence

repertoire of T cells. Tumor tissue and blood samples were obtained from hospital biopsies of
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Figure 5.1: Image of a GBM tumor taken from [13].

glioma patients as well as from healthy controls. The resulting analysis uncovered previously

undescribed phenotypes of the disease, using only TCR sequence data. TCR sequences from

blood were found that are associated with these phenotypes and can potentially serve as

immunological markers for studying glioma progression. The results are published in [89].

5.2 Preparation and sequencing of the T cell

repertoire

This section summarizes the experimental methods by which T cells were acquired from

PBMC and tumor tissues, and the computational tools developed to extract VJ usage and

CDR3 sequence information from raw sequence data. All experimental work was done by

collaborators.

5.2.1 T cell collection and sequencing

RNA sequencing libraries for both α and β receptor chains were prepared from peripheral

blood mononucleocytes (PBMCs) and cryofrozen tumor tissue, obtained from glioma patients

in the hospital. PBMCs were collected from several healthy individuals as well as healthy

brain tissue from non-glioma related biopsies. A total of three non-neoplastic (NN), three

low grade glioma (LGG) and 8 GBM samples in total were analyzed in this study and raw se-

quence files are available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79338.
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A sample summary is provided in Table 5.1

Figure 5.2: Library preparation for TCR sequencing of glioma samples. RNA is extracted
from PBMC and tumor tissue with specialized primers used to amplify the α and β TCR
chains. V and J cassette identity and CDR3 sequence are determined using a computational
pipeline to uniquely define a T cell clone [89].

Primers for V and J cassettes were obtained from the iRepertoire sequencing kit, and

reverse transcription and amplification were performed using a kit from Qiagen. Sequencing

was done at the Columbia Genome Center on an Illumina MiSeq, generating paired end

reads which overlapped the nucleotide sequence belonging to the CDR3. Unlike in previous

chapters T cell data was not sorted into CD4+ and CD8+ data, but both receptor chains

were sequenced.

5.2.2 CDR3 identification

Sequenced reads were merged using FLASH 1.2.11, which resolved mismatches based on

sequence quality score. The merged sequences were mapped to the human GRCh37 reference

genome using the Burrows-Wheeler Aligner (bwa-mem). A complete recombined TCR chain

61



Table
5.1:

Sequenced
LG

G
,G

BM
,and

N
N

patient
data

P
B

M
C

ID
U

nique
C

D
R

3
R

eads
C

lones
V

J
pairs

TCRα
N

01
358919

14164782
517570

2161
N

02
300671

16166316
416182

2117
N

03
181201

6247481
254769

2028
L04

26324
5871277

29035
1200

L05
173601

11785693
213297

2022
L06

61527
1525449

72414
1917

G
07

195466
6891503

256062
2040

G
08

229633
3251968

294383
2060

G
09

230166
4318029

305613
2077

G
10

237445
4208474

316193
2115

G
11

220503
3473415

279029
2044

G
12

156073
4381706

218793
2057

G
13

28887
2588839

37778
1800

G
14

27321
2530088

32503
1681

TCRβ

N
01

479582
10840682

984226
660

N
02

261484
14506770

515287
667

N
03

139687
4846289

279874
642

L04
55640

12542641
71676

573
L05

89601
11954418

112704
591

L06
7795

14843
8889

456
G

07
230577

12706006
430302

650
G

08
298761

3145154
540100

652
G

09
202923

2896028
370845

648
G

10
462931

11283991
979855

664
G

11
244552

3324140
408173

640
G

12
138056

4203412
261142

643
G

13
37387

1919386
53294

589
G

14
16864

2515617
24505

534

T
IL

U
nique

C
D

R
3

R
eads

C
lones

V
J

pairs
6790

2953925
8369

1002
2395

727218
2824

441
288

4157
290

195
6598

848196
7740

1081
11409

2135680
12151

1156
6713

111665
7436

1420
14397

2102587
17215

1679
10244

548877
14109

1652
7449

289283
8147

1472
16276

581924
19960

1782
11891

994193
14931

1661
32724

777599
41309

1915
6134

290766
7418

1362
6732

611661
8897

1511
3720

597886
5971

368
4638

533406
6140

368
5465

2086134
8106

390
10271

1396407
14498

456
12730

2072898
17530

485
6034

161583
9480

504
16516

500294
23496

543
10857

823759
19895

546
6101

193705
9069

487
18606

615132
34293

576
14655

1259883
27190

562
40613

1157226
80834

614
2532

75313
4351

419
9595

514210
20567

563

62



sequence would be mapped twice, corresponding to the V and J genes in the unrecombined

genome. After V,J identification, the CDR3 region was selected using in silico translation

based on conserved sequence motifs (See Figure 2.5). An overview of library preparation

and CDR3 identification is shown in Figure 5.2

5.3 Analysis of TCR repertoire diversity

Clonal diversity was measured by Shannon entropy in order to make use of the diversity

of independent components being separable. The total diversity was partitioned into two

part: HV J , the component produced by VJ usage and therefore representative of T cell

generation, and H∆, the VJ idependent component of the CDR3 amino acid sequence which

is tied to the antigen response of activated T cells. The total clonal diversity is related to

these components by the following expression:

Hclonotypes = HV J +H∆

Figure 5.3: Visual representation of clonal diversity being separated into VJ dependent and
VJ independent components [89].

The extend of VJ expansion was found to vary significantly between individuals, in

both PBMC and TIL. Many of the GBM samples exhibited highly expanded VJ pairs, as

indicated by the thick color ribbons in the Circos plots Figure 5.5, but the identity of these

pairs differed between individuals. However, glioma patients had a consistently greater VJ-

independent H∆ component, consistent with antigen driven activation. The Circos plots

were generated using code that can be found at https://github.com/bgrinshpun/CircosVJ.
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Figure 5.4: Separation of clonotype entropy into components by patient [89]

VJ cassette diversity was also quantified using clonality. GBM was most diverse within

the TIL population fo both VJ dependent and independent components, suggesting a poly-

clonal antigenic response. However, non-neoplastic patients showed the lowest diversity in

TIL, consistent with the brain being an immunologically protected organ (See Figure 5.6).
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Figure 5.5: Circos plots of VJ usage [89]

5.4 Analysis of TCR repertoire divergence
T cell repertoire from PBMCs and TILs within the same individual was compared using

Jensen Shannon distance. Once again a VJ dependent and VJ independent components were
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Figure 5.6: Entropy for VJ-independent components and VJ cassette combinations [89]

computed. Recall that Jensensen Shannon divergence can be expressed as a combination of

entropies, thus allowing for the following additional relationship:

JSclonotype(PBMC|TIL) = JSV J(PBMC|TIL) + JS∆(PBMC|TIL)

The Jensen Shannon distance is then acquired by taking the square root JSM =
√
JS.

In order to account for the larger number of T cells available in the blood, T cells derived

from PBMCs were subsampled to the size of the brain repertoire (PBMC’) to obtain a

corrected (corr) value for the true diversity given by the following relationship:

JSM∆,corr(PBMC|TIL) = JSM∆(PBMC|TIL)− JSM∆(PBMC|PBMC ′)

The resulting corrected distances are summarized in Figure 5.8 for average α and β

chains. The deviation of the VJ-independent ∆ distance from zero quantifies how the TIL

and PBMC distance compares to the expectation for a complete PBMC repertoire. Striking

differences in distance were observed, with all non-neoplastic samples falling below expec-

tation, suggesting minimal impact of antigen response to overall divergence, whereas LGG
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Figure 5.7: Visual representation of ∆JSM calculation. PBMC is subsampled to the same
size as the TIL repertoire and the property of JSM as a distance metric is used to compute
a final diversity score [89].

samples were significantly above expectation corresponding to a divergence strongly influ-

enced by neoantigen driven T cell activation. On the other hand GBM varied between

patients, with several of the samples having ∆ divergence more closely resembling LGGs vs

others more closely resembling the NN repertoire, indicating phenotypic differences among

different GBM tumors. The JSM∆,corr(PBMC|TIL) of GBMs was not correlated with

white blood cell count or steroid use, and is therefore unlikely to be due to lymphopenia

or therapy based immunosuppresion. Thus, separating the Jensen Shannon distance into

its VJ-driven and VJ-independent components serves as a means of separating active from

inactive T cell populations in the brain.

5.5 A public PBMC repertoire is associated with TIL

divergence

Although strong signatures of diversity and divergence can be associated with the GBM

repertoire, surgery is required to obtain brain tissues for this purpose. Finding a biomarker
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Figure 5.8: VJ independent JSM across samples [89].

Figure 5.9: Heatmap of observed signature clones for α chain (panel A) and β chain (panel B)
with clones ordered by hierarchical clustering. Red boxes indicate that the clone is observed
in the indicated samples. Signature clones are shown in the zoomed in region to the right of
each heatmap (1242 for TCRα) and (84 for TCRβ). The histograms represent an abundance
for the unique clones shared by the number of samples indicated on the x-axis [89].

by which to track GBM status in the blood would provide a means to monitor the cancer

in a non-invasive way. To explore the possibility for such a means of cancer tracking, top

TCR clones by frequency were looked at across all patients PBMC samples from a total

collection of 11638 α chains and 13,561 β chains. For both chains a set of "signature" clones

was identified that separated patients into groups, 1326 combined total for α and β chain

(Figure Figure 5.9).

Strong positive correlation across samples was observed between the fraction of these
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Figure 5.10: Left: VJ-independent PBMC diversity vs signature CDR3 fraction, Middle:
Divergence vs VJ-independent PBMC diversity Right: Signature CDR3 fraction vs VJ-
independent PBMC diversity [89].

CDR3s present in the sample and the VJ-independent entropy based diversity of the blood.

There was also strong negative correlation between this diversity and the JSM quantified VJ-

independent divergence between TIL and PBMC. Putting these two correlations together,

a final result was obtained that showed a strong negative correlation between the fraction

signature CDR3s in the blood and the ∆JSM(TIL, PBMC). Most of the GBM samples

showed high signature CDR3 fraction and low divergence, similar to that of NN samples,

while two of the samples were more like those of the LGG which had low CDR3 fraction

and high divergence. This suggests that the microenvironment of many GBM samples

phenotypically resembles that of NN samples rather than the more robust immune response

of LGG.

5.6 Comparison with previous studies

5.6.1 Signature clones among healthy PBMC samples

Both TCR α and β chain information was downloaded from six additional healthy human

PBMC populations described in [112]. While this study defined CDR3 clones by their full
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FGXG amino acid motif, most other studies truncate the definition of a CDR3 to include

only the first phenylalanine (F) residue. The resulting numbers of unique amino acid clones

were 1,241 for the α chain and 74 for β.

Presence of signature clones was assessed in these samples and used to recluster the data

(Figure 5.11). Among these samples 5/6 of samples clustered with the NN patients among

α chain sequences and all of the samples were clustered with NN for β chain sequences,

indicating the effectiveness of signature clones in separating healthy individuals from the

glioma phenotype.

5.6.2 Viral reactive clones

Signature clones were compared with previously identified public clones from [12] that were

found to be shared by many individuals with diverse repertoire profiles. Only β-chain infor-

mation was available; however, 62/74 (83%) of the signature clones were found among this

Figure 5.11: Heatmaps reclustered with additional healthy samples indicated in bold blue
font. Signature clones effectively clustered healthy samples into the group that contains the
non-neoplastic samples for α-chain (left) and β-chain right [89].
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list, suggesting that there may be a link between public clone use and glioma phenotype.

A similar analysis was performed for viral reactive clones for a number of common

pathogens including Clostridium tetani, Candida albicans, Mycobacterium tuberculosis, HSV,

CMV EBV and influenza, compiled from [7, 98, 52, 59, 108, 96, 8, 55, 91]. Once again, only

β chain information was available. Low levels of enrichment were found for Clostridium

tetani (8.1% among signature vs 0.5% among non-signature), Candida albicans (2.7% vs

0.08%) and Mycobacterium tuberculosis (27% vs 1%). A point of interest that may warrant

further consideration is that all of these enrichments were for non-viral pathogens.

None of these specific clones were able to cluster patients by cancer status as effectively

as the complete set of β chain clones obtained in this study, indicating that the complete

set of signature clones more comprehensively describes the glioma associated repertoire.

Signature clonal overlap with healthy PBMC, public, and viral clones is summarized in

Figure 5.12.

5.7 Conclusion

PBMC derived T cells and tumor infilitrating lymphocytes from glioma biopsies were se-

quenced from RNA to study the diversity and divergence of the immune tumor response.

A novel approach was applied separating VJ-dependent and VJ-independent components

of the repertoire. Diversity and divergence were quantified for each of these components

Figure 5.12: A. Venn diagram of overlap between signature clones, viral-associated clones
and public clones. B. Fraction of signature clones identified for each sample [89].
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to identify differences between a healthy repertoire, represented by the non-neoplastic pa-

tients, and the glioma patients, including six with glioblastoma multiforme. In particular,

the analysis focused on the VJ-independent component which is indicative of antigen re-

sponse rather than aspects of T cell maturation and brain specific compartmentalization.

TILs from GBM exhibited higher VJ-independent diversity and divergence. CDR3 clones

shared among PBMC samples from glioblastoma patients were found to be predictive of the

degree of divergence, thereby defining a potential biomarker for studying tumor progression.

5.8 Discussion

There is great interest in identifying components of the T cell response that can provide

insight into diagnosis and/or prognosis of cancer. High throughput repertoire analysis of the

TCR repertoire has the potential to identify specific T cells involved in immune regulation

and neoantigen binding. These can serve as markers may become the targets for novel

immunotherapies and tracking of disease progression.

In this study, we have shown that the combination of CDR3 amino acid and VJ usage is

a powerful method for analyzing diversity in response to disease. With blood serving as a

reservoir for T cells from different tissues in the body, the Jensen Shannon distance provides

a way to directly compare distinct tissue sites while controlling for differences in sample

size. Ideally, a TCR repertoire study will reveals information that is testable from a sample

of blood, thus avoiding the need for more invasive tissue extraction except in cases where

surgery may be required.

This work also highlights the importance of capturing the often neglected α-chain of the

TCR. The α-chain has more potential for diversity due to greater V-J cassette pairings, and

as shown in this study, it is this aspect of the repertoire that may uncover a disease signature.

More likely, the exact combination of the two chains is more important than any single chain

and hopefully as technology improves the analysis of TCR α − −β pairing in disease will

become a staple of TCR repertoire profiling studies and reveal complex relationships that
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single chain analysis is unable to resolve.

Finally, most studies as well as those presented in some of the other chapters, where

the data was not sequenced and processed in-house, provide a single VJ pair for each nu-

cleotide sequence. What we observe here, and in fact what should be expected given how the

repertoire is generated, is that multiple VJ cassettes can produce identical CDR3 sequences.

These differences in TCR generation may manifest as HLA-specific effects in disease re-

sponse, as factors that affect the signaling or cofactors, or perhaps even components of the

protein structure which have downstream effect on the shape of the CDR3 during antigen

binding. While more work is required to truly explore the relationship between VJ choice

and CDR3 binding potential for identical nucleotide sequences, there is still much to learn

about how TCR recognition and activation occurs on the amino acid binding level, and it is

certainly an area that ought to be explored further.
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Chapter 6

Diversity of the human alloresponse

6.1 Introduction

Alloreactivity is the robust immune response to the tissues of another organism of the same

species. In 1944 Peter Medawar first showed in experiments on rabbits that rejection of skin

allografts was initiated by the immune system [60]. Work by MacFarlane Burnet in colonial

marine forms and flowering plants further hilighted that the immune system is involved in

self-recognition of tissues [16]. Failure of thymectomized mice to reject grafts first proved

that the T cell response was the basis for immune rejection [63, 41]. It is now understood

that self-tolerance and allorecognition rely heavily on the MHC molecule, in addition to the

peptide it presents to the T cell [87].

An obvious benefit from understanding the mechanism behind alloreactivity is the ability

to succesfully transplant tissues and organs between people. Many hypotheses exist for why

the immune system exhibits alloreactivity, but it is unlikely that this response came about

as a result of an evolutionary benefit that it provided [24]. However, it is well known that T

cells generated in the thymus undergo clonal selection to prevent autoreactivity, as dicussed

in Subsection 2.1.2. This mechanism is only effective for the HLA genes encoded by that

individual, which leaves open the possibility for mature T cells that leave the thymus to be

reactive to isoforms of HLA from other individuals [38, 57, 85]. For this reason, transplants
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performed in the hospital require careful HLA matching between donor and recepient in

addition to regimens of immunosupressive drugs. Current estimates of the strength of this

response suggest that roughly between 1-10% of T cells are alloreactive [87, 104, 5, 105, 53]

but these numbers come from radioactive labeling and dilution assays, which rely on signals

with limited dynamic range and sensitivity.

This chapter describes a comprehensive study of the alloresponse from high throughput

sequencing of the T cell receptor repertoire. Measures of diversity and divergence are used to

compare healthy repertoires to alloreactive ones, to compare the effect of T cell stimulators

with differing levels of HLA matching with the recipient, and to describe a novel method to

accurately quantify the fraction of alloreactive T cells by using data from sequencing.

6.2 Experimental procedure and data processing

6.2.1 Stimulating T cell alloreacivity by MLR

To investigate the alloreactive repertoire PBMC samples were collected from healthy in-

dividuals. A mixed lymphocyte reaction (MLR) was performed, in which an alloresponse

from a healthy individual (the responder) was evoked due to stimulation by an irradiated

sample from another individual (Figure 6.1A). The responding repertoire was labeled by

CFSE staining, while the irradiated sample was stained with a violet dye. Irradiated T cells

were unable to proliferate, whereas proliferation of responder T cells was tracked by dilution

of CFSE. T cells were sorted into CD4+ and CD8+ subsets, generating four populations –

two from an unstimulated responder sample, and two from the expanded cells within the

CFSE stained population. The cells were then sent to Adaptive Biotechnologies for β-chain

sequencing (Figure 6.1B). All MLR experiments were performed by collaborators.

6.2.2 Identifying alloreactive clones

Although stimulated clones were identified on the basis of their CFSE signal, the distribu-

tions of stimulated vs unstimulated T cells is not perfectly separable. Therefore there is low
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Figure 6.1: A. Description of the mixed lymphocyte reaction reprinted from Figure 1 of [54]
with permission from AAAS. B. Overview of sequenced samples.

level error in classifying low frequency clones as alloreactive. Unstimulated and alloreactive

T cell frequencies were plotted against each other to identify a cutoff threshhold for allore-

activity. K-means clustering was used to separate the clones into either of two populations,

true stimulated vs error (Figure 6.2). Multiple cutoff criteria were test, from 1-5x, to define

the best ratio of stimulated to unstimulated clones. Across samples, the best separator for

defining allreactivity was a 2x threshhold. Clones with frequency below 1e-5 could not be

well resolved by any linear separator, and therefore were not included in further analysis

of alloreactivity. Approximately 0.05-2% of clones were removed in this way (Figure Fig-

ure 6.3). A summary of all healthy control samples used in the analysis of alloreactivity are

summarized in Table 6.1.
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Figure 6.2: CD4+ and CD8+ clones are clustered by k-means to determine whether they
correspond to the alloreactive population or to CFSE error. Red clones fail the 2x criteria,
green clones pass the 2x criteria. Cluster centers are shown as yellow diamonds with a blue
border. The 2x separation is given by the solid purple line, while 1x,3x,4x,and 5x thresholds
are indicated by dashed purple lines. Frequency cutoffs of 1e-5 are indicated by vertical and
horizontal black lines.

6.3 Comparison of unstimulated and alloreactive

populations

6.3.1 Number of sequenced unique clones

Although little is known about the size of the alloreactive repertoire, it has been shown to

be highly polyclonal and is dominated by high abundance clones [29, 54, 27, 39]. From the
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Figure 6.3: The fraction of all stimulated clones removed by 2x criteria for CD4+ and CD8+

subsets.

Figure 6.4: A. Total number of clones collected from both alloreactive and unstimulated
populations and B. Maximum clonal frequency observed in each population.

roughly 2e5 templates and 1200ng of DNA that were sequenced for each sample, an order

of magnitude fewer clones were identified in stimulated populations. Total clone numbers of

stimulated clones were in a similar range among all sequenced samples, suggesting similar

levels of expansion across individuals. The maximum clonal frequency of alloreactive samples

was also several times greater than those of the healthy controls Figure 6.4. Both of these

results verify that the alloresponse is very robust.
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6.3.2 Analysis of CDR3 length and VJ usage

As described in the introduction, the alloresponse depends on the foreign MHC as much as

the bound peptide. The MHC region is recognized by the CDR1 and CDR2 sequences on

the V gene (See Subsection 2.1.2). This could serve to restrict the usage of VJ pairs among

alloreactive cells. Similarly, the TCR interaction with foreign MHC may impose limitations

on the CDR3-peptide bond by affecting flexibility, hydrophobicity, or overall charge, which

could manifest as a change in the CDR3 length distribution. While in mice no differences

in CDR3 length were identified [65], no such analysis has been performed for the human

alloresponse.

VJ usage frequencies and amino acid CDR3 length frequencies were compared between

unstimulated CDR3 clones and the alloreactive set. The CDR3 lengths were approximately

normally distributed, with a maximum at 15 amino acids, and a simple Mann-Whitney

test showed no significant difference between the two populations for either CD4+ or CD8+

subsets (Figure 6.5A,B). The VJ usage was quantified by Jensen Shannon divergence, which

produced low values for all pairs of samples, indicating very similar frequency distributions

between unstimulated and alloreactive populations (Figure 6.5C). This was further visualized

using Circos plots (Figure 6.5D). The finding that no significant differences exist between

alloreactive and unstimulated T cells in a repertoire, either in CDR3 length or VJ usage,

suggests that the alloreactive repertoire consists of typical T cell clones, and is not biased

towards specific clonal subsets.

6.4 Quantifying the diversity of the alloresponse
Diversity of the allorepertoire was quantified using clonality and power law slope. Analysis

of clonality between unstimulated and alloreactive populations (Figure 6.6A–C) showed that

while CD8 was more clonal among the unstimulated repertoires, this difference is significantly

less pronounced in the allorepertoire, directly quantifying the strong clonal expansions sug-

gested by the numbers in Figure 6.4. The increase in clonality in CD4+ was much larger than
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Figure 6.5: A. Comparison of CDR3 length frequencies in alloreactive and unstimulated
populations for CD4+. (left) CD8+ (right). Jensen Shannon divergence for VJ usage between
unstimulated and alloreactive samples. C. Circos plots of VJ usage. Ribbons are drawn
between each V-gene on the right side (shades of red, yellow, and green) and J-gene on the
left side (shades of blue and purple). The thickness of the ribborn is proportional to the
usage frequency of a given combination.

that in CD8+, but CD8+ nonetheless contained slightly higher frequency top clones in the

alloreactive population (Figure 6.6D). However, the most distinguishing feature among the

samples was the power law slope, calculated as described in Section 3.2. The slopes showed

clearly that CD8+ subsets are less diverse than CD4+ subsets, and alloreactive populations

are less diverse than unstimulated populations. Additionally, the average difference in slope

between unstimulated populations was greater than between alloreactive populations, again

suggesting that CD4+ subsets expand most strongly during the alloresponse and is similar

to CD8+ in overall diversity (Figure 6.6E). This result provides evidence for the robustness

of the alloresponse at a greater resolution than previous studies, and highlights the benefits

of using the slope of the T cell receptor repertoire to look at diversity.
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Figure 6.6: Diversity of CD4+ and CD8+ T cell subsets was quantified using clonality for
both unstimulated (A) and alloreactive (B) populations. Alloreactive and unstimulated
populations are compared directly in (C). Abundance plots of unstimulated and alloreactive
repertoires are plotted in (D) with expanded clones indicated by the dotted ellipses. Boxplot
of powerlaw slopes is shown in (E). All CD4+ clones are in blue, and CD8+ in red.

6.5 Allospecificity of the alloreactive repertoire and

the role of HLA

It is not known whether a repertoire responding to two different stimulators will activate the

same or different T cell clones. For three of the samples (HC10, HC27 and HC42) the allore-

sponse was measured for two different stimulators. Frequencies of the top 100 alloreactive

clones were plotted and for all three cases very few clones were found to overlap, suggesting

that alloreactivity is not limited to a specific set of clones (Figure 6.7A). Furthermore the

Jensen Shannon divergence was calculated for the nucleotide sequences of the two stimu-

lated populations, and compared across the three samples which varied in their degree of

HLA mismatch (Figure 6.7B). HC27 was completely mismatched for both HLA Class I and

HLA Class II, while HC10 had 2/6 Class I match and HC42 had 2/6 Class I match and
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Figure 6.7: A. Overlap of alloreactive clones from two stimulators of the same healthy
control population, for three samples (HC10,HC27,HC42). B. Jensen Shannon divergence of
nucleotide sequences between stimulated populations for top clones as indicated.

1/6 Class II match. The amount of mismatch directly corresponded to the Jensen Shannon

divergence, particularly among top clones, with greater mismatch corresponding to higher

values of divergence. This is direct evidence showing that the more highly HLA matched

the two samples are the greater the overlap among reactive clones.

To further validate that clonal sharing among stimulated populations was dependent on

HLA mismatch, four additional sequenced datasets were analyzed from combined kidney

and bone marrow transplants (CKBMTs) collected in [54]. Prior to this analysis reads were

converted to templates as discussed in Section 3.4. All four unstimulated repertoires were

stimulated by a matched transplant donor. A second sample from the same repertoire was

stimulated in a heavily mismatched MLR experiment. The reactive clones TCR population
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Figure 6.8: A. Representative abundance plot showing the steeper and therefore more diverse
power law distribution from a response to an HLA mismatched repertoire compared to a
shallower power law for a haploidentical transplant. B. Difference in repertoire slope for
all CKBMT samples. Dashed lines connect stimulator pairs for the same subject. P-value
obtained by Wilcoxon test.

after transplantation were compared to reactive clones of the mismatched population. In all

cases the mismatched sample had greater alloreactivity as indicated by the lower slope of

the abundance distribution (Figure 6.8A,B) in both CD4+ and CD8+ subsets.

6.6 Frequency of the alloreactive repertoire

Identifying the fraction of cells within an unstimulated population has so far not been ad-

dressed by TCR repertoire sequencing, and was attempted for the first time in this study.

Where clones from the alloreactive population were also sampled in the unstimulated pop-

ulation the frequency was used as observed, providing an upper bound for those clones.

The majority of alloreactive clones are rare and were therefore unobserved as shown in Fig-

ure 6.9A. Using the semi-parametric method first outlined in Chapter 3, the frequency of

these clones was estimated and used to compute the total fraction of the original collected

sample that was alloreactive Figure 6.9B. The overall frequency of alloreactive cells fluc-

tuated between 1-7% for CD4+ T cells and 0.5-4% for CD8+ T cells. This result seems

to indicate that previous estimates of many as 10% of the repertoire being alloreactive are

overestimates. Additionally it indicates that the CD4+ is more alloreactive than CD8+,
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Figure 6.9: A. Histograms of clonal abundance. Instimulated populations are colored in gray.
The subset of clones found in both alloreactive and unstimulated populations are indicated in
blue for CD4+ and red for CD8+. Barplots on the left indicate number of alloreactive clones
not found in the unstimulated population. B. Sum frequency estimate combining observed
frequencies shown by bar plots, and additional unseen frequency presented by error bars.

consistent with the greater change in observed CD4+ diversity.

6.7 Conclusions

This chapter presented a novel study to comprehensively investigate the alloreactive response

through analysis of nucleotide sequence, VJ cassette usage and CDR3 length. Measures

derived from information theory including clonality and mutual information were used to

investigate changes in repertoire diversity and constraints on repertoire use among allore-

active clones. The role of slope calculations in comparing TCR subsets was demonstrated.

The importance of HLA matching was also explored, finding that stimulators which were
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more closely matched stimulated similar groups of T cell clones. Finally, an estimate of

the fraction of expanded TCRs in the alloresponse from high throughput sequencing stud-

ies was obtained. These results offer early insights into the nature of the alloresponse and

computational methods for studying repertoires of large activated T cell populations.
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Chapter 7

Conclusions and future work

Quantitative approaches for analyzing diversity and divergence of T cell repertoire have

been explored and applied to a number of applications, including the maintenance of naïve

repertoire in healthy lymphoid tissues (Chapter 4), the distribution of TCRs in gliomas

(Chapter 5), and the strength of the alloresponse (Chapter 6). A semiparametric method

was introduced to quantify the fraction of expanded clones from sampled populations (Chap-

ter 3), and was used to measure the strength of the polyclonal alloresponse. This thesis shows

that a great deal can be learned from comprehensive sequencing of the TCR repertoire that

cannot be obtained through biochemical approaches. The insights gained from these analyses

and the tools presented have significant implications for development of immunotherapeutics.

There are many further directions for improving our understanding of the T cell immune

response. All of these studies can benefit from continued collection of samples and replicates

to better quantify the variability among the human population. Additionally, both the

naïve T cell and glioma work would benefit from longitudinal studies thereby minimizing

noise from individual differences in repertoire. Finally, most studies have only looked at the

β-chain of the repertoire; however, analysis of α-chain may reveal further associations of

specific T cells as markers of immune response. Much like single nucleotide polymorphisms

(SNPs) can be used to identify physical traits and make health predictions, in the future
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it may be possible to use TCR repertoire to develop methods for diagnosis and treatment

tailored to individual patients.

On the functional side, TCR data can be combined with RNA sequencing and single cell

sequencing experiments to better understand T cell effector pathways and differential changes

in activity during tissue maintenance or antigen induced activation. On the structural side,

careful analysis of TCR-protein interactions can lead to development of T cells specially

designed to respond to cancer neoantigens or to predict alloreactivity among T cell sequences.

Additional interesting questions to consider are whether TCR repertoire can be used to

infer MHC genotype, potential for autoimmunity and allergic response, drug responses, and

virtually any other response that depends on the immune system.

Finally, a great deal of focus has recently been placed on the human microbiome and its

interactions with the immune system. The microbiome is also extremely diverse and variable

across tissue sites. Studies of diversity and divergence can be used to look at the effect of

the microbiome on the immune system and on T cell responses.

The study of the immune responses through the use of sequencing is still in its early

stages and TCR studies will continue to improve and impact our understanding of human

evolution and diversity, as well as our understanding of the immune response in various

diseases. This knowledge in turn will impact our ability to treat diseases on an individual

basis.
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