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ABSTRACT

ATLAS Levels Up:

Early Searches for Diboson Resonances in Semi-Hadronic Decay Channels at

√
s = 13 TeV Center of Mass Energy

Steve Alkire

Searches are made for narrow diboson resonances, ZZ and ZW , in the final states

``qq and ννqq at ATLAS, with (13.2±0.4) fb−1data collected from pp-collisions with

center of mass energy
√
s=13 TeV during 2015 and 2016, the first two years of Run

2 of the Large Hadron Collider. The hadronic decay products of the vector boson,

V → qq, are reconstructed as jets in the electromagnetic and hadronic calorimeters.

When the vector boson is sufficiently boosted the decay products are reconstructed

as a single anti-kt R = 1.0 jet. Otherwise two anti-kt R = 0.4 jets are matched to

identify the vector boson. The Z boson in its leptonic decay is identified by either

reconstructing two electrons in the calorimeters, or opposite sign muons in the muon

spectrometer. Limits on the production cross section for 3 benchmark signals, a heavy

scalar, a spin-1 heavy vector triplet, and a spin-2 graviton are set in the mass range

300 GeV to 5000 GeV.
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Chapter 1

Introduction

Particle physics is in the post-Higgs era. The Higgs boson was discovered in 2012 [1,

2] during the first run of the Large Hadron Collider (LHC) at both general pur-

pose experiments, ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon

Solenoid). The masses of the Z and W bosons can be generated by the mechanism

of electroweak symmetry breaking (EWSB) [3, 4] used by the electroweak theory of

the Standard Model of Particle Physics (SM). This mechanism, in its simplest imple-

mentation predicts an additional field and its quanta, the Higgs boson h, the direct

observation of which in 2012 earned Peter Higgs and Francois Englert the Nobel

Prize in Physics in 2013. But there is no reason a priori to expect that h would be

implemented in its simplest possible mathematical form–the history of experimental

particle physics in the 20th century has after all served up as many unexpected results

as expected. Yet, the SM has been widely–frustratingly–successful at predicting nu-

merous phenomena in the last 50 years, and this latest prediction is the center-most

piece of what is looking to be a very complete puzzle. The ATLAS and CMS collabo-

rations at LHC have measured the mass of the Higgs boson to be 125 GeV [5] and the

spin, charge, parity, and couplings to be consistent with the minimal implementation

of EWSB according to the SM.

Despite the many successes of the CMS and ATLAS collaborations in understand-

ing and constraining the properties of the SM already and especially those related

to the Higgs boson, a number of additions to the SM are still well motivated. The

related fields of particle physics and cosmology have paid their dues and come up with

1



great experimental successes with the verification of two long-held theories with back-

to-back discoveries: the Higgs boson at LHC and gravitational waves at LIGO [6]. It

would not be too much to expect a glimpse of something new, perhaps to inform the

connection between these two discoveries. Numerous unanswered problems persist in

the theoretical frameworks used in these fields (dark matter, dark energy, the hierar-

chy problem, naturalness) that will find explanations consistent with and hopefully

directly inspired by measurements and searches made with the data being taken right

now at the LHC.

This thesis probes many of these questions, in the way that experimental physics

does, by way of careful search, documentation, and understanding of the uncertainties

of the relevant parameter space. There isn’t a single fundamental question to motivate

the following search that stands far above the rest. Indeed, it is the objective of the

experimental programs at CMS and ATLAS to produce results widely interpretable,

and the results of the searches presented below are exemplary in their breadth from

a theoretical perspective. Rather, the details involved in the production of a final

result from commissioning of a new apparatus, to data simulation and collection, to

analysis, to theoretical framework will be presented. The tasks of the experimental

particle physicist within an experiment are manifold. The results presented in this

thesis are a product of work by the author in the upgrade, operation, and calibration

of the ATLAS experiment at the unprecedented
√
s = 13 TeV center of mass energy

(CME).

1.1 The Searches

Searches are made for narrow mass resonances in a model independent way using

simplified phenomenological models in place of explicit theories. This thesis considers

extensions of the SM of 3 general types, each producing a narrow resonance, and for
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Figure 1.1: Pictorial view of the Bridge Method.

analyses, which can be preformed directly on the Simplified Model parameter space. Once the

likelihood or the CL limits are known, the experimental information is immediately translated

into the free parameters ~p of any explicit model by computing the phenomenological/explicit

parameter relations ~c(~p).

When comparing the Simplified Model with the data, some care is required. The crucial

point is that the Simplified Model, di↵erently for instance from the SM or the MSSM, is not

supposed to be a complete theory and attention must be paid not to use it outside its realm of

validity. Namely, the Simplified Model is constructed to describe only the on-shell resonance

production and decay. A good experimental search should thus be only sensitive to the on-shell

process and insensitive to the o↵-shell e↵ects. The simplest example of this situation, which

we will discuss in detail, is the Drell-Yan (DY) process where the invariant mass distribution

of the final state is studied. Aside from the resonant peak, the distribution is characterized by

a low mass tail which can become prominent, because of the rapidly-falling parton distribution

functions, when the resonance approaches the kinematical production threshold or when a

large interference with the SM background is present. Many di↵erent New Physics e↵ects,

not included in the Simplified Model, might contribute to the tail and radically change the

Simplified Model prediction. This could come, for instance, from extra contact interactions

or from heavier resonances produced in the same channel. Around the peak, and only in this

region, these e↵ects are negligible and the Simplified Model prediction is trustable. Indeed

the peak shape is well described, through the Breit-Wigner (BW) formula, in terms of purely

on-shell quantities such as the production rate times the Branching Ratio (BR) to the relevant

final state, �⇥BR, and by the resonance total decay width. Experimental searches should

focus on the peak and avoid contamination from the other regions as much as possible. More

in general, any resonance search relies on the measurement of a given observable, either the

number of events or a distribution, restricted by suitable identification and selection cuts.

Only “on-shell” observables, which are exclusively sensitive to the resonance formation and

decay, should be employed in Simplified Model searches. Notice that whether an experimental

observable is on-shell or not can crucially depend on the cuts and must be checked case by

case.

Aside from addressing the conceptual issues previously outlined, the usage of on-shell ob-

servables is also an important practical simplification. Because of factorization of the pro-
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Figure 1.1: The “bridge” method [7].

each there is a benchmark model that is used to set limits on the given type of

resonant behavior. Limits are set on the cross section times branching ratio, σ×BR

of the simplified models, which are then readily converted to bounds on parameters

of a specific model. To borrow a metaphor used to describe one of the simplified

models that is generally applicable to all searches considered in the following, Fig. 1.1

shows how a simplified Lagrangian, LS forms the bridge from experimental data to

be interpreted in complete theories extending beyond the SM. In this cartoon, the

likelihood, L, of the phenomenological model is calculated or confidence limit (CL)

curves are produced in terms of the parameters of the phenomenological model, ~c.

Transfer functions, ~p(~c), can be made for the parameters of a specific theory making

the limits set generally applicable to multiple theories current and future. This is

generally true modulo some dependence on a non-trivial resonance width.

The models are introduced and briefly motivated below. Theoretical details of

each of the extensions will be covered in Chapter 2.

Heavy Scalar The Higgs model employed in the SM is the simplest possible im-

plementation of electroweak symmetry breaking. However, there are many possible

models that predict a more extended Higgs sector such as the electroweak-singlet

(EWS) model [8] and the two-Higgs-doublet model (2HDM) [9]. For searches rele-

vant to these models a heavy spin-0 neutral CP-even Higgs boson is used with the

predicted decay branching from the SM. The signal is generated in the narrow width

approximation (NWA) for both the gluon-gluon fusion (ggF) and vector boson fusion
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Figure 1.2: Feynman diagrams for the heavy spin-0 extension to the Higgs sector in
gluon-gluon fusion (ggF) and vector boson fusion (VBF) production channels.

(VBF) production channels, shown respectively in Figure 1.2. The narrow width

approximation assumes a theoretical width of the benchmark signal is only 4 MeV,

the width of the SM Higgs according to its decay rate, which is trivial in comparison

to the experimental width. In models of these types there are interference effects

with the 125 GeV Higgs which has been ignored for these searches but will make for

interesting work in the future.

Extended Gauge Models (EGM) with a heavy spin-1 boson This search

addresses extensions of the gauge sector in a general way [10] using a simplified phe-

nomenological model with a heavy triplet state of Z andW vector bosons. Figure 1.3

(a) shows the first order Feynman diagrams of the heavy vector triplet, a charged W ′

that decays to the charged and neutral vector bosons. A broad class of extensions

of the SM gauge sector, with varying and rich phenomenologies, can be probed by

searches with a spin-1 resonance due to the ubiquity of this additional boson. Tech-

nicolor theories are one classic example of an extended gauge sector [11–13]. Gauge

extensions often also require the introduction of other fermions and/or additional

heavy neutral bosons [14]. For example, Grand Unified Theories (GUT) with this
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Figure 1.3: Feynman diagrams for the spin-1 W ′ and spin-2 graviton signals.

formulation [15, 16] in some cases require the existence of SUSY to solve the hierar-

chy problem, obtaining coupling constant unification.

A spin-2 graviton from models with warped extra dimensions A bulk

Randall-Sundrum model [17, 18] is used as the basis for searches for spin-2 gravi-

tons. Models of this type are well motivated theoretically because they can give at

least a partial answer to many shortcomings of the SM simultaneously. By adding

a single warped dimension to the field theory the hierarchy problem of the Planck

and weak scales is reduced to a single order of magnitude from 1024. Simultaneously,

the theory provides a quantum field theory solution to the Einstein field equations

of general relativity and to electromagnetism as an extension of the Kaluza-Klein

model [19], and the bulk allows an explanation for the large variation in the masses

of fermions of the SM. Figure 1.3 (b) shows the mode used for our benchmark model

in the ggF production channel.

The searches for each of the benchmark models are cut-based (as opposed to

optimizing a discriminant) and proceed along a similar course. Except at certain key

points each is optimized for the specific signal over the other as will be detailed later

in Chapter 6. Common to each analysis is a categorization based on the reconstructed

jets in the calorimeters. Both the ννqq and ``qq channels require a decay of a vector

boson hadronically forming a signature of two jets in the calorimeters. If the boson

is significantly boosted from the laboratory reference frame then the opening angle
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of the jets is small and it is most efficient to reconstruct the detector signature as

a single object, the whole boson, in the calorimeters, a “large-R” jet–this is referred

to as the merged regime. Otherwise, two individual jets are resolved and associated

with each other to identify the boson. These analysis channels are handled separately,

optimizing their own set of cuts. Furthermore, the boosted channel is split based on

a jet substructure variable designed to differentiate between the two-pronged jets of a

boson decay and the single-pronged jets of a QCD event. The ``qq channel uses both

the resolved and merged regimes whereas the ννqq channel uses only the merged.

Little is lost from not including the resolved analysis in ννqq channel since the

``qq analysis dominates the search in the lower mass range. The two leptons allow the

reconstruction of a Z boson mass giving additional discrimination to the ``qq channel

whereas the ννqq channel relies on high missing transverse momentum (Emiss
T ) from

Z-decay to two neutrinos. The leading SM background of V+jets is larger in the low

mass range of the search where the additional discriminating power is necessary to

achieve a decent signal to background ratio, S/
√
B. Searches for spin-0 and spin-2

signals further split the resolved regime by identification of jets from the decay of the

Z boson to two b-quarks through reconstruction of displaced vertices as the source of

the charged particles in the hadron shower. Finally, the scalar search discriminates

between ggF and VBF production channels by tagging the two additional jets in the

final state of the VBF topology (Fig. 1.2).

For each signal, in each regime, the resonance is searched for with a final dis-

criminating variable of the reconstructed mass. In the resolved ``qq channel this is

the invariant mass of the two reconstructed leptons (either ee or µµ̄) and the two

reconstructed jets (m``jj). The merged ``qq channel uses the invariant mass of the

large-R jet and the two leptons (m``J). For ννqq channel the transverse mass (MT

) constructed from the invariant mass of the missing transverse momentum and the

large-R jet limited to the transverse plane. Individual categories within each channel
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are combined into a single search.

1.2 Historical Searches

The limits presented are an improvement over those set for narrow resonances previ-

ously at the LHC and Tevatron. The ATLAS and CMS collaborations have searched

for diboson resonances, ZZ and ZW , at
√
s = 7 and 8 TeV. These analyses offer an

improvement in both the range of masses searched and the inclusion of data.

ATLAS has already released 2 analyses with the more limited 2015 data set of

3.2 fb−1. Already an improvement over searches made with 20 fb−1at ATLAS and

CMS [20–24] at 8 TeV. One analysis combines searches in the range of 500 to 3000

GeV for a bulk RS graviton and HVT in the `νqq, qqqq , ``qq, and ννqq channels

using only a merged analysis [25–27]. A limit of 1100 GeV was set on the bulk RS

graviton model and a limit of 2600 GeV was set on the heavy vector triplet. A notably

improved confidence limit was set in the lower mass region of the ``qq channel for a

search in the mass range of 300 GeV to 1000 GeV for a heavy Higgs and graviton

by improving the efficiency of the analysis and including the resolved analysis, which

excludes a bulk RS graviton with mass below 820 GeV [28] in the single channel.

Which channels are dominant in combination depend heavily on the mass range

searched and the model used to determine the relative BRs to each of the final

states. The important final states to include in a search are determined by the decay

products of the bosons and by the expected BRs and their SM backgrounds. The

Z and W bosons decay hadronically with approximately twice the width than the

leptonic decay. Therefore in the higher mass ranges where QCD background is steeply

exponentially suppressed, the fully hadronic channels dominate due to the branching

ratios. In a search covering a wide spectrum, the dominant decay channel will shift

from ```` to ``qq to ννqq to qqqq with increasing mass. ``qq is most dominant from
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500 GeV to 1000 GeV and ννqq from 1000 GeV to 2000 GeV. Therefore, the channels

considered in this thesis are of particular interest at this phase of the LHC experiment,

as we reach the moment where the ATLAS experiment collects a sufficient amount

of data at the higher Run 2 energy where discovery of a simple resonance from 500

GeV to 2.5 GeV could become statistically obtainable. In other words, at this point

we can extend significantly the limits set on these models through the regions where

these channels are the most valuable.

This thesis treats the ``qq and ννqq channels separately in setting limits. Specific

model-dependent combinations of these results are underway, including a search for

HVT, G*, and a heavy scalar inWW , ZW ,WW , and HH resonances in many decay

channels.

1.3 Data Taking

To understand the results of this thesis and the purpose of much of the work that

has been done to obtain them it helps to understand the schedule of data-taking

at the LHC and in the ATLAS experiment. The results obtained here come from

data taken at the beginning of the second run (Run 2) of the LHC, the first year and

beginning of the second year after the first long shut down (LS1), see Fig. 1.4. During

LS1 the accelerator facilities were upgraded to operate at a CME of
√
s = 13 TeV.

Compared to ATLAS at 7 and 8 TeV in Run 1, the ATLAS triggering system was

updated to remove one of three stages in evaluating whether to keep or discard a

collision event, and the insertable B-layer (IBL) was installed. The IBL is the fourth

and innermost layer of pixel detector that allows for improvements to the tracking

of charged particles near the interaction point (IP). The purpose of this discussion,

however, is to introduce the beginning of the ramp-up of luminosity and corresponding

increased rate of interactions at the IP.
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Figure 1.4: LHC schedule of operation through 2035.

In Fig. 1.4 the vertical axis is in inverse cm2·s, a unit of cross section per second.

The cross section, σ, defines the likelihood of an interaction to occur in a geometric

way by allusion to a model like an idealized Rutherford thin gold foil experiment

where a particle travels toward a thin target and has a small probability of significant

interaction but otherwise passes through without interaction. Dimensionally, there is

a number of targets (like gold nuclei in a foil) in a volume (m−3) and there would be an

expected number of interactions in a traversed distance (m) through the volume. In

this way the cross section is an effective area defining a probability of interaction. The

cross section for typical processes of interest in pp-collisions at ATLAS are measured

in barns (10−24 cm2), for example at 13 TeV [29] for the three leading backgrounds

in these analyses: Z (58.8 nb), W (190.1 nb), and tt̄ (818 pb). Cross sections of SM

high energy processes depend on the energy of the collision, the basis for exploring the

structure of the SM at various and increasing energy. The amount of collision data

taken is usually expressed in inverse femtobarns (fb−1) or the number of collisions

given (possibly variable) beam conditions in which a single event with a cross section

of 1 fb would be expected.
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Figure 1.5: Integrated luminosity collected by the ATLAS experiment in 2016. More
data has been collected in the last 3 months than in all of Run 1.

ATLAS recorded 3.2 fb−1 in 2015, and added 10.0 fb−1 in the first few months of

data-taking of 2016–this is roughly what Fermilab recorded in its decade of operation

and half of what was recorded in all of Run 1. As the instantaneous luminosity

(e.g. 10 nb−1s−1 = 1034 cm−2s−1) increases the expected number of interactions

per bunch crossing increases proportionally. SM processes are dominated by lower

energy quantum chromodynamic (QCD) scattering responsible for a characteristic

signature of 2 jets (see Chapter 2) in the detector. On average, more than 20 of these

interactions (just strong enough to register in the forward-most parts) in the detector

were present in each event in Run 2 conditions corresponding to the day-to-day peak

luminosities and total integrated luminosity [30] shown in Figure 1.5. Since the cutoff

in mid-July for the public results shared in this thesis, the 2016 data set has tripled.

It is clear from Fig. 1.5 (a) that almost all the data used here was collected in

the last month of running the LHC (mid-June through mid-July 2016). With this

one month, the results are an improvement over years of data taken at lower CME.

By increasing energy the cross section (due to increased available phase space) of

higher mass resonances is improved. Additionally, immediate results like these early
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searches are valuable, even if the analysis is simple, due to the unprecedented energy,

not only for the limits set but for the detailed look into the SM distributions that

form the background of a search. Quick feedback to the community is necessary to

illuminate the shortcomings in understanding the backgrounds to a search as input

for later more sophisticated analyses. It will become clear in Chapter 4 that the

simulation of backgrounds in these analyses is not always great and, in the case of

backgrounds to the VBF channels in particular, is far off.

In the long term, the LHC plans to deliver 300 times this quantity of data, or

3 inverse attobarns (ab−1) by 2035. To collect this amount of data in a reasonable

period of time the luminosity will be increased according to the schedule in Fig. 1.4.

After LS3 it will rise to somewhere from 5 to 10 times the current rate; LS3 will be

the transition to the high luminosity LHC (HL-LHC) expected to begin operation

in 2026. The target luminosity for the HL-LHC is set at L = 5 × 1034 cm−2s−1 but

recent work has shown that L = 7.5 × 1034 cm−2s−1 is an achievable goal [31]. At

L = 5 × 1034 cm−2s−1 there would be µ = 140 additional min bias interactions per

bunch crossing, and at the L = 7.5× 1034 cm−2s−1 there would be µ = 200. Specific

plans for the operations of LHC and ATLAS under HL-LHC conditions are in the

process of being made through simulation of these conditions. Plans for various new

detectors from calorimeters to inner detector tracking to muon spectrometer upgrades

are underway.

The uncertainties in this analysis are driven by jet reconstruction, performance,

and resolution within the calorimeters. One of the key tasks in these analyses (and

for the whole ATLAS collaboration) has been to provide the calibration of and uncer-

tainties for jets in the calorimeters. This is a unique challenge at varying luminosity

conditions, not only in the transition from Run 1 to Run 2 but also in projection to

HL-LHC conditions.
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1.4 Thesis Outline

The Standard Model of particle physics and the details of its extensions with the sim-

plified models studied are summarized in Chapter 2. The ATLAS detector is outlined

in Chapter 3. Chapter 4 introduces the methods of MC simulation used in estimating

backgrounds and evaluating uncertainties. Chapter 5 is devoted to a detailed deriva-

tion of jets and their uncertainty used in all analyses of Run 2. Chapter 6 describes

the details of the searches made. Chapter 7 sets experimental limits on the cross

sections of 3 benchmark models for decay to the ``qq and ννqq channels.
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Chapter 2

Theory

There is evidence for four fundamental forces in nature: the strong, weak, electromag-

netic, and gravitational forces. The Standard Model of particle physics (SM) unifies

the first three forces in a gauged field theory with symmetries belonging to the group

representation SU(3)× SU(2)× U(1). This chapter outlines the SM, elaborating on

points relevant to the discussion of its extensions treated in this thesis. The forms of

terms in the following discussion are taken from PDG [32] where possible.

2.1 Standard Model

The SM Lagrangian can be written as the sum of the Lagrangian of Quantum Chro-

modynamics (QCD), the theory of the strong interaction, electroweak physics which

combines the weak theory with electromagnetism, and Higgs terms which provide the

mechanism for electroweak symmetry breaking (EWSB)1

LSM = LQCD + LEW + LHiggs (2.1)

Quantum Chromodynamics

The QCD Lagrangian,

L =
∑
q

ψ̄q,a(iγ
µ∂µδab − gsγµtCabAC

µ −mqδab)ψq,b − FA
µνF

A µν , (2.2)

1The following will ignore additional corrective terms necessary to make the quantum field
calculations work in various schemes.
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Figure 2.1: Tree level Feynman diagrams for the interaction terms of the theory of
QCD.

where γ are Dirac’s matrices and the spinor field carries indices for three quark flavors,

q, and three color-indices, a. The group structure of QCD is the SU(3) component of

the SM. The N2
c −1 = 8 gluon fields, AC

µ , encode this structure by way of contracting

the index C with the corresponding 3×3 matrices, tabC that are the generators of SU(3).

Consequently, each interaction of the gluon field with a quark can be understood as

performing a rotation in SU(3), or in other words changing its color. gs is the QCD

coupling constant. It is the only fundamental free parameter of QCD other than the

experimentally determined quark masses. The last term in the Lagrangian makes use

of the field strength tensor,

FA
µν = ∂µAA

ν ∂νAA
µ − gsfABCAB

µAC
ν [tA, tB] = fABCt

C , (2.3)

which encodes the kinetic and self-interacting terms of the gluon fields. The fABC

are the structure constants of the Lie algebra.

There are two key features to the phenomenology of the strong interaction, asymp-

totic freedom and confinement.

Asymptotic Freedom Asymptotic freedom is a direct result of the self-coupling

terms in the Lagrangian. In terms of Feynman diagrams these are the 3 and 4-gluon

vertices, Fig. 2.1. For sufficiently high momentum transfer the theory can be treated

perturbatively (pQCD). Observables can be expressed in orders of αs(µ
2
R) =

g2s(µ
2
R)

4π

where µR is the renormalization scale. The coupling constant, gs, “runs” under renor-
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malization, which is to say that it changes depending on the scale of the momentum

transfer, Q, in the interaction, i.e. αs(µ
2
R = Q2) gives the effective interaction strength

at that scale. This works in probing small distance measures, or “hard” processes, the

coupling becomes small for these terms and thus the perturbation converges quickly

for the smallest length scales; hence it is a valid theory for use at arbitrarily high

energy.

Confinement While the coupling constant becomes small at short distance and

high momenta, it continues to grow linearly for large distance. The consequences of

this can be calculated from lattice QCD (iterative computation by discretization of

the field theory) and results in hadronization: it is energetically disfavored to find a

lone quark and therefore they hadronize, forming groups of 2 (mesons) or 3 (baryons)

or more in final decay products. This process pulls quarks from quark-antiquark pairs

in the vacuum. Specific hadron masses can be calculated from lattice QCD but so far

one cannot calculate directly the evolution of quarks to hadrons across energy scales

and only rough models are employed to estimate these processes in the simulation of

inelastic scattering.

The LHC collides protons in a process called deep inelastic scattering. The parton

theory of hadron collisions is used as the basis for calculations in this energy regime.

It was proposed by Feynman [33] prior to understanding that the point particles

therein are the quarks and gluons governed by the field theory of Eq. 2.2. It is a

simplification that allows the calculation of scattering cross sections from first order

pQCD, σ̂ij, for the hardest processes and absorbs the softer processes, which one could

not calculate in perturbation theory, into an experimentally determined probability

density functions, known as parton distribution functions (PDFs). The parton model

gives the complete cross section of a process,

σ =
∑
i,j

∫ 1

0

dx1

∫ 1

0

dx2fi(x1, µ
2
F )fj(x2, µ

2
F )σ̂ij(x1, x2, µ

2
R, µ

2
F ), (2.4)
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in terms of longitudinal fractional momentum, x, of the hadron carried by flavor,

i, j. The partonic cross section, σ̂ij(x1, x2, µ
2
R, µ

2
F ), and the PDFs fi(x1, µ

2
F ) depend

on the factorization scale, µF , which defines the cutoff between collinear (i.e. soft)

interactions absorbed into the PDF, and those harder interactions handled in pQCD.

For a given factorization scale the PDFs are meaningful, in that they are transferable

from process to process (e.g. from photon emission from an electron to proton - proton

collision) and can therefore be built from the aggregate of experimental results. In

the limit of infinite momentum transfer, known as the Bjorken limit–the target is

Lorentz contracted to 0 and the interaction occurs instantaneously, which means that

the PDF becomes a function of x for any interaction, i.e. fi(x1, µ
2
F , Q

2)→ fi(x1, µ
2
F )

where Q2 is the square of the transferred momentum used to indicate the scale of

the interaction. For the precision required in ATLAS experiment, this limit is not

sufficiently satisfied for all the relevant processes and the PDFs are still parametrized

by Q2. Figure 2.2 shows the PDFs used in much of the MC for the following analyses.

The notable dependence on Q2 for low x is apparent in the different curves at the two

different Q2 shown. Beyond leading order (LO) calculations predict the logarithmic

divergences that result in the different curves at different scale.

QCD is a theory that is simply stated in the Lagrangian formalism but happens

to be laborious for making calculations. Modern usage of the theory are significantly

more complicated than the simplified picture given above. Calculations are made

with MC simulation that starts with the initial hard tree-level scattering and then

layer many processes and corrections including,

• initial and final state radiation through parton showering ,

• hadronization through additional showering through scales below the applica-

bility of pQCD

• and simulation of the underlying event including the remnants of the proton-

proton collision.
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Figure 2.2: PDFs in the MSTW2008 set used in this analysis [34].

All these tools will be discussed in the Simulation Chapter 4 as they apply to the

specific MC simulations used in the analysis presented in this thesis.

Electroweak Theory

The electroweak theory of the SM was formulated by Glashow, Weinberg, and Salam

in the early 60’s in order to explain the precision weak results obtained at the time.

The theory explained the apparent charged weak current and predicted the neutral

current, which was subsequently observed at CERN in 1973 [35] through the observa-

tion of neutral interactions that didn’t involve a muon or electron at the Gargamelle

experiment. Glashow unified the weak and electromagnetic interactions by suggest-

ing a triplet of vector bosons mediating the weak force in addition to the massless

photon [36] mediating the electromagnetic force. He explained in the structure of

his field theory the conserved quantities of weak isospin and weak hypercharge with-
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out including an explanation for the apparently high mass of the vector bosons that

would arise from the experimentally observed short interaction distance of the weak

force. Weinberg and Salam utilized the Higgs mechanism of symmetry breaking [3,

4] to impart masses on the 3 vector bosons of Glashow’s theory and put the fields in

the form currently accepted as the SM [37, 38]. A key prediction of this model is the

ratio of masses of the neutral (mZ = 91.188± 0.002 GeV) and charged vector bosons

(mW± = 80.43± 0.04 GeV) that was confirmed when both were discovered at CERN

in the UA1 and UA2 experiments in 1983 [39].

The electroweak theory of the SM is governed by the gauge symmetry SU(2)×U(1)

with 3 gauge bosons W 1,2,3 forming the triplet of SU(2) and the boson, B, the U(1)

symmetry. The Lagrangian for the gauge bosons is then,

LB = −1
4
W iµνW i

µν − 1
4
BµνBµν , (2.5)

where the covariant field strength tensors for the SU(2) and U(1) gauge freedoms are

respectively,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν ,

Bµν = ∂µBν − ∂νBµ,

(2.6)

where g is the weak coupling constant. There are three families of fermions (i = 1, 2, 3

in the following); their properties are summarized in Table 2.1. The weak interaction

is a chiral theory where left-handed2 fermions3 transform as a doublet, for leptons

Ψi =

νi

`−i

 and quarks

ui
d′i

. In the second doublet, the Cabibbo-Kobayashi-

Maskawa (CKM) mixing matrix is a unitary matrix defining the mixing of down-

type quarks, d′i ≡
∑

j Vijdj, where only four independent parameters are needed to

fully describe it: the 3 Euler angles of a rotation and a single additional phase to

2Particle spin is in the same direction as momentum.

3And right-handed anti-fermions
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Leptons
family mass charge
νe electron neutrino < 2 eV 0
e electron 0.510998928± 0.000000011 MeV −1e
νµ muon neutrino < 0.19 MeV 0
µ muon 105.6583715± 0.0000035 MeV −1e
ντ tau neutrino < 18.2 MeV 0
τ tau 1776.86± 0.12 MeV −1e

Quarks
flavor mass charge
u up 2.3+0.7

−0.5 MeV 2
3
e

d down 4.8+0.5
−0.3 MeV −1

3
e

c charm 1.275± 0.025 GeV 2
3
e

s strange 95± 5 MeV −1
3
e

t top 173.21± 0.51± 0.71 GeV 2
3
e

b bottom 4.18± 0.03 GeV −1
3
e

Table 2.1: Fermions, the constituents of matter in the SM. Masses are taken from
the most recent fits by PDG [32]. All masses are quoted in the modified minimal
subtraction [40] scheme, MS except the top which is from direct measurement.

accommodate CP-violation. The standard parametrization is,


cos θ12 cos θ13 sin θ12 cos θ13 sin θ13e

−iδ13

− sin θ12 cos θ23 − cos θ12 sin θ23 sin θ13e
iδ13 cos θ12 cos θ23 − sin θ12 sin θ23 sin θ13e

iδ13 sin θ23 cos θ13

sin θ12 sin θ23 − cos θ12 cos θ23 sin θ13e
iδ13 − cos θ12 sin θ23 − sin θ12 cos θ23 sin θ13e

iδ13 cos θ23 cos θ13


(2.7)

with θ12 = 13.04±0.05◦, θ13 = 0.201±0.011◦, θ23 = 2.38±0.0◦, and δ13 = 1.20±0.08.

The right handed fermion fields on the other hand, transform as singlets under SU(2).

The Lagrangian is most transparently represented after spontaneous symmetry

breaking by the addition of the Higgs doublet field, which will be described in the

following subsection. What remains is a Higgs scalar, h, in the physical particle spec-

trum, that gets a vacuum expectation value (VEV) v/
√
2 = 246 GeV. The Lagrangian
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for the fermions, ψi, is then written,

LF =
∑
i

ψ̄i

(
i/∂ −mi −

miH

v

)
ψi

− g

2
√
2

∑
i

Ψ̄iγ
µ(1− γ5)(T+W+

µ + T−W−
µ )Ψi

− e
∑
i

Qiψ̄iγ
µψiAµ

− g

2 cos θW

∑
i

ψ̄iγ
µ(giV − giAγ5)ψiZµ

(2.8)

The Weinberg angle, θW , relates the electric charge e = g sin θW to the weak coupling

constant. θW is the angle by which the spontaneous symmetry breaking rotates the

plane defined by the uncharged gauge bosons W 3−B–the rotation is apparent in the

form of Eq. 2.9 to obtain the familiar massive neutral Z and massless A (γ) bosons.

The observable gauge fields in the Lagrangian arise from those defining the initial

gauge symmetries: A
Z

 ≡
 cos θW sin θW

− sin θW cos θW


 B

W 3

 ,

W± ≡ (W 1 ∓ iW 2)/
√
(2),

(2.9)

with their masses from tree level, given as,

MW =
ev

2 sin θW
,

MZ =
ev

2 sin θW cos θW
=

MW

cos θW
,

Mγ = 0.

(2.10)

γ is the massless gauge boson arising from the U(1)Y gauge symmetry still present in

the (Yang-Mills) theory of electromagnetism after EWSB. The first term in Eq. 2.8

is the kinetic term. It is diagonal in flavor, implements the masses of fermions, and

defines the coupling of the fermions to Higgs, which consequently defines an incredibly

simple relationship between the coupling of the fermions to the Higgs and the masses

of the vector bosons and fermions. This is Yukawa coupling which generates the

20



masses of the fermions through coupling with the Higgs but still adds no additional

insight into the wide variation of the couplings.

The weak interactions involving weak isospin transitions, are described by the

second term of Eq. 2.8. This term makes use of the T+ and T− raising and lowering

operators in weak isospin space, defining the couplings as those between upper and

lower states of the fermion doublets for interactions with the charged vector bosons.

Consequently, W decays to an up and down type pair of weak isospin doublets. One

can read from this term at tree level that when considering kinematically allowed

decay to leptons and quarks there are 6 options for up-down pairs of quarks–there is

no top; it is too heavy–and 3 options for leptons. Therefore the branching is twice

that to quarks than leptons. The square of a given CKM matrix element–recall that

it is unitary–defines the coupling between each pair of up and down quark.

The third term is the electromagnetic interactions of Quantum Electrodynamics

(QED), where Qi is the electric field charge and Aµ is the electromagnetic four-

potential.

The last term covers interactions with the neutral boson, Z, where the vector and

axial vector couplings giV ≡ t3L(i) − 2Qi sin
2 θW and giA ≡ t3L(i), respectively. The

t3L(i) is the weak isospin and Qi the electric charge. The Z boson decays to fermion

Coupling
Decay Products L R Vertex Factor BR
Leptonic
neutral (νeµτ ) 1/2 0 (1/2)2 6.8%
charged (eµτ) −1/2 + sin2 θW sin2 θW (−1/2 + sin2 θW )2 + (sin2 θW )2 3.4%
Hadronic
up-type (uc) 1/2− 2/3 sin2 θW 1/3 sin2 θW 3(1/2− 2/3 sin2 θW )2 + 3(−2/3 sin2 θW )2 11.8%
down-type (dsb) −1/2 + 1/3 sin2 θW −2/3 sin2 θW 3(−1/2 + 1/3 sin2 θW )2 + 3(1/3 sin2 θW )2 15.2%

Table 2.2: Z boson decay: couplings and branching ratio to fermions.

and anti-fermion pairs. Playing the same game for the Z as for the W above at tree

level, the branching when including right (R) and left (L)-handed fields is given in

Table 2.2.
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2.2 Electroweak Symmetry Breaking and Higgs

Fields

Spontaneous symmetry breaking is the mechanism responsible not only for the large

mass of the massive gauge bosons and for the fermions through the Yukawa couplings

in the SM but also serves the same function in most of the extensions of the SM.

Previously, the Lagrangian for the electroweak theory was shown after symmetry

breaking. Here the mechanism of symmetry breaking of the Higgs doublet field is

briefly described.

The Higgs complex doublet, can be written explicitly as four scalar fields,φ+

φ0

 =

φ1 + iφ3

φ2 + iφ4

 , (2.11)

where the up state is electrically charged. The space of the Higgs doublet is then

associated with electric charge and the generator of electric charge can be defined,

Q ≡ T 3 + Y, (2.12)

with T 3 being the generator of weak isospin and Y the generator weak hypercharge

(the U(1) symmetry of B). The electric charge generator is defined as the sum of the

generators of SU(2) and U(1) rotations of the raw fields W i and B.

The Higgs Lagrangian is constructed invariant under local SU(2)×U(1) transfor-

mation:

LHiggs = (∂µφ† + igWµ · Tφ− 1
2
ig′Bµφ)− V(φ†φ). (2.13)

The Higgs potential,

V(φ†φ) = λ(φ†φ)2 − µ2φ†φ, (2.14)

where the minimum occurs for φ 6= 0 when µ2 > 0. In the space of the four φ scalars,

there is a degenerate circle of minima, |φ| =
√

µ2

2λ
≡ v√

2
. Reparametrizing the field
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makes it possible to consider perturbation around the minimum of the potential in

the radial direction of the degenerate circle:

φ = U−1(ξ)

 0

(H + v)/
√

(2)

 (2.15)

U(ξ) = exp(−iT · ξ/v). (2.16)

H is the familiar Higgs field introduced in the previous subsection. The other three

fields are wrapped up in ξ and become the longitudinal degrees of freedom for the

massive gauge bosons after the following gauge transformation:

φ→ U(ξ)φ (2.17)

T ·W µ → UT ·W µU−1 +
i

g
(∂µU)U−1. (2.18)

The reason for this specific transformation is to remove the ξ degrees of freedom from

the Higgs Lagrangian altogether. The result is the “eating” of 3 of the 4 Goldstone

bosons [41] arising from the gauge degrees of freedom by 3 of the 4 Higgs fields. The

Lagrangian restated in the unitary gauge–that is fixed in the direction of the vacuum

expectation value, X,

LHiggs =
1
2
∂µH∂

µH − V
((v +H)2

2

)
+

(v +H)2

8
X†(2gT ·Wµ + g′Bµ)(2gT ·W µ + g′Bµ)X,

= 1
2
∂µH∂

µH − µ2H2 = λvH3 − 1
4
λH4

+
(v +H)2

8

[
(gW 3

µ − g′Bµ)(gW
3µ − g′Bµ) + 2g2W−

µ W
+µ

]
(2.19)

The propagator for the B and W 3 fields is not diagonal then. Redefining the fields

with a rotation according to the Weinberg angle, θW gives the mass terms for the

massive gauge bosons in their diagonal and familiar form,

LHiggs 3
g2v2

4
W+

µ W
−µ +

(g2 + g′2)v2

8
ZµZ

µ (2.20)
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The W and Z bosons have acquired mass;

MW = 1
2
= vg = cos θWMZ . (2.21)

The Higgs mass is still not directly constrained and depends on free parameter λ:

MH =
√
2µ ≡

√
2λv. (2.22)

This is the simplest possible implementation of the Higgs mechanism, the minimal

model. The following three sections discuss possible extensions to the SM outlined

above, among them are more complicated Higgs sectors.

2.3 Additional Heavy Scalar in the Higgs Sector

Immediately after the Higgs discovery in 2012, the motivation for a heavy scalar

or additional heavy Higgs, H, within the Higgs sector was an especially attractive

concept for experimental study. Models of this sort are relevant precisely because

the scalar would share the branching ratio with the light Higgs, h, through mixing

induced by spontaneous symmetry breaking. Measurements on the h cross section,

σh, and any deviation from the expected value in the SM would indicate the possible

presence of an additional heavy scalar in the Higgs sector. The simplest extension

of the SM Higgs sector adds an electroweak singlet field (EWS) to the Higgs doublet

field. In this model both fields acquire non-zero VEVs through spontaneous symmetry

breaking. Consequently there is mixing between the singlet state and the doublet.

Both the heavy Higgs, H, and h in this model couple like the SM Higgs. Due to

unitarity, the coupling of the light Higgs would be reduced by a factor of κ where κ

and κ′, the H coupling, would satisfy the following constraint:

κ2 + κ′2 = 1. (2.23)

This simplest model is no longer well motivated due to σh and its couplings being

so tightly constrained by measurements in Run 1 from the ATLAS and CMS exper-
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Figure 2.3: Major branching ratio of the Higgs measured at the LHC [5].

iments. For similar reasons the two Higgs doublet models, requiring an additional

Higgs doublet, also do not seem to be particularly well motivated any longer as it

generally predicts changes in the relative BRs to various decay channels which have

not been observed. Figure 2.3 illustrates the high degree to which all the major BRs

of the Higgs have been shown to be in agreement with the SM cross section σSM at

the LHC. This result of course does not eliminate the possibility of an extended Higgs

sector and certainly does not remove the possibility of a scalar resonance of another

type. A scalar benchmark phenomenological model was used for the combination of

channels in this 2016 ATLAS search [27]. A search for scalar particles is a funda-

mental endeavor at the LHC from an experimental perspective and in the following

analysis the scalar resonance is treated as if it were a heavy Higgs boson with the
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corresponding cross sections and BRs in the narrow width approximation (NWA).

A heavy Higgs is CP-even, spin-0, and the narrow width, once convoluted with the

experimental resolution, is trivial.

The Higgs signals used in this analysis are produced in two production channels,

gluon-gluon fusion (ggF) and vector boson fusion (VBF)–the leading order diagrams

are shown in Figs. 1.2 (a) and (b) respectively. The two production modes have dis-

tinct event topologies. Specifically, the VBF events are characterized by the presence

of the two scattered quark jets in the detector arising from the interacting initial state

quarks. This forms the basis for discrimination between the two searches. The rela-

tive production rates of the two modes is model specific and therefore the searches are

made independently. A priori the VBF search is assumed to be a smaller branching

ratio and the resulting limits must be set in the presence of the ggF signal.

2.4 Heavy Vector Triplet

The second model used is based on the Heavy Vector Triplet (HVT) phenomenological

Lagrangian [7]. It adds a triplet of heavy vector bosons with degenerate mass, shown

in the familiar adjoint representation of SU(2)L with two electrically charged states

and a neutral state:

V ±
µ =

V 1
µ ∓ iV 2

µ√
2

, V 0
µ = V 3

µ , (2.24)

in terms of the real vectors V a
µ , a = 1, 2, 3. The Lagrangian describes a large class of

models where the HVT mixes with the SM heavy gauge bosons:

LV =− 1
4
D[µV

a
ν]D

[µV ν]a +
m2

V

2
V a
µ V

µa

+ igV cHV
a
µH

†τa
←→
D µH +

g2

gV
cFV

a
µ J

µa
F

+
gV
2
cV V V εabcV

a
µ V

b
νD

[µV ν]c + g2V cV V HHV
a
µ V

µaH†H − g

2
cV VW εabcW

µνaV b
µV

c
ν ,

(2.25)
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with the covariant derivatives in the first term,

D[µV
a
ν] = DµV

a
ν −DνV

a
µ , DµV

a
ν = ∂µV

a
ν + gεabcW b

µVnu
c. (2.26)

The g is the SM SU(2)L gauge coupling and the gV coupling (representing the typical

strength of V interactions) is allowed to range from weakly coupled case, gV ∼ 1,

to strongly coupled case, gV ' 4π. The V a
µ aren’t mass eigenstates and will mix

with the W a
µ after EWSB and therefore mV does not coincide with the mass of the

resonance. The second line in Eq. 2.25 allows interactions of V with the Higgs cur-

rent, iH†τa
←→
D µH4, and with the left-handed fermionic currents, Jµa

F =
∑

f f̄Lγ
µτafL.

The Higgs current term, cH , leads to vertices with the three unphysical Goldstone

bosons eaten in EWSB. From the Equivalence Theorem [42] this therefore defines

the coupling with the longitudinal degrees of freedom (DoF) of SM vector bosons W

and Z. Likewise, cF defines the interaction with fermions. The third line contains

terms with two or more V and therefore do not contribute directly to V decay; nor

do they contribute to the production of V at the LHC. Therefore the factors in the

vertices, gV and g2/gV cF can more-or-less be taken as the fundamental parameters of

the general model, and the interpretation of results with respect to them is sufficient

to characterize the limits of models within this general framework.

Equation 2.25 is the most general Lagrangian compatible with the SM gauge

invariance and the CP symmetry restricted to to operators of energy dimension ≤ 4.

In the case of relatively small coupling gV ∼ 1 the expected resonances are narrow

and are expected in the TeV range. Relying on another argument based on the

Equivalence Theorem, the decays to SM gauge bosons in the TeV range are dominated

by the longitudinal modes. To first order the branching ratio for the charged modes

to SM gauge bosons is,

ΓV ±→W±
L ZL
' g2V c

2
H

192π
. (2.27)

4←→D µ =
←−
Dµ −

−→
Dµ
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Since decay to SM vector bosons is determined entirely by the gV cH term, to first

order (with respect to finite mass effects) all the branching ratios of the HVT to two

bosons are equal, Table 2.3. The neutral diboson states that are not listed in Table 2.3

Partial Decay Width Relative BR
Γ(V ± → W±

L ZL) 1
Γ(V ± → W±

L H) 1
Γ(V 0 → W±

L W
∓
L ) 1

Γ(V 0 → ZLH) 1

Table 2.3: Relative BRs of HVT decay to two SM bosons.

are forbidden or suppressed. For example, the V 0 → HH decay is forbidden by spin

considerations and V 0 → ZZ is missing at dimension 4.

Used for the specific signal in this thesis is “Model A” in the HVT scheme, a model

originally considered to potentially allow for gauge bosons of significantly lower mass

than the SM gauge bosons which had not yet been discovered at the time [43]. It

is equally capable of describing a triplet of significantly heavier gauge bosons. The

HVT emerges from a symmetry breaking, SU(2)1 × SU(2)2 × U(1)Y → SU(2)L ×

U(1)Y through a linear σ-model. The parameter gV is set to 1 and constraints from

QFT require then that CH ∼ −g2/g2V and cF ∼ 1 so the results can be translated

directly into two key parameters of the model that are mentioned above. The resulting

theoretical width of the resonance across the entire range considered in this analysis

in the qq production mode (Fig. 1.3 (a)), 500− 5000 GeV, is Γ/M ' 2.5%.

2.5 Bulk Randall-Sundrum Graviton

The bulk Randall-Sundrum (RS) model is a model with a warped extra dimension

used to explain the Planck-weak hierarchy [17, 18]. The original RS model is a simpli-

fied model postulating that the 4D spacetime “brane” in which the SM is formulated

is a subspace in larger 5-dimensional space along with one other brane, a realm of
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hidden physics. The fifth (warped) dimension that separates the two branes is given

an exponential factor in the spacetime metric,

ds2 = e−2krcφηµνdx
µdxν + r2cdφ

2. (2.28)

Here k is a scale of the order of the Planck scale, xµ are the familiar 4D spacetime

coordinates. The φ-coordinate is periodic and takes a value −π < φ < π, spanning

the extra dimension with spatial size rc. The visible brane is located at (limited to)

φ = 0 and the other hidden brane is located at φ = π and gravitation propagates

freely between. The five-dimensional metric GMN with M,N ∈ {µ, φ} gives rise to

the hidden and visible 4D metrics, which are confined to their respective branes:

gvisµν (x
µ) ≡ Gµν(x

µ, φ = π),

ghidµν (x
µ) ≡ Gµν(x

µ, φ = 0).

(2.29)

Writing the classical action as the sum of the gravitational action and the action of

whatever physics confined to the two branes,

S = Svis +Shid + Sgravity (2.30)

=

∫
d4x

(√
−gvis{Lvis − Vvis} +

√
−ghid{Lhid − Vhid}+

∫ π

−π

dφ
√
−G{−Λ + 2M3R}

)
(2.31)

Here Λ is the cosmological constant and Vhid, Vvis are vacuum energies that act as a

gravitational source even in the absence of particle excitations. The bulk metric in,

Eq. 2.29, is a solution for the Einstein equations with the above action that satisfy

Poincaré invariance. Satisfying the Poincaré invariance imposes a fine tuning on the

cosmological constant:

Vhid = −Vvis = 24M3k, Λ = −24M3k2. (2.32)

The spacetime in between the branes is a slice of AdS5 which means that the bulk

gravitational dynamics are compatible with a supersymmetric extension.
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Randall and Sundrum use a 4D effective field theory on the visible brane to

construct the QFT. To see how this geometry works in generating masses on the TeV

scale, consider the action of the Higgs field as the example. The coupling of the fields

in the two branes is related by Eq. 2.29 defining the metrics. Let ḡµν = gµν hid

Svis ⊃
∫
d4x
√
−gvis{gµνvisDµH

†DνH − λ(|H|2 − v20)2}

=

∫
d4x
√
−ḡe−4krcπ{ḡµνe2krcπDµH

†DνH − λ(|H|2 − v20)2}
(2.33)

After the wave function renormalization, H → ekrcπH,

Seff ⊃
∫
d4x
√
−ḡ{ḡµνDµH

†DνH − λ(|H|2 − e−2krcπv20)
2} (2.34)

So then the physical scales come from the symmetry-breaking scale,

v ≡ e−krcπv0

m ≡ e−krcπv0

(2.35)

If the fundamental mass parameters are near the Planck scale, 1019 GeV, then the

physical mass scales are TeV scale and krc ≈ 10. In this model there are no light

Kaluza-Klein modes as in the theory of large extra dimensions, [44]. Rather, the KK

gravitons are spin-2 and of the order of TeV and should be observable by their decay

products as separated resonances at a hadron collider.

This thesis considers a well-motivated evolution of the original model where the

fermions are isolated variously in the warped bulk off of the TeV plane. The fermion

fields propagate in the 5D space and their profile is localized by a 5D mass parame-

ter. Thus the same geometry that provides a solution to the weak-Planck hierarchy

problem offers a mechanism for generating the fermion masses. The extension of RS

gravitons considered allows significant production by gg fusion and decay into longi-

tudinal gauge bosons WL/ZL which are localized near the TeV brane along with the

Higgs.

The partial decay width, ΓZZ , to pair of ZL is,

Γ(G→ ZLZL) ≈
(cxGn )

2mG
n

960π
. (2.36)
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The xGn are the 4 widely spaced modes from KK theory. The first one, xG1 = 3.83.

The other decays in the model are shown in Table 2.4. Due to the relative purity

Partial Decay Width Relative BR
Γ(G→ ZLZL) 1
Γ(G→ W+

L W
−
L ) 3

Γ(G→ hh) 1
Γ(G→ tRt̄R) 3

Table 2.4: Relative BR in bulk RS graviton decay.

S/
√
B of the ZZ decay mode this makes it the golden channel for discovery.

In a higher dimensional space time with n compact extra dimensions there is a

simple formula for the gravitational constant,

G(4+n) = G(4)V (n). (2.37)

where G(4) = G is the usual 4D constant of gravitation [45]. Since the Planck mass

has the following relation to the gravitational constant,

M̄Pl =

√
h̄c

G
≈ 1.22× 1019GeV/c2, (2.38)

the relationship between the reduced Planck mass–the one apparent in the TeV brane–

and the 4 + n-dimensional Planck mass is,

M̄2
Pl =Mn+2Vn, (2.39)

It is assumed in the formulation of the theory that the ratio of the compactification

scale, k to the Planck scale be order 1. The cross section of the expected signal

increases with increased k/M̄Pl, but there is an upper bound for the construction of

the effective theory:

k/M̄Pl <

√
3π3/(5

√
5) ≈ 3. (2.40)

This parameter is set to 1 in this analysis and used to interpret the cross sectional

limits. The graviton signal used in this analysis, produced in the gg production mode

obtains a theoretical width of ∼ 6% over the range of 500-5000 GeV considered.
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Chapter 3

ATLAS Experiment

This section presents an overview of the structure and operation of the Large Hadron

Collider (LHC) and the detector of the general purpose experiment, A Toroidal LHC

Apparatus (ATLAS). A couple of topics, beam conditions and calorimetry, are de-

tailed because they are the factors driving the performance of the study through the

unprecedented rate of collision data produced in 2016 and through the sophisticated

and high-quality performance of the hadronic calibration of the calorimeter systems

under these conditions.

3.1 Large Hadron Collider

The LHC is located at CERN (European Organization for Nuclear Research). CERN

is a joint venture of 22 member states–the United States, while not a member, is a

major contributor to experimental design, detector production and installation, and

physics. Founded in 1954, it sits on both sides of the border between Switzerland and

France. CERN’s primary focus is the operation of seven experiments that analyze

particle collisions in the LHC accelerator complex. ATLAS is one of two large, general

purpose experiments designed to investigate the largest range of possible physics in

proton-proton, proton-ion, and ion-ion collisions along with CMS.

The LHC is a superconducting hadron accelerator and collider that has been

installed in the 26.7 km tunnel built for LEP (Large Electron-Positron Collider) in

the 80s [46]. It is operated in two phases both as an accelerator of protons and
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then essentially as a storage ring for the protons while collisions are being made.

It is composed of eight short straight sections (“Points”) and eight arcs, forming 8

octants. The straight sections house experiments and utilities. ATLAS and CMS

are the two high luminosity general purpose experiments located at Points 1 and

5, respectively. ALICE at Point 2 is a heavy ion experiment and LHC-b at Point

8 studies b-physics. Point 4 houses the radiofrequency (RF) systems responsible for

accelerating and grouping the particles into bunches. Point 6 contains a beam dump–

the beam can be extracted by rapidly deflection with kicker magnets. Beam cleaning

occurs at Points 3 and 7. Particles with large momentum offset from the nominal

are scattered by a collimator at Point 3 and large betatron motions (deviations from

circular orbit) are cleaned at Point 7.

When in operation there are two beams of protons (or lead ions) rotating in oppo-

site directions. For protons, there are four crossings of the beams in four of the eight

straight sections. These occur at the interaction points (IP) of the four experiments

with laboratory center of mass collisions: ATLAS [47], CMS [48], ALICE [49], and

LHC-b [50]. A “two-in-one” superconducting magnet design is used for the bending

dipole magnets, meaning that both beams are within the same magnet although not

within the same cavity. The LHC is the worlds largest cryogenic device; the supercon-

ducting magnets surrounding the vacuum in which the ions circulate are kept around

a temperature of 2 kelvin with liquid helium.

Injection Chain

The main LHC storage ring is supplied with protons that are accelerated through the

following ladder of energies through the proton accelerator chain at CERN [51]:

50 MeV Linear Accelerator

1.4 GeV Proton Synchrotron Booster

25 GeV Proton Synchrotron
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450 GeV Super Proton Synchrotron

In 2015 and 2016 during normal data taking, the beams circulate with 2242 and

2220 bunches, respectively, in trains of 72 bunches with 25 ns bunch spacing in

between. Nominally between trains there is a 320 ns gap. This train length of 72

with a larger gap between arises from the filling procedures and the non-trivial rise

time of the kicker magnets which redirect the beam. The size of the gap is determined

to accommodate the reaction time specifically of the beam dump kicker magnets.

Radio Frequency Systems

Protons are accelerated in the LHC ring by a series of radiofrequency (RF) cavities

in the fourth octant. The metal cavities are the optimized to resonate at the first

mode when driven at the frequency of 400 MHz. This frequency is 10× higher than

the nominal bunch crossing frequency of 40 MHz, so the bunches are tight. Electro-

magnetic energy is injected from an electron beam source called a klystron through a

waveguide and retained by the resonating RF cavity. The resonating electromagnetic

field in the cavities and the beam bunches form a phase-locked system. Protons are

injected into the LHC storage ring at 450 GeV. They are accelerated and bunched

by passage through the RF cavities during the ramp up phase. It takes about 20

minutes to go from 450 GeV to 6.5 TeV, at which point they continue to circulate

at that energy. Protons with slightly lower energy (arriving late in the phase) will

experience a greater force and accelerate while those arriving early will decelerate

traversing the RF cavities. This process forms tight bunches. At collision energy, a

proton will lose 7 keV per turn to synchrotron radiation. During the ramp up phase

the RF cavities provide a boost of 485 keV/turn.
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Figure 3.3: Cross-section of cryodipole (lengths in mm).

an important operation for the geometry and the alignment of the magnet, which is critical for the
performance of the magnets in view of the large beam energy and small bore of the beam pipe.
The core of the cryodipole is the “dipole cold mass”, which contains all the components cooled
by superfluid helium. Referring to figure 3.3, the dipole cold mass is the part inside the shrinking
cylinder/He II vessel. The dipole cold mass provides two apertures for the cold bore tubes (i.e. the
tubes where the proton beams will circulate) and is operated at 1.9 K in superfluid helium. It has an
overall length of about 16.5 m (ancillaries included), a diameter of 570 mm (at room temperature),
and a mass of about 27.5 t. The cold mass is curved in the horizontal plane with an apical angle of
5.1 mrad, corresponding to a radius of curvature of about 2’812 m at 293 K, so as to closely match
the trajectory of the particles. The main parameters of the dipole magnets are given in table 3.4.

The successful operation of LHC requires that the main dipole magnets have practically iden-
tical characteristics. The relative variations of the integrated field and the field shape imperfections
must not exceed ⇠10�4, and their reproducibility must be better than 10�4after magnet testing and
during magnet operation. The reproducibility of the integrated field strength requires close control
of coil diameter and length, of the stacking factor of the laminated magnetic yokes, and possibly
fine-tuning of the length ratio between the magnetic and non-magnetic parts of the yoke. The struc-
tural stability of the cold mass assembly is achieved by using very rigid collars, and by opposing
the electromagnetic forces acting at the interfaces between the collared coils and the magnetic yoke
with the forces set up by the shrinking cylinder. A pre-stress between coils and retaining structure

– 23 –

Figure 3.1: Cross-section of the cryodipole magnet. 1232 of these magnets bend
confine the LHC beam to its 27 km loop. [47]

Magnets

The LHC has 1232 main dipole magnets which bend the beam around the 27 km loop

and numerous (> 800) and various quadrupole magnets to perform the shaping and

focusing of the beam [52]. The magnets are NbTi superconducting electromagnets.

The main dipoles, a cross-sectional schematic of which is shown in Fig. 3.1, provide

an 8.3 T field and are operated at 1.9 K, cooled by superfluid helium. Compared to

previous colliders (Tevatron-FNAL, HERA-DESY, RHIC, BNL) this is a lower tem-

perature by a factor of 2, which results in an order of magnitude lower heat capacity.

Consequently additional margin is required to reduce the chance of a quench, or the

magnet becoming non-superconducting. The margin between the critical point for

superconducting NbTi magnet in a 1.9 K liquid helium bath decreases with increasing

magnetic field. The cryogenic system must absorb the heat radiated through syn-

chrotron radiation by the circulating beam and this is one of the main limitations in
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the number of protons that can be carried by the beam and therefore on the achiev-

able luminosity. There is always a statistical chance of a quench, which depends on

the operating temperature, its difference with the superconducting threshold temper-

ature, and the energy radiated by the beam. Such an event did occur during powering

tests prior to Run 1 which delayed the turn on of the experiment [53].

3.2 Beam Performance

Record limits were reached for luminosity in Run 2, exceeding the original design

of the LHC. This was achieved by pushing the limits in control of the beams in

their production and storage and their focal properties at crossing. The luminosity

is governed by the following equation:

L = fN1N2/(4εβ
∗). (3.1)

f is the frequency of colliding bunches and N1 and N2 are the bunch populations of

the two beams. The denominator is essentially the transverse area for the beams at

crossing, but is generally broken up into the following: The transverse beam emittance

ε is measure of beam quality determined by the injector chain–a low emittance beam

will have particles confined to a small distance and with similar momentums. And

the amplitude function at the IP β∗ indicates the “squeeze” of the beam determined

by configuration of the focusing quadrupole magnets and can be defined as the the

distance from the IP at which the transverse cross section of the beam doubles. The

detailed beam conditions at LHC are shown for design, Run 1 and Run 2 (so far)

along with the expected conditions for 2017 in Table 3.1.

In 2015 and 2016 (through August) LHC delivered 26 fb−1and 23 fb−1was recorded

by ATLAS with 13.2 fb−1used in the search in this thesis. The delivered luminosity

is the luminosity from the start of stable beam operation until a request is made

to ATLAS to put the detector in a safe standby mode for a beam dump or further
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Parameter Design Run 1 2015 2016 2017
proton energy [TeV] 7 3.5, 4 6.5 6.5 6.5 or 7
bunch spacing [ns] 25 50 25 25 25
p/bunch [1011] 1.15 1.5-1.7 1.2 1.15 1.25
bunch number 2808 1374 2244 2220 2736
transverse norm. emittance [mm mrad] 3.75 2.5 3.5 2 3.2
stored energy per beam [MJ] 362 140 270 260
crossing angle [mrad] 142.5 145 145 140
β∗ [cm] 55 60 80 40 40
peak luminosity [1034 cm−2s−1] 1.0 0.77 0.5 1.4 1.5
peak pile-up 19 37 16 45 40

Table 3.1: Detailed overview of beam conditions at the LHC (ATLAS experiment)
including the prediction for 2017.

beam studies. Data acquisition inefficiencies account for the difference as well as

precautions made for the start up of the detectors which are sensitive to the beam

conditions. Once the beams are declared stable, the high-voltage is turned on for

the tracking detectors followed by the turning on of pixel preamplifiers causing some

delay between stable beams and ATLAS recording events.

The ATLAS luminosity is measured by counting the number of interactions at

the dedicated detectors in the forward positions along the beam line on both sides of

the IP–recall that the optical theorem relates the total scattering cross section to the

forward component. The luminosity detectors [54] are the Beam Condition Monitor

(BCM) and Cerenkov Luminosity Integrating Detector (LUCID). The relationship

between the forward detection and visible luminosity is complicated by the conditions

of the beam and their overlap. To calculate the absolute luminosity from the dedicated

luminosity detectors the conditions of the beams interaction must be understood.

A special van der Meer (vdM) scan is performed [55], which involves varying the

separation of the two beams at the collision point in the x and y directions in the

transverse plane. The luminosity is determined by the following equation integrating
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Figure 3.2: Visible interaction rate for the LUCID algorithm [56] that provides the
ATLAS luminosity from a horizontal VdM scan made in the August 2015. The
background is dominated by random counts from the radioactive Bismuth source
used for phototube gain calibration (blue triangles) [30].

the overlap of the normalized particle density functions, ρ1 and ρ2, for the two beams:

L = nbfrn1n2

∫ ∫
ρ1(x, y)ρ2(x, y)dxdy =

nbfrn1n2

2πΣxΣy

, (3.2)

where ΣxΣy is the convolved beam widths and n1n2 is the bunch population product.

An x-scan from 2015 is shown in Fig. 3.2, . In practice the visible cross section is

calculated as follows:

σvis = µMAX
vis

2πΣxΣy

n1n2

. (3.3)

From Fig. 3.2, µMAX
vis is the height of the background subtracted peak, ΣxΣy is the

RMS of the distribution, and n1n2 is obtained from external LHC beam current mea-

surements [57]. The 2015 and 2016 preliminary luminosity calibration uncertainties

are shown by source in Table 3.2.

The uncertainty on the final luminosity is one of the most important uncertainties

to minimize for an experiment because it affects every search and measurement and

it cannot be creatively mitigated at the analysis level due to its sole dependence on
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source 2015 2016
vdM calibration 1.7% 1.9%
calibration transfer 0.9% 0.9%
run-to-run consistency 1.0% 3.0%
Total L uncertainty 2.1% 3.7%

Table 3.2: Uncertainty on the luminosity calculation broken down by source for
2015 and the combined 2015 and 2016 data sets used in this thesis. The calibration
transfer is a correction to the luminosity scale from the low-L regime where the
vdM calculation was made and the high-L physics runs in which data was recorded
extrapolating the result in terms of bunch trains, and adjusted photomultiplier tube
(PMT) gains. Variations in closure between various measurements from run to run
are considered in the run-to-run consistency term.

the measurement of beam conditions and the democratic effect it has on the quantity

of data recorded in any given physics selection.

Pile-up

A consequence of colliding beams with high-luminosity is the presence of additional

collisions at the IP along the beam line. These additional collisions are governed

by the same interactions of protons in the colliding bunches that govern that of

the hard scatter (HS) of interest, but originate from different colliding proton pairs.

Consequently, the additional collisions interact with the identical cross sections as the

physics governing the primary collision with one notable distinction: that they have

not been selected for keeping by the trigger system (discussed in the following section).

Naturally, the selection of events to study introduces bias. The focus of the LHC is

to study hard processes and therefore an event is determined to be interesting (and

saved) when sufficiently hard interactions occur, but these are orders of magnitudes

less likely to occur than softer so-called minimum bias events which are only just

energetic enough to leave a minimal presence in the detector. The total inelastic

cross section is dominated by such events but an event is only recorded in data when

a sufficiently high momentum transfer takes place in the collision. The interaction
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region of colliding beams is narrow in x − y and longer in z, nominally 16 µm and

75 mm respectively. As a consequence, the additional pile-up collisions are distributed

widely along the beam line at the IP. The ATLAS detector has been designed to both

measure the presence of these additional collisions through measurements of activity

with very forward detectors as well as associate charged particle tracks in the main

detector volume with great accuracy to their specific point of origin. There are

generally thousands of charged particles per bunch crossing with sufficient energy

to reach the ATLAS detector volume. The association of tracks to one another to

determine their point of origin is called vertexing or vertex finding. The results of

running the vertex finding algorithms are a number of “primary vertices”.

NPV The number of primary vertices reconstructed per bunch crossing is an impor-

tant discriminant that is used for analyses in their calibration.

µ The time-averaged number of interactions per bunch crossing is the other mea-

sure of the amount of pile-up. It comes from the measurements made with

the forward luminosity detectors of the inelastic cross section as previously

mentioned–it is subject to some calibration dependent on beam conditions.

Figure 3.3 shows the distributions of µ in 2015 and 2016. It is based on a preliminary

luminosity measurement:

µ = Lbunch × σinel/fr, (3.4)

where Lbunch is the per-bunch instantaneous luminosity, σinel is the inelastic cross-

section at 13 TeV (which is taken to be 80 mb) and fr is the LHC revolution frequency

of 11.245 kHz.

3.3 A Large Toroidal Apparatus (ATLAS)

The ATLAS detector is the large general purpose experiment located at Point 1 of

the LHC. It is the largest detector at CERN by dimension. The detector scheme
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Figure 3.3: The number of inelastic collisions per beam crossing (µ) during stable
beams for pp-collisions. The number of interactions shown is averaged over all the
the colliding bunch pairs [30].
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Figure 1.1: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m in
height and 44 m in length. The overall weight of the detector is approximately 7000 tonnes.

The ATLAS detector is nominally forward-backward symmetric with respect to the interac-
tion point. The magnet configuration comprises a thin superconducting solenoid surrounding the
inner-detector cavity, and three large superconducting toroids (one barrel and two end-caps) ar-
ranged with an eight-fold azimuthal symmetry around the calorimeters. This fundamental choice
has driven the design of the rest of the detector.

The inner detector is immersed in a 2 T solenoidal field. Pattern recognition, momentum
and vertex measurements, and electron identification are achieved with a combination of discrete,
high-resolution semiconductor pixel and strip detectors in the inner part of the tracking volume,
and straw-tube tracking detectors with the capability to generate and detect transition radiation in
its outer part.

High granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excellent
performance in terms of energy and position resolution, cover the pseudorapidity range |η |< 3.2.
The hadronic calorimetry in the range |η |< 1.7 is provided by a scintillator-tile calorimeter, which
is separated into a large barrel and two smaller extended barrel cylinders, one on either side of
the central barrel. In the end-caps (|η | > 1.5), LAr technology is also used for the hadronic
calorimeters, matching the outer |η | limits of end-cap electromagnetic calorimeters. The LAr
forward calorimeters provide both electromagnetic and hadronic energy measurements, and extend
the pseudorapidity coverage to |η |= 4.9.

The calorimeter is surrounded by the muon spectrometer. The air-core toroid system, with a
long barrel and two inserted end-cap magnets, generates strong bending power in a large volume
within a light and open structure. Multiple-scattering effects are thereby minimised, and excellent
muon momentum resolution is achieved with three layers of high precision tracking chambers.

– 4 –

Figure 3.4: Exposed view of the major detector systems in the ATLAS detector.
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laid out in a cylindrical form 44 m long and 25 m high, where the detector systems

are generally organized in a barrel section and an end-cap section. All together the

apparatus weighs 7000 tons. A cutaway schematic is shown in Fig. 3.4.

The ATLAS detector covers nearly the full 4π directional solid angle to detect the

outgoing particles from collisions at the IP. There are 2 tiny uncovered portions at

high |η| 1along the beamline entering the detector. The detector is nominally forward-

backward symmetric in the z-direction while in practice there are small differences

present, e.g. in the services to various components of the detector.

The ATLAS detector gets its name from the toroidal magnetic field immersing

the muon spectrometer detector generated by 8 embedded superconducting magnetic

rings in the barrel and in each of the end-caps [47]. There is a 2 T solenoidal field

bathing the inner detector. The magnetic field produced by this complex system of

magnets is well-described by careful modeling and monitoring throughout the vol-

ume. To illustrate the point, consider the trajectory that a muon would take in the

intermediate regions between the barrel and end-cap; it clearly cannot be understood

from a back of the envelope calculation.

The mandate of the ATLAS experiment is to provide the following high-quality

features for physics analysis at the design energies and luminosities of the LHC:

• Fast, radiation-hard on-detector electronics and sensors with the high detector

granularity needed to separate the contributions from PU.

• Full angle φ and nearly full angle azimuthal coverage.

• High charged particle path reconstruction efficiency and good momentum reso-

1The ATLAS coordinate system is a right-handed system with the x-axis pointing to the center
of the LHC ring and the y-axis pointing upwards. The polar angle θ is measured with respect
to the LHC beam-line. The azimuthal angle φ is measured in the transverse (xy) plane with
respect to the z-axis. The pseudorapidity η is an approximation for rapidity y in the high energy
limit, and it is related to the polar angle θ as η = − ln tan( θ2 ). The rapidity is defined as y =
0.5× ln[(E+ pz)/(E− pz)], where E denotes the energy and pz is the component of the momentum
along the beam direction. Transverse momentum and energy are defined as pT = p × sin(θ) and
ET = E × sin(θ), respectively.
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lution as well as the offline tagging of τ -leptons and b-jets which requires vertex

detectors very close to the IP to identify secondary vertices.

• Precise electromagnetic calorimetry for the identification of electrons and pho-

tons as well as full hadronic calorimeter coverage for a good quality measure-

ment of the missing transverse momentum (Emiss
T ).

• Good muon resolution to high pT and the determination of muon charge.

• High background rejection on low-pT objects in the trigger system to maintain

an acceptable trigger rate in the high-luminosity environment of nominal LHC

conditions.

The ATLAS detector is composed of 3 sub-detectors where each in turn is composed of

multiple types of fundamental detecting elements designed to capture complementary

measurements of the various particles produced in collisions. Working outward from

the IP, the inner detector (ID) is designed to track the trajectory of all charged

particles through |η| < 2.5. Next, the electromagnetic and then hadronic calorimeter

systems are used to detect and absorb the energy of charged and neutral particles

respectively through the full range of |η| < 4.9. Finally the outermost detector

system, the muon spectrometer, fills the vast majority of the overall detector volume

up to |η| < 2.7. A graphical depiction of the tracking and calorimeter information

gathered by the ATLAS detector is shown in Fig. 3.5.

ATLAS Trigger System The purpose of the trigger system is to make a decision

to keep an event (a snapshot of the detector) for further processing or cast it away.

Discarding uninteresting events as early as possible in the chain of data processing is

necessary for keeping a manageable volume of computing work and storage. Therefore

the ATLAS Run 2 trigger system is structured in two tiers, a level 1 (L1) trigger which

must be implemented in hardware–inherently parallel in its design and specific to each

detector system–and the high-level trigger (HLT) that is software based [58]. At L1
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Figure 3.5: Graphic depicting the particles detected and methods of detection within
the ATLAS detector. Note the 4 layer scheme of the detector:tracking, EM calorime-
ter, hadronic calorimeter, and muon spectrometer. The calorimeters act to remove
the propagation of particles into the muon spectrometer providing a clean environ-
ment for tracking.

the trigger reduces the event rate from the nominal bunch crossing rate of 40 MHz

to less than 75 kHz. Then the HLT brings the rate down to a final average recording

rate of only a few hundred events per second–given that an event is some 300 MB

this still an impressive data rate to disk of ∼100 GB/sec.

The L1 trigger is fed independently by two systems which results in two trigger

streams: one in the calorimeter (L1Calo) and separately one from the muon spec-

trometer (L1Muon). L1 triggers are composed of rather crude measurements with

coarse granularity. If an L1 trigger in either stream is passed the event is read from
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a buffer by the HLT trigger system. This point introduces the concept that not only

the overall rate of the trigger is important but also the rate at which the processing

occurs. The buffering systems must be implemented (circularly) in hardware and are

limited in capacity. If L1 decision takes too long the data will be over-written and

the event lost. ATLAS L1 trigger decisions are made with a latency of no larger than

2.5 µs

The HLT trigger provides a complete event reconstruction (all the physics objects

used in analyses), albeit a simpler one than used in final analyses. It combines, in a

server farm, the event data from the whole detector and reconstructs tracking within

the inner detector and the muon systems as well as improved jet reconstruction in

the calorimeters, electrons, photons, taus, and missing transverse energy (MET). For

each of these objects there is a chain of triggers whose order is determined to most

efficiently reject the most events using the least processing time before considering

the event for the next triggers which would select a subset of the events. Triggers

with a high rate (e.g. those only requiring the presence of a low-pT jet) are pre-scaled

by factor which may change during the course of data taking as the beam conditions

permit. This means that the event is only written out a fraction of the time that the

trigger is satisfied. Note that for any given event if another trigger is satisfied then

the event may be written out anyway.

Inner Detector

The inner detector [59] comprises four tracking sub-detectors that work together to

provide positional information to charged particles at multiple points in R − φ −

z (although not all 3 dimensions for all measured points). All tracking detectors

experience a 2 T magnetic field in the z-direction (ideally).

Paths of charged particles therefore follow helical trajectories oriented in the z-

direction. The detecting elements have been designed to make measurements with
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fine granularity and high redundancy. This allows for the precise reconstruction of hit

position and a robustness to a large multiplicity of tracks. With good precision comes

the reduction of the overhead for the algorithms that identify and follow potential

particle paths, which is a task combinatorial in nature. In Run 2 this task takes

about 200 ms to perform, and is the most computationally expensive task in the high

level trigger (HLT) system. To solve this problem the FTK (Fast Tracker) [60] is

being installed during Run 2, which brings the task of track reconstruction into a

hardware system with massively parallel processing capable of providing 100 µs track

reconstruction times in HL-LHC conditions. Tracking is made from tracks from hits

in the 3 innermost sub-detectors of the inner detector, the Insertable B-Layer (IBL),

Pixel Detector, and the Semiconductor Tracker (SCT). The last and outermost sub-

detector is the Transition Radiation Tracker (TRT). A schematic of the inner detector

barrel and end-cap geometry is shown in Fig. 3.6. The inner detector is designed to

track well the traversal of charged particles above 500 MeV and measure well the pT of

particles below 150 GeV. The lower bound is the nominal limit defined by the radius

of curvature of a 500 MeV particle in a 2 T magnetic field reaching all layers of the

inner detector. In practice tracks are easily reconstructed down to 250 MeV with hits

from the inner layers. The upper limit is due to the granularity and limited curvature

of a very energetic particle. The inner detector provides “continuous” tracking with

an average of 37 hits per track and electron identification complementing the EM

calorimeters.

Pixel Detector The pixel detector [61, 62] is composed of 3 layers of silicon sensor

modules in the barrel and 3 layers for each end-cap, as shown in Fig. 3.6. Each charged

track is expected to make 3 hits in the pixel detector. The detector is composed of

1744 semiconductor modules, each with 16 (FEI3) front-end chips with 2880 pixels

for a total of 47,232 pixels per module. There are 80.4 million readout channels total.
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Figure 4.1: Plan view of a quarter-section of the ATLAS inner detector showing each of the major
detector elements with its active dimensions and envelopes. The labels PP1, PPB1 and PPF1
indicate the patch-panels for the ID services.

The above operating specifications imply requirements on the alignment precision which are
summarised in table 4.1 and which serve as stringent upper limits on the silicon-module build
precision, the TRT straw-tube position, and the measured module placement accuracy and stability.
This leads to:

(a) a good build accuracy with radiation-tolerant materials having adequate detector stability and
well understood position reproducibility following repeated cycling between temperatures
of −20◦C and +20◦C, and a temperature uniformity on the structure and module mechanics
which minimises thermal distortions;

(b) an ability to monitor the position of the detector elements using charged tracks and, for the
SCT, laser interferometric monitoring [62];

(c) a trade-off between the low material budget needed for optimal performance and the sig-
nificant material budget resulting from a stable mechanical structure with the services of a
highly granular detector.

The inner-detector performance requirements imply the need for a stability between alignment
periods which is high compared with the alignment precision. Quantitatively, the track precision
should not deteriorate by more than 20% between alignment periods.
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Figure 3.6: Schematic of a quarter-section of the ATLAS inner detector geometry
showing each of the major detector elements–notably excepting the IBL which is not
shown [47].

Pixel areas are 50 µm ×400 µm, and the intrinsic accuracy of the barrel measurement

is 10 µm (Rφ) and 115µm (z).

The layer closest to the beam pipe is called the B-layer. In Run 1 it was critical

for precise tracking to the IP and therefore the precise reconstruction of vertices and

inputs to b-tagging algorithms. The harshness of the radiation environment increases

rapidly in proximity to the IP. The B-layer will be the first to begin to fail to operate

due to the effects of radiation damage depleting the silicon wafer. The expected

lifetime of the B-layer is 300 fb−1.

Insertable B-layer The Insertable B-Layer (IBL) [63] provides a fourth layer of

pixels inside the B-layer closest to the beam pipe. The installation of the IBL occurred

in 2014 during LS1 (long shut down one) just prior to the commencement of Run 2.
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The average hit readout occupancy, i.e. the average number of hits per pixel per event, for IBL(black), B-
Layer(red), Layer-1(blue), Layer-2(green), Disks(purple) as a function of the average number of interactions per 
bunch crossing (μ) for events collected by a zero-bias trigger in 2016. Each point corresponds to an average over 
four LHC fills(5339, 5393, 5394, and 5416). The solid lines show the linear interpolation for each layer up to μ~80. 
The fit results of the occupancy(10-5 hits/pixel/event) by linear function are (2.021 + 0.002)μ - (0.160 + 0.050) for 
IBL, (1.316 + 0.001)μ - (0.049 + 0.032) for B-Layer, (0.7378 + 0.0007)μ - (0.007 + 0.017) for Layer-1, (0.4650 + 
0.0005)μ - (0.674 + 0.012) for Layer-2, (0.6489 + 0.0007)μ - (0.140 + 0.015) for Disks.
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Figure 3.7: The average hit readout occupancy (the average number of hits per pixel
per event) for the IBL(black), B-Layer(red), Layer-1(blue), and Layer-2(green) of the
4-layer pixel detector as well as the Disks (purple) for events collected in 2016 [64].

This involved the removal of the beam pipe to free up room and its replacement

with one that is 4 mm narrower. The IBL brings the nearest inner detector tracking

layer from a radius of 5.05 cm to 3.27 cm. The IBL was the answer to the limited

lifetime of the B-layer in a high-radiation environment and its installation extended

the capabilities of tracking near the IP, adds redundancy to the pixel tracking, and

ensures the longevity of the 4-layer pixel detector in the expected case of B-layer

failures. The IBL sensors are significantly more radiation hard than the pixel detector

and should last until HL-LHC without replacement.

The IBL comprises 14 long staves oriented around the beam-pipe, each made of 32

(FEI4b) upgraded front end sensors with smaller pixels (50 µm × 250 µm). In total

there are 12 million channels. The hit occupancy of the IBL is much higher than

the pixel layers and the IBL has been designed with an improved readout system

to handle the higher data rate. The hit occupancy of the 4 layers of the combined

pixel detector is shown in Fig. 3.7. Extrapolating the data gives a y-intercept of ∼0;

the true y-intercept is the average number of hits from the hard scatter process of
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interest, which is quite tiny. The IBL is designed to operate well below its data-rate

threshold throughout its lifetime whereas the B-Layer will require upgrading of the

data acquisition to avoid saturation at projected higher luminosities.

Semiconductor Tracker The semiconductor tracker (SCT) is an additional four

layers (of pairs) of silicon microstrip sensors which make 8 precision measurements per

track in the Rφ (17 µm) and z (580 µ)-directions. Each detector is 6.4 cm × 6.4 cm,

segmented into 780 strips. In the barrel each detector is 2 pairs of sensors mounted

with a rotation at small angle (40 mrad) with respect to each other within the same

plane perpendicular to beam pipe. This geometry allows for precise measurements in

the z-direction from strips. In addition there are 9 disks on the ends of the detector

designed in a similar way but oriented radially.

Transition Radiation Tracker The transition radiation tracker (TRT) [65] is

the outermost layer of the inner detector, composed of ∼300,000 drift tubes (“straw

tubes”). Each tube is 4 mm in diameter, filled with Ar gas, with a single gold-plated

tungsten wire run down the center and a high negative voltage applied to the walls.

A cascade of charged electrons instigated by 5-6 primary ionizations from the passage

of a charged particle through the Xe-Ar gas mixture produces a measurable signal.

Only the radius of the traversal is determined from the characteristic drift velocity

of the electrons in the gas. In the barrel, straws are oriented parallel to the beam

and in the end-caps, radially. Hit information is therefore 2-dimensional only, with

no information along the length of the tube.

The straw tubes are relatively inexpensive and have aided in the continuous track-

ing concept of charged particles employed by ATLAS by providing the majority of

hits from the inner detector particle tracking. The 2D nature of the measurements

makes them particularly susceptible to increased luminosity, and the TRT is expected

to be replaced by silicon detectors for the HL-LHC. However, the great value of the
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TRT is in its combined ability as a tracker and in its use for particle identification

based on transition photon radiation produced by the many transitions between the

heavy Xe environments in the detector. For a given energy the lighter particles will

radiate more heavily. The electromagnetic calorimeters pick this up and use it as

a discriminant. In Run 2 a neural network was trained for the purposes of elec-

tron identification on the combination of tracking and electromagnetic calorimeter

measurements.

Calorimetry

The calorimeters in ATLAS are all sampling calorimeters which means that they are

composed of layers of absorber and active material. The calorimetry is split into two

types, electromagnetic (EM) calorimeters and hadronic calorimeters. Both the EM

calorimeters and the hadronic calorimeters have a barrel region, an extended barrel

region, and end-caps. When including forward calorimeter (FCal) the calorimeter

coverage provides continuous electromagnetic and hadronic calorimetry through |η| <

4.9. All calorimeters in ATLAS are non-compensating which means that energy lost

to absorber material or leaked is not corrected for. The path of particles from the

IP always reaches the EM calorimeter first in which electrons and photons interact

and should be fully absorbed. A detailed summary of the ATLAS calorimeters–their

material design, granularity, and layers–is shown in Table 3.3.

The structure of the electromagnetic and hadronic (tile) calorimeter modules is

shown in Fig. 3.8. Figure 3.8 (a) also shows the granularity of the L1Calo trigger

which sums all energy in an η − φ tower called a trigger tower.

Electromagnetic Calorimeters EM calorimeters collect ionized electrons that

drift to electrodes in the liquid argon (LAr) active medium, created from the interac-

tion of high energy charged particles. LAr is used for its high linearity and radiation
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Layers Absorber Active Medium Granularity
Electromagnetic barrel calorimeter

barrel: |η| < 1.0 extended barrel: 0.8 < |η| < 1.7
Presampler (none) LAr ∆η = 0.0031, ∆φ = 0.1
EM1 lead LAr ∆η = 0.025, ∆φ = 0.025
EM2 lead LAr ∆η = 0.025, ∆φ = 0.025
EM3 lead LAr ∆η = 0.05, ∆φ = 0.025

Tile barrel calorimeter
barrel: |η| < 1.0 extended barrel: 0.8 < |η| < 1.7

Tile1 steel scintillator ∆η = 0.1, ∆φ = 0.1
Tile2 steel scintillator ∆η = 0.1, ∆φ = 0.1
Tile3 steel scintillator ∆η = 0.2, ∆φ = 0.2

Electromagnetic end-cap calorimeter
1.5 < |η| < 3.2

EMEC1 lead LAr ∆η < 0.1, ∆φ = 0.1
EMEC2 lead LAr ∆η = 0.025, ∆φ = 0.025
EMEC3 lead LAr ∆η = 0.050, ∆φ = 0.025

Hadronic end-cap calorimeter
1.5 < |η| < 3.2

HEC1 copper LAr For all:
HEC2 copper LAr ∆η ×∆φ = 0.1× 0.1
HEC3 copper LAr (|η| > 2.5∆η ×∆φ = 0.2× 0.2)
HEC4 copper LAr

Forward calorimeter
3.1 < |η| < 4.9

FCal1 copper LAr ∆x = 3.0 cm, ∆y = 2.6 cm
FCal2 tungsten LAr ∆x = 3.3 cm, ∆y = 4.2 cm
FCal3 tungsten LAr ∆x = 5.4 cm, ∆y = 4.7 cm

Table 3.3: Summary of the sampling calorimeters of ATLAS.

hardness. The absorber interacts with photons producing pairs of electrons which

generally re-radiate photons in showers within the alternating calorimeter materi-

als. Showering is often started with the Brehmsstrahlung of electrons, is propagated

through Compton scattering, e+− e− pair production, and further Brehmsstrahlung,

and so on until the electrons are of low-enough energy to propagate to the electrodes.

The EM calorimeters use an accordion geometry, to provide full homogeneous cov-

erage in φ without any cracks. The first layer of the barrel EM calorimeter, the

presampler, is a separate, thin sampling layer with extremely fine η-segmentation. It

is used to obtain a precise position measurement of particles entering the calorime-

ters and to collect the energy lost prior to entering the calorimeter in the TRT. The

EM calorimeter is 20+ radiation lengths (X0) throughout its volume with a notable
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Figure 5.4: Sketch of a barrel module where the different layers are clearly visible with the ganging
of electrodes in φ . The granularity in η and φ of the cells of each of the three layers and of the
trigger towers is also shown.

5.2.2 Barrel geometry

The barrel electromagnetic calorimeter [107] is made of two half-barrels, centred around the z-
axis. One half-barrel covers the region with z > 0 (0 < η < 1.475) and the other one the region
with z < 0 (−1.475 < η < 0). The length of each half-barrel is 3.2 m, their inner and outer
diameters are 2.8 m and 4 m respectively, and each half-barrel weighs 57 tonnes. As mentioned
above, the barrel calorimeter is complemented with a liquid-argon presampler detector, placed in
front of its inner surface, over the full η-range.

A half-barrel is made of 1024 accordion-shaped absorbers, interleaved with readout elec-
trodes. The electrodes are positioned in the middle of the gap by honeycomb spacers. The size
of the drift gap on each side of the electrode is 2.1 mm, which corresponds to a total drift time
of about 450 ns for an operating voltage of 2000 V. Once assembled, a half-barrel presents no
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(a) Barrel electromagnetic calorimeter module with
the different layers and radiation lengths of a min-
imum ionizing particle (MIP) shown. Note the ex-
tremely fine ∆η granularity of the strip cells of Layer
1.
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supplies which power the readout are mounted in an external steel box, which has the cross-section
of the support girder and which also contains the external connections for power and other services
for the electronics (see section 5.6.3.1). Finally, the calorimeter is equipped with three calibration
systems: charge injection, laser and a 137Cs radioactive source. These systems test the optical
and digitised signals at various stages and are used to set the PMT gains to a uniformity of ±3%
(see section 5.6.2).

5.3.1.2 Mechanical structure
Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 5.9: Schematic showing how the mechan-
ical assembly and the optical readout of the tile
calorimeter are integrated together. The vari-
ous components of the optical readout, namely
the tiles, the fibres and the photomultipliers, are
shown.

The mechanical structure of the tile calorime-
ter is designed as a self-supporting, segmented
structure comprising 64 modules, each sub-
tending 5.625 degrees in azimuth, for each of
the three sections of the calorimeter [112]. The
module sub-assembly is shown in figure 5.10.
Each module contains a precision-machined
strong-back steel girder, the edges of which
are used to establish a module-to-module gap
of 1.5 mm at the inner radius. To maximise
the use of radial space, the girder provides both
the volume in which the tile calorimeter read-
out electronics are contained and the flux return
for the solenoid field. The readout fibres, suit-
ably bundled, penetrate the edges of the gird-
ers through machined holes, into which plas-
tic rings have been precisely mounted. These
rings are matched to the position of photomul-
tipliers. The fundamental element of the ab-
sorber structure consists of a 5 mm thick mas-
ter plate, onto which 4 mm thick spacer plates
are glued in a staggered fashion to form the
pockets in which the scintillator tiles are lo-
cated [113]. The master plate was fabricated
by high-precision die stamping to obtain the dimensional tolerances required to meet the specifica-
tion for the module-to-module gap. At the module edges, the spacer plates are aligned into recessed
slots, in which the readout fibres run. Holes in the master and spacer plates allow the insertion of
stainless-steel tubes for the radioactive source calibration system.

Each module is constructed by gluing the structures described above into sub-modules on a
custom stacking fixture. These are then bolted onto the girder to form modules, with care being
taken to ensure that the azimuthal alignment meets the specifications. The calorimeter is assembled
by mounting and bolting modules to each other in sequence. Shims are inserted at the inner and
outer radius load-bearing surfaces to control the overall geometry and yield a nominal module-
to-module azimuthal gap of 1.5 mm and a radial envelope which is generally within 5 mm of the
nominal one [112, 114].
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(b) Barrel tile calorimeter module
showing the optical readout, structure
of the scintillating tiles, fibers, and
photomultipliers.

Figure 3.8: Schematic layouts of individual electromagnetic (a) and tile (b) barrel
calorimeter modules [47].

exception around |η| = 1.4. Its fine granularity of ∆η×∆φ = 0.025× 0.025 provides

the possibility to understand the shape evolution of showers within its volume.

A critical feature of the EM calorimeter performance in pile-up conditions is the

bi-polar pulse shaping (roughly a differentiator circuit) by the front end electronics.

The result of this signal processing step is shown in Fig. 3.9 for an injected triangular

pulse, which has been shown to be a good representation of the actual signal. The

25 ns intervals are shown on the curve to show the points of the curve that are digitally

sampled and also serves to illustrate how the signal runs over 24 bunch crossings. The

pulse shaping has a very important purpose: to ensure that the calorimeter signal

integrates to 0 in time. The most important consequence of which is that the trigger

thresholds are less sensitive to the luminosity and the specific number of additional

collisions that occur within a given bunch crossing. When multiple signals in a

single calorimeter cell are summed (due to the presence of multiple shower sources)
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Figure 5.30: Amplitude versus time for triangu-
lar pulse of the current in a LAr barrel electro-
magnetic cell and of the FEB output signal after
bi-polar shaping. Also indicated are the sampling
points every 25 ns.

The shaped signals are then sampled
at the LHC bunch-crossing frequency of
40 MHz by four-channel switched-capacitor ar-
ray (SCA) analogue pipeline ASIC’s. The SCA
stores the analogue signals during the L1 trig-
ger latency in pipelines of 144 cells, and also
serves as a multiplexer and de-randomising
buffer in front of the ADC for triggered events.

For events accepted by the L1 trigger,
typically five samples per channel and only
one of the three gain scales are read out from
the SCA. A gain-selector chip (GSEL) is used
to select the optimal readout gain individually
for each calorimeter channel and separately for
each L1 trigger. Two commercial dual op-amp
chips couple the SCA outputs to commercial
12-bit ADC’s used for the digitisation of the
analogue signals. The signals are formatted by
the GSEL, multiplexed (SMUX), serialised at 1.6 Gbits/s (GLINK), and then transmitted via a
single optical transmitter (OTx) based on vertical-cavity surface-emitting laser diodes (VCSEL).

Each shaper ASIC contains an analogue summing circuit, which sums its four channels as the
first step in producing sums for the L1 trigger system. Channels can be individually enabled or dis-
abled during FEB configuration in order to mask noisy channels. The four-channel sums are routed
on the FEB to plug-in boards, which contain the next stage of the trigger analogue summing tree and
which drive their output sums through the crate back-plane to the tower-builder (or tower-driver)
boards, where the sums are completed before transmission off-detector to the L1 trigger system.

5.6.1.3 Tile calorimeter front-end electronics

The front-end electronics of the tile calorimeter are housed inside drawers located within the
steel girders which constitute the external support frame of the tile-calorimeter modules (see sec-
tion 5.3.1.1). A block diagram of the tile-calorimeter front-end electronics and readout components
inside the drawer is shown in figure 5.31.

A key element in the readout is the photomultiplier (PMT) block [131]. It is a mechanical
structure comprising a steel cylinder and mu-metal shield for magnetic shielding, which contains
a light mixer, a photomultiplier tube, a voltage divider and the so-called 3-in-1 card. The light
mixer is an optical plastic insert which mixes the light from the readout fibres to ensure uniform
illumination of the photo-cathode. The PMT’s with their compact 8-dynode structure are used to
measure the scintillation light [132]. All PMT’s were burned in and tested for linearity, stability,
dark current and operating voltage for a nominal gain of 105 [112]. The average operating voltage
for nominal gain is 680 V. The assembled PMT blocks are inserted inside precision slots inside the
aluminium structure of the drawers, which ensure accurate placement of the light mixer relative to
the fibre bundle for each readout cell.
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Figure 3.9: The amplitude of the signal resulting from an injected triangular pulse of
current into the front end board after bi-polar shaping. Indicated are the 25 sampling
points of the curve every 25 ns.

the opposing effects on the resulting measurement depend on whether they have

originated from the same bunch crossing or from a previous bunch crossing. This

creates two distinct effects from pile-up (PU) in the calorimeters at ATLAS:

In-time pile-up In-time PU results in an overestimate of energy deposited by the

hard scattered (HS) jet of interest by the addition of energy whose source are

the pile-up collisions within the same event. This effect is noise-like: it is subject

to a Poisson-distributed chance of additional activity overlapping in the same

cell.

Out-of-time pile-up Out-of-time PU results in an underestimate of energy de-

posited from particles originating from the HS vertex. This effect is not very

noise-like because (in sufficient PU conditions) it is time-averaged by the long

flat tail of the negative response of many previous signals. Rather it is an offset

to the measured energy more dependent on the time-averaged beam conditions.
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Figure 5.2: Cumulative amount of material, in units of interaction length, as a function of |η |, in
front of the electromagnetic calorimeters, in the electromagnetic calorimeters themselves, in each
hadronic layer, and the total amount at the end of the active calorimetry. Also shown for complete-
ness is the total amount of material in front of the first active layer of the muon spectrometer (up
to |η | < 3.0).

5.2 Electromagnetic calorimetry

5.2.1 Accordion geometry

An accordion geometry has been chosen for the absorbers and the electrodes of the barrel and end-
cap electromagnetic calorimeters (see figures 5.3 and. 5.4). Such a geometry provides naturally a
full coverage in φ without any cracks, and a fast extraction of the signal at the rear or at the front
of the electrodes. In the barrel, the accordion waves are axial and run in φ , and the folding angles
of the waves vary with radius to keep the liquid-argon gap constant (see figures 5.4 and 5.5). In the
end-caps, the waves are parallel to the radial direction and run axially. Since the liquid-argon gap
increases with radius in the end-caps, the wave amplitude and the folding angle of the absorbers
and electrodes vary with radius (see figure 5.6). All these features of the accordion geometry lead
to a very uniform performance in terms of linearity and resolution as a function of φ . As can be
seen from figure 5.3, the first layer is finely segmented along η , as for example in the barrel where
there are eight strips in front of a middle cell. One can note however the coarser granularity of the
first layer in the edge zones of the barrel and end-caps, as explicitly given in table 1.3. The second
layer collects the largest fraction of the energy of the electromagnetic shower, and the third layer
collects only the tail of the electromagnetic shower and is therefore less segmented in η .
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Figure 3.10: Cumulative material by sub-detector layer in the EM and hadronic
calorimeters as well as the material distribution prior to calorimetry. Also shown is
the total amount of material in front of the muon spectrometer (MS).

These two measures of event activity, NPV and µ, form the parameter space over

which to understand PU on the calorimeter measurements. The first, NPV, is purely

track-based and is dependent on measurements made from particles that were created

in the bunch crossing. While the second, µ, is inherently time-averaged, reflecting the

overall beam conditions and luminosity at the time of data-taking. The effect of the

luminosity on measurements can be understood through studying the dependence of

measured jet energies on these parameters and their associated uncertainties.

Hadronic Calorimeters The hadronic calorimeters are designed to interact with

particles containing quarks through their interactions with atomic nuclei. The degree

of hadronic interaction of a material is measured in interaction lengths (λ), which for

most materials are much longer than radiation lengths. The distribution of hadronic

calorimeter material is shown in Fig. 3.10. The hadronic calorimeter is not as efficient

in recovering energy as the electromagnetic calorimeter, and lost signal in the absorber

is significant. The gap at |η| ≈ 1.5 between the extended barrel section of the

calorimeters and the end-cap sections (visible in the material distribution), is filled

with additional scintillator.
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Figure 5.19: Schematic diagram showing the
three FCal modules located in the end-cap
cryostat. The material in front of the FCal and
the shielding plug behind it are also shown.
The black regions are structural parts of the
cryostat. The diagram has a larger vertical
scale for clarity.

Figure 5.20: Electrode structure of FCal1 with
the matrix of copper plates and the copper tubes
and rods with the LAr gap for the electrodes.
The Molière radius, RM, is represented by the
solid disk.

copper tube separated by a precision, radiation-hard plastic fibre wound around the rod. The ar-
rangement of electrodes and the effective Molière radius for the modules can be seen in figure 5.20.
Mechanical integrity is achieved by a set of four tie-rods which are bolted through the structure.
The electrode tubes are swaged at the signal end to provide a good electrical contact.

The hadronic modules FCal2 and FCal3 are optimised for a high absorption length. This
is achieved by maximising the amount of tungsten in the modules. These modules consist of
two copper end-plates, each 2.35 cm thick, which are spanned by electrode structures, similar to
the ones used in FCal1, except for the use of tungsten rods instead of copper rods. Swaging of
the copper tubes to the end-plates is used to provide rigidity for the overall structure and good
electrical contact. The space between the end-plates and the tubes is filled with small tungsten
slugs, as shown in figure 5.21. The inner and outer radii of the absorber structure formed by the
rods, tubes and slugs are enclosed in copper shells.

Signals are read out from the side of FCal1 nearer to the interaction point and from the
sides of FCal2 and FCal3 farther from the interaction point. This arrangement keeps the cables
and connectors away from the region of maximum radiation damage which is near the back of
FCal1. Readout electrodes are hard-wired together with small interconnect boards on the faces
of the modules in groups of four, six and nine for FCal1, FCal2 and FCal3 respectively. The
signals are then routed using miniature polyimide co-axial cables along the periphery of the FCal
modules to summing boards which are mounted on the back of the HEC calorimeter. The summing
boards are equipped with transmission-line transformers which sum four inputs. High voltage
(see table 5.1) is also distributed on the summing boards via a set of current-limiting resistors, as
shown in figure 5.22 for the specific case of FCal1. The signal summings at the inner and outer
radii of the modules are in general different due to geometric constraints and higher counting rates
at the inner radius [122].

– 131 –

Figure 3.11: Schematic of the FCal modules composing the ATLAS forward calorime-
ter in the range 3.1 < |η| < 4.9. The black regions are structural components of the
cryostat. Note the exaggerated vertical scale–this is a very forward detector.

Forward Calorimeter The forward calorimeter (FCal), shown in Fig. 3.11 is a

special detector designed for the high radiation flux in in the forward direction. It

is a LAr end-cap detector in three wheels around the beam pipe made from copper

tubing with a copper rod insert in the first layer (chosen for its radiation hardness)

and tungsten rod in the second and third layers. The thin gap between the rod

and the tubes is filled with LAr. The first layer consists of 28 radiation lengths of

absorber and together the 3 wheels are 10 interaction lengths which is sufficient for

calorimetry. The detector has special cooling needs to handle the large radiation flux

without boiling the LAr. It is expected to operate very close to its limit under HL-

LHC conditions of µ = 200. A proposal to upgrade it for HL-LHC (a project with

major contributions from the author) with new cooling services, higher granularity,

and thinner gaps was just rejected (due to the risk of the replacement and studies

suggesting an acceptable amount of degradation from radiation damage).

56



2
0
0
8
 
J
I
N
S
T
 
3
 
S
0
8
0
0
3

Figure 6.1: Cross-section of the bar-
rel muon system perpendicular to the
beam axis (non-bending plane), show-
ing three concentric cylindrical layers of
eight large and eight small chambers. The
outer diameter is about 20 m.

Figure 6.2: Cross-section of the muon system in
a plane containing the beam axis (bending plane).
Infinite-momentum muons would propagate along
straight trajectories which are illustrated by the dashed
lines and typically traverse three muon stations.

where a high momentum (straight) track is not recorded in all three muon layers due to the gaps
is about ±4.8◦ (|η | ≤ 0.08) in the large and ± 2.3◦ (|η | ≤ 0.04) in the small sectors. Additional
gaps in the acceptance occur in sectors 12 and 14 due to the detector support structure (feet). The
consequences of the acceptance gaps on tracking efficiency and momentum resolution are shown
in figures 10.37 and 10.34, respectively. A detailed discussion is given in section 10.3.4.

The precision momentum measurement is performed by the Monitored Drift Tube chambers
(MDT’s), which combine high measurement accuracy, predictability of mechanical deformations
and simplicity of construction (see section 6.3). They cover the pseudorapidity range |η | < 2.7
(except in the innermost end-cap layer where their coverage is limited to |η |< 2.0). These cham-
bers consist of three to eight layers of drift tubes, operated at an absolute pressure of 3 bar, which
achieve an average resolution of 80 µm per tube, or about 35 µm per chamber. An illustration of a
4 GeV and a 20 GeV muon track traversing the barrel region of the muon spectrometer is shown in
figure 6.4. An overview of the performance of the muon system is given in [161].

In the forward region (2 < |η |< 2.7), Cathode-Strip Chambers (CSC) are used in the inner-
most tracking layer due to their higher rate capability and time resolution (see section 6.4). The
CSC’s are multiwire proportional chambers with cathode planes segmented into strips in orthogo-
nal directions. This allows both coordinates to be measured from the induced-charge distribution.
The resolution of a chamber is 40 µm in the bending plane and about 5 mm in the transverse plane.
The difference in resolution between the bending and non-bending planes is due to the different
readout pitch, and to the fact that the azimuthal readout runs parallel to the anode wires. An illus-
tration of a track passing through the forward region with |η |> 2 is shown in figure 6.5.

To achieve the sagitta resolution quoted above, the locations of MDT wires and CSC strips
along a muon trajectory must be known to better than 30 µm. To this effect, a high-precision optical
alignment system, described in section 6.5, monitors the positions and internal deformations of
the MDT chambers; it is complemented by track-based alignment algorithms briefly discussed in
section 10.3.2.
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Figure 3.12: Cross-sectional quarter view of the ATLAS muon spectrometer. Note
that this is the bending plane produced by the toroidal magnet system. Infinite-
momentum muons propagate along the dotted lines. Barrel MDTs (green), and end-
cap MDTs (blue).

Muon Spectrometer

The final and outermost detector of ATLAS is the muon spectrometer. It provides

at least 3 measurements of position and direction to a muon coming from the IP up

to |η| < 2.7. In the barrel region (|η| < 1.4) the 3 layers are arranged in concentric

cylinders and in the end-cap region there are 3 layers in the plane transverse to

the beam axis. The muon trigger system and the detectors providing the precision

measurements are two separate systems in ATLAS. Muon pT is determined by the

curvature of the path in the magnetic field provided by the large air-core toroidal

magnets.

The precision measurements are made with monitored drift tubes (MDT) in the

precision-tracking chambers. At large pseudorapidity (2 < |η| < 2.7), a higher gran-

ularity measurement is provided by multiwire proportional chambers called Cathode

Strip Chambers (CSC). The CSC is used to provide robustness against a higher

rate of background that it will record due to its forward position, seen in yellow in
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Fig. 3.12. The trigger detectors sandwich the precision tracking chambers. In the

barrel they are composed of Resistive Plate Chambers (RPC) and in the forward

Thin Gap Chambers (TGC) are used. The trigger detectors serve a threefold pur-

pose: they provide bunch-crossing identification, implement well-defined pT thresh-

olds, and provide a measurement in the coordinate orthogonal to that determined

by the precision-tracking chambers. Hall sensors distributed throughout the spec-

trometer volume allow for the reconstruction of the bending power of the B-field to

a precision of a few parts per thousand.

ATLAS Performance

The data acquisition of each of sub detectors performed with high efficiency in 2016.

Table 3.4 shows the percent of time each sub detector was fully functioning. The

data acquisition system carries flags for the detector operation in short time periods of

data taking over which a luminosity measurement is made called lumi-blocks (usually

∼1 min). Periods of the simultaneous good performance of all detector systems

(relevant to a given analysis) are tabulated as “good runs lists” used in the analysis.

This ensures that the result of an analysis has been made with data that has been

approved by experts in the ATLAS system monitoring. Due to the use of muons in

Pixel SCT TRT LAr Tile MDT RPC CSC TGC Solenoid Toroid
98.9 99.9 100 99.8 100 99.6 99.8 99.8 99.8 99.7 93.5

Good for physics: 91-98% (10.1-10.7 fb−1)

Table 3.4: Luminosity weighted-relative detector up-time and good data quality
efficiencies [%] during stable beam in pp-collisions with 25 ns bunch spacing at√
s = 13 TeV between 28 April and 10 July 2016, corresponding to the 2016 data set

used in this analysis.

this analysis, the quantity of 2016 data used here is the lower value of 10.1 fb−1; the

toroidal electromagnet system, hardest hit by loss of up-time in 2016, was required

to be fully operational for this analysis.
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Chapter 4

Monte Carlo Event Generation and Detector Simulation

Simulation of QCD events is an integral part of the calibration, analysis, and inter-

pretation of data taken at ATLAS. It plays a key role in the understanding of the

hypothetical signal in a search, the constraint of SM parameters integral in the under-

standing of backgrounds, and the key technology through which one can understand

the capabilities and refine the design of proposed future experiments.

The final states of deep inelastic hadron-hadron collisions are complicated, often

involving hundreds of particles whose energy spans a few orders of magnitude. Each

individual hard collision involves many of the SM particles and the relevant matrix

elements in a given process quickly become unmanageable once one is beyond the first

couple orders of perturbation theory. Consequently, predictions at the LHC start with

perturbative QCD calculations at leading order (LO), next-to-leading order (NLO),

or even next-to-next-to leading order (NNLO). Matrix elements (ME) are calculated

in an approximation of the underlying theory of QCD. To handle the divergences that

are inherent arising from confinement at low-energy, approximations must be used

in place of actual theoretical calculation. Because of this and the extremely large

phase space of final states, Monte Carlo (MC) sampling is the standard procedure

for generating precise theoretical predictions to be compared with data.

Since steps in calculating QCD final states in hadron collisions require approxima-

tions, there are several MC generators in use by the experimental community, each

employing different techniques. There are trade-offs between them, and there is an

active feed back between the phenomenological community and the results coming
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from experiment. This section will introduce the MC simulations used in the gen-

eration of the signal and leading backgrounds in the diboson search as well as those

used in the calibration of jets.

Generally, the MC event generation is broken into 4 steps. The chain begins with

the scatter defined by the MEs of the hardest process, proceeds through an iterative

scale evolution down to a lower cutoff energy scale, then undergoes a non-perturbative

hadronization into the final state hadrons, and finally the interaction of the final state

particles with the detector is modeled. At hadron collider energies the hard scattered

partons emit gluons and quark-antiquark pairs which then re-radiate themselves and

so on, creating a cycle that repeats at lower energy. Following this process iteratively

for both the incoming and outgoing participants of the hard scatter is known as parton

showering (PS). The end result is a collimated shower of final state particles with a

non-trivial width known as jets. Showering takes place down to order of 1 GeV at

which point QCD is strongly interacting and hadronization occurs. Soft interactions

play an important role in the evolution of the shower and hadronization but can

not be calculated from pQCD, but rather only through QCD-inspired estimates with

tunable parameters. Secondary interactions from the primary hard scatter result in

some additional detectable final state particles in the interaction and are grouped

together in what is known as the underlying event (UE). These aspects of a complete

event generation are summarized in Fig. 4.1 showing how each stage evolves for a

typical hadron collider event.

4.1 Event Generation

General purpose generators like those used at ATLAS provide at least LO matrix

element generation for 2→ 1, 2 or 3 final states. Many can interface with other matrix

element/phase-space generators for the generation of higher multiplicity final states,
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Figure 3: Sketch of a hadron-hadron collision as simulated by a Monte-Carlo event generator. The red
blob in the center represents the hard collision, surrounded by a tree-like structure representing
Bremsstrahlung as simulated by parton showers. The purple blob indicates a secondary hard
scattering event. Parton-to-hadron transitions are represented by light green blobs, dark
green blobs indicate hadron decays, while yellow lines signal soft photon radiation.

At hadron colliders, multiple scattering and rescattering e↵ects arise, which must be simulated by Monte-
Carlo event generators in order to reflect the full complexity of the event structure. This will be discussed
in Sec. 5. Eventually we need to convert the full partonic final state into a set of color-neutral hadrons,
which is the topic of Sec. 6. The interplay of all these e↵ects makes for the full simulation of hadron-hadron
collisions. This is sketched in Fig. 3.

2 The hard scattering

Event simulation in parton-shower Monte-Carlo event generators starts with the computation of the hard-
scattering cross section at some given order in perturbation theory. Traditionally, this calculation was
performed at leading order (LO), but nowadays, with next-to-leading-order (NLO) calculations completely
automated, it is often done at NLO. Computing the hard cross section at NLO requires a dedicated
matching to the parton shower, which will be discussed in Sec. 4. For now we focus on the evaluation of
the di↵erential cross sections and the related phase-space integrals.

The basis for our calculations is the factorization formula, Eq. (1.1). We rewrite it here, in order to
simplify the discussions in the following sections. The full initial and final state in a 2 ! (n � 2)
reaction can be identified by a set of n particles, which is denoted by {~a} = {a1, . . . , an}. Their flavors

and momenta are similarly specified as {~f } = {f1, . . . , fn} and {~p} = {p1, . . . , pn}. The di↵erential
cross section at leading order is a sum over all flavor configurations, and it depends only on the parton
momenta:

d�(LO)({~p}) =
X

{~f }

d�(B)
n

({~a}) , where d�(B)
n

({~a}) = d�̄
n

({~p}) B
n

({~a}) . (2.1)

Each individual term in the sum consists of the di↵erential phase-space element, d�
n

, the squared matrix

6

Figure 4.1: Cartoon of a pp-collision simulated by MC generator at LHC energies. It
includes the steps used in the complete MC simulation chain discussed. The initial
protons are represented by the three horizontal green lines and the squished dark
green blobs. The large red spot is the LO collision decay to final state products (red)
which undergo parton showering still in the red. The products of the parton shower
hadronize (light green blobs). A secondary QCD interaction is shown in the purple.
The light green squished blobs show the hadronization. The dark green final products
are hadrons which have in some cases undergone further decay. The yellow curves
indicate final state radiation (FSR).
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like Comix [66], OpenLoops [67], Madgraph [68]. Special tools are used because

the number of Feynman diagrams required to represent a state increases roughly

factorially with the number of final state particles. Computation simply using the

textbook squaring of amplitudes becomes prohibitive for final-state multiplicities from

a final state multiplicity of four.

Picking up from the QCD discussion in the theory section, a factorization formula

is used to calculate cross sections at LHC. To make the calculation one integrates over

the phase space, for given set of matrix elements, with parton distribution functions

in hand. Rewriting the the factorization equation 2.4 from Chapter 2 in a little more

detail [69]:

σ =
∑
a,b

∫ 1

0

dxadxb

∫
fh1
a (xa, µF )f

h2
b (xb, µF )dσ̂ab→n(µF , µR)

=
∑
a,b

∫ 1

0

dxadxb

∫
dΦnf

h1
a (xa, µF )f

h2
b (xb, µF )×

1

2ŝ
|Mab→n|2(Φn;µF , µR),

(4.1)

The PDFs, fh
a (x, µF ), are functions of light cone momentum fraction x and the

factorization scale µF used. Each parton a is labeled with its parent hadron h. The

parton level production cross section σ̂ab→n for final state n from initial partons a

and b depends on the momenta of the final-state phase space Φn. The differential

parton-level cross section is given by the product of the PDFs with the square of the

matrix element |Mab→n|2 and the parton flux 1/2ŝ = 1/(2xaxbs), where
√
s is the

usual CME. The matrix elementMab→n can be interpreted as the sum over Feynman

diagrams, although in practice there are some subtleties. The sum over quantum

numbers helicity and color can come out of the following square term,

|Mab→n|2(Φn;µF , µR) =
∑
hi;cj

|M{ij}
ab→n|

2(Φn, {hi}, {cj};µF , µR) (4.2)

Therefore, helicity and color configurations can be sampled to form the starting con-

ditions for showering. The differential phase space element,

dΦn =
n∏

i=1

d3pi
(2π)32Ei

· (2π)4δ(4)(xaPa + xbPb −
n∑

i=1

pi), (4.3)
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where xaPa and xbPb are the initial state momentum fractions of these partons. This

equation is generally applicable to all orders of perturbation theory. Typically, one

hard scale µF = µR = Q2 is used to set the renormalization and factorization scales as

well as the starting scale for the initial and final state parton showering. Each genera-

tor utilizes a default PDF set with tunes made for the parton showering, hadronization

and underlying event. At leading order the shapes of distributions are well-described,

but it is common for the overall normalization to be accurate to only a factor of 2 or

so. To make distributions useful, an overall normalization or k-factor is determined

from a designated study to compensate for this inaccuracy.

Parton Showers The effects of higher order corrections are simulated through

parton shower algorithms. These are implemented by a recursive branching of mo-

mentum down from higher scales associated with the hard process to an order of 1

GeV, where confinement requires further description of the evolution as hadrons.

The critical structure in the theory of QCD that allows for the idea of a shower

to accurately represent higher multiplicity states is the proportionality of production

cross section to that with additional gluon final states: e.g. the production cross

section for qq̄ ∝ qq̄g. The interpretation for the process as the emission of a gluon

is valid and an iterative algorithm will suffice to describe this process. The point is

completely general so starting with any hard process the showering algorithm can

be applied to generate a collinear splitting. The splitting can then be treated as

the new hard process for collinear splitting to be reapplied down to the showering

cutoff, Q0. Like radioactive decay, the probability of non-branching to cut-off value

q2, ∆i(Q
2, q2), is given by the exponent of the instantaneous branching probability.

The non-branching probability is known as the Sudakov form factor. Its first

derivative is the probability for the first branching. To go through the process re-

cursively it is necessary to introduce an ordering variable. The choice of ordering

63



variable is one of the key differences between generators. This type of algorithm

lends itself naturally to straight forward MC evaluation: A random number ρ from 0

to 1 is generated, and then the equation ∆i(Q
2, q2) = ρ is solved for q2. If q2 is less

than the cutoff Q2
0 the branching terminates, otherwise it continues.

When considering all soft emissions together however, it is clear that many dia-

grams will contribute and the treatment of interference will be an unavoidable part

of a good description. This seemingly invalidates the model of the independent evo-

lution of partons and suggests that soft gluons must be considered to be emitted by

the whole scattering process. The method used by Herwig [70] ensures the correct

handling of soft gluon color interference at the cost of not ensuring the conservation

of momentum.

The discussion has so far assumed radiation is from outgoing partons (FSR), but

the same construction applies to radiation from the initial state (ISR). To shower

from the initial state, event generators start from the hard process and proceed by

backward evolution, dressing it with an additional radiated gluon. Using the DGLAP

equations, the probability distribution for a parton with given momentum fraction

and scale is determined to come from higher momentum fraction and lower scales.

This process is iterated until the scale reaches the infrared cutoff. In this process the

Sudakov form factor ∆i(Q
2, q2), giving the probability that a final state parton does

not radiate between the scales Q2 and q2, is replaced by the non-emission probability.

Since PDFs decrease exponentially with x the non-emission probability is close to

one, and it is generally more probable that the parton has come straight out of the

hadron. Of course the distinction between ISR and FSR is not a physical one and

all soft emissions can interfere with one another. The specific treatment of ISR with

FSR in generators is yet another point of specialization among generators.

One last area of subtlety in the interface between parton-level matrix elements and

parton shower is the possibility of double counting. A sufficiently hard emission in
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showering from an outgoing product can result, by recoil of the parent, in an identical

state as that of a harder process producing a soft emission. In all cases the showering

algorithms have been developed in the soft and collinear limit, which indicates that

the later case is prioritized in cases of double counting.

Hadronization

Hadronization refers to the model used in event generation to transition from the

parton-level description of a final state to the actual hadronic final state products.

There are two classes of hadronization model in use, string and cluster models. The

string model turns a system of partons directly into hadrons, whereas the cluster

model uses an intermediate stage of cluster objects with a typical mass scale of a few

GeV. To go into detail about how these models work is well beyond the scope of this

thesis, however a short summary is worth some discussion in order to understand how

the MC is used in experiment to determine systematic uncertainties.

String model The string model [71] is based on the linear increase of the QCD

potential at large distance, leading to confinement. As the partons move apart, a

color flux tube, represented as a 1-D string, is stretched between quark pairs with

the linear potential V (r) = κr. The energy per unit length is known to be about

κ ≈ 1 GeV/fm. Gluons form kinks in the string while quarks form end points. A

break in the string produces quark-antiquark pairs where each forms part of its own

hadron. The emission of a soft or collinear gluon disturbs little the string motion

and fragmentation–this is referred to as collinear and infrared safety, a key feature

discussed in more detail in Chapter 5. Consequently, the choice of parton shower

cutoff scale does not affect the resulting distribution of hadrons. The string model

provides a predictive framework for space-time evolution of hadrons and momentum

and energy distributions of the products. There are several tunable parameters used
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in string models to obtain the correct distributions of hadrons from string breaks. A

typical leangth of breaking string is from 1 to 5 fm apart in the qq̄ rest frame. A

potential drawback to the string model, comes from the formulation of each string in

isolation to the rest of the event. After showering, the string configuration is assigned

to the parton-level products in the event, and each string evolves in isolation. Since

color effects can be felt from the event as a whole in hadronization of a given parton

this is a shortcoming of the model, but it may only be significant for busy events–this

mis-modeled effect should certainly be significant for heavy ion collisions and trivial

in clean e+e− collisions.

Cluster model The cluster hadronization model works from the preconfinement

property [72] of parton showers. A consequence of the property is the formation of

color singlet clusters of partons with a universal mass distribution around the scale of a

few GeV. In the model gluons are split into qq̄ pairs and clusters are formed from those

that are color-connected. Decaying each cluster according to the available two-body

phase space determines the production rates of various hadrons. The multiplicities

are determined by flavors, spins, and available kinematic phase space. Suppression of

heavy flavor and the expression of the limited transverse momenta of heavy hadrons

are a direct result of the limited distribution of cluster mass. The basic cluster model

for hadronization has been shown to represent the distributions observed in data

well using relatively few tuned parameters compared to the string model, primarily

requiring only the tuning of the shower cut-off scale. The clusters evolve individually

like the strings in the string model.

After excited hadrons are formed either through cluster or string model there is

the final step of their decay. Both models simplify non-trivial effects arising from a

busy hadronic environment.

It is standard procedure for experimentalists to estimate the sensitivity of an
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observable to the hadronization model used and/or showering by simply generating

MC with multiple schemes and comparing observables. This strategy is used in

the calibration of jets to determine systematic uncertainties as well as in the search

presented in this thesis to cover systematic uncertainties in the fits associated with

generator modeling.

Underlying event

The underlying event (UE) refers to various physics processes that contribute to the

total observed activity in hadron collisions. The source of additional activity can

mainly be understood as the interaction from more than one pair of partons from

the colliding hadron pair. This encapsulates all activity from the leading hadron

pair interaction not directly associated with the leading parton pair interaction. For

example it excludes ISR from the leading parton-parton collision. The additional

interactions are relatively soft and are not frequently hard enough to directly pro-

duce jets above the minimum thresholds for reconstruction. However, events have

numerous soft interactions below the cutoff for jet reconstruction that can affect the

color flow in the event since color is exchanged between all participants in the scatter-

ing. In turn this has an outsized effect on the final-state activity increasing the sum

of transverse energy, particle multiplicity, and beam remnant interactions resulting

typically in greater activity in the forward region as well as central.

The UE is influenced by the hard interaction and is more than the sum of indi-

vidually treated soft interactions of the remaining partons in the colliding hadrons.

A harder leading parton-parton interaction indicates a greater chance of secondary

interactions and so a cut on the transverse momentum of leading products biases

upward the contribution of the UE.

The event tune is a generator-specific tuning of the free parameters in the models

used for description of the UE model, the model used for hadronization and hadron
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decay. Typical parameters that require tuning include: αs/ΛQCD, hadron shower

cutoffs, string tension, fragmentation function parameters, cluster momentum smear-

ing functions, flavor enhancement and suppression in hadronization, and parameters

for models of multiple parton interaction (MPI). The specifics of treatment of UE is

unique to each of the generators.

Generally tuning uses event data from as many hadron collider experiments as

possible. New event tunes are used in Run 2 incorporating the constraints of studies

made on Run 1 LHC data.

Specific Generators

Matrix elements (MEs) are typically generated to NLO and combined with the parton

shower. The combination of fixed order MEs with parton showers is a sophisticated

task that requires a careful stitching together of the results from parton showering

and ME calculation. One reason this is a challenge is that parton showers give results

correct to all order of strong coupling αs for a fixed number of parton emissions, and

ME calculations give results only correct to fixed order in αs but for any number

of parton emissions. The accuracy of parton shower calculations diverges for large

angle, and hard emissions and the accuracy of ME calculations is limited in softer

and collinear emissions. The use of NLO ME calculations improves the agreement

between data and simulations because the first (hardest) emission is often poorly

treated in a parton shower framework and calculations using MEs are more accurate.

The Powheg [73, 74] and MC@NLO [75–77] tools correct the parton shower for

the first emission in distribution and cross section. For a good simulation of higher

jet topologies, a different approach is taken used in CKKW [78] and CKKW-L [79]

that introduces a merging scale above which the second and higher emissions of the

parton shower are corrected to the MEs. This strategy essentially simulates the jet

multiplicity by ME calculation and then applies parton showering to each jet. This
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introduces a tunable scale separating the ME calculation from the parton shower.

To eliminate double counting from PS and ME merging in NLO calculations

terms are subtracted. A byproduct of the experimental use of these techniques is

that for a limited MC sampling (or fine enough binning) negative weights result in

locally negative final distributions which are unphysical. Care is taken not to choose

binning too fine in the statistical procedures for searches, but inevitably the sub-

leading backgrounds have areas in the analysis that are statistically limited without

detriment to the analysis. Distributions are forced to be positive definite in such

cases to make them more physical and ensure a good fit.

Pythia 8 Pythia incorporates a LO ME generator with a highly tunable parton

showering based on the dipole approximation [80]. Hadronization uses the Lund

string fragmentation framework [81]. Ordering in the event evolves globally

in pT including multiple parton interactions and parton showering. Pythia

interfaces with NLO tools like Powheg for the generation of multiple parton

final states. Stand alone Pythia QCD dijet simulation is the standard for the

development of jet calibrations where the focus is on the simulation of individual

jets and the overall event topology is less important.

Sherpa 2.2 Sherpa 2.2 [82] is a general MC event generator that performs both

ME generation as well as the parton shower, using the ME+PS@NLO pre-

scription [83]. In this analysis it is used to generate W/Z+jets samples, the

dominant backgrounds in both ``qq and ννqq channels. Matrix elements for

W/Z+0,1,2 jets processes are generated at NLO and W/Z + 3,4 jets processes

to LO using the Comix [84] and OpenLoops [67] programs. Sherpa 2.2 uses

the CKKW-L matching and merging procedure. Massless b and c-quarks are

used in the MEs but are massive in the parton shower. A refined tuning is used

improving the description of LHC data over previous Sherpa 2.1 used. The

PDFs are NNLO using NNPDF 3.0 [85]. Sherpa uses dipole showering based
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on the Catani-Seymour factorization formalism. A cluster-based model is used

for hadronization with flavor-dependent scales between clusters and hadrons.

Herwig++ Herwig (Hadron Emission Reactions With Interfering Gluons) [70]

is distinct in its use of an angular ordering (instead of pT) in the evolution

of parton showering and underlying event simulation. This strategy better

represents aspects of color coherence in the parton shower but sacrifices local

conservation of momentum and requires corrections. Herwig uses a cluster-

based approach to hadronization. Consequently Herwig is a favorite alternate

for gauging the dependence of a process on the simulation of PS and UE.

4.2 Simulation of pile-up

Proton-proton collisions occur outside of the hard scatter of interest which creates

an additional source of signal within the detectors. There are five sources of pile-up

in ATLAS events. The most important source are the additional pp-collisions near

the IP both in time with the bunch crossing and out-of-time during previous bunch

crossings at 25 ns intervals. In and out-of-time PU are simulated by overlay of of

minimum bias events according to the nominal bunch chain structured. MC for 2016

is generated with the expected distribution of µ around 30 for data taken in 2016.

There are additional PU effects which are not included in the simulation either

because they are very efficiently selected against and do not scale with luminosity or

because their simulation is very expensive:

Cavern background A gas of neutrons and photons within the cavern during LHC

runs. The kinetic energies of particles in the background are on the order of

1 MeV.

Beam halo Protons interact with the upstream collimator which results in sprays

of muons running roughly parallel to the beam-axis. An example of this type
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of event is shown in Chapter 5 on jets in Fig. 5.15.

Beam gas Scattered protons from residual gas in the beam-pipe resulting in an

off-center interaction with the detector.

4.3 Geant4

MC generated events are run through a full simulation of the ATLAS detector [86]

utilizing the Geant4 framework [87]. Geant4 interfaces with the stable particles

from MC generators and is used to complete the simulation. It implements the sim-

ulated detector, propagates the particles, models the interactions and decays in the

presence of detector materials, and generates response signals in the sensitive detector

elements. From there the L1 trigger is interfaced. Geant4 contains a comprehen-

sive and sufficient list of physics models covering the behavior of photons, electrons,

muons, ions, and hadrons in the energy range 250 eV to PeV. The processes sim-

ulated include ionization, bremsstrahlung, multiple scattering, photo-electric effect,

pair conversion, annihilation, synchrotron and transition radiation, scintillation, re-

fraction, reflection, absorption and Cherenkov effect. Differences manifest themselves

between simulation and experiment which are corrected for by hadronic calibration,

discussed in the following chapter.

Processing proceeds in three steps: simulation, hits, and digitization. Simulation

advances the paths of final state particles through magnetic fields and through de-

tector matter. A hit is a short record of physical interactions of particle tracks with

a sensitive detector element. Digitization turns hits into the detector output, digital

or trigger signal. The stages are run in succession to allow the overlay of multiple

events to recreate PU conditions.
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4.4 Diboson Resonance Search MC Summary

A number of generators are used for generating all the contributing backgrounds

to the searches. The main background sources are Z and W bosons produced in

association with jets (Z+jets and W+jets), followed by top-quark production (both

tt̄ pair and single-top) and non-resonant vector-boson pair production (ZZ, WZ and

WW ). A full summary of MCs used in the diboson resonance searches is in Table 4.1.

Flavor labeling Jets in MC simulation are labeled according to the flavors of

hadrons with pT > 5 GeV found within a cone of ∆R < 0.4 around the jet axis. If a

b-hadron is found, the jet is labeled a b-jet. Otherwise, if a charm hadron is found,

the jet is labeled as a c-jet. If neither is found, the jet is labeled as a light flavor (a

u-, d-,s-quark, or gluon) jet. The labeling of Z+jet events according to the flavor of

identified hadrons in Z → qq decays are then Z + bb, Z + bc, Z + bj, Z + cc, Z + cj,

and Z + jj–indicating the truth-level flavor content of the individual hadronic decay

products of the Z.
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Process ME Generator ME PDF Fragmentation UE Tune XS Order
Signal

H → ZZ Powheg-Box v1 [73, 74, 88] CTEQ6L1 [89] Pythia 6 [90] AZNLO [91]
W ′ → ZW MadGraph 5 2.2.2 NNPDF23LO Pythia 8 [92] A14 [93] N/A
G∗ → ZZ MadGraph 5 2.2.2 NNPDF23LO Pythia 8 A14 N/A

Background
Z+jets Sherpa 2.2 CT10 [94] Sherpa Default NNLO [66, 67, 95]
W+jets Sherpa 2.2 CT10 Sherpa Default NNLO (NLO 4 LO)
tt̄ Powheg-Box v2 CT10 Pythia 6 P2012 [96] NNLO+NNLL [97–102]
Single top (Wt, s) Powheg-Box v1 [103, 104] CT10 Pythia 6 P2012 NNLO+NNLL [105, 106]
EW single top (t) Powheg-Box v1 [107] CT10 [94] Pythia 6 P2012 NNLO+NNLL
ZZ,ZW,WW Sherpa 2.1.1 CT10 Sherpa Default NLO (4 LO)

Table 4.1: Overview of the key MC distributions used in this analysis.
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4.5 MC Comparison

The agreement of different generators is not sufficient to show that that distribu-

tions are well modeled. However, when generators agree and they have used different

methods for ME matching, showering, and different event tunes it is a strong vali-

dation and differences can indicate regions to pay special attention to. The current

choice of the Sherpa 2.2 generator used for Z/W+jet production comes after some

comparison studies at both CMEs
√
s = 7 TeV and

√
s = 13 TeV and tuning of

Sherpa 2.2 to ATLAS Run 1 data. In addition to the Sherpa 2.2 sample a well-

tuned Madgraph 5.1 sample (MG) has been used as a cross check in this analysis.

This sample uses MadGraph5@MCNLO [108] v2.2.2 for generation of MEs at LO in-

terfaced with Pythia 8 for the modeling of the parton shower. It also uses CKKW-L

for the merging procedure. Comparison has shown a good agreement with data and

between these two generators over a number of observables [109].

A comparison between Sherpa and MadGraph in the mllqq distributions used

in the searches in the ``qq channel is made in Fig. 4.2. A full description of the

selection criteria and analysis signal and control regions is found in Chapter 6 but

isn’t necessary here to compare the MC description of some critical regions. It is

sufficient for the discussion here to understand that the analysis is split between

resolved and merged regimes for low and high mass resonance searches respectively,

and also that the signal region (SR) contains two mass window cuts around each pair

of Z decay products (MZ→`` and MZ→qq) while the Z control region (ZCR) inverts

the MZ→qq mass window cut.
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The excellent agreement between the MadGraph sample and nominal Sherpa

sample in Fig. 4.2 (a) indicates in particular that Z+jet angular and pT jet dis-

tributions are well-modeled in the region through the transition from the resolved

analysis to the merged analysis. Good agreement here suggests that the analysis is

not highly sensitive to the specifics of the treatment of NLO matching and correction

procedures nor to the specifics of the PS. The good agreement in Fig. 4.2 (b) for the

various flavor combinations suggests good modeling of flavor as well. The small but

significant deviation in Z → bb distribution could indicate some mis-modeling in

Sherpa. This interpretation is supported somewhat by the observation in previous

diboson resonance searches at ATLAS that the predicted overall cross section in this

channel may be as much as 20% low. The present search is insensitive to this, but it

indicates an avenue for future study.
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Chapter 5

Jets

Jets, the collimated showers of hadrons resulting from the hadronization of scattered

partons, are the key final state objects to the analyses in this thesis. Grouping the

reconstructed particles and energy deposited by the hadrons in a way that correctly

identifies the underlying topology of the scattering at parton level and is robust to

the effects of the specific treatment of reconstruction, non-perturbative effects, and

underlying event contamination is the aim of jet definitions, which will be discussed

in Sec. 5.1. The reconstruction of jets from energy deposited within the various

calorimeters as well as other available information within the ATLAS detector is

addressed in Sec. 5.2. The calibration of jets is addressed in and the determination of

systematic uncertainty is outlined in Sec. 5.3. The quality criteria used to reject jets

not originating from collisions at the IP are introduced in Sec. 5.4 The reconstruction,

calibration, and systematic uncertainties for “large-R” jets, designed to contain two

or more distinct scattering products in a single object are covered in Sec. 5.5.

5.1 Jet Definition

Jets are reconstructed with the anti-kt algorithm [110, 111] at ATLAS. There are

generally two classes of jet algorithms, iterative cone-based algorithms [112] and se-

quential recombination algorithms [113, 114] that are parametrized by the energy

scale with a distance measure. Iterative cone algorithms start with seeds and iter-

atively find stable configurations of cones with fixed radius R, summing the pT of
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the particles within the cone. The direction of the cones are adjusted to reflect the

direction of the sum of the particles falling within, which consequently results in a

different set of particles within the new cone direction. This process iterates until

a stable configuration is achieved. In sequential recombination (the method used in

ATLAS) with a distance measure, dij between particles i and j, the clustering pro-

ceeds by combining the entities with the smallest distance and proceeding with the

new (smaller) set of particles. The distance measure is weighted by a function of

transverse momentum, kt (meaning pT ). A general form to write it in is,

dij = min(k2pti , k
2p
tj )

∆2
ij

R2
, (5.1)

where ∆2
ij = (yi − yj)2 + (φi − φj)

2 and kti, yi, and φi are respectively the transverse

momentum, rapidity, and azimuth of particle i. A special distance cutoff representing

the distance between i and the beam,

diB = k2pti , (5.2)

is used to stop the recombination of a given particle and define it as a jet. In these

the two equations the p is a parameter used to govern the dependence of the ordering

of recombination on the geometric distance and the energy between to particles. Two

popular jet algorithms of this type, kt [115] and Cambridge/Aachen [116], respectively

take p to be 1 and 0. The anti-kt algorithm takes p to be -1. The resulting jet

shapes arising from the use of these three different algorithms (and an advanced cone

algorithm) on a single simulated event at parton level with a typical soft background

of PU and UE are compared in Fig. 5.1.

Collinear and Infrared Safe A usable jet algorithm must determine jets in a way

that is collinear and infrared safe. Collinear safety ensures that replacing a parton

with any collinear set of partons with equal momentum produces the same result.

This is a necessary condition in practice for the jet topology of an event at parton
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Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random

soft “ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas

of the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by

the specific set of ghosts used, and change when the ghosts are modified.

have more varied shapes. Finally with the anti-kt algorithm, the hard jets are all circular

with a radius R, and only the softer jets have more complex shapes. The pair of jets near

φ = 5 and y = 2 provides an interesting example in this respect. The left-hand one is much

softer than the right-hand one. SISCone (and Cam/Aachen) place the boundary between

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which

clips a lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various

quantitative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet bound-

aries for different algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures

a jet’s susceptibility to point-like radiation, and the active area (A) which measures its

susceptibility to diffuse radiation. The simplest place to observe the impact of soft resilience

is in the passive area for a jet consisting of a hard particle p1 and a soft one p2, separated

– 4 –

Figure 5.1: A sample parton-level event with a soft background clustered with four
different jet algorithms: kt (upper left), Cambridge-Aachen (upper right), SIScone
(an improved cone algorithm, lower left), and anti-kt (lower right). The colored areas
show the catchment areas [117] of the resulting hard jets. The areas of the jets for
Cambridge/Aachen and kt are determined by the specific soft background used and
change when the background is replaced with equivalent but different set.

level to match that reconstructed from energy deposits in calorimeters, which are only

sensitive to the sum of energy deposited. An infrared safe algorithm reconstructs jets

whose properties are insensitive to soft emissions. This property allows jet cross

sections to be finite at any perturbative order and non-perturbative corrections to

be suppressed by powers of jet momentum. Jets from hard collisions are then well

described at the parton level. Infamously, simple cone algorithms fail these two

conditions. For example, in the case of 3 particles in a line in φ direction, where the

central particle has seeded the cone algorithm which has covered them, splitting the

central central particle into two can result in two cones being seeded from the outer 2
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particles instead. This results in two different stable event topologies for the measured

and (simulated) parton-level jets respectively. Furthermore, an infinitesimal radiation

between two otherwise stable cones can cause them to converge into one.

The jet definitions shown in Fig. 5.1 all satisfy these two conditions. However,

the anti-kt algorithm is the superior choice of jet definition due to the consistent

circular boundary shape that is insensitive to the presence of soft radiation. Jets

formed from a hard scatter (HS) particle in the anti-kt definition obtain a catchment

area of πR2. Soft jets have more complex shapes–when near to a harder jet the

overlapping circular area is clustered into the harder jet for example. The stability of

the catchment area around a hard jet in the presence of soft emission is a desirable

feature for the calibration of jets in the detector. The area of kt and Cambridge-

Aachen jets is heavily dependent on the presence of soft emission and acquire an

“anomalous dimension” in their area’s dependence on perturbative soft particles.

The anomalous dimension of anti-kt jets is 0. A stable jet boundary is even more

important for meaningful evaluation of jet mass.

These properties when taken together allow a very powerful strategy for the cali-

bration of jets in ATLAS. One is able to match one-to-one the sequentially combined

detector-level objects to those determined from true (or parton-level) final state par-

ticles in a given event. The one-to-one relationship between the so-called calo jets and

truth jets is used to compare the reconstructed calorimeter energy of a jet to its true

value determined by the combination of truth-level final state particles. Calorime-

ter jet energies are calibrated by a factor determined from the ratio of the matched

jets. And differential QCD cross sections can be determined with little intermediate

translation from calorimeter level measurements to final parton-level results.
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5.2 Reconstruction

The reconstruction of jets begins with the three-dimensional topological clustering

of cells within the calorimeters [118]. The cluster formation is based on a pattern of

the significance of positive signals of topologically-connected calorimeter cells aimed

at capturing the energy of a shower within the calorimeter. The method is a natural

way to suppress noise in the reconstruction of jets by excluding cells that fail to have

a significant reconstructed energy over the expected level of noise. Topological cell

clusters (topoclusters) obtain both a shape and location information. A method of

weighting local clusters called calorimeters local cluster-weighting (LCW) is used to

compensate at the cluster level for ATLAS non-compensating 1 and energy lost in

gaps of coverage.

Topological cluster formation

The formation of topological clusters in ATLAS works through the 3-step process of

seeding, growth, and addition of boundary energy. For each cell the noise is calculated

as the sum quadrature of electronic noise and noise from pile-up sources:

σnoise =

√
(σelectronic

noise )2 + (σpile-up
noise )2. (5.3)

The value of σnoise for each cell is determined prior to data-taking based on an estimate

of the average running conditions for the upcoming year. This is necessary for the

fast reconstruction of collected data. An extensive internal study is usually made

to evaluate the full effects from final jet reconstruction to missing transverse energy

reconstruction from a scan of estimated noise levels–e.g. in 2016 one was made to

determine the optimal choice of noise threshold for the continued data-taking in Run

1Calorimeter non-compensation means that no attempt is made to compensate for the differing
response to different types of particles.
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Figure 5.2: The cell noise (in equivalent units of energy) in the ATLAS calorimeters
at the EM scale as a function of |η| location [118].

2 [119]. The energy equivalent cell noise in the ATLAS calorimeters is shown in

Fig. 5.2 for pile-up conditions expected in 2016.

The values are only optimal for a central point of the instantaneous luminosity

for a given run, before which there will be an excess of noise and after which it will

have sub-optimally reduced sensitivity to small calorimeter signals.

The significance of cell energy deposits are calculated from the ratio of measured

cell energy to the cell noise,

ζEMcell =
EEM

cell

σEM
noise,cell

. (5.4)

Cell significance forms the input to the 3-step formation of topoclusters. There are

three thresholds (S,N, P ) in this parameter corresponding to the three phases of

cluster formation:

|EEM
cell | > SσEM

noise,cell ⇒ |ζEMcell | > S = 4 (primary seed threshold)

|EEM
cell | > NσEM

noise,cell ⇒ |ζEMcell | > N = 2 (threshold for growth control)

|EEM
cell | > PσEM

noise,cell ⇒ |ζEMcell | > P = 0 (principal cell filter)

(5.5)

The algorithm starts by identifying seed cells which exceed a significance of S. Each

seed is grown into a proto-cluster with adjacent cells (overlapping in η − φ between
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layers or adjacent within a layer) that exceed a significance ofN . And then the volume

is covered by a surface layer of cells exceeding a significance of P . Cells are allowed

to belong to 2 proto-clusters with weighting. Negative energy cells arising from out-

of-time pile-up signals can contribute since the absolute value of the significance is

used. The absolute value of cell energy is also used as the weights when constructing

the final η − φ direction of the cluster. Perhaps counterintuitively, this turns out to

be a best choice for how to handle the negative energy cells because it eliminates

bias that occurs in cluster direction and energy when ignoring negative energy cells.

The values of S = 4, N = 2, and P = 0 have been found to be optimal from the

response of the relative energy resolution for charged pions in test-beam experiments

on ATLAS calorimeter prototypes [120].

Local hadronic cell-weighting A better energy measurement of a cluster can be

made beyond simply summing deposited energy in the clustered cells (referred to as

EM scale). A method of local hadronic cell-weighting (LCW or LC scale) is used

in ATLAS to correct for a number of sources of calorimeter inefficiency in signal

reconstruction. In this thesis it is used for large-R jets but not regular jets which

are reconstructed at EM scale. Information from cluster shape, energy density, and

detector location are exploited to compensate for the following sources of inefficiency:

Calorimeter non-compensation The signal in the ATLAS calorimeters is not cor-

rected for differing response to electrons/photons from that of hadrons. This is

a consequence of the deeper penetrating depth of the hadrons in the calorime-

ters and therefore differences in interaction with the calorimeter materials and

consequently the deposition of energy in different layers of the calorimeters.

Signal losses from clustering Especially with increased estimate of noise due to

pile-up, a significant fraction of the energy of a shower may not be captured in

the clustering procedure.
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Figure 5.3: : Overview of the local hadronic cell-weighting (LCW) calibration scheme
for topo-clusters. Following the topo-cluster formation, the likelihood for a cluster to
be generated by electromagnetic energy deposit PEM

clus is calculated. After this, cluster
weights are determined for EM and HAD-like clusters and two additional corrections
to the weights are added. The out-of-cluster correction is based on a search for
significant energy deposits near to the cluster but separated topologically. The dead
material correction adds an estimate of the energy lost in dead material in front of
the calorimeter.

Energy lost in inactive material This correction accounts for energy that has

been lost in inactive material in front of, between, and inside the calorimeter

modules.

The weighting is termed “local” because it is made locally in cluster energy and

pseudorapidity. A classification is made to determine the likelihood (PEM
clus) that a

cluster is generated from an electromagnetic energy deposit or from hadronic energy

deposits, and then used to apply different weights respectively:

wcal
cell = PEM

clus · wem-cal
cell + (1− PEM

clus) · whad-cal
cell . (5.6)

The process of hadronic calibration of clusters is outlined in Fig. 5.3. It aims to

improve the energy resolution of clusters through the identification of a the source

of cluster energy as hadronic or electromagnetic. For each type a specialized cali-

bration is applied. While the LCW procedure is expected to improve the resolution

of jet energies after final calibration, as of this writing, little improvement has been

demonstrated across the range of jet energies in ATLAS compared to using EM-scale.
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Figure 5.4: Calibration stages for EM-scale jets.

5.3 Calibration

The calibration of jets is made on MC first, and then a correction to the calibration

is made by MC-data comparison in balance studies that exploit conservation of mo-

mentum transverse to the beamline. The initial calibration is made by comparing the

response of jets reconstructed from truth particles in simulation to jets composed of

calorimeter topoclusters in the same simulation. The response is initially corrected

for the effects of pile-up before the jet calorimeter response is evaluated. Following

the evaluation of the jet energy response a number of sequential corrections are ap-

plied based on specific information in the tracking, calorimeter layers, and the muon

spectrometer.

A summary of the steps of jet calibration is shown in Fig. 5.4. Application of the

complete jet calibration restores on average the energy and direction of jets of true

particles reconstructed with the same jet definition. After the initial formation of jets

from topoclusters, the origin correction recalculates the direction of the topocluster

4-momentum by adjusting the origin from the nominal (0, 0, 0) to the location of

the reconstructed hard-scatter primary vertex that is based on track reconstruction

of charged particles in the inner detector. Next, the pile-up corrections remove the

dependence of reconstructed jet energy on the measured pile-up in the event. The
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reconstructed energy is then multiplied by a factor derived from MC comparison of

true and reconstructed jet energy, referred to as the jet energy scale (JES). Further

improvements are made to the precision of reconstructed jet energies by correcting

for the dependence of jet energy on calorimeter, track, and muon spectrometer (MS)

variables known as the global sequential calibration (GSC). The last step is the in

situ calibration determined from the comparison of the pT-balance of several physics

selections against a jet in both data and MC.

Pile-up Correction

Final state particles originating from pile-up vertices affect the reconstructed jet

energies of hard scatter (HS) jets in two ways. One, in the case that they cause

showers that overlap cells in clusters originating from the HS, the calorimeter signals

at the front end board are more-or-less linearly summed. Two, in the case that

calorimeter showers from PU don’t overlap significantly energy deposited by the HS,

they can cause the seeding of additional clusters which are included in the formation

of jets. The calorimeter signal of a given cell is sampled 4 times with optimal filtering

coefficients (OFCs) [121], which are a (lossy) linear combination of the 24 signal

samplings that occur at 25 ns intervals over the course of a calorimeter impulse

(Fig. 3.9). The use of only four values, optimally determined, to evaluate the signal

curve is required by the read out bandwidth of the calorimeters. The complete effects

of the compression in the presence of high PU are not fully understood and may not

completely retain linearity of signal.

The PU corrections are composed of two steps: area-based subtraction of the

average jet energy density contribution attributable to PU, and then a correction for

any residual reconstructed jet energy dependence on the two variables indicating the

level of in and out-of-time PU, NPV and µ respectively [122]. The corrections are

86



made to the reconstructed pT, p
const
T :

pcorrT = pconstT − ρ× A− α×
(
NPV− NPVref − 1

)
− β × (µ− µref), (5.7)

where ρ is an event-by-event calculation of the transverse momentum density, A is

the catchment area attributed to the jet, α and β are the residual pT-dependency

on NPV and µ respectively. The reference values NPVref and µref are determined

from the average values in the run. Due to the long calorimeter signal time and

the differential signaling of the LAr calorimeters (Fig. 3.9) the timing of the over-

lap, whether it is within the given bunch crossing or in previous bunch crossings,

determines whether the overlap results respectively in an increase or decrease of the

strength of the calorimeter signal.

Area-based subtraction Positive average contributions to jet energy from in-time

PU vary event by event about an average value determined by the average out-of-time

PU. The specific number of interactions in an event is distributed according to the

Poisson distribution. Random positive fluctuations to jet energy occur from the over-

lap of many low-pT minimum bias QCD jets from the additional vertices accordingly.

The positive statistical variation occurs on top of a negative shift to measured energy

in the calorimeter cells from the long flat negative cell signal which acts to produce a

constant negative shift dependent only on the time-averaged conditions prior to the

bunch crossing.

For reasonable jet definitions [123] the effect on jet pT due to PU is,

∆pT = Aρ± σ
√
A−O(αs · Aρ ln pT

Aρ
) , (5.8)

where ρ is the amount of transverse momentum added to the event per unit area and

σ is the standard deviation of the resulting noise measured in regions of unit area.

This equation essentially states that the average contribution of PU to the measured

jet energy can be subtracted out event by event, that there will be an unavoidable

87



 [GeV]ρ

0 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 e
nt

rie
s

0

0.05

0.1

0.15

0.2

0.25

0.3

ATLAS     Internal
 = 13 TeV, Pythia Dijets

| < 2.0ηEM-scale topo-clusters |
 < 25µ24 < 

 = 10   PVN

 = 20   PVN

Figure 5.5: Per-event pT density, ρ, at NPV of 10 (solid) and 20 (dotted) for 24 <
µ < 25.

random fluctuation on top of that, and other effects will be suppressed by an order

of strong coupling. This recipe turns out to be quite effective in practice; the first

term corresponds to the first term subtracted in Eq. 5.7. The area A is calculated

by adding an even array of infinitesimal particles (called ghosts spread evenly in the

η − φ plane along with the clusters. The ghosts combined with the jet after use

of the anti-kt algorithm determine the catchment area of the jet. The transverse

momentum density ρ is determined by clustering the event with the Cambridge-

Aachen algorithm–because its jets cover the space instead of having a roughly fixed

radius–with positive energy clusters. The median of the pT density of the resulting

jets (including any 0 density space) is taken to represent the average pT density in

the event. Figure 5.5 shows the distribution of ρ for the MC simulation used to

determine the calibration of jets in 2016. The areas of jets are insensitive to the

clustering noise thresholds, but ρ is almost perfectly sensitive to the choice of noise

threshold used in the (4-2-0) cluster making algorithm. It has been shown that

after the area subtraction procedure any significant effect on the variation of noise

thresholds has been removed after area-based subtraction [119].
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Figure 5.6: Dependence of EM-scale anti-kt jet pT on in-time pile-up (NPV averaged
over µ) and out-of-time pile-up (µ averaged over NPV) as a function of |η|. The de-
pendence is shown before pile-up corrections (circle), after area subtraction (square),
and after the fitted residual correction (triangle). The dependence on in-time (out-
of-time) pile-up after the area correction is taken as the residual correction factor α
(β).

There is some residual dependence of the JES on in and out-of-time PU, ∂pT
∂NPV

and ∂pT
∂〈µ〉 . This dependence is fit in MC simulation and removed with terms 2 and

3 of the correction in Eq. 5.7. The dependence of the JES on NPVand µ is highly

anti-correlated. Additionally, the magnitude of the JES dependence changes with

jet-pT. Consequently the fitting is performed in the 4D space of {µ,NPV, pT, η}.

The correction for the residual dependence of the JES on the in-time pile-up

(NPV) is shown in Fig. 5.6 (a) and on the out-of-time pile-up (µ) in Fig. 5.6 (b).

The closure–the dependence re-evaluated after the application of the corrections–is

also shown in red in the same figures. The pT-dependence of the residual corrections

is fit logarithmically, which turns out to be small and the corrections are well-made

constant in pT. This means that the effect of PU dominates low-pT jets and becomes

trivial at high-pT. Consequently, to evaluate the corrections the pT dependence curve

is sampled at the lower end of the usable jet energy range, a value of pT = 25 GeV. The
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lowest used jet pT in ATLAS is 20 GeV, below which inefficiencies in jet reconstruction

are poorly understood and there is little capability to separate HS jets from those

from PU.

Inevitably the beam conditions prepared in sample simulation are different than

those realized during data-taking. The length of the beamspot (in z) determines

the relationship between NPV and µ. Since the PU corrections are parametrized by

NPV and µ, derived from MC, and applied to data this difference must be accounted

for. It is sufficient to apply a single scale factor to µ measured in data to make

the correction–in 2015 this was 1.16. Figure 5.7 shows the comparison between data

and MC after the correction has been applied. After the PU corrections to the JES,

average jet energies are no longer dependent on the PU conditions (within a wide

range) present during the taking of the data. Naturally, there remains some increase
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of the jet energy resolution (JER) with the increased presence of PU.

There are four uncertainties used to capture systematic uncertainties related to

PU in the JES, joining the complete list of jet uncertainties summarized in Table 5.1.

A complete description of the derivation of PU systematics uncertainties is avail-

able [122]. The first uncertainty is the aforementioned logarithmic dependence of

the residual corrections. The systematic uncertainty on the jet-pT dependence on

NPV and µ is determined by data-MC comparison made with a selection of Z+jet

events where a Z candidate decays to µµ and balances well a jet, such that they are

“back-to-back” in φ. Conservation of transverse momentum ensures that pT of µµ

system balances the pT of the jet. In the same studies a match between calorime-

ter jets and track jets is made2. This can only be done for |η| < 2.1, the limit of

the inner detector where tracks are reconstructed, but the result is extended to the

forward regions. The dependence of ∆pT, the difference between the reconstructed

jet pT and the reference object being used (either track jet or Z), on NPV and µ

is determined. The closure between data and MC and between data and 0 and the

statistical uncertainty from the study in evaluating them are all taken together as

sources of uncertainty. Furthermore, the forward jets have an additional uncertainty

that arises from bias occurring from the use of only the Z+jets study, which does

not have sufficient statistics to exclusively bin in NPV and µ and cannot completely

resolve the anti-correlated effects of in and out-of-time PU. The envelope of these clo-

sures is taken to be an (slightly conservative) estimate of the uncertainty on residual

PU corrections to NPV and µ, respectively ∆
(

∂pT
∂NPV

)
and ∆

(
∂pT
∂〈µ〉

)
. The uncertainty

grows linearly from the reference values of µ and NPV used in the data set used to

2Track jets are defined using the anti-kt algorithm but using charged-particle tracks from the
inner detector instead of calorimeter topoclusters

91



determine them µref and N ref
PV:

∆NPV
pT = ±∆

( ∂pT
∂NPV

)
× (NPV −N ref

PV)

∆
〈µ〉
pT = ±∆

( ∂pT
∂〈µ〉

)
× (〈µ〉 − 〈µ〉ref)

(5.9)

The fourth and last PU uncertainty is meant to cover the dependence of ρ on the

energy from the UE. It is derived from the comparison of the difference in ρ between

differing event topologies in data and MC. This strategy results in an over estimate

and a more careful study should be performed in the future to get a precise knowledge

of the real dependence of ρ and jet-pT on the UE. The combined uncertainty from

PU is shown on the uncertainty summary plot, Fig. 5.12.

Jet Energy Scale and η calibration

The jet energy scale corrects, on average, the reconstructed particle-level jet energy

by applying a factor derived from QCD dijet MC.

The jet energy scale (JES) is the inverse of the jet energy response to truth

jets in the calorimeters: JES = 1/R = Etrue/Ereco3. Truth jets and reco jets are

geometrically matched with ∆R < 0.3 in MC–∆R is many times larger than the

precision and accuracy of reconstructed jet directions in ATLAS so the precise ∆R has

negligible effect on the result. The truth response Rtrue is evaluated as 〈Ereco〉/Etrue

in bins of Etrue and then fit with a log polynomial of up to degree 8. This results

in a function that maps Etrue to Ereco when jets are binned in Etrue, but in data we

do not have Etrue of a jet so this form is not yet useful. Therefore what is needed

3 Throughout this chapter, the average calorimeter response to jets, or average jet pT response,
for a given population of calorimeter jets is defined as R = 〈pjetT /ptrueT 〉, where pjetT is the calorimeter
jet pT and ptrueT is the pT of the matched truth jet. The mean is taken from a Gaussian fit to

the pjetT /ptrueT distribution within a range of 1.6σ from its mean value. The same prescription is
used for fitting of the jet energy response, using the energies instead of the transverse momenta.
The jet resolution, σR, is defined by the standard deviation of the Gaussian fit to the jet response
distribution. The fractional jet resolution (σR/R = σpT

/pT) is used to determine the size of the
fluctuations in the jet pT reconstruction.
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is a mapping solely from Ereco to 〈Etrue〉. The response curve Rtrue that is already

in hand provides the needed mapping to translate the reconstructed energy into its

expected truth energy for application of the JES:

Etrue
i = Rtrue−1

Ereco
i , (5.10)

where the index i refers to a specific measurement. The result is the stretching of

Rtrue to get the final calorimeter response curve R(Ereco) = 1/JES. This process is

known as numerical inversion and most importantly results in an unbiased energy

scale no matter the distribution of jets in the MC sample used to derive it. The JES

is applied simply as JES(Etrue)×Etrue in exclusive ηdet bins after the step of the PU

corrections.

An inclusive selection of jets is used for determining the jet calibration 4 as opposed

to, say, a leading jet calibration only.

Simultaneously, using the same methodology a correction to the η-direction of jets

is derived. Average bias in jet directions comes from transitions of granularity within

and gaps between calorimeters. The JES and η-corrections are shown in Fig. 5.8.

Gaps between calorimeters are clearly visible in the distributions, for example at

|η| = 1.5 and |η| = 3.3.

Global sequential calibration

Longitudinal and transverse features of calorimeter jets and the distributions of

charged and neutral particles affect the reconstructed energies in the calorimeters.

Differences in the measured energies arise both from the statistical nature of the evo-

4It is made with the following prescription: Reconstructed calorimeter jets are matched geomet-
rically to truth jets within ∆R =

√
(ηcalo − ηtrue)2 + (φcalo − φtrue)2 < 0.3. Only “isolated” jets

are used to avoid any ambiguities in the matching of calorimeter jets to truth jets. The isolation
requirement for calorimeter jets is that there should be no other calorimeter jet of pT > 5GeV (at the
scale obtained after ρ×A subtraction) within ∆R = 1.0, and only one truth jet with ptrueT > 7GeV
within a cone of ∆R = 0.6.
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corrections have been applied.

lution of jet showers within the detectors and from the variation in the composition

of jets–for example from quark and gluon-initiated jets which have different fractions

of charged particles on average. Five observables are identified to correlate with re-

constructed jet energy. Corrections to these five variables are applied sequentially in

a global sequential calibration (GSC)–this can be done because they are mostly un-

correlated. Corrections are made in a way that preserves the JES previously derived.

The five stages of the GSC fit the dependence of jet energy linearly and then correct

for it on the following variables:

fTile0 the fraction of energy deposited in the first layer of the Tile calorimeter (|η| <

1.7).

fLAr3 the fraction of energy deposited in the third layer of the electromagnetic LAr

calorimeter (|η| < 3.5).

widthtrk the pT-weighted average transverse distance between the jet four-

momentum and all tracks with pT > 1 GeV associated to the jet (|η| < 2.5).

ntrk the number of tracks with pT > 1 GeV associated to the jet (|η| < 2.5).
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Nsegments the number of muon segments associated with the jet (|η| < 2.7)

The dependence of jet energies on the variables used in the GSC has been studied

between data and MC and found to be in excellent agreement [124].

In situ Calibration

After the complete MC calibration of jets comes a final correction based on com-

parison of the pT-balance of a reference object against a jet. The in situ correction

accounts for differences to jet pT reconstructed in MC and data that arise mainly from

inaccuracies in the detector description, modeling of interactions in the calorimeters,

and the physics of jet formation.

The η-inter-calibration evaluates the relative response of forward jets by compar-

ison to the better-measured central jets using dijet events. After this initial relative

geometric calibration, three types of pT-balanced events are used to determine the

absolute response of jets over the wide range of jet pT to a reference object: Z boson,

photon, and a system of 2 or more lower pT jets. For each, the ratio of the pT of the

reference object in both data and MC Rin-situ is evaluated and then the ratio is again

taken between data and MC:

c =
Rdata

in-situ

RMC
in-situ

. (5.11)

The “double ratio” c is taken to be an unbiased estimator of the ratio between the

jet energy scale in data and MC. The in situ calibrations are derived and applied in

sequence, evaluating systematic uncertainties along the way. Systematic uncertainties

arise from the mis-modeling of physics effects, measurements of the kinematics of the

reference object, and the event selections in obtaining the balance samples.

η-inter-calibration

The purpose of the η-inter-calibration is to bring the well-studied jet response in the

central region (|η| < 0.8, often referred to as the “fiducial region”) to provide a precise
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calibration of more forward jets and take the the ratio between data and MC at each

η over the full range of jet pT [125].

The η-inter-calibration finds the ratio Rijk of relative calorimeter response be-

tween back-to-back jets, where each lies in different η-regions i and j of the detector,

and their average pT is in bin k. It is derived in data and Powheg+Pythia MC and

a comparison to the Sherpa generator provides a systematic modeling uncertainty.

A bit of linear algebra yields the best fit for the relative response of each region i of

η to the fiducial region cik for given pT range. A least squares strategy is used to fit

the best response to each of the N η-bins simultaneously by minimizing S:

S(c1k, . . . , cNk) =
N∑
j=1

j−1∑
i

= 1
( 1

∆〈Rijk〉
(cik〈Rijk〉 − cjk)

)2

, (5.12)

where 〈R〉 and ∆〈R〉 here are the measured relative responses between regions and

their statistical uncertainty, respectively. This strategy utilizes the full statistical

power of the data taken compared to only balancing each region directly with the

central region, which is still used as a cross check to ensure a good fit.

Figure 5.9 shows slices in pT and η of the relative jet response obtained in MC

and data. There is generally a bit higher response in data in the forward regions and

there is no observed statistically significant difference in ±η response. Systematic

uncertainty is taken as an envelope of the MC comparison and a variation made in

each of PU, a jet veto cut, and a ∆φij cut used in the analysis. The ratio of MC to

data forms the in situ correction to data, shown in Fig. 5.10.

In situ calibration balance studies

The central region, |η| < 0.8, is then calibrated by the balance of a well-measured

object to a jet. The following three studies extend the in situ calibration to different

jet pT ranges sequentially:

1. Z-jet balance Both the Z → e+e− and Z → µ+µ− channels are used for the

reconstruction of the Z boson. The electrons (or muons) are precisely measured
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from the electromagnetic calorimeter (muon spectrometer). The range of ap-

plicability is limited by the statically significant range from data collected in

2015, between 20 < pT < 506 GeV. The complete hadronic recoil of the event

is used instead of a direct balance between the jet and the reconstructed Z

boson. Lower-pT jets are more susceptible to the (poorly modeled) out-of-cone

radiation that can fall outside the R = 0.4 jet cone from fragmentation pro-

cesses. By using the full hadronic recoil rather than just the jet, it is insensitive

to the jet definition, the radiation falling outside the jet cone, and the PU ac-

tivity (which is φ-symmetric). The calorimeter response to the hadronic recoil

(missing projection fraction or MPF) is a function of the missing transverse

momentum Emiss
T and Eref

T the transverse energy of the reconstructed reference

object (Z here) and its direction n̂ref:

RMPF = 1 +
n̂ref · Emiss

T

n̂ref

. (5.13)

. The RMPF in MC in data and its ratio is shown in Fig. 5.11 (a).

2. γ-jet balance The photon reference pT is constructed from transverse momen-
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tum perpendicular to the jet axis,

prefT = pγT × | cos(∆φ)|, (5.14)

where ∆φ is the azimuthal angle between γ and the jet. The direct balance

between the reference object and the jet is taken in MC and data. The γ-

jet balance has significant statistics for jet transverse momentum in the range

36 < pT < 944 GeV. In the Z/γ-jet balances studies the uncertainties from

electrons [126], photons [126], and muons [127] are propagated into the mea-

surement. The ∆φ, 2nd jet veto, and JVT uncertainties are all determined

by variation of selection criteria around their chosen point. The out-of-cone

uncertainty addresses systematic bias in the balance caused by particles falling

outside the jet cone.

3. Multi-jet balance The final stage of the in situ calibration extends the cali-

bration to the higher pT range covering jet transverse momentum by balancing

the recoil of 2 or more jets against the highest energy jet in the event for the

central |η| < 1.2 region. This step can be applied multiple times updating the

uncertainties each time–in 2015 it was done twice.

A summary of uncertainties entering the in situ balance studies by source is provided

in Table 5.1.

Combination of uncertainty

The in situ studies are combined with a weighted minimum χ2 fit to evaluate the in

situ calibration curve and the combined uncertainty. The in situ calibration curve

is shown in Fig. 5.10 showing the combination of overlapping regions. The final JES

calibration includes 80 uncertainty terms. In addition to the 67 in situ uncertainties

there are the 4 PU uncertainties, 3 jet flavor uncertainties from MC studies. The

punch-through uncertainty covers the 5th GSC correction. There is a fast simulation
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Source Description

Z-jet e/µ scale and resolution, JVT, kinematic
selection, out-of-cone particles, stats, and MC

γ-jet γ scale, res. and purity, JVT, kinematic
selection, out-of-cone particles, stats, and MC

Multijet balance kinematic selection, MC, and stats
η-inter-calibration
Physics mis-modeling Envelope of the MC, pile-up, and event topology variations
Non-closure Non-closure of the method in the 2.0 < |ηdet| < 2.6 region
Statistical component Statistical uncertainty
Pile-up µ and NPV dependence, ρ-dependence on UE

pT-dependence of PU corrections
Jet flavor quark-gluon composition, gluon and b-quark response
Punch-through GSC punch-through correction
AFII non-closure Different scale in ATLAS Fast Simulation II
Single hadron response High-pT only, from single-particle and test-beam measurements

Table 5.1: Summary of the systematic uncertainties in the jet energy scale calibration
propagated from electron, photon, and muon energy scale calibrations.

(AFII) used for large or expensive MC productions [128] which makes approxima-

tions in showering and tracking in place of a complete simulation. In this analysis

it is used for the generation of 50 million tt̄ samples. The non-closure between the

MC calibration generated with AFII and the nominal calibration is taken as an un-

certainty on these samples. Finally, for very high-pT jets where there is not ample

statistics in data to make an in situ calibration a method based on the response to

single hadrons is extrapolated to full jets based on the MC distribution of hadrons

in jets [129]. The final JES uncertainty from the combination of channels is shown

in Fig. 5.12. The uncertainty over the full pT range in the central region is domi-

nated by the absolute in situ JES and in the forward calorimeters by the relative

in situ JES. Uncertainties are shown under the assumption of no knowledge of fla-

vor composition in the analysis. This is an important point in interpretation of the

uncertainty curve, considering a significant response difference between gluons and

quark jets. This thesis makes no attempt to reduce this uncertainty through deter-

mination of the quark-gluon composition of the jets used in the analysis. The (green)

“pre-recommendation” uncertainties were derived from an analysis made by the au-
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(b)

Figure 5.12: Combined uncertainties on the jet energy scale as a function of jet pT at
η=0 and η at pT = 80 GeV. Systematic components include pile-up, punch-through,
and uncertainties propagated from the Z/γ-jet and MJB (absolute in situ JES) and
η-inter-calibration (relative in situ JES). The flavor composition and response un-
certainties are taken from Monte Carlo and simulate an unknown composition by
assuming a 50/50 composition of quark- and gluon-initiated jets with a conservative
100% uncertainty.

101



thor converting the in situ calibration from 2012 data at
√
s = 8 TeV to 2015 at

√
s = 13 TeV [130]. It was in use for over a year until the in situ Run 2 correction

was completed in August 2016.

Uncertainties are communicated to analyses with nuisance parameters (NP)

expressed as ±1σ up and down variations of the jet-pT calibration. The carrying of

80 such variations through to analyses is a bit excessive when many of the variations

are similar and sub-dominant to the leading NPs. To reduce the load on analyses

an eigenvalue reduction is performed on the complete in situ NP set that projects

67 NPs on to an optimal 5 and then summing quadratically the remaining 62 NPs

to produce a 6th NP. The loss of correlation from 67 to 6 NPs is shown to be on

the percent level. When combined with an additional 13 NPs on jet scale there are

a total of 19 NPs after this “weak” reduction. A further reduction to just 3 NPs

from 19 is used for analyses that are insensitive to further loss of correlation such

as the ones presented in this thesis. This is referred to as a “strong” reduction of

NPs and results in certain areas of phase space in as high as 15% loss of correlation.

The loss generally occurs between high and low-pT jet pairs and therefore does not

strongly affect this analysis which is composed of events with two jets that are no

more unbalanced than the mass of their parent Z-boson allows them kinematically.

A comparison of the use of weakly reduced 19 NPs to 3 strongly reduced NPs as it

affects the ``qq channel diboson resonance search is made in Fig. 5.13.
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Figure 5.13: One-sigma up/down variations for weakly (a) and strongly (b) reduced small-R jet NP sets in the inclusive
(SR+ZCR) resolved (small-R) analysis. The weakly reduced NP set is dominated by only a few NPs and most have very similar
shape distributions. Lines are colored by subset according to source and different lines styles indicate different NP in each
subset. The strong reduction has almost no effect on this analysis.
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Jet Resolution

Ensuring that the comparison between data and MC is a good one depends not

only on the understanding and validation of the JES but also that of the jet energy

resolution (JER). The JER in data and MC is determined with the same direct

balance techniques used in evaluating the in situ JES correction. The resolution

of a jet in the direct balance is evaluated by subtracting in quadrature a known

(or simultaneously measured) resolution of the reconstructed balanced object (Z, γ,

other jet) in both MC and data. The full description of the methods for obtaining

the resolutions would be lengthy; the calculation in the jet-jet balance channel can

be found here [131]. The remaining width of the distribution is attributable to the

jets. The resolution studies have similar sources of uncertainty as the JES. The final

fit to the evaluated resolution in the three channels is parametrized as a function of

three terms [132, 133]:

σ(pT)

pT
=
N

pT
⊕ S
√
pT
⊕ C. (5.15)

The N parametrizes the electronic noise and PU noise, S parametrizes the stochas-

tic contribution arising from the sampling nature of the calorimeters, and C is pT

independent component. There is little constraint on N from the balance studies

so additional studies of noise are used to constrain this term. One can get a good

measure of the N term by using term 2 from Eq. 5.8 which has already been cal-

culated simultaneously event-by-event along with ρ. The value of N obtained this

way matches a value obtained by simply checking the balance of the energy measured

in two randomly placed (in η) back-to-back cones in φ.The two methods produce a

consistent value of N in the central region and the second is used to determine N for

forward jets.

The combined fit to the resolution measured in the three channels is shown in

Fig. 5.14. For the analysis in this thesis the JER uncertainty is distilled into a single

NP. For an analysis, the difference in the jet pT resolution in MC and data is corrected
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Figure 5.14: Jet pT resolution in the central region. The three in situ measurements
show excellent agreement.

for by “smearing” the smaller resolution in either data or MC with the addition of

a random pT determined by the difference in quadrature of the resolutions. The

systematic uncertainty on the resolution is propagated into an analysis by smearing

the resolution in both data and MC. The green band in Fig. 5.14 shows the range of

uncertainty on the final fit.

5.4 Jet Quality Selection

Jets are sometimes reconstructed from calorimeter energy deposits arising from non-

collision backgrounds. These undesirable jets are due to three main sources:

1. Beam induced background from protons ejected from the beamline at a shal-

low angle. This occurs from interactions of the beam with gas in the incom-

plete vacuum and also from diffuse loss from the tails of the beam distribution.

Protons lost from the beam can introduce secondary interactions that shower

muons which intersect the various ATLAS sub detectors at fixed φ and often

at relatively fixed radius. Energy deposited from Brehmsstrahlung within the
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calorimeters can result in the reconstruction of at jet. An event display of

such an event from data taken without quality selection applied is shown in

Fig. 5.15 [134].

Evidence of the muon’s traversal in this case is left in a line passing through the

muon drift tubes in the muon spectrometer end caps and within a single layer

of the hadronic barrel calorimeter. The large energy deposit in the hadronic

calorimeter comes from a Brehmsstrahlung on the lead scintillator.

2. Cosmic-ray showers produced in the atmosphere that overlap with collision

events. Typically only muons reach the depth of the experiment and come from

the vertical direction.

3. Additionally, the LAr calorimeters in ATLAS are noisy. The calorimeters are

susceptible to both isolated pathological cells and large scale coherent noise.

Identified noisy cells are masked both in jet reconstruction and MET recon-

struction either on an event-by-event basis, permanently, or in data quality

inspection.

A number of simple variables are used to discriminate against non-collision back-

grounds. They come in 3 categories: signal pulse shape in the LAr calorimeters,

ratio of energies in the calorimeters, and track-based variables that connect jets to

the interaction point through the association of tracks to jets. A common selection

of 6 cuts is used for many analyses at ATLAS [133, 135] and results in a reduction

of non-collision backgrounds to negligible level with an equally negligible effect on

signal acceptance. A full description of the list and the good comparison between

2015 data and MC is available [136].

Jet Vertex Tagger In some cases, PU interactions are sufficiently hard to produce

a jet in the central region with sufficient energy that it is reconstructed. In higher

PU conditions the overlap of energy attributable to multiple PU vertices increases

106



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Figure 4: VP1 display of a typical LoF event with muon passing through the HCAL barrel in the region
2300 mm < r < 4200 mm. A side view, a), and end view, b), of event 146491556 from 2010 run 167776
is shown.

2.1 Off-line Cuts

Two sets of cuts have been developed for the offline analysis: those for which the muon bremstrahlung
is reconstructed as a jet in the barrel calorimeter; and those for which it is reconstructed as a jet in the
end-cap calorimeters. In both cases reconstructed Moore MS segments are used to apply the constraint
that the LoF muon be parallel to the z-axis.

In the barrel the cuts are made in the space of two parameters: The first, δφ, is the difference between
φ of the triggering jet (or muon RoI cluster in the case of application to the Muon RoI Cluster trigger)
and φ of the location of the MS segment, as shown in Figure 6. The second, γMS = ˆpMoore · ẑ/|pMoore|,
is the directional cosine between the MS segment and the z-axis. The distribution of MS segments with
respect to δφ and γMS in events passing the Cal Energy Ratio and on-line cuts (described next in section
2.2) in 2011 run 182454 is shown in Figure 5. There are two clearly-defined peaks in the distribution,
located at δφ = 0, γMS = ±1. The off-line cut requires MS segments lying each of the triangular regions
defined by (γMS , δφ) = (±0.98, 0), (±1.0,−0.4), and (±1.0, 0.4), the right and left red triangular regions in
5 b), respectively.

In the end-cap a third parameter, δr, the difference between the radius of the leading HEC cell in the
jet and the CSC segment is included for additional discriminating power. Since the width in radius of each
HEC cell is relatively small, a match can be made to the radius of a CSC segment and the required number
of matching segments for the cut can be relaxed to just one for the purposes of our analysis. Figure 7
shows the distribution of CSC segments in γMS and δr for segments matched in φ with the triggering
jet. The distribution is clearly peaked at 1 and the vast majority of have a |δr| of less than 120. Thus, the
cut for LoF muons which bremstrahlung in the HEC requires a single CSC segment with |δr| < 120 mm,
|δφ| < 0.2, and |γMS | < .98, as summarized in Table 1.

4

Figure 5.15: Recorded ATLAS event from 2010 without L1 and HLT jet quality
criteria. The Brehmsstrahlung of a muon from beam gas on the tile calorimeter
causes an oddly shaped jet in the tile calorimeter as well as leaving muon segments in
both muon end-caps. The resulting naive interpretation is a mono-jet event topology
with a hard jet and missing transverse energy.

this chance significantly. It is easy to remove these jets in the central region by

associating charged particle tracks to each jet and ensuring that they come from the

HS vertex. An evolution and combination of multiple techniques based on this concept

has resulted in a robust tool for this. The jet vertex tagger (JVT) is a likelihood-based

discriminant L(jetHS|{tracks}) covering the space of two discriminants, corrJVF and

RpT [137]. The corrected vertex fraction CorrJVF is the ratio of the pT-weighted sum

of tracks in the jet attributable to the HS primary vertex to the pT-weighted sum of

all tracks in the jet. The corrected part refers to a further linear correction removing

the dependence of the discriminant to the total number of PU vertices in the event.

The RpT discriminant is similarly the ratio pT-weighted sum of tracks to the jet pT.

JVT is trained on MC with simulated PU to produce a 2D likelihood map from each

discriminant. Both the in situ calibration of jets and the analysis in this thesis utilize

JVT to reject PU jets for jet pT up to 50 GeV, above which the presence of PU jets

is negligible.
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5.5 Large-R jets

Large-radius jets, like regular jets, are formed with the anti-kt [138] algorithm, but

with a larger distance parameter R = 1.0. They are then trimmed [139] by clustering

the the constituents of the jets again with the kt algorithm with a distance parameter

Rsub = 0.2. Subjets with transverse momentum of less than 5% of the original jet pT

are removed. Trimming significantly limits the presence of PU in the measurement of

jet energy while keeping enough of the structure to meaningfully evaluate jet mass.

Large-R jets are made from clusters with local hadronic cell weighting (LCW).

Using large-R jets for the identification of hadronic decay products means that

in the case of the Z/W boson both decay products are constructed within the same

large-R jet for a sufficiently boosted boson. Roughly, the ∆R separation of jets is

2MZ/W/pT. Guaranteeing the capture of the decay products within a single jet allows

for a systematic way to process the substructure of the reconstructed jet to identify the

parent particle. The following subsection discusses the use of substructure techniques

to identify boosted bosons.

Large-R jet energy and η are calibrated in the same way as the regular jets.

Following the calibration of energy and pseudorapidity is a calibration of mass.

W/Z tagging

The use of substructure techniques to identify boosted W bosons was extensively

studied in Run 1 [140]. Over 500 combinations of jet trimming [141]/pruning [142,

143]/split-filtering [144] algorithm and jet substructure variables were tested. The

purpose of such algorithms is to preserve information of the hadronic decay and

discriminate between processes while suppressing the effects of PU. The best combi-

nations were identified for achieving discrimination between QCD multijets and W

bosons at a benchmark of 50% boson efficiency. The best performing combination
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from this study informed the choice to use jets trimmed with the following combina-

tion of parameters:

• jets are constructed from LCW topoclusters using the anti-kt algorithm with

radius parameter R = 1.0,

• then trimmed with subjet radius of Rsubjet = 0.2,

• using a momentum fraction, the ratio of subjet to full jet momentum, of fcut =

0.05 to define the threshold for inclusion of the subjet in the final reconstructed

jet. Subjets failing to contain 5% of the total jet momentum are excluded.

The best performing combination also informs the choice of substructure variable,

energy correlation ratio D
(β=1)
2 , that is used to discriminate between QCD jets and

hadronic boson decay in this analysis.

Energy correlation functions The D2 substructure discriminant is analytically

determined to distinguish between 1-pronged jets (like QCD) and 2-pronged jets like

the boosted hadronically decaying Z boson [145]. It is based on the ratio of n-

point energy correlation functions, which are infrared and collinear safe observables

sensitive to the n-prong structure in a jet. The 2- and 3- point correlation functions

are a convenient basis for identifying decays to 2 particles in particular, respectively,

e
(β)
2 =

1

p2TJ

∑
1≤i≤j≤nJ

pTipTj∆R
β
ij, (5.16)

e
(β)
3 =

1

p3TJ

∑
1≤i≤j≤k≤nJ

pTipTjpTk∆R
β
ij∆R

β
ik∆R

β
jk, (5.17)

where pTJ is the transverse momentum of the jet, pTi that of particle i, and ∆Rβ
ij is

the distance measure parametrized by β–so ∆R2
ij is the usual euclidean distance in

the azimuthal-rapidity plane (or in experiment η − φ).

For a value of e
(β)
2 << 1 the particles in a jet must all have small pTi or small Rβ

ij,

or in other words be dominated by soft and collinear emissions. A large value of e
(β)
2

would indicate a hard perturbative splitting. For QCD jets this is suppressed by a
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Figure 3: Contours of constant C
(β)
2 (left) and D

(β)
2 (right) in the phase space defined

by e
(β)
2 , e

(β)
3 . The 1- and 2-prong regions of phase space are labeled, with their boundary

corresponding to the curve e3 ∼ (e2)
3.

discriminating boosted Z bosons from QCD jets is11

D
(β)
2 ≡ e

(β)
3(

e
(β)
2

)3 . (3.9)

Signal jets will be characterized by a small value of D
(β)
2 , while background jets will pre-

dominantly have large D
(β)
2 . With this observable, parametrically there is no mixing of the

signal-rich and background-rich regions. Contours of constant D
(β)
2 lie entirely in the signal

or background region, as is shown schematically in Fig. 3. Determining the precise discrim-

ination power of D
(β)
2 requires an understanding of the O(1) details of the distributions of

signal and background, beyond any purely power counting analysis.

The observation that the scaling relation e3 ∼ (e2)
3 is boost invariant provides further

motivation for the variable D
(β)
2 . Under boosts along the jet axis, jets can move along

curves of constant D
(β)
2 , but cannot cross the boundary between the 2-prong and 1-prong

regions of phase space. This can be used to give a boost invariant definition of a 2-prong

jet, as a jet with a small value of D
(β)
2 , and a 1-prong jet, as a jet with large D

(β)
2 .

Ref. [53] used the two- and three-point energy correlation functions in the combination

C
(β)
2 ≡ e

(β)
3(

e
(β)
2

)2 (3.10)

11We thank Jesse Thaler for suggesting the notation “D” for these observables. Unlike C
(β)
2 , whose name

was motivated by its relation to the classic e+e− event shape parameter C, D
(β)
2 is not related to the D

parameter.
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Figure 5.16: 1- and 2-prong regions of phase space with constant contours of D
(β=1)
2

(a). The D2 cut yielding a 50% signal efficiency when combined with a window on
the calibrated boson mass(b).

factor of αs. Likewise, a large value of e
(β)
3 indicates strong 2 or 3 prong structure.

An analytic study of the (e2, e3) phase space [146] for QCD jets and Z boson decays

has indicated that there is a clear separation in the population of 1- and 2-prong jets

in this space. Contours of,

D
(β)
2 ≡

e
(β)
3(

e
(β)
2

)3 , (5.18)

optimally separate the populations. Constant contours of D
(β)
2 are shown in

Fig. 5.16 (a) superimposed on the schematic representation of the two populations.

D2 is boost invariant which makes it a convenient variable for use at hadron colliders.

The choice of β = 1 and β = 2 was examined in run 1 [140] and β = 1 was found to

be optimal. With a rate of 50% efficiency (in combination with a mass-window cut)

the background rejection of QCD jets for 2015 conditions in ATLAS was found forW

and Z jets with 200 < ptrueT < 350(1500 < ptrueT < 2000) to be respectively 55.3(40.9)

and 47.8(50.5) [147]. The mass window used for W/Z-tagging is 〈M〉 ± 15 GeV.

The window is made on the calibrated large-R jet mass, addressed in the following

section. The D2 cut parametrized by jet pT for the identification of Z →jets is shown

in Fig. 5.16 (b) resulting in 50% efficiency at given jet pT.
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Jet energy and jet mass calibration

The large-R JES is determined by an identical application of numerical inversion as

with small-R jets [148]. This is done without an explicit step for PU subtraction;

the method of trimming sufficiently reduces the effects of PU on the JES that it is

unnecessary. Large-R jets are used in the high-pT regime, which is proportionally

less affected by the constant-scale energy contribution of PU anyway. Following the

JES is a calibration of jet mass scale (JMS), applied in the same way as JES, a scale

factor cmass:

m = cmass(E, ηdet)×mLCW = cmass(E, ηdet)×
√(∑

i∈J

Ei

)2

−
(∑

i∈J

~pi

)2

(5.19)

Here Ei is the energy of cluster i belonging to jet J and ~pi is the vector in the direction

of the cluster energy with magnitude Ei. The calibration of jet mass is again made by

numerical inversion, but within the space containing the additional dimension of the

already calibrated jet energy. This provides a calibration parametrized by jet energy

as well as η.

Large-R Jet Uncertainties

The large-R jet uncertainties must be determined through a different approach than

the small-R jet pT uncertainties. In the case of jet mass there is no conservation law

that can be readily exploited for direct balance. Instead, a completely different ap-

proach is taken to obtain a measure of the systematic uncertainties on large-R jet ob-

servables that begins with the matching of track jets to the hadronically reconstructed

jets. The ratio of jet observable o ∈ {pT,m,D2} calculated from the calorimeter jet

is compared to that calculated from a ∆R-matched track jet : rotrack = ocalo/otrack.

For an inclusive QCD dijet selection, the average value rotrack is proportional to the

jet o scale. The divergence of the ratio of the average values measured in data and
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Figure 5.17: Fractional systematic uncertainty on calibrated jet-pT for anti-kt R = 1.0
trimmed jets with fcut = 5% and Rsub = 0.2. The uncertainty is shown for jets with
pT > 150 GeV, |η| < 2.0 and mjet/p

jet
T = 0.1. Uncertainties were derived on the full

2015 data set. The baseline uncertainty corresponds to the the difference between
data and Pythia 8 MC in the Rtrk double ratio. A modeling uncertainty is esti-
mated with the difference between Pythia 8 and Herwig. Uncertainties from track
reconstruction efficiency, impact parameter resolution, track momentum calibration,
and fake tracks are combined in the tracking component. The statistical precision in
data is a limiting factor in the combination at high-pT [149].

MC from 1 is taken as the measure of the scale uncertainty:

1− 〈rotrack〉data/〈rotrack〉MC. (5.20)

Track modeling and fragmentation modeling introduce changes into this value, and

therefore must be included as additional sources of uncertainty. The resulting sys-

tematic uncertainty for jet-pT is shown in Fig. 5.17. The systematic uncertainty for

D2 and m are of similar magnitude, shape, and source.

The resolution cannot be calculated with this method because rotrack resolution

is dominated by the fluctuation in the distribution of charged and neutral tracks in

jets. Instead, for jet mass resolution (JMR) the uncertainty was evaluated with a

selection of tt̄ by exploiting the t → Wb → qqb decay chain [148]. The distribution

of reconstructed W mass is examined between truth and reconstructed mass in MC

and the reconstructed mass in data. A fit is made parametrizing the mapping from
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the distribution of truth-level mass to the reco-level mass by a scale s and resolution

smearing r. In this parametrization, with s = r = 1 one recovers the MC reco

distribution and with s = 1, r = 0 one recovers the MC truth distribution. The

values of s and r are scanned evaluating the χ2 between the resulting distribution

and data. The minimum value and 1σ error curves obtained are shown in Fig. 5.18.

This results in 20% uncertainty on mass resolution. For mass, pT, and D
(β=1)
2 the

scale and resolution evaluated in MC are consistent with data.

This chapter covered the methods by which the various jet objects used in the

following analyses have been convstructed and their uncertainties understood. Both

small-R and large-R jets are used directly in the search. Jets also dominate the

uncertainty in the determination of the missing transverse momentum (Emiss
T ), which

is the other primary observable used in the analyses. The response of the ATLAS

calorimeters to QCD physics has been well understood, optimized, and calibrated for

the following study.
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Chapter 6

Analysis

The following describes the search for diboson resonances in ATLAS of the form

ZZ → ``qq, ZZ → ννqq, ZW → ``qq, and ZW → ννqq. The ZZ → ``qq and

ZZ → ννqq resonance analyses are considered for a spin-0 narrow width Higgs and a

spin-2 Randall-Sundrum graviton models. The ZW → ``qq, and ZW → ννqq anal-

yses are designed around a heavy vector triplet model, capturing a spin-1 resonance.

The theoretical details are found in Chapter 2 and the setting of limits on the cross

section and limited theoretical interpretation are given in the following Chapter 7.

This chapter motivates and defines the analysis strategy used in the searches. Sec-

tion 6.1 presents an overview of the physics objects used in the analysis. Section 6.2

motivates and describes the regions used in the analysis. Section 6.3 describes the

signal distributions obtained from the benchmark models, uncertainties associated

with signal modeling, and methods used for narrowing the experimental resonances.

Sections 6.5 and 6.6 outline the selection used in obtaining the signal regions, control

regions, and validation regions in the ``qq and ννqq channels, respectively. This anal-

ysis has been published in conference proceedings August 2016 by ATLAS [150] in

its exact form as well as in a more preliminary state [28] in March 2016 at Moriond.

Additionally, two of the following analyses are the subject of two ATLAS papers in

progress in a nearly identical form. Most of the following plots and discussion can be

found in these public documents and associated internal documents. It is understood

that individual citations are used in the following only in the case of the inclusion of

work from sources other than the above mentioned.
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6.1 Reconstruction and Object Definitions

Most important to these analyses are the reconstruction of jets in ATLAS, which

has been detailed extensively in Chapter 5. The other important reconstructed final

state objects used in these channels are electrons and muons. The ννqq channel

makes critical use of missing transverse momentum (Emiss
T ), the transverse sum of all

calibrated reconstructed objects in an event and a soft term accumulating remaining

soft radiation. These three sets of objects will be discussed in detail. Remaining

products in ATLAS collisions like taus and photons enter into the event selection

trivially and are excluded from further discussion.

Basic event quality criteria To enter the analysis, an event must satisfy some

basic criteria designed to ensure that a hard scatter has occurred at the IP, and

recorded hard scattered objects are not the result of erratic detector behavior, beam

backgrounds, or cosmic background. Events must first belong to good runs lists

(GRLs) which have been validated to ensure that all detectors were operating nom-

inally during data-taking. Detectors in 2016 were highly efficient; see Chapter 3.

Events require a reconstructed vertex with at least three associated tracks. Finally,

to eliminate any potential presence of beam and cosmic backgrounds, events with any

jet failing the minimal jet cleaning criteria (see Chapter 5) are rejected.

Initial jet selection To avoid any potential mis-modeling from low-pT jets and

restrict the analysis to the region for which the Sherpa 2.2 MC used for the leading

backgrounds has been tuned and recommended, small-R jets are considered starting

with a pT > 30 GeV. Jets from 20-30 GeV are fully calibrated and recommended

for use but the JES uncertainty does increase significantly in this lowest range. Lit-

tle phase space is lost in this search since signal jets are the decay products of a

Z/W boson. Additionally, signal jets are restricted to the barrel and extended barrel
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calorimeters |η| < 2.5 and required to pass the JVT > 0.59 for pT < 60 GeV. Forward

jets of 2.5 < |η| < 4.5 are added only for selection criteria in the VBF channel.

Large-R jets are required to have pT > 200 GeV and |η| < 2.0 for consideration

in the ``qq or ννqq channels. The summary of minimum jet selection criteria is given

in Table 6.1.

Missing transverse energy/momentum Missing transverse momentum (Emiss
T )

is a calculation of transverse momentum lost in an event to particles not interacting

significantly with the ATLAS detector, which in the SM is limited to neutrinos.

Emiss
T is determined to be the additive inverse of the vectorial sum of the transverse

momenta of calibrated objects (electrons, muons, τs, photons, small-R jets) and a

soft term composed of tracks outside of the calibrated objects associated with the

primary vertex:

Emiss
T = −

∑
{o∈e,µ,τ,γ,jets,soft}

poT (6.1)

The tracking soft term captures energy from the underlying event and soft and wide-

angle radiation not captured by the calibrated objects [151–153]. Also used is the

track-based missing transverse momentum pmiss
T , defined as the negative vectorial sum

of the transverse momenta of all good-quality tracks reconstructed in the ATLAS

inner detector. Events are required to have Emiss
T > 250 as the starting point for

selection in the ννqq channel.

Electrons Electrons are reconstructed from clusters in the EM calorimeter that are

matched to ID tracks. A likelihood-based discriminant [154] is used to distinguish

the prompt production of electrons from other electrons coming from the conversion

of photons, semi-leptonic decay of heavy-flavor, and mis-identified hadrons. In the

first two cases there is an actual electron present. Identification is based on the

matching of the ID track to calorimeter cluster in {η, φ, pT}. The transition radiation
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Selection Large-R jets

Kinematic
pT > 200 GeV
|η| < 2.0

Type

anti-kT R =1.0
LCTopo
Trimmed

(R subjet = 0.2, fcut = 5%)
Isolation From leptons ∆R ¿1.0

Small-R jets

Kinematic
pT >30 GeV if |η| < 2.5

pT >35 GeV if |η| = [2.5, 4.5]

Type
anti-kT R =0.4

EMTopo

Quality
JV T >0.59

if pT <60 GeV,|η| < 2.4

Missing transverse momentum
Kinematic Emiss

T > 250 GeV
Type tracking soft term

Table 6.1: Table of minimal criteria defining jets and Emiss
T in the analyses.

tracker (TRT) and the first (fine granularity) layer of the EM calorimeter are valuable

in identifying the conversion of photons. A loose criteria (loose-L) is used as the

minimum criteria for all electrons in the analysis, with a reconstruction efficiency of

∼ 96%. Additional, tighter criteria provide medium and tight working points with ∼

90% and ∼ 80% efficiency respectively and are used in the trigger and final selections.

The efficiency of the reconstruction, identification, isolation, and trigger have been

studied. Corrections for each of the efficiencies in data and MC are applied as scale

factors SF = edata/eMC where e is the efficiency determined through designated tag

and probe studies of Z → ee decay in Z+jets selections. Individual scale factors are

applied to MC:

SFtotal = SFreconstruction × SFidentification × SFisolation × SFtrigger. (6.2)

Scale factors are determined in exclusive η and ET regions correcting for differences

in mis-modeling of tracking and showering in different subdetectors. Systematic un-

certainty from the determination of each of the scale factors enters the searches.
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Selection Electrons

Kinematic
pT > 7 GeV
|η| < 2.5

Identification
loose likelihood-based discriminant

all silicon: 7 hits (IBL hit + 2 pixel hits)
Isolation loose track isolation

Impact Parameter
|d0/σ(d0)| < 5

|z0 ∗ sin θ| < 0.5 mm

Muons

Kinematic
pT > 7 GeV
|η| < 2.5

Identification loose quality criteria
Isolation loose track isolation

Impact Parameter
|d0/σ(d0)| < 3

|z0 ∗ sin θ| < 0.5 mm

Table 6.2: Table of minimal criteria defining leptons in the analyses. Triggers used
in these analyses and signal leptons can have tighter selection criteria.

Muons Muons are reconstructed by fitting inner detector (ID) tracks to muon spec-

trometer (MS) tracks. Muons pass identification quality requirements based on the

number if hits in the various detector layers and the significance of the difference of

the ratio of charge q to measured momentum in the ID and MS |q/pMS− q/pID| [155].

All muons considered in the analyses pass a minimum loose quality and isolation

criteria [156] each with a > 99% efficiency. Like electrons, muon event selections are

corrected for different efficiencies in reconstruction, identification, isolation, and trig-

ger in bins of transverse momentum and rapidity by the use of corrective scale factors

applied to MC. Corrective scale factors are similarly determined from designated tag

and probe studies for all the commonly used quality, isolation, identification, and

trigger criteria used in these analyses.

Electrons and muons are required to be isolated from other tracks using
∑
pT of

other tracks within a variable sized cone as the discriminant. The isolation criteria

are tuned in exclusive regions in the η − φ plane to produce a 99% efficiency for the

loose working point in the isolation criteria from designated studies in Z+jets events

of the Z → `` decay.

Leptons are determined to originate from the primary vertex by two constraints:
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On (1) the longitudinal impact parameter z0, |z0 sin(θ)| < 0.5 mm, where θ is

the polar angle of the track. And (2) on the significance of the transverse impact

parameter d0/σd0 < 3(5) for electrons (muons), where d0 is the impact parameter in

the transverse plane and σd0 is its uncertainty. A good lepton is defined by passing

all the above minimal selection criteria.

Flavor Tagging A multivariate discriminate trained on ATLAS MC and validated

with data is used to discriminate between b-jets [157] originating from the decay of

b-quark from jets arising from light and charm hadrons. Training of the discriminant

utilizes the truth-level labeling of jets in association with a W or Z (Chapter 4).

Flavor tagging in Run 2 uses a boosted decision tree (BDT) [158]1 to combine the

discriminatory power of 3 pre-trained discriminants:

IP3D Based on the longer lifetime of hadrons containing a b-quark ∼ 450 µm utilizes

the transverse d0 and longitudinal z0 sin θ impact parameters of tracks associ-

ated with the jet2. The longer lifetime of b-hadrons produces measurably larger

impact parameters than light hadrons which are prompt in comparison and the

association of multiple tracks can define the location of a secondary vertex. The

location of the associated secondary vertex in front of the jet is used for dis-

crimination against background. The discriminant is based on a log-likelihood

ratio obtained from the product of likelihoods determined from distributions of

individual tracks associated with light and b-jets in a space associated with the

impact parameters and their significance.

1The BDT technique simply results in an optimized set of many weighted cut-based spaces in
the parameter space of the multiple discriminating variables. In general this approach is superior to
a single region defined as the Cartesian product of intervals in each variable typical of a cut-based
approach.

2The transverse impact parameter d0 is defined as the distance of closest approach in the r − φ
plane. The longitudinal impact parameter z0 sin θ is defined as the distance of the track to the
primary vertex in the longitudinal plane at the point of closest approach in the r − φ plane.
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Figure 6.1: Distribution of the w discriminant (MV2C10) for MC truth flavor-tagged
jets [157].

Secondary Vertex Finding Algorithm This algorithm identifies possible sec-

ondary vertices from all possible combinations of two tracks associated with

a jet [159]. The algorithm iteratively associates the remaining tracks with the

best candidate, producing a number of observables based on the decay length,

track multiplicity, track energies, and track mass.

JetFitter The fragmentation of b-hadrons often involves a decay to one or multiple

c-hadrons. This results in tertiary vertices which tend to lie along the flight

path of the b-hadron. The JetFitter algorithm [160] provides information about

the structure of the hadron decay and attempts to reconstruct the whole hadron

decay chain.

The MV2 multivariate classifier is trained on tt̄ events with b-jets as signal, and a

2-to-1 mix of light and c-jets as background. The 70% b-jet efficiency point is used in

all the following analyses. It provides a high level of discrimination, with a light-jet

rejection factor of 310 and charm rejection factor of 12.
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The distribution of the final trained discriminant w (known as MV2c10) is shown

in Fig. 6.1. Jets with higher w are more likely to be b-jets and less likely to be a light

or c-jets. The entire w distribution is calibrated to match the b-tagging efficiency

in MC to that in data. The calibration of the continuous distribution allows for the

use of flavor tagging outside of the single 70% working point which is exploited in

this analysis in a truth tagging method (see next Sec. 6.5) to bypass the statistical

limitations introduced by the high rejection factor of the b-tagging discriminant.

Overlap removal

The last step in the selection of physics objects used in the analysis is a removal of

overlapping reconstructed objects of different types. This is done when two recon-

structed objects are believed to represent the same final state particle. Both small-R

and large-R jets are removed when overlapping electrons or muons. Small-R jets are

removed by a standard procedure widely used in ATLAS analyses in a ∆R=0.6 cone

around leptons. Large-R jets are removed within a cone of ∆R=1.0 around selected

loose leptons or if two electrons are matched to it.

6.2 Design

The searches are made in 2 categories in the ννqq final state and from 3 to 7 categories

in the ``qq final state depending on which of the three benchmark models are used.

The ννqq channel to a lesser degree and ``qq searches in particular have been designed

to exploit features unique to the three benchmark models. Consequently, there are

three separate analyses made to optimize the search for each of the benchmark sig-

nals. The trigger and preliminary cuts are identical for all three; small differences in

optimized cuts and the selection of regions are specialized for each. This section will

describe the different regions for each of the analyses and the rest of the chapter will
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treat them together mentioning only where they differ.

The structure of the analyses follows from two principles:

1. The MC simulation of backgrounds provides reliable shapes of the relevant

kinematic distributions. No such assumption is made about the total cross

section of backgrounds. State of the art NLO MC techniques have been used in

the generation of backgrounds and signals (Chapter 4). While MC generated at

NLO is known to reliably model the shapes of distributions, this is sometimes at

the expense of the accuracy in the overall normalization. So while in some cases,

the MC discussed here have cross sections generated to NNLO, resolving much of

the total cross sectional mis-modeling, the analysis has been explicitly designed

not to require high accuracy. The final fits (outlined in Chapter 7) indicate

that all the MC cross sections used have normalizations already determined

with 10% accuracy. As a rule of thumb one gets roughly 50% accuracy from

LO calculations.

2. For each significant background process entering a given signal region (SR) there

is a corresponding control region CR for the process (ZCR,WCR, or TopCR)

with a similar but complementary phase space targeted at isolating the process

(Z+jets, W+jets, or tt̄ respectively) and minimizing signal contamination. The

control regions provide a data-driven approach to determine normalization scale

factors for each of the leading processes. Details of the scheme using these

normalization scale factors in the fit will be covered in Chapter 7.

The second point is the unifying principle in the design of the analyses. It is fol-

lowed for every background in every SR in every channel in all searches presented.

Understanding the search strategy then requires two steps: One, motivate the choice

of SRs. Two, identify the major backgrounds present in each and provide designated

CRs for their correct normalization.

The topology of the final state in the ``qq channel is composed of a Z → `` and
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a V → qq decay, back-to-back in the azimuthal angle between the two bosons ∆φZV .

From special relativity it is clear that when sufficiently boosted, the hadronic decay

products of one W/Z are collimated so that the preferred jet width by ATLAS for

anti-kt jets of ∆R = 0.4 will be a poor choice for the individual resolution of two

jets in the mass range covered in the search, because the typical separation will place

the jets on the ∆R = 0.4 threshold. This motivates the use of Large-R jets with

jet substructure techniques used to distinguish between the two-pronged structure of

the vector boson decay from the single-pronged structure of QCD jets. As discussed

in Chapter 5 the choice of jet algorithm was arrived at after extensive studies of

various configurations of jet pile-up suppression techniques and substructure variables

in Run 1. The ratio of two and three pronged energy correlation functions D
(β=1)
2

was shown to be the most effective discriminant considered and is used through the

following analyses. A 50% efficiency working point, when taken in combination with a

±15 GeV mass window cut is used to define the high-purity region. But even failing

the substructure cut, the mass window alone is a strong discriminant against the

background of Z+jets and is therefore a useful channel, which defines the low-purity

region.

For less massive resonances the Z hadronic decay products are well-separated and

are likely to form well-resolved small-R jets–this defines the resolved category. One

can exploit the Z boson’s enhanced decay width to bb̄ with respect to a predominantly

light-flavored background of jets arising from the Z+jets process. The 70% working

point for the MV2C10 b-tagging discriminant is used to tag both resolved jets–this

defines the tagged region. The presence of only one or no b-tags defines the untagged

region. This strategy is based on a ZZ resonance, since the leptonic decay products

must come from a Z. For a ZW resonance this leaves the hadronic decay products

coming from theW . In that case, the mass window onW → qq′ is shifted accordingly

and the b-tagging is not a useful discriminant. The W boson does not have enhanced
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decay to bs. For the HVT W ′ resonance search then, there is only a resolved category

without splitting.

The topology of the final state in the ννqq channel is the hadronic W/Z → qq

decay in the direction opposite in φ to large missing energy attributable to the decay

of Z → νν. This channel is highly sub-dominant to the ``qq channel for low mass

signals (200-500 GeV) for at least three reasons:

1. They lack reconstructible Z-mass window around Z → νν decay;

2. There is relatively poor resolution of the Emiss
T observable entering the transverse

mass final discriminant;

3. There are large modeling uncertainties present in the low-Emiss
T phase space.

For these reasons, only a merged analysis in the ννqq channel is considered in these

studies.

Backgrounds and Control Regions

Figures 6.2 and 6.3 shows the expected backgrounds present in the spin-0 analysis in

the ``qq and ννqq channels, respectively.

The leading background present in all signal regions of both the merged and

resolved regimes of the ``qq analysis is Z+jets, with tt̄ also playing a significant role

in the resolved analysis. Therefore, for each SR there is a dedicated ZCR to constrain

the overall cross section of the Z+jets process. And to constrain the tt̄ cross section

in the resolved analysis there is a single TopCR. The structure of all regions entering

the spin-0 ``qq analysis is summarized in Fig. 6.4. The spin-0 analysis is divided

by an additional set of criteria on 2 additional jets present in the event in order to

separate the event topology of the vector boson fusion (VBF) production channel

from that of the glue-glue fusion (ggF) channel. The tagged and untagged categories

of the resolved analysis are combined for events passing the VBF selection criteria

due to lack of sufficient background in the VBF tagged ZCR to adequately confine the
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Figure 6.2: Background in the regions of the H → ZZ analysis for the ``qq channel.
Background in the SRs motivates the choice for CRs.

background in the SR from MC. The VBF regions mirror those in the ggF analysis.

The spin-2 analysis summarized in Appendix Fig. 1 is structured as the spin-0 analysis

only without separation into ggF and VBF categories. The spin-1 analysis, capturing

the hadronic decay of the W boson, is structured as the spin-2 analysis but without

the splitting of the resolved regime into tagged and untagged categories. Appendix

Fig. 5 summarizes the structure of the spin-1 analysis.
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Figure 6.3: Background in the regions of the H → ZZ analysis for the ννqq channel.
Background in the SRs motivates the choice for CRs.
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Figure 6.4: Event categories entering the spin-0 analysis. Events are separated into the ggF and VBF production channels.
The ggF channel has 8 regions: the high and low-purity merged signal regions, corresponding high and low-purity Z-control
regions, the untagged and tagged resolved signal regions, and the untagged and tagged resolved Z-control regions. The VBF
channel has 6 regions: the high and low-purity merged signal regions, corresponding high and low-purity Z-control regions, the
resolved signal region, and the resolved Z-control regions . There is one resolved top control region. Events entering the SR
(Pass) the mJ mass window around the Z/W -mass.
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Figure 6.5: Event categories entering the spin-0,1 and 2 analyses in the ννqq channel.
There are 8 regions in the merged regime: high and low-purity signal regions, high
and low purity Z-control regions requiring 2 leptons, high and low-purity W -control
regions requiring 1 lepton, and high and low-purity Top-control regions requiring 1
lepton and at least one b-tagged jet. Events entering the SR (Pass) the mJ mass
window around the Z/W -mass and have 0 leptons.

Standard model diboson processes (ZZ and to a small extent ZW ) enter this

analysis. The SM continuous ZZ-process is irreducible and naturally satisfies the

decay structure selected for in the analysis ZZ → llqq. It cannot be selected against

and provides a continuous background on which the mass-resonance is searched for. It

is sub-dominant to the Z+jets background through search range. Single top processes

are simulated and included in the analysis but only enter the SRs in trace amounts.

The lepton selection is sufficient to completely reject any QCD dijet background well

beyond any detectable level.

Like the ``qq channel, the leading background in the ννqq channel are Z+jets

processes, but it also contains strong contamination from the W+jets and tt̄ back-

grounds. A CR for each in both the low and high-purity categories is used (WCR

and TopCRs, respectively). A complete summary of the regions in the ννqq analysis

is shown in Fig. 6.5.

The continuous diboson backgrounds (ZZ,ZW ,WW ) all make a non-trivial pres-

ence in the analysis. All three channels naturally satisfy the selection on the signal
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final state. Generously large uncertainties on the cross sections of diboson processes

are used in these analyses with little effect on the strength of the statistical analysis

because of their relatively low cross section with respect to V+jets and the similarity

in shape in the final discriminants.

Specific cuts are used to suppress the QCD dijet background, which would oth-

erwise be present despite the high-Emiss
T requirement ``qq in the analysis selection.

After the so-called “anti-QCD” cuts this background can be neglected. Single-top

backgrounds have low cross sections compared to tt̄ in the final selection. They are

included in the analysis simulation but treated as sub-dominant to tt̄ in all cases.

6.3 Benchmark Signals

The benchmark signals: spin-0 heavy Higgs signal in the narrow width approximation,

spin-1 heavy vector triplet, and spin-2 graviton benchmark signals are all relatively

narrow resonances. The simulated widths of each of the resonances before convolution

with experimental resolutions is roughly 0, 0.025, and 0.06 of the resonance mass, with

only the last having somewhat increasing relative width. The best reconstruction of

the resonance mass available in each of the channels is used as the final discriminant,

since the backgrounds have no such resonant behavior and provide a relatively smooth

background to identify the resonance on.

The ννqq channel utilizes the transverse mass defined from the invariant mass

of the the missing transverse energy and the large-R jet projected on the transverse

plane, since it is not possible to fully reconstruct the invariant mass of the ZZ/ZW

resonance due to the presence of neutrinos. The transverse mass is defined,

m T =

√
(E T,J + E miss

T )2 − (~p T,J + ~E miss
T )2, (6.3)

where E T,J =
√
m2

J + p2T,J . Figure 6.6 shows the 3 benchmark signals with a mass

of 2000 GeV. The asymmetrical shape is similar to the so-called Jacobian peak fa-
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Figure 6.6: Transverse mass distributions of benchmark signals: heavy Higgs boson,
for HVT W ′, and RS G∗ at 2000 GeV.

miliar in W -decay due to broadening from the inability to resolve the polar angle

θ-information of the neutrinos. This is partially responsible for the broadness of the

resonance in MT with the remaining width due to the use of Emiss
T in construction of

MT . The experimental width of all three signals is roughly 25% to 30% of signal mass.

The resolution of the Emiss
T observable is limited by the sum of the resolutions of the

reconstructed objects entering it as well as by the distribution of unreconstructed

low-pT neutral particles not attributable to calibrated objects and falling outside the

TST. The ``qq channel uses the 3-body mass m``J from the large-R jet and two lep-

tons in the merged regime and 4-body mass m``jj composed of 2 small-R jets and

two leptons in the resolved regime. Figure 6.7 shows the width for the 3 benchmark

signals in the ``qq analysis over the relevant mass ranges. The RS graviton search and

HVT W ′ searches are made for signal masses from 500 GeV to 5000 GeV. The heavy

scalar search is made for signal masses from 300 GeV to 3000 GeV. The experimental

width of the heavy Higgs and HVT W ′ signals are between 3-4% in the full mass

range considered. The width of the graviton increases from 5% at 500 GeV to 7%

at 5000 GeV. Experimental broadening is sub-dominant to the intrinsic width of the

signal for the graviton with the increase in width coming from the intrinsic width of

the signal.
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Figure 6.7: Signal resolutions evaluated with 1.7σ trimmed Gaussian fit in the ggF
category. Also shown is the estimated bin width to achieve 5% statistical uncertainty
on the MC.

Mass constraint

The resolution of the reconstructed signal in the 3 and 4-body mass benefits from

some clever compensation for sources of experimental broadening. For the signal,

the deviation from the ideal vector boson mass in reconstructed Z → `` and Z →

jj(Z → J) decays is primarily due to experimental sources. The correlation of the

mass and energy measurements can be exploited to correct a given deviation in the jet

energy measurement used to construct the final 3 or 4-body mass. One corrects the

mass of the reconstructed boson m1,2 to the nominal PDG mass mnominal
Z in the final

discriminant, where the indices 1, 2 refer either to the two lepton or jet decay products
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of the W/Z. The mass constraint on the two W/Z-decay products is therefore:

pT
constrained
W/Z =

mnominal
Z

m1,2

∗ pT1,2.

It is not immediately obvious that this strategy would improve the resolution of the

4-body mass m``qq. In fact the benefit depends on the specific topology and source

of experimental uncertainty. On the boosted Z → µ−µ+ the muon spectrometer has

a diminished ability to resolve the pT of individual muons but ample angular res-

olution to determine their direction. The direction of high-energy muons is tightly

resolved but they will follow nearly straight line paths at high-pT, making a pre-

cise measurement of their curvature difficult to obtain. The pT-resolution of muons

drops off at high-pT and becomes the dominant source of uncertainty in determining

mZ→µµ. However, for a high mass resonance the muon decay products are collimated

and variation in the pT dominates over angle in the 3 and 4-body mass calculation.

Therefore correcting the Z-mass in the final discriminant significantly reduces the

experimental resolution. This effect is most evident in the boosted regimes, Fig. 6.8.

The energy resolution of the calorimeter is good and angular resolution relatively

poorer and therefore no benefit is seen for the application to the ee decay products.

Benefit from the constraint on theW/Z hadronic decay products is clear in the Tagged

region for lower mass and has been applied to the resolved selection. In all analyses

for the ``qq channel Z → µµ is corrected to PDG mass of the Z boson in the final

discriminant. In ZZ the resonance analyses Z → qq is corrected to the PDG mass of

the Z, and in the ZW resonance analysis Z → qq is corrected to the PDG W mass.

The resolutions of the reconstructed ggF H signal mass in the µµ and ee channels

are almost the same after the correction. After the application of the mass constraint

the reconstructed signal mass widths in the µµJ and eeJ final states are comparable.

The application of the mass constraint improves the resonance mass resolution in

the dimuon final state by 36% for a resonance at 1600 GeV. When combined with

the dielectron events the improvement is still 5%.
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6.4 Triggers

Events used in the ZV → ``qq search were recorded with a combination of multiple

single-electron or single-muon triggers with varying ET (electron) and pT (muon),

quality, and isolation requirements. The minimum ET-threshold for electrons is

24 GeV, while the minimum pT-threshold for muons is 20 GeV. These triggers

are complemented by triggers with higher thresholds with no isolation requirement

(60 GeV or 120 GeV for electrons and 50 GeV for muons). Events belonging to the

ZV → ννqq channel are recorded using an Emiss
T trigger with an online threshold of

80 GeV for 2015 data and of 100 GeV for 2016 data.
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``qq
Period Electron triggers Muon triggers

pT quality pT isolation
2015 24 GeV (L1: 20 GeV) medium-L 20 GeV (L1: 15 GeV) loose
2016, A 24 GeV tight-L 24 GeV loose
2016, B 24 GeV tight–L 24 GeV medium

ννqq
Period Emiss

T triggers
2015 80 GeV
2016 100 GeV

Table 6.3: Lowest-pT (Emiss
T ) high-level triggers used for the ``qq and ννqq channels.

The lowest-pT triggers are combined with higher-pT triggers with looser identification
and isolation criteria to increase efficiency in the high-pT range where there is reduced
fake rate.

Single lepton triggers are used in the ``qq channel even though 2 lepton triggers

are available. Muon trigger event rates are just low enough at 2016 luminosities for

this analysis to proceed without any special consideration for trigger efficiencies or

need for more complex triggers.

Table 6.3 provides a list of the lowest un-prescaled lepton triggers–all are used

in logical OR as the starting point for data selection. The near constant, maximum

efficiency over the full range of utilized selection in the analysis is referred to as

being on the “trigger plateau”. In such cases a careful analysis of the combination

of prescaled triggers or precise understanding of the trigger turn on curve are not

necessary. The ``qq and ννqq channels are on their trigger plateaus, at or very near

full efficiency. A comparison was made between the trigger efficiency of the 2015 and

2016 lists in reprocessed MC which indicated there was no significant change. It is

therefore possible to combine 2015 and 2016 data sets.

6.5 ``qq Analysis

The ZV → ``qq event selection starts with events with exactly two leptons passing

the minimal (signal) lepton selection criteria. Both leptons are required to have the
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same flavor, and one must be of medium quality. Opposite charges are required for

muons, but not for electrons, which are much more likely to have poorly measured

charge due to confinement of tracking to the inner detector only for electrons and from

the higher cross-sections for Brehmsstrahlung which results in more conversions in the

inner detector. A window around the Z-mass is used to identify the Z → `` decay.

Selected dielectron pairs have m`` between 83 − 99 GeV. For muon pairs a mass

window dependent on the dilepton transverse momentum pT
`` is used:

85.63− 0.00117pT
`` < m`` < 94.00 + 0.0185pT

`` (6.4)

The linearly varying window accounts for the diminished pT-resolution of muons

at high pT. The loss of detector resolution for high-pT muons is evident in the

Z → `` mass resolution shown in Fig. 6.9. The window (in red) is determined

from fitting a 2σ-acceptance window on the aggregate heavy Higgs samples from

mH = 200 − 1200 GeV. The window shown is defined by a trimmed Gaussian fit

to the peaks and compared against the cumulative density function for validation.

The uptick at high-pT
`` is an effect of the correlation between m`` and pT

`` and the
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high-pT tail of the last sample. The m`` resolution for electron pairs on the other

hand is consistent over the range of the study. Events with ≥ 3 loose leptons are

vetoed in all regions of the analyses.

The definition of signal and Z-control regions then proceeds on the basis of jet

selection. Events entering the merged regime ``J have at least one large-R jet. Large-

R jets are only reconstructed in the central region with |η| < 2.0. If more than one

large-R jet is present then the one with highest-pT is associated with the V → qq

decay. Jet selection in the resolved regime, used for the reconstruction of the V → qq

decay, uses the leading and subleading small-R jets.

A topological cut (topo 6 ) is used to reject additional Z+jets background:

min(pT
``, pT

J)

m``J

> 0.3 (0.35), (merged) (6.5)√
p2T(``) + p2T(jj)

m``jj

> 0.4 (0.5). (resolved) (6.6)

The looser cuts are for the H → ZZ search and tighter cuts in parentheses for the

W ′ → ZW and H/G∗ → ZZ searches. Although expressed in terms pT
``, pT

J , and

m``J these cuts are essentially an angular cut reflecting the more central distribution of

the signal compared to the Z+jet background. The values used retain high efficiency

for the signal over the full signal search range, but still improve significance S/
√
B

especially at highm``J . The spin-1 and spin-2 distributions are more central, allowing

for the tighter cut of 0.35 in the merged regime and 0.5 in the resolved regime.

The mJ and mjj distributions for the Z+jets background are broadly distributed,

while signal V → qq decay is tightly peaked around the vector boson mass. Excellent

agreement in the mJ and mjj distributions is seen between data and MC simulation

prior to any fitting, as shown in Fig. 6.10.
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Figure 6.11: Comparison of data and MC in the D
(β=1)
2 distribution in the ``qq chan-

nel. Shown is the inclusive selection in the merged regime. Signal distributions shown
in (red) are from a Higgs boson with mass mH = 1600 GeV and a cross section of
σ × BR(H → ZZ) = 10 fb at 1600 GeV.

Merged analysis

The merged analysis proceeds with the presence of the large-R jet passing the minimal

selection criteria. A mass window ofmV±15 is used in the merged regime to define the

signal regions. It captures the mass peak of the hadronic boson decay loosely over the

mass range searched. An example of the Z → qq̄ mass peak for a signal of 1600 GeV

was shown in Fig. 6.10 (b). To gain discriminatory power the D
(β=1)
2 jet substructure

discriminant (discussed extensively in Chapter 5) is used. The distribution of D
(β=1)
2

in the ``qq analysis is shown in Fig. 6.11. Large-R jets passing the 50% efficiency cut

enter the high purity category and those failing enter the low purity.

The Z-control regions are formed from the complement of the union of the SR

mass-windows for the W and Z-decays in the mJdistribution: mJ < 65 GeV, mJ >

106 GeV. The Z+jets contribution to the merged SRs is constrained by a simultaneous
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fit to control regions and signal regions.

Resolved analysis

In the spin-0 and spin-2 ZZ resonance searches the hadronic decay comes from a Z

boson. About 1/5 of hadronic Zs decay to bb̄ pairs (see Table 2.2). The dominant

Z+jets background has a much smaller relative cross section to Z + bb′s–the ratio

of production for heavy flavor of additional jets in association with the Z is σ(Z +

b)/σ(Z + j) ≈ 0.1. This motivates the split of the resolved analysis into tagged

and untagged categories, with the former requiring two b-tagged jets and the latter

having either one or zero. Events with more than two b-tags are rejected because they

increase the presence of tt̄ background. In the tagged category the two b-tagged jets

are assumed to be associated with the Z → qq decay. In events with one b-tagged

jet the b-jet and leading jet are assumed to be from Z → qq decay. The leading

jet associated with V → qq decay is required to have pT > 60 GeV in all cases.

The topological cut is removed in the tagged category to make it insensitive to the

angular distribution of the selected jets which may be affected to small degree in MC

simulation in the application of the truth tagging technique discussed later in this

section.

A dijet invariant mass window 70 < mjj < 105 GeV is used to identify the signal

region in the H/G∗ → ZZ searches and a window of 62 < mjj < 97 GeV used in the

W ′ → ZW search.

Sidebands around the union of the two signal regions in the mjj distribution are

used to define the Z-control region. The best modeling from MC excludes a wider

range in this variable so the bands 50 < mjj < 62 GeV or 105 < mjj < 150 are used.

Top-quark production is a dominant background in the tagged category of the

resolved analysis. Therefore, a designated tt̄ control region is used to normalize the

contribution from top processes in the SR. The TopCR is defined by requiring one µ
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and one e in the tagged category instead of same-flavor leptons. The invariant mass

of the lepton pair eµ is required to be within 76 − 106 GeV and the b-tagged jet

pair in the range 50− 150 GeV. This selection yields a high-purity top-quark region

with > 99% tt̄ and single-top processes. It is used for both the tagged and untagged

categories but isn’t necessary for the merged regime because the m``qq invariant mass

spectrum for tt̄ is quite low.

Truth Tagging

Directly determining the background in the tagged category of the resolved analysis

would be a highly wasteful strategy to generate binned distributions with sufficient

statistical power due to the requirement for 2 b-tagged jets. Since the rejection factor

for the b-tagging discriminant is > 300 for light jets only one in ∼10,000 background

events would pass this cut alone. Simulation at ATLAS is an expensive part of the

operation of the experiment and therefore an alternate approach of truth tagging is

used that exploits the knowledge of the efficiency distribution of light, c, and b jets in

passing the w working point. Instead of generating the MC background distribution

by requiring w of both jets in a given background event to pass the 70% working point

a scale factor based on the efficiency ε of the MC-determined truth flavor of each jet

to pass the working point is used. Flavor specific efficiency maps (b, c, and light

jet) are used for independently evaluated tt̄ and Z+jet samples. The truth tagging

methodology assigns a random w to each jet by sampling the distribution above the

working point, which by definition will then pass the w cut in the analysis. Then a

scale factor SF= 1/ε is applied for each candidate jet in the event.

This strategy allows the tails of the tagged category to be evaluated to reasonable

precision. Any correlation between the tagging efficiency of multiple jets in a single

event is lost. However, no evidence of significant correlation has been found and the

statistically limited data taken so far in Run 2 in the high-mass tail of the tagged
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category suggests any fuss about bias arising in the tails won’t be relevant until more

data is taken. Figure 6.12 compares the 4-body mass distribution obtained in the

tagged selection. The improvement in the description of the high-mass tail is evident

in most distributions, as is the agreement between the methods of direct tagging and

truth tagging. Some disagreement in distributions containing c in the ZCR (especially

in Z + cc) has been noted and calls for exploration in the future. It is not apparent

in the SR shown, presumably because kinematic differences arise from the larger

mass of the c, which enter in the sideband but not for events passing the Z mass

constraint. The differences are not explicitly corrected in these analyses because they

contribute minimally. Very large uncertainties are applied to the normalization of

these backgrounds (with little effect) in the fit as there is little constraint on them.

VBF analysis

The vector-boson fusion production channel qq′ → H → ZZ → ``qq is searched in

addition to the ggF production channel in the spin-0 analysis. It is a well-motivated

production process in many models that results in the presence of two additional jets

(referred to as VBF-tag jets here) in the event topology coming from the scattering

of the initial quarks in the interaction. The VBF-tag jets typically have a large

dijet invariant mass and a large separation in pseudorapidity. The VBF-tagged jets

are selected from small-R jets passing the minimal selection criteria. In the merged

regime they are required to have a pseudorapidity separation of |∆η| > 1.5 from the

leading large-R jet. In the resolved regime, VBF-tag jets are selected from those not

already associated with the V → qq decay.
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Figure 6.13: Comparison of data and MC in the (a) the resolved dijet mass mjj and (b) the large-R jet mass mJ in the
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144



Figure 6.13 shows the distributions of the dijet invariant mass mtag
jj and pseudo-

rapidity separation |∆ηtagjj | of the two tag jets, shown inclusively in the merged and

resolved regimes. These two variables are not perfectly modeled. Consequently, cuts

on them lead to differences between data and MC in overall normalization in kine-

matic distributions involving the signal jets and leptons. This effect is compensated

for in the fit design discussed in Chapter 7. Events entering the VBF analysis are

selected by requiring mtag
jj > 600 GeV and |∆η tag

jj | > 3.1. These cuts were arrived at

from an optimization of significance S/
√
B in MC simulation. Both cuts have been

placed on the inclusive end of broad minima to maximize the number of potential

signal events entering the VBF analysis. Events in H → ZZ analysis failing the VBF

criteria enter the ggF analysis. There is almost no contamination of the ggF signal

in VBF regions and vice versa, however contamination is allowed modeled in the fit.

The best association of individual jets in the categorization of an event as either

ggF or VBF has been studied. It is found to be optimal to associate the two leading-pT

jets to the Z → qq̄ decay. The remaining jets with the largest invariant mass are

taken to be the VBF-tag jets. An added benefit of this approach is the selection of

VBF-tag jets second allows for the Z → qq̄ selection to be consistent for all signal

types (including those without VBF production channel).

Event Prioritization and Recycling

For events which satisfy both the small-R jet criteria for the resolved regime and

the large-R jet criteria for the merged regime the following is used to classify events

with respect to jet regime, region, and signal category. When an event fails a given

selection, it is tested against the next criteria according to its priority; this is termed

“recycling”. Only upon failing all selections is an event discarded. The order of

selections is as follows:

• Merged SR
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• Low Purity SR

• Resolved SR

• Merged ZCR

• Low Purity ZCR

• Resolved ZCR

The phase space considered in this search where the recycling strategy is most im-

portant is roughly in the transition region from 400 ≤ mH ≤ 800 GeV . Above and

below these signal masses hadronic decays Z → qq̄ are reconstructed primarily as

either merged or resolved, respectively, but small differences in signal to background

significance are found over the full mass range. The recycling strategy is superior to

a fixed cut strategy because it saves signal events, no matter the cut optimization.

The placing of merged prior to resolved was determined by studies using signal to

background optimization, and confirmed with the expected limits of the analysis with

2015 data presented at Moriond [28].

For the scalar signal benchmark in the spin-0 analysis, events passing the VBF

selection enter the VBF regions and otherwise enter the ggF regions. The order of

selection inside each of the VBF and ggF regions follows the same order described

above.

Event Selection Summary

The complete event selection for the ``qq channel has been discussed in the proceed-

ing subsections and is summarized in Table 6.4. In determining the optimal cuts

throughout, an effort has been made for the inclusiveness and retaining of the great-

est possible efficiency of the benchmark signals. This philosophy has led to wide

topological, mass cuts, VBF-tag cuts, and the recycling strategy with hardly any loss

of signal significance that tighter cuts might bring at the cost of greater exclusivity.

Figure 6.14 shows the efficiency for each of the benchmark signal types. The resolved
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Common
Criteria

Preselection
Exactly 2 loose leptons
≥ 1 medium lepton

Z → ``
83 < mee < 99 GeV

−0.01170pT`` + 85.63 < mµµ < 0.01850pT
`` + 94.00 GeV

Lepton charge
Z → µ+µ−

No requirement Z → ee

Merged Regime

Signal jet
≥ 1 large-R jet

Leading large-R jet pT > 200 GeV
topo 6 min[pT

``, pT
J ]/m``J > 0.3 (0.35) for spin-0 (1 or 2)

mass window
Z → qq̄ 75 < mJ < 105 GeV
W → qq′ 66 < mJ < 96 GeV

ZCR: 50 < mjj < 66 GeV or 105 < mjj < 150 GeV

boson tag
D

(β=1)
2 (Z) spin-0 or 2

D
(β=1)
2 (W ) spin-1

Resolved Regime

Signal jets
≥ 2 small-R jets |η| < 2.5
Leading jet pT > 60 GeV

Subleading jet pT > 30 GeV

topo 6
√(

pT``
)2

+
(
pTjj

)2
> 0.4 (0.5) for spin-0 (1 or 2) in untagged regions

mass window
Z → qq̄ 70 < mjj < 105 GeV
W → qq′ 62 < mjj < 97 GeV

ZCR: 50 < mjj < 62 GeV or 105 < mjj < 150 GeV
flavor tag tagged : exactly 2 b-jets

(ZZ analyses only) untagged : 0 or 1 b-jet

Table 6.4: Event selection summary for the ``qq channel.

analysis has limited acceptance but dominates the selection efficiency at low mass.

The merged analysis becomes highly efficient at high mass. The transition between

resolved and merged analyses occurs quickly in the mass range from 400 to 800 GeV.

The low transition mass range is due to the prioritization in event recycling of the

merged regimes over the resolved, which has been shown to be optimal–although the

effect is not large.

A fit is performed simultaneously to all regions of ``qq analysis. The Z-control

regions and tt̄-control regions constrain the normalization of the major backgrounds

in the fit. The predicted background counts for each of the control regions, taking
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Figure 6.14: Selection efficiencies of ZV → ``qq signals from MC simulations as
functions of the resonance mass for both merged and resolved analyses.

into account the constraining power of the fit in the presence of all systematic un-

certainties, are shown in Table 6.5. The most important pieces of information to

read from the table are the consistency between data and MC in all the control re-

gions. This indicates that within the statistics of the MC samples and the systematic

uncertainties proposed the model is a sufficient description of the data.

The fit in many cases has the power to constrain the sum of several backgrounds

better than an individual background. This happens when backgrounds have similar

shapes–notably in the untagged category in the case of Z,Zl, and Zcl. The lack

of constraint on Zcl is the leading source of uncertainty on the normalization of Zl

even though the data tightly constrains the sum of all flavors (Z). In the current

configuration there is little power to constrain the contribution of individual flavors

in the Z+jets background. The author has shown that the analysis has the power

to constrain individual flavors tightly by switching the ZCR discriminant to a func-

tion of w the b-tagging discriminant of the two leading jets. However, a derivation
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Hi P. Low P. VBF HP VBF LP Untagged VBF Res. Tagged

Top 3.5 ± 0.7 5.9 ± 1.0 0.11 ± 0.04 0.02 ± 0.04 290 ± 30 8.8 ± 1.8 131 ± 6
Diboson 49 ± 7 51 ± 4 1.3 ± 0.4 3.1 ± 0.9 670 ± 40 13.9 ± 1.3 54 ± 6

Z 580 ± 20 1230 ± 30 18 ± 2 54 ± 7 19900 ± 140 230 ± 15 409 ± 18
Zl – – – – 15100 ± 600 – 0.8 ± 0.2
Zbb – – – – 170 ± 30 – 360 ± 20
Zbc – – – – 117 ± 17 – 21 ± 4
Zbl – – – – 1600 ± 200 – 24 ± 12
Zcc – – – – 390 ± 120 – 6 ± 3
Zcl – – – – 2500 ± 600 – 1.2 ± 1.3

Total 630 ± 20 1290 ± 30 20 ± 2 57 ± 7 20860 ± 140 253 ± 15 594 ± 18
Data 606 1270 25 59 20857 246 608

Table 6.5: Best-fit values of the global yields for the Standard Model backgrounds
from the background-only (µ = 0) fit, as well as the total number of data candidates
in all Z-control regions.

of systematic uncertainty on the continuous w distribution has not been made at

ATLAS. This limits use of w to the fully-studied efficiency working points (e.g. 70%

used here). The discriminant used in the control regions instead is the 3 and 4-body

mass–this excludes any mass constraints used in the SRs.

Figure 6.16 shows the ZCRs of the resolved regime as they are fit in the analysis.

The normalization of each of the MC backgrounds has been set by the fit. The gray

bands show the uncertainty on the MC fit, which takes into account MC statistics

and all systematic uncertainties. The pink dotted line shows the MC-predicted back-

ground prior to any fitting, nearly identical in this case. The agreement between

data and MC is excellent over the full spectrum, the lowest bin starting at 280 GeV

through the highest observed data, not exceeding 2000 GeV. The tt̄ background makes

an outsize appearance in the first ∼ 200 GeV of the tagged ZCR Fig. 6.16 (a), which

requires the use of its own control region if a good understanding of background is to

be made for signal with 4-body mass in the range 300 GeV to 500 GeV . Differences

in the data-MC agreement of tt̄ distribution in the µe channel and µµ or ee channels

is limited to experimental sources of uncertainty related to the efficiency of lepton

reconstruction, which are small in these analyses.

Figure 6.17 shows the ZCRs of the merged regime. The ZCRs in the merged regime
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also show excellent agreement between data and MC. Very little change is observed

between pre-fit and post-fit backgrounds. Notice the order of magnitude reduction in

background achieved by the use of D
(β=1)
2 between the high and low-purity regions.

Figure 6.15 shows the ZCR in the resolved regime of the spin-0 VBF analysis.

The Sherpa 2.2 samples generate Z+2 jets to NLO with NNLO cross sections but

only LO calculations are made for Z+4 jets. The cross sections for LO processes are

not expected to be particularly accurate; it is no surprise that the pre and post-fit

normalization on the Z+jets background in the VBF categories with the additional

requirement of 2 VBF-tagged jets is different from the MC simulation. The normal-

ization of the Z+jets background away from 1 is expected and accommodated in

the fit design. The agreement excellent after the fit shown, although there are large

systematic uncertainties in this region. Larger bin widths and the combining of the

tagged and untagged categories brings systematic uncertainty associated with lim-

ited MC statistics in the region to satisfactorily constrain the Z+jets normalization

in the VBF categories. The systematic uncertainty is shown in the shaded region.

Figure 6.17 shows the ZCR in the merged regime of the spin-0 VBF analysis. Ini-

tial agreement in the higher-mass region of Figs. 6.15 and 6.17 is better than in the

low mass region visible in the resolved ZCR. The difference is capably covered by

systematic uncertainties resulting in good agreement after the fit.
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Figure 6.15: Data and MC comparison of the m``jj distribution in the Z+jets control
region of the VBF production channel of the resolved regime in the spin-0 analysis.
This distribution controls the the normalization of Z+jets in the VBF signal regions.
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Figure 6.16: Data and MC comparison of the m``jj distribution in the Z+jets control regions of the ggF production channel
of the resolved regime in the spin-0 analysis for (a) the tagged and (b) untagged categories. These distributions are used to
constrain the Z+jets normalization in the resolved signal regions.
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Figure 6.17: Data and MC comparison of the m``jj distribution in the Z+jets control regions of the ggF production channel of
the resolved regime in the spin-0 analysis for the merged analysis for (a) the high-purity and (b) low-purity categories. These
distributions are used to control the Z+jets normalization in the merged signal regions.
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Figure 6.18: Data and MC comparison of the m``jj distribution in the Z+jets control regions of the VBF production channel
of the merged regime in the spin-0 analysis in the (a) high-purity and (b) low-purity categories. This distribution controls the
the normalization of Z+jets in the VBF signal regions.
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6.6 ννqq analysis

Event selection in the ZV → ννqq channel begins with a large Emiss
T > 250 GeV cut

to identify events containing the boosted Z → νν decay of the signal back-to-back in

φ with the boosted V → qq decay. This cut alone reduces drastically most SM back-

grounds, especially QCD multijet events which have no intrinsic missing transverse

momentum. A significant number of QCD dijet events still obtain large Emiss
T , either

through terrible mis-measurement of a jet or through non-collision background. Any

analysis not requiring the presence of leptons explicitly is subject to the presence of

these type of events due to the large cross section of the QCD dijet process.

A set of anti-QCD cuts are employed to get rid of QCD events with the presence

of erratic measurements. To eliminate high-Emiss
T events arising from spurious mea-

surement isolated to the calorimeters an alternate measurement of missing transverse

momentum composed only of all good tracks of charged particles pmiss
T is used. Two

cuts are made utilizing pmiss
T :

1. A much lower cut of pmiss
T > 50 GeV is used as a calorimeter independent

measure. It is just high enough to reject the vast majority of remaing dijet

events even given the distribution of charged fraction of particles in a jet. Yet

it is also low enough to efficiently accept signals with mass starting at 500 GeV,

since a very small fraction of jets have a charged fraction below 10%.

2. ∆Φ(Emiss
T , pmiss

T ) < 1 Events with real Emiss
T will have reconstructed track-based

missing transverse momentum in a similar direction as Emiss
T . In the case of a

dijet event associated with a poorly measured calorimeter jet there will be little

correlation.

Finally, the requirement ∆Φ(Emiss
T ,small-R jets)> 0.4 is used to specifically reject

the event topology of a single mis-measured jet (passing the minimal selection) in a

dijet event. In this case Emiss
T will point in the φ-direction of one of the two jets. The

signal event topology should not have such a jet in the Emiss
T direction except possibly
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arising from initial state radiation.

The ννqq channel proceeds only with a merged selection. The hadronic boson

decay is identified requiring that the leading (highest pT) large-R jet in the event

has a mass consistent with the W or Z boson mass. The ννqq analysis mirrors the

``qq analysis in the treatment of large-R jets. The mJ mass window of V ±15 GeV is

used to identify the SR. And again, a 50% efficient cut of D
(β=1)
2 is used to separate

the high purity region from the low purity region. The pre-fit distribution of the mass

of the leading-R jet distribution and the D
(β=1)
2 are shown in Fig. 6.19.
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Figure 6.19: The (a) mass and (b) D
(β=1)
2 distribution of the leading large-R jet in the ννqq channel. The selection excludes

m``J -window and D
(β=1)
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A small linear slope is evident in the data-MC comparison, although it is covered

by the systematic uncertainty. Future iterations of the analysis in Run 2 will likely fit

the difference explicitly, but it is not necessary to do so at this stage. To confirm the

good kinematic modeling of the leading large-R jet, leading large-R jet-pT is shown

in Figure 6.20 after the final fit is performed. Systematic errors constrained by the

fit are propagated to the pT distribution and shown in the gray band.

The efficiency of the selection for the H → ZV → ννqq signals is shown in

Fig. 6.21. The low-purity category helps recover around 10-20% efficiency depending

on the mass considered and the boson pT . The efficiency drop at high mass is due to

the degradation of the large R-jet mass resolution.

The three main backgrounds Z+jets, W+jets, and tt̄ each have a designated CR,

separated by the presence of leptons from the SR. The ZCR requires 2 leptons, the

WCR and TopCR both require 1 lepton. A modified version of missing transverse

momentum is used by removing muons from the calculation Emiss
T,no µ. This definition

is used to protect against possible differences resulting from trigger inefficiency; the

first level Emiss
T trigger does not include muons since they require the combination

of the muon spectrometer and calorimeters which are two separate L1 systems. The

selection in the CRs requires Emiss
T,no µ> 250 GeV and pmiss

T,no µ> 50 GeV, matching the

cuts of the SR, which are fully efficient.

The ZCR uses the selection of exactly two muons, with one required to have pT >

25 GeV. In combination with the ``qq channel the ``qq ZCR region can be used, as

both regions are found to be modeled well and normalizations agree in the individual

channel fits. The invariant mass of the dimuon system is required to be between 66

and 116 GeV. To exclude a possible signal in the ``qq decay the hadronic V → qq

decay mass window is inverted, 65 GeV < mJ > 116 GeV. There is a control region

for each of the high and low-purity regions.

TheWCR and TopCRs are constructed from events with exactly one muon passing
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the minimum selection criteria. If the event contains at least one b-jet then it is

considered to be a tt̄ event and enters the TopCR, otherwise it is placed in the

WCR. This selection captures the characteristic t → W + b decay chain. The b-jets

are required not to overlap with the large-R jet to ensure they are not a V -decay

product. The WCR also is limited to the inversion of the hadronic V → qq decay

mass window, 65 GeV < mJ > 116 GeV. This guarantees the exclusion of signal

that also produces diboson resonances in the WZ/WW -channels. Like the ZCR, the

WCR and TopCR are separated into the high and low-purity selections based on the

D
(β=1)
2 cut on the large-R jet.

Together there are 6 control regions in the ννqq channel to constrain the normal-

ization of each of the three prominent backgrounds in the SRs.

Event Selection Summary

The event selection for the ννqq channel is summarized in Table 6.6. There is a very

limited cross section for SM backgrounds with naturally high Emiss
T . Consequently,

the limited number of cuts in the ννqq channel have been chosen to widely accept

the signal. The high-purity region is designed to be 50% efficient when taking into

account the D
(β=1)
2 cut and mass window. An additional 10-20% of signal efficiency is

recovered from the low-purity signal region. Figure 6.21 shows the efficiency for the

heavy Higgs signal in the signal regions of the ννqq channel. Acceptance is limited in

the lower mass range of the searches primarily from the large-R jet minimum criteria

and also somewhat by the Emiss
T cut. A fit is made independently from the ``qq channel

to all regions in the ννqq channel. Table 6.7 shows the predicted background counts

for each of the control regions, taking into account the constraining power of the fit

in the presence of all DoF provided by the systematic uncertainties. The agreement

between data and MC in all background regions of the analysis indicates with some

further checks that have been made indicate that there is no unphysical exploitation
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Common

Criteria

Preselection
Exactly 0 loose leptons

with pT > 7 GeV

Merged Regime

Signal jet
≥ 1 large-R jet

Leading large-R jet pT > 200 GeV

Emiss
T Emiss

T > 250 GeV

Anti-QCD
pmiss
T > 30 GeV

min(∆Φ(Emiss
T ,small-R jets)) > 0.4

∆Φ(Emiss
T ,pmiss

T ) < 1

mass window
Z → qq̄ 75 < mJ < 105 GeV
W → qq′ 66 < mJ < 96 GeV

Z/WCR: 50 < mjj < 66 GeV or 105 < mjj < 150 GeV

boson tag
D

(β=1)
2 (Z) spin-0 or 2

D
(β=1)
2 (W ) spin-1

Table 6.6: Event selection summary for the ``qq channel.
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Z Hi P. Z Lo P. W Hi P. W Lo P. tt̄ Hi P. tt̄ Lo P.

Diboson 21.1± 0.9 100± 2 88± 3 402± 8 1.9± 0.5 4.9± 0.5
Top 9.5± 1.3 68± 10 1180± 100 2600± 300 750± 30 820± 40

Z+jets 880± 30 5790± 80 115± 11 930± 20 0.85± 0.09 4.2± 0.4
W+jets neg. neg. 5630± 130 38500± 400 38± 3 139± 10
Total 910± 30 5960± 80 7010± 90 42400± 200 790± 30 970± 30
Data 924 5964 7021 42454 798 972

Table 6.7: Best-fit values of the global yields for the Standard Model backgrounds
from the background-only (µ = 0) fit, as well as the total number of data candidates
in all control regions.

of systematic variations in the fit and the MC model is a good description of the data.

The discriminant used in all control regions is the transverse mass built with the

Emiss
T,no µand the leading large-R jet, analogous to transverse mass constructed in the

signal region. Figure 6.22 shows ZCRs used in the ννqq channel as they are fit in the

analysis. Figure 6.23 shows the TopCRs, and Fig. 6.24 shows the WCRs. All control

regions are a reasonable fit. Very little disagreement between pre-fit and post-fit MC

simulation descriptions of the control regions is observed. In the case of the TopCR

there is a notable but small shift in the rate of exponential decay adjusted for in the

post-fit distributions. This shift exploits the large modeling systematic uncertainties

on tt̄ discussed in the following section. It is well within the prior knowledge of the

tt̄ distribution shape.
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Figure 6.22: Data and MC comparison in the transverse mass distribution MT (ννJ) in the Z+jets control region of the (a)
high-purity and (b) low-purity categories. The ZCR constrains the normalization of Z+jets in signal regions.

163



10−4

10−3

10−2

10−1

1.0

101

102

103

E
ve

nt
s

/G
eV

ATLAS Preliminary√
s = 13 TeV, 13.2 fb−1

1 lep. high-purity Top CR

Data
Top Quarks
W + jets
SM Diboson
Z + jets
Stat.

⊕
Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500
mT (ννJ) [GeV]

0.5

1.0

1.5

D
at

a/
P

re
d

10−4

10−3

10−2

10−1

1.0

101

102

103

E
ve

nt
s

/G
eV

ATLAS Preliminary√
s = 13 TeV, 13.2 fb−1

1 lep. low-purity Top CR

Data
Top Quarks
W + jets
SM Diboson
Z + jets
Stat.

⊕
Syst. Uncert.

Pre-fit background

500 1000 1500 2000 2500 3000 3500
mT (ννJ) [GeV]

0.5

1.0

1.5

D
at

a/
P

re
d

Figure 6.23: Data and MC comparison in the transverse mass distribution MT (ννJ) in the Top-control region of the (a)
high-purity and (b) low-purity categories. The TopCR constrains the normalization of tt̄ in signal regions.
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Figure 6.24: Data and MC comparison in the transverse mass distribution MT (ννJ) in the W+jets control region of the (a)
high-purity and (b) low-purity categories. The WCR constrains the normalization of W+jets in signal regions.
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6.7 Systematic Uncertainties

Sources of systematic uncertainty affecting the search come from calibration of the

detector and the reconstruction of physics objects, modeling and normalization of

the backgrounds, and modeling of the signal. Systematic uncertainties entering the

analysis are often larger (or less constrained) than they are after the fit is performed

to all the regions. This is made explicit in the case of leading background normal-

izations where no prior constraint has been assumed and the fit to SRs and CRs are

responsible for constraining their normalization. The following discussion will ref-

erence uncertainties prior to constraint by the final fit to signal and control regions

unless otherwise mentioned.

The largest sources of uncertainty entering the ``qq and ννqq channels are the

modeling uncertainties on the leading V+jets backgrounds and the large-R jet mass

and resolution. The derivation of jet uncertainties is treated in Chapter 5. The

modeling uncertainty for the Z+jets background in the ``qq channel is estimated by

a data-driven approach measuring data-MC disagreement in the ZCRs and mapping

it to the SRs as an uncertainty. In the ννqq channel MC variations of tunable

parameters in the simulation of leading backgrounds are used to provide the modeling

uncertainty. Sub-dominant but also of significant impact are uncertainties associated

with leptons and background normalizations. Many additional sources enter in a

minor way and are included in the analysis. It is worth noting that while small-R

jets do not directly enter the ννqq channel the uncertainties associated with their

measurement are propagated into the analysis via the Emiss
T observable.

Z+jet modeling uncertainty in the ``qq channel The dominance of the

Z+jets background in the SRs and ZCRs of the ``qq channel allows for the use of a

simple data-driven technique for providing an estimate of the modeling uncertainty

of the Z+jets background in the SRs. For each SR-ZCR pair the ratio of differential
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m``jj cross sections is taken in MC Z+jets simulation:

αi(m``jj) =

( ∂σSR
i

∂m``jj

)
MC

( ∂σCR
i

∂m``jj

)
MC

(6.7)

for the ith SR. The αi ratio is then used to map
( ∂σCR

i

∂m``jj

)
data

to the SR. The data-

driven estimate of the SR is then scaled by the ratio of the distribution of Z+jets

to the total MC background distribution for the data-driven estimate of the Z+jets

background in the SR. The difference between the MC Z+jets background in the SR

and the data-driven estimate is used as the modeling uncertainty.

In practice to remove statistical deviations from affecting the ratio, all distribu-

tions involved are completely fit in the peak area and the high mass exponential

decay. An up to 9th degree log-polynomial is used to fit the peak region and the

decay region is fit with the “dijet function”:

f(m``J) = p0

[
1−

(
m``J√

s

)]p1
(

m``J√
s

)p2+p3 log
(
m``J/

√
s
) (6.8)

where
√
s is the center of mass energy, p0, p1, p2 and p3 are free parameters, and

m``J is expressed in GeV. The dijet function is so-called because of its pervasive use

in the experimental fitting of the QCD dijet spectrum. It is a heuristic fit in the m``J√
s

variable with the correct extrapolation to high-mass that incorporates the asymptotic

behavior at the center of mass energy of
√
s = 13 TeV.
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Figure 6.25: The Z+jets background modeling uncertainty applied to the signal regions of the ``qq channel. The modeling
uncertainty is applied to the largest Z+jet flavor slice in the resolved regime. The relative variation for the modeling systematic
is shown in the bottom frames for the (a) high-purity SR and (b) untagged SR. Gray bands shown are the nominal MC Z+jets
distributions showing the statistical precision of the sample. The modeling uncertainty is derived by mapping the data-MC
difference in the control region to the corresponding signal region.
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All calculations are then performed on the fits and the modeling uncertainty is

added back to the original MC SR to produce the +1σ systematic variation. Fig-

ure 6.25 shows the comparison of the data-driven estimate in the SR from the α-ratio

method to the nominal MC. The difference of the estimate to the nominal sample is

taken as the remaining systematic uncertainty on the shape of the m``jj distribution

attributable to MC modeling of the Z+jets leading background. The down variation

is produced by inverting the up variation.

The use of the α-ratio to produce the modeling uncertainty has a few advantages

over other techniques where it is applicable. The larger statistics available in the ZCR

regions and the fitting procedure produce a systematic variation over the whole range

of the SR distribution with little additional noise from the statistical uncertainty. It

addresses with a single uncertainty most of the sources of mis-modeling that equally

affect SRs and ZCRs, including the ME calculation, normalization and factorization

scales, and PDFs. It also has the ability to include uncaptured experimental sources

of uncertainty that would affect both ZCR and SRs equally. As a cross check for

modeling uncertainty that may affect the ZCRs and SRs differently MadGraph

and Sherpa comparisons have been checked for differences in the SRs and ZCRs

separately in the same MC study shared in Chapter 4. No differences were observed

to be significant.

Background modeling uncertainty in the ννqq channel

MC variations are used to generate modeling uncertainties in the ννqq channel for

Z+jets, W+jets, and tt̄ backgrounds.

W+jets and Z+jets modeling uncertainty

The W+jets and Z+jets samples are produced with Sherpa (see Chapter 4), which

uses matrix element matching with a tunable scale parameter in p⊥, above which
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emissions are produced by matrix element (ME) and below which by parton shower

(PS).

CKKW merging scale The multijet merging scale is taken to be 20 GeV nominally

and varied up to 30 GeV.

Renormalization scale The renormalization scale on which the running coupling

αa depends is varied by a factor of
√
2.

Factorization scale The factorization scale used for evaluation of the PDFs is var-

ied by a factor
√
2.

QSF resummation scale Varies the resummation scale or the parton shower start-

ing scale by a factor of 2.

These four variations cover uncertainties arising from ME generation, merging, and

PS and were made according to recommendations from Sherpa collaborators. To

avoid introducing effects from low statistics the difference in the systematic variation

and the nominal distribution is fit linearly. The systematic uncertainty after fitting

each variation is shown in Fig. 6.26.

tt̄ modeling uncertainty

The tt̄ samples are particularly susceptible to poor generator modeling due to the

complexity of the final state and the atypical selection of phase space for top samples

entering these analyses. The nominal tt̄ sample has been generated with Powheg

and interfaced with Pythia 8 for showering, hadronization, and modeling of the

underlying event (UE).

Alternate samples have been produced to cover mis-modeling arising from the

models and tunings arising from the generation of the hard scatter, parton showering

and the hadronization model, scales used in factorization and renormalization. Three

samples have been used to evaluate the sensitivity and introduce the necessary degrees

of freedom into the final fit.
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Figure 6.26: Systematic uncertainty associated with the modeling of leading back-
grounds. Variations of scales used in the generation of Sherpa 2.2 samples QSF
resummation scale, CKKW merging scale, factorization scale, and renormalization
scale have similar effects for both W and Z+jets. The latter is shown.

Powheg +Pythia 8 variations Two sets of variations are produced encompassing

effects from factor of 2-variations independently applied to the factorization,

hadronization scales, and resummation damping factor (a Powheg parameter

controlling ME/PS matching) as well as initial (ISR) and final state radiation

(FSR) high and low-tunes. The high and low-tunes are determined by varying

p⊥ by factor of 2 in the dependence of the running coupling αs(p⊥). Together

variation of these parameters sufficiently cover effects regulating high-pT radia-

tion.

Pythia 8 - Herwig++ Comparison The Powheg +Herwig++ is generated

with the same setup for Powheg but with PS, hadronization, and UE pro-

vided by Herwig++.

Powheg- aMC@NLO Comparison Powheg and aMC@NLO provide alternate

techniques and tuning for the generation of MEs to NLO. The aMC@NLO+Her-
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wig++ sample is generated with MadGraph 5 aMC@NLO and interfaced

with Herwig++ for PS, hadronization, and UE modeling.

Normalization is already controlled by the TopCR and so the differences in normal-

ization of the variations do not affect the final fit, only the shape. All modeling

variations on W+jets, Z+jets, and tt̄ are applied independently on the backgrounds

and symmetrically around the nominal distribution.

Large-R Jet Uncertainties

The scales and resolutions of large-R jets are poorly constrained when compared

to other objects due to the relatively limited channels in which large-R jets can be

balanced against other well-measured particles. The derivations were discussed in

Chapter 5. This results in large uncertainties that propagate to the mass discrimi-

nants used in the signal regions shown in Fig. 6.27.
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Figure 6.27: Systematic uncertainties associated with large-R jet scales in the high-purity SR of the (a) ``qq and (c) ννqq chan-
nels. Large-R uncertainties associated with scale are provided to the analyses combining the mass scale and energy scale
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Other Systematic Uncertainty

Small-R Jets The derivation of jet uncertainties on scale and resolution was out-

lined in Chapter 5. The dependence of the leading backgrounds on the small-

R jet uncertainties on the resolved regime of the ``qq channel was shown in

Fig. 5.13 in Chapter 5 for the strongly reduced description. The jet energy

scale in the central region used for the selection of signal jets has an uncer-

tainty of 6% for pT of 25 GeV and rapidly drops to about 1% for jets in the

range 100 GeV to 1 TeV. The uncertainty on the jet resolution is under 1% for

the same range.

Luminosity Uncertainty on the integrated luminosity is 2.1% for 2015 data set and

3.7% for 2016 data set. The methods used to obtain them were discussed in

Chapter 3. The combined luminosity uncertainty for the 13.2 fb−1 in 2015+2016

is 2.8%. It is applied to all backgrounds and signal MC equally, and therefore

enters the final limit entirely unaltered as it cannot be constrained by the fitting

procedure. For the same reason it does not enter the uncertainty bands on the

fit to distributions in individual signal and control regions.

Trigger The efficiency of lepton triggers are nearly 100% in the electron channel

and 96% in the muon channel. Systematic uncertainties on the efficiency of the

electron and muon triggers are evaluated using a tag and probe method [161]

and are found to be negligible for these analyses although included in the un-

certainties associated with each lepton channel. The Emiss
T trigger efficiency is

nearly 100% in the analysis event selection and also enters negligibly into the

analysis.

Electrons Systematic uncertainties are derived from tag-and-probe studies with a

selection of Z → ee decays and J/ψ → ee, where one electron is selected

on and the other candidate probe is tested to satisfy electron selection crite-

ria [161]. The probe is used to evaluate reconstruction, identification, isolation,
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and trigger efficiencies that produce scale factors used to correct MC to data.

Uncertainties are evaluated by varying selection in the tag and probe analyses

for each study, parametrized by electron ET and η. The combined uncertainty

for reconstruction and identification of electrons is about ∼ 1% at 25 GeV and

below 0.5% above 30 GeV. The uncertainties for isolation and trigger efficiency

are < 1%.

The calibration of electrons undergoes a similar procedure as that of jets [126].

Like the JES, electron energy scale is given an in situ correction from data-

driven analysis after a MC-based calibration has been used to correct the energy

scale. Systematic uncertainties are derived on the correction in an analogous

way, benefiting from the narrow J/ψ → ee peak in the low-ET region and

otherwise using Z → ee decays. This results in very low uncertainties associated

with electron scale, ∼ 0.1%.

Muons The efficiency scale factors correcting data and MC differences are also de-

rived from studies with Z → µ+µ− in the higher-pT ranges and J/ψ → µ+µ−

in the low-pT range [127, 162]. Uncertainty on muon reconstruction efficiency

does not exceed 1% for the range considered, pT > 25 GeV. The uncertainty on

isolation is < 0.5% for the range considered as is the uncertainty on the trig-

ger efficiency. Systematic uncertainty on muons also considers sources related

to the matching of the muon track to the primary vertex for which there are

cuts on the impact parameters. And finally variations introduced on the inner

detector (ID) tracks and muon spectrometer (MS) tracks to cover uncertainty

associated with the in situ correction to muon resolution are introduced. The

muon momentum scale is known to better than 0.1%.

Emiss
T The tracking soft term (TST) scale and resolution in the perpendicular and

parallel directions have an uncertainty of about 5% [152, 153]. Uncertainties on

the TST can only affect the ννqq channel.
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Flavor Tagging Uncertainties on the tagging efficiency of light, b, and c-jets af-

ter undergoing a weak eigenvector reduction similar to that discussed on the

JES [163] result together in ∼ 10% uncertainty affecting the Z + bb sample in

the tagged category of the ZZ-resonance searches.

Pile-up An uncertainty on the re-weighting of the MC samples by the NPV distri-

bution to match the data set is included.

Signal Uncertainties Uncertainties associated with the PDF used to generate the

signals in the analysis are generated by internal error sets in the PDF set and

by taking the difference between PDF sets.

For the heavy Higgs signal, 52 internal variations in the CT10 PDF are

used. The difference between the CT10 PDF and the the NNPDF30 and

MSTW2008NLO is also studied. All uncertainties expressed on the m``jj distri-

bution sum in quadrature to about 1%. A scale uncertainty of ±1% for the full

range of heavy Higgs mass is used–only the magnitude of the variation affects

the narrow resonance.

The Graviton and HVT signal samples use the NNPDF23LO PDF set, which

has an ensemble of 100 error PDFs. These variations added in quadrature

to uncertainty based on comparison to Cteq6L1 and MSTW2008LO PDF sets

suggest the 1% uncertainty applied to heavy Higgs samples is an accurate value

for the W ′ and Graviton samples.

Uncertainty associated with Initial- and final-state gluon radiation (ISR/FSR)

modeling is determined from systematic variations in Pythia 8 provided with

the tunes used.

For Higgs signal samples, the AZNLO tune is used with Powheg+Pythia.

AZNLO provides a set of 2 eigenvector variations. To cover the full range of PS

uncertainties and uncertainties related to multiple parton interactions (MPI),

the FSR scale is varied up and down by a factor of 2, along with variations of
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the MPI cut-off.

Graviton and HVT signal samples use the A14 tune used with MadGraph +

Pythia. The A14 tune optimizes 10 parameters corresponding to FSR, ISR

and MPI which leads to 10 up and down variations. The ten up/down vari-

ations are reduced to the following: one for UE effects, one for jet structure

effects, and three to cover aspects related to extra jet production. Again, since

uncertainties are applied to narrow resonances, a variation capturing the mag-

nitudes of combining these variations in quadrature is used. A flat uncertainty

of 3% for Higgs signals and 5% for Graviton and HVT signals are used.

Summary

The impact of systematic uncertainties on the analysis is certainly not identical to

their contribution prior to fitting all the regions. This section introduces groups of

systematic uncertainties, and ranks them according to their influence on the con-

straint of the signal strength in the fit.

Many individual uncertainties undergo eigenvalue reductions or combinations as-

suming full correlation or no correlation prior to reaching the analyses. Furthermore,

they are determined and grouped in various studies of performance resulting correla-

tions of uncertainties, which can be non-trivial in a given analysis. This means that

interpreting the impact of a given source of systematic uncertainty often means taking

considering uncertainties in a logical group or after correlations have been studied.

To evaluate the impact of various uncertainties independent of the details of the

fitting procedure or precise formulation of NPs, groups are identified based on the

way they enter the analysis or on the general source. The final constraint on the

signal presence is unsurprisingly dominated by the limited quantity of data taken in

an early analysis. The amount of simulated MC often enters as a significant source

of uncertainty. Care has been taken in analysis design never to allow this to be an
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overwhelmingly dominant source of uncertainty, for example in the use of the truth

tagging technique in the tagged selections of the ``qq channel. However, being overly

generous in the MC production is not in the budget priorities of ATLAS. Therefore

the contribution to total uncertainty from MC statistics is often only just below the

sum quadrature of other systematic uncertainty in the final analysis.

The focus here is to understand the greatest contributors to systematic uncertainty

beside those mentioned that are purely statistical. The following discussion references

the ggF channel of the heavy Higgs analysis. The groups considered by category are:

Jets Uncertainties on jets are in four groups, split between large-R and small-R jets

and between all uncertainties on scale and on resolution. For large-R jets that

includes the calibrated energy, mass, and D
(β=1)
2 .

Leptons Uncertainties are split between muons and electrons, combining all effi-

ciency and scale uncertainties for each.

Background Modeling All background modeling systematics are combined from

all categories in each channel.

Background Normalization All free-floating normalizations on backgrounds con-

strained only by fit to all regions are combined.

Single NPs Luminosity and signal modeling are considered alone. One expects the

nominal value entering the analysis to be expressed after the fit at a similar level

as a ratio of the total uncertainty for signal modeling because it is only applied

to signal. Likewise, the luminosity should be expressed mostly unchanged after

the fit since it is applied to all backgrounds and signal.

Evaluating the contribution of a group of uncertainties to the total uncertainty is

done by fitting with and without them. The added degrees of freedom from a given set

of uncertainties increase the width of the local likelihood minima in the signal mag-

nitude around the best fit value. By subtracting the width in quadrature determined

with and without the set of NPs the associated uncertainty is determined taking into
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Unc. on µ,ggF mH = 700GeV
Large-R Jet Resolution 18%

Large-R Jet Scale 13%
Alpha Modeling 9%

Background Normalization 6%
Electrons 6%
Muons 6%

Table 6.8: The dominant uncertainties on the ggF scalar signal hypothesis, MH =
700GeV . The numbers represent the uncertainty relative to the total uncertainty.
on the determination of signal cross section, µ.

full account the correlations within the set and within all other uncertainties.

A signal strength of 20 fb is injected into the MC background simulation at a

heavy Higgs mass mH = 700 GeV. The leading sources of systematic uncertainty

are summarized in Table 6.8 for the ``qq channel. Dominating the total systematic

uncertainty are uncertainties related to large-R jets with background modeling also

being a large contributor. At higher signal masses the uncertainty is even more de-

pendent on large-R jet sources and at the lowest mass values in the range, small-R

jets contribute significantly. The uncertainty in Table 6.8 is expressed as a fraction

of the total uncertainty including data statistics. All systematic sources taken to-

gether are only about half the total width. The uncertainty entering the search with

13.2 fb−1of data is therefore dominated by limited statistics and not by systematic

sources. The leading source of systematic uncertainty is similarly dominated large-R

jet scale and resolution in the ννqq channel. Modeling is sub-dominant with roughly

similar proportions in the final fit uncertainty.

179



This page intentionally left blank.



Chapter 7

Results

This chapter presents the results for the searches for the heavy Higgs, W ′, and gravi-

ton. Section 7.1 introduces the general approach taken in statistical modeling. Sec-

tion 7.2 describes the methods used to test the signal hypothesis and set confidence

limits. Section 7.3 describes the specific treatment of nuisance parameters and free

parameters in the ``qq and ννqq channel fits. The limits set on the production

cross section times branching ratio for each of the models considered are presented

in Secs. 7.4 and 7.5.

A strictly frequentist approach is taken in the statistical interpretation of the

data. A model is constructed encapsulating uncertainty from prior measurements

and modeled distributions. The observed data is then compared to the distribution

of sampling outcomes from the model to understand the significance of the data. The

strategy used is inspired from statistical studies at ATLAS in Run 1 involving searches

for the SM Higgs that have undergone some of the greatest scrutiny and benefited

from abundant manpower and refinement. The statistical combination of several sub-

channels in these analyses outlined in Chapter 6 is similar to the problem taken up in

the combination of independent channels in the search for the SM Higgs [164]1. The

official results of this thesis are presented separately in the ``qq and ννqq channels

in the form in which they have been made public [150], but both models have been

written by the author and combined personally in anticipation of future releases of

1Where possible the notation in the following discussion has been matched to this widely read
study.
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combined results in later Run 2 studies.

7.1 Statistical Model

This analysis combines several sub-channels indexed by c whose event selections

are split on the selection of jets. Sub-channels in the ``qq channel make use the

m``jj(m``J) 4(3)-body mass distribution and sub-channels in the ννqq channel make

use of the MT distribution of signal candidates. The variable x is used in the follow-

ing general discussion to represent both discriminants and the associated probability

density function (PDF) is written f(x|α) with α representing both the theoretical

parameters like the signal mass and the nuisance parameters (NP) incorporating sys-

tematic uncertainties.

The model desired expresses the probability for obtaining n events in a given

selection where the discriminating variable measured in event e is xe ∈ {x1, . . . , xn} =

X . The number of predicted events ν = ν(α) is parametrized by α. The Poisson

distribution2 provides the correct distribution associated with counting. Expressed

as the probability of repeatedly sampling the PDF, the common expression for the

marked Poisson model is obtained,

f(X|α) = Pois(n|ν(α))
n∏

e=1

f(xe|α). (7.1)

The PDF f(x|α) is the weighted sum of the individual processes taken incoherently,

for example as it was shown (MC-sampled) in the control regions with the best fit

values and weights applied, Figs. 6.16, 6.17, 6.15, 6.18, 6.22, 6.23, 6.24 in Chapter 6,

ν(α)f(X|α) =
∑

k∈processes

νk(α)fk(X|α). (7.2)

The fit is made to all sub-channels (all signal and background regions) simultane-

ously, resulting in a single expression using all available data, Xtot = {X1, . . . ,Xm},

2Pois = νne−µ/n!
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where m is the number of regions/sub-channels in the analysis. One works with the

PDF as a whole then,

ftot(X|α) =
m∏
c=1

[
Pois(nc|νc(α))

nc∏
e=1

fc(xce|α)
]
. (7.3)

Equation 7.3 is interpreted as a likelihood L(α) if X is given. The the usual maximum

log-likelihood is then,

− lnL(µ) = ν(α) + lnn!−
n∑

e=1

ln[ν(α)]. (7.4)

The distributions Xc are binned in these analyses, so Eq. 7.2 can be explicitly

stated in terms of individual bins b and their predicted number of events νb(α) (ν(α) =∑n
b∈bins νb(α)) to provide the clearest understanding of the model implemented,

f({nb}|α) = Pois(n|ν(α))
∏

b∈bins

νb(α)

ν(α)
(7.5)

The parameter of interest is the signal strength µ which is a scale factor defining

the total signal cross section. A µ = 0 indicates there is no presence of signal. The

signal PDF is parametrized by the signal mass mH (or mW ′ or mG) and the signal

and backgrounds are affected by the set of NPs denoted by θ. The general parameter

set entering the analysis is α = (µ,mH , θ).

Auxiliary Measurements

NPs were introduced in Chapter 5 where they were derived from uncertainties enter-

ing the in situ calibration. They depict any source of uncertainty in the fit including

background normalization, reconstruction efficiencies, scales and resolutions, lumi-

nosity, and theoretical modeling. A NP communicates an auxiliary measurement of

a parameter αp ∈ θ that was formulated as a likelihood fit (or some best fit) to

make a measurement, typically on data in ATLAS through calibrations, efficiency, or

validation studies,

faux(Xaux|αp, α
′). (7.6)
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Unless the auxiliary measurement is obtained through a control region (able to be

identically represented as a sub-channel of the analysis) an estimate of αp is provided

by the auxiliary measurement ap along with a standard error σp resulting in the

approximation,

fp(ap|αp, σp), (7.7)

known as a constraint term. A Gaussian is typically used to communicate the con-

straint term to the analysis, fp(ap|αp, σp) = gauss(ap|αp, σp). However, this is an un-

natural choice for some parameters which are intrinsically positive such as those that

are normalization factors and scale uncertainties. In these cases a positive-definite

distribution is used to model the constraint term, the log-normal distribution:

fp(ap|αp) =
1√

2πap ln(1 + σp/ap)
exp

[
− ln2(ap/αp)

2 ln2(1 + σp/ap)

]
, (7.8)

where σp/ap is the relative uncertainty from the observed auxiliary measurement.

Constraint terms are provided to the analysis as up and down variations, αp =

ap ± σp, and are in general not symmetric. The binned parametric PDF f(x|α) is

formed by using a piecewise exponential function [165] to interpolate between the up

and down variations due to the constraint term in each bin. A maximum likelihood

fit in the full parameter space can obtain a continuous value from the provision of

only an up and down variation to the analysis in this way. The set of NPs constrained

by auxiliary measurements are known as global observables G.

Uncertainty associated with limited MC statistics enter as bin-by-bin scale factors

labeled γcb. Also encompassed in this bin-by-bin parameter are uncertainties entering

only as bin-to-bin shape uncertainties within a given sub-channel. Luminosity enters

as a global constraint term, G(L0|λ, σL). Unconstrained normalization factors enter

as a product φck parametrized by sub-channel c and process k.

φck =
∏
p∈N

φp, (7.9)
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where N is the set of all unconstrained factors on given sample in given channel.

There are also normalization constraints on samples whose normalization has been

determined from other studies, ηk. Most importantly are the fully parametrized

sample histograms σckb built from the nominal samples and interpolation between

the full up and down NP variations αp. The expected number of events in a given

bin can be broken down into these components,

νcb(φc, αp, γcb) =
∑

k∈samples

λγcbkφck(α)ηck(α)σckb. (7.10)

The complete description of the fit as the likelihood product over bins is then,

ftot(ncb, ap|φc, αp, γcb) =
∏

c∈sub-channels

∏
b∈bins

Pois(ncb|νcb)·G(L0|λ, σL)·
∏

p∈S,−

fp(ap|αp, σp).

(7.11)

7.2 Statistical Methods

The following builds the method for calculating p-values and translating them into

limits set on signal cross sections. The method for calculating p-values is based on

the profile likelihood ratio test statistic. The complete model, Eq. 7.11, is interpreted

as a likelihood function by fixing the data set taken,

L(µ, θ;mH ,Xtot,G) = ftot(Xtot,G|µ,mH , θ), (7.12)

or in short L(µ, θ).

The profile likelihood ratio λ(µ) is defined as the ratio of the maximum likelihood

of the fit under two conditions,

λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)
(7.13)

The values µ̂ and θ̂ in the denominator are defined to be those that maximize the

likelihood function L(µ, θ). The conditional maximum likelihood function L(µ̂, θ̂)
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appearing in the numerator is the value of θ that maximizes the likelihood function

when µ is fixed. The valid range of interpretation for µ in these searches is only in

µ ≥ 0 range, but one allows µ to be negative for at least two reasons:

1. Sampling in the background-only case will produce values of µ̂ that are dis-

tributed around µ = 0 and therefore in practice one expects to observe this

result half the time in a number of independent tests. The scan of the sig-

nal mass parameter in these analyses provides these multiple independent tests

and one expects the observed confidence limits to fluctuate around the expected

limits.

2. p-values larger than 50% have a clear statistical interpretation and provide a

confidence interval for µ no matter if µ̂ < 0. A deficit with large statistical

significance may indicate a need to re-evaluate the modeling of backgrounds.

A value of µ̂ < 0 indicates a deficit of expected events, which is not a problem.

Enforcing µ̂ ≥ 0 is only done in the calculation of the likelihood ratio, where the

likelihood calculated in the denominator saturates at µ̂ = 0, giving,

λ̃(µ) =


L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0

L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0

(7.14)

A test statistic is used to characterize the significance of the hypothesis that signal

events produced at a rate µ from the alternate hypothesis that they are produced at

different rate µ′. It is defined with the log of the likelihood ratio λ̃. An added sign is

introduced to retain p-values larger than 50%, giving the definition,

q̃µ =


−2 ln λ̃ µ̂ ≥ 0

+2 ln λ̃ µ̂ < 0

(7.15)

In practice one varies the free parameter µ with µ′ = µ̂ for µ̂ ≥ 0 and 0 otherwise.
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CLs Technique

Upper limits on the signal presence µ are calculated with the CLs procedure [166].

CLs here utilizes the the PDF of the test statistic f(q̃µ|µ′,mH , θ) to determine p-

values, obtained from the upper tail of the distribution. The p-value based on the

observed distribution is sought,

pµ =

∫ ∞

q̃µ,obs

f(q̃µ|µ,mH ,
ˆ̂
θ(µ, obs))dq̃µ. (7.16)

The conditional maximum likelihood estimate
ˆ̂
θ(µ, pbs) is made with observed data.

The test statistic q̃µ considers the data X and global observables G to be measured

quantities that would obtain different values in repetition of the experiment according

to the complete model Eq. 7.11. The limit is calculated with the quantity CLs, defined

as the ratio,

CLs(µ) =
pµ

1− pb
, (7.17)

where the p-value pb is the p-value derived from the background-only hypothesis,

pb = 1−
∫ ∞

q̃µ,obs

f(q̃µ|0,mH ,
ˆ̂
θ(µ = 0, obs))dq̃µ. (7.18)

The CLs upper limit on µ is obtained by solving CLs(µup) = 5%. A value of µ > µup

is considered to be excluded with 95% confidence by the data.

Expected Limits

The upper-limit determined from data is compared to the median upper limit ex-

pected from the background-only hypothesis. The expected upper limit is defined

f(µup|0,mH ,
ˆ̂
θ(µ = 0, obs)), so it is dependent on observed data through the con-

strained NPs assuming µ = 0. The expected limits are expressed with bands repre-

senting ±1, 2σ range implying in multiple retrials the evaluation of the expected limit

would be distributed accordingly. The ranges are determined,∫ µup±1σ

0

f(µup|0,mH ,
ˆ̂
θ(µ = 0, obs))dµup = Φ(±1), (7.19)
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where Φ is the normal curve cumulative density function. The mean and variance of

the expected limit does not need to be determined by an ensemble of simulated data

sets. Rather, a single representative data set referred to as the “Asimov” data set is

used to obtain the expected µ̂ and its variance. A formal mathematical justification

for use of the Asimov data set can be found here [167]. The Asimov data set obtains

exactly the expected number of events in every bin determined by the model with

the nominal NPs–this is known as the asymptotic limit with zero fluctuations. The

test statistic evaluated on the Asimov data set q̃µ,A is enough to determine the upper

limits and estimate the variance of µ̂ around the true value µ′, σ2
µ′ . The expected

upper limit is determined as,

CLs = α = 0.05 =
1− Φ(

√
q̃µ)

Φ(
√
q̃µ,A −

√
q̃µ)

(7.20)

The estimate of variance is given by,

σµ′ ≈ µ− µ′√
q̃µ,A

. (7.21)

and the ±Nσ expected error bands are,

µup+Nσ = σ · (Φ−1(1− αΦ(N)) +N). (7.22)

Significance

The significance of an excess expresses the probability of observing a larger µ̂ given

the background-only hypothesis,

p0 =

∫ ∞

q̃µ=0,obs

f(q̃µ=0|0,mH ,
ˆ̂
θ(µ = 0, obs))dq̃0. (7.23)

The two p-values p0 and pb differ only in that the value of µ is fixed to 0 in λ̃(µ) to

obtain the significance. This is optimal if the intent is to exclude the background-only

hypothesis, as this fixes the numerator of the likelihood ratio to be evaluated given

the data with
ˆ̂
θ(µ = 0).
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Look-elsewhere effect

Searches are made with a scan over a large signal mass range where for each signal

mass a test is made to determine the significance. The greater number of independent

tests made, the larger the chance to observe spuriously a significant result. This

should reduce the significance of the find–this is known as the “look elsewhere effect.”

Values of p0 that do not take into account the global scope of the search are referred

to as local. After correction for the look elsewhere effect, the p-value is referred to as

global. Making this correction is not as simple as considering the number of signal

mass points in the search, because the width of the signal is not taken into account.

A procedure is used to estimate the number of independent trials which counts the

average number of up crossings of q̃µ=0(mH), the likelihood ratio, at a lower threshold

over the search range [168]. The global test statistic is associated with the signal mass

value m̂H obtaining the maximum value of the test statistic in the search in the full

range, max[q̃µ=0(mH)]. The average number of up-crossings for two values u and u0

are related statistically,

〈Nu〉 = 〈Nu0〉e−(u−u0)/2, (7.24)

so an estimate for the number of up-crossings of the high level u can be determined

by counting the number at the lower level u0. This allows the highest local p-value

to obtain a factor reducing it to represent the p-value for the global test.

7.3 Implementation

This section outlines the details of the specific implementation of the statistical

analysis. Equation 7.11 allows a sophisticated and flexible treatment of NPs in the

fit. The organization of the floating normalization parameters in the fit is outlined

along with details of the complete list of NPs entering the fit. The statistical method

for the smoothing of noisy NPs is discussed, as well as a number of other minor
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Region
ννqq channel

Merged
high-purity low-purity

SR MT MT

ZCR MT MT

WCR MT MT

TopCR MT MT

Table 7.1: Summary of regions entering the binned profile likelihood fit of the
ννqq channel. Regions of the fit are identical in all three searches for the H,W ′,
and G.

treatments to MC binned distributions and NPs to enable an efficient fit. Studies

have been extensively performed by the author to validate the choices made in the

implementation but are beyond the interest of the reader. The focus here will be to

concisely define the fit in its final form.

The statistical treatment in these analyses uses the combined profile likelihood fit

to binned discriminants in all categories and regions simultaneously. The ννqq and

``qq channels are not combined in this presentation and each channel has a separate

fit.

Floating Normalization

All major backgrounds in each of the searches are provided with a designated CR

intended to constrain the floating normalization factors φck.

In the ννqq channel the structure of the fit is identical in the heavy Higgs, HVT

W ′, and graviton searches. Table 7.1 shows the regions entering the ννqq fit and the

discriminant used in each region.

There are four floating parameters in the fit in the ννqq channel:

Signal strength µ the parameter of interest, applied to the signal sample is corre-

lated between all regions of the fit.

Z+jets norm Applied to the Z+jets sample, correlated in every region.
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Cat. Region
llqq channel

Resolved Merged
untagged tagged high-purity low-purity

ggF
SR m``jj m``jj m``J m``J

ZCR m``jj m``jj m``J m``J

TopCR — m``jj — —

VBF
SR m``jj m``J m``J

ZCR m``jj m``J m``J

Table 7.2: Summary of the regions entering the likelihood fit and the distribution
used in each. Rows with “—” indicate that the region is not included in the fit. “SR”
stands for the signal regions and “CR” for the control regions.

W+jets norm Applied to the W+jets sample, correlated in every region.

Top norm Applied to the tt̄ samples, correlated in every region.

The choice of this scheme was made over another reasonable choice to provide indi-

vidual normalizations to the high-purity and low-purity regions, which would result

in additional three NPs. Agreement in the D
(β=1)
2 variable is found to be extremely

good so there is no reason to split the background normalizations between the high

and low-purity categories as it turns out. It was tested to ensure that fitting in

the case of a split between high and low-purity regions would result in agreement

between normalization factors obtained on Z+jets, W+jets, and tt̄ samples. They

were found to agree well within their respective uncertainties. A single normalization

parameter applied to the sample as a whole results in a lower statistical uncertainty

in constraining the normalization of the sample.

The regions entering the fit in the ``qq channel are dependent on the search. The

most complex of which is the heavy Higgs search. Table 7.2 shows the regions and

discriminants entering the search for the heavy Higgs in the ggF and VBF production

channels. The other searches are reductions of the heavy Higgs scheme. There are

seven floating normalization parameters in the heavy Higgs search:

Signal strength µggF the parameter of interest in setting limits on the ggF pro-
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duction, applied to the ggF signal sample in all regions of the analysis including

those with VBF-tagged jets.

Signal strength µV BF the parameter of interest in setting limits on the VBF pro-

duction, applied to the VBF signal sample in all regions of the analysis including

those entering the ggF category of the analysis.

Z + l norm (resolved) factor applied to the Z + l sample to all regions in the

resolved regime including regions in the VBF-tagged category.

Z + b norm (resolved) factor applied to the Z + bb sample in all regions in the

resolved regime including regions in VBF-tagged category.

Z+jets norm (merged) factor applied to all Z + jets samples in all regions of the

merged regime including those with VBF-tagged jets.

Top norm (resolved) factor applied to the tt̄ sample in all regions of the resolved

regime including the VBF category.

Z+jets VBF/ggF ratio Due to the less well-modeled Z + 4 jets phase space in

the MC simulation, an effect clearly visible in the distributions of the VBF-

tag criteria, the VBF-tag cuts have different efficiency in data and MC. The

implicit assumption is that the differences in distributions between data and

MC of the additional jets on which the VBF-tag cuts are made do not affect

notably the two hard central jets entering the signal mass windows and signal

discriminant. If this is the case, one additional scale factor applied to all Z+jets

samples in all VBF-tagged regions to compensate for the difference in efficiency

will suffice. Multiple schemes were tested to check the validity of this assump-

tion and all were found to be in agreement (although some only just). Given

the limited MC statistics entering the VBF channels and the large modeling

uncertainties applied to the VBF signal regions from the α-ratio a single pa-

rameter is found to be optimal even if there is some evidence that it is a slight

under-parametrization. The value of the VBF/ggF ratio is not expected to be
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consistent with 1.

The resolved analysis keeps track of each of the Z+2 jets products by the flavor

of each jet produced in association with the neutral vector boson. The background

is dominated in the tagged category by Z produced in association with two b-jets.

The background in the untagged category is dominated by Z produced in association

with two light-jets. The analysis can constrain tightly the normalization of both these

backgrounds from the resolved ZCRs.

The RS graviton search is made only in the ggF channel. There is no identifying

of VBF-tag jets and all events passing the signal criteria enter the ggF channels,

but it is otherwise identical in structure. There is consequently no VBF/ggF ratio

parameter and no µV BF parameter.

The HVTW ′ search selects on the hadronic decay of theW boson. Consequently,

the tagged and untagged categories of the resolved regime are unified. The Z + l and

Z + b normalization factors are replaced with a single Z+jets normalization applied

to all regions of the resolved regime. The structure of normalization parameters is

otherwise identical to the RS graviton search.

Nuisance parameters with prior constraint

Nuisance parameters constrained by auxiliary measurements entering the analysis be-

long to three categories: full up/down NPs entering the parametrization of the sample

histogram αp, sample normalization constraints determined by outside measurements

ηk, and shape-only parameters affecting the distribution shape within a given region

γcb.

Many of the important systematic uncertainties and their sources were discussed

in Chapter 6. Here the NPs will be be summarized as they enter the fit. Some

less significant sources are introduced without previous mention–in all cases they

have minimal impact. All NPs are expressed in both ``qq and ννqq channels except
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the modeling uncertainties. Modeling uncertainties enter the fit as a shape-only

uncertainties. This is a formality since all are applied to samples that have designated

CRs for normalization. Modeling parameters are:

``qq 7 NPs, applied independently to each of the SRs in the ggF+VBF Higgs analy-

sis. Likewise for the graviton analysis there are 4 NPs, and for the HVT analysis

there are 3. All are derived from the data-driven α-ratio technique discussed in

Chapter 6.

ννqq 11 NPs, correlated for all regions within a given sample. 3 tt̄, 4 W+jets, and 4

Z+jets NPs are derived from generator scale variations and generator-generator

comparison.

There are a number of samples that enter minimally into the analysis selections,

including single top processes, SM diboson processes, and some Z+ jj samples in the

``qq analysis where they separately enter the fit in the resolved regime. The remaining

Z+jj samples that are poorly constrained in the fit are given uncertainties from 12%

to 30% based on truth level studies between Sherpa and Alpgen +Pythia. It is

not necessary to constrain these further in the analysis due to the similar shape with

Z + ll, although it should be done in future iterations of the analysis. About 3% of

top quark background is from single-top processes. Normalization uncertainties were

obtained by varying the renormalization and factorization scales, the strong coupling

αs in showering, and the PDF eigenvectors. This results in 7% uncertainty in the

Wt-channel, 4% in the t and s-channels. The SM diboson samples WW , ZW , and

ZZ are each given a 6% uncertainty obtained from from various measurements at

ATLAS [169] and phenomenological studies [170].

The remaining NPs, discussed in Chapter 6, are the most significant and enter

the full histogram parametrization. MC statistical uncertainties are represented as

bin-by-bin uncorrelated NPs γcb. A threshold of 5% is taken on inclusion of the MC

statistical uncertainty. This threshold is standard for binned analyses in ATLAS and
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is done primarily to reduce unnecessary dimensionality in the fit.

Smoothing

Uncertainties on reconstructed objects are propagated through the analysis in two

different ways, either by shifting weights or by shifting kinematic values. For example,

uncertainties related to efficiency belong to the former. Scales and resolution belong to

the latter. In the latter case statistical uncertainty enters the NP up/down variation

in the binned distributions through migration of events in and out of the selection. In

many cases the statistical component entering the variation is a dominant component.

This effect is unphysical and given the number of NPs entering the fit creates arbitrary

DoFs that the fit exploits to match random fluctuations in data.

To overcome this problem, a histogram smoothing procedure is used that merges

consecutive bins in the MC templates. Local extrema that are not statistically signif-

icant in the up and down variation are merged until they become statistically signif-

icant given the MC statistical uncertainties. The resulting shift is applied equally to

bins that have been merged. This type of smoothing is applied to some lepton NPs

and all the jet NPs.

Signal Interpolation

Signal interpolation is performed to reduce the number of MC signals that must be

generated in the scan of a mass range. A method employing the algorithm derived

here [171] constructs a binned cumulative density function (CDF) of a signal mass in

between the signal masses of two MC generated binned CDFs. The intermediate CDF

is constructed through linear interpolation of the values obtained from a constant

sampling of CDF−1(x) for both generated samples. The interpolated normalization

of the resulting PDF is obtained by a fit to the integral of the binned histograms. As

implemented, the interpolation procedure increases the statistical uncertainty of the
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bins of the interpolated sample. This is just perceptible as bumps in the final limits

on interpolated samples because the MC signal samples are small, ∼ 104 events and

MC uncertainty enters the NPs of the fit.

Blinding

One critical aspect of a proper interpretation of frequentist analyses such as these is

to ensure that a fair roll of the die has been made. The method of a blinded search is

employed to ensure that the analysis is not manipulated to the observed data. The

necessary interpretation of the data as a sampling of a fixed distribution is then no

longer a valid one. To combat tuning the analysis to the observed data the signal

regions of the analysis are not to be observed until all aspects of the analysis have

been fixed. This includes fixing the most mundane details, including precise bin edges

for every region and the complete fitting scheme.

When ATLAS is satisfied that the data are understood in the CRs after a back-

ground only fit then the signal regions are revealed. At this point the full fit is made

and the results of the statistical analysis calculated.

7.4 Results from the ZV → ``qq search

This section presents the main results of the searches in this thesis in the ``qq channel.

Searches are made for the heavy Higgs, HVT W ′, and RS graviton. The search for

the heavy Higgs has been made allowing for an unconstrained relative production

cross section between the ggF and VBF channels.

In testing the signal hypothesis of ggFH, the VBFH signal becomes a background

present in the analysis. There is no prior constraint on the cross section of the heavy

VBF H production σVBF in the search for the heavy Higgs in the ggF category.

Luckily it is precisely the purpose of the VBF category signal regions to make this
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constraint. The three signal regions (resolved, high-purity, and low-purity) for events

with VBF-tagged jets act as control regions for the normalization of the Higgs signal

produced in the VBF production channel. While a small but non-negligible fraction of

VBF signal events enter the ggF signal regions and vice versa, the analysis constrains

the normalization of the signal in the other production channel tightly. The limits

have been shown to be independent of the presence of the other signal in the search.

The presence of the other production channel in each category of the analysis is

constrained to less than 1% that of the intended signal after fit. The searches for the

W ′ and G are made independently in their single production channel.

The results of the background-only fit to the H → ZZ search suggest an excellent

description of data by MC. The normalization factor applied to the Z+jets sample

obtains a value of 1.07 ± 0.05 in the merged regime and 1.09 ± 0.06 in the resolved

regime. The normalization of tt̄ in the resolved regime is 1.06± 0.09. These normal-

izations are obtained from the purest control regions in the analysis. Therefore, the

excellent agreement among them centered just above 1. suggests the possibility that

the integrated luminosity has been slightly underestimated. It may also be an indi-

cation of deviation of the MC k-factors being off by a few percent, although variation

would not be correlated between tt̄ and Z+jets samples. The normalization factor on

the Z → bb background is found to be 1.00±0.11. It is constrained only by the tagged

regions of the analysis. The requirement for 2 b-tags results in limited statistics. This

coupled with the significant presence of tt̄ and the tagging efficiency uncertainty limit

the degree of constraint on this background in the current configuration. The ratio

V BF/ggF applied to the Z+jets samples entering the VBF-tagged category settles

at 0.83± 0.08 in the fit. The tight constraint of this factor is an indicator that ample

data are collected in Run 2 at
√
s = 13 TeV already to provide a differential cross

section (in η, pT) of Z production processes in association with 3, 4 and possibly more

jets. Such a study would provide a valuable resource for continuing exotic searches
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Signal regions
Z+jets 576± 22 1230± 33 409± 18 19900± 140
Diboson 49± 7 51± 5 54± 6 670± 40
Top quark 4± 1 5.9± 1.0 131± 6 291± 28

Total background 629± 22 1287± 34 594± 18 20861± 140

Data 606 1270 608 20857

H (400 GeV) 1.6± 0.2 4.3± 0.7 107± 6 626± 21
H (700 GeV) 168± 4 88.2± 2.9 20.0± 1.2 71.4± 3.3
H (1600 GeV) 35.9± 0.8 24.0± 0.6 1.00± 0.09 1.60± 0.08

Table 7.3: Numbers of events predicted from background processes and observed
in the data in the four signal regions of the ggF H → ZZ → ``qq search from
the background-only fit of both signal and control regions. The numbers of signal
events expected from a Higgs boson at 400 GeV, 700 GeV, and 1600 GeV are also
shown. The signal yields are calculated assuming σ × BR values of 400 fb at 400
GeV, 100 fb at 700 GeV, and 20 fb at 1600 GeV. The uncertainties combine statistical
and systematic contributions. The background uncertainties are posterior to the fit.

and an important constraint for generators.

The modeling uncertainties provided by the α-ratio technique individually to each

SR are found to be distributed within ±1σ of their nominal value. This indicates that

shape as well as normalization has been well-modeled in each of the signal regions–

one would not be surprised to find the α-ratio NPs pulled to +1σ considering their

interpretation. They appear to be randomly distributed about 0, four above and

three below.

The number of events in the SRs of the ggF category for the fit under the

background-only hypothesis is shown in Table 7.3. The level of agreement found

in the predicted and observed backgrounds is 1σ. Taken in context with the observed

agreement in the CRs, this essentially indicates that modeling of the dijet mass dis-

tribution is adequate to the level of accuracy necessary to support the fundamental

strategy of using the side-bands of the dijet mass to normalize the Z+jets back-

ground in the SR. Uncertainty associated with modeling does enter the dijet mass

distribution through jet uncertainties. The distributions of the final discriminant in
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the resolved SRs of the ggF category are found in Fig. 7.1. The final discriminants

in the SRs of merged regime of the ggF category are in Fig. 7.2. No large deviations

from the predicted behavior of the distributions is observed in either the resolved

or merged regimes. The largest excess is observed in the untagged category of the

resolved regime at mass of approximately 500 GeV. The corresponding maximum in

q̃0 is determined to have a local significance of 2.7σ and a global significance of 1.4σ.

The distribution of the final discriminant in the resolved SR in the VBF category

is shown in Fig. 7.4. The merged SRs of the VBF category are shown in Fig. 7.3. The

data and MC agree well after the fit and there are no significant excesses. The first

bin of Fig. 7.4 has a high pre-fit value–this occurred from being in a transitional pT

region of the MC Z+jets description where only a couple MC events were simulated

and given very high weights. The associated MC statistical uncertainty. was ∼ 50%

before fit and is constrained afterward.

Distributions of the final discriminant in the SRs of the HVT W ′ search are found

in the Appendix. There are no major excesses observed in the data. The data at

m``J of 1200 are in slight excess (obtaining a global significance of 1.3σ), which was

also apparent in the Higgs search although less significant there. The Appendix also

includes the fit ZCR distributions in the W ′ search.

Distributions of the final discriminant in the SRs of the RS graviton search are in

the Appendix along with the ZCRs. No major excesses are observed, although several

of the same local features are apparent due to the similarity between analyses. The

deficit at a mass mG = 850, visible in the merged SRs was only just apparent in

the W ′ and Higgs searches but is rather notable here. Due to the wide mass range

scanned in the searches it is not of great concern to see such a feature but warrants

attention and quantification. The deficit has a global significance of 2.8σ. With the

ongoing collection of data at ATLAS, if it is representative of a real mis-modeling or

somehow an interference term it will grow in significance in 2017.
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Figure 7.1: Data and MC comparison in the (a) tagged and (b) untagged signal regions in the final discriminant m``jj for the
ggF H → ZZ → ``qq search. The MC distribution is shown after final fit to all regions under the background-only hypothesis.
Uncertainties shown in (diagonal lines) express the ±1σ width of the posterior likelihood minimum. Signals are shown in (red)
with mass mH = 700 GeV and a cross section of σ × BR(H → ZZ) = 100 fb.
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Figure 7.2: Data and MC comparison in the (a) high-purity and (b) low purity signal regions in the final discriminant m``J for
the ggF H → ZZ → ``qq search. The MC distribution is shown after final fit to all regions under the background-only
hypothesis. Uncertainties shown in (diagonal lines) express the ±1σ width of the posterior likelihood minimum. Signals are
shown in (red) with mass mH = 1600 GeV and a cross section of σ × BR(H → ZZ) = 10 fb.
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Figure 7.3: Data and MC comparison in the (a) high-purity and (b) low purity signal regions in the final discriminant m``J for
the VBF H → ZZ → ``qq search. The MC distribution is shown after final fit to all regions under the background-only
hypothesis. Uncertainties shown in (diagonal lines) express the ±1σ width of posterior likelihood minimum. Signals are shown
in (red) with mass mH = 1600 GeV and a cross section of σ × BR(H → ZZ) = 10 fb.
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Figure 7.4: Data and MC comparison in the resolved signal region in the final dis-
criminant m``jj for the VBF H → ZZ → ``qq search. The MC distribution is
shown after final fit to all regions under the background-only hypothesis. Uncer-
tainties shown in (diagonal lines) express the ±1σ width of the posterior likelihood
minimum. Signals are shown in (red) with mass mH = 700 GeV and a cross section
of σ × BR(H → ZZ) = 100 fb.

The absence of a clear presence of signal indicates that an interpretation of results

should follow with constraint on the production cross sections of the heavy resonances

decaying to ZV pairs. Exclusion limits are calculated with the modified frequentist

method [172] CLs using the q̃µ test statistic in the asymptotic approximation [173,

174] as detailed in Sec. 7.2. The observed and expected 95% confidence level (CL)

upper limits on σ× BR as functions of the resonance mass are shown in Fig. 7.5 for

the Higgs search. Fig. 7.5 shows the upper limit for σ×BR →ZZ on the (a) the ggF

production and (b) the VBF production for the narrow width heavy Higgs. The mass

range searched is between 300− 3000 GeV for H → ZZ of ggF and VBF processes.

The mass range searched for the HVTW ′ → ZW and RS graviton G∗ → ZZ signals

is from 500 − 5000 GeV. Fig. 7.6 gives the upper limit for (a) σ × BR →WZ of the
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W ′ and (b) σ × BR →ZZ for the graviton.

A breakdown of the limits set by each of the SRs in the ggF H analysis is shown

in Fig. 7.7. In the low-mass region the limit set is dominated by the untagged cate-

gory. At mH = 600 GeV the high-purity and untagged categories contribute roughly

equally to limit and the range 600 < mH < 3000 is dominated by the merged regime.

Addition of the low-purity category improves the limit by roughly 10% with slightly

more influence at the highest masses. The tagged category improves the resolved

limit to a similar degree.

To evaluate the sensitivity of the limit to the theoretical width of the resonance,

large width samples were studied. This study was made by the author at an earlier

date using only 2015 data [28], but the result is directly applicable to the current

study. Figure 7.8 shows the limits set on 3.2 fb−1collected in 2015 for scalar signals

with a width of 0,5,10, and 15% the resonance mass. The effect of width on the

expected limits should be directly applicable to the current analysis. To summarize,

the strength of the limit is reduced about 30% in going from 0 to 5% intrinsic width

ΓH/mH and 50% for a 15% ΓH/mH . This study is not necessary for the ννqq channel

because the width of ννqq final discriminant MT is 25-30%.

The observed limit on σ × BR varies from 1.28 (0.6) pb at 300 GeV to 6.2 (5.2)

fb at 3000 GeV for ggF (VBF) H → ZZ , from 1.10 pb at 500 GeV to 13.9 fb at

5000 GeV for HVT W ′ → ZW and from 730 fb at 500 GeV to 6.7 fb at 5000 GeV

for RS graviton G∗ → ZZ. These limits are considerably tighter than those of early

searches [25, 28]. Theoretical predictions for σ × BR of the HVT W ′ → ZW and

RS graviton G∗ → ZZ are overlaid in Fig. 7.6 (a and b) respectively. The observed

(expected) limits exclude the HVT W ′ lighter than 2225 (2075) GeV and the RS

graviton lighter than 1035 (1045) GeV.
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Figure 7.5: Observed and expected 95% CL upper limits on the production cross section of a heavy scalar resonance in the
narrow width approximation at

√
s = 13 TeV times its decay branching ratio to ZZ for (a) ggF H → ZZ production channel

and (b) VBF H → ZZ production channel as a function of the resonance mass. Limits are obtained from signal MC samples
produced in 100 GeV steps and interpolated in 20 GeV steps in between. The green (inner) and yellow (outer) bands represent
±1σ and ±2σ uncertainty on the expected limits.

205



 [GeV]
W’

 m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
R

(W
Z

) 
[p

b
]

×
(H

V
T

 W
’)

σ
 9

5
%

 C
.L

. 
lim

it
 

3−10

2−10

1−10

1

10

Observed (CLs)
Expected (CLs)

σ 1±

σ 2±

=1
v

HVT Model A, g

llqq→WZ→HVT

PreliminaryATLAS 

1 = 13 TeV, 13.2 fbs

 [GeV]G* m

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Z
Z

) 
[p

b
]

→
B

R
(G

*
×

G
*)

→
(p

p
σ

 9
5

%
 C

.L
. 

lim
it
 

3−10

2−10

1−10

1

10

Observed (CLs)
Expected (CLs)

σ 1±

σ 2±

=1PIMBulk RS G*, k/

llqq→ZZ→G*→pp

PreliminaryATLAS 

1 = 13 TeV, 13.2 fbs

Figure 7.6: Observed and expected 95% CL upper limits on the production cross section of a heavy resonance at
√
s = 13 TeV

times its decay branching ratio to V Z for (a) HVT W ′ → WZ and (b) RS graviton G∗ → ZZ as functions of the resonance
mass. Limits are obtained from signal MC samples produced in 100 GeV steps and interpolated in 50 GeV steps in between
through 3000 Gin samples separated by 500 GeV above that. The theoretical predictions for σ× BR as functions of resonance
mass for the HVT model A W ′ and the RS graviton with κ/M Pl = 1.0 are also shown in (a) and (b), respectively. The green
(inner) and yellow (outer) bands represent ±1σ and ±2σ uncertainty on the expected limits.
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207



 [GeV]H m

300 400 500 600 700 800 900 1000

Z
Z

) 
[p

b]
→

B
R

(H
×

H
)

→
(g

g
σ

 9
5%

 C
.L

. l
im

it 

1−10

1

10

NWA H Observed (CLs)

NWA H Expected (CLs)

 [5%] Observed (CLs)H/mHΓ

 [5%] Expected (CLs)H/mHΓ

 [10%] Observed (CLs)H/mHΓ

 [10%] Expected (CLs)H/mHΓ

 [15%] Observed (CLs)H/mHΓ

 [15%] Expected (CLs)H/mHΓ

llqq→ZZ→H

ATLAS Preliminary

-1 = 13 TeV, 3.2 fbs
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H → ZZ production channel.
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Process
Merged analysis

high-purity low-purity
Z+jets 1251 ± 56 3130 ± 79
W+jets 881 ± 45 2092 ± 75
Diboson 202 ± 14 227 ± 10
tt̄ + single top 557 ± 85 610 ± 100

Total background 2891± 50 6059 ± 76

Data 2859 6044

H (1600 GeV) 63.7± 1.9 46.2± 1.4

Table 7.4: Numbers of events predicted from background processes and observed in
the data in the signal regions of the ννqq search from the background-only fit of both
signal and control regions. The numbers of signal events expected from a Higgs boson
at 1600 GeV are also shown. The signal yields are calculated assuming σ×BR values
of 20 fb at 1600 GeV. The quoted uncertainties are the combined systematic and
statistical uncertainties after the fit. Uncertainties in the normalization of individual
backgrounds may be larger than the uncertainty on the total background due to
correlations.

7.5 Results from the ZV → ννqq search

This section presents the main results of the searches in this thesis in the ννqq channel.

Searches are made for the a heavy Higgs only in the ggF production channel, for the

HVT W ′, and for the RS graviton.

The background-only fit to the H → ZZ search reveals the excellent agreement

between data and MC prior to the application of normalization factors and pull of

nuisance parameters as it did in the ggF category of the ``qq analysis. The normal-

ization factors applied to the Z+jets, W+jets, and tt̄ are all found to be in agreement

with 1.

The number of events in the SRs for the fit under the background-only hypothesis

is shown in Table 7.3. The agreement found in the predicted and observed back-

grounds are well within the uncertainty provided by the NPs. The distributions of

the final discriminant MT in the SRs are shown in Fig. 7.9.
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Figure 7.9: Data and MC comparison in the resolved signal region in the transverse mass discriminant MT for the
ZV → ννqq searches. The MC distribution is shown after final fit to all regions under the background-only hypothesis.
Uncertainties shown in (diagonal lines) express the ±1σ width of the posterior likelihood minimum.
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samples produced in 100 GeV steps. The green (inner) and yellow (outer) bands
represent ±1σ and ±2σ uncertainty on the expected limits.

There are no large deviations up or down from the predicted behavior of the

distribution in either the high or low-purity category. Therefore exclusion limits at

the 95% confidence level are set on production cross section σ × BR for the three

signals. The observed and expected limits on the production cross-section multiplied

by the branching fraction into ZW or ZZ as a function of the resonance mass for the

heavy Higgs is shown in Fig. 7.10. The observed and expected limits on the production

cross-section multiplied by the branching fraction into ZW for the charged W ′ in the

HVT Model A, and into ZZ for the graviton model as a function of the resonance

mass is shown in Fig. 7.11.

The theoretical predictions for the HVT benchmark Model A with coupling con-

stant gV = 1 allow exclusion of mW ′ < 2400 GeV . For the graviton model the

corresponding excluded mass is mG∗ < 1100 GeV.
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Chapter 8

Conclusion

This thesis presented searches for heavy diboson resonances ZZ or ZW in final states

with Z decay to two charged leptons or two neutrinos and W/Z decay to two quarks.

The searches use data collected in pp-collisions by the ATLAS detector at LHC in

2015 and 2016, corresponding to a combined integrated luminosity of (13.2±0.4) fb−1.

The LHC was upgraded in the long shutdown from 2012-2015 prior to first colli-

sions at the unprecedented center of mass energy of
√
s = 13 TeV. A focus has been

made throughout this thesis to illustrate the evolving nature of the work at ATLAS

as Run 2 has progressed. In addition to the main topic of the thesis, the author made

substantial contributions to the data acquisition framework for the new insertable

B-layer and to the calibration of jets. Chapter 5 outlined the soon-to-be published

calibration of jets and the evaluation of their systematic uncertainties in Run 2, a

result valuable to the greater ATLAS community.

The analyses made were powerful and preliminary, relying on the increased center

of mass energy to set new limits with only a tiny fraction of the data expected to

be collected in Run 2 through 2018. The data are found to be consistent with the

background-only hypothesis and no evidence for the production of heavy resonances

is observed. In the absence of evidence of a signal, upper confidence limits at the

95%-level on the production cross section times branching ratio over a wide range of

resonance masses were set for three benchmark models: H → ZZ in models with an

extended Higgs sector, W ′ → ZW in model A of a heavy vector triplet model, and

for G∗ → ZZ in the context of the bulk Randall-Sundrum model of warped extra
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dimensions.

The theoretical predictions for the HVT benchmark Model A with coupling con-

stant gV = 1 allow exclusion of mW ′ < 2225 GeV for the ZW → ``qq search, and

mW ′ < 2400 GeV for the ZW → ννqq search. For the Graviton model the cor-

responding excluded masses are mG∗ < 1035 GeV for the ZZ → ``qq search, and

mG∗ < 1100 GeV for the ZZ → ννqq search.
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HVT W ′ Search: signal and control regions

This Appendix presents the fit control regions (Figs. 2 (a), 3) and signal regions

(Fig. 2 (b), 4) entering the search for the HVT W ′ in the ``qq channel, outlined in

Fig. 1.

Figure 1: Event categories entering the spin 1 analysis. There are 6 regions in total:
the high and low-purity merged signal regions, corresponding high and low-purity Z-
control regions, the resolved signal region, and the resolved Z-control regions . There
is one resolved top control region.
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Figure 2: Data and MC comparison in the m``jj distribution in the HVT W ′ → ZW → ``qq search of Z+jets for (a) the control
region of the resolved analysis, and (b) the m``jj final discriminate of the resolved analysis. The MC distribution is shown after
final fit to all regions under the background-only hypothesis. Uncertainties shown in (diagonal lines) express the ±1σ width of
the posterior likelihood minimum. The W ′ signal (red) is assumed to have a σ × BR(W ′ → ZW ) value of 100 fb at 700 GeV.
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Figure 3: Data and MC comparison in the m``Jdistribution in the Z+jets control regions of the HVT W ′ → ZW → ``qq
search for the (a) high-purity region and (b) low-purity regions. The MC distribution is shown after final fit to all regions under
the background-only hypothesis. Uncertainties shown in (diagonal lines) express the ±1σ width of the posterior likelihood
minimum.
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Figure 4: Data and MC comparison in the m``Jdistribution of the final discriminants of the HVT W ′ → ZW → ``qq search
for events passing all selections for the m``J distributions of the merged analysis for (a) high-purity region and (b) low-purity
region. The MC distribution is shown after final fit to all regions under the background-only hypothesis. Uncertainties shown
in (diagonal lines) express the ±1σ width of the posterior likelihood minimum. The W ′ signal (red) is assumed to have a
σ × BR(W ′ → ZW ) value of 10 fb at 1600 GeV.
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Randall Sundrum Graviton Search: signal and control

regions

This Appendix presents the fit control regions (Figs. 6, 8) and signal regions (Fig. 7,

9) entering the search for the RS graviton in the ``qq channel, outlined in Fig. 5.

Figure 5: Event categories entering the spin-2 analysis. There are 9 regions in total:
the high and low-purity merged signal regions, corresponding high and low-purity
Z-control regions, the untagged and tagged resolved signal regions, and the untagged
and tagged resolved Z-control regions. Additionally, there is one top control region.
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Figure 6: Data and MC comparison in the m``jj distribution in the Z+jets control regions of the G∗ → ZZ → ``qq search of
the resolved analysis for (a) tagged category and (b) untagged categories. The MC distribution is shown after final fit to all
regions under the background-only hypothesis. Uncertainties shown in (diagonal lines) express the ±1σ width of the posterior
likelihood minimum.
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Figure 7: Data and MC comparison in the final m``jj discriminant of the G∗ → ZZ → ``qq search in the resolved analysis
for (a) tagged category and (b) untagged categories. The graviton is shown with a σ × BR(G∗ → ZZ) value of 100 fb at
700 GeV. The MC distribution is shown after final fit to all regions under the background-only hypothesis. Uncertainties shown
in (diagonal lines) express the ±1σ width of the posterior likelihood minimum.
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Figure 8: Data and MC comparison in the m``J distributions in the merged analysis of the Z+jets control regions for the
G∗ → ZZ → ``qq search for the (a) high-purity and (b) low-purity regions. The MC distribution is shown after final fit to all
regions under the background-only hypothesis. Uncertainties shown in (diagonal lines) express the ±1σ width of the posterior
likelihood minimum.
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Figure 9: Data and MC comparison in the finalm``J discriminant of the G∗ → ZZ → ``qq search for the merged selection in the
(a) high-purity and (b) low-purity regions. The MC distribution is shown after final fit to all regions under the background-only
hypothesis. Uncertainties shown in (diagonal lines) express the ±1σ width of the posterior likelihood minimum. The graviton
signal is shown with a σ × BR(G∗ → ZZ) value of 10 fb at 1600 GeV.
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