
Approximating a Global Passive Adversary Against Tor

Sambuddho Chakravarty
Columbia University, NY
sc2516@cs.columbia.edu

Angelos Stavrou
George Mason University, VA

astavrou@gmu.edu

Angelos D. Keromytis
Columbia University, NY
angelos@cs.columbia.edu

Abstract

We present a novel, practical, and effective mecha-
nism for exposing the IP address of Tor relays, clients
and hidden services. We approximate an almost-global
passive adversary (GPA) capable of eavesdropping any-
where in the network by using LinkWidth. LinkWidth
allows network edge-attached entities to estimate the
available bandwidth in an arbitrary Internet link with-
out a cooperating peer host, router, or ISP. By modu-
lating the bandwidth of an anonymous connection (e.g.,
when the destination server or anonymous client is un-
der our control), we can observe these fluctuations as
they propagate through the Tor network and the Inter-
net to the end-user’s IP address. Our technique ex-
ploits one of the design criteria for Tor (trading off
GPA-resistance for improved latency/bandwidth over
MIXes) by allowing well-provisioned (in terms of band-
width) adversaries to effectively become GPAs.

Although timing-based attacks have been demon-
strated against non-timing-preserving anonymity net-
works, they have depended either on a global passive
adversary or on the compromise of a substantial num-
ber of Tor nodes. Our technique does not require com-
promise of any Tor nodes or collaboration of the end-
server (for some scenarios). We demonstrate the ef-
fectiveness of our approach in tracking the IP address
of Tor users in a series of experiments. Even for
an under-provisioned adversary with only few network
vantage points, we can identify the end user (IP ad-
dress)/hidden servers in many cases.

1 Introduction

Network anonymity schemes such as Tor [6] and
Tarzan [9] represent an important point in the de-
sign space, trading off resistance to specific attacks
for improved performance, improving their acceptabil-
ity by users. By design, such systems are vulnerable
to a Global Passive Adversary (GPA) that can corre-

late traffic flows seen in different links [23] by fore-
going the computation and bandwidth-heavy traffic
padding schemes typically used to thwart traffic analy-
sis [12, 13, 30]. This is considered an acceptable trade-
off for many usage scenarios: these schemes offer ad-
equate protection against all but a determined (and
possibly targeted) attack by a GPA, of which there are
very few, and who could in practice use other surveil-
lance methods.

In practice, there exist a number of attacks against
these systems that typically leverage a small num-
ber of compromised network entities to fully or par-
tially expose information about a user of these sys-
tems [1, 3, 14, 19, 31]. Despite these attacks, it is gen-
erally believed that consistent, fine-resolution tracking
of end users1 of these anonymity systems is impracti-
cal for the large majority of users and organizations.
We demonstrate that this belief is unfounded, by pre-
senting a novel and effective approach for performing
user trace-back through an anonymous circuit. For the
remainder of this paper we will focus on Tor, both for
concreteness and because of its large deployment and
user base. However, our approach is equally applicable
to other similar systems that do provide strong protec-
tion against traffic analysis.

Briefly, our approach uses LinkWidth, a novel single-
end available-bandwidth estimation tool to identify the
Tor nodes involved in a Tor circuit of interest, and
to then trace-back to the IP address of the end user
or Hidden Server. LinkWidth allows us to estimate
the available bandwidth on an arbitrary network link
without direct access either to that link itself or to an
appropriately positioned cooperating host. The Tor
nodes and the links between these and the client host
or Hidden Services are identified by using LinkWidth
to detect induced traffic fluctuations on the anonymous
connection to a server of interest. These fluctuations

1We will use the terms “user” and “end user” to refer to the
IP address of the host acting as a Tor client. Although in many
cases this can lead to the identification of a specific user/owner
of the machine, we recognize that network artifacts such as NAT
can obscure such associations.

1

can be created by the server itself (if it is cooperating
with the attacker), by a router/node close to the server
(e.g., when collaborating with the server’s ISP or oth-
erwise hijacking/compromising/legally compelling use
of such a node), or by launching a targeted network
denial of service attack against the appropriate link(s),
router(s) or the server itself.

In our experiments, we assumed that the attacker
controls either the server or the client; although any
other scheme for causing “large enough” traffic vari-
ations, as defined later in the paper, would suffice.
Our scheme enables an attacker with access only to
a few high-bandwidth edge nodes (hosts) and a map
of the network to effectively act as a global passive ad-
versary in the Tor threat model. A larger number of
distributed measurement nodes (“vantage points”) en-
ables for more complete coverage of the network links,
while high-bandwidth connectivity is needed for mea-
surement accuracy, as we describe in Section 4. We
stress that we do not assume that the attacker has ac-
cess to large numbers of routers, network infrastruc-
ture nodes (e.g., DNS or DHCP servers), or Tor nodes,
nor do we exploit software vulnerabilities that inadver-
tently expose the true network identity of the user.

We built a prototype of LinkWidth and evaluated its
effectiveness in detecting small variations in available
bandwidth in a series of experiments in a lab environ-
ment. We then used our prototype to launch a trace-
back attack against a number of connections, through
Tor, to a client or server under our control. In our
experiments, we only had access to few network van-
tage points, representing an under-provisioned adver-
sary. Even in that case, we could accurately identify
the end user in many cases. With proper process co-
ordination, a well-provisioned adversary can hope to
complete an attack in less than 20–30 minutes. Each
step of the process (sensing one link) took 25–30 sec-
onds on average, with a worst case of 50 seconds. Pos-
sible countermeasures include shorter circuit lifetimes,
limited traffic smoothing by Tor nodes, use of multiple
parallel circuits to access the same server, and prevent-
ing the use of long-lived connections. We note that the
use of longer Tor circuits does not appear to make the
attack more difficult.

The novel contributions of this paper include:

• A practical and effective attack against Tor and sim-
ilar anonymity systems. A bandwidth-provisioned ad-
versary can trace-back through a Tor circuit and ex-
pose the network identity of a Tor user or Location
Hidden Service. Using a map of the network-path, a
well-provisioned adversary, can determine the subnet-
work to which a client or Location Hidden Service be-

longs to.
• LinkWidth, a novel single-end available-bandwidth
estimation technique.
• An implementation of LinkWidth and of the mecha-
nism for performing traceback through the existing Tor
network.
• Experimental demonstration of the feasibility and ef-
fectiveness of our attack, and a first characterization of
the important parameters of our scheme and its limi-
tations.
• A discussion of possible practical countermeasures.
Report Organization We continue with an
overview of related work in attacks against Tor-like
anonymity systems and on bandwidth estimation tech-
niques, highlighting the differences with our work. Sec-
tion 4 describes LinkWidth, and its use in performing
trace-back through Tor and the Internet. We analyze
the accuracy of LinkWidth in Section 5, and provide
experimental evidence of the feasibility and effective-
ness of our attack in Sub-section 5.1. We discuss pos-
sible countermeasures in Section 6, and conclude the
paper with our plans for future work in Section 7.

2 Related Work

Onion-routing anonymizing networks [28] use multi-
hop encrypted communications to protect sender
and/or receiver anonymity. Tor extends the existing
onion routing scheme by adding support for integrity
protection, congestion control, and location-hidden ser-
vices through rendezvous points. An adversary observ-
ing all links in an onion routing network can record
arrival and departure times for all messages in the net-
work and use statistical methods to determine exactly
who is communicating with whom [22, 25, 31]. How-
ever, Tor is considered “good enough” in practice for
semi-interactive traffic, eg. web sessions, because few
entities are believed to have the ability to act as global
passive adversaries. This is precisely the assumption
that our work attacks.

Our approach uses single-ended bandwidth and
throughput estimation to expose anonymity of Tor
clients and servers. Though novel, there have been
prior efforts in using network latency to attack Tor .
Murdoch et al. [19] focus on using network latency
to determine if a relay node is a part of a specific
Tor circuit. Their method requires a server to send
pseudo-random data as fast as allowed by the under-
lying network to the victim client. The adversary uses
a modified Tor Proxy for establishing single-hop cir-
cuits (rather than the default 3 hops) through the vic-
tim Tor relay, back to itself. The corrupt server sends

2

traffic to the client having a particular “on-off” pat-
tern. The adversary attempts to observe the variation
in one-way delay through the victim Tor relay due this
induced network traffic fluctuation. Higher correlation
between these induced fluctuations and the observed
one-way latency distortions gives a better probability
that the victim Tor relay is the one which is a part
of the victims Tor circuit. This technique is however
limited to only uncovering Tor relays participating in a
Tor circuit.

Hopper et al. [14] go a step ahead and try to use
a combination of this technique and pairwise round-
trip times (RTTs) between Internet nodes as input to
statistical measures to correlate Tor nodes to proba-
ble clients. In addition, their method can be extended
to application-layer RTT estimates (rather than TCP
RTT estimates). However we argue that RTT is a tem-
poral network parameter which cannot be used as con-
stants.

Burch and Cheswick [4] proposed the use of targeted
denial of service attacks for trace-back of a DoS source
that used IP spoofing. Their approach was to cause
interference with remote routers such that, when tar-
geting the correct router/link, they would notice fluc-
tuations in the attack-DoS traffic. Using a network
map and an iterative trace-back process similar to ours,
they would eventually identify the source of a DoS, or
at least its approximate location (e.g., hosting ISP).

All such attacks require observable traffic which is
either measured offline or generated by Tor insiders.
But, there are hidden assumptions about the network
path conditions between the adversary and the re-
lay(s). These include one-way packet delays, round-
trip time, bottleneck capacity, throughput and packet
jitter, which are assumed to be either constant [14]
and/or accurately manipulated by Tor insiders [19]
that participate in the victim’s circuit. These assump-
tions are very restricting and can lead to a large number
of false positives and false negatives.

In contrast, our approach is much less invasive and
doesn’t require the inclusion of a malicious Tor re-
lays, padding, extra traffic, and nominal network con-
ditions (i.e., no congestion) and can be used to identify
not only Tor relays involved in a circuit but also spe-
cific client (in terms of their IP address). Our tech-
nique relies on measurement of available bandwidth
and/or throughput between an outsider (the GPA) to
the the IP routers and Tor relays involved in the Tor
circuit. For doing this we implemented a tool which
we call LinkWidth. LinkWidth, which emulates a TCP
Westwood sender to measure the available bandwidth
and/or throughput, requires no support from a peer.
The sender alone can be used to measure the available

bandwidth and/or throughput of the path connecting
itself to the server.

We use remotely located network vantage point(s)
to measure the fluctuations of available bandwidth/
throughput to the Tor relays and link these fluctuations
to client’s/server’s communication. Our only assump-
tion is that the vantage network point is a host that
has higher bandwidth connection compared to the path
that leads the victim client to the victim relay/router
with path bottleneck lying as close as possible to the
victim relay/router.

Our approach is that of a “real-time” eavesdropper,
equipped with a map of the Internet. He/She “traces”
bandwidth fluctuation on routers connecting a Tor re-
lay (Entry Node) to a client or hidden service. These
fluctuations are introduced by a corrupt client/server.

There may be situations where it may not be pos-
sible to probe for bandwidth fluctuation on routers;
mostly due to lack of acknowledgment reply packets.
An adversary, equipped with a map, may still learn
about possible subnetworks or Autonomous Systems
(AS) from which the anonymous traffic is originat-
ing. Assuming the IP route between the anonymous
client/server and his/her Entry Node stays fixed for
most “large” duration, our technique can be used to
determine subnetwork or AS to which a client/server
belongs to with high probability.

Previous work also disregarded traffic filtering and
shaping either at the end hosts or at network edges.
Our scheme uses TCP packets to probe the link capac-
ity/throughput. Where TCP is filtered or rate-limited,
we emulate the same behavior using ICMP. Unlike pre-
vious work, we assume least control over various net-
work elements. All such traffic analysis attacks may fail
if the Tor relays perform traffic engineering by control-
ling the outgoing traffic rate and burst length. This is
discussed at the end of this paper.

2.1 Bandwidth Estimation

Prior research in bandwidth measurement has taken
two major forms [24]. One focuses purely on the mea-
surement of bottleneck bandwidth for IP payload. Ex-
amples include Pathchar [16], Pathrate [7] and Pchar
[8]. These techniques rely on the Packet Pair Tech-
nique [17]. A pair of packets, sent back-to-back to the
destination, “spreads” in time. This spreading in time,
known as received dispersion, is inversely proportional
to the bottleneck link capacity. The capacity is thus
measured as B = L/T . In this formula, L is length of
the second transmitted packet (in bits). T , the disper-
sion, is measured as the latency between the reception
of the last bit of the first packet and the last bit of the

3

second packet. The Packet Train Technique extends
the Packet Pair Technique by sending a train of pack-
ets. The use of more packets minimizes the error due
to noise and cross traffic. A detailed discussion of var-
ious packet pair and packet train techniques and their
comparison can be found elsewhere [21].

The other major family of measuring techniques fo-
cuses on the estimation of end-to-end throughput, typ-
ically for use with transport-layer protocols such as
TCP. The transport-protocol mechanics are geared to-
wards optimizing in-order and correct delivery of mes-
sages in the presence of unreliable links without under-
utilizing the end-to-end path capacity. Therefore, it
is important for TCP to determine the number of
bits correctly received since the previously received ac-
knowledgment. Tools such as Iperf [29] and abget [2]
and Sprobe [26] come close to measuring throughput.

TCP Westwood [10] and its variant, TCP West-
wood+ [11] use average throughput to correctly esti-
mate how to modify the slow start threshold.

3 Overview of Tor Architecture

Tor [6] is a popular and widely used client/server
anonymity system. It is geared towards providing the
users high performance for semi-interactive Internet
application. Tor can be used for both initiator and
responder anonymity. Initiator anonymity is hiding
the true identity (IP address) of the client. Responder
anonymity allows a server to provide a TCP service
without revealing its IP address. In this section, we
provide overview of the architecture and design of Tor
only from the perspective that is relevant to highlight
our work.

From a computer networking point of view, Tor can
be viewed as an overlay network of application layer
proxies or Onion Routers (ORs). The Tor model
also includes Rendezvous Points (RP) and Introduction
Points, essentially for supporting responder anonymity.
2

Tor Circuits : Tor circuits are formed using three
ORs (by default). The first hop is known as the Entry
Node in Tor terminology, the second is the Middleman
and the third is the Exit Node. An OP uses the public-
keys (Onion Keys) of the three ORs to to establish a
shared secrets with them. The OP thereby encrypts
the payload (512 byte units called cells) first using the
shared secret of the final Exit Node, followed by that
of the Middle Man and finally by those of the Entry
Node’s. This technique, common for many anonymiz-
ing networks and mixes, is known as Telescopic En-

2These anonymized responders are known as Location Hidden
Services.

cryption. Each of the three ORs, in-effect “peels-off”
the headers off the Tor cell and forward it to the next
OR along the circuit. The Exit Node decapsulates and
decrypts the Tor cell and obtains the payload; which
is sent encapsulated into a regular TCP/IP header to
the appropriate peer. Since an OP picks up different
ORs for every new circuit, the peer host sees a different
source IP address each time a new circuit is established.

Figure 3 shows how a circuit with three ORs is
negotiated. The Tor OP keeps a time window within
which all connections are given to the same circuit.
This is used to prevent the adversary from linking new
requests to earlier actions.

Figure 1. Alice’s Tor client obtains a list of Tor

nodes directly from a directory server

The original Onion Routing builds a separate circuit
for each TCP stream. This fact made it easier for the
adversary to link TCP streams to separate circuits. To
counter this, Tor enforces sharing of the same Tor cir-
cuit by many TCP connections.
Hidden Services : Tor supports responder
anonymity through Hidden Services. Responder
anonymity allows a server to provide a TCP service
without revealing its IP address. Hidden Services pre-
vent against attacks that require IP address of the
server. In this section we present an overview of how
Hidden Service work.

Generally, service URI to IP address translation is
done using the Domain Name System (DNS). For a
Hidden Service, the regular DNS name used within the
TCP/IP model, is replaced by a pseudo-random string
(derived from the long-term public key of the server)
ending with “.onion” domain name. A query to re-
solve a service URI ending in “.onion”, can be resolved
only within the Tor network. This new URI and
the long-term public-key, representing the service, is
published by the server, the first time it joins the Tor

4

network. Only an insider can thereby access the service
through an anonymous Tor circuit connecting himself
to Hidden Service. This is shown in figure 3.

Figure 2. Alice’s Tor client negotiates a con-

nection with the Hidden Sever (Bob) across

her Rendezvous Point(RP) and Bob’s Intro-

duction Points

A form of Diffie-Hellman key exchange ensues be-
tween the client and the Hidden Server through ORs
known as Rendezvous Point (RP) and Introduction
Points. The outcome of this exchange is the joining
of the client and the server circuits, and hence the es-
tablishment of an anonymous communication channel
between the client and the server. A detailed descrip-
tion of this handshake procedure is presented in the
Tor design document [6]
Threat Model : A detailed description and anal-
ysis of the threat model considered by Tor and the
possible mitigation strategies is beyond the scope of
this paper. We rather focus on presenting a mecha-
nism that attempts to approximate the effect of global
adversary by observing the network traffic and corre-
lating the victim’s circuit to the ORs that it likely uses
3. The original Tor model does aim to mitigate such
traffic analysis attacks. We only try to approximate
a global passive adversary (which may be anyways a
difficult task due to limited control over network links
and resources). We end up with a “pseudo” global
passive adversary while still managing to only target a
vulnerability within the Tor threat model.We will not
consider any other types of Tor attacks such as com-
promising routers or keys, replay attack, and directory
information spoofing attacks.

3Our technique works well only when we use a well provi-
sioned probing node. This means that the bottleneck capacity
between the probing node and one of the ORs is at the OR
side (including the client to OR link). However, we posit that
nodes in major ISPs, government organizations and universities
do have such capabilities.

4 Approximating the GPA

The attack on Tor leverages LinkWidth, a novel
single-end bandwidth-estimation technique that we de-
veloped, and works in three phases:
• An adversary continuously senses the available band-
width in the up-links of all Tor relays. These may be
the immediate up-link, or some other link that carries
all traffic to/from the Tor node.
•When an anonymous user contacts a server of interest
and requests data (e.g., a web page), the traffic from
the server to the Tor exit node is artificially modulated.
This modulation can be done by the server itself, or by
an upstream router that is under the control of the
attacker. Alternatively, this modulation may also be
induced by a client who intends to unveil the identity
of the Tor relays and hidden services. The modula-
tion can be as simple as temporarily queuing all traffic
and then releasing it in a high-volume burst, or may
involve a unique throughput pattern. The goal of the
adversary is to detect this pattern with high confidence
as it manifests itself in three Tor relays and underlying
router. (Tor, by default, uses nodes in each circuit; our
scheme is not sensitive or limited to this number, as we
show in Section 5.1.)

Alternatively, an attacker interested in identifying
all users accessing a server that is not under his con-
trol may launch a network denial of service attack
against the server or one of its up-links, causing a
back-off in TCP connections and hence an increase
in available bandwidth in these links traversed by
those connections. This scenario requires more re-
sources (in terms of bandwidth) on the part of the at-
tacker. Lacking these, we decided to focus on the ma-
licious/compromised server/router scenario. We note
that we require at most one such router, and its iden-
tity/location is independent from that of the client.
• Once the Tor relays in a circuit are identified,
the attacker begins a trace-back process anchored on
these nodes (excluding the exit node). Using a pre-
established map of the network, the attacker tries to
detect further induced traffic fluctuations, one link at
a time until an end-host is reached. The same method
can be employed to uncover the identity of a Hidden
Service. Assuming a client under control, the adver-
sary varies the available bandwidth of the client-server
connection following the fluctuation, link-by-link un-
til the entire path from an Entry Node to the Hidden
Server via the Tor network is exposed.

Since LinkWidth is a key and novel component of
our attack, we devote the remainder of this section to
its description. We begin by defining and describing
bandwidth estimation techniques and relevant terms;

5

and thereby describe how LinkWidth estimates avail-
able bandwidth. We examine the effectiveness of our
attack in the next section.

4.1 Bandwidth Estimation Techniques

Bandwidth is a very broad and sometime ambigu-
ous term. Throughout Computer Science and Elec-
trical Engineering literature, the term bandwidth has
been used to quantify different network characteristics.
We define bandwidth simply to be the number of bits
transferred using IP packets per unit time. However,
to further avoid confusion, for the remainder of this
paper, we use the more accurate terms Capacity and
Throughput. Any usage of the term bandwidth shall
refer to Capacity.

Capacity refers to the maximum possible bits trans-
ferred (in the form of IP packet payload) per unit time,
through a link or multi-hop path. In the case of a multi-
hop path, the capacity is the maximum possible bits
transferred per unit time by the bottleneck (i.e., “slow-
est”) link. This link may be a bottleneck either due
to congestion or due to inherent medium and network
device characteristics.

Throughput refers to the maximum possible bits
transferred successfully (in the form of IP packet pay-
load) per unit time through a link or multi-hop path.
For throughput, we count how many bits are success-
fully received by the receiver. This differs from ca-
pacity because it depends on the ordering of the pack-
ets. To measure throughput, protocols such as TCP
measure the time dispersion between consecutive ac-
knowledgments, in predefined intervals (usually, every
RTT seconds). Thus, throughput is the number of bits
correctly received since the correct reception of the last
acknowledgment (measured in bits per unit time). One
may view capacity/available bandwidth as an “instan-
taneous” value of throughput. The measurement is
hence based on the reception of each packet and may
vary over time. There is actually no clear distinction
between throughput and capacity other than the time-
scale involved in their measurement.

4.2 TCP Westwood Congestion Control

In Section 2, we mentioned that LinkWidth uses the
TCP Westwood Congestion Control mechanism to per-
form throughput and capacity estimation. In the next
couple of paragraphs we shall describe briefly why con-
gestion occurs in networks and how it is mitigated (in
particular, how TCP alleviates congestion). We shall
then describe how TCP Westwood Congestion Con-
trol works and how LinkWidth uses its principles to

track capacity/throughput changes in network paths
and links. Readers familiar with these details can skip
ahead to Section 4.3.

Network congestion occurs due to lack of capacity in
routers or host to “immediately” forward traffic. Due
to excessive packets being served by a router per unit
time, it reaches the threshold of its processing and for-
warding capacity. This results in queuing delays and
packet loss, leading to degradation in quality of service.
Network congestion control is a very complex area of
research since it involves congestion control being im-
plemented at various levels in the stack, including net-
working devices in the core of the network as well as the
transport protocols at end-hosts. We focus on conges-
tion control done by TCP at the end-hosts, and TCP
Westwood in particular.

Traditional TCP, commonly known as TCP Tahoe
[27], uses a window-based congestion control. TCP en-
sures reliable delivery of bytes using acknowledgment
(ACK) packets. Congestion window, (cwin), specifies
the number of packets (mostly carrying “Maximum
Segment Size” bytes of TCP payload) which the sender
sends without caring about an ACK. A correct ACK
following correct reception of cwin packets assures the
sender that there is enough capacity for the routers in
the path to correctly forward its packet. Three du-
plicate ACKs for the previous acknowledged packet or
absence of any ACKs for a predefined timeout indi-
cates congestion. Depending up the value of Slow Start
Threshold (ssthresh), the value of cwin is adjusted with
a hope to recover from the perceived network conges-
tion.

Traditionally TCP decreases the ssthresh to half the
cwin when congestion is detected. This may possibly
lead to bandwidth under-utilization. Newer TCP vari-
ants such as TCP Westwood and TCP Westwood+,
geared towards full available bandwidth utilization,
suggest sampling the throughput every RTT seconds
and using it when adjusting ssthresh (thus avoiding
under-utilization). The other advantage of these tech-
niques is that they are “sender-only” modifications
(and can work with any TCP receiver). The through-
put is estimated by measuring the time dispersion be-
tween two consecutive ACKs and is given by the ex-
pression bk = L/(tn − tn−1) . bk is the measured “in-
stantaneous” bandwidth (measured throughput), L is
the length of the payload successfully sent (in bits) be-
tween the nth and (n−1)th ACKs, and tn and tn−1 are
the time of reception of the nth and (n − 1)th ACKs
respectively.

TCP Westwood also suggests a metric of Available
Bandwidth Estimate (BWE). The value of BWE is the
weighted average of the most recently measured bk and

6

the previous one, bkp . BWE is computed as:

BWEi = (α) ∗BWEi−1 + (1− α) ∗ ((bk + bkp)/2)

Here, BWEi is the bandwidth estimate or the through-
put estimate between the nth and (n − 1)th ACKs.
BWEi−1 is the throughput estimate for the through-
put estimate between the (n − 1)th and the (n − 2)th

ACKs. The α parameter controls the weight of the cur-
rent estimate relative to the computed historical mea-
surement. (A commonly used value of α is 0.5, which
gives equal weight to the previous estimate and the
moving average of the current and previous measure-
ments.)

The following pseudo-code show how TCP West-
wood adjusts cwin and ssthresh when a congestion is
detected by the expiration of a coarse timeout.

1: if cwin < ssthresh then
2: a ← a + 1
3: if a > 4 then
4: a ← 4
5: end if
6: end if
7: if cwin ≥ ssthresh then
8: a← 1
9: end if

10: ssthresh ← (BWE ∗ RTT)/(packet size ∗ 8 ∗ a)
11: if ssthresh > 2 then
12: ssthresh ← 2
13: cwin ← 1
14: end if
The a parameter, packet size and Bandwidth Estimate
(BWE) are used in adjusting the slow start threshold
when congestion is detected.

4.3 LinkWidth : TCP Westwood Sender

We implemented a TCP Westwood sender in
LinkWidth, a tool for performing single-end net-
work capacity and link throughput measurements.
LinkWidth requires no support or active collaboration
from a remote host or any device in the network.

Since the ACK reception can signal correct recep-
tion of a packet, LinkWidth sends TCP SYN packets
to closed ports. The receiver (a router or end host)
replies to such packets with a TCP packet where the
RST and ACK flags are set. Where TCP packets are
filtered and/or rate limited due to security considera-
tions, we rely on ICMP ECHO REPLY messages from
the receiver to signal correct reception of probe packets
(by sending ICMP ECHO REQUEST packets instead
of TCP SYNs). To measure end-to-end TCP capac-
ity, the sender emulates the TCP Westwood sender

by sending cwin packets. cwin − 2 TCP RST pack-
ets (called load packets), are “sandwiched” between
two TCP SYN packets (called the head measurement
packet and tail measurement packet respectively).These
TCP SYN packets, sent to closed ports, evoke TCP
RST+ACK reply packets destined for the sender of the
TCP SYN packets. Figure 3 shows this arrangement of
packets. Correct reception of the train of cwin+1 pack-
ets is determined by two TCP RST+ACK packets from
the receiver (for the head and tail measurement pack-
ets). Each correct reception of the TCP RST+ACK
pair causes cwin to be increased either exponentially
(Slow Start phase) or linearly (Congestion Avoidance
phase). Since we do not rely on a proper TCP connec-
tion, the only way to signal a packet loss is by coarse
timeout. After sending the train, the sender initiates a
timer to wait for the two expected ACKs. The expiry
of the timeout causes the readjustment of the cwin and
ssthresh parameters inside a timeout event handler.

We send TCP RST packets is to avoid unnecessary
replies, either in the form of TCP RST or ICMP Desti-
nation Host/Net Unreachable packets, that can inter-
fere with our forward probe traffic. The time dispersion
between two consecutive TCP RST+ACK replies due
to the head and tail measurement packets are stored
as tn and tn−1. Thus the capacity/bandwidth is mea-
sured as:

bk = (cwin ∗ L)/(tn − tn−1)

Here, bk is the measured “instantaneous” bandwidth
(measured throughput), cwin ∗L is the total data sent
(in bits) for the entire train, tn and tn−1 are the times
of reception of the two TCP RST+ACK reply packets.
Our method is a direct extension of the packet train
method. The successful reception to a previous train
determines how many packets we send in the current
train.

Throughput measurement is a slight modification of
the capacity measurement technique. The TCP RST
load packets are replaced by TCP SYN packets (all
destined to closed ports on the receiver). The time of
reception of the TCP RST+ACK due to the first TCP
SYN packet is stored in the variable first . Figure 4
shows this arrangement of packets. Thus, for any value
of cwin, if any m replies are received correctly (such
that 1 ≤ m ≤ cwin), this indicates that the throughput
is:

bk = (m ∗ L)/(tm − first)

where tm is the time when the mth reply is correctly re-
ceived. LinkWidth reports the measurement as BWE.

In some cases, we observed that TCP SYN packets
may be filtered or rate-limited. To counter this, we re-
place the head and tail TCP SYN packets with ICMP

7

Figure 3. Arrangement of Packets in

LinkWidth for Measurement of Capacity

Figure 4. Arrangement of Packets in

LinkWidth for Measurement of Through-

put

ECHO packets. The load packets continue to be TCP
RST packets. Correct reception of the train is indi-
cated by reception of ICMP ECHO REPLY packets at
the sender. The arrangement of packets is shown in
Figure 5. A similar modification is used for measuring
throughput: the receiver waits to see how many ICMP
ECHO REPLY response packets it receives before es-
timating the throughput. The corresponding packet
arrangement is shown in Figure 6.

LinkWidth Implementation : We developed a
prototype of LinkWidth for GNU/Linux. To avoid in-
curring packet delays due to kernel resource schedul-
ing, we bypassed the regular protocol stack and send
our own TCP and ICMP packets crafted using the Raw
Socket API. The coarse timeout is implemented using
the standard POSIX API function setitimer(). The ex-

Figure 5. Arrangement of Packets in

LinkWidth for Measurement of Capacity

(using ICMP)

Figure 6. Arrangement of Packets in

LinkWidth for Measurement of Through-

put (using ICMP)

piry of the timer is indicated by raising a SIGALRM
signal.

5 Experimental Evaluation

We start by quantifying the effectiveness of
LinkWidth in terms of speed and accuracy in detecting
traffic variations. To that end, we use various scenar-
ios that involve both cross-traffic and traffic-shaping of
links. Our aim is to successfully measure variations of
available capacity using LinkWidth using a single host
(i.e., without a conveniently placed collaborating peer
node, which would severely restrict the flexibility and
power of our attack). Moreover, we discuss the role
of the different parameters used by the tool. However,
since our focus is the detection of traffic variations, we
are not going to present the full optimality results for

8

the tool parameters.
Measuring Capacity: We illustrate our lab testbed
in Figure 7. We used wget to generate client HTTP re-
quest traffic. The server runs an Apache process wait-
ing for client connections. The client(s) connect to the
server through Linux hosts (R1 and R2) that are set
to forwarding mode (acting as routers). The measur-
ing (probe) host’s packets are routed through R2. We
configure all of the machines to use static routes. The
server shapes the clients’ HTTP traffic bandwidth us-
ing the Linux Traffic Controller [15] with Hierarchical
Token Bucket.

Figure 7. Lab testbed for measuring available

capacity

In the remainder of this section, we establish the
limits of our measuring methodology which extends to
traffic variations. As we will show, LinkWidth can ob-
serve 1 Kbps of un-elastic UDP traffic and detect vari-
ation of 50 Kbps of TCP traffic with very high confi-
dence (> 95%). We begin by measuring variations ob-
served for available link capacity for elastic TCP traffic
flows (HTTP) in the presence of cross-traffic.

Capacity Measurement in the Presence of Com-
peting TCP Traffic In this scenario, three clients
are connected to a web server. Each client initiates a
wget request to download a 100 MByte file from the
server. We use LinkWidth to measure the change in
available bandwidth due to each client closing its con-
nection in succession. The choice of a relatively large
file allows us to sustain traffic for a sufficiently long
window of time. As we will show, this is not a hard
requirement and help us establish a measurement base-
line. The measuring host probes for the available ca-
pacity of the link connecting R2 to R1. R2 employs
Nistnet [5] to emulate a 10 Mbps half-duplex link over
a regular 100 Mbps half-duplex Ethernet link. The
server uses traffic shaping to limit each HTTP connec-
tion to a maximum of 500 Kbps. The results of this
experiment are tabulated in Table-1.

Number of Available Capacity
Clients Average(bps) Median(bps)
3 7,372,525.47 7,518,356.26
2 8,119,550.66 8,150,574.70
1 8,618,681.63 8,600,065.92
No clients 9,300,960.91 9300960.91

Table 1. Increasing HTTP traffic resulting in

decreasing available capacity, as measured by

LinkWidth

For these experiments, we choose probes with packet
sizes 1400 bytes to maximize link utilization (the Eth-
ernet MTU being 1500 bytes). The α parameter, de-
scribed previously, is set to 0.5 and the inter-probe de-
lay is 100 milliseconds.

In the absence of any traffic, the 10 Mbps link re-
ports a capacity of approximately 9.3 Mbps. When all
the three hosts download simultaneously, we measure
a total throughput of approximately 7.4 Mbps. This is
as expected (as all of the 500Kbps connections together
achieve 1.5 Mbps).

This experiment demonstrates the effectiveness of
LinkWidth in measuring the available capacity by
quickly adjusting to the dynamic TCP cross-traffic.
The reported available capacity increases when the
connections are closed one by one in quick succession.
However, we are yet to present evidence of LinkWidth’s
accuracy and granularity.

Measurement Using Small Files The next exper-
iment provides such evidence. We continue to use the
previous experimental setup, shown in Figure 7. The
server shapes the available capacity of a single client
connection. The client downloads a relatively small file
(2 MBytes) from the server. A small-sized file is cho-
sen to demonstrate the speed with which LinkWidth
converges to the value of available capacity. The rest
of the experimental setup and parameters are the same
as in the previous experiment. The adversary probes
the bottleneck link for each of the various available ca-
pacity levels. The results of this probing are shown in
through a histogram in Figure 8.

The accuracy and granularity are highlighted by
these results. The upper limit of HTTP traffic is in-
creased from 200 Kbps to 1.4 Mbps in increments of
200 Kbps. Evident from the results, there is a defi-
nite noticeable decrease in the the available capacity
for each increment. Similar results are obtained with a
50 Kbps increment. Once again, the probe packet size,
the α parameter and the inter probe latency are the
same as in the previous experiment.

9

Figure 8. Increasing HTTP traffic resulting in

decreasing available capacity, as measured by

LinkWidth

We next describe the experiments that demonstrate
the effectiveness of our technique in detecting the fluc-
tuations in capacity of the relays and routers involved
in a Tor circuit.

5.1 Traffic Analysis Against Tor

We use LinkWidth to detect induced traffic fluc-
tuations in Tor relays participating in a circuit and
on routers connecting a Tor Entry Node and the Tor
clients and Hidden Servers. We demonstrate complete
trace-back attack linking a Tor Clients (OPs) and Hid-
den Server to their Entry Nodes achieved by measur-
ing the fluctuation of available capacity/throughput to
routers involved in the circuit between the OP and the
Entry Node. We begin by demonstrating how a GPA
can use LinkWidth in determining the Tor relays in-
volved in a circuit. Thereby we show how Tor may be
used for determining the identity of anonymized clients
and servers.

Probing Tor Relays

This subsection focuses on demonstrating how
LinkWidth maybe used for performing traffic analysis
against Tor relays (ORs) participating in a Tor circuit.
The next few paragraphs describe the set-up used for
such the attack. Thereafter, we describe our attack
and conclude by presenting the effectiveness our tech-
nique through results from attacking a small subset of
all possible Tor circuits.

Probe Set-up & Technique for Identifying Tor
Relays : Figure 9 illustrates how the adversary

probes the Tor relays involved in a circuit. In our
experiments, we use LinkWidth to probe Tor nodes
(ORs) that may possibly be part of Tor circuits. An
adversary with sufficient bandwidth resources would be
simultaneously probing all (or a large portion of) Tor
nodes. Patterns in the traffic are introduced by shaping
these circuits at the server. The goal of the experiment
is to demonstrate that an adversary is able to detect
these induced fluctuations in bandwidth in the Tor re-
lays (participating in the circuit) whenever the client
downloads the file from the server.

Figure 9. Adversary probing the fluctuation in

available bandwidth of ORs participating in a

Tor circuit

To bypass the default restrictions on Middleman
Node selection, we modified the Tor Client version
0.1.2.18 to enable the establishment of circuits where
the user can select all the ORs manually4.

In our experiments, the client, the web server and
the probing host used by the adversary are all scattered
in separate geographic locations and networks within
the US5. The web server offers a 100 MByte file, a rel-
atively large file for providing adequate delay to the
adversary for perceiving the changing network conges-
tion at each value of the client-server traffic bandwidth.
The web server controls the available capacity of the
client-server connection by shaping the web traffic us-
ing the Linux Traffic Controller [15].

The client selects the relays to be used in the circuit
from the frequently updated and publicly viewable Tor
Status page [18]. The adversary probes the Tor re-
lays in the circuit to detect traffic variations whenever

4Selection of the intermediate relay nodes cannot be con-
trolled in the standard Tor distribution. There are, however,
source-code options that can unlock the intermediate relay se-
lection.

5We avoid selecting nodes in Europe and Asia so as to avoid
inter-continental Internet links which may at times act as bot-
tlenecks. An adversary would need nodes in these geographical
locations from which to probe the relevant Tor relays. While this
is generally feasible, we do not currently have such capabilities.

10

the client communicates to the web server through the
circuit. The client downloads a file from the server
through Tor. The server colludes with the adversary
to limit the web traffic to various bandwidth levels.

We quantify the effectiveness of detecting the ORs
involved in Tor circuits by creating 50 distinct Tor cir-
cuits6. We probed these relays from different network
locations. The results summarized in Table 3 show how
many of the Tor relays in each circuit reported fluctu-
ation in available bandwidth (and were thus correctly
identified by the attacker).

Relays/Circuit # of
Detected Circuits
3 11
2 14
1 12
0 13

Table 2. Number of Tor relays per Tor circuit

where available bandwidth fluctuation is cor-

rectly detected.

In our experiments, 11 of the 50 circuits that were
probed, revealed correct variation in bandwidth for all
the relays involved, while in 14 circuits we were able to
identify only 2 of the 3 relays involved. There were 13
circuits in which only one 1 of the relays was detected.
Finally, we also have 12 circuits where we are not able
to detect any of the participating ORs. Among all the
150 ORs probed there were 22 which filtered all probe
traffic.

These results are in effect the true-positives/false-
negatives values. Thus, evident from table 3, the
truepositive rate is:

Total number of nodes probed = 128 (N)
(not counting the 22 which filtered all probe traffic)
Total number of nodes in which bandwidth
fluctuation was observed = 74 (T)
True Positives (T/N) = 74/128 (57.8%)
False Negatives (1− T/N) = 54/128 (42.2%)

The same experimental setup was used to determine
the false-positives. For this, we created 10 different
regular “3-hop” Tor circuits. We selected ORs which
were not participating in any of the circuits. The
results from these experiments are summarized as
follows.

6Recall, this is the first step in a follow-on attack that iden-
tifies the end-user.

Total number of nodes probed = 30 (N)
Total number of non-participating nodes which
report fluctuation = 3 (F)
False Positives (F/N) = 3/30 (10%)
True Negatives (1− F/N) = 27/30 (90%)

In the first attempt we observed bandwidth fluc-
tuation on relays which were not part of our client’s
anonymous circuit. However on repeated attempts of
the same experiment we saw no fluctuation in available
bandwidth; thereby detected no false positives.

We quantify the effectiveness of detecting the ORs
involved in Tor circuits by creating 50 distinct Tor cir-
cuits7. We probed these relays from different network
locations. The results summarized in Table 3 show how
many of the Tor relays in each circuit reported fluctu-
ation in available bandwidth (and were thus correctly
identified by the attacker).

Relays/Circuit # of
Detected Circuits
3 11
2 14
1 12
0 13

Table 3. Number of Tor relays per Tor circuit

where available bandwidth fluctuation is cor-

rectly detected.

In our experiments, 11 of the 50 circuits that were
probed, revealed correct variation in bandwidth for all
the relays involved, while in 14 circuits we were able to
identify only 2 of the 3 relays involved. There were 13
circuits in which only one 1 of the relays was detected.
Finally, we also have 12 circuits where we are not able
to detect any of the participating ORs. Among all the
150 ORs probed there were 22 which filtered all probe
traffic.

These results are in effect the true-positives/false-
negatives values. Thus, evident from table 3, the
truepositive rate is:

Total number of nodes probed = 128 (N)
(not counting the 22 which filtered all probe traffic)
Total number of nodes in which bandwidth
fluctuation was observed = 74 (T)
True Positives (T/N) = 74/128 (57.8%)
False Negatives (1− T/N) = 54/128 (42.2%)

7Recall, this is the first step in a follow-on attack that iden-
tifies the end-user.

11

The same experimental setup was used to determine
the false-positives. For this, we created 10 different
regular “3-hop” Tor circuits. We selected ORs which
were not participating in any of the circuits. The
results from these experiments are summarized as
follows.

Total number of nodes probed = 30 (N)
Total number of non-participating nodes which
report fluctuation = 3 (F)
False Positives (F/N) = 3/30 (10%)
True Negatives (1− F/N) = 27/30 (90%)

In the first attempt we observed bandwidth fluc-
tuation on relays which were not part of our client’s
anonymous circuit. However on repeated attempts of
the same experiment we saw no fluctuation in available
bandwidth; thereby detected no false positives.

Most of the ORs filter and/or rate limit TCP SYN
packets to closed ports. In the presence of such filter-
ing, we use the ICMP-based emulation of LinkWidth.
Probes using ICMP are prone to error due to difference
in dispersion of the replies from those of the forward
probe traffic (when the probes reach the destination).

From our experiments, it appears that correct de-
tection of the exact pattern of increasing or decreasing
available capacity is contingent upon various factors.
The most restricting is whether the adversary is at a
network “vantage” point. This simply means that the
bottleneck of the path from the adversary to the relay
is the network interface of the relay. If this condition
does not hold, then accurate bandwidth measurement
may not be possible in all cases (depending on link uti-
lization). In practice, our use of a few vantage points in
academic institutions in the US seems to provide suffi-
cient bandwidth to conduct our attack. For an attack
against all of Tor, we would require access to nodes in
the different major geographical areas hosting Tor re-
lays (Europe, Asia) such that we do not have to probe
over trans-Atlantic or trans-Pacific long-haul links that
affect the accuracy of our measurements.
Detecting a “6-hop” Tor Circuit. We use our
modified Tor client program to create a longer Tor cir-
cuit, in an attempt to hide participating ORs through
expected attenuation of the pattern as it traverses more
links, routers, and Tor nodes. We select six relays
which were correctly detected in the previous exper-
iment and created a circuit involving these. We re-
peated the same experiment with the same client and
server. The client successfully achieves approximately
80 KBytes/sec. We are able to effectively observe
bandwidth fluctuations in all six relays. We believe
we can observe traffic fluctuation with higher number

of hops, provided that the client achieves at least 30–40
KBytes/sec throughput. We conducted a 10-hop Tor
circuit experiment. However due to the present lack of
functional exit relays within the US that provide high
throughput rates to the client, we were unable to com-
plete the experiment — the capacity of the circuit was
simply too low (and unsuitable for practical use).

Identifying Tor Clients & Hidden Services

In the previous subsection 5.1 we presented results
from probing Tor relays participating in Tor circuits.
In this subsection we present experiments for probing
routers connecting Tor clients and Tor Hidden Services
to their Entry Nodes . The experimental setup is very
similar to that in the previous subsection.

The attempt in all experiments throughout this sub-
section is to utilize network bandwidth information
along the path from the client or the server/Hidden
Server to its Entry Node to expose its identity and
thus demonstrate the effectiveness of our technique.

Probe Set-up & Technique for Identifying Tor
Clients : Figure 10 explains how an adversary uses
LinkWidth to probe all possible routers along network
paths connecting the Tor Entry Node to the Tor Client.
As earlier, the client fetches a relatively large file from
the server, which shapes the bandwidth of the connec-
tion. The adversary tries to determine the fluctuations
introduced by the server along the routers connecting
the client to the Entry Node. Since we don’t have a
map of link-by-link connectivity of the Internet, we rely
on traceroute information for determining the hops be-
tween the client and its Entry Node.

Figure 10. The adversary traces bandwidth

fluctuation between the Tor client and the Tor

Entry Node, one network link at a time

The results from probing routers connecting an OP
to an Entry Node are presented in table 4 the Ap-
pendix.

12

We probed ten separate Tor Client – server circuits.
In all of the cases the adversary could successfully de-
tect the bandwidth fluctuation only in some of the
routers. This is partially due to insufficient number
of existing vantage points and partly because because
some of the routers were unresponsive to the probes. In
some cases, the client traffic achieved throughput less
than 10 KBytes/sec (approximately 82 Kbps, which
is less than 30–40 KBytes/sec, necessary for detect-
ing available bandwidth fluctuation on Internet paths,
when probed using LinkWidth). In a crude sense,
the reader may consider this an inherent measurement
granularity of LinkWidth.

Correct detection of bandwidth fluctuation is
achieved through a perceived change in packet loss
whenever the routers and/or relays are probed using
LinkWidth; while the client downloads the from the
colluding server that shapes the available bandwidth
of the HTTP connection.

Probe Set-up & Technique for Identifying Tor
Hidden Servers : The set-up for determining the
identity of Hidden Services, though similar to the one
used to identifying Tor clients differ slightly. It is
shown in Figure 11. Here the adversary (or adver-
saries), probe the routers connecting routers connect-
ing the Hidden Services to their Entry Nodes. This
is used to to unveil the identity of a Hidden Service.
In these experiments, the available bandwidth fluctua-
tion was induced by the client. As earlier, rely solely
on traceroute for determining which routers connect a
Hidden Server to its corresponding Entry Node.

Figure 11. The adversary is tracing bandwidth

fluctuation between the anonymous client /

Hidden Server and the Tor entry node, one

network link at a time

We probed the paths of ten separate Tor client–
Hidden Server circuits. Specifically, The adversaries
(probe hosts) probed the available bandwidth fluctu-
ation in the routers connecting the Hidden Servers to

their corresponding Entry Nodes. Table 5 in the Ap-
pendix summarizes the results of this experiment.

In almost every circuit, there were some routers
which filtered our probed packets. The rest were either
detected correctly or not detected; due to insufficient
existing vantage points and insufficient throughput in
client’s traffic (approximately 5–10 KBytes/sec).

6 Discussion

In all the attacks presented so far, we avoided cross-
ing the continent in our search for relays. The trans-
continental links are a bottleneck in many instances.
Moreover, we are only able to accurately probe hosts
for which our probing hosts are at a vantage location in
terms of bandwidth 8. Unfortunately, PlanetLab [20]
hosts cannot provide accurate traffic measurements be-
cause of the absence of support for the ability to con-
trol kernel scheduling of network resources. Intermit-
tent quality of service is the other major factor that
seriously affects our attempt in probing relays partici-
pating in Tor circuits.

To obtain high confidence detection results, we need
to observe traffic from Tor nodes with throughput of at
least 30–40 KBytes/sec (approximately 300 Kbps). In
addition, packet loss, traffic filtering and shaping, in-
termediate network bottlenecks and operating system
and/or networking device driver dependent issues play
an important role in measurement based network mon-
itoring. PlanetLab hosts are a good case in point of
how different parameters can significantly impact mea-
surement fidelity. LinkWidth’s TCP probes are rate
limited/filtered when run on PlanetLab hosts. ICMP
replies from the ICMP probes arrive within a very short
time interval, resulting in an inaccurate estimation of
the received dispersion of the probe train. Such filter-
ing is also observed in some Tor relays that are probed
from the adversary at one of the vantage points used in
our experiments. In most instances where TCP probes
were rate-limited or even filtered, we rely on ICMP
probes.

The effectiveness of the Tor attacks presented ear-
lier is constrained by the limitations of the traffic-
based measuring techniques. These limitations could
be leveraged to create countermeasures to our attack.
First, a Tor client can use parallel circuits in a round-
robin fashion to access the same server; this would dif-
fuse the ability of the server to generate detectable traf-
fic variations, since traffic spikes would be distributed
across all the parallel connections. The use of shorter
circuit lifetimes would make it more difficult for an ad-
versary to correctly traceback from detected Tor nodes

8We currently do not have access to such hosts abroad

13

through the network. Depending on the size of the Tor
network, the resources of the adversary, and the circuit
lifetime, we could (as part of future work) analytically
estimate or simulate the probability of full or partial
circuit and client exposure over multiple interactions
with the server. Traffic smoothing by Tor relays is an-
other potential partial countermeasure.

7 Conclusion

We propose a new technique for uncovering Tor re-
lays, tracing back to the client or to a Hidden Service
using a novel single-end bandwidth estimation tech-
nique. Our scheme works by artificially inducing traffic
fluctuations to the traffic sent by a server (or a client)
to the anonymous client (or to a Hidden Service). This
is achieved by colluding with the server (or client), con-
trolling an upstream router, or through a DDoS attack.
By detecting these perturbations as they traverse the
network using single-end bandwidth measurements, an
attacker effectively acts as a global passive adversary.
For accurately detecting the relevant links, it is essen-
tial for an adversary to be at a “vantage point” in the
network such that either the bottleneck is the link itself
or the disturbance in cross traffic caused by the server
is enough to distort LinkWidth’s probes.

References

[1] D. Agrawal and D. Kesdogan. Measuring Anonymity:
The Disclosure Attack. IEEE Security & Privacy,
1(6):27–34, November/December 2003.

[2] D. Antoniades, M. Athanatos, A. Papadogiannakis,
E. P. Markatos, and C. Dovrolis. Available Bandwidth
Measurement as Simple as Running wget. In Pro-
ceedings of Passive and Active Measurements (PAM),
March 2006.

[3] K. Borders and A. Prakash. Web Tap: Detecting
Covert Web Traffic. In Proceedings of the 11th ACM
Conference on Computer and Communications Secu-
rity (CCS), pages 110–120, October 2004.

[4] H. Burch and B. Cheswick. Tracing Anonymous Pack-
ets to Their Approximate Source. In Proceedings of
the 14th USENIX LISA Conference, pages 319–327,
December 2000.

[5] M. Carson and D. Santay. NISTNet-A Linux-based
Network Emulation Tool. http://www-x.antd.nist.

gov/nistnet/nistnet.pdf.
[6] R. Dingledine, N. Mathewson, and P. Syverson. Tor:

The Second-Generation Onion Router. In In Proceed-
ings of the 13th USENIX Security Symposium, pages
303–319, August 2004.

[7] C. Dovrolis and R. Prasad. Pathrate.
http://www.cc.gatech.edu/fac/Constantinos.

Dovrolis/pathrate.tar.gz, 2004.

[8] A. B. Downey. Using pathchar to Estimate Internet
Link Characteristics. In Proceedings of ACM SIG-
COMM, August 1999.

[9] M. J. Freedman and R. Morris. Tarzan: A peer-to-
peer anonymizing network layer. In Proceedings of the
9th ACM Conference on Computer and Communica-
tions Security (CCS 2002), Washington, DC, Novem-
ber 2002.

[10] M. Gerla, M. Y. Sanadidi, R. Wang, and A. Zanella.
TCP Westwood: Congestion Window Control Using
Bandwidth Estimation. In Proceedings of IEEE Globe-
com, Volume 3, pages 1698–1702, November 2001.

[11] L. A. Grieco and S. Mascolo. Performance evaluation
and comparison of Westwood+, New Reno and Vegas
TCP congestion control. ACM Computer Communi-
cation Review, 34(2), April 2004.

[12] Y. Guan, X. Fu, D. Xuan, P. Shenoy, R. Bettati, and
W. Zhao. Efficient Traffic Camouflaging in Mission-
Critical QoS-Guaranteed Networks. IEEE Transac-
tions on Systems, Man, and Cybernetics, 31, July
2001.

[13] B. Hajek and B. Radosavljevic. Hiding Traffic Flow
in Communication Networks. In Proceedings of the
IEEE Military Communication Conference (MilCom),
October 1992.

[14] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How
Much Anonymity does Network Latency Leak? In
Proceedings of ACM CCS, October 2007.

[15] B. Hubert, T. Graf, G. Maxwell, R. Mook,
M.Oosterhout, P.Schroeder, J. Spaans, and P. Lar-
roy. Linux Advanced Routing and Traffic Control
HOWTO. http://lartc.org/howto.

[16] V. Jacobson. PATHCHAR. http://www.caida.org/

tools/utilities/others/pathchar/, 1997.

[17] S. Keshav. Congestion Control in Computer Net-
works. UC Berkely Technical Report TR-654, Septem-
ber 1991.

[18] J. B. Kowalski. TorStatus. http://anonymizer.

blutmagie.de:2505/.

[19] S. J. Murdoch and G. Danezis. Low-Cost Traffic Anal-
ysis of Tor. In IEEE Symposium on Security and Pri-
vacy, pages 183–195, May 2005.

[20] PlanetLab. http://www.planet-lab.org/.

[21] R. Prasad, M.Murray, C. Dovrolis, and K. Claffy.
Bandwidth Estimation: Metrics, Measurement Tech-
niques, and Tools. In Proceedings of IEEE Network,
August 2003.

[22] J.-F. Raymond. Traffic Analysis: Protocols, Attacks,
Design Issues, and Open Problems. In Proceedings
of Designing Privacy Enhancing Technologies: Work-
shop on Design Issues in Anonymity and Unobserv-
ability, pages 10–29. Springer-Verlag, LNCS 2009, July
2000.

[23] J.-F. Raymond. Traffic Analysis: Protocols, Attacks,
Design Issues and Open Problems. In Proceedings
of the International Workshop on Design Issues in
Anonymity and Unobservability, pages 10–29, 2001.

14

[24] M. Y. Sanadidi. Bandwidth Estimation Techniques , A
Tutorial Presentation. In SBRC 2002:Brazilian Sym-
posium on Computer Networks Date, Buzios, Brazil,
May 2002.

[25] A. Serjantov and P. Sewell. Passive Attack Analysis for
Connection-Based Anonymity Systems. In Proceedings
of ESORICS, October 2003.

[26] Stefan, Saroiu, and Krishna. Sprobe: Another tool
for measuring bottleneck bandwidth. In Proceedings
of InfoComm 2002, 2002.

[27] W. Stevens. RFC 2001 - TCP slow start, conges-
tion avoidance, fast retransmit, and fast recovery algo-
rithms. http://www.faqs.org/rfcs/rfc2581.html,
1999.

[28] P. F. Syverson, D. M. Goldschlag, and M. G. Reed.
Anonymous Connections and Onion Routing. In IEEE
Symposium on Security and Privacy, pages 44–54,
May 1997.

[29] A. Tirumala, F. Qin, J. Dugan, J. Feguson, and
K. Gibbs. IPERF. http://dast.nlanr.net/

projects/Iperf/, 1997.
[30] B. R. Venkatraman and R. E. Newman-Wolfe. High

Level Prevention of Traffic Analysis. In Proceedings of
the 7th Annual Computer Security and Applications
Conference (ACSAC), December 1991.

[31] X. Wang and D. S. Reeves. Robust Correlation of En-
crypted Attack Traffic Through Stepping Stones by
Manipulation of Interpacket Delays. In Proceedings of
the 10th ACM Conference on Computer and Commu-
nications Security (CCS), pages 20–29, October 2003.

15

APPENDIX

Circuit # of hops Correctly Unres- Routers Success
Number from Client– Detected ponsive Not Rate

Entry Client– Routers Reporting
Node Entry Enough

Node Fluctu-
Hops ation

1 10 6 4 0 60.00%
2 15 4 0 0 26.67%
3 18 4 7 12 22.23%
4 18 5 8 5 27.78%
5 14 6 2 6 42.86%
6 14 9 1 4 64.30%
7 15 7 2 6 46.67%
8 14 7 2 5 50.00%
9 14 4 2 8 28.57%
10 15 6 4 5 40.00%

Table 4. Available-bandwidth fluctuation detection in links connecting a Tor client and to its Entry

Node

16

Circuit # of hops Correctly Unres- Routers Success
Number from Server– Detected ponsive Not Rate

Entry Server– Routers Reporting
Node Entry Enough

Node Fluctu-
Hops ation

1 13 4 2 7 30.70%
2 12 9 0 3 75.00%
3 11 7 1 3 63.64%
4 14 5 4 5 35.71%
5 12 9 0 3 75.00%
6 13 3 3 7 23.08%
7 16 5 5 6 31.25%
8 13 3 2 8 23.08%
9 17 4 1 12 23.53%
10 13 5 1 7 38.46%

Table 5. Available-bandwidth fluctuation detection in links connecting a Hidden server to its Entry

Nodes

17

