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“It’s good to learn from your mistakes. It’s better to learn from other people’s mistakes.”

Warren Buffett
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by Rui GU

State machine replication (SMR) leverages distributed consensus protocols such as
PAXOS to keep multiple replicas of a program consistent in face of replica failures
or network partitions. This fault tolerance is enticing on implementing a principled
SMR system that replicates general programs, especially server programs that de-
mand high availability. Unfortunately, SMR assumes deterministic execution, but
most server programs are multithreaded and thus nondeterministic. Moreover, ex-
isting SMR systems provide narrow state machine interfaces to suit specific pro-
grams, and it can be quite strenuous and error-prone to orchestrate a general pro-
gram into these interfaces This paper presents CRANE, an SMR system that trans-
parently replicates general server programs. CRANE achieves distributed consensus
on the socket API, a common interface to almost all server programs. It leverages
deterministic multithreading (specifically, our prior system PARROT) to make mul-
tithreaded replicas deterministic. It uses a new technique we call time bubbling to ef-
ficiently tackle a difficult challenge of nondeterministic network input timing. Eval-
uation on five widely used server programs (e.g., Apache, ClamAV, and MySQL)
shows that CRANE is easy to use, has moderate overhead, and is robust.
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Chapter 1

Introduction

1.1 Motivation

State machine replication (SMR) models a program as a deterministic state machine,
where the states are important program data and the transitions are deterministic
executions of program code under input requests. SMR runs replicas of the program
and invokes a distributed consensus protocol (typically PAXOS [22, 21, 36]) to en-
sure the same sequence of input requests for replicas, as long as a quorum (typically
a majority) of the replicas agrees on the input request sequence. Under the deter-
ministic execution assumption, this quorum of replicas must reach the same exact
state despite replica failures or network partitions. SMR is proven safe in theory and
provides high availability in practice [10, 27, 8, 33, 7, 26, 16, 14].

The fault-tolerant benefit of SMR makes it particularly attractive on implement-
ing a principled replication system for general programs, especially server programs
that require high availability. Unfortunately, doing so remains quite challenging; the
core difficulty lies in the deterministic state machine abstraction required by SMR,
elaborated below. First, the deterministic execution assumption breaks down in to-
day’s server programs because they are almost universally multithreaded. Even on
the same exact sequence of input requests, different executions of the same exact
multithreaded program may run into different thread interleaving, or schedules, de-
pending on such factors as OS scheduling and physical arrival times of requests.
Thus, they can easily exercise different schedules and reach divergent execution
states - a difficult problem well recognized by the community [6, 16, 15, 14]. To
tackle this problem, one prior approach, execute-verify [16], detects divergence of
execution states and retries, but it relies on developers to manually annotate states,
a strenuous and error-prone process.

Second, to leverage existing SMR systems such as ZooKeeper [38], developers
often have to shoehorn their programs into the narrowly defined state machine
interfaces provided by these SMR systems. Ideally, experts – those with intimate
knowledge of the arcane (think how many papers [22, 21, 36, 10, 27] are needed to
explain PAXOS), under-specified [27] SMR protocols and subtle failure scenarios in
distributed systems – should build a solid SMR system, which all other developers
then leverage. However, an SMR system often has to settle for a specific state and
transitional interface because it cannot anticipate all possibilities in which develop-
ers structure their programs. For example, Chubby [8] defines a lock server inter-
face, and ZooKeeper a pseudo file system interface. Orchestrating a sever program
into such a narrow interface not only requires intrusive and error-prone modifica-
tions to the program’s structure and code, but also disrupts the SMR system itself at
times. For instance, developers abused Chubby for storage [8], causing the Chubby
developers to add quota support. This paper presents CRANE, an SMR system that



Chapter 1. Introduction 2

transparently replicates server programs for high availability. With CRANE, a devel-
oper focuses on implementing her program’s intended functionality, not replication.
When she is ready to replicate her program for availability, she simply runs CRANE
with her program on multiple replicas. Within each replica, CRANE interposes on
the socket and the thread synchronization interfaces to keep replicas in sync. Specif-
ically, it considers each incoming socket call (e.g., accept() a client’s connection or
recv() a client’s data) an input request, and runs a PAXOS consensus protocol [27] to
ensure that a quorum of the replicas sees the same exact sequence of the incoming
socket calls.

1.2 Background

Two prior approaches attempted to tackle this challenge. Execute-agree-follow [14]
records a partially ordered schedule of Pthreads synchronizations on one replica and
replays it on the other replicas, which may incur high network bandwidth consump-
tion and performance overhead. dOS [6] also leverages DMT for replication, but it
determines the logical admission time for each request using two-phase commit.
Aside from two-phase commit’s known intolerance of primary failures, per-request
commit is also costly.

1.3 Preview

One may consider solving this challenge by leveraging the underlying distributed
consensus protocol to determine the logical admission time for each request. Specif-
ically, when running the consensus protocol to decide each request’s position in the
request sequence, a predicted logical admission time can be carried as part of the
decision as well. Unfortunately, predicting a logical admission time for each request
accurately is quite challenging because typical server programs have background
threads which may frequently tick logical clocks. A too-small predication leads to
replica divergence if another replica has already run past the predicted logical time.
A too-large predication blocks the system unnecessarily because replicas cannot ad-
mit the request before reaching the predicted time.

Our key insight is that many requests need no admission time consensus because
their admission times are already deterministic. Hypothetically, if the requests ar-
rive faster than they are admitted at each replica, each request’s admission time is
fully deterministic because each replica simply admits requests as fast as it can. In
practice, requests do not arrive this fast. However, there are still frequent bursts of
requests that arrive together. Among replicas, as long as the first request of a burst
is admitted at a deterministic logical time, all the other requests in the burst are ad-
mitted at deterministic logical times without requiring consensus.

Leveraging this insight, we created an technique called time bubbling to enforce
deterministic logical times efficiently. It ensures that the first request in a burst is
admitted at each replica deterministically by inserting a deterministic wait after the
previous burst of requests are all admitted. During this wait, each replica only pro-
cesses already admitted requests, and does not admit new requests. CRANE ne-
gotiates a consistent duration of the wait via the underlying distributed consensus
protocol, and enforces this wait at each replica via DMT. These waits are like deter-
ministic time bubbles between bursts of requests (hence the name of the technique),
creating the illusion that the requests arrive faster than they are admitted.
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In short, by converting per-request admission time consensus to per-burst, time
bubbling efficiently combines the input determinism of PAXOS and the execution
determinism of DMT. For busy servers, requests in bursts greatly outnumber the
other requests. (We observed that 66.65% to 93.88% of requests are in bursts) They
rarely need to invoke time consensus, enjoying good performance. For idle servers,
time consensus overhead does not matter much because the servers are idle anyway.

We implemented CRANE by interposing on the POSIX socket and the Pthreads
synchronization interfaces. It intercepts operations along these interfaces by hijack-
ing dynamically linked library calls for transparency. It implements the PAXOS
protocol atop libevent [24] for distributed consensus, and leverages our PARROT
system for deterministic multithreading. Unlike prior SMR systems with narrow
interfaces, CRANE’s checkpoint and recovery must work with general programs.
To this end, it leverages CRIU [11] to checkpoint and restore process states, and
LXC [25] for file system states. An additional benefit of using the LXC container is
that CRANE isolates the replicated server program from the environment, avoiding
nondeterministic systems resource contentions.

We evaluated CRANE on five widely used server programs, including HTTP
servers Apache and Mongoose, an anti-virus server ClamAV, a uPnP multimedia
server MediaTomb, and a database server MySQL. Our results on popular perfor-
mance benchmarks show that CRANE works with all the servers easily (three servers
require no modification, and the other two servers each require only two lines of
PARROT hints [12] to improve performance); that CRANE’s performance overhead
is moderate (an average of 34.19% overhead at the servers’ peak performance setups
on our 24- core machines); and that CRANE is robust on replica failures.

Our key conceptual contribution is the idea of transparent SMR for general pro-
grams, which has the potential to expand SMR’s adoption and improve availability
of many systems. This idea also applies to other replication concepts (e.g., byzan-
tine fault tolerance [9, 17]). This idea has other broad applications as well. Our
engineering contributions include the CRANE system and its evaluation on widely
used server programs. All CRANE’s source code (including a standalone, libevent
based PAXOS implementation), benchmarks, and evaluation results are available at
github.com/columbia/crane.
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Chapter 2

Transparent State Machine
Replication

2.1 CRANE’s Overview

CRANE is deployed as a typical SMR system. A set of three or five replicas is set
up within a LAN, and each replica runs an CRANE instance containing the same
server program. On the CRANE system starts, one replica becomes the primary (or
leader) replica which proposes the order of requests to execute, and the others be-
come backup replicas which follow the primary’s proposals. A number of clients in
LAN or WAN send network requests to the primary and get responses. If the pri-
mary machine fails, the other replicas run a leader election to elect a new primary.

2.2 Architecture

To support general server programs transparently, CRANE chooses the POSIX socket
API as its consensus interface. CRANE enforces two kinds of orders for socket calls.
First, for client programs’ out going socket calls (e.g., connect() and send()), CRANE
enforces that all replicas see the same sequence of client socket calls with PAXOS.
CRANE does not need to order the clients’ blocking socket calls because CRANE is
not designed to replicate clients. Second, for a server program’s blocking socket calls
(e.g., poll(), accept(), and recv()), CRANE enforces that these calls are scheduled and
returned in the same sequence of logical times across replicas. CRANE responses to
the clients only using the server program on the primary, and it drops the responses
of the server programs on backups. For a server program’s outgoing socket calls
(e.g., send()), CRANE simply schedules them using DMT and does not invoke con-
sensus. The reason is that these calls readily have consistent contents via enforcing
the same logical admission times of input requests and the same thread schedules
for server programs across replicas.

Figure 2.1 shows a CRANE instance running on the primary. The instance con-
tains five main components, the proxy, the PAXOS consensus, the DMT scheduler,
the time bubbling component that enforces the same logical clocks for servers’ block-
ing socket calls across replicas via inserting time bubbles, and the checkpoint com-
ponent that periodically checkpoints the server program. A server program runs
transparently in a CRANE instance without being aware of CRANE’s components.
A backup replica runs the same CRANE instance except that its proxy does not ac-
cept connections from clients and does not invoke consensus.

The proxy component is a CRANE instance’s gateway. It accepts socket requests
from clients and forwards the requests to the server program on its own replica. It
accepts responses from the server program and forwards the responses to the clients.
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FIGURE 2.1: The CRANE Architecture. CRANE components are
shaded (and in green).

Once the proxy receives a client socket request, it invokes the PAXOS consensus
component running on its own replica for this request. The proxy does not block-
wait for this decision which may take a while to reach. Once the proxy is notified
by the PAXOS component that some requests’ decisions are made, it forwards the
requests in decision order to the server program.

The PAXOS consensus component is a PAXOS protocol that receives a client
socket request from its own proxy and invokes a consensus process on this request.
This component is also the only CRANE component that communicates among dif-
ferent replicas. CRANE’s PAXOS implementation is based on a well-known and
concise protocol [27]. After CRANE’s PAXOS components reach consensus on a
client socket call, each PAXOS component notifies its own proxy to forward this call
to its server program.

The DMT component runs within the server program’s process. CRANE lever-
ages PARROT [12] as the DMT scheduler because PARROT runs fast on a wide
range of 108 popular multithreaded programs. Specifically, PARROT uses a run-
time technique called LD PRELOAD to dynamically intercept Pthreads synchroniza-
tions (e.g., pthread mutex lock()) issued by an executable and enforces a well-define,
round-robin schedule on these synchronization operations for all threads, practically
eliminating nondeterminism in thread synchronizations.

Although PARROT is not designed to resolve data races deterministically, CRANE’s
replication tolerates data races that have fail-stop consequences, and can further
catch the other data races by running a race detector on a backup replica. CRANE
augments the DMT component to schedule the return points of socket calls in server
replicas, too, to ensure that requests are admitted at consistent logical times across
replicas.

The time bubbling component sits between the proxy and the DMT’s processes,
and it is invoked on two conditions. First, on a server’s bootstraps, CRANE in-
vokes time bubble insertions to make sure that the server programs across replicas
reach the same initial state and wait for the first input request. Second, if the DMT
component has not received any input request from the proxy for a physical dura-
tion Wtimeout , a time bubble insertion is invoked as the boundary of two request
bursts. To ensure the same sequence of inserted time bubbles across replicas, the
same PAXOS consensus as that for client socket calls is invoked. For each time bub-
ble, each replica’s DMT scheduler promises to run a number of Nclock synchroniza-
tions and not to admit any client socket call. If the DMT scheduler exhausts the
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logical clocks in a time bubble, it either admits new client socket call (if any) or in-
serts another time bubble. If the scheduler does not exhaust the logical clocks after
serving current requests, PARROT has a mechanism to exhaust them rapidly.

To recover from replica failures or add new replicas, the checkpoint component
is invoked every minute on a backup replica. It checkpoints the server process run-
ning with DMT. While one can always start a server replica from scratch and replay
the entire sequence of socket calls, this replay can be extremely time-consuming for
long-running servers. Prior SMR systems rely on narrow state machine interfaces for
checkpoint and recovery, which does not work for general server programs. Instead,
CRANE leverages two popular open source tools: CRIU, to checkpoint process state
such as CPU registers and memory; and LXC, to checkpoint the file system state of
a server program’s current working directory and installation directory.

Each checkpoint in CRANE is associated with a global index in PAXOS’s con-
sensus order, so if one replica needs recovery, CRANE ships the latest checkpoint
from a backup replica, restores the process running DMT and the server program,
and re-executes socket calls starting from this index. The proxy and consensus com-
ponents do not require checkpoints because we explicitly designed their execution
states independent to the server’s process.

2.3 CRANE’s Synchronization Wrapper

This section describes how CRANE handles a server program’s synchronizations,
including Pthreads synchronizations and blocking socket calls. Because how to han-
dle these synchronizations is tightly relevant to the PARROT DMT scheduler we
leverage, in this section, we first introduce some background on the PARROT sched-
uler, including its primitives and wrappers. And then we describe how CRANE
leverages PARROT’s primitives and wrappers to implement its own synchroniza-
tion wrappers.

CRANE wraps a rich set of common blocking socket operations, including se-
lect(), poll(), epoll wait(), accept(), and recv(). CRANE also modifies the wrappers
of Pthreads synchronizations. These wrappers are sufficient for the server programs
in our evaluation. CRANE needs to modify thepthreadmutexlock() wrapper to do
three things. First, if the PAXOS request sequence has been empty for a physical du-
ration Wtimeout, CRANE requests a time bubble with Nclock logical clocks. Second,
if the head of the PAXOS sequence is a time bubble, CRANE decreases the logical
clock in the time bubble by one, or it removes this bubble if zero clock is left. Third,
CRANE signals a thread that blocks on a socket operation (e.g., recv()) if there is a
matching client socket call (e.g., send()) at the head of the PAXOS sequence.

CRANE also needs to modify PARROT’s idle thread mechanism because some-
times this thread is the only thread in the run queue, and CRANE needs to frequently
check whether a new client socket call comes or a time bubble insertion is needed.
To do so, CRANE replaces PARROT’s get turn() and put turn() primitives within the
idle thread to be mutex lock and unlock operations, then the idle thread also runs
the function to check and insert time bubbles.

2.4 The Time Bubbling Technique

Figure 2.2 shows the time bubbles inserted by the time bubbling technique. The
technique groups clients’ socket operations as bursts. A request burst can be a group
of real socket requests (rectangles), or can be a time bubble with a fixed number of
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FIGURE 2.3: The work flow of inserting a time bubble.

logical clocks (circles). In this figure, black requests are the first operation for each
burst. In a conceptual level, CRANE uses three rules to enforce the same sequence
of logical times for socket requests (rectangles) and thus the same schedules across
different replicas. First, CRANE uses PAXOS to ensure the same sequence of client
socket calls as well as inserted time bubbles as a “PAXOS request sequence” for each
replica, as shown in each horizontal arrow. Second, CRANE uses DMT to guarantee
that it only ticks logical clocks (i.e., schedules Pthreads synchronizations or socket
operations) when this sequence is not empty. Third, the time bubbling technique
ensures that this sequence is not empty, otherwise it inserts a time bubble.

Figure 2.3 shows the work flow of our time bubbling technique with four steps.
Each replica’s DMT just waits for a physical duration Wtimeout , if no further re-
quests come, (1) the DMT requests its own proxy to insert a time bubble. (2)The
proxy then checks whether it sees itself as the primary in the PAXOS protocol. If
so, it asks (3) the consensus component to invoke consensus on whether inserting
this bubble; otherwise it drops this request. After a consensus on this bubble inser-
tion is reached, (4) each machine’s proxy simply inserts the bubble into the PAXOS
sequence, granting Nclock logical clocks to the DMT scheduler. If a server has not
exhausted the logical clocks in a time bubble after serving current requests, PAR-
ROT’s idle thread mechanism exhausts these clocks rapidly. Then, the server can
continue to process further requests in time.
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Chapter 3

Discussion

This section first discusses CRANE’s limitations and then introduces its applications.

3.1 Limitation

CRANE leverages PARROT to make synchronizations deterministic. PARROT is
explicitly designed not to handle data races. However, in the context of CRANE,
data races are less harmful because, if they cause backups to crash, CRANE can still
operate and recover as long as a quorum of the replicas is still alive. Moreover, lever-
aging CRANE’s replication architecture, one can deploy a race detector on a backup
replica [13], achieving both good CRANE performance and full determinism.There
are other sources of nondeterminism besides thread scheduling and request timing.
These other sources of non- determinism may cause backups to diverge, too. For
example, backups may do different things based on their IP addresses, data read
from /dev/random, addresses returned by malloc, physical time observed via get-
timeofday, or delivery time of signals. Prior work has shown how to eliminate these
sources of nondeterminism using record-replay [19, 23] or OS-level techniques [6],
which CRANE can leverage. Another solution is to treat all these sources as inputs
and leverage distributed consensus to let all replicas observe the same input. We
leave these ideas for future work. We inspected server programs’ network outputs
among replicas, and we found that these outputs were consistent in CRANE except
physical times. For a server program that spawns multiple processes which commu-
nicate via IPC, CRANE currently does not make these IPC operations deterministic.
We expect that it should be easy to support deterministic IPC in CRANE because it
already makes socket API deterministic. In addition, dOS [6] and DDOS [15] have
many effective techniques for tackling this problem, which CRANE can leverage.

3.2 Application

We envision three applications for CRANE. First, CRANE can be leveraged by other
replication concepts (e.g., byzantine fault tolerance [9, 17]) and record-replay [18, 20,
23] because they also suffer from nondeterminism. Second, promising results in [13]
have shown that CRANE’s transparent replication architecture can enable multiple
types of program analysis tools within one execution, making a server program en-
joy benefits of multiple analyses. Third, CRANE’s determinism as well as its time
bubbling technique alone can be applied to mitigate timing channels [4, 37, 5].
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Chapter 4

Evaluation

Our evaluation was done on a set of three replica machines, with each having Linux
3.13.0, 1Gbps bandwidth LAN, 2.80 GHz dual-socket hex-core Intel Xeon with 24
hyperthreading cores, 64GB memory, and 1TB SSD. We evaluated CRANE on five
widely used server programs, including HTTP servers Apache [3] and Mongoose [30];
ClamAV [1], an anti-virus scanning server that scans files in parallel and deletes ma-
licious ones; MediaTomb [28], a uPnP multimedia server that uploads, shares, and
transcodes pictures and videos in parallel; and MySQL [31], an SQL database. Al-
though MySQL has a replication feature [32], this feature is mainly for improving
read performance, not for providing SMR fault tolerance. SMR’s high availabil-
ity and fault-tolerance are attractive to these servers programs, because these pro-
grams provide online service and contain important in-memory execution states and
storage (e.g., ClamAV’s security database, MediaTomb’s SQLite [34] database, and
MySQL).

For Apache and Mongoose, we used Apache’s own concurrency stress testing
benchmark ApacheBench to invoke concurrent HTTP requests for a PHP page, which
takes about 70 ms for a PHP interpreter to generate the page contents. For ClamAV,
we used its own client utility clamdscan to request the server to scan ClamAV’s
own source code and installation directories in parallel. For MediaTomb, because
it has a web interface, we used ApacheBench to invoke concurrent requests which
use mencoder [29] to transcode a 15MB video from AVI to MP4. For MySQL, we
used SysBench [35] to generate random select queries. These workloads triggered
8-12 threads in each server program to process requests concurrently at peak per-
formance on our machines. These popular benchmarks and workloads cover CPU,
network, and file-IO bounded operations.

CRANE has two parameters for the time bubbling technique. The first param-
eter, Wtimeout, is the physical duration that the primary’s DMT scheduler waits
before it requests consensus on a time bubble insertion. To prevent this parameter
significantly deferring responses, CRANE sets its default value 100us, two orders
of magnitudes smaller than the workloads’ response times and wide-area network
latencies. The second parameter, Nclock, is the number of logical clocks within
each time bubble. CRANE sets its default value 1000, because we observed that
the amounts of executed Pthreads synchronizations to process each request in most
of the evaluated servers are closed to this scale. We used these default values in all
evaluations unless explicitly specified. A sensitivity evaluation on these two param-
eters showed that their default values were reasonable choices. To mitigate network
latency, benchmark clients were ran within the replicas’ LAN. Larger latency will
mask CRANE’s overhead. We measured each workload’s response time as it has di-
rect impact on users. For each data point, we ran 1K requests for 20 times and then
picked the median value. The rest of this section focuses on these questions:



Chapter 4. Evaluation 10

1. Is CRANE easy to use?
2. Compared to nondeterministic executions, does CRANE consistently enforce the

same sequence of network outputs among replicas?
3. What is CRANE’s performance overhead compared to nondeterministic execu-

tions?

4.1 Ease of Use

All five servers we evaluated were able to be transparently plugged and played
in CRANE without modification. For ClamAV, MediaTomb, and MySQL, we did
not need to modify any line of code and they already have moderate performance
overhead compared to the unreplicated nondeterministic executions. For Apache
and Mongoose, the default schedules serialized parallel computations. For each of
the two servers, we added two lines of soft barrier performance hints invented by
PARROT [12] to line up parallel computations as much as possible and compute
efficient DMT schedules.

4.2 Consistency of Network Outputs

To verify whether the server programs running in different replicas maintain the
same execution states, we compared each server program’s network outputs logged
in three replicas. Network outputs imply a server’s execution states, including the
outcomes of ad-hoc synchronizations and data races, which synchronization sched-
ules can not capture. We ran the performance workloads and logged the order
and contents of server programs’ outgoing socket calls, including send(), sendto(),
sendmsg(), write(), and pwrite(). These calls are sufficient to capture all network
outputs of the evaluated programs. We then used diff to compare the logs across
replicas.

We designed two experiment plans. In plan I, we ran CRANE with the pro-
grams. In plan II, we disabled only the time bubbling component in CRANE for
three reasons: (1) we wanted to know whether time bubbling is needed to keep
replicas in sync, (2) enabling PAXOS made us easy to ship the same workload to
replicas, and (3) enabling PARROT made us easy to intercepted and logged network
outputs. Among the five programs, three server programs, Apache, MediaTomb,
and Mongoose, used ApacheBench to spawn workloads. In plan I, CRANE’s logs
from all three replicas had the same order and contents of outputs except physical
times in the responded HTTP headers. In plan II, despite that we disabled only the
time bubbling component, the logs’ order of responded HTTP headers and contents
across replicas were different. Two server programs, ClamAV and MySQL, used
specific benchmarks to spawn workloads. In plan I, the logs showed that CRANE
enforced the same network outputs. In plan II, the orders of the outputs across repli-
cas were different. These experiments suggest that simply combining PAXOS and
DMT is not sufficient to keep replicas in sync, and the time bubbling technique is
needed.

To diagnose consistency of network outputs more concisely, we wrote a micro-
benchmark for Apache. We used the curl utility to spawn two concurrent HTTP
requests: a PUT request of a PHP page and a GET request on this page, and then
we inspected the outcome of the GET request. We ran Apache in CRANE with this
micro benchmark for 100 times and found that three replicas consistently reported
the same GET result in each run, either “200 OK” or “404 Not Found”, depending
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FIGURE 4.1: CRANE’s performance normalized to un-replicated nondeter-
ministic execution.

on the order of the PUT and GET request arriving at the primary’s proxy. And then
we ran Apache’s un-replicated execution for 100 times on each replica, and three
replicas reported “404 Not Found” for 6, 8, 11 times respectively.

4.3 Performance Overhead in Normal Case

To understand the performance impact of CRANE’s components, we divided CRANE’s
components into two major parts: the DMT part ran by PARROT; and the proxy
(with PAXOS) part which enforces the same sequence of client socket calls across
replicas. Each part ran independently without the other part. The proxy part rep-
resents the performance overhead of invoking PAXOS consensus for client socket
calls, and the DMT part represents the PARROT DMT scheduler’s overhead.

Figure 4.1 shows the servers’ performance running in CRANE normalized by
their un-replicated nondeterministic executions. The mean overhead of CRANE for
the five evaluated programs is 34.19% due to two main reasons. First, except for
MySQL, which does fine-grained, per-table mutex and read-write locks frequently,
the DMT schedules were efficient on the other four servers. The reason is that
PARROT’s scheduling primitives are already highly optimized for multi-core. The
proxy-only part incurred 0.82%-3.46% overhead, which is not surprising, because
the number of socket calls is much smaller than the number of Pthreads synchro-
nizations in these programs. In short, CRANE’s performance mainly depends on
the DMT schedules’ performance. MediaTomb incurred modest speedup because
its transcoder mencoder had significant speedup with PARROT. We inspected Me-
diaTomb’s micro performance counters with the Intel VTune [2] profiling tool. When
running in CRANE, MediaTomb only made 6.6K synchronization context switches,
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while in the Pthreads runtime it made 0.9M synchronization context switches. This
saving caused MediaTomb running with PARROT a 12.76% speedup compared to
its nondeterministic execution. The PARROT evaluation [12] also observed a 49%
speedup on the mencoder program.

The time bubbling technique saves most of needs on invoking consensus for the
logical times of clients’ socket operations, confirmed by the low frequency of in-
serted time bubbles in Table 1. Apache, MediaTomb, and Mongoose uses ApacheBench
as its benchmark, and each request contained a connect(), send(), and close() call.
ClamAV uses its own clamdscan benchmark, and each request contained 18 socket
calls. MySQL’s benchmark contained 6-7 socket calls for each query. The ratio of
inserted bubbles is merely 6.12%-33.35%. MediaTomb had the highest ratio of time
bubbles because it took the longest time (9,703ms) to process each request. Note that
the number of inserted time bubbles across replicas is the same within the same run
of CRANE. Within different runs of CRANE, this number can be different because
Wtimeout is a physical duration.
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