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ABSTRACT

Emerging Nanophotonic Applications Explored with Advanced

Scientific Parallel Computing

Xiang Meng

The domain of nanoscale optical science and technology is a combination of the

classical world of electromagnetics and the quantum mechanical regime of atoms

and molecules. Recent advancements in fabrication technology allows the optical

structures to be scaled down to nanoscale size or even to the atomic level, which

are far smaller than the wavelength they are designed for. These nanostructures

can have unique, controllable, and tunable optical properties and their interactions

with quantum materials can have important near-field and far-field optical response.

Undoubtedly, these optical properties can have many important applications, ranging

from the efficient and tunable light sources, detectors, filters, modulators, high-speed

all-optical switches; to the next-generation classical and quantum computation,

and biophotonic medical sensors. This emerging research of nanoscience, known

as nanophotonics, is a highly interdisciplinary field requiring expertise in materials

science, physics, electrical engineering, and scientific computing, modeling and simu-

lation. It has also become an important research field for investigating the science and

engineering of light-matter interactions that take place on wavelength and subwave-

length scales where the nature of the nanostructured matter controls the interactions.

In addition, the fast advancements in the computing capabilities, such as parallel

computing, also become as a critical element for investigating advanced nanophotonic

devices. This role has taken on even greater urgency with the scale-down of device



dimensions, and the design for these devices require extensive memory and extremely

long core hours. Thus distributed computing platforms associated with parallel

computing are required for faster designs processes. Scientific parallel computing

constructs mathematical models and quantitative analysis techniques, and uses the

computing machines to analyze and solve otherwise intractable scientific challenges.

In particular, parallel computing are forms of computation operating on the principle

that large problems can often be divided into smaller ones, which are then solved

concurrently.

In this dissertation, we report a series of new nanophotonic developments using

the advanced parallel computing techniques. The applications include the structure

optimizations at the nanoscale to control both the electromagnetic response of mate-

rials, and to manipulate nanoscale structures for enhanced field concentration, which

enable breakthroughs in imaging, sensing systems (chapter 3 and 4) and improve

the spatial-temporal resolutions of spectroscopies (chapter 5). We also report the

investigations on the confinement study of optical-matter interactions at the quan-

tum mechanical regime, where the size-dependent novel properties enhanced a wide

range of technologies from the tunable and efficient light sources, detectors, to other

nanophotonic elements with enhanced functionality (chapter 6 and 7).
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Chapter 1

Introduction

1.1 Nanophotonics

Recent advances have enabled the fabrication and characterization of nanometer

scale photonic devices that allow us to concentrate and channel light on length scales

much smaller than the wavelength of the light. In the meantime, the fast improve-

ments in computing and simulation platforms also provide us a superior environment

for the rapid and accurate design and development. In this chapter, we first provide

an overview of the properties of surface plasmons, followed by a brief review of im-

portant plasmon-based nanophotonic applications. We also briefly review important

technological advances in the fields of nanofabrication that provide the foundation

for realizing the nanophotonic applications reported in this dissertation.

Surface plasmons (SP) or plasmonics is a very important concept in the field of

nanophotonics, where we are concerned primarily with the manipulation of light at

the nanoscale. Surface plasmons are essentially light waves that are trapped on a

surface of a conductor due to their interaction with free electrons near the surface.

In this interaction, the free electrons respond collectively by oscillating in resonance

with the light wave. The resonant interaction between the surface charge oscilla-

tion and the electromagnetic field of the light constitutes the SP and gives rise to

its unique properties [1]. The surface plasmon has a propagation vector parallel to

the interface, while its amplitude decays exponentially in the direction orthogonal to

the surface. Unlike pure electromagnetic waves, surface plasmons can be localized to

1



subwavelength dimensions in the plane perpendicular to the propagation direction,

providing a viable route to nanoscale optics. Much of today’s research is aimed at

structures that provide additional localization, such as localized surface plasmons of

single metal particles [2] or between metal particles [3]. Localization of the electro-

magnetic fields at the nanoscale also yields a dramatic increase in the field intensity,

thus suggesting the use of surface plasmons in application, such as photolumines-

cence enhancement of quantum emitters [4], Raman spectroscopy of single molecules

[5] and atomic clusters [6], and even coherent control of a single molecule quantum

dynamics [7]. Nanophotonic applications based on the use of surface plasmons can

be applied for a large variety of tasks, through the design and manipulation of the

geometry of metallic structures, and consequently their specific plasmon-resonant or

plasmon-propagating properties.

1.2 Scope of the Thesis

Rigorously, the plasmon is the quasi-particle resulting from the quantization of

plasma oscillations, a hybrid of the electron plasma and the photon. Although plas-

mons are quantum mechanical in nature, their properties, most specifically with re-

spect to their coupling to light, can be described rigorously by classical electrodynam-

ics. Detailed methods for analyzing the properties of surface plasmons are discussed

in Chapter 2. While many metals support surface plasmons, gold and silver have

thus far dominated experimental work due to their low ohmic loss at the operating

wavelength. With the unique properties of surface plasmons, several key research di-

rections have been established in this dissertation. These applications range from the

enhanced near-field optics for sensing and detection of biomolecules [8, 9], to scan-

ning microscopies employing metallic probe tips [10], to enhanced photoluminescence

processes in solid-state lasers [11], modulators and detectors [12], to the propagation
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of signals and information on metal-based waveguides [13]. In this dissertation, three

main categories of plasmon-based nanophotonic applications are reported.

Surface Plasmon Enhanced Fluorescence and Sensing The excitation of conduc-

tion electrons by light is denoted as a surface plasmon resonance for planar surfaces

or localized surface plasmon resonance for nanometer-sized metallic structures. The

plasmon resonant frequency is determined by the dielectric properties of the metal,

and specifically for nanoscale metallic structures by the size, shape, and local envi-

ronment of the nanostructure. On the other hand, fluorescence is the emission of

photons as a quantum emitter relaxes from an excited electronic state to the ground

state. The presence of a vicinal metallic nanostructure to a quantum emitter strongly

influences both the radiative and nonradiative decay of the quantum emitter and its

lifetime. In Chapters 3 and 4, we discuss their influence on the radiative rate, non-

radiative decay rate, and lifetime of the quantum emitters. Specifically, we address

the distance dependence of these characteristics on wavelength and from shape of the

metal nanostructures. Our results point the way to nanoantenna engineering, offer-

ing new ways to increase the intensity of low-quantum-yield quantum emitters and

improve fluorescence stability in biological imaging. In addition, the wavelength shift

of the plasmon resonance is a good figure-of-merit criterion for sensing applications,

which monitor changes of the refractive index of the environment surrounding the

metal nanoparticles. Furthermore, the high sensitivity that can be achieved through

the design principles we illustrate can be used to advantage for real-time detection of

binding events studied using localized surface plasmon resonance spectroscopy.

Surface-Enhanced Spectroscopy Recent advances have pushed high-spatial-

resolution surface probes into picosecond and femtosecond regimes [14], however,

an approach that can be applied generally to surface physics and chemistry investi-

gations remains to be developed. A two-photon-photoemission-based approach has

the potential to address this need with the field enhancement at the metallic tip and

3



surface. When an electromagnetic wave interacts with a metallic surface or a metal-

lic tip, the electromagnetic fields in the vicinity of the surface are greatly enhanced

as compared to the incident electromagnetic field. This phenomenon has been at-

tributed to the excitation of surface plasmons at the metallic interface. In Chapter

5, we report on our recently developed photoemission technique based on this phe-

nomenon that is a significant step toward joint subnanometer subpicosecond surface

imaging. This work breaks new ground by establishing conditions where photocur-

rents depend exponentially on the tip–surface gap width and by correlating the signal

to field enhancements in the gap.

Plasmon-Based Active Devices Going beyond the passive applications, active gen-

eration, amplification and modulation can also be done based on surface plasmons.

Enhancing the performance of ultracompact solid-state light sources is of great current

importance due to concerns for integrated on-chip photonic devices. For mid-IR detec-

tors or modulators, reducing the volume of the semiconductor sensing element also has

the important effect of reducing the thermal noise. Using the intensely concentrated

plasmonic near-field, it is possible to concentrate light from a large area to enhance

absorption by a small volume of material. In Chapter 6, we describe development

of a theoretical model to design a direct bandgap optically-pumped nanophotonic

integrated laser. Our device utilizes a gap-surface-plasmon optical mode to achieve

subwavelength optical confinement in conjunction with a monolayer transition-metal

dichalcogenide semiconductor as the active medium. In Chapter 7, we also provide

an experimental demonstration of a modulation based on plasmon from graphene

nanoribbon. Note that the plasmon frequency of graphene easily extends into the

terahertz, which opens up the possibility of creating a variety of devices, and the

possibility for nanoscale high-speed devices.
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Chapter 2

Numerical Methods

2.1 Numerical Methods in Nanophotonics

Due to the complex nature of the light wave interaction and the ultra-small scale

of the photonic components, analytical solutions of the Maxwell′s equations in most

cases may not exist. Thus experimental studies rely heavily on numerical analysis

to provide guidance both for the design of the photonic components as well as for

the interpretation of their performance prior to fabrications. In most cases, one

should first develop a quantitative theoretical description of the photonic systems

using advanced computational techniques, which requires solving the corresponding

partial differential equations numerically. In a broad sense, there are two categories of

modeling methods: finite-difference method and finite-element method, as well as two

categories of equation solving techniques: frequency-domain solver, and time-domain

simulations. In this section, we briefly present an overview of the modeling methods

and solving techniques.

2.1.1 Finite-Difference vs. Finite-Element

In mathematical modeling, finite-difference methods (FDM) are popular methods

for solving differential equations by approximating them with difference equations

and using finite difference grids to approximate the derivatives. Due to the simple

discretization process, the development time for FDM is very short and it is easily

understandable and directly follows from the differential equations. The stability
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and dispersion and inhomogeneous characteristics also follow from a simple, intuitive

understanding of the updating procedure. However, the orthogonal grid structure

of the FDM results in the edges of the model structures have stair-stepped edges,

which can become a problem when high accuracy is desired and curved surfaces are

involved. Some special treatments have been developed to overcome this limitation,

including non-uniform grids, but other methods, such as finite-element method, are

generally better suited for complex irregular geometries.

The finite-element method (FEM) subdivides a large problem into smaller, simpler

parts that are called finite elements, which are based on triangular or tetrahedral sub-

regions. The simple equations that model these finite elements are then assembled

into a larger system of equations that models the entire problem. FEM then uses

the variational methods to approximate a solution by minimizing an associated error

function. Note that developing a FEM is not as straightforward as FDM. For example,

creating the numerical grid along for FEM could require an entire software package,

and understanding of the discretization procedure can be quite convoluted.

2.1.2 Time-Domain vs. Frequency-Domain

The solution based on the time-domain can be computed by time stepping,

whereas the problem in the frequency-domain can be solved only through a linear sys-

tem of equations. Using the time-domain solver, the time step at which we advance

the solution is limited by the spatial size. Thus for simulations with large spaces, the

simulation must be run for a very long time. On the other hand, frequency-domain

solvers are generally required linear algebra or matrix inversions, so that there is an

inherent limit to the size of a simulation, especially for a large three dimensional

systems.

The popular numerical methods for solving Maxwell′s equations or the wave equa-

tion are mainly the combinations of the discretization methods and solving techniques,
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as illustrated in Fig. 2.1, namely, Finite-Difference Time-Domain (FDTD), Finite-

Difference Frequency-Domain (FDFD), Finite-Element Frequency-Domain (FEFD)

and Finite-Element Time-Domain (FETD). In this following chapter, we will provide

a brief overview of each major techniques used in photonics design with an illustration

of its use.

2.2 Finite-Difference Time-Domain Method

Finite-difference time-domain (FDTD) is a well-known numerical technique in

electrodynamics to compute the Maxwell′s equations. It translates the differential

form of Maxwell′s equations into difference equations that can be solved numerically

by computer. However, before the 1990s, the FDTD method was limited by the need

to discretize the simulation space on sub-wavelength scales, with relatively small time

steps. Thus, a typical photonics modeling would require a large amount of computer

memory that exceed the technology limits at that time. However, since the 1990s,

the FDTD became more affordable with the fast increases in computer memory and

speed.

There are several advantages for using FDTD. First, the method is accurate and

robust, such that approximations are minimized and detailed solutions are provided

with accuracy determined by the grid resolution. Second, the method is naturally

includes the effects such as polarization, dispersion, and nonlinearities. Furthermore,

FDTD is able to calculate the full-wave response, which includes the transient be-

havior of an electromagnetic system.

In this section, we first introduce Yee′s unique, yet highly powerful, FDTD scheme

for solving Maxwell′s equations. Taking the advantage of the simplicity of one-

dimensional problems, we demonstrate the basic principle and formulation of the

FDTD method for analysis of electrodynamic problems. We then discuss stability
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Figure 2.1: The different numerical methods for solving the electromagnetic problems.
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analysis, boundary conditions and extensions to the analysis of 2D/3D problems.

2.2.1 Yee′s algorithm

Yee′s algorithm, introduced in 1966, established a set of finite-difference equations

for the time-dependent Maxwell′s curl equations system [1]. In this algorithm, the

continuous derivatives in space and time are approximated to second-order accuracy

with two-point centered difference forms. The resulting finite-difference equations

are solved in a leapfrog manner: the electric field vector components in the modeled

space are solved at a given instant in time; then the magnetic field vector components

in the same spatial volume are solved at the next instant in time using the previously

stored electric field data. This process is repeating until the desired transient or

steady-state electrodynamic behavior is full evolved.

The fundamental unit of the 3D grid, known as the Yee lattice, is shown in Fig. 2.2,

which discretizes and solves the six components of E and H fields that satisfy the six

coupled scalar Maxwell curl equations in free space:

∂Ex
∂t

=
1

ε0
(
∂Hz

∂y
− ∂Hy

∂z
)

∂Hx

∂t
=

1

µ0
(
∂Ey
∂z
− ∂Ez

∂y
)

∂Ey
∂t

=
1

ε0
(
∂Hx

∂z
− ∂Hz

∂x
)

∂Hy

∂t
=

1

µ0
(
∂Ez
∂x
− ∂Ex

∂z
)

∂Ez
∂t

=
1

ε0
(
∂Hy

∂x
− ∂Hx

∂y
)

∂Hz

∂t
=

1

µ0
(
∂Ex
∂y
− ∂Ey

∂x
)

(2.1)

Rather than solving for the electric field alone with a wave equation, the Yee

algorithm solves the coupled Maxwell′s curl equations directly. In which way, both

electric and magnetic material properties can be modeled in a straightforward manner.

This is especially important when modeling the inhomogeneous materials and a full-

wave response of a dispersive medium.

Here we demonstrate an example of using finite-difference method to calculate

the fundamental TE mode profile of a channel waveguide. In details we illustrate
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Figure 2.2: Position of electric and magnetic vector components in a 3D staggered
unit cell known as Yee lattice. The vectors are placed at the point in the mesh at
which they are defined and stored.
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Figure 2.3: Demonstration of the calculated mode profile with different computing
grid size: (a) The structure of a Si channel waveguide (400nm in width and 200nm
in height) on top of the SiO2 substrate. The fundamental TE mode profile was
calculated using different grid size of (b) 50nm, (c) 20nm, and (d) 5nm.
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how the computing grid size can affect the calculated mode profile. Figure 2.3(a)

shows the structure we calculated with a Si channel waveguide sitting on top of the

SiO2 substrate. The channel waveguide is 400nm in width and 200nm in height.

Figure 2.3(b)-(d) shows the calculated TE mode profile with difference grid size of

50nm, 20nm, and 5nm respectively.

2.2.2 FDTD: 1D Example

In this section, we demonstrate the basic implementation of FDTD method in one-

dimensional case, with details on discretization of the Maxwell′s Equations. To solve

a specific problem of pulse propagation, we demonstrated a 1D model with details

on discretization of Maxwell equation. Taking the advantages of the simplicity of 1D

example, we also illustrate the stability criterion for the FDTD simulations. This

discretized equation and stability criterion can be easily expanded to 2D and 3D

models.

In one dimension model, the medium extends to infinity in the y-direction and

z-direction. This translational symmetry then leads to ∂
∂x = ∂

∂y = 0. For a free space

situation, the Maxwell′s curl equations take the form:

∂Hz

∂t
= − 1

µ0

∂Ey
∂x

and
∂Ey
∂t

= − 1

ε0

∂Hz

∂x
(2.2)

In order to introduce 1D Yee discretization, we use the following notation:

Ey(m ·∆x, n ·∆t) ≡ (Ey)
n
m

Hz(m ·∆x, n ·∆t) ≡ (Hz)
n
m

(2.3)

where m and n are the index of the spatial and temporal grid. Using the central-

difference approximation with second-order accuracy for space and time derivatives,

the equations can be discretized as:

(Ey)
n+ 1

2
m − (Ey)

n− 1
2

m

∆t
= − 1

ε0

(Hz)
n
m+ 1

2

− (Hz)
n
m− 1

2

∆x

(Hz)
n+1
m+ 1

2

− (Hz)
n
m+ 1

2

∆t
= − 1

µ0

(Ey)
n+ 1

2
m+1 − (Ey)

n+ 1
2

m

∆x

(2.4)
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In practical sense, for a simplicity of the calculations, the constants from physical

laws are typically omitted from mathematical expressions. The implementation of

FDTD usually adapts the natural unit of the speed of light c, which is exactly dimen-

sionless 1, i.e., c = 1/
√
ε0µ0 ≡ 1. By redefining the electric field as Ey ≡

√
ε0/µ0Ey,

Eq. 2.4 can be expressed as:

(Ey)
n+ 1

2
m = (Ey)

n− 1
2

m − ∆t

∆x
[(Hz)

n
m+ 1

2

− (Hz)
n
m− 1

2

]

(Hz)
n+1
m+ 1

2

= (Hz)
n
m+ 1

2

− ∆t

∆x
[(Ey)

n+ 1
2

m+1 − (Ey)
n+ 1

2
m ]

(2.5)

Figure 2.4 is the visual illustration of Eq. 2.5, which indicates the numerical

dependencies in the 1D FDTD formulations. One can observe that the value of a

field at any point is determined by three previous values: two from the neighbors

of opposite field at the previous half time step; one from the same position at the

previous one time step.

Note that this discretization procedure can be easily extended into 2D and 3D

space [2]. However, for example, if 3D problem would require N grid cells in each

dimension, the total grid cells are N3. With a minimum of six fields to compute

in double precisions, it can easily take GB of memory with billions of operations.

Thus FDTD is relatively a computationally intensive method. However, advances

in CPU speed and memory and the emergence of inexpensive parallel systems with

parallel computing technology are enabling a full 3D FDTD simulation without any

constraints.

Stability criterion. Despite the requirements for spatial grid size in order to main-

tain the numerical accuracy, the time step must be small enough so that it satisfies

the Courant condition [3] in order to achieve a convergence while solving partial dif-

ferential equations numerically. The detailed mathematical discussion can be found

in [4]. The physical fact of the stability criterion is that the speed of numerical prop-

agation should not exceed the physical speed. Thus the lattice speed ∆x/∆t must
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Figure 2.4: Visual illustration of the numerical dependencies in the 1D FDTD
method.
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be less than the physical velocity vp in the medium with refractive index of n, where

vp = c/n. A summary of stability criteria for various dimensions are presented in

Table 2.1.

2.2.3 Boundary Conditions

One of the major challenges of using the FDTD method for solving unbounded

electromagnetic problems is to employ a finite computational domain. Thus our

simulation domain must be terminated with proper boundary conditions. This ter-

mination can be accomplished by introducing an artificial layer to enclose the domain

of interest. However, to duplicate the original open-space environment, the artificial

boundary layer must absorb the field incident on the layer to eliminate all reflected

fields. There are a few approaches to achieve this implementing a mathematical

boundary condition (i.e., absorbing boundary condition) or a fictitious absorbing

material layer (perfect matching layer).

Absorbing Boundary Condition. An absorbing boundary condition (ABC) is

a mathematical technique to approximately estimate the missing field outside the

FDTD domain, thus emulating an infinite space. This is normally done by assum-

ing a plane wave incidence. Unfortunately, in many cases, the incident wave at the

boundary is usually not a plane wave and furthermore, the angle of incidence is not

known a prior. Thus ABC is a general approximation and does not completely pre-

vent reflections back into the FDTD space. Advance treatment is available, such as

decomposing an arbitrary wave into many component plane waves. For reader with

interests, please refer to [5].

Perfectly Matched Layer. Instead of using a mathematical boundary condition,

one can design thin layers of artificial absorbers solely for simulation purpose. A

popular absorber model was proposed by Berenger [6] for the FDTD simulation and

is known as the perfectly matched layer (PML). A PML is an artificial material that is
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Table 2.1: Stability Criterion for FDTD.

Dimensionality Criterion

1D vp∆t ≤ ∆x

2D vp∆t ≤ ( 1
∆x2

+ 1
∆y2

)−
1
2

3D vp∆t ≤ ( 1
∆x2

+ 1
∆y2

+ 1
∆z2

)−
1
2
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theoretically designed to create no reflections regardless of the frequency, polarization

and angle of incidence of a plane wave incident upon its interface. The frequency

independence is especially important because it enables broadband simulation with

a time-domain method. Note since the PML primarily attenuates waves propagating

normal to the PML, the truncated PML will provide less attenuation for obliquely

incident waves; consequently, a significant non-physical reflection can occur for a wave

incident at a near grazing angle. For this reason, the PML has to be placed some

distance away from all the sources of the field.

As an example to illustrate the idea of PML, the modified source-free Maxwell′s

curl equation for electric field is shown below :

∇s × E = −jωµH (2.6)

where ∇s is defined by

∇s = x̂
1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
(2.7)

and ∇s can be considered as the standard ∇ operator in Cartesian coordinates whose

x, y, and z axes are stretched by a complex numbers of sx, sy, and sz, respectively.

Throughout the simulation domain the complex diagonal tensor′s s is the identity

tensor, but inside the PML it has the following form [7]:

↔
s =



sysz
sx

0 0

0
szsx
sy

0

0 0
sxsy
sz


(2.8)

Note that when a material property changes abruptly and the spatial discretization

is not sufficiently dense, undesirable numerical reflections may occur. One approach

to avoiding this problem is to vary the material parameters smoothly within the PML

[8], thus we have:
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sx,y,z = 1− j
(α− L

L

)
δx,y,z (2.9)

where δx,y,z is the loss tangent in dimension x, y and z , α is the distance from the

edge, and L is the thickness of the PML, which is terminated at the simulation domain

edge with a perfect electrical conductor (PEC) boundary condition. Figure 2.5 has

illustrate the effect of the PML for a point source in free space. The calculated spatial

profile is shown at time t = 5t0, t = 7t0, and t = 10t0 respectively. As we can see, for

the simulation domain with PML, the spherical wave generated by the point source

are perfectly absorbed at the simulation domain boundary, while for the case without

PML, the reflection from the boundary significantly interfaces with the spherical wave

generated from the point source.

2.3 Finite-Difference Frequency-Domain

As we discussed earlier, time-domain methods such as FDTD are extremely useful

when a transient or broadband analysis is required. However, when a steady-state

solution is the only answer needed at a single frequency, the time-domain method is

rather inefficient. Instead, the frequency-domain method, such as the Finite Differ-

ence Frequency Domain (FDFD) is highly applicable, since it maintains the finite-

difference spatial features, but removes time stepping [9]. The steady-state solution

is found at a single frequency through a matrix inversion process. This is often the

most desirable solution to many problems, as many engineering problems involves

quasi-steady state fields; and, if a single-frequency solution is sought, the FDFD is

much faster than the transient broadband analysis afforded by FDTD.

In addition, the FDFD method has the advantage of taking care of the dispersive

materials. In FDTD, implementing dispersive materials requires either convolution

terms or auxiliary equations, but in FDFD, only one simple set of values of material
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Figure 2.5: Visual illustration of dipole source in free space at time t = 5t0, t = 7t0,
and t = 10t0, with and without PML respectively.
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properties are needed at the frequency of interest. Note that the FDFD can also be

used for broadband simulations, by running multiple simulations with one at each

frequency of interest. The spectral response of a problem can be determined with the

frequency resolution limited only by the number of simulations. This can be useful for

problems involving dispersive media, whose material parameters vary with frequency

in a way that cannot be easily modeled in FDTD.

In this section, taking the advantages of the simplicity of 1D example, we briefly

illustrates the frequency domain representation of the wave equation and the possible

implementations through the Maxwell′s equations.

2.3.1 FDFD from Wave Equations

In practice, the FDFD normally utilizes the frequency domain wave equation for

its setup [10]. The wave equation has a more compact form and does not require inter-

leaving or Yee lattice. Meanwhile, only solving one wave equation is necessary; after

solving for E, for example, H can be calculated directly follows from the frequency

domain Maxwell′s equations.

In the source-free space, the wave equations can be simplified to:

∇2E + k2E = 0 and ∇2H + k2H = 0 (2.10)

where k = ω
√
εµ is the wavevector. To illustrate how these equations are solved

in FDFD, we will consider the 1D version of the electric field wave equation with a

current source term Jz for generality:

∂2Ez
∂x2

+ k2Ez = jωµJz (2.11)

We proceed to discretize the above equation using a second-order centered difference:

(Ez)m+1 − 2(Ez)m + (Ez)m−1

(∆x)2
+ k2(Ez)m = jωµ(Jz)m (2.12)
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Note that, followed by the notation defined in Eq. 2.3, we only need to discretize in

space as there is no time dependence. Thus there is no superscript n, compared with

the notation used in FDTD. The wavevector k is a purely complex constant. This

difference equation can be rearranged as:

(Ez)m−1 + a(Ez)m + (Ez)m+1 = b(Jz)m (2.13)

where a = [k2(∆x)2−2] and b = jωµ(∆x)2. The entire system can then be represented

in a tridiagonal matrix:

a 1 0 0 · · ·

1 a 1 0 · · ·

0 1 a 1 · · ·

... · · ·

· · · 0 1 a 1

· · · 0 0 1 a


︸ ︷︷ ︸

M



(Ez)0

(Ez)1

(Ez)2

...

(Ez)l−1

(Ez)l


︸ ︷︷ ︸

[Ez ]

= b



(Jz)0

(Jz)1

(Jz)2

...

(Jz)l−1

(Jz)l


︸ ︷︷ ︸

[Jz ]

(2.14)

where the total number of spatial cells in our 1D system is l+ 1. The solution of this

equation can be found by simple matrix inversion as

[Ez] = [M ]−1b[Jz] (2.15)

Note that this 1D example of a homogeneous medium can be easily replaced with

inhomogeneous and frequency dependent materials, by replacing a, b with am and bm,

where it takes consider the material constant such as ε, µ and σ for each grid. From

this above example, we see that the solution from FDFD involves taking an inverse

of the matrix M , which can be easily done in 1D simulation. The discretized FDFD

equations in 2D and 3D follows straightforwardly from the 1D example. However,

in higher dimensional setup, this matrix M can become very large, thus advanced
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linear algebra techniques are required for efficient calculation. In general, the Laplace

matrices and the Kronecker products are introduced to assist the FDFD setup in 2D

and 3D model. Detailed discussion can be found in [11].

Finally, in the 2D and 3D formulation, directly solving the wave equation of E field

may suffer from a problem with the current source. This is due to the assumptions

that the divergence of E and H are both equal to zero. Clearly this is not true at the

position of the source. For this reason, it is common to solve the wave equation of H

field, which can easily include curl J component due to the source, while ∇ ·H = 0

is still hold to be true.

2.3.2 FDFD from Maxwell′s Equations

FDFD method can also be formulated using Maxwell′s equations . Here, the

frequency-domain Maxwell′s equations are as follows:

∇× E = −jωµH −M

∇×H = jωεE + J

(2.16)

In the 1D case, we consider an x-directed propagation with E field polarized along

y direction, we have:
∂Ey
∂x

= −jωµHz −M

∂Hz

∂x
= jωεEy + J

(2.17)

Discretizing using the leapfrog method, we have the finite difference equations:

(Ey)m+1 − (Ey)m
∆x

= −jωµ(Hz)m+ 1
2
−M

(Hz)m+ 1
2
− (Hz)m− 1

2

∆x
= jωε(Ey)m + J

(2.18)

The matrix system can then be formulated into [M ][F ] = [S], where the column

vector [F ] includes each of the E components followed by each of the H components

and [S] is the source of the system. This linear system can be rearranged as follows:

ah(Hz)m+ 1
2

+ (Ey)m+1 − (Ey)m = −∆xM

ae(Ey)m + (Hz)m+ 1
2
− (Hz)m− 1

2
= ∆xJ

(2.19)
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Note that in this setup based from Maxwell′s equations, the matrix M , which must

be inverted, is no longer tridiagonal; this means the inversion process will be more

computational intensive. In addition, the vector of field values [F ] has doubled in

length compared with the wave equation setup (Eq. 2.14), since we are simultaneously

solving for E and H. Thus, the doubling of the field vector results in a quadrupling

of the matrix M , which increase the computational cost considerably. Therefore, the

FDFD method from the wave equation, in general, is more attractive than the FDFD

method from Maxwell′s equations.

2.4 Beam Propagation Method

Among the many numerical methods available for modeling optical propagation

in integrated and fiber optic photonic devices, the Beam Propagation Method (BPM)

is the most commonly used technique for larger photonic system. BPM is an approx-

imation technique for simulating the propagation of light in slowly varying optical

waveguides [12]. It solves the well-known parabolic or paraxial approximation of the

Helmholtz equation. There are several reasons for using the BPM over other nu-

merical methods. First, it is a conceptually straightforward technique and is easily

implemented even in three dimensions. Second, it is a very efficient method with an

optimal computational complexity, i.e., the computational effort is proportional to

the number of grid points used in the simulation. Overall, the BPM is very flexible

method and require less intensive computing power compared with other methods

such as FDTD.

2.4.1 Paraxial formulation

In this section, we demonstrate the simplest version of BPM, where one assumes

a scalar electric field E and paraxial approximations which restrict its applicability
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to the fields propagating at small angles with respect to the axis of the waveguide

[13]. We define this axis as z axis. To illustrate the method, we start from the

monochromatic wave equation. Assuming a scalar field, φ, and paraxiality, the wave

equation is written in the form of the Helmholtz equation,

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
+ k2(x, y, z)φ = 0 (2.20)

where the spatially varying wavenumber is k(x, y, z) = kon(x, y, z), and the free space

wavenumber is ko = 2π/λ. The refractive index n(x, y, z) solely defines the geometry

of the problem. Considering that the most rapid variation in the field φ is the phase

variation due to propagation predominantly along the z direction, it is beneficial to

factor out this rapid variation by introducing a slowly varying field u,

φ(x, y, z) = u(x, y, z)eiβz (2.21)

where β is a free parameter called the reference wavenumber and is frequently ex-

pressed in terms of a reference refractive index, n0, via β = k0n0. Here, n0 can be

the refractive index of the substrate or cladding. Substituting Eq. 2.21 into Eq. 2.20

gives the equation for the envelope of the field:

∂2u

∂z2
+ 2iβ

∂u

∂z
+
∂2u

∂y2
+
∂2u

∂x2
+ (k2 − β2)u = 0. (2.22)

By assuming that the variation of u with z is sufficiently slow such that∣∣∣∂2u

∂z2

∣∣∣� ∣∣∣2β∂u
∂z

∣∣∣ (2.23)

the above equation reduces to

∂u

∂z
=

i

2β

[∂2u

∂x2
+
∂2u

∂y2
+ (k2 − β2)u

]
(2.24)

which is known as the Fresnel or paraxial equation. This approximation eliminates

the second-order derivative term in z, which reduces the second-order boundary value

problem to a first-order initial value problem, so that it can be solved by simple
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integration along the propagation direction z. In addition, the efficiency is enhanced

by the fact that the longitudinal grid can be much coarser than the wavelength for

many problems.

2.4.2 Finite-Difference BPM

Here we present the detailed implementation of BPM based on finite-difference

method [14, 15]. The above differential equation can be numerically integrated in

the forward z direction using the Crank-Nicholson scheme, which is a finite-difference

approach and is the most widely used. In this numerical scheme, the field in the

transverse x-y plane is denoted as discrete points on a grid, and at discrete points

along the longitudinal propagation direction z. Given the field at one z plane, the

field at the next z plane can be determined. The stepping process is repeated to

account for the propagation throughout the structure. Assuming a 2D BPM case, if

we let umi denote the field at the transverse grid point i and longitudinal plane m and

assume the the grid points and planes are equally spaced by ∆x and ∆z apart. Thus

in the Crank-Nicholson scheme, Eq. 2.24 is represented at the midplane between the

known plane m and the unknown plane m+ 1 as follows:

um+1
i − umi

∆z
=

i

2β

[ δ2

∆x2
+ (n2k2

0 − β2)
]um+1

i + umi
2

(2.25)

where δ2 is the second-order difference operator, δ2ui = [u(i+1) + u(i−1) − 2ui], and n

is the averaged refractive index between the two planes. The above equation can be

rearranged into the form of a standard tridiagonal matrix equation for the unknown

field u in the plane (n+ 1) in terms of known quantities, resulting in

aun+1
i−1 + bun+1

i + cun+1
i+1 = d (2.26)

where the expressions for the coefficients a, b, c, and d above are readily derived and

can be found in [16].

Boundary conditions. Since the field can only be represented on a finite com-

putational domain, the above equation requires an appropriated boundary condition
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which complete the system of equations. A commonly used boundary condition is the

so-called transparent boundary condition (TBC). The basic approach is to assume

that near the boundary the field behaves as an outgoing plane wave, with charac-

teristics that are dynamically determined via some heuristic algorithm. The TBC

is generally very effective in allowing radiation to freely escape the computational

domain and details on implementations are given in [17].

2.4.3 BPM Expansions

Certainly there are a few limitations on the traditional BPM that is based on the

paraxial approximations. For example, the fields must propagate primarily along the

z axis, i.e., fields are paraxial and limited to a small angular spread in wavenumber.

This places a restriction on geometries with large and abrupt perturbations along

the z axis. Also, the gradient of the refractive index must be small. In addition,

the elimination of the second-order derivative term eliminates the possibility of a

backward propagating wave solution; thus devices relying on reflections cannot be

modeled. In this section, we briefly introduce a few techniques that is to eliminate or

significantly relax these limitations.

Wide-angle BPM. The fundamental physical limitation of the above BPM ap-

proach results from the parabolic approximation to the Helmholtz equation, which

implies a paraxiality condition on the primary direction of propagation. This restric-

tion as well as the related restrictions on index-contrast can be relaxed through the

use of extensions that have been referred to as wide-angle BPM. The essential idea

behind this approach is to reduce the paraxial limitations by incorporating the effect

of the second-order derivative term that was neglected in the basic BPM. Thus the

above mentioned limitations can be reduced using more accurate approximations to

the Helmholtz equation. The most popular formulation is based on Padé approxi-

mants [18]. In general, larger angles, higher index contrast, and more complex mode
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interference can be analyzed in both guided wave and free space problems as the Padé

order increases. Detailed discussion for using this technique can be found in [19].

Bi-directional BPM. While wide-angle BPM allows propagation in a wider numer-

ical aperture, it is still not able to include the backward traveling wave. Therefore,

various bi-directional BPM techniques have been considered to address this issue,

with most focusing on the coupling that occurs through reflection of a wave incident

on an interface along z direction [20, 21]. For example, the guided wave propagation

can be divided into regions that are uniformed along z and the interfaces between

these regions. At any point along the structure, it is considered that both forward

and backward waves can exist. The essential idea is to employ a transfer matrix M ′

which describes the entire structure that is composed of propagation and interface

matrices. The propagation matrices describe the uniform regions using normal BPM.

The interface matrices are given by generalized Fresnel formulas involving differential

operators employing the Padé approximants used in wide-angle BPM.

Full-vector BPM. The basic BPM approach discussed above results from the as-

sumption of scalar waves, which prevents the polarization effects from being consid-

ered. This limitation can be overcome though a Full-vector BPM technique, which is

to recognize the electric field as a vector and solving from the vector wave equation

rather than the scalar Helmholtz equation. This approach can be found with more

details in [22, 23].

2.5 Finite Element Methods

Finite element method (FEM) was originally developed for mechanical and struc-

tural analysis in the 1950s. It became popular in solving the vector electromagnetic

problems after an important breakthrough occurred in the 1980s with the develop-

ment of edge-based vector element [24, 25]. There is a major difference between the
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finite-difference methods (FDM) and the FEM. From the discussions earlier in this

chapter, we note that, in principles, FDM finds an approximation to the differential

operators, and then use these difference equations to solve for the fields at each grid;

while the FEM makes an approximation to the solution of the differential equation

over the domain of the problem, and then tailors that approximation to minimize its

difference with the exact solution.

The FEM is a numerical procedure to convert partial differential equations into a

set of linear algebraic equations to obtain approximate solutions to boundary-value

problems. In particular, it divides the simulation space into small areas or volumes,

which can be arbitrarily shaped and oriented; for this reason, the FEM is well suited

to problems with complex geometry. The solution to Maxwell′s equations over each

subdomain is then approximated with some functional form, usually a low-order

polynomial. The solutions in each subdomain are then made to be continuous across

their boundaries, and the solution must be made to fit with the global boundary

conditions. The primary reasons for using FEM rather than FDM for electromagnetic

problems are its geometric flexibility and the ability to work in higher orders of

accuracy. Geometric flexibility arises because the grid in FEM can use arbitrary

polygons or polyhedral (in 2D or 3D, respectively), and these can be designed to

match the shapes of objects in the simulation space.

In this section, we illustrate the basic principle of the FEM by briefly introducing

the methods for solving the boundary-value problems in mathematical modeling.

Then we present the formulation procedure of the FEM to solve the electromagnetic

problems in frequency domain.

2.5.1 Boundary-Value Problems

Boundary-value problems has long been a major topic in mathematical modeling.

A typical boundary-value problem can be defined by a governing differential equation
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in a domain Ω, with boundary conditions specified on the boundary that encloses the

domain: Lψ = f , where L is a differential operator, f is the source function, and ψ

is the unknown quantity. In electromagnetics, the form of the governing differential

equation ranges from a simple Poisson equation to complicated vector wave equations.

To solving the boundary-value problems, various approximate methods have been

developed, and among them the Ritz and Galerkin′s methods have been used most

widely [26]. The Ritz method is a direct method to find an approximate solu-

tion for boundary value problems. It is a variational method which starts from the

variational representation, which is referred to as functional, of the boundary-value

problem. The minimum of the functional corresponds to the governing differential

equation under the given boundary conditions. The approximate solution is then ob-

tained by minimizing the functional with respect to its variables. On the other hand,

Galerkin′s method belongs to the family of weighted residual methods, which start

directly from the partial differential equation of the boundary-value problem and seek

the solution by weighting the residual of the differential equation. In this method,

it converts a continuous operator problem into a discrete problem, then characterize

the discrete space with a finite set of basis functions, i.e., the weighting function,

used for the expansion of the approximate solution. A brief reviews of the Ritz and

Galerkin′s methods and a detailed illustration of their solution procedures to a simple

boundary-value problem can be found in [27].

2.5.2 Implementation of FEM

In general, it is a very challenging step in the Ritz and Galerkin’s methods to

find a trial function defined over the entire solution domain, which is capable of

representing the true solution of the problem. This is particularly true for two- and

three-dimensional problems. To make it simpler, we can divide the entire domain

into small subdomains and employ the trial functions defined over each subdomain.
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These trial functions are usually in a much simpler form since the subdomains are

small. Therefore, the principle of the finite element method is to replace an entire

continuous domain by a number of subdomains, in which the unknown function is

represented by simple interpolation functions with unknown coefficients. A system of

equations is then obtained by applying the Ritz variational or Galerkin′s procedure

and the solution of the boundary-value problem is achieved by solving the system of

equations. The basic steps for a finite element method can be summarized as follows:

• Domain discretization. The first and perhaps the most important step in the

finite element method is to discretize the domain over which the solution is de-

sired. An effective discretization with proper numbering for each elements can

significantly affect the computing time, memory usage, as well as the accuracy

of the numerical results [5]. Note that the linear line segments, triangles, and

tetrahedral are the most frequently used subdomain elements for one- two- and

three-dimensional modelling, due to their simplicity and suitability for domains

with arbitrary shape and volume. We demonstrate two examples in Fig. 2.6

showing the finite element discretization of a two- and a three-dimensional do-

main.

• Select interpolation functions. The approximation of the unknown solution is

assumed to take a specific functional form over each small element. In general,

the interpolation is usually selected to be the linear (first-order polynomial) or

parabolic (second-order) functions. These functions are then matched to the

adjacent cells to ensure continuity across the cell boundaries

• Formulate a system of equations. In this step, each elemental equation can

be formulated using either the Ritz variational or Galerkin′s method. The

system of equations can then be set up by summing the elemental equations

over the entire domain. The boundary conditions are then imposed to obtain
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Figure 2.6: Visual illustration of the finite element mesh grid for 2D (left) and 3D
(right) object.
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the final form of the system of equations. This system includes information

about boundaries and sources, also have the added constraint of continuity

across element boundaries.

• Solve the system of equations. The resultant system, in general, has one of the

following two forms:

[M ][φ] = [S] (2.27)

or

[A][φ] = λ[B][φ] (2.28)

In electromagnetics, Eq. 2.27 is corresponding to the wave equations with the

known vector [S] as the source. Equation 2.28 represents the eigenvalue systems

that associated with source-free problems. In this case, the source vector [S]

vanishes and the matrix [K] can be written as [A]− λ[B], where λ denotes the

unknown eigenvalues. Similar to FDFD, solving these systems becomes purely a

linear algebra problem, and the truncation of the infinitely large solution domain

into a finite computation domain is accomplished by setting up an artificial mesh

layer with either absorption boundary conditions (ABC) or perfect matching

layers (PML).

2.6 Summary

In this chapter, we briefly descrbed the basic principle and formulation of a few

major computational methods for numerical analysis of electromagnetic fields for pho-

tonics applications. These include the finite-difference time-domain method, finite-

difference frequency-domain method, beam propagation method and the finite ele-

ment method. We started with the construction of the finite differencing formulas

and demonstrated their applications in solving one-dimensional Maxwell′s equations.

Taking the advantage of the simplicity of one-dimensinal problems, we discussed the
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working principles, stability criterion and boundary conditions in the time-domain

simulation. The finite-difference method then extended to frequency domain, where

the linear system of equations can be formulated. After that, we illustrated the

basic principle and steps of finite element method with possible applications to elec-

tromagnetic problems. These four methods are chosen because they represent the

fundamental and the popular approaches for numerical analysis of photonics engi-

neering design. The reader is also encouraged to consult more advanced books and

references listed in the end of this chapter, for a more comprehensive understanding

about these methods with a variety of advanced treatment and applications.
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Chapter 3

Engineering Metal-Nanoantennae/Dye Complexes for

Maximum Fluorescence Enhancement

Abstract

We theoretically investigate the fluorescence enhancement of a represen-

tative set of dye-molecules excited by three nanoantennae geometries, using

a fully vectorial three-dimensional finite-difference time-domain (3D FDTD)

method. Through these 3D FDTD calculations, in conjunction with analytic

guidance using temporal coupled-mode (TCM) theory, we develop a design

procedure for antenna assemblies that allow achieving fluorescence enhance-

ments of 200-900× over the emission intensity of the dye molecule in free

space. The enhancement from these commercially available fluorochrome con-

jugates, namely, CF TM568, CF TM660R and CF TM790 are fully investigated

using spherical-dimer, elliptical-dimer, and bowtie nanoantennae, where there

is an optimal antenna structure for high fluorescence enhancement for each

specific dye-molecule pair due to the different plasmonic response and field cou-

pling with variation in shape at each wavelength. These results demonstrate

a method for rationally designing arbitrary metallic nanoparticle/emitter as-

semblies prior to their synthesis and assembly to achieve optimum fluorescence

enhancement.
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3.1 Introduction

It is well known that the absorption cross section and radiative efficiency of a

molecule can be enhanced by a nearby plasmonic nanostructure; this enhancement is

important, for example, for applications in biosensing and photovoltaics [1, 2]. Fur-

thermore, while the enhancement of the local optical field due to the metal structure

can be calculated accurately numerically, much less numerical research has been car-

ried out on the combined effects of excitation and quenching. Fluorescence enhance-

ment depends on the metallic composition, size, shape, orientation of the nanoan-

tennae, the dielectric properties of the surrounding medium, the number of nanoan-

tennae, and the polarization state and frequency of the incident beam. Each of

these parameters modifies the combined effects of excitation by the incident field and

ohmic loss in the nanoantennae [3, 4]. Recently, Dal Negro and coworkers have the-

oretically investigated the fluorescence enhancements and deep-ultraviolet near-field

interactions for single metal nanoparticles of various shapes and sizes, using a surface

integral equation method [5]. However, there has been no systematic investigation of

the emission properties of dye molecules coupled to nanoantennae of different shapes,

sizes and their interactions in the visible spectrum region.

Analysis of the fluorescence properties of an emitter such as a dye molecule can

be carried out by generalized Mie theory (GMT) [6]. However, Mie theory cannot

directly predict the scattering of non-spherical particles or of an arbitrary ensemble

of nanoparticles. Thus for the case of light scattering by non-spherical nanoparticles,

only approximate GMT algorithms have been established. In addition, an impor-

tant earlier analytic study, which considered a single spherical antenna [7–9], used

a Green’s function approach to analyze the molecule’s linear excitation rate. This

method provided a useful analytic formulation; however, such an approach lacks the

generality of rigorous numerical computation.

Concomitantly, synthesis methods have been developed by many groups, which
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enable fabrication of specific nanoparticle structures for fluorescence with sub-

nanometer precisions using DNA self-assembly. For example, Gang and coworkers

have developed methods of fabricating arrays by DNA self-assembly [10–12]. These

arrays consist of structures formed with metal nanoparticles and dye molecules. In ad-

dition, Zhang and coworkers also have implemented several viable synthetic method-

ologies for the fabrication of a range of nanoscale formulations [13, 14]. These syn-

thesis methods require a companion approach for computing the optical/fluorescence

properties of the structures.

In this chapter, we use a method based on full vectorial three-dimensional finite-

difference time-domain (3D FDTD) computation to calculate accurate fluorescence

enhancements for arbitrary-shaped metal nanoparticle antennae. In addition, we

show that temporal coupled-mode (TCM) theory [15] can be used for analytical

guidance in the optimization of the antennae design. We have determined anten-

nae configurations that optimize the fluorescence enhancement of each of a selected

set of dye molecules, which are matched to three different antennae geometries. Our

results provide guidance for the rational design of optimized metallic nanoparticle

complexes for maximum fluorescence enhancement. Finally, we note that this ap-

proach provides a design method for applications of optically active nanostructures

in near-field imaging [16, 17], biosensing [18, 19], light harvesting [20, 21] and non-

linear optical properties of metal nanostructures [22, 23].

3.2 Dye-molecule/antenna complex

First, for our emitter-dye complexes, the emission spectrum of each dye is

dependent on both the spectral response of each dye and the response and efficiency

of its nearby nanoantenna. Second, each dye/antenna combination exhibits strong

fluorescence enhancement only over a limited spectral region, where in this chapter,
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only antennae having a fixed specific volume of metal are considered and compared.

This behavior is sketched in Fig. 3.1(a) for the cases of a spherical- and an ellipsoidal-

dimer antenna. The spectral response can be broadened or shifted by changes in

the geometry of the antenna. For example, a change in the spacing between the

antenna nanoparticles shifts the antenna response—but only by a relatively small

amount; see the dotted line in Fig. 3.1(a). On the other hand, it is possible to access

other spectral regions using an antenna with a different geometrical shape such as

the ellipsoid shown in Fig. 3.1(a), since the antenna has a distinct, shape-dependent

localized-plasmon resonance frequency. Finally, note that enlarging the radius of a

spherical dimer also shifts the antenna response, while at the same time increasing

the magnitude of field enhancement due to its larger antenna polarizability (Fig.

3.1(b)). However, larger antennae also experience larger ohmic loss. This large

ohmic loss makes the larger spherical dimer/dye cluster to be a less efficient emitter

than the smaller ellipsoid dimer/dye cluster. Therefore, the scope of this chapter

focuses on investigating the influence of the nanoparticle geometry, rather than the

dependence on volumetric scaling.

Our goal is to provide a general approach to designing nanoantennae for efficient

molecule light-emitting clusters. Thus, we consider the radiative and quenching pro-

cesses of an excited emitting dye molecule in the near field of a metal nanoantenna,

illuminated by a monochromatic optical source, as shown in Fig. 3.2(a). The ap-

proximate energy level of dye molecule is shown in Fig. 3.2(b). In the presence of

incident light with intensity I0, the molecule undergoes optical excitation followed by

either nonradiative quenching or fluorescence, with an appropriate Stokes shift. If a

dye molecule is located within the near field of the metal antenna, resonant local-

ized plasmons within the metal can enhance these optical processes. In effect, the

metal antenna causes a much stronger local field to form at the position of the dye
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Figure 3.1: (a) A conceptual sketch showing how the choice of nanodimer type (a
spherical and ellipsoidal dimer with a fixed volume are shown here) selectively en-
hances a certain fluorescence-emission wavelength region. Only a very limited tuning
of the dimer’s spectral response is achieved by changes in the interdimer-nanoparticle
spacing. For example, when the dimer spacing is adjusted by 1nm, the resonance will
shift from solid curve to dash line. (b) Spectral shifting and variation in fluorescence
enhancement can also be achieved with a change in dimer radius (solid lines). The
larger enhancement due to shape effect is shown for comparison (dotted lines).

42



molecule due to excitation of localized surface plasmons (LSP), which corresponds

to the external field distribution, causing, in turn, stronger optical excitation of the

dye molecules. This excited molecule gives enhanced fluorescence as it decays radia-

tively with rate γrad = 1/τrad, as shown in Fig. 3.2(c). Note that ohmic loss within

the metal antenna inserts an additional non-radiative channel with the non-radiative

decay rate of γnrad = 1/τnrad that is not present in an isolated dye molecule.

Considering these processes, we can express the fluorescence rate γem of a single

molecule as the product of an excitation rate γexc and the quantum yield q, where q

is defined as the ratio of radiative transition rate (from excited to ground state) to

the total decay rate: thus nonradiative quenching lowers q. It is sufficient to treat

the excitation and emission processes independently because there is no coherence

between the two processes [7]. The fluorescence enhancement can then be expressed

as

γem
γ0
em

=
γexc
γ0
exc

· q
q0

(3.1)

where the superscript ‘0’ indicates the corresponding free-space quantity. Since we

are considering only linear excitation processes, the excitation rate of the molecule is

directly proportional to the number of incident photons, i.e., the incident intensity of

the field:

γexc
γ0
exc

=
|E(r)|2

|E0(r)|2
(3.2)

The values of E(r) and E0(r), which are the electric-field strengths for a specific

optical frequency ω at the location, r, of the molecule with and without the presence of

an antenna, are obtained from our 3D FDTD calculations. The fluorescence enhance-

ment is calculated by approximating the emitting molecule as a classical dipole; this

approach has been described earlier by Gersten and Nitzan [24] and Novotny [7, 8].

The wavelength of the dipole is set to the emission wavelength of the dye, i.e., the

Stokes shift is empirically accounted for. To obtain the quantum yield, q, of the

isolated molecule, ohmic loss must be obtained using the dielectric function of the
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Figure 3.2: (a) A schematic illustration of an antenna-dye system under laser illu-
mination. (b) Energy level for dye molecules in free space. (c) Energy level for dye
molecules near metallic nanoantennae.
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nanoantenna metal. This process includes a nonradiative rate γnrad, which then gives

the quantum yield [25],

q =
γrad/γ

0
rad

γrad/γ0
rad + γnrad/γ0

rad + (1− q0)/q0
(3.3)

where γrad/γ
0
rad and γnrad/γ

0
rad are the normalized radiative and non-radiative decay

rates. Placing the emitter within the near-field of the nanoantenna increases its

local optical density of states [26]. Then based on Fermi’s Golden rule, the radiative

decay rate will change compared to its value in free space. The analysis—discussed

in Ref. [7, 9]—shows that the normalized energy-transfer rate can be written as

γrad/γ
0
rad = Prad/P0 and γnrad/γ

0
rad = Pnrad/P0, with Prad being the power radiated

by the classical dipole in the presence of a metal nanoparticle, Pnrad being the power

absorbed by the metal particle due to ohmic loss, and P0 being the power radiated

by a classical dipole in free space. The quantum yield is then obtained by measuring

the power emitted from the dipole-nanoantenna system.

3.3 Theoretical approach

To model the metal antennae optical response accurately, a parametrized Drude-

Lorentz model [27, 28] was used. The analysis below considers Au antennae because

of their prevalence in many fluorescence applications [7, 10]. We chose dyes that emit

at red or near-infrared wavelengths because Au has a low absorption coefficient in this

wavelength range. In this work, size effects on the metal dielectric constant were ne-

glected and all dye-molecules were assumed to have unity internal quantum efficiency.

In addition, because they are commonly used in cellular and biophotonics applica-

tions, we chose commercially available fluorochrome conjugates for these molecules,

namely, CF TM568, CF TM660R and CF TM790 [29], which have useful spectral dis-

tributions, namely excitation maxima at 562nm, 663nm, 784nm, and peak emission

wavelengths at 583nm, 682nm, and 806nm, respectively.
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3.3.1 Analytical Method

In order to gain analytical insight into the optical properties of our nano-system,

we first treat the metal nanoparticles as coupled resonators and employ the TCM

theory discussed by Haus [15] to analyze the energy transfer between the incident

light and metal nanospheres. While the use of TCM theory is approximate, it does

enable a qualitative analysis of our systems. It, thus, allows us to determine the

factors controlling antennae performance and provides guidance for understanding

under which conditions the metal antennae increase radiative efficiency.

The framework of TCM theory can be best illustrated by considering the fields

of a metal antenna cluster in the presence of an exciting beam with power of |s+|2.

For illustrative purposes, we consider a metal antenna consisting of two spheres with

a fixed spacing, i.e., a dimer, which is illuminated by a beam propagating perpen-

dicular to,and polarized paralleled to,the dimer axis. TCM theory then generates

the following rate equations to describe the relationship between the isolated sphere

LSP-mode amplitudes, (a1 and a2, with corresponding energies |a1|2 and |a2|2 and

LSP resonant frequencies ω1 and ω2),

da1

dt
= iω1a1 −

γnrad + γrad
2

a1 + κins+ +
γ12

2
a2 (3.4)

da2

dt
= iω2a2 −

γnrad + γrad
2

a2 + κins+ +
γ21

2
a1 (3.5)

where γrad is the radiative decay rate of a sphere with radius of r0 at frequency ω

which is known as

γrad = γ4π
rad =

(
2πr0

λ

)3
ω

1 + 2εD
(3.6)

and λ and εD are the wavelength of incident beam and the dielectric constant of the

medium, respectively. The nonradiative decay rate γnrad = γ, with γ being the metal

ohmic loss in the Lorentz-Drude approximation. The in-coupling coefficient, κin, is

the degree of coupling between the incident light and the LSP, and γ12 and γ21 are

the coupling coefficients between an LSP of one sphere with another.
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Based on the dipole-dipole approximation [30, 31], the in-coupling coefficient κin

can be evaluated as κin = (γΩ
rad)

1/2, with Ω being the far-field solid angle, where

γΩ
rad = γrad

∫ Ω

0
f(θ, φ)dΩ and f(θ, φ) = 3(1− sin2θcos2φ)/8π. Due to the symmetry of

our dimer system, the coupling coefficients γ12 = γ21 = γc and the amplitudes of the

LSP modes a1 = a2 = a. We can evaluate the γc using an overlap integral as follows,

γc =
ω
2
εo
∫
mode

[ε(r)− εd]E∗1(r) · E2(r)dV

|a|2
(3.7)

where E1(r) is the electric field at location r when both LSP1 and LSP2 are present,

E2(r) is the electric field at location r when only LSP2 is present and the LSP mode

energy |a|2 = 1
2
εoεDE

2
maxVeff , where Veff is the effective mode volume [30]. Therefore,

the steady-state solution of Eqs. 3.4 and 3.5 yields

a =
2κin

(γrad + γnrad − γc)− 2j (ω − ωo)
s+, (3.8)

where ω0 is the LSP resonance frequency. This equation shows the proportionality

between s+ and a, and hence between the incident power |Einc|2 and the isolated

LSP |Emax|2 of the sphere. The radiative γrad and non-radiative loss rates γnrad are

mostly dependent on the particle size, while the coupling rate γc is mostly dependent

on the inter-particle spacing. We can then vary the enhancement via a change in ω

or in nanoparticle geometry.

As mentioned before, while useful for qualitative insight, TCM does not provide

quantitative accuracy. This is readily illustrated by detailed comparison between the

results of TCM theory and FDTD simulation (Fig. 3.3). For this comparison, we

have selected a dimer structure with two 40nm-radius spherical Au particles under

illumination by 663nm light. The surface-to-surface spacing is adjusted from 4nm to

20nm. The dashed line shows the enhancement estimated by TCM, which is in good

agreement with the FDTD results (solid curve) at larger spacings (>10nm). At this

larger spacing, results obtained with TCM for an isolated metal-sphere-nanoparticle

overlap those obtained using Eq. 3.7, agree well with the exact numerical solution.
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Figure 3.3: The intensity enhancement measured at the center of the gap using TCM
is presented as the dashed curve (blue) for a dimer structure with two 40nm-radius
spherical Au particles under the illumination of 663nm light; the solid curve (red) is
the result from FDTD simulations; note that the curves continue to diverge at smaller
inter-particle spacings of the dimer.
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However, we can see that with decreasing inter-particle distance TCM fails to accu-

rately predict the field enhancement by treating the dimer as a single-dipole.

3.3.2 Simulation

The advantages of FDTD simulation are its accuracy and simplicity of imple-

mentation. Our simulations are implemented on the computer clusters (gen04) at

Brookhaven National Laboratory’s Center for Functional Nanomaterials. The prob-

lem was solved across hundreds of cores, enabling not only division of a large numerical

problem into smaller calculations, but also the concurrent investigation of multiple

structures. For our simulation model, a nanoantenna/dye molecule was illuminated

using a cw plane-wave source, with an excitation wavelength located at the peak

absorption frequency of the dye molecules. The dipole radiates at the Stokes-shifted

emission frequency of the dye molecules. A perfectly matched layer (PML) was used

as the radiation boundary condition for the computational domain and the simulation

had a mesh size of 0.5nm; 2% convergence was required for each calculation.

3.4 Results

3.4.1 Spherical Dimer

Calculations of the fluorescence enhancement and quenching of a single spherical

metallic nanoantenna have been previously extensively investigated [2, 7, 25] yet it is

useful to review briefly the fundamentals of this standard model system for an optical

antennae photoresponse. For example, based on a quasi-static approximation [32],

where the center of nanoparticle is located at the origin, the electric field near-field

region due to a single spherical metallic nanoparticle is given as follows:

E(r, θ) = E0(cosθer − sinθeθ) +
α(ω)

4πε0

E0

r3
(2cosθer + sinθeθ) (3.9)
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where er and eθ are the unit vectors in radial and polar directions, respectively; α(ω)

denotes the polarizability of the metal particle and r is the distance from the center

of particle. The general expression for polarizability of the metal sphere [33] is

α(ω) = 4πεor
3
0

εM(ω)− εD(ω)

εM(ω) + 2εD(ω)
(3.10)

where εM and εD are the relative permittivity for metal and surrounding dielectric

materials. We retain only the l = 1 spherical harmonics and consider only a particle

radius r0, such that r0 � λ (i.e. the dipole limit). Note that the plasmon polariton

frequency is resonant when Re{εM(ω)} + 2εD(ω) ≈ 0, which for a Au particles is at

λ ∼ 500nm. However, the strong ohmic loss in the vicinity of this wavelength reduces

the overall fluorescence enhancement.

Now consider the simplest multiparticle ensemble, namely a dimer of two spher-

ical nanoparticles. Our TCM calculations show that coupling between the two Au

nanoparticles changes their optical properties, including a strong field enhancement

and a down-shifting of the plasmon resonant frequency of the assembly, compared

to the response of a single metal nanosphere. For a single Au spherical particle, the

strongest enhancement occurs at 520nm [9], but for the Au dimer structure, the peak

enhancement is, say, red shifted to 570nm (for a spherical-dimer with radius of 40nm),

due to the lower plasmon resonant frequency. With this geometry, the enhanced in-

tensity decreases as the spacing increases, which is demonstrated by the dashed line

shown in Fig. 3.4(c). Note that this red-shifting has been previously introduced and

reported in Refs. [34, 35] and this prior work on this model system was used to pro-

vide a validation of our model. Our TCM calculations show that the size of the Au

nanospheres and the distance between their centers directly controls the magnitude

of the red shift of the resonant wavelengths, a result also shown in prior work [15].

Finally, we add a cautionary note. Recently Nordlander [36] and Pendry [37] have

studied quantum phenomena that occur when the surfaces of two Au particles are

within sub-nanometer distances of each other. However, this near-contact case is not
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the focus of our research here. Instead, we examine cases, in which the Au particles

are separated by a surface-to-surface spacing, which is larger than 4nm. Therefore,

near-contact effects, which become increasingly significant as separations decrease

from 1 nm, such as quantum tunneling, are ignored in our calculations.

Numerical computation of enhancement and spectral shifts. Consider now our

FDTD computations. The intensity enhancement of the excitation field obtained

when illuminating with a cw source at the maximum absorption frequency of a dye

molecule and in the presence of a dimer antenna is shown in Fig. 3.4(a); in this figure

the dye molecule is located at the center of the spacing between the two spheres of

the dimer. In addition, the incident field is, as shown, polarized parallel to the dimer

axis. The numerical results of the antenna intensity enhancement of the emission field

at the location of dye molecule with respect to the spacing between sphere particles

are demonstrated in Fig. 3.4(c). Recall that in this chapter, in order to compare the

dye/antenna assemblies uniformly, we fixed the volume of each Au particle in the

dimer to be equal to that in a spherical antenna with a radius of 40nm, in which

case, the spherical antenna has a plasmon resonant frequency that is peaked near

the maximum excitation wavelength of CF TM568. The fluorescence quenching, due

to the ohmic losses of the dye/nanoantennae assemblies, has also been investigated.

By treating the excited dye molecule as a dipole source (see Fig. 3.4b), we find that

the dipole radiative decay rate is related to its surrounding environment and the

non-radiative decay rate is proportional to the power absorbed by the Au particles;

this dependence enables us to calculate the quantum yield for different dye molecules

and dimer antennae of different dimensions. Figure 3.4(c) shows the overall quantum

yield, q, for our three different dye molecules. As the spacing is reduced, the in-

coupling coefficient from the radiating dye molecule to the Au particles increases.

In particular, more of the optical energy emitted from each dye molecule is then

dissipated through ohmic losses in the Au-particle antenna, thus causing a decreased
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Figure 3.4: (a) Plot of the excitation electric field intensity distribution for a
dye/dimer complex under illumination by a cw source at the maximum absorption
frequency of dye molecules, i.e., 562nm. (b) The emission electric field intensity distri-
bution for an excited CF TM568 at its maximum emission frequency, i.e., 583nm. (c)
A comparison of calculations of excitation rate γexc/γ

o
exc using TCM theory (dashed

lines) with calculated curves using FDTD (solid lines) for three dye molecoles. Also,
the FDTD calculated quantum yield, qa, as a function of dimer separation. (d) The
calculated emission rate γem/γ

o
em as a function of dimer separation for different dye

molecules.
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quantum yield. As shown in Eq. 3.1, the total fluorescence enhancement reflects the

combined effects of excitation and quenching. In summary, for the aforementioned

three dye molecules, we can achieve a 100-200 fluorescence enhancement by using

spacings of 8-11.5nm. A plot of the performance of each dye/antenna type is given

in Fig. 3.4(d).

Finally, as discussed in the previous section, standard TCM underestimates the

antenna-intensity enhancement, especially when the interparticle spacing in the dimer

is very small (<10nm). This underestimate is due to the fact that the isolated-sphere

solution is used to calculate the overlap integral for intersphere coupling. In effect,

this approach assumes that the polarizability α of each particle behaves as it would

for an isolated particle, which in turn effects the value of γrad. We note, however, at

such close spacing, we can treat the dimer pair as a single-dipole with an increased

polarizability αpair due to interactions between the original spheres. This approach

has been described in [6] to model the enhancement behavior at close spacings. When

this approach is used in the TCM framework, the results, as shown in Fig. 3.4(c)

(dashed line), are in good agreement with our FDTD calculations.

3.4.2 Ellipsoid Dimer

In the previous section, it was shown that a spherical-dimer nanoantenna is well

matched for enhancing the fluorescence efficiency of a CF TM568 dye. To enhance

fluorescence for a longer wavelength dye, such as CF TM660R, the spherical shape

was changed into an ellipsoid; the major axis of the ellipsoid nanoantenna was ad-

justed to match the plasmon resonance of the structure with the longer-wavelength

emission peak of dye molecules, i.e., 663nm. This approach is based on insight from

our TCM solution, which suggests that an ellipsoidal structure will yield a larger po-

larizability and stronger coupling coefficient at longer wavelength, thus allowing us to

increase the intensity |a|2/|s+|2. Hence, in this section, we use ellipsoid dimers and,
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for simplification, focus on spheroids, which have two axes of equal length; therefore,

only one geometrical factor is independent. From our results on spherical dimers, we

recall that the dimer structure has 200× the fluorescence enhancement for CF TM568

compared with its value for the molecule with no antenna, while the enhancement

for CF TM660R is only 150× and only 100× for CF TM790. The lower values for the

last two dyes is due to the fact that the excitation wavelengths for the last two dyes

are off-resonance for their emission wavelengths, as was shown in a notional way in

Fig. 3.1. Thus we can achieve better fluorescence enhancement for dye molecules,

simply by altering the shape of the nanoantennae to change its LSP mode.

Figure 3.5(a) shows the intensity distribution of a spheroid dimer under illumina-

tion by a cw source at the wavelength of maximum absorption for three dye molecules.

In addition, for this figure, the major axis is aligned along the polarized E-field of

incident light. The polarizability, α, of an isolated spheroid in a field parallel to its

major axis is then

α = 4πabc
εM − εD

3εD + 3L(εM − εD)
(3.11)

where a is its major axis and b = c are its minor axes; εM and εD are the dielectric

constants of the metal and the surrounding medium. An analytical expression for

the geometrical factor L as a function of the eccentricity e =
√

1− b2/a2 can then be

found from [38]:

L =
1− e2

e2

(
−1 +

1

2e
ln

1 + e

1− e

)
(3.12)

Based on Eqs. 3.11, 3.12 and setting a > b = c, the choice of a longer major

axis a will yield a smaller L, which will lead to stronger polarizability α. Based

on the quasi-static approximation, the near-field enhancement of such a spheroid, in

general, will be much larger than that of a sphere of comparable volume. In fact

a larger enhancement is obtained in our calculation, as shown in Fig. 3.5(b). This

result can also be seen from application of the TCM solution. In particular, since

the spheroid’s radiative mode is more directional than that of a sphere, the coupling
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coefficient κ for the spheroidal dimer is also larger. Based on Eq. 3.8, the magnitude

of a/s+ will increase when κ is increased. In our simulations, our spheroid antenna

was designed to be a = 110.7nm and b = c = 34nm, since these dimensions yield

a resonant frequency of 665nm. As shown in Fig. 3.5(c), this antenna structure

has a 650× fluorescence enhancement for CF TM660R when the surface-to-surface

spacing is 8nm. This result is more than 4× than for a spherical-dimer antenna. For

CF TM790, the spheroid still has a 250× fluorescence enhancement - that is about 3×

times higher than that obtained when using a sphere. It is worth noting that a recent

publication has reported an advanced fabrication capability that can synthesize a

cylinder nanorod with round tip [39]. However, for our equivolume design rule, the

cylinder dimer normally resonates in the range near 1500nm that is out of the range

of commercial dye-molecule fluorescence. The fluorescence enhancement is thus very

weak at our three selected dye wavelengths using a cylinder dimer and thus its use

will not be discussed further here.

3.4.3 Bowtie

In order to efficiently fluoresce at the longest wavelength considered in this chap-

ter, it was necessary to consider and examine a third dimer structure—the nanobowtie

(triangle dimer). Using the same approach, the fluorescence enhancement of a bowtie

nanoantenna was investigated, again with the same fixed volume of Au as was used

for the spherical dimer discussed above. The choice of a bowtie to increase fluores-

cence enhancement at longer wavelengths was also motivated by the TCM theory. In

particular, its strong near-field coupling and its large planar area cause it to have a

stronger resonance at a longer wavelength than for the two antennae discussed above.

Note also that its use has also been enabled by a recent development in advanced

fabrication procedures [40, 41]. The bowtie has several features, which are quali-

tatively distinct from those of our other two nanodimers. One of these is its sharp
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point, which leads to a high directionality radiation. The second difference is that,

for a fixed nanoparticle volume, the bowtie has a higher in-coupling coefficient κin

and is resonant at longer wavelengths than for ellipsoids and spherical dimers. Based

on Eq. 3.8; this high directionality in-coupling coefficient, κ, will further increase the

field enhancement.

The intensity enhancement resulting from normal-incidence light impinging on a

bowtie structure is shown in Fig. 3.6(a). Using our optimization procedure to scan

through bowtie configurations with thicknesses from 20 to 40nm and angle θ from

30°to 120°, we find a local optimal enhancement structure of 30nm-thickness with

a width of 120nm and a height of 149nm. As anticipated, the bowtie has a much

stronger resonance at 800nm wavelength than at 560nm as indicated in Fig. 3.6(b).

Although the quantum yield of the bowtie structure is comparable to that of the spher-

ical dimers, the field enhancement of the bowtie dimer is stronger. From Fig. 3.6(c),

we see that the optimal spacing between the bowtie tips for a CF TM790 molecule is

14nm, which gives a 900× fluorescence enhancement compared with 150× fluorescence

enhancement with a spherical dimer structure and 300× fluorescence enhancement

with an ellipsoidal dimer. The enhancement for a CF TM660R dye using a bowtie

dimer structure is comparable to that achieved with a spherical-dimer antenna, how-

ever as expected, the enhancement for a CF TM568 dye is not significant. In summary,

the bowtie structure is well matched to the near-IR fluorescent molecule.

3.5 Conclusion

In order to summarize our theoretical investigation of our three different choices of

nanoantennae, we present our optimal fluorescence enhancement data for each config-

uration for the dye-molecules CF TM568, CF TM660R and CF TM790 in Table 3.1. As

the table shows, there is an optimal antenna structure for high fluorescence enhance-
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Max. Fluorescence Enhancement
CF TM568 CF TM660R CF TM790

Sphere 200 170 115
Ellipsoid 160 650 250
Bowtie 10 235 920

Table 3.1: Summary of the maximum fluorescence enhancement for each dye molecule.
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ment for each specific dye-molecule pair; this enhancement is due to the different

plasmonic response and field coupling with variation in shape at each wavelength.

Our results show that, based on TCM analysis, use of 3D FDTD computation of en-

hancement and metallic loss can provide accurate fluorescence enhancement calcula-

tions for arbitrary-shaped metal nanoparticle antennae. These results enable rational

design of metallic nanoparticle complexes for maximum fluorescence enhancement.

Thus with the help of our theoretical tools, it is possible to design assembles before

synthesis and fabrication procedures, so as to achieve high performance. As comput-

ing hardware architecture advances, this method will soon be able to be implemented

on a single desktop server with massively parallel processors and extensive memory.
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Chapter 4

Plasmonic Enhancement of a Silicon-Vacancy Center in a

Nanodiamond Crystal

Abstract

This work reports a rigorous and comprehensive three-dimensional electro-

magnetic computation to investigate and design photoluminescence enhance-

ment from a single silicon-vacancy (SiV) center in a nanodiamond crystal em-

bedded in various metallic nanoantennae, each having a different geometry.

The study demonstrates how each antenna design enhances the photolumines-

cence of SiV centers in diamond. In particular, our report discusses how the

2D or 3D curvature of the nanoantenna and the control of the local environ-

ment of the SiV center can lead to significant field enhancement of its optical

field. Our calculated optimal photoluminescence for each design enhances the

emission intensity by 15-300× that of a single SiV center without antenna.

The enhancement mechanisms are investigated using four representative struc-

tures that can be fabricated under feasible and realistic growth conditions,

i.e., spherical-, nanorod-, nanodisk-dimer, and bowtie nanoantennae. These re-

sults demonstrate a method for rationally designing arbitrary metallic nanoan-

tenna/emitter assemblies to achieve optimal SiV center photoluminescence.
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4.1 Introduction

Diamond has emerged as an important materials platform and a distinct photonics

approach to quantum information processing [1]. This approach is based on the

fact that pre-selected nanodiamond crystals containing single defect centers are good

candidates for single-photon sources due to their stable photoluminescence (PL),

spin-sensitive optical transitions, and long electron-spin-coherence lifetimes [2, 3].

These attributes have also led to the investigation of single defect centers within

nanodiamond crystals for applications other than quantum information processing,

which include biomedical sensing and biological imaging [4]. However, the optical

and radiative properties of these defect centers are certainly far from ideal. For

example, due to the high refractive index of nanodiamond crystals, the coupling to

the electromagnetic field is weak compared to other systems such as dye molecules

or quantum dots in typically lower index hosts [5]. As a result, only a small fraction

of the available radiation can be collected and thus the PL efficiency of the process

is low. Thus the spontaneous emission rate of defect centers requires a systematic

study of the enhancement for the environments of these specific applications and

their different integrated forms. This enhancement can be realized by employing the

Purcell effect, i.e., by modifying the spontaneous emission rate of the emitters (in our

case, the defect centers in diamond) via interaction with the optical density of states of

the environment. Several groups have reported studies based on Purcell enhancement

by coupling defect centers to plasmonic or dielectric resonators, including plasmonic

structures [6, 7], dielectric microdisks [8], and photonic crystal cavities [2, 9].

In this work, we report a systematic investigation if the radiative enhancement

of a single silicon-vacancy (SiV) center inside a high-refractive-index nanodiamond

crystal with four possible metallic nanoantennae geometries. The work in our paper

makes use of advanced computational methods using a cluster computer to access

fully three dimensional finite difference time domain (3D-FDTD) calculations. The
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work is distinctive in that it provides a systematic set of calculations with four dif-

ferent nanoantennae based on 3D calculation for the important case of nanodiamond

emitters. The work thus allows comparison of the enhancement in photoluminescence

for these four different antenna designs. In the following section, we provide a de-

sign procedure for use with nanoantennae assemblies before synthesis or fabrication,

as well as a general understanding of antenna-emitter interactions that is useful for

experimental efforts to achieve the optimal enhancement of photoluminescence.

4.2 Theoretical considerations

The goal of our study is to provide a general approach to designing nanoantennae

for efficient quantum emitters, such as single-photon sources. Our work focuses on a

nanodiamond crystal containing a SiV center in the near-field of a Au nanoantennae.

A SiV center is chosen for this study due to its narrow zero-phonon-line width and its

low phonon coupling. In addition, its near-infrared emission at 738nm is in a spectral

region such that the background fluorescence of the surrounding diamond material is

weak and the metallic ohmic loss is small [10]. Note, however, that the general design

principles reported here apply for other defect centers in nanodiamond.

Here, a open-source 3D-FDTD numerical computation program, MEEP, is used

[11] to analyze an emitter having an arbitrary nanoantenna geometry with high accu-

racy and simple implementation. The algorithm consists of first discretizing Maxwell

equations on a 3D grid and then, starting from a given set of initial conditions,

marching a set of iterative relations forward in time. With a suitably refined compu-

tational grid, the corresponding numerical solution gives an accurate representation of

the dynamics of the electromagnetic field. The extensive 3D computational require-

ments were satisfied using a parallel implementation of the MEEP package running

on Linux clusters at the Center for Functional Nanomaterials, Brookhaven National

67



Si
C

V

V

Ground State

Absorbed
excitation

light

Decay τ₀  

 τnr τrI0

(e)
Excited State

(d)

0

(a) (b)

Au

Au

(c)

Au

Radius

SiO2
Thickness

|1>
|2>

|A>
|B>

Ground State

Absorbed
excitation

light

Decay τ₀  

 τrI0

Excited State

|1>
|2>

|A>
|B>

1.68 eV 1.68 eV

Figure 4.1: (a) Atomic structure for SiV center inside nanodiamond crystal. (b)
The nanodiamond in the near field of a dimer metal nanoantennae, illuminated by
a monochromatic optical source. (c) Cross section view: nanodiamond crystal (dark
gray), SiV center (red), and SiO2 (light gray) that has a thickness, d, and each of the
spherical particles in the Au dimer has a radius r. (d)-(e) Excitation and relaxation
processes of the SiV center under 532nm excitation in (d) free space and (e) near the
metallic nanoantennae.

68



Laboratory. The MEEP package was controlled externally with our multi-parameter

optimization algorithm, which implements the automatic procedures for design op-

timization. In our simulations, a perfectly matched layer was used as the boundary

condition for the computational domain and the simulation had a mesh size of 1 nm

to achieve convergent results.

The atomic structure of an example of such a SiV center is shown in Fig. 4.1(a),

where its approximate energy level has a 1.68 eV band gap [12]. The diamond-

antennae system is then illuminated by a monochromatic optical source, as illus-

trated in Fig. 4.1(b). A cross-section view of a sample antenna assembly is shown

in Fig. 4.1(c), where the nanodiamond crystal (dark gray) is coated with an SiO2

thin film (light gray) of thickness d and each Au-dimer sphere has a radius r. The

incident light intensity, I0, can then excite the SiV center inside the nanodiamond

crystal, where its location is denoted by a red dot shown in Fig. 4.1(c). If the defect

center is located within the near field of the metal antenna, localized surface plasmons

(LSP) within the metal object can enhance any relevant optical process [13–15]. In

effect, the metal antenna causes a much stronger local field to form at the position of

the SiV center due to excitation of localized surface plasmons, resulting in stronger

optical excitation of the SiV center.

The excited SiV center in free space yields photoluminescence with a radiative

lifetime of τ 0
r , while the excited SiV center near a metallic nanoantennae gives en-

hanced PL and a radiative lifetime of τr as indicated in Fig. 4.1(d). Note also that

ohmic loss within the metal nanoantennae gives an additional non-radiative channel

with a non-radiative decay rate of τnr that is not present in an isolated defect center,

which is shown in Fig. 4.1(e). Considering these processes, we can express the PL

emission rate γem of a single SiV center as the product of an excitation rate γexc and

the associated quantum yield q, i.e.,

γem = γexc · q, (4.1)
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where q is defined as the ratio of radiative transition rate (from excited to ground

state) to the total decay rate. Thus nonradiative quenching lowers q. It is sufficient to

treat the excitation and emission processes independently since there is no coherence

between the two processes [16].

For our initial analysis, our computation considers the weak excitation regime.

This restriction allows us to avoid treating phenomena such as thermal runaway or

light-induced phase changes in the nanoantennae [17]. In effect, only linear excitation

processes are thus considered, hence the excitation rate of the SiV center in the

diamond is directly proportional to the number of incident photons, i.e., the incident

intensity of the field, which is proportional to |E|2. The normalized excitation rate

γexc then be expressed as

γexc =
|E(r)|2

|E0(r)|2
(4.2)

where E(r) and E0(r) are the electric-fields for a specific optical frequency ω at loca-

tion r of the SiV center with and without the presence of the antennae, respectively.

In addition, we chose 532 nm as the excitation wavelength because this is an easily

accessible wavelength experimentally (via frequency doubling of a YAG laser output)

and it is widely used by experimentalists for studying the optical properties of SiV

centers [18, 19]. Alternatively, tunable sources such as an optical parametric oscillator

or an optical parametric amplifier may be used for resonance enhancement.

To obtain the quantum yield q of the system, the SiV center is modeled as a

point dipole emitter inside a nanodiamond crystal [6]. Furthermore, the wavelength

of the dipole emission is set to be the emission wavelength of the SiV center. Since the

placement of nanoantennae increases its local optical density of states ρ, the radiative

decay rate γr will change, compared to its value in free space, in accord with Fermi’s

Golden Rule,

Γi→f =
2π

h̄
| 〈f |H |i〉 |2ρ (4.3)

where h̄ is the reduced Planck’s constant and H is the time-dependent Hamiltonian,
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given by H = −E · p, due to the photon field E and dipole moment p, and |i〉, 〈f |

denote the initial and final states, respectively.

Figure 4.2(a) shows an example of our simulation model, for which the nanoan-

tenna and its nanodiamond host were illuminated with a cw plane-wave source. The

excitation rate was calculated using the electric-field intensity at the location of the

SiV center. The excited SiV center radiates at its zero-phonon line frequency. The

computation thus considers the defect and its related transition as an atomic system

immersed in a dielectric continuum [20, 21]. The analysis, as also discussed in [16],

shows that the radiative and nonradiative rates, γr and γnr, are proportional to the

power radiated by the classical dipole in the presence of metal nanoantennae, Pr, and

the power absorbed by the metal nanoantennae due to ohmic loss, Pnr. The quantum

yield can then be calculated using the expression q = Pr/(Pr + Pnr) by measuring the

net power flowing through a suitably chosen closed surface with integration over this

surface and then averaged over time. As indicated in Fig. 4.2(b), the time-averaged

power flow by the SiV center in the presence of metal nanoantennae is noted as

Pi = Pr + Pnr and the power absorbed by the metal nanoantennae due to ohmic loss

is Pnr = Pi − Pr. The quantum yield, q, can also be expressed as q = Pr/Pi.

The nanodiamond crystal is modeled as a cubic structure based on the experimen-

tally measured TEM image, where the cube has a side dimension of 10 nm and has a

refractive index of 5.86 [22]. In addition, prior theoretical treatment shows that the

shape and size of nanodiamond crystal as well as its environment affect the optical

properties of its defect centers and, in fact, nominally identical nanocrystals can have

a high variance of intrinsic quantum efficiencies [23]. As a result, in our simulations,

we neglect these effects for simplicity and assume that a nanodiamond is preselected

to contain a single SiV center with well-defined orientation [24]. The orientation of

its dipole moment is assumed to be parallel to the symmetry axis of the nanoantenna

[25].
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4.3 Numerical results and discussion

In the following sections, we investigate the design and efficacy of nanodiamond

PL enhancement using different nanoantenna geometries. These geometries can be

generally classified into two categories. In the first category, the nanoantenna has a 3D

curvature, e.g., nanospheres or nanorods. This type of nanoantennae can, in general,

be fabricated through a “bottom-up”assembly procedure or under colloidal chemical

growth conditions [26]. The nanodiamond crystal with a thin layer of SiO2 coating

can be positioned near the nanoantennae through surface chemistry methods [27–29].

The second category of nanoantennae is fabricated from a thin film and thus has flat

top and botom surfaces. Such plasmonic nanostructures can be fabricated precisely,

including electing to have a periodic arrangement, through “top-down”techniques

such as electron beam lithography [30] or focused-ion-beam milling [31]. Note that due

to the small size of the nanoantenna’s hotspot, achieving the degree of enhancement is

very sensitive to the diamond alignment. However, improved positioning techniques

now being realized in advanced alignment methods [32] would facilitate a satisfactory

alignment for the nanodiamond to achieve near optimal enhancement.

Our approach here is to calculate the optical performance and properties of these

two classes of basic antenna with 2D and 3D curved surfaces. Note that for all

antennae geometries, a dimer configuration is selected and its major axis is aligned

parallel to the incident field polarization. This results in strong coupling of the field

to the antenna, creating a strong LSP mode in the two dimer components [33, 34].

4.3.1 Nanoantennae with 3D curvature

We now consider the spherical dimer nanoantenna with a nanodiamond crystal.

This particular antenna also serves as a prototype to illustrate our computational

method as well as the antenna’s sensitivity to various geometric properties. A cal-

73



culation of the intensity enhancement from such a diamond/antennae system, under

typical conditions and with a typical geometry is shown in Fig. 4.3(a). The nanodia-

mond is assumed to be bonded to the nanoantennae through a thin layer of SiO2 and

the incident field is polarized parallel to the dimer axis. In many cases, these nanoan-

tennae are supported by very low index materials [35] and thus we have assumed an

effective index of 1.0 for the supporting medium. This condition also applies to the

nanorod configuration discussed below.

The optical response of this structure can now be investigated with our computa-

tional method. The excitation of the localized surface plasmon and the quenching due

to ohmic losses in the antennae were separately investigated. The numerical results

for the PL enhancement of the SiV center and its dependence on the radius of the Au

spheres and the thickness of SiO2 coating are plotted in Fig. 4.3(b), from which we

can find the optimized parameters corresponding to the maximum PL enhancement.

For our wavelength, the peak response of the spherical dimer corresponds to a 65 nm

radius in the presence of a 2nm-thick-SiO2 coating on the nanodiamond crystal. This

peak PL enhancement is more than 300×. A contour plot of the PL enhancement is

also shown under the three-dimensional shaded surface in Fig. 4.3(b).

Note that in our numerical investigation, for 532 nm excitation, the overall PL

enhancement drops when the sphere radius is larger than 65 nm. However, it is known

that the field enhancement should be higher in the subwavelength regime when the

radius of spherical nanoparticle increases, due to its stronger polarizability. Here, the

PL enhancement drops due to the mismatch between the excitation wavelength and

the size of the antennae, as well as due to the increased ohmic loss. Our calculations

also show, as suggested in prior work, that the size of the gold nanospheres and the

thickness of the SiO2, which are used here to precisely adjust the distance between

nanosphere centers, directly controls the magnitude of the PL enhancement [36].

Our second antenna type is a nanowire, or cylindrical-nanorod, dimer. This an-
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tenna can be viewed as a result of a one dimensional variation in length of a nanospher-

ical dimer along one axis. This antenna geometry, which can be fabricated using

wet-chemical methods, has been frequently investigated because of its applications to

nano or quantum wires [16, 37]. In order to compare the results of this antenna with

that of the nanosphere antenna, our nanorod dimer is terminated with spherical caps

on each end. Each cylindrical nanorod has a length, L, a body radius, r, and a curva-

ture radius, ρ, of the spherical cap at the end of the rod. Again, it is assumed that the

nano-rod axis is aligned along the polarized E-field of the incident light. Figure 4.3(c)

shows the intensity distribution from a typical structure of a nanorod with a length

of 100 nm. This structure has also been thoroughly explored with our optimization

algorithm in order to obtain the peak PL enhancement for nanorod dimer lengths

in the 40 nm to 200 nm range for selected aspect ratios (L : 2r : ρ), namely, 4:3:2,

4:2:2 and 4:2:1, and assuming a SiO2 layer of 2 nm thickness. The calculated PL

enhancements are shown in Fig. 4.3(d), where see that the resonance peak position

is related to the cylinder-length-to-radius ratio (L : r). It was also found that the

magnitude of the enhancement depends sensitively on the curvature radius ρ of the

rod end, since the curvature radius can significantly modify its polarizability. Our re-

sults also show that nanorod dimers can lead to photoluminescence enhancements of

more than 100×. In addition, it was found that the optimal length of each nanorod is

approximately 120 nm, in which case the entire length of the nanorod dimer is about

250 nm, which acts as a halfwave antenna. Note that the radius of the cylindrical

nanorod also has an important role for the field enhancement, since we find that a

larger radius leads to a higher enhancement. However, the PL enhancement of the

nanorod dimer, in general, is lower than that of the spherical dimer due to the smaller

dipole polarizability of nanorod.
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4.3.2 Nanoantennae with 2D curvature

The third and fourth structural motif that we examined are both fabricated via

thin film methods and thus possess flat top and bottom faces [38, 39]. Despite their

near two dimensional geometry, these antenna structures have finite thickness and

must be analyzed with 3D FDTD methods for accurate simulation. These struc-

tures can be fabricated using advanced patterning technologies and can readily be

patterned to form an array [40, 41]. Antenna arrays containing nanodiamonds have

been of interest as single-photon sources [42, 43], which are particularly important for

quantum information processing. Consider now, as an example, the nanodisk dimer

antenna, which constitutes our third antenna structure. This structure is essentially

a flattened version of the nanosphere antenna discussed earlier. Our FDTD method

can be immediately applied to calculate the intensity distribution of this structure;

an example is shown in Fig. 4.4(a), which is the cross section of cylindrical nanodisks

with 20 nm radius and 20 nm disk height on top of a SiO2 substrate. Using the same

computational approach as above, we investigated the PL enhancement of this nan-

odisk dimer for different combinations of parameters including dimer separation, disk

radius, and disk height. We find that the height of the disk had a negligible impact

on the resulting PL enhancement in the range of 20 nm to 40 nm. This effect is due

to the thin (i.e., � λ) film nature of the structure, as well as the nearly uniform

enhancement of the field in the gap. Thus the disk height was fixed at 30 nm to

investigate the antenna performance for different parameters. Figure 4.4(b) shows

that a maximum enhancement is reached in PL when the disk radius is at 50 nm.

The gap size between the nanodisk and nanodiamond surfaces can also modify the

magnitude of enhancement. Thus by varying this radius, we found that more than a

25-fold enhancement of the PL signals could be realized.

Finally, a bowtie shaped nanoantennae was investigated as our fourth antenna

structure [44, 45]. This antennae was chosen due to its known ultra-confined LSP
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fixed disk height of 30 nm. (c) Plot of the intensity distribution of the cross section
of a diamond/nanobowtie complex under illumination by the same cw source. The
nanobowtie is modeled as a triangular disk, which is terminated such that the pointed
tip has a finite radius. (d) Plot of the PL enhancement as a function of length of the
bowtie antenna between 60-160 nm, with the disk thickness to be constant at 30 nm,
θ = 60◦ and the base W to be 60nm.

78



mode and highly directional coupling. The quality and geometry of these anten-

nae have also benefited from recent developments in advanced lithographic process-

ing. With regard to our simulations, a typical intensity enhancement resulting from

normal-incidence light impinging on a bowtie structure is shown in Fig. 4.4(c), where

each triangular component has a 60 nm base and an 80 nm height. Note that the

sharp tip end is assumed to be rounded with a radius of 5 nm and electric field inten-

sity is strongly enhanced at this relatively sharp end. In addition, our optimization

procedure was used for a range of bowtie geometries. This procedure allows exam-

ining length from 60 nm to 160 nm and angles θ from 30◦ to 60◦ in order to find

a locally optimized structure. As in the case of the circular disk, the thickness of

the bowtie structure was found to have negligible impact on the PL enhancement.

Figure 4.4(d) shows the enhancement profile for a structure of 30 nm thickness. Due

to its sharpness and the ultra-confined near-field enhancement, we can achieve ap-

proximately 15× enhancement of the PL signals. These results are consistent with a

previous study, where a bowtie structure was reported to have its stronger response

in the near infrared instead of the visible spectrum [36, 45].

Finally, we note that, in addition to the above investigation, we have examined the

effect of other materials-based changes in the antennae/nanocrystal structure. For ex-

ample, one important issue involves the addition of a thin-layer coating of a relatively

low-dielectric materials such as SiO2 on the nanodiamond crystal surface. Figure 4.5

(a) and (b) shows the PL enhancement from a SiV center via both spherical and

nanodisk dimers. The figure thus involves a nanoantennae structures on either a 3D

curvature or a flat-3D surface (2D curvature). In both cases, our calculations showed

that having a thin-layer SiO2 coating outside nanodiamond crystal leads to a more

than 3-fold improvement. This increase is due to the fact that the thin-layer SiO2

coating reduces the highly index-mismatched boundary at the nanodiamond surfaces

thereby increasing the electromagnetic coupling with the nanodiamond crystal.
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Table 4.1:  Comparison of optimal signal stength from 
four general nanoantennae structures

3D

Flat - 3D

Photoluminescence Enhancement

�300 �50

�25 �15
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Before we conclude, we briefly discuss the role of the ohmic loss. It is not readily

apparent how the strength of ohmic loss varies from one shape to another or even as a

function of size of the antenna for a given shape. It depends primarily on the radiation

coupling to the nanoantenna structure, as well as the overlap between the antenna

structure and it plasmonic mode. However, a simple case in which the trend for the

ohmic loss variation becomes obvious is its dependence on separation between the

two antenna elements. Figure 4.5 (c), for example, shows the ohmic loss (normalized

to the total input power) as a function of the SiO2 thickness for the spherical dimer

antenna. The ohmic loss decreases as the SiO2 thickness, and concomitantly the

separation of the spheres, increases.

4.4 Conclusion

Our work here demonstrates that it is possible to systematically design and op-

timize a nanoantenna/ nanodiamond structure with SiV center photoluminescence

greatly enhanced over that from a free standing nanodiamond object with no an-

tennae. A summary of our theoretical investigation of two general classes (3D and

flat-3D) of nanoantennae is presented in Table 4.1. Specifically this figure presents

the optimal PL enhancement from a SiV center in a nanodiamond crystal for each

configuration in the table. The PL enhancement of each optimized nanoantennae con-

figuration arises from the complex interplay of plasmonic resonance and ohmic loss,

whose effects are modulated by the nanoantennae geometry and the local dielectric en-

vironment. The table below illustrates, for each optimal antennae configuration, that

PL enhancement factors range from about 15 to larger than 300 fold. From a more

general perspective, our results also show that the use of 3D FDTD computation of

optical enhancement and metallic loss can provide accurate PL enhancement calcula-

tions for arbitrary-shaped metal nanoparticle antennae. These results enable rational

82



design of metallic nanoparticle complexes and provide guidance in determining opti-

mized parameters that depend directly on the materials employed for maximum PL

enhancement. Thus with the help of our theoretical tools, it is possible to design

assemblies before synthesis and fabrication, so as to achieve high performance. Such

a design procedure is useful both for general understanding of emitter-metal structure

interaction and experimental efforts in plasmonic nanomaterials applications.
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Chapter 5

Two-Color Field Enhancement at an STM Junction for

Spatiotemporally-Resolved Photoemission

Abstract

We report measurements and numerical simulations of ultrafast laser-

excited carrier flow across a scanning tunneling microscope (STM) junction.

The spatiotemporally-resolved current from a nanoscopic tungsten tip across a

∼1-nm vacuum gap to a silver surface is driven by a two-color excitation scheme

that uses an optical delay-modulation technique to extract the two-color signal

from background contributions. The role of optical field enhancements at the

junction in driving the current is investigated using density functional theory

(DFT) and full 3D finite-difference time-domain (FDTD) computations. We

find that simulated field-enhanced two-photon photoemission (2PPE) currents

are in excellent agreement with the observed exponential decay of the two-

color photoexcited current with increasing tip-surface separation, as well as

the optical-delay dependence of the current. The results suggest an approach

to 2PPE with simultaneous subpicosecond temporal and nanometer spatial res-

olution.
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5.1 Introduction

Strong near-field enhancements at metallic tip nanostructures are of central im-

portance to emerging nanoscopic spectroscopies that use phenomena such as tip-

enhanced Raman scattering [1, 2], near-field optical detection [3, 4], strong-field

photoemission [5–7], nonlinear photoemission [8] and hot-electron transfer [9], to

probe the structure and dynamics of surfaces and surface-adsorbed molecules at the

nanoscale. Analysis of the photon-driven processes that may occur in the tip-surface

junctions in these nanoprobes requires accurate determination of the field enhance-

ments in the vicinity of the junction. Such determinations are challenging because the

relevant length and time scales are in the subnanometer and subpicosecond regimes

[10, 11].

We report the observation of electron currents driven across the tunnel junction of

a cryogenic ultrahigh vacuum scanning tunneling microscope (STM), in conjunction

with advanced computational simulations to elucidate the photoexcitation mecha-

nism. In the experiment, the photocurrents are driven by ultrafast-laser two-color

shaken-pulse pair excitation (hereafter referred to as 2C-SPPX [12]) of a metallic tip

held ∼ 1 to 3 nm above a metallic substrate. We observe 2C-SPPX signals with sub-

picosecond time resolution that depend exponentially on the tip-sample separation

and are sensitive to the position of the tip relative to Ag nanoparticles on other-

wise flat Ag(111) terraces. Computationally, application of a three-dimensional finite

difference time domain (3D-FDTD) method reveals that the photocurrents are well-

described by 2PPE from the tip driven by a tip-substrate plasmon resonance [13, 14].

Based on the experiments and computations, we estimate tip-geometry-dependent

resolutions less than a nanometer along the surface normal direction and smaller

than the radius of curvature of the probe tip in the surface plane. The temporal

resolution is limited by the ∼100-fs pulse widths of the exciting laser pulses.
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5.2 Experimental Setup

Our two-color ultrafast-laser-assisted STM setup (Fig. 5.1) has been described in

detail elsewhere [12] and is reviewed in brief here. The STM tunnel junction con-

sists of an electrochemically-etched W tip and a Ag(111) surface held at 77 K. Two

p-polarized beams excite the junction: the fundamental near-infrared (NIR) output

of an ultrafast, 80-MHz repetition rate Ti:Sapphire oscillator (h̄ω1=1.63 eV) and its

ultraviolet (UV) second harmonic (h̄ω2=3.26 eV). The photon energies are well below

the photoemission threshold for both W (Φ=∼4.6 eV) and Ag(111) (Φ=4.74 eV), thus

space-charge effects due single-photon photoemission do not play a role. Two 2PPE

pathways are possible: absorption of either two UV photons, or of one UV and one

NIR photon, is sufficient to excite electrons above the vacuum level. Higher-order

process are possible, but these two-photon process predominate [12]. As described in

our prior work [12], this two-color scheme eliminates optical interference, delivering a

constant thermal load to the junction even for pulse delays within the cross-correlation

envelope. This eliminates the ∼1ps “blind spot” caused by strong thermal expan-

sion and contraction driven by interference in one-color schemes where interference

modulates the thermal load [12, 15].

To time-resolve the photoemission it is necessary to (i) isolate the two-color 2PPE

signal from the one-color signal and the conventional, bias-driven STM tunneling

current, and (ii) measure the two-color signal as a function of delay between the

NIR and UV pulses. This is achieved by the 2C-SPPX method [12]. The two colors

traverse separate arms of an interferometer. The NIR arm defines a central delay

time, tdc, about which the NIR-UV delay, td(t), can be dithered with a sinusoidal

modulation at frequency fd = ωd/2π such that td(t) = tdc + ∆td sin(ωdt), where t is

the laboratory-frame time and ∆td is the dither amplitude. The dither results in a

sinusoidal modulation of any photoinduced contribution that depends on the delay

between the two pulses; delay-independent contributions are unmodulated. Thus the
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delay-dependent signal can be isolated using phase-sensitive detection of the sample-

tip current by lock-in amplification.

5.3 FDTD Simulations

For the 3D-FDTD field enhancement computations, the tip was modeled as an

800-nm-long truncated cone terminated by a hemispherical apex. Based on SEM

images of the probe used in the experiments, the radius of the hemisphere, R, was

set to 55 nm and the base of the cone was set equal to 200 nm. The probe, aligned

along the z-axis, was suspended perpendicularly above the Ag surface, designated

as the x-y plane, with a variable distance, d, between its apex and the surface. To

match the experimental conditions, the laser pulses were collinearly incident with

Gaussian temporal profiles of 100 and 167 fs full-width at half maximum (FWHM),

respectively, at an angle of θ = 78◦ with respect to the z-axis.

A full 3D-FDTD numerical computation was employed with a finite difference

resolution of 1 nm over the large region of the tip away from the junction, but a much

finer resolution—down to 0.1 nm—in the gap between the tip and substrate. A non-

uniform grid setup avoided abrupt and sharp terminations of the model’s structure.

The extensive computational requirements of a full 3D-FDTD simulation (Synopsys

RSoft) were satisfied using a parallel implementation on a Linux cluster at the Center

for Functional Nanomaterials at Brookhaven National Laboratory.

A typical plasmonic mode for two-color excitation with the tip apex located 2 nm

above the Ag is shown in Fig. 5.2a, where we plot the 3D-FDTD-computed field inten-

sity in the x-z plane averaged over one oscillation of optical excitation. The electric

field is enhanced significantly around the tip end, and the maximum enhancement

at the apex approaches four orders of magnitude. The field intensity is plotted in

terms of the calculated enhancement factor | ~E(ω1) + ~E(ω2)|2/(| ~Ei(ω1)|2 + | ~Ei(ω2)|2),
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Figure 5.3: (a) Time resolved 2C-SPPX photoemission signal (open circles).
Solid line: delay-time derivative of the 3D-FDTD-simulated 2C-SPPX signal
(dγ/dt, γ ∼ | ~E(ω1)|2| ~E(ω2)|2). (b) Measured STM current and 2C-SPPX signal vs.
tip-surface distance (open circles and squares, respectively) and the amplitude of the
delay-time derivative of the simulated 2C-2PPX signal vs. tip-sample distance (open
triangles). The corresponding solid lines are single-exponential-decay fits to the data.
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where ~E(ωj) and ~Ei(ωj) are the calculated and incident electric field amplitudes, re-

spectively, at frequency ωj. We find that the field enhancement is critically sensitive

to the geometry of the W probe, as expected [14]. Specifically, our calculations reveal

a tip-substrate hybridized mode due to interaction of the nonresonant W tip with

the plasmonic Ag substrate that significantly impacts the magnitude of the field-

enhancement. This result is illustrated in Fig. 5.2(b), where the field enhancement

is shown to depend strongly on the tip radius. We identify a resonance centered at

∼55 nm, which shifts slightly with tip-substrate separation. This result indicates that

maximizing the field at the tip would require precise control of the tip geometry [16].

5.4 Results and Analysis

Three key aspects of the experimental 2C-SPPX measurements are illustrated

in Figs. 5.3 and 5.4: (i) a subpicosecond response, (ii) an exponential decay with

tip-surface distance on a subnanometer length scale, and (iii) a sensitivity to the tip

position relative to nanometer-scale surface features. In the following, each of these

aspects of the experimental results is described. We then consider the computations

and their implications regarding the mechanism of the observed effects.

Figure 5.3a shows the subpicosecond time-resolved 2C-SPPX signal as a function

of the NIR-UV delay. These measurements were made with the tip engaged in tun-

neling (tip-sample separation of ∼0.5 nm) at a +0.6 V sample bias (current setpoint

= 51 pA; feedback bandwidth = 0.5 Hz; data averaged over 100 delay sweeps). The

derivative lineshape is well-fit by the first derivative of a ∼200-fs FWHM Gaussian, as

found previously [12], and consistent with the cross correlation of the two Gaussian-

shaped photoexcitation pulses. The timescale is consistent with a prompt two-photon

photoemission process, and the amplitude of the Gaussian is positive, indicating that

the direction of the current flow is from the tip to the sample.
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Figure 5.4: (a) Constant-current STM image of a sliver nanoparticle atop a Ag(111)
surface. The color bar shows the vertical height of the sample surface (x-y plane). (b)
Demonstration of position dependence of the 2C-SPPX signal amplitude: atop (posi-
tion 1) and adjacent to (position 2) the nanoparticle, with the tip height determined
by the same constant current conditions (bias = +0.6V, current = 50 pA). The solid
lines are Gaussian-first-derivative fits to the data.
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Figure 5.3b shows 2C-SPPX measurements made with the NIR-UV delay fixed at

−70 fs (i.e., at the maximum of the 2C-SPPX signal in Fig. 5.3a) while retracting the

tip from the tunneling setpoint (+0.6 V, 50 pA) with the feedback control disabled.

The data are well fit by a single exponential decay: I = I0 exp(−z/δ), where z is the

tip-sample distance, z = 0 corresponds to the distance at which the set point current

(I0 = 50 pA) is achieved, and the decay length, δ = 7.8 ± 0.5Å. Also shown for

reference in Fig. 5.3b is the measured the z-dependence of the conventional tunneling

current (i.e., the unilluminated junction). This, as expected, is also an exponential

decay with a decay length of δ = 0.6± 0.2Å—typical for an STM junction [17]. The

large disparity between the two decay lengths indicates that photoexcited tunneling

can be ruled out as a possible mechanism for the 2C-SPPX current.

Figure 5.4 shows the sensitivity of the 2C-SPPX signal to the tip position near

a nanometer-scale surface feature. In particular, measurements were made atop and

adjacent to a 3-nm diameter, 1-nm high hemispherical nanoparticle on the otherwise

flat Ag(111) surface. The topography of this feature is shown in Fig. 5.4a. Figure 5.4b

indicates a factor of ∼2 decrease in 2C-SPPX signal atop the particle as compared

to adjacent to the particle. As discussed below, this attenuation is only partially

explained by the exponential z dependence, suggesting that lateral resolution on

nanometer length scales is also achieved.

To understand the mechanism responsible for these key experimental observations,

we first weigh the relative significance of contributions from two regimes for electron

transport across the gap: (i) where classical electrodynamics is a good description of

the optical response in the junction and (ii) where quantum tunneling modifies the

optical response. To delineate these regimes, we performed DFT calculations using

the ABINIT code [18], to obtain the self-consistent electron potential profile, Veff,

across the vacuum gap, with particular attention to the height of Veff above the Fermi

level (EF), i.e., the potential barrier height. We used the local density approxima-
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tion because it more accurately reproduces the experimental work function values for

Ag and W than does the generalized gradient approximation. The W(111)/Ag(111)

junction interface was represented by (
√

3×
√

3)R30◦ W(111) (bcc, bulk lattice pa-

rameter = 3.165�A) supercell matched to a (
√

7×
√

7)R19◦ Ag(111) (fcc, bulk lattice

parameter = 4.085�A) supercell. The hexagonal supercell’s lateral lattice parameter

was 7.71�A, corresponding to a slight linear compression of the W (0.56%) and ex-

pansion of the Ag (0.88%). The cell consisted of 7 slabs of W and 4 slabs of Ag

separated by a vacuum layer of variable thickness. The Brillouin zone was sampled

with a (6× 6× 6) Monkhorst-Pack k-point mesh. The structure was optimized prior

to the Veff calculation.

The calculations show (Fig. 5.5, left) that for vacuum-gap widths below ∼4�A

the barrier height decreases rapidly with decreasing gap width from a value nearly

equal to the work function toward zero when the W and Ag contact. In contrast,

for gap widths above ∼4�A (Fig. 5.5, middle and right), the tip-substrate junction is

characterized by a substantial potential barrier with a constant height equal to the

height of the vacuum level above EF .

These results have qualitative significance regarding the suitability of the appli-

cation of classical electrodynamics. Specifically, for vacuum-gap widths in the regime

where the potential barrier height is small, quantum tunneling probabilities are high

and electrons can flow freely back and forth across the junction. This represents a

significant modification of the junction optical response that drastically reduces elec-

tromagnetic field enhancements relative to classical predictions [19]. Our DFT results

suggest that for the Ag-W system, quantum tunneling cannot be ignored below ∼4�A.

On the other hand, for gap widths ≥4�A, the barrier is sufficiently high and the

electron tunneling probability is greatly reduced. In this regime the tip-surface plas-

monic coupling is well described by classical electrodynamics. The experimentally-

observed exponential decay of the conventional tunneling current (Fig. 5.3b) confirms
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that the measurements were made in the regime where the barrier height is constant

with increasing gap width [20]. Furthermore, the relatively long decay length for the

2C-SPPX signal (Fig. 5.3b) indicates that a photoassisted quantum tunneling mecha-

nism is not operative. Thus the 3D-FDTD calculations using classical electromagnetic

theory in the regime where our measurements were made, namely tip-sample gaps

greater than∼4�A, is appropriate. The calculations yield the tip-sample photoinduced

current, assuming that 2PPE dominates the observed signal. The good agreement of

the simulations shown below with experimental data supports this assumption and

our assignment of the operative mechanism as 2PPE.

From Fermi’s Golden Rule, the carrier transition rate for two-photon two-color

photoexcitation from the ground state to the final state (vacuum), which is propor-

tional to the two-color 2PPE yield, can be shown to be proportional to the product of

the field intensities: Γi→f ∝ γ, where γ = | ~E(ω1)|2|/| ~Ei(ω1)|2 × | ~E(ω2)|2/| ~Ei(ω2)|2 [21].

Thus, we calculated the relative photoemission yield from the tip as a function of the

tip-sample gap width at a fixed NIR-UV pulse delay of −70 fs (i.e., near the peak

in the observed 2C-SPPX signal, Fig. 5.3a). The computational result is shown in

Fig. 5.3b. In the regime where experimental measurements were possible, the com-

puted field intensity product, γ, exhibits an exponential decay with a decay length

of δ = 8.3 ± 0.3Å, in excellent agreement with that of the measured 2C-SPPX pho-

toinduced current, δ = 7.8± 0.5Å. This agreement supports the conclusion that the

field enhancement at the tip apex in proximity to the surface is responsible for the

observed 2C-SPPX signal. We have also used the 3D-FDTD computation of the field

enhancement in the junction to simulate the pulse-delay dependence of the photo-

electron yield. The calculated time derivative of γ depends on the pulse-delay in a

manner nearly identical to that of the 2C-SPPX signal (Fig. 5.3a). This observa-

tion indicates that the photoinduced process, involving a virtual intermediate state,

is immediate. Thus the simulation result is consistent with our conclusion that the
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field enhancement at the tip apex in proximity to the surface drives the 2PPE that

is responsible for the observed 2C-SPPX signal.

Finally, we address the issue of lateral resolution. The sensitivity of the 2C-

SPPX signal to position with respect to a ∼2 nm feature in Fig. 5.4a suggests that a

resolution of ∼2 nm may be achieved. Note that, in the absence of the nanoparticle,

raising the tip ∼1 nm from the surface results in a ∼3.4-fold attenuation of the 2C-

SPPX signal, based on both the decay lengths extracted from the experiments and

computations. However, raising the tip ∼1 nm above surface with the nanoparticle

below the tip apex was observed to result in only a ∼2.1-fold attenuation (Fig. 5.4b).

This discrepancy suggests that the tip is sensitive to the presence of the particle,

with a lateral resolution on the order of 1-2 nm. However, further experimental and

computational investigations are needed to quantify the limits on lateral resolution.

5.5 Summary

In summary, we have demonstrated two-color two-photon photoemission from a

nanoscopic probe tip to a solid surface with time resolution limited by the ∼100 fs

widths of the exciting laser pulses. The photoemission is strongly sensitive to the

height of the tip above the surface, decaying exponentially with a subnanometer de-

cay length. 3D-FDTD computations of the optical field enhancement in the junction

support our assignment of photoemission as the mechanism responsible for the ob-

served signal. In addition, measurements in the neighborhood of a ∼3 nm metal

particle suggest that resolution of features on nanometer scale is possible. Such de-

tailed investigations of plasmonic field enhancements and current flow in a tip-surface

tunneling junction are critical to the development of emerging fs-Å joint-resolution

and single-molecule spectroscopy methods [22]. With improved control over tip size

and shape, the field-enhancement-based time-resolved excitations at the STM tip
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apex and at metal nanoparticle surfaces may enable the mapping of electron dynam-

ics at the nanoscale via photoemission. Also, excitation with longer wavelengths to

drive higher-order optical nonlinearities could improve spatial resolution [8]. Our

work reported here is an important step toward developing 2PPE to achieve simulta-

neous subnanometer and subpicosecond spatiotemporal resolution of surface electron

dynamics.
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[6] M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold pho-

toemission from sharp metal tips,” Phys. Rev. Lett., vol. 105, no. 25, p. 257601,

2010.
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Chapter 6

Rigorous Theoretical Analysis of a Surface-Plasmon

Nanolaser with Monolayer MoS2 Gain Medium

Abstract

Lasers based on monolayer transition-metal dichalcogenide semiconductor

crystals have the potential for low threshold operation and small device foot-

print; however, nanophotonic engineering is required to maximize interaction

between optical fields and the three-atom-thick gain medium. Here, we develop

a theoretical model to design a direct-bandgap, optically-pumped nanophotonic

integrated laser. Our device utilizes a gap-surface-plasmon optical mode to

achieve subwavelength optical confinement and consists of a high-index GaP

nanowire atop a monolayer MoS2 film on a Ag substrate. The optical field and

materials medium are analyzed using a three dimensional finite-difference time-

domain (3D-FDTD) method and a first-principles calculation based on density

functional theory (DFT), respectively. The nanolaser is designed to have a

threshold of ∼0.6 µW under quasi-continuous wave operation on an excitonic

transition at room temperature.
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6.1 Introduction

The realization of an ultracompact subwavelength on-chip laser continues to be an

unmet challenge for microdevice applications. However, this goal has recently been

advanced with devices based on the plasmonic properties of metals, which confine

optical excitation to subwavelength dimensions via surface plasmon polaritons (SPPs)

at metal-dielectric interfaces [1–4]. When coupled to a suitable optical gain medium,

SPP lasers can achieve tight plasmonic (optical) confinement and feedback, which

reduces the optical mode volume far below the scale of a vacuum wavelength. The

ability to confine optical energy to such small volumes offers an ideal platform for

coupling to the unique material properties of gain media with reduced dimensionality.

For these lasers, monolayers of transition-metal dichalcogenide (TMDC) semicon-

ductors present a number of desirable electronic and optical properties for use as a

gain medium, including relatively large direct bandgaps, robust excitons, and strong

photoluminescence (PL). For example, a single layer of molybdenum disulfide (MoS2)

has a direct gap of 1.82 eV and a luminescence quantum efficiency of more than a

factor 104 greater than the bulk crystal [5]. More importantly, it is stable at room

temperature due to its large binding energy. The combination of these electrical,

optical and chemical properties, not seen in monolayers of other materials, makes

TMDCs promising candidates for novel optoelectronic devices, such as light-emitting

devices operating in the visible range [6–9].

In this chapter, we report the design of an optically-pumped, plasmonically-

excited TMDC laser using a rigorous theoretical analysis. The analysis is based on

a fully three-dimensional finite element method (FEM) mode solver, finite-difference

time-domain (3D-FDTD) computation for the time varying optical fields, and a first-

principles calculation using density functional theory (DFT) for examining excitonic

optical transition in the material medium [10].
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6.2 Theoretical Model

The nanolaser topology analyzed here is illustrated in Fig. 6.1(a), with cross-

section given in Fig. 6.1(b). The device uses a monolayer of MoS2 for the active

medium and a deep-subwavelength cavity. This cavity, which is approximately 1 µm

long, provides resonances within the surface plasmon spectral bandwidth. This struc-

ture uses the 2D nature of the monolayer of the MoS2, along with its overlaying and

underlaying dielectric and plasmonic layers to obtain a low-threshold behavior. This

hybrid geometry also includes a high-refractive-index nanowire (GaP, n = 3.2) placed

on top of a low-refractive-index (SiO2, n = 1.45) near the atomically smooth metal

(Ag) film surface [2], where the metal surface serves as a plasmonic waveguide with a

surface plasmon polaritons (SPPs) mode. A silver film is used since it offers the best

properties among the available plasmonic films at visible and near-infrared wavelength

range due to its minimal plasmonic damping. The laser design incorporates a slot in

the SiO2 layer so as to form region of suspended MoS2 and hence reduced carrier lost;

this reduced carrier recombination is known to lead, for example, to stronger photo-

luminescence [5]. We have chosen GaP for the lateral confining “over”wire because

of its higher refractive index. This structure also offers low optical absorption and a

higher group index, which further reduces the optical loss [11]. SPP scattering due

to surface roughness [12] and grain boundaries [13] is ignored in our analysis, as we

assume the silver film is an expitaxially grown, atomically smooth single-crystalline

layer. The finite length of the nanowire defines the cavity that laterally confines cav-

ity modes in the gap between the nanowire and the plasmonic waveguide, with cavity

feedback arising from modal reflection at the end-facets. The MoS2 has a finite thick-

ness of 0.7 nm with a measured refractive index given in Ref. [14], and is supported

between two SiO2 spacer layers as illustrated in Fig. 6.1. The nanolaser has a length

of 0.996µm, which is carefully chosen by FDTD analysis as discussed in detail in a

later section. Other monolayer TMDC materials have even higher quantum yield,

109



(a) (b)

L

W

H

Figure 6.1: (a) A perspective view of the structure of the proposed nanolaser using
a monolayer semiconductor film as the active medium. The high-refractive-index
GaP nanowire with length L ∼1 µm is placed on a low-refractive-index dielectric
near a metal surface. (b) A cross-sectional view of the device structure, showing
the width (W) and height (H) of ∼0.2 µm for the nanowire and that the monolayer
semiconductor film is embedded in a nm-thick low-permittivity, e.g. SiO2, spacer
layers.
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such as WS2 and WSe2 [10], however, we use in our theoretical analysis a monolayer

of MoS2 since it is particularly well studied and thus, has a well characterized set of

material parameters obtained via experimental measurements.

We can obtain a basic theoretical understanding of the time-resolved laser char-

acteristics, using the following rate equation approach [15]:

dN

dt
= R− N

τr
− N

τnr
− vgg(N −Ntr)P (6.1)

dP

dt
= Γvgg(N −Ntr)P + Γβ

N

τr
− P

τc
(6.2)

where N and P are the carrier and photon densities within the nanocavity, R is the

pumping rate, vg is the group velocity, g is the differential gain coefficient and Ntr is

the transparency carrier density. The cavity photon lifetime, the radiative, and the

nonradiative recombination lifetimes are τc, τr and τnr, respectively. The spontaneous

emission factor, β, is defined as the fraction of the spontaneous emission radiated into

the cavity mode. The confinement factor, Γ, accounts for the matching between the

active region and the optical mode. In the following analysis, FEM is used to find

the modal group velocity and modal overlap with the gain medium, DFT is used

to find the differential gain coefficient, and FDTD is used to find the cavity losses

and spontaneous emission factor. With the totality of these parameters calculated

through numerical methods, we can obtain a first-principle calculation of the lasing

threshold for the proposed structure.

6.3 Hybrid Gap Mode

Our analysis begins using coupled-mode theory [16]. In this case, the cavity mode

can be described as a superposition of the nanowire waveguide mode and the SPP

mode, i.e. a hybrid mode,

Ψ = aΨwg + bΨspp (6.3)
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where a and b are the amplitudes of the constituent nanowire waveguide Ψwg = {1 0}T

and SPP Ψspp = {0 1}T basis modes, respectively. The modes of the coupled system

are characterized by the system of equations discussed in [17]nwg κ12

κ21 nspp


a
b

 = neff

a
b

 (6.4)

where κ12, κ21 are the coupling strengths between specific nanowire waveguide and

SPP modes and nwg, nspp are the refractive index of nanowire waveguide and the

effective index of plasmonic waveguide, respectively. In addition, neff is the effective

index of the resultant hybrid mode and its analytical solution agrees well with those

calculated numerically.

A cross-section of the device, with an overlay of a plot of the hybrid mode, cal-

culated by FEM, is shown in Fig. 6.2(a). The strong plasmonic confinement enables

ultratight vertical localization of the hybrid optical mode in the gap, i.e., the cavity

containing the suspended TMDC monolayer. Further as is seen in Fig. 6.2, the hybrid

mode is also tightly confined in the transverse direction by the GaP nanowire; thus

both effects result in excellent spatial overlap between the mode and the monolayer

gain medium, enabling ultralow-threshold CW lasing operation in a diffraction-free

footprint. The nanowire geometry was designed to maximize the field in the mono-

layer of MoS2, so as also to maximize the absorption efficiency of monolayer MoS2.

The SiO2 layers serve as low-permittivity spacers to suspend MoS2, which leads to

a strong normal electric field component in the gap due to the continuity of the dis-

placement field across this interface. In addition, such a low-index dielectric-metal

interface also leads to low propagation loss. The overlayer nanowire “guides”the

hybrid gap mode, where its reflectivity depends only on the mismatch between the

effective index of the structure and free space.
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Figure 6.2: (a) A cross-sectional profile of the hybrid waveguide mode showing a high
degree of confinement in the TMDC monolayer in the gap between the GaP nanowire
and the Ag surface. (b) An enlarged-area of a portion of the panel (a) showing the
gap mode and the MoS2 monolayer (indicated by a dashed line).
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6.4 Ab-initio Analysis

Due to the 2D nature of the MoS2 (semiconductor) monolayer, the band structure

of a suspended monolayer behaves as a quantum well, with an effective out-of-plane

potential, which can be calculated using the density-functional-theory ABINIT code

under the generalized gradient approximation [18]. In this calculation, a periodic

slab geometry with a 12�A vacuum spacer layer is used. In addition, the in-plane

lattice constant and the interplane distance between the Mo and S atomic planes are

structurally optimized. The calculation employs a 10 × 10 × 1 k-point mesh with a

wave function cut-off energy of 50 Hartree and an energy difference tolerance of 10−10.

Due to this quantum-well structure, monolayer TMDCs should offer some of the

well known advantages of more conventional quantum well lasers, namely, the large

differential gain associated with their 2D density of states. Moreover, compared to

conventional group III-V quantum well lasers, the large refractive index of monolayer

TMDCs can significantly increase the optical confinement in the laser active region

of the laser. The optical gain can be further enhanced by the strong Colulomb

interactions, due to the vertical confinement and the reduced dielectric screening

[19].

These points are shown in a more detailed manner by the bandstructure of MoS2.

Figure 6.3(a) shows the calculated effective potential profile of monolayer MoS2 along

the out-of-plane direction (c axis). This potential profile indicates that in monolayer

MoS2, the pure in-plane nature of the electrons due to quantum confinement can be

described by a single quantum-well model, which has a significant but finite barrier

(8 eV) to electron transport in the out of plane direction. This barrier fully confines

the gain of an optical wave within the quantum-well crystal medium. Figure 6.3(b)

shows the uppermost valence band and the excitonic band along Γ̄-K̄-M̄ -Γ̄ high-

symmetry line. The figure shows a direct band gap of 1.82 eV at K̄, which is very close

to the experimental result given in [5]. Note the band degeneracy due to spin-orbit
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is not considered here because the linearly polarized excitation wave will excite both

spin-up and spin-down electrons. By fitting the valence band maximum (VBM) and

excitonic band minimum (EBM) in the vicinity of K̄ to a parabola, the hole effective

mass can be extracted at the VBM (mv = 0.61me) and the electron effective mass at

the EBM (mc = 0.51me), respectively. The carrier effective masses in our calculation

are in good agreement with the values determined by G0W0 calculations [20]. It

is worth noting that the relatively large effective masses of charge carriers in MoS2

results in high densities of states in both the valence and conduction bands. This

fact, coupled with the fairly large bandgap of MoS2, requires carrier concentrations

of ∼1× 1019 cm−3 to push the quasi-Fermi levels into the corresponding bands so as

to achieve population inversion. A recent experiment [21] has confirmed the presence

of such high carrier concentrations.

The quantum-well behavior of the effective potential profile together with the car-

rier effective mass allow calculation of the gain, where its analytic form at excitation

frequency ω0 is [22]

γ(ω0) =
mrλ

2
0

4πh̄Lzn2τ
[fc(h̄ω0)− fv(h̄ω0)] (6.5)

where Lz is the thickness, τ is the recombination lifetime, n is the refractive index of

monolayer active medium and where continuous wave operation is assumed. The gain

coefficient also depends on the excitation wavelength λ0, the reduced mass mr, as well

as the quasi-Fermi functions fc and fv that are evaluated at room temperature. At-

tainment of a low optical threshold is an important practical aspect of plasmonically

enhanced lasers, such as the one studied here, since it governs the minimum power

consumption, or threshold, necessary for useful device operation. In this chapter, the

lasing threshold is defined by equating stimulated emission to spontaneous emission.

Thus using a steady-state solution to the coupled rate equations (Eq. 6.1 and Eq. 6.2),

a relationship between pumping rate R and photon densities P is obtained.
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Figure 6.3: (a) The effective potential profile of the suspended monolayer MoS2 that
behaves like a quantum-well with a finite barrier of 8 eV. (b) The electron band
structure of suspended monolayer MoS2 with a bandgap of 1.82 eV. The electron
effective mass has also been calculated by fitting the band in the vicinity of K point.
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6.5 Device Design

Designing the cavity requires consideration of several different physical phenom-

ena. For example, Fig. 6.4(a) shows the calculated confinement factor as a function

of the gap thickness. The confinement factor, Γ =
∫
gain

εgE
2dv/

∫
cavity

εcE
2dv, is

the overlap volume integral of the gain medium with the cavity mode, and E is the

electric filed, εg and εc are the dielectric constants of the gain medium and cavity,

respectively. The “error”bars in this figure are in fact ranges for confinement factor at

each gap thickness generated by varying the nanowire geometry over different height

and width combinations from 140 nm to 220 nm, respectively. The different combina-

tions of dimensions can successfully support the fundamental mode with essentially

very little energy leakage. The practical limitations in fabricating the laser structure

also influence the actual design. For example, a perfect gap thickness of less than

5 nm is a challenge in fabrication, as a result, we have chosen to use a gap thickness

of 7 nm. This dimension yields a satisfactory Γ ≈11%.

Second, plasmonic and radiative loss must be examined. Thus, the condition

for laser oscillation at threshold is achieved when the sum of all losses, α, including

physical processes, such as ohmic loss in the metal, emission of SPPs to the outside

of the cavity, radiation leakage into the substrate, and far-field emission, is exactly

balanced by the gain of the laser medium, γ. The loss factor can be expressed as

α = ωr/(vgQ) with ωr as the optical frequency at cavity resonance and Q is the quality

factor. Hence minimizing the cavity loss entails optimizing the quality factor. The

quality factor, Q, is obtained by use of 3D-FDTD computation. For this calculation,

we use a laser wavelength of λ = 682nm, which is the free-space emission wavelength

of monolayer MoS2. The results of the quality factor as a function of the nanowire

length are shown as the inset in Fig. 6.4(a), where the factor peaks at the cavity

length of 0.996 µm with a quality factor of Q = 91.7 and a cavity resonance at the

free-space wavelength of 640 nm, a value comparable to that reported in [2]. Note
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that a small variation in nanowire length will shift the quality factor downwards,

thus yielding an increase in laser threshold. However using the literature values for

dimensional tolerance on fabrication structures such as this, we believe that relatively

high Q values can be obtained. Meanwhile, the extremely small mode volume and

the correspondingly large Purcell enhancement, which scales as Q/Vm, compensates

for the modest Q. In particular, the mode volume Vm in our design is found to be

∼ λ3/380 via numerical computation. This small mode volume results in the large

Purcell factor, F = (3/4π2)(Q/Vm)(λ/neff )
3, with a value of 118.3 for this specific

design. Lasing at a reduced threshold power is achieved by enhancing the spontaneous

emission rate via the Purcell factor, thus leading to an enhanced stimulated emission

rate.

The third phenomenon which needs to be considered, is the spontaneous emission

factor β. Its generic equation is based on a “one photon per mode”picture [23] and

is defined as

β(~r, ω) =

〈
|~µ · ~Ecav(~r, ω)|2

∣∣∣|~µ · ~Ecav(~r, ω)|2
〉

∑
i

〈
|~µ · ~Ei(~r, ω)|2

∣∣∣|~µ · ~Ei(~r, ω)|2
〉 (6.6)

where | ~Ecav(~r, ω)|2 represents the vacuum-field density in the cavity mode at atomic

position ~r with frequency ω and where the sum in the denominator runs over all modes

with ~µ · ~Ei as dipolar atom-field interaction Hamiltonian. The device is assumed to

work at a constant temperature; thus the temperature dependence of β is ignored.

By setting the loss of the laser structure, α, equal to the gain of lasing medium, γ,

we calculate the population of optically generated electron-hole pairs ∆N required to

reach laser threshold to be on the order of 1019cm−3, and therefore, this population

inversion can be used to obtain the corresponding nonlinear light pump curve using

the spontaneous emission factor β = 0.376. This curve, which is shown in Fig. 6.4(b),

gives a lasing threshold of 0.62 µW at 300 K, which is a reasonable value compare to
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nanolaser reported in [7, 10, 21, 24].

Finally note that, in addition to the above approach to the nanolaser, there are

several variations in the design that may further improve the device performance.

For example, replacing the GaP nanowire with a GaP photonic crystal should lead to

slow-light [25] enhancement of the circulating field and better confinement due to the

larger group index of the photon crystal, thus further reducing the lasing threshold.

6.6 Summary

In summary, we have demonstrated a new nanolaser design using a 2D TMDC

semiconductor as the active medium. We have also examined the lasing thresh-

old requirements based on optically pumped surface-plasmon excitation. A surface

mounted GaP nanowire is used to concentrate the light effectively into 2D active

medium in order to reach a low lasing threshold. The resulting highly confined

hybrid modes allow for subdiffraction-limited localization of electromagnetic-field-

energy density at the gap between the metal substrate and a high-dielectric-constant

nanowire. This field localization enables a low-threshold, compact integrated laser

source.
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Chapter 7

Other Nanophotonic Applications

7.1 Graphene Plasmonics

7.1.1 Introduction

Graphene is a single sheet of carbon atoms arranged in a honeycomb lattice [1–

3]. Patterned graphene nanoribbons have been shown to support collective charge

oscillations, i.e., plasmons [4]. Unlike in metals, the charge density in graphene can

be modified by electrostatic gating or chemical doping, resulting in tunable plas-

mon resonances [5, 6]. Strong light confinement and frequency tunability are two

important characteristics of graphene plasmons, which make them good candidates

for the enhancement of photon fields in the mid-infrared to terahertz regions of the

spectrum [7]. It has already been shown that plasmon resonances in graphene can

couple strongly to substrate polar phonons [8, 9] and also to the intrinsic IR-active

phonons of bilayer graphene [10]. A closely related, but yet unexplored problem is the

interaction of plasmons in graphene with the extrinsic vibrational modes in adsorbed

species. Indeed, the possibility of near-field enhancement of light-matter interactions

by graphene plasmons has been predicted [7, 11]. However, an experimental demon-

stration of such a phenomenon is still lacking. The interaction between plasmons in

noble metal nanoparticles and vibrational modes in molecules has long been used as

an ultrasensitive probe for sensing small molecular concentrations [12–15], a fact that

also motivates the current study.

In unpatterned graphene, the electromagnetic boundary conditions and Drude-
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like conductivity [16] determine the plasmon frequency, which scales with the charge

density (n) and the plasmon wave vector (q) as ω ∝ n1/4 and ω ∝ q1/2, respectively

[17, 18]. In graphene nanoribbons and other forms of nanostructures, localized plas-

mons can be directly excited by incident light with zero in-plane momentum, and

analogous dispersion relations can be obtained in the quasi-static limit [4], which is

appropriate for structures much narrower than the incident light wavelength. These

graphene plasmons have resonance frequencies which, depending on their size and

doping, lie in the infrared or far-infrared range of the spectrum [10, 19]. Thus, the

use of nanoribbons, or other forms of patterned graphene, allows for the efficient and

selective coupling of infrared light to surface plasmon modes. In this work, we use in-

frared transmission spectroscopy to study the interaction of graphene plasmons with

vibrational modes in surface-adsorbed thin polymer films. Poly(methyl methacrylate)

(PMMA) is used as the adsorbates in these experiments, where it contains carbonyl

(C=O) groups with vibrational frequencies around 1700 cm−1, which is close to the

plasmon resonance of our graphene nanoribbons.

7.1.2 Device Structures

The structure of the fabricated devices is shown in Fig. 7.1a. The nanoribbon

array is defined by electron beam lithography and etching of graphene grown by

chemical vapor deposition (CVD) (Figure 7.1b). Highly resistive silicon with a 280 nm

thick surface oxide is used as the substrate that allows light transmission in the mid-

infrared range. PMMA layers are spin-coated onto the nanoribbon-covered substrates.

The thicknesses of these layers are determined by ellipsometry and controlled using

PMMA solutions of different concentrations. Samples with PVP are also prepared

by spin-coating, but the thickness of this film is further decreased by washing in

copious amounts of water. This dissolves the portion of the polymer that is not in

direct contact with the sample surface, leaving a PVP residue that is only 2-3 nm
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Figure 7.1: (a) Experimental arrangement. Spectroscopic measurements are con-
ducted in the light transmission, as indicated by the arrows. The device is composed
of a thin layer of PMMA or PVP, a graphene nanoribbon (GNR) array, and a 280 nm
thick SiO2 layer on top of a bulk Si substrate. (b) SEM image of graphene nanorib-
bons. (c) PMMA and PVP both contain the carbonyl double-bond (C=O), whose
stretching mode has a vibrational frequency around 1700 cm−1.
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thick, as determined by height and phase-contrast AFM. The carbonyl-containing

structures of PMMA and PVP are shown in Fig. 7.1c. IR spectra of these samples

are collected in the transmission configuration using an IR microscope coupled to an

FTIR spectrometer (Thermo Scientific Nicolet Continuum Infrared Microscope and

Nicolet 8700 FTIR spectrometer). The attenuation of the transmission is defined as

A = 1− T/T0 where T is the transmission spectrum with graphene nanoribbons and

T0 is the transmission spectrum of the same system without graphene nanoribbons.

Enhancement of the vibrational absorption is observed in our experiment [20] even

when there is only a partial overlap between the plasmon and vibrational frequencies.

The localized plasmon frequency depends on the ribbon width W , ω ∝ W−1/2, so by

using graphene nanoribbons of different widths, the plasmon resonance can be tuned

across the vibrational mode resonance.

7.1.3 FDTD Simulations

To understand the origin of the IR absorption enhancement, we performed

finite-difference time-domain (FDTD) simulations for the device structures shown

in Fig. 7.1a. The plasmon is excited in the nanoribbon by a plane wave whose fre-

quency is in resonance with the plasmon, and periodic boundary conditions are used

to simulate the array of nanoribbons. The conductivity of graphene is assumed to

follow a Drude form. Furthermore, the DC conductivity and the scattering rate in

the Drude form determine the resonance frequency and the width of the plasmon

peaks, respectively. In general, the effectiveness of the plasmonic effects of a system

is quantified by the quality factor Q given by Q = −Re{ε}/ Im{ε}, where ε is the

complex dielectric function of the plasmonic material. The local optical field inten-

sity enhancement responsible for the increase in absorption is proportional to Q2 (in

Raman scattering ∝ Q4). It is therefore clear that the quality factor of the plasmonic

resonance plays a very important role in the field enhancement and will be a func-
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tion of frequency as different decay pathways (damping) may be involved at different

energies [10, 17].

Due to the translational symmetry along the ribbons, we only simulated the elec-

tromagnetic field in a cross-section of the experimental structure. Periodic boundary

conditions are used to simulate an array of nanoribbons with the spacing between

the ribbons set equal to the width of the ribbons. The resolution of our simulation

is set to be 0.5 nm due to limited computational power, and the thickness of the

ribbons is set to 2 nm. The conductivity of the graphene layer is scaled to match

its real thickness of ∼0.34 nm. We have verified that the transmission and reflection

spectrum does not change if a denser grid is employed. We thus conclude that the

density of the grid is sufficient for accurate simulation of the electromagnetic wave.

The ribbons are excited by a plane wave whose frequency is in resonance with the

plasmon. The simulation time is set to be long enough so that the system reaches

steady state. The enhancement in the field intensity is obtained by taking the ratio of

the electric field intensities (integrated over a period) with and without the nanorib-

bons at each spatial point. To simulate the conductivity of graphene, we used the

Drude form σ(ω) = σ0/(1 + iω/γ), where σ0 = 0.003Ω−1 is the DC conductivity of

graphene and γ is the scattering rate of charge carriers (Figure 7.2). The interband

conductivity of graphene in the frequency range of our experiment is negligible due

the Pauli blocking.

For continuous graphene, the plasmon dispersion relation (Eq. 7.1) is determined

by the Maxwell equations at the boundary [17]. Here σ is the conductivity of

graphene, εr1 and εr2 are the relative dielectric constants of the materials on the

two sides of the 2D material, ε0 is the vacuum permittivity, ω is the plasmon reso-

nance frequency, β is the in-plane wave vector of the surface plasmon which is much

larger than the wave vector in free space k0.
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εr1√
β2 − εr1k2

0

+
εr2√

β2 − εr2k2
0

= − iσ

ε0ω
. (7.1)

In the frequency region where interband transitions are forbidden by Pauli block-

ing, the conductivity of graphene can be approximated by the Drude form where

σ ∼ 1/ω, and thus

ω ∼
√

1

εr1
+

1

εr2
. (7.2)

Using values nSiO2
≈ nPMMA ≈ 1.4 [21], we obtain a shift in the plasmon resonance

frequency of 18%.

7.1.4 Result and Discussion

In Fig. 7.3 we show results for two different plasmon widths (damping rates)

γ = 50cm−1 and γ = 250cm−1. The enhancement in the field intensity is expressed

by taking the ratio of the electric field intensities with and without the nanoribbons

at each spatial point, |E2/E2
0 |. As can be seen from the color-coded intensity map

in Fig. 7.3, large enhancements in the field intensity can be generated (more than

3 orders of magnitude) near the edges of the nanoribbon and the field enhancement

decays exponentially away from both the edges and the graphene surface. This en-

hancement in the local electric field is the source of the observed enhancement in

the interaction between light and the carbonyl vibration in the polymer film. The

enhancement can be potentially further increased through improved graphene sample

quality (reduced plasmon damping), and by the use of stacked graphene layers [19].

These optimization procedures deserve further work but are beyond the scope of the

present study. Figure 7.4 shows the simulated attenuation spectra of four graphene

nanoribbon arrays (80, 90, 110, and 120 nm width) coated with 8 nm of PMMA.

The plasmon attenuation peak intensity is normalized, and the vibration appears as

a dip in Fig. 7.4. We observe that the vibrational attenuation increases as the de-
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Figure 7.3: Spatial map of the enhancement of electric field intensity near a graphene
nanoribbon both perpendicularly to the surface of the nanoribbon (X) and across the
nanoribbon (Y). Finite-difference time-domain (FDTD) simulations of the field en-
hancement in the vicinity of the same nanoribbons for two values of plasmon damping,
γ = 50cm−1 (left) and γ = 250cm−1 (right).

131



1000

Wavenumber (cm-1)
1500 2000 2500

0.0

0.3

0.2

0.1

Ex
tin

ct
io

n 
R

at
io

80nm

120nm
110nm
90nm
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tuning between plasmon and vibrational frequency decreases (∆I ∼ 1/∆f), clearly

demonstrating that the enhancement is a resonance effect.

In conclusion, we have demonstrated graphene plasmon enhanced vibrational sens-

ing of surface-adsorbed polymers. The detection sensitivity increases by a factor of

about 5 compare with device with no graphene, as evident from the height of the in-

duced transparency in the IR attenuation spectra of the coupled plasmon-vibrational

mode system. The modulation of the graphene plasmon attenuation spectrum by

surface-adsorbed polymers is due to near-field electromagnetic coupling, as supported

by FDTD simulations. The large magnitude of this modulation as compared to the

absorption of the polymer film is caused by a strong enhancement in the near-field

intensity. Furthermore, this plasmonic enhancement is confined to the vicinity of the

surface, as the plasmon field decay length is measured to be ∼ 10 nm. Lastly, this

vibration sensing technique exhibits molecular specificity; that is, different molecular

compounds can be differentiated from the peak frequencies of the vibrational mode

induced transparencies.

7.2 Dispersion Engineering

7.2.1 Introduction

There are increasing demands on optical interconnections to have high-bandwidth,

low-latency, and low-power consumption [22]. Due to the technological advances and

increased complexity in optical networks, high-quality connectivity for the optical

network is critical. For example, the problem of pulse broadening due to chromatic

dispersion is becoming an increasingly important factor for signal degradation. This

problem becomes even more serious as the data transmission scales to higher rates

[23]. Many techniques have been explored to compensate for interconnect dispersion

so as to achieve high-data transmission rates across long-span-length optical-network
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systems; these includes adding conformal dielectric overlayers to silicon waveguides

[24] or using silicon strip/slot hybrid waveguides [25, 26]. In this section, we inves-

tigate in detail the dispersion properties of a silicon/plasmonics hybrid optical in-

terconnect structure, which has the advantage of sending both electric and photonic

signals along the same circuitry. This hybrid interconnect approach provides a natural

“network-on-chip” platform, which is fully compatible with semiconductor fabrication

techniques and which incorporates electric and photonic interconnects that achieve

large capacity with low power losses [27, 28]. With an optimal design, this hybrid

structure can provide a flat dispersion with zero dispersion at c-band communications

wavelengths, which is significant for wavelength-division-multiplexed optical network

systems [29].

7.2.2 Theory and Simulations

Our hybrid structure for optical interconnects consists of a high-refractive-index

silicon nanowire separated from a plasmonic waveguide by a nanoscale low-refractive-

index dielectric gap. At the 1.55µm communication wavelength, a standard waveg-

uide mode is supported in the silicon nanowire, as shown in Fig. 7.5(a), while the

surface plasmon polaritons (SPP) are supported by the metal-dielectric interfaces, as

indicated in Fig. 7.5(b). For a hybrid structure, the coupling between the plasmonic

and waveguide modes across the gap enables a ‘gap-mode’ that allows energy con-

finement and propagation through the low-index-gap region with a mode size that is

much smaller than the diffraction limit. This gap mode, shown in Fig. 7.5(c), arises

from the continuity of the displacement field at the material interface, thus a strong

normal electric field component occurs in the gap. The low-index gap also leads to

lower long-range SPP propagation loss compared to that obtainable with higher-index

materials [30]. Thus, the photonic signals propagate over large distances with low

losses. Due to the hybridization mechanism, the analysis in this paper is focused
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Figure 7.5: The mode profile at 1.55µm for (a) waveguide mode - a silicon waveg-
uide on a SiO2 substrate; (b) SPP mode - a Au plasmonic waveguide atop a silicon
waveguide; (c) hybrid gap mode - with SiO2 acting as a low dielectric spacer between
plasmonic and silicon waveguides; (d) shows a zoom-in of the hybrid mode, which is
confined mainly in the SiO2 region.
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upon the properties of the fundamental quasi-TM mode. Based on coupled-mode

theory, the hybrid mode can be described as a superposition of the waveguide mode

and the SPP mode,

Ψ = aΨsi + bΨspp (7.3)

where a and b are the amplitudes of the constituent waveguide Ψsi = [1 0]T and

SPP Ψspp = [0 1]T basis modes, respectively. The modes of the coupled system are

characterized by the system of equations discussed in [30]nsi κ12

κ21 nspp


a
b

 = neff

a
b

 (7.4)

where κ is the coupling strength between waveguide and SPP modes and nSi, nspp are

the effective refractive indices of the silicon and SPP waveguides, respectively. The

index parameter, neff , is the eigenvalue of this hybrid system, which quantifies the

phase velocity of the direction of propagation.

The eigenmodes and effective indices of the hybrid nanostructure are computed

using a full-vectorial finite-element mode solver (FemSim, RSoft) over a broad wave-

length range. The dispersion properties of each material are automatically taken into

considerations in our numerical simulations. The resulting raw effective-index data

are fitted with a higher-order polynomial, in order to smooth out small numerical

discontinuities introduced by the mode solver. The group velocity dispersion can be

obtained according to [24]

Dλ =
λ

c0

d2neff
dλ2

(7.5)

where neff is the effective index of the structure at free-space wavelength λ and c0

is the speed of light. Figure 7.6 plots the calculated GVD versus wavelength for

different waveguides. The green (waveguide) curve shows the dispersion properties

for the waveguide mode, which corresponds to a silicon waveguide placed on top of the

SiO2 substrate; the blue (SPP) curve shows the SPP-mode dispersion, in which a 40-

nm-thick gold layer acting as a plasmonic waveguide is on top of the silicon waveguide,
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Figure 7.6: The dispersion properties for waveguide mode - silicon waveguide on
SiO2 substrate (green); SPP mode - Au plasmonic waveguide atop silicon waveguide
(blue); and hybrid gap mode - with SiO2 acting as a low-dielectric spacer between
the plasmonic and silicon waveguides, where we tune the dimensions so that (i) zero-
dispersion is at 1.55µm (red) and (ii) flat-dispersion across 1.3-1.8 µm.

137



Figure 7.7: The mode profile at 1.55µm for (a) waveguide mode - triangular silicon
waveguide on SiO2 substrate; (b) SPP mode - with Au plasmonic waveguide beneath
triangular silicon waveguide; (c) hybrid gap mode - with SiO2 acting as a low dielectric
spacer between plasmonic and triangular silicon waveguides.
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where this plasmonic waveguide can also propagate electronic signals. The calculated

dispersion of the first hybrid gap mode is demonstrated using the red (Hybrid 1)

curve. Our results show that with proper dispersion-engineering, and interconnect

of zero dispersion is found at the communications wavelength. For this particular

waveguide, we use a 480nm × 440nm (height × width) silicon waveguide with 30-

nm SiO2 gap, which has a propagation length over 120µm. We also demonstrated

another hybrid gap mode in purple (Hybrid 2) curve, in which we have flat dispersion

(i.e. 54ps/km-nm) across 1.3-1.8µm. This hybrid structure has a 300nm × 220nm

(height × width) silicon waveguide with a 30-nm SiO2 spacer and a propagation

length of about 45µm. Furthermore, we also investigated other geometries such as

the triangular silicon/plasmonics waveguide hybrid structure shown in Fig. 7.7. Our

results suggest that a design wherein flat dispersion at zero dispersion rate may be

achievable.
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ics: a platform for strong light–matter interactions,” Nano Lett., vol. 11, no. 8,

pp. 3370–3377, 2011.

[8] Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K.

Stewart, Z. Zhao, G. Dominguez, M. Thiemens, et al., “Infrared nanoscopy of

dirac plasmons at the graphene–sio2 interface,” Nano Lett., vol. 11, no. 11,

pp. 4701–4705, 2011.

[9] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and

F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostruc-

tures,” Nat. Photon., vol. 7, no. 5, pp. 394–399, 2013.

[10] H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced

transparency in bilayer graphene nanoribbons,” Nano Lett., vol. 14, no. 8,

pp. 4581–4586, 2014.

140



[11] F. Liu and E. Cubukcu, “Tunable omnidirectional strong light-matter interac-

tions mediated by graphene surface plasmons,” Phys. Rev. B, vol. 88, no. 11,

p. 115439, 2013.

[12] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander,

H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures

and metamaterials,” Nat. Mater., vol. 9, no. 9, pp. 707–715, 2010.

[13] R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K.

Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of

protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci.

U.S.A., vol. 106, no. 46, pp. 19227–19232, 2009.

[14] F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garćıa-Etxarri, and
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