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Abstract: A probabilistic damage identification method for shear structure components is presented.
The method uses the extracted modal frequencies from the measured dynamical responses in
conjunction with a representative finite element model. The damage of each component is modeled
using a stiffness multiplier in the finite element model. By coupling the extracted features and
the probabilistic structural model, the damage identification problem is recast to an equivalent
optimization problem, which is iteratively solved using the cross-entropy optimization technique.
An application example is used to demonstrate the proposed method and validate its effectiveness.
Influencing factors such as the location of damaged components, measurement location, measurement
noise level, and damage severity are studied. The detection reliability under different measurement
noise levels is also discussed in detail.

Keywords: damage identification; probabilistic; cross-entropy optimization; shear structure;
structural health monitoring

1. Introduction

The ability to identify a damaged component in aerospace, mechanical, and civil systems
is becoming increasingly important [1–3]. Although extensive efforts have been devoted in the
diagnostics and prognostics community to develop effective methods for damage diagnostics and
identifications over the past few decades, structural damage identification is still regarded as a practical
challenge for safety assurance of engineering structures [4,5]. A widely-used classification system
for damage diagnosis defines four levels of damage identifications: the first level is to determine
the existence of the damage in the structure; the second level is to obtain the geometric location
of the damage; the third level is to quantify the severity of the damage; and the fourth level is to
estimate the remaining useful life of the structure [6]. Damage quantification usually focuses on the
first three levels, and the fourth level is generally related to life prediction methods involving damage
evolution mechanisms.

Several non-destructive evaluation methods such as ultrasound inspection [7–13], eddy-current
testing [14,15], and Lamb wave-based methods [16–21] can effectively identify local damages in
a component. To identify the component damage on a global basis, capturing the changes in
vibration characteristics of the entire structure is one of the few methods that can be applied in
practice [22,23]. A review on using modal frequency changes for damage identification can be found
in [24]. Ref. [25] provided a formulation to detect damage in composite materials using frequency
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shifts. The method uses measurements of changes in the lower structural natural frequencies that
are made at a single point in the structure in conjunction with a dynamic analysis of the system to
detect the damage. The advantage of the method is that natural frequency and damping ratio can
be obtained using measurement at a single point on the structure, and they are independent of the
chosen measurement position; however, it requires a sufficiently accurate dynamic analysis of the
structure to obtain mode shapes for estimation of damage location and severity. Friswell et al. [26]
reported a method to identify damage based on a known catalog of possible damage scenarios and an
accurate structural model using a two-step process. The first step computes frequency shifts of the first
several modes for both the undamaged structure and all the possible damage scenarios. The second
step uses the ratios of all frequency shifts to fit a power-law model for damage scenario identification.
Fritzen et al. [27] developed a damage detection method based on model updating concept and applied
the method to a numerical cracked beam and a damaged rectangular metal plate. The idea is to use
a mathematical model representing the undamaged vibrating structure and a local description of
the damage. For a damage localization to be successful, the reference finite element model must
be as accurate as possible; otherwise, the procedure will lead to incorrect results. Bayissa et al. [28]
proposed a damage identification method using wavelet transformation and applied the method
to a steel plate girder of a bridge for damage identification. Deraemaeker et al. [29] developed a
structural health monitoring process using vibration data. The process extracts the eigenproperties
of the structure and the peak indicators computed on the Fourier transform of modal filters, and use
them as damage indicators. The method can identify the existence of the damage in the structure,
but it is difficult to accurately estimate the damage location. Fugate et al. [30] reported a direct time
domain method for damage detection using pattern recognition techniques. The method uses an
auto-regressive (AR) model to fit the vibration time series, and the difference between the AR model
prediction and the actual vibration time series of the damaged system is used as a damage feature.
If excitation sources and/or environmental conditions change, it is very difficult for the identification
using direct time series to produce reliable results, and it is even more difficult to relate the time series
changes to physical changes in the structure [31]. Although most of the aforementioned methods are
deterministic, the identification of structural damage is a nondeterministic problem in nature due to
inherent modeling and measurement uncertainties. The identification using deterministic methods
may lead to faulty conclusions of structural damages (i.e. false positives of damages) [32]. More
importantly, probabilistic methods can provide uncertainty quantification and management for risk
mitigation. For nondeterministic approaches, Bayesian structural model identification and damage
detection methods using output only dynamical responses have been systematically studied by Beck
and his colleagues [33–36]. Friswell and Mottershead [37] provided a comprehensive reference for finite
model updating using structural dynamics data. More survey studies on Bayesian model updating for
structural damage identification can be found in [31,38,39]. The central idea is to update the initial
distribution of model parameters using measured data. The model parameters can be stiffness, mass,
and damping in a finite element context. It usually requires multiple and continuous updates to obtain
reliable results when prior information is limited. The posterior probability density functions (PDFs)
are usually obtained using Markov chain Monte Carlo simulations, and is not designed for real-time
operations.

The objective of this study is to develop an efficient probabilistic damage identification method
for shear structural components with a minimal set of measurement data. The proposed method
uses dynamical response measurement data obtained under random loading in conjunction with
a representative finite element model. The damage of a component is encoded in the model by a
stiffness multiplier applied to the nominal value. The dynamical response measurement data are
used to extract the actual modal frequencies of the structure statistically. The stiffness multiplier is
modeled using a truncated normal distribution in the range of (0,1] with an initial mean value of
0.5 and a constant standard deviation. A set of multipliers are randomly generated to formulate a
set of test structural models. Calculated modal frequencies of test models are compared with the
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extracted modal frequencies from measurement data through a performance function. The damage
identification problem is recast to a probabilistic optimization problem, which is then solved using
cross-entropy optimization algorithms. The paper is organized as follows. First, the basic concept
of the cross-entropy optimization technique is briefly introduced. Next, the probabilistic damage
identification for a general structure is formulated based on the cross-entropy optimizations, and the
generic algorithm is described. The iterative updating scheme for the distribution parameter of the
stiffness multiplier is derived for the truncated normal distribution. Following that, a shear structure
example is used to demonstrate and validate the overall method. Influences from damage location,
measurement location, measurement noise, and damage severity are studied using four damage cases
generated by the Latin hypercube design method. The reliability of the proposed method in terms of
probability of detection is also investigated under different measurement noise conditions.

2. General Cross-Entropy Optimization

The cross-entropy optimization method is developed in the filed of rare event simulation and
is pioneered by Rubinstein and others [40–42]. The original cross-entropy method is used to find
the optimal importance sampling density. The method later evolves to a unified simulation-based
optimization method by recasting the optimization problem to an associated stochastic problem.
The method involves a two-step iteration process that is particularly suitable for computer
implementations. The two-step procedure is described as follows:

1. Generate a random set of candidate states of the system according to a specified mechanism.
2. Rank the candidate states based on particular performance measures and keep candidate states

that perform well and use them for the next iteration. This step usually involves minimization of
the cross-entropy measure.

For completeness purposes, the basic idea of cross-entropy method is briefly introduced. Denote
X = {X1, X2, . . . , Xk} as a k-dimensional random variable taking values in X and having a probability
distribution of f (x; θ), where θ is the distribution parameter. Define a real-valued function h(x),
and the probability of h(x) ≥ γ is of interest. The probability can be expressed as

lθ =
∫

h(x)≥γ
f (x; θ)dx = E f [1(h(X) ≥ γ)] , (1)

where 1(h(x) ≥ γ) is the indicator function taking value of 1 if h(x) ≥ γ, and 0 otherwise. E f [·] is
the expectation operator under the distribution f (x; θ). For realistic problems, lθ is usually estimated
using simulation-based methods, such as Monte Carlo (MC) method or its variants. According to the
Law of Large Numbers and the Central Limit Theorem, the MC estimator has a relative error of

ε ≈ 1√
Nlθ

, (2)

where N is the number of simulation samples. If lθ is very small (rare event), for example lθ = 10−6 and
ε = 0.01, the estimator needs N ≈ 1010 samples, which is computationally infeasible. The important
sampling (IS) method uses a different distribution g(x) to draw samples, and lθ can be estimated as

lθ =
∫

h(x)≥γ

f (x; θ)

g(x)
g(x)dx = Eg

[
1(h(X) ≥ γ)

f (X; θ)

g(X)

]
. (3)

It is seen that the ideal g(x), denoted as g∗(x), is

g∗(x) =
1(h(x) ≥ γ) f (x; θ)

lθ
. (4)
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By using the change of measure in Equation (4), the following result is guaranteed

1(h(X(i)) ≥ γ)
f (X(i); θ)

g∗(X(i))
= lθ , ∀i ∈ 0, 1, . . . , N, (5)

where X(i) is the ith random sample. This means the estimator has zero variance and only N = 1
sample is needed. However, g∗(x) is difficult to obtain because lθ is unknown. Therefore, it is desired to
find a g(x) which is as close to the ideal distribution of Equation (4) as possible. In practice, g(x) can be
chosen as the same type of distribution as f (x; θ) but with a different parameter θ̃, i.e., g(x) := f (x; θ̃).
One of the convenient measures for “distance” between two distributions is the Kullback–Leibler (KL)
distance [43], which is also referred as cross-entropy in engineering and is defined as

H(p1, p2) =
∫
X

p1(x) ln
p1(x)
p2(x)

dx = Ep1

[
ln

p1(X)

p2(X)

]
, (6)

where p1(x) and p2(x) are two distributions. Minimization of Equation (6) between g∗(x) and
g(x) := f (x; θ̃) leads to minimizing

Eθ̃

[
ln

g∗(X)

f (X; θ̃)

]
= ∑

x
g∗(x) ln g∗(x)−∑

x
g∗(x) ln f (x; θ̃), (7)

which is equivalent to maximizing ∑x g∗(x) ln f (x; θ̃) due to the fact that ∑x g∗(x) ln g∗(x) is a constant.
Substitution of g∗(x) from Equation (4) into Equation (7) casts the problem to finding

θ∗ = arg max
θ̃

Eθ

[
1(h(X) ≥ γ) f (X; θ) ln f (X; θ̃)

]
. (8)

Given an initial sampling distribution f (x; θ0), Equation (8) is equivalent to

θ∗ = arg max
θ̃

Eθ0

[
1(h(X) ≥ γ)W(X; θ, θ0) ln f (X; θ̃)

]
, (9)

where W(x; θ, θ0) =
f (x;θ)
f (x;θ0)

is the likelihood ratio. Using discrete samples, θ∗ can be estimated by

θ̂∗ = arg max
θ̃

N

∑
i=1

1(h(X(i)) ≥ γ)W(X(i); θ, θ0) ln f (X(i); θ̃), (10)

where X(1), X(2), . . . , X(N) are random samples from f (x; θ0). θ̂∗ can be obtained by solving the
following equations

N

∑
i=1

1(h(X(i)) ≥ γ)W(X(i); θ, θ0)∇ ln f (X(i); θ̂∗) = 0. (11)

Given that the distribution of f (x; θ̃) belongs to a natural exponential family, θ̂∗ can be calculated
analytically. An iterative procedure of solving θ∗ is presented as Algorithm 1 [40].
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Algorithm 1 Iterative Procedure of Estimation for θ∗

t← 0, initialize θ0, e.g., θ0 = θ.
repeat

(1) Draw N random samples x(1), x(2), . . . , x(N) from f (x; θt).
(2) Calculate hi = h(x(i)) for all i. Sort hi from largest to smallest.
(3) γt ← hM, where 1 ≤ M ≤ N.
(4) Calculate θt+1 by solving ∑N

i=1 1(h(X(i)) ≥ γ)W(X(i); θ, θt)∇ ln f (X(i); θt+1) = 0.
(5) t← t + 1.

until γt ≥ γ.
θ∗ ← θt+1.

For optimization problems, Algorithm 1 needs slight modifications because the objective is
not finding an optimized important sampling distribution parameter θ∗. The idea is to convert an
optimization problem to its associated stochastic problem. Consider a general minimization problem
with a real-valued performance function h(x) and a state variable x ∈ X . The minimum of h(x)
is denoted as γ∗ when x is equal to x∗. Define a threshold value γ ∈ R and an indicator function
1(h(x) ≤ γ). This setting allows one to estimate the probability of h(x) ≤ γ as

lθ(γ) =
∫

h(x)≥γ
1(h(x) ≤ γ) f (x; θ)dx = Eθ [1(h(x) ≤ γ)]

= ∑
x

1(h(x) ≤ γ) f (x; θ),
(12)

where f (x; θ) is defined as before. It is seen that if γ is close to γ∗, i.e., γ = γ∗ + ε, where ε is a very
small positive, h(x) ≤ γ can be treated as a rare event. In that case, lθ(γ∗ + ε) will be a small quantity
and thus the important sampling can be used to estimate it efficiently. The ideal parameter θ∗ of the
important sampling distribution f (x; θ∗) can be estimated following Equations (8)–(11) as

N

∑
i=1

1(h(X(i) ≤ γ))∇ ln f (X(i); θ∗) = 0. (13)

The term W(X(i); θ, θ0) is dropped out from Equation (13) because, in each iteration, γt is assigned a
new value based on samples of the current iteration. As a result, the corresponding θ is equal to θt and
W(X; θ, θt) = 1. The correlation between the estimation of lθ(γ∗ + ε) and finding the solution to the
optimization problem (i.e., x∗) lies in the following fact: it is plausible that f (x; θ∗) assigns most of its
probability mass close to x∗ if γ is close to γ∗; therefore, the resulting simulation samples from f (x; θ∗)

can be used to estimate x∗. The process for estimation of x∗ now involves a two-stage procedure and
one possible implementation is described by Algorithm 2 [40]:

Algorithm 2 Iterative Procedure of Estimation for x∗ in a General Minimization Problem

t← 0, initialize θ0 and γ, e.g., Let θ0 = θ and assign γ a large value.
repeat

(1) Draw N random variables x(1), x(2), . . . , x(N) from f (x; θt).
(2) Calculate hi = h(x(i)) for all i. Sort hi from smallest to largest.
(3) γt ← hM, where 1 ≤ M ≤ N.
(4) Calculate θt+1 by solving ∑N

i=1 1(h(X(i)) ≥ γ)∇ ln f (X(i); θt+1) = 0.
(5) t← t + 1, γ← γt.

until convergence is reached.
Draw samples x(1), x(2), . . . , x(N) from f (x; θt). x∗ is estimated by 1

N ∑N
i=1 x(i).
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Conditions such as |γt − γt−1| ≤ e can be used as convergence criteria in the above iterative
process. The term e is a small number determined based on the given problem. For structural damage
identification, the problems should be formulated as equivalent optimization problems in order to
apply the cross-entropy method. In the equivalent optimization problems, tuning parameters of N and
M, distribution family of f (x; θ), initial setting for θ0 and γ need to be specified. These two aspects
may introduce many possibilities. Next, a general procedure for structural damage identification using
the cross-entropy method is formulated.

3. Formulation of Structural Component Damage Identification Using Cross-Entropy Optimizations

The starting point of structural damage identification using the cross-entropy optimization
method is to formulate the problem as an optimization problem. Using vibration data, this can readily
be made by comparing the actual vibration responses, such as frequencies and mode shapes, with
its corresponding structural model predictions. A convenient model is a finite element (FE) model
of the structure, where its components can be explicitly included. A damaged component can be
represented in many ways such as reduction of the corresponding element stiffness or inertia in the
representative FE model. Minimization of the difference between actual vibration responses and FE
model predictions can be achieved when the actual structure and its FE model are well coupled.

In this study, the status of jth component in a representative FE model is modeled using a stiffness
multiplier xj ∈ (0, 1]. For example, xj = 1 is the undamaged state of the component, and xj = 0.5
represents the stiffness of the component being reduced to 50% of its nominal value. Given a n-DOF
(degree of freedom) FE model, the state of the entire system can be characterized using the vector
of x = (x1, x2, ..., xn). The stiffness multipliers x1, x2, ..., xn are assumed to be independent random
variables since the damage states of components are independent. Many forms of distributions can
be used to generate a random instance of x in the range of (0, 1]. For simplicity, a truncated normal
distribution in the range of (0, 1] with a constant standard deviation of σ = 0.05 is used. In this setting,
the distribution has one location parameter vector θ = (θ1, θ2, ..., θn). For simplicity, the subscript j is
omitted. The PDF of a truncated normal distribution in the range of (a, b] is

f (x; θ) = φ

(
x− θ

σ

)
· Z−1, (14)

where φ(·) and Φ(·) are PDF and cumulative distribution function (CDF) of a standard normal
distribution, respectively, and Z = Φ

(
b−θ

σ

)
−Φ

(
a−θ

σ

)
is the normalizing constant. The derivative of

logarithm of the truncated PDF with respect to θi reads

∂ ln f (x; θ)

∂θ
=

∂

[
−0.5 · ln(2π)− ln σ− (x−θ)2

2σ2

]
∂θ

−

∂Φ
(

b−θ
σ

)
∂θ

−
∂Φ
(

a−θ
σ

)
∂θ

 · Z−1

=
x− θ

σ2 +
1
σ

[
φ

(
b− θ

σ

)
− φ

(
a− θ

σ

)]
· Z−1.

(15)

Substitute Equation (15) into Equation (13) and obtain the updated θ for iterations as

θ̃ =
∑N

i=1 1
[

h(X(i)) ≤ γ
]
· X(i)

∑N
i=1 1

[
h(X(i)) ≤ γ

] + σ ·
[

φ

(
b− θ

σ

)
− φ

(
a− θ

σ

)]
· Z−1. (16)

Equation (16) adjusts the usual estimator of an untruncated normal PDF by a constant term
c = σ ·

[
φ
(

b−θ
σ

)
− φ

(
a−θ

σ

)]
· Z−1. Under the condition that the mean value is away from the bounds

and the standard deviation is small, using the untruncated estimator (the first term of the right-hand
side of Equation (16)) can yield relative accurate results. For example, the relative error (RE) for θ
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estimation giving a = 0, b = 1, and σ = 0.05 is shown in Figure 1. It can be seen that, when the stiffness
multiplier is smaller than 0.95, the untruncated estimator yields an RE of about 0.1.

Without prior knowledge of the damage state of the structure, an initial value of θj = 0.5
(j = 1, · · · , n) can be assigned. The assignment implies that each of the components of interest is
multiplied by a normal random variable with a mean value of 0.5 and a standard deviation of 0.05.
When an instance of the FE model is generated using a set of random values of Xj drawn from
its PDF, the calculated vibration characteristics such as natural frequencies and mode shapes are
compared with the actual vibration characteristics extracted from the measurement data. When a
random instance of the FE model minimizes the difference, the random instance is considered to be
a close representation of the actual structure, and the values of θj are considered the actual stiffness
multipliers. As a result, the damage identification problem is recast to an equivalent probabilistic
optimization problem, which can be solved using the cross-entropy optimization algorithm shown in
Algorithm 2. The basic procedure is as follows: generate a set of random instances of the FE models
based on the current distribution parameter θj; compare the difference between each of the random
instance and the actual structure (e.g., using first several major frequencies); rank the difference and
use samples that perform well to estimate new θj for the next iteration. The iteration stops when some
criteria are met. The overall procedure is illustrated in Figure 2, where M(x) denotes the prediction for
the measured vibration response y and Xj is the random realization for the stiffness multiplier of jth
component. The algorithmic description of the proposed probabilistic damage identification method is
summarized in Algorithm 3.

0.8 0.85 0.9 0.95 1
10

−4

10
−3

10
−2

10
−1

10
0

θ

R
E

θ̃

Figure 1. Relative error (RE) of updated theta calculated using untruncated normal estimator.

1
θ

1 …

…

2
θ

2

3
θ

3

4
θ

4

n
θ

n

i
θ

i

Structural Model

Model prediction

h(x) = H(M(x); y)

M(x)

CE method 

Unknown µ

Samplingx

µUpdating

Initializeµ

X » f(x; µ)

yMeasurement

Figure 2. Procedure of probabilistic damage identification. The performance function h(x) defines a
measure to quantify the performance of a random realization of X.

To perform the computation, N, M, h(x), and M(x) should be specified. The algorithm updates θ

and γt until θ is converged. At convergence, the first five ranking samples of Xj is averaged as the
final estimate for the stiffness multiplier of the jth component. A shear building damage identification
problem with FE data is presented next.
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Algorithm 3 Probabilistic Identification of Structural Damage

Set up a structural model M(x) for response prediction, e.g., an FE model.
Define a performance function h(x), e.g., h(x) = ∑ |M(x)− y|, where y is measured response.
t← 0.
Initialize θt and γt, e.g., θt = (0.5, . . . , 0.5) and γt = +∞.
repeat

(1) Draw N random variables x(1), . . . , x(N) from f (x; θt).
(2) Calculate hi = h(x(i)) for all i = 1, . . . , N and sort hi from smallest to largest.
(3) γt ← hM, where 1 ≤ M ≤ N.
(4) Calculate θt+1 using Equation (16).
(5) t← t + 1.

until θ is converged.
Draw samples x(1), . . . , x(N) from f (x; θt). x∗ is estimated by 1

N ∑N
i=1 x(i).

4. Application Example

A six-story shear building is used to illustrate the overall methodology and algorithms. The shear
building is shown in Figure 3. The shear stiffness and mass for each floors are k = (k1, . . . , k6)

and m = (m1, . . . , m6), respectively, from bottom to top. At each floor, random excitation forces
f = ( f1, . . . , f6) are applied to represent stochastic ambient loads. The global stiffness matrix and
mass matrix are shown in Equations (17) and (18), respectively. To simulate actual measurements,
acceleration responses of all floors are calculated by solving the equation of motions of the FE
model. Noise terms are added to the deterministic calculation to represent the actual measurement
uncertainty. Noise terms are characterized using Gauss pulse signal with a magnitude equal to a
specified percentage of the maximum root mean square (RMS) of the deterministic calculation. Random
excitation forces are generated using Gaussian white noise processes. Modal damping is used in this
example to represent the actual damping effect. Four different combinations of damage location,
measurement location, noise level, and damage severity are generated using the Latin hypercube
sampling method to randomize the effect of those influencing factors:

[k] =


k1 + k2 −k2 . . . 0
−k2 k2 + k3 −k3 0

0 −k3 . . . . . .
0 0 . . . k6

 , (17)

[m] =


m1 0 . . . 0
0 m2 0 . . .
0 0 . . . . . .
0 0 . . . m6

 . (18)

k1

k2

k3

k4

k5

m1

m2

m3

m4

m5

random load

f1

f2

f3

f4

f5

m6

k6

f6

Figure 3. Diagram of the six-story shear building and external random excitation forces.
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4.1. Measurement of Vibration Data and Extraction of Frequency Components

Acceleration responses are calculated by solving equations of motion of the shear building
using the mode superposition method with a step size of dt= 0.001 s (i.e., the sampling frequency
of the measurement is 1/dt = 1000 Hz). For illustration purposes, shear stiffness of k = (k1, . . . , k6) =

(100, 100, 100, 100, 100, 100) GPa, the mass of m = (m1, . . . , m6) = (1, 1, 1, 1, 1, 1)× 106 kg, and a modal
damping ratio of 0.02 are used. Responses of a duration of 5 s are calculated and responses of 0–1 s
(normal state responses) measured at the first floor are shown in Figure 4a. The corresponding power
spectra density and Fourier spectra are shown in Figure 4b,c, respectively. The identification of
frequency components can be made using peak-picking methods. For this measurement data set,
the identified frequency components are (12.329, 36.011, 57.129, 76.294, 89.355).

(a)
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(c)

Figure 4. Frequency components identified from acceleration measurement at floor 1. (a) Measurement
data; (b) power spectra density; and (c) Fourier spectra.

4.2. Performance Function

The performance function h(x) for ranking simulation samples can be established as follows.
Given x as a random realization of the stiffness multiplier vector, the natural frequency of model M(x)
is calculated as

M(x) =
√
eig([m]−1[k])/(2π), (19)

where eig(·) computes the eigenvalues. Denote the extracted v frequency components from
measurement data as fext. Simple performance measures, such as the sum of the squared error defined
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as h(x) = ∑v
i=1[M(x)− fext]2 and the sum of the absolute error defined as h(x) = ∑v

i=1 |M(x)− fext|,
may not be suitable for realistic problems because weights of individual frequencies are not considered.
Since the system is subject to random excitation forces, extracted frequency components will vary
slightly. Therefore, frequency components can be modeled as a multivariate normal variable, and the
the mean vector and covariance matrix can be statistically identified from multiple and independent
measurement datasets. It can increase the robustness of the performance measure and weight each
frequency components appropriately. A general formulation of the performance function h(x) is
proposed as the log-likelihood of the multivariate normal PDF

h(x) ∝ (M(x)− µ f ) · Σ−1
f · (M(x)− µ f )

T , (20)

where µ f and Σ f are the mean vector and covariance matrix of the extracted frequency components,
and [·]T is the transpose operator. In realistic applications, µ f and Σ f can be estimated from multiple
successive measurements. Equation (20) can easily be transformed to a multivariate normal PDF as
(2π)−v/2|Σ f |−1/2 exp[− 1

2 h(x)].

4.3. Damage Identification

Four cases are studied to investigate the effectiveness of the method. Factors considered are damage
location (floor 1, . . . , 6), measurement location (floor 1, . . . , 6), measurement noise (5%, 10%, 20%),
and damage severity represented by the stiffness multiplier (0.925, 0.9, 0.85, 0.8). Latin hypercube
sampling [44] is used to generate four cases as shown in Table 1.

Table 1. Damage cases generated using Latin hypercube sampling.

Case Damage Component Measurement Location Measurement Noise Stiffness Reduced by

1 floor 3 floor 3 10% 0.9
2 floor 4 floor 1 5% 0.8
3 floor 6 floor 4 20% 0.85
4 floor 1 floor 6 10% 0.925

4.3.1. Case 1

Measurement data of system acceleration are generated using the procedure and setting described
in Section 4.1. The only difference is that the shear stiffness of floor 3 is 0.9× k3 = 90 GPa, representing
the damage. To obtain µ f and Σ f , a total of 500 s of measurement data are generated, and the time series
are divided into 100 pieces evenly. For each piece, the frequency components are extracted. µ f and
Σ f are then estimated from 100 sets of extracted frequency components. For example, the first five
seconds of response measurement data are shown in Figure 5a, and identified frequency components
are shown in Figure 5b. The mean vector µ f :case 1 and covariance matrix Σ f :case 1 of the identified
frequency components are estimated as

µ f :case 1 = (12.073, 35.73, 56.321, 75.261) (21)

and

Σ f :case 1 =


0.057648 0.0063217 −0.0090611 −0.011078

0.0063217 0.12809 0.016768 −0.0037328
−0.0090611 0.016768 0.23384 −0.013173
−0.011078 −0.0037328 −0.013173 0.32825

 , (22)

respectively.
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Figure 5. (a) measurement data of acceleration responses at floor 3 and (b) identified frequency
components.

The vector θ is initialized as θ1,...,6 = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5), and N = 1000 and M = 30 are
used. Using Algorithm 3, iterative results are shown in Table 2. The converged result of θ1,...,6 =

(1.00, 1.00, 0.92, 1.00, 1.00, 1.00) indicates that floor 3 is damaged, i.e., θ3 = 0.92. The result is obtained
with four iterations in about 0.16 seconds using the MATLAB software package.

Table 2. Convergence of damage state probability distribution parameter θ of Case 1.

t θ1 θ2 θ3 θ4 θ5 θ6 γt

0 0.5 0.5 0.5 0.5 0.5 0.5 +∞
1 0.72 0.57 0.67 0.70 0.65 0.74 987.818
2 0.91 0.75 0.82 0.88 0.87 0.93 201.615
3 0.97 0.93 0.95 0.98 0.95 0.97 16.973
4 0.99 0.99 0.96 1.00 0.99 1.00 1.738
* 1.00 1.00 0.92 1.00 1.00 1.00 0.180

4.3.2. Case 2

In this case, the first five frequency components can be identified from the acceleration
measurement data taken from floor 1. Measurement data and the corresponding power spectrum
density plots are not presented hereafter. Using the same procedure and parameters as that of Case 1,
µ f :case 2 and Σ f :case 2 are obtained as

µ f :case 2 = (12.002, 34.843, 56.816, 73.107, 88.842) (23)

and

Σ f :case 2 =


0.051742 0.003197 0.020759 0.0011319 −0.0089226
0.003197 0.13855 0.0046781 −0.039175 0.010089
0.020759 0.0046781 0.22918 0.018038 0.019904

0.0011319 −0.039175 0.018038 0.45453 0.0088338
−0.0089226 0.010089 0.019904 0.0088338 0.50312

 , (24)
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respectively. Intermediate and converged results for θ are shown in Table 3. The converged results of
θ1,...,6 = (0.99, 1.00, 0.99, 0.81, 0.99, 1.00) indicates that floor 4 is damaged with an estimated stiffness
reduced to 81% of its nominal value. The result is obtained with four iterations in about 0.15 seconds
using MATLAB R©.

Table 3. Convergence of damage state probability distribution parameter θ of Case 2.

t θ1 θ2 θ3 θ4 θ5 θ6 γt

0 0.5 0.5 0.5 0.5 0.5 0.5 +∞
1 0.72 0.61 0.68 0.68 0.67 0.75 965.583
2 0.89 0.79 0.85 0.85 0.87 0.94 177.565
3 0.97 0.96 0.97 0.95 0.98 0.97 12.256
4 0.96 0.98 0.98 0.87 0.99 0.99 3.803
* 0.99 1.00 0.99 0.81 0.99 1.00 0.751

4.3.3. Case 3

The same procedure is applied for estimation of µ f :case 3 and Σ f :case 3 and detailed results are
presented below. The converged result of θ is presented in Table 4 and floor 6 is identified as a
damaged component

µ f :case 3 = (12.213, 35.339, 55.901, 73.962, 88.293), (25)

Σ f :case 3 =


0.043198 −0.0015503 −0.035251 −0.01299 −0.011831
−0.0015503 0.10389 0.0026732 −0.0063684 −0.033087
−0.035251 0.0026732 0.21991 0.010199 0.0123
−0.01299 −0.0063684 0.010199 0.35465 0.022304
−0.011831 −0.033087 0.0123 0.022304 0.52409

 . (26)

Table 4. Convergence of damage state probability distribution parameter θ of Case 3.

t θ1 θ2 θ3 θ4 θ5 θ6 γt

0 0.5 0.5 0.5 0.5 0.5 0.5 +∞
1 0.71 0.63 0.69 0.67 0.65 0.74 1068.041
2 0.90 0.81 0.86 0.86 0.85 0.93 194.705
3 0.97 0.96 0.96 0.96 0.97 0.97 12.073
4 0.98 0.99 0.97 0.96 0.99 0.93 3.316
* 0.98 1.00 1.00 0.99 1.00 0.86 0.399

4.3.4. Case 4

The estimation of µ f :case 4 and Σ f :case 4 follows the same procedure as the one used in previous
cases. Detailed results are presented below. The converged result of θ shown in Table 5 indicates that
floor 1 is damaged:

µ f :case 4 = (12.003, 35.359, 56.819, 75.04, 88.752), (27)

Σ f :case 4 =


0.056611 0.0025919 0.021196 −0.0013682 0.0045185
0.0025919 0.1545 0.011235 −0.026518 −0.019712
0.021196 0.011235 0.24125 −0.014386 0.008164
−0.0013682 −0.026518 −0.014386 0.4786 0.021467
0.0045185 −0.019712 0.008164 0.021467 0.48401

 . (28)
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Table 5. Convergence of damage state probability distribution parameter θ of Case 4.

t θ1 θ2 θ3 θ4 θ5 θ6 γt

0 0.5 0.5 0.5 0.5 0.5 0.5 +∞
1 0.72 0.61 0.68 0.68 0.67 0.75 1065.796
2 0.89 0.79 0.85 0.85 0.87 0.94 222.107
3 0.97 0.95 0.96 0.97 0.97 0.97 18.414
4 0.99 0.99 0.98 0.99 0.99 1.00 0.986
* 0.96 1.00 1.00 1.00 0.98 1.00 0.124

4.4. Probability of Detection

The probability of detection (POD) of the damage identification method can be quantified using
classical linear models [10,20,45]. Denote the reported stiffness multiplier as θ̂ and the actual stiffness
multiplier as θ. The linear model for POD reads

θ = α + β× θ̂ + ε, (29)

where ε is a normal random variable with zero mean and standard deviation σε, and α and β are fitting
parameters. Note that when the actual stiffness multiplier is close to 1, the method cannot differentiate
the slight damage from its healthy state since the damage only imposes a minimal influence to the
change of its natural frequencies; therefore, the damage is regarded as identified if the reported
stiffness multiplier θ̂ is smaller than the detection threshold ˆθth. The value of ˆθth is specified based
on measurement uncertainty and limits of the detection method. The probability of detection can
be expressed as POD(θ) = Pr(θ̂ < ˆθth), where Pr(·) represents the probability of an event (·). Using
Equation (29) the POD writes

POD(θ) = Φ

(
α + β× ˆθth − a

σε

)
. (30)

A set of numerical experiments are performed, and the configuration of Case 4 for measurement
location, damage location, and noise level is used. Multiple values of θ in the range of [0.3,0.975] are
used to represent different damage severities. For each θ, a numerical simulation is conducted to
acquire the measurement data. A set of (θ̂,θ) values are obtained and shown in Table 6. It is noticed
that when the actual stiffness multiplier is larger than 0.95, it is difficult for the method to differentiate
the slight change of the stiffness from its healthy state; therefore, the threshold ˆθth is conservatively
assumed to be 0.925. The linear model fitting parameters α and β are 0.0132 and 0.9482, respectively.
The standard deviation of the normal random variable ε is estimated as σε = 0.0126. The data and
model predictions are presented in Figure 6. Given α, β, σε, and ˆθth, the POD curve of the damage
identification method is calculated and is shown in Figure 7. It can be seen that the method can reliably
identify the damage and estimate the stiffness multiplier when the actual stiffness multiplier is 0.85
or smaller.

To further investigate the influence of the noise, numerical experiments under noise levels of 5%
and 20% are conducted. All other procedures are identical to the above 10% noise level case. POD
curves associated with 5% and 20% noise levels are calculated and presented in Figure 8. In the figure,
90% POD identification capabilities for stiffness multipliers are 0.897, 0.874, and 0.866 under 5%, 10%,
and 20% noise levels, respectively. The identification capabilities increase to 0.917, 0.890, 0.882 at
POD = 50%.
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Table 6. Actual stiffness and reported stiffness of the proposed method. The configuration of Case 4 is
used for measurement location, noise level, and damage location.

Actual 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975
Reported 0.31 0.41 0.51 0.62 0.72 0.78 0.8 0.85 0.88 0.93 0.96 0.96 0.99 1
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Figure 6. Mean and bound predictions obtained by the linear model of Equation (29).
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Figure 7. POD curve of the damage identification method for case 4.
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Figure 8. POD curves under different levels of RMS noise components in measurement data. Other
settings are identical to Case 4.

Results of the numerical example demonstrate that the proposed method can reliably
identify the damaged component and estimate the stiffness multiplier within a few iterations.
Since the performance function is a multivariate normal distribution with parameters obtained from
measurement data of the structure being considered, the influence from measurement noise can be
effectively incorporated into the performance function using the covariance matrix of the normal
distribution. The measurement location has no significant effect on the final result. It should be noted
that the method can also be used for a more general structure given that the damage and normal
state of a component can be modeled using a random variable, and modal frequencies can be reliably
extracted from the measurement data.
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5. Conclusions

This study developed a probabilistic damage identification method for shear structures using
cross-entropy optimization. The method uses the modal frequencies extracted from acquired vibration
data such as accelerations under random loading in conjunction with a representative finite element
model. Multiple measurement data sets are used to extract the modal frequencies independently.
A multivariate normal distribution is built and its mean vector and covariance matrix are used
to construct the performance function. The damage is characterized by a stiffness multiplier of
each component of the shear structure. The multiplier is valued in the range of (0,1], where 1 and
0 indicate undamaged and completely damaged, respectively. The multiplier is modeled using
a truncated normal variable with an initial mean value of 0.5 and a constant standard deviation.
By randomly generating a set of multipliers, the modal frequencies are computed and compared with
the actual modal frequencies extracted from the measurement data. The cross-entropy optimization
algorithm iteratively updates the mean value of the distribution of each multipliers until convergence.
At convergence, the first few samples is averaged to obtain the final estimation of the stiffness multiplier.
The overall method is demonstrated using a six-story shear structure with four damage cases generated
by Latin hypercube sampling on damage location, measurement location, measurement noise level,
and damage severity. The sensitivity of the method is further investigated using POD models under
different noise levels. Numerical results suggest that the proposed method provides a viable solution
for shear structure damage identification and quantification. The detection reliability reduces as the
noise level increases. For a moderate 5% noise level, the method can identify a reduction of 10% of its
nominal stiffness with a probability of 90%. When the probability of detection is 50%, the method can
identify a reduction of 8% of its nominal stiffness.

The potential limitations of the method are: (1) the accuracy and uncertainty in modal frequency
extraction, and (2) the inevitable mismatch from the representative FE model and the real structure.
For practical applications, the latter limitation is an inherent disadvantage for modal frequency
methods with representative FE models. Model updating techniques can be greatly helpful until a
certain level of representation accuracy. The damage identification method can fail or become less
effective if the FE model cannot represent the real structure accurately. It should be noted that the
simulation of the damage through the stiffness multiplier is a simplification of the actual complex
damage variability. The damage identification method using cross-entropy optimization for other
structures (e.g., 3D solid) is planned for future study. In addition, using other modal features such as
mode shapes to build the performance measure will be investigated later.
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