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Abstract

Precision Light Flavor Physics from Lattice QCD

David Murphy

In this thesis we present three distinct contributions to the study of light flavor physics using the

techniques of lattice QCD. These results are arranged into four self-contained papers. The first two

papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the

pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations,

to partially quenched SU(2) and SU(3) chiral perturbation theory (χPT). These fits determine a

subset of the low energy constants of chiral perturbation theory — in some cases with increased

precision, and in other cases for the first time — which, once determined, can be used to compute

other observables and amplitudes in χPT. We also use our formalism to self-consistently probe the

behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the

fits with different subsets of the data.

The third paper concerns the first lattice QCD calculation of the semileptonic K0 → π−`+ν`

(K`3) form factor at vanishing momentum transfer, fKπ+ (0), with physical mass domain wall quarks.

The value of this form factor can be combined with a Standard Model analysis of the experimentally

measured K0 → π−`+ν` decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice

calculations of the pion and kaon decay constants, which can be used to extract Vud through an

analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays.

The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algo-

rithm has been shown to drastically reduce the memory footprint required to simulate single quark

flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm,

while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action,

explore its equivalence to the RHMC action, and demonstrate that additional preconditioning tech-

niques can be used to significantly accelerate EOFA simulations. We apply EOFA to the ongoing



RBC/UKQCD calculation of the ∆I = 1/2 K → ππ decay amplitude, and demonstrate that, in

this context, gauge field configurations can be generated a factor of 4.2 times faster using an EOFA-

based simulation rather than the previous RHMC-based simulations. We expect that EOFA will

help to significantly reduce the statistical error in the first-principles determination of the Standard

Model CP -violation parameters ε and ε′ offered by the K → ππ calculation.
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Chapter 1

Introduction

In this chapter we briefly review the QCD Lagrangian and its properties, as well as the additional

couplings between quarks and the electroweak gauge bosons in the full Standard Model of particle

physics. We then discuss the lattice field theory framework used throughout this thesis, and outline

the basics of a prototypical lattice QCD calculation.

1.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is widely believed to be the correct theoretical description of the

strong nuclear interaction, which is responsible for binding quarks into hadrons and hadrons into

nuclei. QCD is a nonabelian gauge theory with gauge group SU(3). The basic degrees of freedom

are the quark fields ψf (x) — which are spin-1/2 Dirac fermions transforming in the 3-dimensional

fundamental representation of SU(3) — and the gluon fields Aaµ(x) — which are spin-1 vector bosons

transforming in the 8-dimensional adjoint representation of SU(3). The distinct quark species are

known as “flavors”, and are labeled by the flavor index f ; the properties of the six experimentally

observed quark flavors are summarized in Table 1.1. QCD is defined by the Lagrangian

LQCD = −1

4
GaµνG

µν
a +

∑
f

ψf (iγ
µDµ −mf )ψf , (1.1)

where Dµ is the gauge-covariant derivative

Dµ ≡ ∂µ + igAaµT
a, (1.2)
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Gaµν is the gluon field strength tensor

Gaµν ≡ ∂νA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (1.3)

and {T a} is a basis for the Lie algebra su(3), conventionally chosen to satisfy tr
(
T aT b

)
= 1/2 δab.

The SU(3) structure constants fabc are defined by the relation

[
T a, T b

]
= ifabcT c, (1.4)

and the coupling constant g parametrizes the strength of the quark-gluon and gluon-gluon inter-

actions. One can check that the Lagrangian of Eqn. (1.1) is indeed invariant under an arbitrary,

spacetime-dependent SU(3) transformation V (x) provided the quark and gluon fields transform as
ψ(x) → V (x)ψ(x)

Aaµ(x) → V (x)

(
Aaµ(x)T

a +
i

g
∂µ

)
V †(x)

, (1.5)

and that the classical equations of motion are the Yang-Mills equations
(iγµDµ −m)ψf = 0

∂µGaµν + gfabcAbµGcµν = −gjaν
(1.6)

where

jaµ ≡
∑
f

ψfγµT
aψf . (1.7)

The classical QCD Lagrangian with Nf quark flavors has an additional global U(Nf )L⊗U(Nf )R

symmetry in the massless limit, known as chiral symmetry. Introducing chiral projection operators

PL = 1
2

(
1− γ5

)
and PR = 1

2

(
1 + γ5

)
and arranging the quark fields into an Nf -component vector

Ψ, the left-handed ΨL = PLΨ and right-handed ΨR = PRΨ components naturally decouple as

LQCD ⊃ ΨiγµDµΨ = ΨLiγ
µDµΨL +ΨRiγ

µDµΨR. (1.8)

Independent unitary rotations ΨL → ULΨL and ΨR → URΨR leave the Lagrangian invariant,

leading to conserved vector

jµ = ΨγµΨ, jµa = ΨγµT aΨ (1.9)
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and axial

jµ5 = Ψγµγ5Ψ, jµa5 = Ψγµγ5T aΨ (1.10)

currents. A careful calculation [1] demonstrates that the axial singlet transformation associated

with the U(1)A subgroup fails to be a symmetry of the quantized theory, leading to the Adler-Bell-

Jackiw anomaly

∂µj
µ
5 = −

g2Nf

32π2
εµνρσF aµνF

a
ρσ. (1.11)

The SU(Nf )L ⊗ SU(Nf )R subgroup is known to be further spontaneously broken to SU(Nf )V —

as manifested through nonzero vacuum expectation values of the quark condensates 〈ψfψf 〉 6= 0 —

giving rise to N2
f − 1 Goldstone bosons (the pseudoscalar mesons).

Many of the basic features of QCD are analogous to features of the simpler U(1) gauge theory of

electromagnetism, known as quantum electrodynamics (QED). Just as the electron carries electric

charge and interacts with the photon, quarks carry “color charge” and interact with gluons. How-

ever, the nonabelian SU(3) gauge group of QCD leads to a richer structure: there are 3 types of

color charge, conventionally labeled “red”, “blue”, and “green”, and the color-neutral bound states

we observe in nature — analogous to electrically neutral molecules — include mesons with quark

structure

ψaψa (1.12)

and baryons with quark structure

εabcψaψbψc. (1.13)

In the past 40 years this model has been phenomenally successful at explaining the “particle zoo”

of hadrons in terms of the more fundamental quarks. The experimentally observed properties of a

representative collection of some light mesons and baryons are listed in Table 1.2.

In other ways, QCD is quite unlike QED. While the photons do not self-interact as they mediate

the electromagnetic force between charged particles, the non-vanishing SU(3) structure constants

fabc lead to gluon self-interactions with the Feynman rules summarized in Figure 1.1. These

additional interactions lead to remarkably different behavior in the renormalization group running

of the electric and strong coupling constants. For QED, the one-loop running of the fine structure
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p
k

q

Abν

Aaµ

Acρ
gfabc [ηµν (k − p)ρ + ηνρ (p− q)µ + ηρµ (q − k)ν ]

Aaµ

Acρ

Abν

Adσ

−ig2
[
fabef cde (ηµρηνσ − ηµσηνρ)

+facef bde (ηµνηρσ − ηµσηνρ)

+fadef bce (ηµνηρσ − ηµρηνσ)
]

Figure 1.1: Feynman rules for the gluon self-interactions.

constant α ≡ e2/4π takes the form [1]

α
(
µ′
)
=

α (µ)

1− α(µ)
3π log

(
µ′

µ

) , (1.14)

with, experimentally, α(µ = me) ≈ 1/137. The theory is weakly coupled — and thus amenable to

perturbative calculations — at energy scales relevant to current collider experiments, but slowly

grows with µ′. An analogous one-loop QCD calculation demonstrates that the running of the strong

coupling constant αs ≡ g2/4π is instead given by

αs
(
µ′
)
=

2π

β0 log
(

µ′

ΛQCD

) , (1.15)

with β0 = 11 − 2
3Nf = 7 [1]. This leads to a remarkably different behavior, known as asymp-

totic freedom: at very high energy scales αs � 1, and QCD becomes a perturbative theory of free

quarks and gluons, while at low energies αs → ∞ and the theory is strongly coupled, with quarks

permanently bound together into hadrons (confinement). As a result, nonperturbative methods

are necessary to understand low energy QCD and to calculate hadron properties or strongly in-

teracting matrix elements from first principles. The renormalization scheme-dependent parameter

4



ΛQCD ∼ 200 MeV characterizes the scale at which the QCD coupling is of order one, and the theory

transitions between these two phases.

Name Symbol Mass (MeV/c2) JP B Q (e) I3

Up u 2.3
(
+0.7
−0.5

)
1
2

+ 1
3

2
3

1
2

Down d 4.8
(
+0.5
−0.3

)
1
2

+ 1
3 −1

3 −1
2

Strange s 95(5) 1
2

+ 1
3 −1

3 0

Charm c 1275(25) 1
2

+ 1
3

2
3 0

Bottom b 4180(30) 1
2

+ 1
3 −1

3 0

Top t 173210(510)(710) 1
2

+ 1
3

2
3 0

Table 1.1: A summary of some properties of the six known quark flavors. Assigning masses to

the quarks is highly non-trivial since all but the top quark are permanently bound into hadrons

at low energies — rendering them unobservable in experiments — and thus the quark masses

typically depend on a choice of parametrization and renormalization scheme. The masses of the

light (up, down, and strange) quarks are most accurately determined using lattice QCD calculations

together with experimentally determined hadron masses as inputs. More detail regarding the precise

definitions of the quark masses, as well as the values quoted here, can be found in the most recent

particle data group (PDG) review [2].
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Particle Quark Composition JP Mass (MeV/c2) Mean Lifetime (s) Primary Decay Mode

π± +: ud, −: du 0− 139.57018(35) 2.6033(5)× 10−8 µ+ + νµ

π0 (uu− dd)/
√
2 0− 134.9766(6) 8.52(18)× 10−17 2γ

K± +: us, −: su 0− 493.677(16) 1.2380(21)× 10−8 µ+ + νµ

K0 ds 0− 497.611(13) — —

K0
S (ds+ sd)/

√
2 0− 497.611(13) 8.954(4)× 10−11 π+ + π−

K0
L (ds− sd)/

√
2 0− 497.611(13) 5.116(21)× 10−8 π± + e∓ + νe

η (uu+ dd− 2ss)/
√
6 0− 547.862(17) 5.02(19)× 10−19 2γ

η′ (uu+ dd+ ss)/
√
3 0− 957.78(6) 3.32(15)× 10−21 π+ + π− + η

p+ uud 1
2

+ 938.272081(6) > 2.1× 1029 years —

n0 udd 1
2

+ 939.565413(6) 880.2(1.0) p+ + e− + νe

Λ0 uds 1
2

+ 1115.683(6) 2.632(20)× 10−10 p+ + π−

Σ+ uus 1
2

+ 1189.37(7) 8.018(26)× 10−11 p+ + π0

Σ0 uds 1
2

+ 1192.642(24) 7.4(0.7)× 10−20 Λ0 + γ

Σ− dds 1
2

+ 1197.449(30) 1.479(11)× 10−10 n0 + π−

Ξ0 uss 1
2

+ 1314.86(20) 2.90(9)× 10−10 Λ0 + π0

Ξ− dss 1
2

+ 1321.71(7) 1.639(15)× 10−10 Λ0 + π−

Ω− sss 3
2

+ 1672.45(29) 8.21(11)× 10−11 Λ0 +K−

Table 1.2: Quark content and experimentally observed properties of some representative light

unflavored and strange hadrons [2].

1.2 Electroweak Interactions and the CKM Matrix

In the context of the full SU(3)C ⊗SU(2)L⊗U(1)Y Standard Model of particle physics, additional

interactions between quarks and the electroweak sector are allowed. Yukawa couplings of the quarks

to the Higgs field give rise to the quark masses through the Higgs mechanism. In addition, the

Standard Model Lagrangian contains interaction terms coupling quarks to the electroweak gauge

bosons, which lead to the Feynman rules summarized in Figure 1.2. In particular, flavor changing

weak decays coupling quarks to the charged W±
µ bosons introduce elements Vij of the Cabibo-
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W+
µ

Dj

U i

−i g2
2
√
2
γµ (1− γ5)Vij

W−
µ

Ui

Dj

−i g2
2
√
2
γµ (1− γ5)V

∗
ij

Aµ

ψf

ψf

−ieQfγµ
Zµ

ψf

ψf

−i g2
2 cos θW

γµ

(
gfV − gfAγ5

)

Figure 1.2: Feynman rules for the interactions between quarks and electroweak gauge bosons in

the Standard Model. Ui ∈ {u, c, t} is a charge 2/3 e quark, Di ∈ {d, s, b} is a charge −1/3 e quark,

and Vij is the CKM matrix.

Kobayashi-Maskawa (CKM) matrix. The CKM matrix is a 3×3 unitary matrix which encodes the

relative probability of a quark with flavor i decaying through the weak interaction to a quark with

flavor j; this occurs because the quark eigenstates which couple to the charged electroweak currents

are superpositions of the mass eigenstates appearing in the QCD Lagrangian. The CKM matrix

can be parametrized by three real angles and a single complex phase, which have been extensively

constrained by experiment. Crucially, the complex phase allows for certain types of Standard Model

decays which violate time-reversal symmetry, and hence charge-parity (CP ) symmetry1. A detailed

discussion of known CP -violating decay mechanisms — as well as the current state-of-the-art for

experimental determinations of the CKM matrix elements — can be found in the most recent PDG

review [2].

Precision determinations of the CKM matrix are an important tool in the search for new physics
1This follows since conservation of the product CPT can be shown to hold for any reasonable quantum field theory

[3].
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beyond the Standard Model (BSM), either through tension between different constraints on the

same matrix element or through tension with unitarity. Substantial theoretical input is typically

required to relate individual CKM matrix elements to experimentally observable processes since

free quarks cannot be observed directly in collider experiments. While electroweak contributions

can be calculated perturbatively, strongly interacting matrix elements describing the hadronic part

of the decay must be calculated with nonperturbative techniques.

1.3 Lattice QCD

The idea of regulating QCD with a finite spacetime lattice dates back to the seminal work of Nobel

laureate Kenneth Wilson in the 1970’s. Leveraging this theoretical insight with the computational

power of modern supercomputers has led to modern lattice QCD, which provides the only known

method for performing first-principles QCD calculations in the low energy, nonperturbative regime

with fully controlled systematic errors. To formulate lattice QCD from continuum QCD, we first

perform a Wick rotation

x0 → −ix4 (1.16)

from Minkowski spacetime R1,3 to Euclidean spacetime R4, and then discretize the theory by

replacing continuous, infinite volume spacetime with a finite grid. The lattice naturally regulates

both infrared (IR) and ultraviolet (UV) divergences, since the spacing between grid points imposes

a short distance cutoff, and the total length of the box imposes a long distance cutoff. In a typical

lattice calculation the lattice spacing is chosen to be isotropic in all directions; we will denote this

distance by a. Likewise, the total number of lattice sites along the three spatial directions L are

typically chosen to be equal, while the number of temporal sites T is often chosen to be somewhat

larger than L.

The Euclidean QCD action

SE =

∫
d4xE

1
4
GaµνG

µν
a +

∑
f

ψf
(
γEµDµ +m

)
ψf

 (1.17)

has a real and positive definite contribution from the gluonic action, and a positive semi-definite

contribution from the fermionic action, allowing n-point correlation functions to be expressed in
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terms of a well-defined path integral representation

〈O1(x1) · · ·On(xn)〉 =
1

Z

∫
DAaµ

(∏
f

DψfDψf

)
(O1(x1) · · ·On(xn)) e

−SE [Aa
µ,ψf ,ψf ], (1.18)

with the lattice path integral measures defined to be∫
DAaµ ≡

∏
x,µ

∫
dAaµ(x),

∫
Dψ ≡

∏
x

∫
dψ(x). (1.19)

For typical lattice volumes this integral has far too many degrees of freedom to compute directly,

but can be evaluated numerically using Monte Carlo techniques. In the following subsections we

will elaborate on details of how the Euclidean action is discretized, and how explicit numerical

calculations of n-point correlation functions can be performed. We will drop the subscript “E” in

the remainder of this work, with the theory understood to be formulated in Euclidean spacetime

unless otherwise stated.

1.3.1 Gauge Actions

On the lattice the gauge field is represented by SU(3)-valued link variables Uµ(x) that are under-

stood to reside on the “links” connecting discrete spacetime points. To motivate this, we note the

following problem with a naïve discretization of the fermionic contribution to the Euclidean action

(Eqn. (1.17)): the derivative will involve a nonlocal bilinear ψ(x)ψ(y) which fails to be gauge in-

variant under the transformations of Eqn. (1.5). In the continuum gauge invariance can be restored

by introducing the Wilson line

UP (x, y) ≡ P exp

(
−ig

∫
P
dzµAaµ(z)T

a

)
, (1.20)

where P denotes path ordering along an arbitrary path connecting x and y. The quantity

ψ(x)UP (x, y)ψ(y) is invariant under independent gauge transformations V (x), V (y) ∈ SU(3), as

desired, and UP (x, y) can be thought of as the object responsible for parallel transport of a Dirac

spinor ψ(x) to other points on the spacetime manifold. For small separations between adjacent

lattice sites we can approximate P with a line segment along the basis vector µ̂ pointing in the

direction xµ, and UP (x, y) with the gauge link

Uµ(x) ≡ Pe−igaAb
µ(x)T

b
. (1.21)
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The Wilson loop is likewise defined as a Wilson line around a closed path UP (x, x) returning to the

same spacetime point.

Lattice actions for SU(3) Yang-Mills theory without fermions can be constructed from Wilson

loops of varying sizes. The most basic is the 1× 1 plaquette

Uµν(x) ≡ Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x), (1.22)

from which we can form the Wilson gauge action

SWG = β tr
∑
µ<ν

∑
x

[
1− 1

2

(
Uµν(x) + U †

µν(x)
)]
, (1.23)

with β = 6/g2. One can check that the plaquette can be identified with a discretized gluon field

strength tensor Gaµν according to Uµν(x) = exp
(
iga2GbµνT b

)
, and that Gaµν → Gaµν in the continuum

limit a→ 0, such that Equation (1.23) reduces to the Yang-Mills action (i.e. Equation (1.17) with

no quark fields) in the same limit [4]. At finite lattice spacing Gaµν differs from the continuum Gaµν

by irrelevant operators which are multiplied by powers of a. Improved gauge actions which suppress

subsets of these operators can be constructed by adding additional Wilson loops such as the 1× 2

rectangle

Rµν ≡ Uµ(x)Uµ(x+ aµ̂)Uν(x+ 2aµ̂)U †
µ(x+ 2aµ̂+ aν̂)U †

µ(x+ aµ̂+ aν̂)U †
ν (x+ aν̂). (1.24)

All of the QCD simulations presented in this thesis make use of the Iwasaki gauge action

SIG = β tr
∑
x

(1− 8c1)
∑
µ<ν

1

2

(
Uµν(x) + U †

µν(x)
)
+ c1

∑
µ6=ν

1

2

(
Rµν(x) +R†

µν(x)
) , (1.25)

where the value c1 = −0.331 was determined by a nonperturbative spin-blocking analysis in Ref. [5].

Some simulations supplement the Iwasaki gauge action with the dislocation suppressing determinant

ratio (DSDR), which is an additional term in the gauge action designed to reduce chiral symmetry

breaking effects in domain wall fermion calculations with coarse lattice spacings [6].

1.3.2 Fermion Actions

Unlike the case of the gauge action, attempts to straightforwardly discretize the fermion action

quickly run into trouble. Considering, for simplicity, a single flavor, the Euclidean Dirac action can
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be written as S = ψα(x)Kαβ(x, y)ψβ(y), with

Kαβ(x, y) =
1

2a
(γµ)αβ (δy,x+aµ̂ − δy,x−aµ̂) +mδαβδxy (1.26)

and α, β denoting spinor indices. By taking the Fourier transform of this operator and inverting in

momentum space, it can be shown [4] that the lattice propagator is

〈
ψα(x)ψβ(y)

〉
=

∫ π/a

−π/a

d4p

(2π)4
[− i

∑
µ γµp̃µ +m]αβ∑
µ p̃

2
µ +m2

eip·(x−y), (1.27)

with

p̃µ =
1

a
sin (apµ) . (1.28)

In the limit a → 0 we should recover the continuum Dirac propagator, but this is spoiled by the

observation that p̃µ ≈ pµ not only near the origin, but also when |pµ|≈ π/a. Since this is true

of any individual component of the momentum, we see that the naïve fermion action of Equation

(1.26) actually describes sixteen degenerate fermion “tastes” in the continuum limit. This is known

as the fermion doubling problem.

In Refs. [7, 8] Nielsen and Ninomiya provided an elegant characterization of the fermion doubling

problem through a famous no-go theorem. They proved that it is not possible to construct a lattice

Dirac operator D for an even dimensional spacetime which is simultaneously:

1. Hermitian

2. Translationally invariant

3. Local, i.e. D(x, y) decays exponentially fast at large distances |x− y|� 1

4. Consistent with chiral symmetry at vanishing quark mass, i.e. respecting {D , γ5} = 0

5. Free of doublers

In essence, their proof exploits the Poincaré-Hopf index theorem to demonstrate that conditions

1-4 necessarily lead to doublers for a lattice theory defined on an even-dimensional torus Td.

A number of fermion actions are in common use in the literature, including Wilson, staggered,

twisted mass, domain wall, and overlap fermions. These actions typically involve trade-offs between
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violating particular conditions of the Nielsen-Ninomiya theorem, the size of lattice artifacts at finite

lattice spacing, and the relative computational cost of performing a simulation. The best choice of

action for a particular calculation is often highly dependent on the details of the target physics and

the available computational resources. We will not attempt to provide a general overview, since

reviews of each formulation can be found in the literature, but will instead focus on the domain

wall fermion action used in this thesis.

Domain Wall Fermions

Domain wall fermions (DWF) avoid the Nielsen-Ninomiya no-go theorem in a particularly clever

way: by adding a fictitious fifth spatial direction — conventionally labeled s, with Ls lattice

sites along this direction — to sidestep the critical assumption of an even-dimensional spacetime.

Shamir and Furman [9, 10], building off of earlier work by Kaplan [11], demonstrated that effective

4D chiral fermions can be recovered at the s-boundaries of a five dimensional theory. While the

DWF formalism has the nice property that it can have arbitrarily exact chiral symmetry in the

limit Ls → ∞, and is empirically found to maintain excellent chiral symmetry even at modest Ls,

this advantage comes at the price of an O(Ls) increase in the computational cost due to the extra

dimension.

The generic domain wall-type fermion action takes the form

SDWF

[
ψ,ψ, U

]
=
∑
xs

∑
x′s′

ψxs (DDWF)xs;x′s′ ψx′s′ , (1.29)

where

(DDWF)xs;x′s′ = bs (DW )xx′ δss′ + δxx′δss′ + cs (DW )xx′ Lss′ − δxx′Lss′ (1.30)

is the DWF Dirac operator,

(DW )xx′ = (4 +M5) δxx′ −
1

2

∑
µ

[
(1− γµ)Uµ(x)δx+µ̂,x′ + (1 + γµ)U

†
µ(x

′)δx−µ̂,x′
]

(1.31)

is the four-dimensional Wilson Dirac operator, and

Lss′ = (L+)ss′ PR + (L−)ss′ PL (1.32)
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is the 5D hopping matrix, with

(L+)ss′ = (L−)s′s =

 −mδLs−1,s′ , s = 0

δs−1,s′ , 1 ≤ s ≤ Ls − 1
. (1.33)

This construction may be regarded as a theory of Ls Wilson fermions of mass −M5 that mix through

the “mass” matrix Lss′ . The gauge field remains a four-dimensional object and is merely replicated

for each s-slice. Four dimensional fermion fields q and q with mass m and definite chiralities are

recovered from the five dimensional quark fields ψ and ψ at the boundaries of the fifth dimension

qL = PLψ0 qR = PRψLs−1

qL = ψ0PR qR = ψLs−1PL

. (1.34)

Correlation functions constructed from q and q approximate continuum QCD arbitrarily well in

the simultaneous continuum and infinite volume limits.

Propagation and mixing of the light left-handed and right-handed modes through the fifth

dimension is exponentially suppressed in Ls, but still nonzero when Ls is finite. In addition,

the doubler states appear as heavy modes propagating in the five-dimensional bulk. It can be

shown that this leads to mild chiral symmetry breaking effects, the largest of which is an additive

renormalization of the bare fermion mass m→ m+mres by the residual mass (mres) [12]. Simulating

QCD with light pions forces Ls to be taken sufficiently large to keep mres under control. In the

limit Ls → ∞, however, the heavy modes propagating in the five-dimensional bulk dominate the

spectrum, leading to a divergence. This divergence can be removed by introducing a heavy, Pauli-

Villars regulator field: in practice one always computes a determinant ratio

det

(
D(m)

D(mpv)

)
(1.35)

with mpv � m when simulating QCD with domain wall fermions. This modification can be shown

to remove the bulk divergence without affecting the desired low-energy chiral physics [13].

In addition to tuning Ls, the coefficients bs and cs can also be chosen to further suppress chiral

symmetry breaking, at the expense of making domain wall fermions more expensive to simulate; the

ability to achieve the same mres with smaller Ls often justifies the use of these more sophisticated

actions. The original Shamir DWF construction of Shamir and Furman has bs = 1 and cs = 0 for

all s. Other variants commonly used in the literature include:
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• Möbius DWF [14–16]: bs−cs = 1 and bs+cs = α for all s, where α is a free parameter known

as the Möbius scale.

• Optimal DWF [17]: bs and cs are real parameters constructed to minimize chiral symmetry

breaking at fixed Ls.

• zMöbius DWF [18, 19]: bs and cs are complex parameters constructed to minimize chiral

symmetry breaking at fixed Ls.

The simulations presented in this thesis make use of either the Shamir or Möbius DWF action.

1.3.3 Boundary Conditions

Completely specifying a lattice simulation requires a choice of boundary conditions for the gauge

and fermion fields in addition to a choice of action. Typical simulations apply periodic boundary

conditions to the gauge field Uµ(x+Lµµ̂) = Uµ(x) and to the fermion fields along spatial directions,

and antiperiodic boundary conditions to the fermion fields ψ(x+ T t̂) = −ψ(x) along the temporal

direction2. More sophisticated boundary conditions are sometimes used in special contexts.

In the K`3 calculation we make use of twisted boundary conditions for the light quark fields

ψ(x+ Liθi) = eiθiψ(x), (1.36)

which modify the allowed quark momentum states

pi =
2πni
L

+
θi
L
, ni ∈ Z (1.37)

as can easily be seen by Fourier transforming to momentum space. Twisted boundary conditions

allow the momentum of the ground state to be tuned to an arbitrary kinematical point by an

appropriate choice of θi, which is, in general, both less expensive and more accurate than repeating a

simulation for multiple choices of ni and interpolating to the desired momentum. One important but

subtle point is that typical lattice calculations actually apply partially twisted boundary conditions,
2Lüscher has demonstrated that the quark fields must have antiperiodic temporal boundary conditions to construct

a proper transfer matrix representation of the lattice theory, which is typically defined in terms of the path integral

representation [20].
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where Equation (1.36) is applied only to the valence quark fields. Sachrajda and Villadoro [21] have

studied this issue in chiral perturbation theory and demonstrated that partial twisting introduces

exponentionally small finite volume errors for single particle states, but introduces large, power

law finite volume errors for interacting, multi-particle final states. This makes twisted boundary

conditions suitable for K → π decays, but other techniques must be used e.g. for the K → ππ

decay.

In the ∆I = 1/2 K → ππ calculation we instead apply G-parity boundary conditions to the light

quark doublet, where the G-parity operation is the product of charge conjugation and a 180◦ isospin

rotation about the y-axis Ĝ = Ĉ exp(iπÎy). It can be shown that the pions are odd eigenstates of

the G-parity operation

Ĝ


π+

π0

π−

 = (−1)


π+

π0

π−

 , (1.38)

implying that the allowed pion momenta are odd-integer multiples of ±π/L. Together with careful

tuning of the ensemble parameters, G-parity boundary conditions allow for simulations of the

K → ππ decay with physical kinematics and the final pions in the ground state. G-parity was

introduced as a quantum number long ago by Lee and Yang [22], but has only recently been

successfully applied to lattice QCD simulations; Christ and Kim suggested the application of G-

parity as a boundary condition for the ∆I = 1/2 K → ππ decay in Ref. [23].

1.3.4 The Hybrid Monte Carlo Algorithm

In theory, after specifying the gauge action, fermion action, and boundary conditions, arbitrary n-

point correlation functions can be computed on a spacetime lattice by evaluating the path integral

of Equation (1.18). In practice, a typical lattice has far too many degrees of freedom to perform

this calculation directly. Instead, one applies Monte Carlo techniques to ergodically sample a

representative Markov chain of gauge field configurations {U (i)
µ }Ni=1, for which

〈O1(x1) · · ·On(xn)〉 ≈
1

N

N∑
i=1

O1(x1) · · ·On(xn) (1.39)
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up to O(1/
√
N) statistical errors. In addition, to avoid having to represent anticommuting Grass-

man variables in a computer, the fermions are integrated out and reintroduced in terms of bosonic

“pseudofermion” fields φ as∫
DψDψe−ψMψ = det (M) =

1

det (M−1)
=

∫
DφDφ†e−φ

†M−1φ. (1.40)

This comes at the cost of applications of M−1 — typically through iterative algorithms like conju-

gate gradient (CG) [24] — rather than M .

The simplest Monte Carlo scheme used in lattice simulations is known as the Metropolis al-

gorithm. At each step a single gauge link is randomly chosen and modified. The change in the

action ∆S is then computed, and the new gauge field configuration is accepted with probability

P = min(1, e−∆S). While it can be shown that this simple algorithm is sufficient to properly sample

the gauge field [4], it also suffers from a number of drawbacks. In particular, modifying a single

gauge link at a time moves through the space of gauge field configurations far too slowly to be of

practical use unless the lattice volume is very small, especially since the determinant of the Dirac

operator must be recomputed each time the gauge field is modified. This problem is not easily

addressed since randomly modifying many links at once leads to large changes in the action, and

poor acceptance. Practical lattice simulations require a method to globally update the entire gauge

field without unacceptably large changes in the action.

The Hybrid Monte Carlo (HMC) algorithm is a global update Monte Carlo technique that is

widely used in modern lattice calculations. We will only briefly describe HMC here, since the algo-

rithm is discussed in detail in Section 6.4. After introducing an SU(3)-valued conjugate momentum

πµ(x) for the gauge field Uµ(x), the Hamiltonian equations corresponding to

H =
1

2
π2 + S[U ] (1.41)

are formed and integrated along a surface of constant energy in fictitious “molecular dynamics”

(MD) time, labeled τ . Numerical errors in the finite precision integration are corrected stochasti-

cally with a Metropolis accept/reject step: after a fixed time interval ∆τ (an MD trajectory) the

total change in the Hamiltonian is computed, and the current gauge field is accepted as the next

step in the Markov chain with probability P = min(1, e−∆H ). This ensures that the algorithm
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remains exact even if inexact numerical integration techniques are used to evolve the Hamiltonian

system. Ergodicity is achieved by picking a new direction in the phase space {(π, U)} at the start of

each trajectory (heatbath refreshment). HMC is in some ways an unusual application of numerical

integration techniques to a dynamical system, since keeping ∆H arbitrarily small is an inefficient

strategy. Instead, we aim for ∆H ∼ O(1), ensuring reasonable acceptance while still minimizing

the time required to generate a new gauge field configuration.

HMC is observed to work well in practice, and is now a standard lattice technique. Improving

the efficiency of HMC for simulations involving single quark flavors is the subject of Chapter 6.

1.3.5 Measuring Correlation Functions

After generating a Markov chain {U (i)
µ }Ni=1 of gauge field configurations n-point correlation functions

can then be computed on each configuration and used to extract physical observables of interest.

In this section we will consider computing the mass of the π+ meson from the 〈π−π+〉 correlation

function as a representative example of the general procedure. This produces a sequence of estimates

{m(i)
π+}Ni=1 determining mπ+ up to a statistical uncertainty which can be estimated using resampling

techniques such as the jackknife or bootstrap [25]. In addition, binning — i.e. averaging over blocks

of measurements in MD time — can be used to remove the effects of autocorrelations. The statistical

uncertainty decays with the number of independent configurations sampled as σ〈m〉 ∼ 1/
√
N . The

appropriate bin size is typically estimated by computing the integrated autocorrelation time [25].

The π+ two-point function is computed using an interpolating operator which creates states

with the same quantum numbers as the |π+〉 state. A local operator

Oπ+(x) = u(x)γ5d(x) (1.42)

is the simplest and most obvious choice, but one can consider more general, non-local operators

Oπ+(~p, ~q, t) =
∑
~x,~y

ei(~p·~x+~q·~y)f(~x, ~y) (u(~x, t)g[U ]γ5d(~y, t)) (1.43)

and tune to better couple to a particular, desired state. Here f(~x, ~y) is an arbitrary dimension-

less weighting function, and g[U ] represents an appropriate product of gauge links to make the
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interpolating operator gauge invariant. Standard Wick contractions [1] can be used to relate the

〈Oπ+(x)Oπ+(y)〉 two-point function to a spin-color trace involving a product of quark propagators

and gamma matrices. In position space, for the local operator:

〈
d(x)γ5u(x)u(y)γ5d(y)

〉
= tr

[
D−1
d (x− y)γ5D

−1
u (y − x)γ5

]
. (1.44)

On a typical lattice the full quark propagator D−1
q (x− y) is too expensive to compute directly, so

one instead computes lattice propagators ψ(x) by numerically inverting

∑
y

D(x, y)ψ(y) = η(x) (1.45)

for a number of different sources η(x), and uses these to construct an estimate to the right-hand

side of Equation (1.44). The source itself can also be tuned to increase the signal for particular

states. Common choices in the literature include point, wall, and box sources, which set

η(x) =

 δαβ δab, x ∈ V

0, otherwise
(1.46)

for different choices of the (hypercubic) subvolume V , where δαβ and δab are spin and color delta

functions, respectively. Computing a single lattice propagator actually requires 12 inversions of the

Dirac operator, one for each of the 3× 4 color and spin components.

After forming the 〈π+π+〉 correlation function, the π+ mass can be extracted by fitting to its

Euclidean time dependence. To derive this analytically, we begin with the two-point correlation

function and insert a normalized sum over eigenstates of the Hamiltonian, 1 =
∑∞

n=0 |n〉 〈n| /2EnV :

Cπ+(∆t) =
〈
Oπ+(t)Oπ+(τ)

〉
=

∞∑
n=0

1

2EnV

〈
0
∣∣∣e−H tOπ+(0)

∣∣∣n〉〈n ∣∣∣eH τOπ+(0)
∣∣∣ 0〉

=
|Z0|2

2mπ+V
e−mπ+∆t +

∞∑
n=1

|Zn|2

2EnV
e−En∆t

, (1.47)

where Zn ≡ 〈n|Oπ+ |0〉 and ∆t ≡ |t− τ |. At large time separations ∆t � 1 this sum is dominated

by the contribution from the lowest energy state. To extract mπ+ we identify a suitable window in

∆t where this approximation is valid, and fit an exponential function. This procedure is aided by
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plots of the effective mass

meff
π (∆t) ≡ log

(
Cπ+(∆t)

Cπ+(∆t+ 1)

)
, (1.48)

which exhibit a plateau in the region dominated by the ground state. On a lattice with a finite

temporal direction one observes around-the-world contamination: states may propagate through

one end of the lattice and return through the other end, as prescribed by the boundary conditions.

This is easily taken into account by adding a backward-propagating contribution to the exponential

ansatz

Cπ+(∆t)
∆t�1' |Z0|2

2mπ+V

(
e−mπ+∆t + e−mπ+ (T−∆t)

)
, (1.49)

and likewise modifying the effective mass

meff
π (∆t) ≡ cosh−1

(
Cπ+(∆t+ 1) + Cπ+(∆t− 1)

2 Cπ+(∆t)

)
. (1.50)

While we have concentrated on the π+ mass as a representative example of lattice methods, the

same techniques can be extended to extract a variety of masses, form factors, couplings, and matrix

elements by fitting an appropriate analytic form to a Euclidean n-point function computed on the

lattice. One can even extract information about hadron scattering through the Lüscher formalism,

which relates the Euclidean space, finite volume spectrum to infinite volume, Minkowski spacetime

scattering parameters [26, 27].

1.3.6 Partial Quenching

Since fermion actions are typically bilinear, it is generally possible to integrate out the quark fields

and write the lattice QCD path integral in the form

Z =

∫
DU det (M[U ]) e−Seff [U ]. (1.51)

In early lattice simulations the effects of dynamical fermion loops were neglected by explicitly setting

det(M) = 1, enormously decreasing the cost of Monte Carlo simulations. This was known as the

quenched approximation, and while it made early lattice studies more tractable, it also introduced

uncontrolled systematic errors, and is rarely used in modern calculations.
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Partial quenching is a loosely related technique in which the valence quark masses — i.e.

the masses used when the Dirac operator is inverted to compute lattice propagators and form

correlation functions (Section 1.3.5) — are taken to be different from the sea quark masses — i.e.

the masses of virtual quarks appearing in closed loops — entering into the fermion determinant

and thus the generation of gauge field configurations via the HMC algorithm (Section 1.3.4). Since

ensemble generation is, in general, more expensive than computing lattice propagators, partially

quenched calculations allow computational costs to be reduced by using light valence quark masses

and heavier sea quark masses. Unlike the quenched approximation, this can be done in a controlled

manner, often by interpolation and/or extrapolation of the valence and sea quark mass dependence

of physical observables to the physical point. Partially quenched QCD may be regarded as a more

general theory in its own right, which reduces to QCD in the limit of equal valence and sea quark

masses.

1.4 Summary of Lattice Ensembles

This thesis makes use of a number of domain wall fermion lattice QCD simulations performed

by the RBC/UKQCD collaboration, and introduced in Refs. [6, 28–31]. We briefly summarize

the properties of these ensembles in Figure 1.3 by plotting the pion mass against the square of

the lattice spacing in physical units. More detail can be found by consulting the aforementioned

references.
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Figure 1.3: Summary of the RBC/UKQCD domain wall fermion ensembles used in this thesis. In

the legend the notation I (ID) denotes the Iwasaki (Iwasaki+DSDR) gauge action, and (M)DWF

denotes the (Möbius) domain wall fermion action used for the quarks. The values of the pion

masses and lattice spacings in physical units are taken from the most recent chiral fits of Ref. [31].
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Chapter 2

Physics Goals

We discuss the physics goals of this thesis, briefly describing the context and content of the publi-

cations following in subsequent chapters. The common thread unifying each of these major results

is the development or application of lattice QCD methodology to precision light flavor physics. We

focus on first-principles determinations of the low energy constants of chiral perturbation theory

(Section 2.1), and of hadronic matrix elements describing weak decays of a kaon to a single-pion

(Section 2.2) or two-pion (Section 2.3) final state.

My work, in many cases, has been performed in the context of large, collaborative projects of the

RIKEN-Brookhaven-Columbia (RBC) and UKQCD collaborations. For clarity, I briefly summarize

my original contributions to each of the projects discussed in this thesis:

1. Next-to-Next-to Leading Order Chiral Perturbation Theory:

• Implemented continuum and finite volume next-to leading order SU(3) PQχPT expres-

sions for the pseudoscalar masses and decay constants in the RBC/UKQCD code base

for performing chiral/continuum fits

• Extended RBC/UKQCD code base to call Johan Bijnens’ Fortran libraries of next-to-

next-to leading order continuum SU(2) and SU(3) PQχPT formulas, including checks

for numerical stability

• Extracted low energy spectrum on 323 × 64 β = 1.633 and β = 1.943 Iwasaki+DSDR
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Möbius DWF ensembles [1]

• Performed and analyzed fits of the pseudoscalar masses and decay constants from the

full RBC/UKQCD data set (Figure 1.3) to NLO and NNLO SU(2) and SU(3) PQχPT

[1–4]

2. Leptonic and Semileptonic Kaon Decays:

• Extracted the low energy spectrum [5] and K`3 form factors [6] from fits to Euclidean

two- and three-point correlation functions computed on the physical quark mass 483×96

and 643 × 128 Möbius domain wall fermion ensembles

• Performed RBC’s chiral and continuum extrapolation of the K`3 form factors; indepen-

dently checked by members of UKQCD

• Extensively studied fit systematics and parametrizations for the chiral / continuum

extrapolation

3. K → ππ Decays and the Exact One Flavor Algorithm:

• Developed and coded the implementation of EOFA in the RBC/UKQCD code bases

(BFM, CPS, Grid) [7]

• Introduced novel preconditioning technique which significantly accelerates the EOFA

algorithm

• Tuned EOFA for the current ∆I = 1/2 K → ππ production ensemble generation calcu-

lation, achieving a factor of 4.2 speed-up in the time required to generate an independent

gauge field configuration

2.1 Chiral Perturbation Theory

2.1.1 Effective Field Theories and QCD

Lattice QCD, as we have argued in Chapter 1, provides the only known first-principles method

for performing fully non-perturbative calculations of hadron properties in terms of the interactions
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between constituent quarks. The effective field theory (EFT) formalism provides a powerful, or-

thogonal approach: since it is too difficult at low energies to work analytically in terms of quarks

and gluons, we can instead use symmetry principles to write down a theory — matched to QCD

— whose fundamental degrees of freedom are the hadrons themselves. The pre-Standard Model

Fermi theory of β decay

n→ p+ e− + νe (2.1)

can be considered a prototypical example of an EFT, obtained by integrating out the W± bosons.

At energy scales E � mW Fermi’s description of β decay in terms of a point-like interaction

between hadrons and leptons accurately describes experimental results. It is not until one reaches

the threshold for creating W± bosons, E ∼ mW ∼ 80 GeV, that the Fermi theory breaks down,

and a more fundamental description of β decay in terms of the Standard Model is necessary. One

might naturally wonder if similar ideas can be successfully applied to low energy QCD.

More generally, the EFT formalism follows from Weinberg’s famous “folk theorem” [8]:

This remark is based on a “theorem”, which as far as I know has never been proven, but which

I cannot imagine could be wrong. The “theorem” says that although individual quantum field

theories have of course a good deal of content, quantum field theory itself has no content beyond

analyticity, unitarity, cluster decomposition, and symmetry. This can be put more precisely in

the context of perturbation theory: if one writes down the most general possible Lagrangian,

including all terms consistent with assumed symmetry principles, and then calculates matrix

elements with this Lagrangian to any given order of perturbation theory, the result will simply

be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster

decomposition and the assumed symmetry principles.

For the effective theory to have predictive power one must also have a separation of scales E � Λ,

and a power counting scheme for arranging contributions to a given matrix element from individual

terms in the Lagrangian into a perturbative expansion in powers of the small ratio E/Λ.

We noted, in Section 1.1, that the QCD Lagrangian with Nf quark flavors has a global

SU(Nf )L ⊗ SU(Nf )R symmetry in the massless limit. We also noted that, in nature, this symme-

try is spontaneously broken down to the SU(Nf )V subgroup, as evidenced by the nonzero vacuum
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expectation values of the quark condensates 〈ψfψf 〉 6= 0. The nonzero quark masses further ex-

plicitly break this symmetry, giving rise to N2
f − 1 pseudo Nambu-Goldstone bosons (pNGBs),

which should be light if SU(Nf )L ⊗ SU(Nf )R is indeed an approximate symmetry of QCD. For

Nf = 2 this is unambiguously the case, as one can observe in Table 1.2: the charged and neutral

pion masses differ by only a few percent, and are nearly an order of magnitude lighter than the

lightest baryons. Similarly, the approximate Nf = 3 symmetry corresponds to the pseudoscalar

octet (π,K, η), but in this case one observes that the breaking of the degeneracy between, for ex-

ample, the pions and the kaons is considerably larger than between the charged and neutral pions,

as is the separation of scales between the masses of the kaons or η meson and the mass of the

proton, with mK0/mp+ ∼ 0.5. For Nf ≥ 4 the “approximate” symmetry is too poor to be of any

phenomenological use1.

Armed with an approximate symmetry of low-energy QCD — SU(Nf )L ⊗ SU(Nf )R — and

evidence of a separation of scales — mq/ΛQCD � 1 for the up, down, and possibly strange quarks

— we can set about following Weinberg’s prescription for constructing an effective field theory of

the pseudoscalar mesons. This theory is known as chiral perturbation theory (ChPT or χPT).

2.1.2 The Chiral Perturbation Theory Lagrangian

Following Weinberg, we aim to write down the most general Lagrangian for the pseudoscalar mesons

invariant under SU(Nf )L ⊗ SU(Nf )R transformations. We separately consider the cases Nf = 2

and Nf = 3, describing the pions and the pseudoscalar octet (π,K, η), respectively. We will only

outline the construction, since chiral perturbation theory is a well-developed subject and the details

can be found in a number of textbooks [9] and review articles [10–12].

The first step in the construction of the χPT Lagrangian is to write down a parametrization of

the pNGB fields. The symmetry breaking pattern SU(Nf )L ⊗ SU(Nf )R → SU(Nf )V results in a

vacuum state invariant under SU(Nf )V transformations, and N2
f − 1 pNGBs associated with ele-

ments of the quotient group SU(Nf )L⊗SU(Nf )R/SU(Nf )V . One typically chooses the exponential
1One can also frame this heuristic argument in terms of the QCD scale ΛQCD ∼ 200 MeV: 1

2
(mu+md)/ΛQCD ∼ 0.02

points to a large separation of scales, and ms/ΛQCD ∼ 0.5 might still be considered a separation of scales, but

mq/ΛQCD > 1 for the charm, bottom, and top quarks.
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representation2

U(x) ≡ exp

(
iφ(x)

f

)
, (2.2)

with

φ(x) =
3∑
i=1

τiφi(x) =

 1√
2
π0 π+

π− − 1√
2
π0

 (2.3)

for the Nf = 2 theory and

φ(x) =

8∑
a=1

λaφa(x) =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K0 − 2√
6
η

 (2.4)

for the Nf = 3 theory. The utility of the exponential representation is that the U field transforms

under SU(Nf )L ⊗ SU(Nf )R in a simple way

U(x) → RU(x)L† (2.5)

where L ∈ SU(Nf )L and R ∈ SU(Nf )R are independent local transformations. The ground state

corresponds to the origin U0 = 1 in this parametrization, and is indeed invariant under vector

transformations — L = R = V ∈ SU(Nf ) — but not axial transformations — L = A†, R = A,

A ∈ SU(Nf ) — consistent with the desired symmetry breaking pattern.

The explicit breaking of chiral symmetry by non-vanishing quark masses is included by intro-

ducing an additional (constant) operator χ = 2BM , where M = diag(mu,md) is the Nf = 2 mass

matrix and M = diag(mu,md,ms) is the Nf = 3 mass matrix. This new operator transforms under

SU(Nf )L ⊗ SU(Nf )R in the same manner as U :

χ→ RχL†. (2.6)

More generally, the vector and axial currents, as well as the scalar and pseudoscalar densities, can

be coupled to the χPT Lagrangian as external sources in a manner which elegantly reproduces all

of the Ward-Takahashi identities of QCD [13, 14].

In Weinberg’s power counting scheme [8] a chiral order is assigned to each term in the Lagrangian

by counting the number of derivatives of U which enter: ∂nU ∼ O(pn), where p corresponds to
2Note: a slightly different normalization in terms of F = f/

√
2 is also frequently found in the literature.
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the scale of external momenta carried by the pNGBs. A mass term m2 is counted as O(p2). The

Lagrangian can be systematically constructed as an expansion in powers of p

LχPT = L(2)
χPT + L(4)

χPT + L(6)
χPT + · · · (2.7)

by writing down all operators O
(n)
i constructed from U , χ, and derivatives, and invariant under

SU(Nf )L ⊗ SU(Nf )R, with chiral order O(pn):

L(n)
χPT =

∑
i

LiO
(n)
i . (2.8)

In terms of this expansion, Weinberg’s power counting scheme assigns a dimension D to a diagram

with NL loops and Nn insertions of a vertex originating from L(n)
χPT according to the formula [12]

D = 2 + 2NL +
∞∑
n=1

(n− 2)Nn. (2.9)

The Li ∈ R are a priori unknown coefficients called low energy constants (LECs), which encode

the matching of the chiral effective theory to QCD. Conventionally one denotes the LECs of the

SU(2) theory as li and the LECs of the SU(3) theory as Li to avoid confusion. Since one must

write down all possible operators at a given chiral order, the number of LECs quickly explodes as

one moves to successively higher orders in the chiral expansion (Table 3.1).

One typically works with χPT by truncating the Lagrangian to NLO or NNLO. This truncated

Lagrangian depends on a finite number of LECs, which must be determined by matching χPT

calculations to experimental data or to lattice simulations. Crucially, the truncated Lagrangian

can also be renormalized with a finite number of counter terms, and loop divergences absorbed into

the LECs, such that they depend on the choice of a renormalization scale µ. One typically chooses

dimensional regularization since it respects chiral symmetry. The complete renormalization of the

truncated χPT Lagrangian to NLO [13, 14] and NNLO [15] has been performed using a background

field method and heat kernel techniques. One can also find explicit RG equations for the running

of the LECs in the same references.

While we argued heuristically in Section 2.1.1 that there is evidence of a separation of scales

between the masses of the lightest pseudoscalar mesons and a “typical” QCD mass — such as

the mass of the proton — identifying the expansion parameter corresponding to Weinberg’s power
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counting scheme is somewhat subtle. A simple method is to consider the coefficients multiplying a

generic loop integral: expanding U in terms of the pNGB fields introduces powers of 1/f2, and the

loop integral itself introduces an overall numerical factor3 of 1/(4π)2. We may therefore estimate

Λχ ∼ 4πf ∼ 1.5 GeV as the chiral scale, and regard χPT as a dual, asymptotic expansion in powers

of p/Λχ and mpNGB/Λχ.

2.1.3 Example: The Pion Mass at Leading and Next-to Leading Order

As an explicit example, we consider computing the pion mass up to NLO in SU(2) χPT with

degenerate up and down quark masses mu = md ≡ ml. The O(p2) Lagrangian is

L(2)
χPT = c1 tr

(
∂µU∂

µU †
)
+ c2 tr

(
χU † + Uχ†

)
, (2.10)

with the values of c1 and c2 fixed in terms of B and f by the requirement that the kinetic and mass

terms of the pion fields are canonically normalized. Expanding

U(x) =

∞∑
n=0

1

n!

(
i

f

)n
φn (2.11)

and inserting this sum into L(2)
χPT, keeping terms up to O(φ2), we obtain

L(2)
χPT ⊃ 1

2

(
∂µπ

0
) (
∂µπ0

)
+

1

2
(2Bml)

(
π0
)2 (2.12)

with c1 = c2 = f2/4. Thus, at leading order,

m2
π = 2Bml +O(p4). (2.13)

Lattice QCD calculations demonstrate that the leading order χPT prediction m2
pNGB ∝ mq, known

as the Gell-Mann-Oakes-Renner relation, is surprisingly accurate over a wide range of quark masses.

At NLO the calculation is more involved; we will simply describe the method and refer the reader

to Ref. [9] for the details. From the power counting formula of Equation (2.9) we see that there

are two ways to construct a diagram which contributes at O(p4): a one loop diagram constructed

from L(2)
χPT, or a tree diagram constructed from L(4)

χPT (Figure 2.1). The latter contribution can be

3See, for example, Appendix A.4 of Ref. [16].
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π0 L(2) π0

π

p p

q
q

(a) One loop correction from L(2)
χPT

π0 L(4) π0

p p

(b) Tree level correction from L(4)
χPT

Figure 2.1: Corrections to m2
π at NLO in SU(2) chiral perturbation theory. The particle in the

loop can be any member of the pion triplet π ∈ {π−, π0, π+}.

straightforwardly calculated from the O(p4) Lagrangian [14]

L(4)
χPT = l1

[
tr
(
∂µU∂

µU †
)]2

+ l2 tr
(
∂µU∂νU

†
)
tr
(
∂µU∂νU †

)
+ l3

[
tr
(
χU † + Uχ†

)]2
+ h1 tr

(
χ†χ

)
,

(2.14)

where we have intentionally excluded terms involving external sources or which vanish in the

isospin-symmetric limit, by expanding U in powers of the pion fields up to O(φ2). In particular,

the operators proportional to l3 generate terms with the structure m4φ2. Calculating the loop

correction is more involved: expanding L(2)
χPT to O(φ4) generates a four-point vertex from operators

of the form φ2(∂φ)2 and m2φ4. After working out the Feynman rule for this vertex, one can then

compute the loop diagram e.g. in dimensional regularization, isolating the finite part and absorbing

the divergence into renormalized LECs defined at a scale µ. The final result for the pion mass is

[9]

m2
π = χl

{
1 +

4χl
f2

l3 +
χl

16π2f2
log

(
χl
µ2

)}
+O(p6), (2.15)

where χl ≡ 2Bml is the leading order expression.

At next-to leading order and beyond the corrections include analytic terms which are products

of LECs and quark masses, as well as non-analytic chiral logarithms — such as the m2
q log(mq) term

entering into m2
π at NLO — that arise from loop corrections and do not introduce new LECs. While

the analytic terms can be reproduced from a simple Taylor expansion in the quark masses, the chiral

logarithms are a unique prediction of the full machinery of χPT. We also note that since both the

renormalized LECs and the logarithms depend on an arbitrary choice of the renormalization scale
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µ, one may vary the relative sizes of these terms by varying µ. The complete expression at a given

chiral order, including both types of contributions, however, is independent of µ.

2.1.4 Partially Quenched Chiral Perturbation Theory and Other Extensions

In Section 1.3.6 we introduced the idea of a partially quenched lattice calculation, in which the

valence quarks entering into fermion propagators and the sea quarks entering into virtual quark

loops are allowed to have different masses. Partial quenching can, in some cases, be used to reduce

the costs of lattice calculations with controlled systematics that vanish in the unitary limit of equal

valence and sea quark masses. These systematics can also be described in a natural way within

chiral perturbation theory, leading to an extension known as partially quenched chiral perturbation

theory (PQChPT or PQχPT).

In the framework of PQχPT the effects of partial quenching are included analytically by gener-

alizing to a supersymmetric theory with Nsea and Nval sea and valence quarks, respectively. In addi-

tion, the theory contains Nval unphysical bosonic ghost quarks, which are introduced to exactly can-

cel the contributions of the valence quarks to closed fermion loops. The SU(Nf )L⊗SU(Nf )R chiral

symmetry of massless QCD is promoted to a graded SU(Nval+Nsea|Nval)L⊗SU(Nval+Nsea|Nval)R

supersymmetry, and the most general effective Lagrangian consistent with this enhanced symmetry

is constructed order-by-order, in analogy to χPT. In this thesis we make use of the full next-to-

next-to leading order expressions for the partially quenched psuedoscalar meson masses and decay

constants computed by Bijnens et al. [17–20].

As an example, we may again consider the pseudoscalar meson mass at next-to leading order

in PQχPT with Nval = Nsea = 2. Assuming degenerate sea quark masses ml, but non-degenerate

valence quark masses mx and my, the resulting pseudoscalar meson mass is [21]

m2
xy =

1

2
(χx + χy)

{
1 +

32

f2
χl

(
2L̂

(2)
6 − L̂

(2)
4

)
+

8

f2
(χx + χy)

(
2L̂

(2)
8 − L̂

(2)
5

)
+

1

16π2f2

[
χx − χl
χx − χy

χx log

(
χx
µ2

)
+
χy − χl
χy − χx

χy log

(
χy
µ2

)]}
+O(p6),

(2.16)

where χq ≡ 2Bmq. We use the notation L̂(2)
i to emphasize that the LECs ofNval = Nsea = 2 PQχPT
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are not, in general, the same as the LECs li of SU(2) χPT. However, by taking the unitary limit

and matching to χPT one can derive expressions for the li in terms of linear combinations of the

L̂
(2)
i . While Equation (2.16) can be shown to reduce to Equation (2.15) in the limit mx = my = ml,

this limit is somewhat subtle, both due to the matching of the partially quenched and unquenched

LECs and due to the indeterminate forms of the non-analytic chiral logarithms.

Many other variants of chiral perturbation theory exist in the literature. Of particular interest

are variants which describe lattice systematics — such as the use of a finite spacetime volume or

discrete lattice spacing — within an effective field theory framework. In Chapters 3 and 4 we

will also make use of next-to leading order finite volume chiral perturbation theory (FVChPT or

FVχPT) [21] to parametrize the dependence of our results on the spatial lattice extent L.

2.1.5 Chiral Perturbation Theory and Lattice QCD

Chiral perturbation theory has been used to parametrize the quark mass dependence of lattice QCD

calculations since the earliest days of the field. Until very recently calculations with physical pion

masses were simply too expensive to perform even with the most powerful existing supercomputers,

forcing the use of unphysical, heavy quark masses. One could still make physical predictions by

using χPT as an ansatz to extrapolate simulations with heavier-than-physical quarks down to the

physical point. The reliability of these extrapolations was difficult to address, however, and evidence

that SU(3) χPT in particular poorly described existing lattice data was presented in Ref. [21].

More recently, it has become possible to simulate QCD directly with physical quark masses.

While in some cases χPT has still been used to make modest percent-level corrections for slight

mistunings in the input quark masses or finite volume effects — e.g. in Ref. [5] — the field has

moved away from relying heavily on the machinery of χPT to make physical predictions. In this

work we invert the procedure, and instead use the wide range of RBC/UKQCD domain wall QCD

simulations (Figure 1.3) to systematically probe χPT at next-to-next-to leading order. These

studies have two goals: first, to determine as many of the low energy constants from first-principles

as possible using the available lattice data, and second, to study the convergence properties of the

(asymptotic) χPT expansion over a wide range of quark masses. The values of the low energy
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constants are of great interest in the phenomenological community, since, once they have been

determined at a given order, any other processes of interest involving the pseudoscalar mesons

can be computed to the same order in χPT to make genuine predictions4. More generally, this is

an interesting test of the effective field theory formalism: we systematically compare predictions

computed non-perturbatively in the full, UV complete theory (QCD) and in its low energy effective

description (χPT).

In Chapters 3 and 4 we describe in detail fits of RBC/UKQCD lattice data for pseudoscalar

meson masses and decay constants to the more general PQχPT at next-to and next-to-next-to

leading order. The generic ansatz we use to describe the lattice data is written schematically in

Equation (3.9), and includes the continuum PQχPT expressions up to NNLO, the finite volume

corrections computed in NLO FVχPT, and terms ∝ a2 describing the leading discretization errors.

A complete summary of the lattice data, including partially quenched measurements with non-

unitary valence quark masses, can be found in Appendix 3.B. These fits determine 9 of the NLO

and 8 linearly independent combinations of the NNLO low energy constants of PQχPT, some of

which were previously unknown. The unquenched LECs of χPT are then recovered using the

expressions summarized in Appendices 3.A and 4.A. The values we obtain — as well as values from

other recent lattice and phenomenological determinations — are summarized in Figures 3.6, 3.7,

4.8, and 4.9 and in Tables 3.10 and 4.9.

By repeating the fits with different subsets of the data we are also able to self-consistently

study the behavior of the chiral expansion as a function of the quark masses. We find that the

SU(2) expansion is quite robust, satisfying the expected hierarchy LO � NLO � NNLO at the

physical point, and continuing to describe the lattice data up to a heavy scale mπ ∼ 450 MeV

before showing obvious distress. We also find that NNLO SU(3) PQχPT can be reliably fit to

our data with percent scale accuracy up to the physical point, in contrast to earlier, unsuccessful
4This is especially true for calculations which remain intractable on the lattice. Examples of experimental and phe-

nomenological interest include scattering phenomena beyond the 2 particle initial and final state scattering described

by the Lüscher formalism — although progress is being made in this direction [22] — and decays with complicated

multi-particle final states such as K`4.
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results5 from the lattice community. Our conclusions regarding the reliability of the SU(2) and

SU(3) expansions at next-to-next-to leading order are consistent with other lattice studies [23–27].

Finally, in Tables 3.9 and 4.8 we have used the large set of LECs determined in the full NNLO

fits to make additional predictions from χPT at NLO for meson-meson scattering parameters and

QCD isospin breaking effects.

2.1.6 Ongoing Work

One limitation of our current data set is that, while our ensembles span a broad range of light quark

masses, all of the strange quark masses are near the physical ms. We are currently generating a

323 × 64 × 24 ensemble with a physical pion mass and a 300 MeV kaon mass to better constrain

the strange quark dependence of our SU(3) fits. In addition, in the time since the current fits were

performed, Johan Bijnens has developed and released an improved library of one-loop and two-loop

calculations in chiral perturbation theory [28]. This library includes some new results — including

the full next-to-next-to leading order SU(3) finite volume corrections — which were previously

unavailable. We expect the additional ensemble and the two-loop finite volume corrections to

improve the quality of our fits to SU(3) PQχPT.

Determining additional low energy constants requires new observables to be included in the

fits. We have recently completed a calculation of the I = 2 ππ scattering length a20 on the full

RBC/UKQCD DWF ensemble set summarized in Figure 1.3. Preliminary results including sub-

sets of this data were presented at Lattice 2015 [2] and at ICHEP 2016 [4], and were found to

dramatically improve the accuracy of the SU(2) LECs `1 and `2, which contribute to a20 at NLO.

In addition, data for the pion vector and scalar form factors and for current-current correlation
5In Ref. [21] it was demonstrated that the value of the LEC f0 obtained from fits to the available lattice data was

unreasonably low and inconsistent with other published values, causing the authors to question the applicability of

SU(3) χPT altogether. In our current fits we find a more reasonable value of f0 consistent with the literature. In

Section 4.4.6 we demonstrate that by successively removing light data from the fits we can continuously interpolate

between our current value of f0 and the old, inconsistent value, suggesting that these earlier studies were simply

applying NLO SU(3) PQχPT at heavy quark masses outside its range of validity, and rightfully concluding that the

resulting fits were unreliable.
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functions are available on some ensembles, which constrain the remaining next-to leading order

LECs `5 and `6. We plan to revisit our NNLO SU(2) and SU(3) fits using this additional data and

the SU(3)-specific improvements discussed in the previous paragraph in the near future.

2.2 Leptonic and Semileptonic Kaon Decays

Leptonic (π → `ν` or K → `ν`) and semileptonic (K → π`ν`) pion and kaon decays currently

provide the most accurate determinations of the CKM matrix elements Vud and Vus, and contribute

to stringent tests of the Standard Model through CKM unitarity. The leading order Standard Model

processes contributing to the leptonic (K`2) and semileptonic (K`3) decay modes are summarized

by the Feynman diagrams of Figure 2.2. At leading order the decay rate for the leptonic decay of

W+

u

d (s)

ν`

`+

(a) K`2: π+ (K+) → `+ν`

s u

d d

`+

ν`

W+

K0 π−

(b) K`3: K0 → π−`+ν`

Figure 2.2: Leading order Standard Model diagrams contributing to the leptonic π+ and K+ decays

(left) and semileptonic K0 decay (right).

a pseudoscalar meson (P ) composed of quark flavors q and q′ is

Γ (P → `ν`) =
G2
F

8π
f2Pm

2
`mP

(
1−

m2
`

m2
P

)2 ∣∣Vqq′∣∣2 , (2.17)

where GF is the Fermi decay constant, m` is the lepton mass, mP is the meson mass, Vqq′ is a

CKM matrix element, and fP is the pseudoscalar meson decay constant, which encapsulates the

strongly-coupled, hadronic part of the decay process. Explicitly, for the pion and kaon:

〈0| dγµγ5u
∣∣π+(~p)〉 = ipµfπ+ , 〈0| sγµγ5u

∣∣K+(~p)
〉
= ipµfK+ . (2.18)
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Taking a ratio of the experimentally measured K± and π± decay rates leads to a relation between

the ratio of decay constants fK±/fπ± and the ratio of CKM matrix elements |Vus|/|Vud|, since the

Fermi decay constant and masses are accurately known. The current best experimental constraint

on this ratio, including an estimate of the O(1%) radiative corrections from loop diagrams, is [29]

|Vus|
|Vud|

fK±

fπ±
= 0.27599(29)(24). (2.19)

The accurate determination of fK±/fπ+ from first principles — allowing a clean extraction of the

CKM ratio — is a natural target of lattice calculations.

The Standard Model analysis of the K`3 decay rate proceeds similarly, but is more complicated

due to the three-particle final state. In nature, both the K+ → π0`+ν` and K0 → π−`+ν` decays

are allowed. In anticipation of the lattice calculation, however, we work in the isospin symmetric

limit of equal light quark masses mu = md ≡ ml and neglect electromagnetism, with the small

corrections from these effects computed in chiral perturbation theory and reintroduced in a form

made explicit below. In this limit the charged and neutral pions are degenerate, as are the charged

and neutral kaons. The hadronic K → π part of the decay is parametrized by the K`3 form factors

fKπ± (q2), which are defined in terms of the vector matrix element

〈π(pπ)| sγµu |K(pK)〉 ≡ fKπ+ (q2)
(
pµK + pµπ

)
+ fKπ− (q2)

(
pµK − pµπ

)
, (2.20)

where qµ ≡ pµK − pµπ is the momentum transfer between the kaon and pion. The full K`3 decay

rate, after reintroducing electromagnetic and isospin breaking corrections, is:

Γ (K → π`ν`) =
G2
Fm

5
K

192π3
C2
KSEW |Vus|2

(
fKπ+ (0)

)2
IK`

(
1 + δK`EM + δKπSU(2)

)2
. (2.21)

The terms appearing in this formula are:

• CK : Clebsch-Gordan coefficient, with CK0 = 1 and CK± = 1/
√
2

• SEW: short-distance electroweak corrections, computed perturbatively in the Standard Model

• IK`: phase-space integral, determined experimentally

• δK`EM: long-distance electromagnetic corrections, computed in χPT and dependent on the final

lepton state `
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• δKπSU(2): isospin breaking corrections, computed in χPT

We refer the interested reader to Ref. [30] for additional detail regarding the numerical values and

methodology for determining SEW, IK`, δK`EM, and δKπSU(2).

In addition to the vector matrix element of Equation (2.20), one can also consider the scalar

matrix element

〈π(pπ)| su |K(pK)〉 ≡
m2
K −m2

π

ms −mu
fKπ0 (q2). (2.22)

Acting on Equation (2.20) with qµ, and applying the Ward-Takahashi identity

qµ 〈Vµ〉 = (ms −mu) 〈su〉 (2.23)

results in a relationship between the three form factors

fKπ0 (q2) = fKπ+ (q2) +
q2

m2
K −m2

π

fKπ− (q2). (2.24)

In particular, at q2 = 0 one has fKπ0 (0) = fKπ+ (0), and so fKπ+ (0) can also be determined directly

from the scalar matrix element.

Excluding fKπ+ (0), the other factors appearing in the analytic expression for the K`3 decay rate

are either known from experiment or else can be computed using perturbation theory, leading to

the experimental constraint [31]

|Vus| fKπ+ (0) = 0.21654(41). (2.25)

Extracting |Vus| itself requires knowledge of at least one of the strongly coupled, hadronic matrix

element of Equations (2.20) and (2.22), which are most accurately computed using lattice QCD.

However, the uncertainty in lattice determinations of fKπ+ (0) remains the dominant source of error

in both |Vus| and in the Standard Model unitarity test6 δu ≡ 1− |Vud|2−|Vus|2−|Vub|2, making this

a topic of continued interest in the field.
6If the CKM matrix is indeed unitary, as the Standard Model predicts, then δu = 0 up to statistical and systematic

uncertainties. Tension with unitarity could potentially signal new physics beyond the Standard Model.
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2.2.1 Lattice Calculations of fπ, fK, and fKπ+ (0)

The extraction of the isospin-symmetric decay constants fπ and fK at zero momentum from the

temporal components of Equation (2.18) is a straightforward calculation on the lattice, since this

requires only two-point correlation functions. One minor complication in the domain wall fermion

formalism, however, is the need to compute renormalization coefficients for the axial (ZA) and

vector (ZV ) currents. In Ref. [32] it was demonstrated that ZA ≈ ZV up to small O(a2m2
res)

corrections, so we choose to renormalize both currents using ZV , with a method discussed below. In

addition, the lattice two-point functions contain implicit errors from the finite lattice spacing, finite

volume, and typically unphysical quark masses used in the simulations, which must be removed

with an extrapolation/interpolation of the lattice data. The most recent RBC/UKQCD result in

the continuum, infinite volume, physical quark mass limit

fK
fπ

= 1.1945(45) (2.26)

was presented in Ref. [5]. The 2016 Flavor Lattice Averaging Group (FLAG) review [33] esti-

mates the sub-percent correction from isospin breaking effects as δSU(2) = −0.004(1) using chiral

perturbation theory. Applying the correction to the RBC/UKQCD result gives

fK±

fπ±
=
fK
fπ

√
1 + δSU(2) = 1.1921(46), (2.27)

allowing the ratio of CKM matrix elements |Vus|/|Vud| to be extracted from Equation (2.19).

The extraction of the K`3 form factor fKπ+ (0) from the Euclidean three-point correlation func-

tions of the vector current (Eqn. (2.20)) or scalar density (Eqn. (2.22)) is more involved. Since a

detailed discussion of the most recent RBC/UKQCD K`3 calculation [6] performed with the phys-

ical quark mass 483 × 96 and 643 × 128 Möbius domain wall fermion ensembles is the subject of

Chapter 5, we will simply paraphrase here. This was the first RBC/UKQCD K`3 calculation to use

the domain wall fermion action with physical quark masses, as well as the first time the calculation

was performed directly at zero momentum transfer. This was achieved using a stationary kaon and

moving pion, with the pion momentum tuned to satisfy q2 = 0 using twisted boundary conditions

(Section 1.3.3):

|~pπ| =
m2
K −m2

π

2mK
. (2.28)
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We computed three-point correlation functions for both the vector and scalar matrix elements by

evaluating the quark line diagram depicted in Figure 5.1. In the diagram, the scalar matrix element

corresponds to an insertion of Γ = 1 and the vector matrix element corresponds to an insertion of

Γ = γµ. The upper quark line has momentum pi = |~pπ|/
√
3 in each of the three spatial directions,

allowing improved statistics by averaging the x, y, and z components of the vector matrix element.

The vector current renormalization coefficient was computed from the analogous matrix elements

〈π|uγ4u|π〉 (ZπV ) and 〈K|sγ4s|K〉 (ZKV ) with stationary initial and final states: charge conservation

implies that fππ+ (0) = fKK+ (0) = 1 and fππ− (0) = fKK− (0) = 0, allowing ZV to be determined.

After computing the vector and scalar matrix elements on the 483×96 and 643×128 ensembles,

as well as the pion and kaon matrix elements used to determine ZV , the K`3 form factors fKπ+ (0)

and fKπ− (0) were determined by fitting to the Euclidean time dependence of Equations (2.20) and

(2.22) over an appropriate range of pion-kaon separations and operator insertion times. We then

combined this data with older K`3 calculations performed on ensembles with heavy pions to make

small, O(1%) interpolations to correct for slight mistuning in the input quark masses. We observe

that next-to leading order SU(3) chiral perturbation theory poorly describes our data, and, lacking

sufficient data to constrain the full next-to-next-to leading order expression, use a polynomial in the

SU(3)-breaking quantity ∆m2 ≡ m2
K −m2

π instead. This procedure was performed independently

for fKπ+ (0) as determined by the vector matrix element renormalized with ZπV and ZKV , as well

as for fKπ+ (0) as determined by the scalar matrix element. We then performed a simultaneous

extrapolation to a common continuum limit. Our final result was

fKπ+ (0) = 0.9685(34)(14), (2.29)

where the first uncertainty is statistical and the second is an estimate of the remaining finite volume

error. The details can be found in Chapter 5.

In Figure 2.3 we reprint the most recent FLAG summary plots of theoretical determinations

of fK±/fπ± and fKπ+ (0). The results of this thesis — framed in yellow — represent the current

state-of-the-art for Nf = 2 + 1 calculations.
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Figure 2.3: Summary plots reprinted from the FLAG 2016 review [33]. The results discussed in

this thesis — RBC/UKQCD 14B [5] and RBC/UKQCD 15A [6] — are framed in yellow.

2.2.2 Standard Model Constraints

Combining the final result for fKπ+ (0) from Equation (2.29) with the experimental constraint of

Equation (2.25), we can extract

|Vus| = 0.22358(41)expt(85)latt. (2.30)

If we instead use the FLAG global average of Nf = 2 + 1 lattice calculations of fKπ+ (0) [33]

— which includes our result — the value is consistent, with a somewhat reduced lattice error:

|Vus|= 0.22378(41)expt(62)latt. While the lattice error is beginning to approach the experimental

error in the determination of |Vus|, it is clear that further refinement is necessary, especially in

light of the ongoing KLOE-2 experiment [34] which promises to further tighten the experimental

constraints. Further progress will require the inclusion of isospin breaking and electromagnetic

effects in the lattice calculations, since these are expected to contribute at a level comparable to

the current sub-percent total uncertainty in fKπ+ (0). The exact one flavor algorithm may prove

useful in enabling this next generation of K`3 calculations by reducing the cost of performing a

complete calculation with physical up and down quark masses.

Having determined |Vus|, we can then extract |Vud| by combining this result with Equations
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(2.19) and (2.27). Using the RBC/UKQCD results for fKπ+ (0) and fK±/fπ± as the inputs we

obtain

|Vud| = 0.9657(22)expt(52)latt, (2.31)

or |Vud|= 0.9665(22)expt(46)latt using the Nf = 2+1 FLAG lattice averages. |Vud| can also be deter-

mined experimentally from a number of super-allowed nuclear β decays, leading to the significantly

more precise result |Vud|= 0.97417(21) after averaging [35]. While the lattice determination is an

interesting cross-check, it seems unlikely that the errors could be reduced to this level of precision

in the near future.

The last CKM matrix element involving the up quark is |Vub|∼ 4×10−3 [35]. Given the current

uncertainties in |Vud| and |Vus|, we may neglect |Vub| altogether when testing first-row unitarity

through the quantity δu ≡ 1− |Vud|2−|Vus|2−|Vub|2. Using the RBC/UKQCD results for |Vud| and

|Vus| we have

δu = 0.017(3)expt(7)latt, (2.32)

or δu = 0.016(3)expt(6)latt using the CKM matrix elements determined from the FLAG lattice

averages. If we instead use the more precise value of |Vud| from super-allowed β decays we find

δu = 0.0010(4)expt(6)latt (2.33)

using the RBC/UKQCD inputs and δu = 0.0009(4)expt(4)latt using the FLAG inputs. Regardless

of the choice of inputs we observe a mild (1-2)σ tension with CKM unitarity.

2.3 K → ππ Decays and the Exact One Flavor Algorithm

The final result of this thesis is the exploration and refinement of a recently proposed algorithm

for accelerating the hybrid Monte Carlo simulations used in lattice QCD, known as the exact

one flavor algorithm (EOFA) [36–38]. We begin with a discussion of CP -violating neutral kaon

decays in the Standard Model, largely following Ref. [9], and briefly review the RBC/UKQCD

collaboration’s recent first-principles calculations of the K → ππ decay amplitudes and direct CP -

violation parameter ε′. We then paraphrase the results of our studies of EOFA: in particular, we
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have achieved a factor of 4.2 reduction in the cost of generating a statistically independent gauge

field configuration for the ongoing ∆I = 1/2 K → ππ calculation. We also briefly discuss other

potential physics projects which might similarly benefit from EOFA. The details of EOFA and our

refinements and benchmarks are the subject of Chapter 6.

2.3.1 The Phenomenology of CP -Violating Kaon Decays in the Standard Model

In the Standard Model, the neutral kaon states |K0〉 and |K0〉 mix through the one-loop “box”

diagrams of Figure 2.4. As a result, a beam of neutral kaons will oscillate between |K0〉 and |K0〉

u, c, t

W−

u, c, t

W+

d s

s d

W−

u, c, t

W+

u, c, t

d s

s d

Figure 2.4: Standard Model diagrams contributing to K0 −K0 mixing at lowest order.

as it propagates. In addition, the kaons will tend to decay through the weak interaction. We can

model this phenomenologically with a time-dependent, mixed state vector

|ψ(t)〉 = a(t)
∣∣K0

〉
+ b(t)

∣∣K0
〉

(2.34)

whose evolution is governed by the dynamical system7

i
d

dt

 a(t)

b(t)

 =

 M11 − i
2Γ11 M12 − i

2Γ12

M∗
12 − i

2Γ
∗
12 M11 − i

2Γ11

 a(t)

b(t)

 . (2.35)

The normalized eigenstates found by diagonalizing this system are

|KS〉 =
1√

1 + |ε|2

(
1 + ε√

2

∣∣K0
〉
+

1− ε√
2

∣∣K0
〉)

, |KL〉 =
1√

1 + |ε|2

(
1 + ε√

2

∣∣K0
〉
− 1− ε√

2

∣∣K0
〉)

,

(2.36)
7The form of the mixing matrix M − i

2
Γ is partially determined by CPT -invariance and the requirement that it is

Hermitian. It can be shown that the former constrains the diagonal elements to be equal, and that the latter forces

M11 =M∗
11, M12 =M∗

21, and M22 =M∗
22, and likewise for the matrix elements of Γ.
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where we have introduced a new parameter ε defined implicitly by the relation

1 + ε

1− ε
=

[
M12 − i

2Γ12

M∗
12 − i

2Γ
∗
12

]1/2
. (2.37)

It is more revealing, however, to write these in terms of the CP -eigenstates8 K0
±〉 ≡ 1√

2

(
|K0〉 ∓ |K0〉

)
:

|KS〉 =
1√

1 + |ε|2
(∣∣K0

+

〉
+ ε
∣∣K0

−
〉)
, |KL〉 =

1√
1 + |ε|2

(
ε
∣∣K0

+

〉
+
∣∣K0

−
〉)
. (2.38)

The parameter ε is experimentally known to be small but nonzero, and measures the slight dis-

crepancy between the eigenstates of the CP operation and the eigenstates of the weak interaction

due to CP -violating decay modes. Assuming exact CP -symmetry, we would have ε = 0, and

conservation of CP would require |K0
+〉 = |KS〉 to decay exclusively to the CP -even |ππ〉 final

states, and |K0
−〉 = |KL〉 to decay exclusively to the CP -odd |πππ〉 final states. In practice, this

is approximately true since ε is small, and explains why the lifetime of the |KS〉 is dramatically

shorter than that of the |KL〉 — the allowed phase space of the KL → πππ decay is significantly

more restricted — hence the names “L” (long) and “S” (short). However, one also observes the

KL → ππ decay to occur. Indirect CP -violation, i.e. the decay K0
+ → ππ through the small ε|K0

+〉

component of the |KL〉 state, was first demonstrated experimentally in the 1960’s by Cronin and

Fitch, for which they were awarded the 1980 Nobel Prize in Physics. Later experimental work also

confirmed that direct CP -violation, i.e. the explicitly CP -violating decay K0
− → ππ, also occurs

with nonzero probability.

In the context of the Standard Model, indirect and direct CP -violation are parametrized in

terms of the quantities ε and ε′, respectively. These parameters are defined in terms of the experi-

mentally accessible ratios of decay amplitudes A (Ki → πjπk) ≡ 〈πjπk|HW |Ki〉, where HW is the

weak Hamiltonian:

A (KL → π+π−)

A (KS → π+π−)
≡ ε+ ε′,

A (KL → π0π0)

A (KS → π0π0)
≡ ε− 2ε′. (2.39)

The current best experimental constraints on the magnitudes are |ε|= 2.228(11)×10−3 and Re(ε′/ε) =

1.66(23) × 10−3 [35], indicating that CP -violation is indeed a small effect. For our purposes, we
8We adopt the standard phase conventions CP |K0〉 = −|K0〉 and CP |K0〉 = −|K0〉.
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would like to invert this, and instead write ε and ε′ in terms of quantities which are accessible on

the lattice. Since we work in the isospin symmetric limit9 mu = md ≡ ml, it is useful to classify

the two pion final states |ππI〉 according to isospin: I = 0, I = 1, or I = 2. The I = 1 state can

be excluded, since it is antisymmetric under interchanging the two pions and thus would violate

bosonic symmetry. We parametrize the two allowed decay channels as〈
ππI

∣∣HW

∣∣K0
〉
=

√
2AIe

iδI0 ,
〈
ππI

∣∣HW

∣∣K0
〉
= −

√
2A ∗

I e
iδI0 . (2.40)

Expressing |π+π−〉 and |π0π0〉 in terms of the |ππI〉 states, |KL〉 and |KS〉 in terms of |K0〉 and

|K0〉, and inverting Equation (2.39), working to leading order in ε and the imaginary parts of the

decay amplitudes, one can show [39]
ε = ε+ i

Im(A0)

Re(A0)

ε′ =
i√
2

Re(A2)

Re(A0)

(
Im(A2)

Re(A2)
− Im(A0)

Re(A0)

)
ei(δ

2
0−δ00)

, (2.41)

where δI0 is the isospin I S-wave π − π scattering phase shift. Since the kaon has isospin 1/2, A2

is also referred to as the “∆I = 3/2 amplitude” and A0 as the “∆I = 1/2 amplitude”.

2.3.2 Computing the K → ππ Decay Amplitudes on the Lattice

The strategy of the lattice calculation is to compute the K0 → (ππ)I matrix elements of the weak

Hamiltonian and the S-wave scattering phase shifts, from which ε and ε′ can then be computed

using Equation (2.41) and compared to the experimental results. This is a complex and technical

calculation, the details of which are somewhat tangential to the novel work performed in this thesis,

so we will only paraphrase here. The interested reader can consult Refs. [39–41] for additional detail

of the ∆I = 3/2 calculation, and Refs. [42–44] for additional detail of the ∆I = 1/2 calculation.

Typical lattice cutoffs a−1 ∼ O(1−3 GeV) preclude the 80 GeV W boson as one of the simulated

degrees of freedom. Instead, one works in an Nf = 2 + 1 low-energy effective theory without the

W boson and heavy quark flavors, and expands the weak Hamiltonian as

HW =
GF
2
V ∗
usVud

10∑
i=1

Ci(µ)Qi(µ). (2.42)

9Note: in this limit the charged and neutral pions are degenerate, as are the charged and neutral kaons, so we

may unambiguously refer to “the pion” (π) and “the kaon” (K).
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In this notation the Vij are CKM matrix elements, the Ci(µ) are MS-renormalized Wilson coef-

ficients computed perturbatively at next-to-leading (NLO) order in the full Standard Model [45],

and {Qi(µ)}10i=1 is a basis of ten ∆S = 1 four-quark operators listed explicitly e.g. in Ref. [43].

The parameter µ is a renormalization scale: while HW is independent of µ, the Wilson coefficients

and four-quark operators individually depend on µ. The K → (ππ)I decay amplitudes can be

computed in terms of three-point lattice correlation functions 〈ππI(xππ)|Qi(xQ)|K(xK)〉. In ad-

dition, one also computes the energies of the I = 0 and I = 2 two-pion states and the masses of

the pion and kaon from the two-point correlation functions 〈ππI(t1)|ππI(t2)〉, 〈π(t1)|π(t2)〉, and

〈K(t1)|K(t2)〉, respectively.

In addition to computing bare Euclidean space matrix elements on the lattice, one must also

match these to the physical matrix elements that define the Standard Model CP -violation param-

eters ε and ε′. The Lüscher formalism can be used to directly relate the finite volume energy shift

δEIπ ≡ EIππ−2mπ computed in Euclidean space to the infinite volume, Minkowski space π−π scat-

tering phase shift δI0(p) at a particular kinematic point p determined by the ensemble parameters.

Relating the bare, Euclidean, finite volume three-point matrix elements M lat
i ≡ 〈ππI |Qi|K〉 to their

MS-renormalized, Minkowski, infinite volume analogues determining the decay amplitudes AI is

more involved, and proceeds in steps. First, the multiplicative Lellouch-Lüscher factor [46] is used

to relate the bare finite volume, Euclidean matrix elements to the bare infinite volume, Minkwoski

space matrix elements. One then performs a matching calculation: first the bare matrix elements

are renormalized in variants of the non-perturbative regularization independent (RI) scheme, which

is then perturbatively matched to MS at a high scale µ where QCD perturbation theory is known

to be reliable. Systematic errors are estimated by using multiple variants of the intermediate RI

scheme and analyzing the influence on the final MS results. One can then compute the physical

decay amplitudes AI , and ultimately ε and ε′.

To date the ∆I = 3/2 calculation has been performed on two, independent lattice ensembles

with different cutoffs, allowing an additional continuum extrapolation to be performed [41]. The

∆I = 1/2 calculation of Ref. [44] has been performed on a single ensemble and the resulting finite

lattice spacing systematic has been estimated as part of the error budget. Both calculations have
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physical kinematics and quark masses, and, together, predict Re(ε′/ε) = 1.38(5.15)(4.59) × 10−4

[44], where the first error is statistical and the second systematic, suggesting a tantalizing 2.2σ

discrepancy with the experimental value Re(ε′/ε) = 1.66(23) × 10−3 [35]. Reducing the error and

enabling a more precise comparison is a major goal of the RBC/UKQCD collaboration in the next

few years, and substantial computational effort is currently underway both to increase the number

of measurements on the existing ∆I = 1/2 ensemble — driving down the statistical error — and

to generate a second ensemble with a different lattice spacing, allowing the continuum limit of A0

to be taken.

2.3.3 The Calculation of A0 and G-Parity Boundary Conditions

While the ∆I = 1/2 and ∆I = 3/2 calculations outlined above are closely related, the ∆I = 1/2

calculation is substantially more expensive to perform with physical kinematics and controlled

statistical errors, for two major reasons. The first is the appearance of disconnected diagrams among

the possible Wick contractions of the 〈ππ0|Qi|K〉 three-point functions, which do not appear in the

corresponding I = 2 contractions10. Figure 2.5 shows an example of such a diagram. Disconnected

tK tQ tππ

l

s

ll, s lQi

Figure 2.5: An example of a disconnected diagram contributing to A0. Lines denote light (l) or

strange (s) quark propagators, circles mark the locations of the pions and kaon, and the box denotes

an insertion of one of the Qi operators.

diagrams are notoriously difficult to compute accurately on the lattice. Intuitively, they factorize as
10Disconnected diagrams appear in the I = 0 case because the |ππ0〉 state has the same quantum numbers as the

vacuum, allowing contractions where the two pions annihilate into the vacuum and then reappear.

48



a product of two pieces with independent statistical fluctuations — 〈ππI |Qi|K〉 ∼ tr(· · ·)× tr(· · ·)

— and thus require specialized methods and/or very long Monte Carlo simulations to suppress this

enhanced noise.

The second issue making the ∆I = 1/2 calculation more difficult than the ∆I = 3/2 calculation

is related to the respective techniques used to achieve physical kinematics. Since 2mπ < mK , the

physical K → ππ decay must involve final state pions with nonzero momenta. As we discussed

in Section 1.3.3, Sachrajda and Villadoro [47] have demonstrated that partially twisted boundary

conditions cannot be applied to the |ππ〉 final state. In the ∆I = 3/2 calculation a clever trick

has been used to circumvent this problem: the Wigner-Eckhart theorem can be exploited to relate

the desired 〈ππ2|Qi|K〉 matrix elements to unphysical 〈π+π+|Qi|K+〉 matrix elements [41]. If, in

addition, antiperiodic boundary conditions are applied to the d quark in the spatial directions, the

resulting |π+π+〉 ground state has zero total momentum, while the individual pions have momenta

|~pπ|=
√
3π/L, and, crucially, EI=2

ππ ≈ mK for the ensembles used in the most recent calculation of

Ref. [41]. This setup allows for simulations with physical kinematics and well controlled statistical

errors.

The same trick based on the Wigner-Eckhart theorem cannot be extended to the ∆I = 1/2

calculation. The strategy of the most recent ∆I = 1/2 calculation [44] has been to instead adopt

the G-parity boundary conditions (GPBCs) introduced in Section 1.3.3. Since the pion is G-

parity odd, its ground state has momentum ±π/L in spatial directions with GPBCs. As a result,

after introducing GPBCs the ensemble parameters can be carefully tuned to achieve EI=0
ππ ≈ mK

with the pions in the ground state, ensuring once again that we have physical kinematics without

substantially enhancing the statistical error.

GPBCs also mix quark flavors at the lattice boundary — the light quark doublet transforms

as (u, d) 7→ (d,−u) under the G-parity operation — implying that the G-parity Dirac operator

inherently describes two quark flavors rather than one. In the HMC algorithm (Section 1.3.4) one

typically chooses M = D†D as the fermion matrix appearing in the pseudofermion path integral

of Equation (1.40), since this M is Hermitian and positive-definite11 whereas D is not. Since
11These properties are essential for the stability of numerical algorithms such as conjugate gradient.
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the Dirac operator without GPBCs describes a single quark flavor, M describes two degenerate

quark flavors, and can be used directly to simulate the isospin symmetric light quarks of most

lattice calculations. In the G-parity case, however, D†D describes four degenerate quark flavors,

so one actually computes [det(D†D)]1/2 for the light quark pair and [det(D†D)]1/4 for the strange

quark. While there is a standard and widely used algorithm for computing arbitrary roots of the

fermion determinant — known as the rational HMC (RHMC) algorithm — it is substantially more

expensive than a standard HMC simulation of a degenerate quark pair with M = D†D . One major

result of this thesis is to explore an alternative algorithm for computing square roots of the fermion

determinant, and demonstrate that it can substantially reduce the cost of G-parity simulations.

2.3.4 Rational Hybrid Monte Carlo and the Exact One Flavor Algorithm

On the lattice, dynamical fermions are included in simulations by expressing the fermionic deter-

minant as a path integral over bosonic pseudofermion fields. For the isospin-symmetric light quark

pair, one typically uses the quotient action

Quo(m1,m2) ≡ det

(
D†D(m1)

D†D(m2)

)
, (2.43)

and for single quark flavors the rational quotient action

RatQuo1/n(m1,m2) ≡
[
det

(
D†D(m1)

D†D(m2)

)]1/n
(2.44)

with n = 2. For G-parity simulations, one instead uses RatQuo1/2 for the light quarks and

RatQuo1/4 for the strange quark. In the standard RHMC algorithm the root is approximated

by a rational function (
D†D

)1/n
ψ ≈

(
α0 +

N∑
i=1

αi
D†D + βi

)
ψ (2.45)

with coefficients αi, βi ∈ R constructed via the Remez algorithm [48]. The matrix inverse implied

by Equation (2.45) is well-defined, since D†D is Hermitian and positive-definite, and since D itself

has a bounded spectrum due to the lattice regularization. A naïvely formulated implementation of

RHMC is prohibitively expensive, since each evaluation of the rational quotient action involves N

independent CG inversions to compute (D†D + βi)
−1ψ. This cost can be somewhat ameliorated
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with a multishift conjugate gradient solver12 [49], but RHMC simulations remain substantially more

expensive than HMC simulations of the quotient action for the same quark mass. This is especially

true for the G-parity light quarks.

In Chapter 6 we explore an alternative to RHMC proposed recently by the TWQCD collabora-

tion [37] for simulating square-rooted fermion determinants with Wilson or domain wall quarks; this

describes degenerate quark pairs with GPBCs or single quark flavors without GPBCs. TWQCD’s

construction applies the Schur decomposition (Eqn. (6.A.1)) to the spin structure of the Dirac

operator, ultimately arriving at a factorization

det

(
D(m1)

D(m2)

)
=

1

det (H1)
· 1

det (H2)
, (2.46)

with H1 and H2 manifestly Hermitian and positive-definite. Their exact one flavor algorithm

is equivalent to RHMC in the sense that it computes the same determinant ratio, but has the

advantage that it avoids the need for computing an overall square root of the fermion determinant,

and thus the additional costs associated with rational approximations and multishift CG when

evaluating the pseudofermion action. In a subsequent study TWQCD demonstrated that EOFA

can provide modest O(20%) performance improvements over RHMC, as well as a reduced memory

footprint, after retuning the integrator used to evolve the HMC equations of motion [38].

In Appendix 6.A we provide a complete derivation of the EOFA action, following the outline

of the derivation in Ref. [37], but filling in additional detail. We then elaborate on HMC with the

exact one flavor algorithm, and perform statistical tests of the equivalence of RHMC and EOFA

(Section 6.4). We further check explicitly, using a series of inexpensive 163×32×8 and 163×32×16

ensembles with heavy pion masses, that simulations performed with either the RHMC action or the
12Multishift CG exploits the observation that Krylov spaces are shift-invariant — Kn(D

†D , φ) = Kn(D
†D +βi, φ),

where Kn(M,φ) ≡ span{φ,Mφ, . . . ,Mn−1φ} — to simultaneously invert a family of linear systems (D†D +βi)ψ = φ

for all βi, with a convergence rate controlled by the least well-conditioned system. While this is substantially less

expensive than performing independent standard CG inversions, it has a couple of important drawbacks: each iteration

is more expensive since additional linear algebra is required to form the current search and solution vectors for each

subsystem, and the memory footprint is much larger since all of these vectors need to be stored simultaneously. In

addition, one is forced to use zero for each initial guess, rendering acceleration techniques such as forecasting and

implicitly restarted algorithms inapplicable.
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EOFA action give rise to consistent values for low energy observables, such as the average plaquette

and pseudoscalar meson masses. After introducing and refining a number of techniques for tuning

and accelerating EOFA simulations (Section 6.6), we benchmark EOFA against RHMC using two

state-of-the-art RBC/UKQCD ensemble generation calculations with physical quark masses: the

first is a coarse 243 × 64 × 24 ensemble with non-GPBCs, and the second is the 323 × 64 × 12 G-

parity ensemble used to compute A0 in Ref. [44] (Section 6.7). In both cases we observe a significant

speed-up — by a factor of 3.5 (5.0) per MD trajectory for the strange (light) quark determinant

on the 243 (323) ensemble — after replacing RHMC with our highly-optimized implementation of

EOFA. The key to these performance improvements is a novel preconditioning technique which

substantially reduces the cost associated with inverting the Dirac operator in the context of EOFA

(Appendix 6.C).

2.3.5 Ongoing Work

EOFA is currently being used in the production ensemble generation runs associated with the

∆I = 1/2 K → ππ calculation. The factor of 5.0 reduction in the cost of computing the light

quark determinant per MD trajectory translates to a factor of 4.2 reduction in the total job time

per MD trajectory, implying that we will be able to generate over four times as many gauge field

configurations for the same computational cost after switching to EOFA. In addition, substantial

effort has been made by others to increase the performance of the ∆I = 1/2 measurement code,

further reducing the cost of this calculation. We plan, within the next year, to increase the 216

existing measurements on the a−1 = 1.4 GeV, 323 × 64 × 12 ensemble to O(1000) measurements,

as well as to generate O(1000) measurements on a new, 243 × 64 × 24 ensemble with a second

lattice spacing of a−1 ≈ 1 GeV. These new calculations will both drastically reduce the statistical

error on A0 and allow a continuum limit to be taken, sharpening the test of ε′ and Standard Model

CP -violation first reported in Ref. [44].

While accelerating the ∆I = 1/2 K → ππ calculation was the short term goal of exploring

EOFA, the algorithm is more general, and, as we have shown, can be used to accelerate any RHMC

calculation involving a square-rooted fermion determinant. We expect EOFA may also prove useful
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in at least two other contexts: Nf = 2+1+1 simulations which include a dynamical charm quark,

and Nf = 1+1+1 (or Nf = 1+1+1+1) simulations with physical, non-isospin symmetric up and

down quarks. Substantial progress toward practical Nf = 2 + 1 + 1 simulations using a very large

802 × 96× 192× 32 ensemble was made in Greg McGlynn’s Ph.D. thesis [50], but this calculation

has ultimately proven to be too expensive for the current generation of supercomputing resources13.

We intend to explore the potential performance improvements associated with using EOFA for the

strange and charm quarks on this ensemble. Isospin broken Nf = 1+ 1+ 1 calculations have been

rare in lattice QCD to date, but there are a number of observables — such as the masses and

decay constants of the low energy hadron spectrum, and the Kl3 form factor fKπ+ (q2) — which

can be computed to sufficiently high precision in current lattice QCD calculations that the small

corrections arising from electromagnetic and isospin breaking effects must now be addressed to make

further progress. We likewise intend to explore using EOFA to generate a coarse, a−1 ≈ 1 GeV

243 × 64× 24 Möbius DWF ensemble with physical up and down quarks, allowing for exploratory

calculations including isospin breaking effects.
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Abstract

We have performed fits of the pseudoscalar masses and decay constants, from a variety of

RBC-UKQCD domain wall fermion ensembles, to SU(2) partially quenched chiral perturbation

theory at next-to leading order (NLO) and next-to-next-to leading order (NNLO). We report

values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low

energy constants, which we compare to other lattice and phenomenological determinations. We

discuss the size of successive terms in the chiral expansion and use our large set of low energy

constants to make predictions for mass splittings due to QCD isospin breaking effects and the

S-wave ππ scattering lengths. We conclude that, for the range of pseudoscalar masses explored

in this work, 115 MeV . mPS . 430 MeV, the NNLO SU(2) expansion is quite robust and can

fit lattice data with percent-scale accuracy.

3.1 Introduction

Effective field theories (EFT) formalize the intuitive idea that to understand physics at a particular

energy scale E, the full details of physics at much higher energy scales Λ � E are not needed. After

identifying the relevant degrees of freedom associated with scale E, one can write down a low-energy

approximation, which differs from the full theory up to corrections which are powers in E/Λ. If

the separation of scales is large, the approximation is arbitrarily good, and the precise form of the

E/Λ corrections need not be specified. In practice, high energy degrees of freedom do not need to

be integrated out of the theory explicitly: it suffices to write down the most general low-energy

effective Lagrangian containing all terms consistent with the symmetries of the full theory [1]. An

early, successful example is the Fermi theory of β decay, which can be regarded as a low-energy

approximation to the standard model obtained by integrating out the W boson [2]. Effective field

theories are widely employed in modern physics, and the standard model itself is an EFT likely

modified by some yet-unknown new physics at sufficiently high energies. Renormalization plays an

important role in defining effective field theories, both in understanding how heavy particle masses
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can enter at low scales via the Appelquist and Carazzone decoupling theorem [3], and in handling

higher loop calculations in the low energy effective Lagrangian. Correctly matching EFTs across

particle mass thresholds is a crucial detail of precision calculations in the standard model [4].

In this paper we discuss the physics of light pseudoscalar mesons, which played an important

role in the development of the theory of the strong interactions — Quantum Chromodynamics

(QCD) — and in the development of effective field theory techniques in general. The EFT of

the light pseudoscalar mesons — Chiral Perturbation Theory (ChPT) — is both a prototypical

example of an EFT and a theory whose corrections in powers of E/Λ can be determined, since

lattice techniques enable direct QCD calculations. These correction terms contain “low energy

constants” (LECs) which must be determined by matching to QCD. In this paper we fit lattice

QCD data for the light pseudoscalar mesons to the corresponding ChPT formulas to determine the

LECs and to gain information about the accuracy of ChPT as an approximation to QCD at low

energies. While the primary focus is the physics of QCD, it is also of general interest to explore

a system where the reliability of calculating in an EFT truncated to some order — we consider

next-to leading order (NLO) and next-to-next-to leading order (NNLO) — can be directly tested

against calculations in the full theory.

QCD is highly nonlinear in the low energy regime, and lattice QCD provides the only known

technique for calculating hadronic properties from first principles1. The QCD vacuum dynamically

breaks the SU(Nf )L × SU(Nf )R chiral symmetry of QCD with Nf massless quarks, at least when

Nf ≤ 6, giving rise to N2
f − 1 pseudo-Goldstone bosons, which are the pseudoscalar mesons. The

scale of this meson physics is lighter than the scales of other phenomenon in QCD provided the

quark masses are not too large, suggesting an effective field theory description (ChPT). For quarks

of nonzero mass, one is naturally led to consider an effective field theory expansion in powers of the

masses and momenta. One obtains SU(2) ChPT [5] or SU(3) ChPT [6] depending on whether or

not the strange quark is included. The SU(2) theory allows for explicit calculations of pion physics,

while the SU(3) theory describes the pseudoscalar meson octet (π,K, η). The matching of ChPT

to QCD is encapsulated in the a priori unknown LECs, which parametrize the contributions from
1A perturbative expansion in powers of the strong coupling constant, gs, is only useful at very high energies.
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the various operators appearing in the ChPT Lagrangian.

Historically, ChPT has been an important tool for lattice QCD practitioners, as the limita-

tions of available computational resources required the use of unphysically heavy quarks to make

calculations practical. Until recently, a typical lattice calculation was performed at several, heavy

values of the input quark masses, and then extrapolated with ChPT to the quark masses found in

nature to make physical predictions. This is the approach taken in all but the most recent of the

RBC-UKQCD collaboration’s domain wall QCD simulations [7–9]. The reliability of ChPT as an

approximation to QCD at the heavy, simulated points was largely left as an open question by these

studies.

Recent advances in algorithms and computers have enabled computations directly at physical

quark masses, minimizing the need for sophisticated chiral extrapolations. In the RBC-UKQCD

collaboration’s recent analysis of two physical mass Möbius domain wall fermion ensembles [10]

SU(2) ChPT was only used to correct for small mistunings in the simulation parameters, resulting

in modest O(1%) corrections to the simulated pseudoscalar masses and decay constants. While

ChPT-based extrapolations may no longer be necessary in lattice QCD, the availability of lattice

data ranging from physical to much heavier than physical quark mass allows for a complementary

study of the applicability of ChPT as a low energy approximation to QCD. In this paper we seek

to:

1. Determine as many of the low energy constants of SU(2) ChPT as possible from our data,

and

2. Systematically study the behavior and range of applicability of the SU(2) ChPT expansion

up to next-to-next-to leading order (NNLO).

Exploratory fits of an earlier RBC-UKQCD domain wall QCD data set to NNLO SU(2) ChPT

were first performed in Ref. [11], but suffered from numerical instabilities in the form of large

NNLO corrections. More recently, the BMW collaboration has studied the pion mass and decay

constant in SU(2) ChPT up to NNLO using staggered [12] and Wilson [13] fermions. Fits of the

pion mass, decay constant, and vector form factor computed using O(a)-improved Wilson quarks to
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NNLO SU(2) ChPT were performed by Brandt, Jüttner, and Wittig [14]. Our domain wall fermion

analyses complement these studies, providing an additional fermion discretization with excellent

chiral symmetry properties. In addition, we perform our fits using the more general formalism of

partially quenched chiral perturbation theory (PQChPT), from which we can also readily extract

the low energy constants of ordinary ChPT. An analogous study of fits of RBC/UKQCD domain

wall fermion data to SU(3) partially quenched ChPT at NLO and NNLO will be the topic of a

subsequent paper [15].

We briefly discuss some of the issues that arise in fitting our data to ChPT, which we will

elaborate on in later sections. First, given that perturbative expansions of four-dimensional field

theories generally produce asymptotic series rather than convergent series, the ChPT expansion

is expected not to be convergent, with new counterterms arising at each loop order due to the

non-renormalizability of the theory. One can hope that the series has the correct hierarchy to

give accurate results when truncated to the first few orders — i.e. that each subsequent term is

of smaller magnitude than the one that precedes it — for the range of quark masses probed in a

typical lattice simulation, but this is not guaranteed. Second, if a large data set with quark masses

less than some bound is fit to a given order of ChPT, statistical tests of the goodness of fit will

become arbitrarily poor as the statistical resolution of the data is improved. This occurs because

truncations of the ChPT expansion are only an approximation to QCD — eventually the data will

be more accurate than the ChPT expansion can describe at a given order unless additional, higher

order terms are added. This means that statistical goodness of fit criterion may initially show a

reasonable fit to a small data set — when the statistical errors exceed the systematic errors from

truncating the expansion — and then produce arbitrarily poor fits as more measurements are added

and the statistical errors become smaller than the truncation errors. Finally, our fit procedure only

gives us a self-consistent view of the properties of the expansion: we have data corresponding to

a particular range of quark masses, which we fit to ChPT, and then ask whether the resulting

expansion is sensible. While we have some freedom to vary the range of quark masses included in

our fits, lattice QCD can, in principle, provide arbitrarily accurate data at arbitrarily small quark

masses. For the time being we remain far from that situation.
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3.2 Partially Quenched Chiral Perturbation Theory at Next-to-

Next-to-Leading Order

The basic degrees of freedom in QCD are the quark fields, qf , which transform in the fundamental

representation of (color) SU(3) and carry a flavor index f , and the gluon fields, Aaµ, which transform

in the adjoint representation of (color) SU(3) and mediate the strong nuclear force. In the limit of

vanishing quark masses, the QCD Lagrangian with Nf flavors of quarks

LQCD = −1

4
GaµνG

µν
a +

∑
f

qf iγ
µDµqf (3.1)

has an exact SU(Nf )L×SU(Nf )R symmetry2. This symmetry is spontaneously broken down to a

single SU(Nf )V subgroup by the QCD vacuum, giving rise to N2
f − 1 Goldstone bosons: these are

the pions (π+, π0, π−) for Nf = 2, and the pseudoscalar octet3 (π+, π0, π−,K+,K0,K0,K−, η8)

for Nf = 3. The full SU(Nf )L × SU(Nf )R symmetry of the massless Lagrangian is also explicitly

broken by the nonzero masses of the quarks in nature, generating masses for the (pseudo-)Goldstone

bosons.

ChPT is the low-energy effective theory whose degrees of freedom are precisely the Goldstone

bosons of QCD. The Goldstone fields can be parametrized in the exponential representation

U(x) = exp

(
i

f
φ(x)

)
, φ(x) ∈ su(Nf ) (3.2)

with

φ(x) =

 1√
2
π0 π+

π− − 1√
2
π0

 (3.3)

2Naively, the classical Lagrangian (3.1) has an even larger U(Nf )L×U(Nf )R symmetry, but the U(1)A component

is broken by the chiral anomaly and fails to be a symmetry of the quantum theory.
3We use the notation η8 to emphasize that this is the pseudo-Goldstone boson associated with the eighth generator

of SU(3), not the physical η meson detected in particle experiments. In reality flavor SU(3) is not an exact symmetry

of nature, and the states η1 = (uu+ dd+ ss)/
√
3 and η8 = (uu+ dd− 2ss)/

√
6 mix to form the physical η and η′.
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for the SU(2) theory, and

φ(x) =


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K0 − 2√
6
η8

 (3.4)

for the SU(3) theory. A chiral order is assigned to each term by counting the number of derivatives

of U which enter: ∂nU ∼ pn, where p corresponds to external momenta carried by the Goldstone

bosons. One can then systematically construct the ChPT Lagrangian order-by-order in this power

counting scheme

LChPT = L(2)
ChPT︸ ︷︷ ︸
LO

+L(4)
ChPT︸ ︷︷ ︸
NLO

+L(6)
ChPT︸ ︷︷ ︸

NNLO

+ · · · (3.5)

by writing down all possible terms of O(pn),

L(n)
ChPT =

∑
i

αiO
(n)
i , (3.6)

where αi ∈ R are the low energy constants, and O
(n)
i ∼ pn is constructed from U and its derivatives,

and is invariant under the SU(Nf )L × SU(Nf )R symmetry. Gasser and Leutwyler further showed

that by coupling the quark mass matrix, vector and axial currents, and scalar and pseudoscalar

densities to the ChPT Lagrangian as external sources one can elegantly reproduce the Ward iden-

tities of QCD by taking appropriate functional derivatives [5, 6]. While this construction produces

the most general effective Lagrangian consistent with the underlying symmetries of QCD, the nu-

merical values of the low energy constants (LECs) are a priori unknown, and must be determined

phenomenologically or by fits to lattice simulations.

The first detailed, next-to-leading order ChPT calculations were performed by Gasser and

Leutwyler in Ref. [5] for the SU(2) case, and Ref. [6] for the SU(3) case. They compute a number

of two-point and four-point correlation functions which allow them to determine the pseudoscalar

masses and decay constants, scattering lengths, and other low-energy observables of interest. These

calculations were then extended to NNLO in [16], where the O(p6) Lagrangian was first explicitly

constructed, and in Ref. [17] (SU(2)) and Ref. [18] (SU(3)). We will make use of two further

generalizations of chiral perturbation theory: finite volume ChPT and partially quenched ChPT.
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In finite volume (FV) ChPT the spatial R3 of Minkowski spacetime is replaced with a cubic box

of volume L3. This discretizes the allowed momentum states, requiring continuous integrals over

momenta to be replaced with sums. Corrections to infinite volume ChPT results can be computed

as functions of L, and must vanish in the L→ ∞ limit. Since, in a typical lattice QCD simulation,

the pion correlation length is comparable to L, finite volume effects are often one of the dominant

systematic errors when trying to make physical predictions, and FV ChPT is important to remove

or bound these errors. In our fits we parametrize the chiral ansätze for the pseudoscalar masses

and decay constants as

m2
xy = (m2

xy)
∞ +∆L

m2
xy

fxy = (fxy)
∞ +∆L

fxy

(3.7)

where (X)∞ denotes the infinite volume result, and ∆L
X ≡ (X)L − (X)∞ is the finite volume

correction for a box of size L. Explicit formulae for ∆L
X are known to NNLO [19–21], but we will

only make use of the NLO results summarized in the appendices of Ref. [7] for our fits.

Partial quenching is a technique used in lattice simulations to lower the simulated pion mass

without substantially increasing computational cost. On the lattice one is free to independently

vary the sea and valence quark masses: the former enter the fermion determinant used to generate

gauge field configurations, and the latter appear in fermion propagators when computing correlation

functions. In practice mval < msea is often used since reducing the sea quark masses is more

expensive than reducing the valence quark masses. One can regard partially quenched QCD as a

theory in its own right, which reduces to ordinary QCD in the unitary limit mval = msea.

In the framework of ChPT partial quenching is included analytically by generalizing to a super-

symmetric theory with Nsea and Nval sea and valence quarks, respectively. The theory also contains

Nval unphysical bosonic ghost quarks which exactly cancel the contributions from the fermionic va-

lence quarks to closed fermion loops. The SU(Nf )L × SU(Nf )R symmetry of ordinary massless

QCD is promoted to a graded SU(Nval +Nsea|Nval)L × SU(Nval +Nsea|Nval)R symmetry, and the

most general effective Lagrangian consistent with this symmetry is constructed order-by-order, in

analogy to ordinary ChPT. The original construction of the PQChPT Lagrangian is discussed in

Ref. [22], and in Ref. [23] NLO expressions for the pion mass and decay constant are calculated. For
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our NLO PQChPT fits we use the explicit SU(2) formulae collected in Ref. [7]. Bijnens, Danielsson,

and Lähde further generalized the PQChPT expressions for the partially quenched pseudoscalar

masses and decay constants to NNLO: these calculations are presented in Ref. [24] for the SU(2)

case and Ref. [25–27] for the SU(3) case. We make use of Fortran codes provided by Bijnens to

compute these expressions in our NNLO fits. By explicitly taking the unitary limit mval = msea

in the PQChPT Lagrangian and matching to the ChPT Lagrangian one can write down explicit

relations between the PQChPT and ChPT LECs. We collect these results in Appendix 3.A.1.

In Table 3.1 we summarize the counting of LECs up to NNLO in SU(2) and SU(3) ChPT and

PQChPT, and introduce our notation.

ChPT ChPT PQChPT PQChPT

Nf 2 3 2 3

LO B, f B0, f0 B, f B0, f0

NLO
li Li L̂

(2)
i L̂

(3)
i

7 10 11 11

NNLO
ci Ci K̂

(2)
i K̂

(3)
i

53 90 112 112

Table 3.1: Counting of the LECs in ChPT and PQChPT up to NNLO, from [28]. The notations

{li, ci} for the SU(2) ChPT LECs and {Li, Ci} for the SU(3) ChPT LECs are conventional in the

literature. Similarly, we use the notation {L̂(Nf )
i , K̂

(Nf )
i } to distinguish the more general partially

quenched LECs.

3.3 Lattice Setup

In this analysis we make use of a number of RBC/UKQCD domain wall fermion ensembles with a

wide range of unitary pion masses, 117 MeV ≤ mπ ≤ 432 MeV, physical volumes, (2.005(11) fm)3 ≤

L3 ≤ (6.43(26) fm)3, and inverse lattice spacings, 0.98(4) GeV ≤ a−1 ≤ 3.14(2) GeV. In all cases

we work in the isospin symmetric limit of QCD, with two, degenerate dynamical light quark flavors
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of bare mass ml, and a single dynamical heavy flavor of bare mass mh (Nf = 2 + 1). Many of

these ensembles have been analyzed in earlier publications which describe the ensemble generation,

fits to extract the spectrum, and earlier chiral extrapolations based on NLO chiral perturbation

theory [7–10]. We also include two new Möbius domain wall fermion ensembles; details of the

ensemble generation and fits to extract the spectrum are discussed in Appendix 3.C.

In Table 3.2 we list the 12 ensembles included in this analysis and summarize the actions and

input parameters. In all cases we use the Iwasaki gauge action (I) [29], and on some ensembles

supplement this with the dislocation suppressing determinant ratio (I+DSDR) [30, 31]. The DSDR

term suppresses dislocations (“tears”) in the gauge field, representing tunneling between different

topological sectors, that give rise to enhanced chiral symmetry breaking in domain wall fermion

calculations, and occur more frequently at strong coupling. We simulate QCD with Nf = 2 + 1

quark flavors using the domain wall fermion formalism, with either the Shamir (DWF) [32, 33]

or Möbius (MDWF) [34–36] kernel. The details of how the low-energy QCD spectrum has been

extracted from fits to various Green’s functions can be found in Ref. [7] for the 24I ensembles,

Ref. [8] for the 32I ensembles, Ref. [9] for the 32ID ensembles, Ref. [10] for the 48I, 64I, and 32I-fine

ensembles, and in Appendix 3.C for the 32ID-M1 and 32ID-M2 ensembles. In addition, detailed

discussions of the Möbius kernel and the properties of MDWF simulations of QCD can be found

in Ref. [10].

In Appendix 3.B we list fit values at the simulated quark masses in lattice units for the pseu-

doscalar masses and decay constants, Ω baryon mass, residual mass, and Wilson flow scales on each

ensemble. On the older 24I, 32I, and 32ID ensembles these measurements were performed for a

number of different partially quenched valence quark mass combinations which are listed explicitly

in the appendix. In addition, reweighting in the dynamical heavy quark mass was used to deter-

mine the mh dependence and allow for a small, linear interpolation from the simulated mh to the

physical value. On the newer ensembles — 32I-fine, 48I, 64I, 32ID-M1, and 32ID-M2 — we perform

a single set of unitary measurements of the same observables, and do not reweight in mh.
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Ensemble Action β L3 × T × Ls aml amh mπL mπ (MeV)

24I
DWF+I 2.13 243 × 64× 16 0.005 0.04 4.568(13) 339.6(1.2)

DWF+I 2.13 243 × 64× 16 0.01 0.04 5.814(12) 432.2(1.4)

32I

DWF+I 2.25 323 × 64× 16 0.004 0.03 4.062(11) 302.0(1.1)

DWF+I 2.25 323 × 64× 16 0.006 0.03 4.8377(82) 359.7(1.2)

DWF+I 2.25 323 × 64× 16 0.008 0.03 5.526(12) 410.8(1.5)

32ID
DWF+I+DSDR 1.75 323 × 64× 32 0.001 0.046 3.9992(69) 172.7(9)

DWF+I+DSDR 1.75 323 × 64× 32 0.0042 0.046 5.7918(79) 250.1(1.2)

32I-fine DWF+I 2.37 323 × 64× 12 0.0047 0.0186 3.773(42) 370.1(4.4)

48I MDWF+I 2.13 483 × 96× 24 0.00078 0.0362 3.8633(63) 139.1(4)

64I MDWF+I 2.25 643 × 128× 12 0.000678 0.02661 3.7778(84) 139.0(5)

32ID-M1 MDWF+I+DSDR 1.633 323 × 64× 24 0.00022 0.0596 3.780(15) 117.3(4.4)

32ID-M2 MDWF+I+DSDR 1.943 323 × 64× 12 0.00478 0.03297 6.236(21) 401.0(2.3)

Table 3.2: Summary of ensembles included in this analysis and input parameters. Here β is the

gauge coupling, L3 × T × Ls is the lattice volume decomposed into the length of the spatial (L),

temporal (T ), and fifth (Ls) dimensions, and aml and amh are the bare, input light and heavy

quark masses. The value of mπ quoted is the unitary pion mass in physical units, where we have

used the lattice spacings listed in Table 3.3.

3.4 The Global Fit Procedure

In Ref. [8–10] we have developed a “global fit" procedure for performing a combined chiral fit and

continuum extrapolation of lattice data, the details of which we will summarize here. The global

fit also allows us to convert predictions from our simulations, which are performed in dimensionless

lattice units, into physical units by determining the lattice spacing a on each ensemble. While we

have historically focused on using this construction to make physical predictions from our simu-

lations, viewing chiral perturbation theory as a tool to parametrize the quark mass dependence

of low-energy QCD observables, here we will adopt a slightly different view and regard the fit to

ChPT itself as our primary interest.
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Our canonical global fit, which we have most recently used in Ref. [10], includes the pion and

kaon masses4 mπ and mK , the pion and kaon decay constants fπ and fK , the omega baryon mass

mΩ, and the Wilson flow scales [37] t1/20 and w0. Partially quenched next-to-leading order SU(2)

chiral perturbation theory with finite volume corrections is used to perform the chiral fit to the

valence quark (mx, my) and light dynamical quark (ml) mass dependence of mπ and fπ. The input

dynamical heavy quark mass is carefully tuned during the ensemble generation to closely correspond

to the physical strange quark mass, however, any slight mistuning introduces small errors in our

simulated values of mπ and fπ, which are not described by SU(2) PQChPT. We account for this

by reweighting (see Section II.D of Ref. [8]) in the heavy quark determinant to generate a series

of values of each observable for several mh near the simulated mass, and then supplement the

chiral SU(2) ansatz with a term linear in mh, allowing us to interpolate the reweighted data to the

physical strange quark mass. NLO SU(2) heavy meson PQChPT with finite volume corrections [7,

38] is used for mK and fK . The chiral fits to mΩ and the Wilson flow scales are performed using

a simple analytic ansatz which is linear in the quark masses. Discretization effects are included

by adding a term linear in a2 to each fit form, allowing us to ultimately take the continuum limit

a → 0. The raw simulation data is in dimensionless lattice units which are different for each

ensemble, reflecting the different (physical) lattice spacings. We account for this by performing the

chiral fits in the bare, dimensionless lattice units of a single reference ensemble, which we choose

to be our 323 × 64 Iwasaki (32I) lattice (Table 3.2). The choice of reference ensemble is arbitrary,

and for well-behaved fits should have no influence on predictions for physical observables or for the

values of the low energy constants. We introduce additional fit parameters

Rea ≡
ar

ae
, Zel ≡ 1

Rea

(am̃l)
r

(am̃l)
e , Zeh ≡ 1

Rea

(am̃h)
r

(am̃h)
e (3.8)

to convert between bare lattice units on the reference ensemble r and other ensembles e, where a

is the lattice spacing and m̃q = mq +mres is the total quark mass5.
4Note: we work in the isospin symmetric limit of QCD, where mu = md ≡ ml, and neglect electromagnetic

corrections. In this limit the charged and neutral pions are degenerate, as are the charged and neutral kaons, so we

can speak unambiguously of “the pion” and “the kaon”.
5In the domain wall fermion formalism a finite fifth dimension introduces a small chiral symmetry breaking, leading
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The chiral ansätze discussed above reflect a simultaneous expansion in the quark masses, lattice

volume (L), and lattice spacing (a), about the infinite volume, continuum, chiral limit. Our power-

counting scheme counts the dominant discretization term — which is proportional to a2 for domain

wall fermions — as the same order as the NLO continuum PQChPT corrections. While we include

continuum PQChPT terms up to O(p6) in our NNLO fits, cross terms proportional to XNLO×∆NLO
X

and XNLO×a2 are neglected since they are higher-order in our power-counting, and are empirically

observed to be small. The full chiral ansatz for X ∈ {m2
π, fπ}, for example, including the finite

volume and a2 terms, has the generic form

X(m̃q, L, a
2) ' X0

(
1 +XNLO(m̃q) +XNNLO(m̃q)︸ ︷︷ ︸

NNLO Continuum PQChPT

+ ∆NLO
X (m̃q, L)︸ ︷︷ ︸

NLO FV corrections

+ cXa
2︸ ︷︷ ︸

Lattice spacing

)
(3.9)

where X0 is the leading order value of X in the continuum and infinite-volume limits, and “'”

denotes equality up to truncation of higher order terms. Since the Iwasaki and I+DSDR actions

have, in general, different discretization errors for a given value of the lattice spacing, we fit inde-

pendent a2 coefficients for each observable X, denoted cIX and cIDX , respectively. The NLO SU(2)

ansätze are written in complete detail in Appendix H of Ref. [10]; the generalization to NNLO is

straightforward. Appendix B of the same reference also discusses how to write a given chiral ansatz

in our dimensionless formalism.

The procedure for performing a global fit is as follows:

1. The valence quark mass dependence of mres is fit to a linear ansatz on each ensemble. We

then extrapolate mres to the chiral limit mq → 0, and use this value in the remainder of the

analysis.

2. A simultaneous chiral/continuum fit of m2
π, m2

K , fπ, fK , mΩ, t1/20 and w0 is performed

on all ensembles using the ansätze described in the preceding paragraph. The quark mass

to an additive renormalization of the input quark masses by mres (the residual mass). In Appendix 3.C we briefly

discuss how mres is extracted.
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dependence is parametrized in terms of m̃q = mq+mres. This step also determines the ratios

of lattice scales Rea and Ze{l,h} and the dependence on a2.

3. Three of the quantities from 2 are defined to have no a2 corrections and establish our con-

tinuum scaling trajectory by matching onto their known, physical values6. In the analysis of

[10] we have used mπ, mK , and mΩ, and implemented this condition by numerically inverting

the chiral fit to determine input bare valence quark masses mphys
l and mphys

h such that the

ratios mπ/mΩ and mK/mΩ take their physical values.

4. From 3 we obtain mΩ at mphys
l and mphys

h on the reference ensemble; we then use the ratio

mr
Ω/m

phys
Ω to determine the lattice spacing ar in physical units. Together with the ratios of

lattice scales from 2 we can determine the lattice spacings on the other ensembles, as well as

extrapolate observables to the physical quark mass, continuum limit in physical units.

The fits described in steps 1 and 2 are performed using uncorrelated nonlinear χ2 minimization with

the Levenberg-Marquardt algorithm [40, 41]. Due to the large number of data points in our fits we

have a very nearly singular correlation matrix that we cannot reliably invert, as would be required

to perform fits with a fully correlated χ2; we show an example of one of our correlation matrices in

Appendix 3.D. As a result, the χ2/dof that we present cannot be interpreted as the goodness-of-fit,

and instead we will present histograms showing the distribution of the data around our fit. These

histograms provide a simple summary of the fit quality, and, in particular, highlight any data that

is far from the fit function. The numerical inversion in step 3 is performed by minimizing

χ2 =

[(
mπ

mΩ

)
(m̃l, m̃h)−

(
mπ

mΩ

)PDG
]2

+

[(
mK

mΩ

)
(m̃l, m̃h)−

(
mK

mΩ

)PDG
]2
, (3.10)

where PDG denotes the experimental value from [39]. Statistical errors on the fit parameters are

computed using the superjackknife resampling technique [42]. The choices of which quantities are

used to determine the physical quark masses in step 3 and the lattice spacing in step 4 are arbitrary,
6For reference, our values for the “physical”, isospin symmetric masses and decay constants, excluding QED

effects, are: mphys
π = 135.0MeV (PDG π0 mass), mphys

K = 495.7MeV (average of the PDG K0 and K± masses),

mphys
Ω = 1672.45MeV (PDG Ω− mass), fphys

π = 130.4MeV (PDG π− decay constant), and fphys
K = 156.1MeV (PDG

K− decay constant) [39].

71



and all results should agree in the continuum limit regardless of this choice.

The matching to our chosen scaling trajectory results in values of the physical quark masses,

mphys
l and mphys

h , as well as corresponding values of the leading-order chiral parameter B, that are

normalized in the native units of our 32I ensemble. In order to be useful to others, these quanti-

ties must be renormalized into a more convenient scheme such as MS. As described in Refs. [8–

10] we achieve this by first renormalizing in variants of the non-perturbative Rome-Southampton

regularization-invariant momentum scheme with symmetric kinematics (RI/SMOM) [43–47]. The

matching factors between these schemes and MS can be computed using standard continuum per-

turbation theory with dimensional regularization applied at a high energy scale, typically µ ∼ 3

GeV, at which perturbation theory is known to be reliable. We use the RI/SMOM intermediate

scheme for our central values. The only significant systematic error on the result is due to the

truncation of the perturbative series to two-loop order in the computation of the RI/SMOM→ MS

matching factors. In order to estimate the size of this effect we compare the resulting MS values

to those computed using the RI/SMOMγµ intermediate scheme, taking the full difference as a con-

servative estimate7.

Renormalized quark masses are obtained by taking the product

mMS
f = ZMS, 32I

m mphys
f +O(a2) , (3.11)

where f ∈ {l, h} and ZMS, 32I
m is the quark mass renormalization coefficient computed on the 32I

ensemble. This determination of mMS
f contains O(a2) errors because the renormalization factors

have only been computed at a single lattice spacing. Using the quantities Zl and Zh defined in

Eqn. (3.8), we can also compute the renormalized physical quark mass using renormalization factors

calculated on the 24I ensemble as follows:

mMS
f =

ZMS, 24I
m

Z24I
f

mphys
f +O(a2) , (3.12)

7For more detail regarding the SMOM and SMOMγµ schemes we refer the reader to Refs. [8, 46].
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Combining these two equations, we can compute a value for the quark mass that is free from O(a2)

errors:

mMS
f = ZMS

mfm
phys
f +O(a4) , (3.13)

where

ZMS
mf = lim

a→0

{
ZMS
m (a)/Zf (a)

}
, (3.14)

and the a → 0 limit is taken by performing a linear extrapolation using the two available lattice

spacings. Similarly, the renormalized value of B can be obtained as

BMS = Bfit/ZMS
ml . (3.15)

Note that the fact that domain wall fermions are non-perturbatively O(a) improved and have good

chiral symmetry eliminates dependence on odd-powers of the lattice spacing.

For this analysis we use the values of Zml and Zmh computed in Ref. [10], and for more details

we refer the reader to Section V.C and Appendix F of that work. Note that the calculation of these

quantities necessarily involves the computed values of the lattice spacing, which differ between the

various fits we perform. For the analyses presented in this document we do not recompute Zmf for

each fit; however our lattice spacings are all in excellent agreement with those in the aforementioned

work, hence we choose to neglect the small systematic error associated with this mismatch.

While the fits discussed in this work are in many ways an extension of the analysis presented in

Ref. [10], there are a few important differences we would like to emphasize. First, in Ref. [10] chiral

perturbation theory was used only to make modest, O(1%) corrections to the spectrum computed

on the physical quark mass 483 × 96 (48I) and 643 × 128 (64I) lattices. This was achieved using an

overweighting procedure, in which the contributions

χ2
e = αe

∑
i

(
yie − f ie
σie

)2

(3.16)

to χ2 =
∑

e χ
2
e from each ensemble were multiplied by tunable, independent parameters αe. By

choosing α48I, α64I � 1 and αe = 1 otherwise, the fit was effectively forced to pass through the
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48I and 64I data, using information from the other ensembles only to make a small correction

to the physical point. In this work we are interested more generally in the applicability of chiral

perturbation theory to describe the quark mass dependence of the QCD spectrum, and thus we do

not employ overweighting. Second, in Ref. [10] the Wilson flow scales t1/20 and w0 were introduced

into the global fit procedure, which we do not include in any of the fits presented in Section 3.5.

While the inclusion of the Wilson flow scales leads to a marked improvement in the determination

of the lattice spacings, they do not constrain the ChPT LECs, and are unnecessary for our com-

putationally demanding NNLO fits.

Since the 32ID-M1 and 32ID-M2 lattices have not appeared in our earlier global fit analyses, we

have updated our canonical global fit from Ref. [10] to include these ensembles and determine their

properties. We note that even though the 32ID-M2 ensemble has a relatively heavy unitary pion

mass (mπ = 401.0(2.3)MeV) that lies outside the 370 MeV cut used in this fit, the overweighting

procedure results in a fit that is insensitive to heavy ensembles, and we can safely assume that

this discrepancy will not lead to any significant systematics. This provides an explicit check that

our fits in this work, including the new ensembles, are consistent with our earlier work, and we

indeed see that the lattice spacings and other parameters are consistent with Ref. [10]. This fit

also establishes a baseline relative to the global fit performed in Ref. [10], by which we can judge

the consistency of the new fits discussed in Section 3.5. The values we obtain for the physical box

sizes, lattice spacings, and residual mass in the chiral limit are summarized in Table 3.3.
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Ensemble L (fm) a−1 (GeV) amphys
l amphys

h amres

24I 2.6496(73) 1.7844(49) -0.001770(79) 0.03225(18) 0.003038(78)

32I 2.6466(93) 2.3820(84) 0.000261(13) 0.02480(18) 0.000662(11)

32ID 4.573(22) 1.3784(68) -0.000106(16) 0.04625(48) 0.0018478(73)

32I-fine 2.005(11) 3.144(17) 0.000057(16) 0.01846(32) 0.0006300(59)

48I 5.468(12) 1.7293(36) 0.0006982(80) 0.03580(16) 0.0006102(40)

64I 5.349(16) 2.3572(69) 0.0006213(77) 0.02542(17) 0.0003116(23)

32ID-M1 6.43(26) 0.981(39) 0.00107(26) 0.0850(68) 0.002170(16)

32ID-M2 3.067(16) 2.055(11) -0.003429(16) 0.02358(33) 0.0044660(46)

Table 3.3: Physical box sizes, inverse lattice spacings, bare, unrenormalized quark masses, and

residual mass in the chiral limit for the ensembles included in this work. These numbers are

obtained by repeating the global fit analysis published in Ref. [10], including the new 32ID-M1 and

32ID-M2 ensembles.

3.5 Fits to SU(2) PQχPT

In this section we discuss global fits based on SU(2) partially quenched chiral perturbation theory.

These fits include:

1. The pion mass and decay constant, fit to NLO or NNLO PQChPT, with NLO finite volume

corrections in both cases.

2. The kaon mass and decay constant, fit to NLO heavy-meson PQChPT with NLO finite volume

corrections.

3. The Ω baryon mass, fit to a linear, analytic ansatz.

mπ, mK , and mΩ are used as the three inputs to determine the physical quark masses and lattice

spacings; this leaves fπ and fK as predictions. We consider two different cuts on the heaviest

unitary pion mass included in the fit: 370 MeV and 450 MeV. Any ensemble with a unitary pion

mass greater than the cut is excluded from the fit completely. Likewise, all partially quenched
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“pion” measurements with mxy > mcut
π are excluded even if the unitary pion mass is within the

cut. The data we use for the fits with a 370 MeV cut is the same as the data used in the fits with a

370 MeV cut in Ref. [10], with the addition of the new 32ID-M1 ensemble. We do not include any

additional kaon or Ω baryon data when we raise the mass cut, since these quantities are described

by NLO (kaon) or linear (Ω) ansatzäe in all of the fits that we have performed — the heavier 450

MeV cut is intended to test the full partially quenched NNLO expressions for mπ and fπ by using

all of our available data.

In Sections 3.5.1-3.5.3 we present the fit results, including our values for the partially quenched

NLO and NNLO LECs. In Section 3.5.4 we examine the range of applicability of NNLO SU(2)

ChPT and the relative sizes of the terms in the chiral expansion. Finally, in Section 3.5.5 we

compute the unquenched SU(2) ChPT LECs from these results, and also discuss other predictions

we can make from SU(2) ChPT. All fits discussed in this section were performed by minimizing

the uncorrelated χ2; in Appendix 3.D we repeat the fits using a weighted χ2 to explore systematic

effects associated with correlations in the data. These weighted fits are also defined by Eqn. (3.16),

but rather than choosing αe � 1 to overweight the physical point ensembles as we did in Ref. [10],

here we underweight the 24I, 32I, and 32ID ensembles by a factor αe = 1/Ne, where Ne is the

number of nondegenerate (partially quenched) pseudoscalar mass measurements on ensemble e.

This has the effect of capturing some of the most important correlations — those between partially

quenched measurements with different combinations of valence quarks on a given ensemble, and

between reweightings in mh of the same observable — as we argue in Appendix 3.D, while avoiding

the numerical instabilities that plague fully correlated fits.

3.5.1 Fit Parameters

Tables 3.4 - 3.7 summarize the fit parameters, including a statistical error computed with the

superjackknife resampling technique [10]. These include the χ2/dof, physical quark masses, and

inverse lattice spacings in physical units (Table 3.4), the ratios of quark masses and lattice spacings

between the reference 32I ensemble and the other ensembles (Table 3.5), the PQChPT LECs

(Table 3.6), and additional fit parameters describing the continuum and chiral scaling of the kaon
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and Ω baryon data (Table 3.7). We generally observe excellent consistency comparing ensemble

properties across the fits we have performed — the physical quark masses and lattice spacings from

Table 3.4, and the ratios of lattice scales from Table 3.5, for example — with the notable exception

of the NLO fit with a 450 MeV cut, for which we observe systematic shifts outside our statistical

errors. This is not surprising, however, since we do not expect NLO ChPT to accurately describe

the lattice data up to such a heavy scale, and indeed we see a large increase in the χ2/dof for this

particular fit.

While NLO fits constrain the four LECS {L̂(2)
4 , L̂

(2)
5 , L̂

(2)
6 , L̂

(2)
8 }, NNLO fits constrain nine NLO

LECs — {L̂(2)
i }8i=0 — as well as eight linear combinations of twelve NNLO LECs, which are listed

explicitly in Table 3.6. We have set K̂(2)
22 = K̂

(2)
27 = K̂

(2)
39 = K̂

(2)
40 = 0 when we perform the fits for

simplicity, so that each linear combination reduces to a single, independent LEC. We also impose

the constraint8 L̂
(2)
11 = −l4/4, which is required for the PQChPT Lagrangian to reduce to the

unquenched ChPT Lagrangian in the unitary limit [48]. We perform independent fits at the two

chiral scales Λχ = 770MeV and Λχ = 1GeV, and report the PQChPT LECs at both scales. Since

L̂
(2)
7 and L̂

(2)
8 are scale-independent, comparing the results for the fit with Λχ = 770MeV and the

fit with Λχ = 1GeV provides a further consistency check.

We note that the 32ID-M1 ensemble has previously appeared in Ref. [49], where a simple

estimate of the lattice spacing — a = mΩ/m
PDG
Ω , with mΩ at the simulated heavy quark mass —

was used to convert the spectrum from lattice units to physical units. We find a 10% discrepancy

between this lattice spacing and the lattice spacings obtained from our global fits and reported in

Table 3.4. This arises from the 33% difference between the input bare heavy quark mass amh =

0.0596 and the physical bare heavy quark masses determined from the global fits (also reported in

Table 3.4): there is an O(10%) shift in the ratio mΩ/m
PDG
Ω when mΩ is adjusted from the simulated

point to the physical point.

We note that Zl = Zh = Ra = 1 by definition on the 32I ensemble. We have constrained

Z64I
l = Z64I

h = 1 since the Möbius parameters and gauge coupling on the 64I ensemble have been
8We have experimented with fits where L̂(2)

11 is left as a free parameter, but we find that L̂(2)
11 6= −l4/4 well outside

of statistics.
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chosen such that the 64I action is identical to the 32I action up to small chiral symmetry breaking

effects. As we argue in Ref. [10], these chiral symmetry breaking effects lead to a small shift in

the lattice spacings, so we do not constrain R64I
a = 1. Likewise, we constrain Z24I

l = Z48I
l and

Z24I
h = Z48I

h for the same reason, but do not set R24I
a = R48I

a .

The observation that Zl, Zh ∼ 0.7 for the 32ID-M1 ensemble in Table 3.5 suggests that this

lattice is at sufficiently strong coupling that the five-dimensional domain wall fermion fields are no

longer tightly bound to the domain walls, and instead leak into the fifth (s) dimension. As a result,

somewhat larger input masses are required to achieve the same effective mass for the physical four-

dimensional quark fields defined on the domain walls. We choose to include this ensemble in our fits

since we do not observe any significant systematics if it is removed, and it is our only ensemble with

lighter-than-physical pions, which probes the regime where chiral curvature is most pronounced.
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NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

χ2/dof 0.36(10) 1.14(27) 0.21(9) 0.29(10)

Nparameters 42 45 55 58

Ndata 668 889 668 889

24I

amphys
l -0.001774(82) -0.001764(77) -0.001772(81) -0.001767(80)

amphys
h 0.03209(40) 0.03239(32) 0.03210(38) 0.03219(35)

a−1 1.784(14) GeV 1.781(12) GeV 1.784(13) GeV 1.782(13) GeV

32I

amphys
l 0.000272(15) 0.000244(18) 0.000282(14) 0.000282(14)

amphys
h 0.02512(29) 0.02424(43) 0.02537(27) 0.02550(27)

a−1 2.360(17) GeV 2.405(22) GeV 2.349(16) GeV 2.344(16) GeV

32ID

amphys
l -0.000098(20) -0.000105(21) -0.000098(20) -0.000097(18)

amphys
h 0.04652(58) 0.04633(61) 0.04637(53) 0.04624(50)

a−1 1.374(8) GeV 1.377(9) GeV 1.376(8) GeV 1.377(7) GeV

32I-fine

amphys
l 0.000091(32) 0.000059(32) 0.000098(32) 0.000095(32)

amphys
h 0.01936(67) 0.01784(66) 0.01977(68) 0.01993(70)

a−1 3.079(44) GeV 3.176(48) GeV 3.059(44) GeV 3.051(43) GeV

48I

amphys
l 0.000685(14) 0.000706(12) 0.000688(13) 0.000695(13)

amphys
h 0.03547(33) 0.03595(24) 0.03550(31) 0.03562(27)

a−1 1.737(8) GeV 1.726(6) GeV 1.736(7) GeV 1.733(6) GeV

64I

amphys
l 0.000625(10) 0.000604(15) 0.0006352(92) 0.000635(10)

amphys
h 0.02556(23) 0.02486(40) 0.02579(21) 0.02590(21)

a−1 2.352(9) GeV 2.379(17) GeV 2.343(8) GeV 2.339(8) GeV

32ID-M1

amphys
l 0.00094(12) 0.00110(12) 0.00087(11) 0.00086(11)

amphys
h 0.0823(35) 0.0860(32) 0.0800(30) 0.0797(30)

a−1 1.002(20) GeV 0.978(17) GeV 1.015(17) GeV 1.017(18) GeV

32ID-M2

amphys
l — -0.003404(35) — -0.003367(37)

amphys
h — 0.02486(97) — 0.0255(11)

a−1 — 2.025(34) GeV — 1.990(35) GeV

Table 3.4: The (uncorrelated) χ2/dof, unrenormalized physical quark masses in bare lattice units

(without mres included), and the values of the inverse lattice spacing a−1 in physical units, obtained

from fits to SU(2) PQChPT with the stated pion mass cuts.
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NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

24I

Zl 0.980(11) 0.959(11) 0.9842(97) 0.979(10)

Zh 0.9711(82) 0.950(10) 0.9756(78) 0.9770(73)

Ra 0.7561(61) 0.7402(73) 0.7596(58) 0.7604(56)

32I

Zl ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

Zh ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

Ra ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

32ID

Zl 0.9162(79) 0.908(11) 0.9212(76) 0.9186(84)

Zh 0.9157(66) 0.9028(99) 0.9218(61) 0.9258(59)

Ra 0.5822(45) 0.5725(64) 0.5858(41) 0.5877(40)

32I-fine

Zl 0.994(30) 0.995(31) 0.995(30) 1.001(30)

Zh 0.989(21) 1.021(20) 0.980(21) 0.978(21)

Ra 1.305(16) 1.320(16) 1.302(16) 1.302(16)

48I

Zl 0.980(11) 0.959(11) 0.9842(97) 0.979(10)

Zh 0.9711(82) 0.950(10) 0.9756(78) 0.9770(73)

Ra 0.7360(69) 0.7174(76) 0.7391(65) 0.7393(62)

64I

Zl ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

Zh ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

Ra 0.9968(57) 0.9892(52) 0.9973(57) 0.9981(57)

32ID-M1

Zl 0.708(15) 0.682(15) 0.720(14) 0.719(14)

Zh 0.719(15) 0.694(15) 0.733(13) 0.737(13)

Ra 0.4246(83) 0.4067(77) 0.4321(74) 0.4338(74)

32ID-M2

Zl — 1.013(13) — 1.013(16)

Zh — 1.009(14) — 1.028(18)

Ra — 0.8419(97) — 0.849(12)

Table 3.5: Ratios of lattice spacings (Ra) and light and heavy quark masses (Zl, Zh) between each

ensemble and the reference 32I ensemble.
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LEC Λχ NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

B
—

4.229(35) GeV 4.270(41) GeV 4.189(43) GeV 4.203(44) GeV

f 0.1213(15) GeV 0.1236(20) GeV 0.1207(17) GeV 0.1215(16) GeV

103L̂
(2)
0

1 GeV

— — -3.8(2.5) 1.0(1.1)

103L̂
(2)
1 — — 0.52(71) -0.62(52)

103L̂
(2)
2 — — -4.1(1.7) 0.06(74)

103L̂
(2)
3 — — 1.1(1.4) -1.56(87)

103L̂
(2)
4 -0.211(79) -0.038(51) -0.31(25) -0.56(22)

103L̂
(2)
5 0.438(72) 0.501(43) 0.37(34) 0.60(28)

103L̂
(2)
6 -0.175(48) -0.054(31) -0.19(13) -0.38(10)

103L̂
(2)
7 — — -1.30(48) -0.75(27)

103L̂
(2)
8 0.594(36) 0.581(22) 0.52(16) 0.69(13)

103L̂
(2)
0

770 MeV

— — -3.7(2.8) 1.1(1.1)

103L̂
(2)
1 — — 0.63(90) -0.52(53)

103L̂
(2)
2 — — -3.9(2.0) 0.27(78)

103L̂
(2)
3 — — 1.3(1.3) -1.42(85)

103L̂
(2)
4 -0.004(79) 0.169(51) -0.10(27) -0.35(22)

103L̂
(2)
5 0.852(72) 0.915(43) 0.78(35) 1.02(28)

103L̂
(2)
6 -0.019(48) 0.101(31) -0.04(14) -0.23(10)

103L̂
(2)
7 — — -1.30(52) -0.75(26)

103L̂
(2)
8 0.594(36) 0.581(22) 0.52(17) 0.69(13)

106
(
K̂

(2)
17 − K̂

(2)
39

)

1 GeV

— — -7.3(2.0) -7.6(1.1)

106
(
K̂

(2)
18 + 6K̂

(2)
27 − K̂

(2)
40

)
— — 14.5(7.9) 19.2(4.7)

106K̂
(2)
19 — — 11(16) -0.9(4.2)

106K̂
(2)
20 — — -12(10) -3.2(2.8)

106
(
K̂

(2)
21 + 2K

(2)
22

)
— — -7.6(6.9) 4.9(4.1)

106K̂
(2)
23 — — -12.4(3.5) -2.8(1.4)

106K̂
(2)
25 — — 6.7(4.5) 1.3(1.7)

106
(
K̂

(2)
26 + 6K̂

(2)
27

)
— — 3.2(6.8) 11.2(3.6)

106
(
K̂

(2)
17 − K̂

(2)
39

)

770 MeV

— — -6.2(1.5) -5.33(77)

106
(
K̂

(2)
18 + 6K̂

(2)
27 − K̂

(2)
40

)
— — 8.3(6.6) 14.5(3.9)

106K̂
(2)
19 — — 3(12) -3.9(2.3)

106K̂
(2)
20 — — -5.0(7.5) 0.0(1.8)

106
(
K̂

(2)
21 + 2K

(2)
22

)
— — -6.8(7.0) 6.2(3.2)

106K̂
(2)
23 — — -7.2(3.2) -0.2(1.2)

106K̂
(2)
25 — — 2.4(3.4) -1.0(1.1)

106
(
K̂

(2)
26 + 6K̂

(2)
27

)
— — 1.9(6.4) 10.1(3.1)

Table 3.6: SU(2) PQChPT LECs fit at two different chiral scales — Λχ = 1GeV and Λχ = 770MeV

— in units of the canonical size at a given order in the chiral expansion. The LECs L̂(2)
7 and L̂

(2)
8

have no scale dependence. The value of B quoted here is unrenormalized.
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Parameter NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

m(K) 0.4863(27) GeV 0.4861(43) GeV 0.4862(24) GeV 0.4862(25) GeV

f (K) 0.1501(17) GeV 0.1535(22) GeV 0.1490(17) GeV 0.1488(16) GeV

103λ1 3.2(1.0) 3.64(98) 3.2(1.0) 3.3(1.0)

103λ2 28.17(65) 28.45(65) 28.27(78) 28.76(74)

103λ3 -3.9(1.1) -3.22(98) -3.8(1.1) -3.9(1.0)

103λ4 5.69(31) 5.82(32) 5.70(31) 5.83(33)

cIf 0.059(47) GeV2 -0.028(51) GeV2 0.081(48) GeV2 0.065(45) GeV2

cIDf -0.013(17) GeV2 -0.058(19) GeV2 0.013(15) GeV2 0.012(16) GeV2

cI
f (K) 0.049(39) GeV2 -0.035(38) GeV2 0.070(41) GeV2 0.069(36) GeV2

cID
f (K) -0.005(15) GeV2 -0.044(14) GeV2 0.011(15) GeV2 0.019(15) GeV2

cmh,m2
π

1.6(2.7) 0.1(2.2) 1.4(2.7) 0.9(2.1)

cmh,fπ 0.14(11) 0.061(89) 0.221(97) 0.257(80)

cmy ,m2
K

3.915(22) GeV 3.981(34) GeV 3.895(20) GeV 3.884(20) GeV

cmh,m
2
K

0.008(52) GeV 0.046(58) GeV 0.022(51) GeV 0.026(56) GeV

cmy ,fK 0.2926(62) 0.2983(59) 0.2906(64) 0.2987(56)

cmh,fK 0.067(50) 0.073(52) 0.062(51) 0.096(48)

m(Ω) 1.6646(47) GeV 1.6643(91) GeV 1.6643(37) GeV 1.6644(36) GeV

cml,mΩ 3.54(74) 3.73(67) 3.68(74) 3.66(76)

cmy ,mΩ 5.650(59) 5.794(67) 5.585(55) 5.550(55)

cmh,mΩ 2.31(62) 3.19(55) 1.83(61) 1.64(63)

Table 3.7: Additional fit parameters in physical units and adjusted to the physical strange quark

mass. Here {m(K), f (K)} and {λi} are the LO and NLO LECs of heavy-meson SU(2) PQChPT

evaluated at the chiral scale Λχ = 1GeV. cIf and cIDf are the a2 coefficients of fπ for the Iwasaki

and Iwasaki+DSDR gauge actions, respectively, and likewise for cI
f (K) and cID

f (K) . The notation

cmq ,X denotes the coefficient of a term linear in mq for quantity X, and m(Ω) is the constant term

in the (linear) mΩ ansatz. We emphasize that the distinction between “NLO” and “NNLO” fits,

as well as the mass cut, applies only to mπ and fπ: the kaon and Ω baryon data and fit forms are

the same in all of the fits.
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3.5.2 Histograms

In Figure 3.1 we plot stacked histograms of the deviation of each data point Yi from the fit prediction

Y fit
i in units of the standard deviation of the data σYi :

Xi ≡
Yi − Y fit

i

σYi
. (3.17)

This can be thought of as the signed square root of the contribution to χ2 from each data point,

where the sign indicates whether the fit is overestimating (-) or underestimating (+) the data. The

distributions of m2
π and fπ, in particular, give an overall impression of how well partially quenched

SU(2) chiral perturbation theory truncated to a given order is able to describe all of our (in general

partially quenched) lattice data. We observe excellent agreement between the data and the NLO

fit when we use a pion mass cut of 370 MeV, however, when we raise the mass cut to 450 MeV,

the NLO fit clearly starts to break down, as evidenced by the larger χ2/dof and broader histogram

with many 3σ and 4σ outliers. The NNLO ansatz appears to have no difficulty describing our full

data set.
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Figure 3.1: Stacked histograms of the signed deviation of the data from the fit in units of the

standard deviation.
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3.5.3 Unitary Chiral Extrapolation

In Figures 3.2 and 3.3 we overlay the unitary measurements of m2
π/ml and fπ on each ensemble with

the ChPT prediction obtained using the LECs from each fit. The fit results have also been used to

correct each lattice measurement from the simulated point to the continuum, infinite volume, and

physical strange quark mass limit. The light quark mass has been renormalized in the MS scheme

at 3 GeV using the renormalization coefficient computed in Ref. [10].

The influence of the NNLO terms is most clear in the chiral fits to fπ (Figure 3.3), which,

in general, exhibit a more pronounced nonlinearity in the light quark mass than the chiral fits to

m2
π. While we observe that both m2

π and fπ are consistent between the NLO and NNLO fits with

a mass cut of 370 MeV, when the mass cut is raised to 450 MeV the NLO and NNLO ansätze

accommodate the additional heavy data differently. For the NLO case the entire m2
π and fπ curves

are systematically shifted upward to higher energy — as one can see by comparing this fit to the

adjacent NLO fit with mcut
π = 370MeV in Figures 3.2 and 3.3 — providing further evidence that

this heavy data has extended into a regime where NLO PQChPT is no longer reliable. A similar

comparison between the NNLO fits suggests that the heavy data influences these fits by smoothing

out the curvature of fπ in the heavy mass regime mMS
l & 0.025MeV.
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Figure 3.2: Chiral extrapolation of unitary m2
π data. The fit has been used to correct each data

point from the simulated strange quark mass to the physical strange quark mass, as well as to take

the infinite volume limit. Filled symbols correspond to sub-ensembles which were included in the

fit, and open symbols correspond to sub-ensembles which were excluded from the fit based on the

pion mass cut. The dashed vertical line corresponds to the heaviest unitary point included in the

fit. “Physical point” is the prediction for the physical pion mass obtained by interpolating the fit

to mphys
l .
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Figure 3.3: Chiral extrapolation of unitary fπ data. The fit has been used to correct each data

point from the simulated strange quark mass to the physical strange quark mass, as well as to take

the infinite volume and continuum limits. Filled symbols correspond to sub-ensembles which were

included in the fit, and open symbols correspond to sub-ensembles which were excluded from the

fit based on the pion mass cut. The dashed vertical line corresponds to the heaviest unitary point

included in the fit. “Physical point” is the prediction for the physical pion decay constant obtained

by interpolating the fit to mphys
l .
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3.5.4 Chiral Expansion

Chiral perturbation theory is an effective field theory with an asymptotic series expansion. For

ChPT to have any practical use it must be applied in a regime where the expansion is well-ordered

in the sense that |LO| > |NLO| > |NNLO| > · · ·, since calculations beyond one or two loops are

generally intractable, and higher order terms must be neglected. This in turn restricts the range of

quark masses for which ChPT is applicable. While the very light masses of the up and down quarks

suggest that the SU(2) expansion ought to be well-ordered at the physical point, one expects that

there is an upper limit, beyond which the N3LO and higher order terms can no longer be discarded

if one expects ChPT to describe low-energy QCD with high precision. In this section we use our

NNLO fits to probe this scale.

In Figure 3.4 we plot the relative sizes of the LO, NLO, and NNLO terms for the pion mass and

decay constant as a function of the liqht quark mass, using the LECs from Table 3.6. The heaviest

unitary ensemble included in the fit is indicated with a dashed vertical line. We observe that the

NLO and NNLO terms contribute to m2
π with opposite sign, but to fπ with the same sign: this

behavior is expected from the lattice data, which suggests that the tree-level prediction m2
π ∝ ml

works reasonably well even for heavier-than-physical ml, but not for the markedly nonlinear fπ.

We also observe that the NNLO terms are generally statistically consistent with zero for the fit

with the lighter mass cut, indicating that the ensembles with mπ & 350MeV are important for

constraining the NNLO terms in our fits. This should be viewed as an artifact of our data set

rather than a statement about SU(2) chiral perturbation theory; one ought to be able to constrain

the LECs to any order with data arbitrarily close to the chiral limit provided one has enough high-

precision measurements9. Both mass cuts give consistent results for ml/m
phys
l . 8.0, where the fits

are directly constrained by lattice data. At the physical point we find

m2
π

χl
= 1.0000− 0.0245(41) + 0.0034(10)

fπ
f

= 1.0000 + 0.0586(35)− 0.0011(7)

(3.18)

9In fact, one could argue that the mass cut should be taken so that only the lightest quark masses are used since

systematic deviations between the predictions of ChPT and full QCD vanish in the chiral limit.
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for the decomposition into LO+NLO+NNLO, normalized by LO. The errors on the more restrictive

fit quickly grow when we extrapolate to heavier ml, so we focus on the mcut
π = 450MeV result to

test the breakdown of the expansion at heavy quark masses.

While both the NLO and NNLO terms remain small relative to LO — at most O(20%) — even

up to very heavy mπ ∼ 500MeV, the NLO and NNLO terms start to become comparable in size for

mπ & 450MeV. In figure 3.5 we plot the ratios NLO/LO and NNLO/NLO as a function of the light

quark mass. If we conservatively define “distress” in the chiral expansion as |NNLO|' 0.5|NLO|

within statistical error, we find that this corresponds to ml/m
phys
l ≈ 10.9 (mπ ≈ 445MeV) for fπ.

A more relaxed definition of |NNLO|' 0.8|NLO| corresponds to ml/m
phys
l ≈ 14.2 (mπ ≈ 520MeV).

The situation for m2
π is more subtle: while it is true that we similarly observe an increase in

the relative sizes of the NNLO and NLO terms as the light quark mass is increased, they are

contributing with opposite sign, and the sum NLO + NNLO remains less than 10% of the LO

contribution even at very heavy mπ & 500MeV. We conclude that it is fπ, which exhibits stronger

nonlinearity than m2
π, that sets an upper limit on the applicability of NNLO SU(2) ChPT, of

roughly mπ ∼ 450− 500MeV. We note that the BMW collaboration has performed a similar test

by fitting SU(2) ChPT to unitary lattice data computed with O(a)-improved Wilson fermions up

to mπ ∼ 500MeV, and finds results consistent with our own [13].
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Figure 3.4: Decomposition of the SU(2) chiral expansion into LO, NLO, and NNLO terms, nor-

malized by LO. The pion mass (top) and pion decay constant (bottom) are plotted as a function

of the light quark mass, using the LECs obtained from a fit with a pion mass cut of 370 MeV (left)

and 450 MeV (right). The vertical dashed line corresponds to the heaviest unitary point included

in the fit, and the horizontal dotted line marks zero.

90



0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
ml/m

phys
l

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

m
2 π
(m

l)

NLO/LO
NNLO/NLO

100 200 300 400 500
mπ (MeV)

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
ml/m

phys
l

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

f π
(m

l)

NLO/LO
NNLO/NLO

100 200 300 400 500
mπ (MeV)

Figure 3.5: Relative sizes of the LO, NLO, and NNLO terms in the SU(2) chiral expansion for m2
π

(left) and fπ (right) using the LECs obtained from a fit with a pion mass cut of 450 MeV. The

vertical dashed line corresponds to the heaviest unitary point included in the fit.

91



3.5.5 Predictions

Unquenched LECs

In Table 3.8 we use the relations listed in Appendix 3.A.1 to compute the unquenched SU(2) LECs

{li}7i=1 which can be determined from the partially quenched LECs in Table 3.6. Traditionally,

values for the scale independent LECs {`i}6i=1 are quoted rather than {li}6i=1; we also compute

these using relations listed explicitly in Appendix 3.A.2. There is no analogous `7 since l7 is

already scale independent. We also compute the renormalized leading order LEC B in the MS

scheme at µ = 2.0GeV, and the MS renormalized quark condensate

Σ = − 〈ψlψl〉
∣∣
ml→0

=
Bf2

2
. (3.19)

We use the renormalization coefficients Zml computed in Ref. [10] to first renormalize B and Σ in

the SMOM and SMOMγµ schemes, which are then matched perturbatively to MS. The difference in

central value between the two intermediate schemes is used to assign a systematic error associated

with the renormalization procedure.

In Figures 3.6 and 3.7 we compare our preferred determinations of the leading order and next-

to leading order unquenched SU(2) LECs (blue circles) to the 2013 Nf = 2 + 1 FLAG lattice

averages [8, 9, 12, 50–53] (black squares) and two phenomenological fits (green diamonds): the first

is Gasser and Leutwyler’s original determination of the SU(2) LECs in Ref. [5], and the second

is Colangelo et al.’s updated fit of experimental pion scattering and scalar charge radius data to

NNLO SU(2) ChPT and the Roy equations [54]. We also include our final prediction for each

LEC, including the full statistical and systematic error budget discussed in Section 3.6 summed in

quadrature (“prediction”). For consistency with FLAG we quote our values for the dimensionless

ratio fπ/f rather than f .

We generally observe excellent consistency between our fits, and find that our results for the LO

LECs, `3, and `4 — which by now are standard lattice calculations — compare favorably with the

FLAG averages and phenomenological fits. We find that `3 and `4 are determined more precisely

by the NLO fits than the NNLO fits, which is not surprising: at two-loop order the NLO LECs can

enter into the expressions for the pion mass and decay constant quadratically or as terms which are
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LEC Λχ NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

BMS(µ = 2GeV)

—

2.804(34)(30) GeV 2.831(37)(30) GeV 2.778(40)(30) GeV 2.787(40)(30) GeV

f 121.3(1.5) MeV 123.6(2.0) MeV 120.7(1.7) MeV 121.5(1.6) MeV

Σ1/3,MS(µ = 2GeV) 274.2(2.8)(1.0) MeV 278.6(3.8)(1.0) MeV 272.5(3.0)(1.0) MeV 274.0(2.8)(1.0) MeV

103l1

1 GeV

— — 11.9(9.6) -7.6(3.9)

103l2 — — -32(17) 4.3(6.8)

103l3 1.89(30) 2.08(21) 2.1(1.0) 1.46(78)

103l4 0.06(51) 1.70(34) -1.0(1.6) -2.07(94)

103l7 — — 16.6(7.3) 6.5(3.8)

103l1

770 MeV

— — 13(11) -7.1(4.0)

103l2 — — -31(19) 5.4(6.9)

103l3 1.07(30) 1.25(21) 1.3(1.0) 0.63(78)

103l4 3.38(51) 5.01(34) 2.3(1.6) 1.24(95)

103l7 — — 16.6(7.9) 6.5(3.7)

`1

—

— — 15.3(9.1) -3.2(3.7)

`2 — — -11.0(7.9) 6.0(3.2)

`3 2.81(19) 2.69(13) 2.66(64) 3.08(49)

`4 4.015(81) 4.274(54) 3.84(25) 3.68(15)

Table 3.8: Unquenched SU(2) LECs computed from partially quenched SU(2) fits. Missing entries

are not constrained by the fits at a given order. For B and Σ the first error is statistical and the

second is a systematic uncertainty in the perturbative matching to MS.

a product of an LEC and a chiral logarithm, whereas at one-loop order they enter only as simple

linear, analytic terms.
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Figure 3.6: Leading order SU(2) ChPT LECs compared to the 2013 FLAG lattice averages.

From our NNLO fits we are also able to constrain `1, `2, and the scale-independent NLO LEC

l7. This is, to the authors’ knowledge, the first direct prediction for l7: Gasser and Leutwyler

provide the order of magnitude estimate l7 ∼ 5× 10−3 [5], which is consistent with our predictions

(e.g. l7 = 6.5(3.7) × 10−3 from the fit with a 450 MeV cut). While our results for `1 and `2

are consistent with the phenomenological results, these LECs are determined much more precisely

by the ππ scattering-based phenomenological fits. In this sense the lattice and phenomenological

results are nicely complementary. We have begun to sharpen our predictions for `1 and `2 by

including additional observables — e.g. ππ scattering lengths and pion form factors — which can

be computed on the lattice and provide stronger constraints on these LECs [55].
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Figure 3.7: Next-to leading order SU(2) ChPT LECs compared to the 2013 FLAG lattice averages

and two phenomenological determinations.

Other Physical Predictions

Table 3.9 summarizes a number of predictions based on our results for the SU(2) LECs from the

previous section: fπ, fK , and the ratios fK/fπ and fπ/f are obtained directly from the global fit

by interpolating our lattice results to the physical point. The final three quantities — the I = 0

(a00) and I = 2 (a20) ππ scattering lengths, and the pion mass splitting due to QCD isospin breaking

effects — are one-loop ChPT predictions computed using Appendix 3.A.3 and the values of the

LECs {`i}4i=1 and l7 from Table 3.8.
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NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

fπ 0.1290(14) GeV 0.1317(19) GeV 0.1281(14) GeV 0.1285(14) GeV

fK 0.1540(15) GeV 0.1575(18) GeV 0.1530(15) GeV 0.1527(14) GeV

fK/fπ 1.1937(54) 1.1962(74) 1.1944(78) 1.1884(67)

fπ/f 1.0641(21) 1.0658(21) 1.0611(49) 1.0574(30)

mπa
0
0 — — 0.170(20) 0.1987(86)

mπa
2
0 — — -0.0577(90) -0.0404(33)

[m2
π± −m2

π0 ]QCD/∆m
2
du — — 80(35) 31(17)

Table 3.9: Predictions from NLO and NNLO fits and SU(2) ChPT. ∆mdu ≡ md − mu. We

emphasize that the distinction between “NLO” and “NNLO” fits, as well as the mass cut, applies

only to mπ and fπ: the kaon and Ω baryon data and fit forms are the same in all of these fits.

The RBC-UKQCD collaboration has historically observed that, if fπ and fK are determined

from fits to heavy lattice data which is extrapolated down to the physical point, the predictions

for fπ and fK are systematically low compared to the physical values fphysπ = 130.7MeV and

fphysK = 156.1MeV, which we observe in Table 3.9 as well. We have also found, however, that

either overweighting the contributions to χ2 from the physical pion mass 48I and 64I ensembles10

or normalizing the contributions to χ2 from each ensemble by the number of partially quenched

measurements performed on that ensemble — effectively underweighting the heavy pion mass 24I

and 32I ensembles — as we explore in Appendix 3.D, removes this discrepancy, and results in

predictions for fπ and fK consistent with their physical values. We conclude that two effects are

responsible: 1) the large number of partially quenched measurements on the 24I, 32I, and 32ID

ensembles causes the heavier data to dominate an unweighted, uncorrelated fit, and 2) chiral fits

which are dominated by heavy data can exhibit excessive curvature near the physical point, leading

to predictions which are systematically low.

The last three predictions in Table 3.9 allow for an interesting test of chiral perturbation theory.

Since our NNLO fits determine the LECs `1, `2, and l7 without containing any direct information
10This procedure was introduced in Ref. [10] to make small corrections for quark mass mistunings on the physical

point ensembles.
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about ππ scattering or isospin breaking, we can compute these quantities to NLO as predictions

from our fits. The ππ scattering lengths computed from our preferred NNLO fit with a 450 MeV cut

can be compared to recent experimental results based on measurements of Ke4 and K± → π±π0π0

decays: mπa
0
0 = 0.221(5) and mπa

2
0 = −0.043(5) [56]. Our prediction for the π±−π0 mass splitting

is less straightforward to interpret directly since the largest contribution to the physical splitting

arises from electromagnetic effects which we do not take into account. If we take a reasonable

estimate of the up/down mass difference ∆mdu ≡ md − mu ∼ 2.5MeV, we can compare our

prediction — [m2
π± −m2

π0 ]QCD = 195(112)MeV2 from the fit with the heavier mass cut — to the

physical mass difference m2
π± −m2

π0 = 1261MeV2 [39], which suggests that ∼ 15(9)% of the total

mass splitting arises from QCD isospin breaking effects. When combined with the leading-order

prediction for the electromagnetic corrections computed by Bijnens and Danielsson in partially

quenched ChPT [57], [m2
π± −m2

π0 ]EM = 1000MeV2, we find excellent agreement with the physical

mass splitting.

3.6 Error Budget and Final Results for the Unquenched SU(2)

LECs

In this section we discuss the error budget for our determination of the leading and next-to leading

order unquenched SU(2) low energy constants, and report our final values including all systematics.

In particular, we assign the following error to each LEC in table 3.10:

• Influence of heavy data as determined by underweighting correlated data in the fits: While our

global fits are uncorrelated, we know that the partially quenched measurements on a given

ensemble are highly correlated since they are computed with the same set of field configura-

tions. If we were fitting to a function which exactly represented our data, as opposed to an

expansion with some limited precision, our uncorrelated fits would not introduce any system-

atic bias into our answers. Since this is not the case, changing the weighting of the heavy

mass ensembles, which contain highly correlated partially quenched measurements, gives us

an estimate of the systematic effects on our results due to the worsening systematic disagree-
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ment betweeen PQChPT and QCD at heavier quark masses. We estimate the impact on our

fits by taking the difference in central value between the LECs of an unweighted, uncorre-

lated fit (Section 3.5) and the LECs of a fit where the contributions to χ2 from ensembles

with multiple partially quenched measurements have been systematically underweighted to

capture the dominant effects of correlations (Appendix 3.D).

We also assign additional errors to the LECs which are determined by both NLO and NNLO fits

(B, f , Σ, `3, and `4):

• Influence of heavy data as determined by varying the mass cut: We also estimate the depen-

dence of the LECs on the choice of mass cut by taking the difference in central value between

an NNLO fit with a unitary pion mass cut of 370 MeV and an NNLO fit with a cut of 450 MeV

where applicable. For the LECs where we can estimate the influence of the heavy data using

both methods we take the larger estimate as the systematic included in our error budget.

• Truncation of the (continuum) chiral expansion: We estimate the influence of truncating

N3LO and higher terms by taking the difference in central value between an NLO fit and an

NNLO fit, both with a unitary pion mass cut of 370 MeV.

• Finite volume effects: As a conservative bound on the influence of NNLO and higher or-

der FV corrections, as well as neglected cross terms — e.g. (NLO continuum ChPT) ×

(NLO FV correction) — we compute the difference in central value between an NLO PQChPT

fit with NLO FV corrections and an NLO PQChPT fit with no FV corrections, both with a

unitary pion mass cut of 370 MeV.

We do not attempt to quantify the latter set of systematics for the LECs which only enter into the

SU(2) ChPT expressions for the pion mass and decay constant at two loop order — `1, `2, and

l7 — since these LECs typically have O(50%) or larger statistical errors, and are perhaps more

accurately regarded as bounds than high-precision determinations. Likewise, we do not attempt to

quantify systematic errors for the partially quenched LECs (Section 3.5.1) or for our predictions of

the ππ scattering lengths and isospin breaking effects (Section 3.5.5), but one could, in principle,

assign an analogous error budget.
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BMS(µ = 2GeV) 2.804(34)(40)GeV

f 121.3(1.5)(2.1)MeV

Σ1/3,MS(µ = 2GeV) 274.2(2.8)(4.0)MeV

fπ/f 1.0641(21)(49)

`1 −3.2(3.7)(5.0)

`2 6.0(3.2)(4.2)

`3 2.81(19)(45)

`4 4.02(8)(24)

103l7 6.5(3.8)(0.2)

Table 3.10: Final predictions for the unquenched SU(2) LECs including all statistical and system-

atic errors. The reported errors are the statistical (left) and the total systematic (right) obtained by

summing the contributions we discuss in the text in quadrature. Bold entries correspond to LECs

which enter into both NLO and NNLO fits, for which we assign the full error budget; for the other

entries the mass cut, chiral truncation, and finite volume systematics are assumed to be negligible

compared to the statistical error and are not quantified. The central values and statistical errors

of B, f , Σ1/3, `3, and `4 are from an NLO fit with a 370 MeV cut, while the central values and

statistical errors of `1, `2, and l7 are from an NNLO fit with a 450 MeV cut. We also include our

prediction for the ratio fπ/f .

3.7 Conclusions

In this work we have performed fits of pseudoscalar masses and decay constants from a series of

RBC-UKQCD domain wall fermion ensembles to the corresponding formulae in next-to-next-to

leading order SU(2) partially quenched chiral perturbation theory. We reported values for a large

set of partially quenched low-energy constants, and used these values to compute the unquenched

leading and next-to leading order LECs. We also examined the range of quark masses for which

NLO and NNLO ChPT accurately describe our lattice data, and used the newly determined LECs

from NNLO fits to make one-loop predictions for isospin breaking effects and ππ scattering lengths,
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which we compare to other lattice and experimental results. We have observed that SU(2) PQChPT

generally describes the included range of partially quenched data with percent-scale accuracy: to

emphasize this point we plot in Figure 3.8 histograms of the percent deviation between the data

and fit

∆ ≡ (Y − Y fit)

(Y + Y fit)/2
× 100 (3.20)

for our preferred fits, NLO PQChPT with a unitary pion mass cut of 370 MeV and NNLO PQChPT

with a 450 MeV cut.
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Figure 3.8: Percent deviation between fits and data. We plot stacked histograms of the quantity

∆ ≡ 200× (Y − Y fit)/(Y + Y fit).

We have observed that NNLO SU(2) PQChPT can be reliably fit to our data for the pion

mass and decay constant without the need for additional terms or constraints to stabilize the fits,

and we determine values for 8 linear combinations of NNLO low energy constants. The values we

obtained for the unquenched SU(2) LECs were consistent between our NLO and NNLO fits and

with other lattice and phenomenological determinations reported in the literature. At the physical

light quark mass we found that the chiral expansions for the pion mass and decay constant behave

like rapidly convergent series. After probing the breakdown of the chiral expansion at heavy light
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quark mass we concluded that NLO SU(2) PQChPT is sufficient to describe our lattice data up

to mπ ∼ O(350MeV), beyond which we observe some deviation between the NLO prediction for

the pion decay constant and our lattice data. Likewise, we concluded that NNLO SU(2) PQChPT

remains consistent with our data up to mπ ∼ O(450MeV). By 500 MeV, the NNLO corrections

to the pion decay constant have grown to the point that they are comparable in size to the NLO

corrections, indicating that the chiral expansion truncated to NNLO is unreliable at this scale. Of

course, all statements regarding the values of LECs and the behavior of the SU(2) chiral expansion

made in this work are subject to the statistical precision, finite volume errors, and cutoff effects

inherent in our lattice data. These points will need to be revisited and reassessed in the future as

more and increasingly precise data becomes available.

We also note that our fits in this work only make use of the pseudoscalar masses and decay

constants. Future work will incorporate a calculation of the I = 2 ππ scattering length and the

pion vector form factor on many of the domain wall fermion ensembles considered here. Including

these results in our chiral fits will give first-principles determinations of the scattering length a20,

the pion charge radius 〈r2〉πV , and the SU(2) LEC `6, as well as sharpen the predictions for `1 and

`2, which are currently determined most precisely by phenomenological fits to experimental data. A

forthcoming paper will also explore analogous fits of the pseudoscalar masses and decay constants

to SU(3) partially quenched chiral perturbation theory at next-to-next-to leading order.
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3.A ChPT Relations

In this appendix we collect various relations used in the analysis in the body of the paper. We

do not explicitly reprint the expressions for the pseudoscalar masses and decay constants and the

corresponding finite volume corrections used in the chiral fits: instead we refer the reader to the

appendices of Ref. [7]. The NNLO pseudoscalar masses and decay constants were computed using

Fortran routines provided by J. Bijnens.
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3.A.1 Relations Between PQChPT and ChPT LECs at NLO

The SU(Nf ) ChPT Lagrangian can be recovered from the more general SU(Nf ) PQChPT La-

grangian in the limit of equal sea and valence quark masses. Here we have collected the explicit

expressions relating the NLO LECs in this limit from Ref. [48]. The analogous expressions for the

NNLO LECs can be found in the same reference, but we do not use them here. For Nf = 2, the

NLO ChPT LECs {li}7i=1 are related to the NLO PQChPT LECs {L̂(2)
i }12i=0 by

l1 = −2L̂
(2)
0 + 4L̂
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(C.21)

and the additional constraints L̂(2)
11 = −l4/4 and L̂

(2)
12 = 0.

3.A.2 Scale Independent SU(2) LECs

Conventionally, one quotes values of the scale independent SU(2) LECs {`i}6i=1 rather than {li}6i=1.

These are obtained by running the {li}6i=1 from the energy scale at which they are defined, µ, to

the physical pion mass using

`i = γili − log

(
m2
π

µ2

)
, (C.22)

where the coefficients

γ1 = 96π2, γ2 = 48π2, γ3 = −64π2, γ4 = 16π2, γ5 = −192π2, γ6 = −96π2, (C.23)

were computed in Ref. [5]. The remaining LEC l7 has no scale dependence.

3.A.3 One-Loop SU(2) Predictions

While NLO fits to the pion mass and decay constant constrain the unquenched SU(2) LECs l3 and

l4, NNLO fits also constrain l1, l2, and l7, allowing us to make additional one-loop predictions [5].

At NLO l1 and l2 determine quantities related to ππ scattering. The s-wave scattering lengths aI0
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in the isospin channels I = 0 and I = 2, for example, are given by11

mπa
0
0 =

7χl
16πf2

[
1 +

16χl
7f2

(5l1 + 5l2 + 3l3) +
χl

16π2f2

(
5− 4 log
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χl
Λ2
χ

))]
mπa

2
0 = − χl

8πf2

[
1− 16χl

f2
(l1 + l2)−

χl
16π2f2

(
1− 8 log

(
χl
Λ2
χ

))] . (C.24)

The LEC l7 controls the size of the pion mass splitting due to the difference between the up and

down quark masses, [
m2
π± −m2

π0

]
QCD

= (md −mu)
2 4B

2

f2
l7. (C.25)

We use the subscript “QCD” to emphasize that this is only the contribution to the mass splitting

from QCD isospin breaking. The dominant contribution is due to electromagnetic effects, and

enters at O(md −mu).

3.B Summary of Lattice Data Included in Chiral Fits

In this appendix we collect the results for fits of the pseudoscalar masses and decay constants, the

Ω baryon mass, the ratio R(t) (Eqn. (C.28)) which determines mres in the chiral limit, and the

Wilson flow scales on each ensemble in lattice units. Earlier results for the 24I ensemble can be

found in Ref. [7], but differ from the current work in that the number of configurations has been

approximately doubled and the spectrum re-analyzed in later works. For the other ensembles, these

fits are identical to results we have published in earlier analyses: these can be found in Ref. [8]

for the 32I ensembles, Ref. [9] for the 32ID ensembles, and Ref. [10] for the 48I, 64I, and 32I-fine

ensembles. The 32ID-M1 and 32ID-M2 ensembles have not appeared in any of our earlier global

fits.

3.B.1 Pseudoscalar Masses, Decay Constants, and Ω Baryon Mass

11Note: for consistency with the chiral interpolations in our global fits we choose to parametrize the expansions for

the scattering lengths in terms of the light quark mass ml rather than the more commonly used ratio mπ/fπ.
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aml amh amx amy amxy afxy amxxx

0.005 0.04 0.001 0.001 0.13914(63) 0.08140(46) —

0.005 0.04 0.001 0.005 0.16693(60) 0.08316(41) —

0.005 0.04 0.001 0.01 0.19602(59) 0.08526(40) —

0.005 0.04 0.001 0.02 0.24402(61) 0.08897(41) —

0.005 0.04 0.001 0.03 0.28430(64) 0.09222(45) —

0.005 0.04 0.001 0.04 0.31990(69) 0.09511(49) —

0.005 0.04 0.005 0.005 0.19035(56) 0.08468(38) —

0.005 0.04 0.005 0.01 0.21609(54) 0.08666(37) —

0.005 0.04 0.005 0.02 0.26026(53) 0.09027(37) —

0.005 0.04 0.005 0.03 0.29833(54) 0.09347(39) —

0.005 0.04 0.005 0.04 0.33245(55) 0.09632(41) —

0.005 0.04 0.01 0.01 0.23894(51) 0.08858(35) —

0.005 0.04 0.01 0.02 0.27945(49) 0.09215(36) —

0.005 0.04 0.01 0.03 0.31524(49) 0.09533(37) —

0.005 0.04 0.01 0.04 0.34777(50) 0.09816(39) —

0.005 0.04 0.02 0.02 0.31487(47) 0.09572(36) —

0.005 0.04 0.02 0.03 0.34722(46) 0.09890(38) —

0.005 0.04 0.02 0.04 0.37722(46) 0.10175(40) —

0.005 0.04 0.03 0.03 0.37705(45) 0.10213(40) 0.9629(37)

0.005 0.04 0.03 0.04 0.40512(44) 0.10502(42) —

0.005 0.04 0.04 0.04 0.43165(42) 0.10796(43) 1.0134(31)

Table 3.11: Partially quenched pseudoscalar mass, pseudoscalar decay constant, and Ω baryon mass

measurements on the 24I aml = 0.005 ensemble.
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aml amh amx amy amxy afxy amxxx

0.01 0.04 0.001 0.001 0.14342(68) 0.08531(45) —

0.01 0.04 0.001 0.005 0.17087(63) 0.08712(41) —

0.01 0.04 0.001 0.01 0.19972(60) 0.08921(42) —

0.01 0.04 0.001 0.02 0.24751(60) 0.09288(46) —

0.01 0.04 0.001 0.03 0.28773(63) 0.09609(53) —

0.01 0.04 0.001 0.04 0.32333(70) 0.09898(60) —

0.01 0.04 0.005 0.005 0.19399(57) 0.08841(39) —

0.01 0.04 0.005 0.01 0.21954(53) 0.09024(39) —

0.01 0.04 0.005 0.02 0.26358(50) 0.09370(41) —

0.01 0.04 0.005 0.03 0.30164(50) 0.09684(44) —

0.01 0.04 0.005 0.04 0.33577(53) 0.09969(48) —

0.01 0.04 0.01 0.01 0.24223(49) 0.09193(38) —

0.01 0.04 0.01 0.02 0.28264(45) 0.09529(39) —

0.01 0.04 0.01 0.03 0.31839(45) 0.09838(41) —

0.01 0.04 0.01 0.04 0.35091(46) 0.10118(43) —

0.01 0.04 0.02 0.02 0.31795(41) 0.09859(39) —

0.01 0.04 0.02 0.03 0.35023(40) 0.10165(39) —

0.01 0.04 0.02 0.04 0.38018(40) 0.10443(40) —

0.01 0.04 0.03 0.03 0.37997(39) 0.10471(39) 0.9785(44)

0.01 0.04 0.03 0.04 0.40797(38) 0.10751(40) —

0.01 0.04 0.04 0.04 0.43443(38) 0.11035(40) 1.0276(36)

Table 3.12: Partially quenched pseudoscalar mass, pseudoscalar decay constant, and Ω baryon mass

measurements on the 24I aml = 0.01 ensemble.
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aml amh amx amy amxy afxy amxxx

0.004 0.03 0.002 0.002 0.09757(38) 0.05983(30) —

0.004 0.03 0.002 0.004 0.11330(37) 0.06090(29) —

0.004 0.03 0.002 0.006 0.12707(37) 0.06192(29) —

0.004 0.03 0.002 0.008 0.13945(37) 0.06286(30) —

0.004 0.03 0.002 0.025 0.21797(44) 0.06905(34) —

0.004 0.03 0.002 0.03 0.23631(47) 0.07048(35) —

0.004 0.03 0.004 0.004 0.12694(35) 0.06181(29) —

0.004 0.03 0.004 0.006 0.13926(34) 0.06274(29) —

0.004 0.03 0.004 0.008 0.15058(34) 0.06363(29) —

0.004 0.03 0.004 0.025 0.22518(37) 0.06969(32) —

0.004 0.03 0.004 0.03 0.24301(39) 0.07112(33) —

0.004 0.03 0.006 0.006 0.15051(33) 0.06363(29) —

0.004 0.03 0.006 0.008 0.16100(33) 0.06449(30) —

0.004 0.03 0.006 0.025 0.23227(33) 0.07050(32) —

0.004 0.03 0.006 0.03 0.24963(35) 0.07193(33) —

0.004 0.03 0.008 0.008 0.17081(32) 0.06534(30) —

0.004 0.03 0.008 0.025 0.23920(32) 0.07132(31) —

0.004 0.03 0.008 0.03 0.25614(32) 0.07276(32) —

0.004 0.03 0.025 0.025 0.29296(27) 0.07750(32) 0.7332(23)

0.004 0.03 0.025 0.03 0.30733(27) 0.07902(32) —

0.004 0.03 0.03 0.03 0.32118(27) 0.08058(32) 0.7597(21)

Table 3.13: Partially quenched pseudoscalar mass, pseudoscalar decay constant, and Ω baryon mass

measurements on the 32I aml = 0.004 ensemble.

112



aml amh amx amy amxy afxy amxxx

0.006 0.03 0.002 0.002 0.09888(38) 0.06070(33) —

0.006 0.03 0.002 0.004 0.11439(32) 0.06179(32) —

0.006 0.03 0.002 0.006 0.12802(30) 0.06282(32) —

0.006 0.03 0.002 0.008 0.14031(29) 0.06377(32) —

0.006 0.03 0.002 0.025 0.21843(31) 0.06987(35) —

0.006 0.03 0.002 0.03 0.23673(34) 0.07129(36) —

0.006 0.03 0.004 0.004 0.12782(28) 0.06263(31) —

0.006 0.03 0.004 0.006 0.14003(27) 0.06354(31) —

0.006 0.03 0.004 0.008 0.15127(26) 0.06442(31) —

0.006 0.03 0.004 0.025 0.22559(27) 0.07038(32) —

0.006 0.03 0.004 0.03 0.24338(28) 0.07178(33) —

0.006 0.03 0.006 0.006 0.15118(26) 0.06439(30) —

0.006 0.03 0.006 0.008 0.16160(25) 0.06523(30) —

0.006 0.03 0.006 0.025 0.23266(25) 0.07113(31) —

0.006 0.03 0.006 0.03 0.24999(26) 0.07254(32) —

0.006 0.03 0.008 0.008 0.17136(25) 0.06605(30) —

0.006 0.03 0.008 0.025 0.23961(25) 0.07192(31) —

0.006 0.03 0.008 0.03 0.25652(25) 0.07334(31) —

0.006 0.03 0.025 0.025 0.29338(23) 0.07793(30) 0.7392(22)

0.006 0.03 0.025 0.03 0.30775(23) 0.07941(31) —

0.006 0.03 0.03 0.03 0.32161(22) 0.08092(31) 0.7655(20)

Table 3.14: Partially quenched pseudoscalar mass, pseudoscalar decay constant, and Ω baryon mass

measurements on the 32I aml = 0.006 ensemble.
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aml amh amx amy amxy afxy amxxx

0.008 0.03 0.002 0.002 0.10008(46) 0.06211(40) —

0.008 0.03 0.002 0.004 0.11564(44) 0.06310(38) —

0.008 0.03 0.002 0.006 0.12933(43) 0.06408(36) —

0.008 0.03 0.002 0.008 0.14167(44) 0.06501(36) —

0.008 0.03 0.002 0.025 0.22029(54) 0.07127(37) —

0.008 0.03 0.002 0.03 0.23875(58) 0.07276(39) —

0.008 0.03 0.004 0.004 0.12910(41) 0.06382(35) —

0.008 0.03 0.004 0.006 0.14134(40) 0.06467(34) —

0.008 0.03 0.004 0.008 0.15261(40) 0.06551(33) —

0.008 0.03 0.004 0.025 0.22728(45) 0.07151(33) —

0.008 0.03 0.004 0.03 0.24519(48) 0.07296(34) —

0.008 0.03 0.006 0.006 0.15250(39) 0.06545(33) —

0.008 0.03 0.006 0.008 0.16293(38) 0.06625(32) —

0.008 0.03 0.006 0.025 0.23419(41) 0.07212(32) —

0.008 0.03 0.006 0.03 0.25160(42) 0.07354(33) —

0.008 0.03 0.008 0.008 0.17268(37) 0.06702(31) —

0.008 0.03 0.008 0.025 0.24099(38) 0.07280(31) —

0.008 0.03 0.008 0.03 0.25795(39) 0.07422(32) —

0.008 0.03 0.025 0.025 0.29429(32) 0.07847(31) 0.7399(30)

0.008 0.03 0.025 0.03 0.30862(32) 0.07993(31) —

0.008 0.03 0.03 0.03 0.32243(31) 0.08140(31) 0.7664(27)

Table 3.15: Partially quenched pseudoscalar mass, pseudoscalar decay constant, and Ω baryon mass

measurements on the 32I aml = 0.008 ensemble.
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aml amh amx amy amxy afxy amxxx

0.001 0.046 0.0001 0.0001 0.10423(23) 0.0938(12) —

0.001 0.046 0.0001 0.001 0.11512(22) 0.0944(12) —

0.001 0.046 0.0001 0.0042 0.14718(22) 0.0964(12) —

0.001 0.046 0.0001 0.008 0.17755(24) 0.0984(12) —

0.001 0.046 0.0001 0.035 0.31783(45) 0.1090(13) —

0.001 0.046 0.0001 0.045 0.35642(56) 0.1121(14) —

0.001 0.046 0.0001 0.055 0.39150(67) 0.1149(14) —

0.001 0.046 0.001 0.001 0.12497(22) 0.0950(12) —

0.001 0.046 0.001 0.0042 0.15485(21) 0.0969(12) —

0.001 0.046 0.001 0.008 0.18385(22) 0.0988(12) —

0.001 0.046 0.001 0.035 0.32120(39) 0.1092(13) —

0.001 0.046 0.001 0.045 0.35939(47) 0.1123(14) —

0.001 0.046 0.001 0.055 0.39418(56) 0.1151(14) —

0.001 0.046 0.0042 0.0042 0.17949(21) 0.0986(12) —

0.001 0.046 0.0042 0.008 0.20483(21) 0.1005(12) —

0.001 0.046 0.0042 0.035 0.33342(30) 0.1107(13) —

0.001 0.046 0.0042 0.045 0.37030(34) 0.1137(14) —

0.001 0.046 0.0042 0.055 0.40411(38) 0.1164(14) —

0.001 0.046 0.008 0.008 0.22725(21) 0.1024(12) —

0.001 0.046 0.008 0.035 0.34760(26) 0.1126(14) —

0.001 0.046 0.008 0.045 0.38315(28) 0.1156(14) —

0.001 0.046 0.008 0.055 0.41594(30) 0.1183(14) —

0.001 0.046 0.035 0.035 0.43684(21) 0.1231(15) 1.1608(42)

0.001 0.046 0.035 0.045 0.46618(22) 0.1262(15) —

0.001 0.046 0.035 0.055 0.49409(22) 0.1291(16) —

0.001 0.046 0.045 0.045 0.49404(21) 0.1294(16) 1.2130(37)

0.001 0.046 0.045 0.055 0.52070(21) 0.1324(16) —

0.001 0.046 0.055 0.055 0.54632(21) 0.1354(16) 1.2641(34)

Table 3.16: Partially quenched pseudoscalar mass, pseudoscalar decay constant, and Ω baryon mass

measurements on the 32ID aml = 0.001 ensemble.
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aml amh amx amy amxy afxy amxxx

0.0042 0.046 0.0001 0.0001 0.10581(27) 0.0973(12) —

0.0042 0.046 0.0001 0.001 0.11668(25) 0.0977(12) —

0.0042 0.046 0.0001 0.0042 0.14870(26) 0.0994(12) —

0.0042 0.046 0.0001 0.008 0.17913(27) 0.1013(13) —

0.0042 0.046 0.0001 0.035 0.31972(52) 0.1118(14) —

0.0042 0.046 0.0001 0.045 0.35808(62) 0.1147(15) —

0.0042 0.046 0.0001 0.055 0.39279(71) 0.1173(15) —

0.0042 0.046 0.001 0.001 0.12654(24) 0.0981(12) —

0.0042 0.046 0.001 0.0042 0.15638(24) 0.0997(12) —

0.0042 0.046 0.001 0.008 0.18544(26) 0.1015(12) —

0.0042 0.046 0.001 0.035 0.32302(44) 0.1118(14) —

0.0042 0.046 0.001 0.045 0.36102(52) 0.1148(14) —

0.0042 0.046 0.001 0.055 0.39549(59) 0.1173(15) —

0.0042 0.046 0.0042 0.0042 0.18099(25) 0.1011(12) —

0.0042 0.046 0.0042 0.008 0.20634(26) 0.1028(13) —

0.0042 0.046 0.0042 0.035 0.33502(32) 0.1129(14) —

0.0042 0.046 0.0042 0.045 0.37182(35) 0.1158(14) —

0.0042 0.046 0.0042 0.055 0.40549(40) 0.1184(15) —

0.0042 0.046 0.008 0.008 0.22872(26) 0.1044(13) —

0.0042 0.046 0.008 0.035 0.34906(27) 0.1144(14) —

0.0042 0.046 0.008 0.045 0.38459(28) 0.1174(14) —

0.0042 0.046 0.008 0.055 0.41736(31) 0.1200(15) —

0.0042 0.046 0.035 0.035 0.43813(22) 0.1243(15) 1.1695(48)

0.0042 0.046 0.035 0.045 0.46748(21) 0.1274(15) —

0.0042 0.046 0.035 0.055 0.49540(21) 0.1302(16) —

0.0042 0.046 0.045 0.045 0.49534(21) 0.1305(16) 1.2220(41)

0.0042 0.046 0.045 0.055 0.52200(20) 0.1334(16) —

0.0042 0.046 0.055 0.055 0.54759(19) 0.1363(16) 1.2735(36)

Table 3.17: Partially quenched pseudoscalar mass, pseudoscalar decay constant, and Ω baryon mass

measurements on the 32ID aml = 0.0042 ensemble.
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Ensemble aml amh amll amlh afll aflh amhhh

32I-fine 0.0047 0.0186 0.1179(13) 0.1772(12) 0.04846(32) 0.05358(22) 0.5522(29)

48I 0.00078 0.0362 0.08049(13) 0.28853(14) 0.075799(84) 0.090396(86) 0.97018(96)

64I 0.000678 0.02661 0.05903(13) 0.21531(17) 0.055505(95) 0.066534(99) 0.71811(73)

32ID-M1 0.00022 0.0596 0.11812(46) 0.42313(49) 0.12489(23) 0.14673(33) 1.5290(31)

32ID-M2 0.00478 0.03297 0.19487(64) 0.30792(64) 0.07771(22) 0.08716(21) 0.9148(34)

Table 3.18: Unitary pseudoscalar mass, pseudoscalar decay constant, and Ω baryon mass measure-

ments.
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3.B.2 R

Ensemble aml amh aR

24I
0.005 0.04 0.003154(15)

0.01 0.04 0.003187(24)

32I

0.004 0.03 0.0006697(34)

0.006 0.03 0.0006589(30)

0.008 0.03 0.0006676(34)

32ID
0.001 0.046 0.0018510(43)

0.0042 0.046 0.0018735(48)

32I-fine 0.0047 0.0186 0.0006300(59)

48I 0.00078 0.0362 0.0006102(40)

64I 0.000678 0.02661 0.0003116(23)

32ID-M1 0.00022 0.0596 0.002170(16)

32ID-M2 0.00478 0.03297 0.0044660(46)

Table 3.19: Summary of measurements of R (Equation (C.28)) at the simulated quark masses on

each ensemble. This quantity is equal to mres in the chiral limit.

3.B.3 Wilson Flow Scales
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Ensemble aml amh t0
1/2 w0

24I
0.005 0.04 1.31625(57) 1.4911(15)

0.01 0.04 1.30501(65) 1.4653(14)

32I

0.004 0.03 1.7422(11) 2.0124(26)

0.006 0.03 1.73622(86) 1.9963(19)

0.008 0.03 1.7286(11) 1.9793(24)

32ID
0.001 0.046 1.02682(25) 1.21778(72)

0.0042 0.046 1.02245(27) 1.20420(73)

32I-fine 0.0047 0.0186 2.2860(63) 2.664(16)

48I 0.00078 0.0362 1.29659(39) 1.5013(10)

64I 0.000678 0.02661 1.74448(98) 2.0502(26)

32ID-M1 0.00022 0.0596 0.78719(16) 0.88865(78)

32ID-M2 0.00478 0.03297 1.4841(16) 1.7151(33)

Table 3.20: Summary of Wilson flow measurements.

3.C Analysis of the 32ID-M1 and 32ID-M2 Ensembles

Here we present details of an analysis of the 32ID-M1 and 32ID-M2 ensembles. These lattices were

originally generated for scale setting in the context of QCD thermodynamics calculations, and have

not appeared in any of our previous chiral fits.

3.C.1 Evolution

The Möbius domain wall action [36] introduces two new scaling parameters, b and c, into the kernel

of the domain wall action. If b− c = 1, the kernel is identical to the Shamir kernel of conventional

domain wall fermions up to a scaling coefficient α = b + c. In Ref. [10] we show that a Möbius

DWF simulation with b − c = 1, a fifth-dimensional extent of Ls, and a scaling coefficient α is

directly equivalent to a simulation with Shamir DWF and fifth-dimensional extent αLs up to small

terms that vanish in the Ls → ∞ limit. For the same cost we can therefore use Möbius DWF
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to simulate with substantially reduced explicit chiral symmetry breaking simply by increasing α,

without deviating from the scaling trajectory of our conventional Shamir ensembles.

In Table 3.21 we summarize the Möbius scale α = b + c, the average plaquette and quark

condensates, and evolution parameters for the 32ID-M1 and 32ID-M2 ensembles. Both ensembles

were generated using an exact hybrid Monte Carlo algorithm with five intermediate Hasenbusch

masses — (0.008, 0.04, 0.12, 0.30, 0.60) — for the two, degenerate flavors of light quarks, and a

rational approximation for the strange quark determinant. Integration of the gauge and fermion

fields was performed using a three-level nested force gradient integrator (FGI QPQPQ): the top

level corresponds to updates of the fermion force, the middle level corresponds to DSDR updates,

and the bottom level corresponds to gauge field updates, with equal numbers of updates of each

level per HMC trajectory. Details regarding the implementation of the DSDR term can be found

in Ref. [9].

32ID-M1 32ID-M2

α 4.0 4.0

Steps per HMC traj. 18 10

∆τ 0.056 0.1

Metropolis acceptance 89% 68%

〈Plaquette〉 0.4681561(65) 0.5671088(24)

〈ψlψl〉 0.0019387(73) 0.0010403(9)

〈ψlγ5ψl〉 -0.000008(13) -0.000007(2)

Table 3.21: The Möbius scale (α = b + c), integration parameters, and the measured ensemble

averages of the plaquette and quark condensates on the 32ID-M1 and 32ID-M2 ensembles. Here

∆τ is the MD time step.

In Figures 3.9 and 3.10 we plot the evolution of the average plaquette, light quark chiral con-

densate 〈ψlψl〉, light quark pseudoscalar condensate 〈ψlγ5ψl〉, pion propagator evaluated at the

fixed time slice t/a = 20, square of the topological charge Q2, and the clover discretized Yang-Mills
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action density E = tr(FµνFµν) evaluated at the Wilson flow times t = t0 and t = w2
0, as a function

of the molecular dynamics simulation time (MD time). Following [60] and our most recent analy-

sis [10] we consider the square of the topological charge rather than the topological charge itself,

since this is a parity even observable and our HMC algorithm is parity invariant. We measured the

topological charge by cooling the gauge fields with 60 rounds of APE smearing using a smearing

coefficient of 0.45, and then measured the topological charge density using the five-loop-improved

discretization introduced in Ref. [61].

In Figure 3.11 we plot the integrated autocorrelation times obtained from each of these observ-

ables. The integrated autocorrelation time for an observable Y (t) with mean Y and variance σ2Y is

defined to be

τint(∆cut) =
1

2
+

∆cut∑
∆=1

C(∆), (C.26)

where

C(∆) =

〈(
Y (t)− Y

) (
Y (t+∆)− Y

)
σ2Y

〉
t

(C.27)

is the autocorrelation at lag ∆, and ∆cut is a cutoff on the maximum lag. The quantity 2τint

estimates the number of MD time units separating statistically uncorrelated measurements of Y .

The error on the integrated autocorrelation time is estimated by bootstrap resampling the set of

measurements of (Y (t) − Y )(Y (t + ∆) − Y ) with fixed ∆, binned over 20 (40) MD time units on

the 32ID-M1 (32ID-M2) ensembles. This choice of binning corresponds to the separation between

measurements of the spectrum, and was chosen based on increasing the bin size until the error bars

in Figure 3.11 were observed to stabilize and stop growing. More detail regarding this procedure

can be found in Ref. [9].

We conclude from the autocorrelation analysis that our separation of 20 (40) MD time units

between measurements of the spectrum on the 32ID-M1 (32ID-M2) ensemble is sufficient to ensure

that the measurements are uncorrelated, and so we do not perform any further binning. While

one should worry about the long autocorrelation time associated with the topological charge on

the 32ID-M2 ensemble, we note that our ChPT fits depend only on the measured values of masses
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and decay constants, and the long range observables in Figure 3.11 — the pion propagator and

quark condensates, for example — suggest an autocorrelation time well within our measurement

separation. One should additionally worry that this significant autocorrelation time associated with

Q2 and the poor sampling of topological sectors evidenced by Figure 3.10 suggests statistical errors

on the 32ID-M2 ensemble may be underestimated. We choose to still include this ensemble in some

of our fits12 for a number of reasons: in particular, it allows us to overconstrain the linear a2-scaling

terms associated with the DSDR gauge action since it provides an additional DSDR ensemble with

a third, independent lattice spacing. In addition, we observe that our results for the LECs of SU(2)

PQChPT are completely consistent when we consider the same fit performed with and without the

32ID-M2 ensemble, suggesting that the influence of any undesirable effects of undersampling on

our conclusions regarding ChPT are negligible.

3.C.2 Spectrum

We measure and fit the spectrum with the same analysis package previously used to analyze the 48I,

64I, and 32I-fine ensembles in Ref. [10]. This analysis package uses the all-mode averaging (AMA)

technique introduced by Blum, Izubuchi, and Shintani [62]. Five exact light quark propagators

were computed per trajectory using a deflated mixed-precision conjugate gradient solver [63] with

1000 low-mode deflation vectors and a tight stopping precision r = 10−8, while sloppy light quark

propagators with a reduced stopping precision r = 10−4 were computed for all time slices. The

cheaper strange quark propagators were computed to the tight residual r = 10−8 on all time slices

using the ordinary conjugate gradient algorithm with no deflation. AMA correlation functions were

then computed by time-translational averaging of the sloppy propagators, using the available exact

propagators to correct for bias. In all cases we use Coulomb gauge-fixed wall sources (W), and

either local (L) or wall sinks.

We have computed the low-energy QCD spectrum for 21 configurations separated by 20 MD
12Because of the heavy pion mass mπ ∼ 400 MeV this ensemble is excluded completely from the fits with a 370

MeV mass cut.
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time units each on the 32ID-M1 ensemble, and 24 configurations separated by 40 MD time units

each on the 32ID-M2 ensemble. These measurements include the residual mass (mres), light-light

and heavy-light pseudoscalar masses (mll, mlh) and decay constants (fll, flh), the axial and vector

current renormalization coefficients (ZA, ZV ), the Ω baryon mass (mhhh), and the Wilson flow

scales (t1/20 , w0). Since the analysis package has been discussed in detail in our previous work we

paraphrase the fits which were preformed below, and refer the reader to [10] for additional detail.

In the following we use the notation “'” to denote equality up to excited state contamination

for a suitably chosen plateau range. These fits are performed by minimizing an uncorrelated χ2

(Eqn. C.41) where the correlation functions and fit forms are listed explicitly below.

1. The ratio

R(t) =
〈0|Σ~xja5q(~x, t)|π〉
〈0|Σ~xja5 (~x, t)|π〉

, (C.28)

where ja5q is the pseudoscalar density evaluated at the midpoint of the fifth dimension, and

ja5 is the physical pseudoscalar density constructed from the surface fields. The residual mass

is obtained by averaging over a range of values of t and extrapolating R to the chiral limit.

2. The light-light and heavy-light pseudoscalar masses from

〈0|Os1
1 (t)Os2

2 (0)|0〉 ' 〈0|Os1
1 |X〉〈X|Os2

2 |0〉
2mXV

(
e−mX t ± e−mX(T−t)

)
. (C.29)

Here Osi
i denotes the interpolating operator and smearing, and X denotes the state to which

the interpolating operator couples. We perform simultaneous fits to the 〈PPLW 〉, 〈PPWW 〉,

and 〈APLW 〉 correlators for both the light-light and heavy-light pseudoscalar states. The sign

is +(-) for the PP(AP) correlator.

3. The ratio ZA/ZA — where ZA (ZA ) is a renormalization coefficient relating the local four-

dimensional (non-local five-dimensional) axial current to the Symanzik-improved axial current

— from
1

2

[
CA (t− 1) + CA (t)

2CA(t− 1
2)

+
2CA (t)

CA(t+
1
2) + CA(t− 1

2)

]
' ZA
ZA

, (C.30)

where CA (t) ≡ 〈0|
∑

~x ∂µA
a
µ (~x, t)|π〉 and CA(t− 1

2) ≡ 〈0|
∑

~x ∂µA
a
µ(~x, t)|π〉. This is the proce-

dure we introduced in [10] to extract ZA on our Möbius domain wall fermion ensembles; in
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our earlier analyses with plain domain wall fermions we extracted ZA directly from matrix

elements of the four-dimensional and five-dimensional axial currents.

4. The renormalization coefficient ZV relating the local four-dimensional vector current to the

Symanzik-improved vector current from

〈π(∆t)|π(0)〉
〈π(∆t)|V0(t)|π(0)〉

' ZV . (C.31)

Here V0 is the temporal component of the light quark electromagnetic current Vµ = qlγµql.

While Eqn. (C.31) is technically equal to the ratio ZV /ZV , where ZV relates the non-local five-

dimensional vector current to the Symanzik current, the five-dimensional current is exactly

conserved on the lattice, implying ZV = 1.

5. The renormalized light-light and heavy-light pseudoscalar decay constants

fX = ZV

√√√√ 2

mXV

(
N LW
AP

)2
N WW
PP

, (C.32)

where we have defined

N s1s2
O1O2

≡ 〈0|Os1
1 |X〉〈X|Os2

2 |0〉
2mXV

. (C.33)

We choose to renormalize the decay constants by ZV rather than ZA, which differ by small

terms of O(m2
res) since the five-dimensional axial current differs from unity by terms of

O(mres), introducing O(mres) errors into the determination of ZA via Eqn. (C.30). This

point is discussed in further detail in Ref. [8].

6. The Ω baryon mass from the two-point correlation function

C s1s2
ΩΩ (t) =

3∑
i=1

∑
~x

〈0|Os1
Ω (~x, t)iO

s2
Ω (0)i|0〉 (C.34)

with the interpolating operator OΩ(x)i = εabc
(
s>a (x)Cγisb(x)

)
sc(x). This correlator was

computed for both a Coulomb gauge-fixed wall source and a Z3 box source (Z3B), and,

in both cases, a local sink. The correlators were then projected onto the positive parity

component

P+C s1s2
ΩΩ =

1

4
tr

[
1

2
(1 + γ4)C s1s2

ΩΩ

]
(C.35)
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and simultaneously fit to a double exponential ansatz with common mass terms
C LW
ΩΩ (t) = N LW

ΩΩ e−mhhht + N LW
ΩΩ

′
e−m

′
hhht

C LZ3B
ΩΩ (t) = N LZ3B

ΩΩ e−mhhht + N LZ3B
ΩΩ

′
e−m

′
hhht

, (C.36)

where mhhh is the Ω baryon mass and m′
hhh is the mass of the first excited state in the positive

parity channel.

7. The Wilson flow scales, t1/20 and w0, defined by

t2〈E(t)〉
∣∣
t=t0

= 0.3 (C.37)

and

t
d

dt

(
t2〈E(t)〉

)∣∣∣∣
t=w2

0

= 0.3 (C.38)

respectively, where E = 1
2 tr(FµνFµν) is the clover discretized Yang-Mills action density.

The fit results are summarized in Table 3.22. The corresponding effective mass ./su2_chpt/plots

are shown in Figures 3.12-3.20.
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32ID-M1 32ID-M2

amll 0.11812(46) 0.19487(64)

amlh 0.42313(49) 0.30792(64)

afll 0.12489(23) 0.07771(22)

aflh 0.14673(33) 0.087164(21)

ZA 0.73195(39) 0.70087(14)

ZV 0.72482(52) 0.70593(92)

amhhh 1.5290(31) 0.9148(34)

am′
hhh 1.917(39) 1.215(36)

aR 0.002170(16) 0.0044660(46)

t
1/2
0 /a 0.78719(16) 1.4841(16)

w0/a 0.88865(78) 1.7151(33)

mll/mhhh 0.07725(34) 0.21303(90)

mlh/mhhh 0.27673(65) 0.3366(12)

fll/mhhh 0.08248(14) 0.08496(41)

flh/mhhh 0.09690(26) 0.09529(40)

Table 3.22: Summary of fit results in lattice units. Here R is defined by Equation (C.28), which

becomes mres when extrapolated to the chiral limit.
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Figure 3.9: Molecular dynamics evolution of the plaquette, chiral and pseudoscalar condensates,

pion propagator at t/a = 20, square of the topological charge, and clover discretized action density

computed at the Wilson flow times t0 and w2
0 as a function of MD time on the 32ID-M1 ensemble.

The first three quantities were computed every MD time step as part of the evolution. The topo-

logical charge and Wilson flow scales were computed every 10 and 20 MD time steps, respectively,

after the ensemble was thermalized. The dashed vertical lines mark the range of MD times used to

perform calculations of the spectrum.
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Figure 3.10: Molecular dynamics evolution of the plaquette, chiral and pseudoscalar condensates,

pion propagator at t/a = 20, square of the topological charge, and clover discretized action density

computed at the Wilson flow times t0 and w2
0 as a function of MD time on the 32ID-M2 ensemble.

The first three quantities were computed every MD time step as part of the evolution. The topo-

logical charge and Wilson flow scales were computed every 2 and 40 MD time steps, respectively,

after the ensemble was thermalized. The dashed vertical lines mark the range of MD times used to

perform calculations of the spectrum.
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Figure 3.11: Integrated autocorrelation times for the observables plotted in Figures 3.9 and 3.10.
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Figure 3.12: The residual mass, from Eqn. (C.28), on the 32ID-M1 (left) and 32ID-M2 (right)

ensembles.
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Figure 3.13: Light-light pseudoscalar mass on the 32ID-M1 (left) and 32ID-M2 (right) ensembles.

We simultaneously fit a common mass mll to the three correlators 〈PPLW 〉, 〈PPWW 〉, and 〈APLW 〉

on each ensemble.
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Figure 3.14: Heavy-light pseudoscalar mass on the 32ID-M1 (left) and 32ID-M2 (right) ensembles.

We simultaneously fit a common mass mlh to the three correlators 〈PPLW 〉, 〈PPWW 〉, and 〈APLW 〉

on each ensemble.
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Figure 3.15: The vector current renormalization coefficient on the 32ID-M1 (left) and 32ID-M2

(right) ensembles. In the upper plot we show the dependence of the ratio (C.31) on the source-sink

separation: the point plotted for each separation is evaluated at the midpoint t = |tsrc − tsnk|/2a.

Points which were included in the fit are marked in red. In the lower plot we show an example of

the fit to ZV overlaying the ratio (C.31) for one of the source-sink separations included in the fit.
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Figure 3.16: Light-light effective amplitudes N eff
O1O2

(t) ≡ 〈O1(t)O2(0)〉/(e−meff t±e−meff(T−t)) on the

32ID-M1 (left) and 32ID-M2 (right) ensembles. The sign is +(-) for the PP(AP) correlator. These

are related to the light-light pseudoscalar decay constant according to Eqn. (C.32).
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Figure 3.17: Heavy-light effective amplitudes on the 32ID-M1 (left) and 32ID-M2 (right) ensembles.
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Figure 3.18: The axial current renormalization coefficient, from Eqn. (C.30), on the 32ID-M1 (left)

and 32ID-M2 (right) ensembles.
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Figure 3.19: The Ω baryon mass on the 32ID-M1 (left) and 32ID-M2 (right) ensembles. The

wall source and Z3 box source correlators are simultaneously fit to double exponential ansätze

with common mass terms (Eqn. (C.36)). Here we overlay the data with the effective mass curves

obtained from the fit.
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Figure 3.20: The Wilson flow scales t1/20 (top) and w0 (bottom) on the 32ID-M1 (left) and 32ID-M2

(right) ensembles.
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3.D Fits with Weighted χ2

Correlations among data in a non-linear least squares fit are included by minimizing the correlated

χ2

χ2 =
∑
ij

(
yi − f(~β)i

σi

)(
ρ−1
)ij (yj − f(~β)j

σj

)
(C.39)

over the the space of model parameters ~β, where

ρij =
〈
(
yi − µi

) (
yj − µj

)
〉

σiσj
(C.40)

is the correlation matrix. In the limit that the data is completely uncorrelated ρij = δij , and we

recover the familiar uncorrelated χ2

χ2 =
∑
i

(
yi − f(~β)i

σi

)2

. (C.41)

In practice, correlations between data points computed on the same ensemble are often so strong

that ρij ≈ 1 ∀i, j is nearly singular, and minimization of the correlated χ2 defined by Eqn. (C.39)

is numerically unstable. This pathology can be tamed by ignoring the correlations and instead

minimizing the uncorrelated χ2, or by removing modes with small eigenvalues from ρij until the

minimization algorithm becomes stable. In either case one loses a rigorous interpretation of χ2 as

a statistical measure of the goodness-of-fit.

In Figure 3.21 we plot the correlation matrix ρij and its eigenvalue spectrum computed from the

data included in fits with a 370 MeV cut. We find, as expected, that the correlation matrix is ex-

tremely singular due to strong correlations associated with partial quenching and reweighting: the

eigenvalues span 15 orders of magnitude, and the condition number is cond(ρij) = 1.85× 1017. In

Figure 3.22 we further plot the sub-blocks of ρij corresponding to the 32I ensembles as an example

of the cross-correlations present in our data, for example, between the light-light and heavy-light

pseudoscalar masses. We conclude that we are unable to accurately invert the correlation matrix,

much less attempt fully correlated fits as defined by Equation C.39.
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Figure 3.21: Left: the correlation matrix ρij corresponding to fits with a 370 MeV cut. The dashed

lines mark the division into sub-blocks by ensemble. From left to right these are: 32I (ml = 0.004),

32I (ml = 0.006), 24I (ml = 0.005), 48I, 64I, 32I-fine, 32ID (ml = 0.001), 32ID (ml = 0.0042), and

32ID-M1. Right: the eigenvalue spectrum of ρij .

The fits discussed in Section 3.5 were performed by minimizing the uncorrelated χ2 (Eqn. (C.41)).

We expect, however, that our data is highly correlated, in particular between measurements of par-

tially quenched observables on the same ensemble but with different choices of the valence quark

masses, and between different reweightings in mh of the same observable. These particular classes of

correlations are especially troublesome since our partially quenched measurements and mh reweight-

ings were performed on the relatively heavy pion mass ensembles (24I, 32I, and 32ID) — a naive

uncorrelated fit will tend to give too much weight to this data, which is far from the chiral limit

where ChPT is exact. In this appendix we repeat these fits, normalizing the contributions to χ2

by the number of nondegenerate pseudoscalar mass measurements (Ne) associated with a given

ensemble (e):

χ2
e =

1

Ne

∑
i

(
yie − f ie
σie

)2

, (C.42)

where χ2 =
∑

e χ
2
e and the Ne are listed in Table 3.23. This can be loosely regarded as the limit of

extreme correlation, in which all of the partially quenched measurements on a given ensemble are

effectively weighted as a single point by inflating their statistical errors σie →
√
Neσ

i
e. We use the
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(a) 32I, ml = 0.004 (b) 32I, ml = 0.006

(c) 32I, ml = 0.004 × ml = 0.006

Figure 3.22: Sub-blocks of the correlation matrix corresponding to the 32I ensembles. Panel (c)

shows the cross-correlations between the ml = 0.004 and ml = 0.006 ensembles induced by the use

of ZV extrapolated to the chiral limit to normalize the decay constants.

difference in central values between these two schemes to assign a systematic error associated with

our inability to fully resolve the true correlation matrix to our fits.

This scheme for weighting χ2 can be further understood by analyzing the correlation matrix

in the limit that the off-diagonal terms are completely dominated by the correlations between
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Mass Cut 24I 32I 32ID 32I-fine 48I 64I 32ID-M1 32ID-M2

370 MeV 12 48 80 1 1 1 1 —

450 MeV 48 120 80 1 1 1 1 1

Table 3.23: The value of Ne — the number of non-degenerate quark mass combinations

(mx,my,ml,mh) used for pseudoscalar measurements entering into the fits — for each ensem-

ble and mass cut. There are four values of mh for each fixed (mx,my,ml) obtained by reweighting

in the heavy sea quark determinant.

partially quenched measurements on the same ensemble. To clarify this discussion, we write the

full correlation matrix (Eqn. (C.40)) as ρ(e,i,a);(e′,i′,a′), where e indexes the ensemble, i indexes the

valence quark mass combination, and a indexes the observable. If the data is both highly correlated

and dominated by the correlations between the partially quenched data the correlation matrix will

have a block structure

ρ(e,i,a),(e′,i′,a′) = (ρPQ)
i′j′

(e,a)δee′δaa′ (C.43)

where (ρPQ)
i′j′

(e,a) is the N(e,a) × N(e,a) sub-matrix describing the correlations between partially

quenched measurements of observable a on ensemble e; in the left panel of Figure 3.21, for ex-

ample, these are the extremely correlated blocks lying along the main diagonal. We expect these

correlations to be sufficiently strong that the blocks (ρPQ)
i′j′

(e,a) will be nearly singular, which we

can write in general as

(ρPQ)
i′j′

(e,a) =



1 1− ε12(e,a) · · · 1− ε
1N(e,a)

(e,a)

1− ε21(e,a) 1 · · · 1− ε
2N(e,a)

(e,a)
...

... . . . ...

1− ε
N(e,a)1

(e,a) 1− ε
N(e,a)2

(e,a) · · · 1


(C.44)

where the εi
′j′

(e,a) � 1 measure the small deviations from unity of the off-diagonal entries. To simplify

the analysis we set εi
′j′

(e,a) = ε everywhere and work to leading order in ε. In this limit each of the

(ρPQ)
i′j′

(e,a) has a single eigenvector (1, 1, . . . , 1) with eigenvalue N(e,a)−(N(e,a)−1)ε, representing the

mode where all N(e,a) data points are completely correlated. The remaining N(e,a) − 1 eigenvectors
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are degenerate with eigenvalue ε and span the subspace of correlations in the data orthogonal to

the completely correlated mode; their poor statistical resolution can be understood as a source of

the numerical instabilities observed in fully correlated fits. Since (ρijPQ)(e,a) is a real, symmetric

matrix it can be diagonalized by an orthogonal transformation:

(ρijPQ)ee =



1

Q
1

...

1





N(e,a) − (N(e,a) − 1)ε 0 · · · 0

0 ε · · · 0

...
... . . . ...

0 0 · · · ε





1 1 · · · 1

Q>


. (C.45)

Here Q is an orthogonal matrix whose columns correspond to an appropriate choice of the N(e,a)−1

degenerate eigenvectors with eigenvalue ε. Eqn. (C.42) follows from the fully correlated Eqn. (C.39)

if we define new blocks (ρ̃PQ)
i′j′

(e,a) by making the replacements N(e,a)− (N(e,a)− 1)ε ≈ N(e,a) for the

largest eigenvalue, and ε→ N(e,a) for the remaining N(e,a) − 1 eigenvalues:

(ρ̃PQ)
i′j′

(e,a) =



1

Q
1

...

1





N(e,a) 0 · · · 0

0 N(e,a) · · · 0

...
... . . . ...

0 0 · · · N(e,a)





1 1 · · · 1

Q>


= N(e,a)δ

i′j′ ,

(C.46)

and substitute (ρPQ)
i′j′

(e,a) → (ρ̃PQ)
i′j′

(e,a). Effectively, in Eqn. (C.42) we are treating the modes as-

sociated with the largest eigenvalue of each of the (ρPQ)
i′j′

(e,a) exactly up to terms of O(ε), and

underweighting the subdominant modes by a factor ∼ ε/N(e,a). We find in practice that this sta-

bilizes the fits while still capturing some of the important effects of correlations in the data. More

generally, one expects that the εi
′j′

(e,a) in Eqn. (C.44) are not all equal — breaking the degeneracy

between the N(e,a)−1 smallest eigenvalues of (ρPQ)i
′j′

(e,a) — and that some of the off-diagonal entries

in the full correlation matrix, representing other kinds of correlations, are non-zero; these effects

are O(ε) and do not change the argument presented here.

In the remainder of the appendix we summarize the results of fits performed by minimizing the

normalized χ2 (Eqn. (C.42)).

142



3.D.1 Fit Parameters

NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

χ2/dof 0.011(5) 0.049(13) 0.008(4) 0.007(4)

24I

amphys
l -0.001767(79) -0.001774(81) -0.001765(79) -0.001765(79)

amphys
h 0.03236(32) 0.03206(29) 0.03237(32) 0.03238(30)

a−1 1.777(13) GeV 1.797(12) GeV 1.777(13) GeV 1.777(12) GeV

32I

amphys
l 0.000263(14) 0.000254(13) 0.000265(14) 0.000266(13)

amphys
h 0.02485(24) 0.02469(18) 0.02491(23) 0.02496(21)

a−1 2.371(16) GeV 2.398(14) GeV 2.369(16) GeV 2.365(15) GeV

32ID

amphys
l -0.000131(27) -0.000156(25) -0.000121(25) -0.000120(26)

amphys
h 0.04547(86) 0.04496(75) 0.04557(80) 0.04544(82)

a−1 1.389(13) GeV 1.400(12) GeV 1.387(12) GeV 1.389(12) GeV

32I-fine

amphys
l 0.000077(30) 0.000060(30) 0.000073(31) 0.000082(33)

amphys
h 0.01884(60) 0.01830(58) 0.01881(59) 0.01907(65)

a−1 3.110(43) GeV 3.172(42) GeV 3.114(43) GeV 3.094(44) GeV

48I

amphys
l 0.0006959(86) 0.0007012(75) 0.0006983(84) 0.0007001(81)

amphys
h 0.03574(18) 0.03588(14) 0.03575(17) 0.03580(16)

a−1 1.731(4) GeV 1.728(3) GeV 1.730(4) GeV 1.729(4) GeV

64I

amphys
l 0.0006175(78) 0.0006219(64) 0.0006192(74) 0.0006198(67)

amphys
h 0.02530(17) 0.02552(13) 0.02535(17) 0.02539(14)

a−1 2.362(7) GeV 2.354(5) GeV 2.360(7) GeV 2.358(6) GeV

32ID-M1

amphys
l 0.000825(68) 0.000731(47) 0.000808(65) 0.000797(51)

amphys
h 0.0791(16) 0.0753(10) 0.0784(16) 0.0778(12)

a−1 1.020(10) GeV 1.039(7) GeV 1.024(10) GeV 1.029(7) GeV

32ID-M2

amphys
l — -0.003417(20) — -0.003413(23)

amphys
h — 0.02435(48) — 0.02422(55)

a−1 — 2.048(19) GeV — 2.030(22) GeV

Table 3.24: The (uncorrelated) χ2/dof, unrenormalized physical quark masses in bare lattice units

(without mres included), and the values of the inverse lattice spacing a−1 in physical units, obtained

from fits to SU(2) PQChPT with the stated pion mass cuts.
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NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

24I

Zl 0.9710(53) 0.9698(46) 0.9702(51) 0.9691(50)

Zh 0.9618(39) 0.9642(32) 0.9626(38) 0.9626(37)

Ra 0.7495(39) 0.7493(36) 0.7501(38) 0.7515(39)

32I

Zl ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

Zh ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

Ra ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

32ID

Zl 0.9225(90) 0.9310(87) 0.9189(83) 0.9170(86)

Zh 0.9209(85) 0.9279(75) 0.9210(82) 0.9228(84)

Ra 0.5857(60) 0.5838(55) 0.5855(57) 0.5872(60)

32I-fine

Zl 0.998(30) 1.003(31) 1.003(31) 0.997(33)

Zh 0.999(19) 1.012(20) 1.001(19) 0.994(21)

Ra 1.311(16) 1.323(16) 1.315(16) 1.308(17)

48I

Zl 0.9710(53) 0.9698(46) 0.9702(51) 0.9691(50)

Zh 0.9618(39) 0.9642(32) 0.9626(38) 0.9626(37)

Ra 0.7299(51) 0.7205(43) 0.7304(50) 0.7311(48)

64I

Zl ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

Zh ≡ 1.0 ≡ 1.0 ≡ 1.0 ≡ 1.0

Ra 0.9963(60) 0.9816(52) 0.9963(58) 0.9968(57)

32ID-M1

Zl 0.719(12) 0.7291(86) 0.720(11) 0.7192(84)

Zh 0.7303(100) 0.7552(71) 0.7345(98) 0.7368(78)

Ra 0.4301(57) 0.4332(41) 0.4323(57) 0.4351(44)

32ID-M2

Zl — 1.023(11) — 1.027(12)

Zh — 1.0300(84) — 1.0405(93)

Ra — 0.8541(59) — 0.8585(64)

Table 3.25: Ratios of lattice spacings (Ra) and light and heavy quark masses (Zl, Zh) between each

ensemble and the reference 32I ensemble.
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LEC Λχ NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

B
—

4.246(22) GeV 4.234(18) GeV 4.235(26) GeV 4.238(22) GeV

f 0.12298(93) GeV 0.12153(77) GeV 0.1226(13) GeV 0.1229(11) GeV

103L̂
(2)
0

1 GeV

— — -4.5(4.8) -0.2(2.0)

103L̂
(2)
1 — — 0.7(1.2) -0.30(57)

103L̂
(2)
2 — — -4.4(3.3) -0.9(1.3)

103L̂
(2)
3 — — 1.4(2.5) -0.8(1.2)

103L̂
(2)
4 -0.193(77) 0.024(55) -0.36(36) -0.48(20)

103L̂
(2)
5 0.479(82) 0.448(48) 0.94(49) 0.69(29)

103L̂
(2)
6 -0.165(48) -0.004(35) -0.25(17) -0.345(99)

103L̂
(2)
7 — — -1.60(80) -0.78(36)

103L̂
(2)
8 0.604(41) 0.532(24) 0.81(22) 0.73(14)

103L̂
(2)
0

770 MeV

— — -4.5(5.1) -0.1(2.0)

103L̂
(2)
1 — — 0.8(1.2) -0.20(58)

103L̂
(2)
2 — — -4.2(3.4) -0.7(1.4)

103L̂
(2)
3 — — 1.6(2.7) -0.6(1.3)

103L̂
(2)
4 0.014(77) 0.231(55) -0.15(36) -0.27(20)

103L̂
(2)
5 0.893(82) 0.862(48) 1.35(48) 1.11(29)

103L̂
(2)
6 -0.010(48) 0.151(35) -0.09(17) -0.189(99)

103L̂
(2)
7 — — -1.61(84) -0.78(36)

103L̂
(2)
8 0.604(41) 0.532(24) 0.81(22) 0.73(14)

106
(
K̂

(2)
17 − K̂

(2)
39

)

1 GeV

— — -10.1(2.7) -8.2(1.3)

106
(
K̂

(2)
18 + 6K̂

(2)
27 − K̂

(2)
40

)
— — 20(13) 18.5(5.2)

106K̂
(2)
19 — — 6(25) -2.9(8.0)

106K̂
(2)
20 — — -15(16) -3.9(4.4)

106
(
K̂

(2)
21 + 2K

(2)
22

)
— — -5.3(7.7) 3.4(3.9)

106K̂
(2)
23 — — -10.3(5.7) -2.6(2.3)

106K̂
(2)
25 — — 3.7(7.1) -0.0(2.8)

106
(
K̂

(2)
26 + 6K̂

(2)
27

)
— — 6.3(7.7) 10.7(3.3)

106
(
K̂

(2)
17 − K̂

(2)
39

)

770 MeV

— — -8.3(2.1) -6.1(1.0)

106
(
K̂

(2)
18 + 6K̂

(2)
27 − K̂

(2)
40

)
— — 12(10) 13.7(3.9)

106K̂
(2)
19 — — -5(17) -6.4(4.9)

106K̂
(2)
20 — — -7(11) -0.1(2.7)

106
(
K̂

(2)
21 + 2K

(2)
22

)
— — -5.6(8.0) 4.2(3.5)

106K̂
(2)
23 — — -5.6(4.8) -0.0(19)

106K̂
(2)
25 — — -1.0(5.2) -2.3(1.9)

106
(
K̂

(2)
26 + 6K̂

(2)
27

)
— — 4.2(7.0) 9.5(2.9)

Table 3.26: SU(2) PQChPT LECs fit at two different chiral scales — Λχ = 1GeV and Λχ =

770MeV — in units of the canonical size at a given order in the chiral expansion. The LECs L̂(2)
7

and L̂
(2)
8 have no scale dependence. The value of B quoted here is unrenormalized.
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Parameter NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

m(K) 0.4863(21) GeV 0.4857(17) GeV 0.4863(21) GeV 0.4863(18) GeV

f (K) 0.15201(94) GeV 0.15108(81) GeV 0.15187(92) GeV 0.15121(86) GeV

103λ1 3.1(1.0) 4.56(80) 3.06(99) 3.2(1.0)

103λ2 28.62(45) 28.36(42) 28.57(65) 28.87(57)

103λ3 -4.01(98) -2.33(77) -3.91(97) -4.04(87)

103λ4 5.74(38) 6.18(48) 5.74(39) 5.93(47)

cIf 0.007(22) GeV2 0.022(19) GeV2 0.018(25) GeV2 0.021(24) GeV2

cIDf -0.012(13) GeV2 0.016(10) GeV2 -0.000(16) GeV2 0.008(14) GeV2

cI
f (K) 0.004(17) GeV2 0.009(16) GeV2 0.006(17) GeV2 0.017(16) GeV2

cID
f (K) -0.003(11) GeV2 0.0131(82) GeV2 -0.001(11) GeV2 0.0175(78) GeV2

cmh,m2
π

3.5(3.9) 0.1(3.4) 3.5(3.3) 0.2(2.9)

cmh,fπ 0.09(12) 0.116(96) 0.14(12) 0.184(92)

cmy ,m2
K

3.939(18) GeV 3.953(15) GeV 3.934(18) GeV 3.930(16) GeV

cmh,m
2
K

0.040(67) GeV 0.167(76) GeV 0.048(66) GeV 0.017(63) GeV

cmy ,fK 0.2903(88) 0.2944(86) 0.2879(84) 0.3228(93)

cmh,fK 0.067(50) 0.042(44) 0.050(57) 0.108(44)

m(Ω) 1.6645(36) GeV 1.6614(25) GeV 1.6643(34) GeV 1.6651(29) GeV

cml,mΩ 3.63(64) 5.05(57) 3.73(65) 3.33(63)

cmy ,mΩ 5.678(81) 5.39(12) 5.633(78) 5.537(74)

cmh,mΩ 1.99(48) 1.23(41) 1.80(52) 1.52(40)

Table 3.27: Additional fit parameters in physical units and adjusted to the physical strange quark

mass. Here {m(K), f (K)} and {λi} are the LO and NLO LECs of heavy-meson SU(2) PQChPT

evaluated at the chiral scale Λχ = 1GeV. cIf and cIDf are the a2 coefficients of fπ for the Iwasaki

and Iwasaki+DSDR gauge actions, respectively, and likewise for cI
f (K) and cID

f (K) . The notation

cmq ,X denotes the coefficient of a term linear in mq for quantity X, and m(Ω) is the constant term

in the (linear) mΩ ansatz.
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3.D.2 Predictions

LEC Λχ NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

BMS(µ = 2GeV)

—

2.815(33)(30) GeV 2.808(31)(30) GeV 2.808(36)(30) GeV 2.811(35)(30) GeV

f 123.0(9) MeV 121.5(8) MeV 122.6(1.3) MeV 122.9(1.1) MeV

Σ1/3,MS(µ = 2GeV) 277.2(1.8)(1.0) MeV 274.7(1.5)(1.0) MeV 276.3(2.1)(1.0) MeV 276.9(1.9)(1.0) MeV

103l1

1 GeV

— — 15(19) -2.4(7.6)

103l2 — — -35(32) -5(13)

103l3 1.82(26) 2.22(20) 1.62(79) 1.36(56)

103l4 0.37(52) 1.98(36) 0.8(1.5) -1.05(99)

103l7 — — 19(12) 6.7(5.4)

103l1

770 MeV

— — 16(19) -1.8(7.7)

103l2 — — -35(33) -3(13)

103l3 0.99(26) 1.39(20) 0.78(79) 0.54(56)

103l4 3.68(52) 5.29(36) 4.2(1.6) 2.26(99)

103l7 — — 19(13) 6.7(5.4)

`1

—

— — 18(18) 1.8(7.2)

`2 — — -13(15) 1.9(6.2)

`3 2.86(16) 2.61(12) 2.98(50) 3.14(35)

`4 4.064(82) 4.318(57) 4.14(24) 3.84(16)

Table 3.28: Unquenched SU(2) LECs computed from partially quenched SU(2) fits. Missing entries

are not constrained by the fits at a given order. For B and Σ the first error is statistical and the

second is a systematic uncertainty in the perturbative matching to MS.
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NLO (370MeV cut) NLO (450MeV cut) NNLO (370MeV cut) NNLO (450MeV cut)

fπ 0.13074(84) GeV 0.12986(71) GeV 0.13032(94) GeV 0.13011(89) GeV

fK 0.15587(79) GeV 0.15542(70) GeV 0.15577(78) GeV 0.15508(71) GeV

fK/fπ 1.1922(41) 1.1968(39) 1.1953(59) 1.1919(56)

fπ/f 1.0631(18) 1.0686(13) 1.0631(44) 1.0583(29)

mπa
0
0 — — 0.153(33) 0.185(14)

mπa
2
0 — — -0.057(13) -0.0431(53)

[m2
π± −m2

π0 ]QCD/∆m
2
du — — 91(57) 32(26)

Table 3.29: Predictions from NLO and NNLO fits and SU(2) ChPT. ∆mdu ≡ md −mu.
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Chapter 4

Next-to-Next-to Leading Order

SU(3) Chiral Perturbation Theory

The Low Energy Constants of SU(3) Partially

Quenched Chiral Perturbation Theory from Nf = 2+ 1

Domain Wall QCD

C. Kelly1, R.D. Mawhinney1, and D.J. Murphy1

1Department of Physics, Columbia University, New York, NY 10027, USA

Abstract

We have performed fits of the pseudoscalar masses and decay constants, from a variety of

RBC-UKQCD domain wall fermion ensembles, to SU(3) partially quenched chiral perturbation

theory at next-to-next-to leading order, following the approach of our recent paper on the SU(2)

theory [1]. These ensembles cover a wide range of unitary pion masses, ranging from a lighter

than physical 117 MeV up to 432 MeV. We report values for 9 NLO and 10 linearly independent
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combinations of NNLO partially quenched low energy constants, which we compare to other

lattice and phenomenological determinations. We discuss the convergence of the expansion and

use our large set of low energy constants to make predictions for mass and decay constant

splittings due to QCD isospin breaking effects in the kaon sector, and for the S-wave πK

scattering lengths. We find that, with the inclusion of new data near the physical point, we are

able to successfully fit NLO SU(3) PQChPT to data with two light valence quarks, in contrast

to earlier, unsuccessful RBC-UKQCD fits to a heavier subset of our current data. We also find

that after including NNLO terms we are able to fit data up to the scale of the physical kaon

with percent-scale accuracy. We conclude that, for the range of pseudoscalar masses and decay

constants explored in this work, the NNLO SU(3) expansion is accurate but is likely nearing

the limits of its applicability at the scale of the physical kaon.

4.1 Introduction

Quantum Chromodynamics (QCD), the quantum field theory describing quarks and their inter-

actions via the strong nuclear force, is widely believed to give the correct theoretical description

of the mesons and baryons observed in nature. However, the same highly nonlinear dynamics

which successfully predicts that quarks will bind together into hadrons at low energies also makes

many analytic calculations intractable. Perturbative expansions of QCD correlation functions in

terms of the strong coupling constant fail at low energies, and an alternative approach is needed to

analytically compute the properties of hadrons in this regime.

Lattice QCD provides the only known first-principles approach for performing fully non-perturbative

QCD calculations: after reformulating QCD on a finite, discrete spacetime lattice powerful super-

computers can be used to solve the resulting equations directly. A typical lattice QCD calculation

is performed with several values of the lattice spacing, simulation volume, and input quark masses.

Contact with experimental results can then be made by interpolating or extrapolating the simu-

lated points to the infinite volume, continuum, and physical quark mass limit. In this work we

make use of a series of lattice ensembles generated by the RBC-UKQCD collaboration and used

to compute, in particular, properties of the light pseudoscalar meson spectrum. These ensembles

utilize the domain wall fermion (DWF) formalism, which provides excellent chiral symmetry prop-
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erties at the expense of introducing a fifth spacetime dimension. With the recent development of

simulations performed directly at physical masses RBC-UKQCD has shown that lattice QCD can

predict observables such as the pion and kaon decay constants with sub-percent accuracy and in

agreement with experiment [2].

An alternative approach to low energy QCD is to apply effective field theory (EFT) techniques.

Observing that the QCD Lagrangian with Nf massless quarks has an exact SU(Nf )L × SU(Nf )R

symmetry, and that the physical hadron spectrum contains N2
f − 1 approximately degenerate light

pseudoscalar mesons, suggests an EFT description, known as chiral perturbation theory (ChPT). In

this formalism the light pseudoscalars are realized as pseudo-Goldstone bosons associated with the

spontaneous breaking of chiral symmetry SU(Nf )L×SU(Nf )R → SU(Nf )V by the QCD vacuum;

these mesons are light rather than massless since chiral symmetry is also explicitly broken by the

non-zero quark masses found in nature. One can regard ChPT as a low-energy effective field theory

expansion in powers of masses and momenta which becomes exact in the limit of massless quarks.

In this work we focus on the Nf = 3 variant of ChPT, which allows for systematic calculations

of the properties of the pseudoscalar octet (π,K, η) in terms of the up, down, and strange quark

masses.

The SU(3) ChPT Lagrangian can be constructed following a general prescription introduced

by Weinberg [3]: one picks a power counting scheme and writes down the most general Lagrangian

for the light pseudoscalar mesons consistent with an SU(3)L × SU(3)R symmetry order-by-order.

The operators which appear in this Lagrangian are parameterized by a priori unknown low-energy

constants (LECs). These LECs encode the matching of ChPT to QCD and must be determined

by experimental or lattice constraints. SU(3) ChPT was first explicitly constructed and explored

at next-to leading order (NLO) by Gasser and Leutwyler [4]. Full calculations of the pseudoscalar

masses and decay constants at next-to-next-to leading order (NNLO) in the more general framework

of partially quenched ChPT (PQChPT) — where the valence and sea quark masses are allowed

to differ — were later performed by Bijnens, Danielsson, and Lähde [5]. We make use of Fortran

codes provided by Bijnens to compute the NNLO terms in our fits.

In this paper we follow up our recent analysis of NNLO SU(2) PQChPT [1] with an analogous
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study of the SU(3) case. In particular, we seek to use RBC-UKQCD’s set of domain wall fermion

ensembles to:

1. Determine as many of the low energy constants of SU(3) ChPT as possible from our data,

and

2. Systematically study the behavior and range of applicability of the SU(3) ChPT expansions

up to next-to-next-to leading order.

Earlier NLO SU(3) PQChPT fits to a smaller RBC-UKQCD domain wall QCD data set with

relatively heavy pion masses (250−420 MeV) were performed in Ref. [6], but were deemed unreliable.

These fits predicted a suspiciously low value of the SU(3) chiral decay constant f0 ∼ 93.5MeV as

well as large NLO corrections that were ∼ 70% of LO at a scale of 400 MeV. In subsequent

RBC-UKQCD works chiral extrapolations based on SU(3) ChPT were abandoned in favor of more

reliable SU(2) ChPT-based extrapolations. In addition, the MILC collaboration has studied the

pseudoscalar mass and decay constant in SU(3) NNLO PQChPT using staggered fermions [7, 8].

Here we revisit NLO and NNLO partially quenched SU(3) ChPT fits using the current RBC-

UKQCD domain wall fermion data set, which now includes physical and even lighter-than-physical

pion mass ensembles. Our DWF ensembles, which preserve continuum chiral symmetries even at

finite lattice spacing, provide an ideal laboratory for testing ChPT fits and the reliability of the

SU(3) expansion.

4.2 Lattice Setup

In Table 4.1 we list the 12 ensembles included in this analysis and summarize the actions and input

parameters. These ensembles comprise the same data set used for our recent SU(2) analysis [1], and

cover a wide range of unitary pion masses, physical volumes, and inverse lattice spacings. We use the

Iwasaki gauge action (I) [9] in all cases, and on some ensembles supplement this with the dislocation

suppressing determinant ratio (I+DSDR) [10, 11]. We simulate QCD with two degenerate light

quark flavors of bare mass ml and a single heavy quark flavor of bare mass mh using the domain

wall fermion formalism, with either the Shamir (DWF) [12, 13] or Möbius (MDWF) [14–16] kernel.
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Additional details of the ensemble generation and fits to extract the low-energy QCD spectrum

can be found in Ref. [17] for the 24I ensembles, Ref. [18] for the 32I ensembles, Ref. [19] for the

32ID ensembles, Ref. [2] for the 48I, 64I, and 32I-fine ensembles, and Ref. [1] for the 32ID-M1 and

32ID-M2 ensembles. Appendix B of Ref. [1] contains an explicit summary of the pseudoscalar mass,

pseudoscalar decay constant, and Ω baryon measurements which enter into the chiral fits.

Ensemble Action β L3 × T × Ls aml amh mπL mπ (MeV)

24I
DWF+I 2.13 243 × 64× 16 0.005 0.04 4.568(13) 339.6(1.2)

DWF+I 2.13 243 × 64× 16 0.01 0.04 5.814(12) 432.2(1.4)

32I

DWF+I 2.25 323 × 64× 16 0.004 0.03 4.062(11) 302.0(1.1)

DWF+I 2.25 323 × 64× 16 0.006 0.03 4.8377(82) 359.7(1.2)

DWF+I 2.25 323 × 64× 16 0.008 0.03 5.526(12) 410.8(1.5)

32ID
DWF+I+DSDR 1.75 323 × 64× 32 0.001 0.046 3.9992(69) 172.7(9)

DWF+I+DSDR 1.75 323 × 64× 32 0.0042 0.046 5.7918(79) 250.1(1.2)

32I-fine DWF+I 2.37 323 × 64× 12 0.0047 0.0186 3.773(42) 370.1(4.4)

48I MDWF+I 2.13 483 × 96× 24 0.00078 0.0362 3.8633(63) 139.1(4)

64I MDWF+I 2.25 643 × 128× 12 0.000678 0.02661 3.7778(84) 139.0(5)

32ID-M1 MDWF+I+DSDR 1.633 323 × 64× 24 0.00022 0.0596 3.780(15) 117.3(4.4)

32ID-M2 MDWF+I+DSDR 1.943 323 × 64× 12 0.00478 0.03297 6.236(21) 401.0(2.3)

Table 4.1: Summary of ensembles included in this analysis and input parameters. Here β is the

gauge coupling, L3 × T × Ls is the lattice volume decomposed into the length of the spatial (L),

temporal (T ), and fifth (Ls) dimensions, and aml and amh are the bare, input light and heavy

quark masses. The value of mπ quoted is the unitary pion mass in physical units, where we have

used the lattice spacings from our canonical NLO SU(2) global fit [1].
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4.3 The SU(3) Global Fit Procedure

In Ref. [2, 18, 19] we have developed a “global fit" procedure for performing a combined chiral fit

and continuum extrapolation of lattice data, which was adapted to study partially quenched SU(2)

chiral perturbation theory at next-to-next-to leading order in Ref. [1]. In addition to determining

low energy constants of ChPT, the global fit also allows us to convert predictions from our simu-

lations, which are performed in dimensionless lattice units, into physical units by determining the

lattice spacing a on each ensemble. In this section we briefly review the global fit procedure and

highlight some of the differences between the SU(3) case and the SU(2) case.

The SU(3) global fits performed in this work include data for the (in general partially quenched)

pseudoscalar mass (mxy) and decay constant (fxy), as well as the omega baryon mass mΩ. Partially

quenched NLO or NNLO SU(3) ChPT with NLO finite volume corrections is used to perform the

chiral fit to the valence quark (mx, my) and sea quark (ml,mh) mass dependence1 of mxy and fxy.

The chiral fit to mΩ is performed using a simple analytic ansatz which is linear in the quark masses.

Since the raw simulation data is in lattice units which are different for each ensemble we choose

our 323 × 64 Iwasaki (32I) lattice as a reference ensemble, and introduce additional fit parameters

Rea ≡
ar

ae
, Zel ≡ 1

Rea

(am̃l)
r

(am̃l)
e , Zeh ≡ 1

Rea

(am̃h)
r

(am̃h)
e (4.1)

to convert between bare lattice units on the reference ensemble (r) and other ensembles (e). The

SU(3) chiral ansatzäe for X ∈ {m2
xy, fxy} have the generic form

X(m̃q, L) ' X0

(
1 +XNLO(m̃q) +XNNLO(m̃q)︸ ︷︷ ︸

NNLO Continuum PQChPT

+ ∆NLO
X (m̃q, L)︸ ︷︷ ︸

NLO FV corrections

)
, (4.2)

reflecting a simultaneous expansion in the total quark masses and lattice volume (L).

The procedure for performing an SU(3) global fit is as follows:

1. The valence quark mass dependence of mres is fit to a linear ansatz on each ensemble. We

then extrapolate mres to the chiral limit mq → 0, and use this value in the remainder of the

analysis.
1Note that this differs from the SU(2) case, where a series of reweightings inmh was computed for each combination

of (mx,my,ml), and used to perform a small linear interpolation in mh to the physical strange quark mass. For

SU(3) fits the mh dependence of mxy and fxy is described directly by ChPT, rendering this procedure unnecessary.
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2. A simultaneous chiral/continuum fit of m2
xy, fxy, and mΩ is performed on all ensembles

using the ansätze described in the preceding paragraph. The quark mass dependence is

parametrized in terms of m̃q = mq + mres. This step also determines the ratios of lattice

scales Rea and the scaling coefficients Ze{l,h}.

3. We match onto a continuum scaling trajectory by numerically inverting the chiral fit to

determine input bare valence quark masses mphys
l and mphys

s such that the ratios mπ/mΩ and

fπ/mΩ take their PDG experimental values [20].

4. From 3 we obtain mΩ at mphys
l and mphys

s on the reference ensemble; we then use the ratio

mr
Ω/m

phys
Ω to determine the lattice spacing ar in physical units. Together with the ratios of

lattice scales from 2 we can determine the lattice spacings on the other ensembles, as well as

extrapolate observables to the physical point in physical units.

Renormalization-scheme dependent quantities — in particular, the physical quark masses mphys
l

and mphys
s , and the leading-order SU(3) LEC B0 — are converted to MS using the same procedure

and renormalization coefficients we have used in our earlier SU(2) fits: we first renormalize in

variants of the non-perturbative Rome-Southampton regularization-invariant momentum scheme

with symmetric kinematics (RI-SMOM), and then perturbatively match to MS. We direct the

interested reader to Section 4 of Ref. [1] for additional detail.

While this procedure is largely the same as that of the SU(2) global fits described in our earlier

work, there are a few important differences. First, for SU(3) fits we match onto a continuum scaling

trajectory by forcing mπ and fπ to take their physical values rather than mπ and mK , as we have

conventionally used for SU(2) fits. This is motivated by our expectation that SU(3) ChPT ought

to be reliable at the pion scale, but may not be as reliable at the kaon scale. Second, the SU(2)

analogues of the chiral ansatzäe defined schematically by Eqn. (4.2) also included discretization

terms proportional to a2 for fπ and fK , which were not used to set the scale or match onto a

scaling trajectory. Our SU(3) fits contain exactly three independent observables — mxy, fxy, and

mΩ — all of which are used to determine the lattice spacings and continuum scaling trajectory,

and thus we did not similarly include a2 terms.
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The fits described in steps 1 and 2 are performed using uncorrelated nonlinear χ2 minimization

with the Levenberg-Marquardt algorithm [21, 22]. In Appendix D of Ref. [1] we demonstrated that

the large number of data points in our fits leads to an ill-conditioned correlation matrix, forcing us

to perform fits by minimizing the uncorrelated χ2:

χ2 =
∑
i

(
yi − f i

σi

)2

. (4.3)

As a result, the χ2/dof that we report cannot be interpreted as a rigorous statistical measure of the

goodness-of-fit, and instead we present histograms which show the distribution of the data around

our fits. In the same appendix we also argue that there is a potential systematic bias introduced by

our use of uncorrelated fits: some subsets of our data consist of partially quenched measurements

computed on a single ensemble with different valence quark mass combinations, and this data is

strongly correlated. Furthermore, since these partially quenched measurements were computed on

our older, relatively heavy pion mass ensembles — which are far from the chiral limit where ChPT

is exact — a naive uncorrelated fit will tend to give too much weight to this data and potentially

bias the results. We argued that we could estimate the associated systematic error by introducing

a second set of weighted fits

χ2
e =

1

Ne

∑
j∈e

(
yje − f je

σje

)2

, χ2 =
∑
e

χ2
e (4.4)

where the contribution to χ2 from each ensemble e was normalized by the number of nondegenerate

valence mass combinations computed on that ensemble (Ne), and we used the difference in central

value between fit parameters from a weighted and an unweighted fit as an estimate of this system-

atic. We adopt the same procedure here: the results of unweighted fits are reported in Section 4.4,

the results of weighted fits in Appendix 4.B, and the difference between the two fits is factored into

our final error budget. We direct the reader to Appendix D of our previous work for more detail

regarding this procedure.
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4.4 Fits to SU(3) PQχPT

In this section we discuss global fits of the pseudoscalar mass, psuedoscalar decay constant, and

Ω baryon to SU(3) partially quenched chiral perturbation theory. In particular, pseudoscalar

quantities are fit to NLO or NNLO SU(3) PQChPT with NLO finite volume corrections, while

the Ω baryon mass is fit to a linear, analytic ansatz. We determine the physical quark masses

and the lattice spacings by constraining mπ, fπ, and mΩ to take their experimental, PDG values;

we can then predict mK and fK from SU(3) ChPT with the LECs and physical quark masses

obtained from our fits. We remind the reader that, in contrast to the SU(2) fits, we do not

determine a2 scaling coefficients for fπ and fK in our SU(3) fits. This is because there are exactly

three observables in the fits and three constraints are required to match onto a continuum scaling

trajectory in our formalism. We also do not include any data which has been reweighted in mh,

since the mh dependence of observables is directly parametrized by SU(3) PQChPT.

We consider two different mass cuts: a 370 MeV cut which uses exactly the same (pion) data

as the corresponding SU(2) fit from Ref. [1], and a 510 MeV cut which uses all partially quenched

measurements with mxy ≤ 510MeV, including the unitary kaon on our lightest ensembles. These

mass cuts were motivated by RBC-UKQCD’s earlier experience with fitting SU(3) PQChPT to the

24I lattice data, where it was observed that good fits to the partially quenched pion were possible,

but that these fits broke down as heavier measurements up to the kaon scale were included [17].

We emphasize, however, that the ensembles included in this earlier analysis were all at very heavy

quark mass — the lightest unitary kaon, for example, had a mass of mK ∼ 600MeV, well outside

the cuts in this work.

In contrast to the SU(2) case, where the RBC-UKQCD collaboration has extensive experience

with successful fits of ChPT to lattice data, much less is known about the applicability of the SU(3)

theory. The significantly heavier mass of the strange quark implies that the SU(3) expansion in mh

may converge much more slowly than the SU(2) expansion in ml, and indeed, the RBC-UKQCD

collaboration’s earlier attempts to fit NLO SU(3) PQChPT to data from the 24I ensemble were

unsuccessful [17]. In light of this we relax our expectations somewhat for the SU(3) fits: we regard

the results in this section as an exploratory study of whether or not we can reliably fit NLO and/or
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NNLO SU(3) PQChPT to our data set — which now includes physical pion mass ensembles —

and whether or not SU(3) ChPT can make predictions at the physical point with percent-scale

accuracy once values for the low-energy constants have been determined.

In Section 4.4.1 we discuss implementation details which are specific to the NNLO SU(3) fits.

In Sections 4.4.2-4.4.4 we present the fit results, including our values for the partially quenched

NLO and NNLO LECs. In Section 4.4.5 we examine the range of applicability of NNLO SU(3)

ChPT and the relative sizes of the terms in the chiral expansion. In Section 4.4.6 we discuss our

new results in relation to our previous conclusions regarding SU(3) ChPT from Ref. [17]. Finally,

in Section 4.4.7 we compute the unquenched SU(2) and SU(3) ChPT LECs from these results, and

also discuss other predictions we can make. All fits are performed using the Marquardt-Levenberg

algorithm to minimize the uncorrelated χ2; in Appendix 4.B we repeat the fits using a weighted χ2

to explore systematic effects associated with correlations in the data.

4.4.1 Implementation Details for NNLO SU(3) Fits

There is an additional numerical obstacle to implementing the global fit procedure for NNLO SU(3)

fits, which we do not observe to be an issue in the other cases: while the PQChPT expressions

for the pseudoscalar mass m2
xy and decay constant fxy are smooth functions of the quark masses

(mx, my, ml, mh), there are particular limits which must be handled with care in the numerical

implementation. As a concrete example, consider the mass of a meson containing a light sea quark

and a valence quark mx 6= ml at NLO:

m2
lx =

1

2
(χl + χx)

{
1 +

48

f20

(
2L̂

(3)
6 − L̂

(3)
4

)
χ+

8

f20

(
2L̂

(3)
8 − L̂

(3)
5

)
(χl + χx)

+
1

24π2f20

[
χx − χh
χx − χη

χx log

(
χx
Λ2
χ

)
+
χη − χh
χη − χx

χη log

(
χη
Λ2
χ

)]} (4.5)

where χq ≡ 2B0mq, χ ≡ 2B0(2ml +mh)/3, and χη ≡ 2B0(ml + 2mh)/3. While the limit χx → χη

has a completely well-defined analytic expression

m2
lx =

1

2
(χl + χη)

{
1 +

48

f20

(
2L̂

(3)
6 − L̂

(3)
4

)
χ+

8

f20

(
2L̂

(3)
8 − L̂

(3)
5

)
(χl + χη)

+
1

24π2f20

[
χη − χh + (2χη − χh) log

(
χη
Λ2
χ

)]}
,

(4.6)
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numerical instabilities are encountered if one instead naively tries to compute m2
lx from (4.5) with

mx ≈ mη. At NLO one can explicitly work out all such cases and take care to use an appropriate

analytic form of the expression for the pseudoscalar mass or decay constant for each set of input

quark masses, but at NNLO this exercise is considerably more complicated, and has not been

worked out in all cases in the Fortran routines provided by J. Bijnens.

We use a simple scheme to catch and interpolate around quark mass combinations where the rou-

tines become singular, which we illustrate here using the pseudoscalar mass. For a given combina-

tion of quark masses we compute m2
xy(mx,my,ml,mh), as well as the four nearest-neighbors in the

valence quark plane, m2
xy(mx ±∆mx,my ±∆my,ml,mh), where ∆mx/mx � 1 and ∆my/my � 1

are small perturbations. We then compute the two-point
m2
xy =

1

2

[
m2
xy(mx +∆mx,my,ml,mh) +m2

xy(mx −∆mx,my,ml,mh)
]

m2
xy =

1

2

[
m2
xy(mx,my +∆my,ml,mh) +m2

xy(mx,my −∆my,ml,mh)
] (4.7)

and four-point

m2
xy =

1

4

[
m2
xy(mx +∆mx,my,ml,mh) +m2

xy(mx,my +∆my,ml,mh)

+m2
xy(mx −∆mx,my,ml,mh) +m2

xy(mx,my −∆my,ml,mh)
] (4.8)

interpolations, as well as the slopes ∂m2
xy/∂mx and ∂m2

xy/∂my. While one should generally have

m2
xy

∼= m2
xy

∼= m2
xy

∼= m2
xy and ∂m2

xy/∂mx = ∂m2
xy/∂my to arbitrary precision if ∆mx and ∆my are

sufficiently small, this will fail if either the direct calculation or one of the nearest-neighbors hap-

pens to be evaluated at a point where the NNLO routines are poorly behaved. By checking these

constraints we can decide which of {m2
xy, m

2
xy, m

2
xy, m

2
xy} to take as the value of the pseudoscalar

mass, depending on which comparisons fail. In practice this interpolation scheme is sufficient to

catch and accurately approximate cases where the direct calculation encounters numerical instabil-

ities.

4.4.2 Fit Parameters

Tables 4.2-4.4 summarize the parameters of the fits we have performed, where the errors are purely

statistical. These include the χ2/dof, physical quark masses, and inverse lattice spacings in physical
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units (Table 4.2), the ratios of quark masses and lattice spacings between the reference 32I ensemble

and the other ensembles (Table 4.3), and the SU(3) PQChPT LECs (Table 4.4). The counting

of the low-energy constants is slightly different between the SU(2) and SU(3) cases, since the

additional degree of freedom associated with the heavy dynamical quark in SU(3) breaks some of

the degeneracy of the NNLO LECs. For SU(3) there are ten non-degenerate linear combinations

at NNLO, listed explicitly in Table 4.4. We set K̂(3)
39 = K̂

(3)
40 = 0 in the fits to simplify the 10 linear

combinations to 10 independent fit parameters.

For the NNLO fits, we consider two different schemes. In the first scheme, which we refer to as

“free” fits, all fit parameters are allowed to vary freely with no constraints. In the second scheme,

which we refer to as fits with “frozen LO LECs”, the leading-order low-energy constants B0 and f0

are frozen superjackknife-block-by-superjackknife-block to the values of B0 and f0 obtained from

the NLO fit with the same mass cut. This was motivated by the observation that the chiral decay

constant f0 tends to run off to f0 ∼ 130MeV in the free NNLO fits, indicating either an intrinsic

lack of reliability in the series when NNLO terms are added — since LO and NLO effects are mixed

into NNLO effects — or insufficient numerical data to fully stabilize our fits. For these reasons,

we regard the frozen fit as our preferred NNLO SU(3) fit for examining the ordering of the chiral

expansion and quoting values of the low energy constants. We note that the MILC collaboration

has adopted a similar strategy to stabilize their own NNLO SU(3) fits: they first perform “low-

mass” fits to determine lower order LECs, then freeze these LECs and perform a second set of

“high-mass” fits to determine the remaining, higher order LECs [7, 8].

We observe excellent χ2/dof for both the NLO and NNLO fits with mcut
xy = 370MeV, indicating

that the SU(3) theory has no trouble describing the partially quenched pseudoscalar mass and decay

constant up to this scale with two light valence quarks and the strange dynamical quark mass near

its physical value. When we extend the mass cut up to the kaon scale, however, the NLO fit

becomes obviously strained, with χ2/dof = 6.5. Including NNLO terms leads to a more reasonable

χ2/dof = 1.2 for the free fit and χ2/dof = 2.3 for the frozen fit. We also observe the expected

hierarchy of terms in the chiral LECs, with LO ∼ O(1), NLO ∼ O(10−3), and NNLO ∼ O(10−6).

Since the region of applicability of SU(3) PQChPT remains poorly understood, it is a priori unclear
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whether this tension between chiral perturbation theory and the lattice data arises from unitary

quark masses which are too far from the SU(3) chiral limit, or from valence quark masses that

differ too much from the dynamical quark masses. We have explored restricting the degree of

partial quenching — we can place a second cut, for example, on the ratios mval
q /msea

q — but find

that pruning partially quenched points from our analysis does little to improve the χ2/dof, at the

expense of poorly resolved NNLO fits.
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Free Frozen LO LECs

NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

χ2/dof 0.46 6.48 0.34 1.16 2.35

Nparameters 26 29 41 44 42

Ndata 94 201 94 201 201

24I

amphys
l -0.001848(46) -0.001818(44) -0.001827(80) -0.001883(62) -0.001881(65)

amphys
h 0.03342(46) 0.03441(42) 0.0358(43) 0.03178(75) 0.0312(12)

a−1 1.735(19) GeV 1.718(12) GeV 1.710(42) GeV 1.789(29) GeV 1.828(50) GeV

32I

amphys
l 0.000285(14) 0.000286(10) 0.000303(18) 0.000287(20) 0.000247(18)

amphys
h 0.02515(45) 0.02523(31) 0.02588(44) 0.02586(40) 0.02483(45)

a−1 2.312(24) GeV 2.318(16) GeV 2.285(39) GeV 2.336(21) GeV 2.393(28) GeV

32ID

amphys
l -0.000179(40) -0.000146(36) -0.00013(17) -0.000221(56) -0.000098(66)

amphys
h 0.0415(25) 0.0438(25) 0.047(11) 0.0401(25) 0.0414(21)

a−1 1.402(15) GeV 1.387(15) GeV 1.374(38) GeV 1.432(18) GeV 1.424(31) GeV

32I-fine

amphys
l 0.000082(28) 0.000067(27) 0.000065(46) 0.000078(32) 0.000026(54)

amphys
h 0.0199(17) 0.01858(81) 0.0192(20) 0.0186(12) 0.0179(13)

a−1 3.089(32) GeV 3.097(30) GeV 3.096(53) GeV 3.087(35) GeV 3.140(96) GeV

48I

amphys
l 0.0007018(68) 0.0007225(58) 0.000715(47) 0.000697(33) 0.000727(33)

amphys
h 0.03617(25) 0.03690(27) 0.0383(36) 0.03537(58) 0.0355(13)

a−1 1.725(2) GeV 1.721(2) GeV 1.710(14) GeV 1.737(9) GeV 1.737(20) GeV

64I

amphys
l 0.0006240(75) 0.0006279(54) 0.0006333(82) 0.000641(17) 0.000615(14)

amphys
h 0.02507(47) 0.02522(31) 0.02558(58) 0.02618(28) 0.02555(51)

a−1 2.351(6) GeV 2.350(5) GeV 2.343(8) GeV 2.339(5) GeV 2.359(12) GeV

32ID-M1

amphys
l 0.000730(36) 0.000612(23) 0.00071(14) 0.00048(13) 0.00086(20)

amphys
h 0.083(11) 0.0783(50) 0.091(33) 0.0628(38) 0.0686(74)

a−1 1.045(7) GeV 1.043(3) GeV 1.038(23) GeV 1.077(15) GeV 1.043(29) GeV

32ID-M2

amphys
l — -0.003349(16) — -0.003378(40) -0.003420(44)

amphys
h — 0.02618(68) — 0.02542(78) 0.0238(11)

a−1 — 1.953(16) GeV — 2.011(31) GeV 2.087(46) GeV

Table 4.2: The (uncorrelated) χ2/dof, unrenormalized physical quark masses in bare lattice units

(without mres included), and the values of the inverse lattice spacing a−1 in physical units, obtained

from fits to SU(3) PQChPT with the stated pion mass cuts.
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Free Frozen LO LECs

NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

24I

Zl 0.9717(71) 0.9627(36) 0.977(26) 0.981(12) 0.941(16)

Zh 0.940(18) 0.930(15) 0.911(99) 0.991(18) 0.972(28)

Ra 0.7506(31) 0.7415(27) 0.7485(71) 0.7658(79) 0.764(16)

32I

Zl 1.0 1.0 1.0 1.0 1.0

Zh 1.0 1.0 1.0 1.0 1.0

Ra 1.0 1.0 1.0 1.0 1.0

32ID

Zl 0.943(14) 0.939(10) 0.940(72) 0.960(23) 0.880(26)

Zh 0.981(48) 0.948(40) 0.90(20) 1.030(73) 0.990(38)

Ra 0.6067(74) 0.5985(82) 0.6015(98) 0.6130(69) 0.595(13)

32I-fine

Zl 1.000(30) 1.023(30) 1.028(49) 1.019(33) 1.061(60)

Zh 0.943(91) 1.009(43) 0.99(12) 1.042(58) 1.046(53)

Ra 1.336(14) 1.336(13) 1.355(38) 1.321(17) 1.312(36)

48I

Zl 0.9717(71) 0.9627(36) 0.977(30) 0.981(12) 0.941(16)

Zh 0.940(18) 0.930(15) 0.911(98) 0.991(18) 0.972(28)

Ra 0.7463(78) 0.7425(53) 0.7485(96) 0.7436(57) 0.726(12)

64I

Zl 1.0 1.0 1.0 1.0 1.0

Zh 1.0 1.0 1.0 1.0 1.0

Ra 1.0170(88) 1.0141(59) 1.025(14) 1.0012(77) 0.986(12)

32ID-M1

Zl 0.7259(74) 0.7610(34) 0.740(31) 0.782(26) 0.691(36)

Zh 0.67(10) 0.715(52) 0.63(25) 0.886(36) 0.826(74)

Ra 0.4520(74) 0.4500(43) 0.454(16) 0.4610(60) 0.436(12)

32ID-M2

Zl — 1.0125(84) — 1.018(17) 1.001(22)

Zh — 1.003(20) — 1.031(35) 1.033(28)

Ra — 0.8427(35) — 0.8609(78) 0.872(14)

Table 4.3: Ratios of lattice spacings (Ra) and light and heavy quark masses (Zl, Zh) between each

ensemble and the reference 32I ensemble.
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Free Frozen LO LECs

LEC NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

B0 4.220(93) GeV 3.914(46) GeV 3.885(80) GeV 4.018(38) GeV 4.041(58) GeV

f0 0.1144(28) GeV 0.1120(16) GeV 0.1282(83) GeV 0.1275(24) GeV 0.1156(18) GeV

103L̂
(3)
0 — — 0.27(76) -1.40(18) -0.26(47)

103L̂
(3)
1 — — -0.14(18) -0.76(11) -0.308(80)

103L̂
(3)
2 — — -1.21(33) -0.647(52) -0.68(26)

103L̂
(3)
3 — — -0.48(29) 0.88(15) -0.04(28)

103L̂
(3)
4 -0.102(59) -0.044(34) -0.26(12) -0.54(11) -0.190(55)

103L̂
(3)
5 0.934(73) 0.913(32) 0.67(92) 1.01(12) 0.86(10)

103L̂
(3)
6 -0.070(40) 0.018(24) -0.032(52) -0.239(46) -0.117(41)

103L̂
(3)
7 — — -0.23(27) -0.202(81) -0.13(10)

103L̂
(3)
8 0.639(31) 0.466(11) 0.05(44) 0.469(48) 0.364(62)

106
(
K̂

(3)
17 − K̂

(3)
39

)
— — -4(10) 0.25(76) -0.6(1.3)

106
(
K̂

(3)
18 − K̂

(3)
40

)
— — -4.4(5.4) -2.06(36) 1.7(1.2)

106K̂
(3)
19 — — 1(26) -2.6(1.3) -2.5(1.1)

106K̂
(3)
20 — — -3(11) -1.40(63) -1.40(71)

106K̂
(3)
21 — — -3.4(3.0) -2.74(75) 0.0(1.4)

106K̂
(3)
22 — — 1.53(65) 2.39(40) 1.11(24)

106K̂
(3)
23 — — -2(12) -1.3(1.5) -1.5(2.5)

106K̂
(3)
25 — — 0.8(9.8) -0.67(48) -0.17(68)

106K̂
(3)
26 — — -4.8(3.0) -2.59(34) -0.15(89)

106K̂
(3)
27 — — 0.51(20) 0.81(10) 0.548(79)

m(Ω) 1.6648(35) GeV 1.6668(35) GeV 1.6657(35) GeV 1.667(11) GeV 1.6668(99) GeV

cml,mΩ 3.5(1.1) 2.55(60) 3.0(2.1) 2.3(2.3) 2.61(97)

cmy ,mΩ 5.28(19) 5.38(17) 5.61(90) 5.13(84) 5.27(27)

cmh,mΩ -0.8(1.9) 0.1(1.2) -1.5(5.3) 3.1(3.4) 4.5(2.1)

Table 4.4: SU(3) PQChPT LECs fit at the chiral scale Λχ = 770MeV in units of the canonical size

at a given order in the chiral expansion. The parameters m(Ω) and cmq ,mΩ are the constant term and

mq slopes for the (linear) mΩ ansatz, respectively. The value of B0 quoted here is unrenormalized.
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4.4.3 Histograms

In Figure 4.1 we plot stacked histograms of the deviation of each data point Yi from the fit prediction

Y fit
i in units of the standard deviation of the data σYi :

Xi ≡
Yi − Y fit

i

σYi
. (4.9)

This can be thought of as the signed square root of the contribution to χ2 from each data point,

where the sign indicates whether the fit is overestimating (−) or underestimating (+) the data.

Here we see quite clearly that the NNLO terms are necessary for a reasonable fit when we extend

the mass cut up to the kaon scale, while, for the lighter mass cut, we obtain a good fit using

either the NLO or NNLO ansatz. We also observe a noticeable difference in spread between the

histograms for the NNLO fits with frozen and unfrozen LO LECs.

165



−8 −6 −4 −2 0 2 4 6 8
(Y − Y fit)/σY

0

10

20

30

40

50

C
ou

nt

mPS

fPS

mΩ

(a) NLO, mcut
xy = 370MeV

−8 −6 −4 −2 0 2 4 6 8
(Y − Y fit)/σY

0

10

20

30

40

50

C
ou

nt

mPS

fPS

mΩ

(b) NLO, mcut
xy = 510MeV

−8 −6 −4 −2 0 2 4 6 8
(Y − Y fit)/σY

0

10

20

30

40

50

C
ou

nt

mPS

fPS

mΩ

(c) NNLO, mcut
xy = 370MeV

−8 −6 −4 −2 0 2 4 6 8
(Y − Y fit)/σY

0

10

20

30

40

50

C
ou

nt

mPS

fPS

mΩ

(d) NNLO, mcut
xy = 510MeV

−8 −6 −4 −2 0 2 4 6 8
(Y − Y fit)/σY

0

10

20

30

40

50

C
ou

nt

mPS

fPS

mΩ

(e) NNLO with frozen LO LECs,

mcut
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Figure 4.1: Stacked histograms of the signed deviation of the data from the fit in units of the

standard deviation.

In Figure 4.13 we also plot histograms of the percent deviation between the data and the fit for

the fits shown in panels (a) and (e) here. In particular, we observe that the O(4σ) discrepancies

observed in panel (e) correspond to O(2%) discrepancies when parametrized in terms of the percent

difference between data and fit, indicating that even for our worst outliers the NNLO expansion is

still accurate at the level of a few percent for the more inclusive fit.

4.4.4 Unitary Chiral Extrapolation

In Figures 4.2 and 4.3 we plot the unitary pseudoscalar mass and decay constant measurements

on each ensemble together with the ChPT predictions obtained using the LECs from each fit. We

separately plot curves for the light quark mass dependence of the pion and the strange quark mass
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dependence of the kaon, where the fit has been used to correct the strange (light) quark mass to its

physical value for the pion (kaon) data. In both cases the fit is also used to correct the data to the

infinite volume limit. No explicit continuum correction is made. We also plot a dotted horizontal

line which corresponds to the PDG value of the kaon mass or decay constant, which we compare to

the prediction from the fit (marked “physical point”). The quark masses have been renormalized

in the MS scheme at 3 GeV using the renormalization coefficients from Ref. [2]. We find that the

SU(3) low energy constants are too poorly determined by the NNLO fit with mcut
xy = 370MeV to

extrapolate beyond the range of quark masses directly constrained by lattice data, and so we do

not include plots for this fit.

In Figure 4.3 we observe a clear tension between the (unitary) pion decay constant measured

on the heaviest 24I and 32I ensembles (mπ & 400MeV) and the NLO SU(3) ansatz. Even in the

fit with a more aggressive mass cut, where the values of the LECs have been directly constrained

by these heavy points, the curvature of the ChPT formula is simply too large to match the lattice

data. The situation is improved at NNLO, but suggests a large, rapidly growing NNLO correction.

We conclude that NLO fits are unreliable at this scale.
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Figure 4.2: Unitary chiral extrapolation of pseudoscalar meson mass data. The left curve (light

gray) shows the light quark mass dependence of m2
π with mh = mphys

s fixed, and the right curve

(dark gray) shows the heavy quark mass dependence of m2
K with ml = mphys

l fixed. The fit has

been used to correct each data point from the simulated heavy (light) quark mass to the physical

heavy (light) quark mass for the pion (kaon), as well as to take the infinite volume limit. Filled

symbols correspond to sub-ensembles that were included in the fit, and open symbols correspond

to sub-ensembles that were excluded from the fit based on the pseudoscalar mass cut. “Physical

point” is the prediction for the physical pion and kaon masses obtained by interpolating the fit to

mphys
l and mphys

s .
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Figure 4.3: Unitary chiral extrapolation of pseudoscalar decay constant data. The left curve (light

gray) shows the light quark mass dependence of fπ with mh = mphys
s fixed, and the right curve

(dark gray) shows the heavy quark mass dependence of fK with ml = mphys
l fixed. The fit has

been used to correct each data point from the simulated heavy (light) quark mass to the physical

heavy (light) quark mass for the pion (kaon), as well as to take the infinite volume limit. Filled

symbols correspond to sub-ensembles that were included in the fit, and open symbols correspond

to sub-ensembles that were excluded from the fit based on the pseudoscalar mass cut. “Physical

point” is the prediction for the physical pion and kaon decay constants obtained by interpolating

the fit to mphys
l and mphys

s .
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4.4.5 Chiral Expansion

In this section we probe the hierarchy of terms in the SU(3) chiral expansion as a function of

the quark masses. This is somewhat more complicated in the SU(3) theory than in the SU(2)

theory since, for the SU(3) case, the unitary pion and kaon masses and decay constants depend

on both ml and mh. To simplify the presentation of our results we consider one-dimensional

parametrizations of the chiral expansion rather than two-dimensional plots where ml and mh are

independent degrees of freedom. For pion quantities we fix mh = mphys
s and only plot the light

quark mass dependence, and for kaon quantities we parametrize the quark mass dependence in

terms of ξ, where (ml,mh) = (ξmphys
l , ξmphys

s ) (ξ = 1 corresponds to the physical kaon). Other

limits are also of interest: we can, for example, consider the heavy quark chiral limit mh → 0,

or the SU(3)-symmetric limit ml = mh ≡ m. We note that our data set constrains the light

quark direction more strongly than the heavy quark direction: our ensembles cover a large range

of dynamical light quark masses — 0.7 . ml/m
phys
l . 10.3 — but the simulated dynamical heavy

quark masses are all near the physical strange quark, with 0.7 . mh/m
phys
s . 1.3.

In Figure 4.4 we plot the chiral expansion for the unitary pion as a function of the light quark

mass, with the strange quark mass fixed at its physical value. We include results from the NLO fit

with a 370 MeV cut, and the NNLO fits with a 510 MeV cut, with and without frozen leading-order

LECs. The dashed vertial line indicates the heaviest quark mass which corresponds to an ensemble

included in the fit. Comparing panels (d) and (f) we see that, while the free NNLO fit (e)-(f) is

able to achieve a somewhat better χ2/dof than the constrained NNLO fit (c)-(d), it accomplishes

this by rearranging terms in such a way that the expected hierarchy |LO|> |NLO|> |NNLO|> · · ·

for the light-light decay constant is lost. We interpret this as further evidence of unreliability in

the free NNLO fit, and focus on the constrained NNLO fit in the remainder of the section.

While the qualitative behavior we observe for the SU(3) expansion is similar to the behavior

we observed for the SU(2) theory in Section 5.4 of Ref. [1] — in particular, the NLO and NNLO

contributions to m2
π enter with similar magnitudes but opposite signs, leaving the total approxi-

mately linear in the light quark mass, while both the NLO and NNLO contributions to the pion

decay constant are positive and add — the individual terms are larger in the SU(3) case. At mphys
l
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Figure 4.4: Decomposition of the terms in the SU(3) chiral expansion into LO, NLO, and NNLO

terms, normalized by LO, with the heavy (dynamical) quark fixed at the physical strange quark

mass. The light-light pseudoscalar mass (left) and decay constant (right) are plotted as a function

of the light quark mass, using the LECs obtained from an NLO fit with a pseudoscalar mass cut of

370 MeV (top) and from NNLO fits with a pseudoscalar mass cut of 510 MeV with (middle) and

without (bottom) frozen LO LECs. The vertical dashed line corresponds to the heaviest unitary

point included in the fit, and the horizontal dotted line marks zero.

we find
m2
π

χl
= 1.000− 0.029(34) + 0.061(34)

fπ
f0

= 1.000 + 0.110(19) + 0.021(20)

(4.10)
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for the decomposition into LO+NLO+NNLO, normalized by the LO term. As with the SU(2)

expansion, the most obvious signal of a breakdown in the series occurs for fπ, where the NLO and

NNLO terms become comparable in size for sufficiently heavy ml with mh = mphys
s fixed. We find

that NLO ' 0.5|NNLO| corresponds to ml/m
phys
l ≈ 9.2 (mπ ≈ 400MeV) and NLO ' 0.8|NNLO|

corresponds to ml/m
phys
l ≈ 13.2 (mπ ≈ 500MeV), indicating that this happens at somewhat lighter

pion mass for the SU(3) expansion than for the SU(2) expansion.

Our results for the chiral expansion of the kaon mass and decay constant are plotted in Figure

4.5. At the physical point ξ = 1 we find

m2
K

(χl + χh)/2
= 1.000− 0.130(43) + 0.090(41)

fK
f0

= 1.000 + 0.315(33) + 0.035(30)

(4.11)

We note that for m2
K the long-observed linearity in the quark masses is realized in our fits as a

near-cancellation between a negative NLO term and a positive NNLO term, just as we observe for

m2
π. For fK we see that the NLO term itself is large, even for ξ < 1. We can further decompose

the NLO contribution into terms which are analytic in the quark masses and terms which contain

chiral logs:

fK
f0

= 1 +
24

f20
L̂
(3)
4 χ+

4

f20
L̂
(3)
5 (χl + χh)︸ ︷︷ ︸

analytic

− 3

64π2f20

[
(χl + χh) log

(
χl + χh
2Λ2

χ

)
+ χl log

(
χl
Λ2
χ

)
+ χη log

(
χη
Λ2
χ

)]
︸ ︷︷ ︸

chiral logs

+ · · ·
(4.12)

Numerically, at the physical point, we find

fK
f0

= 1.000 + 0.071︸ ︷︷ ︸
analytic

+ 0.244︸ ︷︷ ︸
chiral logs

+ · · · (4.13)

For our choice of Λχ this large NLO term mostly arises from the chiral logs, but we note that by

choosing a different scale Λ′
χ one can change the relative contribution of the analytic and logarithmic

terms. The total NLO contribution, however, remains fixed.

In Figure 4.6 we plot three additional limits of the SU(3) expansion: the heavy quark chiral limit

(mh → 0), the degenerate quark mass limit (ml = mh), and the heavy sea quark mass dependence
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Figure 4.5: Decomposition of the terms in the SU(3) chiral expansion for the unitary heavy-light

mass and decay constant into LO, NLO, and NNLO terms, normalized by LO. The quark mass

dependence is parametrized in terms of ξ, where ξ = 0 corresponds to the chiral limit and ξ = 1

corresponds to the physical kaon, using the LECs obtained from an NLO fit with a pseudoscalar

mass cut of 370 MeV (left) and from an NNLO fit with a pseudoscalar mass cut of 510 and frozen

LO LECs (right). The horizontal dotted line marks zero.

of the pion mass and decay constant with ml ≡ mphys
l fixed. These plots were generated using

the values of the low energy constants from the NNLO SU(3) fit with a pseudoscalar mass cut of

510 MeV and frozen leading order LECs. The degenerate limit is particularly interesting since the
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chiral logarithms are exaggerated. We observe that the expansion has clearly broken down well

before the quark mass reaches the scale of the physical strange quark, corresponding to the mass

and decay constant of the ss state. We also observe that the dependence of the pion mass and

decay constant on the heavy quark mass is small. This is to be expected, since pion observables

only depend on mh through K and η loops.
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Figure 4.6: Heavy quark chiral limit (mh → 0, top), degenerate SU(3) limit (ml = mh, middle),

and heavy sea quark mass dependence with ml = mphys
l fixed (bottom), of the pseudoscalar mass

(left) and decay constant (right). The dashed (dash-dotted) vertical line corresponds to the heaviest

light (heavy) quark mass constrained by lattice data in the fit.
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4.4.6 Comparison with 2007 RBC/UKQCD SU(3) Fits

In Ref. [17] the RBC-UKQCD collaboration studied fits of next-to leading order SU(3) partially

quenched ChPT to an earlier version of the 24I ensemble set. While RBC-UKQCD observed that

they were able to obtain fits with good χ2/dof if a cut was placed on the average valence mass —

(mx+my)/2 ≤ 0.01 in lattice units, effectively restricting to partially quenched pseudoscalar masses

near the pion-scale of these ensembles — they also observed that their prediction for the chiral decay

constant, f0 = 93.5MeV, was very low compared to other lattice and phenomenological predictions.

In our current NLO fit with a 370 MeV mass cut, for example, we find f0 = 114.4(2.8)MeV. The

fits broke down completely and gave large χ2/dof when this valence cut was removed and heavy-

light data was included. These observations, together with estimates of the size of the NNLO

corrections obtained by including NNLO analytic terms, led RBC-UKQCD to conclude that the

SU(3) theory was too slowly convergent to obtain reasonable NLO fits to the 24I ensembles, and

they have since consistently used SU(2) heavy-meson ChPT to fit the quark mass dependence of

heavy-light observables. However, these results were based on a single lattice spacing with heavy

input values for the quark masses; even on the lightest 24I ensemble munitary
π = 340MeV and

munitary
K = 593MeV. In this work we revisit these issues with a much larger data set containing

ensembles with several lattice spacings and with quark masses extending down to the physical

point.

We have already observed in Table 4.4 that we obtain f0 ' 115MeV from our most recent NLO

fits, consistent with other lattice and phenomenological studies of the SU(3) low energy constants.

One potential explanation for this discrepancy is that fits which only contain heavy data constrain

the NLO expression for the pseudoscalar decay constant in a regime where the chiral logarithms

are approximately constant. This makes the fits unreliable, since the logarithms can produce

excessive curvature when extrapolated from the heavy region back to the physical point, leading to

large systematic uncertainties. To test this hypothesis we have performed two fits: the first (“all

ensembles”) contains input from our full data set, and determines the quark mass ratios, Zl and

Zh, and the lattice spacings. For consistency with our earlier work, we include the heaviest 24I

and 32I ensembles despite concluding in Section 4.4.4 that NLO SU(3) ChPT fails to describe this
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data, and do not include the NLO finite volume corrections. In the second fit (“24I only”) we freeze

Zl, Zh, and the lattice spacings to the values obtained from our “all ensembles” fit, and remove all

data except the 24I measurements which were used in Ref. [17]. We note, however, that the “24I

only” fit is still not identical to the analysis of Ref. [17] for a number of reasons: since the time of

this earlier analysis, RBC-UKQCD has doubled the number of configurations on the 24I ensembles

and re-analyzed the spectrum to improve the statistical resolution of this data. In addition, the

24I lattice scale and the physical quark masses are being determined in the “all ensembles” fit by

constraining mπ, fπ, and mΩ to take their experimentally known values at the physical point, where

the quark mass dependence of mxy and fxy have been fit to SU(3) PQChPT. In Ref. [17] the 24I

lattice scale and the physical quark masses were determined by constraining mπ, mK , and mΩ to

take their experimentally known values at the physical quark masses in an SU(2) PQChPT chiral

fit. The SU(3) chiral fits were deemed unreliable in that work, and were only performed in lattice

units without subsequently matching to a continuum scaling trajectory.

The results of this study are summarized in Table 4.5 and Figure 4.7. We observe some tension

between the pseudoscalar decay constant measured on the 24I ensemble and the unitary fπ curve

in the “all ensembles” fit (panels (b) and (c) of Figure 4.7): this data is systematically O(2− 3σ)

low on the lighter msea
l = 0.005 lattice, and O(2− 4σ) high on the heavier msea

l = 0.01 lattice. In

this regime the influence of the logarithms is small, and the chiral ansatz is approximately linear in

the light quark mass. The 24I data clearly prefers a somewhat steeper slope than the full data set,

and, as we observe in the “24I only” fit, this leads to a dramatically lower prediction in the chiral

limit, as well as a systematic drift in the values of the leading and next-to leading order LECs. To

rule out the possibility that this is entirely a statistical fluke peculiar to the 24I ensembles we have

also performed fits where we introduce a lower cut on the pseudoscalar mass — mmin
xy — and repeat

the “all ensembles” fit while varying this lower cut while holding the upper cut fixed. We find

that there is a monotonic downward drift in f0 as the lower cut is increased, and, in particular, we

find f0 ∼ 90 MeV for a lower cut comparable to the unitary pion mass on the lighter 24I ensemble

(339.6(1.2) MeV), consistent with the “24I only” fit. We conclude that extrapolations of very heavy

data using the one-loop SU(3) ansatz can be misleading, justifying the cautious approach taken in
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Ref. [17]. We note that similar conclusions could be drawn from panels (a) and (b) of Figure 4.3,

where tension between the 24I ensembles and our current NLO fits is clearly visible.

Fit B0 (GeV) f0 (MeV) 103L4 103L5 103L6 103L8

[17] 4.06 93.5(7.3) 0.14(8) 0.87(10) 0.07(6) 0.56(4)

All ensembles 4.05(7) 107.0(1.7) 0.03(3) 0.92(4) 0.03(2) 0.62(2)

24I only 3.96(19) 86.5(4.1) 0.19(3) 0.72(7) 0.11(3) 0.52(3)

Table 4.5: Leading order and next-to leading order low energy constants from the fits discussed in

the text, compared to an earlier RBC-UKQCD NLO SU(3) fit. Statistical errors were not explicitly

stated for B0 in physical units in Ref. [17], since the conclusion was that these fits were unreliable.
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Figure 4.7: In panel (a) we reprint our summary of SU(2) and SU(3) fits to the pseudoscalar

decay constant on the 24I ensemble from an earlier work. Closed (open) [cross] symbols denote

measurements with degenerate (nondegenerate) [unitary] quarks. The red and black curves are the

partially quenched SU(2) (solid) and SU(3) (dotted) fits to each ensemble, whereas the green and

blue curves are the unitary SU(2) extrapolation and the SU(3) extrapolation with three degenerate

quarks (ml = mh = m), respectively. Panel (b) shows two SU(3) fits from this work: the first

includes the full data set (“all ensembles”), while the second fit is restricted to the same set of 24I

measurements analyzed in the fits from the left panel (“24I only”). In this figure the solid curves

show the light quark mass dependence of the light-light pseudoscalar decay constant with mh =

mphysical
s fixed, and the dashed curves show the degenerate SU(3) extrapolation (ml = mh = m).

In panel (c) we show a stacked histogram of the deviation between the “all ensembles” fit and the

24I data in units of the standard deviation of the data. In panel (d) we repeat the “all ensembles”

fit, introducing a lower cut on the pseudoscalar mass, mmin
xy , and plot the dependence of f0 on mmin

xy .
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4.4.7 Predictions

Unquenched LECs

Table 4.6 summarizes our results for the unquenched SU(3) leading order and next-to leading

order low energy constants, computed from the relations in Appendix 4.A.1. We follow the same

procedure we used for the SU(2) case in Ref. [1] to compute renormalized values for B0 and the

SU(3) chiral condensate

Σ0 =
B0f

2
0

2
. (4.14)

B0 and Σ0 are renormalized in the MS scheme at µ = 2.0GeV, and include an estimate of the

systematic error due to the perturbative matching to MS. We obtain this estimate by taking

the difference in central value between the value of B0 or Σ0 obtained using the RI-SMOM and

RI-SMOMγµ intermediate schemes; the central value is the value we obtain from the RI-SMOM

scheme.

Free Frozen LO LECs

LEC NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

BMS
0 (µ = 2GeV) 2.783(66)(15) GeV 2.581(38)(14) GeV 2.562(60)(14) GeV 2.650(36)(14) GeV 2.665(45)(14) GeV

f0 114.4(2.8) MeV 112.0(1.6) MeV 128.2(8.3) MeV 127.5(2.4) MeV 115.6(1.8) MeV

Σ
1/3,MS
0 (µ = 2GeV) 263.0(5.8)(5) MeV 252.9(3.3)(5) MeV 276.1(10.7)(5) MeV 278.2(3.5)(5) MeV 261.1(3.8)(5) MeV

103L1 — — -0.01(24) -1.46(20) -0.44(25)

103L2 — — -0.94(46) -2.05(21) -0.93(69)

103L3 — — -1.0(1.8) 3.68(47) 0.5(1.2)

103L4 -0.102(59) -0.044(34) -0.26(12) -0.54(11) -0.190(55)

103L5 0.934(73) 0.913(32) 0.67(92) 1.01(12) 0.86(10)

103L6 -0.070(40) 0.018(24) -0.032(52) -0.239(46) -0.117(41)

103L7 — — -0.23(27) -0.202(81) -0.13(10)

103L8 0.639(31) 0.466(11) 0.05(44) 0.469(48) 0.364(62)

Table 4.6: Unquenched SU(3) LECs computed from partially quenched SU(3) fits at the chiral

scale Λχ = 770MeV. Missing entries are not constrained by the fits at a given order. For B0

and Σ0 the first error is statistical and the second is a systematic uncertainty in the perturbative

matching to MS.

In Figures 4.8 and 4.9 we compare our preferred determinations of the leading order and next-to
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leading order unquenched SU(3) LECs (blue circles) to other lattice predictions (black squares) and

three phenomenological fits (green diamonds). Here “NLO fit” refers to our NLO SU(3) PQChPT

fit with a 370 MeV cut and “NNLO fit” refers to our NNLO SU(3) PQChPT fit with a 510 MeV

cut and frozen leading order LECs. “Prediction” is the value from Section 4.5 which includes our

full error budget. This comparison is different from our treatment of the SU(2) case, where we

compared our results to the FLAG averages [23]: since the SU(3) LECs are still relatively poorly

determined by lattice calculations, FLAG cites a series of three MILC papers for reference values

in lieu of computing a global lattice average. We follow the FLAG nomenclature and refer to these

studies as MILC 2009 [24], MILC 2009A [7], and MILC 2010 [8]. All three studies are based on fits

of the pseudoscalar masses and decay constants to a series of asqtad improved staggered fermion

ensembles, and account for taste-splitting effects using NLO rooted staggered ChPT, but differ in

their treatment of NNLO and higher terms and fit constraints. The three phenomenological fits

are Gasser and Leutwyler’s original determination of the NLO SU(3) LECs from Ref. [4], as well

as two updated fits including NNLO terms from Bijnens and Jemos [25] and Bijens and Ecker [26].

The latter two phenonemonological fits rely on experimental and lattice input from many different

physical processes, including masses and decay constants of the π, K, and η, values and slopes of

the scalar pion charge radius and K`4 form factors, ππ and πK scattering lengths, the quark mass

ratio ms/m̂, and the known values of the SU(2) LECs.

NLO fit

NNLO fit

Prediction

MILC (2010)

MILC (2009A)

MILC (2009)

200 220 240 260 280 300

Σ
1/3,MS
0 (µ = 2.0 GeV) [MeV]

90 100 110 120 130

f0 [MeV]

Figure 4.8: Leading order SU(3) ChPT LECs from this work compared to other lattice results [7,

8, 24].
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Figure 4.9: Next-to leading order SU(3) ChPT LECs compared to other lattice [7, 8, 24] and

phenomenological [4, 25, 26] determinations. The fit by Bijnens and Ecker [26] applies L4 ≡ 0.3 as

a constraint.

While our values for the SU(3) low energy constants are generally consistent with other lattice

and phenomenological fits, we observe clear tension in two places: the chiral condensate (Σ0) and

three of the unquenched NLO LECs which are only determined in the NNLO fits (L1, L2, and L3).

Comparing our results for the chiral condensate to those of the MILC collaboration, we observe

that our fits prefer values which are ∼ 6 − 8% larger than the MILC values; it is unclear if this

discrepancy is purely a tension between the fits or if it is also associated with differences in the

renormalization procedure. We also observe some tension between our values of L1, L2, and L3

and the three phenomenological determinations. These LECs only enter into the pseudoscalar
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mass and decay constant at two-loop order, and thus we expect that they are weakly constrained

in our fits. As a result, one might expect that these LECs are relatively free to vary without

changing the overall fit quality very much. The phenomenonological fits, in contrast, include ππ

and πK scattering data, among many other observables, which strongly constrains these same

LECs beginning at one-loop order. The tension we observe may suggest that more data covering

a larger range of quark masses or additional quantities beyond the pseudoscalar mass and decay

constant are necessary if one wants to reliably extract all of the NLO SU(3) LECs2. It is interesting

to note, however, that we do not observe such tension in L7, which also only enters into our fits

at two-loop order. Finally, we also observe some weaker systematic tension in the values for L8: it

appears that the fits which only contain chiral logarithms up to one-loop order (ours, MILC 2009,

and Gasser/Leutwyler) consistently prefer a somewhat higher value for L8 than the fits to the full

two-loop expressions (ours, MILC 2009A and 2010, Bijnens/Jemos, and Bijnens/Ecker). Given

the relatively slow convergence of the SU(3) series at the physical strange quark mass, the O(1σ)

sensitivity of the LECs to fit systematics and constraints is not terribly surprising.

By integrating out the strange quark in the SU(3) theory one can also write down explicit

relations between the SU(2) and SU(3) LECs, which we collect in Appendix 4.A.3 and use to

predict the unquenched SU(2) LECs from our SU(3) fits. The values we obtain for the leading and

next-to-leading order SU(2) LECs are summarized in Table 4.7, and are plotted in Figures 4.10

and 4.11 alongside the final results, including our full error budget summed in quadrature, from

our recent direct SU(2) fits [1]. We also compare our predictions for the SU(2) LECs to the 2013

Nf = 2 + 1 FLAG lattice averages [7, 18, 19, 23, 27–29] and two phenomenological fits: the first

is Gasser and Leutwyler’s original determination of the SU(2) LECs in Ref. [30], and the second
2We observed similar behavior in our NNLO SU(2) fits [1]: the values of the NLO SU(2) LECs `1 and `2 —

which are the SU(2) analogues of L1, L2, and L3 — disagreed outside statistical errors between an NNLO fit with

a mass cut of 370 MeV and an NNLO fit with a mass cut of 450 MeV, while the other LO and NLO LECs, which

one would expect to be more strongly constrained, were all consistent. The values of `1 and `2 obtained from the

fit with the 450 MeV cut were consistent with phenomenological results, suggesting that, at least in the context of

our fits, relatively heavy data beyond the range which can be described accurately by NLO ChPT was necessary to

determine these LECs accurately.
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is Colangelo et al.’s updated fit of experimental pion scattering and scalar charge radius data to

NNLO SU(2) ChPT and the Roy equations [31]. We do not attempt to compute the NLO SU(2)

LECs `1 and `2, since these are related to the SU(3) LECs L1, L2, and L3, which we have argued

may not be reliably determined in our fits.

Free Frozen LO LECs

LEC NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

BMS(µ = 2GeV) 2.804(33)(15) GeV 2.792(28)(15) GeV 2.86(15)(2) GeV 2.801(59)(15) GeV 2.679(86)(15) GeV

f 122.7(5) MeV 122.8(3) MeV 131(12) MeV 121.2(2.2) MeV 121.0(2.2) MeV

Σ1/3,MS(µ = 2GeV) 276.4(1.3)(5) MeV 276.1(1.0)(5) MeV 291.0(13.0)(5) MeV 274.0(2.2)(5) MeV 269.6(4.5)(5) MeV

`3 2.85(18) 3.07(11) 3.95(53) 3.37(18) 4.09(36)

`4 3.908(53) 3.986(26) 3.55(43) 3.397(66) 3.76(13)

103l7 — — 10.3(9.3) 3.7(2.7) 2.5(3.5)

Table 4.7: Unquenched SU(2) LECs computed from partially quenched SU(3) fits and one-loop

relations. Missing entries are not constrained by the fits at a given order. For B and Σ the first error

is statistical and the second is a systematic uncertainty associated with the perturbative matching

to MS.

We generally observe excellent consistency between the direct SU(2) fits and the converted

SU(3) fits, which provides a further check on the sensibility of our results. In particular, we note

that there is excellent agreement between our values for the SU(2) chiral condensate Σ computed

from the SU(3) fits, our prediction for Σ from direct SU(2) fits reported in Ref. [1], and the FLAG

lattice average. We also note that the values for the SU(2) chiral decay constant f we compute from

our SU(3) fits, including the free NNLO fits, are consistent within error, even though we observe a

substantial difference between the SU(3) chiral decay constants f0. Comparing the entries in Table

4.4 with Equation (D.19), we note that the shifts in f0 are compensated by shifts in the NLO LEC

L4 in such a way that the value of f remains consistent between the free and frozen fits. We do not

attempt to quantify the systematic error associated with neglecting the two-loop contributions to

the expressions which relate the SU(3) LECs to the SU(2) LECs, which could very well be large at

the physical strange quark mass. For this reason we prefer values of the SU(2) LECs from direct

SU(2) fits to values converted from the SU(3) fits, even in cases where the latter superficially have
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similar errors (e.g. `4 or l7).

NLO fit

NNLO fit

Prediction from SU(3) fits

Prediction from SU(2) fits

FLAG

250 260 270 280 290 300

Σ1/3,MS(µ = 2.0 GeV) [MeV]

1.04 1.06 1.08 1.10

fπ/f

Figure 4.10: Leading order SU(2) ChPT LECs computed from the SU(3) fit results and compared

to the 2013 FLAG lattice averages.

NLO fit
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Prediction from SU(3) fits
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`3
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`4
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103l7

Figure 4.11: Next-to leading order SU(2) ChPT LECs computed from the SU(3) fit results and

compared to the 2013 FLAG lattice averages and two phenomenological determinations [30, 31].

Zweig Rule Breaking

Large-Nc arguments suggest that the terms which cause the leading order SU(2) and SU(3) LECs

to deviate are suppressed by powers of 1/Nc; in the limit Nc → ∞ one has exact equality B = B0,
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f = f0, and Σ = Σ0 (Zweig rule). Computing the ratios B/B0, f/f0, and Σ/Σ0 from fits to lattice

data provides an interesting first-principles test of the large-Nc approximation to QCD, since the

sizes of the deviations from unity are a quantitative test of the validity of this approximation. We

compute these ratios two ways: first by directly computing ratios of LECs from two of our NLO fits

— the SU(2) fit with mcut
π = 370MeV, and the SU(3) fit with mcut

xy = 370MeV — and from two

of our NNLO fits — the SU(2) fit with mcut
π = 450MeV, and the SU(3) fit with mcut

xy = 510MeV

and frozen leading order LECs — under the superjackknife (blue circles), where the SU(2) fits are

from Ref. [1]. The NLO fits we use are completely self-consistent in the sense that the chiral fits are

constrained by exactly the same data for the pseudoscalar masses and decay constants, whereas,

for the NNLO case, the SU(3) fit includes some kaon-scale data containing a heavy quark that is

not included in the SU(2) fit. In the second approach we first compute the leading order SU(2)

LECs from the SU(3) LECs and then form the same ratios with these converted SU(2) LECs in

the numerator (red circles). We find that both methods give consistent values for the ratios, and

in Figure 4.12 we compare our results to the MILC 2009 [24] and MILC 2009A [7] studies (black

squares).

While our results for the ratio f/f0 are consistent with the MILC results, our larger value for

B0 leads to an O(1− 2σ) tension in the ratios B/B0 and Σ/Σ0, implying smaller violations of the

Zweig rule.

Other Physical Predictions

Table 4.8 summarizes a number of predictions for physical quantities we make based on our SU(3)

fits. We predict mK , fK , and the ratio fK/f0 directly from the global fit by interpolating/extrap-

olating to the physical light and strange quark masses in the infinite volume, continuum limit. We

also compute the next-to leading order QCD isospin breaking effects in the kaon system and the

I = 1/2 (a1/20 ) and I = 3/2 (a3/20 ) πK scattering lengths from the relations in Appendix 4.A.4.
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NLO fit
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MILC (2009A)
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Figure 4.12: Ratios of the leading order SU(2) and SU(3) low energy constants from this work

compared to those from the MILC studies [7, 24]. The first three rows (blue circles) are computed

by taking ratios between SU(3) LECs from this work and LECs from direct SU(2) fits in Ref. [1].

The second three rows (red circles) are computed by taking ratios between SU(3) LECs from

this work and SU(2) LECs obtained from the SU(3) fits and the one-loop conversion formulae in

Appendix 4.A.3.

Free Frozen LO LECs

NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

mK 0.5171(64) GeV 0.4913(29) GeV 0.479(70) GeV 0.4982(30) GeV 0.4952(41)

fK 0.15584(97) GeV 0.15566(20) GeV 0.160(42) GeV 0.15562(47) GeV 0.15601(49) GeV

fK/f0 1.363(36) 1.390(20) 1.25(39) 1.221(22) 1.349(22)

[m2
K0 −m2

K± ]QCD/∆mdu 5.44(24) GeV 3.658(62) GeV 1.75(93) GeV 3.46(28) GeV 2.74(39) GeV

[
fK0

fK±
− 1]QCD/∆mdu 3.01(13) GeV−1 3.068(32) GeV−1 1.9(1.9) GeV−1 2.48(19) GeV−1 2.72(27) GeV−1

mπa
1/2
0 — — 0.124(18) 0.1435(56) 0.1376(92)

mπa
3/2
0 — — -0.067(14) -0.0781(47) -0.0671(84)

Table 4.8: Predictions from NLO and NNLO fits and SU(3) ChPT. ∆mdu ≡ md −mu.

The predictions for mK and fK are most interesting for the lighter mass cut fits, since the

fits with mcut
xy = 510MeV contain direct lattice measurements of mK and fK on the physical

point ensembles. For these fits we are essentially performing a small interpolation to the physical

kaon, and we expect that any smooth fit ansatz which matches the lattice data reasonably well

in this regime would also accurately predict mK and fK . The lighter mass cut fits offer a more
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interesting test of SU(3) PQChPT: the LECs are determined entirely by partially quenched data

with two light quarks, and mK and fK are true predictions obtained by extrapolating the fit up to

the physical kaon. While the predictions from the NNLO fit are consistent with the experimental

values mphys
K = 495.65MeV and fphysK = 156.1MeV, these predictions also have very large statistical

uncertainties. The predictions from the NLO fit are consistent with the experimental kaon mass

and decay constant to 4(1)% and 0.2(6)%, respectively.

In the remainder of this section we focus on the fit with mcut
xy = 370MeV as our preferred NLO

fit, and the fit with mcut
xy = 510MeV and frozen LO LECs as our preferred NNLO fit. We compute

the isospin breaking corrections to the kaon masses and decay constants using Equations (D.21)

and (D.22). At one-loop these depend only on the LECs L4, L5, L6, and L8, which are determined

in both our NLO and NNLO fits. We observe that the predictions for the decay constant splittings

are consistent between these two fits, but the predictions for the mass splittings differ by a factor of

two. This discrepancy seems to arise from the difference in L8, which enters into Equation (D.21)

as a term ∝ L8mK . Assigning our full systematic error budget to these predictions, as described in

Section 4.5, we find [m2
K0 −m2

K± ]QCD/∆mdu = 5.4(0.2)(2.7)GeV and [fK0/fK± − 1]QCD/∆mdu =

3.0(0.1)(0.3)GeV−1, where the first error is statistical and the second is systematic. The RM123

collaboration has performed a direct calculation of the O(∆mdu) QCD isospin breaking effects in

a number of low-energy observables, including the kaon mass and decay constant [32]. They find

[m2
K0 − m2

K± ]QCD/∆mdu = 2.57(8)GeV and [fK0/fK± − 1]QCD/∆mdu = 3.3(3)GeV−1, in good

agreement with our ChPT predictions.

Our final prediction is for the I = 1/2 (a1/20 ) and I = 3/2 (a3/20 ) πK scattering lengths. While the

individual scattering lengths are not known experimentally, the DIRAC collaboration has recently

measured the isospin-odd linear combination a−0 = (a
1/2
0 − a

3/2
0 )/3 and found mπ|a−0 |= 0.11(+9

−4).

Computing the correlated difference from the results in table 4.8 we find mπa
−
0 = 0.068(4). We

note that a direct calculation of the πK scattering lengths has recently been performed on the 48I

and 64I ensembles, and found mπa
1/2
0 = 0.16(3) and mπa

3/2
0 = −0.07(2) after extrapolating to the

continuum limit [33].
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4.5 Error Budget and Final Results for the Unquenched SU(3)

LECs

In this section we discuss the error budget for our determination of the leading and next-to leading

order unquenched SU(2) and SU(3) low energy constants, and report our final values including all

systematics. We assign the following error to each LEC in table 4.9:

• Influence of heavy data as determined by underweighting correlated data in the fits: While our

global fits are uncorrelated, we know that the partially quenched measurements on a given

ensemble are highly correlated since they are computed with the same set of field configura-

tions. If we were fitting to a function which exactly represented our data, as opposed to an

expansion with some limited precision, our uncorrelated fits would not introduce any system-

atic bias into our answers. Since this is not the case, changing the weighting of the heavy

mass ensembles, which contain highly correlated partially quenched measurements, gives us

an estimate of the systematic effects on our results due to the worsening systematic disagree-

ment betweeen PQChPT and QCD at heavier quark masses. We estimate the impact on our

fits by taking the difference in central value between the LECs of an unweighted, uncorre-

lated fit (Section 4.4) and the LECs of a fit where the contributions to χ2 from ensembles

with multiple partially quenched measurements have been systematically underweighted to

capture the dominant effects of correlations (Appendix 4.B).

We also assign additional errors to the LECs which are determined by both NLO and NNLO fits

(B0, f0, Σ0, L4, L5, L6, and L8):

• Influence of mass cut and truncation of the (continuum) chiral expansion: We estimate the

sensitivity of the LECs to varying the mass cut and to the truncation of N3LO and higher

order terms by taking the difference in central value between the NLO fit with a 370 MeV

mass cut and the NNLO fit with a 510 MeV mass cut and frozen leading order LECs. We

note that this treatment is different from the error budget for our SU(2) fits [1], where we

computed two independent systematic error estimates. In the SU(3) case we have argued that

189



the 510 MeV cut NLO fit and the 370 MeV cut NNLO fit are both likely to be unreliable,

and so we choose to estimate these systematics together using our preferred fits.

• Finite volume effects: As a conservative bound on the influence of NNLO and higher or-

der FV corrections, as well as neglected cross terms — e.g. (NLO continuum ChPT) ×

(NLO FV correction) — we compute the difference in central value between an NLO PQChPT

fit with NLO FV corrections and an NLO PQChPT fit with no FV corrections, both with a

pseudoscalar mass cut of 370 MeV.

Finally, for B0 and Σ0, which are renormalized in the MS scheme, we include an additional sys-

tematic:

• Renormalization: We renormalize quantities in MS by first renormalizing in either the RI-SMOM

or RI-SMOMγµ scheme, and then perturbatively match to MS at a scale µ = 2GeV where per-

turbation theory is known to be reliable. We estimate the systematic error associated with

this procedure by taking the difference between the results we obtain from the RI-SMOM

and RI-SMOMγµ intermediate schemes. The central value we report is from the RI-SMOM

scheme.

For the LECs which first enter into the SU(3) ChPT expressions for the psuedoscalar mass and

decay constant at two-loop order — L1, L2, L3, and L7 — we do not attempt to quantify any

systematics other than the first since these LECs typically have O(50%) or larger statistical errors,

and are more appropriately considered bounds than high-precision determinations. Likewise, we

do not attempt to quantify systematic errors for the partially quenched LECs (Section 4.4.2) or for

our predictions of the πK scattering lengths (Section 4.4.7), but we could, in principle, follow the

same procedure to assign our full error budget to these quantities.
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BMS
0 (µ = 2GeV) 2.80(7)(13)GeV

f0 114.4(2.8)(1.3)MeV

ΣMS
0 (µ = 2GeV) 263.5(5.8)(2.4)MeV

103L1 −0.44(25)(5)

103L2 −0.93(69)(4)

103L3 0.5(1.2)(0.2)

103L4 −0.102(59)(89)

103L5 0.934(73)(83)

103L6 −0.070(40)(47)

103L7 −0.13(10)(1)

103L8 0.64(3)(28)

Table 4.9: Final predictions for the unquenched SU(3) LECs including all statistical and systematic

errors. The reported errors are the statistical (left) and the total systematic (right) obtained by

summing the contributions we discuss in the text in quadrature. Bold entries correspond to LECs

which enter into both NLO and NNLO fits, for which we assign the full error budget; for the other

entries the mass cut, chiral truncation, and finite volume systematics are assumed to be negligible

compared to the statistical error and are not quantified. The central values and statistical errors of

B0, f0, Σ1/3
0 , L4, L5, L6, and L8 are from an NLO fit with a 370 MeV cut, while the central values

and statistical errors of L1, L2, L3, and L7 are from an NNLO fit with a 510 MeV cut and frozen

leading order LECs. The {Li} are quoted at the chiral scale Λχ = 770MeV.
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4.6 Conclusions

In this work we have performed fits of pseudoscalar masses and decay constants from a series of

RBC-UKQCD domain wall fermion ensembles to next-to leading and next-to-next-to leading order

SU(3) partially quenched chiral perturbation theory. We reported values for a large set of partially

quenched low energy constants, and used these values to compute the unquenched leading and next-

to leading order LECs. We also examined the range of quark masses for which NLO and NNLO

ChPT accurately describe our lattice data, and used the newly determined LECs from NNLO fits

to make one-loop predictions for the size of isospin breaking effects in the kaon sector and for

the πK scattering lengths, which we compare to other lattice and experimental results. We have

observed that both NLO and NNLO SU(3) PQChPT can accurately describe partially quenched

lattice data containing two light valence quarks, while the NNLO terms are necessary to describe

data with pseudoscalar masses extending up to the scale of the physical kaon. To emphasize this

point we plot histograms of the percent deviation between the data and fit

∆ ≡ (Y − Y fit)

(Y + Y fit)/2
× 100 (4.15)

for our preferred fits, NLO PQChPT with a 370 MeV pseudoscalar mass cut and NNLO PQChPT

with a 510 MeV pseudsocalar mass cuct and frozen leading order LECs, in Figure 4.13.
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(b) NNLO, 510 MeV cut with frozen LO LECs

Figure 4.13: Percent deviation between fits and data. We plot stacked histograms of the quantity

∆ ≡ 200× (Y − Y fit)/(Y + Y fit).

As we summarize and interpret the various fits we have performed to assess the accuracy

with which ChPT formulae match our data, it is important to note the particular features of the

(unitary) light-light pseudoscalar mass squared, m2
ll, as a function of the light quark mass, ml.

While leading order ChPT predicts that m2
ll ∝ ml, lattice calculations show that this linearity

persists to a good approximation even when ml is significantly heavier than the physical up and

down quarks3. This linearity implies that if NLO ChPT is fit to lattice data, the NLO corrections

must be small for the fit to accurately represent the data, as we see, for example, in Figure 4.4a

for the SU(3) case. Likewise, for an NNLO fit to accurately represent the data either both the

NLO and NNLO corrections must be small (as we observed in ref. [1] for SU(2)) or they must have

the same magnitude and contribute with opposite sign (e.g. Figure 4.4c for SU(3)). In particular,

we observe a substantial change in the NLO contributions between Figure 4.4a and Figure 4.4c.

Since we find that all four of our preferred fits represent m2
ll well, we note that the NNLO fit does

not produce a series with hierarchical terms |LO|> |NLO|> |NNLO|, but does produce a series

where the corrections (NLO + NNLO) to LO are small. Given this understanding of the fits to
3There is visible curvature for very small quark masses, consistent with chiral logarithms, as seen, for example, in

Figure 3.2.
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the (squared) pseudoscalar masses, we can summarize our fits, paying particular attention to the

pseudoscalar decay constants, which are markedly nonlinear functions of the quark masses and thus

probe whether the terms in the chiral expansion have a reasonable hierarchy of sizes.

We have found that we obtain good fits of the NLO SU(3) expressions for the pseudoscalar

masses and decay constants to partially quenched lattice data containing two light quarks for meson

masses ranging from 120 MeV to 370 MeV. Extending the upper mass cut to 510 MeV — slightly

heavier than the physical kaon — and including heavy-light data we find a large (uncorrelated)

χ2/dof ≈ 6.5, demonstrating that NLO fits cannot accurately reproduce the data over this fit range

at the level of precision of our statistical errors. While a poor χ2/dof indicates that the ChPT

fit curves are many standard deviations away from the lattice data, we also note that, expressed

as the percent deviation between the fit curve and the data, this is at worst O(5%) for this fit.

However, the NLO corrections to the decay constant are 40% of the size of the LO term at the

heaviest light-light and heavy-light points included in the fit, suggesting that the O(5%) agreement

we observe is an accident of curve fitting rather than a reliable agreement between the data and

ChPT. We also note that removing lighter mass points from these NLO fits results in a systematic

shift in the fitted LECs — in particular, for the chiral decay constant f0 — which reproduces the

difficulty with fitting NLO SU(3) PQChPT to data from the 24I ensemble first observed in Ref.

[17]. These single ensemble fits gave f0 ' 95MeV, suggesting that the NLO SU(3) expansion is

unreliable at the relatively heavy masses constrained by the 24I data.

Repeating the SU(3) fits with two upper mass cuts of 370 and 510 MeV and including NNLO

corrections, we observed a substantial shift in the value of f0 from the NLO value f0 ' 114MeV to

f0 ' 128MeV for both NNLO fits. This indicates that, with our current data, the fit is balancing

LO and NNLO terms — this could be an indication that we need more data to properly constrain

the NNLO terms, an indication that the expansion is breaking down, or a combination of both

issues. We find that we can stabilize our fits by constraining the leading-order LECs using the

values we obtain from our NLO fits. After doing this, we find that the terms remain hierarchically

ordered for fll with the heavy (dynamical) quark fixed at the physical strange quark mass, i.e.

we find |LO|> |NLO|> |NNLO|. For fll, the total correction (NLO + NNLO) at the heaviest
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light quark mass included in the fit is about 35% of the LO prediction. Using the fit results and

extrapolating to quarks which are 30% heavier, we observe that the NLO and NNLO terms become

comparable in size. This evidence indicates that at a pseudoscalar mass of approximately 500 MeV

— essentially the kaon mass — we are near the limit of where NNLO SU(3) ChPT provides a

sensible approximation to the data. The fits agree with the data points to within a few percent and

are self-consistent in the sense that, assuming NNLO ChPT is valid and performing the fits, we

obtain LECs which show the series is reasonably convergent up to NNLO. We have also calculated

the unquenched leading and next-to leading order SU(3) ChPT LECs and find that our values are

generally consistent with other lattice and phenomenological results.

We note that while we find SU(3) NNLO PQChPT represents the data with percent-scale

accuracy up to the kaon mass scale, we have used data ranging from slightly below the physical

pion mass to the physical kaon mass to determine the terms in the ChPT expansion. We do not

have enough accurate data to try and determine the full NNLO expansion from data restricted to

a lighter mass range — for example, the 300 to 450 MeV range — which we could then extrapolate

up to the physical kaon mass. Furthermore, all of our ensembles have dynamical heavy quark

masses near the physical strange quark mass; ideally one would like a series of ensembles extending

from the SU(3) chiral limit up to the physical quark masses as a playground to systematically

explore SU(3) ChPT. Further lattice simulations, producing ever-more-accurate measurements of

the pseudoscalar masses and decay constants, will provide more information about the LECs and

the behavior of the expansion.
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4.A χPT Relations
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appendices of Ref. [17]. The NNLO pseudoscalar masses and decay constants were computed using

Fortran routines provided by J. Bijnens.

4.A.1 Relations Between PQχPT and χPT LECs at NLO

The SU(Nf ) ChPT Lagrangian can be recovered from the more general SU(Nf ) PQChPT La-

grangian in the limit of equal sea and valence quark masses. Here we have collected the explicit

expressions relating the NLO LECs in this limit from Ref. [34]. The analogous expressions for the

NNLO LECs can be found in the same reference, but we do not use them here. For Nf = 3, the

NLO ChPT LECs {Li}10i=1 are related to the NLO PQChPT LECs {L̂(3)
i }12i=0 by

L1 =
1
2 L̂

(3)
0 + L̂

(3)
1 L3 = −2L̂

(3)
0 + L̂

(3)
3

L2 = L̂
(3)
0 + L̂

(3)
2 Li = L̂

(3)
i , i = 4, . . . , 10

(D.16)

and L̂
(3)
11 = L̂

(3)
12 = 0.

4.A.2 Scale Independent SU(2) LECs

Conventionally, one quotes values of the scale independent SU(2) ChPT LECs {`i}6i=1 rather than

{li}6i=1. These are obtained by running the {li}6i=1 from the energy scale at which they are defined,

µ, to the physical pion mass using

`i = γili − log

(
m2
π

µ2

)
, (D.17)

where the coefficients

γ1 = 96π2, γ2 = 48π2, γ3 = −64π2, γ4 = 16π2, γ5 = −192π2, γ6 = −96π2, (D.18)

were computed in Ref. [30]. The remaining LEC l7 has no scale dependence.

4.A.3 Relations Between SU(2) and SU(3) LECs

By integrating out the strange quark in the SU(3) theory and matching to the SU(2) theory, one

can write down explicit relations between the LECs. Gasser and Leutwyler worked out the one-loop
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expressions [4] for the leading order LECs

B = B0

[
1− χs

72π2f20
log

(
2χs
3Λ2

χ

)
− 16χs

f20
(L4 − 2L6)

]
f = f0

[
1− χs

32π2f20
log

(
χs
2Λ2

χ

)
+

8χs
f20

L4

] (D.19)

and next-to leading order LECs

l1 = 4L1 + 2L3 −
1

768π2

[
1 + log

(
χs
2Λ2

χ

)]
l2 = 4L2 −

1

384π2

[
1 + log

(
χs
2Λ2

χ

)]
l3 = −8L4 − 4L5 + 16L6 + 8L8 −

1

576π2

[
1 + log

(
2χs
3Λ2

χ

)]
l4 = 8L4 + 4L5 −

1

64π2

[
1 + log

(
χs
2Λ2

χ

)]
l5 = L10 +

1

384π2

[
1 + log

(
χs
2Λ2

χ

)]
l6 = −2L9 +

1

192π2

[
1 + log

(
χs
2Λ2

χ

)]
l7 =

f20
8χs

[
1 +

5χs
36π2f20

log

(
2χs
3Λ2

χ

)]
+ 4

(
L4 − L6 − 9L7 − 3L8 +

1

256π2

[
1 + log

(
χs
2Λ2

χ

)])
(D.20)

The full two-loop expressions are also known [35], but we do not make use of them here.

4.A.4 One-Loop SU(3) Predictions

We use the SU(3) LECs determined by our fits to examine the one-loop predictions for isospin

breaking [4] in the kaon mass[(
m2
K0 −m2

K±

)
(md −mu)

]
QCD

= B0

[
1 +

χη
24π2f20

log

(
χη
Λ2
χ

)
+

1

16π2f20

χs + χl
χs − χl

(
χη log

(
χη
Λ2
χ

)
− χl log

(
χl
Λ2
χ

))
+
16

f20
(2L8 − L5) (χl + χs) +

48

f20
(2L6 − L4)χ

]
(D.21)

and kaon decay constant
[
(fK0/fK± − 1)

(md −mu)

]
QCD

= B0

[
8

f20
L5 −

1

32π2f20

{
1 + log

(
χl + χs
2Λ2

χ

)
+

2

χη − χl

(
χη log

(
χη
Λ2
χ

)
− χl log

(
χl
Λ2
χ

))}]
.

(D.22)
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We use the subscript “QCD” to emphasize that this is only the contribution to the mass splitting

from QCD isospin breaking, and does not include electromagnetic corrections. We also compute

the S-wave πK scattering lengths using the formulae of Ref. [36].

4.B Fits with Weighted χ2

In this appendix we repeat the fits discussed in the main body of the text, this time minimizing a

weighted χ2 defined by

χ2
e =

1

Ne

∑
j∈e

(
yje − f je

σje

)2

, χ2 =
∑
e

χ2
e (D.23)

where Ne is the number of non-degenerate quark mass combinations (mx,my,ml,mh) used for

pseudoscalar measurements on ensemble e. As we have argued in Appendix D of Ref. [1], this

procedure captures the dominant influence of the strong correlations between partially quenched

measurements computed on the same ensemble but with different valence quark masses on the

global fit. The differences between these fits and the unweighted fits discussed in the main text are

factored into our final error budget following the procedure we discuss in section 4.5.

Mass Cut 24I 32I 32ID 32I-fine 48I 64I 32ID-M1 32ID-M2

370 MeV 3 12 20 1 1 1 1 —

510 MeV 19 30 33 1 2 2 2 1

Table 4.10: The value of Ne for each ensemble and mass cut.

4.B.1 Fit Parameters
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Free Frozen LO LECs

NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

χ2/dof 0.041 0.319 0.028 0.066 0.114

24I

amphys
l -0.001844(49) -0.001830(45) -0.001817(61) -0.001830(78) -0.00190(20)

amphys
h 0.03341(49) 0.03367(32) 0.0356(29) 0.0331(20) 0.0306(30)

a−1 1.730(19) GeV 1.725(12) GeV 1.715(35) GeV 1.774(45) GeV 1.843(101) GeV

32I

amphys
l 0.000286(14) 0.000283(10) 0.000295(21) 0.000267(23) 0.000245(55)

amphys
h 0.02496(64) 0.02555(23) 0.02574(42) 0.02551(27) 0.0249(20)

a−1 2.306(24) GeV 2.321(15) GeV 2.294(34) GeV 2.354(33) GeV 2.397(87) GeV

32ID

amphys
l -0.000176(38) -0.000150(36) -0.00010(13) -0.00003(18) -0.00011(83)

amphys
h 0.0413(28) 0.0439(22) 0.0468(59) 0.0442(77) 0.042(21)

a−1 1.400(13) GeV 1.388(15) GeV 1.375(23) GeV 1.388(59) GeV 1.426(273) GeV

32I-fine

amphys
l 0.000080(28) 0.000063(27) 0.000058(45) 0.000031(59) 0.00003(14)

amphys
h 0.0213(34) 0.01814(63) 0.0192(24) 0.0179(17) 0.0181(51)

a−1 3.094(30) GeV 3.104(31) GeV 3.104(61) GeV 3.138(75) GeV 3.138(202) GeV

48I

amphys
l 0.0007018(63) 0.0007124(54) 0.000729(54) 0.000759(54) 0.00071(20)

amphys
h 0.03605(31) 0.03622(19) 0.0383(23) 0.0369(16) 0.0350(42)

a−1 1.725(2) GeV 1.724(2) GeV 1.710(11) GeV 1.714(23) GeV 1.745(69) GeV

64I

amphys
l 0.0006237(74) 0.0006260(49) 0.0006295(100) 0.000623(13) 0.000615(37)

amphys
h 0.02486(68) 0.02559(22) 0.02553(33) 0.02592(24) 0.0257(21)

a−1 2.348(6) GeV 2.349(4) GeV 2.345(8) GeV 2.349(8) GeV 2.359(44) GeV

32ID-M1

amphys
l 0.000733(47) 0.000614(22) 0.00078(38) 0.00097(53) 0.0008(20)

amphys
h 0.097(37) 0.0760(29) 0.092(14) 0.075(13) 0.066(55)

a−1 1.046(8) GeV 1.042(3) GeV 1.034(23) GeV 1.023(64) GeV 1.054(248) GeV

32ID-M2

amphys
l — -0.003360(15) — -0.003388(84) -0.00344(11)

amphys
h — 0.02603(61) — 0.0251(17) 0.0235(55)

a−1 — 1.961(16) GeV — 2.028(67) GeV 2.103(148) GeV

Table 4.11: The (uncorrelated) χ2/dof, unrenormalized physical quark masses in bare lattice units

(without mres included), and the values of the inverse lattice spacing a−1 in physical units, obtained

from fits to SU(3) PQChPT with the stated pion mass cuts.
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Free Frozen LO LECs

NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

24I

Zl 0.9701(56) 0.9659(22) 0.963(46) 0.936(29) 0.95(13)

Zh 0.934(26) 0.9583(76) 0.911(54) 0.959(33) 0.987(100)

Ra 0.7503(29) 0.7429(28) 0.7475(62) 0.754(18) 0.769(42)

32I

Zl 1.0 1.0 1.0 1.0 1.0

Zh 1.0 1.0 1.0 1.0 1.0

Ra 1.0 1.0 1.0 1.0 1.0

32ID

Zl 0.942(13) 0.9382(95) 0.919(78) 0.872(57) 0.89(28)

Zh 0.978(59) 0.960(36) 0.907(99) 0.96(14) 0.99(34)

Ra 0.6073(65) 0.5977(76) 0.5993(86) 0.590(23) 0.59(12)

32I-fine

Zl 1.000(30) 1.024(30) 1.033(52) 1.059(78) 1.05(17)

Zh 0.87(15) 1.044(31) 0.99(11) 1.060(98) 1.04(29)

Ra 1.342(16) 1.337(13) 1.353(41) 1.333(39) 1.309(77)

48I

Zl 0.9701(56) 0.9659(22) 0.963(46) 0.936(28) 0.95(13)

Zh 0.934(26) 0.9583(76) 0.911(54) 0.959(33) 0.987(100)

Ra 0.7483(78) 0.7428(48) 0.745(10) 0.728(13) 0.728(50)

64I

Zl 1.0 1.0 1.0 1.0 1.0

Zh 1.0 1.0 1.0 1.0 1.0

Ra 1.0183(86) 1.0122(60) 1.022(12) 0.998(12) 0.984(34)

32ID-M1

Zl 0.7230(91) 0.7594(28) 0.722(84) 0.684(81) 0.70(31)

Zh 0.57(22) 0.747(32) 0.62(11) 0.777(99) 0.85(52)

Ra 0.4538(80) 0.4488(40) 0.451(16) 0.435(31) 0.44(11)

32ID-M2

Zl — 1.0162(86) — 1.005(40) 1.012(83)

Zh — 1.018(18) — 1.027(36) 1.04(11)

Ra — 0.8446(36) — 0.862(18) 0.878(46)

Table 4.12: Ratios of lattice spacings (Ra) and light and heavy quark masses (Zl, Zh) between each

ensemble and the reference 32I ensemble.
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Free Frozen LO LECs

LEC NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

B0 4.240(84) GeV 3.924(48) GeV 3.90(16) GeV 4.048(86) GeV 4.05(15) GeV

f0 0.1147(29) GeV 0.1111(16) GeV 0.1281(44) GeV 0.128(23) GeV 0.1147(43) GeV

103L̂
(3)
0 — — 0.66(95) -0.11(59) -0.2(2.2)

103L̂
(3)
1 — — -0.160(77) -0.34(46) -0.29(62)

103L̂
(3)
2 — — -1.33(31) -0.64(24) -0.70(28)

103L̂
(3)
3 — — -0.40(23) -0.02(74) -0.1(1.1)

103L̂
(3)
4 -0.111(62) -0.022(33) -0.30(19) -0.38(69) -0.19(21)

103L̂
(3)
5 0.922(87) 0.902(32) 0.99(43) 1.15(79) 0.92(53)

103L̂
(3)
6 -0.077(40) 0.028(23) -0.09(28) -0.23(39) -0.11(16)

103L̂
(3)
7 — — -0.20(19) -0.11(29) -0.14(25)

103L̂
(3)
8 0.626(35) 0.4599(96) 0.30(79) 0.52(37) 0.41(37)

106
(
K̂

(3)
17 − K̂

(3)
39

)
— — -6(13) -1.0(2.6) -1(11)

106
(
K̂

(3)
18 − K̂

(3)
40

)
— — -1(15) 0.2(1.4) 1.8(9.2)

106K̂
(3)
19 — — -3(20) -2.9(1.3) -2.6(4.4)

106K̂
(3)
20 — — -4.0(6.5) -2.4(5.0) -1.8(7.3)

106K̂
(3)
21 — — -2.7(4.1) -1.6(4.8) 0.3(4.7)

106K̂
(3)
22 — — 1.65(40) 2.3(3.5) 1.04(61)

106K̂
(3)
23 — — -2.3(5.1) -1.1(3.0) -1(11)

106K̂
(3)
25 — — 0(10) -0.6(1.1) -0.5(3.1)

106K̂
(3)
26 — — -3.8(5.0) -1.9(2.2) -0.1(3.8)

106K̂
(3)
27 — — 0.62(43) 1.0(1.2) 0.52(44)

m(Ω) 1.6633(33) GeV 1.6676(32) GeV 1.6652(38) GeV 1.667(10) GeV 1.666(36) GeV

cml,mΩ 4.2(1.1) 2.20(51) 3.3(1.1) 2.6(3.5) 2.8(7.5)

cmy ,mΩ 5.33(17) 5.36(13) 5.56(37) 5.33(75) 5.3(1.5)

cmh,mΩ -2.2(2.1) 0.80(99) -1.3(2.9) 3.2(5.5) 4(12)

Table 4.13: SU(3) PQChPT LECs fit at the chiral scale Λχ = 770MeV in units of the canonical size

at a given order in the chiral expansion. The parameters m(Ω) and cmq ,mΩ are the constant term and

mq slopes for the (linear) mΩ ansatz, respectively. The value of B0 quoted here is unrenormalized.
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4.B.2 Predictions

Free Frozen LO LECs

LEC NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

BMS
0 (µ = 2GeV) 2.796(62)(15) GeV 2.588(39)(14) GeV 2.573(108)(14) GeV 2.670(63)(15) GeV 2.673(102)(15) GeV

f0 114.7(2.9) MeV 111.1(1.6) MeV 128.1(4.4) MeV 128(23) MeV 114.7(4.3) MeV

Σ
1/3,MS
0 (µ = 2GeV) 264.0(5.5)(0.5) MeV 251.8(3.4)(0.5) MeV 276.4(7.0)(0.5) MeV 279.1(3.2)(0.5) MeV 260.0(9.7)(0.5) MeV

103L1 — — 0.17(48) -0.39(69) -0.4(1.7)

103L2 — — -0.67(66) -0.75(75) -0.9(2.2)

103L3 — — -1.7(2.0) 0.2(1.7) 0.3(5.3)

103L4 -0.102(59) -0.044(34) -0.30(19) -0.38(69) -0.19(21)

103L5 0.934(73) 0.913(32) 0.99(43) 1.15(79) 0.92(53)

103L6 -0.070(40) 0.018(24) -0.09(28) -0.23(39) -0.11(16)

103L7 — — -0.20(19) -0.11(29) -0.14(25)

103L8 0.639(31) 0.466(11) 0.30(79) 0.52(37) 0.41(37)

Table 4.14: Unquenched SU(3) LECs computed from partially quenched SU(3) fits at the chiral

scale Λχ = 770MeV. Missing entries are not constrained by the fits at a given order. For B0

and Σ0 the first error is statistical and the seccond is a systemati uncertainty in the perturbative

matching to MS.
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Free Frozen LO LECs

LEC NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

BMS(µ = 2GeV) 2.817(38)(15) GeV 2.804(30)(15) GeV 2.780(426)(15) GeV 2.630(180)(14) GeV 2.695(647)(15) GeV

f 123.1(1.0) MeV 122.0(0.5) MeV 130.1(9.5) MeV 126.4(6.1) MeV 120.0(9.6) MeV

Σ1/3,MS(µ = 2GeV) 277.4(2.0)(0.5) MeV 275.3(1.3)(0.5) MeV 286.6(27.9)(0.5) MeV 276.0(6.4)(0.5) MeV 268.7(15.3)(0.5) MeV

`3 2.85(18) 3.07(11) 3.9(1.6) 4.21(88) 4.0(2.7)

`4 3.909(52) 3.982(26) 3.71(24) 3.70(39) 3.79(50)

103l7 — — 6.1(6.3) 0(14) 2(11)

Table 4.15: Unquenched SU(2) LECs computed from partially quenched SU(3) fits and one-loop

relations. Missing entries are not constrained by the fits at a given order. For B and Σ the first error

is statistical and the second is a systematic uncertainty associated with the perturbative matching

to MS.

Free Frozen LO LECs

NLO (370MeV cut) NLO (510MeV cut) NNLO (370MeV cut) NNLO (510MeV cut) NNLO (510MeV cut)

mK 0.5136(97) GeV 0.4951(19) GeV 0.51(17) GeV 0.4980(39) GeV 0.497(15) GeV

fK 0.1555(12) GeV 0.15582(15) GeV 0.156(27) GeV 0.1563(10) GeV 0.1563(23) GeV

fK/f0 1.355(36) 1.403(21) 1.22(24) 1.22(21) 1.349(22)

[m2
K0 −m2

K± ]QCD/∆mdu 5.45(26) GeV 3.677(67) GeV 2.3(4.1) GeV 3.02(49) GeV 3.0(2.4) GeV

[
fK0

fK±
− 1]QCD/∆mdu 3.02(14) GeV−1 3.079(40) GeV−1 2.46(92) GeV−1 2.78(61) GeV−1 2.9(1.5) GeV−1

mπa
1/2
0 — — 0.1245(88) 0.129(17) 0.141(35)

mπa
3/2
0 — — -0.0643(69) -0.059(11) -0.069(34)

Table 4.16: Predictions from NLO and NNLO fits and SU(3) ChPT. ∆mdu ≡ md −mu.
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Abstract

We present the first calculation of the kaon semileptonic form factor at zero momentum

transfer in Nf = 2 + 1 domain wall QCD with physical quark masses. We jointly analyze two

sets of lattice simulations with different lattice spacings and large physical volumes, computed

with pion momenta tuned to achieve zero momentum transfer. We obtain the continuum result

fKπ
+ (0) = 0.9685(34)(14), where the first error is statistical and the second error is systematic.

Combining this calculation with data from experimental measurements of the K → π`ν decay

rate, we predict the CKM matrix element |Vus|= 0.2233(5)(8), where the first error is from

experiment and the second is from the lattice calculation.

5.1 Introduction

In the Standard Model of particle physics flavor-changing weak decays are parametrized by the 3×3,

unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2]. The elements of the CKM matrix, Vij ,

parametrize decays of a quark with flavor i to a quark with flavor j, and can be described in terms of

three real parameters and a single complex phase; the complex phase allows for decay mechanisms

which violate CP -symmetry. Accurate determinations of the CKM matrix elements are necessary

to fix four of the free parameters of the Standard Model, as well as to understand CP -violation in

weak decays and to test unitarity1.

In this work we present a new lattice QCD calculation of the hadronic contribution to the

flavor-changing K → π decay, which is encapsulated by the vector form factor fKπ+ (q2) evaluated

at vanishing momentum transfer q2 = 0. Precision measurements of the K → π`ν (K`3) decay

rate — which constrain the product |Vus|fKπ+ (0) — together with lattice input for the form factor

gives the most precise constraint on |Vus| currently known. When combined with constraints on

the other first-row CKM matrix elements — Vud and Vub — this also enables a precision Standard

Model unitarity test through the quantity δu ≡ 1− |Vud|2−|Vus|2−|Vub|2.

Recent lattice determinations of the vector form factor [3–8] are nicely summarized in the Fla-

vor Lattice Averaging Group (FLAG) reviews [9, 10]. This quantity is currently known with an
1In particular, tension between the experimentally determined values of the CKM matrix elements and unitarity

may prove to be an important indicator of new physics.
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overall uncertainty of 0.3%. Improving the bound on fKπ+ (0) is necessary since the lattice error is

currently the largest source of uncertainty entering into the standard determination of the CKM

matrix element Vus, and also since the KLOE-2 experiment [11] promises to further tighten the ex-

perimental constraint. The lattice error is typically dominated by statistical uncertainty associated

with the Monte Carlo sampling of the lattice QCD path integral, but, historically, has also been due

to systematic errors associated with using chiral perturbation theory or phenomenological models

to extrapolate simulations with unphysically heavy pion masses to the physical point. Advances in

algorithmic methods and supercomputer resources now allow simulations to be performed directly

at physical quark masses, eliminating this systematic.

Here we present the first prediction of the vector form factor fKπ+ (0) with physical mass domain

wall quarks in the continuum limit of Nf = 2 + 1 flavor lattice QCD. The physics described by

our simulations corresponds to nature up to isospin breaking corrections in the light quark masses,

electromagnetic corrections, and contributions associated with vacuum polarization effects from

the neglected heavy quark flavors; these corrections are expected to be sub-leading compared to

current uncertainties.

5.2 Measurement Strategy

Experimental measurements of the K0 → π− decay rate constrain the product

|Vus|fKπ+ (0) = 0.2163(5) [12]. To extract |Vus| we compute the QCD matrix element

〈π(pπ)|Vµ |K(pK)〉 = fKπ+ (q2) (pK + pπ)µ + fKπ− (q2) (pK − pπ)µ , (5.1)

where Vµ = ZV uγµs is the flavor-changing vector current, ZV is the vector current renormalization

coefficient, and qµ = pµK − pµπ is the momentum transfer between the kaon and pion. The vector

form factor can also be related to a similar matrix element of the scalar density S = us using a

Ward identity for the vector current

qµ 〈Vµ〉 = (ms −ml) 〈su〉 . (5.2)
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At the kinematical point q2 = 0 the analogue of Equation (5.1) for the scalar density is

〈π(pπ)|S |K(pK)〉
∣∣∣
q2=0

=
m2
K −m2

π

ms −ml
fKπ+ (0), (5.3)

where mu = md ≡ ml is the (degenerate) light quark mass. Both calculations are summarized by

the quark line diagram of figure 5.1. In all of our calculations we consider a kaon at rest and a pion

tK t tπ(~p)

l(~p)s

l

Γ

Figure 5.1: Quark line diagram for the K`3 three-point functions 〈π(~p)|sΓu|K〉. The box (Γ)

denotes an insertion of γµ for the vector matrix element, or 1 for the scalar matrix element.

with momentum ~pπ, where twisted boundary conditions [13] are used to tune ~pπ such that q2 = 0.

We also make use of the all-mode averaging (AMA) technique as described in Ref. [14].

5.2.1 Simulation Parameters

We simulate Nf = 2 + 1 domain wall QCD using a series of ensembles with unitary pion masses

ranging from 693 MeV down to the physical value of 139 MeV. Our older, unphysical ensemble sets

A and C were generated using the Shamir kernel [15, 16] and were analyzed in Ref. [6]. We have

generated two new physical pion mass Möbius domain wall fermion [17] ensembles, denoted Aphys

and Cphys, with large volumes, which are the focus of this analysis, and are discussed in detail in

Ref. [14]. All ensembles use the Iwasaki gauge action [18]. The full set of ensembles is summarized

in Table 5.1.
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Ensemble Action β a (fm) L/a T/a aml amsea
s amval

s θiu / 2π
L mπ (MeV) mπL

A3 DWF+I 2.13 0.11 24 64 0.03 0.04 0.04 — 693 9.3

A2 DWF+I 2.13 0.11 24 64 0.02 0.04 0.04 — 575 7.7

A1 DWF+I 2.13 0.11 24 64 0.01 0.04 0.04 — 431 5.8

A4
5 DWF+I 2.13 0.11 24 64 0.005 0.04 0.04 — 341 4.6

A3
5 DWF+I 2.13 0.11 24 64 0.005 0.04 0.03 — 341 4.6

C8 DWF+I 2.25 0.08 32 64 0.008 0.03 0.025 — 431 5.5

C6 DWF+I 2.25 0.08 32 64 0.006 0.03 0.025 — 360 4.8

C4 DWF+I 2.25 0.08 32 64 0.004 0.03 0.025 — 304 4.1

Aphys MDWF+I 2.13 0.11 48 96 0.00078 0.0362 0.0362 0.5893 139 3.8

Cphys MDWF+I 2.25 0.08 64 128 0.000678 0.02661 0.02661 0.5824 139 3.9

Table 5.1: Summary of ensembles used in this analysis. DWF and MDWF denote domain wall

fermions with the Shamir and Möbius kernels, respectively, and I denotes the Iwasaki gauge action.

L and T are the size of the lattice in the spatial and temporal directions, respectively. mπ is the

unitary pion mass. For the physical point ensembles θiu is the twist angle applied to the up quark

field in the three spatial directions, in units of 2π/L.

5.2.2 Twisted Boundary Conditions

In a cubic box with side length L and lattice spacing a the allowed quark momenta in the spatial

directions are

~p =
2π

L
~k, ~k ∈ Z3. (5.4)

Assuming the kaon is at rest and the pion carries 3-momentum ~pπ, the kinematical equation q2 = 0

can be solved to find

|~pπ|=
m2
K −m2

π

2mK
≈ 229 MeV. (5.5)

Since this momentum is not, in general, a multiple of 2π/L, the lattice calculation must be per-

formed for several nearby values of the pion momentum and interpolated to q2 = 0 — as we have

done in our earliest calculation [4] using a phenomenological ansatz — introducing a systematic

error associated with the interpolation. Alternatively, twisted boundary conditions can be imposed
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on the quark fields ψ(x):

ψ(x+ Lêi) = eiθiψ(x), (5.6)

where θi is a free parameter, allowing the first allowed momentum state to be tuned such that q2 = 0

is satisfied directly. We also gain a further reduction in statistical noise by imposing the same twist

angle in all three spatial directions, allowing the spatial components of the vector current matrix

element (Eqn. (5.1)) to be averaged. In Ref. [19] Bernard et al. have demonstrated that, in general,

additional form factors hKπµ (q) enter into the matrix element of Eqn. (5.1) at finite volume and at

nonzero twist. However, the authors also demonstrate that these additional terms are associated

with cubic symmetry breaking, and vanish when the choice of twist respects cubic symmetry. By

twisting equally in all three spatial directions we avoid this complication in our calculation.

5.2.3 All-Mode Averaging (AMA)

The substantial cost of solving for light quark propagators on the large volume, physical pion mass

Aphys and Cphys ensembles required us to make several algorithmic refinements to our measurement

strategy. All correlation functions associated with these ensembles were computed using Coulomb

gauge-fixed wall source propagators, together with the all-mode averaging (AMA) technique intro-

duced in Ref. [20]. In the AMA formalism one replaces a direct calculation of an expensive lattice

observable O with a less-expensive approximation O′ and a correction term ∆O. The lattice action

and ensemble averages 〈O〉, 〈O′〉, and 〈∆O〉 are all assumed to be invariant under a group G of

lattice symmetries. We define the AMA estimator by averaging the inexpensive approximation O′

over some number N of transformations g ∈ G, and applying the correction term ∆O:

OAMA =
1

N

∑
g∈G

O′
g +∆O, (5.7)

where the notation Og denotes O computed after g is applied. We find in practice that the statistical

error per unit of computer time can be markedly reduced using AMA with a judicious choice of O′

and ∆O, relative to computing O directly.

In the context of this calculation the relevant lattice symmetry is the group of translations in the

temporal direction. Quark propagators were computed using a deflated mixed-precision conjugate
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gradient (CG) solver, with 600 (1500) single-precision low-mode deflation vectors obtained from

the EigCG algorithm applied to a four dimensional volume source on the Aphys (Cphys) ensemble.

We further distinguish between exact and sloppy light quark propagators. Exact light quark prop-

agators were computed using a tight CG stopping residual r = 10−8 for 7 (8) time slices. To avoid

bias associated with the even-odd preconditioning used in the CG solves we randomly shifted the

time slices used to compute exact propagators on each configuration. Sloppy light quark propa-

gators were computed using a reduced precision r = 10−4 and for all time slices. Strange quark

propagators were sufficiently inexpensive that exact solves were computed for all time slices. For

a given two- or three-point function we then constructed a sloppy estimate (O′) for all time slices

with the sloppy light quark propagators, and a correction term (∆O) using the exact light quark

propagators on time slices for which these are available. We then compute the AMA estimator

according to (5.7), after averaging O′ over all time translations. The full measurement package,

which also computes observables related to the K → (ππ)I=2 decay [21] and other low-energy QCD

observables [14] from the same propagators, took 5.5 days per configuration on the Aphys ensemble

using 1 rack (1024 nodes) of IBM Blue Gene/Q hardware, and 5.3 hours per measurement on the

Cphys ensemble using 32 racks of Blue Gene/Q sustaining 1.2 PFlop/s. Additional details of the

calculation can be found in [14].

The set of quark propagators described above is sufficient to generate AMA three-point func-

tions, where at least one of the quarks coupling to the external current is a strange quark, for all

possible source-sink-separations ∆t/a = |tf − ti|/a up to T/2a (e.g. K → π and K → K) and for

all T/a possible translations in the temporal direction. Results at constant ∆t/a but with different

ti/a and tf/a were binned together into a single, time-translation averaged measurement. For our

choice of the 7 (8) source planes for the exact light quark solves on the Aphys (Cphys) ensemble the

π → π three-point function entering into e.g. the determination of ZπV through Equation (??) can

be computed on every fourth (fifth) source-sink-separation following the AMA prescription.

In all cases we use the bootstrap resampling technique with 500 samples to determine the

statistical errors.

213



5.3 Data Analysis

5.3.1 Methodology

In the following we use the notation CPi(t, ~p) to denote the pion and kaon two-point correlation

functions

CPi(t, ~p) ≡
∑
~x,~y

〈
OPi,s2(t, ~y)O

†
Pi,s1

(0, ~x)
〉 t/a�1

≈
ZPi,s1Z

∗
Pi,s2

2EPi(~p)

(
e−EPi

(~p)t + e−EPi
(~p)(T−t)

)
, (5.8)

where Pi ∈ {π,K}, and OPi,s is an interpolating operator for the state Pi — Oπ,s = uωsγ5d or

OK,s = dωsγ5s — with smearing kernel ωs. In this study we have used ωs1 = W and ωs2 ∈ {L,W}

where “L” is a local source or sink and “W” is Coulomb gauge-fixed wall source or sink. We also

use the notation CΓ,PiPf
(ti, t, tf , ~pi, ~pf ) to denote the three-point correlation functions

CΓ,PiPf
(ti, t, tf , ~pi, ~pf ) ≡

∑
~xi,~x,~xf

〈
OPf ,s2(tf , ~xf )Γ(t, ~x)O

†
Pi,s1

(ti, ~xi)
〉

t/a�1
≈

ZPi,s1Z
∗
Pf ,s2

4EPi(~pi)EPf
(~pf )

〈Pf (~pf )|Γ |Pi(~pi)〉

×
{
θ(tf − t)e

−EPi
(~pi)(t−ti)−EPf

(~pf )
(
tf−t

)
+ cΓθ(t− tf )e

−EPi
(~pi)(T+ti−t)−EPf

(~pf )
(
t−tf

)}
(5.9)

corresponding to the vector matrix element of Equation (5.1) (Γ = Vµ) or the scalar matrix element

of Equation (5.3) (Γ = S). In this notation Pi, Pf ∈ {π,K} denote the initial and final states, and

~pi and ~pf the corresponding momenta. The constant cV0 = −1 for the temporal component of the

vector current, and cVi = cS = +1 otherwise. For the three-point functions the final approximate

equality holds in the combined limits of large Euclidean time separation between the initial and

final states (|tf − ti|/a � 1), as well as insertion times t for the vector current or scalar density

that are far from the source and sink time slices ti and tf .

While the Kl3 form factor can be extracted by fitting directly to the asymptotic, large time

separation limits of Equations (5.8) and (5.9), it is also possible to form ratios of the Euclidean
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two- and three-point functions with simpler asymptotic forms [13]:

RVµ,Kπ(tK , t, tπ, ~pK , ~pπ) ≡ 2
√
Eπ(~pπ)EK(~pK)

[
CVµ,Kπ(tK , t, tπ, ~pK , ~pπ)CVµ,πK(tK , t, tπ, ~pπ, ~pK)

C̃π(tπ − tK , ~pπ)C̃K(tπ − tK , ~pK)

]1/2
≈ 1

ZV

(
(pK + pπ)µ f

Kπ
+ (q2) + (pK − pπ)µ f

Kπ
− (q2)

)
(5.10)

for the vector current, and

RS,Kπ(tK , t, tπ, ~pK , ~pπ) ≡ 2
√
Eπ(~pπ)EK(~pK)

(
ms −ml

m2
K −m2

π

)[
CS,Kπ(tK , t, tπ, ~pK , ~pπ)CS,πK(tK , t, tπ, ~pπ, ~pK)

C̃π(tπ − tK , ~pπ)C̃K(tπ − tK , ~pK)

]1/2
≈ fKπ+ (q2) +

q2

m2
K −m2

π

fKπ− (q2)

(5.11)

for the scalar density. These ratios are, again, approximately equal to the final, asymptotic form

up to noise and excited state contamination for large separations between the initial kaon and final

pion |tπ− tK |/a� 1 and t far from the source and sink. Here CΓ,πK is the three-point function for

the time-reversed process π → K, and

C̃Pi(t, ~p) ≡ Cπ(t, ~p)−
1

2
CPi (T/2, ~p) e

−EPi
(~p)(T/2−t) (5.12)

denotes the pseudoscalar two-point function with the backward propagating around-the-world mode

analytically removed using the fitted energy EPi(~p).

The vector current renormalization factor ZV is extracted from a similar analysis: we compute

the analogue of 5.1 for the electromagnetic current and two pions or two kaons at rest. In this case

the form factors are trivial — current conservation implies fππ+ (0) = fKK+ (0) = 1 and fππ− (0) =

fKK− (0) = 0 — allowing us to extract ZV directly from the temporal component of Equation (5.9),

or from the ratio

RV0,PiPf
(ti, t, tf ,~0,~0) =

C̃Pi(tf − ti,~0)

CV0,PiPf
(ti, t, tf ,~0,~0)

≈ ZPi
V . (5.13)

with Pi = Pf ∈ {π,K}. We observe that ZπV and ZKV differ by mass dependent cutoff effects

at finite lattice spacing, and hence the form factors renormalized with either choice of ZV follow

two independent scaling trajectories which we expect to agree in the continuum limit a → 0 by

universality.
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5.3.2 Fits on the Physical Point Ensembles

In this work we have considered two methods for extracting the K`3 form factor. In the first

method, we simultaneously fit:

• The pion and kaon two-point functions — Cπ(t, ~p) and CK(t,~0),

• The three-point functions determining ZπV and ZKV — CV0,ππ(ti, t, tf ,~0,~0) and CV0,KK(ti, t, tf ,~0,~0),

• The three-point functions determining fKπ+ (0) through the vector and scalar current, as well

as their time-reversed counterparts — CΓ,Kπ(ti, t, tf ,~0, ~pπ) and CΓ,πK(ti, t, tf , ~pπ,~0),

by minimising a single, global χ2. Two-point functions are fit to the asymptotic limit of Equation

(5.8), and three-point functions are fit to the asymptotic limit of Equation (5.9). In the second

method we perform fits to the ratio (5.10), for example, by minimizing

χ2 =
∑
∆t,Vµ

RVµ,Kπ(∆t)− 1
ZV

(
(pK + pπ)µ f

Kπ
+ (q2) + (pK − pπ)µ f

Kπ
− (q2)

)
σ(∆t)

2

(5.14)

using a range of separations ∆t for which we observe a good signal. For even values of ∆t we take

the midpoint t = ∆t/2 to evaluate RVµ,Kπ, and for odd values of ∆t we average the two values of

RVµ,Kπ straddling the midpoint, since ∆t/2 is not a point on the lattice. The sum over Vµ involves

two components — the temporal component, and the average of the three spatial components —

allowing us to fit both fKπ+ (0) and fKπ− (0), although only the former is of interest for extracting

|Vus|. One can similarly construct analogues of Equation (5.14) to fit ZπV , ZKV , and fKπ+ (0) from

the scalar matrix element.

For the fit to the scalar ratio (5.11) we observe a non-negligible sensitivity to the choice of fit

range, presumably due to contamination from excited states. This is most pronounced on the Cphys

ensemble, for which the plateau exhibits a small but clear upward slope. To account for this, we

fit a model with includes an exponentially decaying excited state

fKπ+ (0,∆t) = fKπ+ (0) + Ce−m∆t. (5.15)

We find that this works well in practice: the value of fKπ+ (0) from this exponential fit is consistent
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with the value we get from fitting a constant, but is stable under variations of the fit range. The

full set of fits is summarized in Figure 5.2 and Table 5.2.
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Figure 5.2: Fits to extract fKπ+ (0) through the scalar density (top), temporal component of the

vector current (middle), and average spatial component of the vector current (bottom) on the Aphys

(left) and Cphys (right) ensembles. Vertical lines denote the choice of fit range, and the shaded bands

denote the fit result and statistical uncertainty.

We find that we obtain consistent values for the form factor from either of the two analysis

methods we have considered. The results we present in the rest of the paper, however, are based

on the second method, for the following reasons: we observe as much as a factor of 5 difference in

the statistical uncertainty in Zπ,KV between the ratio fit approach and the global fit approach; for
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Figure 5.3: Simulation results for fKπ+ (0) on each ensemble, measured through the vector matrix

element renormalized by ZπV (upper left) and ZKV (upper right), as well as the scalar matrix element

(bottom).

this particular quantity the ratio (5.13) is clearly superior. We argue that this can be understood

by noting that the measurement of Zπ,KV through the ratio is less contaminated by excited states

and thus the operator can be placed closer to the source/sink, leading to reduced statistical errors.

We also observe that the three-point functions CΓ,Kπ and CΓ,πK are not symmetric between the

source and sink walls, since the initial and final states are different, making it a priori difficult to

decide on sensible fit ranges for extracting the form factors.
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fKπ+ (0)

Ensemble amπ amK ZπV ZKV ZπV Vµ ZKV Vµ S

A3 0.38840(39) 0.41628(39) 0.716106(77) 0.717358(75) 0.998289(79) 1.000033(80) —

A2 0.32231(47) 0.38438(46) 0.71499(12) 0.717252(93) 0.99404(29) 0.99719(28) —

A1 0.24157(38) 0.35009(39) 0.71408(20) 0.717047(74) 0.98474(89) 0.98884(90) —

A4
5 0.19093(46) 0.33197(58) 0.71399(58) 0.71679(13) 0.9746(43) 0.9784(43) 0.9793(46)

A3
5 0.19093(45) 0.29818(52) 0.71399(58) 0.71570(16) 0.9850(27) 0.9874(27) 0.9878(47)

C8 0.17249(50) 0.24125(47) 0.74435(40) 0.74580(12) 0.9890(17) 0.9909(17) —

C6 0.15104(41) 0.23276(45) 0.74387(56) 0.74563(13) 0.9833(24) 0.9857(24) 0.9796(39)

C4 0.12775(41) 0.22624(51) 0.74480(94) 0.74585(16) 0.9805(39) 0.9819(35) 0.9796(47)

Aphys 0.08046(11) 0.28856(14) 0.71081(14) 0.714051(20) 0.9703(16) 0.9747(16) 0.9712(14)

Cphys 0.059010(95) 0.21524(11) 0.742966(81) 0.745121(23) 0.9673(18) 0.9701(17) 0.97097(21)

Table 5.2: Simulation results in lattice units. We report three values for the vector form factor: the

first two are obtained from the vector matrix element after renormalizing the vector current with

ZπV or ZKV , and the third is obtained from the scalar matrix element.

5.3.3 Corrections to the Physical Point

The simulation results presented in the previous chapter contain implicit systematic errors: the

dominant sources of error can be attributed to the finite lattice spacing, finite ensemble volume,

and slight mistunings in the input parameters. In particular, the values for the twist angles and

valence quark masses used on the physical point ensembles were based on estimates of the spectrum

computed from a small number of configurations early in the data generation run. As a result, there

is a small discrepancy between the simulated q2, mπ, and mK and the desired kinematical point

constrained by experiment. We emphasize, however, that these discrepancies are small, and the

corrections described here are smaller than the statistical errors we quote. In this section we discuss

our method for performing the q2 and mass corrections independently on the two ensemble sets A

and C, resulting in two values of fKπ+ (0) at different (finite) lattice spacings. We then perform a

continuum extrapolation, which is described in the following section. Our final prediction of the

K`3 form factor retains a finite volume systematic, which we estimate and include in our final error
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budget.

To correct the momentum transfer to q2 = 0 we fit a pole ansatz

fKπ+ (q2) =

(
1 +

q2

M2

)−1

fKπ+ (0) (5.16)

to fKπ+ (q2) computed at two different kinematical points: the value of q2 ≈ 0 corresponding to our

choice of twist angle, and q2max = (mK −mπ)
2, corresponding to a pion and kaon at rest. We then

determine fKπ+ (0) from the fit, and use this corrected value for the form factor in all subsequent

steps of the analysis. We know from our previous work that the momentum dependence of the

form factor should be well described by a pole ansatz [4]. We have also performed this correction

using a linear ansatz

fKπ+ (q2) = fKπ+ (0) + αq2 (5.17)

as a cross-check, and find that the change in the extrapolated form factor is much smaller than the

statistical error, indicating that the systematic error associated with the choice of q2 parametrization

is negligible in this study.

Likewise, we must make a small correction to fKπ+ (0) from the simulated values of mπ and mK

to the physical values mπ− = 139.6MeV and mK0 = 497.6MeV [22]. We have considered a number

of ansätze for performing this correction, which we divide into families A, B, E , and F :

fit A : fKπ+ (q2 = 0,m2
π,m

2
K) = 1 + f2(f,m

2
π,m

2
K)

fit B : fKπ+ (q2 = 0,m2
π,m

2
K) = 1 + f2(f,m

2
π,m

2
K) +A1

(
m2
K +m2

π

) (
m2
K −m2

π

)2
fit E : fKπ+ (q2 = 0,m2

π,m
2
K) = A+A0∆M

2

fit F : fKπ+ (q2 = 0,m2
π,m

2
K) = A+A0∆M

2 +A1

(
m2
K +m2

π

)
∆M2

. (5.18)

Here ∆M2 ≡
(
m2
K −m2

π

)2
/m2

K is an SU(3)-breaking polynomial motivated by the Ademollo-

Gatto theorem [23] — which states that, near the SU(3)-symmetric limit ml = ms, the leading

corrections to the form factor are O
(
(ms −ml)

2
)

— and f2 is the next-to leading order (NLO)

term from SU(3) chiral perturbation theory (χPT) [6]:
f2(f,m

2
π,m

2
K ,m

2
η) =

3

2
H(f,m2

π,m
2
K) +

3

2
H(f,m2

η,m
2
K)

H(f,m2
P ,m

2
Q) = − 1

64π2f2

(
m2
P +m2

Q +
2m2

P m
2
Q

m2
P −m2

Q

log

(
m2
Q

m2
P

)) . (5.19)
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The SU(3) χPT expression is parametrized entirely by the decay constant f at NLO; we use the tree-

level relation m2
η = (4m2

K −m2
π)/3 to evaluate Equation (5.19), which is consistent with expanding

fKπ+ (0) to NLO. The same set of ansätze have also been studied in our last K`3 calculation [6].

We have first considered fits to families A and B, which are both parametrized by the SU(3)

decay constant in the chiral limit f , and, for family B, the coefficient A1, which models the analytic

part of the NNLO corrections. Sample fits of this type to fKπ+ (0) determined through the vector

current matrix element renormalized by ZπV on the A series of ensembles are plotted in Figure 6.

We observe that next-to leading order SU(3) χPT is a poor description of our data, leading to a
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Figure 5.4: Sample fits of fKπ+ (0), determined through the vector current matrix element renor-

malized by ZπV , to ansatz A (left) and B (right) using data from the A ensembles with a mass cut

mπ . 450 MeV.

fit with χ2/dof = 4.6 (left panel). Adding a model for the next-to-next-to leading order analytic

terms improves the fit somewhat — χ2/dof = 1.7 (right panel) — but is still unacceptably poor.

We attribute this to the fact that SU(3) χPT is an effective field theory, valid near the chiral

limit ml = ms = 0, and must break down for sufficiently heavy quark masses. On all but the

most recent Aphys and Cphys ensembles the simulated pion and kaon are heavier than their physical

counterparts, and so this data is likely outside the region of validity of the next-to leading order

chiral expansion. Since we lack sufficient data to constrain the full NNLO χPT expression for the

form factor, we have discarded ansätze A and B in favor of E and F .
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Fits E and F are motivated by the Ademollo-Gatto theorem, which suggests that ∆M2 should

parametrize the leading SU(3) breaking effects near the SU(3) symmetric limit ml = ms. We

observe in Figure 5.3 that this parametrization actually describes the full range of simulations

remarkably well, suggesting that higher order contributions are small even at the physical point.

Fit E is linear in ∆M2, while fit F contains an additional polynomial term modeling the next-to

leading order SU(3) breaking effects. Representative fits of these types are summarized in Tables

5.3 and 5.4, as well as in Figure 5.5. These fits are generally of very good quality, with small

ME mcut
π (MeV) fKπ+ (0)A fKπ+ (0)C AA AC AA0 (GeV2) AC0 (GeV2) χ2/dof

ZπV Vµ

355 0.9703(16) 0.9689(16) 0.9970(52) 1.001(10) -0.127(28) -0.155(51) 0.37

450 0.9704(16) 0.9687(16) 0.9994(23) 1.0002(26) -0.138(17) -0.150(17) 0.28

600 0.9701(13) 0.9687(16) 0.99990(49) 1.0002(26) -0.1416(80) -0.150(17) 0.24

700 0.97071(99) 0.9687(16) 0.999568(96) 1.0002(26) -0.1373(49) -0.150(17) 0.28

ZKV Vµ

355 0.9748(16) 0.9715(16) 0.9977(50) 1.0005(97) -0.109(27) -0.138(47) 0.28

450 0.9748(16) 0.9714(16) 1.0027(24) 1.0017(25) -0.133(17) -0.144(16) 0.47

600 0.9748(13) 0.9714(16) 1.00269(48) 1.0017(25) -0.1327(78) -0.144(16) 0.38

700 0.97747(100) 0.9714(16) 1.001120(96) 1.0017(25) -0.1125(50) -0.144(16) 2.05

S
355 0.9715(14) 0.9717(19) 1.0022(80) 0.994(13) -0.146(40) -0.105(60) 0.00

450 0.9715(14) 0.9716(19) 1.0022(80) 0.9890(68) -0.146(40) -0.083(35) 0.10

Table 5.3: Results for global fit E on ensembles A and C with a variety of pion mass cuts. The

first column indicates the method used to extract the form factor (vector matrix element (ME),

renormalized with ZπV or ZKV , or scalar ME). A superscript A or C in the top line denotes the

ensemble set associated with each fit parameter.

values of χ2/dof. The only evidence of non-negligible corrections beyond the leading ∆M2 term

parametrizing ansatz E is observed in fits to the vector matrix element data renormalized by ZKV

which include the heaviest data near the SU(3) symmetric limit. In this limit we observe a sharp

rise in χ2/dof for fit E , and a significant improvement by adding the additional, next-to leading

term in ansatz F . We prefer ansatz E with a reasonable pion mass cut over ansatz F , however, since
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(a) Fit E , A ensembles
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(b) Fit E , C ensembles

0.00 0.05 0.10 0.15 0.20

(m 2
K −m 2

π )2 /m 2
K /GeV2

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

f
K
π

+
(0

)

p
h

ys
ic

a
l 

q
u

a
rk

 m
a
ss

e
s

A-ensembles

(c) Fit F , A ensembles
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(d) Fit F , C ensembles

Figure 5.5: Representative fits of fKπ+ (0), measured through the vector matrix element and renor-

malized by ZπV , to ansätze E and F .
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ME mcut
π (MeV) fKπ+ (0)A fKπ+ (0)C AA AC AA0 (GeV2) AC0 (GeV2) AA1 (GeV4) AC1 (GeV4) χ2/dof

ZπV Vµ

450 0.9697(16) 0.9710(38) 0.9990(77) 1.012(26) -0.143(17) -0.08(14) 0.02(12) -0.41(92) 0.59

600 0.9697(16) 0.9710(38) 1.0000(15) 1.012(26) -0.145(15) -0.08(14) 0.001(56) -0.41(92) 0.40

700 0.9695(15) 0.9710(38) 0.99946(16) 1.012(26) -0.148(12) -0.08(14) 0.020(23) -0.41(92) 0.33

800 0.9695(15) 0.9710(38) 0.99946(16) 1.012(26) -0.148(12) -0.08(14) 0.020(23) -0.41(92) 0.33

ZKV Vµ

450 0.9740(16) 0.9740(37) 0.9986(75) 1.015(25) -0.138(18) -0.07(13) 0.08(12) -0.49(88) 0.80

600 0.9739(16) 0.9740(37) 1.0021(15) 1.015(25) -0.142(15) -0.07(13) 0.027(57) -0.49(88) 0.61

700 0.9734(15) 0.9740(37) 1.00067(16) 1.015(25) -0.151(12) -0.07(13) 0.079(23) -0.49(88) 0.72

Table 5.4: Results for global fit F on ensembles A and C with a variety of pion mass cuts. We do

not report results for the form factor determined through the scalar matrix element since we have

too little data to constrain ansatz F reliably.

we lack sufficient data to reliably fit ansatz F to data extracted from the scalar matrix element.

We observe in Table 5.3 that the statistical error on the value of fKπ+ (0) after interpolating to the

physical mass point is essentially constant for mcut
π . 600 MeV, indicating that, as long as we cut

the heaviest data near the SU(3) symmetric limit, the fits are dominated by the Aphys and Cphys

ensembles, with data from previous K`3 calculations simply determining the slope of the small

interpolation we perform.

A second observation we note in Table 5.3 is that the values of the slope parameters AA0 and

AC0 are generally consistent within the quoted statistical errors. We might expect this since domain

wall fermions are O(a) improved, implying that cut-off effects enter as

A0(a) = A0(0)
(
1 + α (aΛQCD)

2 + · · ·
)
. (5.20)

We can estimate using ΛQCD ∼ 200 − 300 MeV that the difference between AA0 and AC0 should

be O(1%), which is indeed smaller than the measured statistical uncertainties. We have also

performed fits to determine α directly and verified that it is consistent with zero. Motivated by

these observations, we have performed a second series of fits using a modified ansatz E with the

additional constraint AA0 = AC0 ≡ A0. These fits are summarized in Table 5.5 and Figure 5.6.

We again observe high quality fits with small χ2/dof for all but the most aggressive pion mass cut
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ME mcut
π (MeV) fKπ+ (0)A fKπ+ (0)C AA AC A0 (GeV2) χ2/dof

ZπV Vµ

355 0.9701(15) 0.9690(16) 0.9982(45) 0.9970(52) -0.134(24) 0.31

450 0.9699(12) 0.9691(14) 1.0002(17) 0.9994(19) -0.144(12) 0.28

600 0.9699(12) 0.9692(12) 0.99999(46) 0.9993(15) -0.1431(72) 0.23

700 0.97050(95) 0.9696(11) 0.999581(96) 0.9986(13) -0.1383(48) 0.31

ZKV Vµ

355 0.9745(15) 0.9717(15) 0.9991(43) 0.9962(50) -0.117(23) 0.28

450 0.9743(12) 0.9718(14) 1.0035(17) 1.0009(20) -0.139(12) 0.42

600 0.9745(12) 0.9721(12) 1.00280(44) 1.0004(15) -0.1348(71) 0.38

700 0.97696(97) 0.9735(11) 1.001154(96) 0.9977(13) -0.1151(48) 2.23

S
355 0.9716(14) 0.9716(19) 0.9997(68) 0.9997(72) -0.133(34) 0.17

450 0.9719(13) 0.9710(18) 0.9949(53) 0.9940(53) -0.109(26) 0.55

Table 5.5: Results for global fit E to a combined data set including both A and C ensembles and

the constraint AA0 = AC0 ≡ A0.
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Figure 5.6: Representative fit E to all data for the form factor measured through the vector matrix

element and renormalized with ZπV . The slope parameter A0 is constrained to be equal for the A

ensembles and C ensembles.
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of 700 MeV. We also observe that the statistical errors in the interpolated fKπ+ (0) have a stronger

dependence on the pion mass cut for these fits. We attribute this to the heaviest data points near

the SU(3) symmetric limit, which have smaller statistical errors, and have a more pronounced effect

when the slope parameters are constrained than when they are allowed to vary between the two

ensemble sets.

5.3.4 Continuum Extrapolation

After performing the corrections described in section 5.3.3 we are left with three values of fKπ+ (0)

— two independent normalizations of the vector current matrix element 5.10 using ZπV and ZKV ,

as well as the scalar matrix element 5.11 — at each of the two lattice spacings considered in our

analysis. While we could perform three independent linear extrapolations to the continuum, we

instead chose to impose universality, and extrapolate all three calculations of the form factor to

a common continuum limit. This is summarized in Table 5.6 and Figure 5.7. Repeating the full

analysis with different choices of the mass cut does not change the result within the statistical

error: we choose mπ ≤ 450MeV as a reasonable mass cut to quote a final result, and conservatively

choose not to constrain the slope parameters A0 for the A and C ensembles, obtaining a continuum

limit of fKπ+ (0) = 0.9685(34). The quoted error is purely statistical, and includes the uncertainty

in the lattice spacings for the A and C ensembles.

mcut
π (MeV) 355 450 600

Global fit E 0.9687(35) 0.9685(34) 0.9685(34)

Global fit E , A0 constrained 0.9690(33) 0.9689(25) 0.9691(22)

Global fit F , A1 constrained — 0.9683(35) 0.9685(34)

Global fit F , A0, A1 constrained 0.9694(34) 0.9687(26) 0.9690(22)

Table 5.6: Continuum limit results for the form factor fKπ+ (0) based on variants of fits E and F for

the interpolation to physical masses.
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Figure 5.7: Joint extrapolation to a common continuum limit of data obtained from mass interpo-

lation fit E with a pion mass cut of 600 MeV. In the left plot the slope parameter A0 is allowed

to differ between the A ensembles and C ensembles. In the right plot we have imposed AA0 = AC0 ,

obtaining a consistent central value but reduced statistical uncertainty for the final result.

5.3.5 Final Result and Error Budget

After interpolating in q2, mπ, and mK to the physical point, and extrapolating to the continuum,

we are left with the following systematic errors:

• Finite Volume (FV): Since the K → π matrix element contains only single particle initial

and final states, we expected finite volume effects to be exponentially suppressed in mπL.

We naively estimate these effects to be of order (1 − fKπ+ (0))e−mπL = 0.0007. χPT [24]

estimates an error approximately twice as large for the Aphys and Cphys ensembles, but does

not completely describe our calculation since it does not include the effects of imposing twisted

boundary conditions on the valence light quark fields. Thus, we quote twice our naive error

— 0.0014 — as our value for the FV systematic.

• Partial Quenching: The calculations on ensemble A3
5 and the full C ensemble set were per-

formed with a partially quenched strange quark. We expect any associated systematic errors

to be small compared to the other errors we quote, and we have explicitly checked that ex-

cluding ensemble A3
5 from the analysis does not change the result. On the C ensembles the

relative difference between the sea and valence strange quark masses are even smaller than for
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the A3
5 ensemble, so we conclude that partial quenching systematics are negligible compared

to our other sources of error.

• Isospin Breaking: The unitary light quarks in our study are isospin symmetric, unlike the

physical up and down quarks. We partially correct for this in our final result by interpolating

in the valence sector to the physical π− and K0 masses, but this leaves unquantified systematic

errors associated with the isospin symmetric light sea quarks. We again expect this systematic

to be negligible compared to other sources of error. Techniques to address sea isospin breaking

effects in future calculations are currently being developed [25–28].

Taking these into account, we obtain our final result

fKπ+ (0) = 0.9685(34)stat(14)FV, (5.21)

leading to the prediction

|Vus|= 0.2233(5)experiment(9)lattice. (5.22)

Together with |Vud|= 0.97425(22) from super-allowed nuclear β-decay measurements [22], and ne-

glecting |Vub|≈ 10−3, we observe a ∼ 1.5σ tension with first-row CKM unitarity

1− |Vud|2−|Vus|2= 0.0010(4)Vud(2)V exp
us

(4)V lat
us

= 0.0010(6). (5.23)

5.4 Conclusion

In this work we have presented a first-principles calculation of the kaon semileptonic form factor

with vanishing momentum transfer and physical light quark masses in domain wall QCD. We

have also demonstrated how to utilize our older, heavy pion mass ensembles to correct for slight

mistunings and extrapolate to the continuum. We find that the previously dominant systematic

errors associated with chiral extrapolations of simulations with heavy quark masses are no longer

present, and that the small interpolation to the physical π− and K0 masses we perform is indeed

dominated by the results on the new Aphys and Cphys ensembles. While we observed that we could

reduce the statistical error in our final prediction by as much as 30% if we include data from heavy
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simulations near the SU(3) symmetric point and assume the influence of cut-off effects on the fit

parameters is sub-statistical, we have chosen not to make these assumptions in our final results,

since they increase the model dependence in ways that are difficult to quantify. We now find that

finite volume errors are the dominant source of systematic error.

While a domain wall QCD calculation of the K`3 form factor fKπ+ (0) with physical quark

masses and in the continuum limit represents a significant step forward, there are still a number of

potential improvements we hope to address in the future. As we have argued above, the dominant

source of systematic error is now the finite volume error; a better understanding of the size of

these effects in partially twisted chiral perturbation theory, or from a series of lattice simulations

which vary the simulation volume while leaving all other details fixed, is desirable. In addition, the

analysis in Ref. [12] leading to the experimental constraint |Vus|fKπ+ (0) = 0.2163(5) accounts for

electromagnetic and isospin breaking effects in the framework of chiral perturbation theory. Given

the current 0.4% overall error in the lattice prediction for the K`3 form factor, we have now reached

a point where it may be worthwhile to consider how to treat these effects non-perturbatively within

the framework of lattice field theory. Progress in this direction is discussed in Refs. [25–28].

References

[1] N. Cabibbo, “Unitary Symmetry and Leptonic Decays”, Phys. Rev. Lett. 10, [,648(1963)],

531–533 (1963).

[2] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak Inter-

action”, Prog. Theor. Phys. 49, 652–657 (1973).

[3] A. Bazavov et al., “Determination of |Vus| from a Lattice-QCD Calculation of the K → π`ν

Semileptonic Form Factor with Physical Quark Masses”, Phys. Rev. Lett. 112, 112001 (2014).

[4] P. A. Boyle, A. Juttner, R. D. Kenway, C. T. Sachrajda, S. Sasaki, A. Soni, R. J. Tweedie, and

J. M. Zanotti, “K(l3) Semileptonic Form-Factor from 2+1 Flavour Lattice QCD”, Phys. Rev.

Lett. 100, 141601 (2008).

229

http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.112.112001
http://dx.doi.org/10.1103/PhysRevLett.100.141601
http://dx.doi.org/10.1103/PhysRevLett.100.141601


[5] P. A. Boyle, J. M. Flynn, A. Juttner, C. Kelly, C. Maynard, H. Pedroso de Lima, C. T.

Sachrajda, and J. M. Zanotti, “K → π Form Factors with Reduced Model Dependence”, Eur.

Phys. J. C69, 159–167 (2010).

[6] P. A. Boyle, J. M. Flynn, N. Garron, A. Jüttner, C. T. Sachrajda, K. Sivalingam, and J. M.

Zanotti, “The Kaon Semileptonic Form Factor with Near Physical Domain Wall Quarks”,

JHEP 08, 132 (2013).

[7] A. Bazavov et al., “Kaon Semileptonic Vector Form Factor and Determination of |Vus| Using

Staggered Fermions”, Phys. Rev. D87, 073012 (2013).

[8] V. Lubicz, F. Mescia, S. Simula, and C. Tarantino, “K → πlν Semileptonic Form Factors from

Two-Flavor Lattice QCD”, Phys. Rev. D80, 111502 (2009).

[9] G. Colangelo et al., “Review of Lattice Results Concerning Low Energy Particle Physics”, Eur.

Phys. J. C71, 1695 (2011).

[10] S. Aoki et al., “Review of Lattice Results Concerning Low-Energy Particle Physics”, Eur. Phys.

J. C74, 2890 (2014).

[11] G. Amelino-Camelia et al., “Physics with the KLOE-2 Experiment at the Upgraded DAφNE”,

Eur. Phys. J. C68, 619–681 (2010).

[12] M. Antonelli et al., “An Evaluation of |Vus| and Precise Tests of the Standard Model from

World Data on Leptonic and Semileptonic Kaon Decays”, Eur. Phys. J. C69, 399–424 (2010).

[13] J. M. Flynn, A. Juttner, C. T. Sachrajda, P. A. Boyle, and J. M. Zanotti, “Hadronic Form

Factors in Lattice QCD at Small and Vanishing Momentum Transfer”, JHEP 05, 016 (2007).

[14] T. Blum et al., “Domain Wall QCD with Physical Quark Masses”, Phys. Rev. D93, 074505

(2016).

[15] D. B. Kaplan, “A Method for Simulating Chiral Fermions on the Lattice”, Phys. Lett. B288,

342–347 (1992).

[16] Y. Shamir, “Chiral Fermions from Lattice Boundaries”, Nucl. Phys. B406, 90–106 (1993).

[17] R. C. Brower, H. Neff, and K. Orginos, “The Möbius Domain Wall Fermion Algorithm”, (2012).

230

http://dx.doi.org/10.1140/epjc/s10052-010-1405-4
http://dx.doi.org/10.1140/epjc/s10052-010-1405-4
http://dx.doi.org/10.1007/JHEP08(2013)132
http://dx.doi.org/10.1103/PhysRevD.87.073012
http://dx.doi.org/10.1103/PhysRevD.80.111502
http://dx.doi.org/10.1140/epjc/s10052-011-1695-1
http://dx.doi.org/10.1140/epjc/s10052-011-1695-1
http://dx.doi.org/10.1140/epjc/s10052-014-2890-7
http://dx.doi.org/10.1140/epjc/s10052-014-2890-7
http://dx.doi.org/10.1140/epjc/s10052-010-1351-1
http://dx.doi.org/10.1140/epjc/s10052-010-1406-3
http://dx.doi.org/10.1088/1126-6708/2007/05/016
http://dx.doi.org/10.1103/PhysRevD.93.074505
http://dx.doi.org/10.1103/PhysRevD.93.074505
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1016/0550-3213(93)90162-I


[18] Y. Iwasaki and T. Yoshié, “Renormalization Group Improved Action for SU(3) Lattice Gauge

Theory and the String Tension”, Physics Letters B 143, 449–452 (1984).

[19] C. Bernard, J. Bijnens, E. Gámiz, and J. Relefors, “Twisted Finite-Volume Corrections to K`3

Decays with Partially-Quenched and Rooted-Staggered Quarks”, JHEP 03, 120 (2017).

[20] T. Blum, T. Izubuchi, and E. Shintani, “New Class of Variance-Reduction Techniques using

Lattice Symmetries”, Phys. Rev. D88, 094503 (2013).

[21] T. Blum et al., “K → ππ ∆I = 3/2 Decay Amplitude in the Continuum Limit”, Phys. Rev.

D91, 074502 (2015).

[22] K. A. Olive et al., “Review of Particle Physics”, Chin. Phys. C38, 090001 (2014).

[23] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model, Cambridge

Books Online (Cambridge University Press, 1992).

[24] K. Ghorbani and H. Ghorbani, “Kaon Semi-Leptonic Form Factor at Zero Momentum Transfer

in Finite Volume”, Eur. Phys. J. A49, 134 (2013).

[25] G. M. de Divitiis et al., “Isospin Breaking Effects Due to the Up-Down Mass Difference in

Lattice QCD”, JHEP 04, 124 (2012).

[26] N. Tantalo, “Lattice Calculation of Isospin Corrections to Kl2 and Kl3 Decays”, in 7th In-

ternational Workshop on the CKM Unitarity Triangle (CKM 2012) Cincinnati, Ohio, USA,

September 28-October 2, 2012 (2013).

[27] A. Portelli, “Review on the Inclusion of Isospin Breaking Effects in Lattice Calculations”, PoS

KAON13, 023 (2013).

[28] N. Carrasco, V. Lubicz, G. Martinelli, C. T. Sachrajda, N. Tantalo, C. Tarantino, and M. Testa,

“QED Corrections to Hadronic Processes in Lattice QCD”, Phys. Rev. D91, 074506 (2015).

231

http://dx.doi.org/http://dx.doi.org/10.1016/0370-2693(84)91500-4
http://dx.doi.org/10.1007/JHEP03(2017)120
http://dx.doi.org/10.1103/PhysRevD.88.094503
http://dx.doi.org/10.1103/PhysRevD.91.074502
http://dx.doi.org/10.1103/PhysRevD.91.074502
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1140/epja/i2013-13134-4
http://dx.doi.org/10.1007/JHEP04(2012)124
https://inspirehep.net/record/1210667/files/arXiv:1301.2881.pdf
https://inspirehep.net/record/1210667/files/arXiv:1301.2881.pdf
https://inspirehep.net/record/1210667/files/arXiv:1301.2881.pdf
http://dx.doi.org/10.1103/PhysRevD.91.074506


Chapter 6

The Exact One Flavor Algorithm

Domain Wall Fermion QCD with the Exact One Flavor Algorithm
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Abstract

Lattice QCD calculations including the effects of one or more non-degenerate sea quark

flavors are conventionally performed using the Rational Hybrid Monte Carlo (RHMC) algorithm,

which computes the square root of the determinant of D†D , where D is the Dirac operator.

The special case of two degenerate quark flavors with the same mass is described directly by

the determinant of D†D — in particular, no square root is necessary — enabling a variety

of algorithmic developments, which have driven down the cost of simulating the light (up and

down) quarks in the isospin-symmetric limit of equal masses. As a result, the relative cost of

single quark flavors — such as the strange or charm — computed with RHMC has become

more expensive. This problem is even more severe in the context of our measurements of the

∆I = 1/2 K → ππ matrix elements on lattice ensembles with G-parity boundary conditions,
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since G-parity is associated with a doubling of the number of quark flavors described by D , and

thus RHMC is needed for the isospin-symmetric light quarks as well. In this paper we report

on our implementation of the exact one flavor algorithm (EOFA) introduced by the TWQCD

collaboration for simulations including single flavors of domain wall quarks. We have developed

a new preconditioner for the EOFA Dirac equation, which both reduces the cost of solving the

Dirac equation and allows us to re-use the bulk of our existing high-performance code. Coupling

these improvements with careful tuning of our integrator, the time per accepted trajectory in

the production of our 2+1 flavor G-parity ensembles with physical pion and kaon masses has

been decreased by a factor of 4.2.

6.1 Introduction

Lattice QCD simulations are typically performed using variants of the hybrid Monte Carlo (HMC)

algorithm, which includes the effects of dynamical sea quarks through the determinant of a fermion

matrix evaluated by stochastically sampling a discretized QCD path integral. Conventional sim-

ulations choose the Hermitian fermion matrix M = D†D rather than the lattice Dirac operator

M = D , since the latter, in general, has a complex spectrum, and is thus less amenable to stan-

dard numerical algorithms. While D describes a single quark flavor, D†D describes two degenerate

quark flavors with the same mass. As a result the standard HMC algorithm naturally describes

the light (up and down) quarks in the isospin-symmetric limit mu = md considered in most lattice

calculations. Simulations including single quark flavors (such as the strange or charm) are typically

performed by taking an overall square root of the determinant of M = D†D , leading to the rational

hybrid Monte Carlo (RHMC) algorithm. While RHMC has found widespread usage in the lattice

QCD community, RHMC calculations are typically more expensive than HMC calculations for the

same input quark mass, in part because many of the techniques which have been developed to

accelerate HMC simulations of degenerate quark flavor pairs are not applicable to RHMC.

A number of recent developments in the HMC algorithm used by the RBC/UKQCD collabora-

tion have driven down the cost of simulating degenerate pairs of isospin-symmetric quarks with the

same mass. These developments include: extensive force tuning via Hasenbush mass precondition-

ing [1], the zMöbius domain wall fermion action [2], reduced Ls approximations to the light quark
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determinant [2], and the use of implicitly restarted, mixed-precision defect correction methods in

the conjugate gradient algorithm 1. In Table 6.1 we list timings for a recent large-scale calculation

which utilizes these techniques. We now find that the single-flavor strange and charm quark deter-

Action Component Timings

Gauge 5970 s 12.0%

Light Quarks 19600 s 39.4%

Strange and Charm Quarks 24200 s 48.6%

Total 49770 s —

Table 6.1: Timings for one HMC trajectory of RBC/UKQCD’s 802 × 96× 192× 32 Nf = 2+ 1+ 1

ensemble with physical quark masses and a−1 ≈ 3 GeV on a 12,288-node Blue Gene/Q partition

[2].

minants, which we simulate using the RHMC algorithm, are collectively the most expensive part of

the calculation. To address this, we have turned to exploring TWQCD’s recently proposed exact

one flavor algorithm (EOFA), which allows for simulating single quark flavors without the need

for RHMC [3]. Preliminary results have suggested that EOFA simulations can outperform RHMC

simulations, both in terms of computer time and a reduced memory footprint, while producing

exactly the same physics [4, 5].

The RBC/UKQCD collaboration’s ongoing efforts to probe direct CP -violation in K → ππ

decays provide a second motivation for exploring EOFA. The collaboration has recently reported

the first calculation of the ∆I = 1/2 K → ππ decay amplitude with physical kinematics in Ref. [6],

which, when combined with previous results for the ∆I = 3/2 amplitude [7] determines the Stan-

dard Model CP -violating parameters ε and ε′ entirely from first principles. An important ingredient

in this calculation was the introduction of G-parity boundary conditions for the quark fields [6, 8]:

since the pion is G-parity odd, the pion momenta are quantized along G-parity directions as

piπ =
(2ni + 1)π

L
, ni ∈ Z, (6.1)

1We elaborate on the details of our defect correction solver in Section 6.6.
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allowing the ensemble parameters to be tuned such that the K → ππ decay has both physical

kinematics and the final pions in the ground state. Since the G-parity transformation G = CeiπIy

is the product of charge conjugation and a 180◦ isospin rotation about the y-axis — at the lattice

boundary the light quark doublet transforms as (u, d) 7→ (d,−u) — the G-parity Dirac operator

inherently describes two quark flavors. The standard lattice technique for obtaining a Hermitian,

positive-definite fermion matrix — by taking the square of the Dirac operator, M = D†D — results

in a theory with four degenerate quark flavors on a G-parity ensemble, and a square root is required

to reduce to a two-flavor simulation. Describing the light quark pair on a G-parity ensemble is a

particularly attractive target for EOFA, since many of the techniques we use to accelerate the

calculation of the light quark determinant for ensembles with periodic boundary conditions —

including defect correction solvers, the forecasted force gradient integrator [9], and Hasenbusch

mass preconditioning — are not applicable or of limited utility for RHMC simulations, but are

expected to perform well in the context of EOFA. More generally, since there is no straightforward

way to start the multishift conjugate gradient solver used for RHMC with a nonzero initial guess,

techniques which rely on forecasting or restarting the solver are not applicable.

In this work we discuss the RBC/UKQCD collaboration’s implementation and tests of the exact

one flavor algorithm, as well as the use of EOFA in generating gauge field configurations for our

ongoing first-principles calculation of the ratio of Standard Model parameters ε′/ε from ∆I = 1/2

K → ππ decays with G-parity boundary conditions. We have independently implemented EOFA

in the Columbia Physics System (CPS), BAGEL fermion sparse matrix library (BFM), and the

Grid data parallel C++ QCD library (Grid), for Shamir and Möbius domain wall fermions, with

periodic, anti-periodic, and G-parity boundary conditions. We will demonstrate in the following

sections that a significant improvement over the RHMC algorithm in terms of wall clock time is

indeed possible with EOFA after introducing a variety of preconditioning and tuning techniques.

Early work in this direction was presented at the 34th International Symposium on Lattice Field

Theory [5]; here we will elaborate on the details and discuss our first large-scale EOFA calculation.
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6.2 The Exact One Flavor Algorithm

The exact one flavor algorithm was developed by the TWQCD collaboration and used to enable

efficient simulations of single quark flavors on GPU clusters, where memory usage is a significant

constraint. In Ref. [10] the authors discuss their construction of a positive-definite pseudofermion

action describing a single flavor of Wilson or domain wall quark, and elaborate on the details of

this construction in Ref. [3]. The key is their observation that a ratio of determinants of domain

wall fermion (DWF) Dirac operators can be factorized as

det

(
D(m1)

D(m2)

)
=

1

det (ML)
· 1

det (MR)
, (6.2)

with ML and MR Hermitian and positive-definite. In a subsequent paper the authors benchmark

EOFA against RHMC for Nf = 1 and Nf = 2 + 1 lattice QCD simulations, and demonstrate

a number of advantages of the EOFA formalism [4]. These include substantial reductions in the

pseudofermion force and in the memory footprint of the algorithm, since, in the context of EOFA,

inversions of the Dirac operator can be performed using the ordinary conjugate gradient (CG)

algorithm rather than the multishift CG used for RHMC. They ultimately find that they are able

to generate HMC trajectories 15-20% faster using EOFA rather than RHMC after retuning their

integration scheme to take advantage of these properties.

We note that the construction of the exact one flavor pseudofermion action has been detailed

by TWQCD in Ref. [3, 10] and summarized in our own formalism in Ref. [5]. We will not repeat

this discussion here, other than to give a brief overview and to introduce the notation used in this

work. We write the 5D Möbius domain wall fermion (MDWF) operator DDWF in terms of the 4D

Wilson Dirac operator DW and 5D hopping matrix Lss′ as

(DDWF)xx′,ss′ = ( (c+ d) (DW )xx′ + δxx′)δss′ + ( (c− d) (DW )xx′ − δxx′)Lss′

(DW )xx′ = (4 +M5) δxx′ −
1

2

∑
µ

[
(1− γµ)Uµ(x)δx+µ̂,x′ + (1 + γµ)U

†
µ(x

′)δx−µ̂,x′
]

Lss′ = (L+)ss′ P+ + (L−)ss′ P−

(6.3)

with

(L+)ss′ = (L−)s′s =

 −mδLs−1,s′ , s = 0

δs−1,s′ , 1 ≤ s ≤ Ls − 1
. (6.4)
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Here x and s are spacetime indices in the 4D bulk and along the fifth dimension, respectively, with

Ls denoting the total number of s sites, P± = (1± γ5)/2 denoting the chiral projection operators,

and (R5)ss′ ≡ δs,Ls−1−s′ denoting the operator which performs a reflection in the fifth dimension.

We recover four-dimensional quark fields q and q with definite chiralities from the five-dimensional

quark fields ψ and ψ described by DDWF at the boundaries of the fifth dimension

qR = P+ψLs−1 qL = P−ψ0

qR = ψLs−1P− qL = ψ0P+

. (6.5)

Green’s functions constructed from q and q approximate continuum QCD arbitrarily well in the

limit of vanishing lattice spacing and infinite 5D spacetime volume. The tunable parameters in

Eqn. (6.3) are the domain wall parameter M5, the bare quark mass m, and the Möbius scale

α = 2c; the parameter d is fixed at d = 1/2. DWF with the Shamir kernel is recovered from the

more general Möbius operator in the limit α→ 1. For more detail regarding our MDWF formalism

we direct the reader to Ref. [11].

The construction of the exact one flavor action for domain wall fermions begins by factorizing

the MDWF Dirac operator as

DDWF = DEOFA · D̃ , (6.6)

with
(DEOFA)xx′,ss′ ≡ (DW )xx′ δss′ + δxx′ (M+)ss′ P+ + δxx′ (M−)ss′ P−

(D̃)ss′ ≡ d (δss′ − Lss′) + c (δss′ + Lss′)

. (6.7)

The operator D̃ relating DDWF and DEOFA has no dependence on the gauge field, so we are free

to replace DDWF with DEOFA in Eqn. (6.2) without modifying physical observables described by a

properly normalized path integral. In fact, it can be shown analytically using the explicit form of

D̃ listed in Appendix 6.B that

det (D̃) =
(
(c+ d)Ls +m (c− d)Ls

)12V
, (6.8)

where V = L3T is the 4D spacetime volume. This substitution facilitates the construction of a

proper action since the operator γ5R5DEOFA is manifestly Hermitian for any choice of the Möbius

scale α, whereas DDWF satisfies a less trivial γ5-Hermiticity condition when α 6= 1 [12]. However,
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this comes at the cost of substantially more expensive inversions, since DEOFA is dense in ss′ whereas

DDWF has a well-known tridiagonal block structure.

After introducing DEOFA, TWQCD’s construction proceeds by applying the Schur identity

det

 A B

C D

 = det (A) det
(
D − CA−1B

)
= det (D) det

(
A−BD−1C

)
(6.9)

to DEOFA, treated as a 2×2 block matrix in its spinor indices, and rearranging terms to arrive at the

right-hand side of Eqn. (6.2). Crucially, factors of γ5R5 can be freely inserted under the determinant

to replace DEOFA with the Hermitian operator H ≡ γ5R5DEOFA, since det(γ5) = det(R5) = 1. The

final form of the exact one flavor pseudofermion action is SEOFA = φ†MEOFAφ, with

MEOFA ≡ 1− kP−Ω
†
− [H(m1)]

−1Ω−P− + kP+Ω
†
+ [H(m2)−∆+ (m1,m2)P+]

−1Ω+P+. (6.10)

In Appendix 6.B we collect explicit expressions for k, Ω±, ∆±, DEOFA, and D̃ for Shamir and

Möbius DWF, since, to the authors’ knowledge, these expressions have not previously appeared in

the literature. In Ref. [3] these operators are constructed recursively for the more general case of

Zolotarev-type DWF with weights ρs = cωs + d and σs = cωs − d that are allowed to vary along

the fifth dimension, subject to the constraint that ωs is reflection-symmetric in s.

6.3 Summary of Ensembles Used in This Work

The properties of the lattices used in this work are summarized in Tables 6.2 and 6.3. In all cases we

use the Iwasaki gauge action (I) [13], and on some ensembles supplement this with the dislocation

suppressing determinant ratio (DSDR) [14, 15]; we abbreviate the combined action including both

terms as “ID”. The additional DSDR term is designed to suppress the dislocations of the gauge field

associated with tunneling between topological sectors, thereby reducing the degree of residual chiral

symmetry breaking. For strong coupling simulations, where these dislocations occur frequently,

the DSDR term reduces the costs associated with light quark masses while still maintaining good

topological sampling. We simulate Nf = 2+1 quark flavors using domain wall fermions, with either

the Shamir (DWF) [16, 17] or Möbius (MDWF) [18–20] kernel. Finally, on ensembles marked “-G”

we use G-parity boundary conditions in one or more of the spatial directions.
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Ensemble Action β L3 × T × Ls Möbius Scale G-Parity B.C. aml amh

16I DWF + I 2.13 163 × 32× 16 — — 0.01 0.032

16I-G DWF + I 2.13 163 × 32× 16 — x 0.01 0.032

16ID-G MDWF + ID 1.75 163 × 32× 8 2.00 x,y,z 0.01 0.045

24ID MDWF + ID 1.633 243 × 64× 24 4.00 — 0.00789 0.085

32ID-G MDWF + ID 1.75 323 × 64× 12 2.67 x,y,z 0.0001 0.045

Table 6.2: Summary of ensembles and input parameters used in this work. Here β is the gauge

coupling, L3×T ×Ls is the lattice volume decomposed into the length of the spatial (L), temporal

(T ), and fifth (Ls) dimensions, and aml and amh are the bare, input light and heavy quark masses.

On the 16I-G, 16ID-G, and 32ID-G ensembles G-parity boundary conditions are applied to the

fermion fields at one or more of the spatial boundaries of the lattice; otherwise periodic boundary

conditions are applied, and in all cases antiperiodic boundary conditions are used along the temporal

direction.

The 16I ensemble was first generated and used to study light meson spectroscopy with domain

wall fermions in Ref. [21]. The 16I-G ensemble is identical to the 16I ensemble except for the

boundary conditions along the x-direction, which have been changed from periodic to G-parity.

Likewise, the parameters of the 16ID-G ensemble have been chosen based on a series of β =

1.75 DSDR ensembles generated in Ref. [22], but have G-parity boundary conditions in all three

spatial directions. Collectively, these three lattices are used as inexpensive, small-volume test

ensembles with unphysical, heavy pion masses to perform cross-checks of the EOFA algorithm

and its implementation in the BFM and CPS code libraries. The larger 24ID [23] and 32ID-G

[24] ensembles have physical pion masses and are currently being generated as part of production

RBC/UKQCD calculations.
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Ensemble L (fm) a−1 (GeV) mπ (MeV)

16I 1.95(5) 1.62(4) 400(11)

16I-G 1.95(5) 1.62(4) 388(14)

16ID-G 2.29(1) 1.378(7) 575(11)

24ID 4.82(19) 0.981(39) 137.1(5.5)

32ID-G 4.57(2) 1.378(7) 143.1(2.0)

Table 6.3: Summary of spatial volumes, lattice cutoffs, and pion masses in physical units for the

ensembles used in this work. All values for the 16I and 32ID-G ensembles are from Refs. [21] and

[6], respectively. On the 16I-G (16ID-G) ensemble we assume the lattice cutoff is the same as the

16I (32ID-G) ensemble since the same action and value of β has been used. The pion masses on

the 16I-G and 16ID-G ensembles have been extracted using the fitted value of the lowest energy

pion states from Table 6.8 and the continuum dispersion relation. Finally, the determination of the

lattice scale for the 24ID ensemble was performed in Ref. [25], and the determination of the pion

mass in Ref. [23].

6.4 Hybrid Monte Carlo with EOFA

In lattice QCD correlation functions are computed in terms of a discretized Euclidean path integral

〈O1 · · ·On〉 =
1

Z

∫
DU

∏
f

DψfDψf

 (O1[U ] · · ·On[U ]) e−S[U,ψf ,ψf ]. (6.11)

Here U is the gauge field, ψf is the quark field associated with flavor f , and S[U,ψf , ψf ] is the

action, which decomposes into a sum of contributions from the gauge field, fermions, and possibly

other terms (e.g. the dislocation suppressing determinant ratio). To avoid having to deal with

anticommuting Grassman variables in a computer, dynamical fermion flavors are integrated out

and then reintroduced in terms of bosonic “pseudofermion” fields φ as

1

Z

∫
DψDψ e−ψMψ = det (M) =

1

det (M−1)
=

1

Z

∫
DφDφ† e−φ

†M−1φ, (6.12)

provided M is positive-definite. While pseudofermions can be represented straightforwardly in a

computer, they come at the cost of applications of M−1 rather than M , which is not typically

240



available in an explicit form. Even after discretization the integration in Eqn. (6.11) is far too

expensive to perform directly due to the enormous number of degrees of freedom on a typical

lattice. Instead, Monte Carlo techniques are used to ergodically sample a sequence of representative

configurations of the gauge field {Ui}, for which

〈O1 · · ·On〉 ≈
1

N

N∑
i=1

O1(Ui) · · ·On(Ui). (6.13)

The standard Monte Carlo technique used in modern lattice QCD calculations is known as the

Hybrid Monte Carlo (HMC) algorithm.

HMC generates a Markov chain of gauge field configurations {Ui} by evolving a Hamiltonian

system in unphysical Molecular Dynamics (MD) “time”. This Hamiltonian system is constructed

by treating Uµ(x) as a generalized coordinate, introducing an su(3)-valued conjugate momentum

πµ(x), and forming the standard Hamiltonian

H =
1

2
π2 + S(U). (6.14)

The associated equations of motion
∂τUµ(x) = πµ(x)Uµ(x)

∂τπµ(x) = −T a∂ax,µS(U)

(6.15)

can then be integrated using numerical integration techniques. The integration is performed over

intervals of length ∆τ — referred to as a single MD trajectory — as a sequence of N small steps δτ ,

with N = ∆τ/δτ . Finite precision integration errors are corrected stochastically with a Metropolis

accept/reject step: after every N integration steps by δτ the total change in the Hamiltonian ∆H

is computed, and the current gauge field U ′
µ(x) is accepted as the next configuration in the Markov

chain with probability

Paccept = min
(
1, e−∆H

)
. (6.16)

One can show that the resulting algorithm satisfies detailed balance provided the scheme used to

numerically integrate Eqn. (6.15) is reversible [26]. Ergodicity is achieved by performing a heatbath

step each time the integration is restarted to pick a new conjugate momentum πµ(x), and thus a

new trajectory in the phase space {(U, π)}. HMC generates a sequence of gauge field configurations
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whose statistical independence is governed by the length of each MD trajectory, ∆τ . The number

of MD trajectories separating statistically independent gauge field configurations is typically deter-

mined ex post facto by examining the integrated autocorrelation times of representative physical

observables.

The fermionic contribution to the Hamiltonian in Eqn. (6.14) introduces a technical obstacle

for the HMC algorithm since the lattice Dirac operator D has a complex spectrum. Replacing D

with the Hermitian fermion matrix M = D†D in Eqn. (6.12) has a number of advantages. Most

importantly, it allows M−1 to be applied to pseudofermion vectors using the conjugate gradient

algorithm, and it allows for a straightforward pseudofermion heatbath step: at the beginning

of each MD trajectory a random Gaussian vector η is drawn according to P (η) ∝ exp(−η†η/2)

and the initial pseudofermion field is seeded as φ = Dη, ensuring that φ is correctly sampled as

P (φ) ∝ exp(−φ†M−1φ/2). However, the fermion matrix M = D†D describes two degenerate quark

flavors with the same mass. Single flavor simulations are typically performed by taking an overall

square root of the fermion determinant,

det (D) =
[
det
(
D†D

)]1/2
. (6.17)

In the pseudofermion formalism applications of the operator (D†D)−1/2 are approximated by a

matrix-valued function f(D†D),

[
det
(
D†D

)]1/2
=

1

Z

∫
DφDφ†e−φ

†(D†D)−1/2φ ' 1

Z

∫
DφDφ†e−φ

†f(D†D)φ (6.18)

where f(x) is a suitably constructed approximation to the inverse square root, valid over the spectral

range of D†D . Variants of the HMC algorithm which construct f from different classes of functions

have been proposed and used in the literature; the most common is the rational HMC (RHMC)

algorithm [27], where

f(x) = α0 +

N∑
k=1

αk
βk + x

(6.19)

is a rational function. While rational functions are in many ways a good choice — they are

economical in the sense that the inverse square root can usually be well-approximated by a modest

number of terms, and the multishift CG algorithm can be used to efficiently invert (D†D + βk)
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for all k simultaneously — the additional complexity of evaluating f(D†D) and the associated

molecular dynamics pseudofermion force makes single flavor RHMC simulations significantly more

costly than degenerate two flavor HMC simulations at the same bare quark mass. This additional

cost can be largely attributed to the significant linear algebra overhead associated with multishift

CG.

EOFA provides an alternative construction of a single-flavor pseudofermion action through

Eqn. (6.2): a ratio of fermion determinants can be factorized as a product of two determinants,

each of which involves an operator which is Hermitian and positive-definite. This product can

then be represented as a path integral over a bosonic pseudofermion field with a two-term action

(Eqn. (6.10))

det

(
DEOFA(m1)

DEOFA(m2)

)
=

1

Z

∫
DφDφ†e−φ

†MEOFAφ, (6.20)

leading to an algorithm which is “exact” in the sense that it avoids the numerical approximations

required to implement the square root in RHMC (Eqn. (6.18)) and related HMC variants. EOFA

is also expected to be somewhat faster than RHMC, since there is no rational approximation

entering into evaluations of the Hamiltonian or the pseudofermion force, eliminating the overhead

associated with multishift CG. In the remainder of this section we elaborate on the details of the

action, heatbath step, and pseudofermion force entering into the Hamiltonian equations of motion

(Eqn. (6.15)) for HMC with EOFA.

6.4.1 Action

The EOFA action (Eqn. (6.10)) computes a ratio of determinants of DEOFA upon integrating out

the pseudofermion fields (Eqn. (6.20)). This ratio can be related to the conventional determinant

ratio computed by the RHMC algorithm through Eqns. (6.6) and (6.8), leading to the relationship

det

(
DDWF(m1)

DDWF(m2)

)
=

(
(c+ d)Ls +m1 (c− d)Ls

(c+ d)Ls +m2 (c− d)Ls

)12V

det

(
DEOFA(m1)

DEOFA(m2)

)
. (6.21)

We use this relationship as a test of the equivalence of RHMC and EOFA, as well as our imple-

mentation of the EOFA action, by stochastically computing the left side of Eqn. (6.21) with the
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RHMC action

MRHMC =
[
D†

DWFDDWF(m2)
]1/4 [

D†
DWFDDWF(m1)

]−1/2 [
D†

DWFDDWF(m2)
]1/4

(6.22)

and the right side with the EOFA action (Eqn. (6.10)) on the same gauge field configuration.

Observing that we can, in general, rewrite a determinant as

det
(
M−1

)
=

1

Z

∫
DφDφ†e−φ

†Mφ =
1

Z

∫
DφDφ†e−

1
2
φ†Σ−1φeφ

†( 1
2
Σ−1−M

)
φ (6.23)

suggests the following simple Monte Carlo integration scheme: we draw random pseudofermion vec-

tors by independently sampling the real and imaginary parts of each component from the standard

normal distribution N (µ = 0, σ = 1), and compute the expectation value

− logdet
(
M−1

)
≈
〈
φ†i

(
M− 1

2
Σ−1

)
φi

〉
i

, (6.24)

where the average is computed using the jackknife resampling technique. This will accurately

approximate the true log determinant for finite, realistically calculable values of N provided m1 and

m2 are sufficiently close that the integrand is well-approximated by a Gaussian with unit variance.

To address this latter systematic, we consider splitting Eqn. (6.21) as a product of determinants

det

(
D(m1)

D(m2)

)
= det

(
D(m1)

D(m′
1)

)[Nm∏
i=1

det

(
D(m′

i)

D(m′
i+1)

)]
det

(
D(m′

Nm
)

D(m2)

)
(6.25)

with equally-spaced intermediate masses

m′
i = m1 +

m2 −m1

Nm + 1
i, i = 1, . . . , Nm, (6.26)

and study the dependence of the result on Nm (this procedure is identical to the method introduced

in Ref. [28] for computing quark mass reweighting factors). In the upper panel of Figure 6.1 we plot

the log determinants of M−1
RHMC and M−1

EOFA as a function of Nm, with N = 10 stochastic evalu-

ations, computed using a single thermalized trajectory of the 16I, 16I-G, and 16ID-G ensembles.

For the case of the 16ID-G ensemble, which uses the Möbius DWF fermion action, we also include

the overall constant multiplying the right side of Eqn. (6.21) so that in all cases we are computing

the same determinant ratio of DDWF using either action.
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We observe, as expected, that both formalisms agree for sufficiently large Nm. Likewise, we

observe that at sufficiently small Nm the calculation generally becomes unreliable since we do not

attempt to account for the systematic error associated with approximating the integrand of the path

integral by a Gaussian with unit variance (i.e. setting Σ = 1 in Eqns. (6.23) and (6.24).). In both

cases “sufficiently” small or large Nm is controlled by the size of the splitting between m1 and m2.

We also observe that, for a given choice of Nm and N , both the statistical and systematic errors of

the determinant ratio computed via EOFA are suppressed relative to the errors of the determinant

ratio computed via RHMC. We argue that the observed error suppression can be explained by

comparing the spectrum of MRHMC to the spectrum of MEOFA, which we plot in the lower panels

of Figure 6.1 for a very small lattice volume (45) where the complete spectrum can be computed

directly. While both operators have similar condition numbers, we find that most of the spectrum

of the EOFA action is concentrated into a small interval [1, 1 +∆] with ∆ ∼ O(0.1), leading to an

action which is easier to estimate stochastically.

We propose that TWQCD’s EOFA construction can be thought of as a kind of precondition-

ing which computes the same determinant ratio as RHMC but modifies the operator inside the

determinant (MRHMC), mapping its spectrum onto a more compact interval. This suggests an

additional application of the EOFA formalism: quark mass reweighting factors can be computed

substantially more cheaply using the EOFA action than using the RHMC action, especially at light

quark masses, even if the ensemble was generated using RHMC. This could be useful, for example,

to include the dynamical effects of isospin breaking in ensembles generated with isospin-symmetric

up and down quarks.

6.4.2 Heatbath

At the beginning of each HMC trajectory we wish to draw a random pseudofermion field φ accord-

ing to the distribution P (φ) ∝ exp(−φ†MEOFAφ). To do this, we first draw a random vector η by

independently sampling the real and imaginary parts of each component from the normal distri-

bution with µ = 0 and σ2 = 1/2, and then compute φ = M−1/2
EOFAη. As with the RHMC algorithm

we approximate the inverse square root by an appropriately constructed rational function, but we
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stress that in the context of EOFA this rational approximation enters only into the heatbath and

is not necessary to compute the EOFA action itself or the associated pseudofermion force. Naively

applying a rational approximation with the form of Eqn. (6.19) to the operator MEOFA results in

M−1/2
EOFA ' α0 +

Np∑
k=1

αl

[
1

γl
− kP−Ω

†
− [H(m1)]

−1Ω−P−

+kP+Ω
†
+ [H(m2)−∆+(m1,m2)P+]

−1Ω+P+

]−1
, (6.27)

where we have defined γl ≡ (1 + βl)
−1. In this form, the nested inversions required to seed the

heatbath would make EOFA prohibitively expensive. However, the Woodbury matrix identity

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1 (6.28)

and the cancellation between cross-terms involving products of the chiral projection operators can

be used to manipulate this expression into the equivalent form

M−1/2
EOFA ' α0 +

Np∑
k=1

αlγl

{
1 + kγlP−Ω

†
− [H(m1)− γl∆−(m1,m2)P−]

−1Ω−P−

− kγlP+Ω
†
+ [H(m2)− βlγl∆+(m1,m2)P+]

−1Ω+P+

}
. (6.29)

With this expression the EOFA heatbath step can be performed at the cost of 2Np CG inversions

using a rational approximation with Np poles. Unlike the case of RHMC, multishift CG algorithms

are not applicable to the EOFA heatbath since each of the 2Np operators in Eqn. (6.29) generates a

different Krylov space. Furthermore, since the operators ∆±P± have a large number of zero modes

and are therefore not invertible, there is no simple transformation by which this system can be

recast into a form amenable to multishift CG.

In the left panel of Figure 6.2 we test Eqn. (6.29) on a single thermalized configuration of the

16I ensemble by computing the quantity

ε ≡
∣∣η†η − φ†MEOFAφ

∣∣
η†η

(6.30)

after seeding the pseudofermion field φ with a random Gaussian vector η. In exact arithmetic

ε = 0; in practice it measures the relative error in the heatbath step arising from the choice of
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CG stopping conditions and rational approximation to the inverse square root. We repeat this

calculation, varying the number of poles in the rational approximation but keeping the stopping

conditions fixed, and observe that ε reaches the limits of double-precision arithmetic even with a

relatively modest number of poles compared to what is typically required to compute non-integer

powers of D†D accurately in the context of RHMC. In the right panel of Figure 6.2 we demonstrate

this explicitly by computing the condition numbers κ = λmax/λmin of both operators as a function

of the bare input quark mass. In Section 6.6 we show how aggressive tuning of the rational

approximation and stopping conditions, together with forecasting techniques for the initial CG

guesses, can be combined to ameliorate the cost of the 2Np inversions required to apply M−1/2
EOFA.

6.4.3 Pseudofermion Force

The pseudofermion force

T a∂ax,µS(U) ≡ T a
d

ds
S
(
esT

a
Uµ(x)

) ∣∣∣
s=0

(6.31)

measures the back-reaction of the pseudofermions on the HMC system (Eqn. (6.15)) under an

infinitesimal variation of the gauge field. In our notation {T a} is a basis for the Lie algebra su(3),

with the CPS normalization convention

Tr
(
T aT b

)
= −1

2
δab. (6.32)

The EOFA pseudofermion force can be worked out explicitly by differentiating the EOFA action

(Eqn. (6.10)) and applying the matrix identity

∂xM
−1 = −M−1 (∂xM)M−1, (6.33)

resulting in

T a∂ax,µS(U) = kT a (γ5R5χ1)
† (∂ax,µDW

)
χ1 − kT a (γ5R5χ2)

† (∂ax,µDW

)
χ2, (6.34)

with

χ1 ≡ [H(m1)]
−1Ω−P−φ (6.35)

and

χ2 ≡ [H(m2)−∆+(m1,m2)P+]
−1Ω+P+φ. (6.36)
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Standard manipulations can be used to write

a†
(
∂ax,µDW

)
b = −k

2

∑
x,s,µ

[
a†(x, s)T aUµ(x) (1− γµ) b(x+ µ̂, s)

−a†(x+ µ̂, s)U †
µ(x)T

a (1 + γµ) b(x)
]

= −k
2

∑
x,s,µ

[
Uµ(x)

(
Tr
spin

[
(1 + γµ) a(x+ µ̂, s)b†(x, s)

]
+

Tr
spin

[
(1− γµ) b(x+ µ̂, s)a†(x, s)

])]
,

(6.37)

allowing Eqn. (6.34) to be efficiently computed locally in terms of a trace over spinor indices, at the

cost of the two inversions required to form χ1 and χ2. Since Dirac bilinears of the form a†
(
∂ax,µDW

)
b

enter into the pseudofermion forces associated with many of the standard pseudofermion actions

for Wilson and domain wall fermions — including the RHMC action — implementing the EOFA

pseudofermion force requires little new code beyond what is required to implement the EOFA

Hamiltonian.
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Figure 6.1: Top: log determinants of the EOFA and RHMC actions as a function of the number

of intermediate masses (Nm) used to compute Eqn. (6.25), computed on a single, thermalized

configuration of the 16I, 16I-G, and 16ID-G ensembles. We set (am1, am2) to (0.032, 0.042),

(0.032,0.042), and (0.045,0.055) on the 16I, 16I-G, and 16ID-G ensemble, respectively. We note

that the error bars are purely statistical; for small Nm there is a large, unaccounted systematic

error associated with setting Σ = 1 in Eqns. (6.23) and (6.24). Bottom: eigenvalue spectra of

MEOFA and MRHMC on a 45 lattice with am1 = 0.01, am2 = 1.0, and aM5 = 1.8. In the bottom

left plot all of the gauge links are set to Uµ(x) = 1 (i.e. the free field limit); in the bottom right

plot each gauge link is set to an independent, random SU(3) matrix.
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Figure 6.2: Left: relative error — ε, defined by Eqn. (6.30) — in seeding the pseudofermion

heatbath as a function of the number of poles in the rational approximation to the inverse square

root (Np), with am1 = 0.032 set to the dynamical heavy quark mass, and a stopping residual of

10−10 for all CG inversions. Right: condition numbers of MEOFA and D†
DWFDDWF as a function of

the bare input quark mass (amq); for MEOFA this is the numerator mass (am1 = amq), while the

denominator mass is fixed at am2 ≡ 1. Both calculations were performed on a single, thermalized

configuration of the 16I ensemble.
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6.5 Small Volume Reproduction Tests

To further test our implementation of EOFA we have reproduced the 16I (16I-G, 16ID-G) ensemble

using EOFA for the strange quark (light quarks) in place of RHMC. For these tests we have made

no serious effort to tune EOFA for performance; we have simply checked that replacing RHMC with

EOFA, but leaving all other details of the simulation fixed, has no discernible impact on physical

observables such as the average plaquette, topological susceptibility, and low energy spectrum.

6.5.1 Ensemble Generation

The details of the integrator parameters and nesting are summarized in Tables 6.4 and 6.5, respec-

tively. We use the abbreviations

Quo(m1,m2) ≡ det

(
D†

DWFDDWF(m1)

D†
DWFDDWF(m2)

)
(6.38)

and

RatQuo1/n(m1,m2) ≡

[
det

(
D†

DWFDDWF(m1)

D†
DWFDDWF(m2)

)]1/n
(6.39)

to denote the quotient and rational quotient actions, and on the EOFA reproduction ensembles

replace each instance of RatQuo1/2(m1,m2) with the EOFA action (Eqn. (6.10)) using the same

mass parameters. The 16I and 16I-G EOFA reproduction runs were seeded with an ordered start

— i.e. all gauge links were initially set to the unit matrix — and evolved for 1500 and 2500 MD

time units, respectively. For the 16ID-G ensemble the last RHMC configuration (MD trajectory

908) was used to seed the start of the EOFA reproduction run, and then evolved for an additional

500 MD time units.

6.5.2 Basic Observables

In Table 6.6 we summarize results for the average plaquette 〈P 〉, light quark and strange quark

chiral 〈ψψ〉 and pseudoscalar 〈ψγ5ψ〉 condensates, and the topological susceptibility χt ≡ 〈Q2〉/V ,

computed on each ensemble; we observe statistically consistent results between the RHMC and

EOFA ensembles in each case. Accompanying plots of the time evolution can be found in Section

6.D. The topological charge Q has been measured using the 5Li discretization introduced in Ref. [29]
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Ensemble Integrator δτ rFG rMD rMC

16I Force Gradient QPQPQ 0.1000 10−7 10−8 10−10

16I-G Omelyan (λ = 0.2) 0.2000 — 10−8 10−10

16ID-G Force Gradient QPQPQ 0.1667 10−6 10−7 10−10

Table 6.4: Basic integrator and HMC details for the generation of the 16I, 16I-G, and 16ID-G

ensembles. We use nested Sexton-Weingarten integration schemes, detailed in Table 6.5, with δτ

the coarsest time step used to evolve the outermost level. We denote the CG stopping tolerances

used for the force gradient forecasting, molecular dynamics, and Monte Carlo steps by rFG, rMD,

and rMC, respectively.

Ensemble Level Action Update

16I
1 Quo(0.01,0.2) + Quo(0.2,1.0) + RatQuo1/2(0.032,1.0) 4:1

2 Gauge 1:1

16I-G

1 RatQuo1/2(0.01,0.032) 1:1

2 RatQuo1/4(0.032,1.0) + RatQuo1/4(0.032,1.0) + RatQuo1/4(0.032,1.0) 8:1

3 Gauge 1:1

16ID-G

1 RatQuo1/2(0.01,0.05) + RatQuo1/2(0.05,1.0) + RatQuo1/4(0.045,1.0) 1:1

2 DSDR 8:1

3 Gauge 1:1

Table 6.5: Integrator layouts for the original RHMC runs. Here “Quo” is an abbreviation for the

quotient action (Eqn. (6.38)) and “RatQuo1/n” is an abbreviation for the rational quotient action

(Eqn. (6.39)), with a rational function approximation used to apply (D†D)1/n and its inverse. For

the EOFA reproduction runs each instance of RatQuo1/2 is replaced by an EOFA determinant with

the same masses (Eqn. (6.10)), while all other ensemble and integrator details are left fixed. The

notation A:B for the update scheme denotes the number of steps of the next innermost integrator

level (A) per step of the current level (B).
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after cooling the gauge fields with 20 steps of APE smearing [30] using a smearing coefficient of

0.45. The ensemble averages were computed after binning over 50 (25) successive MD time units on

the 16I and 16I-G (16ID-G) ensembles, where the bin size has been conservatively chosen based on

the integrated autocorrelation times measured in Ref. [21] for the 16I ensemble and Ref. [22] for a

series of β = 1.75 DSDR ensembles. We expect that the runs produced for this study are too short

to reliably compute integrated autocorrelation times directly, but note that there is no evidence of

a difference in an integrated autocorrelation time between the EOFA and RHMC ensembles in the

time evolution plots of Section 6.D.

16I 16I-G 16ID-G

Observable RHMC EOFA RHMC EOFA RHMC EOFA

〈P 〉 0.588087(22) 0.588106(26) 0.588033(24) 0.588039(16) 0.514251(43) 0.514200(48)

〈ψlψl〉 0.001697(5) 0.001698(11) 0.0017151(72) 0.0017130(52) 0.005543(11) 0.005563(8)

〈ψsψs〉 0.0037450(31) 0.0037435(74) 0.0037541(51) 0.0037529(34) 0.0085729(82) 0.0085895(69)

〈ψlγ5ψl〉 -0.000015(14) -0.000012(19) -0.000003(15) -0.000006(12) 0.000033(13) -0.000001(11)

〈ψsγ5ψs〉 -0.000001(8) -0.000007(12) -0.0000004(92) -0.0000034(81) 0.000017(10) -0.000002(8)

χt 1.03(19)× 10−5 1.81(42)× 10−5 2.16(47)× 10−5 1.53(27)× 10−5 — —

Table 6.6: Average plaquettes, quark condensates, and topological susceptibilities (χt) computed

on the 16I, 16I-G and 16ID-G lattices and their corresponding EOFA reproduction ensembles.

The ensemble averages on the 16I (16I-G) lattices were computed using MD trajectories 500-

1500 (500-2500) after binning over 50 successive MD time units. The ensemble averages on the

16ID-G lattices were computed using MD trajectories 500:900 for the RHMC ensemble, and MD

trajectories 960:1360 for the EOFA ensemble, after binning over 25 successive MD time units. We

do not compute χt on the 16ID-G ensemble since the short 400 MD time unit measurement runs

are insufficient to adequately sample the topological charge, as evidenced by the time evolutions

plotted in Appendix 6.D.
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6.5.3 Low Energy Spectra

In Table 6.7 we list results for the pion, kaon, Omega baryon, and residual masses, computed

on the 16I ensemble. These calculations were performed using a measurement package previously

introduced in Ref. [11], and based on the all-mode averaging (AMA) technique of Ref. [31]. Five

exact light quark propagators were computed per trajectory using a deflated, mixed-precision CG

solver with 600 low-mode deflation vectors and a tight stopping residual r = 10−8, while sloppy

propagators were computed for all time slices using a reduced stopping residual r = 10−4. Strange

quark propagators were computed with the tight residual r = 10−8 for all time slices using ordi-

nary CG with no deflation. AMA correlation functions were then computed by time-translational

averaging of the sloppy propagators, using the available exact propagators to correct for bias. The

light quark propagators were computed using Coulomb gauge-fixed wall (W) sources, with either

local (L) or wall sinks; the strange quark propagators were computed using Coulomb gauge-fixed

wall or Z3 box (Z3B) sources, and in both cases local sinks.

The pion and kaon masses were extracted by fitting to the asymptotic, large Euclidean time

limit of the respective two-point correlation function,

〈0|O(t)O(0)|0〉 t→∞' 〈0|O(t)|X〉〈X|O(0)|0〉
2mXV

(
e−mX t ± e−mX(T−t)

)
, (6.40)

where O denotes the choice of interpolating operator, X ∈ {π,K} is the ground state to which

O couples, and V and T are the spatial volume and temporal extent of the lattice, respectively.

In particular, we performed simultaneous fits to the 〈PPLW 〉, 〈PPWW 〉, and 〈APLW 〉 correlators,

with P (x) = ψ(x)γ5ψ(x) and A(x) = ψ(x)γ5γ4ψ(x), and the first (second) superscript denotes the

sink (source) type. The Omega baryon mass was extracted from the two-point correlation function

Cs1s2ΩΩ (t) =

3∑
i=1

∑
~x

〈0|Os1
Ω (~x, t)iO

s2
Ω (0)i|0〉 (6.41)

with the interpolating operator

OΩ(x)i = εabc

(
s†a(x)Cγisb(x)

)
sc(x), (6.42)

s1 = L and s2 ∈ {W,Z3B}. The correlators were then projected onto the positive parity component

P+C
s1s2
ΩΩ =

1

4
Tr

[
1

2
(1 + γ4)C

s1s2
ΩΩ

]
(6.43)
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and simultaneously fit to double exponential ansätze with common mass terms

Cs1s2ΩΩ (t) = (Z1)
s1s2
ΩΩ e−mΩt + (Z2)

s1s2
ΩΩ e−m

′
Ωt. (6.44)

Finally, the residual mass was determined by fitting the ratio

R(t) =
〈0|
∑

~x j
a
5q(~x, t)|π〉

〈0|
∑

~x j
a
5 (~x, t)|π〉

(6.45)

to a constant, where ja5q is the five-dimensional pseudoscalar density evaluated at the midpoint of

the fifth dimension, and j5a is the physical pseudoscalar density constructed from the surface fields.

16I

Observable RHMC EOFA

amπ 0.2424(11) 0.2425(8)

amK 0.3252(11) 0.3253(7)

amΩ 1.003(15) 0.994(11)

am′
res(ml) 0.0030558(80) 0.0030523(78)

Table 6.7: Low energy spectrum on the 16I ensemble computed from 100 independent measure-

ments beginning with MD trajectory 500 and separated by 10 MD time units. Prior to fitting the

correlation functions were binned over groups of 5 measurements. Corresponding effective mass

plots can be found in Appendix 6.D.

In addition, we have also measured the ground state pion energy, kaon mass, and residual

mass on the 16I-G and 16ID-G ensembles. While the ground state of the kaon is at rest, the

ground state of the pion has nonzero momentum ~p100 = (±π/L, 0, 0) on the 16I-G ensemble and

~p111 = (±π/L,±π/L,±π/L) on the 16ID-G ensemble due to the boundary conditions. These

calculations make use of an extension of the AMA measurement package described above to G-

parity ensembles; as discussed in Ref. [8], this requires the inclusion of additional diagrams that are

generated by the mixing of quark flavors at the lattice boundaries through the G-parity operation.

We measure on 51 configurations of the 16I-G ensemble, beginning with trajectory 500 and with a

separation of 40 MD time units, and use sloppy and exact CG stopping tolerances of 10−4 and 10−10,
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respectively, with a single exact solve per trajectory. We likewise measure on 21 configurations of

the 16ID-G ensemble, beginning with trajectory 500 (960) for the RHMC (EOFA) ensemble and

separated by 20 MD time units, and use the same AMA setup. We perform no additional binning

for either ensemble since the separations between consecutive measurements are already comparable

to the bin sizes used to compute the plaquette and quark condensates.

16I-G 16ID-G

Observable RHMC EOFA RHMC EOFA

aEπ 0.3175(43) 0.3097(48) 0.4457(101) 0.4614(72)

aEpred
π 0.31197(4) 0.31207(4) — —

amK 0.3271(22) 0.3272(28) 0.4343(34) 0.4382(24)

am′
res(ml) 0.003140(90) 0.003054(86) 0.00919(14) 0.00952(13)

Table 6.8: Low energy spectra on the 16I-G and 16ID-G ensembles computed from 51 and 21

measurements, respectively. On the 16I-G ensemble we also predict the ground state pion en-

ergy using the fitted amπ on the 16I ensemble and the continuum dispersion relation aEpred
π =√

(amπ)
2 + (aπ/L)2. Corresponding effective mass plots can be found in Appendix 6.D.

6.5.4 Pseudofermion Forces on the 16I Ensemble

TWQCD has observed that the average EOFA pseudofermion force is roughly half the size of

the corresponding average RHMC pseudofermion force for a particular dynamical Nf = 1 QCD

simulation with domain wall quarks performed in Ref. [3]. Following this observation, we examine

the forces on the RHMC and EOFA variants of the 16I ensemble. We define a norm on the space

of su(3)-valued pseudofermion force matrices F aµ (x) ≡ ∂ax,µS(U) by

‖Fµ(x)‖ ≡

[∑
a

F aµ (x)F
a
µ (x)

]1/2
, (6.46)
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and consider two measures of the force associated with a given configuration of the gauge field: the

first is the RMS force

FRMS ≡ 1

4V

[∑
x,µ

‖Fµ(x)‖2
]1/2

(6.47)

and the second is the maximum force

Fmax ≡ max
x,µ

‖Fµ(x)‖, (6.48)

in both cases taken over all lattice sites and link directions. While we expect Equation (6.48) to

be a more pertinent definition in the context of HMC simulations — we have empirically found

that acceptance is controlled by the size of Fmax — both FRMS and Fmax are, a priori, reasonable

measures of the pseudofermion force.

In Figure 6.3 we compare histograms of FRMS and Fmax between the RHMC and EOFA 16I

ensembles. Each data point corresponds to a single evaluation of the pseudofermion force falling

between MD trajectories 500 and 1500. We find that comparing the relative sizes of the RHMC

and EOFA forces is highly dependent on whether one chooses FRMS or Fmax; the mean EOFA

FRMS is roughly 30% smaller than the mean RHMC FRMS, but the distributions of Fmax are nearly

indistinguishable. This observation suggests that while the EOFA force distribution may have a

smaller mean than the RHMC force distribution, the EOFA distribution also likely has longer tails,

such that the largest forces have similar magnitudes. Since we expect the magnitude of the largest

forces to correlate more strongly with the efficiency of the integrator than the magnitude of the

average forces, as we have argued above, we interpret these results as suggesting that the optimal

step size for an EOFA evolution should be similar to that of an RHMC simulation with the same

mass parameters, even if the average force is somewhat smaller.

TWQCD has also observed a large hierarchy of scales in the pseudofermion forces associated

with each of the two terms in Eqn. (6.34); in Ref. [4] they find that the average force associated

with the first term — involving the left-handed component of the pseudofermion field — is more

than an order of magnitude smaller than the average force associated with the second term —

involving the right-handed component — for two different dynamical QCD simulations. They

exploit this observation with a Sexton-Weingarten integration scheme, integrating the first term
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Figure 6.3: Histograms of the RMS and maximum pseudofermion forces associated with force

evaluations falling between trajectories 500 and 1500 of the 16I HMC evolutions. FRMS and Fmax

are defined by Equations (6.47) and (6.48), respectively. ∆t is the step size used to integrate the

pseudofermion force contributions to the HMC evolution.

with a larger time step than the second, and find increased efficiency in their simulations. In Figure

6.4 we compare histograms of the RMS and maximum left-handed and right-handed forces from

1000 thermalized configurations of the 16I EOFA ensemble. Our conclusions are analogous to the

comparison between the EOFA and RHMC forces: if one considers FRMS the left-handed force

contribution is indeed substantially smaller than the right-handed force contribution, but if one

instead considers Fmax the force distributions are very similar in both magnitude and shape. Based
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on the latter observation we leave both terms in Equation (6.34) on the same time step in our

large-scale EOFA simulations.
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Figure 6.4: Histograms of the RMS and maximum pseudofermion forces associated with the left-

handed and right-handed components of the pseudofermion field in Eqn. (6.34).

We also note that neither these small volume test runs, nor TWQCD’s simulations in Refs. [3,

4, 10], have considered applying the Hasenbusch mass preconditioning technique [1] to the EOFA

formalism. Introducing a set of Hasenbusch masses {m′
i}Ni=1, with m1 < m′

i < m2, we can write

the fermion determinant as

det

(
D(m1)

D(m2)

)
= det

(
D(m1)

D(m′
1)

)[N−1∏
i=1

det

(
D(m′

i)

D(m′
i+1)

)]
det

(
D(m′

N )

D(m2)

)
. (6.49)
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While the left-hand side can be simulated using a single pseudofermion field, the associated forces

can be large if m1 � m2, requiring a small step size to maintain reasonable acceptance. The

right-hand side, in contrast, involves N + 1 independent pseudofermion fields, but with possibly

substantially reduced forces, allowing larger step sizes to be used. For lightm1 one typically observes

that the gain from increasing the step size offsets the cost of simulating extra heavy flavors, leading

to a more efficient simulation. In Section 6.7 we demonstrate that Hasenbusch preconditioning

allows for a substantial speed-up in the context of the 32ID-G ensemble. We also note that in

addition to reducing the size of the pseudofermion forces, the Hasenbusch technique preconditions

the EOFA force in the sense that the size hierarchy between the left-handed and right-handed

force contributions to a single determinant disappears in the limit m′
i → m′

i+1. In practice, we

find that the mass preconditioned simulation has comparable left-handed and right-handed force

contributions even in the RMS sense.

6.6 Optimization and Tuning

In this section we discuss preconditioning and algorithmic techniques which reduce the cost of

EOFA simulations. In some cases these are extensions of well-known lattice techniques to the

EOFA formalism, while in other cases they are specific to EOFA. We illustrate these techniques

using bechmark tests computed with the physical quark mass, Möbius DWF 24ID ensemble, and

report timing results for code written in the Columbia Physics System (CPS) and running on

256-node or 512-node Blue Gene/Q partitions.

6.6.1 Inversions of DEOFA

Since the majority of the computational effort in an HMC simulation is associated with repeatedly

inverting the Dirac operator, techniques to more efficiently apply the Dirac operator or to otherwise

accelerate these inversions can have a dramatic impact on the overall efficiency of the integrator.

To address the former, we make use of the BAGEL assembler generation library [32] to produce

highly optimized kernels and fermion solvers for the Blue Gene/Q hardware. To address the latter,

we make use of multiple preconditioning techniques, as well as a mixed precision defect correction
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CG solver.

The first preconditioning technique we apply — “even-odd” or “red-black” preconditioning —

is well-known in the lattice QCD community. Lattice sites are labeled as even if (x+ y + z + t) ≡ 0

(mod 2), or odd if (x+ y + z + t) ≡ 1 (mod 2), inducing a 2×2 block structure on fermion operators

M =

 Mee Meo

Moe Moo

 . (6.50)

Standard tricks can then be used to relate the linear system Mψ = φ to a better conditioned linear

system involving only the odd sub-lattice; this preconditioned system is substantially cheaper to

invert since the size of the problem has been halved. After inverting on the odd sub-lattice, the

even component of ψ can also be recovered at modest cost, without ever needing to explicitly invert

on the even sub-lattice. The details of this construction, and its extension to EOFA, are described

in Appendix 6.C.

The second preconditioning technique we apply — Cayley-form preconditioning — is unique to

EOFA, and was introduced in Ref. [5]. The generic linear system one needs to solve in the context

of EOFA has the form (
H(m1) + β∆±(m2,m3)P±

)
ψ = φ, (6.51)

where H = γ5R5DEOFA. For Möbius domain wall fermions DEOFA is dense in ss′, and thus con-

siderably more expensive to invert than DDWF, which has a tridiagonal ss′ stencil, in terms of

wall clock time. However, Eqn. (6.6) suggests that Eqn. (6.51) can be related to an equivalent

system in terms of DDWF by using D̃−1 as a preconditioner. We elaborate on the mathemati-

cal details in Appendix 6.C.2, and, in particular, demonstrate that ∆±D̃ has a relatively simple,

rank-one form, allowing for substantially more efficient EOFA inversions — even when β 6= 0 —

by working with the preconditioned system. This technique also has the advantage that it allows

for EOFA simulations which re-use existing high-performance code for applying DDWF with little

modification.

Finally, we use a restarted, mixed precision defect correction solver to perform the conjugate

gradient inversions of the fully preconditioned EOFA system. For memory bandwidth-limited calcu-

lations — such as applying the Dirac operator — single precision computations can be performed at
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approximately half the cost of full double precision computations. In the defect correction approach

to mixed precision CG, the following algorithm is used:

1. Solve the Dirac equation in single precision arithmetic using a reduced stopping tolerance

(typically 10−4 or 10−5).

2. Compute the current residual using the (single precision) solution in full double precision

arithmetic.

3. If the desired final tolerance (typically 10−8 or smaller) has been reached, stop. Otherwise,

return to step 1, using the residual vector computed in step 2 as the new CG source.

We observe that this algorithm outperforms straight double precision CG by approximately a factor

of 2 — as one would expect if the calculation is truly memory bandwidth-limited — provided the

local lattice volume on each node is sufficiently large to avoid communications bottlenecks.

In Figure 6.5 we plot the CG residual as a function of the wall clock running time of the inverter

for a series of benchmark inversions of Equation (6.51) on the 24ID ensemble. These benchmarks

show the inverter performance as we sequentially introduce even-odd preconditioning, Cayley-form

preconditioning, and finally, mixed precision CG. We also plot the time required to solve the family

of linear systems (
D†

DWFDDWF + βk

)
ψ = φ (6.52)

using multishift CG for the same set of poles {βk} used in the rational approximation to x−1/2

in the RHMC evolution that generated the 24ID ensemble. This allows a baseline estimate of the

cost of evaluating the EOFA Hamiltonian or pseudofermion force against the cost of evaluating the

RHMC Hamiltonian or pseudofermion force at the same quark mass. We observe a factor of 3.9

speed-up for fully preconditioned EOFA over the even-odd preconditioned RHMC system. In both

cases the underlying operator being inverted is DDWF; the slower RHMC benchmark demonstrates

the overhead associated with multishift CG relative to solving a single system with standard CG,

both due to the inability to fully utilize mixed precision methods and due to the additional linear

algebra required at each iteration.
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Figure 6.5: Wall clock time required to solve Eqn. (6.51) to a stopping tolerance of 10−10 at the

physical strange quark mass on the 24ID ensemble, as the preconditioning and algorithmic refine-

ments discussed in the text are introduced sequentially. The dashed vertical line corresponds to the

time required to apply (D†
DWFDDWF)

−1/2 by solving Equation (6.52) using the high-performance

implementations of even-odd preconditioned DDWF and multishift CG in the BAGEL library.

6.6.2 Heatbath

Achieving the full performance improvement suggested by the inversion benchmarks in Section 6.6.1

is complicated by the form of the EOFA heatbath, which is expected to be more expensive than

the RHMC heatbath, even with efficient EOFA code. Applying M−1/2
EOFA (Eqn. (6.29)) requires two

independent CG inversions per pole used in the rational approximation to x−1/2, since multishift

CG is not applicable: we use two algorithmic techniques to reduce this cost. The first is a forecasting

technique initially proposed by Brower et al. [33] in the context of more general HMC simulations,

and later used successfully by TWQCD in the context of the EOFA heatbath [3]. The idea is the

following: given a set of solutions {ψk}Nk=1 to Equation (6.51) for N different poles {βk}Nk=1, one
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can use the linear combination

ψN+1 =
N∑
k=1

ckψk (6.53)

minimizing the functional

Φ [ψ] = ψ†
(
H + βN+1∆±P±

)
ψ − φ†ψ − ψ†φ (6.54)

as the initial CG guess for the next inversion with pole βN+1. The coefficients ck satisfy

N∑
k=1

ckψ
†
l

(
H + βN+1∆±P±

)
ψk = ψ†

l φ, (6.55)

and can be computed explicitly using e.g. Gauss-Jordan elimination. Since Equation (6.54) is the

same functional minimized by the conjugate gradient algorithm itself, accurate initial guesses can

be computed for modest N provided the {βk}N+1
k=1 are similar in magnitude. In Figure 6.6 we test

this forecasting technique using the 24ID ensemble and a rational approximation with 8 poles, and

find that the iteration count required to solve Eqn. (6.51) to a tolerance of 10−10 is more than

halved for the last few poles.

The second technique we have used to accelerate the heatbath is motivated by observing that

the coefficients entering into Equation (6.29) span several orders of magnitude for a typical rational

approximation to x−1/2. We find typical values kαlγ2l /α0 ∼ O(10−3 − 10−5), suggesting that

the inversions can be performed with reduced stopping tolerances relative to the desired accuracy

of M−1/2
EOFAψ, since the solution vectors are ultimately multiplied by small coefficients when the

result is formed. We have explored the following simple optimization scheme to relax the stopping

conditions for each pole:

1. Choose a desired tolerance for the heatbath, εtol, where ε is defined by Equation (6.30).

2. Choose one of the inversions required to compute M−1/2
EOFA according to Equation (6.29), and

relax the stopping tolerance until the overall error in the heatbath ε reaches εtol.

3. Iterate over each inversion until all stopping conditions have been tuned.

We report results for the 24ID ensemble in Table 6.9. Using a rational approximation with 6 poles,

and εtol = 10−10, we observe that the total heatbath time is more than halved while only slightly
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Figure 6.6: CG iterations required to invert Equation (6.51) for each of the 16 values of β entering

into a rational approximation of M−1/2
EOFA with 8 poles on the 24ID ensemble. The first 8 poles

(β = −γl) are associated with the first (LH) term in Equation (6.29), while the second 8 poles

(β = −βlγl) are associated with the second (RH) term. We find no improvement from using

solutions to the LH system to forecast solutions to the RH system and vice-versa, since the Dirac

operator being inverted in either case is evaluated with a different quark mass.

increasing the error. We have also checked that the final error and heatbath running time after

tuning is insensitive to the exact order in which the stopping tolerances are tuned.

ε Total Heatbath Time

Untuned 1.52× 10−11 129.5 s

Tuned 7.79× 10−11 68.9 s

Table 6.9: The relative error (ε) and total running time for the EOFA heatbath on the 24ID

ensemble before and after applying the tuning algorithm discussed in the text.
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6.7 Large-Scale EOFA Calculations

In this section we turn to two ongoing ensemble generation calculations currently being performed

by the RBC/UKQCD collaboration. The first is a strong-coupling Nf = 2 + 1 243 × 64 × 24

Iwasaki+DSDR lattice (24ID) intended for exploratory studies and calculations requiring high

statistics [23]. The second (32ID) has been used for a first-principles calculation of the ratio

of Standard Model CP -violation parameters ε′/ε from ∆I = 1/2 K → ππ decays in Ref. [6].

RBC/UKQCD is currently generating more gauge field configurations to reduce the statistical

errors in the ∆I = 1/2 decay amplitudes. Both ensembles have physical quark masses and large

volumes, allowing for tests of the performance of EOFA in the context of state-of-the-art domain

wall fermion calculations.

Tables 6.10 and 6.11 summarize the details of the integrator parameters and nesting for these

evolutions. The ensembles labeled RHMC correspond to the evolutions of Ref. [23] (24ID) and

Ref. [6] (32ID-G). For the ensembles marked EOFA, we have changed the strange quark (light

quark) action to EOFA for the 24ID (32ID-G) ensemble and retuned the details of the integrator as

described in the remainder of the section. For the 32ID-G ensemble — where, due to the G-parity

flavor doubling, the EOFA action naturally describes the degenerate light quark pair — we have

also switched from an Omelyan integrator to a force gradient integrator, and inserted additional

Hasenbusch preconditioning determinants.

6.7.1 24ID Ensemble

We use the 24ID ensemble as a straightforward benchmark of RHMC against an equivalent EOFA

simulation to describe a physical heavy quark flavor. Here this is the strange quark, but Nf =

2+1+1 simulations with dynamical strange and charm quarks are another obvious target of EOFA.

We make no serious attempt to retune the integrator after switching to EOFA beyond tuning the

heatbath step with the following procedure:

1. Compute the largest and smallest eigenvalues of MEOFA (Eqn. (6.10)) for a few thermalized

configurations of the gauge field, and use these measurements to inform the bounds of the
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Ensemble Integrator δτ rFG rMD rMC

24ID (RHMC) Force Gradient QPQPQ 0.0833 10−5 10−7 10−10

24ID (EOFA) Force Gradient QPQPQ 0.0833 10−5 10−7 10−10

32ID-G (RHMC) Omelyan (λ = 0.22) 0.0625 — 10−7 10−10

32ID-G (EOFA) Force Gradient QPQPQ 0.1667 10−5 10−7 10−10

Table 6.10: Basic integrator and HMC details for the generation of the 24ID and 32ID-G ensembles.

We denote the coarsest time step used to evolve the outermost level by δτ , and the CG stopping

tolerances used for the force gradient forecasting, molecular dynamics, and Monte Carlo steps by

rFG, rMD, and rMC, respectively. We elaborate on the details of the integrator nesting in Table

6.11.

rational approximations to x−1/2 constructed via the Remez algorithm.

2. Add poles to the rational approximation, with all CG stopping tolerances set to rMC, until

ε < rMC (Eqn. (6.30)) is reached.

3. With the rational approximation now fixed from step 2, tune the CG stopping tolerances

corresponding to each pole, following the procedure described in Section 6.6.2, and keeping

ε < rMC.

After tuning the heatbath, we then ran a single trajectory of the RHMC evolution and the EOFA

evolution on a 256-node Blue Gene/Q partition. For the EOFA ensemble, we compare two schemes.

The first (“dense”) is a straightforward implementation of Möbius DWF as proposed in Ref. [3]: we

invert Equation (6.51) directly, where H = γ5R5DEOFA and the other dense 5D operators appearing

in the EOFA action are listed explicitly in Appendix 6.B.2. We also do not apply the final step

in our heatbath tuning procedure, leaving all CG stopping tolerances in the heatbath fixed at

rMC = 10−10. In the second EOFA scheme (“preconditioned”) we fully tune the heatbath step and

apply the Cayley-form preconditioning detailed in Appendix 6.C.2 to inversions of Equation (6.51).

Timing breakdowns for the strange quark part of the evolution are reported in Table 6.12.

We observe that the dense EOFA formalism is actually somewhat slower than RHMC: the
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Ensemble Level Action Update

24ID (RHMC)

1 RatQuo1/2(0.085, 1.0) 1:1

2
Quo(0.00107, 0.00789) + Quo(0.00789, 0.0291) + Quo(0.0291, 0.095) +

1:1
Quo(0.095, 0.3) + Quo(0.3, 0.548) + Quo(0.548, 1.0)

3 Gauge + DSDR 1:1

24ID (EOFA)

1 EOFA(0.085, 1.0) 1:1

2
Quo(0.00107, 0.00789) + Quo(0.00789, 0.0291) + Quo(0.0291, 0.095) +

1:1
Quo(0.095, 0.3) + Quo(0.3, 0.548) + Quo(0.548, 1.0)

3 Gauge + DSDR 1:1

32ID-G (RHMC)

1 RatQuo1/2(0.0001, 0.007) 1:1

2 RatQuo1/2(0.007, 1.0) + RatQuo1/4(0.045, 1.0) 1:2

3 DSDR 1:2

4 Gauge 1:1

32ID-G (EOFA)

1

EOFA(0.0001, 0.0058) + EOFA(0.0058, 0.0149) + EOFA(0.0149, 0.059) +

5:1EOFA(0.059, 0.177) + EOFA(0.177, 0.45) +

EOFA(0.45, 1.0) + RatQuo1/4(0.045, 1.0)

2 DSDR 1:2

3 Gauge 1:1

Table 6.11: Integrator layouts for the 24ID and 32ID-G ensembles. The notation A:B for the

update scheme denotes the number of steps of the next innermost integrator level (A) per step of

the current level (B).

additional complexity of the EOFA heatbath, together with the more expensive inversions of the

dense 5D operator DEOFA, negate the expected performance gains from the simpler forms of the

Hamiltonian and force evaluations. We emphasize, however, that we have made no attempt to

retune the integrator details to optimize for EOFA; TWQCD has shown in Ref. [4] that dense EOFA

simulations can outperform RHMC simulations after optimizing the integrator layout for EOFA.

After introducing Cayley-form preconditioning — so that we are inverting the tridiagonal operator

DDWF rather than DEOFA when we solve Equation (6.51) — we find that EOFA outperforms RHMC

by a significant factor of 3.5.
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RHMC EOFA (Dense) EOFA (Preconditioned)

Step Time (s) % Time (s) % Time (s) %

Heatbath 42.6 2.7 340.6 15.1 68.9 15.5

Force gradient integration (total) 1485.6 94.8 1840.6 81.8 355.9 80.1

Final Hamiltonian evaluation 39.4 2.5 68.8 3.1 19.8 4.4

Total 1567.6 — 2250.0 — 444.6 —

(Total RHMC) / Total 1.0 — 0.7 — 3.5 —

Table 6.12: Strange quark timings for a single MD trajectory of the 24ID ensemble on a 256-

node Blue Gene/Q partition. We compare RHMC to EOFA with (“preconditioned”) and without

(“dense”) Cayley-form preconditioning.

6.7.2 32ID-G Ensemble

One particularly promising feature of EOFA in the context of G-parity ensembles is the potential for

aggressive Hasenbusch mass preconditioning of the light quark determinant; this makes the 32ID-G

ensemble a particularly interesting case study since the EOFA formalism is used to describe a

physical mass light quark pair. In Ref. [6] the RBC/UKQCD collaboration observed that mass

preconditioning is not particularly effective for the RHMC light quark determinant, since each

molecular dynamics step requires one multishift inversion of D†D evaluated at the numerator quark

mass and two multishift inversions of D†D evaluated at the denominator quark mass. The latter

two solves become prohibitively expensive if many intermediate masses are introduced, negating

the expected gain from integrating the preconditioned pseudofermion forces with larger step sizes.

The EOFA force, on the other hand, is no more expensive to evaluate than the force associated

with the standard quotient action (Eqn. (6.38)), so it is natural to expect better performance from

Hasenbusch preconditioning.

In Table 6.13 we list details of the tuning runs we have used to explore potential schemes for

evolving the 32ID-G ensemble with EOFA light quarks. We started by switching from an Omelyan

integrator, for which the leading errors are O(δτ2), to a force gradient integrator, for which the
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leading errors are O(δτ4), and studied the effects of inserting mass preconditioning determinants

one at a time (runs 1-7). We then identified two promising mass preconditioning schemes — one

with four intermediate masses (runs 8-10), and the other with five intermediate masses (runs 11-

14) — and continued tuning the step size, CG stopping conditions, and heatbath, to optimize the

job time per trajectory and Monte Carlo acceptance. The initial RHMC scheme used in Ref. [6]

corresponds to run 1, and the final EOFA scheme we have adopted for our continuing ensemble

generation corresponds to run 12.

Run Integrator Type Light Hasenbusch Masses ∆τ rMD Ntraj Acceptance Efficiency

1 O 0.007 0.0625 10−8 850 88% —

2 O — 0.0625 10−8 10 40% 1.2

3 FG 0.043 0.0625 10−8 10 100% 2.0

4 FG 0.018, 0.12 0.0625 10−8 10 100% 1.8

5 FG 0.0118, 0.0412, 0.23 0.0625 10−8 10 100% 1.7

6 FG 0.0075, 0.023, 0.11, 0.4 0.0625 10−8 10 100% 1.7

7 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.0625 10−8 10 100% 1.5

8 FG 0.0103, 0.029, 0.12, 0.41 0.1000 10−6 15 67% 4.0

9 FG 0.0103, 0.029, 0.12, 0.41 0.1000 10−7 20 95% 3.0

10 FG 0.0103, 0.029, 0.12, 0.41 0.1667 10−7 20 75% 4.5

11 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.1000 10−6 40 80% 3.0

12 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.1667 10−7 850 93% 4.2

13 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.2000 10−7 60 65% 4.5

14 FG 0.0058, 0.0149, 0.059, 0.177, 0.45 0.2000 10−8 25 72% 3.9

Table 6.13: HMC details for the production ensemble generation run (1) of Ref. [6], as well as

13 tuning runs after switching to EOFA light quarks (2-14). We use the following notation: “O”

denotes the Omelyan integrator, “FG” denotes the force gradient integrator, “Ntraj” is the number

of trajectories generated for the timing run, “acceptance” is the fraction of gauge field configurations

which were accepted in the final Monte Carlo step, and “efficiency” is the ratio of the total job

time per trajectory for the specified integration scheme to the total job time per trajectory of the

scheme used in run 1. Entries in bold correspond to the original RHMC scheme (1) and the final,

fully tuned EOFA scheme (12).
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We find, in practice, that Hasenbusch mass preconditioning is extremely effective for the EOFA

light quark determinant. In addition to reducing the size of the pseudofermion force, we also observe

that the largest eigenvalue of the EOFA action, Equation (6.10), decreases rapidly as m2 → m1. As

a consequence, the heatbath is also less expensive with Hasenbusch preconditioning, since, as we

increase the number of intermediate masses, we can simultaneously decrease the range and number

of poles entering into the rational approximation used for each determinant. Table 6.14 summarizes

the measured spectral range, the heatbath error, and the total heatbath cost for each of the runs

2-7. For this ensemble the first Hasenbusch mass reduces the cost of the heatbath by more than a

factor of two, and subsequent Hasenbusch masses essentially leave the cost fixed.

For each of the runs 2-7 we generated ten trajectories, beginning from the same seed config-

uration, and analyzed the resulting distributions of FRMS and Fmax. In panel (a) of Figure 6.7

we plot distributions of Fmax from 850 trajectories of the production RHMC ensemble generation

calculation (run 1). Since we are using exactly the same RHMC action for the strange quark on the

RHMC and EOFA ensembles, we tune by adjusting the number and magnitude of the intermediate

light Hasenbusch masses such that the forces associated with each of the light quark determinants

are comparable to the strange quark force. This allows us to simplify the integrator layout to a

three-level scheme, with the light and strange quark determinants updated on the same level. We

find that four intermediate Hasenbusch masses are sufficient to ensure that the strange quark force

is dominant in the sense of FRMS, and that five intermediate Hasenbusch masses are sufficient in the

sense of Fmax. Panel (b) shows an analogous force distribution for the latter mass preconditioning

scheme.

In runs 8-10 we explore further tuning of a scheme with four light Hasenbusch masses, and in

runs 11-14 we explore further tuning of a scheme with five light Hasenbusch masses. We note that

the Monte Carlo acceptance is relatively poor in runs 8-10 — as we argued in Section 6.5, this is

consistent with the view that the acceptance should be controlled by the largest integration errors

accrued during the trajectory, which are proportional to Fmax rather than FRMS — and thus have

abandoned this mass preconditioning scheme in favor of the scheme used in runs 11-14. We have

then tuned the step size of the outermost integrator level (δτ) and the CG stopping tolerance used
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NLHSB Mass Ratio λmin λmax Npoles ε ∆tHB (s)

0 0.0001/1.0 1.0 1150 11 6.91× 10−11 5263.2

1
0.0001/0.043 1.0 33.3 7 3.50× 10−11

2226.6
0.043/1.0 1.0 22.8 7 6.82× 10−12

2

0.0001/0.018 1.0 13.5 6 2.13× 10−11

2043.80.018/0.12 1.0 6.4 5 1.11× 10−11

0.12/1.0 1.0 8.3 6 6.18× 10−12

3

0.0001/0.0118 1.0 8.9 6 6.08× 10−12

2307.8
0.0118/0.0412 1.0 3.3 4 4.09× 10−11

0.0412/0.23 1.0 5.5 5 1.29× 10−11

0.23/1.0 1.0 4.3 5 1.11× 10−11

4

0.0001/0.0075 1.0 5.9 5 9.63× 10−12

2080.7

0.0075/0.023 1.0 2.8 4 3.55× 10−11

0.023/0.11 1.0 4.6 5 1.00× 10−11

0.11/0.4 1.0 3.6 4 1.98× 10−11

0.4/1.0 1.0 2.5 4 2.34× 10−11

5

0.0001/0.0058 1.0 4.7 5 1.11× 10−11

2289.0

0.0058/0.0149 1.0 2.3 4 1.64× 10−11

0.0149/0.059 1.0 3.7 4 9.65× 10−11

0.059/0.177 1.0 3.0 4 4.14× 10−11

0.177/0.45 1.0 2.5 4 2.71× 10−11

0.45/1.0 1.0 2.2 4 1.64× 10−11

Table 6.14: Measured spectral range of MEOFA, heatbath relative error (ε), and total time for the

heatbath step (∆tHB), using NLHSB intermediate mass preconditioning steps and an order Npoles

rational approximation to x−1/2, with all CG stopping tolerances set to rMC = 10−10. Timings are

reported for a 512-node Blue Gene/Q partition.
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Figure 6.7: Histograms of the maximum force, defined by Equation (6.48), measured between

trajectories 500 and 1350 on the 32ID-G RHMC ensemble and measured between trajectories 1350

and 2200 on the 32ID-G EOFA ensemble. We use the abbreviation “LHSB” in the legends to

denote the various mass ratios entering into our mass preconditioning scheme for the light quark

determinant, and “H” to denote the strange quark determinant.
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in the molecular dynamics evolution (rMD) to minimize the mean time required to generate an

accepted gauge field configuration, resulting in the scheme of run 12. In addition, we have applied

the heatbath tuning procedure described in Section 6.6.2 in all of the runs 8-14, allowing us to relax

CG stopping tolerances for the individual solves in the heatbath, while keeping the overall error

bounded by rMC = 10−10. For the final scheme (12) this optimization further reduced the cost of

the light quark heatbath from approximately 2300 s, as reported in Table 6.14, to approximately

850 s after tuning.

Comparing the fully tuned EOFA scheme (12) to the original RHMC scheme (1) in Table

6.13, we find that we are able to generate EOFA trajectories a factor of 4.2 times faster than

RHMC trajectories, while maintaining a slightly higher acceptance rate of 93%. We emphasize,

however, that this improved performance is only partially attributable to the simpler form of the

EOFA Hamiltonian and force evaluations: we have also switched from an Omelyan integrator to a

force gradient integrator, retuned the step sizes and integrator layout, and, in some cases, applied

optimizations to the EOFA simulation that are not applicable to RHMC simulations (e.g. mixed

precision CG). Figure 6.8 briefly summarizes the respective techniques used in the RHMC and

EOFA evolution schemes. We have now adopted the EOFA scheme tested in run 12 for ensemble

generation in our ongoing ∆I = 1/2 K → ππ calculation [34]. We expect the resulting performance

gain to enable up to four times as many measurements in our current production run as we would

have been able to generate using the initial RHMC evolution scheme, enabling a significantly more

precise first-principles determination of the Standard Model ratio ε′/ε.
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RHMC

• Omelyan integrator (δτ = 0.0625)

• One light quark Hasenbusch mass

• Multishift CG with single precision /D

but accumulating solution and search

vectors in double precision, coupled

with reliable update to correct residual

• Even-odd preconditioning

EOFA

• Force gradient integrator (δτ = 0.1667)

• Five light quark Hasenbusch masses

• Mixed precision defect correction CG

• Even-odd preconditioning

• Cayley-form preconditioning

• Force gradient forecasting [9]

• Heatbath forecasting

• Heatbath stopping tolerance tuning

Figure 6.8: Comparison of optimizations used in the RHMC 32ID-G simulation to the optimizations

used in the EOFA 32ID-G simulation.

6.8 Conclusion

In this work we have explored the viability of the exact one flavor algorithm (EOFA) as an alter-

native to the rational Hybrid Monte Carlo (RHMC) algorithm in molecular dynamics simulations

of lattice QCD with domain wall fermions and periodic or G-parity boundary conditions. We have

verified the formal equivalence of EOFA to RHMC through statistical tests of the EOFA action

(Section 6.4), and checked, using a series of inexpensive, small volume ensembles with heavy pions,

that physical observables such as the plaquette, quark condensates, topological susceptibility, and

low energy spectrum are consistent between ensembles generated using EOFA and ensembles gen-

erated using RHMC (Section 6.5). We have then discussed preconditioning and tuning techniques

for EOFA simulations (Section 6.6 and Appendix 6.C), and finally, demonstrated that EOFA can

substantially outperform RHMC for state-of-the-art lattice QCD simulations with large volumes
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and physical quark masses (Section 6.7). In particular, we find that we are able to generate gauge

field configurations for the ongoing RBC/UKQCD calculation of the ∆I = 1/2 K → ππ decay

amplitudes a factor of 4.2 times faster with EOFA. The keys to this dramatic speed-up are a novel

preconditioning technique which relates inversions of the EOFA Dirac operator (DEOFA) to cheaper

inversions of the standard domain wall fermion Dirac operator (DDWF), and the ability to apply

mixed precision defect correction solvers and extensive Hasenbusch mass preconditioning in the

context of EOFA.

Future work will explore further physics applications of EOFA. We intend to generate variants

of the 24ID ensemble with non-degenerate up and down quark masses in the near future. These

ensembles will enable exploratory studies of isospin breaking effects in the meson and baryon

spectra, as well as in other precision lattice calculations such as the extraction of the CKM matrix

element Vus from semileptonic kaon decays [35]. Other potential applications include domain wall

QCD simulations with dynamical charm quarks in the sea, and simulations with light, SU(3)-

symmetric quarks. The latter simulations could be used, for example, to better constrain the

strange quark dependence of our SU(3) chiral perturbation theory studies [36], or to probe the

location of the critical point separating the crossover and first-order phase transition regions in

three-flavor domain wall QCD at finite temperature.
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6.A Derivation of the Exact One Flavor Action

6.A.1 Preliminaries

Schur Complement

Theorem 6.A.1. (Schur Decomposition)

Let

M =

 A B

C D

 (F.56)

with A invertible. Then

det(M) = det(A) det(D − CA−1B). (F.57)

WA ≡ D − CA−1B is the Schur complement of A.

Likewise, if D is invertible, then

det(M) = det(D) det(A−BD−1C) (F.58)

with WD ≡ A−BD−1C the Schur complement of D.

Proof. If A is invertible, we can factor A B

C D

 =

 A 0

0 1

 1 A−1B

C D


=

 A 0

0 1

 1 0

C 1

 1 A−1B

0 D − CA−1B

 .

(F.59)

Eqn. (F.57) follows immediately by taking the determinant. The proof for the second form — in

terms of the Schur complement of D — is analogous.

One way to think about this theorem is that it provides the correct generalization of the deter-

minant of a 2× 2 matrix

det

 a b

c d

 = ad− bc = a
(
d− ca−1b

)
= d

(
a− bd−1c

)
(F.60)
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to block matrices where the blocks have arbitrary dimension. The Schur complements also appear

when writing the inverse of a 2× 2 block matrix in terms of the inverses of its blocks A B

C D

−1

=

 (
A−BD−1C

)−1 −A−1B
(
D − CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D − CA−1B

)−1

 (F.61)

as one can check explicitly.

Woodbury Matrix Identity

Theorem 6.A.2. (Woodbury Matrix Identity)

Let A, C, U , and V be matrices such that A, C, and (C−1 + V A−1U) are all invertible. Then

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1. (F.62)

Proof. We can simply check that multiplying by (A+ UCV ) on the left indeed gives the identity:

(A+ UCV )
[
A−1 − A−1U

(
C−1 + V A−1U

)−1
V A−1

]
= 1 + UCV A−1 −

(
U + UCV A−1U

) (
C−1 + V A−1U

)−1
V A−1

= 1 + UCV A−1 − UC
(
C−1 + V A−1U

) (
C−1 + V A−1U

)−1
V A−1

= 1 + UCV A−1 − UCV A−1

= 1.

(F.63)

Corollary 6.A.3. (Sherman-Morrison Formula).

(A+B)−1 = A−1 −A−1
(
1 +BA−1

)−1
BA−1

(A+ u⊗ v)−1 = A−1 − A−1 (u⊗ v)A−1

1 + 〈v,A−1u〉

. (F.64)

Proof. Both are immediate consequences of the Woodbury identity obtained by setting U = V = 1

and C = (1), respectively.
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Note: (u⊗ v)ij ≡ uivj (vector outer product).

Chiu et al. write their single flavor action as

SEOFA =
(

0 φ†1

)[
1− kΩ†

−

(
H(m)

)−1
Ω−

] 0

φ1


+
(
φ†2 0

)[
1 + kΩ†

+

(
H(1)−∆+(m)P+

)−1
Ω+

] φ2

0


(F.65)

where H(m) ≡ γ5R5DEOFA(m) is closely related to the DWF Dirac operator, and the other factors

are explained in the derivation below. The action is implicitly written in the chiral representation

of the gamma matrices; the φ1 term projects onto the left-handed (−) component and the φ2

term projects onto the right-handed (+) component. The fields φ1 and φ2 each have two spinor

components.

6.A.2 Outline

The idea is to manipulate the DWF Dirac operator DDWF(m) such that we end up with a positive-

definite action describing a single quark flavor which still gives det(DDWF) upon integrating out

the pseudofermion fields. There are three major steps:

1. Factor out a gauge field independent piece from DDWF(m), resulting in a rescaled Dirac

operator (DEOFA(m))xx′;ss′ ≡ (DW )xx′δss′ + δxx′(D
⊥
EOFA)ss′ , where DW is the Wilson Dirac

operator. We can then replace DDWF(m) with DEOFA(m) in the fermion action since this

overall factor cancels in a properly normalized path integral.

2. Use the Sherman-Morrison formula, Eqn. (6.A.3), to work out the matrix elements of D⊥
EOFA

explicitly.

3. Use the relationship between the determinant of a matrix and the determinant of its Schur

complements, Eqn. (F.57), to massage the determinant of DEOFA into the form

det

(
DEOFA(m1)

DEOFA(m2)

)
=

1

det(H1)
· 1

det(H2)
(F.66)
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with H1 and H2 Hermitian and positive-definite. This is done by treating DEOFA as a block

matrix in Dirac space and working explicitly in the chiral representation of the gamma ma-

trices. We can then simulate one flavor of DWF with the action Spf = φ†1H1φ1 + φ†2H2φ2,

which is equivalent to the above form.

6.A.3 Derivation

We start by factoring the DWF Dirac operator:

[DDWF(m)]xx′;ss′ =
(
(cωs + d)DW + 1

)
xx′
δss′ +

(
(cωs − d)DW − 1

)
xx′
Lss′

= (DW )xx′
[
(cωs + d) δss′ + (cωs − d)Lss′

]
+ δxx′ (1− L)ss′

=

{
(DW )xx′ δss′ + δxx′

([
d+ cωs (1 + L) (1− L)−1

]
ss′

)−1
}

×
[
d+ cωs (1 + L) (1− L)−1

]
ss′
.

(F.67)

Since the gauge field only enters into the {· · ·} factor through DW , we can safely drop the [· · ·]

terms; their contributions to a properly normalized path integral will cancel. Observing that
1

d+ cω (1 + L) (1− L)−1 =
P+ + P−

d+ cω (1 + L) (1− L)−1

= P+ω
−1/2 1

ω−1d+ c (1 + L+) (1− L+)
−1ω

−1/2

+ P−ω
−1/2 1

ω−1d+ c (1 + L−) (1− L−)
−1ω

−1/2,

(F.68)

where we have repeatedly used the orthogonality of the projection operators, for example to ma-

nipulate
1 + L

1− L
=

1 + P+L+ + P−L−
1− P+L+ − P−L−

=
(P+ + P−) (1 + P+L+ + P−L−)

1− P+L+ − P−L−

= P+

(
1 + L+

1− L+

)
+ P−

(
1 + L−
1− L−

)
,

(F.69)

we end up with Chiu et al.’s rescaled Dirac operator (eqns. (3)-(5) of [3]):

[DEOFA(m)]xx′;ss′ ≡ (DW )xx′ δss′ + δxx′ (P+M+)ss′ + δxx′ (P−M−)ss′

M± = ω−1/2
[
ω−1d+ cN±

]−1
ω−1/2

N± = (1 + L±) (1− L±)
−1

. (F.70)
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Next, we manipulate M± into a more manageable form. Chiu et al. start by claiming

N±(m) = N±(0)−
2m

1 +m
(u⊗ u) , (F.71)

where u = (1; 1; 1; . . .), and u ⊗ u ≡ uuT is the vector outer product. This can be checked by

explicit computation:

N+(m) = (1 + L+(m)) (1− L+(m))−1

=



1 0 0 · · · −m

1 1 0 · · · 0

0 1 1 · · · 0

...
...

... . . . ...

0 0 0 · · · 1





1 0 0 · · · m

−1 1 0 · · · 0

0 −1 1 · · · 0

...
...

... . . . ...

0 0 0 · · · 1



−1

=



1 0 0 · · · −m

1 1 0 · · · 0

0 1 1 · · · 0

...
...

... . . . ...

0 0 0 · · · 1


· 1

1 +m



1 −m −m · · · −m

1 1 −m · · · −m

1 1 1 · · · −m
...

...
... . . . ...

1 1 1 · · · 1



=
1

1 +m



1−m −2m −2m · · · −2m

2 1−m −2m · · · −2m

2 2 1−m · · · −2m

...
...

... . . . ...

2 2 2 · · · 1−m



=



1 0 0 · · · 0

2 1 0 · · · 0

2 2 1 · · · 0

...
...

... . . . ...

2 2 2 · · · 1


− 2m

1 +m



1 1 1 · · · 1

1 1 1 · · · 1

1 1 1 · · · 1

...
...

... . . . ...

1 1 1 · · · 1


= N+(0)−

2m

1 +m
(u⊗ u) ,

, (F.72)
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and similarly for N−(m) = N+(m)T. This allows us to apply the Sherman-Morrison formula,

Eqn. (6.A.3), to the rescaled Dirac operator, Eqn. (F.70). Defining

A± ≡ ω−1d+ cN±(0), λ± ≡ 〈u,A−1
± u〉 (F.73)

we have

[
ω−1d+ cN±(m)

]−1
=

[
ω−1d+ cN±(0)−

2cm

1 +m
(u⊗ u)

]−1

=

[
A± − 2cm

1 +m
(u⊗ u)

]−1

= A−1
± +

2cm

1 +m

A−1
± (u⊗ u)A−1

±
1− 2cm

1+mλ±

= A−1
± +

2cm

1 +m− 2cmλ±
A−1

± (u⊗ u)A−1
± .

(F.74)

We can plug this result into Eqn. (F.70) to obtain

M±(m) = ω−1/2A−1
± ω−1/2 +

2cm

1 +m− 2cmλ±
ω−1/2A−1

± (u⊗ u)A−1
± ω−1/2. (F.75)

Chiu et al. further manipulate this by noting that since ω is symmetric under a reflection in the

s-coordinate — i.e. under the operator (R5)ss′ = δs′,Ls−s — we have ω = R5ωR5, and introduce

v± ≡ R5A
−1
± u, (F.76)

whose components are given explicitly by2

(v+)Ls−1 = (v−)0 = αLs−1

(v+)s = (v−)Ls−s+1 = αsβs+1(v+)s+1, 1 ≤ s ≤ Ls − 2,

(F.77)

where αs ≡ 1/(d/ωs + c) and βs ≡ d/ωs − c. For Möbius DWF these simplify, and we have

(v+)Ls−s−1 = (v−)s =
(d− c)s

(d+ c)s+1 , λ+ = λ− ≡ λ =
∑
s

(d− c)s

(d+ c)s+1 . (F.78)

2This is worked out by noting that since A± is a triangular matrix, we can use forward/back substitution to solve

A±R5v± = u explicitly, which gives this recursive formula for v±.
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Putting this together, and using
(
A−1

±
)T

= A−1
∓ , R5A

−1
± R5 = A−1

∓ , and R5u = u:

ω−1/2A−1
± uuTA−1

± ω−1/2 = R5ω
−1/2R5A

−1
± uuTA−1

± R5ω
−1/2R5

= R5ω
−1/2

(
R5A

−1
± u

) (
uTR5A

−1
∓ R5

)
R5ω

−1/2R5

= R5ω
−1/2

(
R5A

−1
± u

) (
RT

5A
−1
± R5u

)T
ω−1/2

= R5ω
−1/2

(
R5A

−1
± u

) (
R5A

−1
± u

)T
ω−1/2

= R5ω
−1/2v±v

T
±ω

−1/2.

(F.79)

We can now rewrite Eqn. (F.70) in a more explicit form as

[DEOFA(m)]xx′;ss′ = (DW )xx′ δss′ + δxx′ (P+M+)ss′ + δxx′ (P−M−)ss′

M±(m) = ω−1/2A−1
± ω−1/2 +

2cm

1 +m− 2cmλ±
R5ω

−1/2 (v± ⊗ v±)ω
−1/2,

(F.80)

where A±, λ±, and v± are defined explicitly above. In Appendix 6.B we collect explicit expressions

for M± for the special cases of Shamir and Möbius DWF, for which ω = 1.

For the last step, we manipulate the determinant of Eqn. (F.80) using the Schur decomposition,

Eqn. (6.A.1), to arrive at the action we want. We work explicitly in the chiral representation of

the (Euclidean) gamma matrices:

γµ =

 0 σµ

σ†µ 0

 , σµ = (~σ, i1) , {γµ, γν} = 2δµν1. (F.81)

In this representation

γ5 ≡ γ1γ2γ3γ4 =

 1 0

0 −1

 , (F.82)

and the chiral projection operators are

P+ =

 1 0

0 0

 , P− =

 0 0

0 1

 . (F.83)

DEOFA(m) is a 2× 2 block matrix in spinor space3:

DEOFA(m) =

 W −m0 +M+(m) (σ · t)

− (σ · t)† W −m0 +M−(m)

 (F.84)

3The lower-left component picks up a minus sign since tµ is anti-Hermitian: σ† · t = −(σ · t)†.
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Taking the determinant, and applying the Schur decomposition (Eqn. (6.A.1)):

det (DEOFA(m)) = det (W −m0 +M+(m))

× det

(
W −m0 +M−(m) + (σ · t)†

(
W −m0 +M+(m)

)−1
(σ · t)

)
= det (W −m0 +M−(m))

× det

(
W −m0 +M+(m) + (σ · t)

(
W −m0 +M−(m)

)−1
(σ · t)†

)
.

(F.85)

The fermion determinant, after introducing a Pauli-Villars field with m = 1, can be written as

det (DEOFA(m))

det (DEOFA(1))
=

det (W −m0 +M+(m)) · det (H−(m))

det (W −m0 +M−(1)) · det (H+(1))
, (F.86)

where4

H+(m) ≡ R5

[
W −m0 +M+(m) + (σ · t)

(
W −m0 +M−(m)

)−1
(σ · t)†

]
H−(m) ≡ R5

[
W −m0 +M−(m) + (σ · t)†

(
W −m0 +M+(m)

)−1
(σ · t)

]
.

(F.87)

We can use a trick to eliminate the det(W −m0+M±) factors: consider a slightly generalized Dirac

operator

DEOFA(m1,m2) =

 W −m0 +M+(m1) (σ · t)

− (σ · t)† W −m0 +M−(m2)

 . (F.88)

Applying the Schur decomposition to DEOFA(m, 1) gives

det (DEOFA(m, 1)) = det (W −m0 +M+(m))

× det

(
W −m0 +M−(1) + (σ · t)†

(
W −m0 +M+(m)

)−1
(σ · t)

)
= det (W −m0 +M−(1))

× det

(
W −m0 +M+(m) + (σ · t)

(
W −m0 +M−(1)

)−1
(σ · t)†

)
.

(F.89)

4We can stick in an overall factor of R5 for free since det(R5) = 1.
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Taking the ratio of these two equalities

1 =
det (DEOFA(m, 1))

det (DEOFA(m, 1))

=

det (W −m0 +M+(m)) · det
(
W −m0 +M−(1) + (σ · t)†

(
W −m0 +M+(m)

)−1
(σ · t)

)
det (W −m0 +M−(1)) · det

(
W −m0 +M+(m) + (σ · t)

(
W −m0 +M−(1)

)−1
(σ · t)†

)
(F.90)

and rearranging

det (W −m0 +M+(m))

det (W −m0 +M−(1))
=

det

(
W −m0 +M+(m) + (σ · t)

(
W −m0 +M−(1)

)−1
(σ · t)†

)
det

(
W −m0 +M−(1) + (σ · t)†

(
W −m0 +M+(m)

)−1
(σ · t)

)

=

det

(
R5

[
W −m0 +M+(m) + (σ · t)

(
W −m0 +M−(1)

)−1
(σ · t)† + (M+(1)−M+(1))

])
det

(
R5

[
W −m0 +M−(1) + (σ · t)†

(
W −m0 +M+(m)

)−1
(σ · t) + (M−(m)−M−(m))

])

=

det

(
R5

[
W −m0 +M+(1) + (σ · t)

(
W −m0 +M−(1)

)−1
(σ · t)† − (M+(1)−M+(m))

])
det

(
R5

[
W −m0 +M−(m) + (σ · t)†

(
W −m0 +M+(m)

)−1
(σ · t) + (M−(1)−M−(m))

])
=

det (H+(1)−∆+(m))

det (H−(m) + ∆−(m))
,

(F.91)

where we have introduced

∆±(m) ≡ R5 (M±(1)−M±(m)) . (F.92)

Using Eqn. (F.80) we can write ∆±(m) explicitly:

∆±(m) =

(
c

1− cλ
− 2cm

1 +m− 2cmλ

)
ω−1/2 (v± ⊗ v±)ω

−1/2 ≡ kΩ±Ω
†
±

k ≡ c

1− cλ
· 1−m

1 +m− 2cmλ
, (Ω±)ss′ ≡ ω−1/2

s (v±)s δs′,0.

(F.93)
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Substituting the last expression into Eqn. (F.86)

det (DEOFA(m))

det (DEOFA(1))
=

det (H+(1)−∆+(m))

det (H−(m) + ∆−(m))
· det (H−(m))

det (H+(1))

=
1

det (1 + ∆−(m)H−(m)−1) · det
(
H+(1) (H+(1)−∆+(m))−1

)
=

1

det

(
1 + kΩ†

−

(
H−(m)

)−1
Ω−

) · 1

det

(
1 + kΩ†

+

(
H+(1)−∆+(m)

)−1
Ω+

)
≡ 1

det (H1(m))
· 1

det (H2(m))
,

(F.94)

where we have used det(1 + AB) = det(1 + BA) (Sylvester’s determinant theorem) to rearrange

factors in the ∆±H± terms.

This last form suggests an action

SEOFA = φ†1H1(m)φ1 + φ†2H2(m)φ2, (F.95)

where φ1 and φ2 are two independent pseudofermion fields, each of which contains two spinor

components. It turns out to be more useful to re-write this action in block form, however, since

H1 and H2 contain implicit matrix inverses and thus would be difficult to invert. Define H(m) ≡

γ5R5DEOFA(m). Explicitly,

H(m) =

 1 0

0 −1

 R5 (W −m0 +M+(m)) R5 (σ · t)

−R5 (σ · t)† R5 (W −m0 +M−(m))


=

 R5 (W −m0 +M+(m)) R5 (σ · t)

R5 (σ · t)† −R5 (W −m0 +M−(m))

 .

(F.96)

Using Eqn. (F.61), the lower right (−−) entry of H(m)−1 is

[
H(m)−1

]
−− =

(
−R5

[
W −m0 +M−(m) + (σ · t)†

(
W −m0 +M+(m)

)−1
(σ · t)

])−1

= − 1

H−(m)
.

(F.97)

289



Thus,

(
0 φ†1

)[
1− kΩ†

−

(
H(m)

)−1
Ω−

] 0

φ1

 = φ†1

[
1 + kΩ†

−

(
H−(m)

)−1
Ω−

]
φ1 = φ†1H1φ1.

(F.98)

Similarly,

H(1)−∆+(m)P+ =

 R5 (W −m0 +M+(1))−∆+(m) R5 (σ · t)

R5 (σ · t)† −R5 (W −m0 +M−(1))

 ,

(F.99)

so, again using Eqn. (F.61),

[
(H(1)−∆+(m)P+)

−1
]
++

=

(
R5

[
W −m0 +M+(1) + (σ · t)

(
W −m0 +M−(1)

)−1
(σ · t)† −∆+(m)

])−1

=
1

H+(1)−∆+(m)
,

(F.100)

and we have

(
φ†2 0

)[
1 + kΩ†

+

(
H(1)−∆+(m)P+

)−1
Ω+

] φ2

0

 = φ†2

[
1 + kΩ†

+

(
H+(1)−∆+(m)

)−1
Ω+

]
φ2

= φ†2H2φ2.

(F.101)

Thus, the final form of the exact one-flavor action is

SEOFA =
(

0 φ†1

)[
1− kΩ†

−

(
H(m)

)−1
Ω−

] 0

φ1


+
(
φ†2 0

)[
1 + kΩ†

+

(
H(1)−∆+(m)P+

)−1
Ω+

] φ2

0

 .

(F.102)

This reformulation will turn out to be useful for the implementation.
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6.A.4 Generalization for Hasenbusch Mass Splitting

More generally, we want to use the Hasenbusch trick: we introduce a series of intermediate masses

{mi}Ni=1 with m < m1 < · · · < mN < 1 and break up the fermion determinant into a product

det (DEOFA(m))

det (DEOFA(1))
=

det (DEOFA(m))

det (DEOFA(m1))

(
N−1∏
i=1

det (DEOFA(mi))

det (DEOFA(mi+1))

)
det (DEOFA(mN ))

det (DEOFA(1))
. (F.103)

In practice one can achieve a speed-up after some tuning since smaller mass ratios (generally) pro-

duce smaller forces.

Consider a single determinant ratio

det (DEOFA(m1))

det (DEOFA(m2))
(F.104)

with masses m1 < m2. The derivation in Section 6.A.3 is mostly unchanged: in particular, if we

define slightly more general ∆± matrices

∆±(m1,m2) ≡ R5 (M±(m2)−M±(m1)) , (F.105)

which reduce to Eqn. (F.92) when m2 = 1, we have

det (DEOFA(m1))

det (DEOFA(m2))
=

det (H+(m2)−∆+(m1,m2))

det (H−(m1) + ∆−(m1,m2))
· det (H−(m1))

det (H+(m2))
(F.106)

with H±(m) still defined by Eqn. (F.87). The decomposition of the ∆±(m) matrices we wrote down

in Eqn. (F.93) is easy to generalize since the dependence on m enters only into the normalization

constant k:

∆±(m1,m2) =

(
2cm2

1 +m2 − 2cm2λ
− 2cm1

1 +m1 − 2cm1λ

)
ω−1/2 (v± ⊗ v±)ω

−1/2 ≡ kΩ±Ω
†
±

k ≡ 2c (m2 −m1)

(1 +m1 − 2cm1λ) (1 +m2 − 2cm2λ)
, (Ω±)ss′ ≡ ω−1/2

s (v±)s δs′,0.

(F.107)

Thus, the appropriate generalization of the one-flavor action to Eqn. (F.104) is

SEOFA(m1,m2) =
(

0 φ†1

)[
1− kΩ†

−

(
H(m1)

)−1
Ω−

] 0

φ1

+

(
φ†2 0

)[
1 + kΩ†

+

(
H(m2)−∆+(m1,m2)P+

)−1
Ω+

] φ2

0

 ,

(F.108)
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and we can calculate the full determinant, Eqn. (F.103), with a sum

SEOFA = SEOFA(m,m1) +

N−1∑
i=1

SEOFA(mi,mi+1) + SEOFA(mN , 1). (F.109)

With N intermediate Hasenbusch masses we need to simulate N + 1 pairs of pseudofermion fields

{(φi1, φi2)}Ni=0 according to Eqn. (F.108).

6.B EOFA Operators for Shamir and Möbius DWF

In this appendix we list the operators which enter into DEOFA (Eqn. (6.6)) and the EOFA action

(Eqn. (6.10)). The more general case of DWF with Zolotarev-type domain wall fermions is con-

structed implicitly in Ref. [3]; we explicitly list these operators for the more restrictive cases of

Shamir and Möbius DWF used in our simulations. We use Θs to denote the discrete Heaviside

theta function

Θs =


0, s < 0

1, s ≥ 0

(F.110)

and assume even Ls. The operators Ω± and ∆± are related by the identity

∆± = kΩ±Ω
†
±, (F.111)

and the Möbius operators reduce to the corresponding Shamir operators in the limit c = d = 1/2.

We note that the dense Möbius expressions listed here are not used inside the inverter; we instead

invert the preconditioned system discussed in Appedix 6.C.2.

6.B.1 Shamir Kernel

k = m2 −m1 (F.112)

[Ω+]ss′ = δs,Ls−1 δs′,0 (F.113)

[Ω−]ss′ = δs,0 δs′,0 (F.114)

292



[∆+(m1,m2)]ss′ = (m2 −m1) δs,Ls−1 δs′,Ls−1 (F.115)

[∆−(m1,m2)]ss′ = (m2 −m1) δs,0 δs′,0 (F.116)

[M+(m)]ss′ = δss′ − δs,s′+1 +mδs,Ls−1 δs′,0 (F.117)

[M−(m)]ss′ = δss′ − δs,s′−1 +mδs,0 δs′,Ls−1 (F.118)

[D̃(m)]ss′ = δss′ (F.119)

[D̃(m)−1]ss′ = δss′ (F.120)

6.B.2 Möbius Kernel

k =
2c (m2 −m1) (c+ d)2Ls[

(c+ d)Ls +m1 (c− d)Ls
] [

(c+ d)Ls +m2 (c− d)Ls
] (F.121)

(Ω+)ss′ = (−1)s+1 (c− d)Ls−s−1

(c+ d)Ls−s δs′,0 (F.122)

(Ω−)ss′ = (−1)s
(c− d)s

(c+ d)s+1 δs′,0 (F.123)

[∆+(m1,m2)]ss′ =
(−1)s+s

′
2c (m2 −m1) (c+ d)s+s

′
(c− d)2(Ls−1)−s−s′[

(c+ d)Ls +m1 (c− d)Ls
] [

(c+ d)Ls +m2 (c− d)Ls
] (F.124)

[∆−(m1,m2)]ss′ =
(−1)s+s

′
2c (m2 −m1) (c+ d)2(Ls−1)−s−s′ (c− d)s+s

′[
(c+ d)Ls +m1 (c− d)Ls

] [
(c+ d)Ls +m2 (c− d)Ls

] (F.125)
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[M+(m)]ss′ =
(−1)s−s

′
2c (c+ d)Ls−s+s

′−1 (c− d)s−s
′−1

(c+ d)Ls +m (c− d)Ls
Θs−s′−1

+
(c+ d)Ls−1 −m (c− d)Ls−1

(c+ d)Ls +m (c− d)Ls
δss′

+
(−1)s−s

′+1 2cm (c+ d)s
′−s−1 (c− d)Ls+s−s

′−1

(c+ d)Ls +m (c− d)Ls
Θs′−s−1 (F.126)

[M−(m)]ss′ =
(−1)s

′−s+1 2cm (c+ d)s−s
′−1 (c− d)Ls−s+s′−1

(c+ d)Ls +m (c− d)Ls
Θs−s′−1

+
(c+ d)Ls−1 −m (c− d)Ls−1

(c+ d)Ls +m (c− d)Ls
δss′

+
(−1)s−s

′
2c (c+ d)Ls+s−s′−1 (c− d)s

′−s−1

(c+ d)Ls +m (c− d)Ls
Θs′−s−1 (F.127)

[D̃(m)]ss′ = (c+ d) δss′ + (c− d)P+δs,s′+1 + (c− d)P−δs,s′−1

−m (c− d)P+δs,0 δs′,Ls−1 −m (c− d)P−δs,Ls−1 δs′,0 (F.128)

[D̃(m)−1]ss′ =

[
m (−1)s−s

′+1 (c+ d)s
′−s−1 (c− d)Ls+s−s′

(c+ d)Ls +m (c− d)Ls
+

(−1)s−s
′
(c− d)s−s

′

(c+ d)s−s
′+1

Θs−s′

]
P+

+

[
m (−1)s

′−s+1 (c+ d)s−s
′−1 (c− d)Ls+s′−s

(c+ d)Ls +m (c− d)Ls
+

(−1)s
′−s (c− d)s

′−s

(c+ d)s
′−s+1

Θs′−s

]
P− (F.129)

6.C Four-Dimensional Even-Odd Preconditioning

The inversions required to compute the exact one flavor Hamiltonian can be accelerated using a

standard checkerboarding technique: we label lattice sites as “even” if (x+ y + z + t) ≡ 0 (mod 2)

or “odd” if (x+ y + z + t) ≡ 1 (mod 2). This naturally induces a block structure in the Dirac
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operator D , which can be LDU decomposed as Dee Deo

Doe Doo


︸ ︷︷ ︸

D

=

 1 0

DoeD−1
ee 1


︸ ︷︷ ︸

L

 Dee 0

0 Doo − DoeD−1
ee Deo


︸ ︷︷ ︸

D

 1 D−1
ee Deo

0 1


︸ ︷︷ ︸

U

. (F.130)

Left-multiplying the linear system Dψ = φ by

L−1 =

 1 0

−DoeD−1
ee 1

 (F.131)

results in the equivalent system Deeψe + Deoψo(
Doo − DoeD−1

ee Deo

)
ψo

 =

 φe

φo − DoeD−1
ee φe

 , (F.132)

leading to the following trick: assuming D−1
ee is available in an explicit form, it suffices to invert

(
Doo − DoeD

−1
ee Deo

)
ψo = φ̃o, (F.133)

with φ̃o ≡ φo − DoeD−1
ee φe. This system only involves the odd sublattice, and is thus substantially

cheaper to invert than D using an iterative algorithm like CG. The solution on the even sublattice

can then be reconstructed for a trivial additional cost as

ψe = D−1
ee (φe − Deoψo) . (F.134)

This technique is already well understood in the context of RHMC with Shamir or Möbius DWF;

in this appendix we describe how to generalize the method to the exact one flavor algorithm.

In the context of EOFA, the generic linear system one needs to invert takes the form(
H(m1) + β∆±(m2,m3)P±

)
ψ = φ. (F.135)

We choose to multiply by an overall factor of γ5R5, rewriting the system as(
DEOFA(m1) + βγ5R5∆±(m2,m3)P±

)
ψ = γ5R5φ, (F.136)

for the following reasons: first, we wish to re-use the existing high-performance implementation of

the Wilson /D kernel in the BAGEL library without modification, and second, overall factors of γ5R5

295



will cancel inside the inverter since we use CG applied to the normal equations and (γ5R5)
†(γ5R5) =

1. Since (DEOFA)eo = (DDWF)eo and ∆± ∝ δxx′ in the 4D bulk, only the operators coupling sites

of the same parity need to be modified to implement even-odd preconditioned EOFA. We take

somewhat different approaches for the Shamir and Möbius cases.

6.C.1 Shamir Kernel

Recall that for the Shamir kernel DDWF = DEOFA, so the extension of an inverter for the even-odd

preconditioned DDWF operator to instead solve Eqn. (F.136) is straightforward. With D = DDWF,

the same parity fermion matrix has the tridiagonal block structure

(DDWF)ee = (DDWF)oo = δxx′
{
(5−M5) δss′ − P+δs,s′+1 − P−δs,s′−1

+m1P+δs,0δs′,Ls−1 +m1P−δs,Ls−1δs′,0

}
. (F.137)

One can check by explicit calculation that the shift operators have the form
βγ5R5∆+(m2,m3)P+ = β (m3 −m2)P+δxx′δs,0δs′,Ls−1

βγ5R5∆−(m2,m3)P− = −β (m3 −m2)P−δxx′δs,Ls−1δs′,0

, (F.138)

so one can consider the operator appearing in Eqn. (F.136) as a slight generalization of Eqn. (F.137)

to

Dee = Doo = δxx′
{
(5−M5) δss′ − P+δs,s′+1 − P−δs,s′−1

+ d+P+δs,0δs′,Ls−1 + d−P−δs,Ls−1δs′,0

}
, (F.139)

with

d− = m1 − β (m3 −m2) δi,− (F.140)

and

d+ = m1 + β (m3 −m2) δi,+, (F.141)

where the index i denotes the chirality of the shift operator. D−1
ee can be efficiently applied using

the LDU decomposition of Dee, again as a slight generalization of the standard Shamir DWF case.
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6.C.2 Möbius Kernel and Cayley-Form Preconditioning

Using Eqn. (6.7) we can write DEOFA in the form

(DEOFA)xx′,ss′ = (DW )xx′ δss′ + δxx′
(
D⊥
)
ss′
. (F.142)

The action of the operator appearing in Eqn. (F.136) on lattice sites of the same parity, then, is

given by

Dee = Doo = δxx′
{
(4−M5) δss′ + (M+(m1))ss′ P+ + (M−(m1))ss′ P−

+ βγ5R5 (∆±(m2,m3))ss′ P±

}
, (F.143)

with M+, M−, and ∆± as defined in equations (F.124)-(F.127). The matrix elements of D−1
ee = D−1

oo

can be found by explicit numerical inversion as part of the setup cost; this is a trivial overhead since

it suffices to invert only the ss′ subblock of Dee. In this form, the exact factorization of the fermion

determinant in Eqn. (6.2) comes at the cost of dense Ls × Ls matrix operations. While TWQCD

has shown that EOFA can still be faster than RHMC after retuning the integrator layout [4], we

argue that it is possible to do significantly better by introducing an additional preconditioning step.

We note that the system defined by Eqn. (F.136) can be more efficiently inverted for the case

of Möbius DWF by using the operator D̃−1 as a right preconditioner, resulting in an equivalent

system in terms of DDWF. For the special case β = 0 this is straightforward: observing that the

relationship between DEOFA and DDWF (Eqn. (6.6)) can be used to manipulate

DEOFAψ = DEOFA · D̃ · D̃−1ψ︸ ︷︷ ︸
≡ψ′

= DDWFψ
′, (F.144)

it suffices to solve DDWFψ
′ = γ5R5φ, from which ψ = D̃ψ′ can be recovered at the cost of a

single additional matrix multiplication. While we observe that D†
DWFDDWF has a slightly larger

condition number than D†
EOFADEOFA, leading to a modest increase in the total number of CG

iterations required to invert the system, DDWF also has a tridiagonal stencil in the fifth dimension,

and can thus be applied in O(Ls) operations — unlike the O(L2
s) operations required for the dense

DEOFA — leading to a substantial reduction in wall clock time for the inversion.
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The β 6= 0 case is more involved, but can be treated in a similar manner. Right preconditioning

Eqn. (F.136) with D̃−1 leads to

(
DDWF(m1)± βR5∆±(m2,m3)D̃P±

)
ψ′ = γ5R5φ, (F.145)

where we have used γ5P± = ±P±. We define a new, preconditioned, shift operator ∆̃± by

∆̃±(m1,m2) ≡ R5∆±(m1,m2)D̃P±, (F.146)

and note that since (∆̃)eo = (∆̃)oe = 0, Eqn. (F.145) can be inverted efficiently even with β 6= 0

provided we can apply the operator (DDWF)ee ± β∆̃± and its inverse in O(Ls) operations. This

turns out to be possible after observing that ∆̃± is rank-one, i.e. it can be written as a vector outer

product

∆̃± = u± ⊗ v±. (F.147)

To see this, we start by decomposing D̃ into its chiral components — D̃ = D̃+P+ + D̃−P− — in

terms of which we can also decompose

∆̃± = R5∆±D̃±P±. (F.148)

The 5D structure of these operators can be worked out by direct calculation, leading to Eqn. (F.147),

with 

(u+)s = (−1)s
(c− d)s

(c+ d)Ls+s+1

(
(c+ d)Ls +m1 (c− d)Ls

)
(v+)s = k δs,Ls−1

(u−)s = (−1)s+1 (c− d)Ls−1−s

(c+ d)2Ls−s

(
(c+ d)Ls +m1 (c− d)Ls

)
(v−)s = k δs,0

. (F.149)

Matrix-vector products involving the preconditioned shift operator and a pseudofermion field can

be computed from this decomposition as
(
∆̃+ψ

)
s
= k (u+)s P+ψLs−1(

∆̃†
+ψ
)
s
= k δs,Ls−1 P+

[
Ls−1∑
s′=0

(u+)s′ ψs′

] (F.150)
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and 
(
∆̃−ψ

)
s
= k (u−)s P−ψ0(

∆̃†
−ψ
)
s
= k δs,0 P−

[
Ls−1∑
s′=0

(u−)s′ ψs′

] . (F.151)

The inverses can be applied using the Sherman-Morrison formula:(
(DDWF)ee ± β (u± ⊗ v±)

)−1
= (DDWF)

−1
ee ∓ β

(DDWF)
−1
ee (u± ⊗ v±) (DDWF)

−1
ee

1± β〈v±, (DDWF)
−1
ee u±〉

. (F.152)

In terms of

x± ≡ (DDWF)
−1
ee u±, (F.153)

which can be constructed numerically using the tridiagonal matrix algorithm [39], the necessary

factors can be written as

1 + β〈v+, (DDWF)
−1
ee u+〉 = 1 + βk (x+)Ls−1( [

(DDWF)
−1
ee (u± ⊗ v±) (DDWF)

−1
ee

]
ψ
)
s
=

k (x+)s
(c+ d)Ls +m1 (c− d)Ls

P+

[
Ls−1∑
s′=0

(c+ d)s
′
(c− d)Ls−1−s′ ψs′

]
( [

(DDWF)
−1
ee (u+ ⊗ v+) (DDWF)

−1
ee

]†
ψ
)
s
=

k (c+ d)s (c− d)Ls−1−s

(c+ d)Ls +m1 (c− d)Ls
P+

[
Ls−1∑
s′=0

(x+)s′ ψs′

]
(F.154)

and

1− β〈v−, (DDWF)
−1
ee u−〉 = 1− βk (x−)0( [

(DDWF)
−1
ee (u− ⊗ v−) (DDWF)

−1
ee

]
ψ
)
s
=

k (x−)s
(c+ d)Ls +m1 (c− d)Ls

P−

[
Ls−1∑
s′=0

(c+ d)Ls−1−s′ (c− d)s
′
ψs′

]
( [

(DDWF)
−1
ee (u− ⊗ v−) (DDWF)

−1
ee

]†
ψ
)
s
=

k (c+ d)Ls−1−s (c− d)s

(c+ d)Ls +m1 (c− d)Ls
P−

[
Ls−1∑
s′=0

(x−)s′ ψs′

] ,

(F.155)

which allow Eqn. (F.152) to be applied to a pseudofermion vector in O(Ls) operations.

In Figure 6.9 we benchmark representative even-odd preconditioned inversions of Eqn. (F.136)

on the 24ID ensemble, with and without additional preconditioning by D̃−1, at the physical strange

quark mass. In addition to observing a substantial improvement in terms of wall clock time for the

inversion, we note that this preconditioning scheme also has the advantage that it requires little

new code — assuming an existing high-performance implementation of DDWF — since DEOFA is

never applied directly in the preconditioned formalism.
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Figure 6.9: Comparison of wall clock inversion times for the two solves required to evaluate the

EOFA Hamiltonian or pseudofermion force with and without Cayley-form preconditioning for the

strange quark determinant on the 24ID ensemble. The dashed vertical lines show the corresponding

total cost of the multishift inversions of D†
DWFDDWF needed to evaluate the RHMC Hamiltonian

or pseudofermion force on the same ensemble.

6.D Additional Plots for Small Volume Reproduction Tests

6.D.1 Evolution of the Plaquette, Quark Condensates, and Topological Charge
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Figure 6.10: Molecular dynamics evolution of the average plaquette, topological charge, and quark

condensates on the 16I ensembles.
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Figure 6.11: Molecular dynamics evolution of the average plaquette, topological charge, and quark

condensates on the 16I-G ensembles.
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Figure 6.12: Molecular dynamics evolution of the average plaquette, topological charge, and quark

condensates on the 16ID-G ensembles.
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6.D.2 Effective Mass Plots
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Figure 6.13: Effective pion mass from a simultaneous fit to the 〈PPLW 〉 (top), 〈PPWW 〉 (middle),

and 〈APLW 〉 (bottom) correlation functions, as measured on the EOFA (left) and RHMC (right)

16I ensembles.
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Figure 6.14: Effective kaon mass from a simultaneous fit to the 〈PPLW 〉 (top), 〈PPWW 〉 (middle),

and 〈APLW 〉 (bottom) correlation functions, as measured on the EOFA (left) and RHMC (right)

16I ensembles.
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Figure 6.15: Effective Ω baryon mass from a simultaneous two-state fit to wall and Z3 noise sources,

as measured on the EOFA (left) and RHMC (right) 16I ensembles.
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Figure 6.16: Effective am′
res(ml), as measured on the EOFA (left) and RHMC (right) 16I ensembles.
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Figure 6.17: Effective ground state pion energy (top), kaon mass (middle), and am′
res(ml) evaluated

at the bare light quark mass, as measured on the EOFA (left) and RHMC (right) 16I-G ensembles.

308



0 5 10 15 20 25

t/a

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

a
E

11
1

π
(t

) Fit〈
PPLW

〉〈
APLW

〉〈
AALW

〉

0 5 10 15 20 25

t/a

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

a
E

11
1

π
(t

) Fit〈
PPLW

〉〈
APLW

〉〈
AALW

〉

0 5 10 15 20 25 30

t/a

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

a
m
K
(t

)

Fit〈
PPLW

〉〈
APLW

〉〈
AALW

〉

0 5 10 15 20 25 30

t/a

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

a
m
K
(t

)

Fit〈
PPLW

〉〈
APLW

〉〈
AALW

〉

0 5 10 15 20 25 30

t/a

0.007

0.008

0.009

0.010

0.011

0.012

a
m

ef
f

re
s(
t)

Fit

0 5 10 15 20 25 30

t/a

0.007

0.008

0.009

0.010

0.011

0.012

a
m

ef
f

re
s(
t)

Fit

Figure 6.18: Effective ground state pion energy (top), kaon mass (middle), and amres evaluated at

the bare light quark mass, as measured on the EOFA (left) and RHMC (right) 16ID-G ensembles.
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