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ABSTRACT 

 

Hierarchical dynamics of individual RNA helix base pair formation and disruption 
 

Jason Hon 

 

This thesis explores the RNA folding problem using single-molecule field effect transistors 

(smFETs) to measure the lifetimes of individual RNA base-pairing rearrangements. In the course 

of this research, considerable computational, chemical, and engineering contributions were 

developed so that the single-molecule measurements could be conducted and quantified. These 

advancements have allowed, on the basis of the smFET data collected herein, the quantification 

of a kinetic model for RNA stem-loop structures which has been generalized to quantitatively 

explore the phenomenological observation that an RNA found in the bacillus subtilis strain acts 

as a metabolite-sensing switch, allowing RNA polymerase to transcribe the messenger RNA 

when the metabolite is present and preventing transcription when the metabolite is absent. 

Together, the data presented quantify a simple model for the base pairing rearrangements that 

underlie RNA folding. 
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Chapter 1  Introduction 

In some sense, life is only possible because the rate of stacking two bases of a connected 

nucleic acid is three orders of magnitude slower than the rate of stacking two disconnected bases. 

As a result, information transfer, folding of complex structures, catalysis, etc can occur on the 

same timescale and even within the same molecule1. This thesis describes single-molecule 

recordings of fluctuations of DNA and RNA on the microsecond to second timescale to quantify 

a model for how these nucleic acids dynamically fold and how these fluctuations assist their 

many functions.  

I have organized the presentation so that in-depth introductions to specific material lie in 

their respective chapters. The first two of these chapters describe methods-development. Chapter 

2 outlines the carbon nanotube single-molecule field-effect transistor – how is it made, and how 

does it work? Chapter 3 introduce computational algorithms that identify, classify, and quantify 

trajectories of single molecules. Next follow two chapters that describe biophysical 

measurements of nucleic acid dynamics, using the measurement technique described in Chapter 

2 to record trajectories of single molecules and the computational techniques described in 

Chapter 3 to analyze them. Chapter 4 describes rearrangements of conserved stem-loop 

structures with four-base loops known as tetraloops, which are vastly overrepresented in large 

RNAs such as the ribosome, are thought to hierarchically organize the RNA folding landscape 

and, furthermore, are known to mediate tertiary structure interactions. Chapter 5 describes 

metabolite-mediated rearrangements of an RNA switch, as well as a model describing how the 
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messenger RNA biases base-pair-level kinetic reshuffling to regulate its own transcription is 

developed based on single-molecule trajectories. 

The main contributions of this thesis can be conceptually gathered into a bigger picture – 

the study of RNA folding. The RNA folding problem can be, by analogy with the protein folding 

problem, expounded through a hierarchical tree-like organization: as a sequence (primary) which 

arranges quickly into organized substructures (secondary), which eventually interact with other 

substructures (tertiary) and other folding sequences (quaternary) to complete the complex. RNA 

secondary structure is typically a form of helix. Which helices form between which parts of the 

sequence, as well as their stabilities, affect the likely permutations of tertiary structures that form 

in configurational space. These permutations can be thought of as existing on tiered timescales2 

which stochastically arrange and rearrange on the second-timescale because the elementary 

rearrangements that compose them depend on the base-pairing lifetimes of the individual RNA 

subunits. Remodeling secondary or tertiary structure in RNA may depend on many such 

individual lifetimes, and such transition pathways underlie essential processes from the operation 

of RNA switches to the formation of intersubunit bridges in the ribosome. Some examples of 

RNA structures are shown in Figure 1.1. 
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The insight into the RNA folding problem provided by this thesis is the realization that 

single-molecule field effect transistors (smFETs) may be used to measure the lifetimes of 

individual base-pairing rearrangements. Considering the hierarchical tree-like picture of RNA 

 

  Figure 1.1: Examples of RNA structures. 
(A) A-form RNA helix. The example shown is the first helix (helix P1) of the pbuE riboswitch 

aptamer discussed in Chapter 5 (pdb: 3IVN)3. (B) RNA stem-loop, which consists of a strand of 

RNA that loops on itself to form a paired region. The example shown is the sarcin-ricin loop 

found in ribosomal large subunit 23S rRNA (pdb: 5IBB)4. (C) A bulge in an RNA helix. The 

example shown is intersubunit bridge B7b between the ribosomal small subunit 16S rRNA and 

the large subunit L2 protein (not shown; pdb: 5IBB). (D) Kissing-loop interaction between two 

RNA loop structures. The example shown is from a different portion of the molecule in (A). (D) 

An A-minor motif, wherein an adenine residue interacts with the minor groove of another RNA 

helix. The example shown is the A-minor interaction between tRNA anticodon paired with a 

cognate codon to form a small helix, and two adenine residues in helix 44 of the ribosomal small 

subunit 16S rRNA (pdb: 1IBL)5. (E) An RNA junction, in this case a 3-way junction. The 

example shown is from a different portion of the molecule in (A). 
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folding, smFETs are here used to quantify the rate constants associated with secondary structure 

rearrangements. This subject is described in Chapters 4 and 5: in the former, I investigate 

whether loop stability was conferred directly to the stem it caps and whether the subsequent data 

support a model describing one facet of how tetraloops serve as folding nuclei for secondary 

structure formation of larger RNA structures; in the latter I hypothesized that a messenger RNA 

switch, because of its proposed dynamic mechanism, likely regulates the rate at which its 

secondary structure remodels. The data support a model wherein the junction between two 

helices of the RNA switch stabilizes a third only if it binds a target molecule, and thereby 

prevents invasion by another the rest of its messenger RNA, all while being concurrently 

transcribed. 

In conclusion, I argue that static structures, while occasionally capable of describing 

essential features of biological molecules, cannot easily communicate the myriad of possible 

motions leading to and regulating their function6. These motions are best described on a wide 

timescale that ranges from small-scale conformational motions to the large-scale motions they 

regulate, an investigation requiring methods that independently resolve their likely diverse 

conformational ensembles. With these remarks, I begin part 1, which describes how investigators 

typically formalize the language of these motions as well as contributes a unified quantitative 

stochastic framework for their description, and finally a description of the development of the 

technique this thesis predominantly utilizes, the single-molecule field effect transistor applied to 

fluctuations of nucleic acids. 
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Part 1: Development of single-molecule field effect transistors and 

computational methods for analysis of single-molecule trajectories. 

In the majority of biophysical systems, experimenters typically deal with ensembles of 

molecules that exist in a complex equilibrium involving many interconverting states rather than 

as a single species. Because of the enormous number of possible random jostlings, interactions, 

and reactions, if one were to tag every atom in a molecule and monitor their configurational 

motions, after a short period, it would be impractical to predict their relative positions. If 

multiple atomic configurations are similarly stable, collective measurement of the properties of 

this equilibrium averages out the differences between subpopulations, leaving both the number 

of- and relationships between- subpopulations of the molecules comingled in the subsequent 

average. Single-molecule measurements seek to bypass this statistical mixing by considering one 

molecule at a time, assigning each to its appropriate configurational subpopulation, and 

subsequently reconstructing the ensemble. This approach has proven fruitful over the past few 

decades. This is because single-molecule measurements allow investigators to directly resolve 

the number, lifetime, and occupancy of individual states of a labeled molecule in real time. 

Yet, single-molecule resolution comes at a cost. Some costs are simple to describe – for 

instance, labeling a single molecule with two fluorophores to generate a donor-acceptor pair, a 

configuration that allows one to monitor interfluorophore distance via the fluorescence resonance 

energy transfer (FRET) effect7, can lead to ambiguities in interpretation due to perturbations 

arising from addition of the dyes. While these perturbations are diverse, for instance in the study 

of nucleic acid dynamics, care must be taken lest the highly aromatic dyes introduced to the 

sequence stack into a nucleic acid helix because the subsequent change in fluorescence could 
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possibly be incorrectly interpreted as a drastic change in interfluorophore separation8. On the 

other hand, the costs may manifest as complex effects – for instance, tethering a single molecule 

between two optical traps, a configuration known as optical tweezers, and systematically pulling 

in a given direction biases all molecular motion in that direction9,10. As a consequence, the force 

exerted by the optical trap on the molecule changes not only the enthalpic landscape but also the 

entropic landscape of the molecule, leading to the generation of potential artifacts that must be 

interpreted with care10,11. However, many such costs are, for the most part, obviated by careful 

experimental design, creating potential problems with interpretation mitigated by clever 

controls12. 

Problems associated with limited time resolution, however, are not so easy to sidestep 

with current technology. When observation of a state is limited by time resolution, the problem is 

that the information is simply not recorded in the trajectory13. Because interconversion between 

species may be fast, the time resolution of a given single-molecule technique must compete with 

the shortest of the lifetimes of these states lest they are erroneously missed14,15. A great number 

of single-molecule experiments reported in the past decade rely on photon emission from a site-

directed fluorophore to, as a proxy, report the state of the molecule6,16. Photons are emitted 

randomly in every direction with some overall rate and, with some intermediate efficiency, 

converted into an electrical current for subsequent detection. The combination of both steps 

subsequently determine the signal amplitude per frequency and therefore the experimental time 

resolution. Typically, photon counts are infrequent, and because at least picoamps of current are 

required for detection by standard equipment, this creates a tension between the requirement of 

sufficient photon emission to support a given time-resolution, typically compensated by 

increasing laser power to compensate for increasing time-resolution, and the technical limitations 
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of modern dyes, which can undergo chemical reactions which halt photon emission. Therefore, 

many single-molecule optical techniques cannot simultaneously operate with high time-

resolution and maintain a stable signal for a long period of time13,17. In other words, a transient 

atomic configuration may be probed, at the cost of not knowing how its dynamics change over 

time; or the long-time behavior may be captured, at the cost of not observing transient states.  

In Part 1 of this thesis, Chapter 2, I describe my role in the development of single-

molecule field effect transistors (smFETs) using carbon nanotubes (CNTs)18–20. This technology 

allows for label-free, tens of microsecond time-resolution of molecular trajectories, with stable 

signals persisting for hours or days which address many of the problems described above. To 

achieve this, the technique relies on the persistence of intrinsic molecular properties such as the 

average charge distribution, which do not cease so long as the molecule is intact. In this vein, the 

principal concerns of Part 1, Chapter 2 of this thesis are: how does one generate and validate the 

fabrication of an smFET? And what physical principles underlie the operation of an smFET? 

However, even if one possessed a perfect account of the position and momentum of every 

atom of every molecule in a system as a function of time, significant difficulty would yet arise in 

organizing and therefore describing system behavior. Typically, one addresses this difficulty by 

breaking the system into sets of configurations that are in some sense equivalent and on the same 

basis distinct from any other such set of configurations. Then, one can describe how those 

equivalence classes interact or interconvert – a computationally tractable, if intricate, task21. As it 

stands, single-molecule trajectories typically record a handful of variables – for example, a single 

donor-intensity and acceptor-intensity versus time trajectory speak only to changes in 

interfluorophore distance as time goes by. Therefore, the computational task is both easier and 

harder – easier because the number of variables is smaller, and harder because many variables 
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contribute to a one dimensional signal. In Part 1 of this thesis, Chapter 3, I describe 

computational methods designed to break such a compound signal into its constituent parts, 

enabling a richer and more exact description of the single-molecule trajectory. 

Overall, the methods described in Part 1 are honed to the task of generating and analyzing 

long, high time-resolution single-molecule trajectories. Part 2 of this thesis utilizes the methods 

described in Part 1 to quantify RNA folding on the single-molecule level. 
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Chapter 2  Operation, Mechanism, Fabrication, and 

Chemical Reactions of Single-Molecule 

Field Effect Transistors 

2.1 Introduction 

A major research focus of modern materials chemistry and semiconductor fabrication has 

been placed upon a targeted body of thought designed to take the abstract conception of a 

transistor and shrink it. As such, many mesoscopic materials, such as carbon nanotubes, have 

been deemphasized as potential components in next-generation electronics, because, as I will 

discuss below, they are too diverse to be ideal. In the wake of this shift away, however, has been 

a renewed interest in using these mesoscopic materials as small, label-free, electronic sensors – 

tools to directly answer fundamental questions in chemical and biological fields20,22. Here, after 

outlining the basic theory governing devices constructed using carbon nanotubes as conducting 

substrates, as well as a straightforward rationale behind the utility of carbon nanotubes as single-

molecule probes of nucleic acid dynamics, I will present and discuss my efforts, in collaboration 

with many other excellent researchers in the laboratories of Profs. Kenneth Shepard and Colin 

Nuckolls, to use micro- and nanofabrication methods to design single-molecule field effect 

transistors (smFETs). Finally, I will characterize fundamental chemical transformations on field 

effect transistors whose channel consists of a carbon nanotube (CNTFETs) and outline the 

collaborative work behind the statistical validation of these transformations, as well as 

preliminary measurements demonstrating the robustness of the platform to detect fluctuations in 

quantal defects in the nanotube lattice at room temperature in solution. I will close with a study 
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of the consequence of controlled introduction of chemical defects on conductance through the 

1D channel. 

2.1.1 Mesoscopic Conduction 

Because carbon nanotubes in particular and mesoscopic conductors in general are small, 

quantum effects must be taken into account when calculating their conductance. The central idea, 

using the non-equilibrium Green’s function (NEGF) method23, is that the transmission spectrum 

of carriers through a small channel is given by: 

𝑇(𝐸) = 𝑇𝑟 Γ 𝐺 Γ 𝐺  

where Γ = (Σ − Σ )  and Γ = (Σ − Σ )  are the source and drain broadening matrices, 

respectively, Σ  and Σ  describe the interaction potential between the channel of the device and 

the source and drain, respectively; 𝐺  is the retarded Green’s function, given by: 

𝐺 = [(𝐸 + 𝑖0 ) 𝐼 − 𝐻 − Σ − Σ ]  

The transmission spectrum allows calculation of the current given a temperature: 

𝐼 = 𝑇(𝐸) 𝑓 (𝐸)𝑑𝐸 

where 𝑓 (𝐸) denotes the thermal distribution function of 𝐸, the energy. Because it has 𝑅 types of 

repeating units, in the tight-binding approximation, the Hamiltonian 𝐻 of a carbon nanotube has 

a block-tridiagonal structure: 

𝐻 , = 𝛽 , 𝑘 = 𝑖  𝑚𝑜𝑑(𝑅) 

𝐻 , = 𝛽 , 𝑘 = (𝑖 − 1) 𝑚𝑜𝑑(𝑅) 

[𝐻 ] = 𝛼  
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where 𝑚𝑜𝑑  refers to the remainder function, the 𝛼  are self-interactions within a repeating 

subunit and vary as a result of applied potentials, and the 𝛽  are interactions between subunits24. 

In this model, carriers are created along the length of the nanotube and propagate from repeating 

unit to unit, according to the block-tridiagonal Hamiltonian, until they reach one of the termini 

and absorb. The structure of the repeating subunit, which governs the efficiency of the 

propagation, is determined by the chirality of the carbon nanotube. Loosely, there are many types 

of propagation depending on which site in which repeating unit the carrier has to jump from as 

well as where it has to jump to. Because a carbon nanotube consists of a contiguous lattice of 

hexagonal rings made of carbon atoms at the vertices, which have been collectively rolled up 

onto each other to form a cylinder from a 2D sheet, the transmission efficiency of these 

propagation types is determined by the symmetry of how the cylinder was wound. This 

symmetry is given by the chirality indices (m,n) which are, given an atom in a hexagonal unit, 

how many hexagons in the (m) longitudinal or (n) latitudinal direction must be traversed before 

arriving at the atom that coincides with the given atom in the next unit cell25. As anticipated by 

the symmetries of the above Hamiltonian25, the nanotube chirality has a large effect on how the 

nanotube propagates charge carriers: if 𝑛 = 𝑚, the nanotube is metallic, because there are only 

two types of propagating sites which are efficiently coupled into a helix oriented transverse to 

the nanotube axis; if (𝑛 − 𝑚) 𝑚𝑜𝑑(3) = 0, the nanotube is semiconducting, because none of the 

propagating types are compatible with a transverse mode; else, the nanotube is “semimetallic,” 

because some but not all of the propagating types are compatible with a transverse mode. These 

designations are made on the basis of measurements that gate the nanotube channel with an 

external electric field to make the nanotube a field effect transistor (FET) – by modulating the 

external field at the surface of a semiconducting or semimetallic nanotube, the conductance can 
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be decreased in many cases arbitrarily close to zero – intuitively, the field rotates the carriers so 

that they can either flow or not flow through the channel, but only if they are in non-metallic 

conductance modes.  

 Early attempts to reconcile conductance theory and experimental results focused on the 

local density of states (LDOS) of the carbon nanotube, loosely the measure of how many carriers 

fit in a volume at a defined spatial location as a function of their energy. The pattern in the 

Hamiltonian, in theory, translates into regularities in the LDOS, and on this basis the LDOS was 

calculated using the tight-binding model and compared to direct measurements using Scanning-

Tunneling microscopy (STM)26,27. The predicted LDOS was expected to have peaks – known as 

van Hove singularities – at energies defined by nanotube chirality. Because of the high spatial 

resolution of the technique, the nanotube chirality was imaged concurrently with the LDOS25–27. 

When directly probed, the measured LDOS matched the LDOS calculated from the tight-binding 

model. In the cited studies, there were hints of the complexities associated with nanotube defects 

as well as surface defects which could interact with the nanotube, both of which strongly 

modulated the density of states. In Appendix B, I use the NEGF formalism to discuss the effect 

of perturbations of the Hamiltonian on conduction in a simple 1D lattice, which may be helpful 

to sort out some of the details. The principal idea is that any local perturbation has a significant 

effect on the conductance because all the carriers have to go through the perturbed site on their 

path from the source to the sink, and therefore a perturbation changes the carrier density, or local 

density of states, after itself by attenuating what is allowed to pass it by. 

 As control over surface features as well as quality of nanotube preparation increased, 

investigators began to notice that the conductance, sampled regularly with time, had large 

quantal fluctuations28–34. In analogy with experiences with metal-oxide field effect transistors 
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made from Si substrates (MOSFETs), these quantal fluctuations were originally supposed to 

arise mainly from surface effects, because they mainly affected non-metallic nanotubes and 

because the nanotubes were hypothesized to be covered in surface defects, as evidenced by the 

fact that they are usually not straight even though they should be if they were perfect crystals. 

The fluctuations could be quite dramatic – experimentally, nearly the entirety of the conductance 

through a nanotube could be spontaneously quenched28. Eventually, these defects were observed 

in metallic nanotubes as well35. Concurrently with these observations, investigators noticed that 

even at room temperature, Coulomb blockade was directly observed36, confirming proposals 

based on STM observations26. 

 Recently, theorists have attempted to tease out the nature of these quantal fluctuations. 

Through calculations it was found that a single charge could extinguish nanotube conductance, 

given a certain oxide dielectric, if it was just located in the right point in the channel37. By 

charging an atomic force microscopy (AFM) tip and scanning the length of the nanotube, 

investigators were able to find evidence of precise geometric positioning of these defects and, in 

some cases, were able to produce mechanical damage to the nanotube surface near the source or 

drain electrodes, and subsequently probe changes in the conductance response map38,39. It was 

found, in some cases, that the presence of an electrochemically introduced defect40 matched or 

exceeded the expectations of theory41, leading to significant modulation or loss of conductance 

through the channel, the drop itself shown to be localized in the channel towards the source or 

drain electrodes18,42. Immediately, these sensitive and chemically modifiable defects were used 

to construct the first single-molecule field effect transistors18,43 (smFETs), capable of monitoring 

changes in nanotube conductance caused by rearrangements in individual molecules attached to 

the defect site. Subsequent experimental investigations found that even in the absence of an 
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introduced covalent defect, these smFETs could still be fabricated and be used as probes of 

molecular conformational changes20,44,45. In this chapter, I will discuss my efforts to fabricate 

carbon nanotube field effect transistors (CNTFETs), functionalize them with molecules with 

specific chemical handles, and either use those handles to directly attach individual molecules to 

the nanotube surface or directly probe them to verify that the defects have an impact on the 

channel conductance. This work was highly collaborative; as a footnote of each section, I will 

annotate the specific contributions of individual researchers. 

2.1.2 Fabrication of field effect transistors made from carbon nanotubes 

 Field effect transistors (FETs) are fundamental objects in the modern world mainly 

because of their use as switches. The general idea is that a channel with a given bias between two 

leads attached to the channel, known as a source drain bias, can be tuned between a conductive 

and a nonconductive state based on tunable capacitive charging between the channel and a third 

electrode46.  In this thesis, field effect transistors fabricated using carbon nanotubes will be used 

to measure the conformational dynamics of nucleic acids, and in this chapter I will characterize 

the properties and study the mechanism of conductance through those channels, with the ultimate 

goal of contributing a scheme by which operation of smFETs may be understood as well as 

methods by which this operation may be coupled to chemical transformations upon the nanotube 

surface. 

 FETs are typically named according to the design of the capacitor that applies the 

modulating field and thus operates the switch. In this thesis, this capacitor, often termed the 

“gate,” will either be the Si substrate separated from all the electrodes by a thick SiO2 oxide, an 

AFM tip, or a solution-coupled electrode. The first two are simple capacitors through a static 
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dielectric. The latter is diffusive. Therefore I will begin by noting the elementary theory for how 

an electrolyte solution can control conductance through a nanotube channel. Measurements of 

intermolecular interactions or intramolecular conformational changes through measurement of 

their effect on carbon nanotube conductance manifesting as- or mediated through- a defect in the 

nanotube lattice must always be complicated by the fact that, for almost all cases of interest, 

conformational changes only take place in electrolytic solutions. In contrast to a static dielectric, 

an electrolytic solution contains both positively and negatively charged ions, which are mobile, 

and which therefore negate any putative permanent charge. In order to detect a change in 

molecular conformation using the nanotube, therefore, the constantly shifting ion cloud must 

fluctuate slow enough so that, when by chance intermolecular collisions alter the ion density in 

the cloud to reveal somewhat the electronic configuration of the molecule, the change lasts long 

enough to both affect the conductance through the nanotube channel and be detected by a 

measurement apparatus. Because the rate of diffusion due to thermal fluctuations in an 

electrostatic field provides the quantity that determines whether measurements are possible, the 

crucial quantity is the distance correlation function ℎ (𝑟) between two molecules with opposite 

charges. This is given by, where 𝑧  and 𝑧  are the charge per ion molecule and 𝑒  is the charge of 

an electron, 𝜖 𝜖  is the permittivity of the material, 𝑘 𝑇  is Boltzmann’s constant times the 

absolute temperature, 𝑟 is the distance between the two ions: 

ℎ (𝑟) = −
𝑧 𝑒 𝑧 𝑒

4𝜋𝜖 𝜖𝑘 𝑇

𝑒

𝑟
  

And finally, 𝑟 =
∑

 is the Debye length and 𝜌  is the concentration of charged species 𝑙, 

valid for low concentrations and assuming ions which are points. Intuitively, this correlation 
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function quantifies the ion density in a shell around which measurements are subsequently 

possible; this physical theory has been explicitly tested for measuring rearrangements of proteins 

and nucleic acids on Si nanowire FETs and carbon nanotube smFETs18,47. The characteristic 

length of the shell is given by 𝑟 , and this is roughly equal to the shell around which the carbon 

nanotube, as a sensor, can effectively probe the state of an attached molecule. Because it is 

immobile, the nanotube also assembles a charged layer known as the Helmholtz layer which is 

typically no more than a few molecules in thickness. 

 To sum up, the general strategy will be to fabricate a single crystal field effect transistor 

using a carbon nanotube as a substrate. In the following experiments, the field provided to the 

nanotube will be from the either a single molecule attached to the nanotube (an smFET), the 

solution itself (a solution gated CNTFET), the silicon substrate upon which the nanotube was 

grown, or an atomic force microscopy (AFM) tip. 

2.1.3 Fabrication strategy1 

  Devices for CNTFET and smFET measurements were fabricated using standard 

photolithographic and electron-beam lithography methods (see 18,48 for examples most relevant 

to this application.) CNTs were grown by chemical vapor deposition using a ferritin catalyst and 

ethanol as a carbon source49. Patterning electrodes using photolithography proceeded through use 

of either a positive or a negative photoresist, which is a chemical spin-coated onto a chip and 

crosslinked after exposure to light to provide differential solubility. Two layers of two 

chemically distinct photoresists were applied to 1x1 cm chips, first Shipley S1813 and 

                                                 

1 Strategy developed with Drs. Nathan Daly, Sefi Vernick, Delphine Bouilly, as well as Scott Trocchia, Jaeeun Yu, 

and Yan Feng.  
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subsequently LOR3A (Microchem, both), in series, by dripping the resist onto the surface and 

then spinning the chip at a defined frequency and heat-curing, resulting in a more or less even 

layer of light-sensitive material on the chip surface. A micron scale mask was separately 

prepared by taking a soda-lime glass plate coated with Cr and a separate photoresist (ip3500, 

Microchem) and crosslinking the photoresist on the surface by programmed patterning with a 

laser (Heidelberg DWL66, Singh Center for Nanotechnology, University of Pennsylvania). 

Crosslinked ip3500 was removed with CD-26 (Microchem) and Cr was removed using a strong 

acid (Chrome Etchant, Microchem). Chips covered in bilayer Shipley 1813/LOR3A were placed 

underneath a Hg lamp and exposed to light through the mask to crosslink both photoresists; 

subsequently the crosslinked photoresist was dissolved in AZ400 MIF, leaving behind trenches 

in the photoresist layer down to the SiO2 surface located at the positions defined by the mask. 

Because crosslinked Shipley 1813 dissolves faster than crosslinked LOR3A in AZ400 MIF, 

these trenches have an “undercut” structure, so that some LOR3A masks a photoresist-free 

portion of the chip surface without actually contacting that surface. Subsequently, metal was 

deposited onto the surface by electron-beam evaporation (Angstrom) to some defined height. 

Because of the undercut structure, following exposure to a chemical in which un-crosslinked 

resist is soluble (Remover PG), metal that contacts the SiO2 surface remained and the rest was 

removed from the surface, resulting in micron-scale defined electrode features. This method was 

used in series to deposit 75nm Ti as a source-drain electrode material, then 100nm Pt as a 

solution gate electrode as well as a pad buffer for wiring the chip. Ti was selected for the source-

drain electrodes because its surface oxide passivates it against most chemical reactions as well as 

forming efficient electrical contact with the CNT50. Pt was selected for the gate electrode 

because it efficiently couples electrochemically to both organic and aqueous solutions. The 
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channel length of 4 microns was chosen because CNTs are expected to be diffusive, as opposed 

to ballistic, conductors when the channels have such a length23; furthermore, longer channels are 

undesirable for smFET measurements as gate-associated noise increases as the square root of the 

channel length. At the completion of any photolithographic step, chips were vacuum annealed at 

350C and ~10-6 torr for 30 minutes to remove small fragments and chemical residues. 

 After deposition of at least the Ti source-drain electrodes, the chip effectively possessed a 

detailed map printed onto its surface. This was used to locate all the CNTs using a scanning 

electron microscope (SEM, Hitachi 4700). CNTs were selected for isolation as CNTFETs on the 

basis of their length, apparent optical quality, Raman spectra, and transport characteristics. CNTs 

were isolated by photolithographically defining a region of remaining resist to cover them and 

protect them from subsequent exposure to an O2 plasma. For experiments in which they were 

used, nanowells were defined using electron beam lithography following spin-coating the chip 

with polymethylmethacrylate (PMMA48). Two types of device were used for the experiments in 

this chapter – one, developed by Steven Warren and Scott Trocchia is a wide field of densely 

packed electrodes with Ti contacts; a second, developed by Jaeeun Yu and Delphine Bouilly is a 

dense packed array of Ti/Pd/Au electrodes used for the collection of conductance statistics 

associated with nanowells (discussed in detail below). 
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2.2 Electrochemically regulated Diazonium Functionalization of Isolated 

Single Walled Carbon Nanotube Field Effect Transistors 2 

As outlined in the introduction to this chapter, defects in CNTs are common and these 

defects occasionally cause stochastic, quantal fluctuations in conductance through the channel. 

This thesis is concerned with programming these defects with biomolecules whose stochastic 

fluctuations are both of biological interest and at the timescale accessible to a CNTFET. 

Therefore, there are two significant challenges: first, CNTs are for the most part chemically 

inert51; second, CNTFETs obey electrochemical rules as, for the most part, semiconducting 

working electrodes52, instead of a more canonical role as bulk reaction species – in particular, 

charge is not conserved because it can exit via the drain. 

In bulk, many methods for modifying nanotube surfaces have been developed, and 

extensively reviewed, including cycloadditions53, azide modification54,55, and oxidation40,56, both 

UV-assisted and acid-catalyzed. In particular, acid catalyzed methods have been used on 

CNTFETs as a method for fabricating smFETs18,22,40,42; however, the method is frenetic and 

uncontrolled, and a full account of its mechanistic details rendered difficult by challenges 

inherent in characterizing an event that just happens once. 

Two more promising approaches to smFET fabrication have been recently described – 

first, noncovalent adsorption of pyrene moieties bearing useful chemical handles to nanotube 

surfaces20, which has the advantage of a straightforward and reversible protocol that I will 

discuss in the next section; second, covalent functionalization of CNT surfaces using diazonium 

reagents, which I will describe in this section. 

                                                 

2 Experiments designed and data analyzed with the assistance of Dr. Sefi Vernick. 
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Diazonium functionalization of nanotubes typically proceeds via a radical chain reaction 

that proceeds in three coupled steps57. First, in solution, diazonium ions interact with water to 

form aryl radicals; second, these adsorb to nanotubes; finally, they react pairwise with the 

nanotube. The reaction proceeds in accordance with the phenomenological Hammett parameter57 

and typically has a greater affinity for metallic nanotubes than for semiconducting nanotubes57–

59. Covalent addition of diazonium is both predicted and observed to have distinct effects on the 

electronic structure of the CNT, in particular, the addition of so-called mid-gap states resulting 

from depletion of specific reactive modes60,61. 

Taking this last fact as a starting point, first, note that a nanotube has a countable number 

of reactive modes. I will here distinguish between a reactive mode, which is the particular 

wavefunction that interacts with the reactant, and a reactive site, which is where a reactant 

happens to add itself. Enumerating the “reactive state” of the nanotube by an integer, the 

probability that 𝑗 ≤ 𝑁 of these modes will have reacted by time 𝑡 is governed by the following 

master equation62: 

𝑑𝑝 (𝑡)

𝑑𝑡
= −𝑗𝑘𝑝 (𝑡) + (𝑗 + 1)𝑘𝑝 (𝑡) 

This is a pure death process with rate parameter 𝑘. The states are enumerated according to the 

number of remaining reactive sites which are no longer reactive following functionalization. To 

solve this equation, consider instead an infinite chain – it makes no difference, as the initial 

condition will make the chain finite since the chain is pure death and therefore it never accesses 

the virtual states. The generating function: 

𝑔(𝑡, 𝜉) = 𝑝 (𝑡)𝜉  
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obeys the equation: 

𝜕𝑔

𝜕𝑡
= 𝑘(1 − 𝜉)

𝜕𝑔

𝜕𝜉
 

which, on being solved with the initial condition 𝑔(0, 𝜉) = 𝜉 , gives: 

𝑔(𝑡, 𝜉) = 1 − 𝑒 (1 − 𝜉)  

This is the generating function for a binomial distribution with 𝑝 = 𝑒 . The probabilities 

themselves are given by differentiation of 𝑔(𝑡, 𝜉): 

𝑝 (𝑡) = 𝑒 (1 − 𝑒 )
Γ(𝑁)

Γ(𝑁 − 𝑗 + 1)Γ(𝑗 + 1)
, 𝑗 ≤ 𝑁  

2-1 
As noted above, the probability of any number of reactive sites above the initial value vanishes 

because the gamma function diverges on negative integers. Finally, the expected number of 

reactive modes remaining at a given time is given by: 

𝐸[𝑚𝑜𝑑𝑒𝑠] =
𝜕𝑔

𝜕𝜉
|( , ) = 𝑁𝑒  

 Successful fabrication of an smFET occurs when the nanotube leaves the state 𝑁, enters 

the state 𝑁 − 1 , and remains there when the assay terminates. As a function of time, the 

probability that this happens is given by: 

𝑝 (𝑡) = 𝑒 ( ) (1 − 𝑒 ) 

This expression, which is positive and starts and ends at 0 and therefore must have a local 

maximum, implies that there is only a very short time after initiating a reaction for which only a 

single reactive event may be expected. However, reasoning that the rate parameter 𝑘 depends 

entirely on the band-gap properties of the CNT as well as the electronic configuration of the 

smFET as well as diazonium concentration, I investigated the validity of this theory as these 
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parameters were modified by simultaneously monitoring many nanotubes as their reactive modes 

were depleted by diazonium. First, arguing that a radical chain mechanism would be difficult to 

harness kinetically, I will describe a method whereby diazonium functionalizes CNTs via 

electrophilic attack. Taking this as a starting point, I will develop a simple kinetic assay for 

monitoring the extent to which a nanotube has reacted, by monitoring conductance as a function 

of solution gate voltage, known as the IV characteristic, and further verifying via confocal 

Raman scattering spectroscopy63,64. The assay naturally lends itself to electrochemical 

modulation using the source-drain electrodes, and I will describe its effect on the rates and extent 

of conductance quenching caused by the reaction, as well as the consequences of these 

observations on the proposed mechanism. 

2.2.1 Results 

An electrophilic attack mechanism for diazonium addition to electrodes has been 

proposed for functionalization of metallic substrates. Arguing that the reaction mechanism either 

involved a radical chain reaction in solution coupled to the CNT or direct electrophilic attack, the 

validity of the former was investigated by exposing CNTs to the reaction of the reagent 

formylbenzenediazonium65 (FBDP) at 10mM concentration in acetonitrile, supported by 100mM 

(N-(n-bu)4)
+ PF6

-, as opposed to aqueous solvent supported by buffer, within a 

polydimethylsiloxane (PDMS) flowcell for specified periods of time then thoroughly flushing 

out the reagent and measuring the IV characteristic. 74 CNTs, 19 large bandgap 

(semiconducting) and 55 small bandgap (semimetallic), were thus treated. Because the reaction 

was insensitive to 10x addition of dibutylhydroxytoluene, BHT, (N=10), a radical scavenger, and 

further because the reaction in general followed an apparent exponential rate law, I argue that the 



 

23 

 

rate parameter 𝑘  was constant, whereas it would be steadily increasing were a radical chain 

coupled to the CNT reaction, and would be quenched by addition of BHT. In contrast to 

reports61, discrete events were not observed; however, substituting the Ti electrodes for Au, 

discrete events appeared, suggesting that these result from reaction of diazonium with gold. 

While the rate parameter was constant, both the rate and extent of conductance quenching 

were observed to be dependent on the band-gap properties of the CNT and the electronic 

configuration of the CNTFET. In particular, setting the CNT at a negative (-1V) bias relative to 

solution (N=6) greatly increased the rate relative to a neutral bias; a positive (+1V) bias and 

neutral bias had nearly equivalent rates, but a positive bias (N=5) caused near extinction of 

conductance and much more intense Raman disorder bands (Figure 2.1). Finally, it was observed 

that small bandgap CNTs reacted much faster than large bandgap CNTs (Figure 2.2). These 

results are discussed below, assuming an electrophilic attack mechanism. 

2.2.2 Discussion 

 By comparison of the apparent reaction kinetics to an exponential rate law with and 

without radical scavengers, I conclude first that under conditions of the assay described above, 

the diazonium functionalization of CNTs proceeds via an electrophilic mechanism with a fixed 

rate parameter. Because the rate parameter is fixed, subsequent reactions do not affect the overall 

rate, so that reactions are not correlated, i.e., the remaining reactive modes are unaffected by a 

reaction at any of the other modes. Here I highlight the distinction between reactive modes and 

reactive sites – reactive modes are the electronic structure elements that interact directly with 

diazonium and are delocalized; reactive sites are real space monuments to depletion of reactive 

modes, commemorated with the diazonium adduct. 
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 The accelerated rate of small versus large bandgap is consistent with the proposal that 

conductive modes are the reactive modes, since there are more conductive modes in small 

bandgap CNTs than in large bandgap CNTs in the energy region high enough to react efficiently 

with the ion. However, the question remains why the extent of conductance quenching varies 

between the three bias conditions tested. The solution can perhaps be found by considering what 

else is correlated with high current – as a semiconducting electrode in solution52, the more 

carriers that flow through the channel, the more ions will be associated with the CNT. Some of 

these ions are the reactive FBDP ions; since the local concentration is higher around small 

bandgap than large bandgap CNTs, this contribution will also explain why the reaction 

apparently proceeds faster, and this conceptual framework presents a more useful mnemonic, 

vide infra. 

 This simple theory can be extended to explain why the extent of conductance quenching 

varies between the three bias conditions tested. First, note that just because the conductance 

ceases to be quenched does not necessarily mean that the reactive modes have all reacted, while 

this is very likely the case. The most general conclusion is that all reactions that affect 

conductance have stopped. In other words, if a reaction that has already occurred quenches a 

conductive mode that is the only mode affected by a subsequent reaction, the subsequent reaction 

will not be detected by this assay. Therefore, it is reasonable to suppose that the cause of the 

variegated asymptotic conductance quenching across the three bias conditions is a geometrically 

distinct reaction mechanism. Solving the Poisson-Boltzmann equation for various gate biases of 

a CNT in a cylindrically symmetrical dielectric24, one notes immediately that the expected 

charge distribution varies across the length of the channel (for example, see Figure B.1). The 

diazonium ion is therefore expected to be more concentrated in certain geometric positions than 
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others. Therefore, I propose that at positive biases, the reaction proceeds in a very concentrated 

position in the CNT, leading to more efficient conductance quenching due to 1D effects, whereas 

at the neutral and negative biases the reaction tends to be more diffuse. 
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 While electrochemical control of geometric reaction distribution appears to be a 

promising method the fabricate smFETs, a more straightforward synthetic route is to simply 

cover the nanotube so that only a small number of reactive sites are exposed to the reagent. This 

method, using nanowells, is described below. 

 

 
 

Figure 2.1  Electrochemical modulation affects both the rate and extent of diazonium-
dependent conductance quenching. 
 (a) CNTFETs alternated between unbiased channels with a potential difference relative to 

solution and CNTFETs with a small source-drain bias and no potential difference relative to 

solution.  (b) Kinetics of conductance quenching monitored by measuring the IV characteristics 

as function of total exposure time to FBDP.  Blue has Ve=+1V, black and red are spatially 

adjacent CNTs with Ve=0. (c) Raman spectra of Ve=1V (black) and Ve=0V (red). (d) IV 

characteristics taken at the time-points shown in (b) for Ve=1V. (e) Raman spectra for Ve=-1V, 

before and after functionalization. (f) Analogous Raman spectra for Ve=0V. (g) IV 

characteristics for the time-points in (b), for Ve=-1V. Kinetics are too fast to measure. (h) 

Analogous IV characteristics for Ve=0V. Error bars in kinetic plots are from repeated 

measurement (#scans = 5) of IV characteristics. 
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2.3 Pyrene Adsorption to CNTs 

 Since 2001, it has been well-understood that pyrene 

moieties, in particular pyrene-N-hydrosuccinimide ester 

(pyrene-NHS) can be used to deliver any sort of molecule, 

in particular protein or nucleic acid, to the surface of a 

CNT66. Since noncovalent attachments based on pyrene 

adsorption to CNT sidewalls have been used by others as 

the basis of smFET design20, I reasoned that by tuning the 

concentration of primary amine moiety, it would be trivial 

to find an assay condition where the inter-molecule 

distance on CNTFET surfaces would roughly match the 

dimensions of the channel. To find this assay condition, I 

held all other parameters constant and varied the concentration of 10nm gold nanoparticles 

(Nanocs) bearing polyethyleneglycol (PEG) units terminated with primary amine handles, 

referred to as AuNPs. To quantify, the distribution of heights associated with the AuNPs was 

identified using the vbscope model (see Chapter 2) and the number of molecules within 3 pixels 

of a nanotube was counted by hand. The optimal protocol was a 15 minute exposure to 100mM 

pyrene-NHS dissolved in DMSO followed by a thorough DMSO rinse and 90 minutes exposure 

to 400nM AuNPs in 10mM phosphate buffered to pH 8.4; since each nanoparticle had more than 

one amine group, the protocol was adjusted accordingly to our labeled RNA which only has one 

labile primary amine (~10 μM). For example, in Figure 2.4a, 9 particles are seen on a 16 micron 

nanotube; correcting for background coincidence in the image (5 particles) as well as nonspecific 

 

Figure 2.2 CNTFET bandgap 
affects kinetic rates of FBDP 
conductance quenching.   
(a) Small bandgap CNTs have 

slower kinetic rates than (b) large 

bandgap CNTs, as monitored by 

the IV characteristics measured 

after exposure to FBDP.  
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adsorption (1 particle, Figure 2.4b), we come to 3 particles/12 microns in this image. The total 

image area was 400 μm2, the total imaged CNT length was 48 μm, the total number of particles 

imaged was 2231, the number of particles on CNTs was 38, leading to an estimate of 4.3±0.8 

μm/particle. An equivalent area was measured (no pyrene-NHS) on a separate chip. 

 

 

2.4 Fabrication of single-molecule field effect 

transistors using sequential reactions within 

nanowells3 

A special case of the solutions discussed above is 

that if 𝑁 = 1 then there is not a local maximum; instead 

the probability of a single functionalization event rises 

rapidly to certainty. This is equivalent to the absorbing-

state master equation solved in Chapter 2. Therefore, 

since the diazonium adduct must add to a specific position on the nanotube surface, it is 

reasonable to suppose that using nanolithographic methods, the exposed area of the nanotube 

surface could be confined to a handful of reactive sites and, with optimization, perhaps just one. 

Even if this specific goal is unattainable, lowering the effective length of the nanotube will still 

have the effect of raising the smFET fabrication probability, as discussed above. 

                                                 

3 With Dr. Delphine Bouilly and Dr. Nathan Daly. Section is adapted from work published in Nano Letters in 2016. 

 

Figure 2.3 BHT, a radical 
scavenger, does not prevent 
FBDP-mediated reactions on 
CNT sidewalls. 
Reactions in the presence of 10mM 

BHT, as described in the text, and 

monitored by the IV characteristic.  
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Figure 2.4 Noncovalent smFET fabrication cycle 
 (a) Pyrene moieties, in this example bearing an NHS handle, are nonspecifically 

adsorbed onto the CNT surface (as well as everywhere else). DMSO is used to wash 

away the residual pyrene. Subsequently, a molecule attached to a primary amine is 

introduced to the solution causing it to conjugate to the pyrene. Subsequently, after time 

has passed or addition of DMSO, the last remaining pyrene will eventually desorb as 

well. (b) Example CNT that has gone through the first four steps with ~10nm gold 

nanoparticles. (c) Same, except without addition of pyrene-NHS, as a control. (d) Height 

profile of all the replicate images from (b), generated with the help of the vbscope model. 

 

A second problem with the above approaches is that there is no true negative control – all 

the CNTs are exposed to all the reagents. The nanolithographic process that allows for design 

and production of nanowells allows for positive controls because CNTs can be entirely covered 

instead of exposed within a nanowell, allowing for verification that functionalization with certain 

reagents is required for signals to manifest. 
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A third problem is that the charge distribution becomes increasingly inhomogeneous as 

the gate bias is more extreme relative to the source-drain bias. Assembly of the smFET using a 

nanowell allows this variable to be controlled because the molecule will eventually attach to the 

same place in the nanotube for every recording even on different chips. 

Finally, as compared with noncovalent functionalization methods, nanowells allow for 

covalent attachment of biomolecules to the CNT, increasing the time available for experiment 

10-fold. This is especially important for measurements of G-quadruplexes, which have kinetic 

rates that must be measured for several hours in order to gain precision and characterize dynamic 

heterogeneity. 

2.3.1 Results 

A mask was designed following the schematic shown in Figure 2.5a. The size of the 

nanowell was varied between 0 (positive control) and 4 microns, with an example 20nm 

nanowell shown in Figure 2.5b. The CNTs were then exposed to paracarboxydiazonium (CBDT) 

overnight in 100mM PO4 pH 8, likely resulting in a free-radical mediated grafting of the reagent 

to all available reactive sites57. Following, approximately 40 CNTs from each nanowell size were 

probed for conductivity using the Si as a back gate, results shown in Figure 2.5c. To analyze this 

data, the number of CNTs with equal or greater conductance from their initial probed values 

were counted, using the expectation value from a lognormal distribution to calculate the G/G0 

ratio threshold (Figure 2.5 c, d). Assuming that the number of reacted sites is Poisson-limited, 

𝜆 𝑒 /𝑛!, this count is used to estimate the Poisson parameter for each nanowell size. Shown in 

Figure 2.5e is the optimal size, 20nm (𝜆 = 1.39, 20% conductance drop; theoretical optimum 

𝜆 = 1) , compared with the next size up, 40nm. 
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As an additional test, it was found in previous studies43 that addition of 50µM 1-ethyl-3-

(3-dimethylaminopropyl)carbodiimide (EDC) to CNTs functionalized with carboxy groups led to 

fluctuations between two conductance classes. Following exposure of CNTs below 20nm 

nanowells (Figure 2.6a) or entirely covered CNTs with CBDT, ~30% of CNTs (2 out of 7) with 

20nm nanowells showed fluctuations between two conductance classes (Figure 2.6c), and none 

of the positive controls showed such fluctuations (predicated on not showing quantal fluctuations 

in buffer without EDC.) These fluctuations were observed to have dynamic heterogeneity – a 

mixture of two periods, one in which fluctuations between the two conductance classes were 

common and one in which fluctuations were rare. These fluctuations were interpreted as follows: 

the periods with rare fluctuations were likely CNTs without EDC, whereas periods with 

fluctuations were interpreted as internal rearrangements of EDC bound to the carboxylic acid 

functional group. The average lifetime of the fluctuations is shown in Figure 2.6d. Taking a 

running 1-sec window, these fluctuations were characterized using a Hidden Markov Model 

(HMM) in each window, and the average lifetimes and frequency of each equilibrium constant 

are shown in Figure 2.6 e and f.  

2.3.2 Discussion 

Chemistry in nanowells allows unprecedented geometric control over the reactive sites as 

well as considerable choice of chemical handles. The yield of the method was high, approaching 

35% both predicted from the conductance distributions as well as measured empirically by 

checking for two-level fluctuations using EDC. Nanowells can be fabricated on the wafer scale. 

Furthermore, additional chemical reactions can be continued on the same chip allowing 

fabrication of smFETs.  
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Figure 2.5 Effect of nanowell-confined chemistry on carbon nanotube devices. 

a. Mask design. A small window is opened in the channel. A positive (entirely exposed) and 

negative (entirely covered) control is included as part of the experimental design for Raman 

spectroscopy. b. AFM characterization of nanowells. c. Distribution of conductance change G/G0 

after CBDT exposure within nanowells of different sizes, compiled on N individual devices from 

the same nanotube (Ntotal = 196). Arrows indicate the expected conductance ratio from a log-

normal fit. d. Conductance ratio using 20 nm nanowell masks compared to control devices 

following CBDT exposure, as in c. averaged on N (indicated) devices from distinct CNTs. 

e. Probability of n functionalizations given a nanowell width. Circles represent measured points 

based on data in panel c; others extrapolated from a Poisson model. This figure is adapted 

without modification from Bouilly, D., et al (2016). Single-Molecule Reaction Chemistry in 

Patterned Nanowells. Nano Letters, 16(16), 6–12. Link: 

<http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02149>. Further permission requests to 
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reproduce this figure should be directed to the ACS. 

 

 

Figure 2.6 Real-time sensitivity to secondary reactions on the primary single-molecule 
probe. 
a. Design of smFET devices used in this study. b. CBDT-nanotube interacting with the 

carbodiimide group of EDC. c. Real-time response of a device in the presence of 50 µM EDC, 

after baseline correction, showing an active phase with two-state activity characteristic of rapid 

fluctuations in a single carboxy-EDC adduct. d. Zoomed trajectory and Viterbi trajectory 

obtained using parameters from a Hidden Markov model, revealing sub-millisecond fluctuations 

between two conductance classes. e. CDF of dwell-times for the high and low conductance 

classes, fitted using a single-exponential model to obtain average lifetimes <τhigh> and <τlow>.  f. 

Dynamic heterogeneity of EDC adduct, roughly described by measuring the average rate 

constant. This figure is adapted without modification from Bouilly, D., et al (2016). Single-

Molecule Reaction Chemistry in Patterned Nanowells. Nano Letters, 16(16), 6–12. Link: 

<http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02149>. Further permission requests to 
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reproduce this figure should be directed to the ACS. 

 

2.5 Reaction of CNTFETs with diazonium salts creates a point of heightened 

sensitivity4 

The basic scheme whereby diazonium salts react with CNTs is described above. 

However, in all the measurements described, it is difficult to tease apart the effect of a covalent 

modification on the spatial density of carriers across the nanotube, as well as to argue directly 

from the data that the point at which a sp3 defect in the generally sp2 CNT lattice will be of 

subsequent use as an attachment site for smFET fabrication. To make these arguments directly, I 

reasoned that the conductance response of a CNT could be mapped by passing an AFM tip 

(SCM-PIT, Bruker) over the surface as a mobile capacitor, a technique known as scanned gate 

microscopy (SGM)38,67, and recording the current map, I(x,y), translating that into the CNT 

coordinates as I(z). Finally, I designed an experiment using nanowells to place a reactive site at a 

predefined location, so that it could be subsequently mapped by SGM to directly visualize the 

effect of a point defect on the conductance response. In a limited number of cases, this response 

was centered at the putative defect site, directly explaining how in such cases an smFET interacts 

with the carrier distribution in the CNT. 

The general method for measuring the response of CNTs to a local scanned gate is 

schematized in Figure 2.7. The data was analyzed with a diffusing Lorentzian, fitting their 

current map I(x,y) so that it could be deconvoluted into CNT coordinates, I(z), see Appendix B. 

                                                 

4 Electronics designed by Scott Trocchia including the printed circuit board used to record the measurements. 
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Two methods have been discussed previously – dcSGM, which scans a biased tip at a predefined 

height, and tmSGM, which scans a biased tip at a sine wave about a predefined height with 

frequency equal to the tip resonant frequency68. Comparing the response of dcSGM and tmSGM 

directly (Figure 2.8) and determined that for CNTs with high baseline current, enough to 

populate frequencies equal to the resonant frequency of the tip, tmSGM has better sensitivity and 

spatial resolution than dcSGM. Unfortunately not every CNT has significant power at the 60-

120kHz range to give a significant response even prior to functionalization with diazonium. 

Therefore the technique here is limited to those CNTs whose source-drain current, before and 

after reaction, is significant enough to be detected at high frequencies. 

 

 

Figure 2.7  Collection and analysis of dc- and tmSGM 
data. 
 (A) In conventional SGM, a tip is held at a bias Vtip 

relative to the source; carriers flow as a result of a bias 
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Furthermore, tmSGM 

signals are proportional to the 

derivative of the capacitance rather 

than, as dcSGM signals, directly 

proportional to the capacitance68. 

Therefore it is necessary, when 

compiling maps, to carefully 

measure a wide array of tip-bias 

conditions in order to measure an 

accurate and representative map. 

Examples on pristine CNTs are 

shown in Figure 2.9. From a 

complete map, one can directly 

observe the Schottky barrier69 which forms at the entry point of current carriers into the channel. 

The Schottky barrier results from different Fermi levels between the channel and metal at the 

junction, and therefore maps the direction of current. In Figure 2.9a, the current flows from top 

to bottom whereas in Figure 2.9b, the current flows from bottom to top. The CNT shown here is 

ambipolar and semi-metallic, and Figure 2.9a/Figure 2.9b are two separate fragments of the same 

CNT. A large amount of peaked variation localized distal to the Schottky barriers is in most 

cases observed and, as the tip bias is brought to extremes, the landscape of the  

Vds between source and drain, and a gate bias Vg between 

the gate electrode and channel is applied as well. The tip 

is scanned to create a conductance map I(x,y). (B) In 

tmSGM, this is the same except the tip is oscillated at its 

resonant frequency and the map I(x,y) is filtered with a 

lock-in to that frequency.  (C) Data analysis of tmSGM 

or SGM data consists of fitting an image line-by-line to 

lorentzian functions ; R denotes diffusion either from 

growth of the nanotube, it is not necessarily a line in the 

image, or continuous variation in I(x,y). Generally, what 

will be shown in what follows is the max current 

variation, i.e. the peak of the individual lorentzians as a 

function of the CNT coordinate. 
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CNT changes, with the addition of peaks in 

locations that did not previously possess 

them. A possible explanation for this is that 

at the extreme potentials, 𝑉 − 𝑉 < 2𝑉 

for instance, secondary effects such as 

accessibility of previously inaccessible 

current modes or direct contact between the 

tip and CNT can occur. Defining, therefore, 

the biases between 𝑉 − 𝑉 <2V as the 

region of linear response, one can see that 

even within this radius, the positive and negative biases are not strictly mirror images of each 

other, though they are close. This slight variation is likely a result of the long acquisition time 

required to generate these images – close to 8 hours for each full dataset in Figure 2.9 – though 

direct localization is further complicated by the fact that at high tip biases the surface itself will 

deflect the tip at an angle as it is scanned. Direct transfer of current carriers into the CNT through 

the tip is unlikely as this is not observed when the metal contacts are scanned. 

Aside from the Schottky barrier, none of the variations observed in the I(z) map of these 

CNTs are a priori predicted. Two separate hypotheses can be put forward, neither of which is 

easy to directly test. First, the CNT could possess, already, numerous defects in its surface70. 

Indeed, CNTs that were not straight and had kinks were observed to possess SGM sensitivity 

peaks at those kinks68. Second, the CNT response could be a function of the wavefunction of the 

particular mode that dominates at room temperature, which could have peculiar spatial variation, 

as predicted from the theory of 1D conductance23,71. However, because the chirality of the CNT 

 

Figure 2.8  Comparison of dcSGM signal with 
a tmSGM signal on the same CNTFET. 
 (A) dcSGM signal. (B) tmSGM signal. The 

tmSGM signal has better spatial resolution and 

20-fold higher response. 
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in many of these cases is unknown and the CNT-metal junction difficult to model even were it 

known, and further, because defects in the CNT are likely and perhaps even generated by the tip 

itself39, comparing theory to experiment at this stage possesses its own challenges. 

Therefore, an experiment was designed to directly observe the resulting carrier response 

to introduction of diazonium covalent adducts to the CNT sidewall at geometrically defined 

positions, so that the potential response could be mapped when defects of a known type were 

intentionally introduced. First, the CNT was scanned at one potential using tmSGM (to preclude 

tip-mediated defect introduction). Second, a nanowell, described in the previous section, was 

introduced into the center of the channel and the chip was immersed in 10mM carboxydiazonium 

(CBDT) at aqueous pH 8 overnight, including positive and negative control regions for Raman 

spectroscopy. The acetonitrile chemistry described above could not be used because the 

acetonitrile solvent was unfortunately found to dissolve the PMMA window, and therefore as it 

took place in aqueous conditions the reaction likely proceeded via a free-radical mech- 
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anism described elsewhere57 leading to 

the introduction of covalent diazonium 

grafts to the CNT sidewall within the 

confines of the nanowell. The chip 

was subsequently washed, wired, and 

mapped again using tmSGM, this time 

at numerous bias potentials, shown in 

Figure 2.10.  A highly significant 

response was observed in the region 

where the nanowell was placed, which 

did not previously exist in the channel 

(Figure 2.10b, c). This modulation was 

likely associated with covalent 

reactions with the CNT sidewall 

because comparison of the Raman 

spectra of positive and negative control regions revealed a D-band peak72 in the unexposed 

region (Figure 2.10e). Furthermore, while thermal annealing at 350C in vacuum removed the D-

band peak in this control window, subsequent tmSGM images compiled after the anneal step 

continued to reveal localized sensitivity at the point where the nanowell was introduced, 

indicating that the defect was introduced in such a way that the CNT could not “self-repair” 73 

(Figure 2.10d). 

Careful examination of the tmSGM response reveals that the peak shown in Figure 2.10c 

is not symmetric – like the Schottky barriers themselves, the response peak presents an initial 

 

Figure 2.9  tmSGM signals on pristine CNTs. 
 (A) and (B) show the raw data for each CNT at the 

various potentials, whereas (C) and (D) show the I(z) 

in CNT coordinates as a function of channel position, 

following analysis with the model described in Figure 

2.7. 
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barrier and subsequently tapers off in the direction of current. This result is anticipated from the 

theory of 1D conductance: the covalent perturbation presents a barrier which has the effect of 

purifying the carriers and enriching modes that possess a higher energy and therefore traverse the 

barrier. This perspective is supported by the fact that much of the natural variation in this CNT 

has vanished subsequent to introduction of the peak. The mode structure in the channel has 

changed, and the “ground” set of states observed in the pristine CNT is no longer the dominant 

current carrying family. Either these states are at a high enough energy level that the kinks are 

invisible or their spatial variation is distinct from the “ground” set of states. 

These results in general give a framework for how smFETs prepared using covalent 

adducts to the CNT sidewall subsequently sense the conformational change of single molecules. 

smFETs prepared using the conditions describe here likely have a point of dominant sensitivity 

which is also the point at which the CNT is most reactive, if chemical handles are introduced 

concurrently to the diazonium functionalization. Therefore when a molecule is attached to the 

CNT, it does so at a point that, because of the covalent attachment, is the most sensitive to 

changes in charge composition. 

How then, do smFETs designed around noncovalent attachment function? The answer is 

shown in Figure 2.9 – my argument is that the CNT possesses enough natural variation, either 

due to its peculiar electronic structure of pre-existing points of sensitivity owing to defects 

introduced during growth or fabrication, that noncovalent attachment at one of these points by 

chance may give enough signal for measurement of intra- or inter-molecular interactions through 

its use as a point site of a noncovalent graft. 
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Figure 2.10  Precise geometric introduction of sp3 defects using 
diazonium salts. 
 (A) I(x,y) maps at various tip biases, indicates to the right, following 

exposure to carboxybenzenediazonium, as described in the text. The red 

box indicates the approximate location of the nanowell. (B) I(x,y) map of 

the same device before exposure to diazonium. The arrow indicates the 

eventual location of the nanowell. (C) I(z) map after exposure to 

diazonium. The arrow indicates the location of the nanowell. (D) I(z) map 

after annealing the to remove diazonium adducts. The arrow indicates the 

location of the nanowell. (E) Raman spectra of the positive (red, fully 

exposed) and negative (black, fully covered) control locations. (F) 

Argument for peak shape – higher energy conductance states have a larger 

probability of passing through a barrier created by an sp3 defect than lower 

energy conductance states. 
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Chapter 3  Single-Molecule Computational Methods 

3.1 Introduction 

 Single-molecule observable versus time trajectories, from recordings of quantum 

transitions between the polarity of the magnetic moment of an isolated electron74 to recordings of 

ribosomal fluctuations in solution75, bear strong mathematical analogies. Because the timescales 

of different types of fluctuations are widely separated, to the experimentalist recording the 

observable versus time trajectory of the isolated molecule, the molecule appears to 

spontaneously and discontinuously jump from one state into another; whereas in reality, the 

molecule continuously varies between its competing atomic configurations in what may be 

conceptualized as a series of mechanistic steps. Examples of such trajectories may be found in 

Chapters 2, 4, and 5.  

 The principal problem facing analysis of single-molecule data is reverse engineering: 

using a trajectory or group of trajectories collected in an experiment, one must simultaneously 

discover the set of dynamic equations that could possibly have led to the data and estimate the 

parameters that tune the frequency of transitions between discrete states. In many cases, this 

amounts to taking the observation of discrete states of a label, assigning those states to 

configurations of the molecule, and measuring the rates of interconversion between the various 

states. The trajectory or collection of trajectories is understood when the number of states has 

been counted and the rates of interconversion between those states have been measured. In this 

thesis, I identify and computationally address three specific problems associated with the 

analysis of single-molecule data. 
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First, to accurately reconstruct the dynamic equations and therefore the behavior of the 

ensemble, a first step is rigorous identification of molecules. The prototypical case described 

here is the identification of isolated molecules from an optical microscopy image. In this case, 

the challenge is finding all subpopulations of chromophores in an image without systematically 

missing any given types. The problem of, in an unbiased way, computationally locating all the 

molecules in a series of observations of single-molecules in an optical microscopy image is 

referred to as the molecule identification problem. 

Next, on the level of the observable versus time trajectories, as a result of timescale 

separation, the system is assumed to possess no history at a coarse enough timescale, so that the 

time at which measurement began is in many experimental designs arbitrary. Therefore it is 

typically assumed that the equations governing dynamic evolution of the trajectory come from 

the family of Markov jump stochastic differential equations. Because they are discretely sampled 

by some apparatus, trajectories generated by such continuous-time equations are typically 

modeled using discrete-time Markov chains. However, because of technical limitations inherent 

in current technology, the observable in single-molecule experiments does not typically report 

the position and momentum of every atom in the system. Therefore, while the system in general 

may be adequately modeled with a Markov chain with respect to all its components resulting for 

example from numerous and rapid thermal fluctuations mediated by collisions with the 

environment, with respect to the limited observable, the trajectory may appear to have dynamic 

organization or patterns that result from rearrangements in parts of the molecule that are hidden 

from the measurement. Such patterns can manifest as sudden and random changes in the 

frequency of transition between states, and the problem this presents for analysis of single-

molecule data is referred to as the dynamic heterogeneity problem.  
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Lastly, in conductance versus time trajectories collected using single-molecule field 

effect transistors (smFETs), the amplitude and fluctuations of the observable arise from many 

physical processes distinct from the fluctuations of the molecule of interest. These separate 

fluctuations, while unrelated to the molecular motions under study, nevertheless diffuse as well. 

This leads to a fluctuation in the amplitude of the observable associated with a given state, as 

both the conformational changes of the molecule and the environmental fluctuations are, in this 

example, detected using the same electric current, and the problem this presents for the analysis 

of single-molecule trajectories is referred to as the emission drift problem. 

In this chapter, three computational algorithms are presented which offer solutions to the 

molecule identification, dynamic heterogeneity, and emission drift problems. They present 

significant improvements to current techniques tackling the same issues. All the algorithms 

described here utilize Bayesian inference using the variational approximation. Algorithms 

utilizing Bayesian inference make use of the insight that all measurements have some form of 

uncertainty, and the technique uses specific assumptions about the error inherent in each 

individual observation in order to measure, instead of just the parameters, a probability 

distribution over all possible parameters. This is known as the posterior distribution76. This 

stands in contrast to a maximum likelihood approach which endeavors to measure point 

estimates of parameters only77–80. When applied to the molecule identification problem, the 

unified approach presented in this chapter allows complete identification of isolated molecules in 

optical microscopy images, registration of disparate imaging channels, and superior intensity 

estimation. This ultimately leads to a two-fold increase in the signal-to-noise of the subsequent 

chromophore intensity versus time trajectory17,81,82. When applied to the dynamic heterogeneity 

problem, the approach presented in this chapter leads to rigorous quantification of the rates of 
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change of dynamic behavior, which have previously been unquantifiable77–80, even those 

utilizing a Bayesian inference framework83–85. Finally, when applied to the emission drift 

problem, by integrating previous approaches86 with Markov models, the approach presented in 

this chapter leads to a four-fold increase in the accuracy of the quantification of rates with 

respect to the amount of diffusing noise corrupting the observable versus time trajectory of the 

molecule over current approaches that do not account for emission drift. Together the solutions 

to these problems allow for, in particular, rigorous quantification of the conductance versus time 

trajectories of molecules attached to field effect transistors, as described in Chapters 2, 4, and 5. 

In summary, this chapter describes the development of single-molecule computational 

methods that find, pick apart, and quantify observable versus time trajectories. I begin with a 

theoretical description of the information these trajectories contain--in particular, I outline 

continuous, Markovian dynamics. Next, I describe the theoretical computational framework, 

based on the variational approximation to Bayesian inference, used for all practical applications 

in this chapter. Finally, I describe each of the methods representing contributions from this thesis 

work – for the molecule identification problem, for the dynamic heterogeneity problem, and for 

the emission drift problem – utilizing the variational approximation to Bayesian inference. 

3.1.1 Dynamics 

This thesis is concerned with “rates” between “states”. A “state” may be defined as an 

equivalence class of atomic configurations that a system may take, and a transition may be 

defined as a jump between equivalence classes. Physically, a molecule jumps between states 

when there exist mixtures of timescales so that the configurational subspaces associated with the 

wait times between transitions can be decomposed and considered independently from one 



 

46 

 

another. An account in terms of the precise size of the minima of a rugged multidimensional 

energy landscape is given in Langer et al87. 

In general, investigators typically assume that, as a result of numerous and rapid thermal 

fluctuations coupling the environment to a molecule, the configuration of the molecule at a given 

instant only depends on its most recent previous configuration. A caveat, however, is that an 

experimental apparatus does not measure any property in continuous time, but instead regularly 

samples a continuous process with some time-resolution. This is the difference between a 

continuous time Markov process, which characterizes the actual molecular motion, and a discrete 

time Markov chain, which characterizes what is actually recorded by an apparatus. From a 

practical point of view, single-molecule observable versus time trajectories are constrained to be 

the latter, while generated by the former; the goal of analysis is to estimate the parameters of the 

continuous time process using its recorded representation as a discrete chain. In this subsection, 

which forms preliminary material for the practical material subsequently presented, the 

relationship between the discrete and continuous models is examined in detail. Following this 

largely mathematical discussion, the theoretical technique underlying the computational 

algorithms, which has been previously developed by others (see 76 for an alternate exposition), is 

introduced in generality. The overall goal to this section is to provide the mathematical 

underpinnings to the computational models developed below, which utilize Hidden Markov 

Models (HMMs) in a Bayesian inference setting using the variational approximation, as well as 

to develop the underpinnings necessary to describe the computational model developed for 

fluorescence imaging analysis. 
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3.1.1.1 Continuous-time Markov Processes 

In this section I will describe a conventional, empirical, non-equilibrium, dynamical 

theory that will be henceforth be used to discuss the experiments described in subsequent 

chapters. Specifically, I will discuss the Markov jump master equation, synchronicity, 

equilibrium and approach to equilibrium, fractional occupancies and distribution measures over 

Δ𝐺 values in dynamical systems, discrete likelihoods for dynamical state spaces which jump 

between states and arbitrary conditions, and conclude with analytical results on tridiagonal 

matrices. These properties all manifest as the result of the dynamics of a continuous-time 

Markov process. 

Equilibrium and non-equilibrium dynamics can be abstractly considered in the context of 

a transition function which governs the probability of exchange of the system between a finite or 

countable number of discrete states. I will loosely follow the exposition presented by 

Todorovic62. This level of theory is sufficient to describe dynamics that are well-separated, such 

as binding events, microsecond-level spontaneous or factor-dependent conformational changes, 

and in the small barrier limit, transport. Suppose there is some state space {Ω  ⊂ Ω | Ω ∩ Ω =

∅, 𝑖 ≠ 𝑗, (𝑖, 𝑗) ∈ ℕ} which is here either finite or countably infinite. The transition function is 

defined by  

𝐴(𝑡, 𝑠) ≡ 𝑝 𝑡, 𝑠, Ω , Ω = 𝑝 Ω(𝑡) = Ω  | Ω(𝑠) = Ω , 𝑡 > 𝑠 ≥ 0  

and is called homogeneous if  

𝐴(𝑡 − 𝑠, 0) = 𝐴(𝑡, 𝑠), 𝑡 > 𝑠 ≥ 0 

A process is Markovian if the transition function defined above equals the conditional describing 

its entire history. I will assume that there is an 𝜖 > 0  such that 𝑝 𝑡 + 𝜖, 𝑡, Ω , Ω > 0 and that 
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the transition functions are a non-Abelian (i.e. time ordered and therefore non-commutative) 

semigroup according to the Kolmogorov-Chapman equation: 

𝑝 𝑡, 𝑠, Ω , Ω = 𝑝(𝑡, 0, Ω , Ω )𝑝 𝑠, 0, Ω , Ω , 𝑡 > 𝑠 ≥ 0 

3-1 
which allows the semigroup condition to be satisfied for the transition function, considered as a 

matrix: 

𝐴(𝑡 + 𝑠, 0) = 𝐴(𝑡, 0)𝐴(𝑠, 0), 𝑡 > 𝑠 ≥ 0 

It can be shown62 with these conditions the associated semigroup admits a generator known as 

the rate matrix: 

𝑄 ≡ 𝑞 = lim
→

𝑝 𝑡, ℎ, Ω , Ω − 𝛿

𝑡 + ℎ
, (𝑖, 𝑗) ∈ ℕ × ℕ  

3-2 
For example, a homogeneous rate matrix may be constructed by setting ∑ 𝑞 = −𝑞 , setting 

0 ≤ 𝑞 < ∞ , and setting = 0 , which collectively give rise to a homogeneous transition 

function. If there are a finite number of states, which is true in many practical cases, and no state 

is absorbing, that is, −𝑞 < ∞  for all 𝑖, and the rate matrix is homogeneous, then: 

𝑑𝐴

𝑑𝑡
≡ lim

→

𝐴 (𝑡 + ℎ, 0) − 𝐴 (𝑡, 0)

ℎ
= 𝑝(𝑡, 0, Ω , Ω ) lim

→

𝑝 ℎ, 0, Ω , Ω − 𝛿

ℎ

= 𝑝(𝑡, 0, Ω , Ω ) 𝑞 = 𝐴 𝑞  

which is known as the forward equation. However, this equation could also be defined in the 

dual space: 

𝑑𝐴

𝑑𝑡
= lim

→

𝑝(ℎ, 0, Ω , Ω ) − 𝛿

ℎ
𝑝 𝑡, 0, Ω , Ω = 𝑞 𝑝 𝑡, 0, Ω , Ω = 𝑞 𝐴  
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which is known as the backward equation. These equations immediately give rise to the master 

equation for the evolution of some occupancies associated with the state space 𝜌(𝑡) =

𝑝(𝑡, Ω ) for all  𝑖 = {1 … 𝑛} : 

𝜌(0)
𝑑𝐴

𝑑𝑡
=

𝑑𝜌(𝑡)

𝑑𝑡
= 𝜌(0)𝐴(𝑡)𝑄(𝑡) = 𝜌(𝑡)𝑄 

3-3 
When the rate matrix is homogeneous, the master equation has the formal solution associated 

with a measurement at 𝑡 = 0: 

𝜌(𝑡) = 𝜌(0)𝑒  

3-4 
There are three extensions worth mentioning which find no use in this thesis and are therefore 

not developed here. A simple extension of these arguments, i.e., requiring them to be self-

referential, allows derivation of the chemical master equation, for when 𝑄 depends on the size of 

the overall population. Secondly, the master equation on a finite or countably infinite state space 

can be easily extended to the Fokker-Planck, or sometimes Smoluchowski, equation88 to describe 

diffusion over a continuous state space – in this case a rate matrix is not sufficient and the 

equation takes the flavor of an inhomogeneous wave equation. Finally, I note that these 

equations are all results on classical probabilities of which an underlying density matrix 

formulation may be constructed instead by allowing for complex amplitudes in a quantum 

mechanical framework, for example, using the Lindblad equation89 or Generalized Master 

equation90 which, again, finds no use here. 

As a simple example, consider a two state Markov process with a rate matrix given by: 

𝑄 =
−𝑘 𝑘
𝑘 −𝑘

 

In this case, solving the master equation is trivial, since: 
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𝑄 = −(𝑘 + 𝑘 ) 𝑄 

→ 𝑒 =
𝑡

𝑘!
𝑄 = 𝐼 −

1

𝑘 + 𝑘

(−1) (𝑘 + 𝑘 ) 𝑡

𝑘!
𝑄

= 𝐼 +
1

𝑘 + 𝑘
𝑄 −

𝑒 ( )

𝑘 + 𝑘
𝑄 

where 𝐼 is the identity matrix. When at least one of these rates does not vanish, synchronizing the 

process into the first state gives: 

𝜌(𝑡) =
1
0

𝐼 +
1

𝑘 + 𝑘
𝑄 −

𝑒 ( )

𝑘 + 𝑘
𝑄 =

⎣
⎢
⎢
⎢
⎡
𝑘 𝑒 ( ) + 𝑘

𝑘 + 𝑘

𝑘 1 − 𝑒 ( )

𝑘 + 𝑘 ⎦
⎥
⎥
⎥
⎤

 

Note that this process has a well-defined equilibrium distribution, which is reached regardless of 

the initial conditions (which can be shown with an arbitrarily normalized initial distribution): 

lim
→

𝜌(𝑡) =

⎣
⎢
⎢
⎡

𝑘

𝑘 + 𝑘
𝑘

𝑘 + 𝑘 ⎦
⎥
⎥
⎤

 

On the other hand, in the limit where one of the two states is absorbing – ie, after entering that 

state, there are no transitions out – we can write: 

lim
→

𝑒 =
1 0
0 1

+
−1 1
0 0

+ 𝑒 −𝑒
0 0

= 𝑒 1 − 𝑒
0 1

 

which gives a simple model for the population evolution near an absorbing state, such as an 

irreversible chemical reaction: 

𝜌(𝑡) = 𝑒
1 − 𝑒
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The preceding example illustrates three important concepts that are deeply entwined. The 

first is equilibrium – in the two state system, an equilibrium distribution was reached out of the 

balance of the flux in and flux out of the respective states. The second is first-passage near an 

absorbing boundary – when the second state had no way of transitioning out, it simply charged 

up at the expense of the first with a characteristic time occasionally called the “first passage 

time.” The final concept, which I will use mainly as a graphical device, is synchronicity – when 

measuring ensembles of time-series, synchronizing them to a shared initial condition, as opposed 

to a random as-measured initial condition, can yield descriptive plots of time evolution. I will 

discuss each in turn. 

For homogeneous rate matrices, equilibrium can be defined quite simply as the condition 

for which the following holds: 

0 = 𝜋𝑄 

3-5 
where 𝜋  is called the equilibrium distribution. This is condition is derived by setting the 

derivatives to vanish in the master equation. There are two natural questions – how many 

equilibria are consistent with a matrix 𝑄, and what conditions are necessary and sufficient for the 

system to eventually reach its equilibrium? If a continuous time markov process with a countable 

state space has the following properties – (1) every state can be reached from every other 

(“irreducible”), (2) the process continues to transition between states forever (“regular,” or “non-

explosive;” a more technical description is, the sequence  defined by the times at which 

transitions occur, which is monotonically increasing, has no finite limit), (3) the process always 

eventually returns to every state (“positive recurrent”) – then these are necessary and sufficient 

for the existence of a unique equilibrium state, i.e., the solution to 0 = 𝜋𝑄, which, given: 
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𝜇 =
1

𝑑𝑖𝑎𝑔(𝑄)𝑅
 

where 𝑅 = 𝐸 ∫ 𝑑𝑠 , 𝑖 ∈ {1, … , 𝑛}  is the expected time it takes to return to a state after 

leaving it, is equal to: 

𝜋 =
𝜇

∑ 𝜇
 

The collected conditions (1)-(3) are referred to as the conditions for the process to be ergodic (for 

a full account see 91). Therefore, there is a strong relationship between the equilibrium 

distribution and the first-passage times associated with the rate matrix. 

 Clearly then, there is a quantitative connection between the concept of chemical 

equilibrium and the straightforward representation afforded by the equation above. This 

connection may be found by considering the long-run time in a state. For example, suppose, for 

simplicity, that 𝑁 separate draws, i.e. independent molecules, from an equivalent synchronized 

point with an equivalent homogeneous rate matrix 𝑄  are given, i.e., a Gibbs-type state 

preparation, where each molecule follows the same overall laws yet remains random. At any 

given time, the fraction of draws from a state matches the formal solution of the master equation, 

and therefore the fraction itself follows:  

𝜌(𝑡) = 𝜌(0)𝑒  

and more importantly, the number of molecules in any given configuration, 𝑛 , at any given time 

follows: 

𝑝 𝑛 |𝜌 (𝑡) =
Γ ∑ 𝑛 + 1

∏ Γ 𝑛 + 1
𝜌 (𝑡)   
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where Γ denotes the gamma function. While for simplicity, I have assumed that all the molecules 

begin with an equivalent initial condition, one could easily conceive of solutions where the initial 

condition was random or arbitrarily deterministic across the set of molecules. This latter equation 

is a multinomial distribution, and is interesting because it may be used to define the distribution 

about the expected free energy at equilibrium; first noting that we must invert: 

𝑝(𝜌 (𝑡)|𝑛 ) =
𝑝 𝑛 |𝜌 (𝑡) 𝑝 𝜌 (𝑡)

𝑝(𝑛 )
 

Following observation of a given realization: 

𝑝({𝜌 (𝑡)}|{𝑛 }) =
𝑝 𝑛 |𝜌 (𝑡) 𝑝 𝜌 (𝑡)

𝑝(𝑛 )
=

∏ Γ 𝑛 (𝑡) + 1

Γ(𝑁 + 1)
𝜌 (𝑡)   

This is a Dirichlet distribution. It can be used to derive the free-energy landscape distribution at a 

given temperature (β ≡  where here and only here does 𝑇 refer to temperature): 

𝑝({Δ𝐺 (𝑡)𝛽}|{𝑛 }) ≡ 𝑝 log 𝜌 (𝑡) |{𝑛 } =
∏ Γ 𝑛 (𝑡) + 1

Γ(𝑁 + 1)

𝑒 ( )

𝜌 (𝑡)
 

3-6 
Ergodicity is not required to derive this distribution and it therefore admits absorbing states, as 

does the master equation above, as shown in the example. This equation is nothing more 

mysterious than the law of mass-action. 

Finally, first passage times and synchronicity, which are two concepts which are very 

closely related, will be briefly discussed. The first passage distribution of a given state is, given a 

master equation and initial state distribution, the distribution of the first time that state gets 

occupied. Calculating this distribution occurs by setting the state of interest as an absorbing state 

and calculating the rate of change of its occupancy given an initial distribution. Most questions 
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of interest regarding first passage times regard how a state is occupied following synchronization 

into a given state or after a given condition. For example, the recurrence condition involved in 

the calculation of the equilibrium distribution would consider first passage times following exit 

from a state 𝑖 ∈ {1, … , 𝑛} and terminating once more in the same state. 

 Having described the dynamic theory, I now begin working towards a description 

required for the practical contributions of this thesis in this section. These require, (1) inference 

on the conditional discrete-time master equation and (2) analytical results for occupancies of 

finite-state tridiagonal matrices. 

3.1.1.2 Discrete-time Markov Chains 

 A countable set of sequential draws from a homogeneous, regular, continuous time 

markov chain has a representation as a discrete-time markov chain. This representation is closer 

to the practical world, in which regularly sampled measurements of a given chain are observed 

so that the process appears to evolve in discrete time although the underlying physical process 

evolves in continuous time. In this case, the time evolution for the master equation, can be 

transformed: 

𝜌(𝑡) = 𝜌(0)𝑒 → 𝜌(𝑡 + Δ𝑡) = 𝜌(𝑡)𝑒 ≡ 𝜌(𝑡)𝐴 

where 𝐴 is known as the transition matrix associated with the sampling time resolution Δ𝑡. The 

discrete case is important to consider because it describes what many measurements, such as 

single-molecule measurements described in this thesis, directly observe. This requires, in 

general, derivation of the distribution governing the likelihood of the various realizations of a 

physical process. 

 I will first derive the likelihood function in the simplest case – where there is a single rate 

matrix and therefore a single transition matrix. Suppose that a family of independent sequences 
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of states {𝑧 , 𝑡 ∈ 1 … 𝑇 , 𝑛 ∈ 1 … 𝑁} has been given and each observation in each sequence has 

been assigned without uncertainty to one of 𝐾 states. I will derive the likelihood of observing 

this family of sequences as well as the distributions over the transition matrix and initial state 

probabilities. To begin with, following standard references76, a few definitions – since the 

sequence is perfectly observed, it may be summarized by the running counts of the state-to-state 

transitions 𝑐 , (𝑖, 𝑗) ∈ 1 … 𝐾, 𝑛 ∈ 1 … 𝑁  and the running counts of the initial state occupancies 

{𝑚 , 𝑖 ∈ 1 … 𝐾}. The likelihood function for one of the sequences is: 

𝑝 𝑧 … 𝑧 = 𝑝 𝑧 |𝑧 , … 𝑧 𝑝 𝑧 , … 𝑧 = 𝑝(𝑧 ) 𝑝 𝑧 |𝑧 , … 𝑧

= 𝑝(𝑧 ) 𝑝 𝑧 |𝑧 , = 𝜋 𝐴  

where the second-to-last line follows from the markov property, 𝜋  is the initial state probability 

(supposing that the sequence starts in some state 𝑙 ), and the last line is simple accounting. 

Overall, since they are independent, the sequences have the likelihood, defining ∑ 𝑐 = 𝑛 : 

𝐿 = 𝑝 𝑧 … 𝑧 , 𝑡 ∈ 1 … 𝑇 , 𝑛 ∈ 1 … 𝑁 = 𝜋 𝐴  

3-7 
Applying a constrained optimization to the log-likelihood function, the following may be 

observed: 

𝜆 +
𝜕 log(𝐿)

𝜕𝐴
= 𝜆 +

𝑛

𝐴
= 0 → 𝜆 𝐴 = 𝜆 = − 𝑛 → 𝐴 =

𝑛

∑ 𝑛
 

Similarly, the most likely initial state probabilities can be given: 
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𝜋 =
𝑚

∑ 𝑚
 

However, this is not the most informative set of equations, because while the underlying premise 

of using the likelihood function is that some sequences are more likely than others, which will 

affect the estimate of the transition matrix, there is not yet any information on how the matrix 

elements and initial probabilities themselves are distributed. In other words, we have no measure 

as yet as to the precision to which the parameters are estimated. This can be rectified by noticing 

that the likelihood may be expressed as separable factors, 𝑞: 

𝐿 = 𝜋  𝐴 = 𝑞({𝑚 }|𝜋) 𝑞 𝑛 𝐴, 𝑖  

3-8 
Normalizing each of the factors gives 𝐾 + 1 separate multinomial distributions: 

𝑝 {𝑛 }|𝐴, 𝑖 =
Γ ∑ 𝑛 + 1

∏ Γ 𝑛 + 1
𝐴  

𝑝({𝑚 }|𝜋) =
Γ ∑ 𝑚 + 1

∏ Γ 𝑚 + 1
𝜋  

It is instructive to notice that these are the probability of drawing a set number of times from 𝐾 

categories with replacement. These probabilities supply 𝑝 {𝑛 }|𝐴, 𝑖  and 𝑝({𝑚 }|𝜋); we can 

now use Bayes’ theorem to supply 𝑝 𝐴, 𝑖|{𝑛 }  and 𝑝(𝜋|{𝑚 }). The conjugate prior for the 𝐾 

distributions over the second index of 𝐴  as well as the distribution over the initial state 

probabilities 𝜋 (and subsequently, their posterior predictive distributions), are each independent 

Dirichlet distributions92. With this parameterization, the average transition matrix elements and 
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initial state probabilities are now equal to an expectation over the posterior predictive 

distribution: 

𝐴 = 𝐸 𝐷𝑖𝑟 𝐴, 𝑖|𝑛 , 𝛼 , =
𝑛 + 𝛼 ,

∑ 𝑛 + 𝛼 ,

 

𝜋 = 𝐸 𝐷𝑖𝑟 𝜋|𝑚 , 𝛼 , =
𝑚 + 𝛼 ,

∑ 𝑚 + 𝛼 ,

  

where 𝛼  are the prior expectations for how many counts will be observed. In Appendix A, I will 

show the solution to the case where which state each sequence occupies in a given time is 

unknown, (i.e, a Hidden Markov Model.) 

 I next derive the likelihood function for the case where there are arbitrarily complex 

layers of conditions required for transitions between certain types of classes. First, I define a 

multilevel state variable {𝑧 , 𝑛 ∈ 1 … 𝑁, 𝑡 ∈ 1 … 𝑇 , 𝑑 ∈ 1 … 𝐷}  for 𝑁  independent sequences, 

each of which have a separate length 𝑇  and each of which has at most 𝐷 distinct conditions that 

are simultaneously met whenever the state is occupied. This state arrangement can be visualized 

as a tree of conditions, with stratified levels. Suppose that this family of independent sequences 

has been observed without uncertainty. At each time step, each multilevel state variable 

transitions entirely to the next one in a manner analogous to the markov chain above, which 

leads to the following likelihood function: 

𝐿 = 𝑝 𝑧 … {𝑧 }

= 𝜋 , 𝐴
, ,

𝐴
, , ,  

𝜋 , ,
𝐴 , ,  

𝛿 ≡ 1 𝑖𝑓 𝑧 = 𝑧 ,  𝑜𝑟 𝑑 > 𝐷, 𝑒𝑙𝑠𝑒 0  

3-9 
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As for the simpler case above, suppose that, having gone through the sequence carefully, a count 

has been provided for each time a transition occurs. As above, there are many distinct types of 

counts: 𝑛  transitions between the subset of the Ω  states at level 𝑑  that they communicate 

with: that is, 𝑖, 𝑗 ∈ 1, … , ≡ Ω  , 𝑒  transitions from a state 𝑖 ∈ 1, … , Ω  in the 𝑑 level to its 

parent condition in 𝑑 − 1 level, and 𝑏  transitions from a state at level 𝑑 to one of the ones 

below it, in 𝑖 ∈ 1, … , Ω  which also include the initial state counts. As before the likelihood 

can be rewritten in terms of these counts as follows: 

𝐿 = 𝜋 𝐴 , , 𝐴  

3-10 
Just as above, because the probability space at each of the levels is closed since conditional 

probabilities are closed within their restricted sample space, this more complex likelihood may 

be analogously normalized into a factors consisting of multinomials with conjugate Dirichlet 

priors which are then used, in conjunction with the counts, to calculate posterior distributions 

that describe the expected parameters as well as their density in probability space. In the case 

where the state designation of the sequence is uncertain, this likelihood is used to construct a 

Hierarchical Hidden Markov Model. While both of these models are approximations to the true 

physical process in continuous time, in fact, both can be “glued back together” using a more 

complex likelihood that uses pseudo-counts to re-estimate the continuous-time generator93. The 

central point here, however, is that for discrete-time likelihoods, the sufficient goal is to 

accurately calculate counts, and the implicit distributions take care of updates, credible intervals, 

etc, from there. This is a specific case of a more general theory discussed later. 
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3.1.1.3 Dynamics of finite state tridiagonal matrices 

Tridiagonal rate matrices describe population evolution in sequential systems. In this 

thesis I will be concerned with these systems in terms of zipping – transition from a helical form 

to a dissociated form one monomer at a time – and unzipping – the reverse process. However, 

they appear in more quixotic ways in this thesis as well – for example, the space of transport 

modes in a carbon nanotube possesses a tridiagonal Hamiltonian in the tight-binding 

approximation. The model could, obviously, be extended to describe diffusion of any polymer 

through a nanoscale pore. I will consider two cases: first, the case where the monomers are 

indistinguishable and the chain is infinitely long; second, the case when the monomers are 

distinguishable and the chain is finite. In both cases, I will derive the exponential for a finite 𝑛-

state tridiagonal rate matrix which, as described above, immediately gives the time dependence 

of all the states; I will also show the solution for the inverse of a finite 𝑛-state tridiagonal matrix. 

The simplest possible model for the zipping or unzipping of a nucleic acid is a model 

wherein a stacking nucleus forms by pairing of two adjacent bases, and the rest of the bases 

assemble by pairing contiguously – and only contiguously – to the nucleus. In other words, the 

probability of a state with 𝑛  bases paired, designated 𝜌 (𝑡) , has the rate matrix 𝑄  which is 

designated according to some assumptions of how the underlying physics are organized. I will 

first assume that there is a single pairing rate, 𝜆, and a single unpairing rate, 𝜇. It can be shown, 

using for example the method of generating functions, that this model is ill-posed in the infinite 

𝑛 limit, where 𝑛must be positive, because nothing prevents, in the long run, the occupancy of 

lim → , → 𝜌 (𝑡) = 1 subsequently depleting the occupancies of the rest; however, in the finite 

𝑛 limit, one may proceed by locating the eigenvectors {Ξ } and eigenvalues {𝜉 } and using them 

to calculate the matrix exponential of 𝑄 according to 𝑒 = Ξ𝐷Ξ , 𝐷 = 𝐷𝑖𝑎𝑔 𝑒 , … , 𝑒 . I 
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will calculate {Ξ }  and {𝜉 } by adapting the method of Yueh94. First noting the following 

definitions: 

cos 𝜃 =
𝜉 + 𝜆 + 𝜇

2 𝜆𝜇
 

𝜈 =
𝜆

𝜇
 

Adapting equation (5) in Yueh for 𝑛 states, i.e., possible base pairs: 

sin (𝑛 + 1)𝜃 −
𝜆 + 𝜇

𝜆𝜇 
sin(𝑛𝜃) + sin (𝑛 − 1)𝜃 = 0 

3-11 
This immediately gives, by symmetry of the sine function and choice of what makes the middle 

term vanish: 

𝜃 =
±𝑘𝜋

𝑛
, 𝑘 ∈ {1, … , 𝑛 − 1} 

Which allows, using equation (7) in Yueh: 

𝜉 = −(𝜆 + 𝜇) + 2 𝜆𝜇 cos
𝑘𝜋

𝑛
, 𝑘 ∈ {1, … , 𝑛 − 1} 

3-12 
Noting that the cosine is bounded above by 1, we use the following to show that all the 

eigenvalues are negative: 

−(𝜆 + 𝜇) + 2 𝜆𝜇 = − √𝜆 − 𝜇 < 0 

These eigenvalues allow us to use equation (8) in Yueh to give the eigenvectors: 

Ξ
( )

= 𝜈 sin
𝑗𝑘𝜋

𝑛
− 𝜈 sin

(𝑗 − 1 )𝑘𝜋

𝑛
, 𝑘 ∈ {1, … , 𝑛 − 1}, 𝑗 ∈ {1, … , 𝑛} 

3-13 
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The last eigenvector is found by noting that Ξ = 𝟏 is an eigenvector with eigenvalue 𝜉 = 0. 

Together these give the entire solution space for any sized nucleic acid. Combining this result 

with the expression the preceding section gives the time evolution of the uncertainty/entropy as 

the system evolves in time. More complex models for nucleic acid dynamics can be constructed 

by restricting the state space to stacked states and allowing for a vocabulary, i.e. A-T, A-U, G-C, 

etc, to describe possible interactions95,96. This is similar to models developed for helix-coil 

transitions in the study of secondary-structure formation of proteins97. In general, investigations 

of this type have helped to define a most likely base pairing event rate, on the order of 

nanoseconds, as well an explanation for non-Arrhenius behavior – i.e., when more than one 

eigenvalue of the rate matrix dominates the dynamics, there is a glass transition. The experiments 

described below go beyond the observations that could possibly be made in these models, as 

discussed in Chapter 4 and Chapter 5, because I investigate the effect of tertiary structure and 

loop interactions on the dynamics, and the master equation formalism has no spatial structure. 

 To optimize the estimates of a diffusing noise variable below, I will require the inverse of 

an arbitrary finite-state tridiagonal matrix. This is given in Usmani et al98 to be, if  

𝑀 = 0  |𝑖 − 𝑗| > 1 

𝑀 = 𝑏 , 𝑀 , = 𝑐 , 𝑀 , = 𝑎 , 𝑖 ∈ {1, … , 𝑛} 

then  

𝑀 =
(−1) ∏ 𝑐 𝜃 𝜙

𝜃
, 𝑖 > 𝑗 

𝑀 =
𝜃 𝜙

𝜃
, 𝑖 = 𝑗 

𝑀 =
(−1) ∏ 𝑎 𝜃 𝜙

𝜃
, 𝑖 > 𝑗  
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where 

𝜃 = 𝑏 𝜃 − 𝑎 𝑐 𝜃 , 

𝜃 = 0, 

𝜃 = 1 

and  

𝜙 = 𝑏 𝜙 − 𝑐 𝑎 𝜙  

𝜙 = 1 

𝜙 = 0, 𝑖 ∈ {1, … , 𝑛} 

3-14 
Collectively this result immediately gives rise to an efficient linear-time algorithm for solving 

any linear equation involving a tridiagonal coefficient matrix.  

3.1.2 Variational Inference 

Bayes’ theorem plays a central role in the design and execution of probabilistic machine 

learning, to the point where that process is commonly called Bayesian inference. Bayesian 

inference is the process of combining observations with previous knowledge or assumptions, 

quantified as a prior probability measure, in order to increase knowledge, challenge the prior 

assumptions, and measure the uncertainty in the new probability measure, quantified as a 

posterior. Denoting the observations collectively by 𝑑  and the parameters describing the 

probability measure by 𝜃, Bayes’ theorem can be restated: 

𝑝(𝜃|𝑑) =
𝑝(𝑑|𝜃)𝑝(𝜃)

𝑝(𝑑)
=

𝑝(𝑑|𝜃)𝑝(𝜃)

∫ 𝑝(𝑑|𝜃′)𝑝(𝜃′)𝑑𝜃′
 

3-15 
In many cases the posterior 𝑝(𝜃|𝑑) contains the information of primary interest, describing how 

likely a set of parameters are given the present data. Deriving an exact posterior is often 
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computationally intractable even in simple cases. Approximations must be made. In this 

presentation, I will first derive the variational approximation in terms of local computations on a 

mean-field graph. This will form the computational toolbox used to solve all the models below. 

The following develops precisely what variational inference in the form presented by 

Winn et. al99 aims to achieve, and may be skipped by those most interested in Chapter 4 and 5. 

Inference on a mean-field graph using this form refers to a class of problem-solving using 

repetitive distribution-inference and information-passing equations collectively referred to, in 

analogy to belief propagation, as variational message-passing (occasionally called coordinate 

ascent). To show this explicitly, following Winn et. al99, I begin by writing the definition of joint 

probability in terms of data 𝐷  and hidden states 𝑆  which are typically described by some 

parameter space denoted 𝜃, a state space of all the possible hidden states Ω , a state space of all 

the possible observations Ω , and the entire state space denoted by the Cartesian product of 

those, namely Ω = Ω × Ω . Writing, 

𝑝(𝐷 ⊂ Ω ) =
𝑝({ω = (ω , ω ) ⊆ Ω ∀ 𝑆 ⊂ ω , 𝐷 ⊂ ω })

𝑝({ω = (ω , 𝐷) ⊆ Ω ∀ 𝑆 ⊂ ω })
≡ 𝑝(𝐷) =

𝑝(𝑆 ∩ 𝐷)

𝑝(𝑆|𝐷)
 

 

3-16 
where the latter statement, while an abuse of notation, is much easier to read, and will therefore 

be used from now on. We typically consider the log probability: 

log 𝑝(𝐷) = log 𝑝(𝑆 ∩ 𝐷) − log(𝑝(𝑆|𝐷)) 

For some probability measure 𝑞(𝑆), where all integrals are understood to be over the entirety of 

the sample space associated with the hidden states possessing some appropriate measure, 
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log 𝑝(𝐷) = 𝑞(𝑠) log
𝑝(𝑠 ∩ 𝐷)

𝑞(𝑠)
𝑑𝑠 + 𝑞(𝑠) log

𝑞(𝑠)

𝑝(𝑠|𝐷)
𝑑𝑠

≡ ℒ(𝑞) + 𝐷 (𝑞(𝑆)||𝑝(𝑆|𝐷))  

 

3-17 
The quantity ℒ(𝑞)  is a lower bound on log 𝑝(𝐷)  because 𝐷 (𝑞(𝑆)||𝑝(𝑆|𝐷)) , which is 

sometimes called the Kullback-Leibler divergence,  

𝐷 (𝑞(𝐴)||𝑝(𝐵) = 𝑞(𝐴) log
𝑞(𝐴)

𝑝(𝐵)
𝑑𝐴 

is always non-negative (alternatively, we could note Jensen’s inequality for some measurable 

function 𝑞(𝑆) 

log 𝑝(𝐷) = log 𝑝(𝑆 ∩ 𝐷)
𝑞(𝑆)

𝑞(𝑆)
𝑑𝑆 ≥ 𝑞(𝑆) log 𝑝(𝑆 ∩ 𝐷) 𝑑𝑆 − 𝑞(𝑆) log 𝑞(𝑆) 𝑑𝑆 

noting that the logarithm is concave, which holds for generalized functions100.) The standard 

procedure is to find a probability measure 𝑞(𝑆)  which maximizes ℒ(𝑞) . This is sometimes 

referred to as maximizing the lower bound of the evidence, log 𝑝(𝐷) . Using A. 3 (see 

Appendix A), there must be some family of disjoint subsets 𝑆 ⊆ 𝑆, 𝑆 ∩ 𝑆 = ∅, 𝑖 ≠ 𝑗, so that we 

can define 𝑞(𝑆) ≡ ∏ 𝑞 (𝑆 )  where each factor 𝑞 (𝑆 )  is separately normalized and has no 

measure outside its defined support set 𝑆 . Then, 
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ℒ(𝑞) = 𝑞 (𝑠 ) log
𝑝(𝑠 ∩ 𝐷)

∏ 𝑞 𝑠
𝑑𝑠 

ℒ(𝑞) = 𝑞 (𝑠 ) log 𝑝(𝑠 ∩ 𝐷) 𝑑𝑠 − 𝑞 (𝑠 ) log 𝑞 𝑠 𝑑𝑠 

 

3-18 
This equation simplifies because the log factors vanish outside their disjoint subsets of definition, 

so this lets us write: 

ℒ(𝑞) = 𝑞 (𝑠 ) log 𝑝(𝑠 ∩ 𝐷) 𝑑𝑠 − 𝑞 𝑠 log 𝑞 𝑠 𝑑𝑠  

This equation can be decomposed for each 𝑆 : 

ℒ(𝑞) = 𝑞 𝑠 𝑞 (𝑠 ) log
𝑝(𝑠′ ∩ 𝐷)

𝑞 𝑠
𝑑𝑠

\

𝑑𝑠 − 𝑞 (𝑠 )log 𝑞 (𝑠 ) 𝑑𝑠  

This may be made compact by recalling the form of the Kullback-Leibler divergence as well as 

the definition of information (negative entropy) as 𝐻 𝑞(𝑥) = ∫ 𝑞(𝑥) log 𝑞(𝑥) 𝑑𝑥 over some 

probability measure 𝑞(𝑥). Defining  

log 𝜑 (𝑠 ∩ 𝐷) = 𝑞 (𝑠 ) log 𝑝(𝑠′ ∩ 𝐷) 𝑑𝑠
\

− log (𝑍 ) 

where 𝑍  normalizes 𝜑  gives: 

ℒ(𝑞) = −𝐷 𝑞 𝑠 ||𝜑 (𝑠 ∩ 𝐷) − 𝐻 𝑞 (𝑠 )  

3-19 
Which, noting the range of 𝐷  or, alternatively, taking the functional derivative, yields an 

update equation for maximizing ℒ(𝑞), that is, by setting 𝑞 𝑠 ∩ 𝑆 = 𝜑(𝑠 ∩ 𝑆) in turn, until 
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ℒ(𝑞) converges to a value. It is interesting at this point to note that the lower bound is simply a 

differential information term combined with a series of information terms, and that we are, 

indeed, maximizing entropy. 

The only remaining task is to simplify calculation of 𝜑(𝑠 ∩ 𝑆)  in terms of local 

operations. First, I define what I mean by locality: I assume that there exists a graphical 

representation 𝐺 = 𝑐 , {Ω }, 𝑖, 𝑗 ∈ ℕ  on Ω = Ω × Ω  where 𝑐  is an antisymmetric 

matrix, known as a connectivity, adjacency, or Kirchhoff, matrix, which contains a value of 1 in 

the 𝑖, 𝑗th position if Ω  points to Ω  (a −1 if the other way around), and 0 if those two nodes are 

not directly connected. If 𝑐 = 1 then Ω  is a parent to Ω  (sometimes denoted Ω ⊆ 𝑝𝑎 Ω ) and 

if 𝑐 = −1 then Ω  is a child of Ω  (sometimes denoted Ω ⊆ 𝑐ℎ Ω ). The connectivity matrix 

is assumed free of cycles – ie, no parent node is a child of a child of one of its children, etc. With 

that assumption, and the assumption that Ω ∩ Ω = ∅, 𝑖 ≠ 𝑗  the probability measure can be 

decomposed: 

p(Ω) = 𝑝 Ω |𝑝𝑎(Ω )  

3-20 
Colloquially 𝐺 is referred to as the graph of conditional relationships, which is directed (because 

𝑐  is antisymmetric) and additionally, by assumption on 𝑐 , acyclic. Clearly not every 

probability measure may be decomposed like this; I will only treat with those that can, a set of 

probability measures commonly called Dynamic Bayesian Networks (DBNs76.) A calculation on 

Ω  will be called local if it only requires computations that make use of its parents, children, and 

its children’s other parents (sometimes denoted , 𝑐𝑝 Ω ≡ 𝑝𝑎 𝑐ℎ Ω \Ω ) a set collectively 

referred to as the Markov blanket. Typically in this case the 𝑆  above are chosen to coincide with 
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the parts of  Ω  involving its hidden states. In the sense that I restrict inference to DBNs and 

variational distributions that coincide with 𝐺, I am concerned solely with a mean-field graph 

though, strictly, I will show that computations depend on the entire Markov blanket. With this 

restriction and change of notation (for example, Ω , ≡ S  and some disjoint family of subsets 

𝜔 ⊆ Ω , ) to reflect 𝐺, I continue my treatment: 

log 𝜑 (𝜔 ∩ 𝐷) = 𝑞 (𝜔 ) log 𝑝(Ω |𝑚)

⊆ ( )

𝑑𝜔
\ ,

− 𝑐𝑜𝑛𝑠𝑡 

Given an arbitrarily complex Markov blanket of Ω , , 

log 𝜑 (𝜔 ∩ 𝐷)

= 𝑞 (𝜔 ) log 𝑝 𝜔 ∩ 𝐷|𝑚

⊆
\ ,

+ log 𝑝(𝑛|𝑚)

⊆⊆

𝑑𝜔 − log (𝑍 ) 

3-21 
All the terms for the factored variational distribution 𝜑 (𝜔 ∩ 𝐷) except those arising from the 

Markov blanket of Ω ,  are absorbed directly into the normalizing function log (𝑍 ). Therefore 

calculation of the lower bound and updating the variational distribution requires only 

calculations within the Markov blanket and are thus local. 

Next, I will derive optimal factorized distributions over the various types of observations that 

will be encountered, as well as their conjugate priors, which will, using Bayes’ theorem, allow 

calculation of the posterior distribution necessary for computing the updates to 𝜑 (𝜔 ∩ 𝐷). 

First, I will give a general prescription for calculating optimal, in the sense that they minimize 
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the gained information from the data, priors given a distribution and show that in specific cases, 

these optimal priors are the conjugate priors: following the analysis of Gutierrez-Pena et. al101, 

consider the distributions 𝑝 Ω |𝑝𝑎(Ω )  to be constrained to the exponential family of 

distributions, that is, a distribution of the form 

log 𝑓 (𝑋|𝜃) = log ℎ(𝑥) + 𝜂(𝜃) ∙ 𝑇(𝑥) − 𝐴(𝜃) 

where, in this context, ℎ(𝑥),  𝐴(𝜃), 𝜂(𝜃), and 𝑇(𝑥) are, respectively, called the base measure 

(scalar), partition function (scalar), natural parameter (vector), and sufficient statistic (vector). 

The principal result for this family, known as the Pitman-Koopman-Darmois theorem102,103, is 

that inclusion in the exponential family of distributions is necessary for 𝑇(𝑥) to possess a set 

number of dimensions upon collection and incorporation of additional data102,103.  Conjugacy has 

significant advantages for inference. Importantly, the form of the posterior distribution does not 

change with additional observations. In fact, it can be shown that with the choice of conjugacy, 

information gain upon observation of data is minimized101. When conjugate priors from the 

exponential family are used, it has been shown that the update scheme described above amounts 

to a message-passing algorithm known as variational message passing99, and is equivalent to the 

variational approximation for Bayesian inference. This algorithm will be used extensively in the 

practical applications below. 

3.2 Practical Applications 

I will discuss the development of three practical applications of the variational 

approximation which are important for the analysis of single-molecule data. First, I will describe 

an algorithm that uses variational inference to learn the positions of isolated molecules in a 

movie, estimate the intensities of their light emission, and identify equivalent molecules detected 
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at disparate wavelengths. Second, I will describe an algorithm that allows the quantification of 

static and dynamic heterogeneity. Third, I will describe an adaptation of existing baseline-

correction Gaussian mixture models to a Hidden Markov Model with baseline-correction, which 

allows analysis of trajectories with non-gaussian noise distributions.  

3.2.1 Unified, Bayesian Inference-based Framework for Analyzing Single-molecule 

Fluorescence Microscopy Experiments5 

Comprehensive quantification of the underlying biomolecular processes observed in 

single-molecule fluorescence microscopy experiments requires the implementation of multiple, 

complex methodologies in order to transform fluorescence intensity images into informative 

quantities such as rate constants and free energy landscapes. In part due to the computational and 

scientific complexity required to complete such transformations, no comprehensive standard to 

do this exists within the field. Thus the analysis of such experiments is often performed with 

methods that are disjointed, subjective, and even arbitrary. To address this shortcoming, we have 

developed a software package, which we call vbscope, that uses a Bayesian inference-based 

framework and modern machine learning algorithms in order to, in a statistically rigorous 

manner, unify the various tasks required to analyze an ensemble of single-molecules while 

remaining conscientious of the underlying physical processes involved in such experiments. As a 

result of the increased consideration of such processes, we show that the use of vbscope enables 

identification of nearly all the light-emitting chromophores in an image as well as an at least two-

                                                 

5 Co-written with Dr. Colin Kinz-Thompson, who additionally provided significant scientific insight as well as the 

labeled RF1 and performed the smFET experiments described in this work. This work is a manuscript in preparation 

as of 2017. 
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fold increase in the signal-to-noise ratio of individual single-molecule intensity versus time 

trajectories. Furthermore, the use of Bayesian inference allows separate experiments analyzed by 

vbscope to be compared on the same statistical footing thus enabling a novel hierarchical 

approach to the analysis of single-molecule fluorescence microscopy experiments, which allows 

quantitative comparison between disparate datasets. 

 

3.2.1.1 Introduction 

The analysis of single-molecule fluorescence microscopy experiments requires a 

demanding mixture of physicochemical knowledge and complex statistical methodology.6 The 

process of extracting information from these experiments begins by accurately estimating the 

fluorescence intensity originating from diffraction-limited spots and ends by using this data to 

rigorously characterize the behavior of the ensemble of single-molecules. Because these steps are 

non-trivial, systematizing the procedure by which such single-molecule data is collected and 

analyzed is necessary in order to minimize bias in the quantification of these intricate datasets. 

Towards this end, we have developed a computational tool that is robust enough to deal with the 

diversity of experimental data, and yet is flexible enough to assist in testing the validity of 

hypotheses a researcher may make about a single-molecule fluorescence microscopy dataset. In 

this work, we describe these methods and the software package we have developed to facilitate 

their implementation, as well as the application of these methods to single-molecule fluorescence 

microscopy experiments.  

Our principal approach is to leverage modern machine learning tools in order to enable 

computers to adaptively identify light-emitting chromophores, and then to use those 

identifications to rigorously analyze the experiment. In the physical sciences, such machine 
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learning approaches have found great success in fields such as astrophysics,104 but, despite their 

potential, have not been widely adopted by the single-molecule fluorescence microscopy 

community.81,105,106 We begin by defining what it means to probabilistically infer the presence of 

a light-emitting chromophore in a diffraction-limited, fluorescence microscopy image or time-

ordered series of images (i.e., a movie) collected using a wide-field microscope. Essentially, this 

is simply the process of locating a bright spot (i.e., a local maximum) in an image. However, due 

to the many sources of noise inherent to single-molecule experiments, there are often many local 

maxima in an image, not all of which correspond to a chromophore. Therefore, in order to infer 

the presence of a light-emitting chromophore in such an image, the significance of the local 

maximum in question must be evaluated relative to the sources of noise present in the 

experiment.  

To do this, we have adapted a Bayesian inference-based framework,76,107 which ‘learns’ 

how to characterize intensity maxima of interest by identifying features in a movie and using 

those identifications to find additional features. Bayesian inference is a statistical method that 

mirrors the scientific process by allowing initial hypotheses (i.e., prior probability distributions) 

to be mathematically updated in response to the acquisition of new data from an experiment. In 

the context of single-molecule fluorescence experiments, Bayesian inference provides an 

increasingly popular conceptual approach and computational toolkit, since use of Bayesian 

techniques naturally quantifies the experiment- and ensemble-derived uncertainty that a 

particular amount of observed data brings to any calculated parameters.83–85,108–114 Additionally, 

Bayesian inference approaches are able to optimally select between different mechanistic models 

in a way that prevents over-interpretation and encourages parsimony.76,108 Both of these aspects 

are very important for single-molecule fluorescence experiments, because the fluctuations in the 
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fluorophore intensity, which often serve as proxies for the dynamics of underlying biomolecular 

complexes, are complicated to interpret due to the photophysics of the chromophores.115 Such 

complications can drastically limit the amount and the usefulness of the data collected in these 

experiments.  In our implementation, which uses the variational Bayes method in the context of 

the variational message passing algorithm,92,99 Bayesian inference functions in a manner that not 

only standardizes the analysis of single-molecule fluorescence microscopy movies, but that also 

enables a statistically rigorous comparison of different movies in an unbiased manner. 

Following this, we discuss methods that automatically register all of the images in a 

movie into a common coordinate system, and thus create a universal map of chromophore 

locations in the single-molecule fluorescence movie. This is necessary in order to recognize 

distinct chromophores across the successive images in a movie, and also across the multiple 

color channels imaged in multi-wavelength microscopy experiments. For instance, in single-

molecule fluorescence resonance energy transfer (smFRET) experiments,6,17 after a common 

coordinate system is determined, a map of the chromophore locations in different color channels 

can be used to associate the fluorescence intensity emitted from the donor and acceptor 

fluorophores with one another in order to calculate the time-averaged efficiency of resonance 

energy transfer (EFRET) in the acquired multi-wavelength image. In addition to their use in 

smFRET experiments, these maps of chromophore locations versus time form a foundational 

step for many analysis routines involving single molecules, such as single-particle tracking,116 

colocalization,117 or multicolor super-resolution experiments.118 

Next, we discuss an optimal approach for estimating the emission intensity of a 

chromophore given its location in an image by considering the utility of several different 

methods. Using an algorithm that optimally estimates the amplitude of any point-spread function 



 

73 

 

(PSF), we adaptively correct for background contamination and, both in theory and in practice, 

increase the signal-to-noise of chromophore intensity versus time trajectories by nearly a factor 

of two when compared to methods currently used in the field.17 Finally, we connect these 

successive methods of analysis with a comprehensive set of statistics to describe the underlying 

processes occurring in the analyzed single-molecule fluorescence microscopy movie, as well as 

with a flexible tool for the visualization and analysis of intensity versus time trajectories, which 

interfaces with various probabilistic analysis models, such as various Bayesian hidden Markov 

models (HMMs)83–85,108 in order to facilitate the diversity of tasks required for the analysis of 

data from single-molecule kinetics experiments.15 In short, this collection of single-molecule 

fluorescence microscopy analysis methods, which we have assembled into an open-source and 

freely available software package called vbscope, enables a significant improvement in the 

accuracy and statistical rigor of the analysis of single-molecule fluorescence microscopy 

experiments with an approach that unifies the entire hierarchy of single-molecule data analysis 

from the level of processing raw fluorescence microscopy movies to the level of analyzing 

individual single-molecule trajectories. 

3.2.1.2 Methods and Results 

The computational task of analyzing multi-wavelength, single-molecule fluorescence 

microscopy images can be subdivided into three parts (Figure 3.1A). First, a molecule must be 

identified and its position in the image must be determined; second, the locations of the 

individual molecules, or the sets of associated molecules that appear in different wavelength 

images must be mapped into a common coordinate system, also known as image registration; 

and finally, the position and intensity versus time trajectories must be estimated from the raw 
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data using these registration maps. As such, we have divided our exposition into sections dealing 

individually with each step.  
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Figure 3.1  Identification of light-emitting chromophores. 

 (A) Schematic of analysis of single-molecule fluorescence microscopy movie. (B) Graphical 

model used to identify light-emitting chromophores. First, an image of a single-molecule 

fluorescence microscopy movie is split into two parts: pixels with intensities that are local 

maxima and those which are not. The pixels that are not local maxima are used to estimate the 

background distribution, as they do not contain light-emitting chromophores. Pixels that are local 

maxima are a mixture of noise-associated coincidences and light-emitting chromophores. The 

maximum value distribution associated with the background distribution describes the 

coincidences, and a mixture model is used to describe the chromophores. Data nodes are shown 

in yellow, parameter nodes are shown in green, and prior nodes are shown in violet. (C) Plot of 

chromophore identification error as a function of signal-to-background ratio (SBR). The absolute 

error between the number of simulated and the number of identified chromophores increases 
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 3.2.1.2.1 Identification 

The first, and sometimes principal, task of analyzing wide-field, single-molecule 

fluorescence microscopy images is to identify all of the light-emitting chromophores that were 

imaged. In such images, each pixel corresponds to a distinct region in the microscope’s field of 

view, and this region can contain zero, one, or multiple light-emitting chromophores. However, 

in order to maintain single-molecule resolution, the density of light-emitting chromophores in the 

entire field of view must be low enough such that the light emitted from each chromophore is 

recorded in a distinct set of pixels with minimal contribution from neighboring chromophores. 

Under such conditions, the location of each light-emitting chromophore in a field of view can be 

mapped to a corresponding pixel, and this pixel will be a local intensity maximum in the image. 

Unfortunately, because background noise sources such as scattering and/or detection noise 

necessarily create local maxima in sets of pixels that correspond to regions lacking light-emitting 

chromophores, not all of the local maxima in an image will correspond to light emitted from a 

chromophore. As such, we propose to identify all of the individual light-emitting chromophores 

in such a single-molecule fluorescence microscopy image by determining whether each 

particular local maximum in the image resulted from the presence of a light-emitting 

chromophore or whether it corresponds to a local maximum generated by background noise. 

when the SBR of is less than 0.5. (D) Plot of normalized chromophore identification error as a 

function of density of chromophores per pixel. The normalized error (density) between the 

number of simulated and the number of observed spots (black) follows the number of non-

coincidentally co-localized, uniformly randomly-distributed chromophores (red). 
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With this distinction in mind, we have developed a probabilistic model to classify all of 

the local maxima located in such an image as either light-emitting chromophores or as 

coincidences associated with background noise (Figure 3.1B). We treat the probability of the 

intensity value of each local maximum pixel with a mixture model having a conditional 

probability of belonging to one of 𝑘 different classes of intensity (i.e., ‘types’ of chromophores), 

or being the local maximum of eight neighboring background intensities (i.e., the search radius 

involves only nearest neighbors). By then weighing the likelihood of the local-maximum pixel 

belonging to any of the chromophore classes, in other words by marginalizing out the distinction 

between the different classes, the probability that the intensity value, 𝐼, of that pixel is best 

explained by any of the set of k chromophore classes, {1 … 𝑘},  is given by 

𝑝(𝑝𝑖𝑥𝑒𝑙 ∈ {1 … 𝑘}) =  
∑ ( | )

∑ ( | ) ( )
. 

3-22 
In this notation, 𝜃  denotes the distribution parameters associated with chromophore class 𝑖, and 

𝑚𝑎𝑥 (𝜃 ) denotes the maximum value distribution119 associated with taking the local maximum 

of 𝑛 pixels whose intensities are independent random variables identically distributed according 

to the background distribution governed by parameters 𝜃 . For a background that is distributed 

according to the normal distribution (e.g., a background dominated by a combination of high 

background electron counts and instrumental noise), this maximum value distribution is given by 

𝑝(𝐼|𝜇, 𝜆) = 𝑛

( )√

√ ⋅ 𝒩(𝐼|𝜇, 𝜆),  (2) 

3-23 
where 𝒩 denotes a normal distribution, 𝐼 is the intensity value of the local maximum, 𝜇 is the 

mean of the background distribution, 𝜆 is the precision (i.e., inverse of the variance) of the 



 

78 

 

background distribution, erf denotes the error function of the normal distribution, and 𝑛 is nine – 

the local maximum and surrounding eight pixels. With the marginalized model given by 

Equation 3-22, users can set a probability cutoff (e.g., greater than 0.5) that determines whether 

or not the local maximum pixel under consideration corresponds to a light-emitting chromophore 

or is best explained as a coincidence associated with the background noise distribution. This 

approach is conceptually similar to simultaneously evaluating the significance of a local 

maximum while concurrently defining the null hypothesis. In other words, a local maximum 

pixel with an intensity value that corresponds to the presence of a light-emitting chromophore is 

a pixel whose intensity value is inconsistent with the maximum value probability distribution 

associated with the random variable governing the background intensity values. 

In our algorithm, parameter learning to determine the 𝜃  and 𝜃  takes place as part of a 

variational-Bayes expectation maximization (VBEM) routine76 that is implemented using 

variational message passing.92,99 However, in order to use the variational message passing 

algorithm to execute VBEM, we must deal with the fact that the maximum value distribution in 

Equation 3-22 associated with the background is not of the exponential family of probability 

distributions, and therefore the message-passing equations do not directly apply. To handle this 

complication, we note that the maximum value probability distribution is parametrized directly 

by the number of pixels over which the local maximum is determined, and by the background 

noise distribution, which also describes the pixels that do not contain light-emitting 

chromophores and are not local maxima. Therefore, we first use the pixels that are not local 

maxima to estimate the background distribution parameters, 𝜃 , using variational message 

passing, and then we use these parameters to directly compute the probability of the local 

maximum intensity value being a light-emitting chromophore (c.f., Equation 3-22) by using the 
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analytical form of the maximum value distribution (c.f., Equation 3-23). The VBEM algorithm 

alternates between two steps: (i) estimating the probability that each pixel belongs in either the 

background or light-emitting chromophore classes, and then (ii) using these occupation 

probabilities to re-estimate the values of the parameters associated with the chromophore 

classes, 𝜃 , and the background, 𝜃 . These steps are iterated until an estimate of the probability of 

observing the data (i.e., the evidence lower-bound) converges,76,99 and at this point the current 

values of 𝜃  and 𝜃  are taken as the inferred parameters. 

With regard to the prior probability distributions used in this Bayesian inference 

procedure, we typically use prior probabilities that are estimated from a representative image of a 

control experiment, though we note that in absence of such a control, a representative image of 

the movie can be used instead. This is conceptually similar to an empirical Bayes (EB) 

approach,76 though we do not use EB updates, because the time dependence of the molecular 

events occurring during the experiment (e.g., fluorophore photobleaching) yields time-dependent 

expectation values. Therefore, the successive images of a given movie will contribute time- and 

experiment-dependent contributions in the EB update procedure, which contributes to our 

opinion that each image in a movie is more readily modeled as a distinct experiment. Though, 

notably, modeling this time dependence is quite powerful.111 Regardless, overall, this approach 

of using a control image to determine the prior probability distributions for the Bayesian 

inference procedure allows for rigorous comparison between different single-molecule 

fluorescence microscopy movies with a common statistical foundation (i.e., with a common 

initial hypothesis). 

In order to test the accuracy of this algorithm, we simulated images according to the 

generative model given in Figure 3.1B, and used the inference routine described above to 
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analyze these simulated images and therefore validate our implementation. First, we simulated a 

given number of light-emitting chromophores, with locations in image space drawn from a 

uniform distribution over the limits of the image, from the model in Fig. 1B, and counted the 

number of simulated chromophores identified via Equation 3-22. By varying the signal-to-

background ratio (SBR) in this simulation, we identified the threshold at which the distinction 

between emitted light and background light breaks down (Figure 3.1C). This threshold is at an 

SBR of 0.5, roughly when the probability distributions for light emitted by a chromophore and 

that of background noise begin to significantly overlap. Furthermore, in order to evaluate 

whether our model can locate all of the light-emitting chromophores in an image, we performed 

another simulation in which we varied the density of light-emitting chromophores, with locations 

drawn as above, with a set SBR of 1 (Figure 3.1D). As shown, our model essentially finds all of 

the chromophores that do not, by coincidence, localize into the same pixel. 

Finally, it is important to note that experimentally the illumination profiles in wide-field 

microscopy can be non-uniform, and that the model shown in Figure 3.1B does not capture this 

irregularity. Therefore, only when identifying chromophores and not when estimating 

chromophore intensities, we adaptively remove the local background inhomogeneity by 

subtracting the local minimum from the intensity of each pixel. Given a suitably low density of 

chromophores, these local minima will reasonably represent the variable amounts of scattering 

and background-fluorescence created by an inhomogeneous illumination profile. In our 

implementation, this calculation completes concurrently with the routine that locates the local 

maxima in the single-molecule fluorescence microscopy images in order to minimize 

computational cost. On a 3.6 GHz Intel Core i7 processor with four parallel threads, the entire 

chromophore identification process takes approximately 2 minutes of computer time on a 
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512x512 pixel movie containing 1200 frames; this means that, given a 10 Hz exposure time that 

is typical of many wide-field, single-molecule fluorescence microscopes, our chromophore 

identification algorithm can be performed in real-time. 

3.2.1.2.2 Registration 

In multi-wavelength microscopy images, the Cartesian coordinate systems describing the 

different color channels will not be the same due to imperfections in the alignments of different 

cameras or multi-wavelength imaging devices. Therefore, any maps describing the locations of 

light-emitting chromophores identified as described in Section 2.1 are only valid for the 

particular color channel used during identification. In order to reconcile these different color 

channel coordinate systems, we utilize two different methods to register the spatial differences in 

the alignments of different color channels. One method, which we call “deterministic,” is 

guaranteed to produce a reliable registration of different color channels, but requires additional 

experimental information, while the second method, which we call “stochastic,” does not require 

this additional effort, but instead relies on the accurate identification of some set of the same 

chromophores in all of the different color channels. 

The deterministic registration procedure uses a pre-obtained image of fiducial markers, 

which must appear in all of the different color channels, as control points;120,121 practically, we 

suggest using arrays of sub-diffraction limit, nanofabricated structures, such as zero-mode 

waveguides,122 because such regularly repeating structures provide excellent coverage over an 

entire field of view. By fitting the locations of the fiducial markers to PSFs in order to determine 

their locations in each color channel,123 we can then find an interpolating polynomial function 

that, for instance, transforms the apparent Cartesian coordinates x and y of color “1”, 𝑥  and 𝑦 , 

to those in color “2” 
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𝑥 = ∑ ∑ 𝑤 ∙ 𝑥 𝑦 ,  

3-24 
where i and j are indices that run over the degree of the interpolating polynomial, and the 

weighting parameters, 𝑤 , can be estimated, for instance, using a non-linear least-squares fitting 

algorithm. An equivalent equation can be written, and determined for 𝑦  from these control 

points. The benefits of this approach are: (i) the particular interpolating functions can be used 

until the microscope alignment changes, which practically, we find, can be several months, (ii) 

once the coordinates of the fiducial markers have been obtained in each color channel’s 

coordinate system, deterministic registration is effectively instantaneous, (iii) this method does 

not require chromophores to be identified in all of the different color channels, which might be 

important for experiments where one color channel is associated with a low-affinity interaction 

that is effectively too transient to localize, and (iv) in practice, we find that this method can 

accurately correct for arbitrarily complex optical distortions created by different optical 

components in the various optical paths for the different color images.  

On the other hand, the stochastic registration procedure uses the locations of the 

chromophores in each color channel, which were learned with the identification algorithm 

described in Section 2.1. These locations are used to find registration maps between the different 

color channels by successive affine transformations of the identification map of one color 

channel to the identification map of another color channel until the affine transformation that 

maximizes the overlap between the chromophore locations is found. The shortcomings of this 

method are that several chromophores must be identified in all of the different color images in 

order to have a quantity to maximize, and also that it is impractical to accurately correct for 
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optical distortions with stochastically dispersed control points whose associations between the 

different color channels must be inferred.  

Additionally, in general, the microscope field of view may undergo a global random walk 

via, for example, thermal fluctuations affecting the microscope stage. In this case, a drift 

correction may be necessary for optimal analysis. For this purpose, we have also provided a tool 

whereby each image of a particular color channel in a movie is globally registered to the first 

image in that color channel by registering the i+1th to the ith image. This is done via successive 

affine transformations determined using the iterative closest point algorithm124 on the map of the 

chromophore identifications discussed in Section 2.1. Such a correction can also be performed 

locally with single-particle tracking algorithms, of which variational Bayesian implementations 

have been recently developed.110 

3.2.1.2.3 Absolute Registration 

Importantly, we note that most multi-wavelength single-molecule localization 

microscopy experiments utilize registration functions (e.g., Eqn. (3)) that transform the 

coordinate systems of the different color channels into the coordinate system of an arbitrarily-

chosen reference color channel.120,121 It is worth noting that the coordinate system of such a 

reference color channel is located in the image-plane, and is therefore distorted because of 

imperfections in the optical components of the imaging system. Thus, calculations of the relative 

distances between features in different color channels will not be accurate, since they are not of 

the distances in the object-plane (i.e., real-space). In order to accurately quantify such relative 

distances, the coordinate systems of each color channel must be transformed into the rectilinear 

coordinate system of the object.  
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Experimentally, this absolute registration into the coordinate system of the object may be 

performed by finding a transformation between nanofabricated structures localized in a color 

channel of an optical microscopy image, and the exact same nanofabricated structures in the 

coordinate system defined experimentally, for instance, by an atomic-force microscopy (AFM) 

image. Practically, we find that, at minimum, fourth-order polynomials in Equation 3-24 are 

necessary to yield transformations that adequately remove optical distortion. Once such absolute 

registrations are obtained, one is typically interested in the magnitude of the distance vector, |𝑫|, 

between two chromophores in object-space. To obtain an expression for the probability 

distribution of |𝑫| given chromophores localized in image-space, we first consider that generally, 

any transformation from a set of source coordinates, 𝐱 = (𝑥 , … , 𝑥 ), to the ith coordinate of set 

of target coordinates, 𝐱 = (𝑥 , … , 𝑥 , … , 𝑥 ), can be written as 

𝑥 = ∑ 𝑥 ≡ 𝐵 𝑥 ,  

3-25 
where defining 𝐵  allows the entire transformation to be succinctly written as 𝐱𝐭 = 𝐁𝐱𝐬 . 

Similarly, we can also transform the metric tensor associated with the source coordinates, 𝑔 , , 

which a priori may not be known, to the target coordinates by writing  

𝑔 , = ∑ ∑ 𝑔 , ≡ ∑ ∑ 𝐴 𝑔 , , 

3-26 
where commonly the target coordinates are rectilinear coordinates in absolute space, and the 

metric is therefore the Kronecker delta 𝛿 . If we assume that the undistorted chromophores have 

a symmetric Gaussian PSF form in object-space, then the distance vector in object-space 

between chromophores at positions 𝐱  and 𝐱  in the image-spaces of color channels 1 and 2, 
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respectively, can be considered a random variate from the multivariate normal distribution 

specified by 

𝒩(𝑫|𝐁 𝝁 − 𝐁 𝝁 , ∑ ∑ 𝐴 (𝚺 , + 𝚺 , )) ≡ 𝒩(𝑫|𝐁𝝁 , 𝚺 ), 

3-27 
where 𝝁 denotes the position of a chromophore in image-space, 𝚺  denotes the covariance of 

coordinates k and l in image-space, subscripts 1 and 2 denote the respective chromophore and 

color channel, and the subscript D denotes parameters related to the relative distance. Equation 

3-27 follows from the convolution properties of normal distributions, and noting that the 

covariance transforms the same way as the metric tensor (Equation 3-26). Notably, if one is 

interested in the magnitude of the relative distance between these two points, the moment 

generating function for |𝑫| can be written as 

𝑀|𝑫|(𝑡) =
 (𝑰 𝚺 )

𝐸𝑥𝑝(− (𝑩𝝁 ) (𝑰 − (𝑰 − 2𝑡𝚺 ) )(𝚺 ) (𝑩𝝁 )), 

3-28 
where 𝑰 is the identity matrix. This formula follows from Theorem 3.2a.1 in Mathai et al after 

noting that the metric tensor in rectilinear coordinates (i.e., 𝛿 ) is symmetric and positive semi-

definite.125 Typically, the matrix 𝚺  will be diagonal because the variation in the position of each 

rectilinear coordinate is independent of the other coordinates. Finally, we note that while it is 

possible to write the moment generating function for |𝑫| in an arbitrary coordinate system such 

as those of a reference color channel, the form given above with diagonal covariance matrices is 

exceedingly simple in comparison, and doing so would still require one to find the 

transformations into and out of the rectilinear object-space coordinates in order to compute the 

magnitude of the distance between the chromophores. To the best of our knowledge, this is the 

only demonstration of such an expression. 
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3.2.1.2.4 Intensity Estimation 

After identifying the location of a light-emitting chromophore in all of the color channels 

in an image, the next task in our algorithm is to quantify the intensity of that chromophore in 

each color channel (Figure 3.1A). Generally, the intensity of light emitted by a chromophore is 

spatially distributed in an image according to some PSF, 𝜓(𝜃 , 𝜆), which is a function of 

parameters 𝜃  that describe the imaging system (i.e., microscope) and is wavelength-

dependent, 𝜆. Assuming that the microscope is a linear imaging system, then each photon of a 

particular color that is emitted by a chromophore contributes additively to the image in a manner 

specified by the PSF. Thus, the monochromatic image, 𝐼, of a point source or other object with a 

linear spatial distribution of photon emission that is created by the emission of 𝑁  individual 

photons of wavelength 𝜆  is a repeated convolution, which can be written as  

𝐼 = 𝑁 ⋅ 𝜌 𝜃 . ⋅ 𝛿(𝜆 = 𝜆 ) ∗ 𝜓(𝜃 , 𝜆) = 𝑁 ⋅ 𝜓 𝜃 , 𝜃 . , 𝜆 = 𝜆 , 

3-29 
where 𝜌 𝜃 .  describes the spatial distribution of the object, 𝛿 is a delta-function to specify the 

wavelength of the photons, and 𝜓 𝜃 , 𝜃 . , 𝜆 = 𝜆  denotes the PSF at wavelength 𝜆  and 

accounting for the object described by 𝜌 𝜃 . . Interestingly, Eqn. (8) amounts to the product of 

a prefactor described by the rate of photon emission from the chromophore, and a density 

function describing where those photons intersect the image plane; this is a general result for any 

linear imaging system, regardless of choice of PSF. Additionally, we note that, while 

chromophores emit multiple different wavelengths of light, given a sufficiently narrow band of 

wavelengths as defined by a band-pass filter, 𝜓(𝜃 , 𝜆) may be fairly independent of 𝜆, and 

thus Equation 3-29 is also applicable to experimentally collected microscopy images. Finally, in 
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a wide-field microscopy experiment, we must also account for the discretization caused by 

recording the image on camera, as well as the presence of the 𝑛 different chromophores in the 

field of view. As such, the expected intensity value, 𝑑 , of a particular pixel at position (𝑥, 𝑦) 

with area 𝑐 , can be written as 

𝑑 = ( ∫ 𝐼 ) + 𝑏 = ( 𝑁 ⋅ Ψ , ) + 𝑏  , 

3-30 
where 𝑏  represents a convolution of the background photon counts, electron dark counts, and 

instrumental noise which contribute to the measured intensity for the pixel at position (𝑥, 𝑦), 𝐼  is 

the image of the ith chromophore given in Equation 3-29, 𝑁  is an amplitude that corresponds to 

the intensity or the number of photons emitted by the ith chromophore, and Ψ ,  denotes the 

discretized density function of the ith molecule that was integrated over the pixel at position 

(𝑥, 𝑦). Considering that distinct equations like Equation 3-30 can be written for each of the 

pixels in an image, and that all of these equations are linear in all of the 𝑁 , we can obtain an 

analytical formula for the estimate of each 𝑁  by using the maximum-likelihood (ML) 

framework, after certain assumptions about the noise in these measurements are made (see 

Appendix A). This procedure yields 

𝑁 =

⋅ ,

,

⋅ ,

,
,

,  

3-31 

𝑏 =

⋅ ,

∑
,  

3-32 
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which applies regardless of the choice of PSF model (e.g., Airy disk or Gaussian). A full 

discussion of the assumptions leading to these formulae and the initial conditions that we use in 

our EM implementation of these equations is given in Appendix A. 

The advantage of this approach is that observed intensity values from multiple pixels can 

be used to estimate the 𝑁 , and this added information increases the precision with which the 

values of the 𝑁  can be inferred. As a result, this approach yields an almost two-fold 

improvement to the SNR of an estimated intensity versus time trajectory as compared to 

commonly used methods in the field (i.e., summing neighboring pixels, or using just the central 

pixel), which exactly matches the theoretical improvement from including multiple 

measurements in the inference procedure (Figure 3.2A) (see Appendix A). Additionally, we 

investigated the effect that chromophore motion has on these calculations for a single-

chromophore intensity versus time trajectory (Figure 3.2B). While directly estimating all of the 

PSF parameters provides an estimate of the amplitude that is invariant of chromophore motion, it 

is very computationally expensive, taking almost 400-fold longer to run than the EM 

implementation (Figure 3.2C). We find that our approach of estimating only the amplitude of the 

PSF is still robust against such motion relative to other methods, and therefore provides the best 

balance between effectiveness and computational expense. Finally, we note that because we 

simultaneously use a PSF for every chromophore in the image, our methods eliminates cross-

contamination of intensity estimates from neighboring, identified molecules.  
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Figure 3.2 Chromophore intensity versus time trajectory estimation. 
 (A) Plot of estimated SNR versus simulated signal-to-background ratio (SBR) using the 

maximum-likelihood formula for the amplitude of an arbitrary PSF given by Eqn. 3 (blue), the 

local maximum pixel (green), and the sum of the local-maximum and nine-neighboring pixels 

(red). The PSF method is best, as it uses many pixels to obtain a better estimate of the amplitude 

and background. Black lines denote theoretical curves for each method (see Appendix A). (B) 

Plot of estimate SNR versus noise in emitter position. As the noise in the position of the 

molecule increases, the summation of neighboring pixels method remains more robust relative to 

the maximum-likelihood amplitude formula or central pixel methods, which maintain singular 

chromophore locations; however, the SNR estimated by fitting all the parameters of a PSF does 
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not degrade with chromophore motion. (C) Plot of the computational cost of the various methods 

of intensity estimation. We simulated ten, 100 x 100 pixel movies with 1000 frames each and 

benchmarked the amount of time required to calculate the intensity amplitudes in each case, as a 

function of the number of chromophores. Estimating the intensity using Eqns. (10) and (11) is 

roughly as fast as directly summing the neighboring pixel intensities, both of which perform 

approximately 106 estimates per second, whereas also fitting the PSF to determine the location of 

each chromophore results in a roughly 400-fold increase in computational time. (D) Comparison 

of summation (left) and PSF amplitude estimation (right) methods on experimental smFRET data 

of a translation factor binding to and dissociating from a ribosome. Here, using the PSF 

estimation method results in a two-fold increase in SNR, in agreement with theory (panel A). 

With this optimal method of intensity estimation, we can take full advantage of the 

optimally identified spots found using the methods in Sec. 2.1. Importantly, because Equations 

3-31 and 3-32 are analytic expressions, calculation using this direct PSF method takes 

approximately the same amount of time as directly summing the neighboring pixels in the region 

of interest. Thus, by careful consideration of the image, one obtains a two-fold increase to the 

SNR at no expense. We have demonstrated this on experimental data from a smFRET 

experiment of an acceptor-fluorophore labeled prokaryotic release factor 1 (RF1) variant binding 

to and dissociating from the aminoacyl-tRNA binding site of a surface-tethered prokaryotic 

ribosome containing a donor-fluorophore labeled tRNA in the peptidyl-tRNA binding site 

(Figure 3.2D) (see Appendix A for experimental details). In this case, not only do the individual 

donor and acceptor fluorophore intensity versus time trajectories originating from the same 

ribosome exhibit this SNR improvement, but the EFRET versus time trajectory also is better 

resolved. This improvement means that, practically, higher concentrations of fluorophore-labeled 
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biomolecules (e.g., the acceptor-fluorophore labeled RF1) can be present in solution when 

imaging molecules of interest (e.g., the donor-fluorophore labeled, surface- tethered ribosomes) 

before the ability to maintain single-molecule resolution is compromised. Effectively, our 

approach is a computational method to push past this ‘concentration barrier’, which limits the 

ability to observe transient and/or rare molecular inter-molecular interactions using single-

molecule fluorescence approaches.14,126 Furthermore, combined with the chromophore 

identification algorithm presented in Sec. 2.1, we find that, in practice, vbscope alleviates the 

concentration barrier by at least one order of magnitude, and in a complementary manner, 

significantly improves the acquisition time-resolution for smFRET experiments. 

3.2.1.3 Analysis 

3.2.1.3.1 Movie Statistics 

Throughout the process of analyzing single-molecule fluorescence microscopy movies 

with vbscope in order to identify chromophores and calculate intensity versus time trajectories, a 

large number of informative statistics are simultaneously calculated. These statistics effectively 

describe the movie and its molecular underpinnings, and as such, can be utilized in the ‘big-

picture’ evaluation of experimental datasets composed of multiple movies. Thus, vbscope can 

facilitate the task of optimizing experimental parameters, such as the chromophore loading 

density and optimal length of recording, in addition to the analysis of experiments that require 

less intricate approaches, such as calculation of co-localization probability distributions. To this 

end, vbscope provides the following statistics: the number of light-emitting chromophores versus 

time, the average SBR versus time, the total autocorrelation function of the chromophore 

intensity versus time trajectories, the cross-correlation functions between distinct color channels 

of the chromophore intensity versus time trajectories, the posterior probability density of the co-
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localization probability for each color channel, the probability of co-localization by coincidence, 

the illumination profile of the microscope, and the multi-wavelength registration profile. 

Technical descriptions, as well as an example plot for each of these statistics from the analysis of 

an experimental obtained smFRET movie are provided in Appendix A. 

3.2.1.3.2 Trajectory Analysis 

While vbscope is designed to identify chromophores and estimate intensity versus time 

trajectories, we have also developed and included a tool to facilitate the downstream analysis of 

chromophore intensity versus time trajectories. This tool enables the classification of 

chromophore intensity versus time trajectories, creation of traditional smFRET-related plots, and 

further analysis via hidden Markov modeling using, for example, the Bayesian-inference based 

HMMs deployed in the vbFRET83,108 and ebFRET84,85 HMM packages. With this tool, for 

example, the analyst can sort multi-wavelength intensity versus time trajectories by amount of 

anticorrelation, in order to expedite cursory analysis of experiments. Additionally, this tool 

automatically classifies photobleaching events with a Bayesian-inference based, variational, 

Gaussian mixture model, which learns the instantaneous changes in intensity versus time 

trajectories; these points can also be manually corrected for each trajectory. The algorithms used 

for anticorrelation sorting and photobleach detection are described in the Appendix A. Finally, 

this tool connects the analyst to additional tools for creating transition density plots and 1- and 2-

dimensional histograms, as well as to analysis suites such as vbFRET83,108 and ebFRET84,85  for 

rigorous kinetic analysis.  

3.2.1.4 Conclusion 

The vbscope approach presented here provides a unified, Bayesian-inference based 

framework that takes an analyst with little-to-no programming experience from data collection 
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all the way to the end stages of data analysis. By employing novel machine-learning algorithms, 

vbscope finds essentially all identifiable chromophores in a movie, a task crucial to production of 

unbiased data. Furthermore, vbscope uses analytical solutions in conjunction with any PSF to 

extract intensities in a manner that significantly increases the SNR of intensity versus time 

trajectories when compared to traditional methods, while striking an optimal computational cost 

balance.  The post-analysis tools provided and interfaced with comprise a comprehensive and 

powerful analysis suite for single-molecule fluorescence experiments that minimizes the inherent 

bias present in automated and non-Bayesian approaches. Finally, as an open source and freely 

distributed software package, we hope that its adoption will increase the quality and efficiency of 

data collection and analysis of wide-field, single-molecule fluorescence experiments.  

3.2.2 A Bayesian Approach to Hierarchical Hidden Markov Modeling Allows Direct 

Measurement of Conditional Kinetic Rates6 

Time-resolved, single-molecule biophysical experiments and analyses can allow direct 

determination of the minimal number of states needed to describe a biological process of interest 

as well as direct quantification of the kinetics of the mechanistic steps connecting those states, 

thus characterizing the minimal kinetic scheme describing the biological process. In most cases, 

the signal versus time trajectories that are recorded in time-resolved, single-molecule biophysical 

experiments directly report on only a single coordinate (e.g., a single distance change associated 

with a particular conformational change), while information from other coordinates is only 

indirectly reflected in the direct coordinate (e.g., additional conformational changes that 

modulate the single distance change that is recorded). It is often of mechanistic interest to 
                                                 

6 I would like to thank Dr. Kelvin Caban for his help writing this section, especially the discussion of translation. 
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characterize whether and how transitions along indirect coordinates influence the frequency of 

transitions along the direct coordinate – such an approach is necessary, for example, in order to 

quantitatively characterize the allosteric influence of ligand-binding to a biomolecular receptor 

on conformational dynamics of a structural element on the receptor distal to the ligand binding 

site. Here, we report the development of a computational algorithm capable of inferring the 

number of states and the rates of transitions between those states along both direct and indirect 

coordinates from data recorded as single-molecule signal versus time trajectories. 

 

3.2.2.1 Introduction 

Single-molecule biophysical experiments aim to facilitate definition and detailed 

quantification of the most parsimonious kinetic model describing a biological process of 

interest6,15. Kinetic models describe transitions between local configurational minima upon a 

multi-coordinate free energy surface87. While time-resolved experiments are undertaken to 

describe the relative depths of these free energy minima via the rates at which the biological 

process spontaneously fluctuates between them, single-molecule biophysical experimental 

designs typically define only a small handful of coordinates to observe directly, leaving variation 

along other coordinates indirectly observed: for example, in many cases, the presence of indirect 

coordinates may be inferred by sudden alteration in the rates at which the amplitudes associated 

with direct coordinates of free energy minima change – termed dynamic heterogeneity, 

schematized in Figure 3.3 – or by comparing separate molecules which apparently possess 

distinct kinetic models – termed static heterogeneity. As a result of the statistical inference 

involved, quantifying the number of, complexity of, and kinetic rates between indirect 

coordinates remains a significant computational challenge. 
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Figure 3.3 Hierarchically organized dynamic heterogeneity. (A) A simulated signal versus 

time trajectory composed of contiguous periods exhibiting distinct kinetic properties, indicated 

by the variable grayscale backgrounds, between two observable signal classes, denoted as (𝑎  

and 𝑎 ) and (𝑏  and 𝑏 .) (B) A sample energy landscape (left-hand side) corresponding to a 

generative kinetic scheme (right-hand side) for the trajectory shown in (A). A molecule on this 

landscape can undergo transitions both along a directly observed coordinate, or direct coordinate, 

describing 𝑎 


𝑏  and 𝑎 


𝑏  transitions, as well as along an indirectly observed coordinate, or 

indirect coordinate, describing 𝑎 


𝑎  and 𝑏 


𝑏  transitions. Information in the trajectory 

describing the indirect coordinate is obtained by inferring the frequency of transition between the 

two observable signal classes. 
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 The information contained in time-resolved single-molecule trajectories abstractly 

consists of a continuous time Markov process discretely sampled by an apparatus into an 

apparent discrete-time Markov chain127. Because the experimental machinery record an 

imperfect reconstruction of the configuration of the molecule, either as a result of measurement 

noise or information loss during discrete sampling of a quickly varying continuous process128,13, 

noisy reconstructions of single-molecule trajectories are commonly analyzed using Hidden 

Markov Models (HMMs)129,77,80,83–85: these probability distributions combine three elements – a 

kinetic model for transitions between free energy minima along direct coordinates; an 

observational, or emission, model to numerically define distributions of amplitudes associated 

with the direct coordinates of free energy minima; and a computational algorithm to 

quantitatively define both from a dataset76. HMMs have been fruitfully applied to single-

molecule data when the probability of transition between free energy minima with distinct direct 

coordinates is slow compared to the experimental time resolution yet the speed at which a 

transition occurs is rapid in the same comparison. Such examples abound in, for instance, single-

molecule recordings of ion channel currents130, fluorescence resonance energy transfer 

(smFRET) recordings of RNA and molecular machines6,7,17, force spectroscopy recordings6,131, 

and field effect transistors19,20,48,132. Many of these recordings yield evidence of dynamic 

heterogeneity19,133–135,45,136–139: indirectly observed coordinates remodel the free energy landscape 

along which direct coordinate transitions occur in a manner identifiable by a burst, or a change in 

the rate of fluctuations between discrete observation classes of the direct coordinate amplitudes 

(Figure 3.3). In many cases this indirect coordinate corresponds to states of the complex with an 

external factor present or absent, the bound state biasing dynamics along the direct coordinate 

into a preferred configuration136.  Such allosteric behavior is anticipated and commonly observed 
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in the single-molecule recordings of highly orchestrated and rectified motions of biomolecular 

machines140,75. However, the kinetic model of HMMs is highly uncorrelated – the molecular 

configuration at each time point is presumed to depend only on a single coordinate76. This 

assumption presents significant limitations to quantifying allosteric dynamic networks within 

biomolecular machines. While many methods have been developed to quantify such 

transitions85,141–144, including methods capable of quantifying the limiting case of one indirect 

and one direct coordinate145, general solutions remain elusive. 

 To rigorously address this problem, we have here adapted a class of inference tools based 

on a Markov chain subclass known as a hierarchical Markov chain, whose corresponding 

probability distribution is known as a Hierarchical Hidden Markov Model (HHMM)146–148. 

Description of the experimentally recorded trajectory with a hierarchical Markov chain allows 

each free energy minimum to be expressed by a full set of coordinates, both direct and indirect, 

and therefore allows definition of a hierarchical kinetic model describing transitions between free 

energy minima in a fully specified coordinate system. Using the variational approximation to 

Bayesian inference76,99,100, fruitfully utilized for HMMs83–85, we demonstrate a method to fully 

quantify a parsimonious hierarchical kinetic model for a population of single-molecule 

trajectories, and, as an example, apply these methods to experimental smFRET data 

demonstrating dynamic heterogeneity. These methods allow the experimentalist to rigorously 

measure the amplitudes of free energy minima along direct coordinates while simultaneously 

quantifying cooperative conformational changes within intricate biological complexes. 

3.2.2.2 Theory 

 We begin by describing a hierarchical Markov chain – as discussed above, hierarchical 

Markov chains are subsets of Markov chains whose states are parameterized in terms of multiple 
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coordinates as opposed to a single coordinate146. The hierarchical Markov chain with obeys a 

Kolmogorov-Chapman equation62 propagating one full set of 𝐷  coordinates {𝑧 }  for the nth 

trajectory at time t into the next in the subsequent time point 𝑧 , , giving rise to the following 

likelihood function, 𝐿, for a given population of 𝑁 mutually independent trajectories each of 

length 𝑇 : 

𝐿 = 𝑝 𝑧 … {𝑧 } = 𝑝 {𝑧 } 𝑝 {𝑧 }| 𝑧 ,  

3-33 
We separate these coordinates into those which specify the emission distribution – direct 

coordinates denoted 𝑧 , setting up the production level of the state space, indirect coordinates 

𝑧  that specify differences in interconversion rates between production states, and arbitrarily 

higher order indirect coordinates 𝑧  which specify differences in interconversion rates between 

the indirect coordinates at the level below 𝑧 . These coordinates are given natural number 

values that abstractly distinguish coordinates of free-energy minima. The nested, conditional 

dependencies of this state-space coordinate system may be visualized as a tree146–148, which may 

be thought of as specifying the order in which the coordinates of free energy minima are always 

found on a chart. Using the conditional dependencies of this state-space coordinate system, the 

likelihood of the hierarchical Markov chain 𝐿 can be decomposed147 beginning with the direct 

coordinates at the production level with the direct coordinates and iteratively specify indirect 

coordinates until none remain: 

𝐿 = 𝜋 , 𝐴
, ,

, , 𝐴
, , ,  

, , , , 𝜋 , ,
𝐴 , ,  

3-34 
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Where we have introduced the standard notation:  

𝛿 =
1, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗

 

𝑝 𝑧 = 𝑖 = 𝜋  

𝑝 𝑧 = 𝑖|𝑧 , = 𝑗 = 𝐴  

𝑝 𝑧 ≠ 𝑧 , , 𝑧 = 𝑖 = 𝐴 ,  

with the final statement indicating the probability that indirect coordinates at level 𝑑 specifying 

interconversion rates at level 𝑑 − 1  have changed. We note that a kinetic model for static 

heterogeneity may be derived from Equation 3-34 by simply requiring a single indirect 

coordinate that can take specify an arbitrary number of minima between which transitions are 

forbidden. 

Equation 3-34 specifies the kinetic model. We use the variational approximation to 

Bayesian inference to specify both the emission distributions and the machine learning algorithm 

for the HHMM, which we briefly sketch here leaving the details of update equations to the SI. 

We seek to maximize the lower bound of the log probability, denoted the “evidence,” or 𝐹, of a 

parameter distribution, denoted 𝜃 , and a set of observations, denoted {𝑥 } , given prior 

information, denoted 𝜓 : 

𝐹 = ln 𝑝 {𝑥 }, {𝑧 }, 𝜃|𝜓 ≥ 𝑑𝜃 𝑝 {𝑧 }, 𝜃 {𝑥 }, 𝜓 ln
𝑝({𝑥 }, {𝑧 }, 𝜃|𝜓 )

𝑝 {𝑧 }, 𝜃 {𝑥 }, 𝜓
 

3-35 

The variational approximation assumes that there is no dependence between the coordinates and 

parameter distributions so that the joint probability may be written 

𝑝 {𝑧 }, 𝜃 {𝑥 }, 𝜓 = 𝑞 {𝑧 }|𝜓 𝑞(𝜃|𝜓 ) 
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Though we will here assume that the emission distributions are normal distributions with distinct 

parameters for each production state, this assumption can be generalized as necessary. Inference 

of the parameters of an HHMM proceeds by iteratively locating parameters that optimize a lower 

bound for the evidence. Iterations proceed by optimizing 𝑞 {𝑧 }|𝜓  then by optimizing 

𝑞(𝜃|𝜓 ) and finally calculating the evidence lower bound; convergence is achieved with the 

evidence lower bound remains virtually unchanged between iterations. 

 By factorizing the joint probability in the variational approximation, we may also 

decompose the distribution of the kinetic model as follows. First, we simplify the hierarchical 

Markov chain likelihood in terms of its transition counts, that is, to: 

𝐿 = 𝜋 𝐴 , 𝐴  

where 𝑏  denote the number of trajectories that begin with coordinates 𝑧 = 𝑖 together with the 

number of times 𝑧 = 𝑖 following a transition at the level above, 𝑒  denotes the number of 

transitions from 𝑧 = 𝑖 and 𝑧 ≠ 𝑧 , , and 𝑛  denotes the number of times that 𝑧 = 𝑖 

given that 𝑧 , = 𝑗, and Ω  denotes the number of distinct values of indirect coordinates at 

level 𝑑. It is trivial to observe that normalizing 𝐿 implies that the kinetic factors decompose into 

multinomial distributions: 

𝑞 {𝑏 }, {𝑒 }, 𝑛 |{𝜋}, {𝐴}, 𝜓

= 𝑀𝑢𝑙𝑡({𝑏 }|𝜋 , 𝑑, 𝜓  ) 𝑀𝑢𝑙𝑡 {𝑒 }, 𝑛 |𝐴 , 𝑖, 𝜓  

= 𝑞({𝑏 }|𝜋 , 𝑑, 𝜓  ) 𝑞 {𝑒 }, 𝑛 |𝐴 , 𝑖, 𝜓  
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Therefore, considering the state space as a tree of connected points, each point can be considered 

as an independently operating Markov chain, and to infer the parameters and parameter 

distributions of the hierarchical kinetic model it is sufficient to calculate the transition counts 

specified above. 

 

3.2.2.3 Results 

Analysis of simulated data 

 We first sought to calibrate our model by investigating whether the algorithm presented 

could be used to accurately select among kinetic models. To do this, we simulated data from a 

known kinetic model, inferred optimal parameters for models of increasing complexity, 

calculated the lower bound of the evidence (see Theory), comparing the latter as a means for 

model selection. This task is important in the analysis of experimental data with indirect 

coordinates as in this case, the statistical techniques the only means for counting and 

distinguishing amongst alternative kinetic models. 

 We simulated data from a model with two indirect coordinates that specify eight distinct 

free energy minima (Figure 3.4, right; for simulation parameters see Methods). We optimized 

parameters using the HHMM with the state space on the left and on the right of Figure 3.4 – a 

simple model with two values of one indirect coordinate, and the correct model with two values 

for each of the two indirect coordinates respectively. Both models possess the correct number 

(two) of direct coordinates. We used the methods in the SI to calculate a lower bound for the 

evidence in both cases and find, as expected, a significantly higher value for the correct model 

than the simplified model demonstrating that the evidence lower bound may be used to specify 

the most parsimonious kinetic model. 
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Figure 3.4 Selection between distinct hierarchical models using variational inference. The 

performance of two distinct hierarchical models on the same simulated trajectory, which was 

simulated using one direct coordinate and two indirect coordinates and part of which is shown at 

the center of the top of the figure, were compared. The first model, describing the free energy 

surface on the left-hand side, is comprised of a direct coordinate, z1, and one indirect coordinate, 

z2. The second model, describing the free energy surface on the right-hand side, is comprised of 

a direct coordinate, z1, and two indirect coordinates, z2 and z3. We infer all kinetic parameters 

of the simulated data using the two distinct models and compare the inferred evidence lower 

bounds to find that the hierarchical model with two indirect coordinates, as expected, best 

describes the simulated dataset. The grayscale circles schematically denote distinct values of the 

direct or indirect coordinates, a full set of coordinates being required to specify the address of a 

particular free energy minimum on the surface. 

 

 

 Analysis of experimental data 

In all domains of life, messenger RNA (mRNA) templates are decoded by transfer RNA 

(tRNA) substrates into proteins by a RNA-protein complex known as the ribosome a process 

known as translation. During the elongation stage of translation, tRNA substrates cycle 

sequentially through three ribosomal binding sites – the A, P, and E sites. Translational 

elongation proceeds by transfer of a nascent polypeptide chain from the P-site tRNA to the 

amino acid attached to the A-site tRNA; this step precedes translocation, defining a 

pretranslocation, or PRE complex. Next, translocation, wherein binding of EF-G and hydrolysis 

of a GTP to a GDP catalyzes movement of the newly deacylated P-site tRNA into to the E site, 
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the polypeptide-bound A-site tRNA into the P-site, and the concurrent movement of the mRNA 

template, sets up the next cycle of elongation. Ribosomal complexes at this step define a 

posttranslocation, or POST complex, which binds and decodes a new cognate aminoacyl-tRNA 

in the A-site in order to set up the next round of translational elongation. 

 PRE complexes fluctuate between two global states involving numerous configurational 

rearrangements of the ribosome and its bound tRNA substrates, termed GS1 and GS2149. In 

particular, in the GS2 state, tRNA substrates take configurations that allow them to interact with 

multiple tRNA binding sites simultaneously: a hybrid P/E state wherein the P-site tRNA interacts 

with both the P and E site, and a hybrid A/P state wherein the A-site peptidyl-tRNA interacts 

with both the A and P site. In this notation, the classical states of each tRNA are denoted P/P for 

the P-site tRNA and A/A for the A-site peptidyl tRNA.  
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Figure 3.5 Dynamic heterogeneity of PRE complexes. Cartoons of the PRE complexes (top), 

sample fluorophore intensity versus time trajectories (middle), and the corresponding sample 

EFRET versus time trajectories (bottom) are shown for (A) PRE-A (B) PRE+A3, and (C) 

PRE+A1. In the cartoons, the large ribosomal subunit is shown in blue with the L1 stalk 

structural element outlined in dark blue; the small ribosomal subunit is shown in tan; the mRNA 

is shown in black; the tRNAs are shown in orange; the FRET donor and acceptor fluorophores 

are shown in green and red, respectively; the amino acids are shown in white; and the A, P, and 

E tRNA binding sites are denoted on both the small and large subunits. The grayscale regions on 

the EFRET versus time trajectory are linearly grayscale-weighted by the probability that a region 

of the trajectory belongs to either type S, dark gray, or type U, light gray. Post-synchronized 2D 

histograms (see main text) for (D) PRE-A, (E) PRE+A3, and (F) PRE+A1. In each panel, the 

initial and final observations of the sub-trajectories begin and end with the same overall set of 

direct and indirect coordinates, giving rise to four types of post-syncronized 2D histograms 

showing EFRET recurrence distributions – clockwise, post-syncronized to GS2S, GS1S, GS1U, or 

GS2U. Initial conditions beginning with an indirect coordinate of Type S are shaded dark gray 

and of Type U are shaded light gray. N specifies the number of distinct trajectories, shared for all 

four 2D histograms, and n specifies the number of sub-trajectories for each type of post-

synchronization. 

 

 

In work described by Fei et al137, fluorophore-labeled ribosomal PRE complexes were 

prepared in order to determine the rate at which tRNA substrates in the P site fluctuate between 

classical and hybrid configurations and to determine the influence of the A-site tRNA on the 
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classical-hybrid fluctuations of the P-site tRNA. To do this, three pretranslocation complexes 

were prepared: PRE-A, containing a OH-(Cy3)tRNAPhe but with a vacant A site; PRE+A1, 

containing OH-(Cy3)tRNAPhe in the P site and Lys-tRNALys in the A site; and PRE+A3, 

containing OH-(Cy3)tRNAPhe  in the P site and fMet-Phe-Lys-tRNALys in the A site137. With the 

donor Cy3 fluorophore labeling the P-site tRNA, an smFRET signal reporting on classical-

hybrid fluctuations was generated by reconstituting ribosomal complexes with acceptor Cy5 

fluorophore-labeled L1 stalk, a mobile protein near the E site of the ribosome – in the hybrid P/E 

state, the EFRET was predicted to be approximately 0.85 and in the classical P/P state the EFRET 

was predicted to be approximately 0.20. 

PRE-A, PRE+A1, and PRE+A3 complexes were assembled and visualized as discussed 

in Methods, and Cy3 (𝐼 ), Cy5 (𝐼 ), and EFRET versus time trajectories recording fluctuations 

of the P-site tRNA were extracted (representative trajectories shown in Figure 3.5 A, B, and C). 

In all three PRE complexes, EFRET versus time trajectories fluctuated between a low EFRET and a 

high EFRET state, consistent with the classical (denoted GS1) and hybrid (denoted GS2) states of 

the P-site tRNA, respectively. The population of each of these trajectories were analyzed 

according to the method discussed in the previous section and the most parsimonious model in 

each was found to be one in which the direct coordinate fluctuates between two states, GS1 and 

GS2, with one indirect coordinate that can also take two values, termed S and U for stable and 

unstable, respectively, as the S has slower rates of conversion from GS1 to GS2 and from GS2 to 

GS1 than the U. This model possesses four distinct free energy minima corresponding to GS1S, 

GS2S, GS1U, and GS2U. Eight rate constants may be defined in each model – four along the 

direct coordinates GS1 and GS2 holding the indirect S or U coordinates constant, 𝑘 , 
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𝑘 , 𝑘 , 𝑘 , and four along the indirect coordinates S and U holding the direct 

coordinates GS1 or GS2 constant, 𝑘 , 𝑘 , 𝑘 , and 𝑘 . 
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We reasoned that the S-U indirect coordinate could correspond to changes in P-site tRNA 

dynamics arising from steric clashes with the A-site tRNA or conformational changes caused by 

the A-site tRNA. To graphically compare the three pretranslocation complexes, we first 

constructed a population of subtrajectories from trajectories collected from each complex where 

each subtrajectory begins when a trajectory enters one of the four free energy minima and 

terminates once the trajectory re-enters it again. These subtrajectories contain information on 

direct coordinate amplitudes sampled during first-order recurrence events, which we term EFRET 

recurrence distributions. We visualize EFRET recurrence distributions graphically by preparing 2D 

histograms of these subtrajectories recording frequency of EFRET values versus time (Figure 3.5 

D, E, and F). While the two complexes with A-site tRNA substrates, PRE+A1 and PRE+A3, 

possess very similar EFRET recurrence distributions associated with all four free energy minima, 

but while PRE-AS possesses similar EFRET recurrence distributions to PRE+A1S and PRE+A3S, 

Figure 3.6 Dynamic model for fluctuations between GS1 and GS2. Fully quantified kinetic 

model describing the rates of transitions between GS1S, GS1U, GS2S, and GS2U for (A) PRE-

A, (B) PRE+A3, and (C) PRE+A1. Note that all rates are in units of s–1. Transitions between 

GS1 and GS2 holding the indirect S coordinate constant, GS1S


GS2S, are enclosed within a 

dark gray box and the corresponding transition holding the U coordinate constant, GS1U 


GS2U, are enclosed within a light gray box. On comparison between PRE-A, PRE+A3, and 

PRE+A1, we argue that PRE+A3S and PRE+A3U are equivalent with PRE+A1S and PRE+A1U, 

respectively; on the other hand, PRE-AS and PRE-AU are distinct from the corresponding 

inferred from  PRE+A3 and  PRE+A1. 
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PRE-AU appears distinct. Indeed, because of its high noise and short lifetimes, we surmise that 

PRE-AU is an EFRET statistical artifact obscured in PRE+A1 and PRE+A3 trajectories by the high 

evidence values associated with the true S-U indirect coordinate instead of a pair of distinct 

conformations of the ribosome. 

Because of its strong dependence on the presence of a bound A-site tRNA, we argue that 

the S-U coordinate has minima with two distinct configurations of the A-site tRNA – a classical 

A/A state and a hybrid A/P state: difference in P-site tRNA classical hybrid configurations are 

affected by those of the A-site tRNA by steric hindrance between the two tRNA substrates. 

Having identified a clear distinction between pretranslocation complexes with and without bound 

A-site tRNA, we undertook a more quantitative comparison between the PRE complex with a 

bound A-site aminoacyl tRNA (PRE+A1, Figure 3.6B) and the PRE complex with a bound A-

site peptidyl tRNA (PRE+A3, Figure 3.6C). While the rates associated with GS1U

GS2U and 

with GS1S

GS2S appear similar between the two PRE complexes, transitions between GS1U




GS1S and GS2U

GS2S are distinct between the two, a subtle effect distinguishing the classical-

hybrid equilibrium between the two complexes, leading us to surmise that the PRE+A1S and 

PRE+A3S complexes correspond to those in which the A-site tRNA is in the classical 

conformation and the PRE+A1U and PRE+A3U complexes correspond to those in which the A-

site tRNA is in the hybrid conformation. This interpretation of the analysis is discussed below. 

3.2.2.4 Discussion 

 This work demonstrates a rigorous approach to quantifying single-molecule data whose 

kinetic model obeys a hierarchical Markov chain: experimental configurations wherein 
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fluctuations along directly observed coordinates of a biomolecular complex are affected by 

changes in the complex along indirectly observed coordinates. 

 Our model, which uses the variation approximation to optimize the evidence lower 

bound, provides both the machinery for estimating the interdependent parameters of a 

hierarchical Markov chain and for selecting the simplest kinetic schemes required to describe 

populations of single-molecule trajectories. 

 In contrast to existing methods for quantifying kinetic rates in the presence of direct and 

indirect coordinates85,141–144, including a very similar model released as this manuscript was in 

the final stages of preparation145, our algorithm enables experimentalists to directly quantify and 

select between kinetic schemes generated from hierarchical markov chains of arbitrary 

complexity. 

We have subsequently applied this method to an smFRET signal reporting fluctuations 

between classical and hybrid configurations of a tRNA bound to the P site of a ribosome stalled 

prior to translocation. These results have revealed a kinetic model with four free energy minima, 

highly dependent on the A-site tRNA. In fact, we observed that the presence of an A-site tRNA 

and the length of the peptide attached to the A-site tRNA affects the rate of interconversion along 

the indirect coordinate (S/U). What is the origin of this indirect coordinate? 

The indirect coordinate cannot be explained by, as proposed before137, independent 

trajectories recorded from different types of molecules (static heterogeneity): we find evidence of 

numerous, reciprocal fluctuations along the S-U coordinate within a single trajectory (Figure 

3.5.) It is possible that combination of our algorithm for dynamic heterogeneity with our 

algorithm for static heterogeneity, a more complex model than that presented here, is warranted; 

here, we simply present the most parsimonious kinetic scheme identified with our method. 
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As argued in Results, we conclude that the kinetic differences between the complex with 

an empty A site, PRE-A, and the two complexes with bound A-site tRNAs warrant the 

conclusion that the A-site tRNA modulates the classical-hybrid equilibrium of the P-site tRNA. 

The A-site tRNA fluctuates between a classical (A/A) and hybrid (A/P) state as well, as 

determined by structural and smFRET studies150–152. In the classical state, the terminal end of the 

A-site tRNA, bearing the CCA motif and covalently bound to the amino acid, contacts the 23S 

rRNA at a stem-loop in the A site known as the A-loop153–156; in the hybrid state, the same 

portion of the A-site tRNA contacts the 23S at a stem-loop in the P site known as the P-loop 

(reviewed in 150). The lifetimes of the classical and hybrid states of the A-site tRNA are on the 

same timescale as those of the P-site tRNA.  

We therefore argue that steric hindrance between the A-site tRNA in the hybrid state and 

mutually exclusive interaction with the P-loop or A-loop residues give rise to a coordinate that 

indirectly affects fluctuations of the P-site tRNA. With the A-site tRNA transiently occluding the 

P site, the rate at which the P-site tRNA returns form the hybrid to the classical configuration 

will depend also on the length of time required for the A-site tRNA to re-enter its classical 

configuration. This compounded rate is slower than the corresponding rate wherein the A-site 

tRNA does not transiently occlude the P site. Therefore, we will assign S to a set of 

configurations wherein the A-site tRNA can transiently sample the hybrid state and U to a set of 

configurations wherein the A-site tRNA remains in the classical configuration. We propose that 

the A-loop of the 23S rRNA stabilizes the A-site tRNA and leads to the faster P-site dynamics 

when holding U constant, but that lack of the extra configurational constrains provided by this 

contact lead to interactions between the two tRNAs and the slower P-site dynamics observed 
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when holding S constant. Therefore we propose that the observed dynamic heterogeneity arises 

from interaction between the two flexible tRNA substrates. 

To conclude, we note possible generalizations of this work. (1) The probability 

distribution presented here could be modified with the goal of connecting observations from 

separate fluorophore labeling positions. At present, it is difficult to demonstrate the link between 

such experiments because they cannot be rigorously represented as a group; however, taking 

smFRET studies of the ribosome as an example (reviewed in 140 for example), there are a wealth 

of studies that are heuristically interpreted as a group, a situation calling for a unified, 

quantitative model. Combining information between two signals can be done in the context of 

this model. If static heterogeneity requires that the trees do not possess a common root, trees can 

be mixed just as disconnected nodes can, to construct a mixture of copies. (2) A multi-

production-level tree could connect theoretical Markov-state models from molecular dynamics 

simulations to those directly observed in a single-molecule experiment. This model currently 

suffers from two ends – first, a full Bayesian approach does not exist for MD simulations, and 

second, the time resolution of current single-molecule experiments is too low to be directly 

relevant to all but extremely expensive simulations. We note, however, that recent work20,22 has 

all but removed this experimental restriction, and we expect that in the near future such bridging 

models will become highly relevant. 

3.2.2.5 Materials and Methods 

 Simulated data was prepared by adding white noise, to a signal-to-noise ratio of 5, to a 

sequence of index values of a direct coordinate generated from a hierarchical Markov chain 

whose inter-coordinate transition rates depended additionally upon two distinct indirect 

coordinates, given in tree-representation by the diagram on the right hand side of Figure 3.3. The 
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rate constants at each level were separated sufficiently in value so that no two sets of indirect 

coordinate gave rise to near-equivalent transition rates between direct coordinates to prevent 

ambiguity during inference by either of the models in Figure 3.3. 

 Single-molecule fluorescence resonance energy transfer (smFRET) data discussed in this 

work consists of a dataset previously reported by Fei et al137. Ribosomal protein L1 was site-

specifically labeled with an smFRET acceptor fluorophore, Cy5, and reconstituted into purified 

50S ribosomal subunits; a tRNAPhe labeled at the dihydrouridine at position 47 with an smFRET 

donor fluorophore, Cy3, was incorporated into the P-site of all ribosomal complexes. Three 

pretranslocation complexes were prepared: PRE-A, generated by deacylating the P-site tRNA 

with puromycin prior to peptide transfer, containing a OH-(Cy3)tRNAPhe but with a vacant A 

site; PRE+A1, containing OH-(Cy3)tRNAPhe in the P site and Lys-tRNALys in the A site 

generated by delivering an EF-Tu:Lys-tRNALys to PRE-A complexes; and PRE+A3, containing 

OH-(Cy3)tRNAPhe  in the P site and fMet-Phe-Lys-tRNALys in the A site generated by 

undergoing three rounds of consecutive translation137. Ribosomal complexes were assembled 

onto biotin-labeled mRNA templates which were bound to streptavidin tetramers surface-

immobilized by pre-conjugation to a biotin-labeled polyethylene glycol layer coating a quartz 

slide137,157. Fluorescence intensity versus time trajectories were collected at 50 ms time-

resolution from successive images of wide-field, prism-based, total internal reflection 

fluorescence (TIRF) movies simultaneously recording donor Cy3 intensity, 𝐼 (𝑡), and acceptor 

Cy5 intensity, 𝐼 (𝑡), following excitation of the donor Cy3 fluorophore with a 532 nm laser, 

allowing calculation of 𝐸 (𝑡) =
( )

( ) ( )
. The 𝐸  values are proportional to the 

donor-acceptor distance, given by 𝐸 (𝑅) = , and the Forster radius 𝑅 , assuming 
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constant quantum efficiency and free isotropic rotation of both flourophores, is 54 Å7. Donor and 

acceptor intensities from each ribosomal complex were collected in identical buffer conditions 

excluding excess components, such as labeled tRNA molecules or puromycin, required to 

generate them137. 

 𝐼 (𝑡) and 𝐼 (𝑡) trajectories corresponding to single ribosomal complexes labeled with 

Cy3 and Cy5 were identified and extracted from TIRF movies as described elsewhere137. Data 

were truncated according to the single-step photobleaching event and the 𝐼 (𝑡) and 𝐼 (𝑡) 

trajectories were baseline corrected by subtracting the average intensity of the last ten time points 

following the photobleaching event of either Cy3 or Cy5. Truncated and baseline corrected 

trajectories were used to calculated 𝐸  versus time trajectories. These were analyzed using an 

HHMM as discussed in Results, and 2D histograms were prepared as discussed in Results. 

Software for generation of simulated trajectories and analysis of simulated and experimental 

trajectories was written using MATLAB R2015a. 

3.2.3 A Bayesian Approach to Single-Molecule Trajectories with Diffusing Observables 

The parameters describing how a measurement reports the occupancy of a state are 

known as the emission distribution. Typically the emission distribution is assumed to be 

unchanging through time. While this assumption avoids severe difficulties when the emission 

distribution is static, when the emission distribution varies continuously with time, the trajectory 

becomes inscrutable to the model. Here, a Bayesian inference framework based on the 

variational approximation allows for the emission distributions to vary continuously and thus 

enables analysis of trajectories that not only jump between discrete states, but also continuously 

alter the observable definition of those states. 
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3.2.3.1 Introduction 

Single-molecule observable versus time trajectories, or simply trajectories, are typically 

modeled with emission distributions that possess constant parameters over time80,83,85. This is 

appropriate when the observable has strict constraints – for example, in single molecule 

fluorescence resonance energy transfer (smFRET) measurements, the FRET efficiency reports an 

interdye distance and reflects the fact that the overlap integral, which presents the main 

contribution to the energy transfer from the donor fluorophore to the accepter fluorophore, is 

typically constant with time at any given separation7. Not all observables possess such physical 

constraints. For instance, passive clamp optical tweezer experiments are calibrated to a given 

force, but there is no a priori reason to suspect that a given extension must be assigned to a given 

rip force, and indeed, those changes vary somewhat over time as a result of low frequency 

noise158. As another example, ion channel measurements occasionally possess an incomplete seal 

about the membrane, causing a small leakage current that continuously varies conductance class 

assignment86. More practically, measurements of conductance versus time trajectories using 

carbon nanotube single-molecule field effect transistors described in Chapters 4 and 5 possess 

significant low-frequency noise, arising from fast, correlated charge fluctuations in the solution 

gate electrode, which can be essentially considered a manifestation of a random walk. 

Collectively, this phenomenon may be referred to as “emission drift.” 

Solutions to the emission drift problem have been proffered by the ion channel 

community. In particular, two solutions exist: first, a “metastate” maximum likelihood hidden 

markov model (HMM) utilizing time lags and direct fits to the Yule-Walker equation was 

implemented to estimate rate constants with small emission drift79; second, a maximum 
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likelihood Gaussian mixture model was designed to deconvolute multiscale emission drift using 

a direct diffusion model8 6. 

To improve these models, my approach has been to employ a Bayesian inference based 

framework to the graphical model implied by the diffusion model for emission drift76. Bayesian 

inference mimics the scientific process by allowing assumptions (prior distributions) to be 

updated by observations, leading to better estimates (posterior distributions.) In doing so, here I 

improve on existing tools by naturally quantifying the experimental- and ensemble-derived 

uncertainty. This is particularly crucial for datasets exhibiting emission drift, as the noise 

associated with a measurement can approach a level wherein the human eye is an insufficient, 

whereas variational inference, which encourages parsimony, can provide quantitative measures 

to aid proper model selection. 

3.2.3.2 Methods 

Implementation of a HMM that corrects for emission drift using a diffusion process 

utilizes the same Bayesian network, and therefore identical equations, as the usual HMM except 

for the presence of an additional variable which tracks the diffusive state of the trajectory. The 

values of this variable, called the “baseline,” are assigned by inverting the finite-difference 

Laplacian uniquely associated with the particular trajectory. Parameter estimation is schematized 

in Appendix A. Simulated data to test the model was prepared by generating a trajectory and 

adding 1/f noise of varying amplitude directly to the state space variable 𝑧 . 

3.2.3.3 Results and Discussion 

The primary use of the emission drift HMM in this thesis will be to deconvolute 

conductance versus time trajectories recorded from single-molecule field effect transistors. 

Therefore simulations have been prepared to demonstrate that the algorithm can actually perform 
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this task, schematized in Figure 3.7. For a wide range of noise amplitudes, the algorithm 

accurately reconstructs the rate matrix, and comparatively increases the SNR available for 

analysis by a factor of 4. This is especially important for long trajectories containing dynamic 

heterogeneity, such as those in Chapter 5. 

3.2.3.4 Conclusion 

Combining the emission drift model presented here with all the other computational 

methods presented in Chapter 3 presents a toolkit that can deconvolute almost any jump-markov 

problem. This code has been prepared, tested, and will be used extensively throughout 

subsequent chapters to quantify single-molecule field effect transistor data. 

 

Figure 3.7 Design and validation of the emission drift Hidden Markov Model. 
 (A) Graphical model of the Dynamic Bayesian Network. Gray, prior parameters; red, model 

realizations; green; expected parameters; yellow, observed data. (B) Noise limitations of the 

model, and comparison to conventional HMM, evaluated using a 3-state markov chain. 
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Fractional transition matrix error is defined by 𝐸𝑟𝑟𝑜𝑟 = ∑ ,  where  𝐴  is the 

simulated transition matrix and 𝐴  is the transition matrix measured from the simulated data 

with a mixture of 1/𝑓 .  noise, a common value measured in trajectories recorded using the 

methods in Chapters 2, 4, and 5. The signal-to-noise ratio is defined by dividing the separation 

between two states Δ𝑆 by the coefficient 𝐵 of the noise amplitude (i.e., the power spectrum is 

𝐵/𝑓 . .) The same signal at several SNR values is shown on the right. 
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Part 2: Dynamics of nucleic acids on the microsecond timescale 

The past half-century has witnessed an explosion in research demonstrating that DNA is 

not simply a carrier of information, and that RNA plays substantially more roles than as a 

transcribed intermediate between DNA and protein1. Like proteins, to execute their roles, these 

molecules fold up into complex three-dimensional shapes to assemble conserved recognition, 

catalytic, and regulatory sites. The question has become, not whether nucleic acids can play these 

roles, but how; and this question deeply entwines with how the molecule gains its shape and 

interconverts between competing conformations. 

Compared with proteins, nucleic acids at first glance have very few monomer 

components: in contrast to the twenty-one canonical amino-acids making up most proteins, there 

four distinct bases in DNA, four distinct bases in RNA, and both molecules have consistent 

negative charge resulting from the phosphate backbone, which is always respectively segmented 

by the same deoxyribose or ribose sugar. This comparative lack of diversity is illusory. First, in 

modern organisms, RNA and DNA rarely carry out regulatory functions alone, often balanced or 

augmented synergistically with protein partners: for example, Cas9, a key component of the 

bacterial immune system, must be loaded with a proper guide RNA which it then uses to search 

for potential foreign nucleic acid targets to cleave159. Second, although the monomer 

composition is limited, the interaction space is enormous, because all the monomers have 

potential interactions with each other: for example, other than a Watson-Crick base pair, 

nucleotides may form Hoogsteen base pairs on the opposite edge; bulges or loops may insert into 

helices to form A-minor motifs; disparate stem-loops may coalesce into a “kissing” interaction; 
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bulges may protrude from a helix to provide an interaction surface for other RNA or protein 

molecules; the nucleic acid may bend over onto itself to form d-loops, t-loops, or pseudoknots; 

four-way junctions may diffuse up and down an enormous helix; and of course, all at once (see 

Figure 1.1 for a few selected examples)160. Third, the bases themselves possess many post-

transcriptional modifications – for example, human genomic DNA is extensively marked by 

methylation, and functional RNAs such as tRNAs bear extensively regulated post-transcriptional 

modifications1. Finally, like proteins, RNA especially and to some extent DNA, possesses 

programmed modules which are thought to rapidly pre-form by way of competition with 

alternate structures161. 

Conformational heterogeneity and subsequent interconversion between individual atomic 

configurations, therefore, has been proposed as a major mechanism by which biological 

outcomes are regulated2. These interconversions do not take place instantaneously in a single 

step. In many cases, the elementary steps that compose entry and exit from the transition state 

involve breaking or re-forming individual base pairs. While the timescale of this process has 

been measured, events like these are difficult to resolve on the single-molecule level because 

they are exceedingly rapid and distance changes within the nucleic acid are negligible compared 

to the resolution of contemporary techniques. Because the single-molecule field effect transistors 

described in Chapter 2 sense very small changes in charge density in the carbon nanotube 

vicinity with microsecond time resolution, these devices are uniquely suited to the study of DNA 

and RNA dynamics. 

In Chapters 4 and 5, I present two distinct studies of RNA dynamics. Chapter 4 is 

primarily concerned with the formation of specific folding modules, in particular, how the 

formation of conserved loop modules guides the kinetics of base pair rearrangements within the 
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context of an RNA stem-loop. Finally, culminating all these viewpoints, Chapter 5 investigates 

how the dynamics of an RNA switch are guided by shifting structural modules above, and shows 

how this dynamic heterogeneity offers a detailed theory potentially accounting for the operation 

of the switch. Collectively, these studies provide some foundational research into the fast-paced 

and conserved motions underlying the RNA world.
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Chapter 4  Direct measurement of base pair-by-base 

pair zipping and unzipping of individual 

RNA stem-loops 

4.1 Introduction 

RNA secondary and tertiary structure formation has been commonly represented as a 

non-directed graph bearing varying thermodynamic weights of occupancy and kinetic weights of 

formation and disruption of the edges. The polymer navigates the graph via transient population 

of intermediates, eventually populating each according to its equilibrium distribution95,96,162.  In 

conditions typical of biology, these dynamics resemble a random walk88. Steps are considered 

stochastic because the environment constantly fluctuates and typically relative extrema of 

environmental fluctuations are required to qualitatively perturb the graph87; a brief discussion of 

some aspects of stochastic dynamics are described in Chapter 3. The purpose of this chapter is to 

describe the use of the single-molecule field-effect transistor (smFET) technique to measure the 

rate constants of the pairing and unpairing of individual RNA base pairs in the context of highly 

conserved folding motifs. 

Two questions immediately jump out given the view of RNA folding as a random walk 

with discrete steps: first, what is the diversity and what are the timescales of potential steps? And 

second, given that state space complexity increases exponentially with the number of subunits as 

the number of ways that the polymer can interact with itself increases combinatorically with the 
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number of compositional monomers, how does RNA both utilize and manage that complexity? 

To answer the first question, investigators have turned to NMR and temperature jump 

hypochromicity studies, the former of which indicate that, once begun, the lifetime of a paired 

base in a helix lies between 1 and 100ms163–166; and the latter of which indicate that the rate of 

transfer from the paired to the unpaired state and vice versa lies in the 100ns range95,96,167 (a 

rather complete reference can be found in  160). So-called toeholding experiments which monitor 

the invasion of one strand of DNA by another typically predict a similar lifetime168,169. To 

answer the second question, investigators have taken to comparisons of sequences of RNA that 

are highly conserved across domains of life, under the banner of predicting structure from 

sequence. In the early 1990s, such questions and comparison of sequences of ribosomal RNA led 

to the astounding observation that more than half of all ribosomal stem-loops are capped by 

loops consisting of four nucleotides and that these four nucleotides were most usually either 

GNRA (guanine, anything, purine, adenine) or UNCG (uracil, anything, cytosine, guanine)170. 

Additionally, UNCG stem-loops were also identified in some viral transcripts (T4 

bacteriophage)171. Unsurprisingly, biophysical characterization using UV melting at high salt 

concentrations revealed that there was something special about this sequence – stems capped 

with GNRA or UNCG tetraloops melt at temperatures 10-20 ˚C higher than their more random 

counterparts172,173. 

This observation, as well as their phylogenetic prevalence, has led to two separate but 

nonexclusive proposals for tetraloop function. First, by comparing sequences of known RNA 

interactions containing tetraloops174, it was predicted175 and later confirmed176–180 that tetraloops 

act as the donor of a donor-acceptor motif in order to mediate RNA tertiary interactions as well 

as to act as binding sites for other RNAs . A prototypical example is the role of GNRA tetraloops 
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in spliceosome assembly, a topic reviewed in 181. Alternatively, tetraloops can serve as adaptor 

sites for binding of proteins. A prototypical example is ribosome assembly, reviewed in many 

places but 182,183 containing a fascinating perspective. A more specific example is the GTPase 

associated center of the ribosome, which contains a conserved GAGA loop, type GNRA, called 

the sarcin-ricin loop, or SRL, which serves as part of an essential binding and regulatory site for 

GTPases during the elongation and termination phases of translation.  Second, it was proposed, 

on the basis of their unusual stability, that RNA structures bearing loops of this type serve as co-

transcriptional folding nuclei – for example, ribosomal RNA, bearing hundreds of bases, has on 

its face a very complicated folding ensemble, which is conceptually simplified184 when one 

considers that stems capped by hyperstable tetraloops likely fold first and are unlikely to fully 

unwind before subsequently transcribed modules can begin to interact185–188. In this matter, the 

simplicity of the loop is key – to create the proto-structure of a tetraloop the only interactions 

required are that three adjacent bases stack and two bases pair189. Indeed, this folding process 

begins the moment the RNA polymerase slides out of the way, just after the RNA is 

transcribed190. 

These proposals bring the search for a conservation pattern beyond the RNA sequence 

itself and into the realm of biophysics. To evaluate proposed function, generation of structural 

data was a logical first step. Early comparisons of GNRA, UNCG, and other loops based on their 

crystal and NMR structures led to a phylogenetic analysis of sorts revealing that patterns in 

structural morphology, which have much to do with donor-acceptor motifs and even more 

relevance for stability, can be clustered independently of sequence, i.e. there are numerous 

“letter” violations, for example GNRA-sequence tetraloops that actually look like UNCG 

tetraloops. However, there are not so many configurational violations – most loops can be 
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classified191,192. Further comparison of these structural clusters, with the addition of even higher 

resolution ribosomal and RNA structures, has allowed the presentation of what may be 

considered the core set of structural strategies193: numbering the tetraloop 1-4 from the 5’ end, a 

donor-acceptor interaction between two RNAs will typically require an interaction between the 

ribose sugar of the base in position 1 and the nucleobase in position 4; furthermore, structures 

can be directly classified into two types of loop fold regardless of sequence – a U-turn, favored 

in general by GNRA-type, and a Z-turn, favored in general by UNCG type . The latter is, in 

general, more stable. Enhanced stability is proffered if the closing base pair (0-5) are a C and a 

G, in that order173,194. A U-turn consists of a reversal in phosphate backbone direction stabilized 

by a base-phosphate hydrogen bond between the first and fourth base respectively as well as a 

stacking interaction between the first and third base; a Z-turn is distinguished from a U-turn, 

because there is a base pairing interaction between the first and fourth base and a stacking 

arrangement between the third and fourth bases. It is important to observe that the two types may 

interconvert within a single sequence, and furthermore, that with this definition it is not required 

that the loop consists of four bases. These rules have crystallized what may be considered the 

core family of conserved stem-loops folding strategies. 

What characterizes the dynamics of tetraloop folding motifs? As mentioned above, two 

key questions have been thus far investigated. First, how does the native structure assemble from 

an unfolded ensemble? And second, how do tertiary docking interactions involving tetraloops 

assemble and what are, and what principles govern, their timescales? 

Assessing the assembly of tetraloop structures has been mainly viewed via experiments 

focusing on their disassembly. Experimentally, this can be achieved by replacement of an 

adenine in a loop with its fluorescent near analogue 2-aminopurine (2AP) and measuring bulk 
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fluorescence following a sudden increase in temperature, or using the single-molecule optical 

tweezers technique to pull on either end of a stem-loop within a laser force trap. Theoretically, 

this can be achieved by all-atomistic molecular dynamics (MD) simulations. These assays have, 

collectively, suggested the following model for folding of stable tetraloops: the nucleic acid in its 

single-stranded form is not a random coil; rather it is a collapsed form which is already near a 

state where a loop forms. Following stochastic nucleation of a proto-loop, or globular 

intermediate state, which is predicted to possess an approximately 10-nanosecond-scale 

lifetime186, subtle rearrangements in the loop that force more optimal stacking between the 3rd 

and 4th position have been proposed on the basis of 2AP relaxation occur within the next 

microsecond195. After these two events have occurred, the hairpin explores a sequence-dependent 

dynamic transition state involving rapid rearrangement of the stem base pairs, which under 

conditions of force is centered at least 3 base pairs distal to the loop itself196–198; the rate constant 

of these individual transitions, under force, is faster than 100 microseconds197, via NMR, 

estimated at 1-100 milliseconds163–166, and via temperature jump experiments, estimated as fast 

as 100 nanoseconds95,96,199–201. At equilibrium, lower than the melting temperature, only the 

latter, base pair rearrangements, are expected to be populated to a large degree. It should be 

noted that, unsurprisingly for a polyanion such as RNA, these rate constants are highly salt 

dependent – folding is accelerated in the presence of high concentrations of salt (a salient 

discussion may be found in 160). 

Dynamics of docking interactions, on the other hand, have been mainly studied via 

single-molecule fluorescence resonance energy transfer (smFRET), fluorescence correlation 

spectroscopy (FCS), and NMR, and are thus not typically modeled beyond two-state kinetics 

involving transfers between an “unfolded” and a “folded” state, and are dynamic on the 100ms-
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10s timescale. NMR structures have revealed a mainly U-turn motif following docking of GNRA 

tetraloops into the minor groove of the acceptor RNA (a so-called A-minor motif202), indicating 

that rearrangement of the loop architecture may not be necessary beyond distortion of base 

stacking within the loop.  Interestingly, smFRET studies have revealed a magnesium cation 

dependence that relies on two states of the loop as well as two states of the docking site, both of 

which are modulated into a more favorable configuration by its addition203 (reviewed in 204). It is 

not known, however, what the consequences of docking are on stem stability. 

This mixed approach of phylogenetic, structural comparative, kinetic, and theoretical 

analysis has been extraordinarily fruitful with respect to the study of tetraloop folding. However, 

while this approach has been successful in some cases in explaining function as well as 

conservation pattern, questions remain. The question investigated here is: how does the loop and 

loop-type affect dynamics of the bases in the stem? Such questions require high time-resolution 

methods to answer and furthermore, because the kinetics of nucleobase rearrangements are 

highly correlated to each other, single-molecule techniques and single-molecule field effect 

transistors (smFETs) in particular are highly suited to this study. The implications of answering 

this question are clear – beyond enabling a kinetics-based classification of stems, as described 

above, smFETs are currently the only equilibrium single-molecule tool able to probe stem 

dynamics,  one of the primary tools used by nature to fold RNA tertiary structures and gauge 

interactions between stems and other molecules, and. 
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Figure 4.1 Schematic of smFET measurement geometry, stem-loop constructs, and 
experimental conditions.  
(a) Flowcell setup for an smFET, wherein 60 devices are simultaneously measured within a 

PDMS flowcell. (b) Predicted secondary structure cartoons of each of the 5 stem-loop constructs 

tested. (c) A subset of a sample trajectory recorded in the absence of complementary or non-

complementary DNA for the UUCG stem-loop; (d) in the presence of 1 µM complementary 

DNA; (e) in the presence of 1 µM non-complementary DNA. 

 

4.2 Results 

RNA constructs, 5’-NH3(CH2)6-GGACL1L2L3L4GUCC-3’ were purchased from IDT, 

with L1L2L3L4 consisting of either the GAAA, GCAA, UACG, UUCG, or the relatively 

unstable172 UUUU stem-loop motifs and whose 5’ bases were modified with a primary amine 

were attached to carbon nanotubes (CNTs) using the pyrene-NHS anchor as schematized in 

Figure 4.1 (see Figure 3.3 in Chapter 2 for CNT functionalization methods within 
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polydimethylsiloxane (PDMS) flow cells (identical stems have been studied in 172,173); RNA was 

purified through an anion exchange hitrap QHP column across a 0.1-1M NaCl gradient at pH 7. 

This procedure yields two major peaks for each construct. Isolating either peak and pushing it 

once more through the column yields again the same two peaks. Subsequent purity was assessed 

using a 20% D-PAGE with 20% formamide and staining by toluidine blue.   
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Figure 4.2 Transition pattern and population evolution of stem-loop constructs. 
From left to right, cartoon representation, sample trace, 2D histogram (see text), transition 

density plot in the absence of complementary or non-complementary competitor DNA, and 

transition density plot in the presence of 1µM competitor DNA for the (A) UUCG (B) UACG 
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(C) GAAA (D) GCAA (E) UUUU stem-loops. 

 

Following extensive washing with buffer (10mM phosphate, buffered to pH 7 by mixing mono- 

and disodium phosphate, 100mM NaCl), three separate 10 minute recordings of conductance 

versus time trajectories, or just trajectories, were collected (gate voltage Vg=-300 mV, see 

Chapter 2 for a FET overview) on each of the five constructs at 50 µs time-resolution: (1) a 

recording in the presence of 1 µM of a DNA sequence complementary to the RNA stem loop; (2) 

a recording in the presence of 1 µM of a DNA sequence with no complementarity to the stem 

loop; (3) a recording in just the buffer. A sample trajectory from each of these conditions is 

shown in Figure 4.1 c-e. If trajectories showed quantal, competitor sequence-specific 

fluctuations, then these fluctuations were supposed to arise from fluctuations of the stem loop 

and were analyzed further using a Hidden Markov Model with baseline correction (see Chapter 

3). 

Comparison of the trajectories revealed that in buffer with non-complementary DNA in 

solution or in buffer without competitor DNA of any sort, every smFET with stem loop-

dependent fluctuations possessed four conductance classes, numbered CC1-4 from highest to 

lowest conductance. A fifth conductance class, CC5, appeared in trajectories when DNA 

complementary to the stem loop sequence was added to the flow cell. I argue that these five 

conductance classes arise from decreased or increased flexibility of the phosphate backbone 

arising from zipping and unzipping base pairs of the stem loops because the calculated Debye 

length under the assay conditions, λD defined in Chapter 2, predicts that the phosphate backbone 

of at least three base pairs are expected to contribute to the signal and because addition of DNA 
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complementary to the stem loop causes the appearance of an additional conductance class with a 

very specific transition pattern, discussed below. 

To interpret the conductance classes, as in previous studies18,205, the more compact form 

of the nucleic acid is associated with the lower conductance class. This interpretation is 

supported by the transition pattern of CC5 in the presence of complementary DNA, discussed 

below.  It is important to note that every smFET has a different baseline conductance owing to 

variability in the structure, defect density, or electrode contact of the CNT fragment used to form 

each device. For these reasons, absolute smFET conductance values cannot be assigned to 

specific molecular conformations. Instead, relative changes in device conductance are correlated 

to predicted structural rearrangements of the attached molecule. Apprehended of these 

desiderata, I argue that these conductance classes correspond to distinct states of the stem-loop 

that have a different terminally paired base in the stem-loop: for example, the class with the 5’ 

base paired is proposed to correspond to CC4, and CC1, the class with the highest conductance, 

is proposed to correspond to a mixture of the state with the only intact base pair as loop-closing 

pair and the unfolded state. These base pairing states of the stem-loops will be referred to as H1-

4 (CC1-4). On the other hand, CC5, which is unique to trajectories recorded in the presence of 

complementary DNA, will be referred to as HH as it likely only arises when the RNA and DNA 

strands are in a paired state. 

To quantify the rates of transition between the base pairing states, trajectories were 

analyzed using a four- or five- state HMM and the rate constants were extracted from the 

transition matrix of the fit (see Appendix A and Chapter 3). The plots described below are given 

in Figure 4.2. To show the unperturbed base pair lifetimes, post-synchronized 2D histograms 

were prepared for each stem-loop construct, in the presence of buffer without any DNA in 
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solution, by splitting the trajectory into subtrajectories that each begin with occupation in H4 and 

terminate after occupation and subsequent dwell in H1. These subtrajectories correspond to 

events that unpair the portion of the stem-loop helix that the smFET can detect. Transition 

density plots, which depict the originating and terminating conductance class after a jump-

transition, were prepared for the trajectories recorded with buffer and, separately, in the presence 

of complementary DNA. In agreement with a zipping and unzipping model for the helix, while 

H1-H4 primarily transition between adjacent base pairing states. HH may transition to and from 

H1 and H2 directly, bypassing H3 and H4, in agreement with a model wherein the invading 

DNA only productively interrogates the RNA when the RNA bases are unpaired. There are 

additionally reciprocal transitions between HH and H4, perhaps indicating that the DNA-RNA 

hybrid possesses similar dynamics to the stems; however, the fact that HH may transition to H1 

or H2 directly indicates that unfolding of the DNA-RNA duplex is in some cases initiated from 

the U-A/A-T rich region which formed the erstwhile loop. 

To compare the thermodynamic weights of each of the base pairs of the stem-loop, two 

thermodynamic measures were prepared for the measurements in the absence of complementary 

or non-complementary competitor DNA. First, the fractional occupancy of each state H1-H4 was 

measured directly from the trajectory (Figure 4.3a). From this, one immediately concludes that 

the UACG stem-loop is the most thermodynamically stable of the five stem-loops tested in the 

sense that it spends the least amount of time in H1, and that the UUUU stem-loop is the least 

thermodynamically stable of the five stem-loops tested according to the same measure. Because 

most transitions were between adjacent conductance classes, in accord with a zipping and 

unzipping model for adjacent base pairing states, a second thermodynamic measure ∆𝑔 , shown 
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in Figure 4.3b, can be calculated from the kinetic rates 𝑘 ,  and 𝑘 ,  between adjacent base 

pairing states as ∆𝑔 ≡
∆

= log ,

,
.  

Figure 4.3 Thermodynamic and kinetic measures calculated from trajectories in the 
absence of any competitor DNA. 
(a) Occupancy fractions of each of the four base pairing states H1, H2, H3, and H4 for the five 

stem-loops. (b) Δ𝑔  for each base pair of each of the five stem-loops, described in the text. Error 

bars are 70% confidence intervals obtained from the transition matrix distribution.  (c) Unzipping 
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This measure, which I call the “unzipping free energy difference,” estimates the relative free 

energy difference between subsequent terminally paired states. Comparison of the five stem-

loops using this measure reveals that, while the terminal base pairs of each construct have near-

equivalent ∆𝑔 , the closer the terminal base pair to the loop the more diversity between the five 

constructs. The exception to this pattern is the UACG stem-loop, which has a consistently 

negative ∆𝑔 , which is also reflected by the fact that this stem-loop spends most of its time in H3. 

To compare the stem dynamics of the five loop constructs, two dynamic measures were 

prepared. First, by sorting through the trajectory and identifying when the stem-loop entered H4, 

we count how much time passes before it enters H1; by fitting the cumulative distribution of 

these first-passage times to an exponential, these give the unzipping mean first passage rate for 

the stem loop, ku. Likewise, by counting how much time passes before entering H4 starting at 

entry into H1 and fitting the cumulative distribution of the subsequent first-passage times to an 

exponential, one can measure the zipping mean first passage rate of the stem loop, kz. The 

cumulative distributions and apparent rate constants are shown in Figure 4.3 c and d. ku increases 

in order UUCG<UACG<GAAA≅GCAA<UUUU, indicating the relative kinetic stability of the 

respective stem-loops, in agreement with the previously reported melting temperatures. On the 

other hand, the kz of each stem loop is essentially equivalent, with the notable exception of the 

cumulative probabilities for the first-passage times beginning in H4 and terminating in H1; inset 

is ku. (d) Zipping cumulative probabilities for the first-passage times beginning in H1 and 

terminating in H4; inset is kz. Both apparent rate constants were obtained by directly fitting 

cumulative distribution to the equation 𝑝(𝑡 > 𝑇) = 𝑒 . Error bars are 70% confidence 

intervals obtained from the fit. 
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UUCG loop, which is approximately 5-fold faster than the others. The fact that the UUCG stem-

loop has both a faster kz and slower ku than the UACG stem-loop would appear to be at odds 

with the fact that the occupancy of H1 of the UACG stem-loop is 10-fold lower than the 

occupancy of H1 of the UUCG stem-loop. This apparent discrepancy between the 

thermodynamic and kinetic measures is explained by the consistently negative ∆𝑔  values of the 

UACG loop – in particular ∆𝑔 , which is positive for the UUCG and negative for the UACG 

stem-loop. 

4.3 Discussion 

This chapter has described fluctuations in smFET conductance which have been 

interpreted as arising from alterations of base pairing states in RNA helices. In the introduction 

to the chapter, I outlined three ways that the results and their interpretation could be compared to 

the copious body of previous work: first, the measured melting temperatures172,173,188,194,206 can 

be compared to the thermodynamic properties inferred from the smFET trajectories; second, the 

thermodynamic barriers between individual base pairs may be compared to expectations founded 

on predictions from the nearest-neighbor model160; third, opening and closing rate constants of 

individual base pairs may be compared to the expectations of a zipping model on the basis of 

lifetimes estimated via NMR163–166,207 and force spectroscopy197,198. I will discuss each of these 

as a separate topic. Finally, I will introduce two more comparisons, which I see as opportunities 

for future study suggested by these results: first, between the two GNRA stem-loops and the two 

UNCG stem-loops; and second, looking at the trajectory-derived role of the so-called closing 

base pair, i.e. the last base before the loop. 
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On its face, the melting temperature trend from previous work, which suggests the 

following order of stability, UUCG>UACG>GAAA>GCAA>UUUU, for the four stem-loops 

studied, is at odds the order of stability obtained from comparison of the observed population of 

the non-H1 states in the smFET trajectories, UACG>GCAA>UUCG>GAAA>UUUU. However, 

the ratio of the kinetic measures ku and kz, corresponding to a pseudo-two state equilibrium 

constant agree with the melting temperature trend from previous work. Additionally, each of 

these aggregate rate constants are quantitatively similar to rate constants obtained by fitting the 

results of single-molecule fluorescence correlation spectroscopy experiments to a two-state 

model, an approach that yields correlation times between 0.1 and 10 ms.208,209 Likewise, the 

aggregate rate constants obtained here are quantitatively similar to rate constants obtained from 

the analysis of single-molecule FRET melting experiments recorded on stem-loops with 

extended 30 nucleotide loops, experiments that typically yield two interconverting states with 

rates of transitions between 1 s-1 and 60 s-1.210 Why then the thermodynamic discrepancy? I argue 

that the melting temperatures, evaluated on the basis of bulk measures and on the assumptions of 

two-state models, are evaluated on a footing more commensurate with the summary kinetic 

measures rather than the occupancy measures. However, the smFET trajectories provide a wealth 

of new information which is inaccessible to hypochromicity experiments. For example, analysis 

of this data has provided the individual forward and reverse rate constants for each individual 

base in the stem-loop, with the possible exception of that of the closing base. From this study, 

one may make a strong argument that two-state models for stem-loop unfolding are overly 

simplistic because the stem-loop does actually spend a significant amount of its folding and 

unfolding time paused at individual intermediate paired states. This is, in fact, no different than 
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recent proposals for stem-loop folding and unfolding mechanisms, which have recently been 

applied to hypochromicity data96,162. 

While this work did not describe a comprehensive set of pairwise base switching 

experiments, the unzipping free energy differences measured in this work are in qualitative 

agreement with the nearest neighbor model. This can be seen in Figure 4.3b, wherein the 

coordinate with the most bearing on kinetic differences between base pairing lifetimes is simply 

proximity to the loop sequence, which varies between the five constructs; a notable exception 

being the UACG stem-loop. This is what would be predicted from the nearest neighbor model, 

because the only difference contributing to kinetic difference between base pairs of the different 

stem-loops is their proximities to different stems. 

The individual terminal base pair lifetimes measured from the smFET trajectories all lie 

within the 1-100ms range, in agreement with measurements from NMR studies163–166,207, but are 

significantly longer-lived than those estimated via force spectroscopy197,198. This is in accord 

with an entropic argument stating that, under force, configurational diffusion is restricted and 

therefore the folding rates are in general more rapid, whereas extrapolation to no force is 

therefore difficult to ascribe9. The kinetics of individual base pairs can be resolved via the 

smFET technique in such a way that heterogeneity in the rate constants can be resolved as well, 

though such an analysis on the present trajectories and constructs was deemed unwarranted by 

the observations. An interesting future study would explore the magnesium dependence, 

reviewed in 211, of the dynamic heterogeneity of the type described in Chapter 3 of the various 

stem-loops. In particular, it is possible that under high-magnesium or in the presence of 

appropriate co-factors, individual stem-loops could undergo U-Z transitions described in the 

introduction above, contributing to distinct base-pairing kinetics within the stem-loop. 
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By way of comparison, the two GNRA tetraloops tested had near-equivalent kinetic 

properties whereas the two UNCG tetraloops were distinct from one another. The subtle 

differences in kinetic measure between the two GNRA tetraloops can possibly be ascribed to 

differential stacking within the loops195. The differences between the two UNCG tetraloops, 

however, is a somewhat surprising result, especially given the fact that the two stem-loops have 

near-equivalent melting temperatures173. These differences are mitigated somewhat on 

comparison of ku and kz, which suggests that the two are, by these measures, near-equivalent. 

The UUUU stem-loop, however, displayed decreased stability of nearly every base pair, though 

no significant departure from the zipping model was detected for this construct, indicating that 

unzipping and rezipping still began distal to the loop. 

The most intriguing result meriting future study implied from these trajectories, however, 

is the role of the closing base pair in stem-loop stability. For example, the UUCG stem-loop has 

a melting temperature of 60C, under high salt conditions, for a construct bearing only one base-

pair in the stem: the C-G closing pair188. The results described here are consistent with a 

mechanism whereby the closing base pair contributes to a long-lived +1 terminal base pair, i.e. 

the base pair right below the closing base pair is relatively long lived on pathway to entry into 

H1 for 2 out of the 5 constructs (UUCG and GCAA, Figure 4.2). It is possible that the specific 

identity of the closing base is required for stabilization of this particular base pairing 

intermediate in these constructs. Indeed, for the UUCG and GCAA stem-loops, it has been 

shown that switching the closing base-pair from C-G to G-C lowers the apparent melting 

temperature by 10-15 C173,194,191,192. 

The data presented here, in particular the sequential zipping and unzipping transition 

pathways describing helix unwinding, leave room for at minimum three types of paired states in 
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an RNA helix, depending on the number of adjacent paired bases – 2, 1, or 0, denoted Pr2, Pr1, 

and Pr0. Because the zipping pathways we observe are sequential, our measurements are 

consistent with the identity of a limiting step to unpairing of a base pair as the unpairing of an 

adjacent base pair – i.e., that a base pair unpairs following entry into Pr1. In the stem-loop 

system, this begins in one of two ways – first, from the terminal end, furthest from the loop 

sequence, and second, from the closing base pair of the loop. We find that the latter pathway, 

accounting for transitions from H4 to H1, is comparatively rare, accounting for two orders of 

magnitude fewer transitions than the former (Figure 4.2). These two pathways are consistent 

with recent high-resolution NMR measurements highlighting the role of transient intermediate 

base pairing configurations in RNA structures. Specifically, the rate limiting step of 

interconversion between the most stable and less stable configurations of these RNA structures, 

which involves secondary-structure remodeling, was found to occur on the 100 µs to 100 ms 

timescale, the same timescale I have observed here212. smFET measurements at higher time-

resolution could potentially be used to define the rate of transitions between syn to anti 

conformations of the glycosidic bond of the nucleoside and therefore transitions between 

canonical and Hoogsteen forms of base pair of the RNA helix, estimated from the bulk NMR 

studies to possess lifetimes approximately an order of magnitude shorter than those probed 

here213–215. 

To conclude, the work presented here has implications beyond secondary-structure 

rearrangements. These fall into three categories – consequences for secondary-structure 

remodeling following tertiary rearrangements; consequences for remodeling following binding 

of exogenous factors; and consequences for RNA structure prediction. In the first category, this 

data supports a model wherein the paired state of a stem sequence is remodeled by tertiary 
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interactions, as has been proposed before, for example in folding of the group I intron 178; this is 

explored in a different RNA system in Chapter 5, wherein I argue from measurements of the 

kinetics of a paired region of a riboswitch that the stability of specific base pairs in the paired 

region under study depend on two distinct but correlated tertiary interactions. In the second 

category, it has been found that binding of protein factors to conserved stem-loop motifs directly 

modulates the paired state of the stem; an intriguing future study using the smFET platform 

would therefore probe these changes in real time using the experimental design discussed in this 

chapter216. Finally, these studies imply that RNA structure prediction requires a stronger set of 

predictive models than those focused on secondary-structure prediction, because secondary 

structure can be actively kinetically altered by structural modules as simple as a four-nucleotide 

loop. These studies should be dynamically focused and will likely take the form of coarse 

grained simulations, the first step of which are beginning to be developed169,217–219.  

This chapter has described a base pair-by-base pair model for the kinetics of five stem-

loops. Because of the timescales and small distances involved, such single-molecule studies are 

near-inaccessible by other modern means. The next chapter will describe how more complex 

RNA structures automatically regulate stem responses in concert with binding of small-

molecules in order to the auto-assemble as switch-like structures under kinetic control. 
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Chapter 5  Single-molecule observation of riboswitch 

zipping dynamics on the microsecond 

timescale7 

Long considered a mere information-carrying intermediate, RNA has now been 

established to possess a startling diversity of functional roles. The modern prevalence of 

functional RNA is attributed to (1) inevitability: RNAs must be produced to make protein 

anyway, so selection for functional roles, which occurs in vitro resulting in high affinity 

aptamers220,221 and functional RNAs222, will inevitably arise and some subset enhance fitness; (2) 

speed: RNAs that regulate translation, transcription, splicing, and mRNA stability223,224 often 

have an advantage over protein factors as they do not have to diffusively discover their targets; 

(3) selectivity: RNAs assist as DNA or RNA sequence specific templates that act either in 

conjunction with protein factors, for example in the context of bacterial immunity, telomerase-

mediated telomere extension, or RNA interference, or alone, for example in micro-RNA-

mediated messenger RNA degradation. This chapter will focus on the folding of a transcription-

regulating RNA switch. 

Riboswitches are genetic control elements located within the 5’ untranslated region 

(UTR) of messenger RNAs (mRNAs) that undergo metabolite-dependent structural 

rearrangements so as to regulate mRNA transcription, splicing, translation, or stability223,224. 
                                                 

7 With Dr. Nathan Daly. As of 2017 this chapter composes a manuscript in preparation. 
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While they occur in all domains of life, specific phylogenetic types of riboswitches are only 

found in eubacteria, marking them as targets for antibiotic drug design225. Additionally, as a 

result of their relative simplicity and selectivity, riboswitch motifs, especially aptamer motifs, 

have also been utilized in the field of genetic engineering226,227. The successful design and 

implementation of riboswitches and riboswitch-targeted antibiotics rely on an understanding of 

how these RNA molecules undergo structural rearrangements, how they recognize and 

selectively bind their target ligand, and how these two actions collectively operate the switch. 

One of the most well-studied riboswitches is the adenine-sensing pbuE riboswitch found 

in Bacillus subtilis196,228–232, a member of the broader class of purine-binding riboswitches. The 

pbuE riboswitch sequence consists of an aptamer domain that is responsible for recognition and 

binding of the target metabolite adenine, an expression platform domain that is responsible for 

forming the terminator hairpin that interacts with transcription machinery, and a switching 

sequence that belongs to both domains228. In the absence of adenine the aptamer structure gives 

way to formation of the more stable terminator hairpin, which arrests production of mRNA. 

Adenine binding, however, provides stability to the aptamer, inhibiting the formation of the 

terminator hairpin and allowing mRNA production and expression of the pbuE gene to continue. 

Because the pbuE gene encodes an adenine efflux pump, the overall cycle forms a negative 

feedback loop. The rate of adenine association and uptake into the aptamer versus the rate of 

transcription forms the central competition affecting the outcome of riboswitch regulation233,234. 

This kinetic balance affects the generation of the expression platform and the relative position of 

RNA polymerase (RNAP) to the riboswitch, both of which are thought to play a more significant 

role in the regulatory ability of the pbuE riboswitch than ligand binding thermodynamics 

alone230,233,234.  
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Following adenine binding to the pbuE riboswitch, further regulation is required to 

communicate the decision to RNAP. This is accomplished by adenine-induced stabilization of 

the first five and last five nucleotides of the aptamer domain into a five base pair helix, known as 

the P1 stem235. Formation of the P1 stem sequesters base pairs required by the expression 

platform to form the terminator hairpin, making it a critical component of the pbuE riboswitch 

regulatory mechanism229. Criticality of balanced P1 stem stability has been suggestively 

demonstrated by in vivo experiments monitoring efficiency of pbuE riboswitch regulation of a 

reporter gene with increasing mismatch density on the P1 stem236. However, dynamics of the P1 

stem, consisting entirely of base pair rearrangements, are difficult to characterize because both 

the lifetimes as well as the distance scales of base pairing are short163–166. Structures of purine 

family riboswitches3,229,237, as well as NMR characterizations of solution conformations238–240 

and single-molecule fluorescence resonance energy transfer (smFRET) studies231,241, have 

established that the tertiary structure of the pbuE riboswitch transitions to its native state 

following binding of adenine. Furthermore, in the bound state, more than 90% of the solvent 

exposed surface of adenine is surrounded by RNA, leading to the suggestion that significant 

structural changes in the aptamer domain are required for adenine to enter the binding 

pocket229,237–239. It is unclear, however, how stabilization of the binding pocket and formation of 

the tertiary structure of the aptamer domain of the riboswitch influence the stability of the P1 

stem and therefore the transcription of the pbuE gene. 

Because single-molecule techniques allow for direct observation of discrete, rare events 

as well as direct characterization of structural motions in a diverse ensemble, single-molecule 

biophysical techniques, most notably smFRET and single-molecule force spectroscopy, have 

been employed to investigate riboswitch dynamics. However, these techniques are hampered by 
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difficulties in measuring millisecond-scale dynamics, such as base pair rearrangements, as well 

as the inability to observe unperturbed individual molecules for long times. The recent 

development of a single-molecule technique using carbon nanotube-based field-effect transistors 

(smFETs)18,20,44,45,48,205,242 allows for observation of the dynamics of charged biomolecules, such 

as charged amino acids in proteins or the phosphate groups of nucleic acid backbones, with 50 

microsecond (µs) temporal resolution. Structural rearrangements of a single charged molecule on 

the surface of a single-walled carbon nanotube (CNT) transistor can lead to measureable 

fluctuations in conductance through the CNT channel. As the technique is label-free, particularly 

chromophore-free, smFETs exhibit stability for extended single-molecule observation so long as 

the molecule itself is not labile. The combined wide-bandwidth of this technique allows us to 

simultaneously characterize fast events and to quantify how the frequency of these events change 

over long time-scales. 

Here we identify adenine-dependent dynamics of the P1 stem of the pbuE riboswitch 

aptamer on the microsecond timescale by correlating smFET conductance fluctuations with 

predicted RNA structural rearrangements and by mutagenesis of the aptamer sequence. We 

demonstrate how long-lived, ligand-dependent intermediates form at a base pair level and 

describe their consequence for riboswitch-regulation by adenine uptake into the aptamer. Using 

smFET technology we have achieved the first observation of RNA zipping and unzipping at the 

single-molecule level, as well as label-free observations of the effects of a three-way junction 

motif on helix zipping and unzipping.  

Devices, or transistors for smFETs consisting of isolated, individual CNTs, were 

prepared as described (also see Chapter 2)18,22,48.  We prepared a custom-printed circuit board 

capable of measuring up to 60 smFETs simultaneously in a microfluidic channel (Figure 5.1a, see 
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Chapter 2). We attached single riboswitch molecules by conjugating the RNA to CNT-adsorbed 

1-pyrenebutyric acid N-hydroxysuccinimide ester, an adaptation of existing protocols66 (see 

Chapter 2). Approximately one out of ten smFETs at this stage show conductance fluctuations 

corresponding to a signal of interest, as determined by repeating previously reported 

signals18,22,48, below the yield predicted from a Poisson distribution of 37%. We speculate that 

this reduced yield either from reduced yield due to using RNA instead of gold nanoparticles or 

from the need for pyrene adsorption at CNT sites rendered sensitive to charge fluctuations by 

geometric or defect-driven effects, whereas most locations are insensitive, see the discussion in 

Chapter 3.  

To observe structural rearrangements in the RNA, we measured the conductance through 

the smFET as a function of time.  The noise spectrum of the conductance versus time trajectory 

of these devices has significant drift noise (typically the power spectral density has a power law 

frequency dependence ∝ , 𝛼~1.3), and thus the baseline current undergoes a restricted random 

walk over the course of the measurement on top of random noise characteristic of typical 

normally distributed fluctuations. This was accounted for in our analysis using an adaptation of 

the algorithm presented in Bruno et. al86. We also note that every smFET has a different baseline 

conductance owing to variability in the structure, defect density, or electrode contact of the CNT 

fragment used to form each device. For these reasons, absolute smFET conductance values 

cannot be assigned to specific molecular conformations. Instead, relative changes in device 

conductance are correlated to predicted structural rearrangements of the attached molecule.  
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Figure 5.1 smFET experimental setup, RNA sequence design, and wild-type aptamer 
smFET trajectory overview. 
a, smFET chip design allows for up to 60 devices to be generated from the same CNT. The inset 

shows a SEM image of one device and a cartoon of an RNA molecule tethered to the CNT 

surface. b, Secondary structure of the pbuE riboswitch aptamer. Adenine interactions in the 

aptamer binding pocket shown in orange. Tertiary contacts between loops L2 and L3 are shown 

in gray. The nucleotide at position 1 denotes the site for amine modification and subsequent 

tethering to smFET devices. c. Cartoon representation of the pbuE riboswitch aptamer. Dashed 

line shows the calculated Debye length for the experiment relative to the CNT tethering site. d. 

Sample trace and total population histogram of an smFET device following aptamer tethering 

and adenine (3 μM) exposure. The trajectory has been baseline corrected, in an adaptation of 

Bruno et. al86. e, The same device and conditions as in d, following extensive DMSO washing to 

remove the aptamer. f. Transition density plot of the dataset shown in d. The device current 
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fluctuates consecutively between four discrete states.  

 

We began our investigation by attaching pbuE riboswitch aptamers to CNTFETs and 

performing an adenine titration. Upon addition of adenine to riboswitch-functionalized smFETs 

following attachment of the pbuE riboswitch aptamer (see Figure 5.1b and Figure 5.1c) to the 

surface of the nanotube via pyrene linker, the smFET conductance began to fluctuate between 

four discrete conductance classes. We argue that these conductance classes originate from 

rearrangements of the P1 stem of the pbuE riboswitch aptamer for four reasons: (1) extensive 

washing with dimethylsulfoxide (DMSO) caused the signal to vanish, consistent with its 

dependence on the pyrene linker (Figure 5.1 d, e); (2) addition of DNA complementary to the P1 

stem to a distinct but similar device caused the appearance of a distinct mixture of 4- and 2-

conductance class behavior (Figure C. 3); (3) though adenine is not a charged molecule at the 

experimental pH, the signal was adenine dependent in a way that is consistent with MFOLD 

calculations (Figure C. 4); (4) the calculated Debye length 𝜆  under our conditions predicts that 

four base-pairs of the P1 stem can reasonably contribute to the signal, consistent with the 

observation of four distinct conductance classes. With DNA smFET signals under similar 

conditions, the lower conductance classes were shown to be the more compact form of the 

nucleic acid whereby more net negative charge is localized near the nanotube surface18,22,48. 

Therefore we assigned the conductance classes sequentially from highest to lowest, 1-4, with 1 

representing the most unfolded state we could detect and 4 representing the most folded state we 

could detect. Our argument is that each conductance class is a state with a different terminally 

paired base in the P1 stem, and that the changes in signal arise from increased or decreased 
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flexibility of the phosphate backbone of the P1 stem following unpairing or pairing of the 

terminal pair. 

Structures of purine family riboswitches3,229,237, as well as NMR characterizations of 

solution conformations238–240 have established that the conserved base pairs between the tandem 

guanine nucleotides (nts) in L2 (G21 and G22) and the tandem cytosine nts in L3 (C44 and C45) 

form a tertiary “kissing-loop” interaction to complete the folded conformation of the riboswitch. 

smFRET studies of both adenine and guanine sensing riboswitches have revealed that this 

interaction possesses a lifetime on the order of seconds231,241, and the folded conformation is 

stabilized by the presence of ligand235,238,241. Formation of this tertiary contact by necessity 

greatly restricts the available conformations of J2/3, the three-way junction element between P2 

and P3, which caps the P1 stem (see Figure 5.1b and Figure 5.1c)237,238. Therefore, to characterize 

the fluctuations of the terminal base pairs of the P1 stem and assess the role of the tertiary 

contact on P1 stem rearrangements, we performed two distinct experiments – first, to smFETs 

functionalized with wild-type aptamer, we varied the concentration of adenine between 0.030 

and 3.0 μM and measured conductance fluctuations arising from conformation changes in single 

aptamers for ~30 minutes at each concentration with 50 μs time resolution; second, to smFETs 

functionalized with an aptamer with a disrupted tertiary interaction, the G21C mutant aptamer, 

we varied the concentration of adenine between 0.050 and 50 μM and measured conductance 

fluctuations arising from conformation changes in single aptamers for ~30 minutes at each 

concentration with 50 μs time resolution. The concentration ranges of each were chosen on the 

basis of the experimental Kd under our conditions (See Figure C. 5.) 

Intriguingly, both constructs required at least two distinct transition rate matrices to 

describe the fluctuations between the four conductance classes. These conductance classes 
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primarily transition between adjacent classes (schematized for the wild-type aptamer in Figure 

5.1f). The dynamics of these classes were analyzed with the aid of a hierarchical hidden Markov 

model by comparing three models – one with a single rate matrix, one with two, and one with 

three – and noting that while the model with two transition rate matrices was much more likely 

and greatly changed the interpretation of the data, populating with three had no such effect 

because the third state was unpopulated, reducing it to the two-rate state model. We refer to the 

two rate matrices as arising from two distinct types of P1 stem, which we call P1A and P1B 

(Figure 5.2a and Figure 5.2e). To compare the wild-type and G21C aptamer P1A and P1B, we 

prepared post-synchronized 2D histograms by cutting each conductance vs time trajectory into 

fragments that begin with occupation of the third conductance class of P1A or P1B (3-P1A and 3-

P1B) and terminate with occupation of- and subsequent dwell time in- 1-P1A, and compared these 

for the wild-type and G21C aptamers (see Figure 5.2b, c, f, and g; these 2D histograms are 

normalized for every time point, and scaled to the most populated bin). This synchronization is 

chosen because in our model conductance class 3 corresponds to the second base-pair from the 

terminal end of the P1 stem, i.e., the startpoint of a hypothetical invasion event, while 

conductance class 1 corresponds to the most unpaired state of the P1 stem that we can detect. We 

also compared the individual ΔG barriers between each conductance class in P1A and in P1B (see 

Supplementary information). On the basis of these two analyses, we reason that the two classes 

observed for each aptamer are comparable and possibly arise from equivalent rearrangements of 

the RNA. Although we cannot see such rearrangements with our signal, we propose that P1A and 

P1B are distinct because of rearrangements in J2/3 which, in crystal structures of similar purine-

sensing aptamers, has been shown to interact with the conserved A-U and U-A base pairs of the 

P1 stem, proximal to the binding pocket (nts 5:59 and 4:60 in our numbering.)  
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Figure 5.2 Dynamic heterogeneity of the P1 stem.  
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Dynamics of the a-d, Wild-type and e-h, G21C adenine-sensing pbuE riboswitch aptamers. a, e, 

The fluctuations possess dynamic heterogeneity consistent with two types of P1 stem, shown in 

cyan (P1A) and magenta (P1B) for each. Population evolution following b, f, post-

synchronization into the third conductance class of P1B, 3-P1B, and c, g following post-

synchronization into 3-P1A are shown as 2D histograms. Finally, for both constructs, d, h, the 

mean lifetime of events that begin in 3-P1B  or 3-P1A and terminate at 1-P1A, indicated as 

< 𝑡 >, is shown as an increasing function of adenine concentration. Red dashed lines 

indicate the mean time for RNAP to transcribe the terminator hairpin and black dashed lines 

indicate a least-squares fit to a hyperbolic equation: 𝑦 =
[ ]

, [ ]
. 

As the mRNA is transcribed, invasion of the nascent aptamer by the expression platform 

is under kinetic control, and the time it takes to unwind the P1 stem, < 𝑡 >, presents a 

first-passage chance for operation of the switch, the result of which is an intrinsically non-

equilibrium process230,233,234,243,244. Using the trajectory fragments contributing to the post-

synchronized 2D histograms in Figure 5.2b and Figure 5.2f, we recorded the lengths of each, 

which correspond to the time it takes to unzip the P1 stem, and used this population to calculate 

< 𝑡 >, shown in Figure 5.2d and Figure 5.2h. As adenine was increased beyond the KD 

of either construct, though G21C required roughly 100x more adenine than the wild-type for this 

effect to manifest, the resistance to unfolding increased, indicating that binding of adenine 

stabilizes the P1 stem 

To uncover the kinetic details behind this stabilization, we compared the interconversions 

between conductance classes for P1A,wt, P1B,wt, P1A,G21C, and P1B,G21C. Compared to the 2-P1B,wt, 

2-P1B,G21C is relatively less stable, as with this mutation the aptamer more easily transitions 
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directly into conductance class 1 with a 9-fold reduced reverse rate, from 6500 ±300 s-1 to 700 

±200 s-1. Next, we examined transitions between P1A and P1B. We first note that, while the 

overall partition of the G21C aptamer conductance versus time trajectory between P1A and P1B 

does not change as the concentration of adenine is increased, for the wild-type aptamer the 

occupancy of P1B increases as the concentration of adenine is raised, from 10% at 30nM adenine 

to ~40% at 3 µM adenine. This is primarily driven by a 3-fold decrease in the rate of transition 

from P1B into P1A via conductance class 2, from 370 ±10 s-1 to 144 ±6 s-1 indicating that addition 

of adenine raises the free energy barrier between P1B and P1A. As discussed below, this latter 

rate is now commensurate with the rate of transcription245–247. Together, these kinetic results 

imply that the L2-L3 tertiary interaction has two major effects: first, it prevents P1B from 

entering the predominantly unpaired state (conductance class 1), and second, it prevents P1B 

from entering P1A any faster than the transcription rate. These observations suggest that the role 

of the tertiary contact is to populate P1B, with the help of adenine, by preventing transitions to 

P1A (schematized in Figure 5.3). Because this effect is synergistic with the presence of adenine, 

we propose that the tertiary contact mainly acts to organize the binding pocket elements of J2/3 

that interact with the P1 stem.  

Therefore, we find that the P1 stem of the pbuE riboswitch aptamer is highly dynamic 

even in the presence of adenine, a result that is loosely consistent with Nozinivic et al235. 

However, we suspect, as others have, that this highly dynamic kinetic pattern characterizes all 

nucleic acid structures95,96,199. According to NMR results, the lifetime of an paired base, while 

highly sequence dependent, is on the order of 1-100 ms163,165,166. So-called toeholding 

experiments which monitor the invasion of one strand of DNA by another typically predict a 

similar lifetime168,169. Furthermore, from studies of the zipping of hairpins, the rate at which 
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bases transition from the paired to the unpaired once that motion has begun, and vice versa, is on 

the order of hundreds of nanoseconds95,96,167,197, in loose agreement with our observation of 

instantaneous transitions even at 50 µs time resolution. These two features of pairing and 

unpairing dynamics lead to a highly complex ensemble of possible and constantly 

interconverting configurations – a hairpin consisting of just 10 base pairs has over 1500 unique 

configurations96. It is notable, therefore, that under our conditions, the P1 stem for the most part 

only accesses two pathways for discrete and sequential zipping and unzipping, P1A and P1B.  

In the case of the wild-type aptamer, our data suggest two ways in which the RNA 

modulates invasion by the expression platform. First, enhanced occupancy of P1B in its stabilized 

intermediate, 3-P1B, indirectly increases the occupancy of the fully folded P1 stem, 4-P1A or 4-

P1B (Figure 5.3). We assert that in this configuration the expression platform cannot invade the 

P1 stem because it cannot interact with any bases in the helix. Second, assuming an invasion has 

begun at the first base pair of the P1 stem, while the aptamer will unfold almost immediately if it 

is in 3-P1A (Figure 5.2 c, g), our model suggests that if the aptamer is in 3-P1B (Figure 5.2 b, f) it 

will unfold up until the third base pair from the 5’ end, i.e. the G-C base pair. If adenine 

concentrations are low, transitions between P1B and P1A are significantly faster, ~370 s-1, than 

the rate of transcription of the antiterminator, ~10-90 nt/s245–247 for E. coli and perhaps faster for 

B. subtilis248, though ~10 nt, or an RNAP footprint190,249 must be transcribed for RNAP to 

escape, an argument introduced in this context by Wickiser et al230.  This lifetime is indicated as 

a dotted line in Fig. 2d and 2h. As the reverse rate back into P1B is slow, ~25 s-1, the aptamer 

enters P1A and continues to unfold. However, if adenine concentrations are high, transitions 

between P1B and P1A, ~140 s-1, are competitive with the rate of transcription, and the refolding 

rate is very high – the aptamer resists invasion. 
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Intriguingly, the second 

mechanism implies a central role for the 

third G-C base pair. Previous studies of the 

wild-type pbuE riboswitch sequence have 

suggested a crucial role for the central G-C 

base pair of the P1 stem196,230,232. In force 

pulling studies by Greenleaf et al. and 

Frieda et al., an observed transition state 

for P1 stem unfolding was located at a 

pulling distance corresponding to the G-C 

base pair, and obliterating that pair results 

in a loss of riboswitch activity196,232,236. To 

assess the role of the central G-C base pair 

in P1 stem stability, we performed smFET 

studies on pbuE aptamer mutants with 

modifications in the P1 stem, beginning 

with a P1-destabilized mutant referred to as the G3C aptamer. Between 0.030 and 3.0 μM 

adenine, of the G3C aptamer revealed fluctuations between two conductance classes whose rates 

of transition were strongly adenine dependent (Figure 5.4a, b, c). The rates of transition were 

heterogeneous analogous to the wild-type or G21C dynamics; addition of adenine primarily 

reduced the heterogeneity in favor of fast dynamics between the two conductance class, as 

summarized in Fig. 4c. Overall these effects are consistent with a dynamic model (Figure 5.4d), 

similar to that proposed for the wild-type P1 stem (Figure 5.3).  

 

Figure 5.3 Kinetic model for base pair-level 
fluctuations of the wild-type P1 stem in the 
presence of adenine.  
Specific rate constants can be found in 

Supplementary table S2-4. In red is shown the 

adenine dependent rate of transition from P1B into 

P1A. These fluctuations are affected by formation 

of tertiary contacts as well as by adenine 

concentration. 



 

158 

 

For the G3C aptamer, these results are consistent with an assignment of conductance 

class 2 being a P1 stem conformer with the A1 and U63 paired, which is relatively stabilized by 

adenine binding, and conductance class 1 being a state with a predominantly unpaired P1 stem. 

This is because binding pocket rearrangements are in close proximity to the predominantly 

unpaired state of the helix and are likely to have a much more pronounced effect, rearranging the 

phosphate backbone to a state close to the paired state when adenine is in the bound state. On the 

other hand the fact that the fully paired state is weakly destabilized as adenine is added is 

consistent with the interpretation that the C-C mismatch tends to destabilize the helical 

conformation, in addition to abolishing the intermediate stacked states observed in the wild-type 

aptamer. Importantly, comparison of the adenine dependence of the G3C aptamer in our smFET 

assay with its adenine-analog (2AP) dependence as measured in a bulk fluorescence ligand 

binding assay (Fig. S5) suggest that the binding pocket plays a direct role in stabilizing the 

paired conformation of the P1 stem, but under our conditions, disruption of P1 stem 

rearrangements has little to no effect on the binding pocket. 

 

Figure 5.4 Dynamics of the G3C aptamer.  
a, Dynamics in the absence of ligand possesses two conductance classes whose transitions rates 

are heterogeneous with a wide mixture of timescales – the aptamer occasionally spends entire 
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seconds in either the high or low conductance class. 2D histograms are post-synchronized to 

transitions from conductance class 1 to class 2 and are normalized identically to those in Figure 

2. b, In the presence of 3 μM adenine, two conductance classes remain but there is drastically 

reduced heterogeneity. c, As the adenine concentration is varied, this effect leads to a steady 

increase in the overall aggregated rate constant. d. The data are consistent with a two rate-state 

model, analogous to that observed in the wild-type and G21C aptamers. 

A second aptamer with a P1 stem stabilized without altering the relative distance between 

the CNT surface and the pbuE aptamer structure by exchanging the two terminal A-U base pairs 

for G-C base pairs, referred to as the stable aptamer, was prepared. We compared the bulk 

binding of the analogue 2-aminopurine (2AP) of the four aptamers – wild-type, G21C, G3C, and 

stable. 2AP had similar binding affinity for the wild-type, G3C, and stable aptamers, and poor 

binding affinity for the G21C aptamer, as described previously (Figure C. 5)230,231. During the 

course of our measurements of the stable aptamer, we were unable to find a signal possessing a 

strong adenine dependence. However, a signal with two conductance classes whose fluctuations 

were on the millisecond timescale was repetitively observed, leading us to tentatively speculate 

that this signal corresponded to fluctuations of the P1 stem of the stable aptamer (see 

Supplementary Figure C.10). Although the signal was readily washed from the smFET, it is 

difficult to speculate further as to its significance. 

By way of conclusion, our data suggest the existence of a dynamic correlation between 

L2-L3 kissing loop formation231,241 and the base pair level dynamics of the P1 stem, over a 

distance of 32 Angstroms, which orient and dominate the fluctuations of the G-C base pair in the 

third position. This picture is supported by the observation that, in crystal structures of purine 

riboswitches3,229,237, the junction element J2/3 caps the P1 stem,  and further, that NMR studies 
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have revealed that this junction element is disordered in the absence of adenine238–240. Together 

with these observations, our data suggest that rearrangements of the ligand-enclosing flap, which 

are strongly influenced by the tertiary interaction between L2 and L3, reduce the probability of 

transition from P1B to P1A, and P1B is inefficiently unzipped, holding the P1 stem stable long 

enough for an RNAP to escape the vicinity of the riboswitch before the terminator hairpin forms. 

This conclusion on the basis of our conductance versus time trajectories is fully consistent with 

recent theoretical work on the closely-related guanine-sensing gsw riboswitch suggesting an 

allosteric collaboration between the P1 stem, L2-L3 tertiary interaction, and J2/3 whose overall 

function is to stabilize the P1 stem in the presence of cognate ligand or leave the P1 stem 

invasible by the expression platform in the absence of cognate ligand250. 

To augment our understanding of this dynamic correlation between tertiary structure 

formation and base-pair level zipping and unzipping of the P1 stem, we compare our results to 

the pattern of conservation of purine riboswitches. In general, the P2 and P3 stems are conserved 

in the sense that they remain paired regions of a certain length, but their precise sequences are 

variable (RF00167)251. L2 and L3 have a conserved length as well as conserved G-C kissing-

loop pair. The binding pocket element J2/3 is almost universally conserved, as are the two A-U 

base pairs of the P1 stem closest to the pocket. The third base pair of the P1 stem, which is a G 

that forms the central G-C base pair in the case of the pbuE aptamer, (Figure 5.1b) is not strictly 

conserved: it varies between an adenine (51%) and a guanine (49%). Examining these results in 

more detail (see Figure C. 9), we notice that if the P1 stem contains an A instead of a G in the 

third (G-C) position, it also contains an AUG on the 3’ end of the P1 stem sequence, the U of 

which base pairs with an A in the third (Figure 5.1b) position on the 5’ end of the P1 stem 

sequence. Furthermore in such cases the P1 stem always contains an additional four bases (two 
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A-U pairs and two G-C pairs). On the basis of our results we propose that the purine riboswitch 

family has at least two classes of P1 stems – those that begin zipping and unzipping at the AU-

UA pair in position 5 (Fig. 5.1b), and those that begin zipping and unzipping at the AUG three 

base pairs down but contain four extra base pairs in the P1 stem. While the pbuE riboswitch falls 

into the former class, the guanine-sensing xpt riboswitch is an example of the latter class. 

smFRET and single-molecule force pulling studies have revealed that the pbuE riboswitch does 

not fully fold in the absence of adenine196,231, whereas NMR studies of the xpt riboswitch have 

revealed that the riboswitch is close to its bound state even in the absence of its ligand239,240. We 

propose that these two families have differing designs of P1 stem in order to transfer 

metastability from the tertiary kissing-loop formation of L2-L3 to the secondary structure of the 

P1 stem. Furthermore, from comparison of the heterogeneity in wild-type sequences with 

sequences that cannot form stable L2-L3 interactions, we conjecture that the L2-L3 interaction 

exists on one side of a dynamic network whose consequence is zipping of the P1 stem.  

Our methods utilizing single-molecule field effect transistors contrast from those 

employed in previous studies, as we are able to provide a label-free high time-resolution single-

molecule measurement of the pbuE riboswitch aptamer using its natural sequence without 

continuous perturbation. Previous studies have provided crucial information as to the 

organization of the relative structural elements of the switch, as well as the order in which they 

fold and the likely slow-timescale rearrangements that accompany ligand binding. In this work 

we present the first wide-bandwidth single-molecule measurements of base-pair level stability of 

the P1 stem. We find that zipping and unzipping of the stem is sequential and dependent on the 

presence of specific base pairs in the organization of the stem. Finally, we find that these 

rearrangements are heterogeneous on the second timescale yet occur on the microsecond to 
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millisecond timescale, making measurements from smFETs essential in order to describe the 

potential ensemble of unzipping pathways. 

Riboswitches other than the purine riboswitch family discussed above also utilize kinetic 

competition between distinct RNA structures. For example, the PreQ1 riboswitch exists as a 

stem-loop with a  highly structured tail252 which possesses a ribosome binding site that becomes 

occluded in the ligand-dependent fully folded form of the RNA253. In this RNA, the rate limiting 

steps of RNA folding do not involve formation and disruption of base pairs, but instead rely on 

the formation and disruption of numerous A-minor interactions with the ligand-bound stem-loop; 

the platform described here could be modified to determine the rate of each step of pseudoknot 

formation of each A-minor interaction with the stem, because the mechanism of this switch is 

kinetically homologous to operation of the switch discussed in this chapter. 

Next, note that the mechanism described in Figure 5.3 possesses many rates that are on 

the millisecond to second scale. These rates depend on tertiary structure interactions. Therefore, 

we argue that computational simulations of RNA switch behavior will need to encompass this 

timescale, and thus the development of highly efficient and spatially descriptive coarse grained 

models of RNA dynamics will be required for their in silico description169,217–219. 

Finally, this study highlights the role of a three-way junction element in stability of its 

connected paired regions, but there are many examples of such elements254. In particular, these 

fall into three types, depending on the order in which the strand pairs with itself, and whether 

additional strands are required. Such junctions are ubiquitous in nature: for example, the hinge 

region of the L1 stalk of the large subunit of the ribosome contains a three-way junction whose 

topology is similar to the riboswitch described in this chapter149,255. Future smFET studies of 

three-way junction elements could include the a detailed study of the allosteric influence of a 
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three way junction on the kinetics of distant base pairs, indicating how this influence on distant  

base pairing states allow these three-way junctions to operate as hinges, as well as in general the 

kinetics of base pairing states of each of the three-way junction families. 

In further future studies, smFETs could be used to probe the magnesium (Mg2+) 

dependence of folding, as well as to study rearrangements of each portion of the riboswitch 

relative to every other. For instance, xpt riboswitches include a rearrangement between the P1 

and P2 stems that cannot be detected using the 5’ terminal tethering presented here. However, 

the rate constants of this process have a very strong dependence on the concentration of Mg2+ 

ions, which quickly exit the observable time-resolution of most single-molecule methods. We 

expect that the smFET experimental platform can be applied to such situations, as well as, in 

general, systems with local charge fluctuations that have a wide mixture of time-scales. 
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Appendix A Probability Basics, Assorted Proofs, 

Update Equations 

Axioms of Probability 

The mathematician Andrey Kolmogorov is generally credited with the three axioms of 

probability which, as they seek to give structure to common sense, have intuitive underpinnings. 

Before discussing the axioms themselves, I want to give the reader a few helpful definitions – 

first, the idea of a “sample space” denoted 𝑆 – an abstract, nonempty set that contains elements 

called “events,” which are things that can admissibly happen. Finally, the concept of a “measure” 

is useful because we will define a specific kind associated with probabilities: a “measure” is a 

function that takes a set into the positive real line that is “linear” in the sense that the measure of 

a collection of disjoint subsets is equal to each measured independently then summed together. 

Loosely then, the axioms of probability are the rules by which we can provide a measure, in the 

rigorous sense, of how likely an event is to occur, given the body of things that could possibly 

happen, i.e., given the sample space. 

A. 1: The probability measure is given by an operator called 𝑝 that acts on the sample space, a 

nonempty set 𝑆. 1 ≥ 𝑝(𝑠) ≥ 0 ∀ 𝑠 ∈ 𝑆, that is, 𝑝 maps the elements of the set 𝑆, whatever they 

are, onto the positive real line between 0 and 1. 

Explanation: being positive gives the number “zero” relevance, as a number that describes events 

that can never happen; indeed this axiom is necessary to show that the probability measure of the 

empty set is zero. 
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A. 2: 𝒑(𝑺) = 𝟏 
Explanation: all possible events are described by the sample space S. This axiom gives the 

number 1 relevance – it denotes certainty. 

A. 3: 𝒑(⋃ 𝑬𝒊) = ∑ 𝒑(𝑬𝒊)𝒊𝒊  given a collection 𝑬𝒊 such that 𝑬𝒊 ⋂ 𝑬𝒋 = ∅ 
Explanation: probability can be measured in units and does not depend on how mutually 

entwined the events are (in fact, those parts cancel out, as I will show below). 

 These axioms trivially give rise to the sum rule for events, the product rule for 

independent events, and an important result known as Bayes’ theorem. We now derive each of 

these. To begin with, we define a conditional probability by the following formula: 𝑝(𝐴|𝐵) =

( ∩ )

( )
  in terms of the events A and B, assuming that B can actually occur.  

The sum rule can be seen as a direct consequence of the third axiom (the assumption that disjoint 

sets are additive): 

𝒑(𝑨 ∪ 𝑩) = 𝒑(𝑨) + 𝒑(𝑩\(𝑨 ∩ 𝑩)) 
𝒑(𝑩) = 𝒑(𝑩\(𝑨 ∩ 𝑩)) + 𝒑(𝑨 ∩ 𝑩) 

 
Rearranging gives: 

𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) − 𝑝(𝐴 ∩ 𝐵) 

Next, independence is defined as: 

𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴)𝑝(𝐵) 

This definition, with the definition of conditional probability, shows what independence 

means in terms of conditionals:  

𝑝(𝐴|𝐵) = 𝑝(𝐴) 

which has a simple intuition – any two events are independent if the probability of one event 

occurring is not dependent on the occurrence of the other. Finally, it is simple to derive Bayes’ 
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theorem, which is a consequence of commutativity of the intersection property and for which we 

require that 𝐴 and 𝐵 can actually occur: 

𝑝(𝐴|𝐵) =
𝑝(𝐴 ∩ 𝐵)

𝑝(𝐵)
=

𝑝(𝐵 ∩ 𝐴)

𝑝(𝐵)
=

𝑝(𝐵|𝐴)𝑝(𝐴)

𝑝(𝐵)
 

A. 4 
It is important to note that the sum rule and Bayes’ theorem both manifest an important property 

of the measure definition of probability – it preserves the algebraic set structure. For this reason, 

the sample space is often restricted, in its definition, to a 𝜎-algebra. 

 

Random Variable Algebra 

I begin with the notions, familiar from deterministic functions on the real line, of sums 

and products. I will point out that these are simply manifestations of different types of 

convolutions, one using the Fourier kernel and one using the Mellin kernel. When measuring 

physical objects it is often necessary to form a sum of two random variables which are 

independent of each other, for instance when 𝑋 and 𝑌 are independent, we can form the sum: 

𝑍 = 𝑋 + 𝑌 

The probability measure of 𝑍, 𝑝 , can be found directly from the probability measures of 𝑋 and 

𝑌, 𝑝  and 𝑝 . To do so, we construct 𝑝  by setting a number on the real line and enumerating all 

the possibilities in the sample space (and understanding that integration is summation over limits 

of simple functions in the sample space, which we achieve for free using Kolmogorov’s axioms): 

𝑝 (𝑡) = 𝑝(𝑋 = 𝑡 − 𝜏 ∩ 𝑌 = 𝜏)𝑑𝜏 

which, using independence, gives: 
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𝑝 (𝑡) = 𝑝 (𝑡 − 𝜏)𝑝 (𝜏)𝑑𝜏 

The right hand side is a Fourier convolution (or occasionally, simply a convolution), and is 

related to the Fourier transform, denoted by 𝐹[𝑓](𝜔) = ∫ 𝑒 𝑓(𝑡)𝑑𝑡  and its inverse 

𝐹 [𝐹[𝑓]](𝑡) = ∫ 𝑒 𝐹[𝑓](𝜔)𝑑𝜔 . The function 𝐹[𝑝](𝜔)  is occasionally called the 

characteristic function because it has a fundamental connection to some important descriptors of 

the probability measure known as moments. This operation is conceptually similar to solving 

problems in momentum space rather than position space in quantum mechanics. The convolution 

theorem allows: 

𝐹[𝑝 ](𝜔) = 𝐹[𝑝 ](𝜔)𝐹[𝑝 ](𝜔) 

and therefore: 

𝑝 (𝑡) = 𝐹 [𝐹[𝑝 ]𝐹[𝑝 ]](𝑡) 

A. 5 
 

Similarly, for two independent random variables which only map numbers to the positive real 

line, 𝑋 and 𝑌 (the negative parts of random variables that map to the whole line can always be 

found by a coordinate transform and splitting the product distribution into four parts) the product 

can be defined: 

𝑍 = 𝑋𝑌 

The probability measure of 𝑍, 𝑝 , can be found directly from the probability measures of 𝑋 and 

𝑌, 𝑝  and 𝑝 . To do so, construct 𝑝  by setting a number on the real line and enumerating all the 

possibilities in the sample space (and understanding that integration is summation over limits of 

simple functions in the sample space, which we achieve using Kolmogorov’s axioms):  
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𝑝 (𝑤 < 𝑡) = 𝑝 𝑋 <
𝑡

𝑢
∩ 𝑌 = 𝑢 𝑑𝑢 

𝑝 (𝑤 < 𝑡) = 𝑝 𝑤 <
𝑡

𝑢
𝑝 (𝑢)𝑑𝑢 

𝑝 (𝑡) =
1

𝑢
𝑝

𝑡

𝑢
𝑝 (𝑢)𝑑𝑢 

In the same way that the probabilistic sum was related to the Fourier convolution, this random 

variable, the probabilistic product, is related to the Mellin convolution. Typically the Mellin 

transform is defined by 𝑀[𝑓](𝑠) = ∫ 𝑥 𝑓(𝑥)𝑑𝑥 , where 𝑠  is a complex number, and its 

inverse by 𝑀 [𝑀(𝑓)](𝑥) = ∫ 𝑥 𝑀[𝑓]𝑑𝑠, where 𝑐 is any number within the strip in the 

complex plane upon which the transform is defined. Using the Mellin convolution theorem (also 

known as the exchange formula), we can write: 

𝑀[𝑝 ](𝑠) = 𝑀[𝑝 ](𝑠)𝑀[𝑝 ](𝑠) 

and therefore: 

𝑝 (𝑡) = 𝑀 [𝑀[𝑝 ]𝑀[𝑝 ]](𝑡) 

A. 6 
I will require one final formula, which is non-algebraic but is simple to derive. Given some 

collection of independent random variables {𝑋 }, the probability measure over their extreme 

values may be found: 

𝑝 (max(𝑋 ) < 𝑡) = 𝑝(𝑋 < 𝑡) = 𝑝 (𝑡)𝑑𝑡 

A. 7 
The distribution over the minimum can be found by considering the complement of the 

cumulative distribution.  
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The following may be observed: first, independent normal random variables, which are 

not necessarily identically distributed, form an abelian semigroup with no inverse, also known as 

a monoid, under their probabilistic sum or difference. To show this, we note that the 

characteristic function of a normally distributed random variable parameterized by 𝜇  and 𝜎  is 

given by: 

𝐹[𝑝 ](𝜔) = 𝑒
1

2𝜋𝜎
𝑒

( )

𝑑𝑡 = 𝑒
( )

 

Therefore the probabilistic sum (or difference) of two independent random variables 𝑋 and 𝑌 has 

the characteristic function: 

𝐹[𝑝 ](𝜔) = 𝑒
( )

𝑒±
( )

= 𝑒
( ± )  

which is still the characteristic function of a normally distributed random variable with suitably 

modified parameters. Note that the limit: 

lim
→

1

2𝜋𝜎
𝑒 = 𝛿(𝑡) 

which defines the identity element. It is simply something deterministic. There is no inverse 

because it is not possible to arrive at the identity element by adding two normal random variables 

together, because one cannot add two positive numbers and get zero. Put another way, any 

normal randomness precludes certainty: it is not possible to arrive at certainty using uncertain 

methods. 

Second, we note that independent Poisson random variables form an abelian semigroup 

without an inverse under the probabilistic sum. The characteristic function is given by: 

𝐹[𝑝](𝜔) = 𝑒 𝑝(𝑡)𝑑𝑡 =
𝑒 𝑒 𝜆

𝑡!
= 𝑒

(𝑒 𝜆)

𝑡!
= 𝑒( )  
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Therefore the probabilistic sum (but not the difference!) of two independent random variables 𝑋 

and 𝑌 has the characteristic function: 

𝐹[𝑝 ](𝜔) = 𝑒( ) 𝑒( )  = 𝑒( )( )  

which is still the characteristic function of a Poisson distributed random variable with a modified 

rate parameter. The difference, however, is not a Poisson distributed random variable (i.e., 

background subtraction with random variables is a complicated matter.) This is easy to see, 

because the characteristic function of the difference is: 

𝐹[𝑝 ](𝜔) = 𝑒( ) 𝑒( )  = 𝑒( ) ( )   

which may be inverted to give the Skellam distribution. 

Supporting Information for Unified, Bayesian Inference-based Framework 

for Analyzing Single-molecule Fluorescence Microscopy Experiments 

Note: code for all projects described in this dissertation may be found on the Gonzalez lab server 

on the path < /home/jtemp2/Desktop/code>, and is also available upon request directed to the 

author at < jhon0882@gmail.com >. 

Theoretical Analysis of Trace Estimation Methods 

1. Derivation of the ML formula for the Amplitude 

The random variable 𝑑  which corresponds to the value of the intensity measured in a pixel at 

position (x,y) in an image is given by 

𝑑 = 𝐶 + 𝐵 + 𝑁 , 

A. 8 
where 𝐶~𝒩(𝜇 , Σ )  and 𝐵 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘 , )  respectively denote the instrumental noise, 

normally distributed and assumed independent of position, and electron and photon counts from 
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dark current or background fluorescence, Poisson distributed, and possibly inhomogeneous due 

to the illumination profile.  𝑁 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘 , )  denotes the random number of photon 

incidences from all the chromophores at the given pixel at (x,y). Note that here we use the 

notation for the normal distribution of 𝒩(mean, variance) and for the Poisson distribution of 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(rate). 

In the following derivation, we will make use of several assumptions: 

(1) Distinct molecules are independent of each other. 

(2) The number of background electron or photon counts 𝑘 ,  collected in any pixel at any 

given time interval, corresponding to the Poisson rate, is high (>100). 

(3) The variance of the variable 𝑑  is homogenous in a larger neighborhood than Ψ ,  falls 

off to zero. 

These assumptions allow us to arrive at the formulas provided in the main text, as well as to 

clarify technical details. However, we begin our derivation with more general equations where 

these assumptions have not yet been made, which will support implementation of other 

optimization techniques in future work. First, we note that because the sum of two Poisson 

random variables is itself Poisson distributed with a modified mean, such that the sum 𝐵 +

𝑁 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘 , + ∑ 𝑁 Ψ , ) , a result that makes use of assumption (1). Next, given 

assumption (2), we note that the Poisson probability distribution governing this sum may also be 

approximated by a normal distribution as  

𝐵 + 𝑁 ~𝒩 𝑘 , + ∑ 𝑁 Ψ , , 𝑘 , + ∑ 𝑁 Ψ , . 

At this point we can write the probability distribution of the intensity random variable, which is 
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𝑑 ~ 𝒩 𝜇 + 𝑘 , + ∑ 𝑁 Ψ , , Σ + 𝑘 , + ∑ 𝑁 Ψ , ≡ 𝒩 𝜇 , , Σ , . 

A. 9 
Noting that each pixel is independent given the form above, we give the likelihood of an image 

𝑝(𝑖𝑚𝑎𝑔𝑒) = 𝒩 𝑑 |𝜇 , , Σ ,

,

 

ℒ ≡ 𝑙𝑛 𝑝(𝑖𝑚𝑎𝑔𝑒) = − 𝑙𝑛(2𝜋)

,

+ −
1

2
𝑙𝑛 Σ , −

1

2Σ ,
𝑑 − 𝜇 ,

,

 

ℒ = −
1

2
𝑙𝑛(2𝜋)

,

−
1

2
𝑙𝑛 Σ + 𝑘 , + 𝑁 Ψ ,

,

−
𝑑 − 𝜇 + 𝑘 , + ∑ 𝑁 Ψ ,

Σ + 𝑘 , + ∑ 𝑁 Ψ ,

, 

 

A. 10 
where sums and products over x,y are over all pixels in the image. A version of this likelihood 

without using assumption (2) and therefore not utilizing a Normal approximation to the Poisson 

distribution may be found in Ober et al.256 Finding the most likely parameters is equivalent to 

maximizing ℒ, which is equivalent to maximizing 𝑝(𝑖𝑚𝑎𝑔𝑒) because logarithms are monotonic. 

We seek the most likely set of incident photon rates 𝑁 , and find them by setting 
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𝜕ℒ

𝜕𝑁
= 0 =

⎝

⎜
⎛ Ψ ,

2 Σ + 𝑘 , + 𝑁 Ψ ,,

−
Ψ ,

Σ + 𝑘 , + 𝑁 Ψ ,

𝑑 − 𝜇 + 𝑘 , + 𝑁 Ψ ,

−
(𝑑 − (𝜇 + 𝑘 , + 𝑁 Ψ , ))

2(Σ + 𝑘 , + 𝑁 Ψ , )

⎠

⎟
⎞

. 

A. 11 
 

This formula has no analytic solution, is self-referential, and has a singularity when assumption 

(2) breaks down. While it is possible to stop here and use gradient descent to determine the 

various 𝑁 , continuing to simplify this expression has two advantages: first, it lowers the number 

of parameters, which is necessary because there are more parameters than observations due to 

the Poisson background rates; second, it allows us to use a highly stable technique with 

theoretically guaranteed convergence known as expectation maximization (EM).76 Making use of 

assumption (3), we get a simpler formula, which we expound upon by defining an operator 𝐿(𝑖), 

which gives the (𝑥, 𝑦) pixel position of the light-emitting chromophore indexed by 𝑖, and another 

operator 𝑂(𝐿(𝑖)), which gives the neighborhood about 𝐿(𝑖) on which Ψ ,  is, for the most part, 

nonvanishing. This allows us to write 

𝜕ℒ

𝜕𝑁
= 0 =

1

Σ , ( )
𝑑 − 𝜇 + 𝑘 , ( ) + 𝑁 Ψ , − 𝑁 Ψ , Ψ ,

( , )∈ ( )

, 
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where Σ , ( ) =  Σ + 𝑘 , + 𝑁 Ψ ,  which is assumed constant in 𝑂 𝐿(𝑖) . . 

Rearrangement of this equation and defining 𝑏 ( ) = 𝜇 + 𝑘 , ( ), immediately gives 

𝑁 =

𝑑 − 𝑏 ( ) − ∑ 𝑁 Ψ , Ψ ,
( , )∈ ( )

∑ Ψ ,( , )∈ ( )

. 

A. 12 
An analogous calculation, for a small enough neighborhood and utilizing assumption (2), yields 

an expression for 𝑏 ( ) of 

𝑏 ( ) =
∑ 𝑑 − ∑ 𝑁 Ψ ,( , )∈ ( )

∑ (1)( , )∈ ( )

 

A. 13 
Optimal values of these parameters are found using an expectation-maximization routine (EM) 

iterating successive updates of these parameters using the formulas above. To this end, we 

typically initialize the algorithm (iteration index shown in parenthesis in the superscript) by 

providing the following guesses for the photon rates and background. First, we define the 

following 

𝑏 ( )
( )

=
∑ 𝑑( , )∈ ( )

∑ (1)( , )∈ ( )

 

which constitutes an initial guess for the background of a local area, and 

𝑁
( )

= 𝑑 ( ) − 𝑏 ( )
( )  

A more robust guess could be given by taking into account the contributions of neighboring 

light-emitting chromophores. Observing that: 

𝑑 ( ) = Ψ , ( ) 𝑁 + 𝑏 ( ) 
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and defining the square matrix 𝑨 = {Ψ , ( )}, the vector of the amplitudes as 𝑁 = {𝑁 }, and the 

vector of the observed maxima as 𝑀 = {𝑑 ( ) − 𝑏 ( )
( )

} we can write a formula for an alternative 

initial guess of the 𝑁 : 

𝑁 = 𝑨 𝑀 

which may be solved, for instance, utilizing the linsolve function in MATLAB. With either of 

these guesses, the algorithm typically converges within five iterations. When fitting the locations 

of chromophores alongside the amplitude and per-frame background, we assume that while the 

amplitudes and background vary per-frame, the position is fixed; with this restriction, we 

numerically maximize the likelihood function, making use of all of our assumptions above, and 

the constraint that the chromophore is actually located within a pixel of the one in which we 

identified it. 

 

2. Variance analysis of the ML formula for the Amplitude 

With an expression for the estimate of 𝑁  and the variance in that estimate, 𝑉𝑎𝑟(𝑁 ) , we 

calculate the theoretical signal-to-noise ratio (𝑆𝑁𝑅) of a chromophore intensity estimated with a 

particular method as 𝑆𝑁𝑅 =  𝑁 / 𝑉𝑎𝑟(𝑁 ) . To assist in the derivations of the  𝑆𝑁𝑅  for 

estimation methods discussed in the main text, we note that 

𝑉𝑎𝑟 𝑏 𝑋 = 𝑏 𝑉𝑎𝑟(𝑋 ) ,  and   

 𝑉𝑎𝑟(𝑎 + 𝑏𝑋) = 𝑏 ∙ 𝑉𝑎𝑟(𝑋), 

when 𝑋  are normally distributed, and a, b, and 𝑏  are constants. 
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2.1 Direct PSF 

In the case of only one light-emitting chromophore 

𝑁 =
∑ 𝑑 − 𝑏 ( ) Ψ ,( , )∈ ( ( ))

∑ Ψ ,( , )∈ ( ( ))

. 

Defining 

𝛾 ≡ Ψ ,

( , )∈ ( )

, and 

𝑎 ≡
− ∑ 𝑏 ( )Ψ ,( , )∈ ( ( ))

𝛾
, 

allows us to rewrite the formula for the amplitude as 

𝑁 =
1

𝛾
Ψ , 𝑑

( , )∈ ( ( ))

+ 𝑎. 

Noting that the 𝑑  are normally distributed, and utilizing the assumptions leading to the 

derivation of the amplitude formula (particularly assumption (3)), yields 

𝑉𝑎𝑟(𝑁 ) =
𝑉𝑎𝑟 𝑑

𝛾
≅

Σ , ( )

𝛾
. 

This result holds for an arbitrary form of Ψ , . Applying this result to the case of a symmetric 

2D Gaussian PSF parameterized as 

𝜓(𝜃 ) =
1

2𝜋Σ ,

𝐸𝑥𝑝 −
1

2Σ ,

((𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) ) , 

and exchanging the double sum for a double integral gives 

𝑉𝑎𝑟(𝑁 ) =
Σ , ( )Σ ,

𝜋
. 
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2.2 Direct Summation 

Estimating 𝑁  by summing the pixels in the region 𝑂(𝐿(𝑖)) surrounding the ith chromophore, and 

then removing the background contribution estimated from the area surrounding 𝑂(𝐿(𝑖)) , 

defined as 𝑂 𝐿(𝑖) , yields 

𝑁 ≡
1

𝐶𝑎𝑟𝑑 𝑂 𝐿(𝑖)
𝑑

( , )∈ ( )

−
1

𝐶𝑎𝑟𝑑 𝑂 𝐿(𝑖)
𝑑

( , )∈ ( )

, 

where 𝐶𝑎𝑟𝑑(𝑟𝑒𝑔𝑖𝑜𝑛) is the cardinality of the specified region (i.e., number of pixels). Given this 

formula, and the assumption made in Sec. 2.1 about the variance of the 𝑑  yields 

𝑉𝑎𝑟(𝑁 ) = Σ , ( )

1

𝐶𝑎𝑟𝑑(𝑂(𝐿(𝑖)))
+

1

𝐶𝑎𝑟𝑑(𝑂′(𝐿(𝑖)))
. 

We note that 𝑂(𝐿(𝑖))  is typically defined as the one-pixel neighborhood about the pixel 

identified as containing the light-emitting chromophore, and 𝑂′(𝐿(𝑖)) is typically defined as one 

pixel further around 𝑂(𝐿(𝑖)), but not containing any pixels from 𝑂(𝐿(𝑖)). 

 

3. Photobleaching Correction 

Since photobleaching of a chromophore involves an effectively irreversible chemical reaction 

that results in an effectively instantaneous drop in the photon-emission rate of a chromophore, 

we choose to locate photobleaching points by learning the types of instantaneous changes in 

intensity that occur in a collection of intensity versus time trajectories. As such, we learn where 

these instantaneous changes occur by using a Gaussian mixture model (GMM) and utilizing 

VBEM.76 

First, we define Δ𝐼 (𝑡)  as the derivative of the intensity in color channel 𝑐  at time 𝑡  in 

chromophore 𝑘. We are primarily concerned with whether a particular Δ𝐼 (𝑡) belongs to a class 
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of Δ𝐼 (𝑡) describing an increase, lack of change, or decrease in intensity. Thus, we can write a 

factorized, joint probability distribution as 

𝑝(𝑧, 𝜃) ≅ 𝑞(𝜃)𝑞(𝑧), 

where 𝑧 is a one-of-K binary vector describing whether a data point belongs to a particular class 

(denoted +, 0, or − for increase, same, or decrease, respectively), and 𝜃 describes the parameters 

of the Gaussians. This particular factorization is tractable in a GMM, and enables us to utilize a 

variational approximation. By defining 

𝑟 (𝑡, 𝑘) =
𝒩(Δ𝐼 (𝑡) |𝜇 , 𝜆 )

𝑅
, 

𝑟 (𝑡, 𝑘) =
𝒩(Δ𝐼 (𝑡) |𝜇 , 𝜆 )

𝑅
, 

𝑟 (𝑡, 𝑘) =
𝒩(Δ𝐼 (𝑡) |𝜇 , 𝜆 )

𝑅
, and  

𝑅 = 𝒩(Δ𝐼 (𝑡) |𝜇 , 𝜆 ) + 𝒩(Δ𝐼 (𝑡) |𝜇 , 𝜆 ) + 𝒩(Δ𝐼 (𝑡) |𝜇 , 𝜆 ), 

we arrive at the following expressions for the occupancy and parameter posteriors 

𝑞(𝑧) = 𝑟 (𝑡, 𝑘) ( , , )𝑟 (𝑡, 𝑘) ( , , )𝑟 (𝑡, 𝑘) ( , , )  , and  

𝑞(𝜃)

= 𝐷𝑖𝑟(𝝅|𝜶)𝒩(𝜇 |𝑚 , 𝐵 )Γ(𝜆 |𝑎 , 𝑏 )𝒩(0|0, 𝐵 )Γ(𝜆 |𝑎 , 𝑏 )𝒩(𝜇 |𝑚 , 𝐵 )Γ(𝜆 |𝑎 , 𝑏 ). 

A. 14 
𝐷𝑖𝑟(𝝅|𝜶)  denotes the Dirichlet distribution over the mixing coefficients, 𝒩(Δ𝐼 (𝑡) |𝜇, 𝜆) 

denotes a normal distribution over the intensity derivatives, which is parameterized in terms of 

precision (inverse variance), 𝒩(𝜇|𝑚, 𝐵) denotes the posterior distribution over the mean, and 

Γ(𝜆|𝑎, 𝑏) denotes the gamma posterior distribution over the precision. A full discussion of these 
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distributions, and the variational analysis to solve the model can be found in standard 

references.76  

The photobleaching event in a particular intensity versus time trajectory is defined as the last 

occupancy of the distribution governed by 𝒩(Δ𝐼 (𝑡)|𝜇 , 𝜆 )  before the termination of 

recording. With high quality data when the assumptions of the model are met, this model works 

reasonably well for >90% of the trajectories. We suggest the use of a point-and-click method to 

fix those that do not conform; such functionality is included in vbscope. 

 

4. Anti-correlation Sorting 

Defining the un-normalized cross-correlation function as 

 𝐶𝐶𝐹(𝑡, 𝑐, 𝑐 ) = 〈𝐼 (𝑡)𝐼 (𝑡 − 𝑡 )〉, 

we simply sort the trajectories by 𝐶𝐶𝐹(𝑡 = 0, 𝑐, 𝑐 ).  

 

5. Release Factor 1 and smFRET Methods 

These methods primarily expand upon the work of Sternberg et al.257 Further details can be 

found elsewhere.258  

5.1 Recombinant Gene Construction, Expression, Purification, and Labeling of Cy5-

mutRF1 

Beginning with the plasmid containing the gene encoding the N-terminal hexahistidine 

tagged, single-cysteine variant of release factor 1 (RF1) described by Sternberg et al,257 a variant 

of this construct was created using site-directed mutagenesis by introducing two mutations – 

G896C and G902C in the DNA sequence of the prfA gene numbering of Escherichia coli (E. 
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coli) K12. As described previously, this plasmid was co-transformed into E. coli BL21-(DE3) 

with a plasmid containing the gene for the N5-glutamine methyltransferase encoded by prmC, 

which is responsible for methylating the GGQ motif of class 1 release factors.257 Over-

expression of both the resulting RF1 mutant (mutRF1) and the methyltransferase was induced 

with isopropyl β-D-1-thiogalactopyranoside. MutRF1 was then purified using nickel-affinity 

chromatography. The hexahistidine tag was then removed using TEV protease to cleave the tag 

at the down-stream TEV protease site, and purified again using nickel-affinity chromatography. 

This single-cysteine mutRF1 was labeled using Cy5-maleimide (GE Healthcare Life Sciences), 

and purified using size exclusion chromatography (Superdex 75 pg; GE Healthcare Life 

Sciences) to remove unreacted Cy5 and then hydrophobic interaction chromatography (Phenyl 

5PW; Tosoh Biosciences) to remove unlabeled mutRF1, as previously described.257 This 

procedure yields a 100% labeling efficiency of mutRF1 by Cy5 (Cy5-mutRF1). 

5.2 Ribosomal Release Complex Formation 

Cy3-labeled, prokaryotic, ribosomal release complex (Cy3-RC) programmed with a stop-

codon in the aminoacyl-tRNA site was formed as previously described.257,258 Briefly, Cy3-RC 

was prepared enzymatically in tris-polymix buffer (50 mM tris-acetate (pH=7.5), 100 mM KCl, 5 

mM ammonium acetate, 0.5 mM calcium acetate, 0.1 mM EDTA, 10 mM 2-mercaptoethanol, 5 

mM putrescine, 1 mM spermidine, and 5 mM magnesium acetate) using fMet-tRNAfMet and Phe-

tRNAPhe, which was labeled with a Cy3-succinimidyl ester at the primary amine-containing 3-(3-

amino-3-carboxypropyl)-uridine at position 47 of tRNAPhe. The mRNA message was in vitro 

transcribed from a construct derived from the gene encoding gene product 32 from the T4 

bacteriophage, such that the gene to be translated was AUG-UUU-UAA. Assembled complexes 
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were then purified using sucrose density gradient ultracentrifugation; the mRNA message was 

hybridized to a biotinylated DNA oligo in order to tether it to the surface of a microscope slide. 

5.3 TIRF Microscopy of Cy5-mutRF1 Binding to Cy3-RC 

 As described previously, Cy3-RC was immobilized on biotinylated-quartz slides using a 

biotin-streptavidin-biotin bridge.257 Briefly, prior to imaging, immobilized Cy3-RC samples were 

incubated with 10 nM Cy5-mutRF1 in tris-polymix buffer supplemented with 15 mM 

magnesium acetate, 1% (w/v) β-D-glucose, 300 mg/mL glucose oxidase (Sigma-Aldrich), 40 

mg/mL catalase (Sigma-Aldrich), 1mM 1,3,5,7-cyclooctatetraene (Sigma-Aldrich), and 1 mM p-

nitrobenzyl alcohol (Fluka). When illuminating samples with a 532 nm laser (Gem532; Laser 

Quantum), fluorescence was collected from through a 60x objective (PlanApo; Nikon) with a 

prism-based total-internal reflection fluorescence (TIRF) microscope (Ti-U; Nikon). 

Fluorescence intensity was imaged through a wavelength splitter (DV2; Photometrics) onto an 

electron-multiplying charge-coupled-device camera (iXon3 897; Andor) at 10 Hz. 

 

 

Plot  Example Description 

Molecule Count Fig. S1A For each color channel (here a two-color movie), we 

define 

𝐶𝑜𝑢𝑛𝑡𝑠(𝑡) = 𝛿 (𝑡)

,

≡ 𝐻(𝑝((𝑥, 𝑦) ∈ {𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠}, 𝑡) − 𝛾)

,

 

where 𝐻  is the Heaviside step function, 𝛾  is the 
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probability threshold of significance set by the user 

during the molecule search, and 𝑡 is the frame number. 

This metric tracks the number of molecules and should, 

in most experiments involving light-emitting 

chromophores, decay to zero with a characteristic 

lifetime that roughly determines the optimal length of 

recording. 

Signal-to-

Background 

Ratio 

Fig. S1B For each color channel, we calculate 

𝑆𝐵𝑅(𝑡) =
𝑀𝑒𝑎𝑛 𝛿 (𝑡)𝑑 (𝑡)

𝑉𝑎𝑟((1 − 𝛿 (𝑡))𝑑 (𝑡))
 

where 𝑑 (𝑡) denotes the intensity of a pixel in frame 𝑡. 

This metric is useful for tracking global changes in the 

movie, such as the bleaching of a background 

chromophore, as well as for evaluating the general 

reliability of the identified chromophores. 

Intensity 

Autocorrelation 

Fig. S1C For each color channel, we calculate the intensity auto-

correlation function as 

𝐴𝐶𝐹(𝑡, 𝑐) =
1

𝐾

〈𝐼 (𝑡)𝐼 (𝑡 − 𝑡 )〉

〈𝐼 (0) 〉
 

=
∑ ∫ 𝑒 ∫ 𝑒 𝐼 (𝑡)𝑑𝑡 ∫ 𝑒 𝐼 (𝑡)𝑑𝑡

∗
𝑑𝜔

∑ ∫ ∫ 𝑒 𝐼 (𝑡 )𝑑𝑡 ∫ 𝑒 𝐼 (𝑡 )𝑑𝑡
∗

𝑑𝜔
 

where 𝐼 (𝑡) is the de-meaned intensity vs time trajectory 
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of molecule k in color channel c, and 𝑡  is the lag time. 

We calculate this using a fast Fourier transform. This 

quantity is, for a stationary family of time series, 

equivalent to the ensemble autocorrelation function, and 

thus reports on the rate constants involved in the 

equilibrium governing the system.  

Intensity Cross-

Correlation 

Fig. S1D For each pair of color channels, we calculate the intensity 

cross-correlation function as, 

 𝐶𝐶𝐹(𝑡, 𝑐, 𝑐 ) =
1

𝐾

〈𝐼 (𝑡)𝐼 (𝑡 − 𝑡 )〉

〈𝐼 (0)𝐼 (0)〉
 

=
∑ ∫ 𝑒 ∫ 𝑒 Δ𝐼 (𝑡)𝑑𝑡 ∫ 𝑒 Δ𝐼 (𝑡)𝑑𝑡

∗
𝑑𝜔

∑ ∫ ∫ 𝑒 Δ𝐼 (𝑡 )𝑑𝑡 ∫ 𝑒 Δ𝐼 (𝑡 )𝑑𝑡
∗

𝑑𝜔

where 𝛥𝐼 (𝑡) is the derivative of the intensity vs time 

trajectory of molecule k as measured in color channel 𝑐. 

This quantity is the ensemble cross-correlation function 

between the intensity in color 𝑐 and the intensity in color 

𝑐 . This metric reports whether the ensemble of intensity 

vs. time trajectories possesses correlation between the 

pair of color channels. In smFRET experiments, this 

quantity should be negative. 

Spatial 

Coincidence 

Fig. S2A We define 𝑅  as a function that is 1 if there is a 

molecule in the registration map (i.e. all chromophore 
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Counts locations in color channel c transformed to the reference 

color channel coordinates) at point (x,y), and 0 otherwise. 

For each color channel, these plots show ∑ 𝑅, . 

Colocalization counts between channels 𝑐 and 𝑐  are then 

defined as 

𝐶𝑜𝑢𝑛𝑡𝑠(𝑡) = 𝐻 𝑅 𝑅( , )∈ ( )

( , )∈ ( ),

 

where  𝑂(𝐿(𝑖))  is the pixel neighborhood of a 

chromophore located at  𝐿(𝑖). 

Spatial 

Coincidence 

Probability 

Fig. S2B Defining 

𝑧 =
∑ 𝑅 𝐶𝑎𝑟𝑑 𝑂 𝐿(𝑖),

𝐶𝑎𝑟𝑑(𝑓𝑟𝑎𝑚𝑒)
 

we calculate the posterior probability of co-localization 

as 

𝑝(𝑠) = 𝛽(𝑠|𝑎, 𝑏) 

𝑎 ≡ 𝑧 𝑧  

𝑏 ≡  𝐻 𝑅 𝑅( , )∈ ( )

( , )∈ ( ),

− 𝑧 𝑧  

where 𝛽(𝑠|𝑎, 𝑏) is the beta distribution with support s.  

Co-localization 

Probability 

Fig. S2C We calculate the posterior probability of co-localization 

as 

𝑝(𝑠) = 𝛽(𝑠|𝑎, 𝑏) 
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𝑎 ≡ 𝐻 𝑅 𝑅( , )∈ ( )

( , )∈ ( ),

 

𝑏 ≡  𝐻 𝑅 1 − 𝑅( , )∈ ( )

( , )∈ ( ),

 

Illumination 

Profile 

Fig. S3A The illumination profile shown is defined by 

𝑀 = min
( , )

𝑑  

Registration Fig. S3B The registration profile is a series of X’s drawn in the 

size of the channel color and then transformed according 

to the registration function into the principal color. 
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Figure A. 1 Plots of vbscope intensity analysis for TIRF microscopy movie of 10 nM Cy5-
mutRF1 binding to surface-immobilized Cy3-RC.  
(A) Plot of number of molecules identified in each image of the movie for the Cy3 (green), and 

Cy5 (red) color channels. (B) Plot of average signal-to-background ratio for molecules identified 

in each image of the movie for the two color channels. (C) Plot of the intensity autocorrelation 

function for the molecules identified in the movie for the two color channels. (D) Plot of the 

intensity cross-correlation between color channel 1 (Cy3) and color channel 2 (Cy5) for all 

identified molecules. The value at the first frame is caused by the extreme anticorrelation of two-

color FRET. 
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Figure A. 2 Plots of vbscope colocalization analysis for TIRF microscopy movie of 10 nM 
Cy5-mutRF1 binding to surface-immobilized Cy3-RC.  
(A) Plot of number of distinct, identified molecules in color channel 1 (C1; Cy3) and color 

channel 2 (C2; Cy5), and the number of these molecules with are colocalized to the same pixel 

((C2,C1)). (B) Plot of the posterior probability distribution of the probability that an independent 

chromophore identified in one color channel coincidently overlaps with a separate, non-

associated, independent chromophore identified in the other color channel. (C) Plot of the 
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posterior probability distribution of the probability that a molecule identified in C1 colocalizes 

with a molecule identified in C2 (thick green, thin red), and that a molecule identified in C2 

colocalizes with a molecule identified in C1 (thick red, thin green). Comparing these curves to 

the plot in panel (B) shows that the observed colocalization is not random. 
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Figure A. 3 Plots of microscope parameters as analyzed by vbscope determined from a 
TIRF microscopy movie of 10 nM Cy5-mutRF1 binding to surface-immobilized Cy3-RC.  
(A) Image of the estimated illumination profile of the movie. (B) Difference image of the 

registration function used to align the two color channels. The color channel on the right shows 

no difference, because it is the reference channel. The specific line patterns were chosen to show 

the registration function across the entire color channel. 
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Supporting information for A Bayesian Approach to Hierarchical Hidden 

Markov Modeling Allows Direct Measurement of Conditional Kinetic Rates 

and for A Bayesian Approach to Single-Molecule Trajectories with Diffusing 

Observables 

S1 Generative Model for Hierarchical Hidden Markov Models (HHMMs) 

S1.1 Overview 

In this section we will first define all the variables used to describe the algorithms for 

static and dynamic heterogeneity. Next, we show how these variables are organized to optimize 

the evidence – the probability that the parameters, state occupancies, and observations are all 

found and inferred in the same dataset. To explain this quantity, we will begin with a formal 

definition of the evidence, then follow by defining the emissions model used herein, describe the 

prior distributions, then close with general outlines of the two algorithms. 

S1.2 Variable Definitions 

 

Observations of a trajectory 𝑛 ∈ {1, … , 𝑁} at time  𝑡 ∈ {1, … , 𝑇 } 𝑥  

 

State of the molecule in trajectory 𝑛 ∈ {1, … , 𝑁} at time  𝑡 ∈ {1, … , 𝑇 }. 

The model for dynamic heterogeneity has 𝑑 ∈ {1, … , 𝐷} and the model for 

static heterogeneity has 𝑑 ∈ {1,2}. 

 
𝑧  

  
Ω  
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Size of the state space at level 𝑑 ∈ {1, … , 𝐷} 

 

Accessible state space at level 𝑑 ∈ {1, … , 𝐷} 

 

Ω ≡
Ω

Ω
 

 

Collectively, parameters for a population of trajectories 

 

𝜃 

 

Collectively, the parameters for the emission distribution 

 

𝜙 

 

Emission distribution for a given production state 𝑖 ∈ 1, … , Ω  

 

𝜙  

 

Emission Normal distribution mean for a given production state 𝑖 ∈

1, … , Ω  

 

𝜇  

 

Emission Normal distribution precision for a given production state 

𝑖 ∈ 1, … , Ω  

 

𝜆  

Variational estimate for the mean 𝜇  of the Emission Normal distribution, 

𝑖 ∈ 1, … , Ω  

 

𝑚   

Variational estimate for the precision of the mean 𝜇  of the Emission 

Normal distribution, 𝑖 ∈ 1, … , Ω  

 

𝛽  

Variational estimate for the scale of the precision 𝜆  of the Emission 

Normal distribution, 𝑖 ∈ 1, … , Ω  

 

𝑎  
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Variational estimate for the rate of the precision 𝜆  of the Emission Normal 

distribution, 𝑖 ∈ 1, … , Ω  

 

𝑏  

 

Initial-state probabilities 𝑑 ∈ {1, … , 𝐷}, 𝑖 ∈ 1, … , Ω , 𝑘 ∈ {1, … , Ω } 

 

𝜋 (𝑘) 

 

Transition matrices 𝑑 ∈ {1, … , 𝐷}, 𝑖 ∈ 1, … , Ω , 𝑗 ∈ 1, … , Ω + 1 , 𝑘 ∈

{1, … , Ω } 

 

𝐴 (𝑘) 

Probability of transitioning between branches of the tree at level 𝑑 𝐴 ,
(𝑘) 

Variational estimate for the number of time a trajectory is first observed in 

state 𝑑 ∈ {1, … , 𝐷}, 𝑖 ∈ 1, … , Ω , 𝑘 ∈ {1, … , Ω } 

𝜌 (𝑘) 

Variational estimate for the number of times a trajectory makes a transition 

between 𝑖 ∈ 1, … , Ω  and 𝑗 ∈ 1, … , Ω + 1  at level 𝑑 ∈ {1, … , 𝐷} 

positioned at the path 𝑘 ∈ {1, … , Ω } 

𝛼 (𝑘) 

 

Collectively, hyperparameters for the prior distribution 

 

𝜓  

Prior estimate for the mean 𝜇  of the Emission Normal distribution, 

𝑖 ∈ 1, … , Ω  

 

𝑚 ,   

Prior estimate for the precision of the mean 𝜇  of the Emission Normal 

distribution, 𝑖 ∈ 1, … , Ω  

 

𝛽 ,  

Prior estimate for the scale of the precision 𝜆  of the Emission Normal 

distribution, 𝑖 ∈ 1, … , Ω  

 

𝑎 ,  
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Prior estimate for the rate of the precision 𝜆  of the Emission Normal 

distribution, 𝑖 ∈ 1, … , Ω  

 

𝑏 ,  

Prior estimate for the number of time a trajectory is first observed in state 

𝑑 ∈ {1, … , 𝐷}, 𝑖 ∈ 1, … , Ω , 𝑘 ∈ {1, … , Ω } 

𝜌 , (𝑘) 

Prior estimate for the number of times a trajectory makes a transition 

between 𝑖 ∈ 1, … , Ω  and 𝑗 ∈ 1, … , Ω + 1  at level 𝑑 ∈ {1, … , 𝐷} 

positioned at the path 𝑘 ∈ {1, … , Ω } 

𝛼 , (𝑘) 

 

Evidence 

 

𝐿 𝑞 {𝑧 } , 𝑞(𝜃)  

Expected occupancy of the production state 𝑖 ∈ 1, … , Ω  of a molecule 𝛾  

Expected counts of the number of transitions between 𝑖 ∈ 1, … , Ω  and 

𝑗 ∈ 1, … , Ω + 1  at level 𝑑 ∈ {1, … , 𝐷}  positioned at the path 𝑘 ∈

{1, … , Ω } in trajectory 𝑛 ∈ {1, … , 𝑁} at time  𝑡 ∈ {2, … , 𝑇 } 

𝜉 (𝑘) 

Expected counts of the number of time a trajectory begins in state 𝑖 ∈

1, … , Ω  at level 𝑑 ∈ {1, … , 𝐷} 

𝑔  

Forward-backward scale variable 𝑐 (𝑘) 

Forward variable 𝛼 (𝑘) 

Backward variable 𝛽 (𝑘) 

Forward-upward variable 𝛼
,

(𝑘) 

 

Forward-downward variable 𝛼
,

(𝑘) 



Appendix A 

220 

 

Backward-upward variable 𝛽
,

(𝑘) 

Backward-downward variable 𝛽
,

(𝑘) 

The set of nodes in the state space graph that point at 𝑥 𝑝𝑎𝑟(𝑥) 

The 𝑘  super-parent of 𝑥 𝑝𝑎𝑟 (𝑥) 

The set of nodes in the state space graph that 𝑥 points at 𝑐ℎ(𝑥) 

The set of nodes in the state space graph that share nodes that point to 𝑥 𝑠𝑖𝑏(𝑥) 

 

 

Gamma function 

 

Γ(𝑧)

= 𝑥 𝑒 𝑑𝑥 

 

Digamma function 

𝜓(𝑧)

=
𝑑 ln Γ(𝑧)

𝑑𝑧
 

S1.3 Evidence 

The evidence is the probability the current set of observations was obtained from an 

experiment given any possible set of parameters, given as well some prior data. Specifically, 

using Bayesian inference, we seek parameter distributions that optimize the evidence, given by: 

𝑝({𝑥 }, 𝜃|𝜓 ) = 𝑝({𝑥 }|𝜃)𝑝(𝜃|𝜓 ) 𝑑𝜃 

This value is, in the case of the present model, analytically intractable, so we instead seek 

parameter distributions that maximize a lower bound for the evidence, given by76: 

𝐿 𝑞 {𝑧 } , 𝑞(𝜃) = 𝑑𝜃 𝑞(𝜃)𝑞(𝑧 ) ln
𝑝(𝑥 , 𝑧 , 𝜃|𝜓 )

𝑞 𝑧 𝑞(𝜃)
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This sum runs over all possible values of the possible states of the molecule trajectory. This 

expression assumes that the joint probability may be factorized: 

𝑝 𝑧 , 𝜃 𝑥 , 𝜓 = 𝑞 𝑧 𝑞(𝜃) 

and this assumption is the basis of the variational approximation. 

S1.4 Emissions Model 

The emissions model is the probability that an observation was obtained from an experiment 

given a particular set of parameters as well as a particular production state of the molecule. This 

is given by: 

𝑝({𝑥 }|𝑧 , 𝜃) = 𝑝 𝑥 𝜙  

Furthermore we assume that 𝑝 𝑥 𝜙  follows a Normal distribution: 

𝑝 𝑥 𝜙 =
𝜆

𝜋
𝑒  

This may in general be modified to any appropriate distribution. 

S1.5 Prior Distributions 

Prior information using the variational approximation and conjugate exponential distributions 

allows us to write down the form of the prior distributions that maximizes their informative 

character and minimizes the information provided by observations101. These are given by: 

𝜇 , 𝑖 ∈ 1, … , Ω  
𝑝(𝜇 |𝜓 ) = 𝑝 𝜇 |𝑚 , , 𝛽 , =

𝛽 ,

2
𝑒

,
,  
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𝜆 , 𝑖 ∈ 1, … , Ω  

 

𝑝(𝜆 |𝜓 ) = 𝑝 𝜆 |𝑎 , , 𝑏 , =
𝑏 ,

,

Γ 𝑎 ,

𝜆 , 𝑒 ,  

 

 

𝜋 (𝑘) , 𝑖 ∈ 1, … , Ω  

𝑘 ∈ {1, … , Ω }𝑑

∈ {1, … , 𝐷} 

 

 

𝑝 𝜋 (𝑘)|𝜓 = 𝑝 𝜋 (𝑘) {𝜌 , (𝑘)

=
Γ ∑ 𝜌 , (𝑘)

∏ Γ 𝜌 , (𝑘)
𝜋 (𝑘)

, ( )

 

𝐴 (𝑘), 𝑖 ∈ 1, … , Ω  

𝑗 ∈ 1, … , Ω + 1  

𝑘 ∈ {1, … , Ω } 

𝑑 ∈ {1, … , 𝐷} 

𝑝 𝐴 (𝑘)|𝜓 , 𝑖 = 𝑝 𝐴 (𝑘)| 𝛼 , (𝑘), 𝑖

=
Γ ∑ 𝛼 , (𝑘)

∏ Γ 𝛼 , (𝑘)
𝐴 (𝑘)

, ( )

 

 

S1.6 Algorithm 

Iterate an Expectation – E – and a Maximization – M – step until the change in the value of the 

evidence changes negligibly between consecutive iterations. 

 

The E-step determines the expected state of the molecule in each trajectory at each time point 

and also calculates the value of the likelihood function. The M-step takes the expected state 

occupancies of the molecule calculated in the E-step and uses these occupancies to re-estimate 

all of the parameters. We do not re-estimate the prior distributions and thus it is important that 

they not overwhelm the contributions from observations in the M-step.  
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S2 Variational Bayes Expectation Maximization (VBEM) 

S2.1 E-Step 

The E-Step estimates the likelihood function while concurrently using the current estimates for 

parameters, 𝜃, to decode the state of each molecule 𝑛 at time 𝑡, 𝑧 . This is done in conceptually 

distinct ways for static and for dynamic heterogeneity. In the static case, we present an algorithm 

which may be called a mixture of HMMs, and determine mixture coefficients that describe the 

degree to which each trajectory belongs to each subpopulation. In the dynamic case, we present 

an algorithm, first described by Wakabayashi et al147, which estimates the contribution of every 

potential conditional transition by determining the degree to which it has been activated. As this 

degree at level 𝑑 depends on whether 𝑑 + 1 has activated a transition, this algorithm takes on a 

vertical character at each time point. The goal of each algorithm will be to return occupancies 

𝛾  and counts 𝜉 (𝑘) with which we will re-estimate all parameters in the M-Step, below. The 

E-Step is, in both cases, the most time-consuming step of the algorithm. 

 

S2.1.1 Forward-Backward Mixture Algorithm – Static Heterogeneity 

The Forward-Backward Mixture (FBM) algorithm, which is adapted from standard 

references76, sequentially decodes the optimal expected state occupancies without considering 

the entirety of the exponentially-scaled state space by iteratively decoding an optimal occupancy 

at time 𝑡 in trajectory 𝑛 and using that information to decode an optimal occupancy at time 𝑡 + 1, 

finding the corresponding conditional through a similar process in reverse, and combining them 

using Bayes’ theorem to acquire the desired parameters. Therefore the complexity of the 
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algorithm is simply 𝑂(𝑁𝑇𝐾 𝐷) where 𝐷 is the number of static subpopulations and 𝐾  is the 

number of production states.  

 The forward and backward variables reduce in the 𝑑 dimension because the populations 

that do not interconvert do not have subsequent transitions at any higher level: 

𝛼 (𝑘) = 𝛼 (𝑘) ≡ 𝑝(𝑥 |𝜙 ) 𝛼 , , (𝑘)𝐴 (𝑘) 

𝛽 (𝑘) = 𝛽 (𝑘) ≡ 𝛽 , , (𝑘)𝑝 𝑥 , |𝜙 𝐴 (𝑘) 

The boundary conditions are as follows: 

𝛼 (𝑘) = 𝑝(𝑥 |𝜙 )𝜋 (𝑘) 

𝛽 (𝑘) = 𝑝 𝑥 𝜙  

where one may notice that we have removed an unnecessary index from 𝜋 (𝑘). These variables 

are normalized to supply the likelihood function as well as a convenient scale and obvious 

recursion, all to guarantee computational precision: 

𝑐 (𝑘) ≡ 𝛼 (𝑘)𝐴 (𝑘) 

𝜶 (𝑘) ≡ 𝛼 (𝑘) 𝑐 (𝑘) 

𝜷 (𝑘) ≡ 𝛽 (𝑘) 𝑐 (𝑘) 

To complete the algorithm we use the above variables to calculate the variables of primary 

interest: 

𝑝({𝑥 }) = 𝑞 𝑧 = 𝑐 (𝑘)

, ,
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𝛾 = 𝜶 (𝑘)𝜷 (𝑘) 
∏ 𝑐 (𝑘)

∑ ∏ 𝑐 (𝑘)
  

𝑔 = 𝜶 (𝑘)𝜷 (𝑘)
∏ 𝑐 (𝑘)

∑ ∏ 𝑐 (𝑘)
 

𝜉 (𝑘) =
𝑐 (𝑘)𝑝(𝑥 |𝜙 )𝜶 , , (𝑘)𝜷 (𝑘)𝐴 (𝑘)

∏ 𝑐 (𝑘)
 

At this point all variables required for the M-Step have been prepared. 

  

S2.1.2 Forward-Backward Activation Algorithm – Dynamic Heterogeneity 

 The Forward-Backward Activation (FBA) algorithm, first described by Wakabayashi et 

al147, sequentially decodes the optimal expected state occupancies at every level of the state 

space while concurrently counting the number of transitions between each state space branch. 

While the skeleton of the algorithm bears similarities to the FBM algorithm, the requirement of 

determining when indirectly observed underlying conditions are in force adds significant 

complexity – for example, if each level of the tree has 𝐾  children, then the algorithm is 

𝑂(𝑁𝑇𝐾 ). 

 The forward-upward and forward-downward variables are calculated according to the 

following recursion, beginning at the top of the tree: 

  

𝛼 (1) = 𝛼 (1)𝐴 (1) 

 

As with the FBM algorithm, we define a scale factor which will eventually be used to calculate 

the likelihood as well as to keep the entirety within computational precision.  
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𝛼 (𝑘) = 𝛼 𝑝(𝑥 |𝜙 ) 

𝑐 = 𝛼 (𝑘)

∈ ( )∈

 

Using these, we continue the recursion: 

 

𝜶 (𝑘)

= 𝛼 (𝑘) 𝑐  

𝛼 (𝑘) = 𝛼 𝑝𝑎𝑟(𝑘) 𝜋 (𝑘) + 𝛼 (𝑘)𝐴 (𝑘)

∈ ( )

, 𝑑 ∈ {2, … , 𝐷}𝛼 (𝑘)

= 𝛼 𝑝𝑎𝑟(𝑘) 𝜋 (𝑘) + 𝜶 (𝑘)𝐴 (𝑘)

∈ ( )

 

𝛼 (𝑘)

= 𝛼 (𝑖)𝐴 ,  

∈ ( )

, 𝑑 ∈ {1, … , 𝐷 − 1} 

The forward-upward variables have time-boundary conditions: 

𝛼 (𝑘) = 𝜋  

𝛼 (𝑘) = 𝛼 𝑝𝑎𝑟(𝑘) 𝜋 , 𝑑 ∈ {2, … , 𝐷} 

 

Similarly, the backward-upward and backward-downward variables are calculated according to 

the following recursion:  



Appendix A 

227 

 

𝛽 (1) = 𝛽 (1)𝐴 (1) 

𝛽 (𝑘) = 𝛽 𝑝(𝑥 |𝜙 ) 𝑐  

𝛽 (𝑘) = 𝛽 𝑝𝑎𝑟(𝑘) 𝐴 ,
(𝑘) + 𝛽 (𝑘)𝐴 (𝑘)

∈ ( )

, , 𝑑 ∈ {2, … , 𝐷} 

𝛽 (𝑘) = 𝛽 (𝑖)𝜋

∈ ( )

, 𝑑 ∈ {1, … , 𝐷 − 1} 

One will note that we have introduced the scale alongside the backward-downward variables. 

The backward-downward variables have time-boundary conditions: 

𝛽 (𝑘) = 𝐴 ,   

𝛽 (𝑘) = 𝛽 𝑝𝑎𝑟(𝑘) 𝐴 , , 𝑑 ∈ {2, … , 𝐷} 

Finally, we need to prepare the variables needed for the M-Step, as well as calculate the 

likelihood function. This is done by setting: 

𝑔 = 𝛼 (𝑘)𝛽 (𝑘) + 𝛼
,

𝑝𝑎𝑟(𝑘) 𝜋 𝛽
,

(𝑘) 

𝛾 = 𝛼 (𝑘)𝛽 (𝑘)

∈

 

𝜉 (𝑘) = 𝛼
,

(𝑘)𝐴 𝛽
,

(𝑘) 

𝜉 , = 𝛼 (𝑘)𝛽 (𝑘) + 𝛼
,

(𝑘)𝐴 , 𝛽
,

𝑝𝑎𝑟(𝑘)  

𝑝({𝑥 }) = 𝑐

,
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S2.2 M-Step 

Parameters are updated in the M-Step. This is done simultaneously and as such, all parameters 

on the right hand side of the equations belong to the previous iteration and those on the left hand 

side belong to the current iteration. Priors are not updated in this model as we do not utilize the 

Empirical Bayes’ framework. This step is iterated as necessary with the E-Step above. 

𝛽 = 𝛽 , + 𝛾

,

, 𝑖 ∈ 1, … , Ω  

 

𝑎 = 𝑎 , +
1

2
𝛾

,

, 𝑖 ∈ 1, … , Ω  

 

𝑏 = 𝑏 , +
1

2
𝛽 , 𝑚 , + 𝑥 𝛾

,

−
𝛽 , 𝑚 , + ∑ 𝑥 𝛾,

𝛽
, 𝑖

∈ 1, … , Ω  

 

𝜆 =
𝑎

𝑏
, 𝑖 ∈ 1, … , Ω  

𝑚 =
𝜆

𝛽
𝑥 𝛾

,

+ 𝑚 , 𝛽 ,  , 𝑖 ∈ 1, … , Ω  

 

𝜇 = 𝑚 , 𝑖 ∈ 1, … , Ω  

𝜌 (𝑘) =  𝜌 , (𝑘) + ∑ 𝑔 ,  𝑑 ∈ {1, … , 𝐷}, 𝑖 ∈ 1, … , Ω , 𝑘 ∈ {1, … , Ω } 
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𝜋 (𝑘) = 𝑒
∑ ,  𝑑 ∈ {1, … , 𝐷}, 𝑖 ∈ 1, … , Ω , 𝑘 ∈ {1, … , Ω } 

 

𝛼 (𝑘) = 𝛼 , (𝑘) + 𝜉 (𝑘)

,

, 𝑖 ∈ 1, … , Ω , 𝑗 ∈ 1, … , Ω + 1 , 𝑘

∈ {1, … , Ω }, 

𝑑 ∈ {1, … , 𝐷} 

 

𝐴 (𝑘) = 𝑒
∑ ( )

, 𝑖 ∈ 1, … , Ω , 𝑗 ∈ 1, … , Ω + 1 , 𝑘

∈ {1, … , Ω }, 

𝑑 ∈ {1, … , 𝐷} 

 

S2.3 Calculation of Evidence Lower Bound 

The evidence lower bound is given by: 

𝐿 𝑞 {𝑧 } , 𝑞(𝜃) = 𝑝({𝑥 }) − 𝐷 (𝜙||𝜓 ) − 𝐷 𝜌 ||𝜓 − 𝐷 𝛼 (𝑘) ||𝜓 , 

𝐷 (𝜙||𝜓 ) = (𝑎 − 1)𝜓(𝑎 ) + log
𝑎

𝑏
− 𝑎 + log

Γ 𝑎 ,

Γ(𝑎 )
+ 𝑎 , log 𝑏 ,

− 𝑎 , − 1 (𝜓(𝑎 ) + log(𝑏 )) +
𝑎 𝑏

𝑏 ,
+ log

𝛽 ,

𝛽
+

𝛽 + 𝑚 − 𝑚 ,

2𝛽 ,
−

1

2
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𝐷 𝜌 ||𝜓

= log Γ 𝜌 − log Γ 𝜌 , + log Γ 𝜌 − log Γ 𝜌 ,

+ 𝜌 − 𝜌 , 𝜓 𝜌 − 𝜓 𝜌  

𝐷 𝛼 (𝑘) ||𝜓

= log Γ 𝛼 (𝑘) − log Γ 𝛼 , (𝑘) + log Γ 𝛼 (𝑘)

− log Γ 𝛼 , (𝑘)

+ 𝛼 (𝑘) − 𝛼 , (𝑘) 𝜓 𝛼 (𝑘) − 𝜓 𝛼 (𝑘)  

S3 Calculation of Kinetic Rates 

S3.1 Static Heterogeneity 

Calculation of the kinetic rates follows: 

𝑘 ≈ 𝐴 , 𝑖 ≠ 𝑗 

where the rate constants are in units of time-steps. 

S3.2 Dynamic Heterogeneity 

Calculation of the kinetic rates follows: 
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𝑑∗ ≡ min 𝑑|𝑝𝑎𝑟 (𝑖) = 𝑝𝑎𝑟 (𝑗)  

𝑘 ≈ 𝐴 , 𝑐ℎ (𝑖)  

𝐴 ( ), 𝑝𝑎𝑟 (𝑖) 𝜋 ( )

∗

𝐴
∗ ∗ ( ) , ∗ ∗ ( )

∗
𝑝𝑎𝑟 ∗ (𝑖)  

𝑖 ≠ 𝑗 

where the rate constants are in units of time-steps. 

 

Emission Drift 

 Emission drift is assumed to be distributed so that the difference between the values of 

any two sequential samples from a trajectory is itself normally distributed, the variance of which 

is ratiometrically related to the expected variance of the trajectory on the basis of, for example, 

the Gaussian mixture updates in the M-step described above. This ratio is defined as 𝑅 =

𝜎 /𝐸[𝜎 ]  where 𝜎  is the standard deviation of the random walk and 𝐸[𝜎 ]  is the expected 

standard deviation of the trajectory. This value is used in a E-step to find the expected values of 

the baseline, according to, for an individual trajectory 𝑥 , 

𝑏 = (−Δ + 𝑅 ) 𝑥 − 𝛾 𝜇  

A. 15 
where 𝛾  are the occupancy posteriors from the HMM (see above), 𝜇  are the centers of the 

Gaussian mixture model, from the M-step, and Δ is the finite difference operator defined by: 

Δ𝑛 = 𝑛 + 𝑛 − 2𝑛 , 𝑡 = 2, … , 𝑇 − 1 

Δ𝑛 = 𝑛 − 𝑛  
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Δ𝑛 = 𝑛 − 𝑛  

The required inverse is calculated according to the method of Usmani98. To complete the model, 

all that is required is an estimate for 𝑅  as an addition to the M-step. This is given by: 

𝜎 = 𝛾 𝜎  

𝑠 = 0, 𝑠 = 𝑏 − 𝑏  

This latter estimate is understood to have been either initialized or to have originated in a 

previous EM iteration. Next, defining: 

𝜆 = 𝑠 𝜎  

𝐴 = 128 − 96𝜆 + 24𝜆 − 2𝜆 + 288𝜆𝑇 − 36𝜆 𝑇 + 18𝜆 𝑇 + 108𝜆 𝑇  

We arrive at: 

R^2 = ((2*(2+d))/(3*(-1+T^2))-(2^(1/3)*(-4*(2+d)^2-3*d*(8+d)*... 

    (-1+T^2)))/(3*(-1+T^2)*(128-96*d+24*d^2-2*d^3+288*d*T^2-36*d^2*T^2+... 

    18*d^3*T^2+108*d^2*T^4+sqrt((128-96*d+24*d^2-2*d^3+288*d*T^2-36*d^2*... 

    T^2+18*d^3*T^2+108*d^2*T^4)^2+4*(-4*(2+d)^2-3*d*(8+d)*(-

1+T^2))^3))^(1/3))+... 

    (1/(3*2^(1/3)*(-1+T^2)))*((128-96*d+24*d^2-2*d^3+288*d*T^2-

36*d^2*T^2+18*... 

    d^3*T^2+108*d^2*T^4+sqrt((128-96*d+24*d^2-2*d^3+288*d*T^2-

36*d^2*T^2+18*... 

    d^3*T^2+108*d^2*T^4)^2+4*(-4*(2+d)^2-3*d*(8+d)*(-1+T^2))^3))^(1/3)) 
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Appendix B Examples in Mesoscopic Conductance 

 

As an instructive and much simpler case, consider instead the matrix implied by one-type 1D 

channel: 

𝐻 = 𝛼 + Σ ,  

𝐻 , = 𝐻 , = 𝛽, 𝐻 = 𝛼, 𝑖 ∈ {2, … , 𝑛 − 1} 

𝐻 = 𝛼 + Σ ,  

where 𝛼 is the self-energy, assumed constant, 𝛽 is the exchange integral, assumed constant, Σ  

vanishes except the (1,1) element, and Σ  vanishes except the (n,n) element. The retarded 

Green’s function satisfies: 

𝐺 = [𝐸 𝐼 − 𝐻]  

Using the methods in Chapter 2 which originate in Yueh, I apply the following 

eigendecomposition to the matrix 𝐻, noting that the 𝐸 𝐼 − 𝐻 has the same decomposition offset 

by 𝐸: 

cos 𝜃 =
𝜉 − 𝛼

2𝛽
 

𝛽 sin (𝑛 + 1)𝜃 − (Σ + Σ ) sin(𝑛𝜃) + (Σ Σ ) sin (𝑛 − 1)𝜃 = 0 

This equation as-written has a very complex closed-form solution that is not very useful. As a 

base case, when the lattice is “connected” to a source (drain) that is exactly itself, that is, 

Σ = Σ = 𝛽, the equation: 

sin (𝑛 + 1)𝜃 −
2

𝛽
sin(𝑛𝜃) + sin (𝑛 − 1)𝜃 = 0 
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Has the same solutions as in Chapter 2, namely, 

𝜃 =
𝑘𝜋

𝑛
, 𝑘 ∈ {1 … 𝑛 − 1} 

This leads to the following eigenvalues (𝜉 ) and eigenvectors (Ξ
( )) for 𝐸 𝐼 − 𝐻: 

𝜉 = 𝐸 − 𝛼 − 2𝛽 cos
𝑘𝜋

𝑛
, 𝑘 ∈ {1 … 𝑛 − 1} 

Ξ
( )

= sin
𝑗𝑘𝜋

𝑛
+ sin

(𝑗 − 1)𝑘𝜋

𝑛
, 𝑗 ∈ {1 … 𝑛} 

As before there is one missing eigenvalue and eigenvector which are 𝜉 = 𝐸 − 𝛼 − 2𝛽  and 

Ξ( ) = 𝟏. Because 𝐸 𝐼 − 𝐻 is Hermitian, the inverse eigenvector matrix can be trivially written 

as the transpose: 

Ξ
( )

= Ξ
( ) 

which immediately gives the retarded Green’s function as: 

𝐺 =  Ξ[𝐷𝑖𝑎𝑔(𝜉 , … , 𝜉 )]Ξ  

These solutions are standing waves. The standing waves are “tilted” by the potential so that they 

become transverse modes that empty into the drain. Examining the transmission spectrum in 

some detail, it can be seen that the transmission spectrum consists of peaks which are 

approximately lorentzian and centered about the eigenvalues, and that there are roughly as many 

significant eigenvalues as there are subunits, at low bias, whereas at high bias these wash out. 

The transmission spectrum for a prototypical case is shown in Figure B.1. Perturbations on the 

channel also have a relationship to the bias. At a low bias, weak perturbations close the channel, 

whereas at high bias, only perturbations near the source can close the channel. 
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Figure B.1: Transmission spectrum of an 11 atom chain at low bias. 

There are 11 approximately lorentzian peaks centered about the 11 

eigenvalues. 

 

 

Figure B.2: Predicted electron density of a metallic (10,10) CNT from a cylindrically symmetric 

dielectric with Vg = -1 to Vg = 1V, with (A) Vds = 0.40V and (B) Vds = 0.04V simulated using the 

moscnt model provided by Guo et al24, demonstrating spatial variations in charge density across 

the nanotube at severe gate biases. 
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Appendix C Additional Controls for Chapter 5 

 

Optimization of smFET fabrication and molecule attachment: 

To generate devices carbon nanotubes were grown on 1x1 cm2 silicon substrates (525 μm 

degenerately-doped silicon covered with 285 nm thermally-grown oxide) via chemical vapor 

deposition49. Briefly, a 1:200 dilution of 10 mg/mL ferritin cationized from horse spleen in 0.15 

M NaCl (Sigma Aldrich) was deposited onto the edge of the silicon substrate, followed by 

annealing under flow of argon/hydrogen gas (80 sccm total in a 5:1 ratio) for 20 minutes at 

750°C. Nanotubes were grown by bubbling an argon/hydrogen gas mixture (50 sccm total in a 

9:2 ratio) through ice-cold ethanol and over the annealed iron catalyst for 1 hour at 890°C. 

Evaporation of 75 nm of titanium was used to create alignment marks and 32 parallel 

electrode pairs with 4 µm source-drain separation. A second evaporation of 100 nm of platinum 

was used to create two on-chip pseudo-reference electrodes. Substrates were then annealed in 

vacuum at 350°C. Scanning electron microscopy (Hitachi 4700) and confocal Raman 

microscopy (Renishaw inVia using a 532 nm laser) were used to visually characterize CNTs and 

to determine their diameter and chirality64, respectively (Figure C. 1). Once an individual single-

walled CNT was selected, oxygen plasma reactive-ion etching was used to isolate each device 

(by removal of CNT sections not located between source and drain electrodes) as well as to 

remove all other CNTs on the substrate. A microfluidic cell (7 mm long x 800 µm wide x 400 

µm tall) was made out of polydimethylsiloxane (PDMS, cured at 80C) and stamped onto the 
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substrate. The mold for PDMS microfluidic cells was fashioned from crosslinked SU-8 2150 

negative photoresist spun onto a silicon wafer at 500 rpm and subsequently exposed to light for 

12 minutes. 

 

smFET assay experimental conditions: 

 All single-molecule experiments were performed in 0.1X PBS (1mM Na/Na2PO4, 

13.7mM NaCl, 0.3mM KCl, pH 7.4) supplemented with 10mM MgCl2. Using the formula for the 

Debye length: 

𝜆 =
𝜖𝑘 𝑇

∑ 𝑛 𝑞
 

we calculate a Debye length of 1.30 nm. 

 

2’-ACE protected RNA sequences for single-molecule experiments were purchased from 

GE Dharmacon with primary amine functionalities (5’-Amino modifier C6). To deprotect the 

bases, RNA samples were incubated at 60°C in 100 mM acetic acid, pH 3.8 for 30 minutes 

followed by ethanol precipitation, lyophilization, and resuspension in 0.1X PBS259. Before 

experiments of any type, RNA samples were heated to 95°C for 2 minutes followed by slow 

cooling to 25°C before addition of 10 mM MgCl2. smFET measurements were conducted at a 

constant bias of -0.3V relative to the gate, as this was found to be the hold condition for the Pt 

metal.  

 

Real-time invasion of the P1 stem: 



Appendix C 

238 

 

Following attachment of the riboswitch aptamer to a CNT, to confirm that we were observing 

rearrangements of the P1 stem, we incubated the wild-type aptamer with 3 μM adenine and 1 μM 

DNA with a sequence complementary to the P1 stem, which we refer to as EPDNA (5’-

TCCTGATTACAA-3’). In contrast to the signal in the absence EPDNA (Figure C. 3a), a two-

state signal occasionally extinguishes the more complicated four-state signal (Figure C. 3b). 

 

Ligand-free and alternate ligand experiments: 

Following attachment of the riboswitch aptamer to a CNT, we observed that structural 

rearrangements of the riboswitch resulted in three discrete smFET conductance classes in the 

absence of adenine (Figure C. 4a). We analyzed the data using an adaptation of baseline 

correction algorithms to merge with those normally used in analysis of smFRET intensity versus 

time trajectories, and use the transition matrix to infer the rate constants84,86. The lifetimes of all 

observed classes fell within a range of 100 µs to 10 ms (Table S1). Subsequent addition of 

adenine led to transitions between four discrete conductance classes (Figure C. 4b), including an 

apparently new class characterized by a very short lifetime and significantly-lowered 

conductance (Figure C. 4b). Titration of adenine from 0.30 nM to 3 µM stabilized the lowest 

conductance class, extending its average lifetime by 13-fold between 30 nM and 3 µM adenine 

(Figure C. 4d). This result implies that the lowest conductance class is actively stabilized by 

addition of adenine. Together with the general observation that more negative charge near the 

CNT surface tends to lead to lower conductance under our experimental conditions18,48,205, these 

results led us to hypothesize that the lowest conductance class represents a fully base-paired P1 

stem, an observation consistent with the results of NMR spectra235. With this interpretation, 

addition of adenine leads to stabilization of the fully paired conformation of the P1 stem. It is 
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likely that this conductance class was too short lived to be observed in the absence of adenine, 

consistent with RNA secondary structure calculations using MFOLD we initiated suggesting that 

the terminal base is unpaired, and that its total contribution to the structure is approximately -0.8 

kcal/mol, consistent with highly transient dynamics260. 

 

Addition of 3 μM 2AP followed the same trend as addition of adenine; however, the rates were 

subtly different as a result of different proportions in P1A and P1B, as well as a lowered rate of 

transition between P1B to P1A while in conductance class 3, leading to much more transient 

population of the fully paired state (Figure C. 4c and Figure C. 4e).  

Bulk Fluorescence assays: 

It has been shown that the pbuE riboswitch binds adenine and 2-aminopurine (2AP) with 

similar affinity228, though the measured rate of association of these metabolites varies by a factor 

of three230. As has been reported elsewhere, 2AP can be selectively excited and its fluorescence, 

which is quenched by base stacking261, can be monitored to measure quenching caused by 

binding to the pbuE riboswitch231. We performed fluorescence-quenching assays using a Perkin 

Elmer LS55 luminescence spectrophotometer and collected spectra over the wavelength range 

330-450 nm with 300 nm excitation. RNA samples (prepared as described above) were heated to 

95°C for 2 minutes in either 0.01X, 0.1X, or 1X phosphate-buffered saline (PBS) followed by 

slow cooling to 25°C before addition of 10 mM MgCl2. Data was collected at 25°C with a fixed 

2AP concentration of 100 nM and a range of RNA concentrations in excess of 2AP to simplify 

the binding equation to the following: 

ΔF/F = (1-α)[RNA]/(KD + [RNA]) 
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where ΔF/F is the percent fluorescence intensity lost upon the addition of a known 

concentration of riboswitch, [RNA]. The parameter α is proportional to the quantum yield of 

2AP fluorescence and KD represents the equilibrium dissociation constant of 2AP from the 

riboswitch231. These assays show that, in the presence of 10 mM MgCl2, a change in monovalent 

salt between 0.01X and 1X PBS does not significantly affect the binding of 2AP to the pbuE 

aptamer (Figure C. 5a). Additional quenching assays were used to measure the KD of 2AP for 

mutated aptamer sequences (Figure C. 5b). 

 

Conductance versus time trajectories statistics; rate constants; hierarchical model 

selection: 

Rate constants were estimated using two separate models. In the first, shown in the text (Figure 

C. 4b) and below (Figure C. 7a), the conductance versus time trajectory was split into parts small 

enough to contain 10 events each, evaluated by eye, independently fit to a baseline-correcting 

markov chain, and strung back together (Figure C. 7b) by taking the occupancy posteriors and 

using them to recalculate a consensus baseline before running a baseline correction Hidden 

Markov Model (HMM) on the entirety as independent trace fragments with consensus emissions 

and baseline. A first-order approximation to the learned aggregated transition matrix from all the 

expected pseudocounts from the last process (Figure C. 7b) was used to estimate the average rate 

constant at each condition. Error bars were estimated using the Dirichlet distribution implicit in 

the HMM to generate 95% confidence intervals. In the second, a hierarchical markov model was 

used (Figure C. 7c). However, two conceptual differences were applied – first, the baseline 

correction from the first method was directly applied to the conductance versus time trajectory 

before inference, making this method a reflection of the Viterbi, or idealized, trajectory through 
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the data; second, all the trajectories from a series of experiments from a single device were 

entered into the model at once, so that the model posterior would be a reflection of the entire 

body of data. Error bars were, again, 95% confidence intervals calculated using the implicit 

Dirichlet distribution of the hierarchical markov model. Using the consensus model, rate 

constants for each condition were obtained from the stored expectation values for each of the 

relevant distributions. 

 

Model selection for the hierarchical model consisted of fitting with an extra kinetic class and 

quantifying how populated it was. Our expectation was that we had enough data to do 

“automatic” model selection by depopulating an unnecessary class. For the wild-type aptamer, 

the overall fraction of every adenine condition in the third kinetic class was 0.0006 and for the 

G21C aptamer, the fraction of every adenine condition in the third kinetic class was 0.001. We 

interpreted these results as implying that the third class is unnecessary to explain the data, and on 

this basis present only two kinetic classes, P1A and P1B. 

 

Calculation of ΔG separations for P1A and P1B for the wild-type and G21C aptamers: 

In order to compare the kinetic states present in the wild-type and G21C time series, we first 

calculate, for each conductance class in each kinetic state:  

ΔG = 𝑙𝑛
𝑘 ,

𝑘 ,

 

 ΔG = 𝑙𝑛
𝑘 ,

𝑘 ,
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which is the thermodynamic partition between entering conductance class i from a conductance 

class i+1 within P1A versus the reverse rate from conductance class i+1 back to conductance 

class i. This corresponds to the probability of zipping rather than unzipping. These quantities for 

the wild-type and G21C aptamers are shown below (Figure C. 6). 

Dynamics of the stable aptamer: 

Amine labeled stable aptamer differs from wild-type by possessing the following modifications: 

U1C, U2G, A62C, A63G. We attached the stable aptamer to CNTs and recorded conductance 

versus time trajectories as above, in the presence and absence of 3 μM adenine and of 2AP. In all 

cases (Figure C. 10) we observed fluctuations between two conductance classes, but the 

dynamics in each condition were very similar, preventing us from characterizing the stable 

aptamer further. 
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Figure C. 1: Characterization of CNT transistors. 
 a, Scanning electron micrograph of the mask used in this study. Isolated CNTs are indicated by 

the red arrows. b,c, Raman spectra of the CNT fragment used for collection of the wild-type 

aptamer data. The nanotube is metallic, as seen by its G band linewidth  (b) and has a diameter 

of 1.95nm as seen by its radial breathing mode (c). 
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Figure C. 2: Optimization of smFET functionalization.  
a, CNT incubated with both pyrene-NHS and gold nanoparticles. b, Only incubated with gold 

nanoparticles. 

 

 

Figure C. 3: Real-time invasion of the P1 stem.  
a, wild-type aptamer in the presence of saturating adenine. b, wild-type aptamer in the presence 

of saturating adenine and a DNA sequence matching the expression platform. Shaded regions are 

novel, EPDNA-dependent events, which we have simply marked by hand. 
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Figure C. 4: Ligand-free fluctuations of the wild-type aptamer. 
a, sample trace, histogram, and post-synchronized 2D histogram of the wild-type aptamer before 

any addition of ligands. The trajectory possesses 3 conductance classes instead of the normal 

four. 2D histogram is synchronized to entry into conductance class 3. b, Reproduced sample 

trace, histogram, from Figure 1d of the main text (i.e., with 3 μM adenine). 2D histogram of the 

entire population, starting in conductance class 3 (either P1A or P1B) and terminating in 1-P1A, 

identical to those in the main text. c, sample trace, histogram, and post-synchronized 2D 

histogram as in b, with 3 μM 2AP instead of 3 μM adenine. d, adenine dependence of k43. e, 

overall changes in average rate constants of 3 μM adenine vs 3 μM 2AP. 
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Figure C. 5: Bulk fluorescence binding data of 2-aminopurine to the wild-type aptamer.  
a, As monovalent salt is dropped, the Kd for 2AP, and by assumption adenine, is slightly salt 

dependent. b, Fluorescence binding assay of the mutants characterized in this study, wild-type, 

stable, G3C, and G21C (see text). Red curve is the same curve as in a, for reference. 
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Figure C. 6: ΔG separation between conductance classes of P1A and P1B for the wild-
type and G21C aptamers. 
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Figure C. 7: Models used for analysis of smFET data in Chapter 5.  
a, the data are initially split into groups which are analyzed with independent baseline-correction 

HMMs. b, The individual fragments are strung together into a consensus set of transitions and 

emissions. Both a and b assume a single population (G, below). c, Setting G with two 

dynamically interconverting subpopulations, we then combine the idealized trajectories at every 

condition and analyze them together to get consensus parameters for each signal. In every graph 

above, graph circles denote prior densities, red denote hidden state variables, green denote 

expectation values, yellow denote observables. The graphs below denote the kinetic structure of 

the hierarchical transition matrix used at a given stage of analysis. 
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Figure C. 8: First passage distributions from the pbuE riboswitch trajectories described 
in Chapter 5.  
a, First-passage time beginning in 3-P1B and terminating in 1-P1A for the wild-type aptamer. b, 

First-passage time beginning in 3-P1A and terminating in 1-P1A for the wild-type aptamer. c, 

First-passage time beginning in 3-P1B and terminating in 1-P1A for the G21C aptamer. d, First-

passage time beginning in 3-P1A and terminating in 1-P1A for the G21C aptamer. 
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Figure C. 9: Segmented alignment of pbuE riboswitch sequences described in Chapter 5.  
a, Alignment of sequences with an A in the third position (here, 25) of the P1 stem. b, Alignment 

of sequences with a G in the third position (here, 30) of the P1 stem, as possessed by the wild-

type aptamer under study. Figure generated with jalview using the RF00167 sequence library 

found on the Rfam database. 
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Figure C. 10: Dynamics of the stable aptamer.  
a, Recording in the absence of ligand, b, in the presence of 3 μM adenine, and c, in the presence 

of 3 μM 2AP. 

 
 
 
[Adenine] 

(μM) 

k43 (s
-1) k34 (s

-1) k32 (s
-1) k23 (s

-1) k21 (s
-1) k12 (s

-1) 

0 (not 

measured) 

      

0.03 1280±40 33±1 73±2 22±1 27±1 24±1 

0.15 300±10 34±1 109±2 35±1 35±1 34±1 



Appendix C 

252 

 

0.30 145±4 27±1 86±2 27±1 37±1 51±1 

0.50 55±2 10.5±0.3 36±1 17.4±0.4 38±1 51±1 

1.00 84±2 14±0.4 43±1 30±1 42±1 43±1 

3.00 98±4 20±1 51±1 24±1 28±1 33±1 

3.00 [2AP] 81±15 2500±300 50±10 130±100 47±3 72±30 

Table C 1: Average rate constants for the wild-type pbuE adenine-sensing aptamer under 
conditions of increasing adenine; error bars are 95% confidence intervals. 
 

[Adenine] 

(μM) 

k43 (s
-1) k34  (s

-1) k32 (s
-1) k23 (s

-1) k21 (s
-1) k12 (s

-1) 

0 (not 

measured) 

      

0.05 152±12 14±1 150±5 97±4 0.2±0.1 19±0.4 

0.30 240±30 25±2 180±8 38±2 7±0.4 23.5±0.5 

1.00 100±15 5±0.5 0.2±0.2 3.8±0.4 0.02±0.01 0.9±0.1 

2.50 65±16 4.3±0.8 1±1 3.3±0.6 0.03±0.03 1.4±.2 

10.0 19±6 0.3±0.2 45±5 20±0.2 0.05±0.02 3.8±0.2 

50.0 23±5 0.3±0.2 1.6±0.6 4.9±0.6 0.02±0.02 0.03±0.02 

Table C 2. Average rate constants for the G21C pbuE adenine-sensing aptamer under 
conditions of increasing adenine; error bars are 95% confidence intervals. 
 
[Adenine] (μM) k43  (s

-1) k34  (s
-1) k32  (s

-1) k23  (s
-1) k21  (s

-1) k12  (s
-1) k

( ) (s-1) k
( ) (s-1) k

( ) (s-1) k
( ) (s-1) 

0.03 3590±90 330±10 2630±30 229±3 545±4 265±2 61±10 155±5 25±1 2.5±1 

0.15 590±15 365±8 1870±20 220±2 183±2 180±2 22±3 143±4 13±0.6 3.8±0.2 

0.30 560±10 336±6 1210±20 196±2 62±1 95±2 28±2 135±5 16±0.5 1.7±0.2 

0.50 357±6 456±8 1090±15 149±2 71±1 135±2 25±2 178±6 16.6±0.6 0.8±0.2 

1.00 363±5 620±10 1100±15 274±3 114±2 116±2 27±2 211±4 26±1 1.0±0.2 

3.00 322±5 404±7 960±10 223±2 30±1 48±2 25±2 167±5 20±1 0.5±0.2 
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Table C 3. Rate constants for the wild-type pbuE adenine-sensing aptamer contingent on 
occupancy in P1A under conditions of increasing adenine; error bars are 95% confidence 
intervals. 
 

[Adenine] (μM) k43  (s
-1) k34  (s

-1) k32  (s
-1) k23  (s

-1) k21  (s
-1) k12  (s

-1) k
( ) (s-1) k

( ) (s-1) k
( ) (s-1) k

( ) (s-1) 

0.03 4100±120 175±6 640±10 860±15 1200±20 2830±40 300±35 75±4 370±10 48±5 

0.15 3680±80 84±2 303±4 1700±20 540±15 3960±80 100±15 44±2 200±7 65±10 

0.30 2920±80 59±2 301±4 1640±20 500±15 5000±100 150±20 83±2 215±8 85±15 

0.50 2730±60 54±1 209±3 1830±20 400±10 5500±100 95±10 46±1 170±7 105±20 

1.00 2750±50 60±1 212±2 1960±20 334±8 6800±150 90±10 39±1 136±5 90±20 

3.00 2620±60 44±1 159±2 1760±20 90±5 6500±300 100±10 50±1 144±6 110±50 

Table C 4. Rate constants for the wild-type pbuE adenine-sensing aptamer contingent on 
occupancy in P1B under conditions of increasing adenine; error bars are 95% confidence 
intervals. 
 

[Adenine] (μM) F(P1A) 

(%) 

F(P1B) 

(%) 

0.03 7.79±0.01 92.2±0.01 

0.15 17.9±0.01 82.1±0.01 

0.30 16.7±0.01 83.3±0.01 

0.50 28.8±0.02 71.2±0.01 

1.00 40.3±0.03 58.7±0.03 

3.00 34.2±0.02 65.8±0.02 

Table C 5. Fractional occupancy of P1A or P1B for the wild-type pbuE adenine-sensing 
aptamer under conditions of increasing adenine; error bars are 95% confidence intervals. 
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[Adenine] (μM) k43  (s
-1) k34  (s

-1) k32  (s
-1) k23  (s

-1) k21  (s
-1) k12  (s

-1) k
( ) (s-1) k

( ) (s-1) k
( ) (s-1) k

( ) (s-1) 

0.05 3100±200 210±20 2960±60 78±2 250±4 100±2 70±40 200±20 5±0.5 1±0.2 

0.30 3400±300 50±6 1790±30 91±2 250±3 153±2 93±60 98±8 6.2±0.5 0.6±0.1 

1.00 2400±200 27±3 975±20 77±2 128±2 127±2 61±40 97±6 14.1±0.7 1.5±0.2 

2.50 2300±400 15±3 1120±20 65±2 106±2 87±2 70±70 96±7 10.5±0.7 0.5±0.1 

10.0 2700±500 25±5 1520±40 83±2 217±4 65±1 93±97 90±10 7.3±0.7 0.38±0.09 

50.0 2000±300 33±6 1150±30 96±3 204±5 48±1 83±58 136±10 18±1 0.6±0.1 

Table C 6. Rate constants for the G21C pbuE adenine-sensing aptamer contingent on 
occupancy in P1A under conditions of increasing adenine; error bars are 95% confidence 
intervals. 
 

[Adenine] (μM) k43  (s
-1) k34  (s

-1) k32  (s
-1) k23  (s

-1) k21  (s
-1) k12  (s

-1) k
( ) (s-1) k

( ) (s-1) k
( ) (s-1) k

( ) (s-1) 

0.05 264±8 175±5 80±4 3100±100 550±50 2200±200 7.5±1 18±2 400±50 420±100 

0.30 370±15 153±6 133±6 2700±100 280±35 2700±300 12±3 52±4 280±35 500±150 

1.00 290±15 51±3 57±3 1560±60 45±10 300±90 11±3 64±3 150±20 200±80 

2.50 205±15 21±2 58±3 1630±70 21±8 400±200 13±4 53±3 150±20 380±200 

10.0 98±6 80±5 86±5 2030±100 80±25 1200±400 3±1 56±4 200±40 630±300 

50.0 206±6 98±2 42±2 1640±70 40±10 700±200 4±1 28±2 110±20 260±120 

Table C 7. Rate constants for the G21C pbuE adenine-sensing aptamer contingent on 
occupancy in P1B under conditions of increasing adenine; error bars are 95% confidence 
intervals. 
 

[Adenine] (μM) F(P1A) 

(%) 

F(P1B) 

(%) 

0.05 84.9±0.1 15.1±0.1 

0.30 91.6±0.1 8.4±0.1 

1.00 84.1±0.1 15.9±0.1 

2.50 87.9±0.1 12.1±0.1 

10.0 92.3±0.1 7.7±0.1 

50.0 78.1±0.1 21.9±0.1 

Table C 8. Fractional occupancy of P1A or P1B for the G21C pbuE adenine-sensing 
aptamer under conditions of increasing adenine; error bars are 95% confidence intervals. 
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[Adenine] 

(μM) 

k21 (s
-1) k12 (s

-1) 

0 33±6 16±4 

0.03 77±4 134±4 

0.15 49±2 250±2 

0.30 79±2 351±2 

0.50 95±6 374±6 

1.00 134±2 400±2 

3.00 134±4 420±4 

Table C 9. Average rate constants for the G3C pbuE adenine-sensing aptamer under 
conditions of increasing adenine; error bars are 95% confidence intervals. 
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Appendix D Additional information for Chapter 4 

 

Stem-loop k43 (s
-1) k34 (s

-1) k32 (s
-1) k23 (s

-1) k21 (s
-1) k12 (s

-1) 

GAAA 40±3 10±1 20±1 48±1 65±1 15±1 

GCAA 118±8 15±1 200±4 15±0.3 7.5±0.2 108±2 

UACG 25±1 7.5±0.2 110±1 875±7 90±2 1543±20 

UUCG 1040±11 45±1 218±2 80±1 40±1 43±1 

UUUU 1250±20 20±1 240±4 43±1 325±2 122±1 

Table D. 1: Average rate constants for the stem-loop constructs tested in the absence of 
competitor DNA; error bars are 95% confidence intervals. 
 


