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ABSTRACT

Distributionally Robust Optimization and its Applications in Machine

Learning

Yang Kang

The goal of Distributionally Robust Optimization (DRO) is to minimize the cost

of running a stochastic system, under the assumption that an adversary can replace

the underlying baseline stochastic model by another model within a family known

as the distributional uncertainty region. This dissertation focuses on a class of DRO

problems which are data-driven, which generally speaking means that the baseline

stochastic model corresponds to the empirical distribution of a given sample.

One of the main contributions of this dissertation is to show that the class of

data-driven DRO problems that we study unify many successful machine learning

algorithms, including square root Lasso, support vector machines, and generalized

logistic regression, among others. A key distinctive feature of the class of DRO

problems that we consider here is that our distributional uncertainty region is based

on optimal transport costs. In contrast, most of the DRO formulations that exist

to date take advantage of a likelihood based formulation (such as Kullback-Leibler

divergence, among others). Optimal transport costs include as a special case the

so-called Wasserstein distance, which is popular in various statistical applications.

The use of optimal transport costs is advantageous relative to the use of divergence-

based formulations because the region of distributional uncertainty contains distribu-

tions which explore samples outside of the support of the empirical measure, therefore

explaining why many machine learning algorithms have the ability to improve gen-

eralization. Moreover, the DRO representations that we use to unify the previously

mentioned machine learning algorithms, provide a clear interpretation of the so-called



regularization parameter, which is known to play a crucial role in controlling gener-

alization error. As we establish, the regularization parameter corresponds exactly to

the size of the distributional uncertainty region.

Another contribution of this dissertation is the development of statistical method-

ology to study data-driven DRO formulations based on optimal transport costs. Using

this theory, for example, we provide a sharp characterization of the optimal selection

of regularization parameters in machine learning settings such as square-root Lasso

and regularized logistic regression.

Our statistical methodology relies on the construction of a key object which we

call the robust Wasserstein profile function (RWP function). The RWP function

similar in spirit to the empirical likelihood profile function in the context of empirical

likelihood (EL). But the asymptotic analysis of the RWP function is different because

of a certain lack of smoothness which arises in a suitable Lagrangian formulation.

Optimal transport costs have many advantages in terms of statistical modeling.

For example, we show how to define a class of novel semi-supervised learning esti-

mators which are natural companions of the standard supervised counterparts (such

as square root Lasso, support vector machines, and logistic regression). We also

show how to define the distributional uncertainty region in a purely data-driven way.

Precisely, the optimal transport formulation allows us to inform the shape of the dis-

tributional uncertainty, not only its center (which given by the empirical distribution).

This shape is informed by establishing connections to the metric learning literature.

We develop a class of metric learning algorithms which are based on robust optimiza-

tion. We use the robust-optimization-based metric learning algorithms to inform the

distributional uncertainty region in our data-driven DRO problem. This means that

we endow the adversary with additional which force him to spend effort on regions

of importance to further improve generalization properties of machine learning algo-



rithms.

In summary, we explain how the use of optimal transport costs allow construct-

ing what we call double-robust statistical procedures. We test all of the procedures

proposed in this paper in various data sets, showing significant improvement in gen-

eralization ability over a wide range of state-of-the-art procedures.

Finally, we also discuss a class of stochastic optimization algorithms of indepen-

dent interest which are particularly useful to solve DRO problems, especially those

which arise when the distributional uncertainty region is based on optimal transport

costs.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Distributionally Robust Optimization (DRO) refers to a class of optimization prob-

lems in which the objective is to minimize the cost of running a stochastic system,

under the assumption that an adversary can replace the underlying baseline stochas-

tic model by another model within a family known as the distributional uncertainty

region. More specifically, let l (w, β) be a realized cost when a decision β is taken and

some (stochastic outcome w) occurs. Consider a stochastic optimization problem of

the form

min
β

EP∗ [l (W,β)] , (1.1)

where W ∼ P∗ (the symbol ∼ reads “follows the distribution P ”) and EP∗ is used

to denote the expectation with respect to (w.r.t.) the probability measure P∗. The

DRO formulation for Equation (1.1) is

min
β

max
P∈U

EP [l (W,β)] , (1.2)

where we denote U as the distributional uncertainty set of this DRO problem (which

is composed of probability models which govern the distribution ofW ). The intuition
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is that P∗ is not fully known and therefore it makes sense to choose β taking into

account such ambiguity in our knowledge of P∗. DRO has been actively studied in

past decades, see for example Scarf et al. [1958]; Ben-Tal and Nemirovski [1998];

Shapiro and Kleywegt [2002]; Iyengar [2005]; Calafiore and Ghaoui [2006]; Erdoğan

and Iyengar [2006]; Delage and Ye [2010]; Goh and Sim [2010]; Bertsimas et al. [2010];

Ben-Tal et al. [2010]; Becker [2011]; Dupačová and Kopa [2012]; Ben-Tal et al. [2013];

Wiesemann et al. [2014]; Bertsimas et al. [2013]; Wang et al. [2016b]; Peyré et al.

[2016]; Lam and Zhou [2017], and has found applications in areas such as finance and

risk management (see in Calafiore [2007]; Lam and Zhou [2015]; Hall et al. [2015];

Glasserman and Yang [2016]), and machine learning (see for example Ruckdeschel

[2010]; Zhu and Fukushima [2009]; Zymler [2010]; Shafieezadeh-Abadeh et al. [2015];

Blanchet et al. [2016b]; Blanchet and Kang [2017b,a]), among others.

The goal of this dissertation is to develop a comprehensive statistical methodology

for data-driven DRO formulations such as (1.2). By data-driven DRO we understand

that U is informed by empirical samples Dn = {Wi}ni=1 of the underlying model P∗

(which is unknown). A natural way to incorporate this information is to parameterize

the “center” of U using the empirical measure Pn = n−1
∑n

i=1 δ{Wi} (dw). Moreover,

we shall introduce a notion of discrepancy between any two probability measures P

and Q and we will denote such discrepancy by Dc (P,Q). Using this notation, we

then let

U = U δ(Pn) = {P : Dc (P, Pn) ≤ δ} .

In pursuit of the stated goal, this dissertation sets as its objective to answer the

following questions:

A) How to choose the discrepancy measure Dc and what are the advantages of

our choice?
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B) How to choose the size of the uncertainty region, δ?

C) Is there a way to inform the shape of the uncertainty region U in a data-driven

way (not only through its center)?

D) Does the method generate new statistical insights?

E)What are the computational challenges that formulations such as (1.2) exposes,

and how to address them?

F) Finally, what type of future extensions can be envisioned by this new method-

ology?

Throughout the rest of this Introduction, we provide a summary which explains

how these questions are addressed in this dissertation and also we provide forward

references to the chapters in which our discussion about these questions is elaborated.

We will introduce the optimal transport cost and briefly discuss the reason for se-

lecting the optimal transport in Section 1.1, this addresses the point A) and partially

point C). In Section 1.2, we address B), there we discuss the role of uncertainty

set size δ via making connection to regularization parameters. Then we introduce

an optimality criterion, rooted in statistical principles, for choosing δ. In order to

optimally evaluate δ, we introduce two classes of inference procedures, which we call

RWPI (Robust Wasserstein Profile Inference) and SoS (Sample-out-of-Sample) infer-

ence. In Section 1.3, we explore the flexibility of choosing optimal transport costs.

We discuss by a judicious choice of such optimal transport cost, we can generate novel

learning methods; for example semi-supervised learning. This discussion in Section

1.3 addresses the question D) and E). We discuss briefly the challenges and intro-

duce our algorithm to solve data-driven DRO problems directly in Section 1.4, which

addresses E). We discuss the potential future applications of our developments, for

example, in multi-task learning in Section 1.5; this addresses point F).
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1.1 How to choose the discrepancy and why?

Most of the DRO formulations that exist to date take advantage of likelihood based

constructions, such as φ−divergence-based discrepancy measures, Calafiore [2007];

Ben-Tal et al. [2010, 2013]; Hu and Hong [2013]; Klabjan et al. [2013], which take the

form

D (P,Q) = EQ [φ (dP (X)/dQ(X))] ,

for a strictly convex function satisfying φ (1) = 0. For example, if you take φ(·) =

− log (·), this is known as Kullback-Leibler divergence. For our data-driven DRO

formulation, U is centered the empirical measure, i.e. Q = Pn. The definition of

φ−divergence discrepancy requires P to be absolute continuous w.r.t. Pn. In simple

words, the support of P must be a subset of the support of Pn. This constrain on

the support of the elements inside the uncertainty region U can potentially diminish

the power of the DRO formulation, specially in statistical applications in which it is

important to enhance out-of-sample performance.

In this dissertation we advocate the use of optimal transport based discrepan-

cies. We would show via some examples that our choice of optimal transport cost as

discrepancy recovers some popular algorithms in machine learning which have been

studied and whose out-of-sample performance has been widely tested empirically.

However, before we discuss such examples, let us introduce the concept of optimal

transport cost or optimal transport discrepancy.

Introducing Optimal Transport Costs

An optimal transportation cost is also known as an earth moving distance in the

image processing literature (see in Rubner et al. [1998, 2000]; Rubner and Tomasi

[2001]; Wang et al. [2016a] ). Intuitively speaking, as its name suggests, the optimal

transport cost Dc(P,Q) is measuring the cheapest way of rearranging (i.e. transport-
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ing the mass of ) distribution P into the distribution Q, where the cost for moving a

unit from location u to w is defined as c(u,w).

Normally, we assume the cost function c : Rd+1 × Rd+1 → [0,∞] is lower semi-

continuous and we assume c(u,w) = 0 if and only if u = w. Given two probability

distributions P (·) and Q(·), with supports SP ⊆ Rd+1 and SQ ⊆ Rd+1, respectively,

one can define the optimal transport discrepancy (or optimal transport cost) between

P and Q, denoted by Dc (P,Q), as

Dc (P,Q) = min
π

{
Eπ [c(U,W )] : π ∈ P

(
Rd+1 × Rd+1

)
, πU = P, πW = Q

}
. (1.3)

We denote P
(
Rd+1 × Rd+1

)
to be set of joint probability measures π supported on a

subset of Rd+1 × Rd+1, and πU and πW denote the marginals of U and W under π,

respectively.

In addition to what we stated for the cost function above, if c (·) is symmetric,

(i.e. c(u,w) = c(w, u)) and there exist % ≥ 1 such that the triangle inequality holds

for c1/% (·), i.e.

c1/% (u,w) ≤ c1/% (u, v) + c1/% (v, w) ,

for all u,w, v ∈ Rd+1, it can be easily verified that Dc (P,Q)1/% is a metric for prob-

ability measures supported on Rd+1; this corresponds to the Wasserstein metric of

order % (see Villani [2003, 2008] for basic properties of optimal transport costs and

other metric properties).

For example, if c (u,w) = ‖u− w‖2
2, where ‖·‖2 is the Euclidean distance in Rm,

then ρ = 2 yields that c (u,w)1/2 = ‖u− w‖2 is symmetric, non-negative, lower semi-
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continuous and it satisfies the triangle inequality. In that case,

D1/2
c (P,Q) = inf

{√
Eπ ‖U −W‖2

2 : π ∈ P (Rm × Rm) , πU = P, πW = Q

}

coincides with the Wasserstein distance of order 2.

Wasserstein distances metricize weak convergence of probability measures under

suitable moment assumptions, and have received immense attention in probability

theory (see Rachev and Rüschendorf [1998a,b]; Villani [2008] for a collection of classi-

cal applications). More recently, optimal transport metrics and Wasserstein distances

are being actively investigated for its use in various machine learning applications as

well (see Seguy and Cuturi [2015]; Peyré et al. [2016]; Rolet et al. [2016]; Solomon et

al. [2015]; Frogner et al. [2015]; Srivastava et al. [2015] and references therein for a

growing list of new applications).

We can observe that optimal transport discrepancies can be obtained via solving

a linear programming problem. For example, let us consider a special case, where

Q = Pn and we restrict the support of P , i.e. S(P ), to be finite, then, we have that

Dc (P, Pn) is obtained by computing

min
π

∑
u∈SP

∑
w∈Dn

c (u,w) π (u,w) : (1.4)

s.t.
∑
u∈SP

π (u,w) =
1

n
∀ w ∈ Dn

∑
w∈DN

π (u,w) = P ({u}) ∀ u ∈ XN ,

π (u,w) ≥ 0 ∀ (u,w) ∈ SP ×Dn

For the general case (i.e. the case in which U andW are supported in arbitrary subsets

of Rd+1), a completely analogous linear program (LP), albeit an infinite dimensional
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one, can be defined. Such an infinite dimensional LP has been extensively studied in

great generality in the context of Optimal Transport under the name of Kantorovich’s

problem (see in Villani [2008]). Requiring c (·) to be lower semi-continuous guaran-

tees the existence of an optimal solution to Kantorovich’s problem. Requiring that

c (u,w) = 0 if and only if u = w implies that Dd (P,Q) = 0 if and only if P = Q.

In order to motivate the choice of optimal transport cost as a reasonable selection

for data-driven DRO. We now explain discuss how, by choosing c (·) judiciously we can

recover some well-known statistical learning methods which improving generalization

(i.e. out-of-sample) performance.

Let consider a linear regression mode of the form

Y = βT∗ X + e,

where β∗ is the true regression parameter and e is the independent mean zero random

error. We assume the predictors are X ∈ Rd and Y ∈ R is the response. Moreover, we

have a collection of data samples Dn = {(Xi, Yi)}ni=1. A standard statistical approach

is to use least squares, which consists in consider the problem

min
β

EPn
[(
Y − βTX

)2
]

= min
β
n−1

n∑
i=1

(
Yi − βTXi

)2
,

where

Pn (dx, dy) = n−1

n∑
i=1

δ{(Xi,Yi)} (dx, dy) .

However, as it has been argued in most of the statistical learning textbooks (for

example Friedman et al. [2001]; Bishop [2006]; James et al. [2013]; Goodfellow et

al. [2016]), when the sample size is relative small relative to the dimension of the

problem, direct use of least squares estimation will lead to overfitting and therefore
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to poor generalization properties.

In order to enhance the generalization properties of the standard least squares es-

timator, let us consider a DRO formulation based on optimal transport discrepancies.

We consider the cost function

c
(
(x, y), (u, v)

)
=


‖x− u‖2

∞ , if y = v

∞, otherwise.
. (1.5)

This cost function c (·) assigns infinite cost when y 6= v, the minimization in Equa-

tion (1.3) is effectively over the joint distributions that do not alter the marginal

distributions of Y . As a consequence, the resulting neighborhood set Uδ(Pn) =

{P : Dc (P, Pn) ≤ δ} admits distributional ambiguities only with respect to the pre-

dictors X. Intuitively, we are imposing a certain consistency property in which we

predictors which are close should share the same response. Not allowing uncertainty

in Y may be more sensible in cases in which Y is a categorical variable.

By taking the cost function as in Equation (1.5), we can show that the data-

driven DRO formulation for linear regression is equivalent to the square-root Lasso

(SR-Lasso) estimator,

min
β

max
P :Dc(P,Pn)≤δ

√
E
[
(Y −XTβ)2]

= min
β


√√√√ 1

n

n∑
i=1

(Yi −XT
i β)

2
+
√
δ ‖β‖1

 .

SR-Lasso was introduced by Belloni et al. [2011] as a generalization of the Lasso

method (see Tibshirani [1996]). It turns out that SR-Lasso has the benefit that the

optimal choice of regularization parameter is free of the magnitude of the variance

of the random error. This is particularly appearning in high dimension settings in
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which the estimation of the error variance magnitude may be noisy.

A similar data-driven DRO representation could also be made for regularized

logistic regression and support vector machine (SVM), among others, as we shall

discuss in Chapter 2 Section 2.3. We also discuss futher generalizations, for example,

we will establish explicit connections to Group Lasso and adaptive Lasso estimators.

These connections will be discussed in Chapter 5 and Chapter 6.

These regularized estimators have been wildly studied and they have been shown

empirically to be highly effective in improving generalization performanc. We believe

that the explicit connection to a wide range of successful regularization estimators

studied in this dissertation makes a strong case for the use of data-driven DRO with

optimal transport costs.

1.2 How to choose the uncertainty region size δ?

Let us consider the data-driven DRO for general statistical learning model with loss

function l (·), cost function c (·) and W = (X, Y ) for Equation (1.2), which is

min
β

max
Dc(P,Pn)≤δ

EP [l (X, Y ; β)] . (1.6)

The distributional uncertainty set, Uδ(Pn) = {P : Dc(P, Pn) ≤ δ}, represents the class

of models that are, in some sense, plausible variations of Pn. For every selection P in

Uδ(Pn), there is an optimal choice β = β (P ) which minimizes the risk EP [l(X, Y ; β)].

We shall define Λn (δ) = {β (P ) : P ∈ Uδ (Pn)} to be the set of plausible selections of

the parameter β.

Now, for the definition of Λn (δ) to be sensible, we must have that the estimator

obtained from solving (1.6) is plausible. This follows from the following result, which
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is established with the aid of a min-max theorem in Chapter 2,

min
β∈Rd

max
P : Dc(P,Pn)≤δ

EP [l(X, Y ; β)] = min
β∈Λn(δ)

max
P : Dc(P,Pn)≤δ

EP [l(X, Y ; β)] .

Then, we will say that β∗ is plausible with (1−α) confidence, or simply, (1− α)-

plausible if δ is large enough so that β∗ ∈ Λn (δ) with probability at least 1−α. This

definition leads us to the optimality criterion that we shall consider.

Our optimal selection criterion for δ is formulated as follows: Choose

δ > 0 as small as possible in order to guarantee that β∗ is plausible with (1 − α)

confidence.

As an additional desirable property, we shall verify that if β∗ is (1− α)-plausible,

then Λn (δ) is a (1− α)-confidence region for β∗.

Let us focus our discussion on linear regression model. In order to formally setup

an optimization problem for the choice of δ > 0, note that for any given P , by convex-

ity, any optimal selection β is characterized by the first order optimality condition,

namely,

EP
[(
Y − βTX

)
X
]

= 0. (1.7)

We then introduce the following object, which is the RWP (Robust Wasserstein Pro-

file) function associated with the estimating equation (1.7),

Rn (β) = inf
{
Dc (P, Pn) : EP

[(
Y − βTX

)
X
]

= 0
}
.

Finally, we claim that the optimal choice of δ is precisely the 1−α quantile, χ1−α,

of Rn (β∗); that is

χ1−α = inf
{
z : P (Rn (β∗) ≤ z) ≥ 1− α

}
.
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To see this note that if δ̃ > χ1−α then indeed β∗ is plausible with probability at least

1 − α, but δ̃ is not minimal. In turn, note that Rn (β) allows to provide an explicit

characterization of Λn (χ1−α),

Λn (χ1−α) = {β : Rn (β) ≤ χ1−α}.

Moreover, we clearly have

P (β∗ ∈ Λn (χ1−α)) = P (Rn (β∗) ≤ χ1−α) = 1− α,

so Λn (χ1−α) is a (1− α)-confidence region for β∗.

In order to further explain the role of Rn(β∗), let us define Popt(β∗) to be the set

of probability measures, P , supported on a subset of Rd × R for which (1.7) holds

with β = β∗. Formally,

Popt(β∗) :=
{
P : EP

[(
Y − βT∗ X

)
X
]

= 0
}
.

In simple words, Popt(β∗) is the set of probability measures for which β∗ is an optimal

risk minimization parameter. Observe that using this definition we can write

Rn(β∗) = inf{Dc(P, Pn) : P ∈ Popt(β∗)}.

Consequently, the set

{P : Dc(P, Pn) ≤ Rn(β∗)}

denotes the smallest uncertainty region around Pn (in terms of Dc) for which one can

find a distribution P satisfying the optimality condition EP
[
(Y − βT∗ X)X

]
= 0.

In summary, Rn(β∗) denotes the smallest size of uncertainty that makes β∗ plausi-
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ble. If we were to choose a radius of uncertainty smaller than Rn(β∗), then no probabil-

ity measure in the neighborhood will satisfy the optimality condition EP
[
(Y − βT∗ X)X

]
=

0. On the other hand, if δ > Rn(β∗), the set

{
P : EP

[
(Y − βT∗ X)X

]
= 0, Dc

(
P, Pn

)
≤ δ
}

is nonempty. Given the importance of Rn(β∗) in the optimal selection of the regular-

ization parameter λ, it is of interest to analyze its asymptotic properties as n→∞.

This discussion provides an intuitive understanding for how to pick the uncertainty

size δ for Uδ(Pn) optimally using the linear regression example as a motivation. A more

in-depth study of the RWP function is given in Chapter 2 and further applications

to machine learning settings are given in Chapter 5. Further extensions to settings

in which the support of the elements in the distributional uncertainty are restricted

are studied in Chapter 3 and in Chapter 4.

1.3 On shaping U using data and new statistical in-

sights

One of the main advantages of considering an optimal transport discrepancy is that

we have the flexibility to select a cost function which is either informed by our learning

goal or which encodes additional information to improve the generalization perfor-

mance.

For example, suppose that we have collection of data Dn = {(Xi, Yi)}ni=1 and also

assume that we have unlabeled observations (i.e. observations without response Y ),
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which we denote as UN−n = {Xi}Ni=n+1. For simplicity, we consider binary classifica-

tion problem and the response Y ∈ {−1,+1}. Let us further denote the set

EN−n = UN−n × {−1,+1} = {Xi, 1}Ni=n+1 ∪ {Xi,−1}Ni=n+1 ,

in which we replicate each unlabeled data point twice, recognizing that the missing

label could be any of the two available alternatives. We assume that the data must

be labeled either -1 or +1. We then construct the set XN = Dn ∪ EN−n which, in

simple words, is obtained by just combining both the labeled data and the unlabeled

data with all possible labeles which can be assigned. For a standard empirical risk

minimization learning problem of the form,

min
β

EPn [l (X, Y ; β)] ,

we can define the semi-supervised learning DRO via

min
β

max
P∈P(XN ),Dc(Pn,P )≤δ

EP [l (X, Y ; β)] . (1.8)

We will argue that by solving the data-driven DRO problem in Equation (1.8),

we may enhance the generalization error because we are using the unlabeled data to

restrict the support of the members of the distributional uncertainty. The intuition

is that if the predictors lie in a lower dimensional subspace of Rd, then it suffices to

enhance the out-of-sample performance of the estimator only on such lower dimen-

sional space, which in turn might be well described by the unlabeled data set if N is

sufficiently large.

The semi-supervised learning approach that we advocate in Equation (1.8) is not

a robustification method that provide data-driven DRO formulation to any existing
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semi-supervised learning algorithm. We provide a different and novel semi-supervised

learning approach. Our semi-supervised DRO formulation utilizes the flexibility of

the optimal transport discrepancy to encode the unlabeled information into the risk

minimization. Further details will be discussed in Chapter 4.

In addition to restricting the support of the elements in the distributional un-

certainty set, we are able to choose cost function which adapts to our learning goal.

We will show that, by defining a groupwise cost function, we are able to inform the

distributional uncertainty region Uδ(Pn) with the side information for predictors and

build up DRO representation for some popular groupwise shrinkage estimators, for

example, square-root Group Lasso for linear regression and group-Lasso for logistic

regression. The details of the data-driven DRO groupwise regularization estimator

will be discussed in Chapter 5.

The groupwise regularization connection is based on having prior assumptions (or

side-information) on the predictors. If there is no prior information available, we

would like to design the cost function in a fully data-driven approach. We propose a

methodology which learns such a distributional uncertainty neighborhood in a natural

data-driven way. For example, we consider a parametric family of cost functions of the

form c (u,w) = (u− w)T Λ (u− w) for a positive definite Λ. This choice corresponds

to the so-called Mahalanobis distance. We use results from the literature on metric

learning procedures to calibrate Λ in a way that is consistent with the learning task

at hand. This discussion is given in Chapter 6.

Moreover, we also contribute to the metric learning literature by providing a

data-driven robust optimization methodology to calibrate Λ. This additional layer of

robustification, which then is used when solving our data-driven DRO formulation,

justifies the name doubly robust data-driven DRO (DD-R-DRO). The DD-R-DRO

methodology is also discussed in Chapter 6.
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1.4 How to solve data-driven DRO problem?

For some of the data-driven DRO formulations, the dual formulation is not as easily

accessible as in the case of regularized estimators as square-root Lasso, regularized

logistic regression, and SVM. As we shall discussed in Chapter 4 and Chapter 6, the

data-driven DRO with loss function l (X, Y, β) and cost function c (·), is equivalent

to solving

min
β

max
P :Dc(P,Pn)≤δ

EP [l (X, Y, β)]

= min
β

min
λ≥0

1

n

n∑
i

max
u
{l (u, v, β)− λc ((Xi, Yi), (u, v)) + λδ} ,

where the inner-most optimization (involving maxu) is taken for each sample point

Xi, Yi.

We provide a smoothing approximation technique to remove the inner maximiza-

tion over u and propose an unbiased gradient estimation for the stochastic gradient

algorithms to the data-driven DRO problem directly. The details of the algorithms

and the smoothing approximation bound are discussed in Chapter 4 and Chapter

6. The proposed computational algorithm makes the data-driven DRO formulation

applicable rather generally (beyond the setting of standard regularized estimators for

which we obtain the representations discussed earlier). The optimization algorithm

that we shall discuss is based on stochastic gradient descent, which is scalable to

massive data sets.
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1.5 Further Discussion

For the data-driven DRO formulation introduced in Section 1.1 and Section 1.3, we

note that our data-driven DRO formulations can be applied to more general machine

learning algorithms. Once the loss function and its gradient are accessible, we are

able to apply our stochastic gradient based algorithm discussed in Chapter 6, to solve

the data-driven DRO problem directly.

This is to say, even for a complex model, once the cost function is chosen properly,

we can apply data-driven DRO to address the overfitting problem and to improve

generalization performance. For example, as we shall discuss in Chapter 7, Section

7.1, we use multi-task training as an example to show that data-driven DRO might

help in building novel learning methods to improve the generalization performance.

In Chapter 7, Section 7.2, we include a discussion on difference and connections

between robustness in classical statistics and robustness in our DRO formulation.

Finally, we will close the dissertation by discussing further potential research avenues,

in Chapter 7, Section 7.3,
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Chapter 2

Robust Wasserstein Profile Inference

(RWPI)

In this chapter, we introduce RWPI (Robust Wasserstein-distance Profile-based In-

ference - pronounced similar to Rupee. The acronym RWPI is chosen to sound just

as “RUPI”, where “u” as in put and “i” as in bit. In turn, RUPI means beautiful in

Sanskrit.), a novel class of statistical tools which exploits connections between Em-

pirical Likelihood, Distributionally Robust Optimization and the Theory of Optimal

Transport (via the use of Wasserstein distances). A key element of RWPI is the

so-called Robust Wasserstein Profile function, whose asymptotic properties we study

in this chapter. We illustrate the use of RWPI in the context of machine learning

algorithms, such as the square-root Lasso (Least Absolute Shrinkage and Selection)

and regularized logistic regression, among others. For these algorithms, we show how

to optimally select the regularization parameter without the use of cross validation.

The use of RWPI for such optimal selection requires a suitable distributionally robust

representation for these machine learning algorithms, which is also novel and of in-

dependent interest. Numerical experiments are also given to validate our theoretical
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findings.

2.1 Introduction

The goal of this chapter is to introduce and investigate a novel inference methodology

which we call RWPI (Robust Wasserstein-distance Profile-based Inference). RWPI

combines ideas from three different areas: Empirical Likelihood (EL), Distributionally

Robust Optimization, and the Theory of Optimal Transport. While RWPI can be

applied to a wide range of inference problems, in this chapter we use several well

known algorithms in machine learning to illustrate the use and implications of this

methodology.

We will explain, by means of several examples of interest, how RWPI can be used

to optimally choose the regularization parameter in machine learning applications

without the need of cross validation. The examples of interest that we study in

this chapter include square-root Lasso (Least Absolute Shrinkage and Selection) and

regularized logistic regression, among others. In order to explain RWPI let us walk

through a simple application in a familiar context, namely, that of linear regression.

2.1.1 RWPI for optimal regularization of square-root Lasso

Consider a given a set of training data Dn = {(Xi, Yi)}ni=1. The input Xi ∈ Rd is a

vector of d predictor variables, and Yi ∈ R is the response variable. It is postulated

that

Yi = βT∗ Xi + ei,

for some β∗ ∈ Rd and errors {e1, ..., en}. Under suitable statistical assumptions (such

as independence of the samples in the training data) one may be interested in estimat-
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ing β∗. Underlying there is a general loss function, l (x, y; β), which we shall take for

simplicity in this discussion to be the quadratic loss, namely, l(x, y; β) =
(
y − βTx

)2.

Over the last two decades, various regularized estimators have been introduced

and studied. Many of them have gained substantial popularity because of their good

empirical performance and insightful theoretical properties, (see, for example, Tib-

shirani [1996] for an early reference and Friedman et al. [2001] for a discussion on

regularized estimators). One such regularized estimator, implemented, for example

in the “flare" package, see Li et al. [2015], is the so-called square-root Lasso estimator;

which is obtained by solving the following convex optimization problem in β,

min
β∈Rd

{√
EPn [l (X, Y ; β)] + λ ‖β‖1

}
= min

β∈Rd


√√√√ 1

n

n∑
i=1

l (Xi, Yi; β) + λ ‖β‖1

 , (2.1)

where ‖β‖p denotes the p-th norm in the Euclidean space. The parameter λ, com-

monly referred to as the regularization parameter, is crucial for the performance of

the algorithm and it is often chosen using cross validation.

2.1.1.1 Distributionally robust representation of square-root Lasso

We shall illustrate how to choose λ, satisfying a natural optimality criterion, as the

quantile of a certain object which we call the Robust Wasserstein Profile (RWP) func-

tion evaluated at β∗. This will motivate a systematic study of the RWP function as

the sample size, n, increases. However, before we define the associated RWP func-

tion, we first introduce a class of representations which are of independent interest

and which are necessary to motivate the definition of the RWP function for choosing

λ.
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One of our contributions in this chapter is a representation of (2.1) in terms of

a Distributionally Robust Optimization formulation (see Section 2.3). In particular,

we construct a discrepancy measure, Dc (P,Q), based on a suitable Wasserstein-type

distance, between two probability measures P and Q satisfying that

min
β∈Rd

{√
EPn [l (X, Y ; β)] + λ ‖β‖1

}2

(2.2)

= min
β∈Rd

max
P : Dc(P,Pn)≤δ

EP [l(X, Y ; β)] ,

where δ = λ1/2. Observe that the regularization parameter is fully determined by

the size of the uncertainty, δ, in the distributionally robust formulation on the right

hand side of (2.2).

The set Uδ(Pn) = {P : Dc(P, Pn) ≤ δ} is called the uncertainty set in the language

of distributionally robust optimization, and it represents the class of models that are,

in some sense, plausible variations of Pn. The estimator obtained by solving Equation

(2.2) is referred as distributionally robust regression estimator, and we remark that

this notion of robustness is different from the standard statistical robustness which

primarily addresses data contamination with outliers (see Huber [1964]).

For every selection P in Uδ(Pn), there is an optimal choice β = β (P ) which

minimizes the risk EP [l(X, Y ; β)]. We shall define Λn (δ) = {β (P ) : P ∈ Uδ (Pn)} to

be the set of plausible selections of the parameter β.

Now, for the definition of Λn (δ) to be sensible, we must have that the estimator

obtained from the left hand side of (2.2) is plausible. This follows from the following

result, which is established with the aid of a min-max theorem in Section 2.4,

min
β∈Rd

max
P : Dc(P,Pn)≤δ

EP [l(X, Y ; β)] = min
β∈Λn(δ)

max
P : Dc(P,Pn)≤δ

EP [l(X, Y ; β)] .
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Then, we will say that β∗ is plausible with (1−α) confidence, or simply, (1− α)-

plausible if δ is large enough so that β∗ ∈ Λn (δ) with probability at least 1−α. This

definition leads us to the optimality criterion that we shall consider.

Our optimal selection criterion for δ is formulated as follows: Choose

δ > 0 as small as possible in order to guarantee that β∗ is plausible with (1 − α)

confidence.

As an additional desirable property, we shall verify that if β∗ is (1− α)-plausible,

then Λn (δ) is a (1−α)-confidence region for β∗. A computationally efficient procedure

for evaluating Λn (δ) will be studied in future work. Our focus in this chapter is on

the optimal selection of δ.

2.1.1.2 The associated Robust Wasserstein Profile Function

In order to formally setup an optimization problem for the choice of δ > 0, note that

for any given P , by convexity, any optimal selection β is characterized by the first

order optimality condition, namely,

EP
[(
Y − βTX

)
X
]

= 0. (2.3)

We then introduce the following object, which is the RWP function associated with

the estimating equation (2.3),

Rn (β) = inf
{
Dc (P, Pn) : EP

[(
Y − βTX

)
X
]

= 0
}
. (2.4)

Finally, we claim that the optimal choice of δ is precisely the 1−α quantile, χ1−α,
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of Rn (β∗); that is

χ1−α = inf
{
z : P (Rn (β∗) ≤ z) ≥ 1− α

}
.

To see this note that if δ̃ > χ1−α then indeed β∗ is plausible with probability at least

1 − α, but δ̃ is not minimal. In turn, note that Rn (β) allows to provide an explicit

characterization of Λn (χ1−α),

Λn (χ1−α) = {β : Rn (β) ≤ χ1−α}.

Moreover, we clearly have

P (β∗ ∈ Λn (χ1−α)) = P (Rn (β∗) ≤ χ1−α) = 1− α,

so Λn (χ1−α) is a (1− α)-confidence region for β∗.

In order to further explain the role of Rn(β∗), let us define Popt(β∗) to be the set

of probability measures, P , supported on a subset of Rd × R for which (2.3) holds

with β = β∗. Formally,

Popt(β∗) :=
{
P : EP

[(
Y − βT∗ X

)
X
]

= 0
}
.

In simple words, Popt(β∗) is the set of probability measures for which β∗ is an optimal

risk minimization parameter. Observe that using this definition we can write

Rn(β∗) = inf{Dc(P, Pn) : P ∈ Popt(β∗)}.
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Consequently, the set

{P : Dc(P, Pn) ≤ Rn(β∗)}

denotes the smallest uncertainty region around Pn (in terms of Dc) for which one can

find a distribution P satisfying the optimality condition EP
[
(Y − βT∗ X)X

]
= 0, see

Figure 2.1 for a pictorial representation of Popt(β∗) and Rn(β∗).

Figure 2.1: Illustration of RWP function evaluated at β∗

In summary, Rn(β∗) denotes the smallest size of uncertainty that makes β∗ plausi-

ble. If we were to choose a radius of uncertainty smaller than Rn(β∗), then no probabil-

ity measure in the neighborhood will satisfy the optimality condition EP
[
(Y − βT∗ X)X

]
=

0. On the other hand, if δ > Rn(β∗), the set

{
P : EP

[
(Y − βT∗ X)

]
= 0, Dc

(
P, Pn

)
≤ δ
}

is nonempty. Given the importance of Rn(β∗) in the optimal selection of the regular-

ization parameter λ, it is of interest to analyze its asymptotic properties as n→∞.

It is important to note, however, that the estimating equations given in (2.3) are

just one of potentially many ways in which β∗ can be characterized. In the case
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of Gaussian input there is an (well known) intimate connection between (2.3) and

maximum likelihood estimation. In general it appears sensible, at least from the

standpoint of philosophical consistency to connect the choice of estimating equation

with the loss function l (x, y; β) used in the Distributionally Robust Representation

(2.2).

2.1.2 A broad perspective of the contributions of this chapter

The previous discussion in the context of linear regression highlights two key ideas:

a) the RWP function as a key object of analysis, and b) the role of distributionally

robust representation of regularized estimators.

The RWP function can be applied much more broadly than in the context of

regularized estimators. This chapter is written with the goal of studying the RWP

function for estimating equations generally and systematically. As an application, we

showcase the study of the RWP function in a context of great importance, namely, the

optimal selection of regularization parameters in several machine learning algorithms.

Broadly speaking, RWPI is a statistical tool which consists in building a suitable

RWP function in order to estimate a parameter of interest. From a philosophical

standpoint, RWPI borrows heavily from Empirical Likelihood (EL), introduced in the

seminal work of Owen [1988, 1990]. There are important methodological differences,

however, as we shall discuss in the sequel. In the last three decades, there have been a

great deal of successful applications of Empirical Likelihood for inference [Owen, 1991;

Qin and Lawless, 1994; Bravo, 2004; Hjort et al., 2009; Zhou, 2015]. In principle, all

of those applications can be revisited using the RWP function and its ramifications.

Therefore, we spend the first part of the chapter, namely Section 2, discussing general

properties of the RWP function.
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The application of RWPI for the optimal selection of regularization parameters

in various machine learning settings is given in Section 2.4. Once a suitable RWP

function is obtained, the results in Section 2.4 are obtained directly from applications

of our results in Section 2.2. In order to obtain the correct RWP function formulation

for each of the machine learning settings of interest, however, we will need to derive

a suitable distributionally robust representations which, analogous to those discussed

in the square-root Lasso setting. These representations are given in Section 2.3 of

this chapter.

We now provide a more precise description of our contributions:

A) We provide general limit theorems for the asymptotic distribution (as the

sample size increases) of the RWP function defined for general estimating equations,

not only those arising from linear regression problems. Hence, providing tools to

apply RWPI in substantial generality (see the results in Section 2.2.4).

B) We explain how, by judiciously choosing Dc(·), we can define a family of

regularized regression estimators (See Section 2.3). In particular, we will show how

square-root Lasso (see and Theorem 2.2), and regularized logistic regression (see

Theorem 2.3) arise as a particular case of a RWPI formulation.

C) The results in B) allow to obtain the appropriate RWP function to select an

optimal regularization parameter. We then illustrate how to analyze the distribution

of Rn(β∗) using our results form A) (see Section 2.4).

D) We analyze our regularization selection in the high dimensional setting for

square-root Lasso. Under standard regularity conditions, we show (see Theorem 2.6)
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that the regularization parameter λ might be chosen so that,

λ =
π

π − 2

Φ−1 (1− α/2d)√
n

,

where Φ−1(·) is the inverse cumulative distribution function of standard normal dis-

tribution. The behavior of λ as a function of n and d is consistent with regularization

selections studied in the literature motivated by different considerations.

E) We analyze the empirical performance of RWPI for the selection of the op-

timal regularization parameter in the context of square-root Lasso. This is done in

Appendix 2.D. We apply our analysis both to simulated and real data and compare

against the performance of cross validation. We conclude that our approach to-

wards regularization parameter selection offers comparable (not worst) performance,

although at a much lesser computational cost than cross validation.

We now provide a discussion on topics which are related to RWPI.

2.1.3 Connections to related inference literature

Let us first discuss the connections between RWPI and EL. In EL one builds a Profile

Likelihood for an estimating equation. For instance, in the context of EL applied

to estimating β satisfying (2.3), one would build a Profile Likelihood Function in

which the optimization object is only defined as the likelihood (or the log-likelihood)

between a given distribution P with respect to Pn. Therefore, the analogue of the

uncertainty set {P : Dc(P, Pn) ≤ δ}, in the context of EL, will typically contain

distributions whose support coincides with that of Pn. In contrast, the definition of

the RWP function does not require the likelihood between an alternative plausible

model P , and the empirical distribution, Pn, to exist. Owing to this flexibility, for
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example, we are able to establish the connection between regularization estimators

and a suitable profile function.

There are other potential benefits of using a profile function which does not restrict

the support of alternative plausible models. For example, it has been observed in the

literature that in some settings EL might exhibit low coverage Owen [2001]; Chen

and Hall [1993]; Wu [2004]. It is not the goal of this chapter to examine the coverage

properties of RWPI systematically, but it is conceivable that relaxing the support

of alternative plausible models, as RWPI does, can translate into desirable coverage

properties.

From a technical standpoint, the definition of the Profile Function in EL gives rise

to a finite dimensional optimization problem. Moreover, there is a substantial amount

of smoothness in the optimization problems defining the EL Profile Function. This

degree of smoothness can be leveraged in order to obtain the asymptotic distribution

of the Profile Function as the sample size increases. In contrast, the optimization

problem underlying the definition of RWP function in RWPI is an infinite dimen-

sional linear program. Therefore, the mathematical techniques required to analyze

the associated RWP function are different (more involved) than the ones which are

commonly used in the EL setting.

A significant advantage of EL, however, is that the limiting distribution of the

associated Profile Function is typically chi-squared. Moreover, such distribution is

self-normalized in the sense that no parameters need to be estimated from the data.

Unfortunately, this is typically not the case in the case of RWPI. In many settings,

however, the parameters of the limiting distribution can be easily estimated from the

data itself.

Another set of tools, strongly related to RWPI, have also been studied recently by

the name of SOS (Sample-Out-of-Sample) inference as we shall discuss in Chapter 3.
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In this setting, also an RWP function is built, but the support of alternative plausible

models is assumed to be finite (but not necessarily equal to that of Pn). Instead,

the support of alternative plausible models is assumed to be generated not only by

the available data, but additional samples coming from independent distributions

(defined by the user). The mathematical results obtained for the RWP function in

the context of SOS are different from those obtained in this chapter. For example, in

the SOS setting, the rates of convergence are dimension-dependent, which is not the

case in RWPI.

2.1.4 Some connections to Distributionally Robust Optimiza-

tion and Optimal Transport

Connection between robust optimization and regularization procedures such as Lasso

and Support Vector Machines have been studied in the literature, see Xu et al.

[2009a,b]. The methods proposed here differ subtly: While the papers Xu et al.

[2009a,b] add deterministic perturbations of a certain size to the predictor vectors X

to quantify uncertainty, the Distributionally Robust Representations that we derive

measure perturbations in terms of deviations from the empirical distribution. While

this change may appear cosmetic, it brings a significant advantage: measuring de-

viations from empirical distribution, in turn, lets us derive suitable limit laws (or)

probabilistic inequalities that can be used to choose the size of uncertainty, δ, in the

uncertainty region Uδ(Pn) = {P : Dc(P, Pn) ≤ δ}.

Now, it is intuitively clear that as the number of samples n increase, the deviation

of the empirical distribution from the true distribution decays to zero, as a function

of n, at a specific rate of convergence. To begin with, one can simply use, as a

direct approach to choosing the size of δ, a concentration inequality that measures
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this rate of convergence. Such simple specification of the size of uncertainty, suitably

as a function of n, does not arise naturally in the deterministic robust optimization

approach. For a concentration inequality that measures such deviations in terms

of the Wasserstein distance, we refer to Fournier and Guillin [2015] and references

there in. For an application of these concentration inequalities to choose the size

of uncertainty set in the context of distributionally robust logistic regression, refer

Shafieezadeh-Abadeh et al. [2015]. It is important to note that, despite imposing

severe tail assumptions, these concentration inequalities dictate the size of uncertainty

to decay at the rate O(n−1/d), where d is the number of covariates. Unfortunately,

this prescription scales non-graciously as the dimension d increases. Since most of

the modern learning problems have huge number of covariates, application of such

concentration inequalities with poor rate of decay with dimensions may not be most

suitable for applications.

In contrast to directly using concentration inequalities, the prescription that we

advocate typically has a rate of convergence of order O
(
n−1/2

)
as n → ∞ (for fixed

d). Moreover, as we discuss in the case of Lasso, according to our results corre-

sponding to contribution E), our prescription of the size of uncertainty actually can

be shown (under suitable regularity conditions) to decay at rate O(
√

log d/n) (uni-

formly over d and n), which is in agreement with the findings of compressed sensing

and high-dimensional statistics literature (see Candes and Tao [2007]; Belloni et al.

[2011]; Negahban et al. [2012] and references therein). Interestingly, the regulariza-

tion parameter prescribed by RWPI methodology is automatically obtained without

looking into the data (unlike cross-validation).

Although we have focused our discussion on the context of regularized estimators,

our results are directly applicable to the area of data-driven Distributionally Robust

Optimization whenever the uncertainty sets are defined in terms of a Wasserstein



CHAPTER 2. ROBUST WASSERSTEIN PROFILE INFERENCE (RWPI) 30

distance or, more generally, an optimal transport metric. In particular, consider a

given distributionally robust formulation of the form

min
θ:G(θ)≤0

max
P : Dc(P,Pn)≤δ

EP [H(W, θ)] ,

for a random element W and a convex function H(W, ·) defined over a convex region

{θ : G (θ) ≤ 0} (assuming G : Rd → R convex). Here Pn is the empirical measure

of the sample {W1, ...,Wn}. One can then follow a reasoning parallel to what we

advocate throughout our Lasso discussion.

Argue, by applying the corresponding KKT (Karush-Kuhn-Tucker) conditions, if

possible, that an optimal solution θ∗ to the problem

min
θ:G(θ)≤0

EPtrue [H (W, θ)]

satisfies a system of estimating equations of the form

EPtrue [h (W, θ∗)] = 0, (2.5)

for a suitable h (·) (where Ptrue is the weak limit of the empirical measure Pn as

n → ∞). Then, given a confidence level 1 − α, one should choose δ as the (1 − α)

quantile of the RWP function function

Rn (θ∗) = inf{Dc(P, Pn) : EP [h (W, θ∗)] = 0}.

The results in Section 2 can then be used directly to approximate the (1−α) quantile

of Rn (θ∗). Just as we explain in our discussion of the square-root Lasso example,

the selection of δ is the smallest possible choice for which θ∗ is plausible with (1−α)
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confidence.

2.1.5 Organization of this chapter

The rest of the chapter is organized as follows. Section 2.2 deals with contribution A)

where we first revisit Wasserstein distances, which we discussed in Chapter 1 Section

1.1, and discuss the Robust Wasserstein Profile function as an inference tool in a way

which is parallel to the Profile Likelihood in EL. We derive the asymptotic distribu-

tion of the RWP function for general estimating equations. Section 2.3 corresponds

to contribution B), namely, distributionally robust representations of some popular

machine learning algorithms. Section 2.4 discusses contribution C), namely the use

of results from contributions A) for optimal regularization parameter selection. Our

high-dimensional analysis of the RWP function in the case of square-root Lasso is

also given in Section 2.4. The proofs for the main results along with various technical

lemmas and numerical experiments are given in the Appendix.

2.2 The Robust Wasserstein Profile Function

Given an estimating equation EPn [h(W, θ)] = 0, the objective of this section is to

study the asymptotic behavior of the associated RWP function Rn(θ). To do this,

we first introduce some notation to define optimal transport costs and Wasserstein

distances. Following this, we provide evidence, initially with a simple example, fol-

lowed by results for general estimating equations, that the profile function defined

using Wasserstein distances is tractable.
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2.2.1 Revisit Optimal Transport Costs and Wasserstein Dis-

tances

Let us revisit the definition and properties of optimal transport discrepancy and

Wasserstein Distance in this subsection.

Let c : Rm × Rm → [0,∞] be any lower semi-continuous function such that

c(u,w) = 0 if and only if u = w. Given two probability distributions P (·) and Q(·)

supported on Rm, one can define the optimal transport cost or discrepancy between

P and Q, denoted by Dc(P,Q), as

Dc (P,Q) = inf
{
Eπ [c (U,W )] : π ∈ P (Rm × Rm) , π

U
= P, π

W
= Q

}
. (2.6)

Here, P (Rm × Rm) is the set of joint probability distributions π of (U,W ) supported

on Rm×Rm, and πU and π
W

denote the marginals of U and W under π, respectively.

Throughout this chapter, we shall select Dc for a judiciously chosen cost function

c (·) in formulations such as (2.2). It is useful to allow c (·) to be lower semi-continuous

and potentially be infinite in some region to accommodate some of the applications,

such as regularization in the context of logistic regression, as we shall see in Section

2.3. So, our setting requires discrepancy choices which are slightly more general than

standard Wasserstein distances.

2.2.2 The RWP Function for Estimating Equations and Its

Use as an Inference Tool

The Robust Wasserstein Profile function’s definition is inspired by the notion of the

Profile Likelihood function, introduced in the pioneering work of Art Owen in the

context of EL (see Owen [2001]). We provide the definition of the RWP function for
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estimating θ∗ ∈ Rl, which we assume satisfies

EPtrue [h (W, θ∗)] = 0, (2.7)

for a given random variable W taking values in Rm and an integrable function h :

Rm × Rl → Rr. The parameter θ∗ will typically be unique to ensure consistency,

but uniqueness is not necessary for the limit theorems that we shall state, unless we

explicitly indicate so.

Given a set of samples {W1, ...,Wn}, which are assumed to be i.i.d. copies of W ,

we define the Wasserstein Profile function for the estimating equation (2.7) as,

Rn (θ) := inf
{
Dc(P, Pn) : EP [h(W, θ)] = 0

}
. (2.8)

Here, recall that Pn denotes the empirical distribution associated with the training

samples {W1, . . . ,Wn} and c(·) is a chosen cost function. In this section, we are

primarily concerned with cost functions of the form,

c (u,w) = ‖w − u‖ρq , (2.9)

where ρ ≥ 1 and q ≥ 1. We remark, however, that the methods presented here can

be easily adapted to more general cost functions. For simplicity, we assume that the

samples {W1, . . . ,Wn} are distinct.

Since, as we shall see, that the asymptotic behavior of the RWP function Rn(θ) is

dependent on the exponent ρ in Equation (2.9), we shall sometimes write Rn (θ; ρ) to

make this dependence explicit; but whenever the context is clear, we drop ρ to avoid

notational burden. Also, observe that the profile function defined in (2.4) for the

linear regression example is obtained as a particular case by selecting W = (X, Y ),
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β = θ and defining h (x, y, θ) = (y − θTx)x.

Our goal in this section is to develop an asymptotic analysis of the RWP function

which parallels that of the theory of EL. In particular, we shall establish,

nρ/2Rn (θ∗; ρ)⇒ R̄ (ρ) . (2.10)

for a suitably defined random variable R̄ (ρ) (throughout the rest of the chapter, the

symbol “⇒” denotes convergence in distribution).

As the empirical distribution weakly converges to the underlying probability dis-

tribution from which the samples are obtained from, it follows from the definition

of RWP function in Equation (2.10) that Rn(θ; ρ) → 0, as n → ∞, if and only if θ

satisfies E[h(W, θ)] = 0; for every other θ, we have that nρ/2Rn(θ; ρ)→∞. Therefore,

the result in (2.10) can be used to provide confidence regions (at least conceptually)

around θ∗. In particular, given a confidence level 1 − α in (0,1), if we denote ηα as

the (1− α) quantile of R̄ (ρ), that is, P
(
R̄ (ρ) ≤ ηα

)
= (1− α), then

Λ̄n

(ηα
n

)
=
{
θ : Rn (θ; ρ) ≤ ηα

n

}

yields an approximate (1−α) confidence region for θ∗. This is because, by definition

of Λ̄n (ηα/n), we have

P
(
θ∗ ∈ Λ̄n (ηα/n)

)
= P

(
nρ/2Rn (θ∗; ρ) ≤ ηα

)
≈ P

(
R̄ (ρ) ≤ ηα

)
= 1− α.

Throughout the development in this section, the dimension m of the underlying

random vector W is kept fixed and the sample size n is sent to infinity; the function

h (·) can be quite general. In Section 2.4.3, we extend the analysis of RWP function

to the case where the ambient dimension could scale with the number of training



CHAPTER 2. ROBUST WASSERSTEIN PROFILE INFERENCE (RWPI) 35

samples n, in the specific context of square-root Lasso for linear regression.

2.2.3 The dual formulation of RWP function

The first step in the analysis of the RWP function Rn(θ) is to use the definition of

the discrepancy measure Dc to rewrite Rn(θ) as,

Rn(θ) = inf
{
Eπ [c(U,W )] : π ∈ P (Rm × Rm) , Eπ [h (U, θ)] = 0, π

W
= Pn

}
,

which is a problem of moments of the form,

Rn(θ) = inf
π∈P(Rm×Rm)

{
Eπ [c(U,W )] : Eπ [h (U, θ)] = 0, (2.11)

Eπ [I(W = Wi)] =
1

n
, i = 1, . . . , n

}
.

The problem of moments is a classical linear programming problem for which the

respective dual formulation and strong duality have been well-studied (see, for ex-

ample, Isii [1962]; Smith [1995]). The linear program problem over the variable π in

Equation (2.11) admits a simple dual semi-infinite linear program of form,

sup
ai∈R,λ∈Rr

{
a0 +

1

n

n∑
i=1

ai :

a0 +
n∑
i=1

ai1{w=Wi}(u,w) + λTh(u, θ) ≤ c(u,w),∀u,w ∈ Rm

}

= sup
λ∈Rr

{
1

n

n∑
i=1

inf
u∈Rm

{
c(u,Wi)− λTh(u, θ)

}}

= sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm

{
λTh(u, θ)− c(u,Wi)

}}
.
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Proposition 2.1 below states that strong duality holds under mild assumptions, and

the dual formulation above indeed equals Rn(θ).

Proposition 2.1. Let h(·, θ) be Borel measurable, and Ω = {(u,w) ∈ Rm × Rm :

c(u,w) < ∞} be Borel measurable and non-empty. Further, suppose that 0 lies in

the interior of the convex hull of {h(u, θ) : u ∈ Rm}. Then,

Rn(θ) = sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm

{
λTh(u, θ)− c(u,Wi)

}}
.

A proof of Proposition 2.1, along with an introduction to the problem of moments,

is provided in Appendix 2.B of this Chapter.

2.2.4 Asymptotic Distribution of the RWP Function

In order to gain intuition behind (2.10), let us first consider the simple example of

estimating the expectation θ∗ = E[W ] of a real-valued random variable W , using

h (w, θ) = w − θ.

Example 2.1. (RWPI for mean estimation.) Let h (w, θ) = w − θ with m =

1 = l = r. First, suppose that the choice of cost function is c (u,w) = |u− w|ρ

for some ρ > 1. As long as θ lies in the interior of convex hull of support of W,

Proposition Equation (2.1) implies,

Rn(θ; ρ) = sup
λ∈R

{
− 1

n

n∑
i=1

sup
u∈R

{
λ(u− θ)− |Wi − u|ρ

}}

= sup
λ∈R

{
−λ
n

n∑
i=1

(Wi − θ)−
1

n

n∑
i=1

sup
u∈R

{
λ (u−Wi)− |Wi − u|ρ

}}
.

As

max
∆
{λ∆− |∆|ρ} = (ρ− 1)|λ/ρ|ρ/(ρ−1),
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we obtain

Rn (θ; ρ) = sup
λ

{
−λ
n

n∑
i=1

(Wi − θ)− (ρ− 1)

∣∣∣∣λρ
∣∣∣∣ ρ
ρ−1

}

=

∣∣∣∣∣ 1n
n∑
i=1

(Wi − θ)

∣∣∣∣∣
ρ

.

Then, under the hypothesis that E [W ] = θ∗, and assuming Var[W ] = σ2
W
< ∞,

we obtain,

nρ/2Rn (θ∗; ρ)⇒ R̄ (ρ) ∼ σρ
W
|N (0, 1)|ρ ,

where N (0, 1) denotes a standard Gaussian random variable. The limiting dis-

tribution for the case ρ = 1 can be formally obtained by setting ρ = 1 in the

above expression for R̄(ρ), but the analysis is slightly different. When ρ = 1,

Rn (θ) = sup
λ∈R

{
−λ
n

n∑
i=1

(Wi − θ)−
1

n

n∑
i=1

sup
u∈R

{
λ (u−Wi)− |u−Wi|

}}

= sup
λ

{
−λ
n

n∑
i=1

(Wi − θ)− sup
∆∈R

{
λ∆− |∆|

}}
.

Following the notion that ∞× 0 = 0,

Rn(θ) = sup
λ

{
λ

n

n∑
i=1

(Wi − θ)−∞I (|λ| > 1)

}

= max
|λ|≤1

λ

n

n∑
i=1

(Wi − θ) =

∣∣∣∣∣ 1n
n∑
i=1

(Wi − θ)

∣∣∣∣∣ .
So, indeed if E[W ] = θ∗ and V ar [W ] = σ2

W
<∞, we obtain

n1/2Rn (θ∗)⇒ σ
W
|N (0, 1)| .
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We now discuss far reaching extensions to the developments in Example 2.1 by

considering estimating equations that are more general. First, we state a general

asymptotic stochastic upper bound, which we believe is the most important result

from an applied standpoint as it captures the speed of convergence of Rn(θ∗) to zero.

Following this, we obtain an asymptotic stochastic lower bound that matches with

the upper bound (and therefore the weak limit) under mild, additional regularity

conditions. We discuss the nature of these additional regularity conditions, and also

why the lower bound in the case ρ = 1 can be obtained basically without additional

regularity.

For the asymptotic upper bound we shall impose the following assumptions.

Assumptions:

A1) Assume that c (u,w) = ‖u−w‖ρq for some q ∈ (1,∞] and ρ ≥ 1. For a chosen

q ∈ (1,∞], let p ∈ [1,∞) be such that 1/p+ 1/q = 1.

A2) Suppose that θ∗ ∈ Rl satisfies E [h(W, θ∗)] = 0 and E ‖h(W, θ∗)‖2
2 < ∞.

(While we do not assume that θ∗ is unique, the results are stated for a fixed θ∗

satisfying E[h(W, θ∗)] = 0.)

A3) Suppose that the function h(·, θ∗) is continuously differentiable with deriva-

tive Dwh(·, θ∗).

A4) Suppose that for each ζ 6= 0,

P
(∥∥ζTDwh (W, θ∗)

∥∥
p
> 0
)
> 0. (2.12)

In order to state the theorem, let us introduce the notation for asymptotic stochastic



CHAPTER 2. ROBUST WASSERSTEIN PROFILE INFERENCE (RWPI) 39

upper bound,

nρ/2Rn(θ∗; ρ) .D R̄ (ρ) ,

which expresses that for every continuous and bounded non-decreasing function f(·)

we have that

limn→∞E
[
f
(
nρ/2Rn(θ∗; ρ)

)]
≤ E

[
f
(
R̄ (ρ)

)]
.

Similarly, we write &D for an asymptotic stochastic lower bound, namely

limn→∞E
[
f
(
nρ/2Rn(θ∗; ρ)

)]
≥ E

[
f
(
R̄ (ρ)

)]
.

Therefore, if both stochastic upper and lower bounds hold, then nρ/2Rn(θ∗; ρ)⇒ R̄ (ρ)

as n → ∞. (see, for example, Billingsley [2013]). Now we are ready to state our

asymptotic upper bound.

Theorem 2.1. Under Assumptions A1) to A4) we have, as n→∞,

nρ/2Rn(θ∗; ρ) .D R̄ (ρ) ,

where, for ρ > 1,

R̄ (ρ) := max
ζ∈Rr

{
ρζTH − (ρ− 1)E

∥∥ζTDwh (W, θ∗)
∥∥ρ/(ρ−1)

p

}
,

and if ρ = 1,

R̄ (1) := max
ζ:P(‖ζTDwh(W,θ∗)‖p>1)=0

{ζTH}.

In both cases H ∼ N (0,Cov[h(W, θ∗)]), and Cov[h(W, θ∗)] = E
[
h(W, θ∗)h(W, θ∗)

T
]
.

We remark that as ρ → 1, one can verify that R̄ (ρ) ⇒ R̄ (1), so formally one

can simply keep in mind the expression R̄ (ρ) with ρ > 1. In turn, it is intersting
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to note that R̄(ρ) is Fenchel transform as a function of Hn. We now study some

sufficient conditions which guarantee that R̄ (ρ) is also an asymptotic lower bound

for nρ/2Rn(θ∗; ρ). We consider the case ρ = 1 first, which will be used in applications

to logistic regression discussed later in the chapter.

Proposition 2.2. In addition to assuming A1) to A4), suppose that W has a positive

density (almost everywhere) with respect to the Lebesgue measure. Then,

n1/2Rn(θ∗; 1)⇒ R̄ (1) .

The following set of assumptions can be used to obtain tight asymptotic stochastic

lower bounds when ρ > 1; the corresponding result will be applied to the context of

square-root Lasso.

A5) (Growth condition) Assume that there exists κ ∈ (0,∞) such that for ‖w‖q ≥

1,

‖Dwh(w, θ∗)‖p ≤ κ ‖w‖ρ−1
q , (2.13)

and that E ‖W‖ρ <∞.

A6) (Locally Lipschitz continuity) Assume that there exists κ̄ : Rm → [0,∞) such

that,

‖Dwh(w + ∆, θ∗)−Dwh(w, θ∗)‖p ≤ κ̄ (w) ‖∆‖q ,

for ‖∆‖q ≤ 1, and E [κ̄(W )2] <∞.

We now summarize our last weak convergence result of this section.

Proposition 2.3. If Assumptions A1) to A6) are in force and ρ > 1 , then

nρ/2Rn(θ∗; ρ)⇒ R̄ (ρ) .
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Before we move on with the applications of the previous results, it is worth dis-

cussing the nature of the additional assumptions introduced to ensure that an asymp-

totic lower bound can be obtained which matches the upper bound in Theorem 2.1.

As we shall see in the technical development in Section 2.A.1. of the Appendix

2.A where the proofs of the above results are furnished, the dual formulation of RWP

function in Proposition 2.1 can be re-expressed, assuming only A1) to A4), as,

nρ/2Rn (θ∗; ρ) = (2.14)

sup
ζ

{
ζTHn −

1

n

n∑
k=1

sup
∆

{ˆ 1

0

ζTDh
(
Wi + ∆u/n1/2, θ∗

)
∆du− ‖∆‖ρq

}}
.

In order to make sure that the lower bound asymptotically matches the upper

bound obtained in Theorem 2.1 we need to make sure that we rule out cases in which

the inner supremum is infinite in (2.14) with positive probability in the prelimit.

In Proposition 2.2 we assume that W has a positive density with respect to the

Lebesgue measure because in that case the condition

P
(∥∥ζTDh (W, θ∗)

∥∥
p
≤ 1
)

= 1,

(which appears in the upper bound obtained in Theorem 2.1) implies that
∥∥ζTDh (w, θ∗)

∥∥
p
≤

1 almost everywhere with respect to the Lebesgue measure. Due to the appearance

of the integral in the inner supremum in (2.14), an upper bound can be obtained for

the inner supremum, which translates into a tight lower bound for nρ/2Rn (θ∗).

Moving to the case ρ > 1 studied in Proposition 2.3, condition (2.13) in A5)

guarantees that (for fixed Wi and n)

∥∥Dh (Wi + ∆u/n1/2, θ∗
)

∆
∥∥ = O

(
‖∆‖ρq /n

(ρ−1)/2
)
,
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as ‖∆‖q → ∞. Therefore, the cost term
(
−‖∆‖ρq

)
in (2.14) will ensure a finite

optimum in the prelimit for large n. The condition that E ‖W‖ρq < ∞ is natural

because we are using a optimal transport cost c (u,w) = ‖u− w‖ρq . If this condition is

not satisfied, then the underlying nominal distribution is at infinite transport distance

from the empirical distribution.

The local Lipschitz assumption A6) is just imposed to simplify the analysis and

can be relaxed; we have opted to keep A6) because we consider it mild in view of the

applications that we will study in the sequel.

2.3 Distributionally Robust Estimators for Machine

Learning Algorithms

A common theme in machine learning problems is to find the best fitting parameter

in a family of parameterized models that relate a vector of predictor variables X ∈ Rd

to a response Y ∈ R. In this section, we shall focus on a useful class of such models,

namely, linear and logistic regression models. Associated with these models, we have

a loss function l(Xi, Yi; β) which evaluates the fit of regression coefficient β for the

given data points {(Xi, Yi) : i = 1, . . . , n.} Then, just as we explained in the case of

square-root Lasso in the Introduction, our first step will be to show that regularized

linear and logistic regression estimators admit a Distributionally Robust Optimization

(DRO) formulation of the form,

min
β∈Rd

sup
P :Dc

(
P,Pn

)
≤δ

EP
[
l
(
X, Y ; β

)]
. (2.15)

Once we derive a representation such as (2.15) then we will proceed, in the next
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section to find the optimal choice of δ, which, as explained in the Introduction, will

immediately characterize the optimal regularization parameter.

In contrast to the empirical risk minimization that performs well only on the train-

ing data, the DRO problem (2.15) finds an optimizer β that performs uniformly well

over all probability measures in the neighborhood that can be perceived as perturba-

tions to the empirical training data distribution. Hence the solution to (2.15) is said

to be “distributionally robust”, and can be expected to generalize better. See Xu et

al. [2009a,b]; Shafieezadeh-Abadeh et al. [2015] for works that relate robustness and

generalization.

Recasting regularized regression as a DRO problem of form Equation (2.15) lets

us view these regularized estimators under the lens of distributional robustness. The

regularized estimators that we consider in this section, in particular, include the

following.

Example 2.2. (Square-Root-Lasso) We have already started discussing this ex-

ample in the Section 2.1, namely given a set of training data {(Xi, Yi) : i =

1, . . . , n}, with predictor Xi ∈ Rd and response Yi ∈ R, the postulated model is

Yi = βT∗ Xi+ei for some β∗ ∈ Rd and errors {e1, ..., en}. The underlying loss func-

tion is l(x, y; β) =
(
y − βTx

)2 and the square-root Lasso estimator, is obtained

by solving the problem,

min
β∈Rd

{√
EPn [l (X, Y ; β)] + λ ‖β‖1

}
,

see Belloni et al. [2011]; Alquier [2008]; Oymak et al. [2013] for more on square-

root Lasso. As Pn denotes the empirical distribution corresponding to training

samples, EPn [l (X, Y ; β)] is just the mean square training loss. In addition to the

Square-Root Lasso estimator above with `1 penalty, we derive a DRO represen-
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tation of the form (2.15) for `p-penalized estimators obtained by solving,

min
β∈Rd

{√
EPn [l (X, Y ; β)] + λ ‖β‖p

}
, (2.16)

for any p ∈ [1,∞).

Example 2.3. (Regularized Logistic Regression) We next consider the context

of binary classification, in which case the data is of the form {(Xi, Yi) : i =

1, . . . , n}, with Xi ∈ Rd, response Yi ∈ {−1, 1} and the model postulates that

log

(
P (Yi = 1|Xi = x)

1− P (Yi = 1|Xi = x)

)
= βT∗ x

for some β∗ ∈ Rd. In this case, the log-exponential loss function (or negative

log-likelihood for binomial distribution) is

l (x, y; β) = log
(
1 + exp(−y · βTx)

)
,

and one is interested in estimating β∗ by solving

min
β∈Rd

{
EPn [l (X, Y ; β)] + λ ‖β‖p

}
, (2.17)

for p ∈ [1,∞) (see Friedman et al. [2001] for a discussion on regularized logistic

regressions).

The rest of this section is to show that square-root Lasso and Regularized Lo-

gistic Regression estimators are distributionally robust (in the sense, they admit a

representation of the form (2.15)).

While these particular examples may be certainly interesting, we emphasize that

the DRO formulation (2.15) should be viewed, in its entirety, as a framework for
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generating distributionally robust inference procedures for different models and loss

functions, without having to prove equivalences with an existing or popular algorithm.

2.3.1 Dual form of the DRO formulation (2.15)

Though the DRO formulation (2.15) involves optimizing over uncountably many prob-

ability measures, the following result ensures that the inner supremum in (2.15) over

the neighborhood {P : Dc(P, Pn) ≤ δ} admits a reformulation which is a simple, uni-

variate optimization problem. Before stating the result, we recall that the definition of

discrepancy measure Dc (·) (defined in (2.6)) requires the specification of cost function

c ((x, y), (x′, y′)) between any two predictor-response pairs (x, y), (x′, y′) ∈ Rd+1.

Proposition 2.4. Let c(·) be a nonnegative, lower semi-continuous cost function such

that the set {
(
(x, y), (x′, y′)

)
: c
(
(x, y), (x′, y′)

)
<∞} is Borel measurable and nonempty.

For γ ≥ 0 and loss functions l(x, y; β) that are upper semi-continuous in (x, y) for

each β, let

φγ(Xi, Yi; β) = sup
u∈Rd, v∈R

{
l(u, v; β)− γc

(
(u, v), (Xi, Yi)

)}
. (2.18)

Then

sup
P : Dc(P,Pn)≤δ

EP
[
l(X, Y ; β)

]
= min

γ≥0

{
γδ +

1

n

n∑
i=1

φγ(Xi, Yi; β)

}
.

Consequently, the DR regression problem (2.15) reduces to

inf
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP
[
l(X, Y ; β)

]
= inf

β∈Rd
min
γ≥0

{
γδ +

1

n

n∑
i=1

φγ(Xi, Yi; β)

}
. (2.19)

Such reformulations have recently gained much attention in the literature of distri-

butionally robust optimization (see Shafieezadeh-Abadeh et al. [2015]; Blanchet and
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Murthy [2016]). For a proof of Proposition 2.4, see Appendix 2.B of this chapter.

2.3.2 Distributionally Robust Representations

2.3.2.1 Example 2.2 (continued): Recovering regularized estimators for

linear regression

We examine the right-hand side of (2.19) for the square loss function for the linear

regression model Y = βTX + e, and obtain the following result without any further

distributional assumptions on X, Y and the error e. For brevity, let β̄ = (−β, 1), and

recall the definition of the discrepancy measure Dc in (2.6).

Proposition 2.5 (DR linear regression with square loss). Fix q ∈ (1,∞]. Consider the

square loss function and second order discrepancy measure Dc defined using `q-norm.

In other words, take l(x, y; β) = (y− βTx)2 and c
(
(x, y), (u, v)

)
= ‖(x, y)− (u, v)‖2

q.

Then,

min
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP
[
l(X, Y ; β)

]
= min

β∈Rd

(√
MSEn(β) +

√
δ ‖β̄‖p

)2

, (2.20)

where MSEn(β) = EPn [(Y − βTX)2] = 1
n

∑n
i=1(Yi − βTXi)

2 is the mean square error

for the coefficient choice β, and p is such that 1/p+ 1/q = 1.

As an important special case, we consider q = ∞ and identify the following

equivalence for DR regression applying discrepancy measure based on neighborhoods

defined using `∞ norm:

arg min
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP
[
l(X, Y ; β)

]
= arg min

β∈Rd

{√
MSEn(β) +

√
δ ‖β‖1

}
.

Here the right hand side is same as the square-root Lasso estimator with λ =
√
δ in

Example 2.2.
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The right hand side of (2.20) resembles `p-norm regularized regression (except for

the fact that we have ‖β̄‖p instead of ‖β‖p). In order to obtain a closer equivalence

we must introduce a slight modification to the norm ‖ · ‖q to be used as the cost

function, c(·), in defining Dc. We define

Nq

(
(x, y), (u, v)

)
=


‖x− u‖q, if y = v

∞, otherwise.
, (2.21)

to use c(·) = Nq(·) as the cost instead of the standard `q norm ‖(x, y) − (u, v)‖q.

Subsequently, one can consider modified cost functions of form c((x, y), (u, v)) =

(Nq((x, y), (u, v)))a. As this modified cost function assigns infinite cost when y 6= v,

the infimum in (2.4) is effectively over joint distributions that do not alter the marginal

distribution of Y . As a consequence, the resulting neighborhood set {P : Dc(P, Pn) ≤

δ} admits distributional ambiguities only with respect to the predictor variables X.

The following result is essentially the same as Proposition 2.5 except for the use

of the modified cost Nq and the resulting norm regularization of form ‖β‖p (instead

of ‖β̄‖p as in Proposition 2.5), thus exactly recovering the regularized regression

estimators in Example 2.2.

Theorem 2.2. Consider the square loss and discrepancy measure Dc(P, Pn) defined as

in (2.6) using the cost function c((x, y), (u, v)) = (Nq((x, y), (u, v)))2 (the function Nq

is defined in (2.21)). Then,

min
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP
[
l(X, Y ; β)

]
= min

β∈Rd

(√
MSEn(β) +

√
δ ‖β‖p

)2

,

where MSEn(β) = EPn [(Y − βTX)2] = n−1
∑n

i=1(Yi − βTXi)
2 is the mean square

error for the coefficient choice β, and p is such that 1/p+ 1/q = 1.
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2.3.2.2 Example 2.3 (continued): Recovering regularized estimators for

classification

Apart from exactly recovering well-known norm regularized estimators for linear re-

gression, the discrepancy measure Dc based on the modified norm Nq in (2.21) is

natural when our interest is in learning problems where the responses Yi take values

in a finite set – as in the binary classification problem where the response variable Y

takes values in {−1,+1}.

The following result allows us to recover the DRO formulation behind the reg-

ularized logistic regression estimators discussed in Example 2.3 and support vector

machine with Hinge loss function, i.e. l (x, y, β) =
(
1− yβTx

)+.

Theorem 2.3 (Regularized regression for Classification). Consider the discrepancy

measure Dc(·) defined using the cost function c((x, y), (u, v)) = Nq((x, y), (u, v)) in

(2.21). Then, for logistic regression with log-exponential loss function and Support

Vector Machine (SVM) with Hinge loss,

min
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP
[

log(1 + e−Y β
TX)
]

= min
β∈Rd

1

n

n∑
i=1

log
(

1 + e−Yiβ
TXi
)

+ δ ‖β‖p ,

and

min
β∈Rd

sup
P : Dc(P,Pn)≤δ

EP
[
(1− Y βTX)+

]
=

1

n

n∑
i=1

(1− YiβTXi)
+ + δ ‖β‖p ,

where p is such that 1/p+ 1/q = 1.

The proof of all of the results in this subsection are provided in Appendix 2.A Section

2.A.2. of this chapter.
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2.4 Using RWPI for optimal regularization

Our goal in this section is to use RWP function for optimal regularization in Examples

2.2 and 2.3. As explained in the Introduction, the key step is to propose a reasonable

optimality criterion for the selection of δ in the DRO formulation Equation (2.15).

Then, owing to the DRO representations derived in Section 2.3.2, this would imply an

automatic choice of regularization parameter λ =
√
δ in square-root Lasso example

(following Theorem 2.2), or λ = δ in regularized logistic regression (following Theorem

2.3). In the development below, we follow the logic described in the Introduction for

the square-root Lasso setting.

We write Uδ(Pn) to denote the uncertainty set, namely Uδ(Pn) = {P : Dc

(
P, Pn

)
≤

δ}, and β∗ to denote the underlying linear or logistic regression model parameter from

which the training samples {(Xi, Yi) : i = 1, . . . , n} are obtained. Now, for each P ,

convexity considerations involving the loss functions l (x, y; β), as a function of β, will

allow us to conclude that the set

Popt(β) :=
{
P ∈ P

(
Rd × R

)
: EP

[
Dβl(X, Y ; β∗)

]
= 0

}
is the set of probability measures for which β is an optimal risk minimization param-

eter.

As indicated in the Introduction, we shall say that β∗ is plausible for a given choice

of δ if,

Popt(β∗) ∩ Uδ(Pn) 6= ∅.

If this intersection is empty, we say that β∗ is implausible. Moreover, we remark that
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β∗ is plausible with confidence at least 1− α if,

P (Popt(β∗) ∩ Uδ(Pn) 6= ∅) ≥ 1− α.

We shall argue in Appendix 2.C of this chapter that the inf sup in the corre-

sponding DRO formulation (2.15) of each of the machine learning algorithms that we

consider can be exchanged as below:

Lemma 2.1. In the settings of Theorems 2.2 and 2.3, if E‖X‖2
2 <∞, we have that

inf
β∈Rd

sup
P∈ Uδ(Pn)

EP
[
l
(
X, Y ; β

)]
= sup

P∈ Uδ(Pn)

inf
β∈Rd

EP
[
l
(
X, Y ; β

)]
. (2.22)

The representation in the right hand side of (2.22) implies that

sup
P∈ Uδ(Pn)

inf
β∈Rd

EP
[
l
(
X, Y ; β

)]
= sup

P∈ Uδ(Pn)

{
EP
[
l
(
X, Y ; β

)]
: β ∈ Rd such that EP

[
Dβl(X, Y ; β)

]
= 0

}
= sup

{
EP
[
l
(
X, Y ; β

)]
: P ∈ Uδ(Pn), β ∈ Rd such that Popt(β) ∩ Uδ(Pn) = ∅

}
,

and this motivates our interest in finding the smallest δ > 0 such that

P
(
Popt(β∗) ∩ Uδ(Pn) 6= ∅

)
≥ 1− α (2.23)

asymptotically, as n → ∞. In simple words, we wish to find the smallest value of δ

for which β∗ is plausible with at least 1− α confidence (see Figure 2.1).
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Observe that as

Rn(β∗) = inf
{
Dc(P, Pn) : P ∈ Popt(β∗)

}
,

we have,

P
(
Popt(β∗) ∩ Uδ(Pn) 6= ∅

)
= P

(
Rn(β∗) ≤ δ

)
and therefore (2.23) is equivalent to

inf
{
δ : P (Rn(β∗) ≤ δ) ≥ 1− α

}
, (2.24)

thus obtaining the optimal selection of δ as the 1− α quantile of Rn(β∗).

Now, without knowing β∗, it is, of course, difficult to compute Rn(β∗). However,

assuming i.i.d. training data, we can obtain a limiting distribution for the quantity

nRn(β∗) or
√
nRn(β∗), by applying results from Section 2.2.4.

Another consequence of Lemma 2.1 is that the set Λn (δ) of plausible values of β

(i.e. β for which there exists P ∈ Uδ(Pn) such that EP
[
Dβl(X, Y ; β)

]
= 0), contains

the optimal solution obtained by solving the problem in the left hand side of (2.22).

(If this was not the case, the left hand side in (2.22) would be strictly smaller than the

right hand side of (2.22).) The fact that the estimator for β∗ obtained by solving the

left hand side in (2.22) is plausible, we believe, is a property which makes our selection

of δ logically consistent with the ultimate goal of the overall estimation procedure,

namely, choosing β∗.
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2.4.1 Linear regression models with squared loss function

In this section, we derive the asymptotic limiting distribution of suitably scaled profile

function corresponding to the estimating equation

E[(Y − βTX)X] = 0.

The chosen estimating equation describes the optimality condition for square loss

function l(x, y; β) = (y−βTx)2, and therefore, the corresponding Rn(β∗) is a suitable

for choosing δ as in Equation (2.24), and the regularization parameter λ =
√
δ in

Example 2.2.

Let H0 denote the null hypothesis that the training samples Dn = {(Xi, Yi)}ni=1

are obtained independently from the linear model Y = βT∗ X+e, where the error term

e has zero mean, variance σ2, and is independent of X. Let Σ = Cov[X].

Theorem 2.4. Consider the discrepancy measureDc(·) defined as in (2.6) using the cost

function c((x, y), (u, v)) = (Nq((x, y), (u, v)))2 (the function Nq is defined in (2.21)).

For β ∈ Rd, let

Rn(β) = inf
{
Dc(P, Pn) : EP

[
(Y − βTX)X

]
= 0

}
.

Then, under the null hypothesis H0,

nRn(β∗)⇒ L1 := max
ξ∈Rd

{
2σξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
,

as n→∞. In the above limiting relationship, Z ∼ N (0,Σ). Further,

L1

D

≤ L2 :=
E[e2]

E[e2]− (E|e|)2‖Z‖
2
q.
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Specifically, if the additive error term e follows a normal distribution with zero mean,

then

L1

D

≤ L2 :=
π

π − 2
‖Z‖2

q.

In the above theorem, the relationship L1

D

≤ L2 denotes that the limit law L1 is

stochastically dominated by L2. We remark this notation
D

≤ for stochastic upper

bound here is different from the notation .D introduced in Section 2.2.4 to denote

asymptotic stochastic upper bound. A proof of Theorem 2.4 as an application of

Theorem 2.1 and Proposition 2.3 is presented in Section 2.A.3. of Appendix 2.A in

this chapter.

Using Theorem 2.4 to obtain regularization parameter for (2.16). Let η1−α

denote the (1−α) quantile of the limiting random variable L1 in Theorem 2.4, or its

stochastic upper bound L2. If we choose δ = η1−α/n, it follows from Theorem 2.4 that

P (Rn(β∗) ≤ δ) ≥ 1− α,

asymptotically as n→∞, and consequently,

P
(
Popt(β∗) ∩ Uδ(Pn) 6= ∅

)
≥ 1− α.

In other words, the optimal regression coefficient β∗ remains plausible (for the DRO

formulation Equation (2.15)) with probability exceeding 1 − α with this choice of δ.

Due to the distributionally robust representation derived in Theorem 2.2, a prescrip-

tion for the uncertainty set size δ naturally provides the prescription, λ =
√
δ, for the

regularization parameter as well. The following steps summarize the guidelines for

choosing the regularization parameter in `p−penalized linear regression (2.16):
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1) Draw samples Z from N (0,Σ) to estimate the 1 − α quantile of one of the

random variables L1 or L2 in Theorem 2.4. Let us use η̂1−α to denote the

estimated quantile. While L2 is simply the norm of Z, obtaining realizations of

limit law L1 involves solving an optimization problem for each realization of Z.

If Σ = Cov[X] is not known, one can use a simple plug-in estimator for Cov[X]

in place of Σ.

2) Choose the regularization parameter λ to be

λ =
√
δ =

√
η̂1−α/n.

It is interesting to note that unlike the traditional Lasso algorithm, the prescription

of regularization parameter in the above procedure is self-normalizing, in the sense

that it does not depend on Var[e].

2.4.2 Logistic Regression with log-exponential loss function

In this section, we apply results in Section 2.2.4 to prescribe regularization parameter

for `p-penalized logistic regression in Example 2.3.

Let H0 denote the null hypothesis that the training samples Dn = {(Xi, Yi)}ni=1

are obtained independently from a logistic regression model satisfying

log

(
P (Y = 1|X = x)

1− P (Y = 1|X = x)

)
= βT∗ x,

for predictors X ∈ Rd and corresponding responses Y ∈ {−1, 1}; further, under null

hypothesis H0, the predictor X has positive density almost everywhere with respect

to the Lebesgue measure on Rd. The log-exponential loss (or negative log-likelihood)
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that evaluates the fit of a logistic regression model with coefficient β is given by

l(x, y; β) = − log p(y|x; β) = log
(
1 + exp(−yβTx)

)
.

If we let

h(x, y; β) = Dβl(x, y; β) =
−yx

1 + exp(yβTx)
, (2.25)

then the optimality condition that the coefficient β∗ satisfies is E [h(x, y; β∗)] = 0.

Theorem 2.5. Consider the discrepancy measure Dc(·) defined as in (2.6) using the

cost function c((x, y), (u, v)) = Nq((x, y), (u, v)) (the function Nq is defined in ( 2.21)).

For β ∈ Rd, let

Rn(β) = inf
{
Dc(P, Pn) : EP

[
h(x, y; β)

]
= 0

}
,

where h(·) is defined in (2.25). Then, under the null hypothesis H0,

√
nRn(β∗)⇒ L3 := sup

ξ∈A
ξTZ

as n→∞. In the above limiting relationship,

Z ∼ N
(
0,E

[
XXT

(1 + exp(Y βT∗ X))2

])
and

A =
{
ξ ∈ Rd : ess supx,y

∥∥ξTDxh(x, y; β)
∥∥
p
≤ 1
}
.

Moreover, the limit law L3 admits the following simpler stochastic bound:

L3

D

≤ L4 := ‖Z̃‖q,
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where Z̃ ∼ N (0,E[XXT ]).

A proof of Theorem 2.4 as an application of Theorem 2.1 and Proposition 2.2 is pre-

sented in Section 2.A.3. of Appendix 2.A in this chapter.

Using Theorem 2.5 to obtain regularization parameter for (2.17). Similar

to linear regression, the regularization parameter for Regularized Logistic Regression

discussed in Example 2.3 can be chosen by the following procedure:

1) Estimate the (1−α) quantile of L4 := ‖Z̃‖q, where Z̃ ∼ N (0,E[XXT ]). Let us

use η̂1−α to denote the estimate of the quantile.

2) Choose the regularization parameter λ in the norm regularized logistic regression

estimator (2.17) in Example 2.3 to be

λ = δ = η̂1−α/
√
n.

2.4.3 Optimal regularization in high-dimensional square-root

Lasso

In this section, let us restrict our attention to the square-loss function l(x, y; β) =

(y − βTx)2 for the linear regression model and the discrepancy measure Dc defined

using the cost function c = Nq with q = ∞ in (2.21). Then, due to Theorem 2.2,

this corresponds to the interesting case of square-root Lasso or `2-Lasso that was

rather a particular example in the class of `p−penalized linear regression estimators

considered in Section 2.4.1.

As an interesting byproduct of the RWP function analysis, the following theorem

presents a prescription for regularization parameter even in high dimensional settings
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where the ambient dimension d is larger than the number of samples n. We introduce

the growth parameter,

C(n, d) :=
E ‖X‖∞√

n
=

E [maxi=1,...,d |Xi|]√
n

,

as a function of n and d, that will be useful in stating our results. In addition, we

say that the predictors X have sub-gaussian tails if there exists a constant a > 0,

E
[
exp(tTX)

]
≤ exp(a2‖t‖2

2
/2)

for every t ∈ Rd.

Theorem 2.6. Let E[Xi] = 0 and E[X2
i ] = 1 for all i = 1, . . . , d. Suppose the as-

sumptions of Theorem 2.4 hold and assume the largest eigenvalue of Σ = Cov[X] be

o(nC(n, d)2). In addition, suppose that β∗ satisfies a weak sparsity condition that

‖β∗‖1 = o(1/C(n, d)). Then

nRn(β∗) .D
‖Zn‖2

∞
Var|e|

,

as n, d → ∞. Here, Zn := 1√
n

∑n
i=1 eiXi. In particular, if the predictors X have

subgaussian tails, then we have

nRn(β∗) .D
Ee2

Ee2 −
(
E|e|

)2‖Z̃‖
2
∞

where, Z̃ follows the distributionN (0,Σ).Moreover, if the additive error e is normally

distributed and Σ is the identity matrix, then the above stochastic bounds simplify

to √
Rn(β∗) .D

π

π − 2

Φ−1(1− α/2d)√
n

,
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with probability asymptotically larger than 1 − α. Here, Φ−1(1 − α) denotes the

quantile x of the standard normal distribution Φ(x) = 1− α.

The prescription of regularization parameter as

λ =
√
δ =

π

π − 2

Φ−1(1− α/2d)√
n

= O

(√
log d

n

)
, (2.26)

as in Theorem 2.6, is consistent with the findings in the literature of high-dimensional

linear regression (see, for example, Belloni et al. [2011]; Nguyen [2013]; Zhou [2015];

Banerjee et al. [2014]). This agreement strengthens the interpretation of regulariza-

tion parameter in regularized regression as
√
Rn(β∗), which, in turn, corresponds to

the distance of the empirical distribution Pn from the set {P : EP [(Y −βTX)X] = 0}.

It is also interesting to note that unlike traditional Lasso algorithm, the prescrip-

tion of regularization parameter as in Equation (2.26) is self-normalizing, in the sense

that it does not depend on the variance of e, even if the number of predictors d is

larger than n.

2.5 Conclusion

This chapter has introduced the basic principles behind the application of RWPI,

we believe that the systematic use of distributionally robust optimization based on

optimal transport considerations has the potential to be utilized in a wide range of

settings. In addition to new applications of RWPI there are key statistical properties

which remain to be studied. The well-developed literature on EL may serve as a

template, not only for the development of future applications of RWPI, but also for

further investigation of the RWP function, which is key in the use of this methodology.

These additional developments and investigations will be reported in future research.
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Additional Material TO CHAPTER 2

This additional material for the RWPI chapter is organized as follows: Proofs of all

the main results in the chapter are furnished in APPENDIX 2.A. As some of the main

results in the chapter utilize strong duality for problems of moments, a quick intro-

duction to problem of moments along with a well-known strong duality result that is

useful in our context is provided in APPENDIX 2.B. A technical result on exchange of

sup and inf in the DRO formulation Equation (2.15) is presented in APPENDIX 2.C.

Numerical experiments that compare RWPI based regularization parameter selection

with cross-validation based approach are presented in APPENDIX 2.D.

APPENDIX 2.A: Proofs of main results

This section, comprising the proofs of the main results, is organized as follows. Sub-

section 2.A.1 contains the proofs of stochastic upper and lower bounds (and hence

weak limits) presented in Section 2.2.4. While Subsection 2.A.2 is devoted to de-

rive the results on distributionally robust representations presented in Section 2.3.2,

Subsection 2.A.3 contains the proofs of Theorems 2.4 and 2.5 as applications of the

stochastic upper and lower bounds presented in Section 2.2.4. Some of the useful

technical results that are not central to the argument are presented in appendices 2.B

and 2.C.

2.A.1. Proofs of asymptotic stochastic upper and lower bounds

of RWP function in Section 2.2.4

We first use Proposition 2.1 to derive a dual formulation for nρ/2Rn(θ∗) which will

be the starting point of our analysis. Due to Assumption A2) E[h(W, θ∗)] = 0, and
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therefore, 0 lies in the interior of convex hull of {h(u, θ∗) : u ∈ Rm}. Therefore, due

to Proposition 2.1,

Rn(θ∗) = sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm

{
λTh(u, θ∗)− ‖u−Wi‖ρq

}}
.

In order to simplify the notation, throughout the rest of the proof we will write h (Wi)

instead of h (Wi, θ∗) and Dh (Wi) for Dwh (Wi, θ∗).

Letting Hn = n−1/2
∑n

i=1 h(Wi) and changing variables to ∆ = u−Wi, we obtain

Rn(θ∗) = sup
λ

{
−λT Hn

n1/2
− 1

n

n∑
i=1

sup
∆

{
λT
(
h(Wi + ∆)− h(Wi)

)
− ‖∆‖ρq

}}
.

Due to the fundamental theorem of calculus (using Assumption A3)), we have that

h (Wi + ∆)− h (Wi) =

ˆ 1

0

Dh (Wi + u∆) ∆du.

Now, redefining ζ = λn(ρ−1)/2 and ∆ = ∆/n1/2 we arrive at following representation

nρ/2Rn(θ∗) = sup
ζ

{
−ζTHn −Mn (ζ)

}
, (2.27)

where

Mn (ζ) =
1

n

n∑
i=1

sup
∆

{
ζT
ˆ 1

0

Dh
(
Wi + n−1/2∆u

)
∆du− ‖∆‖ρq

}
. (2.28)

The reformulation in Equation (2.27) is our starting point of the analysis.

To proceed further, we first state a result which will allow us to apply a localization

argument in the representation of nρ/2Rn (θ∗) in Equation (2.27). Recall the definition

of Mn above in Equation (2.28) and that Hn = n−1/2
∑n

i=1 h(Wi).



CHAPTER 2. ROBUST WASSERSTEIN PROFILE INFERENCE (RWPI) 61

Lemma 2.2. Suppose that the Assumptions A2) to A4) are in force. Then, for every

ε > 0, there exists n0 > 0 and b ∈ (0,∞) such that

P

(
sup
‖ζ‖p≥b

{
−ζTHn −Mn (ζ)

}
> 0

)
≤ ε,

for all n ≥ n0.

Proof of Lemma 2.2. For ζ 6= 0, we write ζ̄ = ζ/ ‖ζ‖p. Let us define the vector

Vi
(
ζ̄
)

= Dh (Wi)
T ζ̄, and put

∆′i = ∆′i
(
ζ̄
)

=
∣∣Vi (ζ̄)∣∣p/q sgn (Vi (ζ̄)) . (2.29)

Define the set C0 = {‖Wi‖p ≤ c0}, where c0 will be chosen large enough mo-

mentarily. Then, for any c > 0, plugging in ∆ = c∆′i, we have ζTDh(Wi)∆ =

c‖ζTDh(Wi)‖p‖∆′‖q, and therefore,

sup
∆

{
ζT
ˆ 1

0

Dh(Wi + n−1/2∆u)∆du− ‖∆‖ρq
}

= sup
∆

{
ζTDh(Wi)∆− ‖∆‖ρq + ζT

ˆ 1

0

[
Dh(Wi + n−1/2∆u)−Dh(Wi)

]
∆du

}
≥ max

{
c
∥∥ζTDh(Wi)

∥∥
p
‖∆′i‖q − c

ρ ‖∆′i‖
ρ
q

+ cζT
ˆ 1

0

[
Dh(Wi + cn−1/2∆′iu)−Dh (Wi)

]
∆′idu, 0

}
I (Wi ∈ C0) .

(2.30)

Due to Hölder’s inequality,

I (Wi ∈ C0)

∣∣∣∣ζT ˆ 1

0

[
Dh(Wi + cn−1/2∆′iu)−Dh(Wi)

]
∆′idu

∣∣∣∣
≤ I (Wi ∈ C0) ‖ζ‖p

ˆ 1

0

∥∥[Dh(Wi + cn−1/2∆′iu)−Dh(Wi)
]
∆′i
∥∥
q
du.
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Because of continuity Dh (·) and the fact thatWi ∈ C0 (so the integrand is bounded),

we have that the previous expression converges to zero as n→∞. Therefore, for given

positive constants ε′, c (note than convergence is uniform on Wi ∈ C0), there exists

n0 such that for all n ≥ n0

cI (Wi ∈ C0)

∣∣∣∣ζT ˆ 1

0

[
Dh(Wi + cn−1/2∆′iu)−Dh(Wi)

]
∆′idu

∣∣∣∣ ≤ cε′ ‖ζ‖p . (2.31)

Next, as ‖ζ̄TDh(Wi)‖p/qp = ‖∆′i‖q and 1 + p/q = p,

c
∥∥ζTDh (Wi)

∥∥
p
‖∆′i‖q − c

ρ ‖∆′i‖
ρ
q = c ‖ζ‖p ‖ζ̄

TDh(Wi)‖pp − cρ‖ζ̄TDh(Wi)‖
ρ p
q

p .

Consequently, it follows from Equation (2.30) and Equation (2.31) that

Mn(ζ) ≥ 1

n

n∑
i=1

{
c ‖ζ‖p ‖ζ̄

TDh(Wi)‖pp − cρ‖ζ̄TDh(Wi)‖
ρ p
q

p − cε′‖ζ‖p
}
I (Wi ∈ C0) .

(2.32)

Now, since the map ζ̄ ↪→
∥∥ζ̄TDh(Wi)

∥∥p
p
is Lipschitz continuous on

∥∥ζ̄∥∥
p

= 1, we

conclude that,

1

n

n∑
i=1

∥∥ζ̄TDh(Wi)
∥∥p
p
I (Wi ∈ C0)→E

[∥∥ζ̄TDh (W )
∥∥p
p
I (W ∈ C0)

]
, (2.33)

with probability one as n → ∞. Moreover, due to Fatou’s lemma we have that the

map ζ̄ ↪→ P
(∥∥ζ̄TDh (W )

∥∥
p
> 0
)

is lower semi-continuous. Therefore, by A4), we

have that there exists δ > 0 such that

inf
ζ̄
E
∥∥ζ̄TDh (W )

∥∥p
p
> δ. (2.34)
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Consecutively, by selecting c0 > 0 large enough, we conclude from Equation (2.33)

that for n ≥ N ′ (δ),

1

n

n∑
i=1

∥∥ζ̄TDh(Wi)
∥∥p
p
I (Wi ∈ C0) >

δ

2
. (2.35)

Further, if we let c1 := supw∈C0
‖ζ̄TDh(w)‖p/qp <∞, then

1

n

n∑
i=1

∥∥ζ̄TDh(w)
∥∥ρ pq
p
I (Wi ∈ C0) < cρ1,

for all n > N ′(δ). As a consequence, if n ≥ N ′ (δ), it follows from Equation (2.32)

and Equation (2.35) that

sup
‖ζ‖p>b

{
−ζTHn −Mn (ζ)

}
≤ sup
‖ζ‖p>b

{
−ζTHn −

(
cδ‖ζ‖p

2
− (cc1)ρ − cε′‖ζ‖p

)}
≤ sup
‖ζ‖p>b

{
−ζTHn − ‖ζ‖p

{
c

(
δ

2
− ε′

)
− (cc1)ρ

b

}}
.

Consequently, on the set ‖Hn‖q ≤ b′, we obtain

sup
‖ζ‖p>b

{
−ζTHn −Mn (ζ)

}
≤ sup
‖ζ‖p>b

‖ζ‖p
[
b′ −

{
c

(
δ

2
− ε′

)
− (cc1)ρ

b

}]
.

Now, if we take c > 4(b′+1)/δ, ε′ = δ/4 and b to be large enough such that b > (cc1)ρ

then

b′ −
{
c

(
δ

2
− ε′

)
− (cc1)ρ

b

}
< 0.
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Therefore, if n ≥ n0 (see Equation (2.31)), then

P

(
max
‖ζ‖p>b

{
−2ζTHn −Mn (ζ)

}
> 0

)
≤ P

(
‖Hn‖q > b′

)
+ P (N ′ (δ) > n) .

The result now follows immediately from the previous inequality by choosing b′ large

enough so that P (‖Hn‖q > b′) ≤ ε/2 and later n0 so that P (N ′(δ) > n0) ≤ ε/2. The

selection of b′ is feasible due to A2). This proves the statement of Lemma 2.2.

Lemma 2.3. For any b > 0 and c0 ∈ (0,∞) ,

1

n

n∑
i=1

∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

p
I
(
‖Wi‖p ≤ c0

)
→ E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p
I(‖W‖p ≤ c0)

]
,

uniformly over ‖ζ‖p ≤ b in probability as n→∞.

Proof of Lemma 2.3. We first argue a suitable Lipschitz property for the map ζ ↪→
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p
.

It is elementary that for any 0 ≤ a0 < a1 and γ > 1

aγ1 − a
γ
0 = γ

ˆ a1

a0

tγ−1dt ≤ γaγ−1
1 (a1 − a0) .

Applying this observation with

a1 = max
(∥∥ζT1 Dh (Wi)

∥∥
p
,
∥∥ζT0 Dh (Wi)

∥∥
p

)
,

a0 = min
(∥∥ζT1 Dh (Wi)

∥∥
p
,
∥∥ζT0 Dh (Wi)

∥∥
p

)
,

γ = ρ/(ρ− 1),

and using that
∥∥ζTDh (Wi)

∥∥
p
≤ b ‖Dh (Wi)‖p for ‖ζ‖p ≤ b, we obtain

∣∣∣∥∥ζT0 Dh (Wi)
∥∥ρ/(ρ−1)

p
−
∥∥ζT1 Dh (Wi)

∥∥ρ/(ρ−1)

p

∣∣∣ ≤ ρ

ρ− 1
b1/(ρ−1) ‖Dh (Wi)‖ρ/(ρ−1)

p ‖ζ0 − ζ1‖p .
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Consequently, we have that

∣∣∣∣∣ 1n
n∑
i=1

∥∥ζT0 Dh (Wi)
∥∥ ρ
ρ−1

p
− 1

n

n∑
i=1

∥∥ζT1 Dh (Wi)
∥∥ ρ
ρ−1

p

∣∣∣∣∣ ≤ ρ

ρ− 1
‖ζ0 − ζ1‖p

b
1
ρ−1

n

n∑
i=1

‖Dh (Wi)‖
ρ
ρ−1
p .

Since Dh(·) is continuous, E
[
‖Dh (W )‖ρ/(ρ−1)

p I(‖W‖p ≤ c0)
]
<∞, thus yielding the

tightness of

1

n

n∑
i=1

‖ζTDh(Wi)‖ρ/(ρ−1)
p I (‖Wi‖p ≤ c0),

under the uniform topology on compact sets. The Strong Law of Large Num-

bers guarantees that finite dimensional distributions converge (for any choice of

ζ1, . . . , ζk, k ≥ 1), and, since the limit is deterministic, we obtain the desired con-

vergence in probability.

Proof of Theorem 2.1. Let us first observe that Rn(θ∗) ≥ 0 (choosing ζ = 0).

Then, as a consequence of Lemma 2.2, there exists b > 0 such that the event

An =

{
nρ/2Rn(θ∗) = max

‖ζ‖p≤b

{
−2ζTHn −Mn (ζ)

}}
, (2.36)

where the outer supremum is attained at some ‖ζ∗‖p ≤ b, occurs with probability at

least 1− ε, as long as n ≥ n0. In other words, P (An) ≥ 1− ε when n ≥ n0.

We first consider the case ρ > 1. For ζ 6= 0, write ζ̄ = ζ/ ‖ζ‖p . Next, define the

vector Vi(ζ̄) via Vi
(
ζ̄
)

= Dh (Wi)
T ζ̄ (that is, the j-th entry of Vi

(
ζ̄
)
is the j-th entry

of the vector Dh (Wi)
T ζ̄), and put

∆′i = ∆′i
(
ζ̄
)

=
∣∣Vi (ζ̄)∣∣p/q sgn (Vi (ζ̄)) . (2.37)
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Next, let ∆̄i = ci∆
′
i with ci chosen so that

∥∥∆̄i

∥∥
q

=

(
1

ρ

∥∥ζTDh (Wi)
∥∥
p

)1/(ρ−1)

.

In such case we have that

max
∆

{
ζTDh (Wi) ∆− ‖∆‖ρp

}
= max
‖∆‖q≥0

{∥∥ζTDh (Wi)
∥∥
p
‖∆‖q − ‖∆‖

ρ
q

}
= ζTDh (Wi) ∆̄i −

∥∥∆̄i

∥∥ρ
q

=
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
. (2.38)

Pick c0 ∈ (0,∞) and define C0 = {‖Wi‖p ≤ c0}. Note that

Mn (ζ) ≥M ′
n (ζ, c0) ,

where

M ′
n (ζ, c0) =

1

n

n∑
i=1

I (Wi ∈ C0)

{
ζT
ˆ 1

0

Dh
(
Wi + n

−1/2
i ∆̄iu

)
∆̄idu−

∥∥∆̄i

∥∥ρ
q

}+

.

Therefore

max
‖ζ‖p≤b

{
−ζTHn −Mn (ζ)

}
≤ max
‖ζ‖p≤b

{
−ζTHn −M ′

n (ζ, c0)
}
. (2.39)

Define

M̂n (ζ, c0) =
1

n

n∑
i=1

I (Wi ∈ C0)
{
ζTDh (Wi) ∆̄idu−

∥∥∆̄i

∥∥ρ
q

}+

=
1

n

n∑
i=1

I (Wi ∈ C0)
∥∥ζTDh (Wi)

∥∥ρ/(ρ−1)

p

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
,
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where the equality follows from (2.38). We then claim that

sup
‖ζ‖q≤b

∣∣∣M̂n (ζ, c0)−M ′
n (ζ, c0)

∣∣∣→ 0. (2.40)

In order to verify (2.40), note, using the continuity of Dh (·) , that for any ε′ > 0

there exists n0 such that if n ≥ n0 then (uniformly over ‖ζ‖p ≤ b),

∣∣∣∣ˆ 1

0

I (Wi ∈ C0)
∥∥ζT [Dh(Wi + n−1/2∆̄iu)−Dh(Wi)

]∥∥
p

∥∥∆̄i

∥∥
q
du

∣∣∣∣ ≤ ε′.

Therefore, if n ≥ n0,

1

n

n∑
i=1

I (Wi ∈ C0)

∣∣∣∣ζT ˆ 1

0

[
Dh(Wi + n−1/2∆̄iu)−Dh(Wi)

]
∆̄idu

∣∣∣∣ ≤ ε′.

Since ε′ > 0 is arbitrary, we conclude (2.40). Then, applying Lemma 2.3 we obtain

M̂n (ζ, c0)→ E
(
ζTDh (Wi) ∆̄idu−

∥∥∆̄i

∥∥ρ
q

)+

uniformly over ‖ζ‖p ≤ b as n→∞, in probability. Therefore, applying the continuous

mapping principle, we have that

max
‖ζ‖p≤b

{
−ζTHn −M ′

n (ζ, c0)
}

⇒ max
‖ζ‖p≤b

{
−ζTH − κ (ρ)E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p
I
(
‖W‖p ≤ c0

)]}
, (2.41)

as n→∞, where

κ (ρ) =

(
1

ρ

)1/(ρ−1)(
1− 1

ρ

)
,

and H ∼ N (0, Cov[h (W, θ∗)]). From (2.39) and the construction of (2.36), we can
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easily obtain that nρ/2Rn (θ∗) is stochastically bounded (asymptotically) by

max
ζ

{
−ζTH − κ (ρ)E

[∥∥ζTDh (W )
∥∥ρ/(ρ−1)

p

]}
,

which verifies the first part of the theorem when ρ > 1.

Now, for ρ = 1, we will follow very similar steps. Again, due to Lemma 2.2 we

concentrate on the region ‖ζ‖p ≤ b for some b > 0. For the upper bound, define ∆′i

as in (2.37). Using a localization technique similar to that described in the proof of

Lemma 2.2 in which the set C0 as introduced we might assume that ‖Wi‖p ≤ c0 for

some c0 > 0. Then, for a given constant c > 0, setting ∆i = c∆′i, we obtain that

max
‖ζ‖p≤b

{
−ζTHn −

1

n

n∑
i=1

sup
∆i

{
ζT
ˆ 1

0

Dh(Wi + ∆iu/n
1/2)∆idu− ‖∆i‖q

}}

≤ max
‖ζ‖p≤b

{
−ζTHn −

1

n

n∑
i=1

(
cζT
ˆ 1

0

Dh(Wi + c∆′iu/n
1/2)∆′idu− c ‖∆′i‖q

)
I (Wi ∈ C0)

}
.

As in the case ρ > 1 we have that

1

n

n∑
i=1

I(Wi ∈ C0)

ˆ 1

0

ζT
[
Dh(Wi + c∆′iu/n

1/2)−Dh(Wi)
]

∆′idu→ 0

in probability uniformly on ζ-compact sets. Similarly, in addition, for any c > 0 and

any b > 0

max
‖ζ‖p≤b

{
−ζTHn −

1

n

n∑
i=1

(
cζTDh(Wi)∆

′
idu− c ‖∆′i‖q

)
I (Wi ∈ C0)

}

= max
‖ζ‖≤b

{
−ζTHn −

1

n

n∑
i=1

c
(∥∥ζTDh (W )

∥∥
p
− 1
)+

‖∆′i‖qI(‖Wi‖p ≤ c0)

}

⇒ max
‖ζ‖≤b

{
−ζTH − cE

[(∥∥ζTDh (W )
∥∥
p
− 1
)+

‖ζ̄TDh(W )‖p/qp I(‖W‖p ≤ c0)

]}
,
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because ‖∆′‖qq = ‖ζ̄TDh(Wi)‖pp. Next, as the constant c can be arbitrarily large, we

obtain a stochastic upper bound of the form

max
‖ζ‖≤b:P(‖ζTDh(W )‖p≤1)=1

{
−ζTH

}
≤ max

ζ:P(‖ζTDh(W )‖p≤1)=1

{
−ζTH

}
.

This completes the proof of Theorem 2.1.

Proof of Proposition 2.2. We follow the notation introduced in the proof of Theorem

2.1. Recall from Equation (2.27) and Equation (2.28) that

n1/2Rn (θ∗) = sup
ζ

{
ζTHn −

1

n

n∑
k=1

sup
∆

{ˆ 1

0

ζTDh
(
Wi + ∆u/n1/2

)
∆du− ‖∆‖q

}}
.

Let A := {ζ : esssup
∥∥ζTDh (w)

∥∥
p
≤ 1}, where the essential supremum is taken with

respect to the Lebesgue measure. Then, due to Hölder’s inequality, if ζ ∈ A,

sup
∆

{ˆ 1

0

ζTDh
(
Wi + ∆u/n1/2

)
∆du− ‖∆‖q

}
≤ sup

∆

{ˆ 1

0

∥∥ζTDh (Wi + ∆u/n1/2
)∥∥

p
‖∆‖q du− ‖∆‖q

}
≤ sup

∆
‖∆‖q

{ˆ 1

0

(∥∥ζTDh (Wi + ∆u/n1/2
)∥∥

p
− 1
)
du

}
≤ 0.

Consequently,

n1/2Rn (θ∗) ≥ sup
ζ∈A

ζTHn.

Letting n→∞ we conclude that

sup
ζ∈A

ζTHn ⇒ sup
ζ∈A

ζTH.

Because Wi is assumed to have a density with respect to the Lebesgue measure it
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follows that P
(∥∥ζTDh (Wi)

∥∥
p
≤ 1
)

= 1 if and only if ζ ∈ A and the result follows.

Finally, we provide the proof of Proposition 2.3.

Proof of Proposition 2.3. Recall from Equation (2.27) and Equation (2.28) that

n1/2Rn (θ∗) = sup
ζ

{
ζTHn −

1

n

n∑
k=1

sup
∆

{ˆ 1

0

ζTDh
(
Wi + ∆u/n1/2

)
∆du− ‖∆‖ρq

}}
.

(2.42)

As in the proof of Theorem 2.1, due to Lemma 2.2, we might assume that ‖ζ‖p ≤ b

for some b > 0.

The strategy will be to split the inner supremum in values of ‖∆‖q ≤ δn1/2 and

values ‖∆‖q > δn1/2 for a suitably small positive constant δ. In Step 1, we shall show

that the supremum is achieved with high probability in the former region. Then, in

Step 2, we analyze the region in which ‖∆‖q ≤ δn1/2 and argue that the integrals

inside the summation in Equation (2.42) can be replaced by ζTDh (Wi) ∆. Once this

substitution is performed we can solve the inner maximization problem explicitly in

Step 3 and, finally, we will apply a weak convergence result on ζ-compact sets to

conclude the result. We now proceed to execute this strategy.

Execution of Step 1: Pick δ > 0 small, to be chosen in the sequel, then note that A5)

implies (by redefining κ if needed, due to the continuity of Dh (·)) that

‖Dh (w)‖p ≤ κ
(

1 + ‖w‖ρ−1
q

)
.
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Therefore, for ζ such that ‖ζ‖p ≤ b,

sup
‖∆‖q≥δn1/2

{ˆ 1

0

∣∣ζTDh (Wi + ∆u/n1/2
)

∆
∣∣ du− ‖∆‖ρq}

≤ sup
‖∆‖q≥δn1/2

{
bκ

(
1 +

ˆ 1

0

∥∥Wi + ∆u/n1/2
∥∥ρ−1

q
du

)
‖∆‖q − ‖∆‖

ρ
q

}
.

Note that if ρ ∈ (1, 2), then 0 < ρ − 1 < 1, and therefore by the triangle inequality

and concavity

∥∥Wi + ∆u/n1/2
∥∥ρ−1

q
≤
(
‖Wi‖q +

∥∥∆/n1/2
∥∥
q

)ρ−1

≤ ‖Wi‖ρ−1
q +

∥∥∆/n1/2
∥∥ρ−1

q
.

On the other hand, if ρ ≥ 2, then ρ − 1 ≥ 1 and the triangle inequality combined

with Jensen’s inequality applied as follows:

‖a+ c‖ρ−1 ≤ 2ρ−1

(
1

2
‖a‖ρ−1 +

1

2
‖c‖ρ−1

)
= 2ρ−2

(
‖a‖ρ−1 + ‖c‖ρ−1) ,

yields ∥∥Wi + ∆u/n1/2
∥∥ρ−1

q
≤ 2ρ−2

(
‖Wi‖ρ−1

q +
∥∥∆/n1/2

∥∥ρ−1

q

)
.

So, in both cases we can write

sup
‖∆‖q≥δn1/2

{ˆ 1

0

∣∣ζTDh(Wi + ∆u/n1/2)∆
∣∣ du− ‖∆‖ρq}

≤ sup
‖∆‖q≥δn1/2

{
bκ
(

1 + 2ρ−1
(
‖Wi‖ρ−1

q +
∥∥∆/n1/2

∥∥ρ−1

q

))
‖∆‖q − ‖∆‖

ρ
q

}
≤ sup
‖∆‖q≥δn1/2

{
bκ
(
‖∆‖q + 2ρ−1 ‖Wi‖ρ−1

q ‖∆‖q + 2ρ−1 ‖∆‖ρq /n
(ρ−1)/2

)
− ‖∆‖ρq

}
.
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Next, as E‖Wn‖ρ <∞, we have that for any ε′ > 0,

P
(
‖Wn‖ρq ≥ ε′n i.o.

)
= 0,

therefore we might assume that there exists n0 such that for all i ≤ n and n ≥ n0,

‖Wi‖ρ−1
q ≤ (ε′n)(ρ−1)/ρ. Therefore, if (ε′)(ρ−1)/ρ ≤ δρ−1/ (bκ2ρ), we conclude that if

‖∆‖q ≥ δn1/2 and n > n0,

bκ2ρ−1 ‖Wi‖ρ−1
q ‖∆‖q ≤ bκ2ρ−1 (ε′n)

(ρ−1)/ρ ‖∆‖q

≤ 1

2
δρ−1n(ρ−1)/2 ‖∆‖q ≤

1

2
‖∆‖ρq .

Similarly, choosing n sufficiently large we can guarantee that

bκ
(
‖∆‖q + 2ρ−1 ‖∆‖ρq /n

(ρ−1)/2
)
≤ 1

2
‖∆‖ρq .

Therefore, we conclude that for any fixed δ > 0,

sup
‖∆‖q≥δ

√
n

{ˆ 1

0

∣∣ζTDh(Wi + ∆u/n1/2)∆
∣∣ du− ‖∆‖ρq} ≤ 0 (2.43)

provided n is large enough, thus achieving the desired result over the region ‖∆‖q ≥

δ
√
n.
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Execution of Step 2: Next, we let ε′′ > 0, and note that

sup
‖∆‖q≤δ

√
n

{ˆ 1

0

ζTDh(Wi + ∆u/n1/2)∆du− ‖∆‖ρq
}

(2.44)

≤ sup
‖∆‖q≤δ

√
n

{ˆ 1

0

ζT
[
Dh(Wi + ∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}
+ sup
‖∆‖q≤δ

√
n

{
ζTDh (Wi) ∆− (1− ε′′) ‖∆‖ρq

}
.

We now argue locally, using A6), a bound for the first term in the right hand side of

Equation (2.44):

sup
‖∆‖q≤δ

√
n

{ˆ 1

0

ζT
[
Dh(Wi + ∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}
(2.45)

≤ sup
‖∆‖q≤δ

√
n

{
‖ζ‖pκ̄ (Wi) ‖∆‖2

q /n
1/2 − ε′′ ‖∆‖ρq

}
≤ sup
‖∆̄‖

q
≤1

{
bκ̄ (Wi)

∥∥∆̄
∥∥2

q
δ2n1/2 − ε′′

∥∥∆̄
∥∥ρ
q

(
δn1/2

)ρ}
.

As supx∈[0,1] {anx2 − bnxρ} ≤ (ρ− 2)+(aρn/b
2
n)1/(ρ−2)/ρ when bn > an, we have, for all

n sufficiently large, that

sup
‖∆‖q≤δ

√
n

{ˆ 1

0

ζT
[
Dh(Wi + ∆u/n1/2)−Dh(Wi)

]
∆du− ε′′ ‖∆‖ρq

}

≤ (ρ− 2)+

ρ

(
bκ̄(Wi)

ε′′
√
n

)ρ/(ρ−2)

.

Since E[κ̄(W )2] <∞ (from Assumption A6)), we have that P (κ̄(Wi) > ε′′′
√
i i.o.) = 0
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for any ε′′′ > 0. Consecutively, κ̄(Wi) < ε′′′
√
i for all i large enough, and therefore,

limn→∞
1

n

n∑
i=1

sup
‖∆‖q≤δ

√
n

{ˆ 1

0

ζT
[
Dh
(
Wi + ∆u/n1/2

)
−Dh (Wi)

]
∆du− ε′′ ‖∆‖ρq

}

≤ (ρ− 2)+

ρ
limn→∞

(
b

ε′′

)ρ/(ρ−2)
1

n

n∑
i=1

(
κ̄(Wi)√

n

)ρ/(ρ−2)

≤ (ρ− 2)+

ρ

(
b
ε′′′

ε′′

)ρ/(ρ−2)

,

which can be made arbitrarily small by choosing ε′′′ arbitrarily small. Therefore, for

any fixed ε′′, δ > 0,

limn→∞
1

n

n∑
i=1

sup
‖∆‖q≤δ

√
n

{ˆ 1

0

ζT
[
Dh
(
Wi + ∆u/n1/2

)
−Dh (Wi)

]
∆du− ε′′ ‖∆‖ρq

}
= 0.

(2.46)

Execution of Step 3: Next, it follows from Equation (2.43), Equation (2.44) and

Equation (2.46) that for any fixed ε′′, δ > 0, there exists N0 such that if n ≥ N0,

1

n

n∑
i=1

sup
∆

{ˆ 1

0

ζTDh
(
Wi + ∆u/n1/2

)
∆du− ‖∆‖ρq

}
≤ 1

n

n∑
i=1

sup
∆≤δ

√
n

{
ζTDh (Wi) ∆du− (1− ε′′) ‖∆‖ρq

}
+ δ

≤ 1

n

n∑
i=1

min
{
κ (ρ, ε′′)

∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

p
, cn

}
+ δ,

where

κ (ρ, ε′′) =

(
1

ρ(1− ε′′)

)1/(ρ−1)(
1− 1

ρ

)
,

and cn →∞ as n→∞ (the exact value of cn is not important).
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Next, note that A5) implies that

‖Dh (Wi)‖ρ/(ρ−1)
p I (‖Wi‖ ≥ 1) ≤ κI (‖Wi‖ ≥ 1) ‖Wi‖ρq ≤ κ ‖Wi‖ρq

and, therefore, since Dh (·) is continuous (therefore locally bounded) and E ‖Wi‖ρq <

∞ also by A5), we have that

E ‖Dh (W )‖ρ/(ρ−1)
p <∞.

Then, an argument similar to Lemma 2.3 shows that

sup
‖ζ‖p≤b

{
ζTHn −

1

n

n∑
i=1

{
κ (ρ, ε′′)

∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

q
, cn

}}

⇒ sup
‖ζ‖p≤b

{
ζTH − κ (ρ, ε′′)E

∥∥ζTDh (Wi)
∥∥ρ/(ρ−1)

q

}
,

as n→∞ (where ⇒ denotes weak convergence). Finally, we can send ε′′, δ → 0 and

b→∞ to obtain the desired asymptotic stochastic lower bound.

2.A.2. Proofs of the distributionally robust representations in

Section 2.3.2

Here, we provide proofs for results in Section 2.3.2 that recover various norm regular-

ized regressions as a special cases of distributionally robust regression (Proposition

2.5, Theorems 2.2 and 2.3).

Proof of Proposition 2.5. We utilize the duality result in Proposition 2.4 to prove

Proposition 2.5. For brevity, let X̄i = (Xi, Yi) and β̄ = (−β, 1). Then the loss function

becomes l(Xi, Yi; β) = (β̄T X̄i)
2. We first decipher the function φγ(Xi, Yi; β) defined
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in Proposition 2.4:

φγ(Xi, Yi; β) = sup
ū∈Rd+1

{
(β̄T ū)2 − γ‖X̄i − ū‖2

q.
}

To proceed further, we change the variable to ∆ = ū − X̄i, and apply Hölder’s

inequality to see that |β̄T∆| ≤ ‖β̄‖p‖∆‖q, where the equality holds for some ∆ ∈ Rd+1.

Therefore,

φγ(X̄i; β) = sup
∆∈Rd+1

{ (
β̄T X̄i + β̄T∆

)2 − γ ‖∆‖2
q

}
= sup

∆∈Rd+1

{(
β̄T X̄i + sign

(
β̄T X̄i

) ∣∣β̄T∆
∣∣)2 − γ ‖∆‖2

q

}
= sup

∆∈Rd+1

{(
β̄T X̄i + sign

(
β̄T X̄i

)
‖∆‖q

∥∥β̄∥∥
p

)2

− γ ‖∆‖2
q

}
.

On expanding the squares, the above expression simplifies as below:

φγ(X̄i; β) =
(
β̄T X̄i

)2
+ sup

∆∈Rd+1

{
−
(
γ −

∥∥β̄∥∥2

p

)
‖∆‖2

q + 2
∣∣β̄T X̄i

∣∣ ∥∥β̄∥∥
p
‖∆‖q

}

=


(
β̄T X̄i

)2
γ/(γ −

∥∥β̄∥∥2

p
) if γ >

∥∥β̄∥∥2

p
,

+∞ if γ ≤
∥∥β̄∥∥2

p
.

(2.47)

With this expression for φγ(Xi, Yi; β), we next investigate the right hand side of the

duality relation in Proposition 2.4. As φγ(x, y; β) = ∞ when γ ≤ ‖β‖2
p, we obtain

from the dual formulation in Proposition 2.4 that

sup
P :Dc(P,Pn)≤δ

EP [l(X, Y ; β)] = inf
γ≥0

{
γδ +

1

n

n∑
i=1

φγ(Xi, Yi; β)

}

= inf
γ>‖β‖2p

{
γδ +

γ

γ − ‖β̄‖2
p

1

n

n∑
i=1

(β̄T X̄i)
2

}
. (2.48)
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Now, see that
∑n

i=1(β̄T X̄i)
2/n is nothing but the mean square error MSEn(β). Next,

as the right hand side of (2.48) is a convex function growing to ∞ (when γ → ∞

or γ → ‖β̄‖2
p ), its global minimizer can be characterized uniquely via first order

optimality condition. This, in turn, renders the right hand side of (2.48) as

sup
P :Dc(P,Pn)≤δ

EP [l(X, Y ; β)] =
(√

MSEn(β) +
√
δ‖β̄‖p

)2

.

This completes the proof of Proposition 2.5.

Outline of a proof of Theorem 2.2. The proof of Theorem 2.2 is essentially the

same as the proof of Proposition 2.5, except for adjusting for ∞ in the definition of

cost function Nq((x, y), (u, v)) when y 6= v (as in the derivation leading to φγ(Xi, Yi; β)

defined in (2.18)). First, see that

φγ(Xi, Yi; β) = sup
x′∈Rd,y′∈R

{
(y′Tx′2 − γNq

(
(x′, y′), (Xi, Yi)

)}
.

As Nq((x
′, y′), (Xi, Yi)) = ∞ when y′ 6= Yi, the supremum in the above expression is

effectively over only (x′, y′) such that y′ = Yi. As a result, we obtain,

φγ(Xi, Yi; β) = sup
x′∈Rd

{
(Yi − βTx′2 − γNq

(
(x′, Yi), (Xi, Yi)

)}
.

= sup
x′∈Rd

{
(Yi − βTx′2 − γ‖x′ −Xi‖2

q

)}
.

Now, following same lines of reasoning as in the proof of Theorem 2.5 and the deriva-
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tion leading to (2.47), we obtain

φγ(x, y; β) =


γ

γ−‖β‖2p
(Yi − βTXi)

2 when λ > ‖β‖2
p,

+∞ otherwise.

The rest of the proof is same as in the proof of Proposition 2.5.

Proof of Theorem 2.3. As in the proof of Proposition 2.5, we apply the duality

formulation in Proposition 2.4 to write the worst case expected log-exponential loss

function as:

sup
P : Dc(P,Pn)≤δ

EP
[
l(X, Y ; β)

]
= inf

λ≥0

{
δλ+

1

n

n∑
i=1

sup
x

{
log
(
1 + exp(−YiβTx)

)
− λ ‖x−Xi‖p

}}
.

For each (Xi, Yi), following Lemma 1 in Shafieezadeh-Abadeh et al. [2015], we obtain

sup
x

{
log
(
1 + exp(−YiβTx)

)
− λ ‖x−Xi‖p

}

=

 log
(
1 + exp(−YiβTXi)

)
if ‖β‖q ≤ λ,

+∞ if ‖β‖q > λ.
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Then we can write the worst case expected loss function as,

inf
λ≥0

{
δλ+

1

n

n∑
i=1

sup
x

{
log
(
1 + exp(−YiβTx)

)
− λ ‖x−Xi‖p

}}

= inf
λ≥0

{
δλ+

1

n

n∑
i=1

(
log
(
1 + exp(−YiβTXi)

)
1{λ>‖β‖q} +∞1{λ≤‖β‖q}

)}

= inf
λ>‖β‖q

{
δλ+

1

n

n∑
i=1

log
(
1 + exp(−YiβTXi)

)}

=
1

n

n∑
i=1

log
(
1 + exp(−YiβTXi)

)
+ δ ‖β‖q ,

which is equivalent to regularized logistic regression in the theorem statement.

Next we move to SVM with Hinge loss function, let us apply the duality formula-

tion in Proposition 2.4 to write the worst case expected Hinge loss function as:

sup
P : Dc(P,Pn)≤δ

EP
[ (

1 + Y βTX
)+ ]

= inf
λ≥0

{
δλ+

1

n

n∑
i=1

sup
x

{(
1− YiβTx

)+ − λ ‖x−Xi‖p
}}

.

For each i, let us consider the the maximization problem and for simplicity we denote

∆ui = x−Xi

sup
∆ui

{(
1− YiβT (Xi + ∆ui)

)+ − λ ‖∆ui‖p
}

= sup
∆ui

sup
0≤αi≤1

{
αi
(
1− YiβT (Xi + ∆ui)

)
− λ ‖∆ui‖p

}
= sup

0≤αi≤1
sup
∆ui

{
αiYiβ

T∆ui − λ ‖∆ui‖p + αi
(
1− YiβTXi

)}
= sup

0≤αi≤1
sup
∆ui

{
αi ‖β‖q ‖∆ui‖p − λ ‖∆ui‖p + αi

(
1− YiβTXi

)}

=


(
1− YiβTXi

)+ if ‖β‖q ≤ λ

+∞ if ‖β‖q > λ
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The first equality is due to x+ = sup0≤α≤1 x; second equality is because the function is

concave in ∆ui linear in α and α is in a compact set, we can apply minimax theorem

to switch the order of maximals; third equality is due to applying Holder inequality

to the first term and since the second term only depends on the norm of ∆ui we can

argue the equality also holds for this maximization problem. We notice the objective

function is a minimization problem thus we will require λ ≥ ‖β‖q. Then we have

inf
λ≥‖β‖q

{
δλ+

1

n

n∑
i=1

(
1− YiβTXi

)+

}
=

1

n

n∑
i=1

(
1− YiβTXi

)+
+ δ ‖β‖q .

2.A.3. Proofs of RWP function limit theorems for linear and

logistic regression examples

We first obtain the dual formulation of the respective RWP functions for linear and lo-

gistic regressions using Proposition 2.1. Let E[h(x, y; β)] = 0 be the estimating equa-

tion under consideration (h(x, y; β) = (y−βTx)x for linear regression and h(x, y; β) as

in Equation (2.25) for logistic regression). Recall that the cost function is c(·) = Nq(·).

Due to the duality result in Proposition 2.1, we obtain

Rn(β∗) = inf
{
Dc(P, Pn) : EP [h(X, Y ; β∗)] = 0

}
= sup

λ

{
− 1

n

n∑
i=1

sup
(x′,y′)

{
λTh(x′, y′; β∗)−Nq

(
(x′, y′), (Xi, Yi)

)}}
.

As Nq((x
′, y′), (Xi, Yi)) =∞ when y′ 6= Yi, the above expression simplifies to,

Rn(β∗) = sup
λ

{
− 1

n

n∑
i=1

sup
x′

{
λTh(x′, Yi; β∗)− ‖x′ −Xi‖ρq

}}
, (2.49)
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where ρ = 2 for the case of linear regression (Theorem 2.4) and ρ = 1 for the case

of logistic regression (Theorem 2.5). As RWP function here is similar to the RWP

function for general estimating equation in Section 2.2.4, a similar limit theorem

holds. We state here the assumptions for proving RWP limit theorems for the dual

formulation in Equation (2.49).

Assumptions:

A2’) Suppose that β∗ ∈ Rd satisfies E[h(X, Y ; β∗)] = 0 and E‖h(X, Y ; β∗)‖2
2 < ∞

(While we do not assume that β∗ is unique, the results are stated for a fixed β∗

satisfying E[h(X, Y ; β∗)] = 0.)

A4’) Suppose that for each ξ 6= 0, the partial derivative Dxh(x, y; β∗) satisfies,

P
(∥∥ξTDxh(X, Y ; β∗)

∥∥
p
> 0
)
> 0.

A6’) Assume that there exists κ̄ : Rm →∞ such that

‖Dxh(x+ ∆, y; β∗)−Dxh(x, y; β∗)‖p ≤ κ̄(x, y)‖∆‖q,

for all ∆ ∈ Rd, and E[κ̄(X, Y )2] <∞.

Lemma 2.4. If ρ ≥ 2, under Assumptions A2’), A4’) and A6’), we have,

nRn(β∗; ρ)⇒ R̄(ρ),

where

R̄(ρ) = sup
ξ∈Rd

{
ρξTH − (ρ− 1)E

∥∥ξTDxh(X, Y ; β∗)
∥∥ρ/(ρ−1)

p

}
,

with H ∼ N (0,Cov[h(X, Y ; β∗)] and 1/p+ 1/q = 1.
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Lemma 2.5. If ρ = 1, in addition to assuming A2’), A4’), suppose that Dxh(·, y; β∗)

is continuous for every y in the support of probability distribution of Y. Also suppose

that X has a positive probability density (almost everywhere) with respect to the

Lebesgue measure. Then,

nRn(β∗; 1)⇒ R̄(1),

where

R̄(1) = sup
ξ:P (‖ξTDxh(X,Y ;β∗)‖p>1)=0

{
ξTH

}
,

with H ∼ N (0,Cov[h(X, Y ; β∗]).

The proof of Lemma 2.4 and 2.5 follows closely the proof of our results in Section 2.2

and therefore it is omitted. We prove Theorem 2.4 and 2.5 as a quick application of

these lemmas.

Proof of Theorem 2.4. To show that the RWP function dual formulation in Equa-

tion (2.49) converges in distribution, we verify the assumptions of Lemma 2.4 with

h(x, y; β) = (y − βTx)x. Under the null hypothesis H0, Y − βT∗ X = e is independent

of X, has zero mean and finite variance σ2. Therefore,

E [h(X, Y ; β)] = E [eX] = 0, and

E‖h(X, Y ; β)‖2
2 = E

[
e2XTX

]
= σ2E‖X‖2

2,

which is finite, because trace of the covariance matrix Σ is finite. This verifies As-
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sumption A2’). Further,

Dxh(X, Y ; β∗) =
(
y − βT∗ X

)
Id −XβT∗ = eId −XβT∗ ,

where Id is the d× d identity matrix. For any ξ 6= 0,

P
(
‖ξTDxh(X, Y ; β∗)‖p = 0

)
= P

(
eξ = (ξTX)β

)
= 0,

thus satisfying Assumption A4’) trivially. In addition,

‖Dxh(x+ ∆, y; β∗)−Dxh(x, y; β∗)‖p =
∥∥βT∗ ∆Id −∆βT∗

∥∥
p
≤ c‖∆‖q,

for some positive constant c. This verifies Assumption A6’). As all the assumptions

imposed in Lemma 2.4 are easily satisfied, using ρ = 2, we obtain the following

convergence in distribution as a consequence of Lemma 2.4.

Rn(β∗)⇒ sup
ξ∈Rd

{
2ξTH − E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
,

as n → ∞. Here, H ∼ N (0,Cov[h(X, Y ; β∗)]. As Cov[h(X, Y ; β∗)] = E
[
e2XXT

]
=

σ2Σ, if we let Z = H/σ, we obtain the limit law,

L1 = sup
ξ∈Rd

{
2σξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
,

where Z = N (0,Σ), as in the statement of the theorem.

Proof of the stochastic upper bound in Theorem 2.4: For the stochastic upper bound,

let us consider the asymptotic distribution L1 and rewrite the maximization problem
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as,

L1 = sup
‖ξ‖p=1

sup
α≥0

{
2σαξTZ − α2E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
≤ sup
‖ξ‖p=1

sup
α≥0

{
2σα ‖Z‖q − α

2E
∥∥eξ − (ξTX)β∗

∥∥2

p

}
,

because of Hölder’s inequality. By solving the inner optimization problem in α, we

obtain

L1 ≤ sup
‖ξ‖p=1

σ2 ‖Z‖2
q

E ‖eξ − (ξTX)β∗‖2
p

=
σ2 ‖Z‖2

q

inf‖ξ‖p=1 E ‖eξ − (ξTX)β∗‖2
p

. (2.50)

Next, consider the minimization problem in the denominator: Due to triangle in-

equality,

inf
‖ξ‖p=1

E
∥∥eξ − (ξTX)β∗

∥∥2

p

≥ inf
‖ξ‖p=1

E
(
|e| ‖ξ‖p −

∣∣ξTX∣∣ ‖β∗‖p)2

= E |e|2 + inf
‖ξ‖p=1

{
‖β∗‖2

p E
∣∣ξTX∣∣2 − 2 ‖β∗‖p E |e|E

∣∣ξTX∣∣}
≥ E |e|2 + inf

‖ξ‖p=1

{
‖β∗‖2

p

(
E
∣∣ξTX∣∣)2 − 2 ‖β∗‖p E |e|E

∣∣ξTX∣∣}
= E |e|2 − (E |e|)2 + inf

‖ξ‖p=1

(
‖β∗‖p E

∣∣ξTX∣∣− E |e|
)2

≥ E |e|2 − (E |e|)2 = Var [|e|] .

Combining the above inequality with (2.50), we obtain,

sup
ξ∈Rd

{
σ2ξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2

p

}
≤
σ2 ‖Z‖2

q

Var |e|
.
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Consequently,

nRn(β∗)
D−→ L1 := max

ξ∈Rd

{
σξTZ − E

∥∥eξ − (ξTX)β∗
∥∥2

p

} D

≤ E[e2]

E[e2]− (E |e|)2
‖Z‖2

q.

If random error e is normally distributed, then

nRn(β∗) .D
π

π − 2
‖Z‖2

q,

thus establishing the desired upper bound.

Proof of Theorem 2.5. Under null hypothesisH0, the training samplesDn = {Xi, Yi}ni=1

are produced from the logistic regression model with parameter β∗. As β∗ minimizes

the expected log-exponential loss l(x, y; β), the corresponding optimality condition is

E[h(X, Y ; β∗)] = 0, where

h(x, y; β∗) =
−yx

1 + exp(yβ∗x)
.

As E‖h(X, Y ; β∗)‖2
2 ≤ E‖X‖2

2 is finite, Assumption A2’) is satisfied. Let Id denote

d× d identity matrix. While

Dxh(x, y; β∗) =
−yId

1 + exp(yβT∗ x)
+

xβT∗
(1 + exp(yβT∗ x))(1 + exp(−yβT∗ x))

is continuous (as a function of x) for every y, it is also true that

P
(∥∥ξTDxh(X, Y ; β∗)

∥∥
p

= 0
)

= P
(
Y
(
1 + exp(−Y βT∗ X)

)
ξ = (ξTX)β

)
= 0,

for any ξ 6= 0, thus satisfying Assumption A4’). As all the conditions required for
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the convergence in distribution in Lemma 2.5 are satisfied, we obtain,

√
nRn(β∗)⇒ sup

ξ∈A
ξTZ,

where Z ∼ N (0,E[XXT/(1 + exp(Y βT∗ X))2]) as a consequence of Lemma 2.5. Here,

the set A = {ξ ∈ Rd : ess sup‖ξTDxh(X, Y ; β∗)‖ ≤ 1}.

Proof of the stochastic upper bound in Theorem 2.5: First, we claim that A is a subset

of the norm ball {ξ ∈ Rd : ‖ξ‖p ≤ 1}. To establish this, we observe that,

∥∥ξTDxh(X, Y ; β∗)
∥∥
p

(2.51)

≥
∥∥∥∥ −Y ξ

1 + exp(Y βT∗ X)

∥∥∥∥
p

−

∥∥∥∥∥ (ξTX)β∗(
1 + exp(Y βT∗ X)

)(
1 + exp(Y βT∗ X)

)∥∥∥∥∥
p

≥

(
1

1 + exp(Y βT∗ X)
− ‖X‖q‖β∗‖p(

1 + exp(Y βT∗ X)
)(

1 + exp(−Y βT∗ X)
)) ‖ξ‖p, (2.52)

because Y ∈ {+1,−1}, and due to Hölder’s inequality |ξTX| ≤ ‖ξ‖p‖X‖q. If ξ ∈

Rd is such that ‖ξ‖p = (1 − ε)−2 > 1 for a given ε > 0, then following (2.52),

‖ξTDxh(X, Y )‖p > 1, whenever

(X, Y ) ∈ Ωε :=

{
(x, y) :

‖x‖q‖β∗‖p
1 + exp(−yβT∗ x)

≤ ε

2
,

1

1 + exp(yβT∗ x)
≥ 1− ε

2

}
.

Since X has positive density almost everywhere, the set Ωε has positive probability

for every ε > 0. Thus, if ‖ξ‖p > 1, ‖ξTDxh(X, Y ; β∗)‖p > 1 with positive probability.

Therefore, A is a subset of {ξ : ‖ξ‖p ≤ 1}. Consequently,

L3 := sup
ξ∈A

ξTZ
D

≤ sup
ξ:‖ξ‖p≤1

ξTZ = ‖Z‖q.

If we let Z̃ ∼ N (0,E[XXT ]), then Cov[Z̃]− Cov[Z] is positive definite. As a result,
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L3 is stochastically dominated by L4 := ‖Z̃‖q, thus verifying the desired stochastic

upper bound in the statement of Theorem 2.5.

Proof of Theorem 2.6. Instead of characterizing the exact weak limit, we will find

a stochastic upper bound for Rn(β∗). The RWP function, as in the proof of Theorem

2.4, admits the following dual representation (see Equation (2.49)):

Rn(β∗)

= sup
λ

{
− 1

n

n∑
i=1

sup
x′

{
λT (Yi − βT∗ x′)x′ − ‖x′ −Xi‖2

∞
}}

= sup
λ

{
−λT Zn√

n
− 1

n

n∑
i=1

sup
∆

{
eiλ

T∆− (βT∗ ∆)(λTXi)−
(
‖∆‖2

∞ + (βT∗ ∆)(λT∆)
)}}

,

where Zn = n−1/2
∑n

i=1 eiXi, ei = Yi−βT∗ Xi. In addition, we have changed the variable

from x′ −Xi = ∆. If we let ζ =
√
nλ, then

nRn(β∗)

= sup
ζ

{
−ζTZn −

1√
n

n∑
i=1

sup
∆

{
eiζ

T∆− (βT∗ ∆)(ζTXi)−
(√

n‖∆‖2
∞ + (βT∗ ∆)(ζT∆)

)}}

≤ sup
ζ

{
−ζTZn −

1√
n

n∑
i=1

sup
‖∆‖∞

{∥∥eiζT − (ζTXi)β
T
∗
∥∥

1
‖∆‖∞ −

√
n

(
1− ‖β∗‖1‖ζ‖1√

n

)
‖∆‖2

∞

}}
,

where we have used Hölder’s inequality thrice to obtain the upper bound. If we solve

the inner supremum over the variable ‖∆‖, we obtain,

nRn(β∗) ≤ sup
ζ

{
−ζTZn −

1√
n

n∑
i=1

∥∥eiζ − (ζTXi)β∗
∥∥2

1

4
√
n (1− ‖β∗‖1‖ζ‖1n−1/2)

}

≤ sup
a≥0

sup
ζ:‖ζ‖1=1

{
−aζTZn −

a2

4 (1− a‖β∗‖1n−1/2)

1

n

n∑
i=1

∥∥eiζ − (ζTXi)β∗
∥∥2

1

}
,
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where we have split the optimization into two parts: one over the magnitude (denoted

by a), and another over all unit vectors ζ. Further, due to Hölder’s inequality, we have

|ζTZn| ≤ ‖Zn‖∞ as ‖ζ‖1 = 1. Therefore,

nRn(β∗) ≤ sup
a≥0

{
c1(n)a− a2(

1− c2(n)a
)c3(n)

}
,

where we have let

c1(n) = ‖Zn‖∞, c2(n) = ‖β∗‖1n
−1/2, and c3(n) = inf

ζ:‖ζ‖1=1

1

4n

n∑
i=1

∥∥eiζ − (ζTXi)β∗
∥∥2

1
.

As ‖β∗‖1n
−1/2 → 0 when n→∞, we have c2(n)→ 0. Therefore, the above supremum

over a is attained at a = c1(n)/2c3(n) + o(1) when n→∞. Consequently,

nRn(β∗) ≤
‖Zn‖2

∞

inf{ζ:‖ζ‖1=1}
1
n

∑n
i=1 ‖eiζ − (ζTXi)β∗‖2

1

+ o(1). (2.53)

The infimum in the denominator can be lower bounded as in the proof of Theorem

2.4. In particular, due to triangle inequality,

1

n

n∑
i=1

∥∥eiζ − (ζTXi)β∗
∥∥2

1
≥ 1

n

n∑
i=1

(
|ei| ‖ζ‖1 −

∣∣ζTXi

∣∣ ‖β∗‖1

)2

=
1

n

n∑
i=1

|ei|2 + ‖β∗‖2
1

1

n

n∑
i=1

∣∣ζTXi

∣∣2 − 2 ‖β∗‖1

1

n

n∑
i=1

|ei|
∣∣ζTXi

∣∣
=

1

n

n∑
i=1

|ei|2 + ‖β∗‖2
1

1

n

n∑
i=1

∣∣ζTXi

∣∣2 − 2 ‖β∗‖1 E |ei|
1

n

n∑
i=1

∣∣ζTXi

∣∣− εn(ζ),

where εn(ζ) = 2 ‖β∗‖1
1
n

∑n
j=1(|ei| − E|ei|)|ζTXi|. If we let ẽi = |ei| − E |ei|, then

E[ẽi] = 0 and Var[ẽi] ≤ Var[ei]. As ẽi is independent of Xi, E[ẽi|ζTXi|] = 0. In

addition,

Var
[
ẽi|ζTXi|

]
= Var[ẽi]ζTΣζ ≤ Var[ei]ζTΣζ,
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where we recall that Σ = Cov[X]. With the assumption that on the largest eigen

value of Σ, denoted by λmax(Σ), is o(nC(n, d)2), we have

sup
‖ζ‖1=1

ζTΣζ ≤ sup
|ζ|1=1

λmax(Σ) ‖ζ‖2
2 ≤ λmax(Σ) = o(nC(n, d)2).

Consequently, the variance of 1
n

∑n
j=1 ẽi

∣∣ζTXi

∣∣ is of order o (C(n, d)2) uniformly in ζ

for ‖ζ‖1 = 1. Combining this with the assumption that ‖β∗‖1 = o(1/C(n, d)) we have

εn(ζ) = 2 ‖β∗‖1

1

n

n∑
j=1

(|ei| − E |ei|)
∣∣ζTXi

∣∣ = op (1) .

Since the bound is uniformly in ζ such that ‖ζ‖1 = 1, we have for sufficiently large n,

inf
ζ:‖ζ‖1=1

1

n

n∑
i=1

∥∥eiζ − ζTXiβ∗
∥∥2

1

≥ 1

n

n∑
i=1

|ei|2 + inf
ζ:‖ζ‖1=1

{
‖β∗‖2

1

1

n

n∑
i=1

∣∣ζTXi

∣∣2 − 2 ‖β∗‖1 E |ei|
1

n

n∑
i=1

∣∣ζTXi

∣∣}+ op(1)

≥ 1

n

n∑
i=1

|ei|2 −
(
E|ei|

)2
+ inf

ζ:‖ζ‖1=1

(
‖β∗‖1

1

n

n∑
i=1

∣∣ζTXi

∣∣− E|ei|

)2

+ op(1)

≥ Var |ei|+ op(1).

Then, as n→∞, it follows from Equation (2.53),

nRn(β∗) ≤
‖Zn‖2

∞
Var |e|

+ op(1).

The second claim is a direct consequence of Corollary 2.1 in Chernozhukov et al.

[2013] when X has sub-Gaussian tails. Finally, the last claim is the special example

of computing the (1 − α) quantile of ‖Z‖∞ for Z ∼ N (0, Id). Here, the distribution

of maximum of d i.i.d. standard normal random variables have Φ−1(1− α/2d) as its
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(1− α) quantile, and
E[e2]

E[e2]− (E|e|)2
= π/(π − 2),

when the additive error e is normally distributed.

APPENDIX 2.B: Strong duality of the linear semi-

infinite programs in the chapter

In this chapter, we have utilized strong duality of linear semi-infinite programs in

two contexts: 1) to derive a dual representation of the RWP function in order to

perform asymptotic analysis (see Proposition 2.1), and 2) to derive distributional

robust representations (see Proposition 2.4). Establishing these strong dualities rely

on the following well-known result on problem of moments (Isii [1962]; Newey and

Smith [2004]).

The problem of moments. Let Ω be a nonempty Borel measurable subset of Rm,

which, in turn, is endowed with the Borel sigma algebra BΩ. LetX be a random vector

taking values in the set Ω, and f = (f1, . . . , fk) : Ω → Rk be a vector of moment

functionals. Let PΩ and M+
Ω denote, respectively, the set of probability and non-

negative measures, respectively on (Ω,BΩ) such that the Borel measurable functionals

φ, f1, f2, . . . , fk, defined on Ω, are all integrable. Given a real vector q = (q1, . . . , qk),

the objective of the problem of moments is to find the worst-case bound,

v(q) := sup
{
Eµ[φ(X)] : Eµ[f(X)] = q, µ ∈ PΩ

}
. (2.54)

If we let f0 = 1Ω, it is convenient to add the constraint, Eµ[f0(X)] = 1, by appending

f̃ = (f0, f1, . . . , fk), q̃ = (1, q1, . . . , qk), and consider the following reformulation of
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the above problem:

v(q) := sup

{ˆ
φ(x)dµ(x) :

ˆ
f̃(x)dµ(x) = q̃, µ ∈M+

Ω

}
. (2.55)

Then, under the assumption that a certain Slater’s type of condition is satisfied, one

has the following equivalent dual representation for the moment problem Equation

(2.55). See Theorem 1 (and the discussion of Case [I] following Theorem 1) in Isii

[1962] for a proof of the following result:

Proposition 2.6. Let Qf̃ =
{ ´

f̃(x)dµ(x) : µ ∈ M+
Ω

}
. If q̃ = (1, q1, . . . , qk) is an

interior point of Qf̃ , then

v(q) = inf

{
k∑
i=0

aiqi : ai ∈ R,
k∑
i=0

aif̃i(x) ≥ φ(x) for all x ∈ Ω

}
.

In the rest of this section, we recast the dual reformulation of RWP function

(in Equation (2.1)) and the dual reformulation of the distributional representation

in Proposition 2.4 as particular cases of the dual representation of the problem of

moments in Proposition 2.6.

Dual representation of RWP function Recall from Section 2.2.3 that W is a

random vector taking values in Rm and h(·, θ) is Borel measurable.

Proof of Proposition 2.1. For simplicity, we do not write the dependence on parame-

ter θ in h(u, θ) and Rn(θ) in this proof; nevertheless, we should keep in mind that the

RWP function is a function of parameter θ. Given estimating equation E[h(W )] = 0.

Recall the definition of the corresponding RWP function,

Rn := inf
{
Dc(P, Pn) : EP

[
h(W )

]
= 0

}
= inf

{
Eπ
[
c(U,W )

]
: Eπ

[
h(U)

]
= 0, π

W
= Pn, π ∈ P(Rm × Rm)

}
,
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where π
W

denotes the marginal distribution of W. To recast this as a problem of

moments as in Equation (2.54), let Ω = {(u,w) ∈ Rm × Rm : c(u,w) <∞},

f(u,w) =



1{w=W1}
(u,w)

1{w=W2}
(u,w)

...

1{w=Wn}
(u,w)

h(u)


and q =



1/n

1/n

...

1/n

0


.

Further, let φ(u,w) = −c(u,w), for all (u,w) ∈ Ω. Then,

Rn = − sup
{
Eπ
[
φ(U,W )

]
: Eπ

[
f(U,W )

]
= q, π ∈ PΩ

}
,

is of the same form as Equation (2.54). Let H denote the convex hull of the range

{h(u) : (u,w) ∈ Ω}. Then, following the definition of Qf̃ in the abstract formulation

in Proposition 2.6, we obtain Qf̃ = Rn+1
+ × H. As {0} lies in the interior of convex

hull H, it is immediate that the Slater’s condition, q̃ = (1, q) lying in the interior of

the Qf̃ , is satisfied. Consequently, we obtain the following dual representation of Rn

due to Proposition 2.6:

Rn = − inf
ai∈R

{
a0 +

1

n

n∑
i=1

ai : a0 +
n∑
i=1

ai1{w=Wi}
(u,w)

+
k∑

i=n+1

aihi(u) ≥ −c(u,w), for all (u,w) ∈ Ω

}

= − inf
ai∈R

{
a0 +

1

n

n∑
i=1

ai : a0 + ai ≥ sup
u:c(u,Wi)<∞

{
−c(u,Wi)−

k∑
i=n+1

aihi(u)

}}
.

As the inner supremum is not affected even if we take supremum over {u : c(u,Wi) =
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∞}, after letting λ = (an+1, . . . , ak) for notational convenience, we obtain

Rn = sup
λ

{
1

n

n∑
i=1

inf
u∈Rm

{
c(u,Wi) + λTh(u)

}}
. (2.56)

As λ is a free variable, we flip the sign of λ to arrive at the statement of Proposition

2.1. This completes the proof.

Dual representation of the DRO formulation in Equation (2.15) Here, we

provide a proof for the dual representation in Proposition 2.4 that has been instrumen-

tal in establishing the distributional robust representations of Lasso and regularized

logistic regression.

Proof of Proposition 2.4. Given a Borel measurable g, our first objective is to prove

that the worst-case loss sup{EP [g(W )] : Dc(P, Pn) ≤ δ} admits the dual representa-

tion,

sup{EP [g(W )] : Dc(P, Pn) ≤ δ} = inf
λ≥0

{
λδ +

1

n

n∑
i=1

φλ(Wi)

}
, (2.57)

with φλ(Wi) = supu{g(u)− λc(u,w)}. This would essentially prove Proposition 2.4 if

we let W = (X, Y ), g(W ) = l(X, Y ; β) and φλ(X, Y ; β) = φλ(W ).

Since the problem sup{EP [g(W )] : Dc(P, Pn) ≤ δ} has inequality constraints, one

way is to proceed exactly as in RWP dual formulation above except for restricting

the Lagrange multiplier corresponding to the equality constraint to be non-negative.

Alternatively, one can recast the problem as in Equation (2.54) with the introduction
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of a slack variable S as below:

sup
{
EP [g(W )] : Dc(P, Pn) ≤ δ

}
= sup

{
Eπ
[
g(U)

]
: Eπ

[
c(U,W ) + S

]
= δ, π

W
= Pn,

π(S = v) = 1, π ∈ P(Rm × Rm × R+)
}
.

In the context of notation introduced for the problem of moments described at

the beginning of this appendix, let Ω = {(u,w, s) : c(u,w) <∞, s ≥ 0},

f(u,w, s) =



1{w=W1}
(u,w, s)

1{w=W2}
(u,w, s)

...

1{w=Wn}
(u,w, s)

1{s=v}

c(u,w) + s


and q =



1/n

1/n

...

1/n

1

δ


.

In addition, if we let φ(u,w, s) = g(u), then

sup
{
EP [g(W )] : Dc(P, Pn) ≤ δ

}
= sup

{
Eπ[φ(U,W, S)] : Eπ[f(U,W, S)] = q, π ∈ PΩ

}
,

is a problem of moments of the form Equation (2.54). Similar to the RWP dual

formulation discussed earlier in the section, q̃ = (1, q) lies in the interior of Qf̃ = Rn+3
+ ,

thus satisfying Slater’s condition for all δ > 0. Then, due to Proposition 2.6, we obtain

sup
{
EP [g(W )] : Dc(P, Pn) ≤ δ

}
= inf

a∈A

{
a0 +

1

n

n∑
i=1

ai + an+1 + an+2δ

}
,
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where the set A is the collection of a = (a0, a1, . . . , an+1) ∈ Rn+3 such that

a0 +
n∑
i=1

ai1{w=Wi}
(u,w, s) + an+11{s=v}(u,w, s) + an+2

(
c(u,w) + s

)
≥ g(u),

for all (u,w, s) ∈ Ω. Further, observe that the value of the optimization problem

above does not change, even if we consider only the following constraints:

a0 + ai + an+1 ≥ sup

{
g(u)− an+2

(
c(u,Wi) + s

)
: u ∈ Rm, s ≥ 0

}

=


supu∈Rm

{
g(u)− an+2c(u,Wi)

}
if an+2 ≥ 0,

∞ if an+2 < 0.

If we recall the notation that φλ(Wi) = supu∈Rm {g(u)− λc(u,Wi)} , then

sup
{
EP [g(W )] : Dc(P, Pn) ≤ δ

}
= inf

an+2≥0
ai∈R,

{
a0 +

1

n

n∑
i=1

ai + an+1 + an+2δ : a0 + ai + an+1 ≥ φan+2(Wi)

}
= inf

an+2≥0

{
φan+2(Wi) + an+2δ

}
,

thus proving Equation (2.57). As explained earlier, letting W = (X, Y ), g(W ) =

l(X, Y ; β) and φλ(X, Y ; β) in Equation (2.57) verifies the proof of Proposition 2.4.
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APPENDIX 2.C: Exchange of sup and inf in the DRO

formulation Equation (2.15)

Proposition 2.7. Let us write

Uδ =
{
P : Dc

(
P, Pn

)
≤ δ
}
,

and define

g (β) = sup
P∈Uδ

EP
[
l
(
X, Y ; β

)]
.

Suppose that g (·) is convex and assume that there exists b ∈ R such that κb = {β :

g (β) ≤ b} is compact and non-empty. In addition, suppose that EP
[
l
(
X, Y ; β

)]
is

lower semi-continuous and convex as a function of β throughout κb. Then,

min
β∈Rd

sup
P :Dc

(
P,Pn

)
≤δ

EP
[
l
(
X, Y ; β

)]
= sup

P :Dc

(
P,Pn

)
≤δ

min
β∈Rd

EP
[
l
(
X, Y ; β

)]
.

Proof. By definition of κb we have that

min
β∈Rd

sup
P :Dc

(
P,Pn

)
≤δ

EP
[
l
(
X, Y ; β

)]
= min

β∈κb
sup

P :Dc

(
P,Pn

)
≤δ

EP
[
l
(
X, Y ; β

)]
.

By a min-max result of Terkelsen (see Corollary 2 in Terkelsen [1973]), since both

Uδ(Pn) and κb are convex, κb is compact, EP
[
l
(
X, Y ; β

)]
is lower semi-continuous

and convex throughout κb as a function of β, and EP
[
l
(
X, Y ; β

)]
is concave as a

function of P , then

min
β∈κb

sup
P :Dc

(
P,Pn

)
≤δ

EP
[
l
(
X, Y ; β

)]
= sup

P :Dc

(
P,Pn

)
≤δ

min
β∈κb

EP
[
l
(
X, Y ; β

)]
.
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The proof is complete if are able to argue the identity

sup
P :Dc

(
P,Pn

)
≤δ

min
β∈κb

EP
[
l
(
X, Y ; β

)]
= sup

P :Dc

(
P,Pn

)
≤δ

min
β∈Rd

EP
[
l
(
X, Y ; β

)]
.

To see this, note that we always have

sup
P :Dc

(
P,Pn

)
≤δ

min
β∈κb

EP
[
l
(
X, Y ; β

)]
≥ sup

P :Dc

(
P,Pn

)
≤δ

min
β∈Rd

EP
[
l
(
X, Y ; β

)]
. (2.58)

Let us assume that the strict inequality holds. If this is the case then we must have

that there exists β′ /∈ κb such that

b < g (β′) = sup
P :Dc

(
P,Pn

)
≤δ

EP
[
l
(
X, Y ; β′

)]
< sup

P :Dc

(
P,Pn

)
≤δ

min
β∈κb

EP
[
l
(
X, Y ; β

)]
≤ b,

where the second inequality follows because we are assuming that (2.58) holds with

strict inequality.We therefore contradict the assumption that the strict inequality in

(2.58) holds. Hence, the proof is complete.

Proof of Lemma 2.1. Let us consider linear regression loss function first. Under null

hypothesis, E‖X‖2
2 < ∞ and E[e2] < ∞. Therefore, for any β ∈ Rd, E[l(X, Y ; β)] =

E[(Y − βTX)2] <∞. Further, as the loss function l(x, y; β) is a convex function of β,

g(β) = sup
P∈ Uδ(Pn)

EP [l(X, Y ; β)] =
(√

EPn [(Y − βTX)2] +
√
δ‖β‖p

)2

is convex as well and finite for all β in Rd (the second equality follows from the
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distributional robust representation in Theorem 2.2). Further, as g(β) → ∞ when

‖β‖p →∞ and g(β) is convex and continuous in Rd, the level sets κb = {β : g(β) ≤ b}

are compact and nonempty as long as b > (
√

EPn [(Y − βT∗ X)2] +
√
δ‖β∗‖)2. Fi-

nally, due to the convexity and finiteness of E[l(X, Y ; β)] lower semi-continuity of

E[l(X, Y ; β)] is immediate as well. As all the conditions in Proposition 2.7 are satis-

fied, the sup and inf in the DRO formulation (2.15) can be exchanged in the linear

regression example as a consequence of Proposition 2.7.

It is straightforward to check that exactly same argument applies for logistic re-

gression loss function as well when E‖X‖2
2 is finite.

APPENDIX 2.D: Numerical Examples

In this section, we consider two examples that demonstrate the numerical perfor-

mance of the square-root Lasso (SR-Lasso) algorithm (see Example 2.2) when the

regularization parameter λ is selected as described in Section 2.4.1 using a suitable

quantile of the RWPI limiting distribution.

Example 2.4. (RWPI on Sparse-regression) Consider the linear model Y =

3X1 + 2X2 + 1.5X4 + e where the vector of predictor variables X = (X1, . . . , Xd)

is distributed according to the multivariate normal distribution N (0,Σ) with

Σk,j = 0.5|k−j| and additive error e is normally distributed with mean 0 and

standard deviation σ = 10. Letting n denote the number of training samples,

we illustrate the effectiveness of the RWPI based SR-Lasso procedure for various

values of d and n by computing the mean square loss / error (MSE) over a

simulated test data set of size N = 10000. Specifically, we take the number of

predictors to be d = 300 and 600, the number of standardized i.i.d. training

samples to range from n = 350, 700, 3500, 10000, and the desired confidence level
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to be 95%, that is, 1−α = 0.95. In each instance, we run the SR-Lasso algorithm

using the ‘flare’ package proposed in Li et al. [2015] (available as a library in R)

with regularization parameter λ chosen as prescribed in Section 2.4.1.

Repeating each experiment 100 times, we report the average training and

test MSE in Tables 2.1 and 2.2, along with the respective results for ordinary

least squares regression (OLS) and SR-Lasso algorithm with regularization pa-

rameter chosen as prescribed by cross-validation (denoted as SR-Lasso CV in the

tables.) We also report the average `1 and `2 error of the regression coefficients

in Tables 2.1 and 2.2. In addition, we report the empirical coverage probability

that the optimal error E[(Y − βT∗ X)2] = σ2 = 100 is smaller than the worst case

expected loss computed by the DRO formulation Equation (2.15). As this empir-

ical coverage probability reported in Table 2.3 is closer to the desired confidence

1− α = 0.95, the worst case expected loss computed by Equation (2.15) can be

seen as a tight upper bound of the optimal loss E[l(X, Y ; β∗)] (thus controlling

generalization) with probability at least 1− α = 0.95.

Example 2.5. (RWPI on Diabetes data) Consider the diabetes data set from

the ‘lars’ package in R (see Efron et al. [2004]), where there are 64 predictors (in-

cluding 10 baseline variables and other 54 possible interactions) and 1 response.

After standardizing the variables, we split the entire data set of 442 observations

into n = 142 training samples (chosen uniformly at random) and the remaining

N = 300 samples as test data for each experiment, in order to compute training

and test mean square errors using the generalized Lasso algorithm with regular-

ization parameter picked as in Section 2.4.1. After repeating the experiment 100

times, we report the average training and test errors in Table 2.4, and compare

the performance of RWPI based regularization parameter selection with other
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standard procedures such as OLS and SR- Lasso algorithm with regularization

parameter chosen according to cross-validation.

Training data Method Training Error Test Error `1 loss `2 loss
size, n ‖β − β∗‖1 ‖β − β∗‖2

350

RWPI 101.16(±8.11) 122.59(±6.64) 4.08(±0.69) 5.23(±0.76)
SR-Lasso CV 92.23(±7.91) 117.25(±6.07) 3.91(±0.42) 5.02(±1.28)

OLS 13.95(±2.63) 702.73(±188.05) 31.59(±3.64) 436.19(±50.55)

700

RWPI 101.81(±3.01) 117.96(±4.80) 3.31(±0.40) 4.38(±0.48)
SR-Lasso CV 99.66(±4.64) 115.46(±4.36) 2.96(±0.37) 3.98(±0.66)

OLS 56.82(±3.94) 178.44(±21.74) 10.99(±0.57) 152.04(±8.25)

3500

RWPI 102.55(±2.39) 108.44(±2.54) 2.18(±0.16) 3.28(±1.66)
SR-Lasso CV 100.74(±2.35) 113.83(±2.33) 2.66(±0.14) 3.91(±2.18)

OLS 90.37(±2.17) 114.78(±5.50) 3.96(±0.20) 54.67(±3.09)

10000

RWPI 102.12(±8.11) 105.97(±0.88) 1.13(±0.08) 1.63(±0.11)
SR-Lasso CV 100.69(±7.91) 112.82(±0.71) 1.15(±0.07) 1.94(±0.12)

OLS 95.91(±1.11) 107.74(±2.96) 2.23(±0.10) 30.91(±1.43)

Table 2.1: Sparse linear regression for d = 300 predictor variables in Example 2.4.
The training and test mean square errors of RWPI based SR- Lasso regularization
parameter selection is compared with ordinary least squares estimator (written as
OLS) and cross-validation based SR- Lasso estimator (written as SR-Lasso CV)
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Training data Method Training Error Test Error `1 loss `2 loss
size, n ‖β − β∗‖1 ‖β − β∗‖2

350

RWPI 108.05(±8.38) 109.46(±4.68) 4.02(±0.71) 4.08(±0.70)
SR-Lasso CV 93.17(±10.83) 104.51(±4.76) 2.23(±0.38) 6.89(±2.35)

OLS − − − −

700

RWPI 104.33(±5.03) 103.18(±2.14) 2.91(±0.42) 2.99(±0.43)
SR-Lasso CV 100.50(±4.70) 99.92(±2.18) 1.45(±0.28) 2.82(±0.64)

OLS 14.27(±2.02) 699.06(±137.45) 31.66(±2.21) 518.02(±44.87)

3500

RWPI 101.52(±2.52) 96.38(±0.80) 1.23(±0.24) 1.32(±0.24)
SR-Lasso CV 102.58(±2.49) 98.55(±0.94) 1.18(±0.15) 1.94(±0.24)

OLS 82.22(±2.31) 102.01(±6.14) 6.76(±0.23) 114.05(±5.73)

10000

RWPI 101.36(±1.11) 94.86(±0.36) 0.75(±0.13) 0.81(±0.14)
SR-Lasso CV 103.00(±1.11) 98.55(±0.49) 1.16(±0.08) 1.94(±0.13)

OLS 95.11(±1.10) 99.53(±4.83) 3.26(±0.11) 63.67(±2.16)

Table 2.2: Sparse linear regression for d = 600 predictor variables in Example 2.4.
The training and test mean square errors of RWPI based SR- Lasso regularization
parameter selection is compared with ordinary least squares estimator (written as
OLS) and cross-validation based SR-Lasso estimator (written as SR-Lasso CV). As
n < d when n = 350, OLS estimation is not applicable in that case (denoted by a
blank)

No. of predictors Training sample size
d 350 700 3500 10000
300 0.974 0.977 0.975 0.969
600 0.963 0.966 0.970 0.968

Table 2.3: Coverage Probability of empirical worst case expected loss in Example 2.4

Training Error Testing Error
RWPI 0.58(±0.05) 0.60(±0.04)

SR- Lasso CV 0.44(±0.06) 0.57(±0.03)
OLS 0.26(±0.05) 1.38(±0.68)

Table 2.4: Linear Regression for Diabetes data in Example 2.5 with 142 training
samples and 300 test samples. The training and test mean square errors of RWPI
based SR- Lasso regularization parameter selection is compared with ordinary least
squares estimator (written as OLS) and cross-validation based SR-Lasso estimator
(written as SR-Lasso CV).
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Chapter 3

Sample-out-of-Sample (SoS) Inference

In this chapter, we present another novel inference approach which we call Sample

Out-of-Sample (or SoS) inference. SoS method is the analogue of RWPI method as we

introduced in Chapter 2, while we restrict the support of distributional uncertainty

set Uδ (Pn) to be finite (but not restricted on observed samples). Our motivation

is to propose a method which is well suited for data-driven stress testing, in which

emphasis is placed on measuring the impact of (plausible) out-of-sample scenarios on

a given performance measure of interest (such as a financial loss). The methodology

is inspired by Empirical Likelihood (EL), but we optimize the empirical Wasser-

stein distance (instead of the empirical likelihood) induced by observations. From a

methodological standpoint, our analysis of the asymptotic behavior of the induced

Wasserstein-distance profile function shows dramatic qualitative differences relative

to EL. For instance, in contrast to EL, which typically yields chi-squared weak con-

vergence limits, our asymptotic distributions are often not chi-squared. Also, the

rates of convergence that we obtain have some dependence on the dimension in a

non-trivial way but which remains controlled as the dimension increases.
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3.1 Introduction

The goal of this chapter is to introduce a novel methodology for non-parametric

inference which allows to measure the adverse impact of out-of-sample scenarios. We

call the procedure Sample Out-of-Sample inference or SoS inference.

In order to motivate our goal and the mathematical development that follows,

consider the following stress-testing exercise. An insurance company wishes to es-

timate a certain expectation of interest, E(L(X)), where X might represent a risk

factor and L (X) the corresponding financial loss. The insurance company may esti-

mate E (L(X)) based on n i.i.d. (independent and identically distributed) empirical

samples X1, ..., Xn ∈ Rl. However, the regulator (or auditor) is also interested in

quantifying the potential financial loss based on stress scenarios, say an i.i.d. sam-

ple X̃1, ..., X̃m ∈ Rl (for simplicity we let m = n). The scenarios provided by the

regulator may or may not come from the same distribution as the Xi’s.

The methodology developed in this chapter allows to incorporate both the empir-

ical sample and the stress scenarios provided by the regulator in a meaningful way

using what we call “the SoS profile function” (or SoS function) which we describe next

in the stress-testing setting.

Define Zk = Xk and Zn+k = X̃k for k = 1, ..., n (i.e. merge both the empirical

samples and the stress scenarios into a set {Z1, ..., Z2n}). The corresponding SoS

function in the current context, Rn (·), is defined as

Rn (θ) = min{
∑
i,k

‖Xi − Zk‖2
2 π (i, k) : (3.1)

s.t.
∑
k

π (i, k) = 1/n ∀i, π (i, k) ≥ 0 ∀i, k,
∑
i,k

L(Zk)π (i, k) = θ} .

We can easy observe that, SoS function is an analogue of RWP function as we defined
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in Equation (2.8), where RWP function is solving a semi-infinite linear programming

problem while Rn (θ) is obtained by solving a regular linear programming problem.

There is a strong connection between the SOS function and the Wasserstein’s distance

of order two. This is discussed in the next section.

The results of this chapter characterize, in particular, the asymptotic distribution

of Rn (E (L (X))) (i.e. assuming θ = E (L (X))) under reasonable assumptions (e.g.

the existence of a density with respect the Lebesgue measure and finite variances for

both the L (Xi)’s and L (Yk)’s). For example, in the one dimensional case (i.e. θ ∈ R

and l = 1), we will show that

nRn (E (L (X)))⇒ υR, (3.2)

where υ > 0 is explicitly characterized, and R ∼ χ2 (i.e. chi-squared with one degree

of freedom). (Here and thorough the chapter we use⇒ to denote weak convergence.)

Therefore, if δn = δ/n is chosen so that P (χ2 ≤ δ/υ) ≈ .95 then the set

{θ : Rn (θ) ≤ δn} (3.3)

(which is easily seen to be an interval) is an approximate 95% confidence interval

which uses the stress scenarios in a meaningful way.

It is important to stress that the confidence interval designed via (3.2) contains

estimates corresponding to all probability distributions which recognize the possibility

of the stress scenarios, but which are also plausible given the available empirical

evidence.

Let us provide additional motivation for the study of Rn (θ) by establishing a con-

nection to distributional robust performance analysis of stochastic systems (see, for
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example, Lam and Zhou [2015]; Ben-Tal et al. [2013]; Goh and Sim [2010]). To illus-

trate such connection we continue working with the stress-testing situation introduced

earlier. A distributional robust estimate of E (L(X)) is obtained by evaluating

Un (∆) = max{
∑
i,k

L (Zk) π (i, k) : (3.4)

s.t.
∑
k

π (i, k) = 1/n ∀i, π (i, k) ≥ 0 ∀i, k,
∑
i,k

‖Xi − Zk‖2
2 π (i, k) ≤ ∆}}.

In simple words, Un (∆) provides the worst estimate of the expected loss among all

distributions that incorporate both the empirical data and the stress scenarios, and

that are within distance ∆ (in the corresponding Wasserstein metric) of the empirical

distribution. By judiciously choosing ∆, we can guarantee that Un (∆) is an upper

bound for the actual expected loss, E (L(X)), with high probability. Naturally, in

order to avoid extremely conservative estimates, it is of interest to find ∆ in an

optimal way. It is precisely here that the formulation of Rn (θ) is useful.

Observe that if δn = δ/n

Un (δn) = max{θ : Rn (θ) ≤ δn}.

To see this equality, let θ+
n = max{θ : Rn (θ) ≤ δn} and let πR (θ+

n ) be the optimizer

of (3.1) (taking θ = θ+
n ) then, because πR (θ+

n ) is feasible for (3.4), we have that

Un (δn) ≥ θ+
n . Likewise, let πU (δn) be the optimizer of (3.4) (taking ∆ = δn) then,

since πU (δn) is feasible for (3.1) we obtain that Rn (Un (δn)) ≤ δn and therefore, by

definition of θ+
n we must have Un (δn) ≤ θ+

n .

Therefore, our study of confidence intervals such as (3.3), and the asymptotic

analysis of Rn (θ), as we indicate in (3.2) provide the means for optimally choosing

δn in the context of distributional robust performance analysis. Similar connections
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to Empirical Likelihood had been noted in the literature (see Lam and Zhou [2015,

2017]; Blanchet and Murthy [2016]). Additional connections to distributional robust

optimization are discussed in Section 3.4.

The main methodological objective of this chapter is to study the asymptotic

behavior of general SoS functions for estimating equations (which we define in sub-

sequent sections in the chapter). That is, we wish to estimate θ∗ such that

E (h (θ∗, X)) = 0, (3.5)

where h (θ,X) = (h1 (θ,X) , ..., hq (θ,X))T (a column vector of functions) and θ ∈ Rd

(for q ≤ d), under standard assumptions which make the inference problem of finding

θ∗ well posed using suitable SoS functions. Note that the particular case leading to

(3.2) is obtained by letting q = 1 = d and h (θ, x) = L(x)− θ.

The theory that we develop in this chapter parallels the main fundamental results

obtained in the context of Empirical Likelihood (EL), introduced by Art Owen in

Owen [1988, 1990, 2001]. In fact, as the reader might appreciate, we borrow a great

deal of inspiration from the EL inference paradigm (and its extensions based on

divergence criteria, rather than the likelihood function, Owen [2001]). There are,

however, several important characteristics of our framework that, we believe, add

significant value to the non-parametric inference literature.

First, from a conceptual standpoint, the EL framework restricts the support of

the outcomes only to the observed empirical sample and, therefore, there is no reason

to expect particularly good out of sample performance of estimates based on EL, for

example, in settings similar to the stress testing exercise discussed earlier. In fact,

the potentially out-of-sample problems which arise from using divergence criteria for

data-driven distributional robust optimization (closely related to EL) are noted in the
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stochastic optimization literature, see Esfahani and Kuhn [2015]; Wang et al. [2009];

Ben-Tal et al. [2013], for related work.

Second, from a methodological standpoint, the mathematical techniques needed

to understand the asymptotic behavior of Rn (θ) are qualitatively different from those

arising typically in the context of EL. We will show that if l ≥ 3, then the following

weak convergence limit holds (under suitable assumptions on h (·)),

n1/2+3/(2l+2)Rn (θ∗)⇒ R (θ∗) ,

as n→∞. Note that the scaling depends on the dimension in a very particular way.

In contrast, the Empirical Likelihood Profile function is always scaled linearly in n

and the asymptotic limiting distribution is generally a chi-squared distribution with

appropriate degrees of freedom and a constant scaling factor. In our case R (θ∗) can

be explicitly characterized, depending on the dimension in a non-trivial way, but it

is no longer a suitably scaled chi-squared distribution. As mentioned earlier in (3.2),

when l = 1, we obtain a similar limiting distribution as in the EL case. The case l = 2,

interestingly, requires a special analysis. In this case the scaling remains linear in n

(as in the case l = 1), although the limiting distribution is not exactly chi-squared,

but a suitable quadratic form of a multivariate Gaussian random vector. For the case

l ≥ 3 the limiting distribution is not a quadratic transformation of a multivariate

Gaussian, but a more complex (yet still explicit) polynomial function depending on

the dimension.

At a high level, these qualitative distinctions in the form of the asymptotic arise

because of the linear programming formulation underlying the SOS function, which

will typically lead to corner solutions (i.e. basic feasible solutions in the language

of linear programming). In contrast, in the EL analysis of the profile function, the
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optimal solutions are amenable to a perturbation analysis as n → ∞ using a Taylor

expansion of higher order terms. The lack of a continuously differentiable derivative

(of the optimal solution as a function of θ) requires a different type of analysis relative

to the approach (traced back to the classical Wilks theorem, Wilks [1938]) which lies

at the core of EL analysis. We believe that the proof techniques that we develop here

might have wider applicability.

Let us now provide a precise description of our contributions in this chapter:

a) We characterize the asymptotic distribution of Rn (θ∗) defined in (3.5) as n→

∞ (see Theorem 3.1).

b) We introduce two forms of the SoS inference framework for estimating equa-

tions. We call these the implicit and the explicit SoS formulations, respectively. These

formulations, as we shall discuss, are motivated by different types of applications (see

Theorem 3.2 and Theorem 3.3).

c) Writing θ∗ = (γ∗, v∗) we develop the asymptotic distribution of Rn (γ∗, v̄n),

where v̄n is a suitable consistent plug-in estimator for v∗ as n→∞. This extension is

particularly useful to reduce the computational burden involved in solving the opti-

mization problem underlying the use of the SoS function for inference (see Corollary

3.1 and Corollary 3.2).

d) We apply our SOS inference framework in the context of stochastic optimization

and stress testing (see Section 3.4).

e) Possible extensions and applications of our framework are given in our con-

clusions section, namely, Section 3.5. We also discuss results in Chapter 2, which

include connections to machine learning, extensions beyond the Wasserstein distance
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of order two, and more general distributions for out-of-sample evaluation (beyond

those supported on finitely many scenarios as discussed here).

We have discussed the qualitative features of our contributions in a) and b).

About item c), its analysis parallels, in a way, the extensions developed by Hjort

et al. [2009] in the context of EL. The applications to stochastic optimization, in

particular, highlight the need for the general from of SoS function.

Regarding item d). A recent paper of Esfahani and Kuhn [2015] proposes Wasser-

stein’s distance in the context of distributional robust stochastic optimization. In

Esfahani and Kuhn [2015], the authors take advantage of recently developed concen-

tration inequalities for the Wasserstein distance (see Fournier and Guillin [2015]) to

guarantee an asymptotically correct confidence level for the obtained stochastic pro-

gramming bounds. In particular, given a certain degree of confidence (say 95%), if

one wishes to estimate a plausible distributional robust feasible region within ε error,

their bound implies O
(
ε−l
)
number of samples. In contrast, applying our results

to the problems in Esfahani and Kuhn [2015] we can see that O
(
ε−min(l,2)

)
samples

suffice. In simple words, the bounds obtained in Esfahani and Kuhn [2015] appear

to be rather pessimistic; while the bounds in Esfahani and Kuhn [2015] suggest that

estimating the distributional uncertain region suffers from the curse of dimensionality,

our results show that this is not the case. We believe that our results here might be

helpful when estimating Wasserstein’s distances in high dimensions.

The rest of the chapter is organized as follows. In Section 3.2 we present and

discuss our methodological results, in particular the contributions related to items a)

to c) above. In Section 3.3 we provide the proofs of our results. Section 3.4 contains

applications to stochastic optimization and stress testing (corresponding to item d)

above), and including an empirical example. As mentioned earlier in item e), Section
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3.5 contains final considerations and further applications.

3.2 Basic Definitions and Main Results

In this section we present our results for the analysis of the SoS profile function for

means first and later we move to estimating equations. As we shall observe, the SoS

function is an analogue of RWP function as we defined in Equation (2.8) of Chapter

2.

3.2.1 SoS Function for Means

We state the following underlying assumption throughout this subsection.

A1): Let us write Xn = {X1, ..., Xn} ⊂ Rl to denote an i.i.d. sample from a

continuous distribution. So, the cardinality of the set Xn is n.

A2): We also consider an independent i.i.d. sample Ym = {X̃1, ..., X̃m} ⊂ Rl from

a continuous distribution. Throughout our discussion we shall assume that m = [κn]

with κ ∈ [0,∞).

A3): Assume that E ‖X1‖2
2 + E

∥∥∥X̃1

∥∥∥2

2
<∞.

A4): If l = 1 we assume that Xi and Yi have positive densities fX (·) and fX̃ (·).

If l ≥ 2 we assume that Xi and Yi have differentiable positive densities fX (·) and

fX̃ (·), with bounded gradients.

Define Zn+m = {Z1, ..., Zn+m} = Xn ∪ Ym, with Zk = Xk for k = 1, ..., n, and

Zn+j = X̃j for j = 1, ...,m. For any closed set C let us write P (C) to denote the

set of probability measures supported on C. So, in particular, a typical element
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υn ∈ P (Zn+m) takes the form

υn (dz) =
n+m∑
k=1

v (k) δZk (dz) ,

where δZk (dz) is a Dirac measure centered at Zk. Now, we shall use µn ∈ P (Xn) to

denote the empirical measure associated to Xn. Given any π ∈ P
(
Xn ×Z(n+m)

)
we

write πX ∈ P (Xn) to denote the marginal distribution with respect to the first coor-

dinate, namely πX (dx) =
´
z∈Z(n+m)

π (dx, dz) and, likewise, we define πZ ∈ P (Zn) as

πZ (dz) =
´
x∈Xn π (dx, dz).

We have the following formal definition of the SoS function for estimating means.

Definition 1.

The SoS function, Rn (·), to estimate θ∗ = E (X) is defined as

Rn (θ∗) = inf{
ˆ ˆ

‖x− z‖2
2 π (dx, dz) : (3.6)

s.t. π ∈ P
(
Xn ×Z(n+m)

)
, πX = µn, πZ = vn,

ˆ
zvn (dz) = θ∗},

= inf{
ˆ ˆ

‖x− z‖2
2 π (dx, dz) :

s.t. π ∈ P
(
Xn ×Z(n+m)

)
, πX = µn,

ˆ
zπZ (dz) = θ∗} .

Remark 3.1. The connection to the Wasserstein distance (of order 2), d2 (µn, υn), can

be directly appreciated by recalling that

d2 (µn, υn)2 = inf{
ˆ ˆ

‖x− z‖2
2 π (dx, dz) : π ∈ P

(
Xn ×Z(n+m)

)
, πX = µn, πZ = vn}.

In simple words, Rn (θ∗) is obtained by minimizing the (squared) Wasserstein dis-

tance to the empirical measure among all distributions vn supported on Z(n+m) with
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expected value equal to θ∗ (i.e. Evn (Z) =
´
zvn (dz) = θ∗).

We now state the following asymptotic distributional result for the SoS function.

Theorem 3.1 (SoS Profile Function Analysis for Means). In addition to Assumptions

A1)-A3), suppose that the covariance matrix of X, V ar (X). The following asymp-

totic result follows

• When l = 1,

nRn(θ∗)⇒ σ2χ2
1

where σ2 = V ar (X).

• When l = 2,

nRn (θ∗)⇒ ρ
(
Z̃
)(

2− η̃
(
Z̃
)
ρ
(
Z̃
))∥∥∥Z̃∥∥∥2

2

where ρ
(
Z̃
)
is the unique solution to the equation

1

ρ
= g̃

(
ρZ̃
)
,

and g̃ : Rl → R is a deterministic function defined as

g̃ (x) = P
(
‖x‖2

2 ≥ τ
)
.

The function η̃ : Rl → R is a deterministic function given as

η̃ (x) = E
[
max

(
1− τ/‖x‖2

2, 0
)]
.

Also, Z̃ ∼ N (0, V ar (X)) ∈ Rl and τ is independent of Z̃ satisfying

P (τ > t) = E [exp (− (fX (X1) + κfX̃ (X1))πt)] .
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• When l ≥ 3,

n1/2+ 3
2l+2Rn (θ∗)⇒

2l + 2

l + 2

∥∥∥Z̃∥∥∥1+ 1
l+1

2(
E
[

πl/2

Γ(l/2+1)
(fX (X1) + κfX̃ (X1))

]) 1
l+1

where Z̃ ∼ N (0, V ar (X)) ∈ Rl.

3.2.2 SoS Function for Estimating Equations

Throughout this subsection we assume that A1) and A2) are in force. Let us assume

that h : Rd×Rl → Rq, we assume that q ≤ d. We impose the following assumptions.

B1) Assume θ∗ ∈ Rd satisfies

E (h (θ∗, X)) = 0.

B2) Furthermore, suppose that

E ‖h (θ∗, X)‖2
2 <∞.

Our goal is to estimate θ∗ under two reasonable SoS function formulations, which

we shall discuss. These are “implicit” or “indirect” and “explicit” or “direct” formula-

tions, we will explain their nature next.

3.2.2.1 Implicit SoS Formulation for Estimating Equations

The first SoS function form for estimating equations is the following, we call it Implicit

SoS or Indirect SoS function because the Wasserstein distance is applied to h (θ,Xi)

and h (θ, Zk) and thus it implicitly or indirectly induces a notion of proximity among

the samples.
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Definition 2. Implicit SoS Profile Function for Estimating Equations

Let us write X h
n (θ∗) = {h (θ∗, Xi) : Xi ∈ Xn} and Zhn (θ∗) = {h (θ∗, Zk) : Zk ∈ Zn}

then

Rn(θ∗) = inf{
ˆ ˆ

‖h (θ∗, x)− h (θ∗, z)‖2
2 π (dx, dz) : (3.7)

s.t. π ∈ P
(
X h
n (θ∗)×Zhn (θ∗)

)
, πX = µn,

ˆ
h (θ∗, z) πZ (dz) = 0} .

The Implicit SoS formulation might lead to dimension reductions if l ( the di-

mension of the ambient space of X) is large. In addition, the presence of h (·) in the

distance evaluation allows the procedure to use the available information in a more

efficient way. For instance, if h (θ, x) = |x| − θ, then the sign of x is irrelevant for

the estimation problem and this will have the effect of increasing the power of the

Implicit SoS function relative to the explicit counterpart.

The analysis of the Implicit SoS function follows as a direct consequence of The-

orem 3.1; just redefine Xi ← h (θ∗, Xi), Zk ← h (θ∗, Zk), and apply Theorem 3.1

directly. Thus the proof of the next result is omitted.

Theorem 3.2 (Implicit SoS Profile Function Analysis). Let us use denote gX(·) is

the density for h (θ∗, Xi) ∈ Rq and gY (·) for the density of h (θ∗, Yi) ∈ Rq. Then,

the Wasserstein profile function defined in Equation (3.7) have following asymptotic

results:

• When q = 1,

nRn(θ∗)⇒ V ar (h (θ∗, X1))χ2
1

• When q = 2,

nRn(θ∗)⇒ ρ
(
Z̃
) [

2− η
(
Z̃
)
ρ
(
Z̃
)] ∥∥∥Z̃∥∥∥2

2
,
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where ρ
(
Z̃
)
is the unique solution to the equation

1

ρ
= g̃

(
ρZ̃
)
,

and g̃ : Rq → R is a deterministic continuous function defined as

g̃ (x) = P
(
‖x‖2

2 ≥ τ
)
.

The function η̃ : Rq → R is a deterministic continuous function given as

η̃ (x) = E
[
max

(
1− τ/‖x‖2

2, 0
)]
.

Moreover, Z̃ ∼ N (0, V ar (h (θ∗, X))) ∈ Rq and τ is independent of Z̃ satisfying

P [τ > t] = E [exp (− [gX (h (θ∗, X1)) + κgX̃ (h (θ∗, X1))] πt)] .

• When q ≥ 3,

n1/2+ 3
2q+2Rn(θ∗)⇒

2q + 2

q + 2

∥∥∥Z̃∥∥∥1+ 1
q+1

2(
E
[

πq/2

Γ(q/2+1)
(gX (h (θ∗, X1)) + κgX̃ (h (θ∗, X1)))

]) 1
q+1

where Z̃ ∼ N (0, V ar (h (θ∗, X))) ∈ Rq.

3.2.2.2 Explicit SoS Formulation for Estimating Equations

The second SoS function form we call Explicit SoS function because the Wasserstein

distance is explicitly or directly applied to the samples and the scenarios.

Definition 3. Explicit SoS Profile Function for Estimating Equations
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Rn(θ∗) = inf{
ˆ ˆ

‖x− z‖2
2 π (dx, dz) : (3.8)

s.t. π ∈ P
(
Xn ×Z(n+m)

)
, πX = µn,

ˆ
h (θ∗, z) πZ (dz) = 0} .

Both the implicit and explicit SoS have their merits. We have discussed the merit

of the implicit SoS formulation. For the Explicit SoS formulation, consider the stress

testing application discussed in the Introduction. The interest of an auditor or a

regulator might be on the impact of scenarios on a specific performance measure of

interest. One might think that the regulator applies the same stress scenarios to

different insurance companies or banks, and therefore the function h (·) is unique to

each insurance company. The regulator is interested in the impact of stress testing

scenarios on the structure of the bank (modeled by h (·)). In this setting, the Explicit

SoS formulation appears more appropriate.

While the analysis of the Explicit SoS formulation is also largely based on the

techniques developed for Theorem 3.1, it does require some additional assumptions

that are not immediately clear without examining the proof of Theorem 3.1. In

particular, in addition to A1), A2), B1) and B2), here we impose the following

assumptions.

BE1) Assume that the derivative of h (θ∗, x) with respect to (w.r.t.) x,Dxh (θ∗, ·) :

Rl → Rq×l, is continuous function of x and the second derivative w.r.t. x is bounded,

i.e. ‖D2
xh (θ∗, ·)‖ < K̃ for all x.

BE2) Define Vi = Dxh (θ∗, Xi) ·Dxh (θ∗, Xi)
T ∈ Rq×q and assume that Υ = E (Vi)

is strictly positive definite.

We provide the proof of the next result in our technical Section 3.3.

Theorem 3.3 (Explicit SoS Profile Function Analysis). Under assumptions A1)-A2),
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B1)-B2) and BE1)-BE2), we have that (3.8) satisfies

• When l = 1,

nRn(θ∗)⇒ Z̃TΥ−1Z̃

where Z̃ ∼ N (0, V ar (h (θ∗, X))) ∈ Rq.

• Assume that l = 2. It is possible to uniquely define deterministic continuous

mapping, ζ̃ : Rq → Rq, such that

z = −E
[
V1I

(
τ ≤ ζ̃T (z)V1ζ̃ (z)

)]
ζ̃ (z) ,

where τ is independent of Z̃ satisfying

P (τ > t) = E (exp (− [fX (X1) + κfX̃ (X1)]πt)) .

Moreover, we have that,

nRn(θ∗)⇒ −2Z̃T ζ̃
(
Z̃
)
− ζ̃T

(
Z̃
)
G̃
(
ζ̃
(
Z̃
))

ζ̃
(
Z̃
)
,

where G̃ : Rq → Rq×q is a deterministic continuous mapping defined as,

G̃ (ζ) = E
[
V1 max

(
1− τ/

(
ζTV1ζ

)
, 0
)]
,

and Z̃ ∼ N (0, V ar (h (θ∗, X))) ∈ Rq.

• Suppose that l ≥ 3. It is possible to uniquely define deterministic continuous

mapping ζ̃ : Rq → Rq, such that

z = −E
[
πl/2 (fX (X1) + κfX̃ (X1))

Γ(l/2 + 1)
V1 ·

(
ζ̃T (z)V1ζ̃ (z)

)l]
ζ̃ (z) ,
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(note that V̄1 is a function of X1). Moreover,

n1/2+ 3
2l+2Rn(θ∗) ⇒ −2Z̃T ζ̃

(
Z̃
)
− 2

l + 2
G̃
(

˜̃Z
)
,

where G̃ : Rq → R is a deterministic continuous function defined as,

G̃ (ζ) = E
[

πl/2

Γ(l/2 + 1)
(fX (X1) + κfX̃ (X1))

(
ζTV1ζ

)l/2+1
]
,

and Z̃ ∼ N (0, V ar (h (θ∗, X))) ∈ Rq independent of X1.

We should observe that unlike implicit formulation, the rate of convergence will

only depend on the dimension of data Xi ∈ Rl, but the shape of asymptotic distribu-

tion is determined by the estimating functions h (θ∗, Xi) ∈ Rq.

3.2.3 Plug-in Estimators for SoS Functions

In many situations, for example in the context of stochastic optimization, we are

interested in a specific parameter θ∗ = (γ∗, ν∗) ∈ Rd+p such that E [h (γ∗, ν∗, X)] = 0,

where ν∗ ∈ Rp is the nuisance parameter. We shall discuss a method that allows us to

deal with the nuisance parameter using a plug-in estimator, while taking advantage

of the SoS framework for the estimation of γ∗. After we state our assumptions we

will provide the results in this section and the proofs, which follow closely those of

Theorems 3.3 and 3.2 will be given in Section 3.3.

Throughout this subsection, let us suppose that h (γ, ν, x) ∈ Rq. In addition, we

impose the following assumptions.

C1) Given γ∗ there is a unique ν∗ ∈ Rp such that

E [h (γ∗, ν,X)] = 0 (3.9)
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and, given ν∗, we also assume that γ∗ satisfies

E [h (γ, ν∗, X)] = 0. (3.10)

C2) We have access to a suitable estimator vn such that the sequence

{
n1/2 (vn − ν∗)

}∞
n=1

is tight,

and
1√
n

n∑
i=1

h (γ∗, vn, Xi)⇒ Z̃ ′,

for some random variable Z̃ ′, as n→∞.

C3) Assume that h (γ, ·, x) is continuously differentiable a.e. (almost everywhere

with respect to the Lebesgue measure) in some neighborhood V around v∗.

C4) Suppose that there is a function M (·) : Rl → (0,∞) satisfying that

‖h (γ∗, ν, x)‖2
2 ≤M(x) for a.e. ν ∈ V ,

‖Dνh (γ∗, ν, x)‖2
2 ≤M(x) for a.e. ν ∈ V ,

and E (M (X1)) <∞.
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3.2.3.1 Plug-in Estimators for Implicit SoS Functions

We are interested in studying the plug-in implicit SoS function (or implicit pseudo-SoS

profile function) given by

Rn(γ∗) = inf{
ˆ ˆ

‖h (γ∗, vn, x)− h (γ∗, vn, z)‖2
2 π (dx, dz) : (3.11)

s.t. π ∈ P
(
X h
n (γ∗, vn)×Zh(n+m) (γ∗, vn)

)
, πX = µn,

ˆ
h (γ∗, vn, z) πZ (dz) = 0},

where,

X h
n (γ∗, vn) = {h (γ∗, vn, x) : x ∈ Xn}, Zh(n+m) (γ∗, vn) = {h (γ∗, vn, z) : z ∈ Z(n+m)}.

We typically will use (3.9) to find a plug-in estimator vn. Under suitable assump-

tions on the consistency and convergence rate of the plug-in estimator we have an

asymptotic result for (3.11), as we indicate next.

Corollary 3.1 (Plug-in for Implicit SoS Formulation). Assuming A1)-A2), and C1)-

C4) hold. Moreover, suppose denote gX(·) as the density for h (γ∗, v∗, Xi) ∈ Rq and

gY (·) for the density of h (γ∗, v∗, Yi) ∈ Rq. We notice Z̃ ′ ∈ Rq is defined in C2). We

obtain that (3.11) has following asymptotic behavior

• When q = 1,

nRn(γ∗)⇒
(
Z̃ ′
)2

.

• When q = 2,

nRn(γ∗)⇒ ρ
(
Z̃ ′
) [

2− η̃
(
Z̃ ′
)
ρ
(
Z̃ ′
)] ∥∥∥Z̃ ′∥∥∥2

2
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where ρ
(
Z̃
)
is the unique solution to the equation

1

ρ
= g̃

(
ρZ̃
)
,

and g̃ : Rq → R is a deterministic continuous function defined as

g̃ (x) = P
(
‖x‖2

2 ≥ τ
)
.

The function η̃ : Rq → R is a deterministic continuous function defined as

η̃ (x) = E
[
max

(
1− τ/‖x‖2

2, 0
)]
.

Moreover, Z̃ ′ is defined in assumption C2) and τ is independent of Z̃ ′ satisfying

P [τ > t] = E [exp (− [gX (h (γ∗, ν∗, X1)) + κgX̃ (h (γ∗, ν∗, X1))] πt)] .

• When q ≥ 3,

n1/2+ 3
2q+2Rn(γ∗)⇒

2q + 2

q + 2

∥∥∥Z̃ ′∥∥∥1+ 1
q+1

2(
E
[

πq/2

Γ(q/2+1)
(gX (h (γ∗, ν∗, X1)) + κgX̃ (h (γ∗, ν∗, X1)))

]) 1
q+1

.

3.2.3.2 Plug-in Estimators for Explicit SoS Functions

We can also analyze plug-in estimators for Explicit SoS profile functions. We now

define the explicit plug-in (or pseudo) SoS function based on (3.8) as simply plugging-
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in the nuisance parameter:

Rn(γ∗) = inf
{ˆ ˆ

‖x− z‖2
2 π (dx, dz) : (3.12)

s.t. π ∈ P
(
X h
n (γ∗, vn)×Zh(n+m) (γ∗, vn)

)
,

πX = µn,

ˆ
h (γ∗, vn, z) πZ (dz) = 0

}
.

In addition to C1) to C4) introduced at the beginning of this subsection, we shall

impose the following additional assumptions:

C5) Define V̄i (v∗) = Dxh (γ∗, ν∗, Xi) · Dxh (γ∗, ν∗, Xi)
T and assume that Ῡ =

E
(
V̄i
)
is strictly positive definite.

C6) The function M (·) from condition C4) also satisfies

‖Dxh (γ∗, ν, x)‖2
2 ≤M(x) for a.e. ν ∈ V .

‖DνDxh (γ∗, ν, x)‖2
2 ≤M(x) for a.e. ν ∈ V .

C7) The second derivative w.r.t. x exist and bounded, i.e. ‖D2
xh (γ∗, ν, x)‖ <

K̃ for a.e. ν ∈ V and all x.

Corollary 3.2 (Plug-in for Explicit SoS Formulation). Xi ∈ Rl, h (γ, ν, x) ∈ Rq. As-

sume that A1)-A2) and C1)-C7) hold. We notice Z̃ ′ is defined in C2). Then, the SoS

profile function defined in Equation (3.12) has the following asymptotic properties.

• When l = 1,

nRn(γ∗)⇒ Z̃ ′T Ῡ−1Z̃ ′.

• Suppose that l = 2. It is possible to uniquely define deterministic continuous
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mapping ζ̃ : Rq → Rq, such that

z = −E
[
V̄1I

(
τ ≤ ζ̃T (z) V̄1ζ̃ (z)

)]
ζ̃ (z) ,

where τ is independent of Z̃ ′ satisfying

P (τ > t) = E (exp (− [fX (X1) + κfX̃ (X1)]πt)) .

Furthermore,

nRn(θ∗)⇒ −2ζ̃T
(
Z̃ ′
)
Z̃ ′ − ζ̃T

(
Z̃ ′
)
G̃
(
ζ̃
(
Z̃ ′
))

ζ̃
(
Z̃ ′
)
,

where G̃ : Rq → Rq×q is a deterministic continuous mapping defined as,

G̃ (ζ) = E
[
V̄1 max

(
1− τ/

(
ζT V̄1ζ

)
, 0
)]
,

and Z̃ ′ is independent with V̄1 and τ .

• Assume that l ≥ 3. A deterministic and continuous mapping ζ̃ : Rq → Rq can

be defined uniquely so that

z = −E
[
πl/2 (fX (X1) + κfX̃ (X1))

Γ(l/2 + 1)
V̄1

(
ζ̃T (z) V̄1ζ̃ (z)

)l]
ζ̃ (z)

(note that V̄1 is a function of X1). Moreover,

n1/2+ 3
2l+2Rn(θ∗)⇒ −2ζ̃T

(
Z̃ ′
)
Z̃ ′ − 2

l + 2
G̃
(
ζ̃
(
Z̃ ′
))

,
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where G̃ : Rq → R is a deterministic continuous function defined as,

G̃ (ζ) = E
[

πl/2

Γ(l/2 + 1)
(fX (X1) + κfX̃ (X1))

(
ζT V̄1ζ

)l/2+1
]
,

and Z̃ ′ and X1 are independent.

3.3 Methodological Development

We shall analyze the limiting distribution of the SoS profile function for means first. In

order to gain some intuition let us perform some basic manipulations. First, without

loss of generality we assume θ∗ = 0, otherwise, we can let X∗i = Xi − θ∗ and apply

the analysis to the Xi
∗’s.

3.3.1 The Dual Problem and High-Level Understanding of Re-

sults

The Dual Problem Let us revisit the definition of (3.6) and write it as a linear

programming problem,

Rn(θ∗) = min
π(i,j)≥0

n∑
i=1

m+n∑
j=1

π(i, j) ‖Xi − Zj‖2
2 (3.13)

s.t.


∑(m+n)

j=1 π(i, j) = 1/n, for all i∑(m+n)
j=1 (

∑n
i=1 π(i, j))Zj = 0

.

We know with probability 1 when n→∞, ~0 is in the convex hull of Zj, thus the

original linear programming problem is feasible for all n large enough with probability

one. Applying the strong duality theorem for linear programming problem, see for
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example, Luenberger [1973a], we can write (3.13) in the dual formulation as

Rn(θ∗) = max
λ,γ̃i

{
− 1

n

n∑
i=1

γ̃i

}

s.t. γ̃i + ‖Xi − Zj‖2
2 − λ

TZj ≥ 0 for all i, j.

Let us define γi = γ̃i−λTZi. By the constraint in the above optimization problem, if

we take i = j, we have γ̃i ≥ λTZi, which is equivalent to γi ≥ 0. Then, we can write

the optimization problem in γi’s as

Rn(θ∗) = max
λ,γi≥0

{
−λT X̄n −

1

n

n∑
i=1

γi

}

s.t. − λTXi − γi ≤ −λTZj + ‖Xi − Zj‖2
2 , for all i, j.

We can further simplify the constraints by minimizing over j, while keeping i

fixed, therefore arriving to the simplified dual formulation

Rn(θ∗) = max
λ,γi≥0

{
−λT X̄n −

1

n

n∑
i=1

γi

}
(3.14)

s.t. − λTXi − γi ≤ inf
j

{
−λTZj + ‖Xi − Zj‖2

2

}
, for all i.

High-Level Intuitive Analysis At this point we can perform a high-level and

intuitive analysis which can help us guide our intuition about our result. First,

consider an approximation performed by freeing the Zj in the constraints of (3.14),

in this portion the reader can appreciate that the assumption that Xj has a density

yields

inf
j

{
‖Zj − (Xi + λ/2)‖2

2

}
= εn (i) , (3.15)
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where error εn (i) is small and it will be discussed momentarily. Now, observe that

the optimal a∗ (i) = Xi + λ/2, therefore

inf
j

{
−λTZj + ‖Xi − Zj‖2

2

}
= −λTXi − ‖λ‖2

2 /4 + εn (i) .

Hence, the i-th constraint in (3.14) takes the form

−λTXi − γi ≤ −λTXi − ‖λ‖2
2 /4 + εn (i) ,

and thus (3.14) can ultimately be written as

Rn(θ∗) = − min
λ,γi≥0

{
λT X̄n +

1

n

n∑
i=1

γi

}
(3.16)

s.t. γi ≥ (1− εn (i)) ‖λ‖2
2 /4 for all i.

Consider the case l = 1, in this case it is not difficult to convince ourselves

(because of the existence of a density) that εn (i) = Op (1/n) as n → ∞ (basically

with a probability which is bounded away from zero there will be a point in the sample

{Z1, ..., Zm+n}\Xi which is within Op (1/n) distance of a∗ (i)). Then it is intuitive to

expect the approximation

Rn(θ∗) = −min
λ

{
λX̄n + (1 +Op (1/n))λ2/4

}
,

which formally yields an optimal selection

λ∗ = − X̄n

(1/2 +Op (1/n))
= −2X̄n +Op

(
1/n3/2

)
,
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and therefore we expect, due to the Central Limit Theorem (CLT), that

nRn(θ∗) = nX̄2
n + nOp

(
1/n3/2

)
⇒ V ar (X)χ2

1, (3.17)

as n→∞. This analysis will be made rigorous in the next subsection.

Let us continue our discussion in order to elucidate why the rate of convergence

in the asymptotic distribution of Rn(θ∗) depends on the dimension. Such dependence

arises due to the presence of the error term εn (i). Note that in dimension l = 2, we

expect εn (i) = Op

(
1/n1/2

)
; this time, with positive probability (uniformly as n→∞)

we must have that a point in the sample {Z1, ..., Zm+n}\Xi is within Op

(
1/n1/2

)
distance of a∗ (i) (because the probability that Xi lies inside a ball of size 1/n1/2

around a point a is of order O
(
1/n1/2

)
). Therefore, in the case l = 2 we formally

have λ∗ (n) = −X̄n + Op

(
n−1/2

)
, but we know from the CLT that X̄n = Op

(
n−1/2

)
so this time contribution of εi (n) is non-negligible.

Similarly, when l ≥ 3 this simple analysis allows us to conclude that the contri-

bution of εi (n) = O
(
n−1/l

)
will actually dominate the behavior of λ∗ (n) and this

explains why the rate of convergence depends on the dimension of the vector Xi,

namely, l. The specific rate depends on a delicate analysis of the error being εi (n)

which is performed in the next section. A key technical device introduced in our

proof technique is a Poisson point process which approximates the number of points

in {Z1, ..., Zm+n}\Xi which are within a distance of size O
(
n−1/l

)
from the free opti-

mizer a∗ (i) arising in (3.15).

The introduction of this point process, which in turn is required to analyze εi (n),

makes the proof of our result substantially different from the standard approach used

in the theory of Empirical Likelihood (see Owen [1988]; Qin and Lawless [1994], which

builds on Wilks [1938]).
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3.3.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is divided in several steps which we will carefully record

so that we can build from these steps in order to prove the remaining results in the

chapter.

3.3.2.1 Step 1 (Dual Formulation and Lower Bound):

Using the same transformations introduced in (3.13) we can obtain the dual formula-

tion of the SOS profile function (3.6), which is a natural adaptation of (3.14), namely

Rn(θ∗) = max
λ,γi≥0

{
−λX̄n −

1

n

n∑
i=1

γi

}

s.t. − λTXi − γi ≤ inf
j

{
−λTZj + ‖Xi − Zj‖2

2

}
, for all i.

Observe that the following lower bound applies by optimizing over a ∈ Rl instead

of a = Zj ∈ Zn, therefore obtaining the lower bound

inf
j

{
−λTZj + ‖Xi − Zj‖2

2

}
≥ inf

a

{
−λTa+ ‖Xi − a‖2

2

}
= −λTXi − ‖λ‖2

2 /4,

with the optimizer a∗ (Xi, λ) = Xi + λ/2.

3.3.2.2 Step 2 (Auxiliary Poisson Point Processes):

Then, for each i let us define a point process,

N (i)
n (t, λ) = #

{
Zj : ‖Zj − a∗ (Xi, λ)‖2

2 ≤ t2/l/n2/l, Zj 6= Xi

}
,
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(recall that Zj ∈ Rl). Observe that, actually, we have

N (i)
n (t, λ) = N (i)

n (t, λ, 1) +N (i)
n (t, λ, 2),

where

N (i)
n (t, λ, 1) = #

{
Xj : ‖Xj − a∗ (Xi, λ)‖2

2 ≤ t2/l/n2/l, Xj 6= Xi

}
,

N (i)
n (t, λ, 2) = #

{
Yj : ‖Yj − a∗ (Xi, λ)‖2

2 ≤ t2/l/n2/l
}
.

For any Xj with j 6= i, conditional on Xi, due to the assumption of density and

the formula for the volume of l − dimensional ball (Rudin [1964]), we have,

P
[
‖Xj − a∗ (Xi, λ)‖2

2 ≤ t2/l/n2/l
∣∣Xi

]
= fX (a∗ (Xi, λ))

πl/2

Γ(l/2 + 1)

t

n
+ op(t/n) = fX (Xi + λ/2)

πl/2

Γ(l/2 + 1)

t

n
+ op(t/n).

Similarly,

P
[∥∥∥X̃j − a∗ (Xi, λ)

∥∥∥2

2
≤ t2/l/n2/l

∣∣∣∣Xi

]
= fX̃ (Xi + λ/2)

πl/2

Γ(l/2 + 1)

t

n
+ op(t/n).

Since we have i.i.d. structure for the data points, thus we know, N (i)
n (t, λ, 1) and

N
(i)
n (t, λ, 2) conditional on Xi follow binomial distributions,

N (i)
n (t, λ, 1)|Xi ∼ Bin

(
fX (Xi + λ/2)

πl/2

Γ(d/2 + 1)

t

n
+ op(t/n), n− 1

)
,

N (i)
n (t, λ, 2)|Xi ∼ Bin

(
fX̃ (Xi + λ/2)

πl/2

Γ(l/2 + 1)

t

n
+ op(t/n), [κn]

)
,

N (i)
n (t, λ) = N (i)

n (t, λ, 1) +N (i)
n (t, λ, 2).
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Moreover, we have as n→∞,

fX (Xi + λ/2)
πl/2

Γ(l/2 + 1)

t

n
× (n− 1)→ fX (Xi + λ/2)

πl/2

Γ(l/2 + 1)
t.

Thus, by Poisson approximation to binomial distribution, we have the weak conver-

gence result

N (i)
n (·, λ, 1)|Xi ⇒ Poi

(
fX (Xi + λ/2)

πl/2

Γ(l/2 + 1)
·
)
,

in D[0,∞).

So we have that N (i)
n (·, λ, 1), conditional on Xi, is asymptotically a time homoge-

neous Poisson process with rate fX (Xi + λ/2) πd/2/Γ(d/2+1). Similar considerations

apply to N (i)
n (·, λ, 2)|Xi which yield that

N (i)
n (·, λ)|Xi ⇒ Poi (Λ (Xi, λ) ·) ,

where

Λ (Xi, λ) = [fX (Xi + λ/2) + κfX̃ (Xi + λ/2)]
πl/2

Γ(l/2 + 1)
.

Let us write Ti (n) to denote the first arrival time of N (i)
n (·, λ), that is,

Ti (n) = inf
{
t ≥ 0 : N (i)

n (t, λ) ≥ 1
}

Then, we can specify the survival function for Ti (n) to be:

P [Ti (n) > t | Xi] = P
[
N (i)
n (t, λ) = 0

∣∣ Xi

]
= exp (−Λ (Xi, λ) t)

(
1 +O

(
1/n1/l

))
,

(3.18)

uniformly on t over compact sets. The error rate O
(
1/n1/l

)
is obtained by a simple

Taylor expansion of the exponential function applied to the middle term in the pre-
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vious string of equalities. Motivated by the form in the right hand side of (3.18) we

define τi (Xi) to be a random variable such that

P [τi (Xi) > t|Xi] = exp (−Λ (Xi, λ) t) ,

and we drop the dependence on Xi and the subindex i when we refer to the uncon-

ditional version of τi (Xi), namely

P [τ > t] = E [exp (−Λ (X1, λ) t)] .

We finish Step 2 with the statement of two technical lemmas. The first provides

a rate of convergence for the Glivenko-Cantelli theorem associated to the sequence

{Ti (n)}ni=1.

Lemma 3.1. For any T ∈ (0,∞) (deterministic) and α ∈ (0, 2], we have that

limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(I (Ti (n) ≤ t)− P[Ti (n) ≤ t])

∣∣∣∣∣
)
<∞,

and

limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(
max

(
t2 − Ti(n)α, 0

)
− E

[
max

(
t2 − Ti(n)α, 0

)])∣∣∣∣∣
)
<∞.

The second technical lemma deals with local properties of the distribution of

Ti (n). The proofs of both of these technical results are given at the end of the proof

of Theorem 3.1, in Section 3.3.2.7.

Lemma 3.2. For Xi ∈ Rl and any finite t, we have the Poisson approximation to

binomial as:

P [Ti (n) ≤ t]− P [τ ≤ t] = O(t1+1/l/n1/l),
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and

P [Ti (n) ≤ t]− P [τ ≤ t] = P [τ > t]O
(
1/nl

)
.

3.3.2.3 Step 3 (Closest Point and SoS Function Simplification):

Note that the i-th constraint, namely,

−γi ≤ λTXi + inf
j

{
−λTZj + ‖Xi − Zj‖2

2

}
,

can be written as

−γi ≤ inf
j

{
−λT (Zj −Xi) + ‖Xi − Zj‖2

2

}
= −‖λ‖2

2 /4 + inf
j

{
‖Zj − (λ/2 +Xi)‖2

2

}
= −‖λ‖2

2 /4 + T
2/l
i (n) /n2/l.

However, since γi ≥ 0 we must have that

−γi ≤ −‖λ‖2
2 /4 + min

(
T

2/l
i (n) /n2/l, ‖λ‖2

2 /4
)
.

Therefore, the SoS profile function takes the form

Rn(θ∗) = max
λ

{
−λT X̄n − ‖λ‖2

2 /4 +
1

n

n∑
i=1

min

(
T

2/l
i (n)

n2/l
, ‖λ‖2

2 /4

)}
.

To simplify the notation, let us redefine λ←− 2λ then we have that the simplified

SoS profile function becomes:

Rn(θ∗) = max
λ

{
−2λT X̄n −

1

n

n∑
i=1

max

(
‖λ‖2

2 −
T

2/l
i (n)

n2/l
, 0

)}
. (3.19)
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3.3.2.4 Step 4 (Case l = 1):

When l = 1, let’s denote
√
nX̄n = Zn and

√
nλ = ζ, where by CLT we can show

Zn ⇒ Z̃ ∼ N(0, σ2), where when l = 1 we have σ2 = Σ. Then, as n→∞, we have:

nRn(θ∗) = max
ζ

{
−2ζZn −

1

n

n∑
i=1

max
(
ζ2 − T 2

i (n)n−1, 0
)}

= max
ζ

{
−2ζZn − E

[
max

(
ζ2 − T 2

i (n)n−1, 0
)]}

+ op(1)

The second equation follows the estimate in (Lemma 3.1). We know the objective

function as a function of ζ is a strictly convex function. Since as ζ = b |Zn| with

b → ±∞ implies that the objective function will tend to −∞, we conclude that the

sequence of global optimizers is compact and each optimizer (i.e. for each n) could

be characterized by the first order optimality condition almost surely. To make the

analysis more clear, let us denote the expectation in the maximization problem to be

g (ζ, n), as a function of ζ, i.e.

G (ζ, n) = E
[
max

(
ζ2 − T 2

i (n)n−1, 0
)]
,

which is a deterministic function of ζ and for any n it is convex. Moreover, the

derivative of G (ζ, n) is,

g (ζ, n) = ∇ζG (ζ, n) = 2ζP
(
Ti (n) ≤ nζ2

)
.

We need to notice that while taking the derivative we require exchanging the deriva-

tive and expectation, this can be done true hereby the dominating convergence the-
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orem since

δ−1
∣∣max

(
(ζ + δ)2 − T 2

i (n)n−1, 0
)
−max

(
ζ2 − T 2

i (n)n−1, 0
)∣∣ ≤ 2|ζ|,

for all δ > 0. We can take the derivative with respect to ζ in −2ζZn − G (ζ, n) and

set it to zero, as n→∞ we obtain

Zn = −ζP
(
Ti(n) ≤ nζ2

)
= −ζP

(
τ ≤ nζ2

)
+ op(1) = −ζ + op(1).

This estimate follows the second result of Lemma 3.2. Therefore, the optimizer ζ∗n,

satisfies ζ∗n = −Zn + op(1), as n → ∞. Then, we plug it into the objective function

to obtain that the scaled SoS profile function satisfies

nRn(θ∗) = 2Z2
n −G (Zn, n) + op (1) as n→∞.

We should notice G (Zn, n) is a function defined via expectation and evaluated at

Zn, thus it is a random variable depends on Zn. By definition and E [|X|] =
´∞

0
P [|X| ≥ t] dt, we know as n→∞,

G (ζ, n) =

ˆ ζ2

0

P
[
T 2
i (n) ≤ n

(
ζ2 − t

)]
dt

=

ˆ ζ2

0

P
[
τ 2 (n) ≤ n

(
ζ2 − t

)]
dt+ o(1)

=

ˆ ζ2

0

1dt+ o(1) = ζ2 + o(1),
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where the second equality is derived from the second argument of Lemma 3.2. Then

for the SoS profile function, it becomes,

nRn(θ∗) = 2Z2
n − Z2

n + op(1) = Z2
n + op(1) as n→∞.

It is easy to see by applying continuous mapping theorem and central limitation for

Zn, we have

nRn(θ∗)⇒ σ2χ2
1.

3.3.2.5 Step 5 (Case l = 2):

Once again we introduce the substitution ζ =
√
nλ and

√
nX̄n = Zn into (3.19).

Then, scaling the profile function by n, as n→∞ we have

nRn(θ∗) = max
ζ

{
−2ζTZn −

1

n

n∑
i=1

max
(
‖ζ‖2

2 − Ti (n) , 0
)}

= max
ζ

{
−2ζTZn − E

[
max

(
‖ζ‖2

2 − Ti (n) , 0
)]}

+ op(1), (3.20)

where the previous estimate follows by applying Lemma 3.1 (the error is obtained by

localizing ζ on a compact set, which is valid because the sequence of global optimizers

is easily seen to be tight). The objective function is strictly convex as a function of ζ

and we know when ‖ζ‖2 →∞ the objective function tends to −∞, thus each global

maximizer (for each n) can be characterized by the first order optimality condition

almost surely. Similar as Case l = 1, let us denote

G (ζ, n) = E
[
max

(
‖ζ‖2

2 − Ti (n) , 0
)]
.
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It is a continuous differentiable and convex function in ζ and with derivative equals

g (ζ, n) = ∇ζG (ζ, n) = 2ζP
[
‖ζ‖2

2 ≥ Ti (n)
]

= 2ζP
[
‖ζ‖2

2 ≥ τ
]

+ o(1) as n→∞,

where the first equality requires applying dominating convergence theorem as for l = 1

and second estimate follows the first argument in Lemma 3.2. Combining the above

estimation, we have the first order optimality condition becomes

Zn = −ζP
[
‖ζ‖2

2 ≥ τ
]

+ op(1) = −ζg̃ (ζ) + op(1) as n→∞, (3.21)

where g̃ (ζ) = P
[
‖ζ‖2

2 ≥ τ
]
is a deterministic function of ζ. Using equation (3.21),

we conclude that the optimizer ζ∗n, satisfies ζ∗n = −ρZn + op (1), for some ρ. In turn,

plugging in this representation into equation (3.21), as n→∞ we have

‖ζ∗n‖2 g̃ (ζ∗n) + op(1) = ‖Zn‖2 .

Sending n→∞, we conclude that ρ is the unique solution to

1

ρ
= g̃

(
ρZ̃
)
. (3.22)

Since the objective function is strict convex and the above equation is derived from

first order optimality condition, we know the solution exists and is unique (alter-

natively we can use the continuity and monotonicity of left and right hand side of

(3.22), to argue the existence and uniqueness). Let us plug in the optimizer back to

the objective function and we can see the scaled SoS profile function becomes

nRn (θ∗) = 2ρ

(∥∥∥Z̃∥∥∥2

2

)
‖Zn‖2

2 −G (ζ∗n, n) + op(1).
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For a positive random variable Y , we have: E [Y ] =
´∞

0
P [Y ≥ t] dt. Therefore,

for ζ in a compact set, as n→∞ we have the following estimate

G (ζ, n) =

ˆ ‖ζ‖22
0

P
[
‖ζ‖2

2 − Ti (n) ≥ t
]
dt

=

ˆ ‖ζ‖22
0

P
[
‖ζ‖2

2 − τ ≥ t
]
dt+ o(1)

= ‖ζ‖2
2

ˆ 1

0

P
[
1− τ/‖ζ‖2

2 ≥ s
]
ds+ o(1)

= ‖ζ‖2
2 E
[
max

(
1− τ/‖ζ‖2

2, 0
)]

+ o(1)

= ‖ζ‖2
2 η̃ (ζ) + o(1),

where we define η̃ (ζ) = E
[
max

(
1− τ/‖ζ‖2

2, 0
)]

is a deterministic continuous function

of ζ. The second equation follows the first result of Lemma 3.2. Finally combine

G (ζ, n) and the first term, using the CLT and continuous mapping theorem, where

we denote Zn ⇒ Z̃ ∼ N(0, V ar(X)), as n→∞ we have:

nRn(θ∗) = 2ρ
(
Z̃
)
‖Zn‖2

2 − ρ
(
Z̃
)2

η̃ (Zn) ‖Zn‖2
2 + op(1)

⇒ 2ρ
(
Z̃
)∥∥∥Z̃∥∥∥2

2
− ρ

(
Z̃
)2

η̃
(
Z̃
)∥∥∥Z̃∥∥∥2

2
.

3.3.2.6 Step 6 (Case l ≥ 3):

For simplicity, let us write
√
nX̄n = Zn and n

3
2l+2λ = ζ, then as n→∞ we have
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n1/2+ 3
2l+2Rn(θ∗)

= max
ζ

{
−2ζTZn − n(1/2+ 3

2l+2
− 2
l ) 1

n

n∑
i=1

max

(∥∥∥∥ ζ

n( 3
2l+2
− 1
l )

∥∥∥∥2

2

− T 2/l
i (n) , 0

)}

= max
ζ

{
−2ζTZn − n(1/2+ 3

2l+2
− 2
l )E

[
max

(∥∥∥∥ ζ

n( 3
2l+2
− 1
l )

∥∥∥∥2

2

− T 2/l
1 (n) , 0

)]}
+ op(1).

The estimate in the previous display is due to an application of Lemma 3.1. Similar

as for the lower dimensional case, let us denote

G (ζ, n) = n(1/2+ 3
2l+2
− 2
l )E

[
max

(∥∥∥∥ ζ

n( 3
2l+2
− 1
l )

∥∥∥∥2

2

− T 2/l
1 (n) , 0

)]
,

being a deterministic function continuous and differentiable as a function of ζ. As we

discussed for the case l = 2 case, the objective function is strictly convex in ζ, the

global optimizers are not only tight, but each optimizer is also characterized by first

order optimality conditions almost surely. We can apply the dominating convergence

as we discussed for l = 1 and the gradient of G (ζ, n) has the following estimate as

n→∞,

g (ζ, n) = ∇ζG (ζ, n) = 2n(1/2+ 3
2l+2
− 2
l )ζP

[
Ti (n) ≤

∥∥∥ζn−( 3
2l+2
− 1
l )
∥∥∥l

2

]
= 2n(1/2+ 3

2l+2
− 2
l )ζP

[
τ (n) ≤

∥∥∥ζn−( 3
2l+2
− 1
l )
∥∥∥l

2

]
+ o(1).

The second equality estimate is considering ζ within a compact set and the derivation

follows the first argument in Lemma 3.2. Then the first order optimality condition
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for the SoS profile function becomes,

Zn = −n(1/2+ 3
2l+2
− 2
l )ζP

[
τ (n) ≤

∥∥∥ζn−( 3
2l+2
− 1
l )
∥∥∥l

2

]
+ o(1) as n→∞.

For notation simplicity, let us define

κn = ζn−( 3
2l+2
− 1
l ).

We can observe for ζ in a compact set,
∥∥∥ζn−( 3

2l+2
− 1
l )
∥∥∥l

2
= ‖κn‖l2 → 0, as n→∞, then

we can write

P
[
τ ≤ ‖κn‖l2

]
= 1− P

[
τ > ‖κn‖l2

]
= 1− E

[
P
[
τ > ‖κn‖l2

∣∣∣ X1

]]
= E

[
1− exp

(
−π

l/2 (fX (X1 + κn) + fX̃ (X1 + κn))

Γ(l/2 + 1)
‖κn‖l2

)]
= E

[
πl/2

Γ(l/2 + 1)
[fX (X1) + fX̃ (X1)] ‖κn‖l2

]
+ op

(
n−( 3l

2l+2
−1)
)

= C ‖κn‖l2 + op

(
n−( 3l

2l+2
−1)
)
,

where we denote

C =
πl/2

Γ(l/2 + 1)
E [fX̃ (X1) + fY (X1)] .

Plug it back into the optimizer, and as n→∞ we have:

Zn = −Cn(1/2− 3
2l+2

)n(− 3l
2l+2

+1)ζ ‖ζ‖l2 + op(1) = −Cζ ‖ζ‖l2 + op(1).

We know that within the objective function, the second term is only based on the

L2 norm of ζ, thus to maximize the objective function we will asymptotically select

ζ∗n = −c∗Zn (1 + o (1)), where c∗ > 0 is suitably chosen, thus, we conclude that the
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optimizer takes the form,

ζ∗n = −Zn‖Zn‖
( 1
l+1
−1)

2 /C
1
l+1 + op(1).

Plugging-in the optimizer back into the objective function, as n→∞we have:

n1/2+ 3
2l+2Rn(θ∗) = −2ζ∗ Tn Zn −G (ζ∗n, n) + op(1).

Let us focus on the analysis of G (ζ, n) in a compact set. By definition, we can no-

tice that inside the previous expectation there is a positive random variable bounded

by
∥∥∥∥ ζ

n(
3

2l+2
− 1
l )

∥∥∥∥2

2

= ‖κn‖2
2, thus as n → ∞ we have the following estimate for the

expectation as.

E
[
max

(
‖κn‖2

2 − T
2/l
1 (n) , 0

)]
= E

[
E
[
max

(
‖κn‖2

2 − T
2/l
1 (n) , 0

) ∣∣∣ X1

]]
= E

[ˆ κn

0

P
[
T1 (n) ≤ (κn − t)l/2

∣∣∣ X1

]
dt

]
= E

[ˆ ‖κn‖22
0

P
[
τ ≤

(
‖κn‖2

2 − t
)l/2 ∣∣∣ X1

]
+O

(
1/n−1/2+1/l

)
dt

]

= E

ˆ ‖κn‖22
0

1− e−
πl/2

fX
X1+

ζ

n
3

2l+2

+f
X̃

X1+
ζ

n
3

2l+2


Γ(l/2+1) (‖κn‖22−t)

l/2

 dt


+O

(
1/n−1/2+3/l− 6

2l+2

)
= C

2

l + 2

∥∥∥∥ ζ

n( 3
2l+2
− 1
l )

∥∥∥∥l+2

+O
(

1/n−1/2+3/l− 6
2l+2

)

The estimate in third equation follows by applying the first argument in Lemma 3.2.

The final equality estimate is due to ‖κn‖2
2 =

∥∥∥ζn−( 3
2l+2
− 1
l )
∥∥∥2

2
→ 0 as n→∞. Then,
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owing to the previous results, as n→∞ we have estimate for G (ζ, n) as

G (ζ, n) = − 2C

l + 2
n(1/2+ 3

2l+2
− 2
l )n(− 3l+6

2l+2
+ l+2

l ) ‖ζ‖l+2
2 + o(1)

= − 2C

l + 2
‖ζ‖l+2

2 + o(1).

Finally, we can know that, as n → ∞, by the CLT we have Zn ⇒ Z̃, then using

continuous mapping theorem, we have that the scaled SoS profile function has the

asymptotic distribution given by

n1/2+ 5
4l+2Rn(θ∗) = 2 ‖Zn‖2

2

‖Zn‖
( 1
l+1
−1)

2

C
1
l+1

− 2

l + 2

‖Zn‖
1+ 1

l+1

2

C
1
l+1

+ op(1)

=
2l + 2

l + 2

‖Zn‖
1+ 1

l+1

2

C
1
l+1

+ op(1)⇒ 2l + 2

l + 2

∥∥∥Z̃∥∥∥1+ 1
l+1

2

C
1
l+1

.

3.3.2.7 Proofs of Technical Lemmas in Step 2

Proof of Lemma 3.1. We shall introduce some notation which will be convenient

throughout our development. Define for t ≥ 0,

Fn (t) = P (Ti (n) ≤ t) ,

Di (t) = I (Ti (n) ≤ t) , D̄i (t) = I (Ti (n) ≤ t)− Fn (t) ,

F̄n (t) = 1 + n−1/2

n∑
i=1

D̄i (t) .

Therefore, we are interested in studying

F̄n (t)− 1 =
1

n1/2

n∑
i=1

(I (Ti (n) ≤ t)− Fn (t)) .
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We will start by studying

E[sup{F̄n (t) : t ∈ [0, T ]}].

First, we define

hn (t) =
F̄n (t−)(

F̄ ∗n (t−)2 + [F̄n] (t−)
)1/2

,

where, for a given function {g (t) : t ∈ [0, T ]}, we define

g∗ (t) = sup{g (s) : s ∈ [0, t]},

[g] (t) =

ˆ t

0

(dg (s))2 .

In addition, [g] (t) is defined as the quadratic variational process, i.e.,

[g] (t) = lim
n→∞

n∑
i=1

[
g

(
i× t
n

)
− g

(
(i− 1)× t

n

)]2

.

In particular,

[F̄n] (t) =
1

n

n∑
i=1

I (Ti (n) ≤ t) .

We observe that F̄ ∗n (t) ≥ 1 , therefore hn (t) is well defined; moreover, note that

hn (t)2 ≤ 1.

We invoke Theorem 1.2 of Beiglböck and Siorpaes [2015] and conclude that

sup
0≤t≤T

F̄n (t) ≤ 6
√

[F̄n] (T ) + 2

ˆ T

0

hn (t) dF̄n (t) .

Now we analyze the integral in the right hand side of the previous display. Observe
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that

E
(ˆ T

0

hn (t) dF̄n (t)

)
=

1

n1/2

n∑
i=1

E
(ˆ T

0

hn (t) dD̄i (t)

)
= n1/2E

(ˆ T

0

hn (t) dD̄1 (t)

)
. (3.23)

Let us write

1F̄n (t) = F̄n (t)− D̄1 (t) /n1/2,

that is, we simply remove the last term in the sum defining F̄n (t). We have that

hn (t) =
1F̄n (t−) + D̄1 (t−) /n1/2(

F̄ ∗n (t−)2 + [1F̄n] (t−) + [D1] (t−) /n
)1/2

,

moreover, ∣∣
1F̄
∗
n (t)− F̄ ∗n (t)

∣∣ ≤ 1/n1/2.

We then can write

hn (t) =
1F̄n (t−) + D̄1 (t−) /n1/2(

F̄ ∗n (t−)2 + [1F̄n] (t−) + [D1] (t−) /n
)1/2

(3.24)

=
1F̄n (t−)(

1F̄ ∗n (t−)2 + [1F̄n] (t−)
)1/2

(
1 +

Ln (t−)

n1/2

)
,

where we can select a deterministic constant c ∈ (0,∞) such that |Ln (t)| ≤ c for

j = 0 and 1 assuming n ≥ 4 (this constrain in n is imposed so that a Taylor expansion

for the function 1/(1− x) can be developed for x ∈ (0, 1)). We now insert (3.24) into

(3.23) and conclude that if we define

h̄n (t) =
1F̄n (t−)(

1F̄ ∗n (t−)2 + [1F̄n] (t−)
)1/2

,
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it suffices to verify that

n1/2E
(ˆ T

0

h̄n (t) dD̄1 (t)

)
<∞.

Define h̃n (t) to be a copy of h̄n (t), independent of X1 and T1 (n). In particular, h̃n (t)

is constructed by using all of the Xj’s except for X1, which might be replaced by an

independent copy, X ′1, of X1. Observe that the number of processes {D̄i (t) : t ≤ T}

that depend on T1 (n) and X1 is smaller than Nn (T, λ, 1). Therefore, similarly as we

obtained from the analysis leading to the definition of h̄n (·), we have that a random

variable L̄Nn(T,λ,1) can be defined so that
∣∣L̄Nn(T,λ,1)

∣∣ ≤ c(1 + Nn (T, λ, 1)) for some

(deterministic) c > 0 and n ≥ 4 and satisfying

E
(ˆ T

0

h̄n (t) dD̄1 (t)

)
= E

(
h̄n (T1 (n)) I (T1 (n) ≤ T )

)
− E

(
h̃n (T1 (n)) I (T1 (n) ≤ T )

)
= E

(
h̃n (T1 (n)) I (T1 (n) ≤ T )

)
− E

(
h̃n (τi (Xi)) I (τi (Xi) ≤ T )

)
+ E

(
L̄Nn(T,λ,1)/n

1/2
)

= E
(
L̄Nn(T,λ,1)/n

1/2
)
.

We have that

∣∣E (L̄Nn(T,λ,1)/n
1/2
)∣∣ ≤ |E (c(1 +Nn (T, λ, 1)))| /n1/2 = O

(
1/n1/2

)
.

Consequently, we conclude that

n1/2E
(ˆ T

0

hn (t) dD̄1 (t)

)
= O (1) ,
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as n → ∞, as required. Thus we proved that the first part of the lemma holds. For

the second part, we observe that

limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(
max

(
t2 − Ti(n)α, 0

)
− E

[
max

(
t2 − Ti(n)α, 0

)])∣∣∣∣∣
)

= limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣
ˆ t

0

1

n1/2

n∑
i=1

(
2sI

(
Tαi (n) ≤ s2

)
− 2sP[Tαi (n) ≤ s2]

)
ds

∣∣∣∣∣
)

≤ limn→∞

ˆ T

0

E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(
2tI
(
Tαi (n) ≤ t2

)
− 2tP[Tαi (n) ≤ t2]

)∣∣∣∣∣
)
dt

≤ 2T 2limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(I (Ti (n) ≤ t)− P[Ti (n) ≤ t])

∣∣∣∣∣
)
<∞.

Hence, applying the result for the first part of the lemma, we conclude the second

part as well.

Proof of Lemma 3.2.

P [Ti (n) ≤ t] = P
(
Bin

(
P
(
‖Xi − a (Xi, λ)‖2 ≤ t1/l/n1/l

)
, n− 1

)
≥ 1
)

= 1−
(
1− P

(
‖Xi − a (Xi, λ)‖2 ≤ t1/l/n1/l

))n
.

Then, as n→∞ and t→ 0+

P
(
‖Xj − a (Xi, λ)‖2 ≤ t1/l/n1/l

)
= c0t/n+ c1t/n · t1/l/n1/l + o

(
t1+1/l/n1+1/l

)
.

Therefore by the Poisson approximation to the Binomial distribution we know:

P [Ti (n) ≤ t] = 1− exp (−c0t) +O
(
t1+1/l/n1/l

)
,

P [τ ≤ t] = 1− exp (−c0t) .
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Thus we proved the first claim:

P [Ti (n) ≤ t]− P [τ ≤ t] = O
(
t1+1/l/n1/l

)
.

The second claim follows the definition of τ and equation Equation (3.18), where as

n→∞ we have

P [Ti (n) ≤ t]− P [τ ≤ t] = P [Ti (n) > t]− P [τ > t]

= E [exp (−Λ (λ,X1))]
(
1 +O

(
1/nl

))
− E [exp (−Λ (λ,X1))]

= P [τ > t]O
(
1/nl

)
.

3.3.3 Proofs of Additional Theorems

In this subsection, we are going to provide the proofs of the remaining theorems and

corollaries (Theorem 3.2, Theorem 3.3, Corollary 3.1 and Corollary 3.2). We are going

to follow closely the proof of Theorem 3.1 and discuss the differences inside each of

its steps.

3.3.3.1 Proofs of SoS Theorems for General Estimation

We will first prove the corresponding theorems for general estimating equations. As

we discussed before, Theorem 3.2 is the direct generalization of Theorem 3.1 and we

are going to only discuss the proof of Theorem 3.3 in this part.

Proof of Theorem 3.3. Let us first denote h̄n (θ) = 1
n

∑n
i=1 h (θ,Xi). The analogue
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of Step 1, namely, the dual formulation takes the form

Rn(θ∗)

= max
λ

{
−λT h̄n (θ∗)−

1

n

n∑
i=1

max
j

{
λTh (θ∗, Zj)− λTh (θ∗, Xi)− ‖Xi − Zj‖2

2

}+

}
.

Step 2 and 3 are given as follows, for l = 1 and l = 2, let us denote
√
nh̄n (θ∗) = Zn

and
√
nλ = 2ζ, we can scale the SOS profile function by n, arriving to

nRn(θ∗)

= max
ζ

{
−2ζTZn −

1

n

n∑
i=1

nmax
j

{
2
ζT√
n
h (θ∗, Zj)− 2

ζT√
n
h (θ∗, Xi)− ‖Xi − Zj‖2

2

}+
}
.

For each i, let us consider the maximization problem

max
j

{
2
ζT√
n
h (θ∗, Zj)− 2

ζT√
n
h (θ∗, Xi)− ‖Xi − Zj‖2

2

}
. (3.25)

Similar as Step 1 of the proof for Theorem 3.1, we would like to solve the maximization

problem (3.25) by first minimizing over z (as a free variable), instead of over j and

then quantify the gap. Observe that the uniform bound ‖D2
xh (θ∗, ·)‖ < K̃ stated in

BE1) implies that for all n large enough (in particular, n1/2 > 2K̃ ‖ζ‖) implies that

max
z

{
2
ζT√
n
h (θ∗, z)− 2

ζT√
n
h (θ∗, Xi)− ‖Xi − z‖2

2

}
, (3.26)

has an optimizer in the interior. Therefore, by the differentiability assumption stated
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in BE1) we know that any global minimizer, ā∗ (Xi, ζ), of the problem (3.26) satisfies

ā∗ (Xi, ζ) = Xi +Dxh (θ∗, ā∗ (Xi, ζ))T · ζ

n1/2

= Xi +Dxh (θ∗, Xi)
T · ζ

n1/2
+O

(
‖ζ‖2

2

n
‖Dxh (θ∗, ā∗ (Xi, ζ))‖2

)
. (3.27)

Moreover, owing to BE1), we obtain that

‖Dxh (θ∗, ā∗ (Xi, ζ))−Dxh (θ∗, Xi)‖2 ≤ K̃
‖ζ‖2

n1/2
. (3.28)

Consequently, if we define

a∗ (Xi, ζ) = Xi +Dxh (θ∗, Xi)
T · ζ

n1/2
,

we obtain due to (3.27) and (3.28) that

‖a∗ (Xi, ζ)− ā∗ (Xi, ζ)‖2 = O

(
‖ζ‖2

2

n

(
‖Dxh (θ∗, Xi)‖2 +

‖ζ‖2

n1/2

))
.

Then, after performing a Taylor expansion and applying inequality (3.28) we obtain

that

2
ζT√
n
h (θ∗, Xi)− 2

ζT√
n
h (θ∗, ā∗ (Xi, ζ)) + ‖Xi − ā∗ (Xi, ζ)‖2

2

= 2
ζT√
n
h (θ∗, Xi)− 2

ζT√
n
h (θ∗, a∗ (Xi, ζ)) + ‖Xi − a∗ (Xi, ζ)‖2

2

+O

(
‖ζ‖3

n3/2

)
+O

(
‖Dxh (θ∗, Xi)‖2

2 ‖ζ‖
3
2

n3/2

)
.
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In turn, a direct calculation gives that, as n→∞

−ζ
TViζ

n
= 2

ζT√
n
h (θ∗, Xi)− 2

ζT√
n
h (θ∗, a∗ (Xi, ζ))

+ ‖Xi − a∗ (Xi, ζ)‖2
2 +O

(
‖Dxh (θ∗, Xi)‖2 ‖ζ‖3

n3/2

)
.

Similarly as in Step 2 of the proof of Theorem 3.1 we can define the point process

N (i) (t, ζ) and Ti (n). We know the gap between freeing the variable z and restricting

the maximization over the Zj’s (i.e. the difference between (3.26) and (3.25)) is

max
j

{
1

n
ζTViζ −

(
2
ζT√
n
h (θ∗, Zj)− 2

ζT√
n
h (θ∗, Xi)− ‖Xi − Zj‖2

2

)}
+O

(
‖Dxh (θ∗, Xi)‖2 ‖ζ‖3

n3/2

)
.

By the definition of Ti (n), we can write the profile function for l = 1 as

nRn(θ∗) =

max
ζ

{
−2ζTZn −

1

n

n∑
i=1

max

(
ζTViζ −

T 2
i (n)

n
+O

(
‖Dxh (θ∗, Xi)‖2 ‖ζ‖3

n1/2

)
, 0

)}
.

Note that the sequence of global optimizers is tight as n → ∞ because E (Vi) is as-

sumed to be strictly positive definite with probability one. In turn, from the previous

expression we obtain, following a similar derivation as in the proof of Theorem 3.1

(invoking Lemma 3.1) and using the fact that ζ can be restricted to compact sets,

that as n→∞

nRn(θ∗) = max
ζ

{
−2ζTZn − E

[
max

(
ζTV1ζ −

T 2
1 (n)

n

)]}
+ op (1) .
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Then, for l = 2, as n→∞ we have estimate for the profile function as

nRn(θ∗) = max
ζ

{
−2ζTZn − E

[
max

(
ζTV1ζ − T 2

1 (n)
)]}

+ op (1) .

When l ≥ 3, let us denote
√
nh̄n (θ∗) = Zn and n

3
2l+2λ = 2ζ, we can scale profile

function by n
1
2

+ 3
2l+2 and write it as

n
1
2

+ 3
2l+2Rn(θ∗)

= max
ζ

{
− 2ζTZn

− 1

n

n∑
i=1

n
1
2

+ 3
2l+2 max

j

{
2
ζT

n
3

2l+2

h (θ∗, Zj)− 2
ζT

n
3

2l+2

h (θ∗, Xi)− ‖Xi − Zj‖2
2

}+ }
.

By applying same derivation as for l = 1 and 2 above, we can define a point process

N (i) (t, ζ) and Ti (n) as in the proof of Theorem 3.1. As n→∞, we have the estimate

for profile function becomes

n
1
2

+ 3
2l+2Rn(θ∗)

= max
ζ

{
−2ζTZn − n

1
2

+ 3
2l+2
− 2
l
1

n

n∑
i=1

max
(
n−( 6

2l+2
− 2
l )ζTViζ − T 2/l

i (n) , 0
)}

+ op (1)

= max
ζ

{
−2ζTZn − n

1
2

+ 3
2l+2
− 2
lE
[
max

(
n−( 6

2l+2
− 2
l )ζTV1ζ − T 2/l

1 (n) , 0
)}]

+ op (1) .

The final estimation follows as in the proof for Theorem 3.1 (i.e. applying Lemma

3.1).

In Step 4 for l = 1, as n→∞ the objective function is

nRn(θ∗) = max
ζ

{
−2ζTZn (θ∗)− E

[
max

(
ζTV1ζ −

T 2
1 (n)

n
, 0

)]}
+ op(1).
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Let us denote G : Rl → R to be a deterministic continuous function, defined as

G (ζ, n) = E
[
max

(
ζTV1ζ −

T 2
1 (n)

n
, 0

)]
.

We know Υ = E [V1] is symmetric strictly positive definite matrix, then the objective

function is strictly convex and differentiable in ζ. Thus the (unique) global maxi-

mizer is characterized by the first order optimality condition almost surely. We take

derivative w.r.t. ζ and set it to be 0, applying the same estimation in the original

proof the first order optimality condition becomes

Zn = −Υζ + op(1) as n→∞. (3.29)

Since Υ is invertible, for any n we can solve optimal ζ∗n = −Υ−1Zn + op(1). Plugging

ζ∗n in the objective function, as n→∞ we have

nRn(θ∗) = 2ZT
n Υ−1Zn −G

(
−Υ−1Zn, n

)
+ op(1).

As n→∞, we can apply the same estimation in the proof of Theorem 3.1, it becomes

nRn(θ∗)⇒ Z̃TΥ−1Z̃.

Thus we proof the claim for l = 1.

In Step 5 for l = 2, as n→∞ the objective function has estimate

nRn(θ∗) = max
ζ

{
−2ζTZn (θ∗)− E

[
max

(
ζTV1ζ − T1 (n), 0

)]}
+ op(1).
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Still, we denote G (ζ, n) to be a deterministic function given as,

G (ζ, n) = E
[
max

(
ζTV1ζ − T1 (n), 0

)]
.

Same as discussed in for l = 1, the objective function is strictly convex and dif-

ferentiable in ζ, thus the (unique) global maximizer could be characterized via first

order optimality condition almost surely. We take derivative w.r.t. ζ and set it to

be 0, applying same estimation in the proof of Theorem 3.1 the first order optimality

condition becomes

Zn = −E
[
V11(τ≤ζTV1ζ)

]
ζ + op(1) as n→∞. (3.30)

We know the objective function is strictly convex differentiable, then for fixed Zn

there is a unique ζ∗n that satisfies the first order optimality condition (3.30). We plug

in the optimizer and the objective function becomes

nRn (θ∗) = −2ZT
n ζ
∗
n −G (ζ∗n, n) + op(1) as n→∞.

As n→∞, we can apply the same estimation in the proof of Theorem 3.1, we have

nRn (θ∗)⇒ −2Z̃T ζ̃ − ζ̃T G̃
(
ζ̃
)
ζ̃ ,

where G̃ : Rq → Rq × Rq is a deterministic continuous mapping defined as,

G̃ (ζ) = E
[
V1 max

(
1− τ/

(
ζTV1ζ

)
, 0
)]
,
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and ζ̃ := ζ̃
(
Z̃
)
is the unique solution to

Z̃ = −ζE
[
V11(τ≤ζTV1ζ)

]
.

Then we proved the claim for l = 2.

Finally, in Step 6 for l ≥ 3, as n→∞ the objective function is

n1/2+ 3
2l+2Rn(θ∗)

= max
ζ

{
−2ζTZn − n(1/2+ 3

2l+2
− 2
l )E

[
max

(
n−( 6

2l+2
− 2
l )ζTV1ζ − T 2/l

1 (n) , 0
)]}

+ op(1).

We denote G (ζ, n) to be a deterministic function defined as,

G (ζ, n) = n(1/2+ 3
2l+2
− 2
l )E

[
max

(
n−( 6

2l+2
− 2
l )ζTV1ζ − T 2/l

1 (n) , 0
)]
.

Follows the same discussion above for l = 1 and 2, we know the objective function is

strictly convex differentiable in ζ and the global maximizer is characterized by first

order optimality condition almost surely. We take derivative of the objective function

w.r.t. ζ and set it to be 0. We apply the same technique as in the proof of Theorem

3.1, the first order optimality condition becomes

Zn = −E
[
V1
πl/2 (fX (X1) + κfX̃ (X1))

Γ(l/2 + 1)
V1

(
ζTV1ζ

)l]
ζ + op(1). as n→∞ (3.31)

The objective condition is strictly convex differentiable and for fixed Zn there is a

unique ζ∗n satisfying the first optimality condition (3.31). We plug ζ∗n into the objective

function and it becomes

n1/2+ 3
2l+2Rn(θ∗) = −2ZT

n ζ
∗
n −G (ζ∗n, n) + op(1) as n→∞.
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As n→∞, we can apply same estimate in the proof of Theorem 3.1, we have

n1/2+ 3
2l+2Rn(θ∗)⇒ −2Z̃T ζ̃ − 2

l + 2
G̃
(
ζ̃
)
,

where G̃ : Rq → R is a deterministic continuous function given as,

G̃ (ζ) = E
[
πl/2 (fX(X1) + κfX̃ (X1))

Γ (l/2 + 1)

(
ζTV1ζ

)l/2+1
]
,

and ζ̃ := ζ̃
(
Z̃
)
is the unique solution to

Z̃ = −E
[
V1
πl/2 (fX (X1) + κfX̃ (X1))

Γ(l/2 + 1)
V1

(
ζTV1ζ

)l]
ζ.

We proved the claim for l ≥ 3 and finish the proof for Theorem 3.3.

3.3.3.2 Proofs of SoS Theorems for General Estimation with Plug-In

The proofs of the plug-in version of SoS theorems for general estimation equation also

mainly follows the proof of Theorem 3.1, we are going to discuss the different steps

here.

Proof of Corollary 3.1. For implicit formulation, as we discussed for Theorem 3.2,

we can redefine Xi ← h (γ∗, νn, Xi), Zk ← h (γ∗, νn, Zk), Xi(∗) ← h (γ∗, ν∗, Xi) and

Zk(∗)← h (γ∗, ν∗, Xi). Then the proof for the implicit formulation with plug-in goes

as follows.
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In Step 1, the dual formulation is similar given as

Rn(γ∗) = max
λ,γi≥0

{
−λX̄n −

1

n

n∑
i=1

γi

}

s.t. − γi ≤ min
j

{
λTXi − λTZj + ‖Xi − Zj‖2

2

}
, for all i.

We can apply first order Taylor expansion to h (γ∗, νn, Xi) w.r.t. ν, then we have

h (γ∗, νn, Xi) = h (γ∗, ν∗, Xi) +Op

(
‖Dνh (γ∗, ν̄n, Xi)‖

n1/2

)
,

where ν̄n is a point between νn and ν∗. By our change of notation for Xi, Xi(∗), Zk

and Zk(∗) and the above Taylor expansion, we can observe

Zk = Zk(∗) + εn (Zk) ,

where εn (Zk) = Op

(
‖Dνh (γ∗, ν̄n, Zk)‖ /n1/2

)
.

In Step 2 we can define a point process N (i)
n (t, λ) and Ti (n) as in the proof of

Theorem 3.1, but the rate becomes

Λ (Xi, λ) = [fX (Xi + λ/2 + εn (Xi)) + κfX̃ (Xi + λ/2 + εn (Xi))]
πl/2

Γ (l/2 + 1)
.

As n → ∞, same as in the proof of Theorem 3.1 and Theorem 3.3 we can argue

λ→ 0. Then we can define τ same as in the proof of Theorem 3.1 and has the with

same distribution

P [τ ≥ t] = E
[
exp

(
− (fX (X1) + κfX̃ (X1))

πl/2

Γ (l/2 + 1)

)]
.

Then the rest of the proof in Step 3, 4, 5 and 6 stays the same as that of Theorem
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3.1, but replacing the CLT for Zn by asymptotic distribution given in C2).

Proof of Corollary 3.2. For explicit formulation, the proof is more close to the

proof of Theorem 3.3 and we are discussing the difference as follows.

In Step 1, the dual formulation takes the form

Rn(θ∗) = max
λ

{
− λT h̄n (γ∗, νn)− 1

n

n∑
i=1

max
j

{
λTh (γ∗, νn, Zj)− λTh (γ∗, νn, Xi)− ‖Xi − Zj‖2

2

}+ }
.

Step 2 and 3 Follows the same as for the proof of Theorem 3.3 however we need to

notice that difference is the definition of ā∗ (Xi, ζ), for l = 1 and 2 we have

ā∗ (Xi, ζ) = Xi +Dxh (γ∗, νn, ā∗ (Xi, ζ)) · ζ

n1/2

= Xi +Dxh (γ∗, νn, Xi) ·
ζ

n1/2
+O

(
‖ζ‖2

2

n
‖Dxh (γ∗, νn, ā∗ (Xi, ζ))‖2

)

= Xi +Dxh (γ∗, ν∗, Xi) ·
ζ

n1/2
+O

(
‖ζ‖2

2

n
‖Dxh (γ∗, νn, ā∗ (Xi, ζ))‖2

)

+O

(
‖ζ‖2

n1/2
‖νn − ν∗‖2 ‖Dxh (γ∗, νn, ā∗ (Xi, ζ))‖2 ‖DνDxh (γ∗, ν̄n, ā∗ (Xi, ζ))‖2

)
,

where ν̄n is a point between νn and ν∗. By assumption C5)-C7) we can notice the

rest of step 2 and 3 stay the same as in the proof of Theorem 3.3. In Step 4, 5 and

6 we use Zn = 1
n1/2

∑n
i=1 h (γ∗, νn, Xi)⇒ Z̃ ′ given in C2) instead of CLT.
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3.4 Application to Stochastic Optimization and Stress

Testing

We are going to provide an application of the SoS inference framework to quantify

model uncertainty in the context of stochastic programming. As a motivating ap-

plication we consider the problem of evaluating Conditional Value at Risk (C-VaR).

More examples of applying the SoS inference methods will be discussed in Chapter

4, where we consider the support is a combination of the labeled and unlabeled data

to encode the unsupervised information into modeling to propose a semi-supervised

algorithm.

We are interested in the value function of a stochastic programming problem

formulated via

C∗ = min
θ

E [m(θ,X)]

s.t. E[φ(θ,X)] ≤ 0. (3.32)

We assume that the objective function ψ(θ) = E [m(θ,X)] is a convex function in θ;

while the constraints E[φ(θ,X)] ≤ 0 specify a convex region in θ, for example we can

assume φ(θ,X) is a convex function in θ for any X.

Following Lam and Zhou [2015], the goal is to estimate the optimal value function

using the SOS formulation and we will apply a plug-in estimator for θ∗ (which is

treated as a nuisance parameter). Subsequently, when introducing the Lagrangian

relaxation of (3.32) we will be able to also introduce a plug-in estimator for the

associated Lagrange multiplier. Therefore, for simplicity we shall focus on the uncon-

strained minimization problem C∗ = minθ {E [m(θ,X)]}.

The authors in Lam and Zhou [2015] provide a discussion for some potential ap-
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proaches to derive nonparametric confidence interval (including Empirical Likelihood,

a Bayesian approach, Bootstrap and the Delta method). In Lam and Zhou [2015] it is

argued that the Empirical Likelihood method tends to have best finite sample perfor-

mance, and Lam and Zhou [2015] provides an optimal (in certain sense) specification

for Empirical Likelihood approach. More importantly, in Lam and Zhou [2015] an

approach combining empirical likelihood and a plug-in estimator for optimizer is in-

troduced, which avoids solving a non-convex optimization problem introduced in the

discussion of Lam and Zhou [2015].

Our goal in this section is to derive a plug-in estimator based on the SOS inference

approach introduced in Section 3.2. The approach that we introduce next is the analog

of the plug-in strategy discussed in Blanchet et al. [2016a] in order to find a robust

confidence interval for C∗.

The following result is a direct extension of Corollary 3.1 and Corollary 3.2. This

corollary plays the key role in specifying confidence interval for C∗. To ensure the

corollary hold, we need some assumptions:

D1): Assume ψ (·) is convex differentiable in θ and there is a unique optimizer

θ∗.

D2): Assume that ψ (·) is strongly convex at θ∗, that is, for every θ there exist

δ > 0, such that

M (θ) ≥M (θ∗) + δ ‖θ − θ∗‖2
2 .

Corollary 3.3. [Plug-in for Implicit/Explicit SoS Function for Stochastic Optimiza-

tion] Let us consider stochastic programming problem C∗ = minθM (θ) = minθ E [m(θ,X)].

We assume assumption D1)-D2) hold. We consider the estimating equations to be
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the derivative condition and value function condition

E [m(θ∗, X)− C∗] = 0, and E [Dθm (θ∗, X)] = 0.

For simplicity, let us denote h (θ∗, C∗, x) =
(
m(θ∗, x)− C∗, Dθm (θ∗, X)T

)T
. We

are interested in C∗ only and consider a sample average approximation (SAA) es-

timator for θ∗ to be θ̂SAA. For h (·, C∗, x) we assume C1)-C7) hold. Let us denote

U ∼ N (0,Var (m (θ∗, X))) ∈ R and U(0) =
(
U,~0

)T
∈ Rd+1. Recall the implicit and

explicit formulations for general estimating equation SoS function defined in Defini-

tion 2 and Definition 3, we have the following asymptotic results.

For the implicit SoS formulation, we have

• When d = 1 (estimating equation dimension is d+ 1 = 2)

nRW
n (C∗)⇒ ρ (U) [2− η̃ (U) ρ (U)]U2,

where ρ (U) is the unique solution to

1

ρ
= g̃ (ρU) ,

and g̃ : R→ R is a deterministic continuous function defined as

g̃ (x) = P
[
x2 ≥ τ

]
.

η̃ (x) is also a deterministic function, defined as

η̃ (x) = E
[
max

(
1− τ/x2, 0

)]
,
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and τ is independent of U satisfying

P [τ > t] = E (exp (−g (h (θ∗, C∗, X1))πt)) .

• When d ≥ 2,

n1/2+ 3
2d+4RW

n (C∗)⇒
2d+ 4

d+ 3

||U ||1+ 1
d+2

E
[

π(d+1)/2

Γ((d+3)/2)
gX (h (θ∗, C∗, X1))

] 1
d+2

.

For the explicit formulation, we have following asymptotic results (we use ζ[1]

denote first element of vector ζ)

• When l = 1,

nRW
n (C∗)⇒ v1,1U

2,

where v1,1 is the (1, 1) element of matrix Υ−1.

• Suppose that l = 2. It is possible to uniquely define deterministic continuous

mapping ζ̃ : Rq → Rq, such that

z = −E
[
V̄1I

(
τ ≤ ζ̃T (z) V̄1ζ̃ (z)

)]
ζ̃ (z) ,

where τ is independent of U satisfying

P (τ > t) = E (exp (− [fX (X1) + κfX̃ (X1)]πt)) .
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Furthermore,

nRn(θ∗)⇒ −2Uζ̃[1] − ζ̃T (U(0)) G̃
(
ζ̃
)
ζ̃ (U(0)) ,

where G̃ : Rq → Rq×q is a deterministic continuous mapping defined as

G̃ (ζ) = E
[
V̄1 max

(
1− τ

ζT V̄1ζ
, 0

)]
,

and U is independent with V̄1 and τ .

• Assume that l ≥ 3. A continuous function ζ̃ : Rq → Rq can be defined uniquely

so that

z = −E
[
πl/2 (fX (X1) + κfX̃ (X1))

Γ(l/2 + 1)
V̄1

(
ζ̃T (z) V̄1ζ̃ (z)

)l]
ζ̃ (z)

(note that V̄1 is a function of X1). Moreover,

n1/2+ 3
2l+2Rn(θ∗)⇒ −2Uζ̃[1] −

2

l + 2
G̃
(
ζ̃ (U(0))

)
,

where G̃ : Rq → R is a deterministic function given as

G̃ (ζ) = E
[

πl/2

Γ(l/2 + 1)
fX (X1)

(
ζT V̄1ζ

)l/2+1
]
,

and U and X1 are independent.

This corollary is a special case of plug-in theorem for SoS formulation is a special

case of Corollary 3.1 and Corollary 3.2. The estimating equations correspond to the

first order optimality condition (i.e. the first derivative equal to zero), condition and

the corresponding optimal value equation. We use sample average approximation
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estimator as the underlying plug-in estimator.

We notice for sample average approximation algorithm, guaranteed by assump-

tions D1)-D3, it has been shown in Ruszczynski and Shapiro [2003]; Shapiro and

Dentcheva [2014a] the optimizer θ̂SAA and optimal value function 1
n

∑n
i=1 m

(
θ̂SAA, Xi

)
have

θ̂SAA − θ∗ = O
(
1/n1/2

)
1

n

n∑
i=1

∇θm
(
θ̂SAA, Xi

)
= 0,

1√
n

n∑
i=1

(
m
(
θ̂SAA, Xi

)
− C∗

)
⇒ N (0,Var (m (θ∗, X))) .

Since Corollary 3.3 follows as a direct application of Corollary 3.2 and Corollary 3.1,

its proof is omitted.

Similar as the derivation in Blanchet et al. [2016a] for empirical likelihood, for the

plug-in estimator derived from sample average approximation, if we denote

n1/2+3/(2d+4)RW (implicit)
n (C∗)⇒ R

(implicit)
0 and n1/2+3/(2l+2)RW (explicit)

n (C∗)⇒ R
(explicit)
0 ,

we can specify a robust 95% confidence interval for C∗ under both explicit and implicit

formulation by:

CI(·) (C∗) =
{
C ∈ R

∣∣∣nαRW (·)
n (C) ≤ R

(·)
0 (95%)

}

where α depends on the formulation and dimension as in Corollary 3.3 and R(·)
0 (95%)

is the upper 95% quantile for R(explicit)
0 (or R(implicit)

0 ). The upper/lower bound of con-
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fidence interval (C(·)
up/C(·)

l0 ) can be found by solving the linear programming problem

C(·)
up/C

(·)
lo = max

π(i,j)
/ min

π(i,j)
{

n∑
i,j=1

π(i, j)m(θ̂SAA, Xi)

s.t. π(i, j) ≥ 0
n∑
j=1

π(i, j) = 1/n;
n∑

i,j=1

π(i, j) ‖Xi −Xj‖2
2 ≤ R

(·)
0 (95%)}.

Next, we are going to provide a numerical example in quantifying C-VaR using

the methodology we developed above.

Example 3.1. (Quantify the uncertainty of Conditional Value at Risk (C–

VaR)) In this example we would like to consider find a SoS based 95% confidence

interval for conditional value at risk with 90% level. The conditional value at

risk with α−level is given as solving the stochastic programming problem:

C-VaR(α) = inf
θ

θ +
1

1− α
E

( l∑
k=1

X(k) − θ

)+
 .

We shall test our method using simulated data under different distributional

assumptions. We a sample i.i.d. observations {Xi}ni=1 ⊂ Rl. We will apply

the SoS inference procedure to provide a non-parametric confidence interval for

C-VaR(90%). In order to verify the coverage probability we use data simulated

from normal distribution and Laplace (double exponential) distributions. We

consider the case l = 4. For the normal distribution setting we assume Xi ∼

N (0, I4×4), while for Laplace distribution we consider for each k = 1, ..., 4, Xk
i ∼

Laplace(0, 1) and all of these random variables are independent. For these two

cases, we can calculate the solution in closed form; for the normal setting the

optimizer is θ? = 2.5632 and optimal value function is C-VaR(0.9) = 3.510; for

Laplace setting the optimizer is θ? = 3.497 with optimal value function equal to
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C-VaR(0.9) = 5.066.

As for this example, we have three approaches in which our SoS procedure can

be applied: 1) implicit SoS formulation (ISOS); 2) explicit SoS formulation while

assume underline data is l dimension (ESOS-O), i.e. Xi =
(
X

(1)
i , . . . , X

(l)
i

)T
∈

Rl; 3) explicit formulation while assume underline data is 1 dimension (ESOS-C),

i.e. Xi = X
(1)
i + . . . + X

(l)
i ∈ R. We compare our methods with empirical like-

lihood method (EL) inBlanchet et al. [2016a], nonparametric bootstrap method

(BT), and CLT based Delta method (CLT) discussed in Theorem 5.7 Shapiro

and Dentcheva [2014a]. We consider four settings n = 20, 50, 100 and 500. For

each setting, we repeat the experiment N = 1000 times, and note down the em-

pirical coverage probability, mean of upper and lower bounds, and the mean and

standard deviation of the interval width for each method. The results are sum-

marized in Table 1 for Normal distribution and Table 2 for Laplace distribution

below.

We can observe that, the three SOS-based approaches tend to have better

coverage probabilities in all cases for both distributions comparing to EL, boot-

strap and the Delta method. Especially for small sample situations (n = 10, 20)

EL and all of the SOS-based approaches appear to perform better than every-

thing else. It is discussed in Lam and Zhou [2015] that EL has better finite

sample performance compared to the Delta method and bootstrap. We can also

notice that all empirical SoS methods tend to have smaller variance compared

to others, especially for relatively large sample sizes (n = 100, 500). Between the

three SoS methods, we can see that explicit formulations work better comparing

to implicit, which follows our discussion after Definition 3. For the two explicit-

formulation methods, since we know the data affects the objective function in

the form X
(1)
i + . . . + X

(l)
i , we would expect better performance if we combine
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the data in a single dimension. The numerical results validate our intuition.

n Method Coverage
Probability

Mean Lower
Bound

Mean Upper
Bound

Mean Interval
Length

S.D. of
Length

20
ESOS-C 79.8% 2.59 4.68 2.09 0.79
ESoS-O 73.4% 2.55 4.65 2.10 1.21
ISoS 70.8% 2.34 4.87 2.53 0.82
EL 71.7% 2.61 5.18 2.57 1.92
BT 55.6% 1.76 3.88 2.12 1.23
CLT 71.8% 2.01 4.52 2.51 1.87

50
ESOS-C 93.3% 2.67 4.57 1.90 0.30
ESoS-O 91.0% 2.63 4.54 1.91 0.57
ISoS 87.3% 2.70 4.75 2.05 0.56
EL 89.2% 2.81 4.78 1.96 0.83
BT 82.7% 2.30 4.25 1.95 0.77
CLT 86.6% 2.47 4.44 1.97 0.78

100
ESOS-C 92.8% 2.84 4.20 1.36 0.08
ESoS-O 92.4% 2.80 4.22 1.42 0.23
ISoS 91.3% 2.89 4.32 1.53 0.25
EL 91.4% 2.94 4.46 1.52 0.43
BT 90.1% 2.67 4.16 1.49 0.41
CLT 90.4% 2.75 4.17 1.42 0.39

500
ESOS-C 95.3% 3.16 3.85 0.69 0.01
ESoS-O 94.9% 3.14 3.77 0.63 0.05
ISoS 91.2% 3.19 3.88 0.79 0.03
EL 93.9% 3.20 3.93 0.73 0.08
BT 94.2% 3.16 3.84 0.68 0.07
CLT 94.7% 3.17 3.84 0.67 0.08

Table 3.1: α = 0.9−Conditional Value at Risk with Gaussian Data. The data
X is simulated from 4-dim standard Gaussian distribution, while each dimension
is independent. We consider sample size n = 20, 50, 100, and 500. We repeat the
experiments N = 1000 times and record the coverage probability for the confidence
interval (CI), the average upper and lower bound for CI, also the average length and
standard deviation for CI. ESoS-C is the explicit formulation of SoS with combined
data, ESoS-O stands for explicit-SoS with original data, ISoS is the implicit SOS, EL
stands for empirical likelihood, BT is short for nonparametric bootstrap, and CLT is
the asymptotic CI method.

3.5 Conclusions and Discussion

This chapter introduces a methodology inspired by Empirical Likelihood, but in which

the likelihood ratio function is replaced by a Wasserstein distance. The methodology

that we propose is motivated by the problem of systematically finding estimators

which are incorporate out-of-sample performance in their design. In turn, as a mo-

tivation for the need of finding these types of estimators we discussed applications
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n Method Coverage
Probability

Mean Lower
Bound

Mean Upper
Bound

Mean Interval
Length

S.D. of
Length

20
ESOS-C 78.2% 3.57 6.89 3.32 1.10
ESoS-O 73.8% 3.48 7.10 3.62 1.91
ISoS 73.1% 3.87 7.55 3.68 1.16
EL 72.3% 3.56 8.00 4.44 3.30
BT 58.1% 2.40 6.01 3.61 2.40
CLT 70.5% 2.53 6.90 4.37 3.24

50
ESOS-C 89.4% 3.78 6.64 2.86 0.42
ESoS-O 89.3% 3.69 6.78 3.09 0.89
ISoS 80.1% 4.21 7.17 2.96 0.63
EL 86.2% 3.89 7.43 3.53 1.66
BT 80.5% 3.15 6.58 3.43 1.54
CLT 83.6% 3.29 6.64 3.35 1.54

100
ESOS-C 91.9% 3.93 6.22 2.29 0.14
ESoS-O 90.8% 3.88 6.30 2.42 0.43
ISoS 86.6% 4.30 6.78 2.44 0.36
EL 89.9% 4.10 6.66 2.56 0.86
BT 86.2% 3.71 6.16 2.45 0.81
CLT 87.6% 3.76 6.17 2.41 0.79

500
ESOS-C 94.7% 4.53 5.62 1.09 0.06
ESoS-O 94.3% 4.46 5.59 1.13 0.08
ISoS 92.1% 4.43 5.61 1.17 0.13
EL 94.0 4.53 5.78 1.25 0.18
BT 92.2% 4.46 5.58 1.12 0.16
CLT 93.1% 4.45 5.48 1.13 0.15

Table 3.2: α = 0.9−Conditional Value at Risk with Laplace Data. The
data X is simulated from 4-dim standard Laplace distribution, while each dimension
is independent. We consider sample size n = 20, 50, 100, and 500. We repeat the
experiments N = 1000 times and record the coverage probability for the confidence
interval (CI), the average upper and lower bound for CI, also the average length and
standard deviation for CI. ESoS-C is the explicit formulation of SoS with combined
data, ESoS-O stands for explicit-SoS with original data, ISoS is the implicit SOS, EL
stands for empirical likelihood, BT is short for nonparametric bootstrap, and CLT is
the asymptotic CI method.
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to stress testing. We envision this chapter as the first installment on this research

area and we plan to explore more deeply applications not only in stress testing but

also in machine learning. For example, in Chapter 2, we study a connection between

the estimation procedure that we introduce here and statistical techniques such as

LASSO and support vector machine (SVM) which are popular in machine learning.

In Chapter 2 we also explore the limiting distribution obtained for the SoS function

when we compare the empirical distribution against any other distribution, as opposed

to only distributions supported on a finite set of scenarios and, in this case, we show

that the distribution is typically chi-squared (so this case is, in some sense, closer to

the Empirical Likelihood setting).

In addition, given the parallel philosophy underpinning the method that we pro-

posed (based on Empirical Likelihood), the results on this chapter open up a signifi-

cant amount of research opportunities which are parallel to the substantial literature

produced in the area of Empirical Likelihood during the last three decades. We men-

tion, in particular, applications to regression problems (see Owen [1991]; Chen [1993,

1994]; Wang and Rao [2001]; Zhao and Wang [2008]; Chen and Keilegom [2009]), sur-

vival analysis (see Murphy [1995]; Li et al. [1996]; Hollander and McKeague [1997]; Li

et al. [1997]; Einmahl and McKeague [1999]; Wang et al. [2009]; Zhou [2015]), econo-

metrics (see Newey and Smith [2004]; Bravo [2004]; Kitamura [2006]; Antoine et al.

[2007]; Guggenberger [2008]; Imbens [2012]) and additional recent work on stochastic

optimization (see Lam and Zhou [2015]; Blanchet et al. [2016b]). The methodology

we propose could be extended to the above applications by simply replacing the Em-

pirical Likelihood function by the SoS function and by applying asymptotic theorems

developed in this chapter (or natural extensions).
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Chapter 4

Semi-Supervised Learning based on

Distributionally Robust Optimization

Starting from this chapter and in the following two chapters, namely, Chapter 5 and

Chapter 6, we are going to discuss the generalization and application of the data-

driven DRO formulation and the RWPI and SoS inference methods. We also start

provide algorithms to solve data-driven DRO problems directly.

In this chapter, we propose a novel method for semi-supervised learning (SSL)

based on data-driven distributionally robust optimization (DRO) using optimal trans-

port metrics. Our proposed method enhances generalization error by using the un-

labeled data to restrict the support of the worst case distribution in our DRO for-

mulation. We enable the implementation of our DRO formulation by proposing a

stochastic gradient descent algorithm which allows to easily implement the training

procedure. We demonstrate that our Semi-supervised DRO method is able to improve

the generalization error over natural supervised procedures and state-of-the-art SSL

estimators. Finally, we include a discussion on the large sample behavior of the op-

timal uncertainty region in the DRO formulation. Our discussion exposes important
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aspects such as the role of dimension reduction in SSL.

4.1 Introduction

We propose a novel method for semi-supervised learning (SSL) based on data-driven

distributionally robust optimization (DRO) using an optimal transport metric.

Our approach enhances generalization error by using the unlabeled data to re-

strict the support of the models which lie in the region of distributional uncertainty.

The intuition is that our mechanism for fitting the underlying model is automatically

tuned to generalize beyond the training set, but only over potential instances which

are relevant. The expectation is that predictive variables often lie in lower dimen-

sional manifolds embedded in the underlying ambient space; thus, the shape of this

manifold is informed by the unlabeled data set (see Figure 4.1 for an illustration of

this intuition).

Figure 4.1: Idealization of the way in which the unlabeled predictive variables provide
a proxy for an underlying lower dimensional manifold. Large red dots represent
labeled instances and small blue dots represent unlabeled instances.

To enable the implementation of the DRO formulation we propose a stochastic
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gradient descent (SGD) algorithm which allows to implement the training procedure

at ease. Our SGD construction includes a procedure of independent interest which,

we believe, can be used in more general stochastic optimization problems.

We focus our discussion on semi-supervised classification but the modeling and

computational approach that we propose can be applied more broadly as we shall

illustrate in Section 4.4.

We now explain briefly the formulation of our learning procedure. Suppose that

the training set is given by Dn = {(Yi, Xi)}ni=1, where Yi ∈ {−1, 1} is the label of the

i-th observation and we assume that the predictive variable, Xi, takes values in Rd.

We use n to denote the number of labeled data points.

In addition, we consider a set of unlabeled observations, {Xi}Ni=n+1. We build the

set EN−n = {(1, Xi)}Ni=n+1 ∪ {(−1, Xi)}Ni=n+1. That is, we replicate each unlabeled

data point twice, recognizing that the missing label could be any of the two available

alternatives. We assume that the data must be labeled either -1 or 1.

We then construct the set XN = Dn ∪ EN−n which, in simple words, is obtained

by just combining both the labeled data and the unlabeled data with all the possible

labels that can be assigned. The cardinality of XN , denoted as |XN |, is equal to

2 (N − n) +n (for simplicity we assume that all of the data points and the unlabeled

observations are distinct).

Let us define P (XN) to be the space of probability measures whose support is

contained in XN . We use Pn to denote the empirical measure supported on the set

Dn, so Pn ∈ P (XN). In addition, we write EP (·) to denote the expectation associated

with a given probability measure P .

Let us assume that we are interested in fitting a classification model by minimizing

a given expected loss function l (X, Y, β), where β is a parameter which uniquely char-

acterizes the underlying model. We shall assume that l (X, Y, ·) is a convex function
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for each fixed (X, Y ). The empirical risk associated to the parameter β is

EPn (l (X, Y, β)) =
1

n

n∑
i=1

l (Xi, Yi, β) .

In this paper, we propose to estimate β by solving the DRO problem

min
β

max
P∈P(XN ):Dc(P,Pn)≤δ∗

EP [l (X, Y, β)], (4.1)

where Dc (·) is the optimal transport distance introduced in Chapter 1 Section 1.1.

So, intuitively, (4.1) represents the value of a game in which the outer player

(we) will choose β and the adversary player (nature) will rearrange the support and

the mass of Pn within a budget measured by δ∗. We then wish to minimize the

expected risk regardless of the way in which the adversary might corrupt (within

the prescribed budget) the existing evidence. In formulation (4.1), the adversary is

crucial to ensure that we endow our mechanism for selecting β with the ability to

cope with the risk impact of out-of-sample (i.e. out of the training set) scenarios. We

denote the formulation in Equation (4.1) as semi-supervised distributionally robust

optimization (SSL-DRO) or semi-supervised learning based on distributionally robust

optimization.

The criterion that we use to define Dc (·) is based on the theory of optimal trans-

port and it is closely related to the concept of Wasserstein distance, see Section 4.3.

The choice of Dc (·) is motivated by recent results which show that popular estimators

such as regularized logistic regression, Support Vector Machines (SVM) and square-

root Lasso (SR-Lasso) admit a DRO representation exactly equal to (4.1) in which the

support XN is replaced by Rd+1 (see Chapter 2 and Equation (4.10) in this chapter.)

In view of these representation results for supervised learning algorithms, the
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inclusion of XN in our DRO formulation (4.1) provides a natural SSL approach in

the context of classification and regression. The goal of this chapter is to enable

the use of the distributionally robust training framework (4.1) as a SSL technique.

We will show that estimating β via (4.1) may result in a significant improvement in

generalization relative to natural supervised learning counterparts (such as regularized

logistic regression and SR-Lasso). The potential improvement is illustrated in Section

4.4. Moreover, we show via numerical experiments in Section 4.5, that our method is

able to improve upon state-of-the-art SSL algorithms.

As a contribution of independent interest, we construct a stochastic gradient de-

scent algorithm to approximate the optimal selection, β∗N , minimizing (4.1).

An important parameter when applying (4.1) is the size of the uncertainty region,

which is parameterized by δ∗. We apply cross-validation to calibrate δ∗, but we also

discuss the non-parametric behavior of an optimal selection of δ∗ (according to a

suitably defined optimality criterion explained in Section 4.6) as n,N →∞.

In Section 4.2, we provide a broad overview of alternative procedures in the SSL

literature, including recent approaches which are related to robust optimization. A

key role in our formulation is played by δ∗, which can be seen as a regularization

parameter. This identification is highlighted in the form of (4.1) and the DRO rep-

resentation of regularized logistic regression which we recall in Equation (4.10). The

optimal choice of δ∗ ensures statistical consistency as n,N →∞.

We close this Introduction with a few important notes. First, our SSL-DRO is

not a robustifying procedure for a given SSL algorithm. Instead, our contribution is

in showing how to use unlabeled information on top of DRO to enhance traditional

supervised learning methods. In addition, our SSL-DRO formulation, as stated in

Equation (4.1) , is not restricted to logistic regression, instead DRO counterpart

could be formulated for general supervised learning methods with various choice of
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loss function.

The rest of the chapter is structured as follows. We will quickly review the alter-

native related state-of-the-art SSL algorithms. In Section 4.3 we discuss the elements

of our DRO formulation, including the definition of optimal transport metric and the

implementation of a stochastic gradient descent algorithm for the solution of (4.1). In

Section 4.4 we explore the improvement in out-of-sample performance of our method

relative to regularized logistic regression. In Section 4.5, we compare our procedure

against alternative SSL estimators, both in the context of some binary classification

real data sets. In Section 4.6, we explore the behavior of the optimal uncertainty size

δ∗ as the sample size increases, especially we discuss certain asymptotic results on how

to pick up the distributional uncertainty size optimally with asymptotic consistency.

Section 4.7 contains final considerations and further discussions. In Appendix ??, we

provide more technical details for the asymptotic results stated in Section 4.6.

4.2 Alternative Semi-supervised Learning Procedures

We shall briefly discuss alternative procedures which are known in the SSL literature,

which is quite substantial. We refer the reader to the excellent survey of Zhu et al.

[2005] for a general overview of the area. Our goal here is to expose the similarities and

connections between our approach and some of the methods that have been adopted

in the community.

For example, broadly speaking graph-based methods Blum and Chawla [2001];

Chapelle et al. [2009] attempt to construct a graph which represents a sketch of a

lower dimensional manifold in which the predictive variables lie. Once the graph is

constructed a regularization procedure is performed which seeks to enhance general-

ization error along the manifold while ensuring continuity in the prediction in terms
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of an intrinsic metric. Our approach by-passes the construction of the graph, which

we see as a significant advantage of our procedure. However, we believe that the

construction of the graph can be used to inform the choice of cost function c (·) which

should reflect high transportation costs for moving mass away from the manifold

sketched by the graph.

Some recent SSL estimators are based on robust optimization, such as the work

of Balsubramani and Freund [2015]. The difference between data-driven DRO and

robust optimization is that the inner maximization in (4.1) for robust optimization

is not over probability models which are variations of the empirical distribution.

Instead, in robust optimization, one attempts to minimize the risk of the worst case

performance of potential outcomes inside a given uncertainty set.

In Balsubramani and Freund [2015], the robust uncertainty set is defined in terms

of constraints obtained from the testing set. The problem with the approach in

Balsubramani and Freund [2015] is that there is no clear mechanism which informs

an optimal size of the uncertainty set (which in our case is parameterized by δ∗).

In fact, in the last paragraph of Section 2.3, Balsubramani and Freund [2015] point

out that the size of the uncertainty could have a significant detrimental impact in

practical performance.

We conclude with a short discussion on the the work of Loog [2016], which is

related to our approach. In the context of linear discriminant analysis, Loog [2016]

also proposes a distributionally robust optimization estimator, although completely

different to the one we propose here. More importantly, we provide a way (both in

theory and practice) to study the size of the distributional uncertainty (i.e. δ∗), which

allows us to achieve asymptotic consistency of our estimator.
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4.3 Semi-supervised Learning based on DRO

This section is divided into two parts. First, we provide the elements of our DRO

formulation. Then we will explain how to solve the SSL-DRO problem, i.e. find

optimal β in (4.1).

4.3.1 Revisit the optimal transport discrepancy:

Assume that the cost function c : Rd+1×Rd+1 → [0,∞] is lower semi-continuous. As

mentioned in the Chapter 1 Section 1.1, we also assume that c(u, v) = 0 if and only

if u = v.

Now, given two distributions P and Q, with supports SP ⊆ XN and SQ ⊆ XN ,

respectively, we define the optimal transport discrepancy, Dc, via

Dc (P,Q) = inf{Eπ [c (U, V )] : π ∈ P (SP × SQ) , πU = P, πV = Q}, (4.2)

where P (SP × SQ) is the set of probability distributions π supported on SP × SQ,

and πU and πV denote the marginals of U and V under π, respectively.

Observe that (4.2) is obtained by solving a linear programming problem. For

example, suppose that Q = Pn, and let P ∈ P (XN) then, using U = (X, Y ), we have

that Dc (P, Pn) is obtained by computing

min
π

{ ∑
u∈XN

∑
v∈Dn

c (u, v) π (u, v) : s.t.
∑
u∈XN

π (u, v) =
1

n
∀ v ∈ Dn, (4.3)

∑
v∈DN

π (u, v) = P ({u}) ∀ u ∈ XN , π (u, v) ≥ 0 ∀ (u, v) ∈ XN ×Dn
}
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4.3.2 Solving the SSL-DRO formulation:

A direct approach to solve (4.1) would involve alternating between minimization over

β, which can be performed by, for example, stochastic gradient descent and maximiza-

tion which is performed by solving a linear program similar to (4.3). Unfortunately,

the large scale of the linear programming problem, which has O(N) variables and

O(n) constraints, makes this direct approach rather difficult to apply in practice.

So, our goal here is to develop a direct stochastic gradient descent approach which

can be used to approximate the solution to (4.1).

First, it is useful to apply linear programming duality to simplify (4.1). Note that,

given β, the inner maximization in (4.1) is simply

max
π

{ ∑
u∈XN

∑
v∈DN

l (u, β)π (u, v) : s.t.
∑
u∈XN

π (u, v) =
1

n
∀ v ∈ Dn (4.4)

∑
u∈XN

∑
v∈Dn

c (u, v)π (u, v) ≤ δ π (u, v) ≥ 0 ∀ (u, v) ∈ XN ×Dn
}
.

Of course, the feasible region in this linear program is always non-empty because the

probability distribution π (u, v) = I (u = v) I (v ∈ Dn) /n is a feasible choice. Also,

the feasible region is clearly compact, so the dual problem is always feasible and

by strong duality its optimal value coincides with that of the primal problem, see

Bertsimas et al. [2011, 2013] and Appendix in Chapter 2.
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The dual problem associated to (4.4) is given by

min
∑
v∈DN

γ (v) /n+ λδ (4.5)

s.t. γ (v) ≥ l (u, β)− λc (u, v) ∀ (u, v) ∈ XN ×Dn

γ (v) ∈ R ∀ v ∈ Dn, λ ≥ 0 .

Maximizing over u ∈ XN in the inequality constraint, for each v, and using the fact

that we are minimizing the objective function, we obtain that (4.5) can be simplified

to

EPn [max
u∈XN

{l (u, β)− λc (u, (X, Y )) + λδ∗}] .

Consequently, defining φ (X, Y, β, λ) = maxu∈XN {l (u, β)− λc (u, (X, Y )) + λδ∗}, we

have that (4.1) is equivalent to

min
λ≥0,β

EPn [φ (X, Y, β, λ)] . (4.6)

Moreover, if we assume that l (u, ·) is a convex function, then we have that the

mapping (β, λ) ↪→ l (u, β) − λc (u, (X, Y )) + λδ∗is convex for each u and therefore,

(β, λ) ↪→ φ (X, Y, β, λ), being the maximum of convex mappings is also convex.

A natural approach consists in directly applying stochastic sub-gradient descent

(see Boyd and Vandenberghe [2004]; Ram et al. [2010]). Unfortunately, this would

involve performing the maximization over all u ∈ XN in each iteration. This approach

could be prohibitively expensive in typical machine learning applications where N is

large.

So, instead, we perform a standard smoothing technique, namely, we introduce
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ε > 0 and define

φε (X, Y, β, λ) = λδ∗ + ε log

(∑
u∈XN

exp ({l (u, β)− λc (u, (X, Y ))} /ε)

)
.

It is easy to verify (using Hölder inequality) that φε (X, Y, ·) is convex and it also

follows that

φ (X, Y, β, λ) ≤ φε (X, Y, β, λ) ≤ φ (X, Y, β, λ) + log(|XN |)ε.

Hence, we can choose ε = O (1/ logN) in order to control the bias incurred by replac-

ing φ by φε. Then, defining

τε (X, Y, β, λ, u) = exp ({l (u, β)− λc (u, (X, Y ))} /ε) ,

we have (assuming differentiability of l (u, β)) that

∇βφε (X, Y, β, λ) =

∑
u∈XN τε (X, Y, β, λ, u)∇βl (u, β)∑

v∈XN τε (X, Y, β, λ, v)
, (4.7)

∂φε (X, Y, β, λ)

∂λ
= δ∗ −

∑
u∈XN τε (X, Y, β, λ, u) c (u, (X, Y ))∑

v∈XN τε (X, Y, β, λ, v)
.

In order to make use of the gradient representations (4.7) for the construction of

a stochastic gradient descent algorithm, we must construct unbiased estimators for

∇βφε (X, Y, β, λ) and ∂φε (X, Y, β, λ) /∂λ, given (X, Y ). This can be easily done if

we assume that one can simulate directly u ∈ XN with probability proportional to

τ (X, Y, β, λ, u). Because of the potential size of XN and specially because such distri-

bution depends on (X, Y ) sampling with probability proportional to τ (X, Y, β, λ, u)

can be very time consuming.
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So, instead, we apply a strategy discussed in Blanchet and Glynn [2015] and ex-

plained in Section 2.2.1, which produces random variables Λ (X, Y, β, λ) and Γ (X, Y, β, λ),

which can be simulated easily by drawing i.i.d. samples from the uniform distribution

over XN , and such that

E (Λ (X, Y, β, λ) |X, Y ) = ∂λφε (X, Y, β, λ) ,

E (Γ (X, Y, β, λ) |X, Y ) = ∇βφε (X, Y, β, λ) .

Using this pair of random variables, then we apply the stochastic gradient descent

recursion

βk+1 = βk − αk+1Γ (Xk+1, Yk+1, βk, λk) , (4.8)

λk+1 = (λk − αk+1Λ (Xk+1, Yk+1, βk, λk))
+ ,

where learning sequence, αk > 0 satisfies the standard conditions, namely,
∑∞

k=1 αk =

∞ and
∑∞

k=1 α
2
k <∞, see Shapiro and Dentcheva [2014b].

We apply a technique from Blanchet and Glynn [2015], which originates from

Multilevel Monte Carlo introduced in Giles [2008, 2015], and associated randomization

methods McLeish [2011]; Rhee and Glynn [2015].

First, define P̄N to be the uniform measure on XN and letW be a random variable

with distribution P̄N . Note that, given (X, Y ),

∇βφε (X, Y, β, λ) =
EP̄N (τε (X, Y, β, λ,W )∇βl (W,β) | X, Y )

EP̄N (τε (X, Y, β, λ,W ) | X, Y )
,

∂λφε (X, Y, β, λ) = δ∗ −
EP̄N (τε (X, Y, β, λ,W ) c (W, (X, Y )) | X, Y )

EP̄N (τε (X, Y, β, λ,W ) | X, Y )
.

Note that both gradients can be written in terms of the ratios of two expectations. The
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following results from Blanchet and Glynn [2015] can be used to construct unbiased

estimators of functions of expectations. The function of interest in our case is the

ratio of expectations.

Let us define:

h0 (W ) = τε (X, Y, β, λ,W ) ,

h1 (W ) = h0 (W ) c (W, (X, Y )) ,

h2 (W ) = h0 (W )∇βl (W,β) .

Then, we can write the gradient estimator as

∂λφε (X, Y, β, λ) =
EP̄N (h1 (W ) | X, Y )

EP̄N (h0 (W ) | X, Y )
, and ∇βφε (X, Y, β, λ) =

EP̄N (h2 (W ) | X, Y )

EP̄N (h0 (W ) | X, Y )
.

The procedure developed in Blanchet and Glynn [2015] proceeds as follows. First,

define for a given h (W ), and n ≥ 0, the average over odd and even labels to be

S̄E2n (h) =
1

2n

2n∑
i=1

h (W2i) , S̄O2n (h) =
1

2n

2n∑
i=1

h (W2i−1) ,

and the total average to be S̄2n+1 (h) = 1
2

(
S̄E2n (h) + S̄O2n (h)

)
. We then state the follow-

ing algorithm for sampling unbiased estimators of ∂λφε (X, Y, β, λ) and∇βφε (X, Y, β, λ)

in Algorithm 4.1.
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Algorithm 4.1 Unbiased Gradient
1: Given (X, Y, β) the function outputs (Λ,Γ) such that E (Λ) = ∂λφε (X, Y, β, λ)

and E (Γ) = ∇βφε (X, Y, β, λ).
2: Step1: Sample G from geometric distribution with success parameter pG = 1−

2−3/2.
3: Step2: Sample W0,W1, ...,W2G+1 i.i.d. copies of W independent of G.
4: Step3: Compute

∆λ =
S̄2G+1 (h1)

S̄2G+1 (h0)
− 1

2

(
S̄O2G+1 (h1)

S̄O
2G+1 (h0)

+
S̄E2G (h1)

S̄E
2G

(h0)

)
,

∆β =
S̄2G+1 (h2)

S̄2G+1 (h0)
− 1

2

(
S̄O2G+1 (h2)

S̄O
2G+1 (h0)

+
S̄E2G (h2)

S̄E
2G

(h0)

)
.

5: Output:

Λ = δ∗ − ∆λ

pG (1− pG)G
− h1 (W0)

h0 (W0)
, Γ =

∆β

pG (1− pG)G
+
h2 (W0)

h0 (W0)
.

4.4 Error Improvement of Our SSL-DRO Formula-

tion

Our goal in this section is to intuitively discuss why, owing to the inclusion of the

constraint P ∈ P (XN), we expect desirable generalization properties of the SSL-

DRO formulation (4.1). Moreover, our intuition suggests strongly why our SSL-DRO

formulation should possess better generalization performance than natural supervised

counterparts. We restrict the discussion for logistic regression due to the simple form

of regularization connection we will make in Equation (4.10), however, the error

improvement discussion should also apply to general supervised learning setting.

As discussed in the Introduction using the game-theoretic interpretation of (4.1),

by introducing P (XN), the SSL-DRO formulation provides a mechanism for choosing

β which focuses on potential out-of-sample scenarios which are more relevant based

on available evidence
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Suppose that the constraint P ∈ P (XN) was not present in the formulation. So,

the inner maximization in (4.1) is performed over all probability measures P
(
Rd+1

)
(supported on some subset of Rd+1). As indicated earlier, we assume that l (X, Y ; ·)

is strictly convex and differentiable, so the first order optimality condition

EP (∇βl (X, Y ; β)) = 0

characterizes the optimal choice of β assuming the validity of the probabilistic model

P . It is natural to assume that there exists an actual model underlying the generation

of the training data, which we denote as P∞. Moreover, we may also assume that

there exists a unique β∗ such that EP∞ (∇βl (X, Y ; β∗)) = 0.

The set

M (β∗) = {P ∈ P
(
Rd+1

)
: EP (∇βl (X, Y ; β∗)) = 0}

corresponds to the family of all probability models which correctly estimate β∗.

Clearly, P∞ ∈ M (β∗), whereas, typically, Pn /∈ M (β∗). Moreover, if we write X∞ =

supp (P∞) we have that

P∞ ∈ m (N, β∗) := {P ∈ P (X∞) : EP (∇βl (X, Y ; β∗)) = 0} ⊂ M (β∗) .

Since XN provides a sketch of X∞, then we expect to have that the extremal (i.e.

worst case) measure, denoted by P ∗N , will be in some sense a better description of

P∞. Figure 4.2 provides a pictorial representation of the previous discussion. In the

absence of the constraint P ∈ P (XN), the extremal measure chosen by nature can

be interpreted as a projection of Pn onto M (β∗). In the presence of the constraint

P ∈ P (XN), we can see that P ∗N may bring the learning procedure closer to P∞. Of

course, if N is not large enough, the schematic may not be valid because one may



CHAPTER 4. SEMI-SUPERVISED LEARNING BASED ON
DISTRIBUTIONALLY ROBUST OPTIMIZATION 183

Figure 4.2: Pictorial representation of the role that the support constraint plays in the
SSL-DRO approach and how its presence enhances the out-of-sample performance.

actually have m (N, β∗) = ∅.

The previous discussion is useful to argue that our SSL-DRO formulation should be

superior to the data-driven DRO formulation which is not informed by the unlabeled

data. But this comparison may not directly apply to alternative supervised procedures

that are mainstream in machine learning, which should be considered as the natural

benchmark to compare with. Fortunately, replacing the constraint that P ∈ P (XN)

by P ∈ P
(
Rd+1

)
in the data-driven DRO formulation recovers exactly supervised

learning algorithms such as regularized logistic regression.

Recall from Chapter 2 that if l (x, y, β) = log(1 + exp(−y · βTx)) and if we define

c ((x, y), (x′, y′))
)

=


‖x− x′‖q, if y = y′

∞, otherwise.
, (4.9)

for q ≥ 1 then, according to Theorem 2.2 in Chapter 2, we have that

min
β

max
Dc(P,Pn)≤δ̄

EP [l (X, Y, β)] = min
β∈Rd

{
EPn [l (X, Y, β)] + δ̄ ‖β‖p

}
, (4.10)
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where q satisfies 1/p + 1/q = 1. Formulation (4.1) is, therefore, the natural SSL

extension of the standard regularized logistic regression estimator.

We conclude that, for logistic regression, SSL-DRO as formulated in (4.1), is a

natural SSL extension of the standard regularized logistic regression estimator, which

would typically induce superior generalization abilities over its supervised counter-

parts, and similar discussion should apply to most supervised learning methods.

4.5 Numerical Experiments

We proceed to numerical experiments to verify the performance of our SSL-DRO

method empirically using six binary classification real data sets from UCI machine

learning data base Lichman [2013].

We consider our SSL-DRO formulation based on logistic regression and compare

with other state-of-the-art logistic regression based SSL algorithms, entropy regular-

ized logistic regression with L1 regulation (ERLRL1) Grandvalet and Bengio [2005]

and regularized logistic regression based self-training (STLRL1) Li et al. [2008]. In

addition, we also compare with its supervised counterpart, which is regularized logis-

tic regression (LRL1). For each iteration of a data set, we randomly split the data into

labeled training, unlabeled training and testing set, we train the models on training

sets and evaluate the testing error and accuracy with testing set. We report the mean

and standard deviation for training and testing error using log-exponential loss and

the average testing accuracy, which are calculated via 200 independent experiments

for each data set. We summarize the detailed results, the basic information of the

data sets, and our data split setting in Table 4.1.

We can observe that our SSL-DRO method has the potential to improve upon

these state-of-the-art SSL algorithms.



CHAPTER 4. SEMI-SUPERVISED LEARNING BASED ON
DISTRIBUTIONALLY ROBUST OPTIMIZATION 185

breast cancer banknote qsar magic minibone spambase

LRL1
Train .185± .123 .080± .030 .614± .038 .548± .087 .401± .167 .470± .040
Test .428± .338 .340± .228 .755± .019 .610± .050 .910± .131 .588± .141

Accur .929± .023 .930± .042 .646± .036 .665± .045 .717± .041 .811± .034

ERLRL1
Train .019± .010 .032± .030 .249± .050 2.37± .987 .726± .353 .008± .028
Test .265± .146 .793± .611 .720± .029 4.28± 1.51 1.98± .678 .505± .108

Accur .944± .018 .920± .047 .731± .026 .721± .056 .708± .071 .883± .018

STLRL1
Train .089± .019 .115± .113 .498± .120 3.05± .987 1.50± .706 .370± .082
Test .672± .034 4.00± 2.78 2.37± .860 8.03± 1.51 4.81± .732 1.465± .316

Accur .955± .023 .919± .004 .694± .038 .692± .056 .704± .033 .843± .023

SSL-DRO
Train .045± .023 .101± .035 .402± .039 .420± .075 .287± .047 .221± .028
Test .120± .029 .194± .067 .555± .025 .561± .039 .609± .054 .333± .012

Accur .956± .016 .930± .037 .734± .025 .733± .034 .710± .032 .892± .009
Num Predictors 30 4 30 10 20 56
Labeled Size 40 20 80 30 30 150
Unlabeled Size 200 600 500 9000 5000 1500
Testing Size 329 752 475 9990 125034 2951

Table 4.1: Numerical Experiments on real data sets for SSL.

4.6 Discussion on the Size of the Uncertainty Set

One of the advantages of DRO formulations such as Equation (4.1) and Equation

(4.10) is that they lead to a natural criterion for the optimal choice of the parameter

δ∗ or, in the case of Equation (4.10), the choice of δ̄ (which incidentally corresponds

to the regularization parameter). The optimality criterion that we use to select the

size of δ∗ is motivated by Figure 4.2.

First, interpret the uncertainty set

Uδ (Pn,XN) = {P ∈ P (XN) : Dc (P, Pn) ≤ δ}

as the set of plausible models which are consistent with the empirical evidence encoded

in Pn and XN . Then, for every plausible model P , we can compute

β (P ) = arg minEP [l (X, Y, β)]
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and therefore the set

Λδ (Pn,XN) = {β (P ) = arg minEP [l (X, Y, β)] : P ∈ Uδ (Pn,XN)}

can be interpreted as a confidence region. It is then natural to select a confidence

level α ∈ (0, 1) and compute δ∗ := δ∗N,n by solving

min{δ : P (β∗ ∈ Λδ (Pn,XN)) ≥ 1− α}. (4.11)

Similarly, for the supervised version, we can select δ̄ = δ̄n by solving the problem

min{δ : P
(
β∗ ∈ Λδ

(
Pn,Rd+1

))
≥ 1− α}. (4.12)

It is easy to see that δ̄n ≤ δ∗N,n. Now, we let N = γn for some γ > 0 and consider

δ∗N,n, δ̄n as n → ∞. This analysis is relevant because we are attempting to sketch

supp (P∞) using the set XN , while considering large enough plausible variations to be

able to cover β∗ with 1− α confidence.

More precisely, following the discussion in Chapter 2 for the supervised case in

finding δ̄n in Equation (4.11) using Robust Wasserstein Profile (RWP) function, solv-

ing Equation (4.12) for δ∗N,n is equivalent to finding the 1−α quantile of the asymptotic

distribution of the RWP function, defined as

Rn (β) = min
π

{ ∑
u∈Xn

∑
v∈Dn

c(u, v)π(u, v),
∑
u∈Xn

π(u, v) =
1

n
,∀vDn, (4.13)

π ⊂ P (Xn ×Dn) ,
∑
u∈Xn

∑
v∈Dn

∇βl (u; β) π(u, v) = 0.
}
.

The RWP function is the distance, measured by the optimal transport cost func-
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tion, between the empirical distribution and the manifold of probability measures for

which β∗ is the optimal parameter. A pictorial representation is given in Figure 4.2.

Additional discussion on the RWP function and its interpretations can be found in

Chapter 2 and Chapter 3.

In the setting of the DRO formulation for Equation (4.10) it is shown in Chapter

2, that δ̄n = O (n−1) for Equation (4.10) as n → ∞. Intuitively, we expect that if

the predictive variables possess a positive density supported in a lower dimensional

manifold of dimension d̄ < d, then sketching supp (P∞) with O (n) data points will

leave relatively large portions of the manifold unsampled (since, on average, O
(
nd̄
)

sampled points are needed to be within distance O (1/n) of a given point in box of unit

size in d̄ dimensions). The optimality criterion will recognize this type of discrepancy

between XN and supp (P∞). Therefore, we expect that δ∗γn,n will converge to zero at

a rate which might deteriorate slightly as d̄ increases.

This intuition is given rigorous support in Theorem 4.1 for the case of linear

regression with square loss function and L2 cost function for DRO. In turn, Theorem

4.1 follows as a corollary to the results in Chapter 3. Detailed assumptions are given

in the appendix.

Theorem 4.1. Assume the linear regression model Y = β∗X + e with square loss

function, i.e. l (X,X; β) =
(
Y − βTX

)2, and transport cost

c ((x, y) , (x′, y′)) = ‖x− x′‖2
2 Iy=y′ +∞Iy 6=y′ .

AssumeN = γn and under mild assumptions on (X, Y ), if we denote Z̃ ∼ N (0, E[V1]),

we have:

• When d = 1,

nRn(β∗)⇒ κ1χ
2
1.
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• When d = 2,

nRn(β∗)⇒ F2

(
Z̃
)
,

where F2(·) is a continuous function and F2 (z) = O(‖z‖2
2) as ‖z‖2 →∞.

• When d ≥ 3,

n1/2+ 3
2d+2Rn(β∗)⇒ Fd

(
Z̃
)
,

where Fd (·) is a continuous function (depending on d) and Fd (z) = O
(
‖z‖d/2+1

2

)
.

4.7 Conclusions

We have shown that our SSL-DRO, as a semi-supervised method, is able to enhance

the generalization predicting power versus its supervised counterpart. Our numerical

experiments show superior performance of our SSL-DRO method when compared to

state-of-the-art SSL algorithms such as ERLRL1 and STLRL1. We would like to

emphasize that our SSL-DRO method is not restricted to linear and logistic regres-

sions. As we can observe from the DRO formulation and the algorithm. If a learning

algorithm has an accessible loss function and the loss gradient can be computed, we

are able to formulate the SSL-DRO problem and benefit from unlabeled information.

Finally, we discussed a stochastic gradient descent technique for solving DRO prob-

lems such as (4.1), which we believe can be applied to other settings in which the

gradient is a non-linear function of easy-to-sample expectations.

ADDITIONAL MATERIAL TO CHAPTER 4 In this additional ma-

terial for SSL-DRO chapter, we will provide technical details for Theorem 4.1. In

Section APPENDIX 4.A, we first state the general assumptions to guarantee the va-

lidity of the asymptotically optimal selection for the distributional uncertainty size in
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Section 4.A.1, and in Section 4.A.2 we provide a roadmap for the proof of Theorem

4.1. In Section 4.B, we revisit Theomre 4.1 and provide a more formal statement in

Section 4.B.1 and a detailed proof using the techniques in Chapter 3 in Section 4.B.2.

4.A: Technical Details for Theorem 4.1

In this appendix section, we first state the general assumptions to guarantee the

validity of the asymptotically optimal selection for the distributional uncertainty size

in Section 4.A.1. In Section 4.A.2 we provide a roadmap for the proof of Theorem

4.1.

4.A.1: Assumptions of Theorem 4.1

For linear regression model, let us assume we have a collection of labeled data Dn =

{(Xi, Yi)}ni=1 and a collection of unlabeled data {Xi}Ni=n+1. We consider the set XN =

{Xi}Ni=1 × {Yi}
n
i=1, to be the cross product of all the predictors from labeled and

unlabeled data and the labeled responses. In order to have proper asymptotic results

holds for the RWP function, we require some mild assumptions on the density and

moments of (X, Y ) and estimating equation ∇βl (X, Y ; β) =
(
Y − βT∗

)
X. We state

them explicitly as follows:

A) We assume the predictors Xi’s for the labeled and unlabeled data are i.i.d.

from the same distribution with positive differentiable density fX(·) with bounded

bounded gradients.

B) We assume the β∗ ∈ Rd is the true parameter and under null hypothesis of the

linear regression model satisfying Y = βT∗ X+e, where e is a random error independent

of X.

C) We assume E
[
XTX

]
exists and is positive definite and E [e2] <∞.
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D) For the true model of labeled data, we have EP∗
[
X
(
Y − βT∗ X

)]
= 0 (where

P∗ denotes the actual population distribution which is unknown).

The first two assumptions, namely Assumption A and B, are elementary assump-

tions for linear regression model with an additive independent random error. The

requirements for the differentiable positive density for the predictor X, is because

when d ≥ 3, the density function appears in the asymptotic distribution. Assump-

tion C is a mild requirement on the moments exist for predictors and error, and

Assumption D is to guarantee true parameter β∗ could be characterized via first or-

der optimality condition, i.e. the gradient of the square loss function. Due to the

simple structure of the linear model, with the above four assumptions, we can prove

Theorem 4.1 and we show a sketch in the following subsection.

4.A.2: Sketch of the Proof of Theorem 4.1

Theorem 4.1 is a corollary of Theorem 3.3 in Chapter 3, although its proof requires

some adaptations. The proof of Theorem 4.1 follows the 6-step procedure explained

in Section 3.3 of Chapter 3. We highlight the main differences in deriving the duality

of the RWP function in this section. To make the chapter more self-contained, we

include more technical details borrowed from Chapter 3 in the Section 4.B.

Sketch of the Proof of Theorem 4.1. Deriving Strong Duality From for RWP

Function. For u ∈ Dn and v ∈ XN , let us denote ux, uy and vx, vy to be its subvectors

for the predictor and response. By the definition of RWP function as in Equation
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(4.13), we can write it as a linear program (LP), given as

Rn (β∗) = min
π

{ ∑
u∈Dn

∑
v∈XN

π (u, v)
(
‖ux − vx‖2

2 Ivy=uy +∞Ivy 6=uy
)
s.t. π ∈ P (XN ×Dn) ,

∑
u∈Dn

∑
v∈XN

π (u, v) vx
(
vy − βT∗ vx

)
= 0,

∑
v∈XN

π(u, v) = 1/n,∀u ∈ Dn.
}

For as n large enough the LP is finite and feasible (because Pn approaches P∗, and

P∗ is feasible). Thus, for n large enough we can write

Rn (β∗) = min
π

{ ∑
u∈Dn

∑
vx∈{Xi}Ni=1

π (u, vx) ‖ux − vx‖2
2 s.t. π ∈ P (XN ×Dn)

∑
u∈Dn

∑
v∈XN

π (u, v) vx
(
uy − βT∗ vx

)
= 0,

∑
v∈XN

π(u, v) = 1/n,∀u ∈ Dn.
}

We can apply strong duality theorem for LP, see Luenberger [1973b], and write

the RWP function in dual form:

Rn (β∗) = max
λ

{
1

n

n∑
i=1

min
j=1,N

{
−λTXj

(
Yi − βT∗ Xj

)
+ ‖Xi −Xj‖2

2

}}
,

= max
λ

{ 1

n

n∑
i=1

−λTXi

(
Yi − βT∗ Xi

)
+ min

j=1,N

{
λTXi

(
Yi − βT∗ Xj

)
− λTXj

(
Yi − βT∗ Xj

)
+ ‖Xi −Xj‖2

2

}}
, .

This finishes Step 1 as in the 6-step proving technique introduced in Section 3.3 of

Chapter 3.

In Step 2 and Step 3, after rescaling the RWP function by n for d = 1 and 2

and rescaling by n
1
2

+ 3
2d+2 for d ≥ 3, we can quantify the difference between the inner
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minimization problem for each i,

min
j=1,N

{
λTXi

(
Yi − βT∗ Xi

)
− λTXj

(
Yi − βT∗ Xj

)
+ ‖Xi −Xj‖2

2

}
and its lower bound,

min
a

{
λTXi

(
Yi − βT∗ Xi

)
− λTa

(
Yi − βT∗ a

)
+ ‖Xi − a‖2

2

}
,

by defining a family of auxiliary, weakly dependent, Poisson point processes (indexed

by i).

Applying the results in Step 3, we can prove the asymptotic distribution for d = 1

in Step 4, d = 2 in Step 5, and d ≥ 3 in Step 6 using the Central Limit Theorem

(CLT) and the Continuous Mapping Theorem. More details are shown in the Section

4.B.2.

4.B: Additional Techinical Details for Theorem 4.1

In this supplementary material, we will restate Theorem 4.1 more explicitly to show

how the asymptotic distribution varies for different dimension d in Section 4.B.1. In

Section 4.B.2, we will feed more technical details in proving Theorem 4.1.

4.B.1: Revisit Theorem 4.1

In this section, we revisit the asymptotic result for optimally choosing uncertainty size

for semi-supervised learning for the linear regression model. We assume that, under

the null hypothesis, Y = βT∗ X + e, where X ∈ Rd is the predictors, e is independent
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of X as random error, and β∗ ∈ Rd is the true parameter. We consider the square

loss function and assume that β∗ is the minimizer to the square loss function, i.e.

β∗ = arg min
β

E
[(
Y − βTX

)2
]
.

If we can assume the second-moment exists for X and e, then we can switch the order

of expectation and derivative w.r.t. β, then optimal β could be uniquely characterized

via the first order optimality condition,

E
[
X
(
Y − βT∗ X

)]
= 0.

As we discussed in Section 4.6, the optimal distributional uncertainty size δ∗n,N at

confidence level 1 − α, is simply the 1 − α quantile of the RWP function defined in

Equation (4.13). In turn, the asymptotic limit of the RWP function is characterized

in Theorem 1, which we restate more explicitly here.

Restate of Theorem 4.1 in Section 4.6: For linear regression model we defined

above and square loss function, if we take cost function for DRO formulation to be

c ((x, y) , (x′, y′)) = ‖x− x′‖2
2 Iy=y′ +∞Iy 6=y′ .

If we assume Assumptions A,B, and D stated in Section ?? to be true and number of

unlabeled data satisfingN = γn. Furthermore, let us denote: Vi =
(
eiI −Xiβ

T
∗
) (
eiI − β∗XT

i

)
,

where ei = Yi − βT∗ Xi being the residual under the null hypothesis. Then, we have:

• When d = 1,

nRn(β∗)⇒
E [X2

1e
2
1]

E
[
(e1 − βT∗ X1)2]χ2

1.
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• When d = 2,

nRn(β∗)⇒ 2ζ̃(Z̃)T Z̃ − ζ̃
(
Z̃
)T

G̃2

(
ζ̃
(
Z̃
))

ζ̃
(
Z̃
)
,

where Z̃ ∼ N (0, E[V1]), G̃2 : R2 → R2×R2 is a continuous mapping defined as

G̃2 (ζ) = E
[
V1 max

(
1− τ/(ζTV1ζ), 0

)]
,

and ζ̃ : R2 → R2 is a continuous mapping, such that ζ̃(Z̃) is the unique solution

to

Z̃ = −E
[
V1I(τ≤ζTV1ζ)

]
ζ.

• When d ≥ 3,

n1/2+ 3
2d+2Rn(β∗)⇒ −2ζ̃(Z̃)T Z̃ − 2

d+ 2
G̃3

(
ζ̃(Z̃)

)
,

where Z̃ ∼ N (0, E[V1]), G̃2 : Rd → R is a deterministic continuous function defined

as

G̃2 (ζ) = E
[
πd/2γfX(X1)

Γ (d/2 + 1)

(
ζTV1ζ

)d/2+1
]
,

and ζ̃ : Rd → Rd js a continuous mapping, such that ζ̃(Z̃) is the unique solution to

Z̃ = −E
[
V1
πd/2γfX (X1)

Γ (d/2 + 1)

(
ζTV1ζ

)d]
ζ.

4.B.2: Proof of Theorem 4.1

In this section, we complete the proof of Theorem 4.1 in addition to the scratch in

Section ??. As we discussed before, Theorem 4.1 could be treated as a non-trivial
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corollary of Theorem 3.3 in Chapter 3 and the proving techniques follow the 6-step

proof for Sample-out-of-Sample (SoS) Theorem, namely Theorem 3.1 and Theorem

3.3 in Chapter 3.

Proof of Theorem 4.1. We derived the duality formulation for RWP function in Sec-

tion 4.A.2 as the Step 1 of the proof.

Step 2 and Step 3, When d = 1 and 2, we consider scaling the RWP function

by n and let define ζ =
√
nλ/2 and denote Wn = n−1/2

∑n
i=1Xiei, we have the scaled

RWP function becomes,

nRn (β∗) = max
ζ

{
− ζTWn

+
n∑
i=1

min
j=1,N

{−2
ζT√
n
Xj

(
Yi − βT∗ Xj

)
+ 2

ζT√
n
Xi

(
Yi − βT∗ Xi

)
+ ‖Xi −Xj‖2

2}
}
.

For each fixed i, let us consider the inner minimization problem,

min
j=1,N

{−2
ζT√
n
Xj

(
Yi − βT∗ Xj

)
+ 2

ζT√
n
Xi

(
Yi − βT∗ Xi

)
+ ‖Xi −Xj‖2

2}

Similar to Section 3.3 in Chapter 3, we would like to solve the minimization problem

by first replacing Xj by a, which is a free variable without support constraint in Rd,

then quantify the gap. We then obtain a lower bound for the optimization problem

via

min
a
{−2

ζT√
n
a
(
Yi − βT∗ a

)
+ 2

ζT√
n
Xi

(
Yi − βT∗ Xi

)
+ ‖Xi − a‖2

2}. (4.14)

As we can observe in Equation (4.14), the coefficient of second order of a is of order

O (1/
√
n) for any fixed ζ, and the coefficients for the last term is always 1, it is easy

to observe that, as n large enough, Equation (4.14) has an optimizer in the interior.

We can solve for the optimizer a = ā∗ (Xi, Yi, ζ) of the lower bound in Equation
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(4.14) satisfying the first order optimality condition as

ā∗ (Xi, Yi, ζ)−Xi =
(
eiI − βT∗ Xi

) ζ√
n

(4.15)

+
(
βT∗ (ā∗ (Xi, Yi, ζ)−Xi) I − (ā∗ (Xi, Yi, ζ)−Xi) β

T
∗
) ζ√

n
.

Since the optimizer ā∗ (Xi, Yi, ζ) is in the interior, it is easy to notice from Equation

(4.15) that ā∗ (Xi, Yi, ζ) − Xi = O
(
‖ζ‖2√
n

)
. Plug in the estimate back into Equation

(4.15) obtain

ā∗ (Xi, Yi, ζ) = Xi +
(
eiI − βT∗ Xi

) ζ√
n

+O
(‖ζ‖2

2

n

)
. (4.16)

Let us define a∗ (Xi, Yi, ζ) = Xi +
(
eiI − βT∗ Xi

)
ζ√
n
. Using Equation (4.16), we have

‖a∗ (Xi, Yi, ζ)− ā∗ (Xi, Yi, ζ)‖2 = O
(‖ζ‖2

2

n

)
. (4.17)

Then, for the optimal value function of lower bound of the inner optimization problem,

we have:

− 2
ζT√
n
ā∗ (Xi, Yi, ζ)

(
Yi − βT∗ a

)
+ 2

ζT√
n
Xi

(
Yi − βT∗ Xi

)
+ ‖Xi − ā∗ (Xi, Yi, ζ)‖2

2

= −2
ζT√
n
a∗ (Xi, Yi, ζ)

(
Yi − βT∗ a

)
+ 2

ζT√
n
Xi

(
Yi − βT∗ Xi

)
+ ‖Xi − a∗ (Xi, Yi, ζ)‖2

2 +O
(‖ζ‖3

2

n3/2

)
=
ζTViζ

n
+O

(‖ζ‖3
2

n3/2

)
. (4.18)

For the above equation, first equality is due to Equation (4.17) and the second equality

is by the estimation of ā∗ (Xi, Yi, ζ) in Equation (4.16).
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Then for each fixed i, let us define a point process

N (i)
n (t, ζ) = #

{
Xj : ‖Xj − a∗ (Xi, Yi, ζ)‖2

2 ≤ t2/d/n2/d, Xj 6= Xi

}
.

We denote Ti (n) to be the first jump time of N (i)
n (t, ζ), i.e.

Ti(n) = inf
{
t ≥ 0 : N (i)

n (t, ζ) ≥ 1
}
.

It is easy to observe that, as n goes to infinity, we have

N (i)
n (t, ζ) |Xi ⇒ Poi (Λ(Xi, ζ), t) ,

where Poi (Λ(Xi, ζ), t) denotes a Poisson point process with rate

Λ(Xi, ζ) = γfX

(
Xi +

ζ

2
√
ζ

)
πd/2

Γ (d/2 + 1)
.

Then, the conditional survival function for Ti(n), i.e. P (Ti(n) ≥ t|Xi) is

P (Ti(n) ≥ t|Xi) = exp (−Λ (Xi, ζ) t)
(
1 +O

(
1/n1/d

))
,

and we can define τi to be the random variable with survival function being

P (τi(n) ≥ t|Xi) = exp (−Λ (Xi, ζ) t) .

We can also integrate the dependence on Xi and define τ satisfying

P (τ ≥ t) = E [exp (−Λ (X1, ζ) t)] .
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Therefore,for d = 1 by the definition of Ti (n) and the estimation in Equation

(4.18), we have the scaled RWP function becomes

nRn (β∗) = max
ζ

{
− 2ζWn −

1

n

n∑
i=1

max
(
ζTViζ − Ti(n)2/n+O

(‖ζ‖3
2

n3/2

)
, 0
)}

The sequence of global optimizers is tight as n→∞, because according to Assumption

C, E(Vi) is assumed to be strictly positive definite with probability one. In turn, from

the previous expression we can apply Lemma 3.1 in Chapter 3 and use the fact that

the variable ζ can be restricted to compact sets for all n sufficiently large. We are

then able to concludee

nRn (β∗) = max
ζ

{
− 2ζTWn − E

[
max

(
ζTViζ − Ti(n)2/n, 0

)] }
+ op(1). (4.19)

When d = 2, a similar estimation applies as for the case d = 1. the scaled RWP

function becomes

nRn (β∗) = max
ζ

{
− 2ζTWn − E

[
max

(
ζTViζ − Ti(n)2, 0

)] }
+ op(1). (4.20)

For the case when d ≥ 3, let us define ζ = λ/(2n
3

2d+2 ). We follow a similar

estimation procedure as in the cases d = 1, 2. We also define identical auxiliary

Poisson point process, we can write the scaled RWP function to be

n
1
2

+ 3
2d+2Rn (β∗) = max

ζ

{
− 2ζTWn (4.21)

− n
1
2

+ 3
2+2d

− 2
dE
[
max

(
n

2
2
− 6

2d+2 ζTViζ − Ti(n)3/d, 0
)] }

+ op(1).

This addresses Step 2 and 3 in the proof.
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Step 4: when d = 1, as n → ∞, we have the scaled RWP function given in

Equation (4.19). Let us use G1 : R → R to denote a deterministic continuous

function defined as

G1 (ζ, n) = E
[
max

(
ζTViζ − Ti(n)2/n, 0

)]
.

By Assumption C, we know EVi is positive, thusG1 as a function of ζ is strictly convex.

Thus the optimizer for the scaled RWP function could be uniquely characterized via

the first order optimality condition, which is equivalent to

ζ∗n = − Wn

E [Vi]
+ op(1), as n→∞. (4.22)

We plug in Equation (4.22) into Equation (4.19) and let n→∞. Applying the CLT

for Wn and the continuous mapping theorem, we have

nRn (β∗) = 2W 2
n/E [V1]−G1

(
− Wn

E [V1]
, n

)
+ op(1)⇒ Z̃2

E [V1]
=

E [X2
1e

2
1]

E
[
(e1 − β∗X1)2]χ2

1,

where Wn ⇒ Z̃ and Z̃ ∼ N
(
0, E

[
(e1 − β∗X1)2]).

We conclude the stated convergence for d = 1.

Step 5: when d = 2, as n → ∞, we have the scaled RWP function given in

Equation (4.20). Let us use G2 : R× N → R to denote a deterministic continuous

function defined as

G2 (ζ, n) = E
[
max

(
ζTViζ − Ti(n)2, 0

)]
.

Following the same discussion as in Step 4 for the case d = 1, we know that the

optimizer ζ∗n can be uniquely characterized via first order optimality condition given
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as

Wn = −E
[
V1I(τ≤ζTV1ζ)

]
ζ + op(1), as n→∞.

Since we know that the objective function is strictly convex there exist a continuous

mapping, ζ̃ : R2 → R2, such that ζ̃(Wn) is the unique solution to

Wn = −E
[
V1I(τ≤ζTV1ζ)

]
ζ.

Then, we can plug-in the first order optimality condition to the value function,

and the scaled RWP function becomes,

nRn (β∗) = 2ζ̃(Wn)TWn −G2

(
ζ̃(Wn), n

)
+ op(1).

Applying Lemma 3.2 in Chapter 3 we can show that as n→∞,

nRn (β∗)⇒ 2ζ̃(Z̃)T Z̃ − ζ̃
(
Z̃
)T

G̃2

(
ζ̃
(
Z̃
))

ζ̃
(
Z̃
)

where G̃2 : R2 → R2 × R2 is a continuous mapping defined as

G̃2 (ζ) = E
[
V1 max

(
1− τ/(ζTV1ζ), 0

)]
.

This concludes the claim for d = 2.

Step 6: when d = 3, as n → ∞, we have the scaled RWP function given in

Equation (4.21). Let us write G3 : R× N → R to denote a deterministic continuous

function defined as

G3 (ζ, n) = n
1
2

+ 3
2+2d

− 2
dE
[
max

(
n

2
2
− 6

2d+2 ζTViζ − Ti(n)3/d, 0
)]
.
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Same as discussed in Step 4 and 5, the objective function is strictly convex and the

optimizer could be uniquely characterized via first order optimality condition, i.e.

Wn = −E
[
V1
πd/2γfX (X1)

Γ (d/2 + 1)

(
ζTV1ζ

)d]
ζ + op(1), as n→∞.

Since we know that the objective function is strictly convex, there exist a continuous

mapping, ζ̃ : Rd → Rd, such that ζ̃(Wn) is the unique solution to

Wn = −E
[
V1
πd/2γfX (X1)

Γ (d/2 + 1)

(
ζTV1ζ

)d]
ζ.

Let us plug-in the optimality condition and the scaled RWP function becomes

n
1
2

+ 3
2d+2Rn (β∗) = −2ζ̃(Wn)TWn −G3

(
ζ̃(Wn, n)

)
+ op(1).

As n→∞, we can apply Lemma 3.2 in Chapter 3 to derive estimation for the RWP

function and it leads to

n
1
2

+ 3
2d+2Rn (β∗)⇒ −2ζ̃(Z̃)T Z̃ − 2

d+ 2
G̃3

(
ζ̃(Z̃)

)
,

where G̃2 : Rd → R is a deterministic continuous function defined as

G̃2 (ζ) = E
[
πd/2γfX(X1)

Γ (d/2 + 1)

(
ζTV1ζ

)d/2+1
]
.

This concludes the case when d ≥ 3 and for Theorem 4.1.
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Chapter 5

Distributionally Robust Groupwise

Regularization Estimator

In this Chapter, we will discuss a generalization of data-driven DRO method by ex-

ploring the flexibility of the choice of cost function. In Chapter 4, we were considering

the flexibility of data-driven DRO formulation in restricting the candidate probability

measures in constructing the distributional uncertainty set. The optimal transport

discrepancy cost function considered in the former chapters, i.e. Chapter 2, Chap-

ter 3, and Chapter 4, is using the Euclidean norm, i.e. ‖·‖p. In this chapter, we

will propose a groupwise norm, as we shall define in Equation (5.1), as cost function,

which is trying to encode the side information of the predictors into data-driven DRO

modeling.

Regularized estimators in the context of group variables have been applied success-

fully in model and feature selection in order to preserve interpretability. We formulate

a data-driven Distributionally Robust Optimization (DRO) problem which recovers

popular estimators, such as Group Square Root Lasso (GSRL). Our data-driven DRO

formulation allows us to interpret GSRL as a game, in which we learn a regression
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parameter while an adversary chooses a perturbation of the data. We wish to pick

the parameter to minimize the expected loss under any plausible model chosen by

the adversary - who, on the other hand, wishes to increase the expected loss. The

regularization parameter turns out to be precisely determined by the amount of per-

turbation on the training data allowed by the adversary. In this chapter, we introduce

a data-driven (statistical) criterion for the optimal choice of regularization, which we

evaluate asymptotically, in closed form, as the size of the training set increases. Our

easy-to-evaluate regularization formula is compared against cross-validation, showing

good (sometimes superior) performance.

5.1 Introduction

Group Lasso (GR-Lasso) estimator is a generalization of the Lasso estimator (see

Tibshirani [1996]). The method focuses on variable selection in settings where some

predictive variables, if selected, must be chosen as a group. For example, in the con-

text of the use of dummy variables to encode a categorical predictor, the application

of the standard Lasso procedure might result in the algorithm including only a few

of the variables but not all of them, which could make the resulting model difficult

to interpret. Another example, where the GR-Lasso estimator is particularly useful,

arises in the context of feature selection. Once again, a particular feature might be

represented by several variables, which often should be considered as a group in the

variable selection process.

The GR-Lasso estimator was initially developed for the linear regression case (see

Yuan and Lin [2006]), but a similar group-wise regularization was also applied to

logistic regression in Meier et al. [2008]. A brief summary of GR-Lasso technique

type of methods can be found in Friedman et al. [2010].
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Recently, Bunea et al. [2014] developed a variation of the GR-Lasso estimator, called

the Group-Square-Root-Lasso (GSRL) estimator, which is very similar to the GR-

Lasso estimator. The GSRL is to the GR-Lasso estimator what sqrt-Lasso, introduced

in Belloni et al. [2011], is to the standard Lasso estimator. In particular, GSRL has

a superior advantage over GR-Lasso, namely, that the regularization parameter can

be chosen independently from the standard deviation of the regression error in order

to guarantee the statistical consistency of the regression estimator (see Belloni et al.

[2011], and Bunea et al. [2014]).

Our contribution in this chapter is to provide a data-driven DRO representation

for the GSRL estimator, which is rich in interpretability and which provides insights

to optimally select (using a natural criterion) the regularization parameter without

the need of time-consuming cross-validation. We compute the optimal regularization

choice (based on a simple formula we derive in this chapter) and evaluate its perfor-

mance empirically. We will show that our method for the regularization parameter is

comparable, and sometimes superior, to cross-validation.

In order to describe our contributions more precisely, let us briefly describe the

GSRL estimator. We choose the context of linear regression to simplify the exposition,

but an entirely analogous discussion applies to the context of logistic regression.

Consider a given a set of training data Dn = {(X1, Y1), . . . , (Xn, Yn)}. The input

Xi ∈ Rd is a vector of d predicting variables, and Yi ∈ R is the response variable. We

use (X, Y ) to denote a generic sample from the training data set. It is postulated

that

Yi = XT
i β
∗ + ei,

for some β∗ ∈ Rd and errors {e1, ..., en}. Under suitable statistical assumptions

(such as independence of the samples in the training data), one may be interested in
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estimating β∗.

Underlying, we consider the square loss function, i.e. l (x, y; β) =
(
y − βTx

)2, for the

purpose of this discussion but this choice, as we shall see, is not necessary.

Throughout the chapter we will assume the following group structure for the space

of predictors. There are d̄ ≤ d mutually exclusive groups, which form a partition.

More precisely, suppose that G1, . . . , Gd̄ satisfies that Gi ∩ Gj = ∅ for i 6= j, that

G1 ∪ ... ∪ Gd̄ = {1, ..., d}, and the Gi’s are non-empty. We will use gi to denote the

cardinality of Gi and shall write G for a generic set in the partition and let g denote

the cardinality of G.

We shall denote by x (G) ∈ Rg the sub-vector x ∈ Rd corresponding to G. So, if

G = {i1, ..., ig}, then x (G) =
(
Xi1 , . . . , Xig

)T .
Next, given p, s ≥ 1, and α ∈ Rd̄

++ (i.e. αi > 0 for 1 ≤ i ≤ d̄) we define for each

x ∈ Rd,

‖x‖α-(p,s) =

(
d̄∑
i=1

αsi ‖x (Gi)‖sp

)1/s

, (5.1)

where ‖x (Gi)‖p denotes the p-norm of x (Gi) in Rgi . (We will study fundamental

properties of ‖x‖α-(p,s) as a norm in Proposition 5.1.)

The GSRL estimator takes the form

min
β

√√√√ 1

n

n∑
i=1

l (Xi,Yi; β) + λ ‖β‖g̃−1−(2,1) = min
β

(
E1/2
Pn

[l (X, Y ; β)] + λ ‖β‖√g̃−(2,1)

)
,

where λ is the so-called regularization parameter. The previous optimization problem

can be easily solved using standard convex optimization techniques as explained in

Belloni et al. [2011] and Bunea et al. [2014].

Our contributions in this chapter can now be explicitly stated. We introduce a

notion of discrepancy, Dc (P, Pn), discussed in Section 5.2, between Pn and any other
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probability measure P , such that

min
β

max
P :Dc(P,Pn)≤δ

E1/2
P [l (X, Y ; β)] = min

β

(
E1/2
Pn

[l (X, Y ; β)] + δ1/2 ‖β‖α−(p,s)

)
. (5.2)

Using this representation, which we formulate, together with its logistic regression

analogue, in Section 5.2.2.1 and Section 5.2.2.2, we are able to draw the following

insights:

I) GSRL can be interpreted as a game in which we choose a parameter (i.e. β) and

an adversary chooses a “plausible” perturbation of the data (i.e. P ); the parameter δ

controls the degree in which Pn is allowed to be perturbed to produce P . The value

of the game is dictated by the expected loss, under EP , of the decision variable β.

II) The set Uδ (Pn) = {P : Dc (P, Pn) ≤ δ} denotes the set of distributional un-

certainty. It represents the set of plausible variations of the underlying probabilistic

model which are reasonably consistent with the data.

III) The DRO representation (5.2) exposes the role of the regularization param-

eter. In particular, because λ = δ1/2, we conclude that λ directly controls the size

of the distributionally uncertainty and should be interpreted as the parameter which

dictates the degree to which perturbations or variations of the available data should

be considered.

IV) As a consequence of I) to III), the DRO representation (5.2) endows the GSRL

estimator with desirable generalization properties. The GSRL aims at choosing a

parameter, β, which should perform well for all possible probabilistic descriptions

which are plausible given the data.

In the rest of the chapter we answer the following questions. First, in Section 5.2

we will revisit the the definition of Dc (P,Q) as the optimal transport cost.

Intuitively, Dc (P, Pn) represents the minimal transportation cost for moving the
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mass encoded by Pn into a sinkhole which is represented by P . The cost of moving

mass from location u = (x, y) to w = (x′, y′) is encoded by a cost function c (u,w)

which we shall discuss and this will depend on the α-(p, s) norm that we defined in

(5.1). The subindex c in Dc (P, Pn) represents the dependence on the chosen cost

function.

The next item of interest is the choice of δ, again the discussion of items I) to

III) of the DRO formulation (5.2) provides a natural way to optimally choose δ. The

idea is that every model P ∈ Uδ (Pn) should intuitively represent a plausible variation

of Pn and therefore βP = arg min {EP [l (X, Y ; β)] : β} is a plausible estimate of β∗.

The set {βP : P ∈ Uδ (Pn)} therefore yields a confidence region for β∗ which is

increasing in size as δ increases. Hence, it is natural to minimize δ to guarantee a

target confidence level (say 95%). In Section 5.3 we explain how this optimal choice

can be asymptotically computed as n→∞.

Finally, it is of interest to investigate if the optimal choice of δ (and thus of λ)

actually performs well in practice. We compare performance of our (asymptotically)

optimal choice of λ against cross-validation empirically in Section 5.4. We conclude

that our choice is quite comparable to cross validation.

5.2 Optimal Transport and DRO

5.2.1 Revisit the optimal transport discrepancy

Let c : Rd+1×Rd+1 → [0,∞] be lower semicontinuous and we assume that c(u,w) = 0

if and only if u = w. For reasons that will become apparent in the sequel, we will

refer to c (·) as a cost function.

Given two distributions P and Q, with supports SP ⊆ Rd+1 and SQ ⊆ Rd+1,
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respectively, we define the optimal transport discrepancy, Dc, via

Dc (P,Q) = inf
π
{Eπ [c (U,W )] : π ∈ P (SP × SQ) , πU = P, πW = Q}, (5.3)

where P (SP × SQ) is the set of probability distributions π supported on SP × SQ,

and πU and πW denote the marginals of U and W under π, respectively.

We shall discuss in details in next section, how to choose c (·) to recover (5.2) and

the corresponding logistic regression formulation of GR-Lasso.

5.2.2 DRO Representation of GSRL Estimators

In this section, we will construct a cost function c (·) to obtain the GSRL (or GR-

Lasso) estimators. We will follow an approach introduced in Chapter 2 for the context

of square-root Lasso (SR-Lasso) and regularized logistic regression estimators.

5.2.2.1 GSRL Estimators for Linear Regression

We start by assuming precisely the linear regression setup described in the Introduc-

tion and leading to (5.2). Given α = (α1, ..., αd̄)
T ∈ Rd̄

++ define α−1 =
(
α−1

1 , ..., α−1
d̄

)T .
Now, underlying there is a partition G1, ..., Gd̄ of {1, ..., d} and given q, t ∈ [1,∞] we

introduce the cost function

c ((x, y) , (x′, y′)) =

 ‖x− x
′‖%α−1-(q,t) if y = y′

∞ if y 6= y′
, (5.4)

where, following (5.1), we have that

‖x− x′‖%α−1-(q,t) =

(
d̄∑
i=1

α−ti ‖x (Gi)− x′ (Gi)‖tq

)%/t

.
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Then, we obtain the following result.

Theorem 5.1 (DRO Representation for Linear Regression GSRL). Suppose that q, t ∈

[1,∞] and α ∈ Rd̄
++ are given and c (·) is defined as in (5.4) for % = 2. Then, if

l (x, y; β) =
(
y − xTβ

)2 we obtain

min
β∈Rd

sup
P :Dc(P,Pn)≤δ

(EP [l (X, Y ; β)])1/2 = min
β∈Rd

(EPn [l (X, Y ; β)])1/2 +
√
δ ‖β‖α-(p,s) ,

where 1/p+ 1/q = 1, and 1/s+ 1/t = 1.

We remark that choosing p = q = 2, t =∞, s = 1, and αi =
√
gi for i ∈ {1, ..., d̄}

we end up obtaining the GSRL estimator formulated in Bunea et al. [2014]).

We note that the cost function c (·) only allows mass transportation on the predic-

tors (i.e X), but no mass transportation is allowed on the response variable Y . This

implies that the GSRL estimator implicitly assumes that distributional uncertainty is

only present on prediction variables (i.e. variations on the data only occurs through

the predictors).

5.2.2.2 GR-Lasso Estimators for Logistic Regression

We now discuss GR-Lasso for classification problems. We consider a training data

set of the form {(X1, Y1), . . . , (Xn, Yn)}. Once again, the input Xi ∈ Rd is a vector

of d predictor variables, but now the response variable Yi ∈ {−1, 1} is a categorical

variable. In this section we shall consider as our loss function the log-exponential

function, namely,

l (x, y; β) = log
(
1 + exp

(
−yβTx

))
. (5.5)

This loss function is motivated by a logistic regression model which we shall review in

the sequel. But for the DRO representation formulation it is not necessary to impose
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any statistical assumption. We then obtain the following theorem.

Theorem 5.2 (DRO Representation for Logistic Regression GR-Lasso). Suppose that

q, t ∈ [1,∞] and α ∈ Rd̄
++ are given and c (·) is defined as in (5.4) for % = 1. Then, if

l (x, y; β) is defined as in (5.5) we obtain

min
β∈Rd

sup
P :Dc(P,Pn)≤δ

EP [l (X, Y ; β)] = min
β∈Rd

EPn (l (X, Y ; β)) + δ ‖β‖α-(p,s) ,

where 1 ≤ q, t ≤ ∞, 1/p+ 1/q = 1 and 1/s+ 1/t = 1.

We note that by taking p = q = 2, t = ∞, s = 1, αi =
√
gi for i ∈ {1, ..., d̄}, and

λ = δ we recover the GR-Lasso logistic regression estimator from Meier et al. [2008].

As discussed in the previous subsection, the choice of c (·) implies that the GR-

Lasso estimator implicitly assumes that distributionally uncertainty is only present

on prediction variables.

5.3 Optimal Choice of Regularization Parameter

Let us now discuss the mathematical formulation of the optimal criterion that we

discussed for choosing δ (and therefore the regularization parameter λ). We define

Λδ (Pn) = {βP : P ∈ Uδ (Pn)},

as discussed in the Introduction, Λδ (Pn) is a natural confidence region for β∗ because

each element P in the distributional uncertainty set Uδ (Pn) can be interpreted as a

plausible variation of the empirical data Pn. Then, given a confidence level 1−χ (say

1− χ = .95) we wish to choose

δ∗n = inf{δ : P (β∗ ∈ Λδ (Pn)) > 1− χ}.
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Note that in the evaluation of P (β∗ ∈ Λδ (Pn)) the random element is Pn. So, we shall

impose natural probabilistic assumptions on the data generating process in order to

asymptotically evaluate δ∗n as n→∞.

5.3.1 Revisit The Robust Wasserstein Profile Function

In order to asymptotically evaluate δ∗n we must recall basic properties of the so-

called Robust Wassertein Profile function (RWP function) introduced in Section 2.4

of Chapter 2.

Suppose for each (x, y), the loss function l (x, y; ·) is convex and differentiable,

then under natural moment assumptions which guarantee that expectations are well

defined, we have that for

P ∈ Uδ (Pn) = {P : Dc (P, Pn) ≤ δ},

the parameter βP must satisfy

EP
[
∇βl

(
X, Y ; βP

)]
= 0. (5.6)

Now, for any given β, let us define

M (β) = {P : EP [∇βl (X, Y ; β)] = 0} ,

which is the set of probability measures P , under which β is the optimal risk mini-

mization parameter. We would like to choose δ as small as possible so that

Uδ (Pn) ∩M (β∗) 6= ∅ (5.7)
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with probability at least 1 − χ. But note that (5.7) holds if and only if there exists

P such that Dc (P, Pn) ≤ δ and EP [∇βl (X, Y ; β∗)] = 0.

The RWP function is defined

Rn (β) = min{Dc (P, Pn) : EP [∇βl (X, Y ; β)] = 0}. (5.8)

In view of our discussion following (5.7), it is immediate that β∗ ∈ Λδ (Pn) if and only

if Rn (β∗) ≤ δ, which then implies that

δ∗n = inf{δ : P (Rn (β∗) ≤ δ) > 1− χ}.

Consequently, we conclude that δ∗n can be evaluated asymptotically in terms of the

1−χ quantile of Rn (β∗) and therefore we must identify the asymptotic distribution of

Rn (β∗) as n→∞. We illustrate intuitively the role of the RWP function andM (β)

in Figure 5.1, where RWP function Rn (β∗) could be interpreted as the discrepancy

distance between empirical measure Pn and the manifoldM (β∗) associated with β∗.

Figure 5.1: Intuitive Plot for the RWP function Rn (β) and the setM (β).

Typically, under assumptions supporting the underlying model (as in the gener-
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alized linear setting we considered), we will have that β∗ is characterized by the es-

timating equation (5.6). Therefore, under natural statistical assumptions one should

expect that Rn (β∗) → 0 as n → ∞ at a certain rate and therefore δ∗n → 0 at a

certain (optimal) rate. This then yields an optimal rate of convergence to zero for

the underlying regularization parameter. The next subsections will investigate the

precise rate of convergence analysis of δ∗n.

5.3.2 Optimal Regularization for GSRL Linear Regression

We assume, for simplicity, that the training data set {(X1, Y1), . . . , (Xn, Yn)} is i.i.d.

and that the linear relationship Yi = β∗ TXi + ei, holds with the errors {e1, ..., en}

being i.i.d. and independent of {X1, . . . , Xn}. Moreover, we assume that both the

entries of Xi and the errors have finite second moment and the errors have zero mean.

Since in our current setting l (x, y; β) =
(
y − xTβ

)2, then the RWP function (5.8) for

linear regression model is given as,

Rn (β) = min
P

{
Dc (P, Pn) : EP

[
X
(
Y −XTβ

)]
= 0
}
. (5.9)

Theorem 5.3 (RWP Function Asymptotic Results: Linear Regression). Under the

assumptions imposed in this subsection and the cost function as given in Equation

(5.4), with % = 2,

nRn (β∗)⇒ L1 := max
ζ∈Rd

{
2σζTZ − E

[∥∥eζ − (ζTX) β∗∥∥2

α-(p,s)

]}
,

as n → ∞, where ⇒ means convergence in distribution and Z ∼ N (0,Σ) with
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Σ = V ar(X). Moreover, we can observe the more tractable stochastic upper bound,

L1

D

≤ L2 :=
E [e2]

E [e2]− (E [|e|])2 ‖Z‖
2
α−1-(q,t) .

We now explain how to use Theorem 5.3 to set the regularization pa-

rameter in GSRL linear regression:

1. Estimate the 1 − χ quantile of ‖Z‖2
α−1-(q,t). We use use η̂1−χ to denote the

estimator for this quantile. This step involves estimating Σ from the training

data.

2. The regularization parameter λ in the GSRL linear regression takes the form

λ =
√
δ =

√√√√ η̂
1/2
1−χ

n(1− (E |e|)2 /Ee2)
.

Note that the denominator in the previous expression must be estimated from

the training data.

Note that the regularization parameter for GSRL for linear regression chosen via

our RWPI asymptotic result does not depends on the magnitude of error e (see also

the discussion in Bunea et al. [2014]).

5.3.3 Optimal Regularization for GR-Lasso Logistic Regres-

sion

We assume that the training data set Dn = {(X1, Y1), . . . , (Xn, Yn)} is i.i.d.. In

addition, we assume that the Xi’s have a finite second moment and also that they
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possess a density with respect to the Lebesgue measure. Moreover, we assume a

logistic regression model; namely,

P (Yi = 1|Xi) = 1/
(
1 + exp

(
−XT

i β
∗)) , (5.10)

and P (Yi = −1|Xi) = 1− P (Yi = 1|Xi).

In the logistic regression setting, we consider the log-exponential loss defined in Equa-

tion (5.5). Therefore, the RWP function, (5.8), for logistic regression is

Rn (β) = min

{
Dc (P, Pn) : EP

[
Y X

1 + exp (Y XTβ)

]
= 0

}
. (5.11)

Theorem 5.4 (RWP Function Asymptotic Results: Logistic Regression). Under the

assumptions imposed in this subsection and the cost function as given in Equation

(5.4) with % = 1,
√
nRn (β∗)⇒ L3 := sup

ζ∈A
ζTZ,

as n→∞, where

Z ∼ N
(

0,E
[

XXT

(1 + exp (Y XTβ∗))2

])
and

A =

ζ ∈ Rd : ess sup
X,Y

∥∥∥∥∥ζT y
(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

≤ 1

 .

Further, the limit law L3 follows the simpler stochastic bound,

L3

D

≤ L4 :=
∥∥∥Z̃∥∥∥

α−1-(q,t)
,

where Z̃ ∼ N (0,Σ).
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We now explain how to use Theorem 5.4 to set the regularization pa-

rameter in GR-Lasso logistic regression.

1. Estimate the 1− χ quantile of L4. We use use η̂1−χ to denote the estimator for

this quantile. This step involves estimating Σ from the training data.

2. We choose the regularization parameter λ in the GR-Lasso problem to be,

λ = δ = η̂1−χ/
√
n.

5.4 Numerical Experiments

We proceed to numerical experiments on both simulated and real data to verify the

performance of our method for choosing the regularization parameter. We apply

“grpreg” in R, from Breheny and Breheny [2016], to solve GR-Lasso for logistic re-

gression. For GSRL for linear regression, we consider apply the “grpreg” solver for the

GR-Lasso problem combined with the iterative procedure discussed in Section 2 of

Sun and Zhang [2011] (see also Section 5 of Li et al. [2015] for the Lasso counterpart

of such numerical procedure).

Data preparation for simulated experiments: We borrow the setting from

example III in Yuan and Lin [2006], where the group structure is determined by the

third order polynomial expansion. More specifically, we assume that we have 17 ran-

dom variables Z1, . . . , Z16 and W , they are i.i.d. and follow the normal distribution.

The covariates X1, . . . , X16 are given as Xi = (Zi +W ) /
√

2. For the predictors, we

consider each covariate and its second and third order polynomial, i.e. Xi, X2
i and

X3
i . In total, we have 48 predictors.
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For linear regression: The response Y is given by

Y = β3,1X3 + β3,2X
2
3 + β3,3X

3
3 + β5,1X5 + β5,2X

2
5 + β5,3X

3
5 + e,

where β(·,·) coefficients draw randomly and e represents an independent random error.

For classification: We consider Y simulated by a Bernoulli distribution, i.e.

Y ∼ Ber
(
1/
[
1 + exp

(
−
(
β3,1X3 + β3,2X

2
3 + β3,3X

3
3 + β5,1X5 + β5,2X

2
5 + β5,3X

3
5

))])
.

We compare the following methods for linear regression and logistic regression: 1)

groupwise regularization with asymptotic results (in Theorem 5.3, 5.4) selected tuning

parameter (RWPI GRSL and RWPI GR-Lasso), 2) groupwise regularization with

cross-validation (CV GRSL and CV GR-Lasso), and 3) ordinary least square and

logistic regression (OLS and LR).

We report the error as the square loss for linear regression and log-exponential

loss for logistic regression. The training error is calculated via the training data. The

size of the training data is taken to be n = 50, 100, 500 and 1000. The testing error

is evaluated using a simulated data set of size 1000 using the same data generating

process described earlier. The mean and standard deviation of the error are reported

via 200 independent runs of the whole experiment, for each sample size n.

The detailed results are summarized in Table 5.1 for linear regression and Table

5.2 for logistic regression. We can see that our procedure is very comparable to

cross validation, but it is significantly less time consuming and all of the data can be

directly used to estimate the model parameter, by-passing significant data usage in

the estimation of the regularization parameter via cross validation

We also validated our method using the Breast Cancer classification problem with
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RWPI GSRL CV GSRL OLS
Sample Size Training Testing Training Testing Training Testing
n = 50 5.64± 1.16 9.15± 3.58 3.18± 1.07 7.66± 2.69 0.07± 0.09 80.98± 30.53
n = 100 4.67± 0.70 5.83± 1.38 3.61± 0.74 5.22± 1.05 2.09± 0.44 73.35± 16.51
n = 500 4.09± 0.29 4.16± 0.27 3.93± 0.3 4.12± 0.27 3.63± 0.27 73.08± 10.40
n = 1000 4.02± 0.19 4.11± 0.26 3.95± 0.19 4.11± 0.26 3.82± 0.19 72.28± 8.05

Table 5.1: Linear Regression Simulation Results.

RWPI GR-Lasso CV GR-Lasso Logistic Regression
Sample Size Training Testing Training Testing Training Testing
n = 50 .683± .016 .702± .014 .459± .118 .628± .099 .002± .001 5.288± 1.741
n = 100 .593± .038 .618± .029 .450± .061 .551± .037 .042± .041 4.571± 1.546
n = 500 .513± .021 .518± .019 .461± .025 .493± .018 .083± .057 1.553± .355
n = 1000 .492± .016 .488± .017 .491± .017 .488± .019 .442± .018 .510± .028

Table 5.2: Logistic Regression Simulation Results.

data from the UCI machine learning database discussed in Lichman [2013]. The data

set contains 569 samples with one binary response and 30 predictors. We consider all

the predictors and their first, second, and third order polynomial expansion. Thus, we

end up having 90 predictors divided into 30 groups. For each iteration, we randomly

split the data into a training set with 112 samples and the rest in the testing set.

We repeat the experiment 500 times to observe the log-exponential loss function

for the training and testing error. We compare our asymptotic results based GR-

Lasso logistic regression (RWPI GR-Lasso), cross-validation based GR-Lasso logistic

regression (CV GR-Lasso), vanilla logistic regression (LR), and regularized logistic

regression (LRL1). We can observe, even when the sample size is small as in the

example, our method still provides very comparable results (see in Table 5.3).

LR LRL1 RWPI GR-Lasso CV GR-Lasso
Training Testing Training Testing Training Testing Training Testing
0.0± 0.0 15.267± 5.367 .510± .215 .414± .173 .186± .032 .240± .098 .198± .041 .213± .041

Table 5.3: Numerical results for breast cancer data set.
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5.5 Conclusion and Extensions

Our discussion of GSRL as a DRO problem has exposed rich interpretations which we

have used to understand GSRL’s generalization properties by means of a game theo-

retic formulation. Moreover, our DRO representation also elucidates the crucial role

of the regularization parameter in measuring the distributional uncertainty present

in the data. Finally, we obtained asymptotically valid formulas for optimal regular-

ization parameters under a criterion which is naturally motivated, once again, thanks

to our DRO formulation. Our easy-to-implement formulas are shown to perform well

compared to cross validation.

We strongly believe that our discussion in this chapter can be easily extended to a

wide range of machine learning estimators. We envision formulating the DRO prob-

lem considering different types of models and cost functions. We plan to investigate

algorithms which solve the DRO problem directly (even if no direct regularization

representation, as the one we considered here, exists). Moreover, it is natural to con-

sider different types of cost functions which might improve upon the simple choice

which, as we have shown, implies the GSRL estimator. Questions related to alterna-

tive choices of cost functions are also under current research investigations, and our

progress will be reported in the next chapter.

APPENDIX 5.A: Technical Proofs

We will first derive some properties for α-(p, s) norm (in Section 5.A.1) we defined

in Equation (5.1), then we move to the proof for DRO problem in Section 5.A.2 and

the optimal selection of regularization parameter in Section 5.A.3. We will focus on

the proof for linear regression and leave the part for logistic regression, which follows
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the similar techniques, in the Additional Technical Results, namely APPENDIX B.

5.A.1: Basic Properties of the α-(p, s) Norm

The following Proposition, which describes basic properties of the α-(p, s) norm, will

be very useful in our proofs.

Proposition 5.1. For α − (p, s) norm defined for Rd as in Equation (5.1) and the

notations therein, we have the following properties:

I) The dual norm of α−(p, s) norm is α−1-(q, t) norm, where α−1 = (1/α1, . . . , 1/αd̄)
T ,

1/p+ 1/q = 1, and 1/s+ 1/t = 1 (i.e. p, q are conjugate and s, t are conjugate).

II) The Hölder inequality holds for the α-(p, s) norm, i.e. for a, b ∈ Rd, we have,

aT b ≤ ‖a‖α-(p,s) ‖b‖α−1-(q,t) ,

where the equality holds if and only if sign(a(Gj)i) = sign(b(Gj)i) and

|αja(Gj)i|
∥∥∥∥ 1

αj
b(Gj)

∥∥∥∥q/p−t/s
q

‖b‖t/sα−1-(q,t) =

∣∣∣∣ 1

αj
b(Gj)i

∣∣∣∣q/p.
is true for all j = 1, . . . , d̄ and i = 1, . . . , gj.

The triangle inequality holds, i.e. for a, b ∈ Rd and a 6= 0, we have

‖a‖α-(p,s) + ‖b‖α-(p,s) ≥ ‖a+ b‖α-(p,s) ,

where the equality holds if and only if, there exists nonnegative τ , such that τa = b.

Proof of Proposition 5.1. We first proceed to prove II). Let us consider any a, b ∈ Rd.

We can assume a, b 6= 0, otherwise the claims are immediate. The inner product (or
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dot product) of a and b an be written as:

aT b =
d̄∑
j=1

[
gj∑
i=1

a(Gj)ib(Gj)i

]
≤

d̄∑
j=1

[
gj∑
i=1

|a(Gj)i| · |b(Gj)i|

]
.

The equality holds for the above inequality if and only if a(Gj)i and b(Gj)i shares the

same sign. For each fixed j = 1, . . . , d̄, we consider the term in the bracket,

gj∑
i=1

|a(Gj)i| · |b(Gj)i| =
gj∑
i=1

αj |a(Gj)i| · |b(Gj)i| /αj ≤ ‖αja(Gj)‖p ·
∥∥∥∥ 1

αj.
b(Gj)

∥∥∥∥
q

.

The above inequality is due to Hölder’s inequality for p−norm and the equality holds

if and only if

∥∥∥∥ 1

αj.
b(Gj)

∥∥∥∥q
q

|αja(Gj)i|p = ‖αja(Gj)‖pp

∣∣∣∣ 1

αj
b(Gj)i

∣∣∣∣q ,
is true for all i = 1, gj. Combining the above result for each j = 1, . . . , d̄, we have,

aT b ≤
d̄∑
j=1

‖αja(Gj)‖p ·
∥∥∥∥ 1

αj
b(Gj)

∥∥∥∥
q

≤ ‖a‖α-(p,s) · ‖b‖α−1-(q,t) ,

where the final inequality is due to Hölder inequality applied to the vectors

ã =
(
α1 ‖a(G1)‖p , . . . , αd̄ ‖a(Gd̄)‖p

)T
, and b̃ =

(
1

α1

‖bG1‖q , . . . ,
1

αd̄
‖b(Gd̄)‖q

)T
.

(5.12)

This proves the Hölder type inequality stated in the theorem. We can further observe

that the final inequality becomes equality if and only if

‖b‖tα−1−(q,t) ‖αja(Gj)‖sp = ‖a‖sα−(p,s)

∥∥∥∥ 1

αj
b(Gj)

∥∥∥∥t
q

,



CHAPTER 5. DISTRIBUTIONALLY ROBUST GROUPWISE
REGULARIZATION ESTIMATOR 222

holds for all j = 1, . . . , d̄. Combining the conditions for equalities hold for each

inequality, we conclude condition II) in the statement of the proposition.

Now we proceed to prove I). Recall the definition of a dual norm, i.e.

‖b‖∗α-(p,s) = sup
a:‖a‖α-(p,s)=1

aT b

. Now, choose b ∈ Rd, b 6= 0, and let us take a satisfying, ‖a‖α−(p,s) = 1 and

a(Gj)i =
sign(b(Gj)i)

αj

∣∣∣ 1
αj
b(Gj)i

∣∣∣q/p∥∥∥ 1
αj
b(Gj)

∥∥∥q/p−t/s
q

‖b‖t/sα−1-(q,t)

.

By part II), we have that

‖b‖∗α−(p,s) = sup
a:‖a‖α−(p,s)=1

aT b = ‖a‖α−(p,s) ‖b‖α−1−(q,t) = ‖b‖α−1−(q,t) .

Thus we proved part I). Finally, let us discuss the triangle inequality. For any a, b ∈ Rd

and a, b 6= 0 we have

‖a‖α-(p,s) + ‖b‖α-(p,s)

=

[
d̄∑
j=1

αj ‖a(Gj)‖sp

]1/s

+

[
d̄∑
j=1

αj ‖b(Gj)‖sp

]1/s

≥

[
d̄∑
j=1

αj

(
‖a(Gj)‖sp + ‖b(Gj)‖sp

)]1/s

≥

[
d̄∑
j=1

αj ‖a(Gj) + b(Gj)‖sp

]1/s

= ‖a+ b‖α-(p,s) .
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For the above derivation, the first equality is due to definition in Equation (5.1),

Second equality is applying the triangle inequality of s-norm for ã and b̃ defined in

Equation (5.12), where the equality holds if and only if, there exist positive number

τ̃ , such that τ̃ ã = b̃. Third inequality is due to triangle equality of p-norm to a(Gj)

and b(Gj) for each j = 1, . . . , d̄, where the equality holds if and only if, there exists

nonnegative numbers τj, such that τja(Gj) = b(Gj). Combining the equality condition

for second and third estimate above, we can conclude the equality condition for the

triangle inequality for α-(p, s) norm is if and only if there exists a non-negative number

τ , such that τa = b.

5.A.2: Proof of DRO for Linear Regression

Proof of Theorem 5.1. Let us apply the strong duality results, as in the Appendix

of Chapter 2, for worst-case expected loss function, which is a semi-infinity linear

programming problem, and write the worst-case loss as,

sup
P :Dc(P,Pn)≤δ

EP
[(
Y −XTβ

)2
]

= min
γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{(
yi − uTβ

)2 − γ ‖xi − u‖2
α−1-(q,t)

}}
.

For each i, let us consider the inner optimization problem over u. We can denote

∆ = u−xi and ei = yi−xTi β for notation simplicity, then the i−th inner optimization
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problem becomes,

e2
i + sup

∆

{(
∆Tβ

)2 − 2ei∆
Tβ − γ ‖∆‖2

α−1−(q,t)

}
=e2

i + sup
∆


(∑

j

|∆j| |βj|

)2

+ 2 |ei|
∑
j

|∆j| |βj| − γ ‖∆‖2
α−1−(q,t)


=e2

i sup
‖∆‖α−1-(q,t)

{
‖β‖2

α-(p,s) ‖∆‖
2
α−1-(q,t) + 2 ‖β‖α-(p,s) |ei| ‖∆‖α−1-(q,t) − γ ‖∆‖

2
α−1-(q,t)

}

=


e2
i

γ

γ−‖β‖2α-(p,s)
if γ > ‖β‖2

α-(p,s) ,

+∞ if γ ≤ ‖β‖2
α-(p,s) .

, (5.13)

where the development uses the duality results developed in Proposition 5.1. The

last equality is optimize over ∆ for two different cases of λ.

Since optimization over γ is a minimization, the outer player will always select γ that

avoids an infinite value of the game. Then we can write the worst-case expected loss

function as,

sup
P :Dc(P,Pn)≤δ

EP
[(
Y −XTβ

)2
]

(5.14)

= min
γ>‖β‖2α-(p,s)

{
γδ − γEPnl (X, Y ; β)

γ − ‖β‖2
α-(p,s)

}

=
(√

EPnl (X, Y ; β) +
√
δ ‖β‖α-(p,s)

)2

.

The first equality in (5.14) is a plug-in from the result in (5.13). For the second

equality, we can observe the target function is convex and differentiable and as γ →∞

and γ → ‖β‖2
α-(p,s), the value function will be infinity. We can solve this convex

optimization problem which leads to the result above. We further take square root

and take minimization over β on both sides, we proved the claim of the theorem.
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5.A.3: Proof for Optimal Selection of Regularization for Linear

Regression

Proof for Theorem 5.3. For linear regression with the square loss function, if we apply

the strong duality result for semi-infinity linear programming problem as in Appendix

B of Chapter 2, we can write the scaled RWP function for linear regression as

nRn (β∗) = sup
ζ

{
−ζTZn − EPnφ (Xi, Yi, β

∗, ζ)
}
, (5.15)

where Zn = 1√
n

∑n
i=1 eiXi and

φ (Xi, Yi, β
∗, ζ)

= sup
∆

{
eiζ

T∆−
(
β∗ T∆

) (
ζTXi

)
−
(
‖∆‖2

α−1-(q,t) + n−1/2
(
β∗ T∆

) (
ζT∆

))}
.

Follow the similar discussion in the proof of Theorem 2.1 in Chapter 2. Applying

Lemma 2.2 in Chapter 2, we can argue that the optimizer ζ can be restrict on a

compact set asymptotically with high probability. We can apply the uniform law of

large number estimate as in Lemma 2.3 of Chapter 2 to the second term in (5.15)

and we obtain

nRn (β∗) = sup
ζ
{−ζTZn − Eφ (X, Y, β, ζ)]}+ oP (1). (5.16)

For any fixed X, Y , as n → ∞, we can simplify the contribution of φ (·) inside sup

in (5.16). This is done by applying the duality result (Hölder-type inequality) in

Proposition 5.1 and noting that φ (·) becomes quadratic in ‖∆‖α−1-(q,t). This results
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in the simplified expression

nRn (β∗) = sup
ζ

{
−ζTZn − E

[∥∥eζ − (ζTX)β∗
∥∥2

α-(p,s)

]}
+ oP (1).

Since we can observe that, Zn ⇒ σZ, then as n → ∞ we proved the first argument.

For this step we need to show that the feasible region can be compactified with high

probability. This compactification argument is done using a technique similar to

Lemma 2.2 in Chapter 2.

By the definition of L1, we can apply Hölder inequality to the first term, and split

the optimization into optimizing over direction ‖ζ ′‖α-(p,s) = 1 and magnitude a ≥ 0.

Thus, we have

L1 ≤ max
ζ′:‖ζ′‖α-(p,s)=1

max
a≥0

{
2aσ ‖Z‖α−1-(q,t) − a

2E
[∥∥eζ ′ − (ζ ′TX)β∗

∥∥2

α-(p,s)

]}
.

It is easy to solve the quadratic programming problem in a and we conclude that

L1 ≤
σ2 ‖Z‖2

α−1-(q,t)

minζ′:‖ζ′‖α-(p,s)=1 E
[
‖eζ ′ − (ζ ′TX)β∗‖2

α-(p,s)

] .
For the denominator, we have estimates as follows:

min
ζ′:‖ζ′‖α-(p,s)=1

E
[∥∥eζ ′ − (ζ ′TX)β∗

∥∥2

α-(p,s)

]
≥ min

ζ′:‖ζ′‖α-(p,s)=1
E
[
|e| −

∣∣ζTX∣∣ ‖β∗‖α-(p,s)

]2

≥ V ar(|e|) + min
ζ′:‖ζ′‖α-(p,s)=1

(
‖β∗‖α-(p,s) E

∣∣ζ ′TX∣∣− E |e|
)2

≥ V ar(|e|).

The first estimate is due to the triangle inequality in Proposition 5.1, the second es-

timate follows using Jensen’s inequality, the last inequality is immediate. Combining



CHAPTER 5. DISTRIBUTIONALLY ROBUST GROUPWISE
REGULARIZATION ESTIMATOR 227

these inequalities we conclude

L1 ≤ σ2 ‖Z‖2
α−1-(q,t) /V ar(|e|).

APPENDIX 5.B: Additional Materials

In this Section, we will provide the proofs for DRO representation and asymptotic

result for logistic regression, which were discussed in Theorem 5.2 and Theorem 5.4,

in Section 5.B.1 and Section 5.B.2.

5.B.1: Proof of DRO for Logistic Regression

Proof for Theorem 5.2. By applying strong duality results for semi-infinity linear pro-

gramming problem in Chapter 2, we can write the worst case expected loss function

as,

sup
P :Dc(P,Pn)≤δ

EP
[
log
(
1 + exp

(
−Y βTX

))]
= min

γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖α−1-(q,t)

}}
.

For each i, we can apply Lemma 1 in Shafieezadeh-Abadeh et al. [2015] and the dual

norm result in Proposition 5.1 to deal with the inner optimization problem. It gives
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us,

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖α−1-(q,t)

}

=

 log
(
1 + exp

(
−YiβTXi

))
if ‖β‖α-(p,s) ≤ γ,

∞ if ‖β‖α-(p,s) > γ.

Moreover, since the outer player wishes to minimize, γ will be chosen to satisfy

γ ≥ ‖β‖α-(p,s). We then conclude

min
γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖α−1-(q,t)

}}

= min
γ≥‖β‖α-(p,s)

{
δγ +

1

n

n∑
i=1

log
(
1 + exp

(
−YiβTXi

))}

=
1

n

n∑
i=1

log
(
1 + exp

(
−YiβTXi

))
+ δ ‖β‖α-(p,s) ,

where the last equality is obtained by noting that the objective function is continuous

and monotone increasing in γ, thus γ = ‖β‖α-(p,s) is optimal. Hence, we conclude the

DRO formulation for GR-Lasso logistic regression.

5.B.2: Proof of Optimal Selection of Regularization for Logistic

Regression

Proof of Theorem 5.4. We can apply strong duality result for semi-infinite linear pro-

gramming problem in Appendix B of Chapter 2, and write the scaled RWP function

evaluated at β∗ in the dual form as,

√
nRn (β∗) = max

ζ

{
ζTZn − EPnφ (X, Y, β∗, ζ)

}
,
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where Zn = 1
n

∑n
i

YiXi
1+exp(YiXT

i β
∗)

and

φ (X, Y, β∗, ζ) = max
u

{
Y ζT

(
X

1 + exp (Y XTβ∗)
− u

1 + exp (Y uTβ∗)

)
− ‖X − u‖α−1-(q,t)

}
.

We proceed as in our proof of Theorem 5.3 in this chapter and also adapting the case

ρ = 1 for Theorem 2.1 in Chapter 2. We can apply Lemma 2.2 in Chapter 2 and

conclude that the optimizer ζ can be taken to lie within a compact set with high

probability as n→∞. We can combine the uniform law of large number estimate as

in Lemma 2.3 of Chapter 2 and obtain

√
nRn (β) = max

ζ

{
ζTZn − EPφ (X, Y, β∗, ζ)

}
+ oP (1).

For the optimization problem defining φ (·), we can apply results in Lemma 2.5 in

Section A.3 of Chapter 2, we know, for any choice of ζ̃, if,

ess sup
X,Y

∥∥∥∥∥ζ̃T y
(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

> 1,

we have E
[
φ
(
X, Y, β∗, ζ̃

)]
=∞. Since the outer optimization problem is maximiza-

tion over ζ, the player will restrict ζ within the set A, where

A =

ζ ∈ Rd : ess sup
X,Y

∥∥∥∥∥ζT y
(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

≤ 1

 .

Moreover, it is easy to calculate, if ζ ∈ A, we have E[φ (X, Y, β∗, ζ)] = 0, thus we

have the scaled RWP function has the following estimate, as n→∞

√
nRn (β) = max

ζ∈A
ζTZn + oP (1).
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Letting n→∞, we obtain the exact asymptotic result.

For the stochastic upper bound, let us recall for the definition of the set A and

consider the following estimate

∥∥∥∥∥ζT y
(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

≥
∥∥∥∥ Y ζ

1 + exp (Y β∗ TX)

∥∥∥∥
α-(p,s)

−
∥∥∥∥ ζTXβ∗

(1 + exp (Y β∗ TX))2

∥∥∥∥
α-(p,s)

≥

(
1

1 + exp (Y β∗ TX)
−

‖X‖α−1-(q,t) ‖β∗‖α-(p,s)

(1 + exp (Y β∗ TX)) (1 + exp (−Y β∗ TX))

)
‖ζ‖α-(p,s) .

The first inequality is due to application of triangle inequality in Proposition 5.1,

while the second estimate follows from Hölder’s inequality and Y ∈ {−1,+1}. Since

we assume positive probability density for the predictor X, we can argue that, if

‖ζ‖α-(p,s) = (1− ε)−2 > 1 and ε > 0 is chosen arbitrarily small, we can conclude from

the above estimate that, we have

∥∥∥∥∥ζT y
(
1 + exp

(
Y XTβ∗

))
Id×d −XXT

(1 + exp (Y XTβ∗))2

∥∥∥∥∥
α-(p,s)

> 1.

Thus, we proved the claim that A ⊂
{
ζ, ‖ζ‖α-(p,s) ≤ 1

}
. The stochastic upper bound

is derived by replacing A by
{
ζ, ‖ζ‖α-(p,s) ≤ 1

}
, i.e.

L3 = sup
ζ∈A

ζTZ ≤ sup
‖ζ‖α-(p,s)≤1

ζTZ = ‖Z‖α−1-(q,t) ,

where the final estimation is due to dual norm structure in Proposition 5.1. Since we

know, 1
1+exp(Y XT β)

≤ 1, it is easy to argue, V ar(Z̃)− V ar(Z) is positive semidefinite,

thus, we know ‖Z‖α−1-(q,t) is stochastic dominated by L4 :=
∥∥∥Z̃∥∥∥

α−1-(q,t)
. Hence, we

obtain L3 ≤ L4.
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Chapter 6

Data-Driven Optimal Transport Cost

Selection for Distributionally Robust

Optimization

In the former chapter, namely Chapter 5, we consider the generalization of cost

function from regular Euclidean norm to groupwise norm to encode the information on

natural structure of the predictors. In this chapter, we will further explore flexibility

of optimal transport cost, more specifically, we are going to apply metric learning

techniques to show how to pick the cost function in a fully data-driven way.

In Chapter 2 and Chapter 5, we showed that several machine learning algorithms,

such as square-root Lasso, Group Lasso, and regularized logistic regression, among

many others, can be represented exactly as data-driven distributionally robust opti-

mization (DRO) problems. The distributional uncertainty is defined as a neighbor-

hood centered at the empirical distribution. In this chapter, we propose a methodol-

ogy which learns such neighborhood in a natural data-driven way. We show rigorously

that our framework encompasses adaptive regularization as a particular case. In ad-
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dition, we also propose a data-driven robust optimization methodology to inform the

transportation cost underlying the definition of the distributional uncertainty. More-

over, we demonstrate empirically that our proposed methodology is able to improve

upon a wide range of popular machine learning estimators.

6.1 Introduction

A Distributionally Robust Optimization (DRO) problem takes the general form

min
β

max
P∈Uδ

EP [l (X, Y, β)] , (6.1)

where β is a decision variable, (X, Y ) is a random element, and l(x, y, β) measures a

suitable loss or cost incurred when (X, Y ) = (x, y) and the decision β is taken. The

set Uδ is called the distributional uncertainty set and it is indexed by the parameter

δ > 0, which measures the size of the distributional uncertainty.

The DRO problem is said to be data-driven if the uncertainty set Uδ is informed

by empirical observations. One natural way to supply this information is by letting

the “center” of the uncertainty region be placed at the empirical measure, Pn, induced

by a data set Dn = {Xi, Yi}ni=1, which represents an empirical sample of realizations

of (X, Y ). In order to emphasize the data-driven nature of a DRO formulation such

as (6.1), when the uncertainty region is informed by an empirical sample, we write

Uδ = Uδ(Pn). To the best of our knowledge, the available data is utilized in the DRO

literature only by defining the center of the uncertainty region Uδ(Pn) as the empirical

measure Pn.

Our goal in this chapter is to discuss a data-driven framework to inform the

shape of Uδ(Pn). Throughout this paper, we assume that the class of functions to fit,
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indexed by β, is given and that a sensible loss function l (x, y, β) has been selected for

the problem at hand. Our contribution concerns the construction of the uncertainty

region in a fully data-driven way and the implications of this design in machine

learning applications. Before providing our construction, let us revisit a example

of logistic regression to show the significance of data-driven DRO in the context of

machine learning.

In the context of generalized logistic regression, i.e. linear model with log expo-

nential loss,

l (x, y, β) = log
(
1 + exp

(
−yβTx

))
,

and given empirical samples Dn = {(Xi, Yi)}ni=1 with Yi ∈ {−1, 1} and a judicious

choice of the distributional uncertainty Uδ (Pn) via optimal transport cost, Theorem

2.3 in Chapter 2 shows that

min
β

max
P∈Uδ(Pn)

EP [l (X, Y, β)] = min
β

(
EPn [l (X, Y, β)] + δ ‖β‖p

)
, (6.2)

where ‖·‖p is the lp norm in Rd for p ∈ [1,∞).

The definition of Uδ (Pn) turns out to be informed by the dual norm ‖·‖q with 1/p+

1/q = 1. In simple words, the shape of the distributional uncertainty Uδ (Pn) directly

implies the type of regularization; and the size of the distributional uncertainty, δ,

dictates the regularization parameter.

Similar connections are made for square-root Lasso and SVMs in Chapter 2. In

summary, data-driven DRO via optimal transport has been shown to encompass

a wide range of prevailing machine learning estimators. However, so far the cost

function c (·) has been taken as a given, and not chosen in a data-driven way.

Our main contribution in this chapter is to propose a comprehensive approach
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for designing the uncertainty region Uδ(Pn) in a fully data-driven way, using the

convenient role of c(·) in the definition of the optimal transport discrepancyDc(P, Pn).

Our modeling approach further underscores, beyond the existence of representations

such as (6.2), the convenience of working with an optimal transport discrepancy for

the design of data-driven DRO machine learning estimators. In other words, because

one can select c(·) in a data driven way, it is sensible to use our data-driven DRO

formulation even if one is not able to simplify the inner optimization in order to

achieve a representation such as (6.2).

Our idea is to apply metric-learning procedures to estimate c(·) from the training

data. Then, use such data-driven c(·) in the definition of Dc(P, Pn) and the construc-

tion Uδ(Pn). Finally, solve the DRO problem (6.1), using cross-validation to choose

δ.

The intuition behind our proposal is the following. By using a metric learning

procedure we are able to calibrate a cost function c (·) which attaches relatively high

transportation costs to (u,w) if transporting mass between these locations substan-

tially impacts performance (e.g. in the response variable, so increasing the expected

risk). In turn, the adversary, with a given budget δ, will carefully choose the data

which is to be transported. The mechanism will then induce enhanced out-of-sample

performance focusing precisely on regions of relevance, while improving generalization

error.

One of the challenges for the implementation of our idea is to efficiently solve

(6.1). We address this challenge by proposing a stochastic gradient descent algorithm

which takes advantage of a duality representation and fully exploits the nature of

the LP structure embedded in the definition of Dc(P, Pn), together with a smoothing

technique.

Another challenge consists in selecting the type of cost c(·) to be used in practice,
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and the methodology to fit such cost. To cope with this challenge, we rely on metric-

learning procedures. We do not contribute any novel metric learning methodology;

rather, we discuss various parametric cost functions and methods developed in the

metric-learning literature. And we discuss their use in the context of fully data-drive

DRO formulations for machine learning problems – which is what we propose in this

paper. The choice of c(·) ultimately will be influenced by the nature of the data and

the application at hand. For example, in the setting of image recognition, it might

be natural to use a cost function related to similarity notions.

In addition to discussing intuitively the benefits of our approach in Section 6.2,

we also show that our methodology provides a way to naturally estimate various pa-

rameters in the setting of adaptive regularization. For example, Theorem 6.1 below,

shows that choosing c(·) using a suitable weighted norm, allows us to recover an adap-

tive regularized ridge regression estimator Ishwaran and Rao [2014]. In turn, using

standard techniques from metric learning we can estimate c(·). Hence, our technique

connects metric learning tools to estimate the parameters of adaptive regularized

estimators.

However, the metric learning based method to choose cost function is not robus-

tified. In addition to applying DRO to improve generalization error, we consider

applying robust optimization method in training a data-driven cost function as an

additional layer of robustification. One of the driving points of using robust op-

timization techniques in machine learning is that the introduction of an adversary

can be seen as a tool to control the testing error. While the data-driven procedure

discussed above is rich in the use of information, and hence it is able to improve

the generalization performance, the lack of robustification exposes the testing error

to potentially high variability. So, another contribution in this chapter is to design

an robust optimization procedure for choosing the shape of Uδ (Pn) using a suitable
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parametric family. In the context of logistic regression, for example, the parametric

family that we consider includes the type of choice leading to (6.2) as a particular

case. In turn, the choice of Uδ (Pn) is applied to formulation (6.1) in order to obtain

a doubly-robustified estimator. We call this method to be doubly robust data-driven

distributionally robust optimization (DD-R-DRO).

Figure 6.1 shows the various combinations of information and robustness which

have been studied in the literature so far. The figure shows four diagrams. Diagram

(A) represents standard empirical risk minimization (ERM); which fully uses the

information but often leads to high variability in testing error and, therefore, poor

out-of-sample performance. Diagram (B) represents DRO where only the center, Pn,

and the size of the uncertainty, δ, are data driven; this choice controls out-of-sample

performance but does not use data to shape the type of perturbation, thus potentially

resulting in testing error bounds which might be pessimistic. Diagram (C) represents

DRO with data-driven shape information for perturbation type using metric learning

techniques; this construction can reduce the testing error bounds at the expense of

increase in the variability of the testing error estimates. Diagram (D) represents DD-

R-DRO, the shape of the perturbation allowed for the adversary player is estimated

using a robust optimization procedure; this double robustification, as we shall show

in the numerical experiments is able to control the variability present in the third

diagram.

In the diagrams, the straight arrows represent the use of a robustification proce-

dure. A wide arrow represents the use of high degree of information. A wiggly arrow

indicates potentially noisy testing error estimates.

The contributions of this chapter can be stated, in order of importance, as follows:

1) The third diagram, illustrates the first main contribution of this paper, namely,

a data-driven approach using metric learning techniques to inform the cost function,
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Figure 6.1: Four diagrams illustrating information on robustness.
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which could reduces the generalization error.

2) We propose a stochastic gradient based algorithm to solve the DRO problem

directly, as we shall observe, the algorithm place very limited assumptions on the loss

function, which could be applied for more general machine learning algorithms with

DRO formulation.

3) Another main contribution, namely the double robustification approach, as

illustrated in the forth diagram, which reduces the generalization error, utilizes infor-

mation efficiently and controls variability.

4) We also provide an explicit robust optimization formulation for metric learning

tasks.

5) In addition, we show an iterative procedures for the solution of these robust

optimization problems.

6.2 Data-Driven DRO: Intuition and Interpretations

One of the main benefits of DRO formulations such as (6.1) and (6.2) is their inter-

pretability. For example, we can readily see from the left hand side of (6.2) that the

regularization parameter corresponds precisely to the size of the data-driven distri-

butional uncertainty.

The data-driven aspect is important because we can employ statistical thinking to

optimally characterize the size of the uncertainty, δ. This readily implies an optimal

choice of the regularization parameter, as explained in Chapter 2, in settings such

as (6.2). Elaborating, we can interpret Uδ (Pn) as the set of plausible variations of

the empirical data, Pn. Consequently, for instance, in the linear regression setting

leading to (6.2), the estimate βP = arg minβ EP (l (X, Y, β)) is a plausible estimate of
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the regression parameter β∗ as long as P ∈ Uδ (Pn). Hence, the set

Λδ (Pn) = {βP : P ∈ Uδ (Pn)}

is a natural confidence region for β∗ which is non-decreasing in δ. Thus, a statistically

minded approach for choosing δ is to fix a confidence level, say (1− α), and choose

an optimal δ (δ∗ (n)) via

δ∗ (n) := inf{δ : P (β∗ ∈ Λδ (Pn)) ≥ 1− α}. (6.3)

Note that the random element in P (β∗ ∈ Λδ (Pn)) is given by Pn. In Chapter 2 this

optimization problem is solved asymptotically as n→∞ under standard assumptions

on the data generating process. If the underlying model is correct, one would typically

obtain, as in Theorem 2.1 of Chapter 2, that δ∗(n)→ 0 at a suitable rate. For instance,

in the linear regression setting corresponding to (6.2), if the data is i.i.d. with finite

variance and the linear regression model holds then δ∗(n) = χ1−α (1 + o (1)) /n as

n→∞ (where χα is the α quantile of an explicitly characterized distribution).

In practice, one can also choose δ by cross-validation. The works in Chapter 2 and

Chapter 5 compare the asymptotically optimal choice δ∗(n) against cross-validation,

concluding that the performance is comparable in the experiments performed. In

this paper, we use cross validation to choose δ, but the insights behind the limiting

behavior of (6.3) are useful, as we shall see, to inform the design of our algorithms.

More generally, the DRO formulation (6.1) is appealing because the distributional

uncertainty endows the estimation of β directly with a mechanism to enhance gener-

alization properties. To wit, we can interpret (6.1) as a game in which we (the outer

player) choose a decision β, while the adversary (the inner player) selects a model
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which is a perturbation, P , of the data (encoded by Pn). The amount of the pertur-

bation is dictated by the size of δ which, as discussed earlier, is data driven. But the

type of perturbation and how the perturbation is measured is dictated by Dc(P, Pn).

It makes sense to inform the design of Dc(·) using a data-driven mechanism, which

is our goal in this paper. The intuition is to allow the types of perturbations which

focus the effort and budget of the adversary mostly on out-of-sample exploration over

regions of relevance.

The type of benefit that is obtained by informingDc (P, Pn) with data is illustrated

in Figure 6.2 below. Figure 6.2 illustrates a classification task. The data roughly lies

Figure 6.2: Stylized example illustrating the need for data-driven cost function. The
data is observed in R2 but lie in a one dimensional bottle-shaped manifold as marked
in orange and + and − are the response labels. formulation and the optimal transport
distance, for point A marked in red, if regularized norm in R2 is applied, we will more
likely to assign − pseudo label. However, if we are able to learn the metric alone
the manifold, we will more like to transport mass to the points close to A alone the
manifold and would be expected to increas learning power.
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on a lower dimensional non-linear manifold. Some data which is classified with a

negative label is seen to be “close” to data which is classified with a positive label

when seeing the whole space (i.e. R2) as the natural ambient domain of the data.

However, if we use a distance similar to the geodesic distance intrinsic to the manifold

we would see that the negative instances are actually far from the positive instances.

So, the generalization properties of the algorithm would be enhanced relative to using

a standard metric in the ambient space, because with a given budget δ the adversarial

player would be allowed perturbations mostly along the intrinsic manifold where the

data lies and instances which are surrounded (in the intrinsic metric) by similarly

classified examples will naturally carry significant impact in testing performance. A

quantitative example to illustrate this point will be discussed in the sequel.

6.3 Data-Driven Selection of Optimal Transport Cost

Function

In this section we quickly review basic notions on optimal transport and metric learn-

ing methods so that we can define Dc(P, Pn) and explain how to calibrate the function

c(·).

6.3.1 Revisiting Optimal Transport Distances and Discrepan-

cies

Assume that the cost function c : Rd+1 ×Rd+1 → [0,∞] is lower semicontinuous. We

also assume that c(u, v) = 0 if and only if u = v. Given two distributions P and Q,

with supports SP and SQ, respectively, we define the optimal transport discrepancy,
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Dc, via

Dc (P,Q) = inf
π

{
Eπ [c(U, V )] : π ∈ P

(
S
P
× S

Q

)
, π

U
= P, π

V
= Q

}
, (6.4)

where P(S
P
×S

Q
) is the set of probability distributions π supported on SP ×SQ , and

π
U
and π

V
denote the marginals of U and V under π, respectively. We can observe

that (6.4) is a linear program in the variable π.

6.3.2 On Metric Learning Procedures

In order to keep the discussion focused, we use a few metric learning procedures,

but we emphasize that our approach can be used in combination with virtually any

method in the metric learning literature, see the survey paper Bellet et al. [2013]

that contains additional discussion on metric learning procedures. The procedures

that we consider, as we shall see, can be seen to already improve significantly upon

natural benchmarks. Moreover, as we shall see, these metric families can be related

to adaptive regularization. This connection will be useful to further enhance the

intuition of our procedure.

6.3.2.1 The Mahalanobis Distance

The Mahalanobis metric is defined as

dΛ (x, x′) =
(

(x− x′)T Λ (x− x′)
)1/2

,

where Λ is symmetric and positive semi-definite and we write Λ � 0. Note that

dΛ(x, x′) is the metric induced by the norm ‖x‖Λ =
√
xTΛx.

For a discussion, assume that our data is of the form Dn = {(Xi, Yi)}ni=1 and
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Yi ∈ {−1,+1}. The prediction variables are assumed to be standardized. Motivated

by applications such as social networks, in which there is a natural graph which can

be used to connect instances in the data, we assume that one is given setsM and N ,

whereM is the set of the pairs that should be close (so that we can connect them) to

each other, and N , on contrary, is characterizing the relations that the pairs should

be far away (not connected), we define them as

M := {(i, j) | Xi and Xj must connect} ,

N := {(i, j) | Xi and Xj should not connect} .

While it is typically assumed that M and N are given, one may always resort

to k-Nearest-Neighbor (k-NN) method for the generation of these sets. This is the

approach that we follow in our numerical experiments. But we emphasize that choos-

ing any criterion for the definition ofM and N should be influenced by the learning

task in order to retain both interpretability and performance. In our experiments we

let (Xi, Xj) belong to M if, in addition to being sufficiently close (i.e. in the k-NN

criterion), Yi = Yj. If Yi 6= Yj, then we have that (Xi, Xj) ∈ N .

In addition, we consider the relative constraint set R containing data triplets with

relative relation defined as

R = {(i, j, k) |dΛ(Xi, Xj) should be smaller than dΛ(Xi, Xk)} .

Let us consider the following two formulations of metric learning, the so-called

Absolute Metric Learning formulation

min
Λ�0

∑
(i,j)∈M

d2
Λ(Xi, Xj) s.t.

∑
(i,j)∈N

d2
A(Xi, Xj) ≥ 1, (6.5)
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and the Relative Metric Learning formulation,

min
Λ�0

∑
(i,j,k)∈R

(
d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1

)
+
. (6.6)

Both formulations have their merits, Equation (6.5) exploits both the constraint

sets M and N , while Equation (6.6) is only based on information in R. Further

intuition or motivation of those two formulations can be found in Xing et al. [2002]

and Weinberger and Saul [2009], respectively. We will show how to formulate and

solve the robust counterpart of those two representative examples by robustifying a

single constraint set or two sets simultaneously For simplicity we only discuss these

two formulations, but many metric learning algorithms are based on natural gener-

alizations of those two forms, as mentioned in the survey Bellet et al. [2013]. In the

next two subsections, we will focus on illustrating how to train a data-driven cost

function considering the absolute constraints. But it would be easy to notice, same

techniques should also apply relative constraint analogues.

6.3.2.2 Using Mahalanobis Distance in Data-Driven DRO

Let us focus on the absolute constraint set case for simplicity. We consider the opti-

mization problem in Equation (6.5), it is a optimization minimizes the total distance

between pairs that should be connect, while keeping the pairs that should not connect

well separated.

The optimization problem (6.5) is an LP problem on the convex cone PSD (pos-

itive semidefinite) and it has been widely studied. Since Λ � 0, we can always write

Λ = LLT , and therefore dΛ(Xi, Xj) = ‖Xi −Xj‖Λ := ‖LXi − LXj‖2 . There are var-

ious techniques which can be used to exploit the PSD structure to efficiently solve

(6.5); see, for example, Xing et al. [2002] for a projection-based algorithm; or Schultz
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and Joachims [2004], which uses a factorization-based procedure; or the survey paper

Bellet et al. [2013] for the discussion of a wide range of techniques.

We have chosen formulation (6.5) to estimate Λ because it is intuitive and easy

to state, but the topic of learning Mahalanobis distances is an active area of research

and there are different algorithms which can be implemented (see Li et al. [2016]).

Let us assume that the underlying data takes the form Dn = {(Xi, Yi)}ni=1, where

Xi ∈ Rd and Yi ∈ R and the loss function, depending on a decision variable β ∈ Rm,

is given by l(x, y, β). Note that we are not imposing any linear structure on the

underlying model or in the loss function. Then, motivated by the cost function Nq (·)

introduced in Equation (2.21) of Chapter 2, we may consider

c
Λ

(
(x, y), (x′, y′)

)
= d2

Λ (x, x′) I (y = y′) +∞I (y 6= y′) , (6.7)

for Λ � 0. The infinite contribution in the definition of c
Λ
(i.e. ∞·I (y 6= y′)) indicates

that the adversarial player in the DRO formulation is not allowed to perturb the

response variable.

Even in this case, since the definitions of M and N depend on (Xi, Yi) (in par-

ticular, on the response variable), cost function c
Λ
(·) (once Λ is calibrated using, for

example, the method discussed in the previous subsection), will be informed by the

Yis. Then, we estimate β via

min
β

sup
P :DcΛ (P,Pn)≤δ

E[l(X, Y, β)]. (6.8)

It is important to note that Λ has been applied only to the definition of the cost

function.

The intuition behind the formulation can be gained in the context of a logistic
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regression setting, see the example in Figure 6.3: Suppose that d = 2, and that Y

depends only on x1 (i.e. the first coordinate of x). Then, the metric learning procedure

in (6.5) will induce a relatively low transportation cost across the x2 direction and

a relatively high transportation cost in the x1 direction, whose contribution, being

highly informative, is reasonably captured by the metric learning mechanism. Since

the x1 direction is most impactful, from the standpoint of expected loss estimation, the

adversarial player will reach a compromise, between transporting (which is relatively

expensive) and increasing the expected loss (which is the adversary’s objective). Out

of this compromise the DRO procedure localizes the out-of-sample enhancement, and

yet improves generalization.

Figure 6.3: Further intuition for data-driven cost based DRO. The figure illustrates
an example where the pairs in sets M and N get determined, typically, based on
the first coordinate of x = (x1, x2), and the learned metric c(x, x′) = (xTΛx′)1/2 =
(1.16(x1 − x′1)2 + 0.04(x2 − x′2)2)1/2., where Λ is the learned diagonal matrix.
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6.3.2.3 Mahalanobis Metrics on a Non-Linear Feature Space

In this section, we consider the case in which the cost function is defined after applying

a non-linear transformation, Φ : Rd → Rl, to the data. Assume that the data takes

the form Dn = {(Xi, Yi)}ni=1, where Xi ∈ Rd and Yi ∈ R and the loss function,

depending on decision variable β ∈ Rm, is given by l (x, y, β). Once again, motivated

by the cost function Nq (·) we considered in Equation (2.21) of Chapter 2, we may

define

cΦ
Λ

(
(x, y), (x′, y′)

)
= d2

Λ (Φ (x) ,Φ (x′)) I (y = y′) +∞I (y 6= y′) , (6.9)

for Λ � 0. To preserve the properties of a cost function (i.e. non-negativity, lower

semi-continuity and cΦ
Λ (u,w) = 0 implies u = w), we assume that Φ (·) is continuous

and that Φ (w) = Φ (u) implies that w = u. Then we can apply a metric learning

procedure, such as the one described in (6.5), to calibrate Λ. The same observation

given in (6.7), regarding the dependence of Λ on the response variables, is applicable

here as well (via the definition ofM and N ). Once Λ is calibrated our DRO problem

becomes

min
β

sup
P :D

cΦ
Λ

(P,Pn)≤δ
E (l (X, Y, β)) .

It is important to note that Φ (·) has been applied only to the definition of the cost

function. The intuition is the same as the one provided in the linear case in Section

6.3.2.2.
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6.4 Data Driven Cost Selection and Adaptive Regu-

larization

Before we moving forward to consider additional layer of robustification in learning

the data-driven cost function, let us we establish a direct connection between our

fully data-driven DRO procedure and adaptive regularization. Moreover, our main

result here, together with our discussion from the previous section, provides a direct

connection between the metric learning literature and adaptive regularized estimators.

As a consequence, the methods from the metric learning literature can be used to

estimate the parameter of adaptively regularized estimators.

Throughout this section we consider again a data set of the formDn = {(Xi, Yi)}ni=1

with Xi ∈ Rd and Yi ∈ R. Let us define the cost function c
Λ
(·) as in (6.7).

Using (6.7) we obtain the following result, which is proved in the Appendix 6.A.

Theorem 6.1 (DRO Representation for Generalized Adaptive Regularization). As-

sume that Λ ∈ Rd×d in (6.7) is positive definite. Given the data set Dn, we obtain

the following representation

min
β

max
P :DcΛ (P,Pn)≤δ

E1/2
P

[(
Y −XTβ

)2
]

= min
β

√√√√ 1

n

n∑
i=1

(Yi −XT
i β)

1/2
+
√
δ ‖β‖Λ−1 . (6.10)

Moreover, if Y ∈ {−1,+1} in the context of adaptive regularized logistic regression,
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we obtain the following representation

min
β

max
P :DcΛ (P,Pn)≤δ

E
[
log
(

1 + e−Y (XT β)
)]

= min
β

1

n

n∑
i=1

log
(

1 + e−Yi(X
T
i β)
)

+ δ ‖β‖Λ−1 . (6.11)

In order to recover a more familiar setting in adaptive regularization, assume that

Λ is a diagonal positive definite matrix. In which case we obtain, in the setting of

(6.1),

min
β

max
P :DcΛ (P,Pn)≤δ

E1/2
P

[(
Y −XTβ

)2
]

= min
β

√√√√ 1

n

n∑
i=1

(Yi −XT
i β)

2
+
√
δ

√√√√ d∑
i=1

β2
i /Λii. (6.12)

The adaptive regularization method was first derived as a generalization for ridge

regression in Hoerl and Kennard [1970b,a]. Recent work shows that adaptive regu-

larization can improve the predictive power of its non-adaptive counterpart, specially

in high-dimensional settings (see in Zou [2006]; Ishwaran and Rao [2014]).

In view of (6.12), our discussion in Section 6.3.2.1 uncovers tools which can be

used to estimate the coefficients {1/Λii : 1 ≤ i ≤ d} using the connection to metric

learning procedures. To complement the intuition given in Figure 1(b), note that in

the adaptive regularization literature one often choose Λii ≈ 0 to induce βi ≈ 0 (i.e.,

there is a high penalty to variables with low explanatory power). This, in our setting,

would correspond to transport costs which are low in such low explanatory directions.
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6.5 Robust Optimization for Metric Learning

In this section, we review a robust optimization method to metric learning optimiza-

tion problem to learn a robust data-driven cost function. Robust optimization is

a family of optimization techniques that deals with uncertainty or misspecification

in the objective function and constraints. Robust Optimization was first proposed

in Ben-Tal and Nemirovski [1998, 2002] and has attracted increasing attentions in

the recent decades El Ghaoui and Lebret [1997]; Bertsimas et al. [2011]. Robust

optimization has been applied in machine learning to regularize statistical learning

procedures, for example, in Xu et al. [2009a,b] robust optimization was employed for

SR-Lasso and support vector machines. We apply robust optimization, as we shall

demonstrate, to reduce the variability in testing error when implementing DRO.

6.5.1 Robust Optimization for Relative Metric Learning

The robust optimization formulation that we shall use for Equation (6.6) is based on

the work of Huang et al. [2012]. In order to motivate this formulation, suppose that

we know that only α level, e.g. α = 90%, of the constraints are satisfied, but we do

not have information on exactly which of them are ultimately satisfied. The value of

α may be inferred using cross validation.

Instead of optimizing over all subsets of constraints, we try to minimize the worst

case loss function over all possible α |R| constraints (where |·| is cardinality of a set)

and obtain the following min-max formulation

min
Λ�0

max
q̃∈T (α)

∑
(i,j,k)∈R

qi,j,k
(
d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1

)
+
, (6.13)
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where T (α) is a robust uncertainty set of the form

T (α) =
{
q̃ = {qi,j,k|(i, j, k) ∈ R} |0 ≤ qi,j,k ≤ 1,

∑
(i,j,k)∈R

qi,j,k ≤ α× |R|
}
,

which is a convex and compact set.

In addition, the objective function in Equation (6.6) is convex in Λ and concave

(linear) in q̃, so we can switch the order of min-max by resorting to Sion’s min-

max theorem (Terkelsen [1973]). This important observation suggests an iterative

algorithm. For a fixed Λ � 0, the inner maximization is linear in q̃, and the optimal

q̃ satisfy q̃i,j,k = 1 whenever (dΛ (Xi, Xj)− dΛ (Xi, Xk) + 1)+ ranks in the top α |R|

largest values and equals q̃i,j,k otherwise, i.e.

q̃i,j,k =


1 if (dΛ (Xi, Xj)− dΛ (Xi, Xk) + 1)+ ranks topsα× |R| within R

0, otherwise.
.

Let us useRα (Λ) to denote the subset of constraints satisfying that the corresponding

loss function (dΛ (Xi, Xj)− dΛ (Xi, Xk) + 1)+ ranks at the top α|R| largest values

among the corresponding loss function values of the triplets in R.

For fixed q̃, the optimization problem is convex in Λ, we can solve this problem

using sub-gradient or smoothing approximation algorithms (Nesterov [2005]). Par-

ticularly, as we discussed above, if q̃ is the solution for fixed Λ, we know, solving Λ

is equivalent to solving its non-robust counterpart Equation (6.6), replacing R by

Rα(Λ), where Rα(Λ) is a subset of R that contains the constraints have top α|R|

violation, i.e.

Rα (Λ) =
{

(i, j, k) ∈ R|
(
d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1

)
+

ranks top α within R
}
.
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We summarize the sub-gradient based sequentially update algorithm as in Algorithm

6.1.

Algorithm 6.1 Sequential Coordinate-wise Metric Learning Using Relative Relations
1: Initialize Λ = Id, learning rate α = 0.01 tracking error Error = 1000 as a large

number. Then randomly sample α proportion of elements from R to construct
Rα(Λ).

2: while Error > 10−3 do
3: Update Λ using projected (projected to positive semidefinite matrix cone)

subgradient descent technique.

Λ = πS+

(
Λ− α

∑
(i,j,k)∈Rα(Λ)

∇Λ

(
d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1

)
+

)
4: Update tracking error Error as the norm of difference between latest matrix

Λ and average of last 50 iterations.
5: Every few steps (5 or 10 iterations), compute (d2

Λ (Xi, Xj)− d2
Λ (Xi, Xk) + 1)+

for all (i, j, k) ∈ R, then update Rα(Λ).
6: end while
7: Output Λ.

As a remark, we would like to highlight the following observations. While we focus

on metric learning simply as a loss minimization procedure as in Equation (6.6) and

Equation (6.13) for simplicity, in practice people usually add a regularization term

(such as ‖Λ‖F ) to the loss minimization, as is common in metric learning literature

(see Bellet et al. [2013]). It is easy to observe our discussion above regarding the min-

max exchange uses Sion’s min-max theorem and everything else remains largely intact

if we consider regularization. Likewise, one can use a more general loss functions than

the hinge loss used in Equation (6.6) and Equation (6.13).

6.5.2 Robust Optimization for Absolute Metric Learning

The robust optimization formulation that we present here for Equation (6.5) appears

to be novel in the literature. Note that Equation (6.5) can be written into the La-
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grangian form,

min
Λ�0

max
λ≥0

∑
(i,j)∈M

d2
Λ (Xi, Xj) + λ

(
1−

∑
(i,j)∈N

d2
Λ (Xi, Xj)

)
.

Following similar discussion for R, let us assume that the setsM and N are noisy

or inaccurate at level α (i.e. α · 100% of their elements are incorrectly assigned). We

can construct robust uncertainty setsW(α) and V(α) from the constraints inM and

N as follows,

W(α) =
{
η̃ = {ηij : (i, j) ∈M} |0 ≤ ηij ≤ 1,

∑
(i,j)∈M

ηij ≤ α× |M|
}
,

V(α) =
{
ξ̃ = {ξij : (i, j) ∈ N} |0 ≤ ξij ≤ 1,

∑
(i,j)∈N

ξij ≥ α× |N |
}
.

Then we can write the robust optimization counterpart for the loss minimization

problem of metric learning as

min
Λ�0

max
λ≥0

max
η̃∈W(α),ξ̃∈V(α)

∑
(i,j)∈M

ηi,jd
2
Λ (Xi, Xj)+λ

(
1−

∑
(i,j)∈N

ξi,jd
2
Λ (Xi, Xj)

)
(6.14)

Note that the Cartesian product W (α) × V (α) is a compact set, and the objective

function is convex in Λ and concave (linear) in pair (η̃, ξ̃), so we can apply Sion’s min-

max Theorem again (see in Terkelsen [1973]) to switch the order of minΛ-max(η̃,ξ̃)

(after switching maxλ and max(η̃,ξ̃), which can be done in general). Then we can

develop a sequential iterative algorithm to solve this problem as we describe next.

At the k-th step, given fixed Λk−1 � 0 and λk−1 > 0 (it is easy to observe that

optimal solution λ is positive, i.e. the constraint is active so we may safely assume
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λk−1 > 0), the inner maximization problem, becomes,

max
η̃∈W(α)

∑
(i,j)∈M

ηi,jd
2
Λk−1

(Xi, Xj) + λ
(
1− min

ξ̃∈V(α)

∑
(i,j)∈N

ξi,jd
2
Λk−1

(Xi, Xj)
)
.

As we discussed for relative constraints case, the optimal solution for η̃(k) and ξ̃(k)

is, η̃(k)
i,j is 1, if d2

Λk−1
(Xi, Xj) ranks top α within M and equals 0 otherwise; while,

on the contrary, ξ̃(k)
i,j = 1 if d2

Λk−1
(Xi, Xj) ranks bottom α within N and equals 0

otherwise.

Similar as Rα(Λ), we can define Mα(Λk−1) as subset of M, which contains the

constraints with largest α percent of dΛk−1
(·) within inM; and Nα(Λk−1) as subset

of N , which contains the constraints with smallest α percent of dΛk−1
(·) within in

N . As we observe that the optimal η̃i,j = 1 if (i, j) ∈ Mα(Λk−1) and ξ̃i,j = 1 if

(i, j) ∈ Nα(Λk−1), thus for fixed η̃ and ξ̃, we can write the optimization problem over

Λ in the constrained case as

min
Λ�0

∑
(i,j)∈Mα(Λk−1)

d2
Λ (Xi, Xj) s.t.

∑
(i,j)∈Nα(Λk−1)

d2
Λ (Xi, Xj) ≥ 1.

This formulation falls within the setting of the problem stated in Equation (6.5)

and thus it can be solved by using techniques discussed in Xing et al. [2002]. We

summarize the details in Algorithm 6.2.

Other robust methods have also been considered in the metric learning literature,

see Zha et al. [2009]; Lim et al. [2013] although the connections to robust optimization

are not fully exposed.
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Algorithm 6.2 Sequential Coordinate-wise Metric Learning Using Absolute Con-
straints
1: Initialize A = Id, tracking error Error = 1000 as a large number. Then randomly

sample α proportion of elements from M (resp. N ) to construct Mα(A) (resp.
Nα(A)).

2: while Error > 10−3 do
3: Update A using procedure provided in Xing et al. [2002].
4: Update tracking error Error as the norm of difference between latest matrix
A and average of last 50 iterations.

5: Every few steps (5 or 10 iterations), compute dA (Wi,Wj) for all (i, j) ∈M∪N ,
then updateMα(A) and Nα(A).

6: end while
7: Output A.

6.6 Solving Data Driven DRO Based on Optimal

Transport Discrepancies

In order to fully take advantage of the combination synergies between metric learning

methodology and our DRO formulation, it is crucial to have a methodology which

allows us to efficiently estimate β in DRO problems such as (6.1). In the presence of a

simplified representation such as (6.2) or (6.12), we can apply standard stochast-LRic

optimization results (see Lei and Jordan [2016]).

Our objective in this section is to study algorithms which can be applied for more

general loss and cost functions, for which a simplified representation might not be

accessible.

Throughout this section, once again we assume that the data is given in the form

Dn = {(Xi, Yi)}ni=1 ⊂ Rd+1. The loss function is written as {l (x, y, β) : (x, y) ∈

Rd+1, β ∈ Rm}. We assume that for each (x, y), the function l (x, y, ·) is convex and

continuously differentiable. Further, we shall consider cost functions of the form

c̄ ((x, y) , (x′, y′)) = c (x, x′) I (y = y′) +∞I (y 6= y′) ,
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as this will simplify the form of the dual representation in the inner optimization of

our DRO formulation. To ensure boundedness of our DRO formulation, we impose

the following assumption.

Assumption A1. There exists Γ(β, y) ∈ (0,∞) such that l(u, y, β) ≤ Γ(β, y) · (1 +

c(u, x)), for all (x, y) ∈ Dn, Under Assumption A1, we can guarantee that

max
P :Dc(P,Pn)≤δ

EP [l (X, Y, β)] ≤ (1 + δ) max
i=1,...,n

Γ (β, Yi) <∞.

Using the strong duality theorem for semi-infinity linear programming problem in

Appendix 2.B of Chapter 2,

max
P :Dc(P,Pn)≤δ

EP [l (X, Y, β)] = min
λ≥0

1

n

n∑
i=1

φ (Xi, Yi, β, λ) , (6.15)

where

ψ(u,X, Y, β, λ) := l(u, Y, β)− λ(c(u,X)− δ),

and

φ (X, Y, β, λ) := max
u∈Rd

ψ(u,X, Y, β, λ).

Therefore,

min
β

max
P :DcΛ (P,Pn)≤δ

EP [l (X, Y, β)] = min
λ≥0,β

{EPn [φ (X, Y, β, λ)]} . (6.16)

The optimization in Equation (6.16) is minimize over β and λ, which we can consider

stochastic approximation algorithm if the gradient of φ (·) with respect to β and λ

exist. However, φ (·) is given in the form of the value function of a maximization

problem, of which the gradient is not easy accessible. We will discuss the detailed

algorithm and the validity of the smoothing approximation below.
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We consider a smoothing approximation technique to remove the maximization

problem φ (·) using soft-max counterpart, φε,f (·). The smoothing soft-max approxi-

mation has been explored and applied to approximately solve the DRO problem for

the discrete case, where we restrict the distributionally uncertainty set only contains

probability measures support on finite set (i.e., labeled training data and unlabeled

training data with pseudo labels), we refer Chapter 4 for further details.

However, due to the continuous-infinite support constraint, the soft-max approx-

imation is a non-trivial generalization of the finite-discrete analogue. The smoothing

approximation for φ (·) is defined as,

φε,f (X, Y, β, λ) = ε log

(ˆ
Rd

exp ([ψ (u,X, Y, β, λ)] /ε) f (u) du

)
,

where f (·) is a probability density in Rd; for example, we can consider a multivariate

normal distribution and ε is a small positive number regarded as smoothing parameter.

Let us quantify the error induced by replacing φ (·) with φε,f (·). To this end, we

introduce some notations and assumptions. For any set S, the r-neighborhood of

S is defined as the set of all points in Rd that are at distance less than r from S,

i.e. Sr = ∪u∈S{ū : ‖ū− u‖2 ≤ r}. In addition, we write f(·) as the density of an

absolutely continuous probability measure f(·).

Assumption A2. ψ (·, X, Y, β, λ) is twice continuously differentiable and the

Hessian of ψ (·, X, Y, β, λ) evaluated at u∗, D2
uψ (u∗, X, Y, β, λ), is positive definite. In

particular, we can find θ > 0 and η > 0, such that

ψ(u,X, Y, β, λ) ≥ ψ (u∗, X, Y, β, λ)− θ

2
‖u− u∗‖2

2, ∀u with ‖u− u∗‖∞ ≤ η.

Assumption A3. For a constant λ0 > 0 such that φ(X, Y, β, λ0) < ∞, let
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K = K (X, Y, β, λ0) be any upper bound for φ(X, Y, β, λ0).

Assumption A4. In addition to the lower semi-continuity of c (·) ≥ 0, we assume

that c (·, X) is coercive in the sense that c (u,X)→∞ whenever ‖u‖2 →∞.

Then, under Assumptions 3 and 4, we can define the compact set

C = C(X, Y, β, λ) = {u : c(u,X) ≤ l(X, Y, β)−K + λ0/(λ− λ0)}.

It is easy to check that arg max{ψ(u,X, Y, λ)} ⊂ C. Theorem 6.2 below allows to

quantify the error due to smoothing approximation.

Theorem 6.2. Under Assumption A1-A4, there exists ε0 > 0 such that for every ε < ε0,

we have

φ(X, Y, β, λ) ≥ φε,f (X, Y, β, λ) ≥ φ(X, Y, β, λ)− dε log(1/ε)

Proof of Theorem 6.2 is included in the Appendix 6.B. Assumptions A2 and A4

are easily verified if once chooses cA (·) in terms of the Mahalanobis distance. The

bound K (X, Y, β, λ0) introduced in Assumption 3 can be easily obtained in order

to construct C(X, Y ) containing arg max{ψ (u,X, Y, λ)}. For instance, consider the

setting for adaptive regularized logistic regression as in Theorem 6.1, we can verify

that λ0 = ‖β‖Λ−1 and K(X, Y, β, λ0) = log
(
1 + exp

(
−Y βTX

))
are valid choices

which satisfy Assumption A3.

After applying smooth approximation, the optimization problem turns into a stan-

dard stochastic optimization problem and we can apply mini-batch based stochastic

approximation (SA) algorithm to solve it. As we can notice, as a function and β and
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λ, the gradient of φε,f (·) satisfies

∇βφε,f (X, Y, β, λ) =
EU∼f [exp (ψ (U,X, Y, β, λ) /ε)∇βl (fβ (U) , Y )]

EU∼f [exp (ψ (U,X, Y, β, λ) /ε)]
,

∇λφε,f (X, Y, β, λ) =
EU∼f [exp (ψ (u,X, Y, β, λ) /ε) (δ − cDn (u,X))]

EU∼f [exp (ψ (U,X, Y, β, λ) /ε)]
.

However, since the gradients are still given in the form of expectation, we can apply a

simple Monte Carlo sampling algorithm to approximate the gradient, i.e., we sample

Ui’s from f(·) and evaluate the numerators and denominators of the gradient using

Monte Carlo separately. For more details of the SA algorithm, please see in Algorithm

6.3.

Algorithm 6.3 Stochastic Gradient Descent with Continuous State
Initialize λ = 0, and β to be empirical risk minimizer, ε = 0.5, tracking error
Error = 100.
while Error > 10−3 do

Sample a mini-batch uniformly from observations
{
X(j), Y(j)

}M
j=1

, with M ≤
n.

For each j = 1, . . . ,M , sample i.i.d. {U (j)
k }Lk=1 from N (0, σ2Id×d).

We denote f jL as empirical distribution for U (j)
k ’s, and estimate the batched as

∇βφε,f =
1

M

M∑
j=1

∇βφε,fjL

(
X(j), Y(j), β, λ

)
, ∇λφε,f =

1

M

M∑
j=1

∇λφε,fjL

(
X(j), Y(j), β, λ

)
.

Update β and λ using

β = β + αβ∇β(L)φε,f (X, Y, β, λ) , λ = (λ+ αλ∇λ(L)φε,f (X, Y, β, λ))+ .

Update tracking error Error as the norm of difference between latest param-
eter and average of last 50 iterations.
end while
Output β.
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6.7 Numerical Experiments

We validate our data-driven cost function based DRO using six real data exam-

ples from the UCI machine learning database Lichman [2013]. We focus on a DRO

formulation based on the log-exponential loss for a linear model. We consider logis-

tic regression (LR), regularized logistic regression (LRL1), DRO with cost function

learned using absolute constraints (DRO (absolute)) and its α = 50%, 90% level of

doubly robust DRO (DD-R-DRO (absolute)); DRO with cost function learned using

absolute constraints with linear and quadratic polynomial transformation of the data

(DRO-NL (absolute)), and its α = 50%, 90% level of doubly robust DRO (DD-R-

DRO (absolute)); DRO with cost function learned using relative constraints (DRO

(relative)) and its α = 50%, 90% level of doubly robust DRO (DD-R-DRO (relative)).

For each iteration and each data set, the data is split randomly into training and

test sets. We fit the models on the training and evaluate the performance on test set.

The regularization parameter is chosen via 5−fold cross-validation for LRL1, DRO-L

and DRO-NL. We report the mean and standard deviation for training and testing

log-exponential error and testing accuracy for 200 independent experiments for each

data set. The details of the numerical results and basic information of the data is

summarized in Table 6.1.

We observe that DRO with the data-driven cost function could improve the gener-

alization performance comparing to the empirical risk minimization problem (logistic

regression) and its DRO counterpart with regular Euclidean norm as cost function

(regularized logistic regression). The doubly robust DRO framework, in general, get

robust improvement comparing to its non-robust counterpart with α = 90%. More

importantly, the robust methods tend to enjoy the variance reduction property due

to robust optimization. Also, as the robust level increases, i.e. α = 50%, where we



CHAPTER 6. DATA-DRIVEN OPTIMAL TRANSPORT COST SELECTION
FOR DISTRIBUTIONALLY ROBUST OPTIMIZATION 261

BC BN QSAR Magic MB SB

LR
Train 0± 0 .008± .003 .026± .008 .213± .153 0± 0 0± 0
Test 8.75± 4.75 2.80± 1.44 35.5± 12.8 17.8± 6.77 18.2± 10.0 14.5± 9.04

Accur .762± .061 .926± .048 .701± .040 .668± .042 .678± .059 .789± .035

LRL1
Train .185± .123 .080± .030 .614± .038 .548± .087 .401± .167 .470± .040
Test .428± .338 .340± .228 .755± .019 .610± .050 .910± .131 .588± .140

Accur .929± .023 .930± .042 .646± .036 .665± .045 .717± .041 .811± .034

DRO
(absolute)

Train .022± .019 .197± .112 .402± .039 .469± .064 .294± .046 .166± .031
Test .126± .034 .275± .093 .557± .023 .571± .043 .613± .053 .333± .023

Accur .954± .015 .919± .050 .733± .0.026 .727± .039 .714± .032 .887± .011
DD-R-DRO
(absolute)
α = 90%

Train .029± .013 .078± .031 .397± .036 .420± .063 .249± .055 .194± .031
Test .126± .023 .259± .086 .554± .019 .561± .035 .609± .044 .331± .018

Accur .954± .012 .910± .042 .736± .025 .729± .032 .709± .025 .890± .008
DD-R-DRO
(absolute)
α = 50%

Train .040± .055 .137± .030 .448± .032 .504± .041 .351± .048 .166± .030
Test .132± .015 .288± .059 .579± .017 .590± .029 .623± .029 .337± .013

Accur .952± .012 .918± .037 .733± .025 .710± .033 .715± .021 .888± .008

DRO-NL

(absolute)

Train .032± .015 .113± .035 .339± .044 .381± .084 .287± .049 .195± .034
Test .119± .044 .194± .067 .557± .032 .577± ..049 .607± .060 .332± .015

Accur .955± .016 .931± .036 .736± .027 .730± .043 .716± .054 .889± .009
DD-R-DRO-NL

(absolute)
α = 90%

Train .018± .008 .049± .030 .367± .043 .420± .080 .269± .056 .196± .031
Test .113± .030 .209± .053 .551± .022 .567± .033 .603± .052 .332± .013

Accur .954± .011 .926± .037 .740± .026 .731± .032 .716± .027 .889± .008
DD-R-DRO-NL

(absolute)
α = 50%

Train .045± .005 .283± .029 .397± .044 .383± .079 .201± .054 .157± .030
Test .136± .023 .266± .044 .559± .019 .580± .030 .614± .041 .341± .010

Accur .950± .010 .915± .033 .733± .026 .726± .021 .709± .026 .888± .009

DRO
(relative)

Train .086± .038 .436± .138 .392± .040 .457± .071 .322± .061 .181±, 036
Test .153± .060 .329± .124 .559± .025 582± .033 .613± .031 .332± .016

Accur .946± .018 .916± .075 .714± .029 .710±, 027 .704± .021 .890± .008
DD-R-DRO
(relative)
α = 90%

Train .030± .014 .244± .121 .375± .038 .452± .067 .402± .058 .234± .032
Test .141± .054 .300±.108 .556± .022 .577± .032 .610± .024 .332± .011

Accur .949± .019 .921± .070 .729± .023 .717± .025 .710± .020 .892± .007
DD-R-DRO
(relative)
α = 90%

Train .031± .016 .232± .094 .445± .032 .544± .057 .365± .054 .288± .029
Test .154± .049 .319± .078 .570± .019 .594± .018 .624± .018 .357± .008

Accur .948± .019 .918± .081 .705± .023 .699± .028 .698± .018 .881± .005
Num Predictors 30 4 30 10 20 56

Train Size 40 20 80 30 30 150
Test Size 329 752 475 9990 125034 2951

Table 6.1: Numerical results of data-driven optimal transportation cost selection DRO
with real data sets.
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believe in higher noise in cost function learning, we can observe, the doubly robust

based approach seems to shrink towards to regularized logistic regression, and benefits

less from the data-driven cost structure.

6.8 Conclusion and Discussion

Our fully data-driven DRO procedure combines a semi-parametric approach (i.e. the

metric learning procedure) with a parametric procedure (expected loss minimization)

to enhance the generalization performance of the underlying parametric model. We

emphasize that our approach is applicable to any data-driven DRO formulation and

is not restricted to classification tasks. An interesting research avenue that might be

considered include the development of a semi-supervised framework as in Chapter 4,

in which unlabeled data is used to inform the support of the elements in Uδ(Pn).

In addition, we introduced the doubly robust approach, DD-R-DRO, which cali-

brates a transportation cost function by using a data-driven approach based on robust

optimization. The overall methodology is doubly robust. On one hand, data driven

DRO, which fully uses the training data to estimate the underlying transportation

cost enhances out-of-sample performance by allowing an adversary to perturb the

data (represented by the empirical distribution) in order to obtain bounds on the

testing risk which are tight. On the other hand, the tightness of bounds might come

at the cost of potentially introducing noise in the testing error performance. The sec-

ond layer of robustification, as shown in the numerical examples, mitigates precisely

the presence of this noise.
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APPENDIX 6.A: Proof of Theorem 6.1

We first state and prove Lemma 6.1 which will be useful in proving Theorem 6.1.

Lemma 6.1. If Λ is a is positive definite matrix and we define ‖x‖Λ =
(
xTΛx

)1/2,

then ‖·‖Λ−1 is the dual norm of ‖·‖Λ. Furthermore, we have

uTw ≤ ‖u‖Λ ‖w‖Λ−1 ,

where the equality holds if and only if, there exists non-negative constant τ , s.t

τΛu = Λ−1w or τΛ−1w = Λu.

Proof for Lemma 6.1. This result is a direct generalization of l2 norm in Euclidean

space. Note that

uTw = (Λu)T (Λ−1w) ≤ ‖Λu‖2

∥∥Λ−1w
∥∥

2
= ‖u‖Λ ‖w‖Λ−1 . (6.17)

The inequality in the above is Cauchy-Schwartz inequality for Rd applies to Λu and

Λ−1w, and the equality holds if and only if there exists nonnegative τ , s.t. τΛu =

Λ−1w or τΛ−1w = Λu. Now, by the definition of the dual norm,

‖w‖∗Λ = sup
u:‖u‖Λ≤1

uTw = sup
u:‖u‖Λ≤1

‖u‖Λ ‖w‖Λ−1 = ‖w‖Λ−1 .

While the first equality follows from the definition of dual norm, the second equality

is due to Cauchy-Schwartz inequality (6.17), and the equality condition therein, and

the last equality are immediate after maximizing.

Proof for Theorem 6.1. The technique is a generalization of the method used in prov-

ing Theorem 2.2 in Chapter 2. We can apply the strong duality result, see Proposition
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2.1 in Appendix of Chapter 2, for worst-case expected loss function, which is a semi-

infinite linear programming problem, to obtain

sup
P :DcΛ (P,Pn)≤δ

EP
[(
Y −XTβ

)2
]

= min
γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{(
yi − uTβ

)2 − γ ‖xi − u‖2
Λ

}}
.

For the inner suprema , let us denote ∆ = u − Xi and ei = Yi − XT
i β for notation

simplicity. The inner optimization problem associated with (Xi, Yi) becomes,

sup
u

{(
yi − uTβ

)2 − γ ‖xi − u‖2
Λ

}
= e2

i + sup
∆

{(
∆Tβ

)2 − 2ei∆
Tβ − γ ‖∆‖2

Λ

}
,

= e2
i + sup

∆


(∑

j

|∆j| |βj|

)2

+ 2 |ei|
∑
j

|∆j| |βj| − γ ‖∆‖2
Λ

 ,

= e2
i + sup

‖∆‖Λ

{
‖∆‖2

Λ ‖β‖
2
Λ−1 + 2 |ei| ‖∆‖Λ ‖β‖Λ−1 − γ ‖∆‖2

Λ

}
,

=

 e2
i

γ

γ−‖β‖2
Λ−1

if γ > ‖β‖2
Λ−1 ,

+∞ if γ ≤ ‖β‖2
Λ−1 .

While the first equality is due to the change of variable, the second equality is because

we are working on a maximization problem, and the last term only depends on the

magnitude rather than sign of ∆, thus the optimization problem will always pick

∆ that satisfying the equality. Considering the third equality, for the optimization

problem, we can first apply the Cauchy-Schwartz inequality in Lemma 6.1 and we

know that the maximization problem is to take ∆ satisfying the equality constraint.

For the last equality, if γ ≤ ‖β‖2
Λ−1 , the optimization problem is unbounded, while

γ > ‖β‖2
Λ−1 , we can solve the quadratic optimization problem and it leads to the final

equality.



CHAPTER 6. DATA-DRIVEN OPTIMAL TRANSPORT COST SELECTION
FOR DISTRIBUTIONALLY ROBUST OPTIMIZATION 265

For the outer minimization problem over γ, as the inner suprema equal infinity if

γ ≤ ‖β‖2
Λ−1 , the worst-case expected loss becomes,

sup
P :DcDn (P,Pn)≤δ

EP
[(
Y −XTβ

)2
]

(6.18)

= min
γ>‖β‖2α-(p,s)

{
γδ − 1

n

n∑
i=1

(
Yi −XT

i β
) γ

γ − ‖β‖2
Λ−1

}
,

=

√√√√ 1

n

n∑
i=1

(Yi −XT
i β) +

√
δ ‖β‖Λ−1

2

.

The first equality follows the discussion above for restricting γ > ‖β‖2
Λ−1 . We can

observe that the objective function in the right hand side of (6.18) is convex and

differentiable and as γ → ∞ and γ → ‖β‖2
Λ, the value function will be infinity. We

know the optimizer could be uniquely characterized via first order optimality condi-

tion. Solving for γ in this way (through first order optimality), it is straightforward

to obtain the last equality in (6.18). If we take square root on both sides, we prove

the claim for linear regression.

For the log-exponential loss function, the proof follows a similar strategy. By ap-

plying strong duality results for semi-infinity linear programming problem in Proposi-

tion 2.1 in Appendix of Chapter 2, we can write the worst case expected loss function

as,

sup
P :DcDn (P,Pn)≤δ

EP
[
log
(
1 + exp

(
−Y βTX

))]
= min

γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖Λ

}}
.

For each i, we can apply Lemma 1 in Shafieezadeh-Abadeh et al. [2015] and dual-norm
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result in Lemma 6.1 to deal with the inner optimization problem. It gives us,

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖Λ

}
=

 log
(
1 + exp

(
−YiβTXi

))
if ‖β‖Λ−1 ≤ γ,

∞ if ‖β‖Λ−1 > γ.

Moreover, since the outer optimization is trying to minimize, following the same

discussion for the proof for linear regression case, we can plug-in the result above and

it leads the first equality below,

min
γ≥0

{
γδ − 1

n

n∑
i=1

sup
u

{
log
(
1 + exp

(
−YiβTu

))
− γ ‖Xi − u‖Λ

}}

= min
γ≥‖β‖Λ−1

{
δγ +

1

n

n∑
i=1

log
(
1 + exp

(
−YiβTXi

))}

=
1

n

n∑
i=1

log
(
1 + exp

(
−YiβTXi

))
+ δ ‖β‖Λ−1 .

We know that the target function is continuous and monotone increasing in γ, thus we

can notice it is optimized by taking γ = ‖β‖Λ−1 , which leads to second equality above.

This proves the claim for logistic regression in the statement of the theorem.

APPENDIX 6.B: Proof of Theorem 6.2

Let us denote, for any set S, the r-neighborhood of S is defined as the set of all points

in Rd that are at distance less than r from S, i.e. Sr = ∪u∈S{ū : ‖ū− u‖2 ≤ r}.

Proof of Theorem 6.2. The first part of the inequality is easy to derive. For the

second part, we proceed as follows: Under Assumptions A3 and A4, we can define
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the compact set

C = C(X, Y, β, λ) = {u : c(u,X) ≤ l(X, Y, β)−K + λ0/(λ− λ0)}.

It is easy to check that arg max{ψ (u,X, Y, λ)} ⊂ C. Owing to optimality of u∗ and

from Assumption A2 that K ≥ φ(X, Y, β, λ0), we can see that

l(X, Y ) ≤ l(u∗, Y ))− λc(u,X)

= l(u∗, Y )− λ0c(u
∗, X)− (λ− λ0)c(u∗, X)

≤ K − λ0 − (λ− λ0)c(u∗, X).

Thus by definition of C = C(X, Y, β, λ), it follows easily that u∗ ∈ C, which further

implies {u : ‖u−u∗‖2 ≤ η} ⊂ Cη. Then we combine the strongly convexity assumption

in Assumption A2 and the definition of φε,f (u,X, Y, β, λ), which yields

φε,f (X, Y, β, λ) ≥ ε log

(ˆ
‖u−u∗‖2≤η

exp

([
φ (X, Y, β, λ)− θ

2
‖u− u∗‖2

2

]
/ε

)
f(u)du

)
= ε log (exp (φ (X, Y, β, λ) /ε))

ˆ
‖u−u∗‖2≤η

exp

(
−θ

2
‖u− u∗‖2

2/ε

)
f(u)du

= φ (X, Y, β, λ) + ε log

ˆ
‖u−u∗‖2≤η

exp

(
−θ‖u− u

∗‖2
2

2ε

)
f(u)du.

As {u : ‖u− u∗‖2 ≤ η} ⊂ Cη, we can use the lower bound of f(·) to deduce that

ˆ
‖u−u∗‖2≤η

exp

(
−θ‖u− u

∗‖2
2

2ε

)
f(u)du

≥ inf
u∈Cη

f(u)×
ˆ
‖u−u∗‖2≤η

exp

(
−θ‖u− u

∗‖2
2

2ε

)
du

= inf
u∈Cη

f(u)× (2πε/θ)d/2 P (Zd ≤ η2θ/ε),
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where Zd is a chi-squared random variable of d degrees of freedom. To conclude, recall

that ε ∈ (0, η2θχα), the lower bound of φε,f (·) can be written as

φε,f (X, Y, β, λ) ≥ φ(X, Y, β, λ)− d

2
ε log(1/ε) +

d

2
ε log

(
(2πα/θ) inf

u∈Cη
f(u)

)
.

This completes the proof of Theorem 6.2.
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Chapter 7

Discussion and Conclusion

To close this dissertation, we are going to discuss further the potential applications

of our data-driven DRO formulation to improve generalization in statistical learning.

We will focus on the example of multi-task training in Section 7.1. In Section 7.2, we

discuss the different state-of-the-art for robustness in classical statistics and robust-

ness we discussed for our data-driven DRO formulation. In addition, we will propose

a conclusion to this dissertation in Section 7.3.

7.1 Distributionally Robust Multi-task training

In this section, in addition to the connections of data-driven DRO formulation we

made for square-root Lasso, regularized logistic regression (in Chapter 2); semi-

supervised learning (in Chapter 4); groupwise regularization method, square-root

group Lasso and group Lasso logistic regression (in Chapter 5); and adaptive regu-

larized regression (in Chapter 6), we shall argue discuss that data-driven DRO is a

formulation which improves generalization performance. Moreover, other well-known

methods address overfitting also can be approximately interpreted using the data-
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driven DRO representation. Next we are going to use multi-task training as an

example to illustrate how to formulate DRO problem.

Multi-task training, originally developed in Caruana [1993], is an approach to

improve the generalization error by considering pooling multiple training goals and

example, into modeling. Intuitively, multi-task training is trying to utilize the infor-

mation for other related tasks, by sharing part of the model, to put pressures on the

parameters towards the direction with better generalization performance. For a brief

overview of multi-task training we refer to Section 7.7 of Goodfellow et al. [2016] and

more systematical details in Chapter 5 of Thrun and Pratt [2012]. We believe, we

can utilize the data-driven DRO formulation to implement multi-task training in a

meaningful way. Intuitively speaking, let us assume we have data Dn = {Xi, Yi}ni=1,

where predictors Xi ∈ Rd and response variable Yi =
(
Y

(1)
i , Y

(2)
i

)T
∈ R2, where we

have two tasks of learning: one for Y (1)
i and the other for Y (2)

i . A direct data-driven

DRO formulation for multi-task training would be consider encode the multi-task

information into optimal transport cost function, that is we consider

c ((x, y), (x′, y′)) = cx (x, x′) + cy (y, y′) ,

where cx (·) is the cost function considering variability in x and cy (·) is the transport

cost in y. Different from the cost function Nq (·) defined in Equation (2.21) of Chapter

2, where we put infinity transport cost in y, we are considering allowing variability in

y to encode the multi-task information. Let us consider the example with Yi ∈ R2.

For simplicity, let us consider our main goal is to train Y (1)
i and the task Y (2)

i is trying

to help us. Let us consider cy (·) to be:

cy (y, y′) = κ|y(2) − y′(2)|Iy(1)=y′(1) +∞Iy(1) 6=y′(1) ,
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where κ is a non-negative constant encoding the belief in second training task.

From game-theoretic interpretation of DRO problem, we are allowing the adver-

sary player also exploring the variability of second task Y
(2)
· , where the shape of

the distributional uncertainty neighborhood Uδ(Pn) will be affected by the measure

of closeness in the label of second task, Y (2)
· . If the two learning tasks are related,

intuitively we would expect the side information we gain on the distributional un-

certainty neighborhood Uδ(Pn) will regularize the model towards the direction with

better generalization performance. We plan to report this line of work in the future.

7.2 Distributionally Robustness and Robustness in

Statistics

In statistics, the terminology “robustness" is mainly reserved for the purpose of con-

sidering the outliers or data-contaminations in of observed sample, which has been

studied in Huber [1964]; Donoho and Huber [1983]; Huber [1996, 2011]. For example,

let us assume we have i.i.d. samples Dn = {Wi}ni=1, where Wi ∈ R. We assume that

the distribution of Wi is symmetric around θ and that V ar (Wi) <∞.

We are interested in estimating the location parameter θ. However, we know

that during the data collection or recording procedure, some of the samples may be

contaminated. It is not difficult to convince ourselves that the sample mean estimator,

θ̄n = n−1
∑n

i=1Wi, which is the minimizer to the squared loss EPn
[
(W − θ)2] might

perform poorly due to those contaminated samples.

An intuitive approach to address this contamination issue and propose a more

robust estimator is to consider the median, θ̂med, of the sample Dn. In turn, this

is equivalent to minimizing the empirical absolute loss, EPn [|W − θ|], instead of the
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squared loss.

This example illustrates the spirit of robustness underlying much of the work

of Huber Huber [1964, 2011]. In contrast, the sense of robustness in our data-

driven DRO formulation, is focused on improving out-of-sample performance out

of finite-sample information. For example, let us consider the linear regression, where

Y = βT∗ X+e, with β∗ being the true regression parameter and e being an independent

random error. To address the robustness in Huber’s sense, researchers normally con-

sider the absolute loss or Huber’s loss Huber [1964] for empirical risk minimization,

which is known as the robust regression in the literature Huber [1973]; Rousseeuw

and Leroy [2005]. We can easily impose an optimal transport cost uncertainty set and

formulate a data-driven DRO version of Huber’s empirical loss minimization problem.

This formulation might, which considers two layers of robustness, emphasizes that we

are studying two different phenomena.

7.3 Conclusion

In this dissertation we study the data-driven DRO with optimal transport cost dis-

crepancy. We show that our data-driven DRO formulation unifies many successful

machine learning algorithms which have been studied and which are well known from

practice to exhibit good generalization properties.

In addition, we develop a statistical methodology to study data-driven DRO with

optimal transport costs. Using the theory, we provide a sharp characterization of the

optimal selection of the uncertainty size for DRO problems. Furthermore, we explore

multiple ways of choosing the uncertainty region in a data driven way. For example,

we studied how to inform the uncertainty region using side information to form novel

machine learning algorithms to improve generalization performance.
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As we have illustrated in Chapter 4 and Chapter 6, our DRO formulation is

considered for a general learning problem, rather than linear and logistic regression

settings as we mainly considered in this dissertation for the sake of concreteness. Our

discussion on the DRO formulation and its connections to model regularization and

multi-task training strongly suggest that there are many applications to be discovered.

One such application which we did not explore, but we believe is particularly inter-

esting is that of enhancing generalization error in the setting of training deep-learning

algorithms.
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