
Magnetic Fields in the Interstellar Medium

Susan E. Clark

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017



c©2017

Susan E. Clark
All rights reserved



ABSTRACT

Magnetic Fields in the Interstellar Medium

Susan E. Clark

The interstellar medium – the space between the stars in our Galaxy – is multiphase,

turbulent, and magnetic. Magnetism in the interstellar medium is difficult to observe and to

simulate, and the study of interstellar magnetic fields is riddled with open questions. In this

Thesis we make progress in several important areas. We use analytic theory, simulations,

and observations to advance our understanding of an important plasma instability, of the

diffuse neutral medium, and of prospects for uncovering cosmic inflation.

We take an unusual approach to the study of the magnetorotational instability, the mech-

anism thought to be the primary driver of turbulence and angular momentum transport in

astrophysical accretion disks. We conduct a weakly nonlinear analysis of the instability in

several important geometries, and derive an envelope equation that governs the evolution of

the system on long length- and timescales. We show that the saturated state of the magne-

torotational instability may itself be unstable on these large spatial and temporal scales, and

we demonstrate that the character of these instabilities will depend on the geometry of the

background magnetic field. We posit a possible new saturation mechanism for the magne-

torotational instability in a local geometry, when a particular nonideal effect is considered.

We derive new insights into the diffuse interstellar medium, where we present the discov-

ery that thin, linear neutral hydrogen structures are ubiquitous in the cold neutral medium.

We demonstrate that these linear features are extremely well aligned with the interstellar

magnetic field, as traced by both starlight polarization and polarized dust emission. We



discuss the implications of this discovery for cosmological studies. A major goal of modern

cosmology is the detection of a particular signature in the polarized cosmic microwave back-

ground that would be direct evidence for inflation. This goal has thus far been thwarted

by the polarized foreground emission from magnetically aligned interstellar dust grains. We

demonstrate that the alignment of neutral hydrogen with the interstellar magnetic field can

be used to produce higher-fidelity maps of the foreground polarization field, and we present

and test a new Bayesian method for constructing improved foreground maps.
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Chapter 1

Introduction

The argument in the past has frequently been a process of elimination: one ob-
served certain phenomena, and one investigated what part of the phenomena could
be explained; then the unexplained part was taken to show the effects of the mag-
netic field. It is clear in this case that, the larger one’s ignorance, the stronger the
magnetic field.

– Lo Woltjer, 1967

Space is magnetic. Interstellar magnetism is one of the newer mysteries of the cosmos:

early stargazers, beguiled by our sky’s chatoyant arc of Milky Way, had little cause to suspect

that space is permeated by invisible magnetic fields. It was not until the mid-twentieth cen-

tury, when light from distant stars was observed to be polarized, that an interstellar field was

inferred (Hiltner 1949; Davis & Greenstein 1951). Since then, advances in instrumentation

and computing have opened new windows into the magnetized universe. Still, magnetism has

retained a reputation as an occult field of study. Magnetic fields remain relatively difficult to

observe and difficult to simulate. If this is true among astrophysicists it is perhaps even more

so in popular culture, where our terrestrial experience – with wireless charging, magnetic

levitation, auroras – qualifies magnetism as an abstruse, borderline magical, phenomenon.
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This Thesis explores magnetism in the interstellar medium (ISM). The ISM is the stuff

between the stars, but is far from the featureless void that that description connotes. The

ISM is a churning, turbulent broth, tenuous but intricate, filled with gas, dust, cosmic rays,

and magnetic fields. Indeed, calling this rich Galactic ecosystem the “interstellar medium”

seems dismissive of its role in the cosmos, akin to calling the ocean the stuff between the

whales. Even this analogy belies the true interdependence of the stars and the medium they

reside in, since the ISM begets the stars, and the stars become the ISM.

In this Thesis we derive new insights into interstellar magnetic fields, exploring their role

in accretion disks, in the diffuse interstellar medium, and as a foreground for cosmology

experiments.

1.1 Observing the magnetized interstellar medium

Interstellar space is wondrously complicated. The ISM is influenced by physical processes

over an enormous range of scales, including sweeping Galactic spiral arms, supernova ex-

plosions, exchange of material with the Galactic halo, and turbulent energy transfer from

Galactic length scales down to small-scale density fluctuations. The magnetic field con-

tributes an important energy density component of the ISM, both on its own and through

its influence on cosmic rays. The energy densities of magnetic fields, cosmic rays, and tur-

bulence are in approximate equipartition in the ISM, and their combined pressure support

keeps the disk gas aloft (Boulares & Cox 1990; Heiles & Crutcher 2005).

The ordinary matter in the ISM is distributed into several phases. The picture of a

multiphase ISM has evolved over time, but remains a powerful paradigm for understanding

the organization of interstellar material, from dense molecular clouds to hot ionized regions

(McKee & Ostriker 1977; Ferrière 2001; Cox 2005). Approximately half of the mass of the
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ISM is concentrated into cold molecular clouds, the birthplaces of stars. These clouds remain

cold (T ∼ 10 − 20 K) because they are dense enough (n ∼ 102 − 106 cm−3) to block the

ambient starlight radiation. Another significant mass fraction of the ISM is in cold atomic

gas (T ∼ 50 − 100 K), or the cold neutral medium, which is mostly organized into diffuse

clouds. There is also a warm neutral component of the ISM (T ∼ 104 K), and an ionized

component that can reach temperatures of T ∼ 106 K (Ferrière 2001).

Since its unexpected discovery, the interstellar magnetic field has been measured with

a number of techniques. Each probes only particular components of the three-dimensional

magnetic field vector B, so our picture of the overall field structure is a bricolage of partial

information. The polarization of background starlight, polarized dust emission, spectral line

polarimetry, synchrotron emission, and Faraday rotation each contribute to our picture of

the magnetized ISM.

1.1.1 Polarization by interstellar dust

Starlight polarization traces the plane-of-sky magnetic field orientation along the line of sight

to a star. The starlight is polarized by the preferential absorption of charged, spinning dust

grains that are aligned with the interstellar magnetic field. The detailed physics of dust

grain alignment is an area of active research, and depends on the size and composition of

the grains, and the properties of the ambient radiation (Draine 2003; Andersson et al. 2015).

Despite these complications, the starlight polarization is strikingly aligned with large-scale

features of the Galaxy, and provided the first observational evidence that the large-scale

magnetic field is aligned with the Galactic plane (Fosalba et al. 2002; Heiles & Crutcher

2005). The dispersion of starlight polarization angles is often used to estimate the mean

field strength in a region (Davis 1951; Chandrasekhar & Fermi 1953; Heitsch et al. 2001),

but the polarization data does not directly measure the magnitude of B. The polarization of
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optical starlight generally traces magnetic fields in the diffuse interstellar dust. Polarimetry

in other wavelength ranges, most notably the infrared, traces the field in denser environments

(Goodman 1996; Clemens et al. 2012).

Interstellar dust grains communicate their magnetic alignment via a converse process:

polarized thermal dust emission. Polarized dust emission likewise traces the plane-of-sky

magnetic field orientation and since its first detection was also found to be aligned with the

Galactic plane (Benôıt et al. 2004). When dust grains align their long axes with the ambient

magnetic field, the dust emission polarization angle is typically orthogonal to the plane-of-

sky magnetic field orientation, while the starlight polarization angle is parallel. Another key

difference between these tracers is that whereas the starlight polarization traces the line of

sight between observer and star, the dust polarization necessarily traces the entire line of

sight out to infinity. Changes in the field along the line of sight will tend to depolarize the

emission, so that the measured polarization is biased toward nearby regions, but inferring

the distance to the polarizing regions is not as straightforward in principle as measuring the

distance to a star.

1.1.2 Spectral line polarization

The polarization of spectral lines is a window into the denser regions of the magnetic ISM. An

atom sitting in a magnetic field will feel a torque on its magnetic dipole, which perturbs the

Hamiltonian of the molecule by an amount proportional to the field strength. The hyperfine

energy levels split, from a single energy level that depends only on the principal quantum

number to a multiplet that also depends on the magnetic quantum number. The energy

level change is

∆E = µBgJBmj, (1.1)
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where µB is the Bohr magneton, gJ is the Landé g factor, B is the strength of the external

magnetic field, and mj is the relevant quantum number, provided that the external magnetic

field is much smaller than the internal field (e.g. Griffiths 2005). In principle the frequency

shift ∆ν associated with Equation 1.1 is directly measurable, and can be used to measure all

components of the magnetic field vector. Indeed, Zeeman splitting measurements provided

the first detection of a celestial magnetic field, observed in sunspots by Hale in 1908. In the

interstellar medium, however, the ∆ν is typically much smaller than the observed line width

(∆ν/δν � 1), and the Stokes Q and U are negligible. Zeeman measurements must instead

be measured in the difference between components of the circular polarization, i.e. Stokes V .

The usual approach is to fit the derivative of the Stokes I spectrum to the observed Stokes

V spectrum,

V (ν) ∝ dI(ν)

dν
B‖, (1.2)

to obtain B‖ (Heiles et al. 1993). Thus observational constraints reduce the Zeeman

effect to a probe of the line-of-sight field strength in the ISM, from which only a lower

limit to the total field strength can be surmised. The exceptions to this limitation are

masers, for which linear polarization can often also be detected (Crutcher 2012). The first

measurement of the Zeeman effect in the ISM was in Hi line absorption toward the Casseopia

A supernova remnant (Verschuur 1968). The effect was later measured in OH (Crutcher &

Kazes 1983) and CN (Crutcher et al. 1999) spectral lines. The sixty year delay between the

first solar Zeeman measurement and the first detection in the diffuse ISM is a testament to

the challenging nature of this technique.

The Goldreich-Kylafis effect is another form of molecular line polarization (Goldreich

& Kylafis 1981; Kylafis 1983; Deguchi & Watson 1984). Because magnetic fields split the

energy states of a molecule into different magnetic sublevels, the molecule will only absorb
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or emit certain polarizations of light. If the magnetic sublevels are populated by anisotropic

radiation, and this radiative excitation is at least comparable to collisional excitation, the

molecule will radiate with a net linear polarization. A velocity gradient in the region will

anisotropically populate the magnetic sublevels because the line optical depth will appear

anisotropic. Goldreich-Kylafis line polarization may be parallel or perpendicular to the

local magnetic field, depending on the relative orientations of the magnetic field, anisotropic

radiation field, and the line of sight (Heiles et al. 1993; Crutcher 2012). As with Zeeman

splitting, the articulation of the Goldreich-Kylafis effect preceded its detection: after its

prediction in 1981, it took until 1997 (Glenn et al.) for this line polarization to be detected,

and until 1999 (Greaves et al.) for it to be detected in the ISM. Our knowledge of ISM

polarization mechanisms surely remains incomplete, as a recently proposed new source of

non-Zeeman circular polarization demonstrates (Houde et al. 2013).

Compilations of Zeeman measurements have so far yielded the clearest picture of the

strength of the magnetic field in the cold neutral medium component of the ISM. The field

strength is remarkably constant over nearly three orders of magnitude in density where

n(H) . 300 cm−3 (Crutcher et al. 2010). This may indicate that density structures in the

more diffuse Hi primarily accumulate along field lines, if flux is not otherwise removed from

the gas. Motion parallel to field lines allows gas to become more dense without dragging

field lines closer together, thereby increasing the field strength. At higher densities (n(H) >

300 cm−3), the field strength scales with density as approximately ρ2/3 (Crutcher 2012). This

is one probe of the magnetic field’s controversial role in star formation. The ρ2/3 scaling,

and observed mass-to-flux ratios, suggest that gravity dominates over magnetic pressure

in molecular clouds. This contradicts an earlier paradigm in which molecular clouds are

long lived and magnetically supported, and form stars only after ambipolar diffusion allows

sufficient neutral gas to condense that the core of a cloud can collapse. Static magnetic
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pressure support apparently cannot be relied upon to mediate star formation in galaxies,

but the role of magnetism in star formation continues to inspire debate (see Mouschovias

1991; Mac Low & Klessen 2004; McKee & Ostriker 2007; Federrath & Klessen 2012, among

many others).

1.1.3 Radio-wavelength polarization

Charged particles radiate when accelerated in a magnetic field. The magnetic field is thus

also traced by emission from cosmic rays – electrons and nuclei moving at relativistic speeds.

Some of these high-energy particles are thought to be produced in supernova remnants, but

their origins are not entirely understood, particularly at the highest energies (e.g. Ahlers &

Mertsch 2017). The synchrotron emissivity is proportional to the density of cosmic rays, the

component of the magnetic field perpendicular to the line of sight, and the spectral index

of the cosmic ray radiation. This emission is highly polarized, with an intrinsic polarization

fraction that can theoretically reach ∼ 75% in a perfectly regular magnetic field, though the

measured synchrotron polarization fraction is lower because of various depolarizing effects.

The total and polarized synchrotron intensities can be used to trace the total magnetic field

strength, as well as to infer properties of its geometry. The total field strength from syn-

chrotron emission, derived by assuming equipartition between the magnetic energy density

and the energy density in cosmic ray electrons, is found to be ∼ 6 µG in the local ISM, with

field strengths rising to ∼ 10 µG close to the Galactic center (Beck 2001).

As linearly polarized light passes through a magnetized medium, its plane of polarization

is rotated by an angle proportional to the rotation measure,

RM = C

∫ L

0

neB‖dl, (1.3)
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where C = 0.81 rad m−2, ne is the free electron density in cm−3, B‖ is the line-of-sight

component of the magnetic field vector in µG, and L is the distance to the source in pc

(Gardner & Whiteoak 1966). The rotation measure thus probes the magneto-ionic medium

between an observer and some polarized background source, such as a quasar or pulsar.

Pulsars are particularly advantageous, because their dispersion measure,

DM =

∫ L

0

nedl, (1.4)

is a direct measurement of the free electron column between the observer and the pulsar.

Dividing Equation 1.3 by Equation 1.4 gives the electron-density-weighted average B‖ along

the line of sight. Surveys of the interstellar magnetic field toward pulsars find a local magnetic

field strength of ∼ 1.4 − 2 µG in the uniform component, and an increasing field strength

toward the center of the Galaxy (Rand & Kulkarni 1989; Rand & Lyne 1994; Han et al.

2006).

1.2 The Galactic magnetic field

Faraday rotation measures have been used extensively to infer the three-dimensional struc-

ture of the Galactic magnetic field (e.g. Vallée 2005; Brown et al. 2007; Van Eck et al.

2011). There are many challenges to this technique: pulsars lie within the Galaxy and so

can probe the intervening field at a number of distances, but are relatively sparsely sampled.

Extragalactic radio sources probe the entire line of sight through the Galaxy, plus what-

ever magneto-ionic material might lie within their host galaxy or the intergalactic medium,

and the electron column along these lengthy sightlines is poorly constrained. Local struc-

tures such as superbubbles and Hii regions significantly impact the magnetic field structure,

complicating the interpretation of structure in the RM map (Mitra et al. 2003; Stil et al.
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2011).

In part to mitigate these difficulties, a number of modelers have combined Faraday rota-

tion data with other tracers. Polarized synchrotron emission is widely used, and complements

RMs because it probes B⊥, the component of the magnetic field perpendicular to the line

of sight (e.g. Sun et al. 2008; Jansson & Farrar 2012). As the quality of available data im-

proves, models are beginning to incorporate polarized dust emission as well (Jaffe et al. 2013;

Adam et al. 2016). Models often decompose the overall magnetic field into a large-scale, or

regular, component, and a small-scale, or random, component. The random component is

sometimes modeled as both an “ordered random” component, containing small-scale vari-

ations in direction but not in orientation, and an “isotropic random” component, which

varies three-dimensionally in both strength and direction. These distinctions are motivated

theoretically: the large-scale component probes galaxy-scale dynamics, the isotropic random

component probes ISM turbulence, and the ordered random component may arise via shear-

ing or compression of the isotropic random field. These components also produce different

Faraday and synchrotron signatures (Jaffe et al. 2010).

These models vary widely in their input data, fixed and variable fit parameters, assumed

field components, and so forth, and broadly disagree on the overall shape or even basic

symmetries of the Galactic magnetic field. Nevertheless, a few points of consensus have

emerged, which are nicely summarized in Haverkorn (2015). The large-scale magnetic field

is roughly oriented along the spiral arms in the Galactic disk. The Milky Way is apparently

typical in this regard: nearly all radio polarimetric observations of other spiral galaxies show

ordered fields following the spiral arms (Beck 2015). Observations also mostly concur on

the existence of one large-scale field reversal between the Sun and the Galactic Center (e.g.

Simard-Normandin & Kronberg 1980). The total number of field reversals and their locations

is still debated. Given the spiral structure of the Galactic magnetic field, one parameter that
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is often estimated is its pitch angle,

αp = arctan
Br

Bφ

, (1.5)

where Br and Bφ are the radial and azimuthal components of the field. Current estimates

of the local pitch angle range from −5◦ to −30◦ based on tracer, and may vary with location

because of the interaction between spiral density waves and the magnetic field (Gomez & Cox

2004). The total field strength in the Solar neighborhood is Btotal ∼ 6 µG, with a large-scale

component Bregular ∼ 2µG and a random component Brandom ∼ 3− 4µG (Haverkorn 2015).

The origin of the Galactic magnetic field remains an open question. Theories of Galactic

field generation typically advocate a field origin that either predates the formation of the

Galaxy or is created and continually sustained by a Galactic dynamo. Neither picture is

currently strongly preferred nor ruled out by observations (Zweibel 2005). Indeed, mag-

netogenesis in the Universe at large is an unanswered question of fundamental importance

(Durrer & Neronov 2013).

1.3 The magnetohydrodynamic interstellar medium

Terrestrially, we think of magnetism as arising from the influence of currents – generated

at the flip of a switch and decaying just as quickly. Astrophysically, however, decay times

are long, and the magnetic field is in some ways more fundamental to a system’s evolution

than its corresponding current. The diffuse ISM is well-ionized enough that the role of the

induction equation in a magnetohydrodynamic description of the ISM is primarily advective

rather than diffusive. Idealizing the ISM as a perfectly conducting medium with perfect

coupling between ions and neutrals, the induction equation reduces to
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∂tB = ∇× (v ×B) , (1.6)

which implies that

d

dt

∫

S

B · dS = 0, (1.7)

in other words the magnetic flux through a Lagrangian surface S is constant in time.

This condition is known as “flux-freezing”, or Alfvén’s theorem. Flux freezing is often over-

simplified: its colloquial description that “gas and magnetic fields move together” is misread

to imply that gas and magnetic fields must be correlated. This is incorrect. In the flux

freezing approximation only fluid motions perpendicular to the magnetic field will drag the

field lines along, while gas motions parallel to the field remain uninhibited (e.g. Vazquez-

Semadeni 2012). We are therefore invited to visualize the magnetized ISM as a structured

substrate, imbued with directionality. Cox (2005) uses the analogy of a woven polymer, or

a piece of felt. Whatever your analogy, it is clear that fluids are qualitatively altered in

the presence of magnetism. Our intuition may be better served by appreciating this at the

outset rather than imposing magnetic fields onto our conceptualizations of hydrodynamic

behavior. The magnetorotational instability, which we will encounter in the next section, is

a quintessential example of the surprising character of magnetohydrodynamic flows.

1.4 Magnetic fields in astrophysical disks

The ISM fills the space between the stars in our Galaxy, and so is bordered on the largest

scales by the circumgalactic medium, and on the smallest scales by the outer boundaries

of stars. The circumstellar material around forming stars is thus the edge of the ISM: the
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frontier of its ever-changing topology. Here, magnetic fields play a crucial role in ushering

material between its interstellar and stellar incarnations.

Stars form from the gravitational collapse of giant molecular clouds in the ISM. As a

molecular cloud contracts, conservation of angular momentum will tend to flatten the cloud

into a disk. This led to a longstanding problem in accretion physics: how is matter collapsing

onto a central object able to coalesce despite the conservation of specific angular momentum?

The Galaxy is host to a panoply of accretion disks: disks around protostars, black holes,

and binary stars comprise a portrait of the centrifugal barrier faced by infalling material.

And yet, stars form and black holes grow, so clearly efficient accretion is taking place. Some

viscous mechanism must redistribute angular momentum in the disk. Molecular viscosity

is woefully insufficient, and Keplerian disks are hydrodynamically stable by the Rayleigh

criterion. Thus, magnetohydrodynamic turbulence was implicated even before a plausible

catalyst was identified (Shakura & Sunyaev 1973; Pringle 1981).

1.4.1 The magnetorotational instability

One such catalyst of magnetohydrodynamic turbulence is the magnetorotational instability

(MRI). The MRI was actually discovered by Chandrasekhar (1960) and Velikhov (1959),

but since its rediscovery and application to accretion disks by Balbus & Hawley (1991), the

MRI remains the leading explanation for rapid angular momentum transport in astrophysical

disks.

The MRI in its simplest geometry requires only two ingredients: outwardly decreasing

differential rotation and a weak vertical magnetic field. The essence of the MRI can be

appreciated by considering the journeys of two fluid elements which are initially rotating

at the same radial point in the disk. Our two elements experience some small radial dis-

placement, such that one finds itself slightly interior to its starting point, and one slightly
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exterior. In a hydrodynamic disk, this might be the end of our story: the fluid elements

retain their original angular momentum, and so settle back to their original orbit after their

brief epicyclic detour (Balbus 2001). Conservation of specific angular momentum means that

rotating hydrodynamic fluids remain stable to axisymmetric radial perturbations provided

that

d

dr

[
(r2Ω)2

]
> 0. (1.8)

This is the Rayleigh stability criterion (Rayleigh 1917), long thought to be the last word

on the local stability of differentially rotating fluids.

In the presence of a vertical magnetic field, however, we have hardly reached the de-

nouement. Our fluid elements, once displaced, find themselves tethered by a magnetic field

line, which acts to resist the displacement. We need observe nothing about the properties

of magnetic fields except their tendency to enforce isorotation, and therefore to resist the

difference in shear at the two points in the disk. We thus take the angular velocity to be

conserved. Now the displaced fluid parcel will only return to its starting point if

d

dr
Ω2 > 0, (1.9)

which is never the case in a Keplerian disk, where the rotation velocity decreases with

radius. Instead, our outwardly displaced fluid element arrives in its new orbit with too much

angular momentum to remain there. Differential rotation increases its displacement from its

original position, while magnetic tension acts, proportionally to the displacement, to increase

its velocity. The inwardly displaced fluid drifts ever inward, and the outwardly displaced,

ever outward (Balbus & Hawley 1998).

Several qualities should be appreciated which are central to the MRI’s success in solving

the efficient accretion problem. First, angular momentum transfer is no secondary conse-
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quence of the MRI: the essence of the linear instability is the exchange of angular momentum

along radial field line components. Second, a weakly magnetized fluid is generically unstable

to this process: the fluid-tethering property of weak magnetic fields unlocks the free energy

of the shear. The mere quality of being magnetized radically changes the dynamical evolu-

tion of a disk. Indeed, the MRI growth rate is independent of the field strength, and the

instability remains robust even in the limit B → 0 (Balbus & Hawley 1991; Hawley et al.

1996; Balbus 2003).

1.5 Interstellar magnetism as a cosmological foreground

For all its beauty and complexity, the ISM is but a nuisance to cosmological studies. The

discovery of the cosmic microwave background (CMB) was dramatic evidence for the Big

Bang theory: that the Universe began in a hot dense state and has spent its ensuing lifetime

expanding and cooling (Penzias & Wilson 1965; Dicke et al. 1965). Since its initial detection

the CMB has provided a wealth of information on the state of the Universe when it first

became transparent to radiation, at a redshift z ∼ 1100. Mapping the CMB in increasingly

exquisite detail has enabled precise measurements of the parameters of the standard model

of cosmology.

The original Hot Big Bang cosmology posed a number of difficulties, often summarized

as the flatness, horizon, and monopole problems. Simply put, the Universe is too flat, too

isotropic and homogenous: it seems an untenably extraordinary coincidence that the Uni-

verse possesses its observed curvature and uniformity. The Universe is also puzzlingly devoid

of magnetic monopoles, particles predicted to exist by Grand Unified Theories of particle

physics. The theory of inflation solves these problems by positing that the early Universe

underwent a period of extremely rapid inflation, such that regions which were initially in
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causal contact were rapidly spread to great distances (Guth 1981). Quantum fluctuations in

the primordial Universe were flung to distances farther than the cosmic horizon. Inflation

simultaneously diluted the number density of magnetic monopoles to below detectable levels.

The inflationary paradigm is a satisfactory explanation for current CMB observations

(Ade et al. 2013). However a direct detection of a signal predicted by inflation remains

elusive. In principle such a confirmation is possible: If inflation occurred we should see

lingering traces of the violent expansion of spacetime in the polarization of the CMB. The

CMB is linearly polarized by Thompson scattering of an anisotropic distribution of electrons

at the surface of last scattering. This polarization is dominated by an E-mode (curl-free)

polarization pattern first detected by DASI (Kovac et al. 2002). E-mode polarization is

primarily produced by scalar density perturbations. Gravitational waves produced during

the epoch of inflation are predicted to cause tensor perturbations that would imprint a B-

mode (gradient-free) polarization signature: a particular combination of Stokes Q and U that

cannot be produced by scalar modes (Seljak 1997). B-mode polarization is also produced

from E-mode polarization by the gravitational lensing of the large scale structure of the

Universe. Lensing B-modes were detected for the first time by the South Pole Telescope

(Hanson et al. 2013). Fortunately this lensing B-mode peaks at much smaller angular scales

than the inflationary gravitational wave B-mode signal, so they are not easily confused.

The first detection of primordial B-mode polarization was claimed by the BICEP2 collab-

oration (Ade et al. 2014b). However, the authors did not properly account for the polarized

dust emission produced by the ISM, and it was quickly shown that the measured B-mode

signal was not in excess of the polarized dust signal discussed in Section 1.1 (Flauger et al.

2014; Ade et al. 2015a). Hence, the ISM’s role as nuisance: one of the most important

cosmological questions of our era is impeded by the emission of dust grains aligned with

the interstellar magnetic field. Prospects for measuring the inflationary signal now hinge on
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our ability to characterize this polarized dust foreground. The study of the history of the

Universe is inextricably linked to our understanding of the magnetized ISM.

1.6 Structure of Dissertation

This Thesis examines the magnetorotational instability, the magnetic nature of the cold

neutral medium of the ISM, and the use of the magnetized ISM for measuring the polarized

CMB foreground. We begin at the edges of newborn stars, and end at the edge of the

Universe.

Chapters 2 and 3 examine the MRI from the perspective of pattern formation theory. We

present a multiple scales analysis of the non-ideal MRI in the weakly nonlinear regime – that

is, when the most unstable MRI mode has a growth rate asymptotically approaching zero

from above. In Chapter 2 we develop our theory in a local, Cartesian channel. Our results

confirm the finding by Umurhan et al. (2007) that the perturbation amplitude follows a

Ginzburg-Landau equation. We further find that the Ginzburg-Landau equation will arise

for the local MRI system with shear-periodic boundary conditions when the effects of am-

bipolar diffusion are considered. A detailed force balance for the saturated azimuthal velocity

and vertical magnetic field demonstrates that even when diffusive effects are important, the

bulk flow saturates via the combined processes of reducing the background shear and rear-

ranging and strengthening the background vertical magnetic field. We directly simulate the

Ginzburg-Landau amplitude evolution for our system and demonstrate the pattern forma-

tion our model predicts on long length and time scales. We compare the weakly nonlinear

theory results to a direct numerical simulation of the MRI in a thin-gap Taylor Couette flow.

Chapter 2 is published as Clark & Oishi (2017b).

In Chapter 3 we conduct a global, multiscale perturbation analysis of the MRI in a
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Taylor-Couette flow. We analyze both the standard MRI, initialized by a constant vertical

background magnetic field, and the helical MRI, with an azimuthal background field com-

ponent. This is the first weakly nonlinear analysis of the MRI in a global Taylor-Couette

geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the

evolution of the amplitude of the standard MRI is described by a real Ginzburg-Landau equa-

tion, while the amplitude of the helical MRI takes the form of a complex Ginzburg-Landau

equation. This suggests that the saturated state of the helical MRI may itself be unstable

on long spatial and temporal scales. Chapter 3 is published as Clark & Oishi (2017a).

Chapter 4 presents the discovery that the texture of the diffuse neutral ISM is deeply

linked to the structure of the interstellar magnetic field. We present observations of slender,

linear Hi features we dub “fibers” that extend for many degrees at high Galactic latitude.

To characterize and measure the extent and strength of these fibers, we present the Rolling

Hough Transform (RHT), a new machine vision method for parameterizing the coherent

linearity of structures in the image plane. With this powerful new tool we show the fibers are

oriented along the interstellar magnetic field as probed by starlight polarization. We find that

these low column density (NHI ' 5×1018 cm−2) fiber features are most likely a component of

the local cavity wall, about 100 pc away. The Hi data we use to demonstrate this alignment

at high latitude are from the Galactic Arecibo L-Band Feed Array Hi (GALFA-Hi) Survey

and the Parkes Galactic All Sky Survey (GASS). We find better alignment in the higher

resolution GALFA-Hi data, where the fibers are more visually evident. This trend continues

in our investigation of magnetically aligned linear features in the Riegel-Crutcher Hi cold

cloud, detected in the Southern Galactic Plane Survey (SGPS). We propose an application of

the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi

method. Chapter 4 is published as Clark et al. (2014).

In Chapter 5 we use GALFA-Hi data to show that linear structure in diffuse Hi correlates
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with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. At

high Galactic latitudes, where the Planck data are noise-dominated, the Hi data provide an

independent constraint on the Galactic magnetic field orientation, and hence the local dust

polarization angle. We detect strong cross-correlations between template maps constructed

from estimates of dust intensity combined with either Hi-derived angles, starlight polarization

angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for

inflationary gravitational wave B-mode polarization in the cosmic microwave background,

which is currently limited by dust foreground contamination. Chapter 5 is published as

Clark et al. (2015).

In Chapter 6 we apply the findings in Chapters 4 and 5 that Hi features are well aligned

with the local magnetic field to the pressing need for high-fidelity maps of the polarized CMB

foreground. We develop a Bayesian procedure that uses Planck 353 GHz observations as the

likelihood of the data, and the RHT of GALFA-Hi maps as a prior on the plane-of-sky dust

polarization angle. We construct Hi-based priors in a number of ways from the RHT data.

We sample the resulting Bayesian posteriors to obtain new maps of the dust polarization.

We test the performance of these maps by cross-correlating them with Planck 217 GHz data.

We find that Hi-based priors are a promising method for improving maps of the polarized

dust foreground. This Chapter describes ongoing work and is not yet published.

Finally, in Chapter 7, we summarize the results of this Thesis, and propose several

directions for future research inspired by the work presented here.
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Chapter 2

The weakly nonlinear

magnetorotational instability in a

local geometry

2.1 Introduction

For matter to accrete from a disk onto a central object, angular momentum must be trans-

ported radially outward in the disk. The transport mechanism is likely turbulent, as molec-

ular viscosity alone cannot account for the needed angular momentum transfer, and likely

magnetic, as this turbulence is excited even in hydrodynamically stable disks (Shakura &

Sunyaev 1973). Discovered by Chandrasekhar (1960) and Velikhov (1959) in a global ge-

ometry, the magnetorotational instability (MRI) was subsequently rediscovered and applied

to accretion disks by Balbus & Hawley (1991). Since then, the MRI remains the leading

explanation for rapid angular momentum transport in astrophysical disks. The instability

This section contains text from an article published in the Astrophysical Journal (Clark & Oishi 2017b).
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in its simplest geometry arises when a differentially rotating disk is threaded by a vertical

magnetic field. The presence of the magnetic field linearly destabilizes the disk gas, driving

turbulence and angular momentum transport (e.g. Hawley et al. 2011; Parkin & Bicknell

2013; Parkin 2014). The MRI likely plays a role in a diverse host of astrophysical systems,

including protoplanetary disks (e.g. Bai 2015) and black hole accretion disks (e.g. Schnittman

et al. 2013), as well as stellar interiors (e.g. Wheeler et al. 2015). Despite its importance,

many aspects of the MRI remain poorly understood. In particular, the nonlinear saturation

mechanism for the MRI is an open question, and a formidable challenge. MRI saturation

has been tackled almost exclusively with simulation, with a few notable exceptions detailed

below. In this work we analytically investigate the weakly nonlinear saturation of the MRI.

Weakly nonlinear analysis is a perturbative method used to examine the asymptotic

behavior of a system near threshold – that is, when the system is just barely unstable to

its most unstable mode. The analytical technique follows the multiscale evolution of fluid

variables in a perturbation expansion, allowing the controlled interaction of modes between

orders in a perturbation series (Bender & Orszag 1978). Weakly nonlinear analysis can

be a powerful technique for analytically examining systems which in their full generality

exhibit such complicated nonlinear behavior that their study is relegated primarily to the

simulation domain. The MRI is one such phenomenon: while there is a rich literature

analytically examining the linear MRI, analytical treatments of the nonlinear system are

relatively few. The weakly nonlinear treatment of the MRI was pioneered by Knobloch &

Julien (2005) and Umurhan et al. (2007b, hereafter URM07; see also 2007a). The latter

authors undertook the first weakly nonlinear analysis of the MRI in a thin-gap Taylor-

Couette (TC) flow with strong dissipation (as is appropriate to liquid metal experiments),

and found that the marginal MRI system approaches saturation in a manner analogous to

that of Rayleigh-Bénard convection. Weakly nonlinear analysis was instrumental in our
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understanding of Rayleigh-Bénard convection saturation (Newell & Whitehead 1969), and

the similarities between convection and the local MRI are the result of important shared

symmetries between the systems. The success of URM07 in modeling the MRI system near

threshold merits further consideration, but we are unaware of any other attempts to expand

upon their theoretical framework. In this work we rederive the theory of URM07, and expand

upon their findings. Our focus here is on fully characterizing the local MRI system, both

for independent theoretical interest and to have a robust comparison point for extensions of

this theory into more complicated geometries. In a companion paper we derive for the first

time the weakly nonlinear theory of the standard and helical MRI in a global, cylindrical

TC flow (Clark & Oishi 2017a, hereafter Chapter 3). The thin- and wide-gap treatments

complement one another theoretically, and both are important regimes for comparison with

simulation.

This work examines TC flow in the thin-gap regime, an idealization in which the radial

extent of the channel is very small compared to its distance from the center of rotation,

i.e. (r2 − r1) � 1
2
(r1 + r2) where r1 and r2 are the radii of the inner and outer flow

boundaries, respectively. The thin-gap approximation eliminates curvature terms, so the

domain geometry is Cartesian rather than cylindrical. The excluded curvature terms have

an explicit dependence on r, so they make the problem more challenging both analytically

and numerically. In particular, in the wide-gap geometry (i.e. true Taylor-Couette flow) the

base angular velocity is a function of r, where in the thin-gap approximation the shear flow

reduces to a linear profile. The equations of motion in thin-gap TC flow are thus identical to

the MRI in a local shearing box, which differs from our fiducial setup only in the application

of periodic boundary conditions.

We note several other important analytical studies of MRI saturation. Knobloch & Julien

(2005) analyze the MRI in the strongly nonlinear regime, by following the already-developed
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MRI modes into asymptotic saturation. They consider a thin-gap regime as well, and so their

theory may be considered the strongly nonlinear analogue to the one developed here. Vasil

(2015) examines the weakly nonlinear MRI in a thin-gap regime in a minimal model, finding

deep mathematical similarities between the MRI system and the elastodynamic instability of

a buckling beam. We discuss these results and their relation to ours in Section 2.6. Several

authors have investigated the behavior of the MRI when the boundary conditions are shear

periodic, and so the MRI has no mechanism by which to modify the background shear flow

profile. In this approximation linear MRI growth is dominated by channel modes, a type

of MRI mode that, for periodic boundary conditions, are exact solutions of both the linear

and nonlinear MRI equations (Goodman & Xu 1994). In this regime the MRI saturates

via parasitic instabilities, which feed off and destroy the primary MRI modes. Analytical

investigation of this case reveals that MRI saturation can be caused by parasitic Kelvin-

Helmholtz and tearing mode instabilities, depending on parameter regime (Pessah 2010).

The theory of MRI channel mode parasites is robust (see also Pessah & Goodman 2009;

Latter et al. 2010; Rembiasz et al. 2016), but their importance may be overestimated by the

local approximation (Latter et al. 2015), and not germane to global analyses like the one

presented here. Latter et al. (2015) gives a detailed analysis of the relation between local and

global linear MRI modes. In this work we describe the applicability of our weakly nonlinear

theory to shear-periodic boxes. We find that under certain conditions the weakly nonlinear

mode interaction described here may provide an alternative MRI saturation mechanism in

the shearing box that does not rely on parasitic instabilities.

We begin with an overview of our basic model equations for the local MRI in Section 2.2

and then describe our weakly nonlinear analysis and give results for the thin-gap TC flow in

Section 2.3. In Section 2.4 we detail the conditions under which our theory applies to the case

where the boundary conditions are shear periodic, namely the consideration of ambipolar
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diffusion. We compare our results to a direct numerical simulation in Section 2.5. We then

place our results in the context of previous results from both analytic and computational

studies in Section 2.6 and draw conclusions in Section 2.7.

Ω0

B0ẑ

L

Z

X
Chebyshev

Fourier

Figure 2.1: Schematic diagram of our set-up, an axisymmetric thin-gap Taylor-Couette flow.
We investigate a 2D slice of the X-Z (radial-vertical) plane. Our domain is represented by
the bolded black box, of width L. The radial dimension is solved with a basis of Chebyshev
polynomials, and the vertical dimension is solved on a Fourier basis.

2.2 Equations

The evolution of a conducting fluid is governed by the momentum and induction equations,
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∂tu + u · ∇u = −1

ρ
∇P − ∇Φ +

1

ρ
(J×B) + ν∇2u − 2Ω× u − Ω× (Ω× r) , (2.1)

∂tB = ∇× (u×B) + η∇2B, (2.2)

where P is the gas pressure, ν is the kinematic viscosity, η is the microscopic diffusivity,

∇Φ is the gravitational force per unit mass, and the current density is J = ∇×B. Equations

2.1 and 2.2 are subject to the incompressibility and magnetic solenoid constraints,

∇ · u = 0 (2.3)

∇ ·B = 0. (2.4)

We axisymmetrically perturb all three vector components of each of the fluid quantities.

We nondimensionalize the equations, with lengths nondimensionalized by L, time by Ω0,

velocities by Ω0L, magnetic fields by B0, and pressure by Ω2
0L

2ρ0, where L is the channel

width, Ω0 is the rotation rate at the center of the channel, and ρ0 is the constant pressure

in the base state (see Figure 2.1). We define the Reynolds number, Re ≡ Ω0L
2/ν, magnetic

Reynolds number, Rm ≡ Ω0L
2/η, and Cowling number, Co ≡ 2v2

A/Ω
2
0r

2
0, where the Alfvén

speed vA is v2
A = B2

0/ρ0. The magnetic Prandtl number, Pm ≡ Rm/Re, encodes the ratio of

microscopic viscosity to magnetic diffusivity. The fluid symbols u, B, etc. will henceforth

be used to refer to the nondimensional, perturbed quantities.

We define the streamfunction Ψ and flux function A, where A is the familiar two-

dimensional vector potential. Ψ and A are scalar fields. The curl of Ψ and the curl of

A are defined as the velocity and magnetic field perturbation, respectively, and so Ψ and A

automatically satisfy our constraints (Equations 2.3 and 2.4).
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Ψ and A are thus related to the velocity and magnetic field perturbations, respectively,

as

u =




∂zΨ

uy

−∂xΨ



, (2.5)

B =




∂zA

By

−∂xA



. (2.6)

Our final equation set is

∂t∇2Ψ − 2∂zuy − CoB0∂z∇2A − 1

Re
∇4Ψ = CoJ

(
A,∇2A

)
− J

(
Ψ,∇2Ψ

)
(2.7)

∂tuy + (2− q) ∂zΨ − CoB0∂zBy −
1

Re
∇2uy = CoJ (A,By) − J (Ψ, uy) (2.8)

∂tA − B0∂zΨ −
1

Rm
∇2A = J (A,Ψ) (2.9)

∂tBy + q∂zA − B0∂zuy −
1

Rm
∇2By = J (A, uy) − J (Ψ, By) , (2.10)

where J is the Jacobian operator,

J (f, g) ≡ ∂zf∂xg − ∂xf∂zg, (2.11)

and q ≡ −d ln Ω/ lnR = 3/2 is the dimensionless shear parameter defining a rotation profile

Ω(r) = Ω0(r/r0)−q, such that the background velocity profile is u0 = −qΩ0x.

The weakly nonlinear regime is where the MRI system is nonlinearly unstable to only

the most unstable mode of the linear solution. We find the marginal state, where the most
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Figure 2.2: Growth rate γ as a function of background magnetic field strength B0 at Rm =
Rmc, kz = kc, Pm = 10−3. Around the critical value B0 = 1., strengthening B0 tunes the
system into instability, while decreasing it leads to stability. The inset highlights the fact
that γ is determined by the maximum real eigenvalue of the system, which switches from
one mode family to another as discussed in the text.

unstable linear MRI mode neither grows nor decays, for a set of dimensionless parameters,

and then destabilize the system. We examine the system for fiducial parameters comparable

to URM07, namely Pm = 1.0 × 10−3, Co = 0.08, q = 1.5. The system is marginal for a

critical wavenumber kc = 0.75 and a critical magnetic Reynolds number Rmc = 4.9.

Because we nondimensionalize B by the magnitude of the background field strength,

B0 ≡ 1 in Equations 2.7 - 2.10. To excite the weakly nonlinear MRI, we tune the background
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Figure 2.3: First order (left), second order (center), and total (right) velocity perturbations.
Streamlines represent velocity in the vertical-radial plane, where thicker streamlines corre-
spond to faster speeds. Colorbar represents azimuthal velocity. We use a constant amplitude
α = αsaturation and a small parameter ε = 0.5.
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magnetic field away from stability. We do so by substituting B = B0 (1 + ε2). The degree

of departure from the marginal state is measured by the small parameter ε. An O (ε2)

strengthening of the background magnetic field destabilizes a finite band of wave modes with

a width of O (ε), which interact nonlinearly. We note that this definition of ε is opposite in

sign to nearly all previous works (e.g. Umurhan et al. 2007a,b). Because in the ideal limit,

the MRI can be tuned into instability by setting B0 to its critical value and then decreasing

its value, it is natural to consider ε2 as a weakening of the background field (as is done

correctly in Vasil 2015, for example). However, as we show in figure 2.2, for the dissipative

case with η, ν 6= 0, when all other parameters are critical, decreasing B0 leads to stability,

while increasing it pushes the system into instability. Figure 2.2 is symmetric about B0 = 0,

as it must be, since the MRI is insensitive to the sign of the background field. There are

several places at which the derivative of γ appears discontinuous; this is not physical but

rather reflects the fact that we define γ as the growth rate of the most unstable mode. That

is, it is the maximum real part of the eigenvalues of the linearized system (e.g. equation 2.13

with N = 0). Because there are four wave families in rotating incompressible MHD, each

modified differently by changing B0, when the growth rates of the individual modes cross,

there appear piecewise continuous solutions. We highlight one such point in the inset in

Figure 2.2, where the MRI mode becomes more stable than another mode which is always

stable. Since all of these piecewise discontinuities are below γ = 0, they do not affect the

analysis here.

The destabilizing substitution is made, and Equations 2.7 - 2.10 are rewritten such that

the fluid variables are contained in a state vector

V = [Ψ, uy, A,By]
T . (2.12)

This yields the system of equations
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D∂tV + LV + ε2G̃ = N, (2.13)

where we leave the definition of the matrices D, L, and G̃ to Appendix 2.A, and the

detailed form of the nonlinear vector N to Appendix 2.B. We solve this system subject to

no-slip, perfectly conducting radial boundary conditions, defined as

Ψ = ∂xΨ = uy = A = ∂xBy = 0. (2.14)

2.3 Weakly nonlinear analysis

We conduct a formal multiple scales analysis of this system. Our perturbations are charac-

terized in terms of fast- and slow-moving variables, that we treat as independent in order to

simultaneously track the evolution of the system on two scales. The relative scalings of the

fast and slow variables are chosen such that each of the temporal and spatial eigenvalues ap-

pear at the same lowest order in the linear dispersion relation (Appendix 2.C). The scalings

are

X ≡ εx, Y ≡ εy, Z ≡ εz, T ≡ ε2t. (2.15)

Note that these are the same scalings as apply to Rayleigh-Bénard convection and hy-

drodynamic TC flow. Our x dimension, the direction of angular momentum transport, is

analogous to the direction of temperature transport in the convection problem. In analogy

to these problems, we posit slow variation in both Z and T . Each operator in Equations 2.7

- 2.10 is expanded to reflect these scalings – for instance, ∂z becomes ∂z + ε∂Z .

The multiple scale dependencies of our solution are encoded into an ansatz for the linear
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MRI solution at marginality,

V1 = α(T, Z)V11(x)eikcz + c.c.+ β(T, Z)U11(x) (2.16)

where α(T, Z) is a slowly-varying amplitude and c.c. denotes the complex conjugate. The

x dependence is contained in V11 = (Ψ11, u11, A11, B11)T, and must be solved subject to the

radial boundary conditions. The periodic vertical boundary conditions allow us to posit the

z dependence, where kc is the value of the vertical wavenumber at marginality. As noted

by URM07, there exists a spatially constant neutral mode solution to the By equation, with

U11 = (0, 0, 0, 1)T. The amplitude β(T, Z) encodes the slow evolution of this mode. This

spatially constant mode cannot contribute to the nonlinear saturation of the MRI because

all of the nonlinearities involve derivatives. The long-term evolution of β(T, Z) is described

by a simple diffusion equation that decouples from α(T, Z), and so we neglect it in what

follows.

The state vector is expanded in a perturbation series in orders of ε,

V = εV1 + ε2V2 + ε3V3 + h.o.t. (2.17)

Our perturbed system is then expressed order by order as

O(ε) : LV1 +D∂tV1 = 0. (2.18)

O(ε2) : LV2 + L̃1∂ZV1 = N2 (2.19)

O(ε3) : LV3 +D∂TV1 + L̃1∂ZV2 + L̃2∂
2
ZV1 + G̃V1 = N3 (2.20)

The partial differential equations that comprise Equations 2.18 to 2.20 are solved in
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succession. The practical advantage of our ansatz construction (Equation 2.16) is clear: the

separable x-dependence means that the radial boundary conditions are solved in only one

dimension. Thus our analytical framework is able to side-step many of the resolution issues

faced by multidimensional simulations. We are able to resolve even small-scale structure

in the boundary layers of our domain, because we need only resolve it in one dimension.

We solve the radial component of each equation using the open source pseudospectral code

Dedalus. We compute the radial components on a grid of Chebyshev polynomials, as is

appropriate for bounded one-dimensional domains (e.g. Boyd 2001). The nonuniform spacing

of the Chebyshev grid allows us to resolve the boundary layers well on a 128-point grid.

To close the perturbation series we enforce a solvability criterion on Equation 2.20 (see

Appendix 2.A). This leads to an amplitude equation for α(T, Z) that governs the slow length-

and timescale evolution of the system. This amplitude equation is

∂Tα = bα + h∂2
Zα− cα

∣∣α2
∣∣ , (2.21)

a real Ginzburg-Landau equation. The saturated solution to Equation 2.21 is evidently

αsaturation = ±
√
b/c. We plot the first order, second order, and total perturbation structure

of the fluid variables in Figures 2.3 and 2.4 with a constant αsaturation. This is the Ginzburg-

Landau equation that was previously found by URM07. Those authors investigated the

behavior of this MRI system as a function of Pm. By analyzing the system over several

orders of magnitude in Pm, we reproduce the URM07 result that the analytic saturation

amplitude scales as α2
saturation ∝ Pm4/3 in a thin-gap geometry when Pm� 1.
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2.4 Shearing box and ambipolar diffusion

Many studies of the MRI consider the instability in a shearing box, i.e. a wall-less local

approximation that is meant to represent a small section of a disk. The shearing box is

the limit in which Equations 2.7 - 2.10 are subjected to shear periodic radial boundary con-

ditions rather than Equation 2.14 (e.g. Regev & Umurhan 2008). The periodic nature of

the shearing box allows us to decompose the fluid perturbations into Fourier modes propor-

tional to eikxx+ikzz. This makes the shearing box MRI straightforward to treat analytically.

However, as noted above, the fastest-growing linear MRI modes in the shearing box are also

exact solutions of the nonlinear MRI equations – that is, J(ψ̂0, ψ̂0) = J(ψ̂0,∇2ψ̂0) = 0 for

ψ̂0 ∝ eikxx+ikzz. While this may be an appealing trait for analytic simplicity, it leads to the

unphysical conclusion that the fastest growing modes will never nonlinearly interact (Good-

man & Xu 1994). This ‘nonlinear property’ will not be satisfied for two MRI modes with

nonparallel wavenumbers, but with vertically periodic boundary conditions and a vertical

background magnetic field the most unstable mode has a strictly axial vertical wavenumber.

Thus a formal weakly nonlinear analysis cannot be conducted, as the most unstable mode

will never nonlinearly interact with itself or its complex conjugate. Similarly, we cannot

analytically examine interactions between MRI channel modes and damped eigenmodes be-

longing to other wave families. This is analytically examined for other plasma instabilities

by tracking the amplitudes of growing, marginal, and damped eigenmodes simultaneously

(e.g. Makwana et al. 2011). While the shearing box approximation allows the projection

of the perturbed MRI equations into the basis set of linear eigenmodes, nonlinear coupling

between modes will remain zero.

The nonlinear property of primary MRI modes in the shearing box motivates the addition

of radial boundaries, such that the nonlinear evolution of the weakly nonlinear MRI can
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Figure 2.5: Average energy (left) and angular momentum transport (right) in the total,
kinetic, and magnetic components of simulation data as a function of time. Gray lines show
the weakly nonlinear theory values for each quantity.

be properly considered. It also raises the question of whether some additional nonlinear

mechanism can be introduced such that the fastest-growing modes are no longer nonlinear

solutions to the shearing box equations. It has already been shown that the Hall effect does

not negate the nonlinear property of primary MRI modes (Kunz & Lesur 2013). However,

it seems to have been overlooked in the literature that these linear modes are not solutions

of the nonlinear ambipolar diffusion term, which is proportional to

∇× ((J×B)×B). (2.22)

Furthermore, the radial wavenumber of the fastest-growing linear MRI mode in a shearing

box with ambipolar diffusion is nonzero when a constant azimuthal background field is

considered in addition to an axial one (Kunz & Balbus 2004). This means that, in the

presence of ambipolar diffusion, we can derive the weakly nonlinear envelope equation for

the MRI in the shearing box. Ambipolar diffusion adds both linear and nonlinear terms
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to Equations 2.18 to 2.20, but does not change their Z or T dependence. The constant

azimuthal background field component does not contribute to any other terms in the local

MRI equations. Thus, the slow-scale evolution of the MRI in a shearing box with ambipolar

diffusion is also governed by a Ginzburg-Landau equation.

The Ginzburg-Landau form of the amplitude equation can be found in any system with

Euclidean symmetry and a quadratic maximum in growth rate with respect to the wavenum-

ber (Hoyle 2006). In this case, the Euclidean symmetry comes from axisymmetry in the x-z

plane, and the quadratic maximum is a consequence of the linear dispersion relation given in

Appendix 2.C. In Chapter 3, we show that the same symmetry occurs in the axisymmetric

global geometry as well. The Ginzburg-Landau equation arises due to symmetries in the

local MRI equations, irrespective of the boundary conditions to which they are subjected.

This means that the local MRI is able to saturate via nonlinear mode interaction so long as

the primary MRI modes are not exact solutions of the nonlinear terms. This can be achieved

by considering the effects of ambipolar diffusion when the boundary conditions are shear pe-

riodic, or by enforcing wall-like radial boundary conditions. Both constructions require the

most unstable mode to have nonconstant radial structure. Physically, this radial variation

impedes the free exchange of angular momentum facilitated by the uniform stretching of

channel modes.

2.5 Direct numerical simulation

Here, we make a preliminary test of our weakly nonlinear theory by comparing it to direct

numerical simulation. Using Dedalus, we solved the full, nonlinear equations 2.7 - 2.10 with

all parameters (Rm, Q) equal to their critical values except the background magnetic field,

which we set to B0 = 1 + ε2. We thus drive the system MRI unstable in the same way as
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in our theory. The computational requirements of low Pm simulations are quite intense in

both time and space. Despite being virtually smooth, the solutions require a resolution of

192× 1536 grid points at Pm = 10−2. Because the system has such a small growth rate, it

takes hundreds of orbits for the system to reach saturation, as compared to the few orbits

typical of high Rm simulations (e.g. Lesur & Longaretti 2007). As a result, we make our

comparison at Pm = 10−2, which provides a good tradeoff between probing relatively low

Pm while keeping the computational time for these exploratory simulations modest.

We initialize the runs with the linear eigenvectors of the MRI unstable mode (also com-

puted by Dedalus; see section 2.3) multiplied by an initial amplitude A0 = 10−3. Doing so

requires considerably less run time, as the MRI unstable mode starts growing immediately

from A0. By contrast, initializing random noise in ψ with amplitude A0 would give the unsta-

ble mode a much smaller amplitude. Nevertheless, we have confirmed that simulations with

eigenvector initial conditions have similar evolutions to those with noise initial conditions

once each enter linear growth.

We analyze the average energy and angular momentum transport in the simulation do-

main (Figure 2.5). The saturation amplitude predicted by the weakly nonlinear theory

depends on the choice of normalization of the linear eigenvectors. The eigenvectors of the

linear problem are only determined up to an arbitrary normalization, and the nonlinear coef-

ficient of the Ginzburg-Landau equation is sensitive to this normalization. The undetermined

factor is typically assigned by comparison with direct numerical simulation or laboratory ex-

periment (e.g. Recktenwald et al. 1993; Deyirmenjian et al. 1997). Here we determine the

constant by requiring that the maximum amplitude of By be equal in both theory and sim-

ulation. With this normalization choice all plotted quantities agree to within ∼ 25%. The

theory and simulation are thus in reasonably good agreement considering that the weakly

nonlinear theory applies rigorously to a channel of infinite height, while the simulation was
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carried out in a box with a vertical extent of only two critical wavelengths. We defer further

comparisons between simulation and theory, including an analysis of the effect of the box

height on the simulated flow, to future work.

2.6 Discussion

Here our focus is on a physical description of the saturation mechanism. Figure 2.6 shows

saturated radial profiles of u0 − uy = −qΩ0x − uy and each term in the steady state force

balance (i.e. Equation 2.8 with ∂tuy = 0). In the bulk of the fluid away from the bound-

ary layers, the saturated state shows reduced shear, with little diffusive contribution. This

demonstrates that even in a case where diffusive effects are important, the bulk of the fluid

saturates by balancing shear and magnetic tension. As discussed at length in Vasil (2015),

when diffusive effects are not important, it is impossible to rearrange momentum without

also rearranging the magnetic field. The Vasil (2015) model demonstrates saturation without

diffusive effects; our results show that outside of the boundary layers, a simultaneous rear-

rangement of momentum and field occurs. In the boundary layers, the nonlinear advection

balances viscous dissipation.

Figure 2.7 shows Bz and the terms corresponding to steady state inductive balance (∂x of

Equation 2.10 with ∂tBy = 0). Here, the instability acts to push the magnetic field toward

the boundaries in both the bulk and the boundary layers. The radial average of the saturated

Bz is B0, i.e. Bz is marginally stable. Ebrahimi et al. (2009) considered the saturation of a

single, strongly super-critical MRI mode allowed to interact nonlinearly only with itself and

the mean. They considered two important cases, one in which the mean flow was forced to

remain at its initial, quasi-Keplerian state for all time, and one in which the background flow

was allowed to evolve. This is a crucial difference between the shearing box and our narrow-
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gap TC flow: perturbations in our simulation can adjust the background flow, whereas in a

shearing box, the shear periodicity forbids perturbations from affecting the mean flow. In

the case with a freely evolving background flow, Ebrahimi et al. (2009) found a saturated

state quite similar to ours: field pushed to the boundaries, and a reduction in shear in the

bulk of the flow. Their flows have less pronounced boundary layers, likely because of their

much larger Pm = 0.1− 1.

In the high Re and Rm limit, Vasil (2015) derives an amplitude equation considerably

different than the one found here. By averaging in the z direction, the author computes a

mean-field equation with striking similarity to the buckling of an elastic beam under load.

The most salient feature of this equation is its non-local character. Unlike the present work,

which focuses on Keplerian rotation profiles with q = 3/2 with a critical background mag-

netic field strength, Vasil (2015) focuses on a fixed field strength and a weakly destabilized

shear profile. These differences are minor, however: the destabilizing parameter ε enters

the analysis in the same quadratic proportion. Whether and how Vasil (2015)’s amplitude

equation is equivalent to our own in the limit of dynamically important resistive and viscous

effects is beyond the scope of this work. Nevertheless, the author identifies the nonlinear

term responsible for saturation as consisting of flux and field transport and notes these are

the only mechanisms able to produce saturation. Our results likewise demonstrate a com-

bination of flux and field transport in the comparable region of our domain. This suggests

that despite our formulation displaying different saturation dynamics (Ginzburg-Landau in

our case; a network of coupled Duffing oscillators in Vasil 2015), there may indeed be an

underlying unification.

The real Ginzburg-Landau equation describes the amplitude behavior of our system close

to threshold. Although the form of the equation is generic to many systems, its coefficients

depend on the specific physics of our system and govern its detailed evolution (see Appendix
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2.A). We simulate the evolution of the MRI amplitude equation by solving Equation 2.21

on a Fourier basis in Z using Dedalus. We initialize uniform random noise of amplitude

−10−3 to +10−3 in Z, and timestep the system using a four-stage, third-order Runge-Kutta

integrator. We evolve the system for 100Ω−1
0 in timesteps of 0.02Ω−1

0 . Results are shown in

Figures 2.8 and 2.9, where the amplitude and phase structure over the vertical domain is

plotted for every 20 timesteps. The system quickly organizes itself into rolls in Z bounded by

the analytic saturation amplitude αs =
√
b/c. The specific geometry depends on the number

of critical wavelengths λcrit = 2π/kc that are initialized in Z. Figure 2.8 shows that a system

with a height equal to two critical wavelengths will be modulated by simple rolls of sinusoidal

amplitude. The saturation amplitude pattern becomes more complicated when more modes

are allowed to interact. Figure 2.9 shows the evolution of a system of height 10λcrit. While

still bounded by αs, the saturation amplitude exhibits a nonlinear phase geometry due to

the nonlinear interaction of modes in Z.

The weakly nonlinear theory predicts that the amplitude of the system is bounded by

the saturation amplitude αs =
√
b/c, where b and c are coefficients corresponding to the

linear growth term and nonlinear term of the Ginzburg-Landau equation, respectively. The

coefficient b comes from the interaction between the background magnetic field and the linear

MRI solution. The coefficient c describes the third-order nonlinear interaction between terms

in the perturbation series. Physically, we see that the saturation amplitude is controlled by

the strength of the mode interaction within our finite band of unstable modes. We stress

that while the third-order nonlinear terms in the walled TC flow are strongly influenced by

the boundary layers, this is not generically true of the MRI system. Indeed, in the shearing

box MRI with ambipolar diffusion (the case sketched out in Section 2.4), boundary layers

are impossible in the shear periodic flow. In this case the third-order nonlinear behavior of

the system includes three-mode interactions from the cubic nonlinearity in the ambipolar
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diffusion term.

Figure 2.10 shows the total stress uxuy−CoBxBy for the Pm = 10−2 model with ε = 0.5.

The stress shows significantly more structure throughout the domain than the variables ux,

uy, Bx and By that comprise it, demonstrating that a non-trivial correlation exists even

in the weakly non-linear state. As in simulations at higher Rm, Figure 2.5 shows that

the Maxwell stress dominates over the Reynolds stresses even though the kinetic energy

significantly exceeds the magnetic energy.

2.7 Conclusion

In this paper we construct a weakly nonlinear analysis of the MRI using multiple scales

analysis, leading to a real Ginzburg-Landau equation for the nonlinear amplitude, confirming

the previous results of Umurhan et al. (2007b). We also confirm their results for the scaling

of the analytic saturation amplitude with Pm. We extend their results by constructing a

detailed force and inductive balance for the saturated uy and Bz components. In doing

so, we find that the saturated state is a complex balance in which reduction of shear and

amplification and redistribution of Bz combine to saturate the instability. We perform

numerical simulations of the amplitude equation and a direct numerical simulation of the

MRI system. Using the former, we demonstrate that complex patterns can organize the

flow on long length scales Z, though the maximum magnitude of the amplitude α is well

predicted by the steady state solution. The latter show that there is rough agreement for

both total energy and average angular momentum transport between the weakly nonlinear

theory and simulation for a representative case at Pm = 10−2. We defer a full comparison

between theory and simulation to later work. We describe the application of shear-periodic

boundary conditions to the local MRI and find that with the inclusion of certain nonideal
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physical effects, namely ambipolar diffusion, our theory points to a new saturation avenue

for the MRI in a shearing box. In Chapter 3, we make use of the techniques developed here

to extend the weakly nonlinear analysis of the MRI to a full cylindrical geometry appropriate

for a Taylor-Couette experiment.
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2.A Detailed Equations

Here we detail the perturbation analysis described in Section 2.3. The perturbation series is

described by Equations 2.18 - 2.20, where

L = L0 + L1∂z + L2∂
2
z + L3∂

3
z + L4∂

4
z , (2.23)

L̃1 = L1 + 2L2∂z + 3L3∂
2
z + 4L4∂

3
z (2.24)

L̃2 = L2 + 3L3∂z + 6L4∂
2
z (2.25)
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G̃ = G∂z + L3∂
3
z , (2.26)

and the constituent matrices are defined as

D =




∇2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(2.27)

L0 =




− 1
Re
∂4
x 0 0 0

0 − 1
Re
∂2
x 0 0

0 0 − 1
Rm
∂2
x 0

0 0 0 − 1
Rm
∂2
x




(2.28)

L1 =




0 −2 −Co∂2
x 0

(2− q)Ω0 0 0 −Co

−1 0 0 0

0 −1 qΩ0 0




(2.29)

L2 =




−2 1
Re
∂2
x 0 0 0

0 − 1
Re

0 0

0 0 − 1
Rm

0

0 0 0 − 1
Rm




(2.30)
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L3 =




0 0 −Co 0

0 0 0 0

0 0 0 0

0 0 0 0




(2.31)

L4 =




− 1
Re

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




(2.32)

G =




0 0 −Co∂2
x 0

0 0 0 −Co

−1 0 0 0

0 −1 0 0




(2.33)

Once perturbed, the system is solved for successive orders of ε (Equations 2.18 - 2.20).

O(ε) is the linear system. At O(ε2), first-order MRI modes nonlinearly interact with them-

selves and with their complex conjugates, and so the term N2 in Equation 2.19 has the

form

N2 = |α|2N20 + α2N22e
2ikcz (2.34)

(see Appendix 2.B for the full form of N20 and N22).

Note that, following the notation of Umurhan et al. (2007b), the subscripts refer to ε or-

der, z order, successively, such that N22 is the second-order nonlinear term which corresponds

to e2ikcz z-dependence.

Equation 2.19 is solved as three separate systems of equations, one for each possible z
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resonance:

LV20 = N20 (2.35)

LV21 = −L̃1∂ZV11 (2.36)

LV22 = N22 (2.37)

Finally, at O(ε3) we eliminate secular terms to close the system. Secular terms are terms

which are resonant with the solution to the homogenous linear equation (Equation 2.18), and

which cause the higher-order solutions to grow without bound. The solvability criterion we

enforce to eliminate these terms is the vanishing of the inner product of the solution to the

adjoint linear homogenous equation L†V† = 0 with the nonhomogenous terms in Equation

2.20, namely

〈V†|DV11〉∂Tα + 〈V†|G̃V11〉α + 〈V†|L̃1V21 + L̃2V11〉∂2
Zα = 〈V†|N31〉α|α|2. (2.38)

This solvability criterion derives from a corollary to the Fredholm Alternative (see Chap-

ter 3 for a formal definition).

Equation 2.38 can be rewritten as Equation 2.21, the Ginzburg-Landau equation, where

the coefficients are

b = 〈V†|G̃V11〉/〈V†|DV11〉, (2.39)

h = 〈V†|L̃1V21 + L̃2V11〉/〈V†|DV11〉, (2.40)
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and

c = 〈V†|N31〉/〈V†|DV11〉. (2.41)

We define the adjoint operator L† and solution V† as

〈V†|LV〉 = 〈L†V†|V〉, (2.42)

where the inner product is defined as

〈V†|LV〉 =
kc
2π

∫ π/kc

−π/kc

∫ x2

x1

V†∗ · LV dxdz. (2.43)

The solution to the adjoint homogenous equation has the form

V† = V†(x)eikcz + c.c. (2.44)

As noted by URM07, a second amplitude equation for a spatially constant azimuthal

magnetic field mode arises from the terms in the O(ε3) equation which contain no z depen-

dence. This is a diffusion equation, so the neutral mode simply decays away.

2.B Expansion of Nonlinear Terms

At each order in our perturbation series, lower-order MRI modes nonlinearly interact. Thus

there is a nonlinear term contribution at O(ε2) and O(ε3). Here we detail the form of these

nonlinear terms.

The overall nonlinear contribution to our system, written as a vector N in Equation 2.13,

is

49



N = ε2N2 + ε3N3 + O(ε4) (2.45)

where

N
(Ψ)
2 = J(Ψ1,∇2Ψ1) − CoJ(A1,∇2A1) (2.46)

N
(u)
2 = J(Ψ1, u1) − CoJ(A1, B1) (2.47)

N
(A)
2 = −J(A1,Ψ1) (2.48)

N
(B)
2 = J(Ψ1, B1) − J(A1, u1) (2.49)

and

N
(Ψ)
3 = J(Ψ1,∇2Ψ2) − CoJ(A1,∇2A2) + J(Ψ2,∇2Ψ1)− CoJ(A2,∇2A1) +

2J(Ψ1, ∂z∂ZΨ1) − 2CoJ(A1, ∂z∂ZA1) + J̃(Ψ1,∇2Ψ1) − CoJ̃(A1,∇2A1)

(2.50)

N
(u)
3 = J(Ψ1, u2) + J(Ψ2, u1) + J̃(Ψ1, u1) − CoJ(A1, B2) − CoJ(A2, B1)

− CoJ̃(A1, B1)

(2.51)

N
(A)
3 = −J(A1,Ψ2) − J(A2,Ψ1) − J̃(A1,Ψ1) (2.52)
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N
(B)
3 = J(Ψ1, B2) + J(Ψ2, B1) + J̃(Ψ1, B1) − J(A1, u2) − J(A2, u1) − J̃(A1, u1). (2.53)

N2 and N3 expand to become

N2 = α2N22e
i2kcz + |α|2 N20 + c.c. (2.54)

and

N3 = α3N33e
i3kcz +α∂ZαN32e

i2kcz +α |α|2 N31e
ikcz +α∂ZβÑ31e

ikcz +α∗∂ZαN30 + c.c. (2.55)

The second order nonlinear terms are

N
(Ψ)
22 = ikcΨ11 ·

(
∂3
xΨ11 − k2

c∂xΨ11

)
− ∂xΨ11 ·

(
ikc∂

2
xΨ11 − ik3

cΨ11

)

+ Co∂xA11 ·
(
ikc∂

2
xA11 − ik3

cA11

)
− CoikcA11 ·

(
∂3
xA11 − k2

c∂xA11

) (2.56)

N
(u)
22 = ikcΨ11 · ∂xu11 − ∂xΨ11 · ikcu11 − CoikcA11 · ∂xB11 + Co∂xA11 · ikcB11 (2.57)

N
(A)
22 = −ikcA11 · ∂xΨ11 + ∂xA11 · ikcΨ11 (2.58)

N
(B)
22 = ikcΨ11 · ∂xB11 − ∂xΨ11 · ikcB11 − ikcA11 · ∂xu11 + ∂xA11 · ikcu11 (2.59)

N
(Ψ)
20 = ikcΨ11 ·

(
∂3
xΨ
∗
11 − k2

c∂xΨ
∗
11

)
− ∂xΨ11 ·

(
ik3
cΨ
∗
11 − ikc∂2

xΨ
∗
11

)

+ Co∂xA11 ·
(
ik3
cA
∗
11 − ikc∂2

xA
∗
11

)
− CoikcA11 ·

(
∂3
xA
∗
11 − k2

c∂xA
∗
11

) (2.60)

N
(u)
20 = ikcΨ11 · ∂xu∗11 + ∂xΨ11 · ikcu∗11 − CoikcA11 · ∂xB∗11 − Co∂xA11 · ikcB∗11 (2.61)

N
(A)
20 = −ikcA11 · ∂xΨ∗11 − ∂xA11 · ikcΨ∗11 (2.62)
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N
(B)
20 = ikcΨ11 · ∂xB∗11 + ∂xΨ11 · ikcB∗11 − ikcA11 · ∂xu∗11 − ∂xA11 · ikcu∗11 (2.63)

and the third order nonlinear terms become

N
(Ψ)
31 = ikc

(
Ψ11 · ∂3

xΨ20

)
+ ikc

(
Ψ11 · ∂3

xΨ
∗
20

)
− ikc

(
Ψ∗11 · ∂3

xΨ22

)
− i2kc

(
∂xΨ

∗
11 · ∂2

xΨ22

)

+ i8k3
c (∂xΨ

∗
11 ·Ψ22) + i4k3

c (Ψ∗11 · ∂xΨ22) + Co
[
−ikc

(
A11 · ∂3A20

)
− ikc

(
A11 · ∂3

xA
∗
20

)]

+ Co
[
ikc
(
A∗11 · ∂3

xA22

)
+ i2kc

(
∂xA

∗
11 · ∂2

xA22

)
− i8k3

c (∂xA
∗
11 · A22)− i4k3

c (A∗11 · ∂xA22)
]

+ i2kc
(
Ψ22 · ∂3

xΨ
∗
11

)
− i2k3

c (Ψ22 · ∂xΨ∗11)− ikc
(
∂xΨ20 · ∂2

xΨ11

)
+ ikc

(
∂xΨ22 · ∂2

xΨ
∗
11

)

− ikc
(
∂xΨ

∗
20 · ∂2

xΨ11

)
+ ik3

c (∂xΨ20 ·Ψ11) + ik3
c (∂xΨ

∗
20 ·Ψ11)− ik3

c (∂xΨ22 ·Ψ∗11)

+ Co
[
−i2kc

(
A22 · ∂3

xA
∗
11

)
+ i2k3

c (A22 · ∂xA∗11) + ikc
(
∂xA20 · ∂2

xA11

)
− ikc

(
∂xA22 · ∂2

xA
∗
11

)]

+ Co
[
ikc
(
∂xA

∗
20 · ∂2

xA11

)
− ik3

c (∂xA20 · A11)− ik3
c (∂xA

∗
20 · A11) + ik3

c (∂xA22 · A∗11)
]

(2.64)

N
(u)
31 = ikc (Ψ11 · ∂xu20) + ikc (Ψ11 · ∂xu∗20)− ikc (Ψ∗11 · ∂xu22)− i2kc (∂xΨ

∗
11 · u22)

− ikc (u11 · ∂xΨ20)− ikc (u11 · ∂xΨ∗20) + ikc (u∗11 · ∂xΨ22) + i2kc (∂xu
∗
11 ·Ψ22)

+ Co [−ikc (A11 · ∂xB20)− ikc (A11 · ∂xB∗20) + ikc (A∗11 · ∂xB22) + i2kc (∂xA
∗
11 ·B22)]

+ Co [ikc (B11 · ∂xA20) + ikc (B11 · ∂xA∗20)− ikc (B∗11 · ∂xA20)− i2kc (∂xB
∗
11 · A22)]

(2.65)

N
(A)
31 = − ikc (A11 · ∂xΨ20)− ikc (A11 · ∂xΨ∗20) + ikc (A∗11 · ∂xΨ22) + i2kc (∂xA

∗
11 ·Ψ22)

+ ikc (Ψ11 · ∂xA20) + ikc (Ψ11 · ∂xA∗20)− ikc (Ψ∗11 · ∂xA22)− i2kc (∂xΨ
∗
11 · A22)

(2.66)
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N
(B)
31 = ikc (Ψ11 · ∂xB20) + ikc (Ψ11 · ∂xB∗20)− ikc (Ψ∗11 · ∂xB22)− i2kc (∂xΨ

∗
11 ·B22)

− ikc (B11 · ∂xΨ20)− ikc (B11 · ∂xΨ∗20) + ikc (B∗11 · ∂xΨ22) + i2kc (∂xB
∗
11 ·Ψ22)

− ikc (A11 · ∂xu20)− ikc (A11 · ∂xu∗20) + ikc (A∗11 · ∂xu22) + i2kc (∂xA
∗
11 · u22)

ikc (u11 · ∂xA20) + ikc (u11 · ∂xA∗20)− ikc (u∗11 · ∂xA22)− i2kc (∂xu
∗
11 · A22)

(2.67)

2.C Linear dispersion relation

The linear dispersion relation, which determines the variable scalings in the multiple scales

analysis. This relation is found by perturbing the linear system (Equation 2.18) with a small

perturbation of the form eσt+ikxx+ikzz. Note that the spatial eigenvalues appear as k2
z and k2

x

at lowest order.
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Chapter 3

The weakly nonlinear

magnetorotational instability in a

global, cylindrical Taylor-Couette flow

3.1 Introduction

The magnetorotational instability (MRI) is believed to drive angular momentum transport in

astrophysical disks. The MRI is a local instability excited by weak magnetic fields in differ-

entially rotating fluids, and since first applied to an astrophysical context (Balbus & Hawley

1991) it has been invoked to explain accretion in protoplanetary disks (Armitage 2011) and

disks around black holes (Blaes 2014), as well as jet and wind launching (Lesur et al. 2013),

anisotropic turbulence (Murphy & Pessah 2015), and dynamo generation (Brandenburg et al.

1995; Vishniac 2009).

The diversity of astrophysical systems which may be MRI unstable yields an enormous

This section contains text from an article published in the Astrophysical Journal (Clark & Oishi 2017a).
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Table 3.1: Fiducial parameters for MRI runs

ξ Pm Co Ω2/Ω1 R1/R2 radial magnetic b.c.

Standard MRI 0 1.6E-6 4.85E-2 0.121 0.33 conducting
Helical MRI 4 1E-6 118 0.27 0.5 insulating

parameter space to be explored. In protoplanetary disks, for example, the behavior and

evolution of the MRI – and even its very existence – may change drastically depending

on the properties of the magnetic field, the disk composition, disk geometry, and so forth.

Multiphysics numerical simulations of such systems are currently an area of intense focus,

enabling the study of nonideal MHD effects, disk stratification, nonequilibrium chemistry,

and other complex physics that does not lend itself easily to analytic study (e.g. Fleming

& Stone 2003; Bai 2011; Flock et al. 2013; Suzuki & Inutsuka 2014, among many others).

Still, computational costs inevitably constrain numerical approaches. MRI saturation is a

complicated nonlinear problem which may depend on the assumptions and approximations

adopted by simulations in nonobvious ways. For example, the magnetic Prandtl number

Pm = ν/η ∼ 10−8 in protoplanetary disks (e.g. Oishi & Mac Low 2011) and ∼ 10−6 in

liquid metal experiments (e.g. Goodman & Ji 2002). Such extreme ratios of viscosity to

resistivity far exceed current computational resources. However, we can construct asymptotic

approximations valid for Pm� 1 using analytic methods.

Analytic methods can also play a powerful role in elucidating the mechanisms responsible

for MRI saturation. For instance, analytical approaches have revealed the mechanism that

likely governs saturation in the “shearing box” approximation. The shearing box is an

oft-invoked local approximation in which a section of a disk is represented by solving the

MHD equations in a rotating, Cartesian box with a linearized background shear, subject to

shear periodic boundary conditions in the radial direction. The shearing box is a convenient

computational framework allowing extreme resolution for local MRI studies and has been
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extended to include vertical stratification and a wide variety of diffusive effects.

However, while the MRI is a local instability, there are a number of important problems

that require a global treatment. Perhaps most importantly, linear evolution in the shearing

box is dominated by channel modes, particularly when a net vertical magnetic field threads

the box. These linear modes are exact solutions to the nonlinear local MRI equations.

The shearing box MRI system avoids runaway growth by a secondary instability of the

channel modes themselves (Goodman & Xu 1994; Pessah 2010). The growth of parasitic

modes provides a saturation avenue for channel mode-dominated flows, yet this is unlikely

to be the dominant saturation mechanism in laboratory experiments or astrophysical disks,

as channel modes are artificially over-represented in the shearing box (Latter et al. 2015).

Thus while the shearing box may accurately approximate many features of the global MRI,

the saturation mechanism may not be among them. In Clark & Oishi (2017b, hereafter

Chapter 2) we find that the fastest-growing MRI mode in the shearing box is not a channel

mode when the effects of ambipolar diffusion are formally included. It is thus important to

ask whether the symmetries that give rise to the weakly nonlinear saturation in the local

geometry are also manifested in the global flow.

In this paper, we develop a weakly nonlinear, global theory for the MRI in a Taylor-

Couette (TC) geometry. This system precludes channel modes, allowing us to develop an

understanding of MRI saturation in their absence. A number of saturation mechanisms

have been proposed for the MRI which do not rely on channel modes dominating the flow.

The MRI feeds off of the free energy from differential rotation, and so a modification of the

background shear may cause saturation (Knobloch & Julien 2005; Umurhan et al. 2007b).

The MRI may transfer its free energy into the magnetic field, and saturate when the field

is too strong to be susceptible to the MRI (Ebrahimi et al. 2009). The MRI may saturate

differently depending on the particular parameter regime under investigation, and so our
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challenge is not only in identifying possible saturation mechanisms, but in understanding

how and when each applies in different astrophysical environments.

Our investigation is astrophysically motivated, but we also intend our theory to be rele-

vant to laboratory experiments. Several experimental efforts are attempting to observe the

MRI in the laboratory, which will allow the study of a crucial astrophysical phenomenon in

a controlled setting. Unfortunately, detection of the MRI has so far proven elusive. Sisan

et al. (2004) claimed to detect the MRI in a spherical Couette flow, but most likely detected

unrelated MHD instabilities instead (Hollerbach 2009; Gissinger et al. 2011). Most relevant

to our work is the Princeton Plasma Physics Laboratory (PPPL) MRI Experiment, a liquid

gallium TC flow with an axial magnetic field (Ji et al. 2001). There has been a significant

amount of theoretical work designed to complement the Princeton MRI experiment involv-

ing direct numerical simulation of the experimental conditions, much of it focused on the

specific challenges in identifying MRI signatures despite spurious, apparatus-driven flows

(e.g. Gissinger et al. 2012). The vertical endcaps on a laboratory MRI apparatus drive

meridional flows which both inhibit the excitement of MRI and obscure its detection. The

Princeton MRI experiment employs split, independently rotating endcaps to mitigate these

flows (Schartman et al. 2009). Our work assumes an infinite vertical domain, an idealization

that is theoretically expedient but experimentally impractical. Such an approach changes

the symmetry properties of the solution significantly, and in the much better studied hydro-

dynamic case this leads to significant differences even for TC devices with very large aspect

ratios (Lopez & Marques 2005). Nevertheless, this study represents a first step in under-

standing the saturation of global, MRI unstable TC flow without the additional complication

of vertical endcap effects.

Our radial treatment includes the curvature of the flow in a cylindrical apparatus. Many

investigations of the MRI use the “narrow gap” approximation (the shearing box is a narrow
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Figure 3.1: Growth rates in the (Rm, kz) plane. Color map shows growth rate found by
solving the linear eigenvalue problem for each (Rm, kz) in the grid. The eigenvalue problem
was solved for the widegap parameters listed in Table 3.1. Overlaid contours show growth
rates at [-8E-4, -1.3E-4, 1.3E-4, 8E-4, 1.5E-3], where dashed contours represent negative
values. The gray dotted line shows the interpolated marginal stability curve. The critical
parameters Rmc = 3.31 and kc = 0.902 correspond to the smallest parameter values that
yield a zero growth rate.
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gap without boundary walls), in which the radial extent of the fluid channel is taken to be

much smaller than the radius of curvature. That is, for a center channel radius r0 bounded

by inner and outer radii r1 and r2, respectively, the narrow gap approximation applies when

r0 � (r2 − r1). The narrow gap approximation simplifies the MRI equations by excluding

curvature terms, because the flow through a narrow gap can be taken to be approximately

linear in φ, i.e. Cartesian. Previous investigations into the weakly nonlinear behavior of

the MRI have used this narrow gap approximation (Umurhan et al. 2007a,b; Clark & Oishi

2017b). Building on our work in Chapter 2, here we undertake the first (to our knowledge)

weakly nonlinear analysis of the MRI in the wide gap regime, where the channel width may

be comparable to or larger than its distance from the center of rotation.

Because we include curvature terms, our treatment also allows us to study the helical

magnetorotational instability. The helical MRI is an overstability in which the background

magnetic field is helical, B = B0(ξr/r0φ̂+ ẑ) (Hollerbach & Rüdiger 2005). The helical MRI

currently occupies a special place in the MRI puzzle. The helical MRI has been proposed as

a method of awakening angular momentum transport in the “dead zones” of protoplanetary

disks where the Rm becomes very small. However the rotation profiles needed to excite

helical MRI may be steeper than Keplerian, depending on the boundary conditions, and so

its role in astrophysical disks is currently a matter of debate (Liu et al. 2006; Rüdiger &

Hollerbach 2007; Kirillov & Stefani 2013). Regardless of its astrophysical role, the helical

MRI is significantly easier to excite in a laboratory setting than the standard MRI, and

has already been detected by the Potsdam Rossendorf Magnetic Instability Experiment

(PROMISE; Stefani et al. 2006, 2009).

In this work we explore the behavior of the viscous, dissipative MRI in a cylindrical

geometry close to threshold, making explicit comparisons to the standard MRI behavior

in the thin-gap regime. We investigate both the standard MRI, in which the background
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magnetic field is purely axial, as well as the helical MRI. In section 3.2, we lay out the basic

mathematical framework of the problem. In section 3.3, we introduce the method of multiple

scales we use to construct our theory. In section 3.4 we describe the basic results, and in

section 3.5 we place them in the context of previous work on other instabilities, discuss their

relevance to experiments, and reiterate our final conclusions.
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3.2 Basic framework

The basic equations solved are the momentum and induction equations,

∂tu + u · ∇u = −1

ρ
∇P −∇Φ +

1

cρ
(J×B) + ν∇2u (3.1)

and

∂tB = ∇× (u×B) + η∇2B, (3.2)

where P is the gas pressure, ν is the kinematic viscosity, η is the microscopic diffusivity,

∇Φ is the gravitational force per unit mass, and the current density is J = c∇ × B/4π.

We solve these equations subject to the incompressible fluid and solenoidal magnetic field

constraints,

∇ · u = 0 (3.3)

and

∇ ·B = 0. (3.4)

We perturb these equations axisymmetrically in a cylindrical (r, φ, z) geometry, i.e. u =

u0 + u1 and B = B0 + B1, where u0 and B0 are defined below. We define a Stokes stream

function Ψ such that

u1 =




1
r
∂zΨ r̂

uφ φ̂

−1
r
∂rΨ ẑ



, (3.5)

and the magnetic vector potential A is
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B1 =




1
r
∂zA r̂

Bφ φ̂

−1
r
∂rA ẑ



. (3.6)

These definitions automatically satisfy Equations 3.3 and 3.4 for axisymmetric distur-

bances. We note that in the linearized equations, streamfunctions of the form ux = ∂zΨ,

uz = −(∂r+
1
r
)Ψ, and the corresponding definitions of the magnetic vector potential, are con-

venient choices, but we define Equations 3.5 and 3.6 for this nonlinear investigation because

of the incommutability of ∂r and ∂r + 1
r
.

The astrophysical magnetorotational instability operates in accretion disks and in stellar

interiors, environments where fluid rotation is strongly regulated by gravity. In accretion

disks, differential rotation is imposed gravitationally by a central body, so the rotation profile

is forced to be Keplerian. Clearly a gravitationally enforced Keplerian flow is inaccessible to

laboratory study, so differential rotation is created by rotating an inner cylinder faster than

an outer cylinder (a TC setup). For a nonideal fluid subject to no-slip boundary conditions,

the base flow is

Ω(r) = c1 +
c2

r2
, (3.7)

where c1 = (Ω2r
2
2 − Ω1r

2
1)/(r2

2 − r2
1), c2 = r2

1r
2
2(Ω1 − Ω2)/(r2

2 − r2
1), and Ω1 and Ω2 are the

rotation rates at the inner and outer cylinder radii, respectively. In the laboratory, r1 and r2

are typically fixed by experimental design. However Ω1 and Ω2 may be chosen such that the

flow in the center of the channel is approximately Keplerian. Defining a shear parameter q,

we see that for Couette flow,

q(r) ≡ −d ln Ω

d ln r
=

2c2

c1r2 + c2

. (3.8)
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Thus through judicious choice of cylinder rotation rates, one can set q(r0) = 3/2, for

quasi-Keplerian flow. Note that the narrow gap approximation imposes a linear shear (con-

stant q), and so the interaction of fluid perturbations with the base velocity profile differs

significantly from the case considered here. Our base velocity is

u0 = rΩ(r)φ̂. (3.9)

We initialize a magnetic field

B0 = B0ẑ +B0ξ
r0

r
φ̂, (3.10)

so that the base magnetic field is axial when ξ = 0 and otherwise helical.

In this work we will focus our findings on two fiducial parameter sets, one for the standard

MRI where ξ = 0 and one for the helical MRI. We choose the standard MRI parameters to

be comparable to the case considered in Goodman & Ji (2002). The helical MRI parameters

were chosen to be comparable to Hollerbach & Rüdiger (2005). Our fiducial parameters are

described in Table 3.1.

Our perturbed system is

1

r
∂t(∇2Ψ− 2

r
∂rΨ)− Co

1

r
B0∂z(∇2A− 2

r
∂rA)− 2

r
u0∂zuφ + Co

2

r2
B0ξ∂zBφ

− 1

Re

[
∇2(

1

r
∇2Ψ− 2

r2
∂rΨ)− 1

r3
∇2Ψ +

2

r4
∂rΨ

]
= N (Ψ) (3.11)

∂tuφ +
1

r2
u0∂zΨ +

1

r
∂ru0∂zΨ− CoB0∂zBφ −

1

Re
(∇2uφ −

1

r2
uφ) = N (u) (3.12)

∂tA−B0∂zΨ−
1

Rm
(∇2A− 2

r
∂rA) = N (A) (3.13)

∂tBφ +
1

r2
u0∂zA−B0∂zuφ −

1

r
∂ru0∂zA−

2

r3
B0ξ∂zΨ−

1

Rm
(∇2Bφ −

1

r2
Bφ) = N (B) (3.14)
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The righthand side of the equations contain the nonlinear terms

N (Ψ) = −J(Ψ,
1

r2
(∇2Ψ−2

r
∂rΨ))+CoJ(A,

1

r2
(∇2A−2

r
∂rA))−Co

2

r
Bφ∂zBφ+

2

r
uφ∂zuφ (3.15)

N (u) = Co
1

r
J(A,Bφ)− 1

r
J(Ψ, uφ) + Co

1

r2
Bφ∂zA−

1

r2
uφ∂zΨ (3.16)

N (A) =
1

r
J(A,ψ) (3.17)

N (B) =
1

r
J(A, uφ) +

1

r
J(Bφ, ψ) +

1

r2
Bφ∂zψ −

1

r2
uφ∂zA (3.18)

where J is the Jacobian J(f, g) ≡ ∂zf∂rg − ∂rf∂zg. Note that in the above, ∇2f ≡

∂2
rf +∂2

zf + 1
r
∂rf . Equations 3.11 - 3.18 are nondimensionalized by inner cylinder quantities:

lengths have been scaled by r1, velocities by r1Ω1, and densities by ρ0, where ρ0 is the constant

density. Magnetic fields are scaled by B0, the constant strength of the initial background

field; where B0 appears in the above it is formally unity. Ω1 = Ω(r1) is the rotation rate of

the inner cylinder. We introduce the Reynolds number Re = Ω1r
2
1/ν, the magnetic Reynolds

number Rm = Ω1r
2
1/η, and a plasma beta parameter Co = 2B2

0/Ω
2
1r

2
1ρ0. Note that if we

define the dimensional cylindrical coordinate r = r1(1 + δx), we recover the narrow gap

approximation of the system in the limit δ → 0.

We solve the standard MRI system subject to the same boundary conditions used in

Goodman & Ji (2002). These are periodic vertical boundary conditions and no-slip, perfectly

conducting radial boundary conditions, namely

Ψ = ∂rΨ = u = A = ∂r(rB) = 0 (3.19)

at r = r1, r2. To the helical MRI system we apply insulating boundary conditions as used

in Hollerbach & Rüdiger (2005):
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∂rA = k
I0(kr)

I1(kr)
A at r = r1 (3.20)

∂rA = −kK0(kr)

K1(kr)
A at r = r2 (3.21)

and B = 0 at r = r1, r2 (see Willis & Barenghi 2002). Here, In and Kn are the modified

Bessel functions of the first and second kind, respectively.

We note that Equations 3.11 - 3.14 are written in a nonstandard form, with the nonlinear

terms on the righthand side. This choice has a practical motivation. As detailed in §3.3,

we expand these equations in a perturbation series and solve them order by order using a

pseudospectral code. The code solves partial differential equations of the form M∂tV+LV =

F, where M and L are matrices and F is a vector containing any nonhomogenous terms. The

nonlinear terms in our perturbation analysis become nonhomogenous term inputs to the

solver.

3.3 Weakly nonlinear perturbation analysis

We find the marginal system as a function of the dimensionless parameters. The marginal

stability curve for our standard MRI system is a hyperplane in (Rm,Pm,Co,Ω2/Ω1,R1/R2),

but we hold all of these constant except for Rm. To analyze the MRI system at marginal-

ity, we fix the parameters listed in Table 3.1 and determine the critical Rm and vertical

wavenumber kz by repeatedly solving the linear MRI system to determine the smallest pa-

rameter values for which the fastest growing mode has zero growth rate. That is, we solve

the linear eigenvalue problem for eigenvalues σ = γ+iω and determine the parameters which

yield γ = 0. Figure 3.1 shows linear MRI growth rates γ in the (Rm, kz) plane. For the
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Figure 3.4: Nonlinear term N
(A)
31 for the wide gap (left) and narrow gap (right) standard

MRI, where the wide gap is the TC flow considered in this work. Terms shown span three
orders of magnitude in Pm. The wide gap vectors represent runs using the parameters in
Table 3.1 and Pm = 1.6E − 4, 1.6E − 5, 1.6E − 6. The narrow gap MRI runs use the
fiducial parameters in Umurhan et al. (2007b), with Pm = 1E − 4, 1E − 5, 1E − 6. Inlaid
plots show zoomed-in views of boundary layers at the inner boundary. The wide gap case
displays dramatic boundary layers only at the inner boundary, but boundary layers in the
thin gap approximation are symmetric about the origin because MRI modes in the narrow
gap approximation are eigenstates of parity.
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Figure 3.5: Critical parameters Rmc and kc, and coefficients of the Ginzburg-Landau equa-
tion (Equation 3.28) as a function of Pm. Note the very weak dependence of the linear (b)
and diffusive (h) coefficients on Pm. The saturation amplitude αsat =

√
b/c of the standard

MRI system has a power law dependence on Pm which we measure to be αsat ∼ Pm0.777.
This scaling is driven by the Pm dependence of the nonlinear coefficient c.
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fiducial standard MRI parameters in Table 3.1 we find critical parameters Rmc = 3.30 and

kc = 0.901.

As in the weakly nonlinear analysis of Chapter 2, we tune the system away from marginal-

ity by taking B0 → B0 (1 + ε2), where the small parameter ε � 1. We parameterize scale

separation as Z = εz and T = ε2t, where Z and T are slowly varying spatial and temporal

scales, respectively. We group the fluid variables into a state vector V = [Ψ, u, A,B]T, such

that the full nonlinear system in Equations 3.11 - 3.18 can be expressed as

D∂tV + LV + ε2G̃V + ξH̃V + N = 0, (3.22)

where D, L, and G̃ are matrices defined in Appendix 3.A, and N is a vector containing

all nonlinear terms. We expand the variables in a perturbation series

V = εV1 + ε2V2 + ε3V3 + h.o.t. (3.23)

The perturbed system can then be expressed at each order by the equations

O(ε) : LV1 + ξH̃V1 +D∂tV1 = 0 (3.24)

O(ε2) : LV2 + ξH̃V2 +D∂tV2 + L̃1∂ZV1 + ξH∂ZV1 + N2 = 0 (3.25)

O(ε3) : LV3 + ξH̃V3 +D∂tV3 +D∂TV1 + L̃1∂ZV2 + ξH∂ZV2 + L̃2∂
2
ZV1

− ξH̃V1 + G̃V1 + N3 = 0. (3.26)

The nonlinear terms N2 and N3 which appear at O(ε2) and O(ε3), respectively, contain

the nonlinear interaction between MRI modes. The system is weakly nonlinear because

this mode interaction occurs in a controlled way. At O(ε2), the nonlinear terms represent

the interaction of linear (O(ε)) MRI modes with themselves and their complex conjugates.
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At O(ε3), the nonlinear terms contain the interaction between first- and second-order MRI

modes. See Appendix 3.A for the definition of matrices and a thorough derivation, and

Appendix 3.B for the detailed form of the nonlinear vectors. We emphasize that Equations

3.24 - 3.26 have the same form as these equations in the narrow gap case, although the

matrices, which contain all radial derivatives, are significantly different in this wide gap

formulation. This is because we do not have slow variation in the radial dimension. In the

standard MRI case, σ = 0 at marginality and so the ∂t terms drop out of the equations. For

the helical MRI case, however, σ has a nonzero imaginary component even at threshold, so

we must formally include these terms in our perturbation expansion. The slow variation in

Z and T are parameterized as an amplitude function α(Z, T ) which modulates the flow in

these dimensions. This parameterization coupled with the boundary conditions lead us to

an ansatz linear solution

V1 = α(Z, T )V11(r)eikzz+σt + c.c., (3.27)

where the radial variation is contained in V11, and σ = γ + iω.

We solve the equations at each order using Dedalus, an open source pseudospectral code.

We solve the radial portion of the eigenvectors on a basis of Chebyshev polynomials subject

to our radial boundary conditions. We use a 512-component Chebyshev grid, and confirm

numerical convergence at 1.5× the resolution. This is sufficient to determine convergence

because of the faster-than-exponential convergence of spectral methods (Boyd 2001). We

solve Equation 3.24 as a linear eigenvalue problem, and Equation 3.25 as a linear boundary

value problem. The result of the weakly nonlinear analysis is a single amplitude equation for

α. This amplitude equation is found by enforcing a solvability condition on Equation 3.26.
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Figure 3.6: Perturbation structure for the velocity and magnetic field of the fiducial stan-
dard MRI case, including first and second order perturbations. Leftmost panel is a radially
zoomed-in section of the velocity perturbation structure, to better show the boundary layer-
driven structure at the inner cylinder. Colors are azimuthal velocity and magnetic field
perturbations, and streamfunctions show the perturbation structure in the r, z plane. The
width of the streamfunctions is proportional to the speed and magnetic field strength in the
r, z plane for the velocity and magnetic field, respectively. Vertical domain covers one critical
wavelength λc = 2π/kc. We use the constant saturation amplitude αs = 3.9× 10−5 derived
for this case, and a small parameter ε = 0.5.
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We find

∂Tα = bα + d∂2
Zα− cα

∣∣α2
∣∣ , (3.28)

a Ginzburg-Landau equation (GLE). The GLE governs the weakly nonlinear amplitude

behavior in a wide range of physical systems, including the narrow gap MRI (Umurhan et al.

2007b), Rayleigh-Bénard convection (Newell & Whitehead 1969), and hydrodynamic TC flow

(e.g. Recktenwald et al. 1993). We emphasize that this is a model equation, valid only near

marginality (Cross & Hohenberg 1993). The dynamics of the GLE are determined by its

coefficients, which are in turn determined by the linear eigenfunctions and nonlinear vectors

plotted in Figures 3.2 and 3.3. Equation 3.28 contains three coefficients: b, which determines

the linear growth rate of the system, d, a diffusion coefficient, and c, the coefficient of the

nonlinear term. When all of the coefficients of Equation 3.28 are real, this is known as the

real GLE, although the amplitude α is in general complex. The real GLE is subject to

several well-studied instabilities, including the Ekhaus and Zig-Zag instabilities. When the

coefficients are complex, we have the complex GLE, a source of even richer phase dynamics

than its real counterpart (see Aranson & Kramer 2002) for a thorough review.

3.4 Results

3.4.1 Standard MRI

For the standard MRI we derive a real GLE. Here we note a departure from the behavior

of the narrow gap system. The purely conducting boundary condition states that the axial

component of the current (Jz = [∇×B]z) must be zero at the walls. In the thin gap geometry,

the purely conducting boundary condition on the azimuthal magnetic field is ∂x(By) = 0 for

axisymmetric perturbations. A spatially constant azimuthal field satisfies both the thin-gap
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MRI equations and this boundary condition. This neutral mode is formally included in the

analysis of Umurhan et al. (2007b) and yields a second amplitude equation in the form of a

simple diffusion equation. This amplitude equation decouples from the GLE because of the

translational symmetry of the thin-gap geometry. Because that symmetry is not preserved

in the wide-gap case, Umurhan et al. (2007b) postulate that slow variation in the wide-

gap geometry will be governed by two coupled amplitude equations. However, the purely

geometric term in Equation 3.14 prevents the wide-gap geometry from sustaining a neutral

mode. We note that a neutral mode of the form Bφ(r) ∝ 1
r

would exist in a resistance-free

approximation. Here, however, this mode does not exist and we derive a single real GLE as

the amplitude equation of the standard MRI.

The preservation of symmetries in the thin-gap geometry is worth a closer look, as its

absence in the wide gap case is the source of many differences in the systems. Latter et al.

(2015) point out that in the ideal limit (ν, η → 0), the linearized system described by the

lefthand side of Equations 3.11 - 3.14 can be expressed as a Schrödinger equation for the

radial velocity. Similarly combining equations to obtain a single expression for Ψ, we find

that the thin-gap limit, linear, ideal MRI can be expressed as

∂2
xΨ + k2

zU(x)Ψ = 0 (3.29)

where U(x) = 3/v2
Ak

2
z + 1 at marginality. This form is not unique to the ideal MHD case,

though the ideal approximation simplifies the expression considerably. When no-slip radial

boundary conditions are applied, the thin-gap MRI system resembles a particle in a box with

a radially constant potential well. Thus thin-gap linear MRI modes must be eigenstates of

parity. These symmetries are preserved in the nonlinear MRI vectors because they are

nonlinear combinations of lower-order eigenfunctions. In the wide gap case, the “potential”

U(r) varies with r, so symmetric and antisymmetric modes are no longer required. This lack
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Figure 3.8: As in Figure 3.6 but for the fiducial helical MRI case, including first and second
order perturbations.

of symmetry is readily apparent in the eigenfunctions and nonlinear vectors in Figures 3.2

and 3.3, both of which display enhanced boundary layer activity at the inner boundary as

compared to the outer boundary. The inner and outer boundary layers are symmetric in the

thin gap case (see Figure 3.4).

The form of the nonlinear terms, detailed in Appendix 3.B, represent a departure from

the thin-gap theory. The narrow gap nonlinear terms at both second and third orders are

linear combinations of Jacobians. The nonlinear terms in the wide-gap case differ from their

thin-gap analogues with the addition of vertical advective terms. These terms derive from

the advective derivatives in the momentum and induction equations, but are filtered out

in the thin-gap approximation. The nonlinear terms ultimately determine the saturation

amplitude of the system, as described below.

We examine the behavior of the wide gap MRI system as a function of Pm in the regime
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Pm� 1. Figure 3.5 shows the critical parameters kc and Rm as a function of Pm, as well as

the GLE linear coefficient b and the diffusion coefficient d. From Equation 3.28 it is apparent

that the asymptotic saturation amplitude is αs = ±
√
b/c, and we plot the dependence of αs

on Pm in the bottom panel of Figure 3.5. Note that because Rm is essentially constant as a

function of Pm, the saturation amplitude is equivalently sensitive to Re−1. We find by fitting

the data that the saturation amplitude scales as αs ∼ Pm0.777. For these same boundary

conditions, Umurhan et al. (2007b) find that the narrow gap saturation amplitude scales as

Pm2/3. They find that this amplitude dependence is driven by the Pm1/3 dependence of the

linear boundary layer. Boundary layer analysis similarly reveals a ν1/3 dependence for the

radial extent of the boundary layer in TC flow (Goodman & Ji 2002). Figure 3.4 shows the

structure of the third-order nonlinear term N
(A)
31 as a function of Pm for both the narrow and

wide gap standard MRI. N31 is the vector that determines the GLE coefficient c, and thus

the scaling of the saturation amplitude because of the insensitivity of b to Pm (see Appendix

3.A for the wide gap case, and Umurhan et al. (2007b) and Chapter 2 for the narrow gap

equations). Clearly, the width of the boundary layers scales with Pm in both the wide and

narrow gap MRI. This translates to a steeper saturation amplitude Pm dependence in the

wide gap case.

Because it is governed by a real GLE, the saturated standard MRI state may be unstable

to the Eckhaus instability, in which the wavelength of the large-scale pattern is adjusted

(e.g. Hoyle 2006). Preliminary investigation of the GLE behavior for the standard MRI

coefficients derived here indicates that when the simulated vertical domain is large (i.e.

spans multiple critical wavelengths), the amplitude function is modulated in Z, but always

be bounded by αs = ±
√
b/c, as must be the case for the one-dimensional real GLE. In

Figure 3.6 we plot the saturated state perturbation structure of the fiducial standard MRI,

up to and including second order disturbances. We use a constant saturation amplitude, but
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note that a nonconstant αs would introduce more vertical structure. We similarly plot the

total stress, i.e. the sum of the Reynolds and Maxwell stresses in our domain (Figure 3.7).

As in Chapter 2, we find that the saturation mechanism for weakly nonlinear TC flow is a

combination of reduced shear and redistributed and amplified background Bz. This strongly

suggests that the underlying physics remains the same in the wide gap geometry, despite the

addition of curvature terms.

3.4.2 Helical MRI

When ξ in Equation 3.22 is nonzero, the helical MRI arises. We examine a single fiducial

helical MRI case, for the parameters used by Hollerbach & Rüdiger (2005), listed in Table 3.1.

The helical MRI is an overstability, so the ansatz linear eigenvector we consider (Equation

3.27) is characterized by a complex temporal eigenvalue σ. For our fiducial parameters, the

marginal mode has a frequency ω = 0.153. This means that the helical MRI modes are

traveling waves, moving in the z direction with a phase velocity ω/kc.

At the conclusion of the weakly nonlinear analysis, we find that the coefficients of Equa-

tion 3.28 are complex. The marginal helical MRI is thus described by a complex GLE. This

difference in character between the amplitude equations that modulate the weakly nonlin-

ear standard and helical MRI is a consequence of the same property that makes the helical

MRI an overstability. With the introduction of an azimuthal component, the background

magnetic field acquires a handedness that is not present in a purely axial field. The helical

MRI eigenvectors are therefore free to be out of phase with one another. In our perturbation

series, the helical MRI modes interact within and between orders with modes which carry

different phases, leading to complex GLE coefficients.

The phase dynamics of the complex GLE are well-studied in a variety of systems, and

depend on the values of the GLE coefficients. The complex GLE may be unstable to trav-
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eling wave instabilities such as the Benjamin-Feir instability, a generalization of the Ekhaus

instability. The complex GLE can also admit spatiotemporal chaos, and various classes

of coherent structures (Aranson & Kramer 2002). Although a detailed description of the

phase dynamics in the helical MRI is beyond the scope of this work, we note that such

long-wavelength, long-timescale behavior may be observed in liquid metal helical MRI ex-

periments.

3.5 Discussion

In this work we carry out a formal weakly nonlinear multiscale analysis of the MRI in a

Taylor-Couette flow. We analyze both the standard and helical MRI, which differ only in

the geometry of their imposed background magnetic fields. We find that the amplitude

function, which governs the behavior of the system on long length- and timescales, obeys a

real GLE for the case of the standard MRI, and a complex GLE for the helical MRI. These

two systems are thus subject to different large-scale phase dynamics.

Our work should be placed in the broader context of emergent pattern formation in phys-

ical systems. The real Ginzburg-Landau equation derived here governs the slow-parameter

evolution of the standard MRI close to threshold. The GLE arises in a number of other

physical systems, and in each case it is a consequence not of the particular physics at hand,

but of the underlying symmetries in the problem. Here we make a phenomenological com-

parison to two other systems that give rise to a GLE. The first and perhaps most famous

is Rayleigh-Bénard convection, in which a fluid between two plates is heated from below

(Newell & Whitehead 1969). If we take the plane of the fluid to be infinite in the hori-

zontal plane, the system is initially translationally symmetric. At the onset of convection

the system undergoes a symmetry breaking, forming rolls, or convection cells, which break
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the horizontal translational invariance. Analogously, the standard MRI system considered

here is initially vertically translationally symmetric, because we idealize the TC device as

an infinitely long cylinder. The MRI breaks this symmetry, forming cells along the vertical

length of the domain. Just as Rayleigh-Bénard cells transport heat vertically, the MRI cells

transport angular momentum horizontally. The symmetry breaking of each of these systems

is described near onset by the real GLE.

A real GLE has also been found to describe the formation of zonal flows out of mag-

netized turbulence in a model system (Parker & Krommes 2013, 2017). Zonal flows are

axisymmetric structures, large-scale and long-lived, which form spontaneously out of turbu-

lence. They have recently been observed in some numerical studies of the MRI, and have

generated considerable interest for their possible role in planet formation in protoplanetary

disks (Johansen et al. 2009; Kunz & Lesur 2013). The present work is of course an idealized

geometry, and we make no attempt to model a realistic protoplanetary disk environment.

However, it is worth noting that the GLE we derive implies that axisymmetric, large-scale,

long-lived structures are a generic feature of the MRI in the weakly nonlinear regime. This

work provides a mathematical description of the MRI as a pattern-forming process, but

much remains to be understood, particularly involving the application of this model system

to realistic astrophysical disks. Chapter 2 establishes that the GLE will arise in the shearing

box approximation in the presence of ambipolar diffusion, and this work demonstrates that

the pattern-forming behavior is not an artifact of the local geometry. The stage is thus set

to apply this theory to more astrophysical conditions in either the global geometry or a local

approximation. Of course our current model is most directly relevant to TC flows, and we

emphasize that laboratory MRI experiments stand poised to observe the MRI-driven pattern

formation predicted here.

We detail several avenues for future work, which highlight the application of this theory
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to both laboratory experiments and astrophysical disks:

• Our theory may be applied to a specific experimental apparatus to model the predicted

saturated state. One can then ask whether GLE dynamics should be detectable, espe-

cially over endcap-driven flows.

• The saturation properties of different rotation profiles may be compared by direct

application of the theory developed here.

• Vertical stratification may be added to the base state, constructing a more realistic

model of global vertical disk structure.

• Other nonideal MHD effects such as the Hall effect and ambipolar diffusion are straight-

forward additions to this model, and are of particular interest for understanding pro-

toplanetary disks.

• The background magnetic field geometry may be generalized to include radial variation,

another feature relevant to astrophysical disks.

• The radial boundary conditions considered here may be expanded to mimic astrophys-

ical disks rather than TC devices.

• Our theory can be compared to simulations in both the weakly and strongly nonlinear

regimes: both the pattern selection at saturation and the Pm0.777 scaling can be directly

tested.

This is the first weakly nonlinear analysis of the MRI in a cylindrical geometry, and is

thus the global analogue of similar analyses in local approximations (Umurhan et al. 2007b;

Vasil 2015). Understanding the connection between local and global MRI modes is crucial

for interpreting simulation results across domain geometries. (The relationship between
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local and global linear MRI modes is investigated in Latter et al. 2015.) Phenomena such

as saturation and the development of turbulence depend critically on the nature of the

underlying MRI modes. The formalism presented here describes analytically the weakly

nonlinear behavior of global MRI modes. This treatment should be expanded to encompass

more astrophysically relevant conditions, so that our understanding of complicated MRI

phenomena may continue to make contact with analytical theory.
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3.A Detailed Equations

Here we detail the perturbation analysis described in Section 3.3. The perturbation series is

described by Equations 3.24 - 3.26, where

L = L0 + L1∂z + L2∂
2
z + L3∂

3
z + L4∂

4
z , (3.30)

L̃1 = L1 + 2L2∂z + 3L3∂
2
z + 4L4∂

3
z (3.31)

L̃2 = L2 + 3L3∂z + 6L4∂
2
z (3.32)
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G̃ = G∂z + L3∂
3
z , (3.33)

H̃ = H∂z, (3.34)

and the constituent matrices are defined as

L0 =




LΨΨ
0 0 0 0

0 − 1
Re

(∂2
r + 1

r
∂r − 1

r2
) 0 0

0 0 − 1
Rm

(∂2
r − 1

r
∂r) 0

0 0 0 − 1
Rm

(∂2
r + 1

r
∂r − 1

r2
)




(3.35)

where

LΨΨ
0 = − 1

Re
(− 3

r4
∂r +

3

r3
∂2
r −

2

r2
∂3
r +

1

r
∂4
r ), (3.36)

L1 =




0 −2
r
u0 Co( 1

r2
∂r − 1

r
∂2
r ) 0

1
r2
u0 + 1

r
∂ru0 0 0 −Co

−1 0 0 0

0 −1 1
r2
u0 − 1

r
∂ru0 0




(3.37)

L2 =




− 1
Re

(− 2
r2
∂r + 2

r
∂2
r ) 0 0 0

0 − 1
Re

0 0

0 0 − 1
Rm

0

0 0 0 − 1
Rm




(3.38)
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L3 =




0 0 −Co1
r

0

0 0 0 0

0 0 0 0

0 0 0 0




(3.39)

L4 =




− 1
Re

1
r

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




(3.40)

G =




0 0 Co( 1
r2
∂r − 1

r
∂2
r ) 0

0 0 0 −Co

−1 0 0 0

0 −1 0 0




(3.41)

H =




0 0 0 Co 2
r2

0 0 0 0

0 0 0 0

− 2
r3

0 0 0




(3.42)

D =




1
r
∂2
r + 1

r
∂2
z − 1

r2
∂r 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



. (3.43)

We solve the O(ε) (linear) system, followed by the O(ε2) system in Equation 3.25. At

second order in ε, nonlinear terms arise which are formed by the interaction of first-order
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MRI modes with themselves and their complex conjugates. This mode interaction means

that the second-order nonlinear term is

N2 = |α|2N20 + α2N22e
2ikcz, (3.44)

where terms are grouped by z-dependence. See Appendix 3.B for the full form of the non-

linear terms. Equation 3.25 must therefore be solved as three separate systems of equations,

one for each possible z resonance:

LV20 + ξ∂zHV20 = N20 (3.45)

LV21 + ξ∂zHV21 = −L̃1∂ZV11 − ξ∂ZHV11 (3.46)

LV22 + ξ∂zHV22 = N22 (3.47)

To find a bounded solution at O(ε3) we must eliminate secular terms: terms which are

resonant with the solution to the linear homogenous equation (L+ ξH̃)V = 0 and cause the

solution to grow without bound. Secular terms in our system are those that are resonant

with the linear ansatz (Equation 3.27), i.e. terms with eikcz z-dependence. To eliminate

these terms we enforce a solvability condition, which arises from a corollary to the Fredholm

alternative. The Fredholm alternative states that if we consider a system of equations LV =

b and its adjoint homogenous system L†V† = 0, only one of two conditions holds. Either

there exists one and only one solution to the nonhomogenous system, or the homogenous

adjoint equation has a nontrivial solution. The relevant corollary arises as a consequence of

the second condition: if L†V† = 0 has a nontrivial solution, then LV = b has a solution if

and only if 〈V†|b〉 = 0.
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We define the adjoint operator L† and solution V† as

〈V†|(L+ ξH̃)V〉 = 〈(L† + ξH̃†)V†|V〉, (3.48)

where the inner product is defined as

〈V†|LV〉 =
kc
2π

∫ π/kc

−π/kc

∫ r2

r1

V†∗ · LV rdrdz (3.49)

We derive the adjoint operator by successive integration by parts, to find

L† = L†0 − ∂zL†1 + d2
zL†2 − ∂3

zL†3 + ∂4
zL
†
4 (3.50)

and

H† = −dzHT, (3.51)

where

L†0 =




L†,ΨΨ
0 0 0 0

0 − 1
Re

(1
r
∂r + ∂2

r − 1
r2

) 0 0

0 0 − 1
Rm

(3
r
∂r + ∂2

r ) 0

0 0 0 − 1
Rm

(1
r
∂r + ∂2

r − 1
r2

)



, (3.52)

where

L†,ΨΨ
0 = − 1

Re
(− 3

r5
+

3

r4
∂r −

3

r3
∂2
r +

2

r2
∂3
r +

1

r
∂4
r ), (3.53)
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L†1 =




0 1
r2
u0 + 1

r
∂ru0 −1 0

−2
r
u0 0 0 −1

Co( 1
r3
− 1

r2
∂r − 1

r
∂2
r ) 0 0 1

r2
u0 − 1

r
∂ru0

0 −Co 0 0



, (3.54)

L†2 =




− 1
Re

(− 2
r3

+ 2
r2
∂r + 2

r
∂2
r ) 0 0 0

0 − 1
Re

0 0

0 0 − 1
Rm

0

0 0 0 − 1
Rm



, (3.55)

and L†3 = LT
3 , L†4 = LT

4 . The adjoint boundary conditions are selected to satisfy Equa-

tion 3.49, and differ depending on the boundary conditions enforced on the homogenous

system. Specifically, the boundary conditions arise from the requirement that the integrands

in Equation 3.49 are zero at r1 and r2. For the conducting boundary conditions we apply to

the standard MRI, the adjoint equation

(L† + ξH̃†)V† = 0 (3.56)

must be solved subject to the boundary conditions

Ψ† = ∂rΨ
† = u† = A† = ∂r(rB

†) = 0. (3.57)

For the insulating case, the adjoint boundary conditions are

k
I0(kr)

I1(kr)
rA† − 2A† − r∂rA† = 0 at r = r1 (3.58)
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− kK0(kr)

K1(kr)
rA† − 2A† − r∂rA† = 0 at r = r2 (3.59)

We take the inner product of the adjoint homogenous solution with the terms in Equation

3.26 that are resonant with eikcz. This gives us

〈V†|DV11〉∂Tα + 〈V†|G̃V11 + ξH̃V11〉α + 〈V†|L̃1V21 + L̃2V11 + ξHV21〉∂2
Zα

= 〈V†|N31〉α|α|2, (3.60)

or Equation 3.28, the Ginzburg-Landau Equation, where the coefficients are

b = 〈V†|G̃V11 + ξH̃V11〉/〈V†|DV11〉, (3.61)

h = 〈V†|L̃1V21 + L̃2V11 + ξHV21〉/〈V†|DV11〉, (3.62)

and

c = 〈V†|N31〉/〈V†|DV11〉. (3.63)

3.B Nonlinear Terms

Here we detail the perturbative expansion of the nonlinear vector N in Equation 3.22,

N = ε2N2 + ε3N3. (3.64)
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The nonlinear terms are as follows.

NΨ
2 =− J(Ψ1,

1

r2
∇2Ψ1)− J(Ψ1,−

2

r3
∂rΨ1) + CoJ(A1,

1

r2
∇2A1)

+ CoJ(A1,−
2

r3
∂rA1) +

2

r
u1∂zu1 − Co

2

r
B1∂zB1 (3.65)

Nu
2 = −1

r
J (Ψ1, u1) +

1

r
CoJ (A1, B1)− 1

r2
u1∂zΨ1 + Co

1

r2
B1∂zA1 (3.66)

NA
2 =

1

r
J (A1,Ψ1) (3.67)

NB
2 =

1

r
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r
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1

r2
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1

r2
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B1∂ZA1 (3.70)

NA
3 =

1

r
J (A1,Ψ2) +

1

r
J (A2,Ψ1) +

1

r
J̃ (A1,Ψ1) (3.71)
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Chapter 4

Magnetically Aligned HI Fibers and

the Rolling Hough Transform

4.1 Introduction

Magnetic fields, radiation, turbulence, and cosmic rays are major players that mold the dif-

fuse interstellar medium (ISM). The prevalence of starlight photons and cosmic rays partially

ionizes the largely neutral medium, and causes magnetic fields and gas to move together (i.e.,

flux freezing). We therefore expect the geometry and strength of the interstellar magnetic

field to affect the shape of the ISM. Studies of the magnetic field in diffuse Hi (n ∼ 0.1 - 100

cm−3) suggest that the field strength is relatively independent of volume density, in contrast

to magnetic fields in molecular clouds (e.g. Heiles & Crutcher 2005). The role of magnetic

fields in molecular cloud and star formation is an area of active research (see Crutcher 2012,

for a recent review). A better understanding of the magnetic structure of the diffuse ISM,

the medium from which denser structures form, may elucidate the processes at work on all

This section contains text from an article published in the Astrophysical Journal (Clark et al. 2014).
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scales.

Sensitive, high spatial dynamic range Hi observations allow us to observe the structure

of the diffuse ISM in unprecedented detail. These observations have resolved the previously

“blobby” ISM into a complex network of filaments, clumps, and shells. Even a cursory

inspection of these data indicates that the ISM is not a simple, self-similar, turbulent medium

easily described by a few parameters, but rather an enormously complex structure affected

by many discrete processes on a wide range of scales. Traditionally, such features within the

ISM have been identified by eye (e.g. McClure-Griffiths 2006; Begum et al. 2010), though

there have been some attempts to automate the process for relatively simple structures (e.g.

Saul et al. 2012). Many numerical investigations of ISM data have revolved around functions

that either strip out Fourier phase information and rely heavily on power spectra, or examine

the hierarchical clustering of gas (e.g. Burkhart & Lazarian 2011). Some work has been done

to build metrics that quantify morphology (Adams 1992; Khalil et al. 2004; Robitaille et al.

2010), though these metrics are designed to be general, rather than to capture information

about specific observed features. There are very few methods that have quantified shape

information in the ISM and use it as a predictor of an underpinning physical property.

The Galactic Arecibo L-Band Feed Array Hi (GALFA-Hi) Survey is mapping 13,000

square degrees of sky at 4′ resolution. At this high spatial resolution, we observe that the

diffuse, high-latitude Hi is organized into high aspect ratio structures we call fibers (Figure

4.1). We often find them in groups largely parallel to each other. We use the term “fibers”

to evoke the slender, parallel nature of these Hi features. They are visually similar to

slender molecular fibers identified in star forming regions (e.g. André et al. 2013; Hacar

et al. 2013). While the term “filaments” is used in the literature to describe a wide range

of linear structure, we reserve it in this work to refer to networks of gravitationally bound

structures found by other authors.
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Figure 4.1: Hi data at high Galactic latitude. Top panel is taken from the 36′ resolution
Leiden-Argentina-Bonn survey (Kalberla et al. 2005, LAB), bottom panel from a section of
the 4′ resolution GALFA-Hi DR1 data analyzed in this work. Red, blue, and green channels
represent -7 to -4 km s−1, -3 to -1 km s−1, and 0 to 3 km s−1, respectively. Brightnesses are
shown in a logarithmic stretch in brightness temperature from 0.5 K (dark) to 5 K (light),
or an Hi column density range of 3× 1018 cm−2 to 3× 1019 cm−2. The slender fiber features
can be seen in the bottom panel but are washed out by low resolution of the LAB survey in
the top panel.

Why does such striking linear structure pervade the high-latitude ISM? The elongation

we see in these fibers suggests that magnetic fields may play a crucial role in determining

the structure of the diffuse ISM. In this work we explore the correlation between the orien-

tation of the magnetic field, as traced by starlight polarization, and the orientation of these

gaseous fibers. Starlight polarization traces the orientation of the plane-of-sky magnetic field

because the starlight is polarized by magnetically aligned interstellar grains (Goldsmith et al.

2008). To examine this correlation quantitatively, we require a method for detecting and

parameterizing linear structure. In Section 4.2 we develop a machine vision algorithm, the

Rolling Hough Transform (RHT), designed for this purpose. This powerful new technique

allows us to quantify the alignment of Hi fibers with the magnetic field using diagnostics we

develop in Section 4.3. In Section 4.4 we detail the data used in this study. We investigate

the gas-magnetic field alignment in diffuse Hi in Section 4.5, and apply the same analysis

to the Riegel-Crutcher Hi self-absorption feature in Section 4.6. The success of the RHT at
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mapping the detailed structure of the magnetic field in the Riegel-Crutcher cloud suggests a

technique for resolved field strength estimation, which we propose in Section 4.7. We discuss

the implications of the work in Section 4.8 and conclude with a summary and prospects for

future work in Section 4.9.

4.2 The Rolling Hough Transform (RHT)

The detection of astronomical linear structure is approached in various ways depending on

the context. In cosmic web data, filaments are described as structures linking local density

maxima (e.g. the DisPerSE method of Sousbie (2011) and the SHMAFF method of Bond

et al. (2010)). DisPerSE has also been used in the context of filaments in the molecular ISM,

as in the Herschel filaments analyzed in Arzoumanian et al. (2011). A rich methodology for

linear and curvilinear feature detection has been developed for analysis of solar data (see

Aschwanden (2009) for a broad review of solar image processing and feature detection). The

curvelet transform as described by Starck et al. (2003) has been used across a number of

sub-disciplines to highlight and enhance linear features in astronomical images. Hennebelle

(2013) uses the inertia matrix to isolate filaments in simulation data.

We wish to quantify the linearity and spatial coherence of Hi structures. Because these

structures are not objects with distinct boundaries (see Figure 4.1), we are tackling a prob-

lem that is fundamentally different from solar feature detection and filament identification.

Additionally, the filament detection algorithms used in solar observations (and Starck et al.

2003) report images as their results, which do not directly produce a quantitative measure

of linearity in the image. As these diffuse Hi fibers were not formed by gravitational forces,

there is no reason to require that they must be, or bridge, local overdensities. Indeed, we

find the fibers often to be in groups of parallel structures, very unlike the cosmic web. Thus,
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methods developed for gravitationally-dominated systems are not optimal for our purposes.

The RHT is, as its name suggests, a modification of the Hough transform. The Hough

transform was first introduced in a patent for the detection of complex patterns in bubble

chamber photographs (Hough 1962). It was soon recognized as a powerful line detection

technique, and has found wide applications in image processing and machine vision (for an

excellent review, see Illingworth and Kitler 1988). The adaption of the Hough transform

described here is a rolling version that is particularly well suited to the detection and quan-

tization of specific linear features in astronomical data. The RHT does not merely identify

fibers; it encodes the probability that any given image pixel is part of a coherent linear

structure. This allows the user to quantify the linearity of regions of sky without specifying

fibers as discrete entities.

4.2.1 RHT procedure

The RHT operates on two-dimensional data and is designed to be sensitive to linear structure

irrespective of the overall brightness of the region. The first step is to unsharp mask the

image. The image is convolved with a two-dimensional top-hat smoothing kernel of a user-

defined diameter, DK (Figure 4.2, step 1). The smoothed data is then subtracted from the

original data (Figure 4.2, step 2), and the resulting map is thresholded at 0 to obtain a

bitmask (Figure 4.2, step 3). The subtraction of the smoothed component can be considered

a suppression of large-scale structure, or a high-pass Fourier filter.

Our implementation of the Hough transform follows that of Duda and Hart (1972),

where a straight line is parameterized in terms of the angle θ of its normal, and its minimum

Euclidean distance from the origin, ρ:

ρ = x cos θ + y sin θ. (4.1)
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Figure 4.2: A diagram of the RHT procedure (Section 4.2.1). Steps 1-3 are preprocessing of
the image. Step 4 shows the selection of a disk of diameter DW . This window rolls across
the data, centered on each pixel in turn. Step 5 shows the Hough transform applied to
cartoon data, and step 6 illustrates that only data above a defined threshold is recorded.
Note that this cartoon data contains three linear features, two of which (green and yellow)
are centered on the selected window center (x0, y0), and contribute the most intensity to the
Hough transform. The dashed lines are representative of different levels of coherence in the
data. Here, only the green line (with θ = θ2 orientation) has RHT intensity R(θ, x0, y0) over
the threshold Z.
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This parameterization avoids the computationally problematic singularities that can arise in

a point-slope description of a line.

Every possible line in the image space is uniquely specified by a point in the ρ-θ space.

The standard Hough transform maps each (x, y) pixel in the image space to all (ρ, θ) line

parameters possible for that pixel in the ρ-θ space. The Hough transform is thus a one-to-

many mapping between image space and parameter space. The Hough transform stores in

a (ρ, θ) “accumulator array” the number of “on” pixels in image space that contribute to

each pixel in the ρ-θ space. All values in the (ρ, θ) accumulator array over a set threshold

are then identified as a line in the image space.

The RHT performs a similar mapping from image space to parameter space, with several

key differences. The RHT mapping is performed on a circular domain, diameterDW , centered

on each image-space pixel (x0, y0) in turn (Figure 4.2, step 4). Then a Hough transform is

performed on this area, limited to ρ = 0 (Figure 4.2, step 5). Thus the ρ-θ space is reduced

to a one-dimensional space on θ for each pixel. All intensity over a set intensity threshold Z

is stored as R(θ, x0, y0): RHT intensity as a function of θ for that pixel (Figure 4.2, step 6).

Z is a percentage. In every direction θ, Z ×DW pixels must contain signal in order for the

transform to record the data in that direction. We use the canonical binning for the number

of theta bins:

nθ =

⌈
π

√
2

2
(DW − 1)

⌉
(4.2)

The mapping of each pixel in the circular region to the reduced domain (ρ = 0, θ) is defined

by the Hough transform. As the Hough transform is distributive over image coadditon, we

tabulate this mapping in advance for each pixel within the circular region to optimize the

RHT. By iterating (“rolling”) over the entire image space we produce the RHT output,

R (θ, x, y). A visualization of the linear structures identified by the RHT, the backprojection
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R (x, y), is obtained by integrating R(θ, x, y) over θ:

R(x, y) =

∫
R(θ, x, y) dθ. (4.3)

The bottom panels of Figures 4.7 and 4.8 show RHT backprojections.

4.2.2 Parameter space

One advantage of the RHT is that the input parameters of the transform can be chosen

to highlight specific linear features of interest. One defines, for a given run of the RHT, a

smoothing kernel diameter (DK), window diameter (DW ), and intensity threshold (Z), as

described above. The rolling nature of the RHT ensures that linear structure at least as long

as DW will be identified. Thus DW , along with the Z, sets a lower limit for the spatial length

of the linear features. Thresholding below 100% (Z < 1) reflects the fact that structures can

be physically coherent even if they are not visibly connected (see Figure 4.2). With Galactic

Hi data we have radial velocity as well as spatial information, so we choose a specific velocity

(v) and velocity range (δv) to generate an image on which to run the RHT.

4.3 RHT-starlight polarization methods

We describe two metrics for quantifying the degree of alignment between RHT output,

hereafter R(θ, x, y), and starlight polarization angle, hereafter θ?. R(θ, x, y) is intensity as a

function of angle on a domain θ ∈ [0, π), as a 0◦ orientation is equivalent to a 180◦ orientation.

Similarly, 0◦ and 180◦ are equivalent starlight polarization angles.
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In what follows, we sample R(θ, x, y) in a circular region around each star in the field:

R?(θ) =

∫∫

disk

R(θ, x, y) dxdy. (4.4)

We visualize this on a half-polar plot, such that perfect alignment between R?(θ) and θ?

lies at 0, and orthogonal alignment lies at θ = π/2 or −π/2. This amounts to shifting R? (θ)

to R? (φ), where:

φ ≡ θ − θ∗, (4.5)

and this subtraction occurs on the domain θ ∈ [0, π), such that φ ∈ [−π/2, π/2].

We are interested in the total R? (φ) of all stars in a field. We sum each star’s R? (φ) and

normalize by correcting for the total RHT intensity and the total area sampled, as follows:

R̂ (φ) =

∑
n?

R?(φ)

1
nθ

∫
θ

∫
x

∫
y

R (θ, x, y) dθdxdy

(
Ω

n?πr2

)
(4.6)

Where n? is the number of stars sampled in the field, r is the sampling radius around

each star, and Ω is the total area in the field.

4.3.1 RHT angle expectation value

In this section we describe a point estimator that quantifies the direction of a given region

of R(θ). We choose the region R? (θ).

We compute the angle

〈θRHT 〉′ =
1

2
arctan

[ ∫
sin(2θ)R?(θ) dθ∫
cos(2θ)R?(θ) dθ

]
(4.7)
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and find the equivalent value on the interval θ ∈ [0, π),

〈θRHT 〉 = π −mod(〈θRHT 〉′ + π, π). (4.8)

This is the RHT angle expectation value, a measure of the orientation of the gas around a

particular star. To compare this to the starlight polarization angle θ?, one can simply take

the difference in the two values:

〈φRHT 〉 = 〈θRHT 〉 − θ?, (4.9)

where, again, this subtraction must take place on the domain θ ∈ [0, π), such that 〈φRHT 〉 ∈

[−π/2, π/2]. Thus, if 〈φRHT 〉 ' 0, R?(θ) is well aligned with its starlight polarization angle.

4.3.2 RHT distribution widths

The RHT angle expectation value 〈θRHT 〉 is a useful metric for generalizing the orientation

of the gas, but ignores all information about the strength and shape of R? (θ). A narrowly

peaked R? (θ) and a much broader R? (θ) can have the same 〈θRHT 〉. Similarly, the amount

of intensity detected by the RHT is ignored in calculating 〈θRHT 〉, which could be useful in

determining the certainty of our angle estimation.

Another approach is to characterize the spread in the distribution. We report the in-

terquartile range IQR(R̂(φ)) as a metric for the width of R̂(φ). One can also report the IQR

of the 〈φRHT 〉 measures around all stars in a field, IQR(〈φRHT 〉).

We note that IQR(R̂(φ)) and IQR(〈φRHT 〉) for a collection of stars are qualitatively

different metrics. Assuming the linear structure is aligned with the magnetic field as traced

by starlight polarization in a given region, the IQR(〈φRHT 〉) reports how accurately one
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could predict the starlight polarization angle for the given RHT data, independent of RHT

intensity. The IQR(R̂(φ)) is inherently biased toward higher RHT intensity, and thus is a

measure of how well one could predict the starlight polarization angle weighted by RHT

intensity. Thus, if the strength of the RHT is a measure of the reliability of our prediction of

the starlight polarization angles, IQR(R̂(φ)) will typically be narrower than IQR(〈φRHT 〉).

4.4 Data

We present an analysis of diffuse Hi from two surveys, each sensitive to a broad range of

spatial scales. The Galactic Arecibo L-Band Feed Array Hi Survey (GALFA-Hi; Peek et al.

2011a) maps 13,000 deg2 with 4′ spatial resolution, 0.18 km s−1 spectral resolution, and ∼60

mK rms brightness temperature noise for a 1 km s−1 velocity bin. We analyze a region of

sky with 115.0◦ ≤ RA ≤ 245.0◦, and 23.0◦ ≤ δ ≤ 33.0◦: a 1,300 deg2 region of sky relatively

devoid of telescope scan artifacts in the first data release, DR1. This is a strip of sky from

l, b ∼ (45◦, 45◦) to (190◦, 20◦) that encompasses Galactic zenith. For GALFA-Hi data we

present an analysis of the velocity range from -7.0 km s−1 to -1.1 km s−1 where the fibers

are most evident. We note that modifying this velocity range does not dramatically change

the RHT-starlight polarization correlation.

The second survey we analyze is the Parkes Galactic All Sky Survey (GASS; McClure-

Griffiths et al. 2009). GASS maps the southern celestial sky at all declinations δ ≤ 1◦ with

16′ spatial resolution, 1 km s−1 spectral resolution, and 57 mK rms brightness temperature

noise per 1 km s−1 channel. We analyze the entire spatial area of GASS, excluding the region

|b| < 30◦ to remain focused on high latitude features. GASS data is analyzed from 1.6 km

s−1 to 5.8 km s−1. Again, the RHT-starlight polarization correlation is insensitive to the

exact velocity range.
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In addition to these two surveys, we present an analysis of an Hi cold cloud in the Galactic

plane with previously identified filaments in Section 4.6. Observations of the Riegel-Crutcher

cloud were obtained by (McClure-Griffiths et al. 2006, hereafter McC-G06) as part of an

extension to the Southern Galactic Plane Survey (McClure-Griffiths et al. 2005). The data

have a resolution of 100′′ (0.06 pc at the 125 pc distance of the cloud) and a channel spacing

of 0.82 km s−1. The data are analyzed from +3.30 km s−1 to +7.42 km s−1.

The starlight polarization data corresponding to the GASS survey area are from the

Heiles (2000) compilation, an aggregation of starlight polarization catalogs that contains

9,286 stars. In the GALFA-Hi region, the Heiles (2000) compilation is supplemented with

stars from Berdyugin et al. (2001) and Berdyugin & Teerikorpi (2002) which catalog 336

stars and 116 stars in the region of the North Galactic Pole, respectively. In cases where the

same star is measured in more than one catalog, we defer to the more modern measurement.

All catalogs contain optical measurements of starlight polarization angles. We exclude any

stars in the catalogs that were part of targeted polarization studies of clusters, in order to

have a star sample that is well distributed across the sky. We did not apply a distance

or polarization intensity cut for the stars used with GALFA-Hi and GASS, though we did

exclude stars with quoted errors on the starlight polarization angle greater than 25◦. This

leaves us with 153 stars in the GALFA-Hi region, and 3,206 stars in the GASS region. The

stars used in the GALFA-Hi region have a median distance of 253 pc and an interquartile

range of 133–442 pc. The stars used for the GASS correlation have a median distance of

1140 pc and an interquartile range of 291-2218 pc.
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Figure 4.3: Integrated RHT output R̂ (φ) (see Section 4.3) for all stars in the GALFA-Hi field
(purple line). The velocity range is -7.0 km s−1 to -1.1 km s−1, analyzed in two equal channels
(see Section 4.5.1). The RHT was run with (DW , DK , Z) = (100′, 10′, 70%). R(θ, x, y) is
sampled in regions of radius 0.5◦ around each star. IQR(R̂ (φ)) is 27◦ (purple shading).
IQR(〈φRHT 〉) is 37◦ (red shading).
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Figure 4.4: Same as Figure 4.3, but R̂ (φ) for all stars with |b| > 30◦ in the GASS field. The
RHT was run on data integrated over the velocity range 1.6 km s−1 to 5.8 km s−1. The RHT
was run with (DW , DK , Z) = (245′, 53′, 70%). R(θ, x, y) is sampled in regions of radius 2◦

around each star. IQR(R̂ (φ)) is 77◦ (purple shading). IQR(〈φRHT 〉) is 65◦ (red shading).

4.5 Fibers in diffuse HI

Fibers in the diffuse, high latitude Hi are examined using the GALFA-Hi and GASS data

sets. We find that R̂ (φ) is well-centered on zero in both data sets, with IQR(R̂ (φ)) = 27◦

for GALFA-Hi and 77◦ for GASS (Figures 4.3 and 4.4). These IQR(R̂ (φ)) are measured

for (DW , DK , Z) = (100′, 10′, 70%) and sampling radius r = 0.5◦ for GALFA-Hi, and

(DW , DK , Z) = (245′, 53′, 70%) and sampling radius r = 2◦ for GASS. This correlation

indicates that the magnetic field is indeed aligned with the observed fibers. This result is
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Figure 4.5: Histograms of the difference between the measured starlight polarization angle
and the RHT angle expectation value for all GALFA-Hi stars in the top quintile of RHT
intensity (filled pink) and the same stars with scrambled 〈θRHT 〉 values (hatched grey).
Scrambled histogram is an average of 104 random samples of 〈θRHT 〉. The RHT-starlight
polarization correlation is highly statistically significant (p < 0.0001). See Section 4.5.2.

robust to variation in RHT parameters (see Figure 4.6).

The alignment between R? (θ) and θ? in both GASS and GALFA-Hi data suggests that

Hi-magnetic field alignment is a pervasive feature of the high-latitude ISM. However, fibers

are not a scale-independent feature of the ISM; detection of the Hi-magnetic field alignment

is much improved with better spatial resolution. By eye, and in the backprojection, the

slender fibers in GALFA-Hi (Figure 4.7) are largely absent from GASS (Figure 4.8). This

point is echoed by our study of the Riegel-Crutcher cloud in Section 4.6.
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Figure 4.6: A sample of the parameter space for GALFA. Smoothing kernel diameter (DK)
and window diameter (DW ) are indicated. All runs use an intensity threshold Z = 70%.
Red shading indicates IQR(〈φRHT 〉), purple shading indicates IQR(R̂ (φ)).

4.5.1 Parameter space

We conduct a thorough exploration of the parameter space for the GALFA-Hi data. Rolling

window diameters (DW ) from 50′ to 125′, smoothing kernel diameters (DK) from 2′ to

10′, and intensity thresholds from Z = 50% to 90% (see Figure 4.2) were applied to the

GALFA-Hi data. All combinations of parameters visually identify the same linear features

in backprojection, and every R̂ (φ) displays a strong correlation with starlight polarization.

This correlation is therefore robust to the variation of the RHT input parameters. Low in-

tensity thresholds are computationally expensive because they require the storage of uniform

background intensity. We select Z = 70% for the duration of this work because lower inten-

sity thresholds find the same linear features but store too much low-intensity background.

Variation of the sampling radius r does not significantly alter the observed RHT-starlight

polarization correlation.

Figure 4.6 shows a representative sampling of the parameter space. We find that in-

creasing DW narrows IQR(R̂ (φ)), indicating that the longest, most linear features are the

most well aligned with starlight polarization. However, IQR(〈φRHT 〉) remains consistent
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Figure 4.7: A representative region of the GALFA-Hi data analyzed in Section 4.5, shown in
Hi emission (top) and RHT backprojection R (x, y) (bottom; see Equation 4.3). The images
are integrated over the velocity range -7.0 km s−1 to -1.1 km s−1. Overlaid pseudovectors
represent polarization angle measurements from the Heiles (2000), Berdyugin et al. (2001),
and (Berdyugin & Teerikorpi 2002) catalogs. In the top panel, the intensity scale is linear
in log(NHI), where black represents a column density of 2× 1018 cm−2, and white is 2× 1020

cm−2.

across parameter space, as this metric gives equal weight to the RHT-starlight polarization

alignment around each star, regardless of RHT intensity.

We also explore the effects of data channelization, δv. In the GASS data, we find the

alignment is insensitive to whether we bin the data in advance of the RHT, or sum the R? (θ)

from each channel. In the case of GALFA-Hi, it is possible to bin the data so finely (0.18

km s−1) that noise washes out the observed fibers, or to integrate over so many channels

that fibers are less visually evident. In these cases the signal is detectably diminished. We

split the velocity range -7.0 km s−1 to -1.1 km s−1 into two channels, run the RHT on

each, and sum the R? (θ) from each channel, though the result is not sensitive to the exact

channelization.
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Figure 4.8: A representative region of the GASS data analyzed in Section 4.5, as in Figure
4.7. The images are integrated over the velocity range 1.6 km s−1 to 5.8 km s−1. In the top
panel, the intensity scale is linear in log(NHI), where black represents a column density of
2× 1018 cm−2, and white is 2× 1021 cm−2.

4.5.2 Correlation with starlight polarization

We examine the star-by-star correlation between the measured starlight polarization angles

θ? and the RHT angle expectation value 〈θRHT 〉 in GALFA-Hi (Figure 4.5). This allows

us to determine whether the RHT-starlight polarization correlation exists on a fine scale,

or simply in the large-scale orientation of the stars and gas, and to test the correlation

robustness. We select the stars that sample regions in the top quintile of RHT intensity in
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Figure 4.9: (a) “On” fiber and “off” fiber fields overlaid on GALFA-Hi data. The image
is integrated over the velocities indicated in (b). The fiber was selected from the RHT
backprojection. Black represents a column density of 1019 cm−2, white is 3× 1019 cm−2. (b)
The difference between the average spectrum in the on and off fields. Grey region indicates
the velocity range analyzed for GALFA-Hi data, -7.0 km s−1 to -1.1 km s−1. See Section 4.5
for a discussion of fiber properties.

each velocity channel (δv from above), 48 stars in total. We expect the regions with the

strongest RHT intensity to trace the most visually evident fibers. We calculate |〈φRHT 〉|

for each star (Equation 4.9). We then scramble the 〈θRHT 〉 values and recompute |〈φRHT 〉|

for each star. The scrambling is performed 104 times and the results are averaged. The

scrambled angle differences exhibit only a slight skew toward zero, indicating only a slight

large-scale trend in fiber orientation. The unscrambled data is sharply skewed toward zero.

The RHT-starlight polarization correlation is determined by a Monte Carlo analysis of the

median to be highly statistically significant (p < 0.0001).

4.5.3 Fiber properties

We measure the properties of a GALFA-Hi fiber highlighted by the RHT backprojection.

We note that the exact boundary of the fiber is dependent on the RHT input parameters,

and that measured properties depend on the interpretation of the fiber as a distinct physical
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Figure 4.10: The Riegel-Crutcher cloud (Section 4.6) in Hi absorption (left) and RHT back-
projection (right). Overlaid pseudovectors represent polarization angle measurements from
the Heiles (2000) compilation. In the left panel, the intensity scale is linear from -20 K
(white) to -120 K (black).

structure. We use the RHT backprojection to mask an “on” fiber and “off” fiber region, each

of equal area, on the sky. Figure 4.9 shows the average on minus average off spectrum and

the selected regions of sky. We determine the line width of the spectrum to be 3.4 km s−1

(FWHM) using a Gaussian fit. This fiber has a column density of 5.3× 1018 cm−2, roughly

typical of the GALFA-Hi fibers.

It is worth noting here that the column densities of the fibers discussed above are far

too low to create the measured starlight polarization. To induce starlight polarization that

can be measured accurately in the Heiles (2000) catalog, a selective extinction of ∼ 0.01

is needed, equivalent to a column of ∼5×1019 cm−2. Given the correlation between the

magnetic field orientation and the fiber orientation, the fibers must be features of (or objects

within) a dusty medium with a coaligned magnetic field, rather than the only elements
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Figure 4.11: R̂ (φ) for all stars in the Riegel-Crutcher cloud (Section 4.6). The radius of the
sampling beam around each star is labeled above each figure, with sampling beam decreasing
left to right from 14.6′ to 1.2′. Spatial radii of the sampling beams are calculated using the
cloud distance of 125 pc. The width of the distribution decreases with decreasing beam size.
As beam size decreases (top left to lower right): IQR(R̂ (φ)) = 27.3◦, 26.2◦, 22.9◦, 19.9◦.
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B̄ (µG)

Figure 4.12: Mean magnetic field strength BRHT calculated using the modified
Chandrasekhar-Fermi method (Section 4.7) for 4 and 256 sections of the Riegel-Crutcher
cloud. Density contours of the RHT backprojection are overlaid to give an idea of the fiber
geometry (see Figure 4.10).
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Figure 4.13: R̂ (φ) binned in star distance octiles for GALFA-Hi and GASS data (see Section
4.5). There are approximately 18 stars in each GALFA-Hi distance octile, and 394 stars in
each GASS distance octile. The median values of the R̂ (φ) distributions are consistent with
a random sampling of distances.

of the medium. Indeed, because the starlight polarization angle represents the cumulative

polarization of all material between observer and star, the discovery that the fiber orientation

is correlated with the magnetic field orientation indicates that the fibers trace a structure

that is co-aligned for a significant fraction of the dust along the line of sight. This correlation

is discussed in the context of the local ISM morphology in Section 4.8.2.
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4.6 Fibers in the Riegel-Crutcher cloud

The RHT can be applied to many different environments. We apply the method to a region

of cold neutral medium: the Riegel-Crutcher cloud, an Hi self-absorption (HISA) feature at

125 pc toward the Galactic center (Heeschen 1955; Riegel & Crutcher 1972). The cloud was

mapped in high resolution (100′′ = 0.06 pc at 125 pc) in McC-G06, who first resolved its

exquisite filamentary structure and characterized the region as magnetically dominated. In

the same work, the authors comment on the visibly apparent alignment of starlight polariza-

tion pseudovectors in the plane of the sky with the linearly elongated HISA structure. The

RHT allows us to quantify this alignment.

Figure 4.10 shows the Riegel-Crutcher (hereafter R-C) cloud with polarization pseudovec-

tors from the Heiles (2000) catalog overlaid. Following McC-G06, we include all stars with

−5◦ < l < +5◦ and −5◦ < b < +5◦, distances of less than 2 kpc, and polarization intensities

of greater than 1%. This leaves 56 stars in the region.

As the R-C cloud is composed of many thin linear features that are believed to be

dominantly shaped by magnetic forces, the RHT-starlight polarization correlation should be

very strong. Indeed, the degree of alignment is striking for a broad range of RHT input

parameters. We run the RHT for a single velocity channel at a time to preserve all velocity

information. All channels individually show strong RHT-starlight polarization alignment.

Each panel in Figure 4.11 shows R̂ (φ) for the velocity channels +3.30 km s−1 ≤ v ≤ +7.42

km s−1, a range that encompasses the cloud visually (again following McC-G06).

The sharp alignment of R? (θ) with θ? in Figure 4.11 demonstrates that the filaments trace

the magnetic field, as expected. As the radius of the sampling beam decreases, IQR(R̂ (φ))

decreases. For sampling beam radii of (14.6′, 8.7′, 2.9′, 1.2′), we find IQR(R̂ (φ)) = (27.3◦,

26.2◦, 22.9◦, 19.9◦). As the alignment is significantly better with a smaller sampling beam for
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R (θ, x, y), we infer that the RHT is not simply confirming the evident large-scale orientation

of the magnetic field, but actually tracing the fine magnetic structure in the region. We have

checked and confirmed that the alignment of R̂ (φ) is not dominated by a few stars.

4.7 Toward a resolved Chandrasekhar-Fermi method

The result that the RHT traces small-scale variation in the magnetic field in the R-C suggests

that the RHT may provide a reasonable proxy for starlight polarization measurements in

regions where the RHT and starlight polarization are in close alignment. For such regions

we propose an extension of the Chandrasekhar-Fermi method for estimating the magnetic

field strength in the plane of the sky.

Originally proposed by Chandrasekhar and Fermi (1953) to estimate the field strength

in spiral arms, the Chandrasekhar-Fermi method uses starlight polarization to estimate the

average field strength 〈B〉 in a region. The method relates the line-of-sight velocity dispersion

(vlos) to the dispersion of starlight polarization angles about a mean component. Assuming

that turbulence isotropically randomizes the magnetic field in the region, the mean field

strength is given by

B2
CF ≡ B

2
= ξ4πρ

σ(vlos)
2

σ(tan(δ?))2
, (4.10)

where

δ? ≡ θ? − θ?, (4.11)

ρ is the gas density, θ? is the mean starlight polarization angle, and ξ is a correction factor

representing the ratio of turbulent magnetic to turbulent kinetic energy (e.g. Heitsch et al.

2001). The validity of the method depends critically on the presence of a significant mean
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field component.

We apply a modified Chandrasekhar-Fermi method to the R-C cloud described in Sec-

tion 4.6. Following McC-G06, we adopt ξ = 0.5, ρ = 1.4mHnH = 1.1 x 10−21 g cm−3, and

σvlos = σturb = 1.4 km s−1. Instead of θ? we substitute the expectation value of the RHT eval-

uated at every pixel in the image, 〈θRHT 〉pixel, where 〈θRHT 〉pixel is the equivalent of 〈θRHT 〉,

substituting R (θ, x0, y0) for R? (θ) in Equation 4.7. Thus we are evaluating:

B2
RHT ≡ B

2
= ξ4πρ

σ(vlos)
2

σ(tan(δRHT ))2
(4.12)

where

δRHT ≡ 〈θRHT 〉pixel − 〈θRHT 〉pixel (4.13)

Because we obtain a 〈θRHT 〉pixel value for every pixel in the image space, 〈θRHT 〉pixel can be

evaluated over a region of any size that contains significant RHT signal.

Evaluating 〈θRHT 〉pixel over the full extent of the R-C cloud, we obtain BRHT = 19 µG.

McC-G06 report BCF = 60 µG for the region -3◦ < l ≤ 5◦, -3◦ < b ≤ 5◦. In this same

region, we obtain BRHT = 23 µG. Figure 4.12 shows BRHT evaluated over smaller regions of

sky, to demonstrate the possibility of a resolved Chandrasekhar-Fermi method. Each colored

square in Figure 4.12 represents BRHT calculated using all 〈θRHT 〉pixel values in that square.

Pixels containing no RHT power are not included in the computation of Equation 4.13. The

strongest BRHT we find in a subregion of the cloud is ∼50 µG, near (l, b) ∼ (1.5◦, 0.25◦) (see

Figure 4.12).

This should be considered a preliminary step in the development of a resolved Chandrasekhar-

Fermi method. A thorough analysis of the limitations and error in the RHT point estimator

〈θRHT 〉pixel, as well as testing with simulations, will be pursued in the future. Indeed we

expect 〈θRHT 〉pixel to overestimate the true variability of magnetic field orientation, and thus
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underestimate B̄. A weighting scheme based on R? (θ, x, y) would reduce this bias. We

caution that the same assumptions hold as in the classical Chandrasekhar-Fermi method, in

particular that a significant mean field element must be present for the field estimate to have

meaning. Nevertheless, the näıve application of the method outlined here to the R-C cloud

does achieve the same typical field-strength estimate as the classical Chandrasekhar-Fermi

method.

4.8 Discussion

The RHT is a powerful new tool for characterizing linear structure. This work quantifies for

the first time the strong alignment between diffuse Hi fibers and the interstellar magnetic

field. In this section we discuss the physical properties of the diffuse fibers, their relationship

to the local cavity, and their significance in the context of modern magnetohydrodynamic

simulations.

4.8.1 Physical properties of fibers

The GALFA-Hi and GASS surveys cover similar column density and latitude regimes, but

differ by a factor of four in angular resolution (4′ for GALFA, 16′ for GASS). The strikingly

collinear Hi fibers that prompted this investigation are visually evident in GALFA-Hi data

(Figure 4.7), and are not as apparent in the GASS data (Figure 4.8). The fiber widths are

in many cases visually unresolved even in the GALFA-Hi data, and so are on the order of or

thinner than the GALFA-Hi spatial resolution. We find that the RHT-starlight polarization

correlation is significantly higher in the GALFA-Hi data. Thus, the data are consistent with

a model in which fine, magnetically aligned Hi fibers are ubiquitous in the high-latitude sky,

but washed out at lower resolutions.
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The GALFA-Hi fibers have typical column densities that range from ∼1019 cm−2 down

to our sensitivity limit of ∼1018 cm−2. A typical total Galactic Hi column density at high

latitude is ∼3×1020 cm−2, so an individual fiber does not dominate the column. Assuming a

cylindrical geometry, we calculate an Hi volume density of n ∼ 14 cm−3 for the fiber shown in

Figure 4.9. If we interpret the linewidth as purely thermal, we find a temperature of 220 K;

some of this linewidth may in fact be driven by turbulence within the cloud, so we consider

this an upper limit on the temperature. The thermodynamic pressure is then P/kB = nT

= 3200 K cm−3, consistent with the standard pressure found in the ISM at the solar circle

(Wolfire et al. 2003). The angular length of the fiber identified by the RHT backprojection

in Figure 4.9 is about 5◦, although a typical fiber length is difficult to identify as they often

exist in complexes of fibers up to 15◦ long and they may extend past the boundaries of the

surveyed area. The physical scale of the fibers depends on the distance to the gas. If we

choose a fiducial distance of 100 pc, the distance to the wall of the local cavity (Sfeir et al.

1999), the physical resolution of GALFA-Hi is 0.12 pc, and the length of the fiber in Figure

4.9 is 8.7 pc. As mentioned above, the widths are largely unresolved and therefore correspond

to < 0.12 pc for the GALFA-Hi fibers. We investigate correlations between the polarization

alignment and the location on the sky, extinction level, and polarization intensity and find

no relationship.

McC-G06 put a constraint on the magnetic field strength of the R-C cloud as Btot >

30 µG through the assumption that the magnetic energy density should dominate over the

kinetic energy density to maintain the distinct linear nature of the filaments. If we apply

this argument to a typical GALFA-Hi fiber we find Btot > 5 µG. This number is consistent

with expectations for the magnetic field in the diffuse ISM (Heiles & Crutcher 2005).
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4.8.2 Fibers and the Local Cavity wall

The Sun resides inside a largely evacuated volume of the ISM called the local cavity (LC).

While the original theory that the LC is a bubble filled with hot, overpressurized, X-ray

emitting gas has largely been overturned (Koutroumpa et al. 2009; Welsh & Shelton 2009;

Peek et al. 2011b), there is strong evidence that very little neutral gas and dust exists on

this side of the LC wall, approximately 100 pc away (see Lallement et al. 2014, for a detailed

map). In Figure 4.13 we show that the orientation of polarized starlight is well aligned

with R̂ (φ), independent of the distance to the stars. Our stellar compilation only includes

stars with relatively low errors in polarization angle measurement (∆θ < 25◦, see Section

4.4), which tend to have higher polarization percentages, and thus are behind more polarizing

material. The median distance to stars |b| > 30◦ that meet this criterion is 144 pc, while the

median distance to stars that fail this criterion is 43 pc. The wall of the LC is often defined

as the distance at which NHI > 1019 cm−2 (Cox & Reynolds 1987), which is equivalent

to an extinction E (B − V ) of only 0.002 (Peek 2013), too low to produce well-measured

polarization angles in our compiled data set. Thus, essentially by definition, all of the stars

we consider in this analysis are outside of the LC. If the fibers are a part of the wall of the

LC, this explains why we do not see a marked decrease in correlation as we examine farther

stars; they too are being polarized by the gas in the LC wall.

If there were a signficant column of dust-bearing gas beyond the LC wall, unaffected

by the structure of the LC itself, it would presumably have a relatively uncorrelated mag-

netic field orientation. This would generate a decreased RHT-starlight polarization angle

correlation. Since no such decorrelation is detected (Figure 4.13), we find that the vast

majority of the high Galactic latitude column is in or near the LC wall. This is consistent

with modern tomographic maps of the local ISM (Vergely et al. 2010; Lallement et al. 2014).
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The thickness of the wall is not yet well constrained. We note that there may be a hint of

decorrelation in the farthest distance bin in the GALFA-Hi data. This may be due to the

presence of the intermediate-velocity arch, which covers much of the GALFA-Hi area and

resides at approximately 1 kpc above the disk (Kuntz & Danly 1996).

This result points towards a formation and alignment mechanism for the fibers similar

to that described in Weaver (1979) and further quantitatively developed in Heiles (1998) for

the Sco-Cen association and Radio Loop I. To paraphrase, many megayears ago a collection

of massive stars produced outflows, and in the case of the LC, supernovae (Cox & Reynolds

1987). These winds and explosions inflated a bubble of gas and dust and stretched the

cavity wall to create the aligned fibers and magnetic field lines we detect. Whether or not

this description fully explains the fibers and their magnetic alignment, any explanation must

take into account the formation and structure of the local ISM.

4.8.3 Simulations of linear structures

Much of the simulation work linking gas morphology to magnetic field structure is focused on

understanding molecular clouds. Observational evidence for magnetic influence on gravita-

tional collapse includes regions where the magnetic field is oriented orthogonal to the densest

structures in a molecular cloud, but parallel to the surrounding lower density medium, ap-

parently owing to self-gravitational collapse along the field lines (e.g. Goldsmith et al. 2008;

Nakamura & Li 2008). Recent Herschel observations (Molinari et al. 2010; Peretto et al.

2012; André et al. 2010) have sparked an interest in modeling the formation of more diffuse

molecular filaments, where a complex interplay between turbulence, gravity, and magnetism

determine the alignment between filaments and magnetic fields. Soler et al. (2013) modeled

turbulent molecular clouds and found a link between the gas morphology and the orientation

of the magnetic field. For diffuse, high-latitude Hi, gravity is unlikely to play a role in fiber
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formation and magnetic alignment.

Major progress has been made in this low density regime by Hennebelle (2013), who

showed that linear features can be created and maintained in a turbulent ISM without

appealing to gravity. Arzoumanian et al. (2011) detected a typical width for dust filaments of

0.1 pc in Herschel data. In simulations conducted in Hennebelle (2013; see also Hennebelle &

André (2013)) they reproduce this characteristic width in regions shielded from UV radiation,

the scale being set by the dissipative process of ion-neutral friction. Exposed, non-gravitating

features, such as the fibers examined in this paper, are expected to have widths at least 10

times smaller due to higher ionization and lower densities. This prediction is consistent with

our finding that we are increasingly resolving the fibers that are aligned with the magnetic

field with higher resolution observations. The fibers are more apparent and better aligned

with the field in the GALFA-Hi data than in the GASS data, or a resolution of 0.12 pc

vs. 0.47 pc (at 100 pc), respectively. For the Hi absorption filaments probed in the R-C

cloud again the alignment improves as we decrease the radius of the sampling beam. This

is consistent with the width of the filaments largely being unresolved, or < 0.06 pc at the

cloud’s distance of 125 pc. We can test the prediction of 0.01 pc wide fibers with yet higher

resolution, highly sensitive observations enabled by instruments like the JVLA and the SKA

pathfinder telescopes.

4.9 Conclusions

This paper used Hi surveys of the Galactic ISM to study the relationship between gas mor-

phology and the structure of the interstellar magnetic field. The highlights are summarized

as follows.
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• We identified a novel set of features in the diffuse, high Galactic latitude Hi ISM:

slender, linear, clustered features we call Hi fibers.

• We developed a method for quantifying the coherent linearity of structures in images

called the Rolling Hough Transform.

• We used the RHT to demonstrate that the orientation of the fibers is correlated with

the orientation of starlight polarization. This result is largely independent of the RHT

input parameters DW , DK , and Z, as well as velocity binning δv.

• The magnetic fields and linear Hi features are aligned throughout the high Galactic

latitude ISM, but this effect is not scale free. Higher resolution observations show

a much higher correlation between the fibers and the field. The fibers are largely

unresolved even with the highest resolution observations at 0.06 pc.

• The GALFA-Hi and GASS fiber features are most likely a component of the local

cavity wall and their derived physical properties at 100 pc are consistent with this

environment.

• We propose a technique based on the Chandrasekhar-Fermi method to measure the

magnetic field strength in regions with strong, pervasive fields using only the RHT.

The results of this work suggest a number of avenues for future exploration. The most

obvious is to expand the work to larger areas of sky at higher resolution. In the northern

celestial sky, EBHIS (Kerp et al. 2011) will provide a map similar to that of GASS with

slightly higher resolution (9′) and slightly lower sensitivity. The GALFA-Hi second data

release will provide ten times more area at 4′ resolution than the region examined here. In

the future, SKA pathfinders APERTIF (Verheijen et al. 2009) and ASKAP (Duffy et al.

2012; Dickey et al. 2013) will provide sub-arcminute resolution observations of the entire
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sky. The RHT can also be applied to observations of other phases of the magnetized ISM,

for instance in molecular gas and dust, and likely would be an appropriate tool for any region

not strongly dominated by gravity. Indeed, the RHT may even be a useful tool for finding

stellar stream features in the Galactic halo. Furthermore, since the Hough transform can

be generalized to find practically any template in the image plane (Duda & Hart 1972), the

RHT could be extended to search for shells, cometary structures, or any other pervasive

morphological feature of the ISM.

Another clear direction is the pursuit of comparable structures in simulations of the

ISM. To date, we know of no examples in the ISM simulation literature in which magnetic

fields are shown to be aligned with linear, neutral structures in diffuse media similar to

that discussed here. This may be because multi-phase, magnetized simulations of a realistic

Galactic ISM (e. g. Hill et al. 2012) are never conducted at high enough resolution to resolve

the features we detect. We suggest that a zoom-in of such a simulation near the Galactic

disk at higher resolution or an implementation with an adaptive mesh (or both) may be

able to resolve the Hi fibers. If simulations were to be unable to generate these kinds of

features and correlations, it would suggest that the fibers are dependent on physics we are

still incapable of capturing in simulations.

The discovery that the RHT can, at least in magnetically dominated regions, trace fine

magnetic field structure, invites further investigation of the relationship between RHT angle

dispersion and the magnetic field strength, and the efficacy of a resolved Chandrasekhar-

Fermi method. To do this properly, we suggest the simulation work discussed above could

be used to determine any bias or scaling that are needed to apply our method to other data

accurately (as in Heitsch et al. 2001).
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Chapter 5

Neutral Hydrogen Structures Trace

Dust Polarization Angle: Implications

for Cosmic Microwave Background

Foregrounds

5.1 Introduction

The cosmic microwave background (CMB) is the pervasive residual radiation from the for-

mation of the Universe. The detection of primordial B-mode polarization in the CMB is a

major goal of contemporary cosmology. This signal is imprinted at the surface of last scat-

tering by perturbations from gravitational waves generated during the epoch of inflation,

a period of rapid expansion in the early Universe (Seljak & Zaldarriaga 1997; Seljak 1997;

Kamionkowski et al. 1997). An inflationary gravitational wave (IGW) B-mode measure-

This section contains text from an article published in Physical Review Letters (Clark et al. 2015).
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ment would be the first direct evidence of inflation. A number of experiments are pursuing

the signal, using ground-based (e.g. ABS, Essinger-Hileman et al. 2010; Advanced ACT,

Niemack et al. 2010; BICEP2/Keck Array, Ade et al. 2015d; CLASS, Essinger-Hileman

et al. 2014; POLARBEAR, Kermish et al. 2012; SPT-3G, Benson et al. 2014), balloon-

borne (EBEX, Reichborn-Kjennerud et al. 2010; SPIDER, Fraisse et al. 2013), and space

telescopes (Planck, Adam et al. 2015a).

Unfortunately, our view of the polarized CMB is obscured by contaminating foregrounds.

For IGW B-mode searches at frequencies & 100 GHz, the largest foreground is Galactic

polarized dust emission. Aspherical dust grains in the Milky Way align their short axes

with the ambient magnetic field, and interstellar radiation is absorbed and reradiated by

the dust as partially polarized light. The BICEP2 collaboration claimed a measurement

of primordial B-modes (Ade et al. 2014b), but subsequent analyses determined that the

detection could be attributed entirely to Galactic dust (Flauger et al. 2014; Ade et al.

2015a). A detailed understanding of the foreground polarization signal is required before a

definitive IGW B-mode detection can be achieved. Pursuant to that goal, the Planck satellite

recently mapped the full sky at 353 GHz, a frequency dominated by thermal dust emission.

These data can be used to subtract the foreground polarization pattern from lower-frequency

CMB observations. To optimize the chance of primordial B-mode detection, experiments

should target the “cleanest” regions of sky: areas where there is relatively little polarized

dust, and where the dust polarization structure is measured with high signal-to-noise. The

Planck maps are limited in this regard, because the Planck polarized signal is noise-limited

at high Galactic latitudes, where the dust column is lowest. Thus IGW B-mode searches

are plagued by a trade-off: the regions of lowest foreground amplitude are also the regions

with the poorest foreground constraints.
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Figure 5.1: Plane-of-sky magnetic field orientation as predicted by θRHT (top) and θ353

(bottom). Color maps are integrated HI column density from v = −61.5 km s−1 to +61.5 km
s−1 (NHI [cm−2]), and dust opacity (τ353). Planck and RHT Q and U values are smoothed
with a FWHM = 1◦ Gaussian kernel, then used to construct θ353 and θRHT , which are
visualized using line integral convolution (LIC; Cabral & Leedom 1993). The high latitude
(b & 70) behavior of the θ353 LIC pattern is due to Planck noise. White pseudovectors
represent starlight polarization angles. Galactic latitude lines lie at b = 30◦, 50◦, 70◦, from
left to right. Galactic longitude lines lie at l = 80◦, 50◦, 20◦, from top to bottom.

5.2 A new constraint on polarized foregrounds

We present an entirely new method for constraining Galactic foregrounds. Using only the

morphology of diffuse neutral hydrogen (Hi) structures, we predict the orientation of polar-

ized dust emission at high precision over a range of angular scales. In parallel with existing

measurements of polarized CMB foregrounds, our recovery of the dust polarization angle

will increase the precision of foreground models. This is especially valuable in regions where

the Planck 353 GHz data are noise-limited.

This work follows the discovery that linear structures in Hi are elongated in the direction
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of the interstellar magnetic field as probed by starlight polarization (Clark et al. 2014). Here,

we demonstrate that Hi orientation is well correlated with the Planck 353 GHz polarization

angle across a region of high Galactic latitude sky. Note that the Planck data enable quan-

titative conclusions beyond the previous work, which considered only 153 sparsely sampled

starlight polarization measures over 1,300 deg2 of sky. Also, polarized dust emission samples

the full line of sight, whereas starlight polarization only traces the magnetic field out to the

distance of the star. The relationship between dust and Hi in the interstellar medium (ISM)

is deeper than their correlation in column density (e.g. Burstein & Heiles 1982), which is

already used to estimate the amplitude of polarized dust emission (Flauger et al. 2014; Ade

et al. 2014a). Small dust grains and long plumes of Hi are both aligned by the magnetic

field, though the mechanism for aligned Hi structure formation is not yet well understood.

The slender linear features that best trace the orientation of the Galactic magnetic field

are only revealed by high spatial and spectral resolution Hi maps (see Clark et al. 2014, for

details). We use data from the Galactic Arecibo L-Band Feed Array Hi survey (GALFA-

Hi; Peek et al. 2011a) with the Arecibo 305m radio antenna. GALFA-Hi has an angular

resolution of FWHM ' 4′, a spectral resolution of 0.18 km s−1, and a brightness temperature

noise of ∼ 140 mK rms per 1 km s−1 integrated channel over 13,000 deg2 of sky. This work

uses data from the forthcoming second data release (Peek et al. 2017).

We analyze 353 GHz polarization data obtained by the Planck satellite’s High Frequency

Instrument (HFI; Ade et al. 2014a). These data have an angular resolution of FWHM

' 5′, comparable to GALFA-Hi. We transform the Planck data from Galactic to Equatorial

coordinates 1. For all analyses, we apply a mask constructed from the union of all point

source masks provided for each HFI channel in both temperature and polarization.

We additionally consider 126 optical starlight polarization measures in this region (Heiles

1Using HEALPix, http://healpix.jpl.nasa.gov
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2000). Starlight is polarized parallel to the magnetic field by the preferential absorption of

aligned grains.

We quantify the orientation of GALFA-Hi structures using the Rolling Hough Transform

(RHT), a machine vision technique (Clark et al. 2014). The RHT runs on image data, and

outputs R (θ), linear intensity as a function of angle, for every pixel in the input map. For

a detailed description of the RHT we refer the reader to (Clark et al. 2014).

For this work we select a 1,278 deg2 region of the GALFA-Hi sky. The region, which spans

right ascension 195◦ to 265◦ and declination 19.1◦ to 38.3◦, stretches from b = 30◦ above the

Galactic plane to b = 81.7◦, nearly Galactic zenith. We analyze this GALFA-Hi region from

−13.5 km s−1 to +13.5 km s−1, binned in 3.0 km s−1 integrated velocity channels.

Linear polarization data can be fully described by either a polarization angle ψ and

polarized intensity P or by the Stokes parameters Q and U , where ψ = 1/2 arctan(U/Q)

and P 2 = Q2 + U2. We define from the RHT output

QRHT =

∫
cos (2θ) ·R (θ) dθ

URHT =

∫
sin (2θ) ·R (θ) dθ, (5.1)

where values are calculated for each point in the image data. We process each velocity

channel with the RHT and add the resulting QRHT and URHT maps.

We define θRHT = 1
2

arctan(URHT/QRHT ), an estimate for the orientation of the magnetic

field derived solely from Hi data. We compare this value to θ353, a 90◦ rotation of the

polarization angle obtained from Q353 and U353 (we use the IAU polarization definition). The

polarization angle of dust emission is conventionally taken to be 90◦ from the orientation of

the local Galactic magnetic field (however, see Lazarian 2007, and references therein).

We calculate θ353 and θRHT for the region described. Figure 5.1 shows a map of each
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= 5′, 15′, and 30′. The Gaussian fit to the FWHM = 15′ histogram shown has a standard
deviation σ = 19.4◦.

of these quantities on the sky, along with starlight polarization angles. Although derived

from independent data, these three estimates for the plane-of-sky magnetic field orientation

trace one another remarkably well. Figure 5.2 shows histograms of δθ ≡ θ353 − θRHT . We

construct θ353 and θRHT from Q and U maps smoothed to three different resolutions. For

Gaussian smoothing kernels of FWHM = 5′, 15′, and 30′, we find Gaussian fits to the δθ

histogram with standard deviation σ = 30.2◦, σ = 19.4◦, and σ = 14.4◦, respectively. We

run a Monte Carlo analysis to determine the pure Planck noise contribution to δθ, and find

this noise is responsible for a Gaussian component with σ = 16.0◦, σ = 6.1◦, and σ = 3.5◦ for

each respective smoothing kernel. Thus as the data are smoothed to larger angular scales,

θ353 and θRHT obtain ever better agreement, and a non-negligible fraction of the δθ scatter
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is solely due to Q353 and U353 measurement noise. The δθ histograms are centered at about

−3◦ to −4◦. This small offset from zero may be due to either residual systematics in the 353

GHz map (Adam et al. 2015b) or true systematic differences between θ353 and θRHT .

To further characterize the relationship between RHT, Planck, and starlight polarization

angles, we construct simple template maps and compute cross-power spectra between them.

We construct the templates using the Planck 353 GHz intensity, I353. A full polarization

template would also require an estimate of the polarization fraction, p = P/I, but since our

goal is to isolate the polarization angle information, we set p = 1 in all templates. (Over

a small patch of sky, p ≈ constant is a reasonable approximation, and one can simply re-

scale our power spectra for a given value of p.) Furthermore, measuring P from the Planck

data is non-trivial, as simple estimators are noise-biased (e.g. Plaszczynski et al. 2013). The

templates are

Q = I353 cos(2ψ)

U = I353 sin(2ψ), (5.2)

where ψ is either the RHT, Planck, or starlight polarization angle. For all templates, we

smooth the Q and U data to a common resolution of FWHM = 4◦ before computing ψ. This

prohibits small-scale noise in Q and U from contaminating the templates on large scales via

the harmonic-space convolution implied by the real-space map multiplication in Eq. (5.2).

To avoid noise biases, we measure cross-correlations between templates constructed from

independent half-mission splits of the Planck data.

We apply a common mask to all template maps, consisting of the Planck point source

mask and a mask removing regions that are more than 7◦ from starlight data, regions where

the integrated RHT intensity is zero, and the edges of the region, where RHT artifacts could
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arise. The total unmasked sky subtends 1,181 deg2, 92% of the original area. We apodize

the mask with a Gaussian taper of FWHM = 15′. We use polspice (Chon et al. 2004) to

compute EE andBB power spectra (C`, where multipole ` is the harmonic variable conjugate

to angular scale), corresponding to the usual curl-free and divergence-free decompositions of

polarization data (Seljak & Zaldarriaga 1997; Kamionkowski et al. 1997), respectively. We

calibrate the polspice internal parameters using 100 simulations of polarized dust power

spectra with properties matching recent Planck measurements (Ade et al. 2014a; Adam

et al. 2014). We bin the measured power spectra in four logarithmically spaced multipole

bins between ` = 40 and ` = 600 (centered at ` = 59, 116, 229, and 451). Error bars are

calculated in the Gaussian approximation from the auto-power spectra of the template maps

used in each cross-correlation. Sample variance is not included in the error bars, as our

interest is in comparing measurements of the same modes on the sky.

Figure 5.3 shows cross-power spectra for the template maps constructed from RHT,

Planck, and starlight data. We refrain from fitting a model to the data, as we have not

considered p in our templates, but instead consider the relative amplitudes of the cross-

power spectra. For the Planck -only templates and the Planck–RHT, Planck–starlight, and

RHT–starlight cross-correlations, respectively, we detect the E-mode power spectrum at

70σ, 55σ, 40σ, and 40σ significance. We detect the B-mode power spectrum at 65σ, 60σ,

50σ, and 40σ significance. We verify that template maps constructed with random angles

yield a cross-power spectrum consistent with zero (even when using the true I353 data in

the random-angle templates). We compare the template cross-power spectra with the actual

EE and BB power spectra measured directly from Q353 and U353 and infer a mean p ∼ 5%,

which is reasonable for this region (Ade et al. 2014a).

Although significant cross-correlations are detected for all templates in Figure 5.3, the

Planck -only templates yield higher amplitudes than the cross-correlations with RHT- or
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Figure 5.3: Cross-power spectra of polarization template maps constructed from I353 and
either Planck (ψ353), RHT (ψRHT ), or starlight polarization (ψ∗) data (Eq. 5.2). Shown are
E-mode (circles) and B-mode (squares) components. Significant (40–70σ) cross-correlations
are detected in all cases.

starlight-based templates. While this could be due to physical differences between angles,

we note that the RHT–Planck and RHT–starlight cross-correlations yield similar results

(especially at low-`), suggesting that the Planck -only templates’ power spectra could be

systematically biased. Because the angle construction relies on the U353/Q353 ratio, it is

sensitive to any effect that modifies the zero point of the maps. Such effects could include gain

calibration drifts or intensity-to-polarization leakage that varies over the sky, both of which

are known to be present in the Planck data at some level (Adam et al. 2015b). Indeed, scan-

synchronous systematics have been detected in Planck temperature data (Aghanim et al.

2016; Kim & Komatsu 2013), and maps of δθ = θ353 − θRHT present clear visual evidence
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Figure 5.4: Angle uncertainties averaged over 2◦ Galactic latitude bins, normalized by their
respective median values (dashed line).

of residuals that are highly correlated with the Planck scan directions. We leave a detailed

consideration of these systematic effects on the Planck angles to future work. Note that

direct measurements of EE and BB power spectra from Q353 and U353 are more immune to

these systematics than the angle construction, but we require the latter method to compare

Planck data in a straightforward way to the RHT- and starlight-based templates.

The RHT–Planck cross-power spectra yield an amplitude ratio CEE
l /CBB

l ≈ 2, a result

consistent with the Planck 353 GHz measurement (Adam et al. 2014), though this must

be interpreted with caution as we have not modeled p in our templates. Many current

models of the dust polarized sky (O’Dea et al. 2011; Delabrouille et al. 2013) predict equal

E- and B-mode amplitudes (Adam et al. 2014). Hi orientation preserves the nonunity

EE/BB ratio, suggesting that ISM structure is a crucial missing component of these models.

The preferential alignment of Planck filamentary dust structures with the magnetic field

(Ade et al. 2015c) supports this conclusion. Our work underscores the need for a deeper

understanding of the interplay between ISM phenomena and polarized dust.
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IGW B-mode experiments often target the high Galactic latitude sky, where Planck data

cannot distinguish between the most promising potential targets (Kovetz & Kamionkowski

2015). Figure 5.4 shows the relative Galactic latitude dependence of uncertainties in θ353

and θRHT , where the θRHT uncertainty is propagated from the variance in R (θ). With

sensitive measurements at high latitudes, θRHT maps can be used to assess the structure of

the magnetic field in targeted regions of sky.

Our results indicate that full foreground templates with higher signal-to-noise than the

Q353 and U353 maps can be constructed by combining θRHT with other data describing P .

A scale-dependent modeling of p and I from a combination of I353, P353, and Hi data may

enable the extension of this work to full polarized dust foreground maps. Such templates

should remove CMB and cosmic infrared background emission from I353, which we neglect

here. We can also replace I353 in Eq. 5.2 with an unbiased estimator of P353 (e.g. Plaszczynski

et al. 2013; Vidal et al. 2014). P is theoretically determined by the dust column along the

line of sight, traced by I, and the tangledness of the magnetic field along the line of sight,

where more tangled fields cause greater depolarization. NHI is a powerful proxy for I353,

particularly at high Galactic latitudes where dust emission is low and the expected depletion

of Hi into a molecular state is minimal. Changes in θRHT for different Hi velocity channels

may indicate line-of-sight field tangling, and may elucidate the physical origin of variations

in p by isolating components of the magnetic field. This will be the subject of future work,

and may lead to further Hi constraints on P353.

5.3 Conclusions

In this work we demonstrate that Hi orientation correlates with Planck 353 GHz polar-

ization angle. We will process Hi data from the full Arecibo sky in a forthcoming work,
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as it overlaps with several CMB experiments. Lower resolution Hi surveys such as GASS

(McClure-Griffiths et al. 2009) and EBHIS (Kerp et al. 2011) can be used on other regions

of the sky, although they do not trace the Galactic magnetic field as precisely as the high

resolution GALFA-Hi data (Clark et al. 2014). Soon, Galactic all-sky maps from Square

Kilometer Array pathfinders (Duffy et al. 2012) will be ideal for Hi-based foreground maps.
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5.A Supplemental material

In this work we run the RHT using an unsharp mask kernel diameter DK = 15′, a rolling

window size DW = 75′, and an intensity threshold Z = 70% (see Clark et al. 2014). Un-

der variation of these parameters, both the velocity channel binning as well as the RHT

parameters, our results remain qualitatively unchanged.
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Uncertainties for P and ψ are defined by

σP =
1

P

√
Q2σQQ2 + U2σUU 2 (5.3)

and

σψ = 28.65◦

√
Q2σUU 2 + U2σQQ2

Q2σQQ2 + U2σUU 2
· σP
P
, (5.4)

where we neglect QU covariance. We compute σ353
QQ and σ353

UU from half-mission splits of

the Planck data, following the procedure outlined in (Adam et al. 2015b). The analogous

quantities σRHTQQ and σRHTUU are computed from the variance in the RHT spectrum, as

σRHTQQ

2
=

∫
cos2 (2θ) ·R (θ) dθ (5.5)

and

σRHTUU

2
=

∫
sin2 (2θ) ·R (θ) dθ. (5.6)

We define the difference between θ353 and θRHT as

δθ =
1

2
arctan

[
sin(2θ353) cos(2θRHT )− cos(2θ353) sin(2θRHT )

cos(2θ353) cos(2θRHT ) + sin(2θ353) sin(2θRHT )

]
. (5.7)

This equation properly accounts for the 180◦ degeneracy in polarization angle.
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torial coordinates. Background image is the log of the Planck 353 GHz dust intensity [K].
The GALFA-Hi full-sky region is overlaid. The Effelsberg-Bonn Hi Survey (EBHIS) and the
Galactic All-Sky Survey (GASS) cover the entire Northern and Southern Equatorial skies,
respectively.
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Chapter 6

Toward Higher Fidelity Maps of

Polarized CMB Foregrounds

6.1 Introduction

The search for inflationary gravitational wave B-mode polarization is currently hindered by

the foreground polarized dust emission, as discussed in previous chapters. Improved maps

of the plane-of-sky magnetic field will be invaluable for the study of the ISM, as well as for

the search for inflation. An improved map of the foreground polarization will also benefit

studies of CMB lensing. The large-scale structure of the Universe gravitationally lenses the

CMB signal, measurably affecting the structure of CMB anisotropies (Blanchard & Schnei-

der 1987). Lensing also deforms the CMB polarization pattern, generating a lensing B-mode

signal from intrinsically E-mode polarization (Zaldarriaga & Seljak 1998). Sensitive mea-

surements of CMB temperature and polarization anisotropies can thus be used to reconstruct

the projected matter density of the Universe between the surface of last scattering and the

present day (Zaldarriaga & Seljak 1999; Hu & Okamoto 2002). Astrophysical foregrounds
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can bias the CMB lensing reconstruction, an effect that is currently better-understood in

temperature than in polarization (van Engelen et al. 2014). Improved maps of the foreground

polarization signal can be used to study foreground biases for CMB lensing reconstruction.

We construct a flexible Bayesian pipeline for estimating dust polarization properties from

353 GHz and Hi data. The likelihood of the data is constructed from Planck 353 GHz dust

polarization measurements. We implement and test a number of different priors, with the

goal of understanding how to best create maps that self-consistently incorporate polarized

emission and Hi data. The Bayesian priors use the orientation of Hi, measured with the

Rolling Hough Transform (RHT; Chapter 4), to inform the true plane-of-sky polarization

angle. The resulting Bayesian posteriors are sampled to obtain new maps of the polarized

sky. We cross-correlate these maps with Planck 217 GHz data; independent observations

of the polarized dust emission. We compare the resulting cross-power spectra with the

cross-power spectra of 217 GHz data and maps that contain no Hi information.

6.2 Methods

The objective is to estimate the true polarization properties – Stokes I0, Q0, and U0 – from

the data. In what follows we denote the true values I0, Q0, and U0, and the measured

values of these quantities I, Q, U . The polarized intensity P0 ≡
√
Q2

0 + U2
0 , the polarization

fraction p0 ≡ P0/I0, and the polarization angle ψ0 ≡ 1
2
arctan(U0

Q0
), and the measured values

of these quantities are defined analogously.

The total intensity I is generally measured with higher signal to noise than the linear

polarization parameters Q and U . In this initial study we assume the intensity is perfectly

known, i.e. I = I0 and σI = 0. This assumption allows us to work in two-dimensional (p, ψ)

space.
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6.2.1 Likelihood

The likelihood of the data is constructed from the Planck 353 GHz measurements of p, ψ,

and noise properties. Because of the assumption that σI = 0, the covariances σII = σIQ =

σIU = 0, and the covariance matrix reduces to

Σ =



σQQ σQU

σQU σUU


 . (6.1)

Following Montier et al. (2015) we define

Σp =
1

I2
0

Σ (6.2)

and

σ4
p,G = det(Σp). (6.3)

The likelihood is then

f2D (p, ψ|p0, ψ0,Σp) =
p

πσ2
p,G

exp

(
−1

2
CT Σ−1

p C
)
, (6.4)

where

C =



p cos(2ψ)− p0 cos(2ψ0)

p sin(2ψ)− p0 sin(2ψ0)


 . (6.5)

In the more general case where I 6= I0, we will need to include the full I,Q, U covariance

matrix, and the likelihood becomes three-dimensional.
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6.2.2 Prior

We construct priors on the (p, ψ) plane for each pixel. In all cases we use the Planck

polarization angle convention in Galactic coordinates. Because the RHT is run on Hi data

in Equatorial coordinates, this conversion is nontrivial. The RHT records linear intensity as

a function of angle, binned by θ such that the linear power in a single angle bin is R(θi). We

project the amplitude R into Galactic coordinates as a scalar. We then project and rotate

each angle bin θi → ψi such that it is in the desired projection and angle convention.

We use a flat prior in p, i.e.

κ(p′0) =





1, if pa ≤ p0 ≤ pb

0, otherwise

(6.6)

prior to normalization.

Theoretically the polarized intensity cannot exceed the total intensity, and the total

intensity must be nonnegative, i.e. p0 ∈ [0, 1]. However in practice, p0 ∈ (−∞,∞) because

of measurement noise. The imposition of pa = 0 and pb = 1 in Equation 6.6 constrains

the polarization fraction to a physically realizable quantity, but we can do better when the

polarization is measured with high signal to noise. We create an adaptive p0 prior from the

naive Planck measurement of p and its uncertainty. The variance in p is

σ2
p =

1

p2I4
0

(
Q2σQQ + U2σUU + 2QUσQU

)
, (6.7)

where, again, we have taken I to be perfectly known (Ade et al. 2015b). We then define
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the adaptive p0 grid

pa = max{0, p− 7σp}

pb = min{1, p+ 7σp}, (6.8)

such that p0 is bounded by a minimum value of p − 7σp or 0 and a maximum value of

p+ 7σp or 1, whichever is the most restrictive bound in each case. Using a fixed number of

sampling elements nsample, this approach imposes a grid element size δp0 = (pb−pa)/nsample.

The coarsest possible grid resolution is δp0 = 1/nsample, but the grid resolution becomes finer

for pixels with lower uncertainties in p.

The prior is normalized over the (p0, ψ0) domain such that

∫ ψb

ψa

∫ pb

pa

κ(p0, ψ0)dp0dψ0 = 1. (6.9)

We note that a flat prior in p is not an uninformative prior, and may not be the best

choice if some sightlines are expected to be unpolarized (Quinn 2012). The maximum prior

domain p0 ∈ [0, 1] is a reasonable first guess, but in reality the maximum theoretical polar-

ization fraction is probably sub-unity, just as it is for synchrotron radiation. Better a priori

knowledge can be used to improve Equation 6.6.

The ψ-dependence of the prior is based on the RHT analysis of GALFA-Hi data. The

implicit assumption is that the RHT distribution contains information about the true distri-

bution of polarization angles. Chapters 4 and 5 support this assumption by demonstrating

the alignment between Hi and various probes of the plane-of-sky polarization angle.

The Hi information can be encoded into a prior in many ways. We broadly consider two

categories of Hi-informed prior: a prior based on R(ψ), the full RHT output, and a prior

based on ψRHT , an RHT-based point estimate for the orientation of Hi (see Equation 5.1).
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The prior based on ψRHT is an axial von Mises distribution, the axial analogue to a

circular normal distribution (Arnold & SenGupta 2006).

κ(ψ0) =
1

πI0(w)
cosh (w cos (ψ0 − ψRHT )) , (6.10)

where I0(·) is the modified Bessel function of the first kind, order 0, and w is a width

parameter for which we use w = 1/σψ
2
RHT , the inverse of the RHT angle variance computed

from Equations 5.5 and 5.6. This allows the strength of the prior to vary based on the

variance of the RHT distribution. We can instead use w = 1/σ2
δθ, the inverse variance of the

angle difference histogram shown in Figure 5.2. This keeps the strength of the prior fixed,

but is motivated by the data based on the dispersion in δθ in a given region of sky at a given

angular resolution.

The ψRHT -based approach only uses the point estimate of the RHT data rather than the

full RHT spectrum R(ψ). We can instead define

κ(ψ0) = R(ψ) + Z, (6.11)

where Z is a variable that can be used to tune the relative strength of the Hi information.

When Z = 0, the prior is the raw RHT data. The final normalization of the prior (Equation

6.9) means that as Z →∞, the prior converges to a flat prior in (p0, ψ0). Z can be constant

or vary spatially on the sky. One motivation for a non-zero Z is that the amplitude of R(ψ)

contains information that can be destroyed in the normalization. Consider an R(ψ) with a

single peak at a ψ value of π/2. If R(ψ = π/2) = 1, the Hi data contains a stronger linear

feature oriented at π/2 through that pixel than if R(ψ = π/2) = 0.1. Once normalized,

however, these two R(ψ) distributions will yield the same prior. We can mitigate this by

choosing an R(ψ) amplitude-dependent Z. We find that one reasonable choice is
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Figure 6.1: Naive Planck polarization fraction p (top) and mean Bayesian posterior estimate
pMB after application of a flat prior on [pa, pb] as defined in Equations 6.6 and 6.8 (bottom).
Data are plotted on [0, 1], but pnaive values reach > 900.
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Z = max(R(ψ, x, y))−max(R(ψ)), (6.12)

where max(R(ψ, x, y)) is the global maximum of all R(ψ) distributions in the region of sky

considered, and max(R(ψ)) is the maximum amplitude that the RHT distribution reaches

for a particular pixel. We note that for a single velocity slice, the theoretical max(R(ψ))

is 1, but we sum R(ψ) data over multiple velocity channels so the theoretical maximum is

nchannels.

As a point of comparison, we can use a flat κ(ψ0) in addition to the flat κ(p0) dependence,

such that our total, normalized prior becomes

κ(p0, ψ0) =





1
π(pb−pa)

, if pa ≤ p0 ≤ pb

0, otherwise.

(6.13)

Again, although this prior is flat, it is not uninformative. Because this prior is uniform

in (p, ψ), it prefers points closer to the origin in (Q,U) space, as discussed in Quinn (2012).

The effect of this flat prior on the all-sky distribution of the Planck 353 GHz polarization

fraction is shown in Figure 6.1.

6.2.3 Posterior estimation

The posterior is defined from the likelihood and normalized prior using Bayes theorem:

B2D(p0, ψ0|p, ψ,Σp) =
f2D (p, ψ|p0, ψ0,Σp) · κ(p0, ψ0)∫ π

0

∫ pb
pa
f2D (p, ψ|p′0, ψ′0,Σp)κ(p′0, ψ

′
0)dp′0dψ

′
0

(6.14)

where both the prior and the posterior are normalized over the sampled domain p0 ∈

[pa, pb], ψ0 ∈ [0, π).

We then compute the mean Bayesian posterior estimator, the first moments of the pos-
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Figure 6.2: Demonstration of the Bayesian posterior construction for a single pixel. Left:
the likelihood of the data, constructed from Planck 353 GHz linear polarization data and
noise properties, including covariance information (Section 6.2.1). Gray cross shows the
naive (p, ψ) Planck measurements. Middle: the Hi-based prior. The ψ dependence of the
prior is defined by the raw R(ψ) distribution (Equation 6.11 with Z = 0). The p dependence
is flat (Equation 6.6). Right: the resulting Bayesian posterior (Equation 6.14). Blue cross
shows the maximum a posteriori values (pMAP , ψMAP ) (Equation 6.20). Red cross shows
mean Bayesian estimator values (pMB, ψMB) (Equations 6.15 and 6.16).

terior PDF:

p̂MB ≡
∫ pb

pa

∫ π

0

p0B2D(p0, ψ0|p, ψ,Σp)dψ0dp0 (6.15)

ψ̂MB ≡
∫ pb

pa

∫ π

0

ψ0B2D(p0, ψ0|p, ψ,Σp)dψ0dp0. (6.16)

Some care is required in the calculation of ψ̂MB because of the circularity of the ψ integral

(Montier et al. 2015). Rather than integrate Equation 6.16 directly, we compute separate Q

and U first moment components,

q̂MB =

∫ pb

pa

∫ π

0

cos(2ψ0)B2D(p0, ψ0|p, ψ,Σp)dψ0dp0 (6.17)

ûMB =

∫ pb

pa

∫ π

0

sin(2ψ0)B2D(p0, ψ0|p, ψ,Σp)dψ0dp0 (6.18)
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and then find

ψ̂MB =
1

2
arctan

ûMB

q̂MB

. (6.19)

An alternative approach discussed in Montier et al. (2015) is to simply compute the

maximum a posteriori value

(p̂MAP , ψ̂MAP ) = argmax
(p0,ψ0)

B2D. (6.20)

Figure 6.2 shows an example of these values computed for one pixel on the sky. For

two-dimensional posteriors on (p, ψ), it is efficient to compute the posterior on a grid and

sample it directly. For posterior estimation on (I, p, ψ), it may be more efficient to sample

the posterior using a Markov Chain Monte Carlo (MCMC) method. Uncertainties for the

p̂MB, ψ̂MB estimators can be estimated from the second moments of the posterior distribution

(Montier et al. 2015).

6.3 New foreground maps: progress and future direc-

tions

We follow the procedures outlined in Section 6.2 for the region of sky analyzed in Chapter 5.

We test several methods of constructing an Hi-based prior. The best way to test our method

is to compare the resulting maps with independent probes of the polarized dust emission.

We compute cross-power spectra between maps derived from our procedure and Planck 217

GHz polarization maps. By cross-correlating our maps with lower-frequency Planck data, we

can ask whether the priors we introduce produce maps that are lower-noise representations

of the true polarized dust foreground.

Our Bayesian pipeline computes foreground maps in the (p, ψ) plane, assuming I = I0 =

146



102 103

ℓ

−1

0

1

2

3

4

5

6

7

ℓ(
ℓ

+
1)

C
ℓ/

2π
[K

2
]

×10−11 Posterior Maps × 217 GHz
Flat prior EE

Raw Planck EE

Offset R(ψ) prior EE

R(ψ) prior EE

ψRHT AvM prior EE

Flat prior BB

Raw Planck BB

Offset R(ψ) prior BB

R(ψ) prior BB

ψRHT AvM prior BB

Figure 6.3: EE and BB cross-power spectra for various input maps × Planck 217
GHz polarization maps. Error bars are computed from the corresponding autocorrela-
tion spectra. Data are shown for six logarithmically-spaced multipole bins centered at
l = [53, 91.5, 157.5, 270, 462, 791.5]. “Flat prior” indicates the use of a uniform prior over
(p, ψ), i.e. Equation 6.13. “Raw Planck” indicates the cross-power spectra for the raw
Q353, U353 data, with no Bayesian estimation. “Offset R(ψ) prior” uses the prior from Equa-
tion 6.11 with Z as defined in Equation 6.12. “R(ψ) prior” is the raw RHT output applied
as the prior on ψ, i.e. Equation 6.11 with Z = 0. “ψRHT AvM prior” is the prior constructed
from ψRHT using the axial von Mises distribution, i.e. Equation 6.10 with w = 1/σψ

2
RHT .

All templates except the “raw” data are constructed from the mean Bayesian estimator of
the posterior.
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I353. We combine these components into Q, U template maps by combining the posterior

estimators p̂ and ψ̂ with the 353 GHz total intensity I353

Q̂ = I353 p̂ cos(2ψ̂)

Û = I353 p̂ sin(2ψ̂). (6.21)

From these we compute EE and BB power spectra using polspice (Chon et al. 2004).

We show some representative examples of the cross-power spectra between maps con-

structed from our Bayesian posterior estimation and Planck 217 GHz data in Figure 6.3.

The error bars are computed from the autocorrelation spectrum of each template in the

Gaussian approximation. All of the templates used to compute the cross-power spectra are

computed using Equation 6.21 with the mean Bayesian estimator of the posterior, i.e. p̂MB

and ψ̂MB. The one exception is the “raw Planck” data, which are simply the Q353, U353

maps, with no prior applied.

We find that using an R(ψ) prior (Equation 6.11) with Z as defined in Equation 6.12 leads

to a modestly more significant cross-correlation with the 217 GHz data than using a flat prior

(Equation 6.13). Both this R(ψ) prior and the flat prior yield error bars that are smaller

than those for the raw Planck data. Using Equation 6.11 with Z = 0 and constructing the

prior from ψRHT using the axial von Mises distribution (Equation 6.10) both generally lead

to larger error bars, presumably because the prior is too strong relative to the likelihood in

pixels where the RHT data is dominated by noise.

It appears promising that Hi-based priors can improve the polarized foreground map,

but the optimal formulation of an Hi-based prior is still being pursued. There are a number

of avenues to explore. One is the spatial resolution of the maps. Currently we do not

apply any type of spatial smoothing to the RHT data. The RHT data by nature has a very
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variable signal-to-noise, because regions that lie in between well-detected linear features may

have noisy, low-amplitude RHT spectra (see Chapter 4 for a description of the algorithm).

One remedy for this may be to smooth the RHT data, and build priors based on lower

angular resolution RHT data. From a Bayesian perspective, this means that the prior would

articulate a belief that the polarization angle does not physically vary on angular scales

smaller than the smoothing scale of the RHT data.

Both the shape and the amplitude of the RHT prior contain information on the underlying

Hi distribution. The introduction of an RHT amplitude-dependent Z in Equation 6.11 is

an attempt to encode both of these aspects of the RHT distribution in a way that will not

be destroyed by the normalization of the prior. Other choices of Z, or other constructions

of the prior that achieve this same end, should be explored. These priors should be tested

on different, and larger, areas of sky. We can also cross-correlate the new foreground maps

with Planck 143 GHz data, or data from other CMB experiments.

Further afield, there are a number of ways that this Bayesian procedure can be extended.

As mentioned above, the assumption that I is perfectly known can be relaxed, and this

pipeline can be run in three-dimensional I,Q, U space. In that case Hi data can enter as

a prior on I, as well, as NHI is a strong predictor of I in the diffuse ISM. As mentioned

in Chapter 5, changes in the orientation of Hi as a function of velocity may trace line-of-

sight field tangling, and therefore be useful as a predictor of p. It may also be beneficial to

weight the RHT contribution in each velocity channel by the intensity of the Hi emission at

that channel. Eventually, we can introduce additional data into the priors, such as starlight

polarization measurements. Indeed, as long as the significance of the cross-correlation with

lower-frequency data is an accurate measure of how well a given foreground map reflects the

underlying truth, this method can be used to test data-driven models of how the ISM affects

the polarized sky.
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Chapter 7

Conclusion

The study of interstellar magnetism provides no lack of mystery. Our understanding of the

interstellar magnetic field has dramatically expanded since its discovery, but many founda-

tional questions remain. The magnetic field’s origin, structure, and role in ISM processes

remain poorly understood, and present a formidable challenge. The abstruse nature of cos-

mic magnetism means that insights are hard-won but far-reaching in their implications.

Hence the broad scope of this Thesis, which advances our understanding of the role of mag-

netism in accretion disks, in the diffuse ISM, and as a foreground for cosmology experiments.

Along the way we employ analytical theory, numerical simulations, and observations: the

full toolbox of astrophysical investigation.

7.1 Summary of results

In Chapters 2 and 3 we analyze the MRI, a plasma instability that drives accretion and

turbulence in astrophysical disks. We study the MRI using the mathematical framework of

pattern formation, in which nonlinear interactions give rise to the spontaneous selection of

certain spatial features. We conduct a multiscale perturbative treatment of the nonideal,
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axisymmetric MRI, in the limit where nonlinear interactions are weak. In Chapter 2 we

analyze the MRI in a local approximation, and in Chapter 3 we consider a fully cylindrical

geometry. In both cases we derive the behavior of the MRI on long spatial and temporal

scales, and find that the amplitude of the magnetohydrodynamic variables are modulated

by a Ginzburg-Landau equation. For the standard MRI, when the initialized magnetic field

is purely vertical, we derive a real Ginzburg-Landau equation. For the helical MRI, an over-

stability that arises when the initialized field has both vertical and azimuthal components,

we derive a complex Ginzburg-Landau equation. This indicates that the saturated state of

the MRI system will be unstable on long space- and timescales to various instabilities, whose

character will depend on whether the background field is helical or only poloidal.

In Chapter 4 we introduce a new algorithm, the Rolling Hough Transform, for measuring

the linear intensity of image features as a function of orientation. We use the RHT to

characterize the orientation of slender linear features in high-dynamic range observations

of the diffuse ISM. We demonstrate for the first time that the cold neutral medium of the

ISM is generically organized into linear “fibers” that are well aligned with the interstellar

magnetic field as probed by starlight polarization.

With the release of Planck 353 GHz dust polarization maps, our view of the plane-of-

sky magnetic field orientation in the diffuse ISM was no longer limited to sparse starlight

polarization measurements. In Chapter 5 we show that linear features in the diffuse Hi trace

the magnetic field measured in polarized dust emission extremely well. We demonstrate

that the structure of the cold neutral medium is more tightly coupled to the magnetic field

than previously known. Because the orientation of neutral hydrogen is an independent

predictor of the local dust polarization angle, our work provides a new tool in the search for

inflationary gravitational wave B-mode polarization in the cosmic microwave background,

which is currently limited by foreground dust contamination. In Chapter 6 we develop a
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Bayesian method for creating CMB foreground maps that self-consistently incorporate dust

polarization data and Hi orientation measurements. The use of Hi orientation as a prior on

the dust polarization angle appears to be a promising method for generating higher-fidelity

maps of the polarized CMB foreground.

7.2 Impact of the Rolling Hough Transform

Much of the work in this Dissertation (Chapters 2 - 5) is already published in the literature,

but as these contributions are relatively recent we do not purport to know what their full

influence on the field will be. However Chapter 4 was published first, in 2014, and the Rolling

Hough Transform algorithm was made public at the same time.1 The RHT is a general-

purpose machine vision code, in that it can be applied to any image data. It has since been

adopted by researchers in several areas of astrophysics, and here we briefly highlight some

applications of the RHT in the recent literature.

The RHT was used to study L1642, an unusually high-latitude star-forming cloud (Ma-

linen et al. 2016). The authors used the RHT to compare the orientation of Herschel dust

emission structures to the orientation of the magnetic field as probed by Planck 353 GHz

polarized dust emission. A principal component analysis of the histogram of relative ori-

entations of density structures and the magnetic field revealed that the diffuse molecular

gas is preferentially organized into striations that are aligned with the field. In the denser

gas, there is some evidence for a bimodal distribution of structure orientation parallel and

perpendicular to the field.

Koch & Rosolowsky (2015) develop a method for isolating filaments in image data that

uses the RHT to measure the orientations of identified filaments. Their algorithm, “Fil-

1The RHT webpage can be found at http://seclark.github.io/RHT/.
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Finder”, identifies filamentary structure based on local changes in brightness, and success-

fully identifies both bright molecular filaments and fainter structures in more diffuse gas.

The authors applied FilFinder to Herschel observations of Gould Belt molecular clouds, and

used the RHT to analyze the distribution of orientation of the filaments (relative to one

another, not relative to the magnetic field). They found that the diffuse molecular striations

in some clouds are preferentially oriented parallel to one another, while other regions display

no preferred orientation.

The RHT can also be applied to synthetic observations of simulations. Inoue & Inutsuka

(2016) show that the alignment of synthetic density structures with the magnetic field in

simulations of turbulence depends on the strength of the local shear strain. The level of

shear strain in a region is mediated by the angles between the propagation direction of

shocks and the orientation of the magnetic field. The authors demonstrate that Hi density

structures in the ISM that form after shocks compress the diffuse warm neutral medium will

be preferentially aligned with the magnetic field as long as the simulated shocks propagate

into a realistic level of upstream turbulence.

Recently the RHT was used to analyze fibrils, fine linear features in the solar chromo-

sphere. Fibrils extend radially from photospheric magnetic field concentrations, and so have

long been assumed to trace the magnetic field lines. Asensio Ramos et al. (2017) use the RHT

to demonstrate that the fibrils are indeed tracing the local magnetic field, measured using

Zeeman observations of the Caii 8542 Å line. The authors quantify the degree of dispersion

between fibril orientation and the field orientation, and show that the dispersion increases

in weakly magnetized regions. Magnetohydrodynamic simulations indicate that ambipolar

diffusion can cause fibrils to be misaligned with the magnetic field (Mart́ınez-Sykora et al.

2016). Thus Asensio Ramos et al. (2017) suggest that RHT analyses of fibril observations

may be used to determine the role of ambipolar diffusion in the chromosphere.
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Figure 7.1: Visualization of the Rolling Hough Transform of the entire GALFA-Hi sky.
Background grayscale image is the integrated over the velocity interval |vlsr| ≤ 90 km s−1

corrected for stray radiation. Overlaid structures show the RHT backprojection, colored
by velocity channel, from −36.4 km s−1 (purple) to +37.2 km s−1 (red). The opacity of
the features in each velocity channel represents the amplitude of the RHT backprojection∫
R(θ, x, y) dθ (see Section 4.2.1). A version of this Figure will appear in Peek et al. (2017).
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We have applied the RHT to the entire Arecibo sky over a range of velocity channels

(Figure 7.1), and RHT data will be provided to the public along with the second data

release of GALFA-Hi (Peek et al. 2017). This will encourage exploration of the orientation

of high-resolution Hi by other authors.

7.3 Future work

A number of avenues for future work have already been presented in each preceding Chapter.

There are many more applications of the weakly nonlinear MRI framework developed in

Chapters 2 and 3, and of the RHT presented in Chapter 4. The discovery that linear

structures in the diffuse neutral medium are well aligned with the local magnetic field,

presented in Chapters 4 and 5, is the basis for the ongoing development of polarized CMB

foreground maps discussed in Chapter 6. Still, there is more to be done. The work presented

in this Thesis has far-reaching applications, and here we present several novel directions that

remain to be explored.

7.3.1 Damped eigenmode saturation of the MRI

In Section 2.4 we presented the realization that the fastest-growing linear modes in the

shearing box MRI are no longer solutions to the nonlinear MRI equations in the presence

of ambipolar diffusion. This means that nonlinear interaction between primary MRI modes

is no longer precluded as a saturation mechanism in this setup. For the first time, we can

analytically investigate whether nonlinear saturation in an MRI shearing box can occur via

some mechanism other than parasitic modes.

One such mechanism that can now be explored is the role of damped eigenmodes in MRI

saturation. Typical treatments of turbulence-mediated saturation invoke an energy cascade
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down a wavenumber spectrum that ends at some dissipation scale. A weakly nonlinear

approach like the one presented in Chapters 2 and 3 analyzes a finite band of excited modes.

In both treatments, damped modes – eigenmodes of the system that are linearly damped for

all wavenumbers – are ignored. Because the linear time evolution of damped Fourier modes

is simple exponential decay, one might assume that all pertinent nonlinear interactions occur

in the wavevector plane of the unstable mode, e.g. in the (kx, kz) plane for axisymmetric

perturbations. However, analyses restricted to this plane represent an incomplete sample

of the interactions – and therefore fluid motions – available to the system. A complete

description would allow nonlinear interactions between not only different wavevectors, but

different mode families at different wavevectors (see Figure 1 in Hatch et al. 2011, for a

schematic depiction of inter-mode coupling).

Nonlinear coupling between damped and unstable eigenmodes has been studied exten-

sively in the plasma literature, and these interactions are important for the saturation of

a number of plasma instabilities (e.g. Terry et al. 2006; Makwana et al. 2011; Hatch et al.

2011; Fraser et al. 2017). The techniques developed in the plasma literature can be applied

to the local MRI system described in Section 2.4. Rather than analyzing only the evolution

of the most unstable eigenmode, we can project the MRI equations into the basis set of the

linear eigenmodes. The nonlinear terms in the MRI equations will then couple the four mode

families of incompressible, rotational MHD, and we can analyze the contribution of damped

eigenmodes to MRI saturation. We can also compare this analysis with direct numerical

simulations of the shearing box MRI with ambipolar diffusion.

7.3.2 Asymmetry in the polarized sky

B-mode polarization is one of two rotational invariants into which we decompose the po-

larized sky, along with E-mode polarization. Naively, one might expect that the power in
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the E-mode and B-mode dust polarization signal is equal. This is what would arise for a

randomly oriented polarization field, or for a constant magnetic field with fluctuating polar-

ized intensities (Zaldarriaga 2001). This parity is predicted by the state-of-the-art models

of the polarized dust foreground (Delabrouille et al. 2013; O’Dea et al. 2011). But Planck

revealed that in fact there is a significant asymmetry in the E- and B-mode cross-correlation

amplitudes, CEE
l /CBB

l ∼ 2. This ratio seems to hold over the whole sky (Adam et al. 2014).

In Chapter 5, we find EE/BB ∼ 2 using E- and B-mode template maps constructed

using only Hi orientation. This suggests that the missing physics in the polarization models

is the alignment between ISM density structures and the magnetic field. We can investigate

this idea phenomenologically, by calculating the EE/BB ratio produced by models of the

polarized foreground with different degrees of alignment between intensity structures and

the magnetic field. These can be toy models, but we can also use simulations to relate

structure-field alignment to the governing physics of the turbulent ISM. Observations indicate

an apparent turnover in the alignment of Planck density structures, from preferentially

oriented parallel to the magnetic field to preferentially oriented perpendicular to the field,

at column densities of ∼ 1021. The promise of using density alignment as a constraint for

theories of star formation is driving an interest in analyzing the structure alignment in high-

resolution simulations of star-forming molecular clouds. Whether or not structure alignment

is driving the EE/BB asymmetry, this ratio provides an additional constraint on synthetic

observations of the polarized dust emission in simulations.

The physics responsible for intensity structure-field alignment and the EE/BB asymme-

try can also be explored analytically. A first step toward connecting the EE/BB ratio to

the physics of the ISM was recently made by Caldwell et al. (2017). The authors calculated

the expected EE/BB and TE (temperature-E-mode) correlations for basic magnetohydro-

dynamic waves. They found that the observations cannot be explained by simple MHD
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turbulence – and indeed, neither can the degree of alignment between ISM structures and

the magnetic field observed in the ISM (Clark et al. 2014). We can move beyond this simple

picture by deriving the expected EE/BB ratio for an ISM that includes nonideal effects,

as well as for an ISM dominated by various instabilities, which should contribute to the E-

and B-mode power via linear combinations of the simple waves derived in Caldwell et al.

(2017). A direct link between statistical observations like the EE/BB ratio to the physics

of magnetically aligned filament formation would be an extremely powerful diagnostic.

7.3.3 Toward magnetic tomography

Our understanding of the magnetic fields in the interstellar medium is ultimately limited by

our position within it. We view the ISM in projection, and a truly three-dimensional picture

of the magnetized ISM remains elusive. However, new techniques for synthesizing large

datasets are changing this. The combination of stellar distance and reddening measurements

has enabled the first three-dimensional dust maps: estimates of the distribution of dust as

a function of distance from the Sun (Lallement et al. 2014; Green et al. 2015). The three-

dimensional distribution of Hi can be inferred from the Galactic rotation profile and from

dust extinction measurements (e.g. Levine 2006).

Starlight polarization measurements, which individually give only the projected plane-of-

sky field orientation, can in principle be combined with three-dimensional dust maps to probe

the change in this field component along the line of sight. The properties of polarized dust,

which currently trace the entire line of sight, can be mapped onto this three-dimensional

picture: for example, the dust polarization fraction can constrain the degree of field disorder

along the line of sight. In Chapters 4 and 5 we link the orientation of diffuse Hi to starlight

polarization and dust polarization measurements, respectively. The realization that Hi mor-

phology is a powerful diagnostic of the ambient magnetic field provides an additional probe

158



of the plane-of-sky magnetic field that can be linked to the three-dimensional gas distribution

in the Galaxy.

In combination with traditional probes of the magnetic field, particularly Faraday rota-

tion measures, these techniques will enable a clearer picture of the Galactic magnetic field.

Only with clever multi-wavelength methods can we hope to de-project our observations back

into their full three-dimensional context. The power of this type of “magnetic tomography”

will only be amplified as the Square Kilometer Array and other next-generation telescopes

come online. Planned observations of the ISM, both for its own sake and for CMB foreground

removal, will provide an influx of new data over the coming decades. If we can develop theo-

retical models capable of taking full advantage of these observations, the future is bright for

continued progress in our knowledge of cosmic magnetism. Dedicated study must continue,

that magnetic fields might no longer represent a measure of our ignorance, but a triumph of

our understanding of the interstellar medium.
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M., Ghosh, T., Giard, M., Giraud-Héraud, Y., Giusarma, E., Gjerløw, E., González-
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R. D. E., Sauvé, A., Savelainen, M., Savini, G., Schaefer, B. M., Schammel, M. P., Scott,

D., Seiffert, M. D., Serra, P., Shellard, E. P. S., Shimwell, T. W., Shiraishi, M., Smith,

K., Souradeep, T., Spencer, L. D., Spinelli, M., Stanford, S. A., Stern, D., Stolyarov, V.,

Stompor, R., Strong, A. W., Sudiwala, R., Sunyaev, R., Sutter, P., Sutton, D., Suur-Uski,

A. S., Sygnet, J. F., Tauber, J. A., Tavagnacco, D., Terenzi, L., Texier, D., Toffolatti, L.,

Tomasi, M., Tornikoski, M., Tristram, M., Troja, A., Trombetti, T., Tucci, M., Tuovinen,

J., Türler, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vassallo, T., Vidal,

M., Viel, M., Vielva, P., Villa, F., Wade, L. A., Walter, B., Wandelt, B. D., Watson, R.,

Wehus, I. K., Welikala, N., Weller, J., White, M., White, S. D. M., Wilkinson, A., Yvon,

D., Zacchei, A., Zibin, J. P., Zonca, A., & Planck Collaboration. 2015a, Astronomy and

Astrophysics, 594, A1

Adam, R., Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi,

C., Banday, A. J., Barreiro, R. B., Bartolo, N., Battaner, E., Benabed, K., Benôıt, A.,
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Bernard, J. P., Bersanelli, M., Bielewicz, P., Bonavera, L., Bond, J. R., Borrill, J., Bouchet,

F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso,

J. F., Catalano, A., Chiang, H. C., Christensen, P. R., Colombo, L. P. L., Combet, C.,

164



Couchot, F., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davis, R. J., de Bernardis, P.,

de Rosa, A., de Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Dolag, K., Doré,
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Hiraud, Y., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A.,

Hamann, J., Hansen, F. K., Hanson, D., Harrison, D., Henrot-Versillé, S., Hernández-
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Hollerbach, R. & Rüdiger, G. 2005, Physical Review Letters, 95, 124501

Houde, M., Hezareh, T., Jones, S., & Rajabi, F. 2013, The Astrophysical Journal, 764, 24

Hough, P. V. C. 1962, Method and Means for Recognizing Complex Patterns, US Patent

Hoyle, R. 2006, Pattern Formation, An Introduction to Methods (Cambridge: Cambridge

University Press)

Hu, W. & Okamoto, T. 2002, The Astrophysical Journal, 574, 566

Illingworth, J. & Kittler, J. 1988, Computer Vision, Graphics, and Image Processing, 44, 87

Inoue, T. & Inutsuka, S.-i. 2016, The Astrophysical Journal, 833, 10

Jaffe, T. R., Ferrière, K. M., Banday, A. J., Strong, A. W., Orlando, E., Macias-Pérez, J. F.,
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