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ABSTRACT 

Productive Responses to Failure for Future Learning 

Alison Lee 

For failure experiences to be productive for future performance or learning, students must be both 

willing to persist in the face of failure, and effective in gleaning information from their errors. 

While there have been extensive advances in understanding the motivational dispositions that drive 

resilience and persistence in the face of failure, less has been done to investigate what strategies 

and learning behaviors students can undertake to make those failure experiences productive. This 

dissertation investigates what kinds of behaviors expert learners (in the form of graduate students) 

employ when encountering failure that predict future performance (Study 1), and whether such 

effective behaviors can be provoked in less sophisticated learners (in the form of high school 

students) that would subsequently lead to deeper learning (Study 2). Study 1 showed that 

experiencing and responding to failures in an educational electrical circuit puzzle game prior to 

formal instruction led to deeper learning, and that one particular strategy, “information-seeking 

and fixing”, was predictive of higher performance. This strategy was decomposed into three 

metacognitive components: error specification, where the subject made the realization that a 

knowledge gap or misunderstanding led to the failure; knowledge gap resolution, where the subject 

sought information to resolve the knowledge gap; and application, where subjects took their newly 

acquired information to fix their prior error. In Study 2, two types of prompts were added to the 

educational game: one that provoked students through these metacognitive steps of error 

specification, information seeking, and fixing, labelled the “Metacognitive Failure Response” 

(MFR) condition; and a second prompt that provoked students to make a global judgment of 

knowing, labelled the “Global Awareness” (GA) condition. The results indicated that although 



	

there were no significant condition differences between the three groups (MFR, GA, and control 

condition where participants received no prompt at all), more time spent on the MFR prompt 

predicted deeper and more robust learning. In contrast, more time spent on the “Global Awareness” 

prompt did not predict deeper learning, suggesting that individual factors (such as 

conscientiousness) did not alone account for the benefits of time spent on the MFR prompt on 

learning. These results suggest that while MFR participants who carefully attended to the 

metacognitive prompts to specify the source of their errors and seek information experienced 

learning benefits, not all MFR participants sufficiently attended to the prompts enough to 

experience learning gains. Altogether, this body of research suggests that using this “error 

specification, info-seeking, fixing” strategy can be effective for making failure productive, but 

other instructional techniques beyond system-delivered prompts must be employed for full 

adoption of this metacognitive response to failure. Implications for teaching students to respond 

effectively to failure, for games in the classroom, and for design and engineering processes are 

discussed.
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Theoretical Framework 

Introduction 

When failure is discussed in both the public and academic space, the emphasis is largely on 

affective responses to failure. From Cinderella stories like JK Rowling and Steve Jobs, to the 

seminal works on mindset (Dweck, 2006) and grit (Duckworth, Peterson, Matthews, & Kelly, 

2007), the question often asked is how we can encourage people to persist in the face of failure, 

given that failure is often on the pathway to success. However, little has been done to identify 

when and how failure can be useful – that is, what are the kinds of “necessary and sufficient” 

conditions of the task, the learner, and the instructional method to make failure productive?  

Some researchers have investigated how failure can be beneficial for future understanding or 

outcomes. Manu Kapur (2006) introduced a framework for interventions called “productive 

failure”, where he posited that students who have the opportunity to grapple and fail within an 

open-ended environment more deeply understand the formal concepts from the direct instruction 

that follows. Loibl and Rummel (2014) further asserted that the affordance of this type of failure 

is that it provides a global metacognitive cue to the learner – the realization that one doesn’t quite 

understand the system fully, a gap in knowledge – that can then be resolved in formal instruction 

later on. However, these researchers also fail to answer a fundamental question about what happens 

in the moment of failure – what kinds of information, and what kinds of actions, can people 

leverage to optimize their understanding?   For example, are there certain kinds of reflection that 

should be happening in the failure space, or perhaps kinds of actions that need to be taken in 

response to failure? What about the role of acknowledging and pinpointing what caused the failure, 

which may be a vital part of noticing and understanding the features of a concept?  
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To elucidate the questions surrounding the utility of failure for learning, I outline several 

areas of the learning sciences pertinent to them. First, I discuss theories of transfer, particularly the 

theory of Preparation for Future Learning (PFL), where experiences in novel environments can 

inform learning that follows. In particular, I discuss the implications of productive failure that 

occur in PFL activities, and how they suggest that actions and intuitions that develop during failure 

and exploration might be key to robust learning later on. I will then discuss the field of 

metacognition, and how prior work on metacognitive judgments and strategy selection in learning 

spaces informs the questions surrounding the utility of failure for future learning. I also elucidate 

the ways in which failure at large can be effective for learning, and the gaps in research that fail to 

specify what or how people make use of information provided during failure. Finally, I argue why 

games in particular are useful both as a place to study failure, and as an effective intervention for 

preparation for future learning, drawing from the realm of games research and embodied cognition. 

Together the confluences of these fields form a theoretical framework to ask the following 

questions: Is experiencing failure during exploration of a problem space (in a game) prior to formal 

instruction (PFL) beneficial for learning? Are there specific kinds of responses to failure that are 

more effective for learning than others? 

Transfer and Learning 

Transfer, or the ability to take what is learned or experienced in one context to use in another, is 

a fundamental goal of learning. However, a century of investigations and epistemological debate 

has yielded ambivalent conclusions about precisely what constitutes and yields transfer of 

knowledge (Barnett & Ceci, 2002; Detterman, Sternberg, & Norwood, 1993; Klahr & Chen, 

2011; Singley, Anderson, & Cambridge, 1989; Thorndike & Woodworth, 1901). Recently, 

investigations in the field of the learning sciences have led to novel approaches in the instruction, 
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definition, and utility of transfer for learning and skill development. In the Preparation for Future 

Learning paradigm, transfer is defined as the use of prior experiences to inform and improve 

later formal learning, as opposed to a one-to-one mapping of prior content to a novel context 

(Bransford & Schwartz, 1999) The idea is that we oftentimes use prior knowledge to notice and 

frame new information, and that these “knowing with” kinds of prior experiences can greatly 

shape and improve understanding of the new context. For example, consider Broudy’s example 

of asking people to address the problem of repopulating eagles, illustrated by Schwartz, 

Bransford, and Sears (2005). Schwartz et al. (2005) demonstrated that when considering people’s 

proposals for eagle repopulation through the lens of PFL, adults used their prior experience and 

knowledge about repopulation of other animals and ecosystems to ask more effective questions 

and strategize more appropriately, even if their solutions were not especially sophisticated. This 

predilection to frame and infer the important aspects of a problem because of prior experiences 

can lead to faster, deeper learning than if one did not have these experiences; in other words, 

having relevant, familiar prior experiences can prepare you to ask the right questions, notice the 

important components, and learn more deeply from novel content (i.e. future learning). As such, 

transfer in PFL is treated as both an experience that can foster deeper learning (i.e. transferring 

out), and as a measure of learning (i.e. transferring in). Through this lens, we can look at transfer 

as a process, where accessing prior experiences and information is a practice to be cultivated for 

more effective learning, rather than only looking at transfer as an indicator that learning has 

occurred. While PFL may seem to be a common-sense approach to education, PFL as a 

framework for pedagogy is a relatively new approach. A variety of studies in recent years have 

shed light on what kinds of activities could provide the most effective experiences to prepare 

students for future learning.  
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Productive failure as preparation for future learning. PFL studies highlight the utility of 

activities that allow students to explore and grapple with relevant content prior to instruction. 

Oftentimes, these activities are explicitly designed such that students are thrust into a problem-

solving environment that compels them to wrestle with underlying principles of the concepts. 

Consider, for example, Schwartz, Chase, Oppezzo, and Chin’s (2011) work on using invention 

with contrasting cases as preparation for future learning. In their study, students had to invent a 

formula that captured the concept of a ratio, using cleverly designed cases that deliberately 

highlighted and contrasted underlying factors of ratio structures (for example, space and number 

of items). Their work demonstrated that even when students aren’t always ultimately successful 

in their invention of the ratio formula, their experiences with invention prior to formal learning 

led to better transfer outcomes on two dimensions: better formal learning of ratio structures in 

physics, and better application of this ratio structure to other domains. This finding demonstrates 

that students who explored the underlying principles of ratios through invention learned, 

abstracted and applied these concepts better than those who took the “traditional” route of 

learning first and then practicing. Their conclusions suggest that a critical mechanism of this PFL 

activity, inventing with contrasting cases, is fostering an “appreciation of the deep structure” of 

the concept such that students readily called upon their experiences with this deep structure when 

learning about the formal concept later on. However, they do not discuss what specific 

mechanisms of invention-with-contrasting-cases led to greater noticing of the deep structure.  

Thus, there are some questions not yet answered: what is the role of iteration, failure, strategy, 

and realizations about insufficient solutions in noticing these deep structures?  

Manu Kapur’s (2008) work with PFL attempted to address some of these questions by 

isolating failure as a vital component of preparing students for future learning. Kapur used the 
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PFL framework to design an intervention using either well-structured, scaffolded problems or ill-

structured problems prior to formal learning, His work revealed that despite students in the ill-

structured condition struggling with defining, analyzing, and solving their problems (in other 

words, failing to generate explicit understanding of the concepts or effective solutions), these 

experiences were more conducive to learning later on. This phenomenon, which he called 

“productive failure”, demonstrated that success in the traditional sense (that is, success in clearly 

defining concepts and generating effective solutions) may not necessarily lead to greater 

learning; in fact, designing problem solving tasks that scaffolds and directs learning towards 

“success” may unwittingly undermine the effortful cognition that could benefit formal learning 

later on. Instead, environments and tasks that permit students to fail and grapple with concepts 

rather than “succeed” can be more beneficial to future learning that follows those failures. 

Instruction that “teach to the failure”, or address how students’ incorrect solutions are actually 

instantiations of the concept, are crucial to transfer and deeper conceptual understanding. 

However, Kapur also fails to elucidate what specifically in the productive failure space led to 

greater learning. Does failure in itself call attention to deep features? Or does failure afford 

opportunities to engage in cognition that then leads to deep feature noticing? How much failure 

is sufficient for PFL?  

Metacognition  

One possible explanation for how failure might lead to later success is the role of metacognition, 

or the ability to judge and monitor one’s own states of knowing, and employ strategies to 

improve understanding. Metacognition is a critical part of learning because it permits learners to 

identify, more deeply understand and effectively address gaps in knowing (Flavell, 1979). 

Flavell’s seminal theory on metacognition splits metacognitive activities into two types: 
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metacognitive knowledge, and metacognitive experiences (or regulation). The former, 

metacognitive knowledge, is the information the person knows or has acquired about the selthe 

task, and the strategies one can employ to go about solving that task. For example, a student who 

is taking a quiz might have prior judgments on what she knows, how hard the questions are, and 

what the most effective ways to solve certain quiz questions are. Applied to the space of failure 

in games, a player might have metacognitive knowledge about themselves (How adept of a 

player am I? Do I know enough to beat this level?), of the task (How difficult is this game? How 

is this different or similar to other games I’ve played before?), and of the strategies she might 

employ (What is the best approach to the problem, given what I know and how hard this is?). 

Metacognitive experiences, on the other hand, are the phenomenological acts of enacting 

metacognitive knowledge – that is, the moment when that student does make a judgment about 

herself or the task, and the strategies she employs in the moment. In metacognitive experiences, 

one can engage in two kinds of metacognitive activity: metacognitive monitoring, and 

metacognitive control (Son & Schwartz, 2002). Metacognitive monitoring is the on-line or 

ongoing appraisal of one’s own understanding or performance, using one’s own metacognitive 

knowledge to make judgments (correctly or otherwise) about how one is doing. Metacognitive 

control is the regulation of one’s strategy or behavior based on one’s monitoring, such as 

deciding to approach a problem differently after realizing that an earlier approach is ineffective. 

Throughout a metacognitive experience, the student may make predictions about her 

performance (metacognitive monitoring), and use such information to allocate effort and 

attention towards the intended goal (metacognitive control). To extend the earlier game example, 

in the moment of failure, the player may have a metacognitive experience, where she employs 

her metacognitive knowledge to evaluate her own performance, and make a decision about what 
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to do next – for example, to try and fix her earlier solution. Yet, it’s also possible that the player 

might simply employ this action – fixing her solution – because it has worked for her in the past, 

and not because of some conscious and deliberate appraisals about herself or the task (Borkowski 

& Muthukrishna, 1992; Davidson, Deuser, & Sternberg, 1994). As such, it is especially difficult 

to determine in metacognitive research whether a participant’s actions in a task are reflective of 

metacognitive activity without explicitly asking them to report metacognitive intent.  

Further advancements break the field of metacognition down into various dimensions: 

meta-memory, meta-comprehension, and meta-strategic knowledge. For the purposes of this 

paper, we will focus on the topic of meta-strategic knowledge, particularly in the domain of 

problem-solving and STEM learning. Siegler’s (1994) seminal work on children’s strategy use 

shows that young children vary widely in their strategy use (for example, using several strategies 

on the same problem, or different strategies on different problems). Strategy selection for these 

children often followed predictable “overlapping wave” patterns, where they first used a variety 

of strategies, and then repeated useful ones, discovered new strategies, or abandoned others to 

hone in on the most effective approaches. Furthermore, effective strategy use often required 

users to inhibit less advanced (and perhaps more habitual) strategies in order to employ more 

sophisticated (and less familiar) strategies (Kuhn & Pease, 2010). Kuhn & Pease (2010) argue 

that the process of “constructing, implementing, and monitoring” a more sophisticated strategy, 

which requires ongoing metacognitive monitoring and control, is distinctive from inhibiting a 

less effective one.  Applied to the context of failure in games, this means that players could 

inhibit less effective prior approaches to the game space, but not generate and test new, more 

effective strategies towards completing the level. But a question still remains unanswered: are 

there specific kinds of strategies that are more related to later learning afterwards, not just 
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success on the immediate problem? In other words, if strategy selection is a vital part of problem 

solving, and insights from problem-solving experiences can be transferred to later learning 

(PFL), are there specific kinds of strategies during the problem-solving phase that are 

particularly good for transfer?  

Metacognition and transfer. Metacognitive processes are commonly discussed as a critical 

component of teaching students to transfer because the act of self-monitoring helps facilitate the 

recognition of when the information or strategy might be relevant in other contexts (Adey & 

Shayer, 1993; Belmont, Butterfield, & Ferretti, 1982; Perkins & Salomon, 1992). Each moment 

of failure affords an opportunity to make a metacognitive judgment about what knowledge 

component is lacking. Metacognition could presumably occur in two places in transfer – during 

the “transfer out” component, where students can monitor and reflect what kinds of information 

they’re processing right now might be useful in the future, or during the “transfer in” component, 

where students could review what prior strategies and knowledge could improve performance in 

the current context. In preparation for future learning activities, the utility of metacognition 

primarily lies in the “transfer out” phase, where during the exploration phase students reflect on 

what features of the problem space are important to pay attention to. It can be argued that 

students who act in more reflective ways during the PFL activity, whether those metacognitive 

behaviors are enacted by natural predilection or provoked by the environment, would attend 

more carefully to deep features and therefore will be more prepared to learn from future learning 

activities. Furthermore, metacognition is especially valuable in failure spaces, because the most 

“productive” affordance of failure is to address head-on what those gaps between expected and 

actual outcomes are, and what actions should be taken to resolve them (Loibl & Rummel, 2014). 

Presumably, what makes productive failure good for preparing students for future learning is 
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contingent on students’ abilities to reflect on their incorrect solutions, address gaps in 

knowledge, and select strategies and actions in response to these appraisals. It is through these 

metacognitive monitoring and control mechanisms that cue students to identify and engage with 

deep features of the concepts. This is another key investigation: how can we affirm the role that 

metacognition plays in the efficacy of productive failure activities for PFL? Does metacognition 

globally impact the efficacy of PFL activities? Is the utility of productive failure activities 

contingent on students’ metacognitive behaviors? 

Failure  

The topic of failure as beneficial for later success is not a novel one. The fields of engineering 

and design, for example, have long accounted for the possibility and benefits of failure in the 

design process. In engineering, failure analysis engineers oversee the evaluation of what specific 

errors or failed components in a product caused the failure to inform future designs, while top 

design firms like IDEO tout the “expectation of failure” as a normalized part of the change 

process. In both of these contexts, failure is an expected and well-documented phenomenon that 

affords the opportunity to provide critical information about the quality of the current product, 

explore or test the limitations or parameters of the system, and develop further insight and 

inferences to inform future products. Implicit in these approaches is the idea that the developers 

– engineers and designers in this case, but also anyone in the role of problem-solving, like 

students and teachers – can appropriately recognize and use the information produced by a 

failure to improve future performance. Yet for novice designers and learners, this implicit 

process is not so intuitive – you must possess the resiliency to look at that failure as an 

opportunity rather than a marker of (in)ability; you must be invested in the end product enough 

to want to use such information to improve your solution; and you must enact or develop the 
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kinds of metacognitive monitoring and control skills required to interpret the information 

provided from the failure and act accordingly. The most pertinent requirement of the three is the 

question of what skills and behaviors must one enact in response to failure to make use of the 

information afforded, so as to improve future insight and understanding. In short, how does one 

make failure productive? Are there ways of designing tasks that promote productive failure, as 

Kapur’s work suggests, rather than just plain failure (that is, if there is even in fact a difference 

between regular failure and productive failure)?  

Loibl and Rummel (2014) addressed some of these questions by asserting that productive 

failure improves learning by calling students’ attention to the gaps in understanding when they 

confront a failure. In their work, they demonstrated that attempting to solve problems before 

formal learning can lead to a global awareness of knowledge gaps - that is, acknowledging that 

some component of their understanding is incomplete without specification. This awareness is a 

kind of global metacognitive judgment that arises from students’ inability to solve the problems 

(a failure), that are then fully specified and addressed in teacher instruction. Consider the 

differences between their approach to the “benefits of failure” and that of engineers and 

designers’ approaches: Loibl and Rummel argue that it is not important for students to 

successfully specify where their understanding breaks down or is lacking, while engineers and 

designers insist on that specification in order for future products to improve. The process and 

goals of their approaches also differ: PFL at large is interested in the acquisition of deep 

conceptual understanding, while designers and engineers emphasize knowledge gleaned from 

failure in the service of an end product. Yet, it would seem that the specification of knowledge 

gaps and errors, such as those made by engineers and designers, would be a critical contribution 

towards deep conceptual understanding. While Loibl and Rummel discuss global knowledge 
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gaps (global metacognitive awareness) as a mediator for failure to positively impact learning, 

they do not explicitly discuss moment-to-moment response-to-failure behaviors that can also be 

productive for deep conceptual understanding. As such, a critical question posed by this research 

is whether the specification of one’s own gap in understanding or errors (metacognitive 

monitoring), as well as the actions that follow such specifications (metacognitive control), are a 

vital component of deeper learning later on.   

Research on impasse-driven learning (K VanLehn & Springer, 1988) highlighted that 

when learning to use a procedural skill, students may employ simplistic “repair” or “help-

seeking” strategies, and that these strategies can then be integrated into the larger sequence of 

procedural approaches they employ, thus expanding their proficiency on the skill. Impasse was 

defined as the moment at which a student could not go further in their problem solving because 

of a gap in prior experience or lack of procedural knowledge necessary to complete that task 

step. Teachers, learning materials, or intelligent systems can provide timely help information to 

learners that can help get them past an impasse and provide additional steps for approaching a 

problem. Thus, VanLehn and Singer (1988) argued, procedural learning only occurs at impasses 

because students must recognize that there is a limitation in their current capability that prevents 

success, and remedy it through information seeking. This suggests that there is an optimal -  

indeed, perhaps only productive – way to respond to an impasse (or failure). Yet there are also 

two limitations to VanLehn’s theory: first, he references only procedural skill development –

specifically, problem-solving skills- through this framework, and does not explicitly discuss how 

declarative knowledge about the underlying system of the problem is developed through 

impasse. Secondly, while he elegantly discusses the strategies and conditions that students may 

use to help-seek to get through an impasse, he does not describe these strategies in the context of 
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metacognitive judgments of one’s own knowledge and the specification of what knowledge is 

missing. In other words, how do procedural impasses relate to declarative understanding of the 

underlying content, and what role does error or impasse specification play in this type of 

learning?   

Failure and Motivation. While failure can be beneficial to learning because it evokes an element 

of metacognition – that is, it forces students to realize that they don’t know something as well as 

they thought they did – it can also be detrimental to student motivation. Students are often 

intimidated by failure, particularly in school tasks where failure often involves high-stakes 

consequences, such as failing a quiz or getting a low score on your homework. There is a bevy of 

motivational constructs related to failure, and whether students are willing to persist through 

them. Student self-efficacy (or their sense of competency – see Bandura, 1994) and perceived 

difficulty of academic tasks (Darnon, Butera, Mugny, Quiamzade, & Hulleman, 2009) may 

impact whether students expect to be successful at the task or not, and therefore impact whether 

they are willing to put forth the effort to try or persist. Goal orientation (Pintrich, 2000) and 

mindset (Dweck, 2006) can also significantly impact students’ willingness to persist through 

failure, because failure carries different connotations for students with different goals and 

mindsets. For example, Belenky & Nokes-Malach (2012) found that students with mastery goals, 

or goals that center on understanding and skill development, rather than performance goals, 

which center on demonstration of competency (Dweck & Leggett, 1988), benefit more from PFL 

activities because their mastery approach goals allow them to shift their attention to deep features 

of the task, rather than fixating on merely performing well. In contrast, those who have 

performance goals might be demotivated by the failure, because it did not demonstrate their skill 

successfully. Similarly, those with fixed mindsets may treat failure as an indication of a fixed 
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ineptitude they don’t have the capacity to change, while those with growth mindsets may treat 

the failure as an opportunity to improve with time and effort (Dweck, 2006). Furthermore, 

common school tasks do not often permit or encourage efforts to respond to those failures - that 

is, they don’t provide the tools, encouragement or opportunities for students to review their 

incorrect solutions, appraise where knowledge gaps occur, seek to close such gaps, and fix their 

solutions. What curricular tools might provide low-stakes, engaging problem-solving 

environments that encourage student iteration, permit for metacognitive behaviors, circumvent 

motivational concerns about student beliefs and goal orientations, and allow for exploration of 

academic content in meaningful, goal directed ways?  

Games and Learning 

One possible way to address the issues of student metacognitive ability and motivation is to 

couch the productive failure tasks in a game. In fact, games are particularly well suited for 

investigating questions about productive failure as a key component for effective PFL because 

they provide the right motivational benefits for engaging in failure; because they provide a space 

for exploring and manipulating content in a situated and realistic way; and because they offer 

affordances for learning in problem space through game mechanics that allow for a variety of 

metacognitive responses. Failure is a critical component of games, where the process of failing (a 

level, a fight, a boss, a puzzle) is inherent in the game design in order for it to be compelling and 

entertaining. People appear to be incredibly productive when encountering failure in games, 

where they use the failure experience to inform future decision-making and understanding of the 

problem space (Juul, 2013). These kinds of metacognitive behaviors - reflecting, judging the 

goodness of one’s performance, coordinating strategies, planning next actions to address what 

went wrong previously - are ones we strive for students to employ, but are enacted so naturally in 
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game environments. Furthermore, game spaces seem to promote resilient behaviors in the face of 

failure - perhaps because the failures do not have high stakes (outside of the game), and therefore 

does not negatively impact motivation. On the contrary, despite deliberate designs for inducing 

failure, games seem to encourage engagement and persistence, even (and perhaps especially) 

when the player is frustrated and confused. Therefore, the game space is a valuable space for us 

to investigate what cognitive mechanisms are at play in failure that are good for future learning, 

while alleviating the concerns about motivation and the high-stakes nature of failure in school 

tasks. 

While game spaces offer the opportunity and incentive to engage in effortful behaviors in 

response to failure, they also offer a wide variety of cognitive and motivational benefits for 

student learning in general. Situating exploration, problem-solving, and systems manipulation in 

a game can be a powerful method for generating intuitions about a particular concept or system 

(Garris, Ahlers, & Driskell, 2002; Honey, Hilton, & Washington, 2011). Situated cognition 

theorists posit that all learning naturally occurs in situ, and that situated grounded experiences 

are the most effective ways for students to explore and deeply understand concepts and develop 

skills (Brown, Collins, & Duguid, 1989). Games can provide these experiences, particularly for 

content that is difficult to directly experience in real life, such as science systems that are 

invisible to the naked eye, or happening at temporal and spatial scales well beyond human scope 

(Halverson, Shaffer, Squire, & Steinkuehler, 2006; Honey et al., 2011). These authentic 

environments allow players to systematically build and experience “cycles of expertise” in 

realistic contexts by systematically presenting and scaffolding skill development, first in 

isolation, and then interwoven with other previously learned skills, to produce a host of flexible 

and dynamic skillsets, and to build the capacity for metacognitive strategy selection and 
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appraisals of problem spaces(Gee, 2005). Embodied cognition theorists extend this further by 

asserting that learning is most effective when enabling the body’s sensorimotor and perceptual 

faculties – that is, when the learning is embodied by the agent within the contextual environment. 

Game spaces allow such embodiment by allowing players to explore with surrogate agents 

within a constrained environment, directly interacting with, perceiving, and manipulating objects 

and forces within the space through that playable agent (Clark, 2003; Fadjo, Hallman Jr, Harris, 

& Black, 2009). Prior work on embodiment for math and computational thinking instruction 

through video game environments demonstrated that surrogate embodiment can have powerful 

implications for future educational game design (Fadjo et al., 2009). Many commercial games, 

like Legend of Zelda, Goldeneye 007, and Super Mario, are classic examples of how surrogate 

embodiment in game spaces can facilitate problem-solving and spatial reasoning skill 

development. In fact, Arena (2012) found that playing one of two commercial games, 

Civilization IV and Call of Duty 2, not only prepared students to learn more about World War II 

than just through instruction alone, but also specifically increased students’ understanding of 

global strategic elements and tactical strategic elements, respectively. Furthermore, game spaces 

are deliberately designed to constrain users to specific goals and system parameters structures 

(Black, Khan, Huang, & In, 2014; Garris et al., 2002; Malone, 1981; Reese, 2007). For example, 

conservation of momentum, gravitational force, and mass are all key components in the game 

Portal, and must be explored, implicitly understood, and mastered in order for the player to 

proceed. These constraints and system parameters allow students to focus on the key components 

of the environment that are important for understanding and problem-solving. These grounding 

experiences can prepare students to better learn from formal content later on (Black et al., 2014; 

Hammer & Black, 2009). It’s also possible that these prior game experiences are then later 
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accessed during the formal learning – that is, the student imagines the game space and the 

manipulations that they encountered while learning about the formal concepts, in order to bridge 

the two experiences together (Black, Segal, Vitale, & Fadjo, 2012). This undoubtedly is also a 

key component of deep learning and transfer.  

 However, not all games are created equal, and not all games necessarily elicit productive 

failure. In order for a game to adequately prepare students for future learning, the game content 

and mechanics need to be aligned carefully with the target learning, such that the interactions 

students engage with in the game permit for them to directly experience and manipulate the deep 

features of the concepts. For example, Math Blasters would be a poor example of a game that 

prepares students for future learning, because the game mechanics do not actually allow students 

to grapple with the underlying concepts of mathematical operators. On the other hand, 

Civilization has been highly touted as a great game for learning because it allows students to 

directly control and manipulate the factors that leads to the success and downfall of a 

civilization, such that these experiences could inform their learning of formal civics concepts 

later on (like trade, war, territory, diplomacy, and resources). As such, the selection of a game 

that illustrates and permits student interactions with underlying features and structures of a 

concept or system is vital to using games as preparation for future learning. Furthermore, the 

game must allow players the agency to explore, enact strategies, and respond to consequences in 

the environment that allows for meaningful and effortful play. Agency and affordances for 

choices are important not only for student-driven learning and skill development, but also for 

promoting motivation.  

 Games, above all, are touted for their educational potential because of their promise for 

motivating players to engage in effortful behaviors. Motivation is especially critical for 
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metacognitive and strategic behaviors, because as mentioned previously, these behaviors can be 

effortful, difficult, and not obviously tied to one’s performance or goals. As previously 

discussed, games have the potential to motivate players to engage in these behaviors as part of 

gameplay. Game scholars argue that video games are motivating because they promote agency 

and self-efficacy, provide an optimal balance between player skills and level difficulty that 

induces flow, use narratives and character development to induce emotional investment, and 

allow for socially situated practices such as collaboration or competition(Gee, 2005). These 

motivational factors are also closely linked to strategic responses to failure. Choice and control, 

critical parts of gameplay, promote intrinsic motivation (Malone, 1981), and also enable players 

to employ reflection and strategy selection to approach problem contexts in open-ended and 

user-driven ways. The use of gating (where players are not allowed to continue in the game until 

they’ve mastered a prior skill or level), scaffolding (given through simple levels and visual or 

auditory cues, such as arrows to direct attention or pings to indicate proximity to goal states), 

tutorials (often given as an introductory level, through a non-playable character explanation, or 

through overlays on to game levels themselves), and a progression of increasingly challenging 

levels (to develop the aforementioned “cycles of expertise”) are common ways games place 

players in a state of flow (Csikszentmihalyi, 2000). Unsurprisingly, these also serve Vygotsky’s 

Zone of Proximal Development, where learning is optimized when the learning environment and 

content is just outside of learner’s initial abilities but within the scope of their potential learning, 

given experience and their use of pedagogical tools. Narratives, character development, and 

socially situated practices such as collaboration and competition also all serve to motivate 

players to continue engaging in the game, persisting even when encountering setbacks or failure.  
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Games and Failure 

What, though, specifically about games makes it so conducive for investigating failure? Failure 

is a ubiquitous part of games (Blumberg, Rosenthal, & Randall, 2008; Juul, 2013), where the 

experience of failure is central to the enjoyment and advancement of gameplay, despite in-the-

moment frustration. In fact, researchers have argued that impasse-driven learning is at the heart 

of successful gaming experiences, where games are deliberately designed to induce impasses that 

catalyze shifts in game strategies and techniques, thereby expanding gamers’ “skill toolboxes” 

(Blumberg et al., 2008; Gee, 2005).   Juul (2013) argues that games capitalize on the experiences 

of failure to capture and sustain attention because players know that with skill improvement they 

can overcome these failures, thereby producing feelings of self-efficacy, enjoyment, and 

satisfaction. This is closely related to the relationship between flow and zone of proximal 

development: teachers want students to persist precisely because the experience of failing and re-

trying can provide insights and opportunities for skill development that might eventually lead to 

success, but success is only possible if the problems the students face are within their ability, and 

only if the students believe that their failure experiences actually lead to skill improvement. In 

other words, the tension that Juul points out is what induces flow for gamers, the frustration in-

the-moment of failure and the enjoyment that arises when that frustration is resolved with 

success, is only possible if the game provides an experience that is within the players’ zone of 

proximal development – the “sweet spot” of skill and challenge. Thus, opportunities for failure, 

flow, and optimization of problem difficulty with student ability is also an important 

consideration for the selection of an appropriate educational game. A final consideration for why 

games are conducive for studying failure is that they provide a low-stakes environment for 

student to engage in failure. Academic activities can be intimidating, because student 
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performance on these tasks are used for student grades and may be subject to scrutiny by the 

students’ peers, teachers, and family. As such, these high-stakes tasks provide very little 

incentive for students to allow themselves to engage in risky, exploratory behaviors, or might 

lead them to disengaging from the activity altogether. Games typically don’t carry these 

implications in a classroom setting; students often treat their identities as “gamers” (and that set 

of motivations, confidence, and dispositions) very differently from their identities as “students”. 

Because failure is such a naturalistic part of gameplay, players are not intimidated by failure in 

these environments and therefore are more willing to engage in a wider range of exploratory, 

strategic behaviors.  

 The assertion that failure in games are compelling because it points out an inadequacy 

that we must resolve (Blumberg et al., 2008; Juul, 2013; K VanLehn & Springer, 1988) – the 

central thesis of impasse-driven learning - is rooted in metacognition. Take, for example, a 

player that is stuck on a level in Little Big Planet. The player’s frustration stems from the 

increasingly clear realization that he is inadequate – that a part of his understanding of the 

problem space is missing, or that he has not yet mastered a skill necessary for that level. He then 

tries varying kinds of actions: he repeats the same approach several times, paying attention to 

how far the character jumps, what cues are in the environment that he can use to pull himself up, 

the tools afforded to him in the environment; the timing of his moves. Eventually, he switches 

tactics several times, and finally manages to get his agent to the top platform and move on. 

Within this sequence of actions, we see several metacognitive steps arising: he makes the 

appraisal of his own skill and performance; he analyzes and attempts to specify what part of his 

performance or strategy is lacking; and he chooses strategies and behaviors to enact based on 

these judgements (i.e. persisting with one approach, or trying new ones). These metacognitive 
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behaviors are crucial to Juul’s analysis of failure in games: players must systematically approach, 

glean information from, and enact behaviors in response to failure effectively in order for them 

to experience satisfaction from eventual success. In other words, these productive responses to 

failure are crucial to successful gameplay, and to the enjoyment of games. The fact that gamers 

naturally enact these productive responses to failure are precisely why games are such an optimal 

environment for studying what kinds of response-to-failure behaviors are most conducive to later 

learning.  

Games are also an optimal environment for studying responses to failure because it 

allows for logging of actions taken during the problem-solving process. Using log data to track 

student behaviors and strategies are becoming the new standard for studying in-situ cognition; 

researchers have used log data to study everything from knowledge states (Corbett & Anderson, 

1994), affect  (Baker, D’Mello, Rodrigo, & Graesser, 2010), help-seeking (Roll, Aleven, 

McLaren, & Koedinger, 2011), to game and learning strategies (Rowe, Asbell-Clarke, et al., 

2015). Using timestamped data and clickstream actions that players take, we can engineer an 

innumerable amount of features to capture game behaviors and problem-solving strategies. For 

example, using log data of student help-seeking actions, Aleven et al. (2006) developed a 

metacognitive computational model of help-seeking behaviors to detect when students were 

engaging in productive or counterproductive metacognitive behaviors when solving geometry 

problems in an intelligent tutoring system. They were able to identify when a student was 

seeking help effectively, avoiding help purposely, or abusing help options (like bottom-out hints) 

using log data in real-time. Thus, there is empirical precedence for using log data to detect and 

operationalize metacognitive actions. Another example of log-data use, this time in the realm of 

games, is using stealth assessments in games to measure implicit learning (Rowe, Baker, & 
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Asbell-Clarke, 2015; Shute, Ventura, & Kim, 2013). Rowe et al. (2015)triangulated log data 

from the game, videos that were coded for strategy use, and post-test data to validate detectors of 

implicit understanding of Newton’s Laws in a particle simulation game. In particular, they used 

log data to determine when students were employing specific strategies that implied 

understanding of Newton’s Laws, and mapped them on to learning data (such as the number and 

location of clicks) to investigate the relationship between student learning and strategy use. We 

can use a similar approach to detect when particular strategies – this time, in response to failure –

are related to metacognitive judgments and later performance.  

Theoretical Framework  

Failure and success might seem to be diametrically opposed, but research and methodologies in 

learning theory, STEM, games research, and design highlight that failure is oftentimes critical for 

later success. Furthermore, the Preparation for Future Learning (PFL) and Productive Failure 

paradigms indicate that exploring, grappling, and failing in open-ended problem-solving tasks 

prior to formal instruction improves one’s capacity and preparation for understanding the formal 

content later on. Yet, little is known about what specifically in the experience of failure is, in 

fact, conducive for later success – whether that success is a solution (i.e. a product of some 

design process, or a solution to a problem) or deeper understanding (i.e. conceptual knowledge). 

Is experiencing failure unto itself sufficient for later success, or is there something else that must 

happen in the space of failure that makes it conducive for later success? 

One possible explanation for how failure can be beneficial for later success is 

metacognition. Metacognition, or one’s ability to regulate one’s own thinking and strategies, 

may play a critical role in making failure productive. Failure also makes the need for 

metacognition explicit, because it provides an external cue that highlights an inadequacy or 



	

	 22	

incorrect judgment made on the part of the learner that needs adjustment.  As a result, 

experiencing failure provides opportunities for developing greater insight, both about the task at 

hand, and about one’s own understanding and capacity. This chance to engage in a metacognitive 

experience, especially when confronted with a shortcoming, is an opportunity for the student to 

monitor their own understanding and capacity, and select or develop alternative strategies and 

approaches towards the problem space. In the process of monitoring and controlling one’s own 

cognitive processes, students also make implicit realizations about the task at hand, and the 

knowledge required to complete them. But does this understanding happen so long as you 

experience failure, or are there specific strategies one can take that help facilitate understanding, 

both in the moment of the failure, as well as later on, during formal learning? In other words, 

how do metacognitive monitoring and control behaviors relate to deep conceptual understanding 

later on?  

Another concern relating to the utility of failure is whether students are motivated to 

engage in productive behaviors when presented the opportunity. Failure in school-like tasks are 

often high-stakes, and carry with them loaded implications for intrinsic and extrinsic motivation. 

Furthermore, many school tasks, such as tests and projects, allow little opportunity to engage in 

metacognitive behaviors in response to shortcomings. Thus, it’s difficult to investigate the utility 

of particular behaviors and strategies in response to failure in traditional school tasks because 

students are not compelled or afforded the opportunity to engage in such behaviors and 

strategies. Instead, games are proposed as an alternative that is well-suited for investigating what 

responses to failure are productive for later learning.  

Games are an excellent space for studying responses to failure for several reasons. First 

and perhaps most importantly, failure is a ubiquitous part of gameplay. Players expect to fail, and 
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therefore are resilient and proactive in the face of failure. In fact, it is the frustration that is 

experienced during failure, and the resolution of that frustration when the player finally 

succeeds, is what makes games so enjoyable and gratifying. Secondly, game spaces provide an 

open-ended but constrained environment that allows players to take a variety of actions within an 

environment specifically designed to highlight a particular mechanic or system parameter. This 

allows players to employ a number of approaches and strategies when attempting to solve a 

game level, all the while observing, evaluating, and testing the parameters of the underlying 

game system. Thirdly, game spaces serve as a suitable PFL activity, especially when the game 

allows for goal-directed exploration of the content to be learned later on. Games are especially 

powerful for PFL when it situates students into the learned content, allowing for manipulation, 

testing, and direct observations of the system that can serve as grounding for later learning.  

Together, this theoretical framework allows us to pose the following questions: What 

kinds of behaviors in response to failure in game environments are most related to learning later 

on? Are these behaviors driven by metacognition? If so, how can we induce students to engage 

in metacognition during failure in game spaces, such that they produce implicit understanding 

that is beneficial for later learning?  
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Study 1 Design 

Research Questions 

Given these threads of research on games, preparation for future learning, productive failure, and 

metacognition, the aim of Study 1 was to investigate whether the ability to respond to failure in a 

physics game better prepares students for future learning. Thus, I asked the following questions: 

RQ1:  Does the affordance for responding to failure within an educational game elicit deeper 

conceptual understanding and transfer?   

RQ2:  Are there particular responses to failure that are better for learning and transfer from a 

game? 

I hypothesized that (H1) students who have the opportunity to response to their failure within an 

educational game prior to instruction (Failure Response, or FR participants) will perform better on 

measures of learning, compared to those who do not have the opportunity to respond to failure in 

the game (No Failure Response, or NFR participants) and those who play the game after instruction 

(Tell and Practice, or TnP participants). Furthermore, I hypothesized that (H2) log data analyses 

would reveal particular game behaviors enacted in response to failure that were related to deeper 

learning.  

The Game: Electropocalypse 

A game was selected using the following criteria: 1) it must be a problem-solving, puzzle-based 

game; 2) it must include electricity and magnetism (E&M) concepts; and 3) it must allow for a 

variety of solutions and actions that players can take in response to failure. Puzzle games that 

allow players to directly simulate and manipulate a system is necessary because while agent-

centered games can allow players to explore a space or interact socially with others through a 

surrogate (Fadjo et al., 2009), grounded interactions, like being able to directly control 
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parameters of a system or manipulate and build parts to problem-solve allow players to directly 

interact with a concept (Black et al., 2012). This type of simulation interaction can be powerful 

for allowing students to directly observe, control, and develop insights about a system in a 

meaningful and constrained way (Honey et al., 2011).  Secondly, while physics concepts that are 

grounded in real-world interactions (like conservation of energy or gravity) are easier to 

understand because learners have direct experience with them in their everyday lives, abstract 

systems (like E&M) that are invisible, happening at micro- or macro-level scales, or involve 

multiple complex features can be more difficult for students to deeply understand. Anecdotal 

evidence suggests that even for high-performing students, electricity and magnetism is a difficult 

topic. While over 53,000 students registered for the AP Physics C Mechanics exam in 2016, only 

27,000 students –about half of the Mechanics registrants – elected to register for the AP Physics 

C Electricity and Magnetism exam. Electropocalypse is a commercially available mobile/PC 

game developed by Stratolab, and features a narrative that takes players through several 

scenarios (such as a power outage messing up the power grid in a city, or disabling a bomb) 

involving electrical engineering to solve problems, each involving another physics principle (for 

example, shorting a circuit, resistance, circuits with resistors in parallel, etc.). In 

Electropocalypse, players reconfigure electrical circuit puzzles by adding or removing wire, 

changing the position of switches, resistors and batteries, and measuring voltage and resistance 

to meet level goals. 

Game Versions. The standard version of the game allows players the normal allowances for 

responding to incorrect attempts, such as looking for hints, fixing their solution, restarting the 

level, or exiting the level (see  
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Figure 1). In other words, when a player fails (i.e. submits an incorrect solution) in the standard 

game, they are free to do as the please in response to that failure. The No Failure Response 

(NFR) version of the game constrains players, where if they fail (submitted an incorrect 

solution), they were not permitted to view or fix their solution, but instead received an 

explanation and screenshot of a correct solution (see 

Figure 2). The feedback shows the ideal solution, along with an explanation of the concept in the 

level. They cannot see or fix their prior circuit solution, nor can they restart the level. This NFR 

game version was created so that I could isolate the effects of being able to respond to failure 

without manipulating the naturally-occurring amount of failure participants experienced when 

playing each level for the first time. Furthermore, this game version has face validity because it 

mimics the structure of many common classroom activities, where students receive a grade or 

marks on their assignment indicating whether their solution was correct or not, but do not have 

the opportunity to fix or respond effortfully to those solutions. In some cases, teachers may 

review the correct answers to homework or quiz solutions with the class, which mirrors the 

explanation and screenshot provided to participants in this game version.  
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Figure 1: Standard Feedback Screen.  

 

Figure 2: NFR Feedback Screen.  

Study Design 
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36 adult participants were recruited from a non-random convenience sample to participate in a 3-

hour long experimental study with random assignment to one of three conditions. 83% were 

pursuing a graduate degree, and all of them held at least a bachelor’s degree. All participants 

reported low prior knowledge of the concepts covered in the study, although they also reported 

having completed at least a high-school level physics course. Participants learned about basic 

principles of direct current circuits by playing Electropocalypse for 45 minutes and by watching 

Khan Academy videos about direct current circuits for 45 minutes. Participants played a subset of 

levels (1-13) covering content like closed/open loops, short-circuiting, and resistors in series and 

parallel. All participants played the game, watched four Khan Academy videos, responded to 

surveys, and completed three Open-Ended Worksheets (OEs) and a Post-Test. Participants were 

randomly assigned to one of the three study conditions: Tell-and-Practice (TnP), Failure Response 

PFL (FR), and No Failure Response PFL (NFR). The TnP served as the control condition where 

participants first received instruction, followed by the standard game (See Figure 3).  

 

Figure 3:  Study 1 Design 

The FR and NFR participants played the game first, followed by the instruction.  FR 

participants played the standard version of the game. The NFR participants played a the NFR 

version of the game.  

Instruction. The four Khan Academy videos covered principles surrounding electrical circuits. The 

first video, “Introduction to circuits and Ohm’s Law”, covered basic electrical concepts such as 
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voltage, current, resistance, and Ohm’s Law. The second video, “Resistors in series”, explored 

circuits with resistors in series, and showed the relationship between current, resistance, and 

voltage through Ohm’s Law. The third video, ‘Resistors in parallel”, showed how current flows 

differently when resistors are in parallel, and how that subsequently affects the amount of voltage 

each resistor gets. This is a critical part of the harder levels of gameplay (and where the most 

failure occurred), and is most likely where the “A-ha!” moment of understanding occurs if 

participants bridged their game experiences to the instruction. The fourth and final video, 

“Voltmeters and Ammeters” covers novel but related concepts that were not explored in the game. 

This unit explores in detail how voltmeters and ammeters measure voltage and current, and why 

they need to be put in series or parallel. For participants who played the game prior to instruction, 

they should be able to access their experiences exploring circuits in series and parallel to make the 

connection to how and why voltmeters and ammeters should be configured in parallel and in series, 

respectively.  

Learning Measures. Learning measures were assessed through three Open-Ended (OE) 

Worksheets and a Post-Test. Learning measures were coded on two dimensions: 1) participant’s 

understanding of physics principles (referred to as “correctness”) and 2) complexity of his/her 

conceptual model (only possible on free-response, open-ended items). Correctness and complexity 

are distinguishable because while the former can be gained by superficial regurgitation of the 

definition of various basic components of the system, complexity refers to “the number of related 

dimensions or sources of variation” within the system (Halford, Wilson, & Phillips, 1998). 

Correctness was operationalized as the number of basic features of the electric circuit system they 

include in their explanations (i.e. do they include basic components such as a source of voltage, a 

resistor, and a current in their conceptual model) that was explicitly covered in the video lecture 
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provided. Complexity manifested itself in various ways: through more in-depth explanations of 

interrelations between components in the system (Halford et al., 1998), such as talking about how 

current is shared in circuits with resistors in series, therefore reducing the voltage that travels to 

each resistor; through mentioning multiple levels of components in their causal explanations (i.e. 

that electrons flowing in the micro-level is what causes current to flow, or that because current is 

shared between each resistor in circuits in series, the overall resistance of the system is larger) 

(Jacobson, 2001); and through more complex justifications of their answer, such as using Ohm’s 

Law or real-world examples to illustrate the differences between circuits in series and circuits in 

parallel. Correctness and complexity scores were blind-coded by two researchers trained on the 

same coding manual.  

The Open-Ended Worksheet (OEs) were included as a form of free recall, to capture how 

much of the essential systemic structure and features students were able to internalize. The OEs 

contained the following free-response prompt: “Draw and explain a parallel circuit. Be sure to 

label all relevant parts of the circuit system, explain what a parallel circuit is, and how it differs 

from a serial circuit.” The open-ended nature of the OEs offers participants the opportunity to 

provide both as correct and as rich of an account of what they know about the system both visually 

and verbally without specific prompts – as such, the elements and the relations they describe in 

both their diagrams and in their verbal explanations will provide measures of correctness and 

complexity. The correctness score was calculated by the number of correct basic elements of both 

the diagram and the verbal explanation provided. The complexity score was calculated by the 

number of additional components or connections participants provided in their explanation, and 

the richness of their explanation (for example, describing not only how parallel and serial circuits 
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differ in their resistance, but how that impacts the brightness of their overall circuit).  The OEs 

were given as a pre-measure (OE1), after first activity (OE2), and as apost-measure (OE3).  

The Post-Test was included as a more traditional form of assessment, using standard items 

that evaluate student understanding such as mathematical computations and reasoning about the 

system. The post-test was comprised of four sections: 1) three multiple choice questions about 

Ohm’s Law, 2) three questions on reasoning about a circuit diagram, 3) two analogous reasoning 

questions, and 4) two PFL questions on voltmeters and ammeters.  

The first section, three multiple choice questions about Ohm’s Law, asked participants to 

reason about and calculate voltage and resistance in a circuit. The second section, which involved 

three questions based on interpreting a circuit diagram, asked participants to compare and contrast 

brightness of and currents running through light bulbs when the bulbs are in series, compared to 

when they’re in parallel. The third section included two analogous reasoning questions that asked 

participants to reason about water pipe systems (a commonly employed analogy to explain 

circuits), and relate components of the water pipe system to circuit systems. These measures are 

based off of traditional transfer measures, which posit that those who have gained a sufficient 

understanding of the learned system (in this case, the circuit system) should be able to transfer 

their understanding the deep structures of that system to reason and map onto another similarly 

structured system (in this case, the water pipe system) (Gick & Holyoak, 1980). The fourth section 

involved two PFL questions require participants to reason about why voltmeters and ammeters are 

configured in parallel or series, which are based on the premise that deeper conceptual 

understanding of circuit configuration would lead to being better prepared to predict or reason 

about more complicated concepts. Students did not play levels that related to voltmeters and 
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ammeters, but watched a video on how they are used during their instructional period (see section 

on Instruction, for further elaboration). All four Post Test sections were coded for correctness.  

    SCORES 
Measure Type* # Qs Topic Correctness Complexity 
OE FR 1 Circuits in Parallel & Series Correctness Complexity 
Post-Test MC 3 Ohm’s Law Content   
 FR 3 Diagram Reasoning  Content   
 FR 2 Analogous Reasoning  Transfer  Complexity 
 FR 2 PFL Transfer  Complexity 

 

  *FR = Free Response  
MC = Multiple Choice 

  

Table 1: Study 1 Learning Measures 

The first two sections’ (Ohm’s Law & Diagram Reasoning) correctness scores were 

summed to create the “Content” correctness sub-score. The latter two sections’ (Analogous 

Reasoning & PFL) correctness scores were summed to create the “Transfer” correctness sub-score. 

The Analogous Reasoning and PFL questions were also coded for complexity, calculated by the 

breadth and depth to which answers explicitly made connections between the water pipe and 

electrical circuit system, and deeply discussed the relationship between why specific forms of 

measurement (voltage or current) need to be configured in series or parallel.   

Behavioral measures. Behavioral measures to capture each participant’s response to failure and 

problem solving processes were assessed through log data from the game. The log data generated 

a list of participants’ actions over the duration of the gameplay, which include timestamps of each 

action (dragging and dropping wire components, submission of answers, button presses such as 

hints or menus, etc.) and system-triggered events (such as a level start, a circuit explosion, or a 

feedback panel opening or closing). Exploratory analysis of the log data identified action 

sequences in response to failure, duration of time spent on a particular action or level, and how 

participants navigate through the game.   
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Study 1 Results  

Learning outcomes. On the open-ended question given across three time points, a repeated 

measures ANOVA on OE correctness scores, with time as a 3-level within-subjects factor and 

condition as a 3 level between subjects factor, showed that there was a significant interaction 

between condition and time (F(2,64)= 3.002, p = .025), where participants in the TnP condition 

demonstrated higher content and complexity scores at OE2 compared to the other two groups. 

This was expected; given that participants in the TnP condition received their instructional 

videos first (between OE1 and OE2), it stands to reason that they should perform better during 

OE2. However, a post-hoc analyses showed that there were no significant differences in OE 

correctness scores by OE3 (p=.238), which suggests that all participants demonstrated an equal 

amount of conceptual understanding by the end of the study. However, while learning of the 

physics concepts occurred across all of the conditions, participants in the FR Condition produced 

more complex explanations of direct current circuits in parallel and series (See Figure 4).  

 

Figure 4: Study 1 OE Complexity Comparison 

A RM ANOVA on OE complexity scores revealed that there was a significant interaction 

between condition and time, F(4,64)=6.213, p<.001, where the TnP condition produced more 

complex explanations at OE2 as expected, but the FR condition provided marginally more robust 

explanations of electrical circuits at OE3 than the other two groups, F(35) = 2.661, p = .085. This 
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suggests that students who had the opportunity to respond to their failure prior to formal 

instruction can demonstrate a richer understanding of the system, and provides support for H1.  

However, an ANCOVA on post-test scores controlling for OE1 Correctness scores revealed that 

there were no significant condition differences in the Post-Test overall (.917), or in the content 

(p=.504), transfer(p=.612), or complexity (p=.560) sub-scores (Table 2).  

    

Correctness Score 
(Content + 
Transfer) 

(out of 21) 

Content  
Sub-Score  
(out of 10) 

Transfer  
Sub-Score  
(out of 11) 

Complexity 
Score  
(out of 11) 

Game n M SD M SD M SD M SD 
FR 12 8.83 3.49  3.66 2.06 5.17 2.04 7.75 3.55 
NFR 12 8.42 2.39 2.75 1.42 5.66 1.67 8.58 3.26 
TnP 12 9.58  2.75 4.00 1.86 5.58 1.31 8.08 2.71 

Table 2: Study 1 Post-Test Score Comparisons 

This is contradictory to the earlier OE3 complexity findings, as we would have expected that the 

increase in complexity of participants’ understanding would also lead to higher scores on the 

transfer and complexity sub-scores. Furthermore, we would have expected that the FR (and 

perhaps the NFR) condition would perform better than the TnP condition on the transfer and 

complexity measures to affirm prior research on PFL.  

Behavioral outcomes. When looking at frequency of failure between all three conditions, the 

NFR condition had an overall higher proportion of attempts that were successful (MNFR = .585, 

SDNFRl = .13) compared to the FR (MFR = .38, SDFR = .18) and TnP (MTnP = .327, SDTnP = .18) 

conditions. This result was expected, as the NFR condition directly received the correct answers, 

and likely replicated these answers in the next time they encountered that level. However, we 

had expected that the TnP condition would also have a higher rate of success, given that they 

already received the instruction prior to the gameplay. This suggests that for the TnP condition, 
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the learning that occurred during instruction did not transfer to better conceptual understanding 

and performance in the applied context – the game.  

Game log analysis captured 5 actions that participants in the FR and TnP conditions could 

take in response to failure: participants could fix their solution, restart the level, resubmit their 

answer without changing their solution (quick resubmit), move to another level (a previous level, 

the next level, or a more difficult level), or they could look for information by clicking on a hint 

or component description. From these actions, log data analyses identified seven distinct responses 

to failure: 1. Fixing current solution, 2. Quick Resubmit (did not change solution), 3. Restarted 

Level, 4. Skipped backwards, 5. Skipped to next level, 6. Info-seeking, restarting the level, and 7. 

Info-seeking, fixing current solution. Participants overwhelmingly favored using the fix and restart 

responses to failure.  

 
N Mean 

Std. 
Deviation 

Fix 17 17.94 14.88 
Quick Resubmit 13 5.08 7.10 

Restart 29 15.07 13.57 
Skip Back 22 1.91 1.31 
Skip Next 25 4.72 4.03 

Info, Restart 21 2.24 1.51 
Info, Fix 13 2.77 2.95 

Table 3: Study 1 Responses to Failure 

We expected that some of the failure responses may be negatively related to failure, since 

every instance that these behaviors are produced are inherent markers of “lack of understanding” 

(otherwise they would have gotten it correct). Therefore, we’re particularly interested in when 

these behaviors are positively correlated to learning – that, despite happening in a moment of “lack 

of understanding”, the experience related to a positive impact on later understanding. Of the seven 

responses to failure identified, “Info-seeking, then fixing your answer” was the only response 

significantly correlated to Post-Test complexity, using Spearman’s Rho, r(13)=.687,  p = .01, when 

adjusting for more conservative Type I error via a Benjamini & Hotchberg correction (1995). To 
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identify whether the effect of info-seeking and fix behavior on learning was accounted for by prior 

knowledge, OE1 Correctness score and Info-Seeking, Fix was regressed on Post-Test Complexity 

score. Results indicated that info-seeking and fixing was significantly predictive of learning 

complexity, even after controlling for OE1 Correctness, β = .558, t(12) = 2.575, p = .028. None of 

the other failure responses were positively related to any of the post-test or OE3 measures of 

learning and complexity. The FR and TnP conditions did not differ by the frequency of failure 

responses, suggesting that even participants who received the instruction prior to gameplay 

responded to failure in the same way as those in the FR condition.  
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Discussion 

These findings suggest that engaging with failure in game spaces before formal learning can elicit 

more nuanced mental representations of a complicated science system. While there were no 

condition differences in Post-Test and OE3 conceptual understanding measures, students in the FR 

condition produced more complex and robust explanations of parallel and serial circuits in the last 

open-ended worksheet. This suggests that while the various methods of using games for learning 

across these three conditions can produce benefits to conceptual understanding, the affordance of 

experiencing failure can better prepare you to learn from formal content later on, thereby producing 

more nuanced and rich conceptual models. However, the expected finding that the FR condition 

would also perform better on the Post-Test analogous reasoning transfer and PFL measures was 

not confirmed, nor were the complexity of their responses on the post-test any better or worse than 

the other two conditions. One possible explanation for this is that the study did not provide enough 

of a treatment to have a significant effect on these other dimensions – after all, the game session 

only lasted 45 minutes and occurred only once. This is supported by Wouters et al.’s (2013) meta-

analysis, which suggests that games are better for learning when there are multiple sessions of 

gameplay. Another possibility is that the measures of transfer used – the analogous reasoning and 

PFL questions – were not sensitive enough to detect significant differences between groups, or 

that they were not the right kind of transfer assessment to use for this kind of learning. A final 

possibility to consider is that these participants (university graduates) were able to learn 

sufficiently from the videos or already had prior experience and instruction with the content (all 

of them reported having taken at least high-school level physics), and did not require the use of a 

PFL activity to provide prior experiences.   
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These results suggest that even though failure can benefit the complexity of one’s 

conceptual model (as supported by higher performance by FR participants on OE3 complexity 

score), simply experiencing failure unto itself is insufficient for improving general conceptual 

understanding compared to just playing the game after learning (as suggested by the null 

differences between NFR and TnP in OE3 scores). In other words, failing, by itself is not enough 

to prepare students to learn the material. Furthermore, the rate of failure was the same, regardless 

of whether you learned the material beforehand or not, which suggests that TnP participants’ 

understanding from the lecture did not transfer into better performance in the game. However, the 

results did demonstrate that there are effortful behaviors in response to failure that are related to 

better learning. I found that of all the responses that one can take in response to failure in our game 

environment, the response of “info-seeking, then fixing one’s answer” was significantly positively 

related to learning. When considered within the framework of metacognition, this is beneficial 

because it required participants to appraise and become aware of knowledge gaps, resolve 

identified gaps through info-seeking, and then apply the newly acquired information to adjust prior 

misconceptions. All three of these components - the appraisal (or the awareness of knowledge 

gaps), the resolution (or “filling-in”), and the application - are equally critical to learning. This is 

in contrast to Loibl and Rummel’s (2014) conclusion that the awareness of knowledge gaps alone 

account for the benefits of productive failure for learning - we see that a general awareness is not 

as important here (as evidenced by our nonsignificant differences in Post-Test conceptual 

questions) so much as the specified appraisals of what one does not know in the moment of failure. 

Furthermore, we see the importance of the “application” component when contrasting “info-

seeking, fixing” with “info-seeking, restarting” - if resolving knowledge gaps alone (through info-

seeking) were sufficient for productive failure, then we should have seen that both of these 
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strategies (info-seeking, restarting as well as info-seeking, fixing) would be statistically 

significantly related to learning. However, fixing one’s solution after info-seeking as a key 

component suggests that the metacognitive actions taken after metacognitive judgments made are 

just as important as the judgments themselves – in particular, knowing that this newly acquired 

information must be used to address previous failures is a vital part of the learning process. The 

act of info-seeking and fixing may lead to deeper “appreciation for the deep structures” Schwartz 

et al. (2011) referred to in their own PFL activity - that is, info-seeking and fixing one’s solution 

may have led to noticing and developing greater intuitions about the underlying concepts and 

structures of electrical circuits, that then led to more complex conceptual models.  However, this 

exploratory study did not address the question of whether these enacted behaviors were indicative 

of a deliberate metacognitive strategy, or just so happened to be a pattern of behaviors that 

produced the most robust understanding. Although this behavioral response of info-seeking and 

fixing was most related to learning, and that info-seeking has classically been treated as a behavior 

of metacognition, it would be difficult to causally attribute metacognitive intent as driving these 

behaviors without a deeper investigation into what participants were thinking as they were enacting 

them. An alternative possibility is that other behaviors may also be significantly related to learning, 

but that our sample size for these correlations are too small and therefore not detectable. It is also 

possible that participants who already had an understanding of electrical circuits may also enact 

better metacognitive behaviors, because they have the cognitive resources readily at their disposal 

that otherwise may have been devoted to trying to understand the problem space in the first place 

(i.e. there’s less cognitive load required to process the content for participants with prior 

knowledge, so they have more capacity to reflect on their strategy and performance). However, 

the “info-seeking, fix” behavior is not correlated to OE1 scores (p=.813), which suggests that even 
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those who demonstrated some prior knowledge did not employ this strategy any more than those 

who did not.  

To conclude, using failure spaces in games for learning can be an effective way of 

improving the complexity of students’ conceptual model, but have tenuous impact on more general 

conceptual learning and transfer. Furthermore, the most effective behavioral response to failure in 

our game was to fill in knowledge gaps through information seeking, then applying this new 

information towards fixing one’s prior incorrect solution. However, we are limited in our 

conclusions about the degree to which games in general can be an effective PFL activity, because 

our population may have already possessed the appropriate prior intuitions about the system, or 

because the transfer measures were insufficient or inappropriate for this audience, or the treatment 

duration was insufficient. Furthermore, while the behavioral response to failure appeared to 

indicate deeper metacognitive strategies, this data does not provide the validation required to make 

the argument that these behaviors are driven by metacognitive responses and strategies employed 

in response to failure. To address these limitations, Study 2 examined whether this game can be 

used as an effective PFL activity for more novice participants with little or no exposure to the 

content, using alternative transfer measures such as delayed assessments, giving students a 

particularly challenging level to see what kinds of behaviors students spontaneously employ in 

response to complex, difficult problems, and using multiple game sessions for the treatment. 

Above all, Study 2 compared whether the addition of metacognitive prompts after failure that 

provoke students to appraise, info-seek, and apply information to fix solutions in the game can 

produce better learning outcomes in both conceptual learning and conceptual complexity.  

 
  



	

	 41	

Study 2 Design 

The results of Study 1 suggest that there is an optimal way of responding to failure, but did not 

explicitly connect these behaviors to metacognitive intent. However, the most plausible 

explanation of why “info-seeking, then fixing your answer” was the behavior most related to 

more complex understanding later on is that the act of information-seeking suggests that the 

participant must have made a metacognitive judgment about what went wrong or what they did 

not know, and decided to info-seek to remedy that gap. Furthermore, the finding that “info-

seeking and fixing your answer” is more valuable than “info-seeking and restarting the level” 

suggests that applying this newly acquired information to reconcile a prior mistake is a critical 

feature of why this behavior is significantly related to later understanding.  Within this set of 

actions are several metacognitive monitoring and control behaviors: first, the participant 

evaluated his own performance and determined that he was lacking in understanding necessary 

to succeed (metacognitive monitoring); second, he decided to look for and attend to information 

to fill that knowledge gap (metacognitive control); and finally, he took this newly acquired 

knowledge and used it to attempt to address his incorrect answer (metacognitive control).  

The participants in Study 1 were university-educated adults who presumably have a high 

repertoire of metacognitive strategies and behaviors at their disposal in a problem-solving 

environment. Yet, not all of these participants employed the most-effective strategy of “info-

seeking, fix”, which suggests that the benefit of these behaviors aren’t obvious even to 

sophisticated learners. Given these findings, we now turn to the question of whether inducing these 

behaviors will then produce better learning. In other words, if we prompt participants to take these 

same steps of appraising the source of error, info-seeking, and fixing their solution, will this lead 

to deeper conceptual understanding later on?  
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Overview 

In general, my theory is that employing effortful, metacognition-based responses to failure in 

games will produce more robust and complex understanding than playing a game without 

employing these responses to failure. However, these kinds of effortful behaviors don’t always 

come naturally to adults, let alone high-school students. As such, I expect that the use of the 

metacognitive prompt, outlined below, that mirrors the most effective behavior found in Study 1 

(“info seeking, fix”) will help students develop a richer implicit understanding and intuitions 

from their game experience that will better ground their understanding of the formal instruction 

that follows. The goal of this dissertation study is to investigate whether the use of metacognitive 

prompts that walk students through effective responses to failure will lead to both the formation 

of a richer grounding experience for learning about electrical circuits, as well as generate more 

effective approaches to failure in general, even when the prompt is not given.  

The metacognitive prompts.  

Metacognitive Failure Response (MFR) prompts. In the “Metacognitive Failure Response” (MFR) 

condition, participants played a version of the game where after they get a certain number of 

incorrect attempts, they received the 3-part metacognitive prompt that explicitly walked them 

through the “info-seeking, fix” behavior. This prompt is designed to be embedded naturally into 

the game’s narrative, using character dialogues and personalities to take participants through the 

response to failure. Panel 0 (not pictured here) features a brief exchange between the narrator 

(player) and a fellow lab engineer, Shelly, who provokes you to wonder “where did I go wrong 

here?” The first panel asks participants to make a judgment about what went wrong via a checklist 

of both possible causes, as well as the options “something else” and “I have no idea” (Figure 5).  
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Figure 5: Panel 1 - Error Specification  

The second panel shows participants a clickable list of concepts that are covered in the level, along 

with an expandable description of the concepts (Figure 6). 

 
Figure 6: Panel 2 – Info-Seeking 
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The third and last panel features a conversation between the main character and a non-playable 

character (NPC), Throckmorton, who suggests that the player fix their incorrect solution (Figure 

7). This third panel only triggers if the circuit has not been “blown” (or shorted) – if the circuit is 

blown, players must restart the level, as the battery, wire, and lights are no longer operational. The 

metacognitive prompt appeared only after the 3rd incorrect attempt (and every third attempt after) 

on non-tutorial or scaffolded problems. The selection of which attempt # the prompts should be 

triggered on was done by looking at the average number of attempts needed to solve the problem 

by Study 1 participants, and also by considering how many prompts to present in such a way that 

does not disrupt the flow of the game or is presented on when the player needs it most, without 

some intelligent algorithm running to predict participants’ knowledge states.  

 

Figure 7: Panel 3 – Fix Suggestion 

Global Awareness Prompts: In the “Global Awareness” (GA) condition, participants will play a 

version of the game where after they get a certain number of incorrect attempts, they will receive 
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metacognitive prompt that asks them to make a global judgment of their understanding of electrical 

circuits. The prompt, designed after Loibl & Rummel’s (2014) assertion that PFL experiences are 

beneficial predominantly for their elicitation of global knowledge gaps, will allow me to isolate 

the effects of the “info-seeking, fix” strategy versus just a general awareness of knowledge gaps 

without specification. This allows me to compare students who are provoked to make a general 

appraisal of their understanding (GA prompts) to those who are provoked to take specific 

metacognitive judgments and strategies (MFR prompts) in response to failure to identify which 

type of metacognitive judgment is more predictive of learning. Panel 0 (not pictured here) features 

a brief exchange between the narrator (player) and a fellow lab engineer, Shelly, who then 

provokes you to make a global judgment of knowing (Figure 8). The GA prompt triggers at the 

same attempt numbers, on the same problems as the MFR prompts.  

 

Figure 8: Global Awareness Prompt 

  



	

	 46	

Research Questions  

The research questions driving this dissertation are as follows: 

RQ1:  Does provoking students to reflect, info-seek, and fix their solutions through a 

metacognitive prompt in a game space (“MFR participants”) prior to formal instruction lead 

to more complex and robust understanding later on, therefore outperforming students who 

do not receive the metacognitive prompt during gameplay (“control participants”) or 

prompted only to make a global judgment of knowing (“GA participants”)?  

RQ2: Do MFR participants use the prompts in different ways, where spending more time on error 

specification (Panel 1), info-seeking (Panel 2), or both results in better performance later 

on?   

RQ3: On a challenge level that does not contain metacognitive prompts, do MFR participants 

spontaneously use the “info-seeking, fix” strategy more than the control and GA 

participants?  

RQ4: Do MFR participants develop richer implicit understanding of the electrical circuit 

mechanics in the game because of the metacognitive prompts, and therefore perform better 

on the challenge level than the control and GA participants?  

RQ5: Do MFR participants behave differently than control and GA participants in their approach 

towards solving the game levels, such as using hints, needing more attempts, or responding 

differently to failure on the attempts that don’t have metacognitive prompts? 

RQ1 poses the most pertinent investigation of this dissertation: whether inducing metacognitive 

judgments and strategies will lead to deeper learning from the instruction that follows. Both prior 

work on PFL and Study 1 suggest that all participants, regardless of the condition, learn some 

content from the formal instruction. However, given both the results of Study 1 and the literature 
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on metacognitive monitoring and control, preparation for future learning, and productive failure, 

we should expect that students who employ metacognitive strategies in response to failure in a 

game space will develop deeper intuitions about the problem space, and therefore better prepare 

them to learn from formal instruction. Thus, I distinguish between two forms of knowledge that 

could be acquired: a rote, basic conceptual understanding of the concepts that is encoded simply 

by paying attention to the formal content covered in the lecture; and a deeper understanding that 

arises from integrating external experiences and prior intuitions (such as from the gameplay) into 

the formal content in the lecture that results in more robust and complex mental models. 

Furthermore, the comparison between the MFR and GA conditions allows me to determine 

whether specifying knowledge gaps and employing strategies to remedy and apply that gap to 

one’s solution is more beneficial than global metacognitive awareness alone. To answer this 

question, I present my first hypotheses: 

H1A: The MFR, the control, and the GA conditions will perform equally on measures of rote 

conceptual understanding.  

H1B: The use of metacognitive prompts during gameplay (MFR condition) will lead to better 

performance on measures of complexity and retention, compared to the use of global 

awareness prompts during gameplay (GA condition) or the game alone (control 

condition). 

RQ2 acknowledges the possibility that participants in the MFR condition might treat the prompts 

differently, depending on whether they have effective metacognitive skills, or whether they find 

it useful for their gameplay process or not. For example, a student who has low prior 

metacognitive skills might not monitor their own understanding or strategies effectively, and so 

may choose to skip over the error specification (Panel 1) or not to info-seek (Panel 2). Or, a 
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student who has high prior metacognitive skills might decide that they have accurately specified 

the source of error (Panel 1), and so do not need to info-seek. As a result, time spent on error 

specification, or info-seeking, may or may not positively impact later learning. I will conduct an 

exploratory analysis on the time spent on these actions to see whether they relate to more robust, 

complex understanding. 

RQ3 poses it is possible that the use of a prompt will facilitate more use of this “info-seeking, 

fixing” strategy in general, even when the prompt does not appear. Participants who receive the 

prompt may find it to be a useful strategy to employ in general, particularly on a level that was 

especially difficult. Thus, to answer RQ2, I present my second hypothesis: 

H2: The MFR participants will learn to use the “info-seeking, fix” strategy from the 

metacognitive prompts, and therefore will employ the “info-seeking, fix” strategy more on 

a challenge level, compared to participants who do not receive the “MFR” metacognitive 

prompt during gameplay (control and GA condition). 

RQ4 asks whether using MFR metacognitive prompts in earlier levels will lead to higher rates or 

faster success on a particularly challenging game level. It should follow that reflecting on, 

pinpointing causes of incorrect solutions, and information-seeking would lead to deeper intuitions 

about the game mechanics (and therefore about electrical circuits in general). This should, in turn, 

translate into more success on a particularly challenging level. However, I have no prior evidence 

that those who employ these strategies will necessarily perform better in harder levels of the game 

itself - after all, those who employed those strategies were only using said strategies because they 

failed in the first place. Furthermore, productive failure research indicates that success of the 

problem-solving task is not so important so much as the experience of failing productively during 
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the problem-solving task (Kapur, 2008). Thus, I will conduct an exploratory analysis without 

specifying a hypothesis.  

RQ5 asks whether participants who receive metacognitive prompts during gameplay (MFR and 

GA condition) behave differently compared to the control participants in their approach towards 

solving the game levels, such as using hints, needing more attempts, or responding differently to 

failure on the attempts that don’t have metacognitive prompts? It is possible that receiving the 

MFR prompts might alter their gameplay approach in other, unanticipated ways. Receiving the 

prompts might make them more effective at passing levels, or it might make them more 

confused; it might also make them more inclined to search for hints or information, even when 

not prompted to do so because they notice the utility of such an approach, or it may make them 

less inclined to info-seek, because they find the process bothersome and unnecessary. 

Furthermore, the use of a “global awareness” prompt might also elicit different behaviors in 

those participants, such as info-seeking. I will similarly conduct an exploratory analysis without 

specifying a hypothesis about differences in gameplay patterns between conditions.  

 
Study Design 

Procedure. This study employed a fully randomized design, with randomized assignment of 

students within classes to one of three conditions: the control condition, the Metacognitive Failure 

Response (MFR) condition, and the Global Awareness (GA) condition. The control condition used 

the same game and study design as the FR condition in Study 1, where participants played the 

game with the normal allowances for incorrect attempts. In the MFR condition, participants played 

a version of the game where after they get a certain number of incorrect attempts, they will receive 

the 3-part metacognitive prompt. In the GA condition, participants played a version of the game 
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where after they get a certain number of incorrect attempts, they received the global awareness 

metacognitive prompt. 

 
Figure 9: Study 2 Overview 

Figure 9 shows the timeline of the study activities. Prior to the study activities, participants 

completed a pre-survey (Appendix B), and completed the first OE worksheet as a pre-test. A month 

later, participants began by playing a subset of the Electropocalypse levels (1-13) covering content 

like closed/open loops, short-circuiting, and resistors in series and parallel, for a full class period 

(40 minutes). On Day 2, after 10 minutes of continued normal gameplay, participants were given 

10 minutes to try and solve a challenge level (further elaborated below). Note that gameplay has 

been split into two sessions. This is because meta-analyses on educational games indicate that 

multiple sessions of play are more effective for learning (Wouters et al., 2013), and the prior study 

suggested that one 45-minute session might not have been a sufficient treatment. After the 

challenge level, participants received instruction on circuits through a lecture video. They also 

took a brief post-survey, asking isomorphic questions about their confidence in explaining 

electrical circuit concepts, and their perceptions of games’ utility for learning, as well as the impact 

of their game experience on their learning (Appendix B). On Day 3, participants will take their 

second OE worksheet, followed by the Post-Test. On Day 4, two weeks after their post-test date, 
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participants will take their third and last OE worksheet.   Note also that the temporal placement of 

the OE Worksheets have been moved. This will be discussed further in the measures section. 

Procedure 

175 participants were recruited from their regularly scheduled physics classes in January 2017, 

with permission from their teachers and parents. During these classes, I explained the nature of the 

study activities, and offered them an alternative activity (a reading and writing assignment on a 

“Scientific American” article) for those who did not wish to participate as part of their class. After 

permissions were obtained, participants were randomly assigned within class to condition. After 

the explanation and obtainment of assent, participants were asked to fill out the pre-survey and the 

first OE worksheet that served as a pre-test. Immediately after this day, I analyzed both the survey 

questions and the OE responses to ensure that the randomly assigned groups were equivalent, as 

well as other potentially significant differences that may impact the treatment, such as gender, 

prior STEM experience, and gaming experience. A month later, I returned to the school during 

their class time over the course of three days to conduct the gameplay, lecture, and post-test 

sessions, assisted by the classroom teachers. Two weeks after those sessions, I returned a final 

time to distribute the last OE worksheet. 

Participants. 175 participants (52% female) were recruited from a convenience sample at a high-

performing, suburban New Jersey high school. No participants elected to opt out at the start of the 

study, but 9 participants were dropped due to absences over the course of the study, with a total of 

N = 166 participants with data. The school population is 69% white, 18.5% Asian, 9% Hispanic, 

and 3% black; and consistently performs at the 90th percentile or above on the New Jersey High 

School Proficiency Assessment (HSPA). Study activities were conducted as part of their 

conceptual and academic physics class (40-minute class periods); higher performing classes at the 
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Honors and AP level were excluded due to concerns over introducing an additional source of 

variance (student academic level), and the higher likelihood of prior knowledge. Academic physics 

is the standard-track physics course offered to students who previously took academic classes but 

did not do well enough to take or opted out of Honors or AP level courses, while conceptual 

physics is the remedial-track physics course offered to students who either did not do well in prior 

academic science classes or lacked the prerequisite math course. 8 course sections were taught by 

two teachers, who each taught two standard-track and two remedial-track physics classes. The 

participants were predominantly 16- and 17-years-old, as these courses are typically taken in the 

junior year of high school.  

Materials 

Game. The game used in in this study, Electropocalypse is the same as the one used in Study 1, 

with the prompt modifications by condition described earlier. Game software was installed at the 

computer lab at the school, where participants were directed to during gameplay sessions. If 

students completed all 13 levels before the game session was over, they were instructed to replay 

earlier levels; students often replayed levels on which they did not receive a 3-star rating (achieved 

by solving the circuit puzzle in the least number of moves), shown on the menu screen. If students 

asked for help, they were instructed to look to game hints or earlier levels to look for more 

information.  Like Study 1, log data from the game was used to capture participants’ problem-

solving strategies and behaviors, including # and duration of attempts needed to solve each level, 

# and duration of hints used, and counts of response-to-failure (R2F) behaviors. Additionally, the 

log data from the metacognitive prompts (time spent on Panel 1: error specification and Panel 

2:info-seeking) in the MFR condition, as well as from the general awareness prompts in the GA 

condition was analyzed.  
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Instruction. The instructional videos (three Khan Academy videos, plus an additional video that 

connects the game puzzles with the learned concepts) covered principles surrounding electrical 

circuits. The content from Khan Academy, a publicly available online learning platform, covers 

basic principles about electrical circuits, Ohm’s Law, circuits with resistors in series and parallel, 

and the PFL content of Voltmeters and Ammeters. The gameplay “bridging” video, which takes 

several puzzle examples in the game to show how puzzle solutions use resistors in series and 

parallel to meet different goal states, was added to help participants make the connection between 

their game experiences and the instruction explicit.  

Pre Survey. Participants completed an 18-item pre survey prior to the study activities. This pre-

survey was given to collect demographic information, as well as other factors that may impact 

their game behaviors and learning performance. These 18 items ranged from asking about their 

prior STEM and game experiences, whether they identify as gamers or not, to their confidence in 

ability to explain electrical circuits to someone (self-efficacy). The pre-survey also included a 

battery of items on goal orientation, derived from Midgley et al.’s (1998) scale for assessing 

students’ achievement goal orientations.  This battery was included because prior literature 

suggests that students with varying goal orientations might have different self-regulatory 

(metacognitive), risk-taking, and strategic behavior (Pintrich, 2000), and may be used as a 

moderator in later analyses.  

Open-Ended Worksheets (OE). The Open-Ended Worksheet (OEs) contain the same prompt as 

used in Study 1(Appendix 1).  However, the OEs will be given at three different time points than 

previously: as pre-test (OE1), as part of the post-test (OE2), and as two-week delayed post-test 

(OE3). The second and third OE worksheet times were moved because the original OE2 from Study 

1, immediately after gameplay, did not yield any particularly insightful information about 
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participants’ conceptual understanding besides that playing the game appeared to only slightly 

increase participants understanding of the formal circuit system immediately after play. Klahr & 

Chen (2011) consider temporal interval as a dimension of knowledge transfer; thus, we can also 

consider this two-week delayed OE worksheet (OE3) another measure of “near transfer” (“near” 

being somewhat arbitrary, since there is no formalized way of measuring transfer distance); or, at 

the very least, a measure of robustness of learning, in the form of retention. Correctness and 

complexity scores (see description in Chapter 2, and shortened coding manual in APPENDIX) 

were blind coded by 3 researchers, with an intra-class correlation coefficient of the final summed 

scores at .925 using an absolute agreement definition, with a 95% confidence interval from .866 

to .960 (F(35,70)= 14.893, p < .001). 

Post Test. The Post Test used for this study is the same described in Study 1 (see Table 1). Thus, 

we will still have the same two correctness sub-scores of content (the first two sections that cover 

the explicit content about DC circuits) and transfer (the latter two sections about analogous 

reasoning and PFL), and one overall complexity sub-score. Post-Tests were blind-coded by 3 

researchers, with an intra-class correlation coefficient of the final summed scores at .935 using 

absolute agreement, with a 95% confidence interval from .888 to .965 (F(32,96)= 16.572, p<.001).  

Post Survey. The Post Survey included one isomorphic question from the Pre Survey that asked 

about their confidence in being able to explain electrical circuit concepts to someone, and three 

questions about how their game experience impacted their learning.  
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Study 2 Results 

I will begin by presenting the variables and predictors I found in the pre-survey and pre-test stage 

that will be included as interaction or covariate variables in later analyses. I will also present 

some overall descriptive statistics of learning and game behaviors, and discuss how they differ 

from the Study 1 population of graduate students. I will then present the results of each condition 

comparison test and relationship to learning outcomes that relates to my five research questions: 

a) learning measures (OE worksheets, Post-Test); b) metacognitive prompt use; c) Challenge 

Level response-to-failure strategy and d) performance; and e) game performance and behaviors.  

The learning analyses were conducted with all 166 participants, while game data analysis 

was conducted with 165 participants, due to one students’ game data lost due to technical issues.  

Due to the large number of tests that were run at every stage of analyses, Benjamini and 

Hotchberg’s adjustments for false discovery rates (FDR) (1995) were applied to any analyses 

besides hypothesis tests 1 and 2. Tests that were significant with FDR adjustment are discussed 

as primary results, while tests that were significant at a = .05 but not after adjustment are 

discussed as promising exploratory results that offer implications for future investigation. 

Pre-Survey and Pre-Test (OE1)  

Initial one-way ANOVA analyses of the pre-survey demographic data revealed that three 

variables significantly influenced pre-test (OE1) scores: gender, prior STEM experience, and 

identifying as a gamer. Boys and girls performed equally low on OE1 Correctness (p = .118), but 

did significantly differ on OE1 Complexity, F(1,164) = 8.755, p = .004, with boys (M = .206, SD 

= .452) outperforming girls (M = .046, SD = .211). Similarly, prior STEM experience (N = 19) 

did not significantly predict OE1 Correctness (p = .103) but did significantly predict OE1 

complexity, F(1,164) = 4.877, p = .029, with those having prior STEM experience (M =.290, SD 
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= .625) outperforming those with no prior STEM experience (M = .100, SD = .300). Students 

who identified as a gamer significantly predicted both OE1 Correctness, F(1,164) = 8.252, p = 

.005, and Complexity F(1,164) = 10.182, p = .002, with those identifying as gamers (MCorrectness 

= .912, SD = 1.10; MComplexity = .245, SD = .496) outperforming those who did not (MCorrectness = 

.475, SD = .818; MComplexity = .065, SD = .243). Thus, gender, gamer identification and prior 

STEM experience will be used as both covariates and as comparison variables in later analyses, 

in addition to pre-test (OE1 total scores).  There were no condition differences in gender (p  = 

.299), gamer identification(p  = .278), and prior STEM experience composition(p  = .855). 

Confidence in being able to explain electrical circuits to someone, r(166) = .508, p < .001, and 

high reported interest in physics, r(166) = .239, p = .002, also positively correlated with pre-test 

scores. ANOVAs showed that there were no condition differences in OE1 Correctness (p = .966) 

or OE1 Complexity (p = .239).  

A set of goal orientation items was also administered as part of the pre-survey, derived from a 

subset from Midgley et al.’s (1998) goal orientation scale. Three distinct goal orientations 

emerged from a confirmatory factor analysis: mastery approach, performance approach, and 

performance avoidance. These goal orientation factors will also be explored to determine 

whether they impact response-to-failure strategies or condition effects on student outcomes.  

Overall Performance and Comparisons to Study 1 Participants.  There were significant 

differences in game behaviors and learning between the two track types that participated in the 

study, standard-track (academic) and remedial-track (conceptual) physics. As expected, standard-

track students outperformed remedial-track students on every learning measure (p < .001) 

besides the baseline measure (OE1) and post-test content (Table 4). Standard-track students also 

solved more levels in the game (M = 11.38, SD = 1.11) than remedial-track students (M = 10.83, 
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SD = 1.19), F(1,163) = 9.351, p = .003. Academic Track did not interact with condition on any 

of the analyses discussed below, and is discussed here only as context for the population. There 

were no differences between the 8 classes recruited on learning outcomes or game performance, 

when controlling for track type.  

 Academic 
(M, SD) 

Conceptual 
(M, SD) 

OE1 Correctness 0.73 (1.04) 0.50 (0.80) 
OE1 Complexity 0.16 (0.41) 0.08 (0.27) 

OE2 Correctness* 4.85 (1.48) 3.83 (1.37) 
OE2 Complexity* 2.54 (1.69) 1.48 (1.47) 
OE3 Correctness* 4.5 (1.35) 3.19 (1.21) 
OE3 Complexity* 2.03 (1.42) 0.95 (1.03) 

Post Content 3.08 (1.35) 2.83 (1.24) 
Post Transfer* 3.64 (1.83) 2.59 (1.67) 

Post Complex* 0.88 (0.99) 0.32 (0.68) 
*sig. at a < .001 

Table 4: Study 2 Standard Track vs. Remedial Track Student Performance 

Generally, Study 2 participants (N = 166) exhibited lower performance on learning 

measures and more varied game behaviors compared to the graduate students in Study 1 (N = 

36). Although both populations exhibited similarly low baseline scores on the pre-test (OE1), 

high school participants comparatively lower on the learning measure after the video lecture 

(OE2 in Study 2, OE3 in Study 1, and post-test scores), especially on measures of transfer and 

complexity (see below for descriptive statistics). This is likely due to a trifold effect of 

differences in learner ability (with graduate students being much more experienced and adept 

learners), prior knowledge, and the fact that the instruction was delivered through a long lecture 

video, which is likely something much more familiar to graduate students compared to high 

school students. Study 1 participants also had a higher proportion of successful attempts on the 

game, but made less number of attempts overall (i.e. was less iterative), and had a smaller variety 

of response-to-failure behaviors compared to Study 2 participants, suggesting that there are game 
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dispositions that differ by population. This is likely due to differences in dispositions: while 

graduate students are more likely to approach a learning task, even one that’s situated in a game, 

more seriously and cautiously, high school students may concentrate less on the learning goal or 

performing well, and therefore be more willing exhibit a greater range of playful behaviors. Yet, 

the original driving question still remains: will we see that the behaviors that were effective for 

learning for graduate students are also effective for more novice learners? 

 Study 1  
Mean (SD) 

Study 2  
Mean (SD) 

OE1 Correctness Score (out of 9) 0.64 (1.38) 0.62 (0.94) 
OE1 Complexity Score (out of 24) 0.11 (0.52) 0.12 (0.36) 

OE Correctness Score (after instruction) 6.08 (2.79) 4.34 (1.51) 
OE Complexity Score (after instruction) 2.29 (1.89) 2.01 (1.670) 

Post Test Content Score (out of 10) 3.47 (1.83) 2.96 (1.30) 
Post Test Transfer Score (out of 9) 5.47 (1.67) 3.11 (1.83) 

Post Test Complexity Score (out of 10) 6.39 (2.40) 0.60 (0.90) 
Prop Attempts Successful 0.43 (0.20) 0.158 (0.09) 

Total # of Attempts 51.5 (20.61) 102.448 (38.68) 
Table 5: Study 1 vs. Study 2 

Learning Outcomes.  

I expected that MFR participants will perform the same as control and GA participants on 

correctness and complexity scores at OE1 to establish equivalent baseline knowledge. To support 

H1A, which asserted that all groups would demonstrate the same amount of content learning from 

the instruction, I also expected that MFR participants will perform the same as control and GA 

participants on correctness scores at OE2 and on post-test content scores, since both groups should 

demonstrate the same amount of content learning from the instruction. However, to support H1B, I 

expected that MFR participants will outperform control and GA participants on measures of 

complexity on both OE2 and post-test, as well as on the post-test transfer score. These findings 

should indicate that although both groups learned about electrical circuits, participants that receive 
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the MFR prompt will have a more complex understanding of the concepts. Finally, I expected to 

find that the MFR participants will outperform control and GA participants on both correctness 

and complexity scores on OE3. This should indicate that the MFR participants not only have a 

more complex understanding of the concepts, but that their understanding is also more robust.  

 An initial correlation of all the learning measures indicated that prior knowledge was not 

significantly related to learning. Of all the correlations of OE1 Correctness and Complexity to the 

various learning measures (OE2 and OE3 Correctness and Complexity, and Post-Test sub-scores), 

only OE1 Complexity was significantly correlated to Post-Transfer, r(166) = .163, p = .036, and 

Post-Complexity, r(166) = .19, p = .014; however, these correlations were no longer significant 

with the FDR adjustment. This suggests that students’ prior knowledge of electrical circuits was 

only at best modestly related to learning outcomes within this context, likely because most students 

had little to no prior knowledge of the system. All of the other learning measures were all strongly 

correlated to one another.  

To test these hypotheses using the OE scores, I calculated two repeated measures ANOVAs 

on correctness and complexity scores, with time as a 3-level within-subjects factor, condition as a 

3-level between-subjects factor, and track, gamer identification, gender, and prior STEM 

experience as covariates. All demographic differences in learning will be discussed in detail in a 

later section, labelled “Other Group Comparisons”, and are mentioned here only for reference.  

Students performed fairly poorly on the OE free recall measures, getting less than half of the 

possible 9 points on their correctness scores. The RMANCOVA on correctness scores revealed a 

significant main effect of time on learning, F(2,158) = 146.26, p < .001, and a significant 

interaction between gender and time (p = .008), with girls outperforming boys on OE2 correctness, 

and a significant interaction between track and time (p < .001), with standard track students 
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outperforming remedial track students (see Table 4 for mean comparisons), but no significant 

interaction between condition and time (p  = .557). Gamer identification (p  = .773) and STEM 

experience (p  = .791) were not significantly predictive of OE correctness scores. This suggests 

that learning occurred equally across all groups, validating H1A, and that learning was equally 

robust between conditions even after a delay, rejecting H1B. (Figure 10)  

 

Figure 10: Study 2 Condition Comparisons on OE Correctness  

Coding for complexity required criteria that would encapsulate all the possible ways 

students could demonstrate knowledge complexity, from using mathematical formulas to coding 

verbal explanations that featured more complex connections between system features. Despite this, 

Study 2 participants scored particularly low on measures of OE complexity, often getting no more 

than 2 points out of the 24 possible.  The results of the RMANCOVA on complexity scores showed 

a similar significance of time on knowledge complexity, F(2,163) = 149.90, p < .001, controlling 

for the demographic covariates listed, but not between time and condition. The interaction between  

track and time was significant as expected (p  < .001), but gamer identification (p  = .437), STEM 

experience (p  = .525), and gender (p  = .091) was not.  
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Figure 11: Study 2 Condition Comparisons on OE Complexity 

To test the learning hypotheses using the Post-Test scores, I calculated a MANCOVA on 

Post-Test Content and Post-Test Transfer scores, with condition as a 3-level between-subjects 

factor, and OE1, track, gamer identification, gender, and prior STEM experience as covariates. 

The results indicated that groups performed equally on the measures of rote learning (p = .098) 

and knowledge transfer (p = .401). Standard-track students outperformed remedial track students 

on Post-Test Transfer scores (p = .001), but did not differ on Post-Test Content scores. Gender 

trended towards predicting Post-Test Transfer (p = .055), and gamer identification trended 

towards predicting both Post-Test Transfer (p = .068) and Post-Test Content (p = .051).  An 

ANCOVA on Post-Test Complexity, with condition as a 3-level between-subjects factor, and 

OE1, track, gamer identification, gender, and prior STEM experience as covariates, revealed a 

similar nonsignificant relationship (p = .320). Track also significantly predicted differences on 

Post-Test Complexity scores, with standard-track students outperforming remedial track students 

(p < .001), but no other demographic variables were predictive of Post-Test Complexity 

performance.  

Together, these learning outcomes analyses suggest that presenting the MFR prompts in 

the game did not yield the global learning benefits on conceptual complexity and retention 

predicted. 
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Metacognitive Prompt Use 

Although gross comparisons between conditions did not yield differences in learning, there is still 

the possibility that using the metacognitive prompts more carefully might benefit learning.  On 

average, MFR participants, received the prompt 5 times, used Panel 1 (error specification) an 

average of 33.40 seconds total, and Panel 2 (info-seeking) an average of 55.47 seconds total. To 

test whether there is a relationship between panel use and learning, I correlated the time MFR 

participants spent on Panel 1 (error specification) and Panel 2 (info-seeking) to the 7 learning 

measures. Correlations of time spent on the MFR prompts with Post-Test measures were not 

significant, but many with the open-ended (OE) measures were; this suggests that while 

metacognitive prompts might not have yielded better performance on a more standard form of 

assessment (i.e. through multiple choice questions, and prompted reasoning), using metacognitive 

strategies like error-specification and info-seeking does impact learners’ abilities to freely recall 

system structures and features.   

Spearman’s 
Rho 

OE2 
Correctness 

OE2 
Complexity 

OE2 
Total 

OE3 
Correctness 

OE3 
Complexity 

OE3 
Total 

TimeOnPa1 0.255 0.218 0.279* 0.433** 0.268 0.425** 
TimeOnPa2 0.247 0.439** 0.396** 0.417** 0.371** 0.495** 
*   Sig. at a = .05 
** Sig. at a = .01 

   

Table 6: Study 2 Correlations of MFR Panel Use to Learning Measures 

Time spent on Panel 1 was significantly correlated with OE2 total score (Correctness and 

Complexity summed), and with OE3 Correctness and total score (see Table 6). This suggests that 

more time spent on error specification is related to learning both immediately after instruction, and 

with long term retention. Time spent on Panel 2 had even more significant positive relationships 

to both OE2 measures and to all OE3 measures, suggesting that info-seeking after failure as a 

strategy is a powerful way to facilitate preparation for learning from the formal instruction, thereby 
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yielding more complex and robust understanding. These were all statistically significant, even with 

FDR adjustments. This provides promising support for the original hypothesis that time spent 

information-seeking after error-specification as a response to failure is an effective way of 

preparing students for future learning. To identify whether eliciting a general awareness of 

knowledge gaps (GA prompts) similarly correlated to learning, the same analysis was conducted 

between time on GA panels and the learning measures. However, none of the correlations were 

significant or even trending, suggesting that provoking students to appraise their general 

understanding of the content did not yield learning benefits. However, it could be that simply 

failing in itself was enough to provoke this general awareness, and that the prompts did not elicit 

any deeper or more accurate appraisals of global knowledge gaps in GA participants than control 

participants.  

Did students with different demographic backgrounds use the MFR prompts differently? 

ANOVAs on Time on Panel 1 and Time on Panel 2 suggest that students do not differ on Time on 

Panel 1 (error specification) or Time on Panel 2 by academic track, gamer ID, gender, or STEM 

experience, after adjusting for FDR. This suggests that MFR prompt use was not impacted by these 

demographic factors, such as STEM experience or academic ability, but might still be impacted 

by other individual differences not captured in the demographic factors.  

Although students did not differ in their prompt use by demographic, the question remains 

of whether student prior ability, prior knowledge, or other demographic factors accounted for the 

benefits of MFR prompt use on learning.  To test this relationship, I ran regression analyses on all 

7 of the learning measures, with total time spent on the MFR prompts, OE1, academic track, gamer 

identification, gender, and STEM prior experience as regressors. Results indicated that total time 

spent on the prompts predicted OE2 Complexity, β = .004, t(52) = 3.83, p< .001, even after 
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controlling for prior knowledge and experience and FDR. Total time spent on the MFR prompts 

also predicted OE3 Correctness, β = .006, t(52) = 2.08, p = .043, and OE3 Complexity, β = .013, 

t(52) = 3.09, p = .015; however, these were no longer significant after adjusting for FDR. Despite 

the vulnerability to Type 1 error, together these results suggest that there is a benefit to spending 

time on the prompts on knowledge complexity (OE2) and promising evidence for positive effects 

on knowledge retention (OE3), even when accounting for academic track, STEM experience, and 

prior knowledge differences.  

Although these analyses provide evidence that the relationship between MFR prompt use 

and learning is not accounted for by demographic factors measured in the study (such as gender, 

prior knowledge, and academic ability), there is still a possibility that there are other, 

undocumented latent factors that impacted students’ willingness to use the MFR prompts.  I now 

aimed to explore how MFR high-users and low-users navigated the game environment differently, 

and whether they differed in behavioral and learning outcomes. This allows me to compare 

students who used the intervention with fidelity (MFR high-users) with those who did not (MFR 

low-users), and to the other control and GA participants.  

MFR High vs. Low Users  

In this section, I will conduct a set of exploratory analyses comparing MFR high-users and 

MFR low-users to determine whether they differed on other dimensions, such as game behaviors 

or motivation; as such, both statistically significant and trending results will be discussed.  To 

create the high vs. low users category, MFR participants were split into high/low use categories  

using the mean time on Panel 2 of 42.38 seconds. Mean time on Panel 2 was used in lieu of Panel 

1 or total time because Time on Panel 2 had stronger correlations overall to the OE learning 

measures, and because, while error specification is a vital part of this strategy, info-seeking (and 
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willingness to devote effort doing so) may have a more direct impact on producing insights about 

the problem space that lead to greater learning outcomes. Using the Panel 2 mean split, 27 MFR 

participants were categorized as “low-users” and 25 were categorized as “high-users”. This 

categorization will allow for exploratory comparisons between MFR high and low users, and with 

the other participants (control and GA), to identify whether MFR high-users demonstrated higher 

learning outcomes even when controlling for demographic factors.  

To determine whether these MFR Panel 2 high-users and low-users differed 

demographically, I conducted a X2 test on track by high/low panel use, X2(2, N = 52) = 1.322 (p = 

.250), which indicated that high-users were not significantly more representative of standard-track 

students than remedial-track students. X2 analyses indicated that MFR high- and low-users also 

did not significantly differ in STEM experience (p = .704) or gamer identification (p = .309), but 

girls trended towards being MFR high-users (58% of girls) more than boys (33%), X2(2, N = 52) 

= 3.067, p = .080. ANOVAs indicated that MFR high- and low-users also did not differ in OE1 

correctness (p = .526), complexity (p = .838), mastery goals (p = .370), or performance-avoidance 

goals (p = .091), but MFR high-users trended towards being less performance-approach goal 

oriented (M = 13.04, SD = 3.40) compared to MFR low-users (M = 15.10, SD = 2.22), F(1,50) = 

6.914, p = .063. This provides evidence that while high-users did not differ from low-users in 

academic track, prior knowledge, STEM, or game experience, they may be less driven to 

demonstrate their competency and therefore be more willing to read the information presented in 

the prompts instead of rushing back to solve the level successfully. ANOVAs conducted between 

on game behaviors revealed no other differences between MFR high and low-users, which 

suggests that MFR high and low-users did not differ in their engagement, game success, 

persistence, or problem-solving. If there were other latent factors that accounted for MFR high-
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users’ higher performance on learning measures, those potential latent factors were not evidenced 

by differences in their demographic factors, game success or problem-solving behaviors. 

Motivation, in the form of performance approach goal orientation, appears to be the only measured 

difference between the two groups; however, goal orientation scores were not predictive of 

learning outcomes and thus could not explain the higher learning outcomes exhibited by MFR 

high-users.   

MFR High/Low Use, Control, and GA comparisons 

In this section, I compare MFR high-users and MFR low-users to control and GA to 

explore whether MFR high-users differed from the other groups on learning outcomes. To 

explore whether MFR high-users demonstrated higher outcomes, I re-calculated two repeated 

measures ANOVAs, with time as a 3-level within-subjects factor, condition (control, GA, MFR 

low-users, and MFR high-users) as a 4-level between-subjects factor, and academic track as a 

covariate, on correctness and complexity scores. The RMANOVA on OE correctness scores 

revealed a trending interaction between time and condition on learning, Roy’s Largest Root 

F(3,160) = 2.062, p = .107. Post-hoc ANCOVA analysis on OE3 Correctness, covarying track, 

revealed a significant difference between conditions, F(3, 160) = 2.687, p = .048, with MFR 

high-users (M = 4.54, SD = 1.406) outperforming MFR low-users (M = 3.49, SD = 1.52), control 

(M = 3.86, SD = 1.35), and GA participants (M = 3.71, SD = 1.44). Thus, we have evidence that 

MFR high-users better retained their understanding compared to the other three groups, even 

when controlling for prior academic ability.  

A similar RMANOVA using OE complexity scores was also significant, Roy’s Largest 

Root F(3,160) = 2.79, p = .042. Post-hoc ANCOVA analysis on OE2 Complexity scores, 

controlling for track, were trending, F(3,161) = 2.585, p = .055, with MFR low-users (M = 1.31, 
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SD = 1.19) performing lower than MFR high-users (M = 2.40, SD = 1.91), control (M = 2.27, SD 

= 1.71), and GA participants (M = 1.93, SD = 1.65). These condition differences in complexity 

were no longer significant by OE3 (p = .291). This suggests that using the MFR prompts less led 

to less complex understanding immediately after instruction (OE2 Complexity Scores) compared 

to the other three groups, even when controlling for track effects.   

To compare performance on Post-Test scores between MFR high-users and the other 

participants, I calculated a MANCOVA on Post-Test Content and Post-Test Transfer, with 

condition as a 4-level between-subjects factor and controlling for Track and OE1. The results 

indicated that groups performed equally on the measures of rote learning (Post-Test Content, p = 

.318) and Transfer, (p = .630). An ANCOVA on Post-Test Complexity scores revealed that all 

groups performed equally on Post-Test Complexity (p = .144). 

Although these results provide promising evidence that using this MFR strategy more 

effortfully can lead to higher learning outcomes, there may be other latent factors that may explain 

the relationship between MFR panel use and learning, such as conscientiousness or engagement. 

Thus, while I cannot conclude that this metacognitive response to failure led to deeper learning, 

these results suggest that students who spent more time specifying the source of their error and 

info-seeking produced higher learning outcomes, even when controlling for prior knowledge, prior 

ability, or other demographic differences that traditionally impact science performance.  

Challenge Behaviors and Performance.  

The challenge level integrates all previously covered circuit principles into one particularly large 

and complex circuit system. This served as a space to see if the two conditions will differ in success 

in completing a particularly hard level, as well as whether they enact different responses to failure 

(RQ3, RQ4). I expected that MFR participants will develop an appreciation for the “info-seeking, 
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fix” strategy through the metacognitive prompts, such that they will employ this response-to-

failure more in the challenge level (H2). However, ANOVAs on counts of response-to-failure 

behaviors by condition indicated that the three conditions did not differ in the types of strategies 

they employed in response to failure on this challenge level. In fact, all students generally ignored 

the “info-seeking, fix” strategy (only 11% used it at all), instead opting predominantly for fixing 

(M = 20.447, SD = 14.342) and restarting the level (M = 7.397, SD = 3.931) as their default 

response to failure (Table 7). This suggests that MFR participants did not transfer the “info-

seeking, fix” strategy they experienced through the prompts to a challenging problem, thus 

rejecting H2. 

Challenge Level R2F N Mean Std. Deviation 
Fix 152 20.447 14.34 
Info-Seeking, Fix 19 1.053 .23 
Info-Seeking, Restart 9 1.000 .00 
Info-Seeking, Resubmit 11 1.273 .47 
Quick Resubmit 107 5.009 4.67 
Restart 156 7.397 3.93 
Skipped Back 7 1.000 .00 

Table 6: Study 2 Challenge Level Responses to Failure 

 This hypothesis, admittedly, was overly ambitious; after all, if even more sophisticated learners 

(like the graduate students in Study 1) hesitated to use this strategy, it was less likely that high 

school students would have noticed the utility of such a strategy through merely two sessions of 

gameplay prompting them to do so. As earlier analyses made clear, many MFR participants opted 

to pay insufficient attention to the prompts in the first place; as such, it is clear that the prompts 

themselves, while effective for those who take them seriously, is not an effective mode of teaching 

this strategy. To invoke the transfer of this R2F strategy to either more challenging problems or to 

other contexts would require much more explicit and involved training of the skill itself.  
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All participants also performed equally poorly on the challenge level, with less than 17% 

of students succeeding on the challenge level. MFR participants had a slightly higher proportion 

of students who succeeded (22%) compared to control participants (14%) and GA participants 

(12%), but not significantly so, X2(2, N = 166) = 2.373 (p = .305). A logistic regression on 

challenge level success, with condition, track, and gamer identification as predictors, revealed a 

non-significant relationship between any of the variables and challenge level success (p  = .155) 

Thus, we conclude that using the MFR prompts did not lead to more success on a challenging level 

within the game.  

Gameplay Behaviors and Response-to-Failure 

General Game Behaviors: The study also aimed to investigate what kinds of general game 

behaviors were related to learning, and whether comparison groups differed in their behaviors and 

performance. Analyses of game data identified several in-game constructs: 1) game performance, 

measured by proportion of attempts that were successful, number of successful attempts total, and 

number of levels solved (out of 13 levels total); 2) failure/iteration, measured by number of failed 

attempts and total number of attempts made; 3) general info-seeking, measured by total time spent 

on in-game information; 4) solution reflection, measured by time spent between attempt 

submission and next action; and 5) conceptual failure, measured by the number of “exploded” 

failed attempts. Explosions only happen if the solution “shorts” the circuit, or in the case of one 

level, triggers a switch that sets off a bomb (circumventing the trigger requires “shorting” around 

the switch). In other words, explosions only occur if you don’t understand the basic structure of a 

short circuit – that currents flow through the path of least resistance, but paths without resistance 

will result in the entire circuit getting fried. Explosions on earlier levels are expected, as they 

directly involve players experimenting with shorts to power light bulbs, as a way to teach the 
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concept; however, explosions that occur later in the game, on levels that get increasingly more 

complicated and using other concepts (such as resistors in series vs. parallel), are a sign that the 

player never fully understood the basic structure and features of the circuit.  

First, I correlated each of these game behaviors to the learning measures to identify what 

kinds of behaviors are positively or negatively related to learning, using Spearman’s Rho with a 

Benjamini & Hotchberg correction (1995) to account for vulnerability to false discovery; as 

previously noted, statistically significant tests will be discussed first, followed by explorations of 

tests that were significant at a = .05 but no longer significant after adjusting for FDR.  

  Spearman‘s Rho 
OE2 
Correctness 

OE2 
Complexity 

OE3 
Correctness 

OE3 
Complexity 

Post 
Content 

Post 
Transfer 

Post 
Complex 

Iteration Total # of Failed Attempts -0.037 0.031 -0.065 0.106 0.144 0.004 -0.077 
 Total # of Attempts -0.049 0.037 -0.061 0.108 0.168* 0.02 -0.044 

Performance 
Total # of Successful 
Attempts 0 0.139 0.148 0.087 0.288** 0.108 0.198** 

 Prop Attempts Successful 0.037 0.009 0.116 -0.103 0.02 0.044 0.16* 
 # Levels Solved 0.246** 0.306** 0.371** 0.359** 0.174** 0.173* 0.206** 
Conceptual 
Failure Explosions -0.176* -0.088 -0.17* -0.045 0.129 -0.048 -0.085 
General  
Info-Seeking Time on Info 0.187* 0.133 0.146 -0.024 0.2* 0.021 0.147 
Solution 
Reflection Solution Reflection -0.016 -0.071 -0.037 0.025 0.143 0.009 -0.119 

 
*Sig. at a = .05 
** Sig. wi B&H adj.        

Table 7: Study 2 Correlations between Game Behaviors and Learning  

In-game performance, in the form of number of levels solved, was the only significant relationship 

to all measures of learning and complexity except for Post-Test transfer, while total number of 

successful attempts was also significantly related to post-test outcomes. Number of successful 

attempts is a related but distinct construct from number of levels solved; students could and often 

did play a level more than once in pursuit of a “3 Star” rating on the menu screen, which required 

them to optimize their circuit solution using the fewest moves. As such, number of successful 

attempts could be a measure of “performance optimization” – the participant’s desire to produce 
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the best solution to a problem. Overall, these results suggest that doing well in the game is related 

to deeper learning.  

Additionally, there were other constructs that were significantly related to learning at the a 

= .05 level, but were no longer significantly related after the conservative adjustment; still, these 

relationships are worth interpreting, as they lend some insight into what other possible game 

behaviors might lead to deeper learning. For example, one measure of iteration, total number of 

attempts made, was positively correlated with post-content scores, which aligns with prior 

literature on the benefits of trying many solutions as part of productive failure. General info-

seeking in the game was also positively correlated with measures of rote learning immediately 

after instruction, which suggests that looking for information in the game helped students better 

understand some basic concepts better than those who did not. Conceptual failure, in the form of 

explosions, was negatively related to basic understanding both immediately after instruction (OE2 

Correctness) and retention (OE3 Correctness). This suggests that this specific kind of failure, one 

that both marks a fundamental misunderstanding about a concept, and inhibits your ability to tackle 

more complex concepts in the game, can be debilitating for using failure spaces as PFL. This is a 

revalidating finding: a basic lack of comprehension or misconception that is not addressed (either 

by the learner or by an external agent) could be detrimental to learning (Chi, 2005), and specific 

types of game failures, in the form of persistent explosions in the game space, may be used to 

indicate such a fundamental gaps in understanding or misconceptions has not been effectively 

resolved. In short, perhaps not all failure is good for learning, and some failures can be a red flag 

for a fundamental knowledge gap that cannot be effectively resolved by the learner. Furthermore, 

this kind of failure, a kind of impasse, should have given rise to a global awareness of knowledge 

gaps, and therefore led to deeper learning (Loibl & Rummel, 2014; VanLehn, Siler, Murray, 
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Yamauchi, & Baggett, 2003). Yet, we see a negative relationship between this form of impasse 

and later performance. Another possibility is that the explosions made failure more salient in the 

game, which may have demotivated or frustrated players, which in turn led to less engagement in 

fruitful metacognitive reflection and strategies, such as info-seeking or error specification.  

 To more rigorously test the relationship between these game behaviors and the learning 

outcomes, I ran a linear regression analysis on the one learning measure most related to game 

behaviors, Post-Content, with Total # of Attempts, Total # of Success, # of Levels Solved, Time 

on Info, and the demographic variables (track, gamer identification, prior STEM experience, and 

gender) as regressors. The results indicated that iteration, in the form of total # of attempts, was 

the most significant predictor of learning, β = .006, t(163) = 2.18, p = .03, after controlling for in-

game success, time on general info-seeking, and demographic variables.  In fact, no other 

regressors were significant, after controlling for iteration. This suggests that iteration is the most 

powerful game behavior that predicts learning, even when controlling for demographic differences 

and in-game measures of success.  

Given that there is a strong relationship between in-game performance, iteration, and 

learning, I now sought to identify whether groups differed in these game behaviors. ANOVAs on 

all game behaviors between conditions revealed that all groups enacted all these behaviors 

equally in their gameplay, with no significant differences. However, it is worth nothing that one 

measure, total number of attempts made, was just barely non-significant at p = .051, with control 

participants (M = 111.509, SD = 42.411) making more attempts overall compared to the GA 

participants (M = 101.482, SD = 33.676) and MFR participants (M = 93.558, SD = 37.970). This 

suggests that control participants were more iterative and had the opportunity to submit more 

solutions compared to the groups that received prompts. One possible explanation for this is that 
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the prompts the GA and MFR participants received simply displaced the time that could have 

instead gone towards making more attempts. This makes sense, given that any time spent on 

prompts could have instead been spent problem-solving in the game space, and the differences in 

means of number of attempts between groups decrease by about 11 attempts per number of 

prompt parts presented (i.e. GA and Control participants differ by approximately 11 attempts, 

which may be accounted for by the appearance of the one-step prompt, while MFR and GA 

participants differ by approximately 12 attempts, which may be accounted for by the extra step 

MFR participants received). Given that iteration is a critical part of productive failure, both from 

prior research (Kapur, 2008; Schwartz et al., 2011) and from the present analyses, this tradeoff 

between iteration and metacognitive strategy use will be further discussed in the discussion 

section below.  

Was MFR prompt use related to these game behaviors? To test these relationships, 

correlations between Time on Panel 1 and Time on Panel 2 for MFR participants were correlated 

to the game behaviors listed. Time on Panel 1 was positively correlated to Total # of Failed 

Attempts and Total # of Attempts, likely because the panels triggered on failed attempts. 

However, Time on Panel 1 and Time on Panel 2 also positively correlated (although this 

correlation was no longer significant after adjusting for FDR) with # of Levels Solved, which 

suggests that more time spent specifying errors and info-seeking was related to higher game 

completion. Time spent in Panel 1 (error specification) was similarly tenuously positively 

correlated with Solution Reflection, which suggests that students who were more willing to 

spend time specifying the source of their errors in the prompts were also more likely to exhibit 

similar behavior (appraising their own solution, presumably to identify where their solution  

broke down) even when the prompt was not present. (Table 8) 
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 Total # 
of Failed 
Attempts 

Total # 
of 

Attempts 

Total # 
of 

Success 

Prop 
Attempts 

Successful 
# Levels 
Solved 

Explosi
ons 

Total Info 
Time 

Solution 
Reflecti

on 
TimeOnPa1 .377** .373** 0.12 -0.27 .320* 0.159 0.03 .317* 

TimeOnPa2 0.272 .285* 0.227 -0.093 .331* 0.081 0.071 0.252 
*. Sig. at a = .05. 
** Sig with BH alpha 

     

Table 8: Study 2 Correlations between Prompt Use & Game Behaviors 

Response-to-Failure (R2F) Behaviors. There were 10 different responses to failure that students 

enacted: 1) fixing the solution; 2) info-seeking and fixing, 3) info-seeking and restarting; 4) info-

seeking, quick resubmit; 5) info-seeking, then skipping back; 6) info-seeking, then skipping 

forward; 7) quick resubmit; 8) restarting the level (resetting the puzzle); 9) skipping backwards; 

and 10) skipping forward. Fixing and restarting were overwhelmingly the predominant responses 

to failure (Table 9).  

 N Mean Std. Deviation 
Fix 159 53.912 32.2460 
Info-Seeking, Fix 115 2.122 1.1932 
Info-Seeking, Restart 65 1.385 .6776 
Restart 165 26.636 13.4654 
Skipped Back 24 1.167 .3807 
Skipped Forward 74 1.203 .5963 
Info-Seeking, Resubmit 23 1.174 .3876 
Info-Seeking, Skipped Forward 2 1.000 .0000 
Info-Seeking, Skipped Back 1 1.000  
Quick Resubmit 136 6.838 6.2352 

Table 9: Study 2 Responses to Failure 

Next, Spearman correlations were run between these response-to-failure behaviors and 

learning outcomes. Of the 10 response-to-failure behaviors, “fixing the solution” was the only one 

significantly correlated with OE3 Complexity, r(159) = .160, p =.044, and Post-Content, r(159) = 

.179, p = .024, while restarting the level was negatively correlated to OE2 Correctness, r(165) = -

.157, p = .045; however, these correlations were no longer significant after adjusting for FDR. This 

provides tenuous evidence that corroborates with our initial findings from Study 1: fixing may be 
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a conduit for making failure more productive for future understanding because it provides an 

opportunity to reflect on one’s solution and specify the source of error; restarting the level removes 

that opportunity. The fact that other R2F behaviors were not related to the learning measures could 

be because Study 2 participants simply did not enact these other response-to-failure behaviors 

enough for there to be a relationship, positive or otherwise. This is expected, given that even Study 

1 participants, graduate students who presumably have a more sophisticated repertoire of 

metacognitive strategies, very rarely employed the response-to-failure behaviors most beneficial 

for learning. 

There were, however, group differences in how often participants employed these R2F 

behaviors. Although this comparison was no longer significant after adjusting for FDR, control 

participants appeared to use the quick resubmit behavior a higher proportion (M = .089, SD = .053) 

than the GA (M = 058, SD = .050) and MFR participants (M = .062, SD = 046), F(2, 133) = 4.497 

(p = .013). Quick resubmits may have been used by participants to revisit what happens when the 

current is turned on (the current only flows through when the player hits the “submit” button), or 

simply because they were confused. Control participants may have used more quick resubmits 

because they were more uninhibited by failure, while GA and MFR participants were warier of 

submitting incorrect answers, either because failure was made more salient by the prompts, or 

simply because they didn’t want to trigger another prompt.  

Other Group Comparisons  

Gamer Identification. 52 (32.5%) of the 166 participants identified as gamers. X2 analyses 

showed that boys were more likely to identify as gamers (54%) than girls (13%), X2(1, N = 166) 

= 32.94  (p < .001), but did not differ in prior STEM experience (p = .127) or track (p = .914). To 

investigate the relationship between gamer identification and learning, I compared students who 
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identified as gamers to those who did not on game behaviors, performance, and learning 

outcomes. ANOVAs revealed that gamers iterated more in the game, and used “fix” behaviors 

more often than non-gamers, and provided evidence (not significant with FDR adjustment) that 

they were also more successful and used more “quick resubmit” behaviors (Table 8). This 

suggests that gamers do exhibit a more playful, iterative disposition in the game space – they 

attempted more in general, pursued more successes (which does not necessarily translate into 

more levels solved – they could have played one level several times to get an ideal star count on 

the menu), attempted more “fix” behaviors rather than restarting or exiting the level, and, by 

extension of the earlier posited explanation for quick resubmits for control participants, seemed 

more resilient and undeterred by failure in the game. These playful behaviors – which highlight 

the resiliency, effort, and motivational benefits that both gamers employ and game spaces can 

encourage– were related to learning in earlier analyses. As such, it’s unsurprising that gamers 

also performed higher on the Post-Test content and total scores. ANOVAs showed that gamers 

within the MFR condition did not significantly differ from non-gamers on time on error 

specification (p = .401) or info-seeking (p = .198) in the MFR prompts.  

Comparison Variable P-value 
Gamers  
M (SD) 

Non  
M (SD) 

Learning Post Content  p = .028 3.278 (1.535) 2.804 (1.153) 
 Post Total  p = .038 7.352 (3.385) 6.344 (2.653) 
R2F Fix p = .001* 66.412 (33.365) 48.009 (30.092) 
 Quick Resubmit  p = .043 8.348 (6.711) 6.067 (5.867) 
Game Behavior Total # of Attempts p = .002* 115.815 (42.610) 95.946 (35.020) 
 Total # of Success  p = .023 15.704 (8.261) 13.541 (3.910) 
*sig. with B&H adj. 

Table 8: Study 2 Gamers vs. Non-Gamers 

The question then, is whether the differences in game behaviors mediated gamers’ higher 

performance. Iteration, in the form of number of attempts made, is a particularly noteworthy 

construct to investigate because it has classically been cited as a crucial part of PFL activities 
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(Kapur, 2008; Schwartz et al., 2011), and because games are cited as a particularly motivating 

context to encourage persistence and solution iteration in the face of failure; to find that gamers 

are more prone to iteration in a game environment would make a powerful case for encouraging 

game-like behaviors and activities in the classroom as a PFL activity. A regression analysis was 

used to investigate whether iteration mediated the effect of identifying as a gamer on post-test 

content scores.  Results indicated that iteration, in the form of number of attempts made, was a 

significant predictor of post-test content performance, β = .007, t(164) = 2.73, p < .01. However, 

gamer identification, β = .347, t(164) = 1.591, p = .113, was no longer a significant predictor of 

post-test content scores, when controlling for the number of attempts made, β = .006, t(164) = 

2.277,  p = .02, suggesting that iteration fully mediated the relationship between identifying as a 

gamer and learning. These results show the promise of both using games in the classroom as a 

PFL intervention, because it provides the opportunity and motivation for iteration and 

metacognitive responses to failure, and for encouraging playful, game-like behaviors in the 

classroom that can help motivate students to be more resilient and effective in the face of failure.  

Gender Comparisons. Given the extensive history of gender differences in both STEM fields and 

in video game play, I also sought to see whether boys and girls differed in their game behaviors 

and learning outcomes. ANOVAs on game behaviors and learning outcomes revealed several 

significant differences between gender that were no longer significant after adjusting for FDR; 

still, given the historical evidence and interest in gender differences in games and STEM, results 

will be discussed. Girls performed higher on immediate measures of rote learning (OE2), but 

were less iterative in the game compared to boys (Table 10). Girls also employed less Fix and 

Quick Resubmit behaviors in response to failure. This is in alignment with our earlier findings on 

gamer identification and gameplay behaviors, given that more boys identified as gamers overall, 
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and given that boys historically play more video games than girls do, which may have led to 

boys exhibiting more gamer-like behaviors in general. However, these more game-like behaviors 

did not lead to higher learning for boys; instead, girls appeared to performed better on the 

immediate measure of free recall. One possible explanation for this is that although boys 

demonstrated game behaviors that should have led to better preparation for future learning, girls 

may have attended more closely to the lecture that followed and therefore recalled more of the 

essential structures and features of electrical circuits; during the study, it was anecdotally 

observed that boys appeared to be more disruptive and off-task during the video lecture portion 

of the study compared to girls. However, this is merely speculative, as there were no quantitative 

or systematically codified measures of attentiveness to the video lecture. ANOVAs showed that 

boys and girls within the MFR condition did not significantly differ on time on error 

specification (p = .397) or info-seeking (p = .209) in the MFR prompts.  

Comparison Variable P-value Girls (M,SD) Boys (M, SD) 
Learning OE2 Correctness  p = .01 4.63(1.46) 4.03(1.52) 
R2F Fix p = .02 48.25(32.65) 60.09(30.84) 
 Quick Resubmit  p = .02 5.58(5.03) 8.06(7.04) 
Game Behavior Total # of Attempts p = .01 95.06(37.58) 110.49(38.50) 

Table 10: Study 2 Gender Differences in Game Behaviors and Learning 

Prior STEM Experience. Another comparison worth noting is whether students who reported 

having prior experiences in STEM, such as camps, clubs, or extracurricular classes, would 

behave differently or perform better in learning measures compared to those who did not. 19 

(11.4%) of the 166 participants reported having prior STEM experiences. STEM experiences did 

not differ by gender, but X2 analysis showed that standard-track students were more likely to 

report having prior STEM experience (18%) than remedial-track students (4.8%), X2(1, N = 166) 

= 7.495 (p  = .006). ANOVAs on game behaviors showed that students with prior STEM 
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experience did not behave differently in their gameplay from those without prior STEM 

experience. ANCOVAs on learning measures by STEM experience showed that STEM 

experience was still significantly predictive of Post-Test Transfer scores, F(1, 163) = 5.259, p = 

.023, even after controlling for track. This suggests that while having prior STEM experience is 

related to academic ability, having those prior experiences within the field significantly predicted 

students’ ability to transfer their understanding to novel content, even when accounting for their 

track level. ANOVAs showed that those with prior STEM experience within the MFR condition 

did not significantly differ from those without prior STEM experience on time on error 

specification (p = .189) or info-seeking (p = .730) in the MFR prompts.  

Goal Orientation.  Given that students with different goal orientations may have different 

responses to experiencing failure, I sought to investigate whether different goal orientations – 

mastery approach, performance approach, or performance avoidance - would correlate with 

different gameplay behaviors and outcomes. Correlations of the three goal orientation scores 

with game behaviors revealed that there were no significant relationships between goal 

orientations and gameplay. However, correlations with learning measures indicated that mastery 

approach orientation scores correlated with higher post-test transfer scores, r(166) = .216, p = 

.01, suggesting that students who emphasized mastery of learned content were able to better 

transfer their learning to novel contexts. Correlations between goal orientation scores and time 

spent on the MFR prompts showed that students who had a performance-approach goal 

orientation spent less time on info-seeking, r(52) = -.308, p = .027. This provides further 

evidence that students who are more motivated to perform well may have devoted less effort to 

carefully attending to the information presented, instead opting for returning to solving the game 

levels as quickly as possible.  
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Study 2 Discussion 

In this section, I will review the results of Study 2, highlighting the important findings 

surrounding the use of a metacognitive strategy in response to failure, and its relationship to 

gameplay and learning. I will also discuss the limitations of the study, as well as implications for 

metacognitive strategy instruction, game-based learning, and industry.  

Summary of Findings 

Convention highlights the importance of failures for eventual success, and motivation 

research emphasizes theories that elucidate what aids in persistence in the face of failure 

(Duckworth et al., 2007; Dweck, 2006), implying that overcoming failure is an unavoidable, 

perhaps even useful pathway to better outcomes (Hong & Lin-Siegler, 2011). Prior literature on 

productive failure as preparation for future learning (Kapur, 2008) and metacognition as 

mediator of productive failure (Loibl & Rummel, 2014) showed that there is a benefit to the 

experience of failure for preparing students to better understand the instruction that follows, thus 

yielding deeper and richer understanding. However, this body of literature does not address what 

kinds of affordances are presented in the moment of failure that lead to deeper understanding.  

Failure – and persistence through it – is an essential part of gameplay; in fact, games that 

fail to sufficiently challenge players are less intrinsically motivating, because they fail to induce 

the flow states that compel players to commit their best efforts to seek ambitious but achievable 

success (Csikszentmihalyi, 2000). As such, a possible insight to what kinds of opportunities for 

deeper understanding are elicited by failure can be found in the way gamers respond 

productively to failure. Skilled gamers appear to be quite effective at making use of their 

failures; they evaluate and select strategies to change outcomes, test parameters of the game 

space, and seek help from in-game resources or from game communities when they reach an 
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impasse. Games encourage these effective responses to failure because they provide both the 

motivation to encourage persistence through failure, and a variety of affordances and scaffolds 

that empower players to employ a myriad of failure responses. Thus, an essential question this 

theoretical framework posits is: what is an optimal way to respond to failure in a game space, 

that may then lead to deeper learning from instruction that follows? 

Study 1 helped answer this question by demonstrating the utility of one particular 

strategy, info-seeking and fixing, that sophisticated learners used when playing a game as 

preparation for future learning. Within this strategy, several metacognitive actions are taken: the 

player is appraising his/her incorrect attempt in an effort to pinpoint what went wrong (error 

specification); the player is looking for information to help fill that gap in understanding or to 

better understand the mechanics of that error (info-seeking); and the player is using this newly 

acquired information to then resolve their prior error. Thus, I characterized this suite of actions 

as a metacognitive failure response (MFR). However, not all the participants used this MFR 

strategy in their gameplay, suggesting that it perhaps is only needed when learners reach an 

impasse, that is not an intuitive strategy to employ, or that it is simply preferable (to the player’s 

interest) to ignore such a strategy in favor of continuing gameplay. Regardless, these results lead 

to the next critical question: will inducing this metacognitive failure response lead to deeper 

learning for less sophisticated learners, such as high school physics students?  

This dissertation sought to determine whether prompting students to use error 

specification, info-seeking, and fixing in response to failure (MFR participants) would lead to 

better preparation for future learning, compared to students who were not prompted to use this 

strategy (control participants) or those who were prompted to make a global metacognitive 

judgment instead (GA participants). Participants were randomly assigned to three game 
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conditions: MFR (n = 53) and GA (n = 56) groups were given their respective prompts after 

every 3rd failure they encountered in the game, while the control participants (n = 57) were not 

given any prompts. All three conditions took pre-surveys, took the pre-assessment (OE1), played 

the game and challenge level for over an hour, received the video lecture, and took several 

learning assessments, including an immediate open-ended worksheet (OE2), a four-part post-test, 

and a two-week delayed open-ended worksheet (OE3).  

Although the results did not yield gross condition differences between the three 

conditions on learning, further analyses on MFR prompt use indicated more time spent on error 

specification and info-seeking led to higher performance on learning outcomes surrounding 

complexity and robustness of knowledge, even when controlling for prior knowledge, ability, 

and other demographic factors. This finding provides promising evidence that using 

metacognitive responses to failure, in the form of error specification, information-seeking, and 

fixing one’s errors, is an effective way to make failure productive for future learning. Yet, 

prompt presentation in the game led to tradeoffs from other productive gameplay behaviors, such 

as iteration. Analyses indicated that iteration (in the form of more attempts) is a crucial mediator 

between game experience and learning, yet students who received any prompt, MFR or GA, 

attempted less tries, presumably because that time was spent looking at the prompts instead. 

Furthermore, prompt use also did not yield better performance or transfer of that strategy to a 

more difficult game level. Altogether, this suggests that while the prompts managed to provoke 

some students to use the error specification and info-seeking in response to failure, this approach 

was not the optimal way of teaching this strategy.  
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MFR Prompt Use and Learning 

Condition Comparisons.  Analyses of learning differences between the three conditions, in the 

form of repeated measures ANOVA on the OE free-recall worksheet, and multivariate analyses 

of covariance with the post-test measures, indicated that there were no group differences in 

conceptual complexity and robustness. This provided evidence that either this strategy is 

ineffective for less sophisticated learners, our Study 2 population, or that the prompts didn’t 

consistently provoke MFR strategy use.  

MFR Prompt Use. Further analyses of the MFR prompt use, in the form of total time spent on 

error specification (Panel 1) and info-seeking (Panel 2), showed that there was a great deal of 

variance in the way MFR participants used the prompts, particularly the info-seeking panel. 

Correlations between time spent on error specification, info-seeking, and learning measures 

indicated a positive relationship, suggesting that more time and effort dedicated to error-

specification and info-seeking resulted in more robust and complex understanding. Regression 

analyses controlling for demographic covariates (such as prior knowledge, academic track, 

gender, or other STEM and game experiences) showed that time spent on the MFR prompt 

positively predicted knowledge complexity and retention. Furthermore, X2 analyses indicated 

that students who used the info-seeking panel more than average (“MFR high users”) were 

equally representative of all demographic groups, and ANOVA analyses indicated that high/low 

users also did not differ in their game behaviors and successes. Overall, these analyses suggest 

metacognitive response use was not explained by demographic factors, and that there is in fact a 

relationship between using such metacognitive responses to failure and deeper understanding. 

Although demographic factors did not explain the relationship between MFR prompt use 

and learning, there may be a latent variable, conscientiousness, that may explain the differences 
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between MFR high- and low-users, distinctive from prior ability or prior knowledge. Students 

who were more conscientious in using the MFR prompts seriously were able to demonstrate 

more robust knowledge retention compared to those who were less conscientious, or who simply 

did not have the opportunity to use the MFR prompts at all. In contrast, students who were less 

conscientious in using the MFR prompts exhibited poorer knowledge complexity compared to 

their more conscientious peers and to those who played the game without this strategy prompt. 

This is an interesting, if rather unsurprising, explanation; after all, using a metacognitive 

approach to failure requires one to be careful, reflective, and willing to vigilantly take advantage 

of resources provided. Less conscientious students may have neglected both to use the MFR 

prompts, and may have been generally less vigilant and reflective in their gameplay, resulting in 

lower knowledge complexity. Yet, if conscientiousness was the primary factor that accounted for 

the relationship between prompt use and learning, we should have also seen that GA prompt use 

also positively correlated with learning outcomes. Since GA prompt use was not related to 

learning, this suggests that while there may be individual differences that account for whether 

students chose to take the MFR prompts seriously or not, those individual differences alone did 

not wholly account for the benefits of the MFR prompt on learning. Still, the prompts, while 

effective for conscientious students who recognized the utility of a metacognitive response to 

failure, was not successful in provoking this strategy use for all MFR participants. As such, to 

seriously evoke such strategy use will require direct instruction of the strategy to increase 

adoption, even for those less-conscientious students. Nevertheless, these results provide evidence 

that using this MFR approach in response to failure can improve long-term learning outcomes.  

The Global Awareness (GA) condition was included in this study because it provided the 

opportunity to contrast the benefits of a general, non-specific metacognitive awareness of one’s 
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own understanding with a more specific and strategy response to failure, error-specification and 

info-seeking. Our results suggest that eliciting a global awareness of one’s knowledge gaps was 

not as effective for improving students’ preparation for future learning as eliciting a specific 

metacognitive failure response. GA participants performed equally with control participants on 

all learning measures, which suggests that deliberate provocation of a global awareness of a 

knowledge gap was no better than simply playing the game without provocation. However, it’s 

possible that the control participants also made these global judgments of knowing, even without 

the aid of a GA prompt. Thus, I have tenuous evidence that the benefits of failure for future 

learning are not in a generic, non-specific awareness per se, but in the specification of one’s 

knowledge gaps and immediate strategies one can employ to investigate the source of an error 

and lack of understanding.  

Game Metrics and Learning  

General Game Behaviors and Learning. Other game behaviors and performance were also 

related to learning. In-game success, in the form of both number of levels completed and in 

performance optimization (number of successes overall), were strongly correlated with learning 

measures. While the relationship between game performance and learning outcomes should not 

come as a surprise to games researchers and developers (after all, educational games are 

typically developed to directly deliver practice or instruction on the learned content), this is in 

contrast with other kinds of PFL activities, such as productive failure (Kapur, 2008) or inventing 

with contrasting cases (Schwartz et al., 2011), where in-task success did not translate into deeper 

learning. However, productive failure and inventing tasks were purposely designed to have a low 

likelihood of success in mind, in order to encourage student production of intuitions and 

experiences that would then better prepare them for future learning. In contrast, games are 
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designed to have the “just-right” balance of difficulty and success, allowing for players to 

struggle and be challenged enough for the game to be compelling, but not so difficult that 

success is near impossible – after all, few people would play a game where success (or at least 

progress) is not an option. Furthermore, games provide a variety of affordances for players to 

take advantage of in response to their failure, such as restarting a level, referencing earlier levels, 

looking for hints or information, and tinkering. This allows players to engage with failure in 

reflective ways that hopefully point them towards eventual success or understanding. In this 

regard, this actually makes a stronger case for using games as PFL – it provides the space and 

encouragement for students to persist and react productively to failure, without feeling the 

negative emotional effects from never experiencing success.  

Iteration and general info-seeking in the game was also related to learning, corroborating 

with earlier research that showed the importance of persistent effort and iteration in PFL 

activities (Kapur, 2008; Schwartz et al., 2011), and in the utility of info-seeking when help is 

needed to benefit understanding (Aleven et al., 2006). In fact, regression analyses of the battery 

of game behaviors on learning outcomes revealed that iteration was the most significant game 

behavior related to learning, holding other game behaviors (such as game performance and 

information-seeking) constant. Iteration and failure are inextricably tied, as iteration enables 

failure experiences, and failure experiences provide opportunities for improvement on 

subsequent iterations. As such, the finding that iteration in the game was related to later learning 

highlights this relationship, especially when related to game performance; while iteration itself 

historically is an important part of PFL activities, iteration that then led to game success in this 

particular task was related to deeper learning later on, suggesting that those who both iterated 

and were able to glean something from their failed iterations (i.e. got enough information out of 
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that attempt to adjust their answer or approach, eventually leading to solving the level) benefited 

the most from that experience.   

Not all failure was good for learning, however; one particular type of failure documented 

in the game system, explosions, was negatively related to learning. This failure was a sign that 

the player was unable to master (or at least grapple meaningfully with) more complex topics in 

later levels because they lacked a fundamental understanding of the basic structure of a circuit. 

This type of recurring failure is unlikely to be productive because, despite being a highly salient 

signal of a knowledge gap (the entire circuit goes up in flames and the player is forced to restart 

with unburnt materials), players who frequently encountered this kind of failure failed to address 

this lack of understanding, which then undermined their ability to fully benefit from their game 

experience as preparation for future learning. This failure was not effectively addressed even 

with the MFR prompts, which suggests that students who experienced this kind of failure could 

not even specify the source of their error, much less actively seek out information to resolve it. 

This highlights the delicate balance between student ability, meaningful failure and struggle, and 

instructional intervention; while there are all kinds of failures that might be productive for 

students to engage in (particularly those that students can effectively address, especially through 

metacognitive approaches), the kind of helpless, fundamental failure signaled by explosions in 

the game demonstrated that certain kinds of impasses cannot be addressed by students’ 

metacognitive strategies alone. Instructional intervention, either by a teacher capable of detecting 

such fundamental gaps in understanding, or by a technological system attuned to detect such 

impasses, should guide these students through more carefully scaffolded activities. After this 

fundamental knowledge gap is successfully addressed, students are then better prepared to tackle 

more complex ideas and problems productively, even if they do experience failure.  
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Gamer Identification, Iteration, and Learning. A critical question surrounding the utility of 

games for learning is whether gamer dispositions and familiarity might yield different behaviors 

and learning outcomes when using games in the classroom. Since games are quite unlike most 

standard academic tasks in many ways – goal expectations, stakes of outcomes, engagement, task 

features, and many more – it would be expected that the characteristics required of the player to 

do well in the game would differ from the characteristics required of the student to do well on 

academic tasks such as a test. Yet, given that the PFL intervention is grounded in the rich 

interactions students encounter in the game space, it’s possible that students who have more 

familiarity with game environments and exhibit more playful behaviors may produce deeper 

intuitions for the game space that translate into better preparation for future learning.  

 The relationship between the utility of iteration and learning is most effectively embodied 

in the analyses involving gamer identification. Analyses revealed that students who identified as 

gamers were more iterative in the game, sought more successful attempts (performance 

optimization), and learned more from the material that follows, compared to students who did 

not identify as a gamer. Further mediational analyses showed that iteration mediated the 

relationship between gamer identification and learning outcomes, suggesting that the benefits of 

being a gamer when using games as PFL came from their iterative behaviors. Performance 

optimization, in the form of pursuing the most elegant or more than one successful solution to a 

level, is also something frequently encouraged by games, and the process of developing multiple 

or optimal solutions may also provide the opportunity to produce intuitions about the game’s 

content or mechanics. Thus, we can conclude that students who have prior game experience 

enacted more playful behaviors, such as attempting frequently and optimizing one’s answer, that 

then translated into deeper learning. This provides further support for using games in the 
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classroom; by introducing more games into the classroom, more students may adopt more 

playful dispositions and attitudes in response to failure, that in turn translates into better learning 

outcomes.  

Condition Differences in General Game Behaviors. Although using the metacognitive prompts 

effortfully was related to deeper learning, the presence of prompts appeared to be a tradeoff on 

time that could have been spent making more attempts, a measure of iteration. Each additional 

prompt section presented to players cost them an average of 12 attempts they could have made 

during that time instead.  This is a significant concern, as iteration, as previously discussed, is not 

only a vital part of game play, but also of PFL activities. Furthermore, the introduction of 

prompts after the occasional incorrect attempt may interrupt players’ flow and desire to continue 

problem-solving, which detracts from the allure of playing games as part of a classroom activity 

in the first place. A term coined in the educational games sphere, “chocolate-covered broccoli”, 

adequately captures the feeling students express when they’re told they’re playing a game, but 

actually experience an academic task loosely couched in a gamified elements; the introduction of 

a prompt may add suspicions of “broccoli” hidden in the folds of the game task, which would 

undermine the motivational benefits of games in the classroom. Malkiewich and Chase (in press) 

found that in an engineering intervention which asked participants to tinker with Lego structures 

to learn about center of mass, participants were much more interested in the playful tinkering 

component of the task, and neglected to attend to the information regarding the concepts that 

would have helped them successfully build the structure. It’s possible that the MFR low-users 

took a similar approach to their gameplay, where they dismissed the prompts in an effort to 

return to the much more interesting gameplay. Furthermore, participants who identified as 

gamers both iterated more in the game and performed higher on learning measures; mediational 
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analyses confirmed that iteration mediated the effect of being a gamer on learning. Thus, we 

could posit that the benefits of games are that they promote iteration in the face of challenges, 

and that players who iterate more experience higher benefits from learning that follows than 

those who iterate less. Yet, responding to failure effectively is also an important conduit to 

deeper learning, but in-game prompts to employ this strategy resulted in a tradeoff with iteration. 

The question that remains, then, is how we can induce students to use this response-to-failure 

strategy, without a cost to gamers’ natural predisposition for iteration.   

Challenge Level Behaviors and Performance. There were no significant condition differences in 

the way students approached failure in the challenge level, nor in their success rate in solving the 

challenge level. Participants predominantly used the fix and restart behaviors in response to 

failure on the challenge level, rather than opting to use more varied strategies, such as info-

seeking and fix. This is likely due to two factors: first, participants did not often enact other 

strategies besides fixing, restarting, and quick-resubmits to begin with, because other strategies 

(like info-seeking and fixing) are not as automatic and require more involved judgments of one’s 

performance; second, because this activity was posed as a challenge with a time limit (so that 

enough time in the class period would be left for the video lecture), participants may have 

viewed it as a competition amongst peers on who could solve the challenge the fastest, and 

therefore was less likely to use more methodical, careful strategies in favor of returning to 

problem-solving. This is corroborated by our findings that performance-approach scores were 

negatively correlated with Panel 2 use; students who were more performance-approach goal 

oriented used the info-seeking panel less, perhaps because they would rather continue solving the 

level rather than trying to understand the mechanisms underlying the problem space.  
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Limitations and Future Directions 

There were several limitations to this study design and outcome. Firstly and most importantly, 

this study only looked at whether provoking students to use error-specification and info-seeking 

before fixing as a response-to-failure strategy would benefit their PFL learning outcomes, and 

did not actually teach students to use this strategy on their own. This led to variance in prompt 

use, which was contingent on whether participants chose to take the prompts seriously or not. 

Although we found that higher prompt used led to higher learning outcomes even when 

controlling for demographic variables, students with higher academic ability did opt to use the 

prompt more, suggesting that prompts were less effective in provoking lower-ability students to 

use the strategy seriously. Furthermore, a possible latent variable, conscientiousness, may have 

accounted for whether students took the prompts seriously, even when accounting for prior 

ability and knowledge. Future studies should look at how students can be directly taught or 

motivated to use this strategy when they encounter failure, compared to students who were not 

taught to use the strategy, to mitigate this confound between individual differences and 

metacognitive response to failure.  Instruction of the strategy may also then lead to transfer to 

other contexts, perhaps to other game levels (such as our challenge level), other games, other 

physics learning tasks such as labs and engineering projects, or even to other academic subjects, 

such as math problems or essay writing.    

Another limitation of this study is in the design and delivery of the prompts themselves: 

perhaps prompts could be effective in provoking strategy use, but only when it is needed (i.e. 

when students have reached a point in their problem-solving that actually requires error 

specification and info-seeking, as opposed to using a set amount of failures). This study looked 

at failure as a general phenomenon, rather than a set of possible indicators of different states of 
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the learner; yet, it is clear now that failure- and it’s varied instantiations – can indicate a broad 

set of player states and understanding. For example, early failures could be a result of deliberate 

exploration and testing the parameters of the system that could lead to greater insight (and 

therefore success on later problems), or it could be the start of a spiral towards wheel-spinning, 

confusion and frustration. Future studies should look at how prompts could be delivered in 

conjunction with data mining techniques that detect the affective and cognitive state of the 

student, such as detectors of impasses or engagement, to encourage metacognitive strategy use 

when it is most helpful (i.e. when students are stuck or clearly do not understand the content. 

Furthermore, prompts could be delivered in a way that ensures students are paying attention to 

them (in the case of those who don’t spend enough time reading that information) or are not 

spending too much time on info-seeking in lieu of problem solving (in the case of those who 

spend more than the optimal amount of time on the info-seeking panel).  

Another limitation of this study is that it only identified one metacognitive approach to 

failure – there may be other strategies that may be equally or more effective, depending on the 

level of understanding and problem-solving ability of the player. For example, there may be a 

more appropriate strategy for when students are at an impasse that is pointing to a fundamental 

lack of understanding, such as the explosions in this study. Future studies should seek to identify 

what other kinds of response-to-failure strategies are enacted and when, to establish a set of 

behaviors that can make failure more productive. Learning algorithms can also detect when 

students are at an impasse that prevents their experiences from being productive, such as the 

explosions in the current game. Systems that could identify when students are lacking a 

fundamental understanding could provide more guidance or deliberate strategies to ensure that 
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students have the opportunity produce better intuitions about the learned content, such that 

they’re better prepared to grapple with tougher concepts that come in later levels or problems.  

Finally, this study only looked at the use of this strategy within a particular physics game; 

as such, the implications for broader types of problem-based learning contexts (like other games, 

PFL activities, and generic educational activities like labs and projects) as well as for other 

academic subjects (such as history, math, and literature) are limited. The implications of the 

benefits of this response-to-failure strategy are also limited to learning outcomes; it is possible 

that the strategy, while effective for improving understanding and knowledge complexity, may 

not be as effective when applied to designing and improving a product or solution.  This study 

also only sampled students from a high-performing high school, and may not be as relevant for 

other populations. Future studies should look at whether direct instruction of this strategy for 

different populations (i.e. lower-performing high school students, middle school students, or 

even undergraduates) impact their ability to learn from problem-solving environments.  

Implications 

 The finding that a particular strategy in response to failure can lead to deeper 

understanding is an important one, with implications for both education and industry. While the 

results of this study indicate that this MFR strategy of error-specification, info-seeking, and 

fixing was strongly related to learning outcomes, the delivery of this strategy through an in-game 

prompt was insufficient for encouraging effective strategy use across all students. This provides 

strong evidence that in order for students to use this, and other reflective, metacognitive-based 

strategies in learning and problem-solving, these skills must be directly taught – a system-

delivered mechanic is simply not enough to encourage strategy use. This finding is in alignment 

with the recent push by education foundations, think-tanks, and blogs, who increasingly call for 
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direct instruction of the so-called “21st century” or “non-cognitive” (a completely erroneous but 

nonetheless well-adopted term) skills, such as critical thinking, communication, learning and 

study skills, and self-regulation. The fact that these somewhat ambiguously-defined skills can 

impact the way students learn from and succeed in both traditional and non-traditional learning 

tasks (like an educational game) call attention to the need for teachers to provide “21st century” 

skill development in the classroom, but teachers are often ill-equipped and (rightly) confused as 

to how to actually teach this wide and ill-defined spectrum of skills, dispositions, and strategies. 

This study has demonstrated that one particular skill in this category – the ability to respond 

effectively and strategically to failure – can facilitate deeper learning; as such, it provides direct 

evidence and concrete instructional implications for how this can be taught in the classroom, 

discussed below.  Furthermore, while some might argue that the applicability and relevance of 

pre-calculus and chemistry for the typical citizen is rather low, the real-world relevancy of such 

skills as critical thinking, reflection and self-appraisal, and effective problem-solving cannot be 

denied. This study adds to the many other voices in the field calling out for a shift in the 

emphases and requirements of modern education – to emphasize not only domain-specific 

learning outcomes such as math and science, but to highlight the need and utility of skills that 

can be more broadly applicable to work, life, and citizenship.  

For the PFL body of literature, the study suggests that there’s a way that teachers or the 

task itself can guide students’ problem solving in the PFL exploration phase in a way that 

optimizes their interaction with the novel content. Helping students be reflective about their 

errors, seek out new information, and resolve mistakes could produce even more powerful 

intuitions about the learned system that leads to more complex and robust understanding. Future 

PFL interventions developed for classroom use should encourage students not only to iterate on 
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their solutions, but also take a metacognitive approach to their failures within the PFL space to 

produce richer intuitions about the learned concepts.  

Traditional STEM instruction and learning can also benefit from using such an approach 

when introducing problem-solving tasks.  In addition to direct instruction of this metacognitive 

approach, teachers could encourage students to use these strategies by simply giving students the 

opportunity and support to specify the source of their errors, resolve knowledge gaps, and work 

out novel and successful solutions. For example, this could be carried out very easily with a shift 

in the way teacher approach grading (i.e. allowing students to earn points for completing this 

process after getting several problems wrong, or grading a lab or project after several cycles of 

feedback that allow students to engage in error specification and info-seeking).  

In addition to the push for 21st century skill development in the classroom, the influx of 

interest in design-thinking, applied subjects such as coding and Makerspaces, and hands-on 

inquiry-based learning also shows the myriad of applications that using a metacognition-based 

failure responses would be useful in. These fields traditionally emphasize iteration, rapid 

prototyping, and team-based design and learning; these processes should incorporate the error 

specification and info-seeking phase after each cycle of design, to optimize the next iteration 

students produce.  

For educational technologists and designers, these findings presents a unique opportunity 

to integrate metacognition-based strategies into their learning systems and games in ways that 

deeply engage students and provoke meaningful problem-solving. As discussed previously in the 

future directions section, data mining techniques can be leveraged to optimize the delivery of 

prompts or other strategies in problem-solving contexts, detect when students encounter 
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impasses that require more guided play or instruction, and constrain students when they are 

abusing or ignoring system mechanics, such as hints and prompts.  

There are also wide implications for adoption beyond education, ranging from design and 

engineering to management consulting. Design-based industries, from fashion, to product 

innovation, to engineering and public planning, could benefit from research surrounding the 

strategies that could make failure productive, and could explicitly incorporate error-specification 

and information-seeking as part of their design process. Management consultancy companies 

such as Deloitte and KPMG, who rely on flexible and talented recruits to quickly learn about an 

industry and company to provide guidance to clients about improving processes, corporate 

structures, and products, could directly improve their services by training new recruits on how to 

accurately specify weaknesses and errors within a system (or their own understanding), seek out 

information to contextualize such weaknesses, and find solutions that alleviate those problems. It 

is likely that many senior designers, engineers, and consultants already adopt these kinds of 

processes in their system implicitly, but providing explicit training to entry-level staff could 

improve their skillsets more quickly and directly.  

Finally, this study provides a concrete example of how games can enhance behaviors that 

are productive for learning, and how one such game can be incorporated into high school 

curriculum to bolster learning outcomes. Educational games can provide a motivating and 

effective problem-solving environment that allows students to meaningfully and concretely 

grapple with abstract concepts, that in turn can enhance their understanding of the formal 

instruction that follows. Furthermore, gameplay behaviors that translated into better learning 

outcomes, such as iterative dispositions and productive failure responses, could potentially 

translate into other academic tasks if teachers are willing to encourage transfer of such behaviors. 
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Conclusion 

 Failure is a contentious, seemingly paradoxical phenomenon: success stories often 

include a long string of failures that inevitably lead to triumph, yet many who encounter repeated 

failure see it as a sign to throw in the towel. People are often encouraged to be resilient and 

optimistic in the face of failure, yet persistence through failure without a productive response 

only leads to wheel-spinning and inevitable decay of confidence and helplessness. Failing can 

produce greater insight about the system the failure occurred in, but only if one possesses the 

skill to identify what caused the failure and how. Worse, while some failures signal an 

opportunity for potential growth and change that can be addressed by oneself, others signal a 

genuine lack of pre-requisite skill or understanding that require intervention or help from others. 

So, how can failure lead to success when there’s seemingly such a wide variety of failures that 

can happen, and so much required to make that failure productive? 

To productively diagnose, address, and respond to failure requires one to be resilient, 

accurate in self-appraisal, and well-quipped with skills to fix what went wrong. Yet, there’s 

surprisingly little empirical literature on the process of making failure productive. Games are an 

environment where players appear to be especially resilient and skillful in response to failure, 

making it an optimal space to study the mechanisms through which failure can be made 

productive. Using a preparation for future learning (PFL) framework, this research sought to 

investigate what kinds of responses to failure that occur in an educational game environment are 

most effective for preparing students to learn from instruction that followed. Prior PFL research 

provided theoretical and empirical evidence that experiencing failure and grappling with 

concepts produces insights and intuitions that then better prepare students to learn from formal 
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instruction that follows, but did not explicitly examine the role of how failure responses benefit 

understanding.  

Study 1 indicated that having the opportunity to respond to one’s failure in a physics 

game prior to instruction lead to deeper and more complex understanding, and that one particular 

strategy sophisticated learners used, info-seeking and fixing one’s solution, was related to higher 

learning outcomes. This strategy encompassed several metacognitive steps: first, students had to 

come to a realization that there were elements of the system they did not understand; second, 

they had to specify what the source of their misunderstanding was that led to that error; third, 

they had to deliberately close that knowledge gap through info-seeking, and finally, they had to 

return to their incorrect solution in order to address their prior error, equipped with this new 

information. Study 2 investigated whether the induction of this strategy in response to failure 

would lead to higher learning outcomes, compared to those who were not provoked to use any 

strategy or those who were instead asked to make a global judgment of their understanding. 

Results indicated that effective use of this strategy was related to higher learning outcomes, but 

not all students who were prompted to use the strategy spent the necessary time on error-

specification and info-seeking. Iteration was also a key feature of making the game experience 

productive for future learning, highlighting the benefits of experiencing failure frequently for 

producing richer intuitions about system mechanics. Yet, not all kinds of failure were effective 

for producing higher learning outcomes; one kind of failure signaled a fundamental lack of 

understanding of the underlying system, which undermined the benefits of grappling with the 

content prior to instruction.  

Together, these studies add to the burgeoning body of research on the relationship 

between failure and learning, the complexities of when failures can be appropriately addressed 
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by a learner versus when they’re a signal for external intervention, and the strategies one should 

use to make failure productive. These results imply that metacognition-based strategies in 

response to failure are an effective method to improve student learning outcomes, and offer 

promising implications for educational interventions, 21st century skill instruction, and other 

industrial applications, such as design, engineering, and consulting.  

  



	

	 100	

 
References 

Adey, P., & Shayer, M. (1993). An Exploration of Long-Term Far-Transfer Effects Following an 

Extended Intervention Program in the High School Science Curriculum. Cognition and 

Instruction, 11(1), 1–29.  

Aleven, V., Mclaren, B., Roll, I., & Koedinger, K. (2006). Toward meta-cognitive tutoring: A 

model of help seeking with a cognitive tutor. International Journal of Artificial Intelligence 

in Education, 16(2), 101–128.  

Arena, D. (2012). Commercial video games as preparation for future learning, (Doctoral 

dissertation, Stanford University). 

Baker, R. S. J. d, D’Mello, S. K., Rodrigo, M. M. T., & Graesser, A. C. (2010). Better to be 

frustrated than bored: The incidence, persistence, and impact of learners’ cognitive-affective 

states during interactions with three different computer-based learning environments. 

International Journal of Human Computer Studies, 68(4), 223–241.  

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman. 

 Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy 

for far transfer. Psychological Bulletin, 128(4), 612–637. 

Belenky, D. M., & Nokes-Malach, T. J. (2012). Motivation and Transfer: The Role of Mastery-

Approach Goals in Preparation for Future Learning. Journal of the Learning Sciences, 

21(3), 399–432.  

Belmont, J. M., Butterfield, E. C., & Ferretti, R. P. (1982). To secure transfer of training instruct 

self-management skills. In: Detterman D K, Sternberg R J (eds.) How and How Much Can 

Intelligence Be Increased, (pp. 147-154), Norwood, NJ: Ablex. 

Benjamini, Y., Hochberg, Y., & Series, B. (1995). Controlling the false discovery rate: a 

practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 

Series B (Methodological), 57, 289-300. 

Black, J. B., Khan, S. A., & Huang, S. C. D. (2014). Video games as grounding experiences for 

learning. In F.C. Blumberg (Ed.) Learning by playing: Frontiers of videogaming in 

education. New York, NY:  Oxford University Press. 

Black, J. B., Segal, A., Vitale, J., & Fadjo, C. (2012). Embodied cognition and learning 

environment design. In D. Jonassen and S. Lamb (Eds) Theoretical Foundations of 



	

	 101	

Learning Environments, New York, NY: Routledge. 

Blumberg, F. C., Rosenthal, S. F., & Randall, J. D. (2008). Impasse-driven learning in the 

context of video games. Computers in Human Behavior, 24, 1530–1541. 

Borkowski, J., & Muthukrishna, N. (1992). Moving metacognition into the classroom: “Working 

models” and effective strategy teaching. In M. Pressley, K R Harris, & J. T. Guthrie (Eds.), 

Promoting academic competence and literacy in school (pp. 477-501). San Diego, CA: 

Academic Press. 

Bransford, J. D., & Schwartz, D. L. (1999). Chapter 3: Rethinking transfer: A simple proposal 

with multiple implications. Review of research in education, 24(1), 61-100. 

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. 

Educational Researcher, 18, 32–42. 

Chi, M. T. H. (2005). Commonsense Conceptions of Emergent Processes: Why Some 

Misconceptions are Robust. The Journal of the Learning Sciences, 14(2), 161–199.  

Clark, A. (2003). Natural-Born Cyborgs: Minds, Technologies, and the Future of Human 

Intelligence. New York, NY: Oxford University Press. 

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of 

procedural knowledge. User Modeling and Useradapted Interaction, 4, 253–278. 

Csikszentmihalyi, M. (2000). Beyond boredom and anxiety. San Francisco, CA: Jossey-Bass. 

Darnon, C., Butera, F., Mugny, G., Quiamzade, A., & Hulleman, C. (2009). Too complex for 

me!” Why do performance-approach and performance-avoidance goals predict exam 

performance?. European Journal of Psychology of Education, 24, 423–434. 

Davidson, J. E., Deuser, R., & Sternberg, R. J. (1994). The role of metacognition in problem 

solving. In J. Metcalfe and A. Shimarmura (Eds.) Metacognition: Knowing about knowing, 

207-226. Cambridge, MA: Bradford 

Detterman, D. K., & Sternberg, R. J. (1993). Transfer on trial: Intelligence, cognition, and 

instruction. Norwood, NJ: Ablex Publishing. 

Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: perseverance and 

passion for long-term goals. Journal of Personality and Social Psychology, 92(6), 1087. 

Dweck, C. S. (2006). Mindset: The new psychology of success. New York, NY: Random House. 

Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and 

personality. Psychological review, 95(2), 256. 



	

	 102	

Fadjo, C. L., Hallman Jr, G., Harris, R., & Black, J. (2009). Surrogate embodiment, mathematics 

instruction and video game programming. In Proceedings of World Conference on 

Educational Multimedia, Hypermedia and Telecommunications 2009 (pp. 2787–2792). 

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-

developmental inquiry. American Psychologist  34, 906. 

Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation and learning, Simulation & 

Gaming, 33, 441–467. 

Gee, J. P. (2005). Learning by design: Good video games as learning machines. E-Learning and 

Digital Media, 2, 5–16. 

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 

306–355. 

Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational 

complexity: Implications for comparative, developmental, and cognitive psychology. 

Behavioral and Brain Sciences, 21(6), 803–831. 

Halverson, R., Shaffer, D., Squire, K., & Steinkuehler, C. (2006). June). Theorizing games 

in/and education. In Proceedings of the 7th International Conference on Learning Sciences,  

International Society of the Learning Sciences, 2006 SRC, 1048–1052. 

Hammer, J., & Black, J. (2009). Games and (preparation for future) learning. Educational 

Technology Magazine: The Magazine for Managers of Change in Education, 49, 29–34. 

Honey, M., & Hilton, M. (2011). Learning science through simulations and games. Washington, 

DC: National Academies. 

Hong, H.-Y., & Lin-Siegler, X. (2011). How learning about scientists’ struggles influences 

students’ interest and learning in physics. Journal of Educational Psychology, 104(2), 469–

484.  

Jacobson, M. J. (2001). Problem solving, cognition, and complex systems: Differences between 

experts and novices. Complexity, 6(3), 41–49. 

Juul, J. (2013). The art of failure: An essay on the pain of playing video games. Cambridge, MA: 

Mit Press. 

Kapur, M. (2006). Productive failure. ICLS 2006 - International Conference of the Learning 

Sciences, Proceedings, 1(November 2011), 307–313.  

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26, 379–424. 



	

	 103	

Klahr, D., & Chen, Z. (2011). Finding one’s place in transfer space. Child Development 

Perspectives, 5, 196–204. 

Kuhn, D., & Pease, M. (2010). The dual components of developing strategy use. In H. S. Waters 

& W. Schneider (Eds) Metacognition Strategy Use & Instruction, (pp. 135-159). New York, 

NY: Guilford. 

Loibl, K., & Rummel, N. (2014). Knowing what you don’t know makes failure productive. 

Learning and Instruction, 34, 74–85.  

Malone, T. (1981) Toward a theory of intrinsically motivating instruction, Cognitive Science, 5, 

333-369. 

Midgley, C., Kaplan, A., Middleton, M., Maehr, M. L., Urdan, T., Anderman, L. H., & Roeser, 

R. (1998). The development and validation of scales assessing students’ achievement goal 

orientations. Contemporary Educational Psychology, 23, 113–131. 

Perkins, D. N., & Salomon, G. (1992). Transfer of learning. International Encyclopedia of 

Education, 2, 6452-6457. 

Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning 

and achievement. Journal of Educational Psychology 92(3), 544. 

Reese, S. D. (2007). The Framing Project: Model for Media Research Revisited. Journal of 

Communication, 57, 148–154. 

Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Improving students’ help-

seeking skills using metacognitive feedback in an intelligent tutoring system. Learning and 

Instruction, 21, 267–280. 

Rowe, E., Asbell-Clarke, J., & Baker, R. S. (2015). Serious games analytics to measure implicit 

science learning. In C. S. Loh, Y. Sheng, & D. Ifenthaler (Eds.), Serious Games 

Analytics (pp. 343-360). Switzerland: Springer International Publishing. 

 Rowe, E., Baker, R. S. J. D., & Asbell-Clarke, J. (2015). Strategic game moves mediate implicit 

science learning. Proceedings of the 8th International Conference on Educational Data 

Mining, 432–435. 

Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. In J. 

P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 1–

52). Greenwich, CT: Information Age. 

Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus 



	

	 104	

inventing with contrasting cases: The effects of telling first on learning and transfer. Journal 

of Educational Psychology 103(4), 759-7753. 

Shute, V. J., Ventura, M., & Kim, Y. J. (2013). Assessment and learning of qualitative physics in 

newton’s playground. The Journal of Educational Research, 106, 423–430. 

Siegler, R. S. (1994). Cognitive variability: A key to understanding cognitive development. 

Current Directions in Psychological Science, 3, 1–5. 

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: 

Harvard University Press. 

Son, L. K., & Schwartz, B. L. (2002). The relation between metacognitive monitoring and 

control. in Perfect, T. J., & Schwartz, B.L. (Eds.), Applied Metacognition (pp. 15-38). 

Cambridge, UK: Cambridge University Press. 

Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental 

function upon the efficiency of other functions: Functions involving attention, observation 

and discrimination. Psychological Review, 8, 553–564. 

VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W. B. (2003). Why Do Only Some 

Events Cause Learning During Human Tutoring? Cognition and Instruction, 21(3), 209–

249.  

VanLehn, K., & Springer, U. S. (1988). Toward a theory of impasse-driven learning. In: Mandl 

H., Lesgold A. (eds),  Learning Issues for Intelligent Tutoring Systems. Cognitive Science.  

(pp. 19-41). New York, NY: Springer.  

Wouters, P., van Nimwegen, C., van Oostendorp, H., & van der Spek, E. D. (2013). A meta-

analysis of the cognitive and motivational effects of serious games. Journal of Educational 

Psychology, 105(2), 249–265.  

 

  



	

	 105	

Appendix A: Learning Measures 

Open-Ended (OE) Measure 

 
Code:___________________      1 2 3 
Draw, label, and explain a circuit with resistors in parallel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How does it differ from a circuit with resistors in series? 
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Table 1: OE Correctness Rubric (9 Points Total) 

Variable  0 Point 0.25 0.5 0.75 1 Point 

Diagram      
Closed 
Loop 

a line    shows that circuits 
behave in a loop that's 
fully enclosed.  

Voltage no voltage 
source depicted 

 depict voltage 
source but does not 
include 
positive/negative 
terminal 

voltage source 
with 
positive/negative 
terminal 

voltage source with 
positive/negative 
terminal  
AND  
"V" "Voltage"  

Current doesn't 
delineate 
current 
symbolically or 
with a label  

symbol 
and/or 
label 
without 
direction  

arrow or some other 
symbol showing 
direction of current 
OR label  

 indicates with both 
arrow and label "I" 
"Current" 

Resistance no resistors 
depicted 

 object on circuit 
(light bulb, 
squiggle, etc) 
OR label "R" 

 1 Point: Object WITH 
labels (symbol "R" or 
Resistor)  

Parallel 
Resistance 

resistors are 
not in parallel 

  resistors are 
parallel to one 
another 

resistors are parallel to 
one another  
AND 
labeled "R1, R2, R3" 

Parallel 
current 

doesn't indicate 
(either with 
arrow or with 
"I") that current 
flows through 
both 

 depicts with arrows 
but not with label 

 depicts with labels "I1, 
I2, I3" that show 
separate currents 
flowing through 
resistors 

Verbal      
Parallel 
current 

none of the 
above 

 Ambiguous answer 
stating that current 
has different paths 
(i.e. "flow goes in 
more than one 
direction") 

1 of 2 1) currents in parallel 
circuits split paths 
2) currents may differ in 
their separate paths 
depending on resistance 

Parallel 
voltage 

    Mention that voltage 
remains constant across 
parallel circuits  

Series 
current 

  Ambiguous answer 
stating that current 
is universal to all 
components ("i.e. 
"flows through all 
elements") 

1 of 2 Explicitly states that: 
1) one single 
current/pathway flows 
through all components 
of the system AND 
2) current is constant 
across all circuit 
components 
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Table 2: OE Complexity Rubric (24 Points Total) 

Variable  0 Point 0.5 0.75 1 Point 

Diagram     
Electrons    depicts electrons (i.e. electron flow, arrow from 

negative to positive, dots with label electron) in 
ANY diagram 

Switch    diagram includes switch 

Series 
Resistors 

   includes diagram with resistors in series 

Series Current    indicates that current is the same with just "I" 
consistently 

Game Example    Uses game example in their diagram (i.e. light 
bulb, looks like the game puzzle) 

Formulas     

Ohm’s Law    Uses Ohm's Law (V=IR) 
Parallel 
Current 

   Parallel Current: IT = I1 + 12 + 13.... 

Parallel 
Resistance 

   Parallel Resistance: 1/RT = 1/r1 + 1/r2... 

Series Voltage    Series Voltage: VT = V1 + V2 + V3 

Series 
Resistance 

   Series Resistance: RT = R1 + R2 + R3... 

Verbal     
Parallel current none of 

the 
above 

Ambiguous 
answer stating 
that current has 
different paths 
(i.e. "flow goes 
in more than one 
direction") 

1 of 2 1) currents in parallel circuits split paths 
2) currents may differ in their separate paths 
depending on resistance 

Parallel voltage    Mention that voltage remains constant across 
parallel circuits(i.e. "The amount of the total 
voltage remains consistent"' "giving each equal 
voltage") 

Series current  Ambiguous 
answer stating 
that current is 
universal to all 
components 
("i.e. "flows 
through all 
elements") 

1 of 2 Explicitly states that: 
1) one single current/pathway flows through all 
components of the system (i.e. "all of the resistors 
get the same current", "resistors are all on the 
same path") 
2) current is constant across all circuit 
components 

Voltmeters   1 of 2 1) voltmeters are in parallel 
AND 
2) voltmeters have very high resistance 

Ammeters  ammeters go "to 
the side" or "next 
to" the element 
(not explicitly 
stating series) 

1 of 2 1) ammeters are in series 
AND 
2) have very low resistance  



	

	 108	

Electrons    Electrons travel from negative terminal to 
positive terminal 

Voltage 
Compare 

 mentioning 
resistors 
(lightbulbs) are 
weaker in series 
than in parallel  

 ONE POINT EACH (TOTAL OF 3 POSSIBLE) 
1) resistors in parallel circuits receive full (same) 
power, (leading to brighter light bulbs) 
2) resistors in series circuits receive lower voltage 
because they share voltage; and  
3) resistors in series may receive voltage in 
proportion to their resistance 

Current 
Compare 

 current flows 
slower in series 
than in parallel 

 ONE POINT EACH (TOTAL OF 2 POSSIBLE) 
1) current in series overall is slower BECAUSE 
all resistors contribute to slowing down 
2) current in parallel may be faster depending on 
the resistance of the individual resistors  

Resistance 
Compare 

 resistance is 
higher in series 
(without 
justification) 
compared to 
parallel 

 Compares the overall resistance in parallel and 
series circuits.  
I.E.: resistance in series are summed, but 
resistance in parallel are shared. Therefore, 
resistance is higher in series circuits compared to 
parallel 

Electron Relate    Any answer that explicitly discusses electron 
flow in relation to resistance, current, or voltage.  

Current 
Resistance 

   Discusses the reciprocal relationship between 
resistance and current 
i.e. More current flows through the resistors with 
lower resistance" 

Voltage 
Discussion 

 "electrical 
pressure" or 
"how badly 
electrons want to 
get from one 
place to another" 

 "potential difference in charge between two 
points" 

Other 
Examples 

   Using other, real-world examples to show 
differences between parallel and serial circuits 

Resistor Infer  mention that 
parallel circuits 
don't break, but 
series circuits do 

 Inferring about what happens in other parts of the 
system when a resistor fails 
In parallel circuits, one failed resistor does not 
break the system because the current can flow 
through other paths; 
In series circuits, one failed resistor will break the 
system because the loop will have been opened, 
and the current has no other pathway to flow 
though 
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Post-Test

 

Quiz
Physics concepts:

Ohm’s Law: V = IR
Voltage: (V or v - Volts) The electrical potential between two points in a circuit.
Current: (I or i - Amperes) The amount of charge flowing through a part of a circuit.
Power: (W - Watts) Simply P = IV. It is the current times the voltage.
Source: A voltage or current source is the supplier for the circuit.
Resistor: (R measured in Ω - Ohms) A circuit element that "constricts" current flow.

* Required

1. Code

2. Two identical resistors are connected in series. The voltage across both of them is 250
volts. What is the voltage across each one? *
Mark only one oval.

 R1 = 125V and R2 = 125V

 R1 = 250V and R2 = 0V

 R1 = 150V and R2 = 100V

 None of the above.

3. Three resistors with 1Ω, 2Ω and, 3Ω are connected in parallel. What is the total resistance?
Mark only one oval.

 6/3Ω

 3/6Ω

 11/6Ω

 6/11Ω

4. Two resistors are connected in parallel with a voltage source. How do their voltages
compare? *
Mark only one oval.

 The voltage across both resistors is the same as the source.

 The voltage across both resistors is half the voltage of the source.

 One has full voltage, the other has none.

 None of the above.

Please use the following circuit diagram for the next three
questions.
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5. How bright is bulb A compared to B and C? *
 

 

 

 

 

6. How bright are the bulbs after switch S has been opened? *
 

 

 

 

 

7. How do the currents in bulbs A and B change when switch S is opened? *
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Powered by

8. Water flows through a 12-inch wide pipe due to some pressure P. At one point, the pipe
divides into two: one pipe is 6 inches wide, and one is 3 inches wide. Through which of the
pipes will more water flow, the six-inch pipe or the three-inch pipe? Does the water
pressure going in to the two pipes differ? *
Water pressure is the measure of force that gets the water through a pipe system.
 

 

 

 

 

9. Can you relate the the relevant components of the water pipe system with electrical
circuits? *
Explain how parts of one system act similarly or represent one another.
 

 

 

 

 

10. Fill in the blank: An ammeter must have very _______ (high/low) resistance. Why?
Fill in the blank with high or low, followed by your explanation.
 

 

 

 

 

11. Fill in the blank: A voltmeter must have very _______ (high/low) resistance. Why?
Fill in the blank with high or low, followed by your explanation.
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Table 3: Post-Test Transfer/Complexity Rubric 

Question Transfer (9 Points Total) Complexity (10 Points Total) 

Analogy_Flowrate 1 point: pipe A (six inch). 1 point: Mentioning pipe size is comparable 
to resistance 
1 point: mentioning water will flow through 
pipe with less "resistance" 

Analogy_WaterPressure 1 point: no, they do not differ. pipe 
A and B have the same pressure. 

1 point: Mentioning water pressure is 
similar to voltage 

Analogy_Map 1point for each:  
- Voltage = water pressure 
- Battery = pump 
- Current = water flow 
- Resistance = smaller pipes or pipes 
that make it difficult for water to 
flow through 
- Pipes = wire 

1 point: Mentioning pipes are in parallel - 
ANYWHERE in analogy answer 
 

PFL_Amm 1 point: "low" 
1 point: it must have a low 
resistance so as to not disturb the 
current flow as it goes through the 
ammeter.  

1 point: goes in series (.5 for ambiguous 
answer) 
1 point: measures current 
1 point: discussing that ideal ammeters don't 
exist 

PFL_Volt 1 point: "high" 
1 point: it must have a high 
resistance so that it does not disturb 
the flow of electrons through the 
resistors that the voltmeter is trying 
to measure 

1 point: goes in parallel (.5 for ambiguous 
answer) 
1 point: measures voltage 
1 point: discussing that such ideal 
voltmeters don't exist 
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Appendix B: Survey Measures 

Pre-Survey (Administered on Google Forms; current copy for reference only) 
Code: ___________      Age: ____________      Gender: _________ 
 
1. Have you ever participated in physics/engineering extracurricular activities? (Please include and elaborate on 

summer camps, internships, extracurricular clubs, or other instances where you've participated in STEM-related 
activities. STEM stands for science, technology, engineering, and math. Check all that apply.) 
� STEM summer Camp 
� STEM Internship 
� STEM Club 
� I have not participated in STEM extracurricular activities.  

 
2. On a scale of 1 to 5, how would you rate your interest in physics or engineering? 

� 1 – Not at all  
� 2 – A little  
� 3 – Somewhat  
� 4  - Very  
� 5 – Absolutely  

 
3. How confident are you that you could explain the concepts of an electrical circuit system to someone? 

� 1 – Not at all  
� 2 – A little  
� 3 – Somewhat  
� 4  - Very  
� 5 – Absolutely  

 
4. How confident are you that you could define what an electrical current is? 

� 1 – Not at all  
� 2 – A little  
� 3 – Somewhat  
� 4  - Very  
� 5 – Absolutely  

 
5. Do you like playing digital games? 

� 1 – Not at all  
� 2 – A little  
� 3 – Somewhat  
� 4  - Very  
� 5 – Absolutely  

 
6. Do you consider yourself a gamer? 

� Yes 
� No 
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7. Do you enjoy playing educational games? 
� 1 – Not at all  
� 2 – A little  
� 3 – Somewhat  
� 4  - Very  
� 5 – Absolutely  

 
8. Do you often play educational games at school? 

� 1 – Not at all  
� 2 – Rarely (once a semester) 
� 3 – Somewhat (several times a semester)  
� 4  - Often (once a week or more) 
� 5 – All the time (several times a week) 

 
 
School and Goals: Please tell us how much you agree or disagree with the following items on 
how you consider your work at school. Your responses will not be shared with anyone, and the 
researchers will not look at your responses until after the collection period is over.   
 
On the following items, a "1" means "Strongly disagree - This doesn't apply to me at all", a "3" 
means "This is somewhat true for me", and a "5" means "Strongly agree - This is completely 
true for me." 
 

9. I do my school work because getting good grades is important to me.  

10. I do my school work because I'm interested in it.  
11. I like school work best when it really makes me think.  
12. It's important to me that I do as well or better than most of the other students in my classes.  
13. I like school work that I’ll learn from, even if I make a lot of mistakes. 
14. It's very important to me that I don't look stupid in my classes.  
15. It's important to me that I show my teachers that I'm smarter than the other students in my classes.  
16. I like when I don't have to try very hard to do well in a class. 
17. When I'm working on something difficult or challenging, I keep working until I've completely mastered 

it.  
18. I like working on schoolwork that challenges me or is very difficult, even if it feels frustrating in the 

moment.  
 
  



METACOGNITIVE	RESPONSES	TO	FAILURE	FOR	LEARNING	

	 115	

Program Post-Survey (Administered on Google Forms; current copy for reference only) 
 
Code: ______________ 
1. Do you feel like your experiences with the game impacted how much you understood or learned through the 

class? 
� 1 – Negatively Impacted  
� 2 –  
� 3 – Null Effect 
� 4  -  
� 5 – Positively Impacted 

 
2. How did the game impact how much you understood or learned through the class? 
 
 
 
 
 
 
3. How confident are you that you could explain the concepts of an electrical circuit system to someone? 

� 1 – Not at all  
� 2 – A little  
� 3 – Somewhat  
� 4  - Very  
� 5 – Absolutely  

 
 

 
 


