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ABSTRACT

Fundamental Tradeoffs for Modeling Customer Preferences in Revenue Management

Antoine Désir

Revenue management (RM) is the science of selling the right product, to the

right person, at the right price. A key to the success of RM, which now spans a

broad array of industries, is its grounding in mathematical modeling and analytics.

This dissertation contributes to the development of new RM tools by: (1) exploring

some fundamental tradeoffs underlying any RM problems, and (2) designing efficient

algorithms for some RM applications. Another underlying theme of this dissertation

is the modeling of customer preferences, a key component of any RM problem.

The first chapters of this dissertation focus on the model selection problem: many

demand models are available but picking the right model is a challenging task. In

particular, we explore the tension between the richness of a model and its tractability.

To quantify this tradeoff, we focus on the assortment optimization problem, a very

general and core RM problem. To capture customer preferences in this context, we

use choice models, a particular type of demand model. In Chapters 1, 2, 3 and 4 we

design efficient algorithms for the assortment optimization problem under different

choice models. By assessing the strengths and weaknesses of different choice models,

we can quantify the cost in tractability one has to pay for better predictive power.

This in turn leads to a better understanding of the tradeoffs underlying the model

selection problem.

In Chapter 5, we focus on a different question underlying any RM problem: choos-

ing how to sell a given product. We illustrate this tradeoff by focusing on the problem

of selling ad impressions via Internet display advertising platforms. In particular, we

study how the presence of risk-averse buyers affects the desire for reservation con-

tracts over real time buy via a second-price auction. In order to capture the risk

aversion of buyers, we study different utility models.
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Introduction

Revenue management (RM) is the science, some would say the art, of selling the right

product, to the right person, at the right price. The delicate task of RM is to allo-

cate a finite inventory of products to some uncertain demand and is most of the time

addressed by carefully modeling the problem at stake and casting it into a well formu-

lated optimization problem. Analyzing such problem and providing efficient solutions

is the crux of RM and what has lead to helping practitioners make better decisions.

RM now spans across a broad array of industries and the tools of RM have been used

to optimally sell airline tickets, hotel rooms, fashion goods and more recently online

advertisements. My dissertation contributes to the development of RM technologies

by applying mathematical modeling and analytics to different RM problems with an

aim to: (1) quantify fundamental tradeoffs, and (2) design efficient algorithms to find

(near)-optimal solutions. An underlying theme of this dissertation is the modeling of

customer preferences, a key component of any RM problem. Chapters 1, 2, 3 and 4

explore discrete choice models which aim at predicting customer choices when faced

with a set of different alternatives. Chapter 5 studies the presence of risk-aversion in

customers preferences and uses various utility models to capture such behavior.

Choice model and assortment optimization. For a given problem, many de-

mand models can be used. Deciding on the right model is a complex task. In

Chapters 1, 2, 3 and 4, we study the fundamental tradeoffs underlying the model

selection problem. In particular, we focus on the tension between expressiveness and

tractability of a model. The richness of the model allows capturing fine nuances of
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customer behavior. On the other hand, looking at the tractability of the model is

equally important: does this model lead to a mathematical model that can be solved

efficiently? Typically, simple models, from the predictive standpoint, lead to easy

problems, from the tractability standpoint. On the other hand, rich models lead to

hard problems. To explore these tradeoffs, we focus on a core RM problem known

as the assortment optimization problem. In this problem, the decision maker needs

to decide on a subset of products to offer arriving customers in order to maximize

expected revenue. In this RM problem, the prices are assumed to be given and the

decision maker’s lever is to decide which products to offer. For example, this situation

holds in the context of airline tickets, where a menu of fares is designed to allow the

same capacity to be sold at different prices. By nature, this is a hard combinatorial

problem as the number of possible offer sets grows exponentially with the number of

products. Moreover, the choice of demand model heavily affects the tractability of

the assortment optimization problem. Because of the nature of the problem, we use

particular demand models known as choice models. By designing efficient algorithms

for the assortment optimization problem under various choice models, we quantify

the cost in tractability one has to pay for better predictive power. Thus, we assess

the strengths and weaknesses of different choice models which lead to better under-

standing of the tradeoffs underlying the model selection problem. Chapter 1 provides

an introduction to choice models and assortment optimization. It introduces three

main families of model. Chapters 2, 3 and 4 are then each devoted to one paticular

model.

Risk averse buyers in online advertising. In Chapter 5, we do not assume

that the selling mechanism is fixed but rather explore a different tradeoff in RM,

that of choosing how to sell a given product. We illustrate this tradeoff by focusing

on the problem of selling ad impressions via Internet display advertising platforms.

2



Advertisers’ buying choices typically include two options: either they commit to

a reservation contract in advance or they buy programatically in real time via an

exchange. The former case is a manual, time-consuming, and expensive process which

comes with a guarantee on the impressions. In the latter case, advertisers typically

bid in a second-price auction and they may therefore experience significant allocation

uncertainty stemming from the randomness in the number of advertisers participating

in the auction as well as the uncertainty in their valuation. Furthermore, the second-

price auctions comes with a price uncertainty. In contrast, reservation contracts

provide price and allocation guarantees. In Chapter 5, we study how the presence

of risk-averse buyers affects the desire for guarantees as well as how to price such

reservation contracts. In order to capture the risk aversion of buyers, we use different

utility models. This chapter is based on the work done during a research internship

at Google NYC.

3



Chapter 1

Choice models and assortment optimization

1.1 Choice models: introduction and taxonomy

Choice is ubiquitous and pervades everyday life. Am I in the mood for thai food or

sushi tonight? Would this black shirt look better on me than this blue one? Should I

take the subway or a taxi? Who should I vote for? We make choices multiple times a

day. Not surprisingly, trying to model how we choose among possible offered options

has been a fundamental topic of research in many different academic fields including

marketing, transportation, economics, psychology and operations management.

In many applications, our choice heavily depends on the menu of available options.

Did you take this cab because the subway was not running? What happens when your

favorite coffee brand is stocked out at the grocery store? Do you buy another brand or

do you walk out without anything? Underlying our choice is the substitution effect :

when our most preferred option is not available we substitute to another option.

Modeling this phenomenon is at the heart of the theory of discrete choice modeling

which we now discuss. To make things concrete and because of the focus on revenue

management applications, we will refer to these options as products and we will think

about modeling how customers choose among different offered products. However it

should be clear that these models have much broader applications.

Unlike traditional demand models, choice models make the demand for each prod-

uct a function of the entire offer set. This flexibility allows capturing behaviors such

as the substitution effect but also significantly increases the complexity of the demand
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model. Mathematically, a choice model specifies customer preferences in the form of

a probability distribution over products in a subset. More precisely, the choice model

will be defined by the following choice probabilities:

π(i, S) = Pr(customer selects product i from offer set S),

where we assume that we have a universe N consisting of n products such that i ∈ N

and S ⊆ N . We refer to π(i, S) as a choice probability. This quantity can equivalently

be thought of as the probability that some random customer chooses product i when

the offer set is S or as the fraction of customers who will choose product i if the subset

S is offered. Such a model allows us to model the substitution effect. For example,

having π(i, S) > π(i, S ∪ {j}) captures a cannibalization of product i by product j:

when j is offered, the demand for product i drops. However, this flexibility comes at

a cost. Indeed, note that such a model needs to specify the demand of each product

for each of the 2n possible subset S ⊆ N . The theory of discrete choice modeling

provides more parsimonious descriptions of these models by adding some assumptions

on the form of the choice probabilities. In this dissertation, we study three main

families of choice models: random utility models, a Markov chain based choice model

and distributions over rankings. Each of these models addresses the modeling of

customer preferences in a distinct fashion. Classical economic theory postulates that

individuals select an alternative by assigning a utility to each option and selecting

the alternative with the maximum utility. This is the basis for the family of random

utility models which we study in Chapter 2. More recently, different approaches

coming from the operations literature have emerged. The other two models that we

consider, a Markov chain based model in Chapter 3 and distribution over rankings in

Chapter 4, belong to this stream. We now give a brief literature review for each of

these three types of model where we try to highlight how these models relate to each

other. We do not introduce the mathematical details of each model and postpone

this to their corresponding chapter.
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1.1.1 Random utility models

The class of random utility maximization (RUM) models was formally introduced by

Nobel prize winner economist Daniel McFadden [53]. They have a long history and

have been extensively studied in the literature in several areas including marketing,

transportation, economics and operations management (see [54], [8]). In this frame-

work, each customer assigns a random utility Ui to each product i. When the utilities

are realized, he/she then chooses the product which maximizes his/her utility among

all offered products. More formally, the choice probabilities take the following form

under this framework:

π(i, S) = Pr(Ui = max
j∈S

Uj).

Specifying the joint distribution of the random variables Ui generates different RUM

models.

Multinomial logit model. The multinomial logit (MNL) model has by far been

the most popular model in practice. It was introduced independently by Luce [50]

and Plackett [62] and was referred to as the Plackett-Luce model. It came to be

known as the MNL model after the work of McFadden [53] who gave it this modern

interpretation through the lens of RUM theory. Indeed, the MNL model is an RUM

model where the random utilities Ui are assumed to be i.i.d. across products and

distributed according to a Gumbel distribution.

Informally, the MNL model assigns a score to each product. Each product is

then chosen with probability proportional to its score. This simplicity makes the

expression of the choice probabilities very easy to write down but also limits the

ability of the model to faithfully capture complex substitution patterns present in

various applications. In particular, a commonly recognized limitation of the MNL

model is the so-called “Independent of Irrelevant Alternatives” (IIA) property (see

[8]), which specifies that the odds of choosing among two products are not affected
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by the presence of a third product. Recognizing these limitations, researchers have

proposed more complex models to capture a richer class of substitution behaviors.

We now discuss two such models which uses the MNL model as a building block.

Nested logit model. In a nested logit (NL) model, the products are clustered

into different nests. Customers first choose a nest and then choose among products

in the chosen nest according to an MNL model. The NL model was introduced by

Williams [75] and its justification as a RUM model was later provided in [11]. The NL

model alleviates the IIA property by introducing some some correlation between the

utilities of products in the same nest. More recently, [48] introduce a generalization of

this model called the d-level nested logit (dNL) model. In the same fashion, customers

now choose a particular nest by going down a decision tree of depth d. These models

are particularly interesting when some predefined nest structure exists on the set of

products as it is unclear how to learn the nest structure of these models efficiently.

Mixture of MNL model. Another approach to breaking the IIA property is as-

suming that there are several classes of customers, each of which choosing according

to a different MNL model. Such mixture of MNL (mMNL) model (also sometimes

referred to as mixed logit) was introduced in [55] where the authors show that any

choice model arising from the random utility framework can be approximated as

closely as required by a mixture of a finite (but unknown) number of MNL models.

This makes the mMNL model the most general model in the class of RUM models.

There are other RUM models that we do not consider in this work such as the

exponomial model [2] and refer to [72] for a detailed overview of these models. We

now turn to two different approaches to generating choice model coming from the

operations literature.
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1.1.2 Markov chain model

Introduced in [10], the main idea motivating the Markov chain (MC) model is to model

a customer’s choice by explicitly modeling his substitution behavior. Here, customer

substitution is captured by a Markov chain, where each product corresponds to a state

of the Markov chain, and substitutions are modeled using transitions in the Markov

chain. Given an offer set, the states corresponding to the offered products become

absorbing. A random customer arrives to each product according to some arrival

probabilities. Upon arrival, the customer chooses the product if offered. Otherwise,

the customer then substitutes according to the underlying transition probabilities of

the Markov chain and continues to do so until he reaches an offer product. At this

point, he chooses that product. In other words, in order to determine the chosen

product for some random customer, we perform a random walk on the Markov chain

and stop when we first hit one of the absorbing state. The corresponding product is

chosen. Under this model, we can reformulate the choice probabilities as:

π(i, S) = Pr(customer gets absorbed in state i when subset S of nodes is absorbing).

Interestingly, despite being motivated from a completely different point of view, a

salient feature of the MC model is that it generalizes several known model (see [10])

including MNL, generalized attraction model [33], and the exogenous demand model

[43]. Moreover, [10] show that the MC model provides a good approximation in choice

probabilities to the class of RUM.

Interpretability of parameters. Another very interesting feature of this model

is that its parameters have a very nice interpretation as they directly model substitu-

tions. To illustrate this, we use a publicly available data set consisting of preference

lists over different sushi types. The Sushi data set consists of 5,000 complete rankings

over 10 varieties of sushi (http://www.kamishima.net/sushi/ [42]). Each ranking cor-

responds to the preferences of one person who was asked to rank the different types
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of sushis. We use 1,500 rankings for training and 3,500 rankings for validation. In

particular, we fit a MC model (using the procedure described in [10]) and a simple

MNL model on the training samples. Using those fitted models, we compute the

choice probabilities over all possible subsets and compare them to the choice prob-

abilities computed over the 3,500 validation rankings. We report the average error

in choice probabilities in Table 1.1. We also report the average error made by the

empirical distribution (ED) (on the 1,500 training rankings). The improvement that

Model MNL MC ED
MAPE 15.8 % 8.3 % 6.9 %

Table 1.1: Mean Absolute Percentage Error (MAPE) of various models on the Sushi
data set.

we observe using the MC model over the MNL model is significant: the average error

is almost reduce by half. Moreover, the error in prediction using the MC model is

quite close to the error of the ED. However, the really interesting part consists at

looking at the fitted parameters of the MC model. To highlight the flexibility of the

MC model, we contrast it with a simple MNL model (a special case of MC model).

Figures 1.1 and 1.2 show the parameters of the fitted models in the form of a matrix

where each entry of the matrix corresponds to the transition probability of the un-

derlying Markov chain. For instance, the cell at the intersection of the row “tuna”

and “shrimp” represents the probability of substituting from tuna to shrimp. The

color represents the intensity of the substitution.

First note that the MNL model only allows a very limited behavior. This is a

consequence of the IIA property. In particular, the substitutions under an MNL model

are independent of the product we are substituting from. Hence, all the columns of

the matrix have the same color. Secondly, the gradient of color, from left to right,

indicates that the strength of the substitution is dictated by the popularity or market

share of a product: the sushi are ordered by popularity on each axis.
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Figure 1.1: Substitution behavior under MNL model.

Now, we turn to the matrix representing the MC model (Figure 1.2). We immedi-

ately observe that the captured behavior is much richer. Moreover, several interesting

phenomenon are captured. First of all, we observe that all the tuna variations of

sushis (fatty tuna, tuna, tuna roll) exhibit strong mutual substitutions. For instance,

there is a much higher substitution from fatty tuna to tuna than to any other type

of sushis. Similarly, the substitution from tuna roll is highest towards fatty tuna and

tuna. This is particularly helpful as we can detect clusters of products customer tend

to substitute among just by looking at the parameters of the fitted model. Another

interesting phenomenon is the behavior toward the sea urchin sushi, a very atypical

sushi. Note that the substitution to the sea urchin sushi are relatively low despite

the sea urchin being the second most popular sushi. This is because people tend to

exhibit very strong preferences for this sushi: they either rank it first or last, i.e. they

10



Figure 1.2: Substitution behavior under MC model.

do not substitute to the sea urchin. Note that this phenomenon cannot be captured

by a simple MNL model since by IIA, the substitution has to be proportional to the

popularity.

1.1.3 Distribution over rankings

In the most general case, a choice model is given by a distribution over preference lists

or rankings [26, 73, 36]. A preference list is a ranked ordering of the products of N .

Given an offered subset of products, when a random customer arrives, a preference

list is sampled from the distribution. The customer then purchases his most preferred

item from the offered products using the sampled preference list.

π(i, S) = Pr(product i is ranked first among product in S).
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The rank-based model is very general and accommodates distributions with exponen-

tially large support sizes and, therefore, can capture complex substitution patterns.

However, available data are usually not sufficient to identify such a complex model.

Therefore, sparsity is used as a model selection criterion to pick a model from the set

of models consistent with the data. Specifically, it is assumed that the distribution

has a support size K, for some K that is polynomial in the number of products.

Sparsity results in data-driven model selection [26], obliviating the need for imposing

arbitrary parametric structures.

The need for smoothing. Despite their generality, however, sparse rank-based

models cannot account for noise or any deviations from the K ranked-lists in the

support. This limits their modeling flexibility, resulting in unrealistic predictions and

inability to model individual-level observations. Specifically, because K � n!, the

model specifies that there is a zero chance that a customer uses a ranking that is

even slightly different from any of the K rankings in the support and a zero chance of

observing certain choices. However, choices may be observed in real (holdout) data

that are not consistent with any of the K rankings, making the model predictions

unrealistic. In addition, a natural way to interpret sparse choice models is to assume

that the population consists of K types of customers, with each type described by one

of the ranked lists. When this interpretation is applied to individual-level observa-

tions, it implies that all the choice observations of each individual must be consistent

with at least one of the K rankings, which again may not be the case in real data.

Mallows-smoothed model. In order to address these issues, we generalize the

sparse rank-based models by smoothing them using the Mallows kernel. Specifically,

we suppose that the choice model is a mixture of K Mallows models.

The Mallows distribution was introduced in the mid-1950’s [51] and is the most

popular member of the so-called distance-based ranking models, which are character-
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ized by a modal ranking ω and a concentration parameter θ. The probability that a

ranking σ is sampled falls exponentially as e−θ·d(σ,ω), where d(·, ·) is the distance be-

tween σ and ω. Different distance functions result in different models. The Mallows

model uses the Kendall-Tau distance, which measures the number of pairwise dis-

agreements between the two rankings. Intuitively, the Mallows model assumes that

consumer preferences are concentrated around a central permutation, with the likeli-

hood of large deviations being low. The mixture of Mallows model with K segments

is specified by the modal rankings: ω1, . . . , ωK , concentration parameters: θ1, . . . , θK

and probabilities: µ1, . . . , µK where for any k = 1, . . . , K, µk specifies the probability

that a random customer belongs to Mallows segment k with modal ranking ωk and

concentration parameter θk. This mixture model is a more natural model allowing

for deviations from the modal rankings and assigning a non-zero probability to every

choice. Further, it is a parsimonious way to extend the support of the distribution

to an exponential size, and as θk →∞ for all k, the distribution concentrates around

each of the K modes, yielding the sparse rank-based model. We refer the interested

readers to a large body of existing work in the literature on estimating such models

from data [49, 4, 22, 46].

1.2 Fundamental tradeoffs in model selection

Which model should ultimately be used for a given problem is a very important yet

challenging question. Indeed, the complexity of the choice models presented above is

motivated by the need for greater predictive power in order to, for instance, break the

IIA property. However, how does this richness affects the tractability of these models?

Can we solve any decision problems using these models? This is especially important

in revenue management as the goal is often to use these models to formulate some

mathematical program which one ultimately would like to solve. Typically, simple
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models, from the predictive standpoint, lead to easy problems, from the tractability

standpoint. On the other hand, rich models lead to hard problems.There is no free

lunch: a more complex choice model can capture a richer substitution behavior but

leads to increased complexity of the optimization problem. We explore and quantify

these tradeoffs in the context of the assortment optimization problem, a core revenue

management problem, which we introduce in the next section.

Many other dimensions are important in practice. We do not study them in this

dissertation but would like to emphasize that the model selection problem involves

carefully balancing all these tradeoffs. For instance, of the utmost importance is the

estimation of these choice models from data. In this dissertation, we assume that the

models are given and we try to assess the tractability of the associated assortment

problem. However, estimating the parameters of the model from data is equally

important. Moreover, this task is highly non trivial as in most settings, we are trying

to infer customer preferences from very limited information, mainly their purchase

data.

1.3 The assortment optimization problem

What subset (or assortment) of product to offer is a fundamental decision problem

that commonly arises in several application contexts. A concrete setting is that of

a retailer who carries a large universe of products but can offer only a subset of the

products in each store, online or offline (see [44], [27]). The objective of the retailer is

typically to choose the offer set that maximizes the expected revenue/profit1 earned

from each arriving customer, under stochastic demand. Another example is display-

based online advertising where a publisher has to select a set of ads to display to

1Note that conversion-rate maximization can be obtained as a special case of revenue/profit
maximization by setting the revenue/profit of all the products to be equal.
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users. In this context, due to competing ads, the click rates for an individual ad

depends on the overall subset of ads to be displayed.

We assume that we have a universe N = {1, . . . , n} consisting of n products.

Moreover, there is always an outside option modeling the fact that a customer could

decide not to purchase anything. We denote it by 0. Each product i has an exogenous

price pi. Under this notation, the expected revenue R(S) of the assortment S ⊆ N

can be written as

R(S) =
∑
i∈S

pi · π(i, S).

For a given choice model, the associated assortment optimization problem consisting

of maximizing the expected revenue can therefore be formulated as

max
S⊆N

R(S). (Assort)

Note that this is a combinatorial problem for which trying all 2n possible assortment is

not an scalable solution. We also consider variants of Assort where we add constraints

on the assortment with the aim of capturing more realistic situations. There will be

a particular emphasis on the capacity constrained version of the assortment problem.

In that context, every product i is associated with a weight wi, and the decision maker

is restricted to selecting an assortment whose total weighs is at most a given bound

W . This is also sometimes referred to as a knapsack constraint. We can formulate

the capacity constrained assortment optimization problem as

max
S⊆N

{
R(S) :

∑
i∈S

wi ≤ W

}
. (Capa)

For the special case of uniform weights (i.e. wi = 1 for all i), the capacity constraint

reduces to a constraint on the number of products in the assortment. We refer to

this setting as the cardinality constrained assortment optimization problem:

max
S⊆N
{R(S) : |S| ≤ k} . (Card)
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Both of these constraints on assortments arise naturally, allowing one to model prac-

tical scenarios such as shelf space constraint or budget limitations. We will also

consider the case of totally-unimodular constraints. Let xS ∈ {0, 1}|N | denote the in-

cidence vector for any assortment S ⊆ N where xSi = 1 if i ∈ S and xSi = 0 otherwise.

The assortment optimization problem subject to a totally-unimodular constraint can

be formulated as follows:

max
S⊆N

{
R(S) : AxS ≤ b

}
. (TU)

Here, A is a totally-unimodular matrix, and b is an integer vector. Note that Card

is a special case of TU. These capture a wide range of practical constraints such as

precedence, display locations, and quality consistent pricing constraints [23]. Finally,

we will study at a robust version of the assortment optimization problem (Rob). In

this variant, we capture the presence of uncertainty in the model parameters which

can come, for instance, from their estimation from data. A common approach in that

case it to resort to robust optimization, i.e. finding the assortment which maximizes

the worst-case revenue under the uncertainty.

1.4 Summary of contributions of Chapters 2, 3

and 4

We summarize the main contributions of Chapters 2, 3 and 4. By collecting these

results together, we can better contrast and compare them. Each of the following

chapter will focus on a single model and will be self contained.

For the RUM models and the MC model (Chapters 2 and 3), the results presented

in this thesis have the same flavor and are two-fold. On the one hand side, we

design efficient algorithms with provable guarantees to address different variants of

assortment problems. On the other hand, we complement these algorithms with
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hardness results which helps understanding what is the best possible approximation

for a given problem. All our results are tight: the performance of our proposed

algorithms matches the best possible lower bound prescribed by the hardness result.

Together these results therefore allow us to better understand the limitations and

tradeoffs inherent to different models. On the technical side, both these chapters

introduce algorithmic frameworks which give unified approaches to various problems.

In Chapter 4, the challenges are slightly different. Indeed, unlike previous chap-

ters, under a mixture of Mallows model computing the choice probabilities is already

a non-trivial task because of the exponential support of the distribution. The main

message of Chapter 4 is that despite this exponential support the Mallows-smoothed

model choice probabilities can be computed efficiently. This in turns leads to efficient

algorithms to solve assortment optimization problems.

Notations. To ease the reading and avoid repeating long expressions such as “the

cardinality constrained assortment optimization problem under the MNL model”,

we will use the notation Model− Problem to denote a particular problem under a

given choice model. For instance, MNL-Card will refer to the cardinality constrained

assortment problem under the MNL choice model. Tables 1.2 and 1.3 list all the

choice models and problems abbreviations.

Choice model Abbreviation
Multinomial logit MNL

Nested logit NL
d-level nested logit dNL
Mixtures of MNL mMNL

Markov chain MC

Table 1.2: Abbreviations for different choice models
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Assortment optimization problem Abbreviation
Unconstrained Assort

Cardinality constraint Card
Capacity constraint Capa

Totally-unimodular constraints TU
Robust assortment optimization Rob

Table 1.3: Abbreviations for various assortment problems

1.4.1 Random utility models

The popularity of the MNL comes from its tractability. In particular, MNL-Assort is

tractable (see [71] for instance): the optimal assortment can be found in polynomial

time. The structure of the optimal assortment is well understood: for MNL-Assort,

the optimal assortment consists of the top k most expensive products for some k.

There are many proofs of this beautiful result and we provide yet another one in

Appendix B.5. [23] give an exact algorithm for MNL-Card, and more generally, for

MNL-TU. [67] characterize the optimal assortment for MNL-Rob.

For more general RUM models, [24] give an exact algorithm for NL-Assort. [34]

propose an exact algorithm for NL-Card , when the cardinality constraint affects each

nest separately, and a constant factor approximation for NL-Capa under the same

assumption. [31] present an exact algorithm when the cardinality constraint is across

different nests. Under a mixture of MNL model, mMNL-Assort becomes NP-hard,

even under a mixture of two MNL [66]. [64] devise a polynomial-time approximation

scheme (PTAS) for mMNL-Card.

Contributions. As previously discussed, MNL-Assort and MNL-Card are tractable.

However, we show that MNL-Capa is NP-hard. In light of this hardness result, we

present a fully polynomial time approximation scheme (FPTAS) for MNL-Capa. In

other words, for any ε > 0, our algorithm computes a (1 − ε)-approximation of

the optimal assortment in time polynomial in the input size and 1/ε. This is the
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best possible approximation for a NP-hard problem. Therefore, our algorithm gives

the best possible approximation for MNL-Capa. Our algorithmic approach is very

flexible and also gives near-optimal algorithms for NL-Capa, dNL-Capa under some

mild assumptions.

When the number of mixtures is constant, we can also give a near-optimal al-

gorithm for mMNL-Capa. [65] give a PTAS for a more general capacitated sum of

ratio optimization problem based on a linear programming formulation. [57] give an

FPTAS for the same problem. However, they use a black-box construction of an

approximate Pareto-optimal frontier introduced by [60]. We would like to note that

the running time of our algorithm is polynomial in the input size and 1/ε, but is

exponential in K (number of mixtures in the mixture of MNL model). Therefore, we

obtain an FPTAS only when the model is a mixture of a constant number of MNL

models. To complement this result, we show that mMNL-Assort is hard to approx-

imate within any reasonable factor when the number of mixtures is not constant.

More specifically, there is no polynomial time algorithm (polynomial in number of

items and mixtures: n,K and the input size) with an approximation factor better

than O(1/K1−δ) for any constant δ > 0 for mMNL-Assort unless NP ⊆ BPP . This

implies that if we require a near-optimal algorithm for the assortment optimization

over the mixture of MNL model, a super-polynomial dependence on the number of

mixtures is necessary.

1.4.2 Markov chain model

[10] show that MC-Assort is polynomial time solvable. [76] also consider the Markov

chain model in the context of airline revenue management, and present a simulation

study. In a recent paper, [30] study the network revenue management problem under

the Markov chain model and give a linear programming based algorithm.
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Contributions. We show that MC-Card is NP-hard to approximate within a fac-

tor better than some given constant, even when all items have uniform prices. It

is interesting to note that, while MC-Assort can be solved optimally in polynomial

time, MC-Card is APX-hard. In contrast, in both the MNL and NL models, the

unconstrained assortment optimization and the cardinality constrained assortment

problems have the same complexity. We also consider the case of totally-unimodular

(TU) constraints on the assortment. We show that MC-TU is hard to approximate

within a factor of O(n1/2−ε) for any fixed ε > 0, where n is the number of items. This

result drastically contrasts with [23] where the authors prove that MNL-TU can be

solved in polynomial time.

On the positive side, we develop a new algorithmic technique that gives, through

a unified approach, a new alternative strongly polynomial algorithm for MC-Assort,

a constant factor approximation for both MC-Card and MC-Capa as well as an exact

algorithm for MC-Rob. Moreover, we consider a special case of MC model where

the underlying Markov chain has constant rank. Under this additional assumption,

we can leverage the tools from Chapter 2 and design a near optimal algorithm for

MC-Capa.

1.4.3 Distribution over rankings

The intractability of the problem comes in two folds. First of all, specifying a general

distribution over permutations may be expensive, as we may have to explicitly list

exponentially many values along with their probabilities. Secondly, even for a general

distribution over a small number of preference lists, [3] recently prove that it is NP-

hard to compute a subset of products whose expected revenue is within factor better

than O(n1−ε)2, for any accuracy level ε > 0. This hardness of approximation result

2The reduction is from the independent set problem to an assortment optimization problem
under a distribution over only n rankings.
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discourages the hope of coming up with any reasonable approximation heuristic with

a provably good approximation guarantee in the worst case. Nonetheless, with certain

additional structural assumptions, certain special subclasses of such models can be

shown to be tractable [3], [35], [36].

Contributions. We address the two key computational challenges that arise when

using a mixture of Mallows model: (a) efficiently computing the choice probabilities

and hence, the expected revenue/profit, for a given offer set S and (b) finding a

near-optimal assortment. We also present a compact mixed integer program (MIP)

and present a variable bound strengthening technique that leads to a practical ap-

proach for the constrained assortment optimization problem under a general mixture

of Mallows model.

We present two efficient procedures to compute the choice probabilities π(i, S)

exactly under a general mixture of Mallows model. Because the mixture of Mallows

distribution has an exponential support size, computing the choice probabilities for

a fixed offer set S requires marginalizing the distribution by summing it over an ex-

ponential number of rankings, and therefore, is a non-trivial computational task. In

fact, computing the probability of a general partial order under the Mallows distri-

bution is known to be a #P hard problem [49, 13]. The only other known class of

partial orders whose probabilities can be computed efficiently is the class of parti-

tioned preferences [46]; while this class includes top-k/bottom-k ranked lists, it does

not include other popular partial orders such as pairwise comparisons.

We present a polynomial time approximation scheme (PTAS) for a large class

of constrained assortment optimization for the mixture of Mallows model including

cardinality constraints, knapsack constraints, and matroid constraints. Our PTAS

holds under the assumption that the no-purchase option is ranked last in the modal

rankings for all Mallows segments in the mixture; such assumptions are necessary
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because of hardness of approximation for Assort under a sparse rank-based model

mentioned above. Under the above assumption and for any ε > 0, our algorithm

computes an assortment with expected revenue at least (1− ε) times the optimal in

running time that is polynomial in n and K but depends exponentially on 1/ε.

1.4.4 Summary

We summarize some of the main results of the following chapters in Table 1.4 to

help the reader better navigate through this thesis but also to help compare and

contrast the results. No single model dominates the others on all accounts. Rather,

we try to understand the price one has to pay, in terms of tractability, for increased

predictive power. The hope is that this grid can guide practitioners in the selection

of choice model depending on their application. For instance, if time is a constraint

and the assortment optimization problem needs to be solved in split seconds (such as

an online application for instance), then having a simpler but more tractable model

may be interesting. However, if the assortment problem needs to be solve every other

month, then a richer model would be the way to go.
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Chapter 2

Near optimal algorithms for capacity constrained

assortment under random utility models

In this chapter, we examine the capacity constrained assortment optimization problem

(Capa) under various random utility models. We first show, in Section 2.1, that

MNL-Capa is NP-hard. In light of this hardness result, we present a fully polynomial

time approximation scheme (FPTAS) for the problem. In other words, for any ε > 0,

our algorithm computes a (1 − ε)-approximation of the optimal assortment in time

polynomial in the input size and 1/ε. This is the best possible approximation for a

NP-hard problem. Therefore, our algorithm gives the best possible approximation for

MNL-Capa. Our framework is flexible and can be extended to more general random

utility models. In particular, we also derive FPTAS for NL-Capa (Section 2.2) and

dNL-Capa (Section 2.3).

For the mixture of MNL model, we also obtain an FPTAS for mMNL-Capa (Section

2.4). However, the running time of our algorithm is exponential in the number of

mixtures. Therefore, we obtain an FPTAS only when the model is a mixture of

a constant number of MNL models. We further show that this super-polynomial

dependance is necessary. In particular, even without any constraint, we show that

mMNL-Assort is hard to approximate within any reasonable factor when the number

of mixtures is not constant. More specifically, there is no polynomial time algorithm

with an approximation factor better than O(1/K1−δ), where K is the number of

mixtures, for any constant δ > 0 for mMNL-Assort unless NP ⊆ BPP.
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2.1 Multinomial logit model

In this section, we examine the assortment optimization problem under the MNL

model. The MNL model is given by (n + 1) parameters u0, . . . , un which represent

the preference weights of each product as well as the preference weight of the no

purchase option. For any S ⊆ [n], the choice probability of product j is given by

π(j, S) =
uj

u0 +
∑

i∈S ui
.

Each product i ∈ [n] is also assigned a price pi and a weight wi. We denote by W

the total available capacity. The capacity constrained assortment optimization can

be formulated as follows.

max
S⊆[n]

{∑
j∈S

pj ·
uj

u0 +
∑

j∈S ui

∣∣∣∣∣ ∑
j∈S

wj ≤ W

}
. (MNL-Capa)

We would like to note that both MNL-Assort and MNL-Card are tractable under the

MNL model (see, [71] and [23] respectively). We begin by giving an alternative proof

for the LP based algorithm proposed in [23] for MNL-Card.

2.1.1 Cardinality Constraint: LP based Algorithm

As a warmup, we first consider MNL-Card, where there is an upper bound on the

number of products in the assortment. We present an LP based optimal algorithm

for this case. Our proof is different than [23] and is based on the properties of an

optimal basic solution. In particular, we prove the following theorem.

Theorem 2.1. MNL-Card is equivalent to the following linear program

zLP = max

{
n∑
j=1

pjqj

∣∣∣∣∣u0q0 +
n∑
j=1

qj = 1 ,
n∑
j=1

qj
uj
≤ kq0 , 0 ≤ qj ≤ ujq0

}
, (2.1)

where k is the upper bound on the number of items in the assortment. Furthermore,

if q∗ is an optimal solution, then S∗ = {j | q∗j = ujq
∗
0} is an optimal assortment.
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Proof. We first show that the above LP is a relaxation of MNL-Card. For any feasible

solution S ⊆ [n] for MNL-Card, we have the following feasible solution to the LP

q0 =
1

u0 +
∑

i∈S ui
and qj =


uj

u0 +
∑

i∈S ui
if j ∈ S

0 otherwise

∀j ≥ 1.

Moreover, the two solutions give the same objective value which implies that zLP ≥ z∗.

We now show that any basic solution q∗ to (2.1) satisfies q∗j ∈ {0, ujq∗0} for all

j = 1, . . . , n. We have n + 1 variables in (2.1) and only one equality constraint.

Therefore, in a basic optimal solution, at least n inequalities are tight among

n∑
j=1

qj
uj
≤ kp0 and 0 ≤ qj ≤ ujq0 ∀j ≥ 1.

Consequently, qj ∈ {0, ujq0} for at least (n − 1) variables. Suppose exactly (n − 1)

variables satisfy q∗j ∈ {0, ujq∗0} and one of the variable, say q∗1, satisfies 0 < q∗1 < u1q
∗
0.

Therefore, the inequality
n∑
j=1

qj
uj
≤ kq0 must be tight and

kq∗0 =
n∑
j=1

q∗j
uj

=
q∗1
u1

+
n∑
j=2

q∗j
uj

= ρq0 + k′q0

where k′ is an integer and 0 < ρ < 1. This yields a contradiction. Therefore, any

basic solution leads to an integral solution of the original problem which means that

zLP ≤ z∗.

2.1.2 Hardness under a general capacity constraint

We now show that MNL-Capa, is NP-hard. We prove this by a reduction from the

knapsack problem.

Theorem 2.2. MNL-Capa is NP-hard.

Proof. We give a reduction from the knapsack. In an instance of the knapsack prob-

lem on n items, we are given weights c1, . . . , cn and profits r1, . . . , rn and a knapsack

capacity C. The goal is to find the most profitable assortment of items.
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Consider the following instance for MNL-Capa:

u0 = 1, W = C and ∀j ≥ 1, uj = rj, pj = 1, wj = cj.

For this instance, the problem becomes

max
x∈{0,1}n


n∑
i=1

rixi

1 +
n∑
i=1

rixi

∣∣∣∣∣
n∑
i=1

cixi ≤ C

 .

Note that the function f(x) =
x

1 + x
is increasing in x. Therefore, maximizing f(rTx)

is equivalent to maximizing rTx, hence the reduction to the knapsack problem.

2.1.3 FPTAS for MNL-Capa

We present an FPTAS for MNL-Capa. Note that in view of Theorem 2.2, this is best

possible for MNL-Capa. Our algorithm utilizes the rational structure of the objective

function and is based on solving a polynomial number of dynamic programs. Since

the objective function is rational, we guess the value of the numerator (
∑
j∈S∗

pjuj)

and denominator (
∑
j∈S∗

uj), for an optimal solution, S∗ within a factor of (1 + ε).

We then try to find a feasible assortment (satisfying the capacity constraint) with

the numerator and denominator values approximately equal to the guesses using a

dynamic program. We would like to note that these dynamic programs are similar to

multi-dimensional knapsack problems for which there is no FPTAS [32]. However, in

our problem, we are allowed to violate the constraints which allows us to obtain an

FPTAS.

Let p (resp. P ) be the minimum (resp. maximum) revenue and u (resp. U) be the

minimum (resp. maximum) MNL parameter. We can assume wlog. that p, u > 0;

otherwise, we can clearly remove the corresponding product from our collection and

continue. For any given ε > 0, we use the following set of guesses for the numerator

and denominator.

Γε = {ru(1 + ε)`, ` = 0, . . . , L1} and ∆ε = {u(1 + ε)`, ` = 0, . . . , L2}, (2.2)
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where L1 = O (log (nPU/(ru)) /ε) and L2 = O (log ((n+ 1)U/u) /ε). The number of

guesses is polynomial in the input size and 1/ε. For a given guess h ∈ Γε, g ∈ ∆ε, we

try to find a feasible assortment S with∑
j∈S

pjuj ≥ h and
∑
j∈S

uj ≤ g, (2.3)

using a dynamic program. In particular, we consider the following discretized values

of pjuj and uj in multiples of εh/n and εg/(n+ 1) respectively,

p̃j =

⌊
pjuj
εh/n

⌋
and ũj =

⌈
uj

εg/(n+ 1)

⌉
, ∀j. (2.4)

Note that we round down the numerator and round up the denominator to maintain

the right approximation. For a given set of guesses, note that the problem can

be reduced to a multi-dimensional knapsack for which there exists a PTAS, see for

example [32]. The main difference is that we do not have hard constraints like in the

knapsack. This allows us to round the coefficients while still maintaining feasibility.

Also, note that we discretize the product pjuj for all j instead of considering separate

discretizations for rj and uj.

We can now present our dynamic program. Let I = bn/εc − n and J = d(n +

1)/εe+ (n+ 1). For each (i, j, `) ∈ [I]× [J ]× [n], let F (i, j, `) be the minimum weight

of any subset S ⊆ {1, . . . , `} such that∑
s∈S

p̃s ≥ i and
∑
s∈S+

ũs ≤ j.

We compute F (i, j, `) for (i, j, `) ∈ [I]× [J ]× [n] using the following recursion.

F (i, j, 1) =


w1 if 0 ≤ i ≤ p̃1 and j ≥ ũ0 + ũ1

0 if i ≤ 0 and j ≥ ũ0

∞ otherwise

F (i, j, `+ 1) = min{F (i, j, `), w`+1 + F (i− p̃`+1, j − ũ`+1, `)}

(2.5)

Note that this dynamic program is similar to the one for the knapsack problem. Using

this dynamic program, we construct a set of candidate assortments Sh,g for all guesses
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(h, g) ∈ Γε×∆ε. Algorithm 1 details the procedure to construct the set of candidate

assortments.

Algorithm 1 Construct Candidate Assortments

1: For (h, g) ∈ Γε ×∆ε,
(a) Compute discretization of coefficients p̃i and ũi using (2.4).
(b) Compute F (i, j, `) for all (i, j, `) ∈ [I]× [J ]× [n] using (2.5).
(c) Let Sh,g be the subset corresponding to F (I, J, n).

2: Return A = ∪(h,g)∈Γε×∆εSh,g.

Let us show that Algorithm 1 correctly finds a subset satisfying (2.3). In partic-

ular, we have the following lemma.

Lemma 2.1. Let A be the set of candidate assortment returned by Algorithm 1. For

any guess (h, g) ∈ Γε × ∆ε, if there exists S such that W (S) ≤ W and (2.3) is

satisfied, then W (Sh,g) ≤ W . Moreover, Sh,g satisfies (2.3) approximately, i.e.

∑
j∈Sh,g

pjuj ≥ h(1− 2ε) and
∑
j∈Sh,g

uj ≤ g(1 + 2ε).

Proof. Consider S satisfying (2.3) for given guesses h, g. Scaling the two inequalities

yield ∑
j∈S

pjuj
εh/n

≥ h

εh/n
and

∑
j∈S

uj
εg/(n+ 1)

≤ g

εg/(n+ 1)
.

Rounding down and up the previous inequalities gives

∑
j∈S

p̃j ≥ bn/εc − n = I and
∑
j∈S

ũj ≤
⌈

(n+ 1)

ε

⌉
+ (n+ 1) = J,

which implies that F (I, J, n) ≤ W . Moreover, let Sh,g be the corresponding subset.

We have

∑
j∈Sh,g

pjuj ≥ I
εh

n
≥ h(1− 2ε) and

∑
j∈Sh,g

uj ≤ J
εg

n+ 1
≤ g(1 + 2ε).
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Algorithm 2 FPTAS for MNL-Capa

1: Construct a set of candidate assortment A using Algorithm 1.
2: Return the best feasible solution to MNL-Capa from A.

Now that we have constructed a set of candidate assortment, the second part of

the algorithm consists of returning the best possible feasible assortment. Algorithm

2 presents a complete description of the algorithm.

Theorem 2.3. Algorithm 2 returns an (1− ε)-optimal solution to MNL-Capa. More-

over, the running time is O (log(nPU) log(nU)n3/ε4).

Proof. Let S∗ be the optimal solution to MNL-Capa and (ˆ̀
1, ˆ̀

2) such that

pu (1 + ε)
ˆ̀
1 ≤

∑
i∈S∗

riui ≤ pu (1 + ε)
ˆ̀
1+1 and u (1 + ε)

ˆ̀
2 ≤

∑
i∈S∗+

ui ≤ u (1 + ε)
ˆ̀
2+1 .

From Lemma 2.1, we know that for (h, g) = (ru (1 + ε)
ˆ̀
1 , u (1 + ε)

ˆ̀
2), A contains an

assortment S̃ such that∑
i∈S̃

piui ≥ ru (1 + ε)
ˆ̀
1 (1− 2ε) and

∑
i∈S̃+

ui ≤ u (1 + ε)
ˆ̀
2 (1 + 2ε).

Consequently,

f(S̃) =

∑
i∈S̃ piui∑
i∈S̃+

ui
≥ 1− 2ε

1 + 2ε
f(S∗) ≥ (1− 4ε)f(S∗).

Running Time. Note that in Algorithm 1, we try L1 ·L2 guesses for the numerator

and denominator values of the optimal solution. For each guess, we formulate a

dynamic program with O (n3/ε2) states. Therefore, the running time of Algorithm 2

is O (L1L2n
3/ε2) = O (log(nPU) log(nU)n3/ε4) which is polynomial in input size and

1/ε. Note that logP and logU are both polynomial in the input size.

2.2 Nested logit model

We now consider the capacitated assortment optimization problem for the nested

logit (NL) model. In a NL model, the set of products is partitioned into nests (or
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subsets) and the choice probability for any product j is decomposed in the probability

of selecting the nest containing j and the probability of selecting j in that nest.

Suppose there are K nests N1, . . . , NK and each nest Nk contains n products with

price pi,k and utility parameter ui,k. As in the MNL model, we assign a utility of

U0 to the no-purchase alternative. We assume that there is no no-purchase option

within each nest, i.e. u0,k = 0 for all k ∈ [K]. Each nest Nk has a dissimilarity

parameter, γk ∈ [0, 1] that models the influence of nest k over others. Note that

these two assumptions are necessary to make NL-Assort tractable [24]. For a set of

assortments (S1, . . . , SK), the probability that nest k is selected is given by

Qk(S1, . . . , SK) =
Uk(Sk)

γk

U0 +
∑K

j=1 Uj(Sj)
γj
,

where Uk(Sk) =
∑

i∈Sk ui,k for all k ∈ [K]. Let Rk denote the expected revenue of

nest k conditional on nest k being selected. Then

Rk(Sk) =
∑
i∈Sk

pi,k
ui,k∑
j∈Sk uj,k

=

∑
i∈Sk pi,kui,k

Uk(Sk)
.

Additionally, each product is assigned a weight wi,k. Let Wk be the available capacity

for nest k for k ∈ [K]. We also assume that there is total available capacity W . We

introduce the following capacitated assortment optimization for the NL model.

max
(S1,...,SK)⊆[n]K

K∑
k=1

Qk(S1, . . . , SK)Rk(Sk)

W (Sk) ≤ Wk, ∀k ∈ [K]

K∑
k=1

W (Sk) ≤ W,

(NL-Capa)

where W (Sk) =
∑

i∈Sk wi,k for all k ∈ [K]. Note that [34] give a 2-approximation

when W =∞ and [31] give a 4-approximation when Wk =∞ for all k ∈ [K]. Here,

we allow both a constraint on each nest as well as a constraint across all nests.
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Before we describe the algorithm, we first reformulate the problem. The epigraph

formulation of NL-Capa is

min z

z ≥
K∑
k=1

Qk(S1, . . . , SK)Rk(Sk), ∀(S1, . . . , SK) ⊆ S,

where

S =

{
(S1, . . . , SK) ⊆ [n]k,W (Sk) ≤ Wk, ∀k ∈ [K],

K∑
k=1

W (Sk) ≤ W

}
.

We can rewrite the previous problem as

min z

U0z ≥
K∑
k=1

Uk(Sk)
γk(Rk(Sk)− z), ∀(S1, . . . , SK) ⊆ S.

From that formulation, we can see that the optimal revenue z∗ is the unique fixed

point to the following equation.

U0z = max
(S1,...,SK)⊆S

{
K∑
k=1

Uk(Sk)
γk(Rk(Sk)− z)

}
.

Note that this reformulation was first used in [34]. We present it here for completeness.

The algorithm consists of performing a binary search on z and for each fixed value of

z, solving this auxiliary problem

max
(S1,...,SK)⊆S

{
K∑
k=1

Uk(Sk)
γk(Rk(Sk)− z)

}
. (2.6)

Since our goal is to design a near-optimal algorithm, we will aim at getting a (1− ε)-

optimal solution to (2.6). To do so, we introduce the following variant auxiliary

problem.

max
(S1,...,SK)∑K
k=1W (Sk)≤W

Sk∈Ak, ∀k∈[K]

{
K∑
k=1

Uk(Sk)
γk(Rk(Sk)− z)

}
.

(Root)
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where Ak is a set of candidate assortments for nest k, for all k ∈ [K]. Moreover, for

each nest k, we introduce the following subproblem, parametrized by b

max
Sk⊆Nk

W (Sk)≤min(Wk,b)

{U(Sk)
γk(R(Sk)− z)}. (Childk)

Lemma 2.2. Assume that the collection of candidate assortment Ak includes a (1−ε)-

approximate solution (Childk) for any b ∈ R+. Then, a (1− ε)-approximate solution

to (Root) also gives a (1− ε)-approximate solution to (2.6).

Proof. For a fixed z, let (S∗1 , . . . , S
∗
K) be the optimal solution to (2.6) and let b∗k =

W (S∗k) for all k ∈ [K]. Note that (2.6) is therefore equivalent to the following

decomposed problem.

K∑
k=1

max
Sk⊆Nk

W (Sk)≤b∗k

Uk(Sk)
γk(Rk(Sk)− z). (2.7)

Therefore, if for k ∈ [K], we let Ŝk ⊆ Ak be the best candidate assortment for b∗k,

then (Ŝ1, . . . , ŜK) is a (1 − ε)-approximate solution to (2.6). The optimal solution

to (Root) is therefore a (1 − ε)-approximate solution to (2.6). This concludes the

proof.

We can now give a high-level description of the FPTAS for NL-Capa. It consists

of a binary search on z. Then, for each fixed value of z, we perform the following

steps.

• For all k ∈ [K], construct a set of candidate assortments Ak for all k ∈ [K] such

that Ak includes a (1− ε)-approximate solution to (Childk) for any b ∈ R+.

• Construct a (1− ε)-approximate solution (Ŝ1, . . . , ŜK) to (Root).

• Adjust z according to the sign of U0z −
∑K

k=1 Uk(Ŝk)
γk(Rk(Ŝk)− z).

We now give more details for each part of the algorithm.
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2.2.1 Binary search and preprocessing

In order to perform a binary search on z, our guess on the optimal revenue z∗, we

first provide upper and lower bounds on z. For each k ∈ [K], let S∗k be the optimal

solution to MNL-Capa, i.e. the constrained assortment that maximizes Rk(Sk) for

each single nest. Let i∗ = arg max{R(S∗k) : k ∈ [K]}. We have the following bounds

on z∗,

zmin =
Ui∗(S

∗
i∗)

γi∗

U0 + Ui∗(S∗i∗)
γi∗
R(Si∗) ≤ z∗ ≤ R(Si∗) = zmax (2.8)

Having both a lower and upper bound on the optimal z∗, we can perform a binary

search on z. Moreover, this allows us to prune products with too little revenue within

each nest. To do so, we first show that we can always remove nest with too little

revenue from any assortment.

Lemma 2.3. Let (Ŝ1, . . . , ŜK) be a (1 − ε)-approximate solution to (Root). For all,

k ∈ [K] such that

Uk(Sk)
γk(Rk(Sk)− z) ≤ εU0zmin/K, (2.9)

replacing Ŝk by ∅ also give a (1− ε)-approximate solution to (Root).

Proof. Let (S∗1 , . . . , S
∗
K) be the optimal solution to parent. For all k ∈ [K], let Ŝk be

a (1− ε)-approximate solution to (Childk). We have

K∑
k=1

Uk(Ŝk)
γk(Rk(Ŝk)− z) ≥ (1− ε)

K∑
k=1

Uk(S
∗
k)
γk(Rk(S

∗
k)− z).

Let K̂ be the set of indices such that (2.9) holds. We have∑
k∈K̂

Uk(Ŝk)
γk(Rk(Ŝk)− z) ≤ εU0zmin ≤ ε

K∑
k=1

Uk(S
∗
k)
γk(Rk(S

∗
k)− z).

This in turn implies that replacing Ŝk by ∅ for all k ∈ [K] yields

K∑
k=1

Uk(Ŝk)
γk(Rk(Ŝk)− z) ≥ (1− 2ε)

K∑
k=1

Uk(S
∗
k)
γk(Rk(S

∗
k)− z).
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This implies the following corollary that allows us to prune products whose revenue

is too small.

Corollary 2.1. For a given value of z, we can remove products such that

ui,k(pi,k − z) ≤ εU0zmin/K

nUk(Nk)γk
= hmin,k

and still approximate (Root) within factor (1− ε).

2.2.2 Constructing Candidate Assortments for (Childk).

In this section, we fix k ∈ [K]. Note that the objective function to (Childk) can be

written as

U(Sk)
γk(R(Sk)− z) =

(∑
i∈Sk

ui,k

)γk−1(∑
i∈Sk

ui,k(ri,k − z)

)
.

We use Algorithm 1 to construct candidate assortments. Indeed, note that we need

to guess the quantities (
∑

i∈S ui) and (
∑

i∈S ui(pi − z)). In order to use Algorithm

1, we need to specify the sets Γε and ∆ε that we use for the guesses. Note that by

Corollary 2.1, we can assume that for all i ∈ [n], ui,k(pi,k− z) > hmin,k. Therefore, we

can use the following set of guesses.

Γε = {hmin,k(1 + ε)`, ` = 0, . . . , L1} and ∆ε = {u(1 + ε)`, ` = 0, . . . , L2}, (2.10)

where L1 = O(log(nPU/hmin,k)/ε) and L2 = O(log(nU/u)/ε) and u, U and P and

respectively the minimum utility, maximum utility and maximum revenue of an item

in the nest k.

Lemma 2.4. Let S∗k be the optimal solution to (Childk). If Uk(S
∗
k)
γk(Rk(S

∗
k) − z) >

εU0zmin/K, then the set A returned by Algorithm 1 using the set of guesses (2.10)

contains a (1 − ε)-optimal solution to (Childk) for any b ∈ R+. Moreover, both the

size of A and the running time of Algorithm 1 are polynomial in the input size and

1/ε.
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Proof. Let S∗k be the optimal solution to (Childk) for a given value b and (ˆ̀
1, ˆ̀

2) such

that

hmin,k (1 + ε)
ˆ̀
1 ≤

∑
i∈S∗k

ui,k(pi,k − z) ≤ hmin,k (1 + ε)
ˆ̀
1+1 , and

u (1 + ε)
ˆ̀
2 ≤

∑
i∈S∗

ui,k ≤ u (1 + ε)
ˆ̀
2+1 .

From Lemma 2.1, we know that for (h, g) = (hmin,k (1 + ε)
ˆ̀
1 , u (1 + ε)

ˆ̀
2), Sh,g is such

that

∑
i∈Sh,g

ui,k(pi,k − z) ≥ pu (1 + ε)
ˆ̀
1 (1− 2ε) and

∑
i∈Sh,g

ui,k ≤ u (1 + ε)
ˆ̀
2 (1 + 2ε).

Consequently,

f(Sh,g) =

∑
i∈Sh,g

ui,k

γk−1∑
i∈Sh,g

ui,k(pi,k − z)

 ≥ 1− 2ε

(1 + 2ε)1−γk
f(S∗k) ≥ (1− 4ε)f(S∗k).

Both the size of A and running time of Algorithm 1 being polynomial in the input

size and 1/ε follow from the proof of Theorem 2.3.

2.2.3 FPTAS for (Root)

We show how to approximately maximize (Root) for a given value of z and given

sets Ak for all k ∈ [K] of candidate assortments for each nest. Note that we have

candidate assortments for each nest and we are trying to stitch together an assort-

ment (S1, . . . , SK). Also, note that candidate assortments satisfy individual nest

constraints. We will now need to make sure that the assortment (S1, . . . , SK) satisfies

the constraint across the different nests. Again, we use ideas similar to Algorithm 2

by guessing the value of the objective function. Consider the following set of guesses.

Γ = {U0zmin(1 + ε)`, ` = 0, . . . , L},
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and L = O(log(zmax/zmin)/ε). For each guess v ∈ Γ, we use a dynamic program to

find a feasible assortment (S1, . . . , SK) such that

K∑
k=1

Uk(Sk)
γk(Rk(Sk)− z) ≥ v.

For every candidate assortment Sk ∈ Ak, we consider the following discretized values

in multiples of εz/K,

r̃Sk =

⌊
Uk(Sk)

γk(Rk(Sk)− z)

εz/K

⌋
. (2.11)

Let F (u, v) be the minimum weight of any subsets (S1, . . . , Sp) ⊆ (N1, . . . , Np) such

that

p∑
k=1

r̃Sk ≥ v.

Let I = bK/(εz)c − K. We can compute F (u, v) for (u, v) ∈ [K] × [I] using the

following recursion. Let Λ = {S1 ∈ A1 : W (S1) ≤ W1, rS1 ≥ v}.

F (1, v) =


min{W (S1) : S1 ∈ Λ} if v > 0 and Λ 6= ∅

0 if v ≤ 0

∞ otherwise

(2.12)

F (u+ 1, v) = min

F (u, v), min
Su+1∈Au+1

W (Su+1)≤Wu+1

W (Su+1) + F (u, v − rSu)

 (2.13)

Algorithm 3 details the procedure.

Algorithm 3 FPTAS for (Root)

1: For h ∈ Γε,
(a) For k ∈ [K], let Ak be the set of candidate assortment returned by Algorithm
1.
(b) For k ∈ [K] and Sk ∈ Ak, compute discretization of coefficients r̃Si using
(2.11).
(c) Compute F (u, v) for all (u, v) ∈ [K]× [I] using (2.12).
(d) Let Sh be the subset corresponding to the state F (K, I).

2: Return the best feasible solution to (Root) from ∪h∈ΓεSh
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Lemma 2.5. Algorithm 3 returns a (1−ε)-approximate solution to (Root). Morever,

the running time is polynomial in input size and 1/ε.

The proof is similar to the proof of Lemma 2.4. Putting together the different

results yields the following result.

Theorem 2.4. There is an FPTAS for NL-Capa with running time polynomial in n,

K and the input size when γk ∈ [0, 1] and u0,k = 0 for all k ∈ [K].

2.3 d-level nested logit

We also extend our FPTAS to the setting where the choice model is given by a d-level

nested logit (dNL) model. [48] show how to solve dNL-Assort in polynomial time. We

adapt the technique used in the previous section to approximate dNL-Capa. We have

n products indexed by {1, 2, . . . , n} and the no purchase option denoted by 0. We

additionally have a d-level tree denoted by (T, V ) with vertices V and edges E. The

tree has n leaf nodes at depth d, corresponding to the n products. We use Children(j)

to denote the set of child nodes of node j in the tree and Parent(j) to denote the

parent node of node j. Each node v ∈ V has nv children and is associated with a set

of products, or leaf nodes, that are included in the subtree rooted at node j. Each

assortment S ⊆ [n] defines a collection of subsets (Sv : v ∈ V ) at each node of the

tree. If v is a leaf node, then

Sv =

 {j} if j ∈ S

∅ otherwise
.

When v is not a leaf node, we define Sv recursively by setting Sv =
⋃
w∈Children(v) Sw.

Each node is associated with a dissimilarity parameter γv ∈ [0, 1]. We define the
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utility of each leaf node v as

Sv =

 uj if j ∈ S

∅ otherwise
,

and the utility of any non leaf node is defined by

Uv(Sv) =

 ∑
k∈Children(v)

Uk(Sk)

γv

.

The revenue are defined similarly by recursion. For all non leaf node, we have

Rv(Sv) =
∑

k∈Children(j)

Uk(Sk)R(Sk)∑
`∈Children(j)

U`(S`)

Furthermore, each assortment Sv has a weight W (Sv) equal to the sum of the weights

of all the leave nodes includes in the subtree rooted at v. We assume that there is a ca-

pacity constraint Wv associated with each node v ∈ V . The assortment optimization

problem under the d-level nested logit can be written as

max
W (Sv)≤Wv ,∀v∈V

Rroot(Sroot). (dNL-Capa)

We use a similar approach where we construct candidate assortments at each node

using a dynamic program . To construct the set of candidate assortments, we use the

sets of candidate assortments of the children nodes.

Theorem 2.5. There is an FPTAS for dNL-Capa with running time polynomial in

n, d,and the input size.

Moreover, note that this framework can be used to solve NL-Capa with additional

constraints on the nests as long as they are representable in a tree structure.

Corollary 2.2. There is a FPTAS for NL-Capa with additional capacity constraints

when those constraints have a nested structure.
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We now present the algorithm for dNL-Capa. As for the NL model, the problem

can be formulated as a fixed point equation. More precisely, the optimal revenue z∗

is the unique fixed point to the following equation.

U0z = max
(S1,...,SnRoot )⊆Children(Root)

W (Sv)≤Wv ,∀v∈V

 ∑
v∈Children(Root)

Uv(Sv)
γv(Rv(Sv)− z)

 .

For a fixed z, we need to solve this problem

max
(S1,...,SnRoot )⊆Children(Root)

W (Sv)≤Wv ,∀v∈V

 ∑
v∈Children(Root)

Uv(Sv)
γv(Rv(Sv)− z)

 . (2.14)

Similarly, we introduce the following auxiliary problems.

max
(S1,...,SnRoot )⊆Children(Root)∑
v∈Children(Root)W (Sv)≤WRoot

Sv∈Av , ∀v∈[nv ]

 ∑
v∈Children(Root)

Uv(Sv)
γv(Rv(Sv)− z)

 .
(d-Root)

where Ak is a set of candidate assortments for node v, for all v ∈ V . Moreover, for

each node v ∈ V , we introduce the following subproblem, parametrized by b

max
(S1,...,Snv )⊆Children(v)∑

w∈Children(v)
W (Sw)≤min(Wv ,b)

Sw∈Aw,∀w∈Children(v)

 ∑
w∈Children(v)

U(Sw)

γv−1 ∑
w∈Children(v)

U(Sw)(R(Sw)− z)

 .

(Nodev)

Inductively using the the proof of Lemma 2.2, we have the following lemma which

allows us to construct a near optimal solution starting from the lower levels of the

trees and building up a solution.

Lemma 2.6. Assume that the collection of candidate assortment Av includes a (1−ε)-

approximate solution (Nodev) for all v ∈ V \{Root} and any b ∈ R+. Then, a (1− ε)-

approximate solution to (d-Root) also gives a (1− ε)-approximate solution to (2.14).

For a given z and node v ∈ V , we construct candidate assortments sequentially

from the candidate assortment from Children(v). We only detail this step as the rest

of the algorithm is similar to the algorithm for the NL model.
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Constructing Candidate Assortment. For a fixed node v ∈ V , the objective

function to (Nodev) can be written as ∑
w∈Children(v)

U(Sw)

γv−1 ∑
w∈Children(v)

U(Sw)(R(Sw)− z)

 .

We use a dynamic program to construct a set of candidate assortment for node v

based on candidate assortment of its children. The algorithm is similar in spirit

to Algorithm 1. The only difference is that instead of items, we have candidate

assortments. For each guesses (h, g), we discretize the revenues and utilities of the

candidate assortments of the children node as follows. For all p ∈ [nv] and all S ∈ Ap,

we define

r̃S =

⌊
U(S)(R(S)− z)

εh/nv

⌋
and ũS =

⌈
U(S)

εg/nv

⌉
.

Note that as for the NL model, we can preprocess the quantities and get a universal

lower bounds on our guess in order to have polynomially many guesses (h, g). The

rest of the construction is exactly similar to Algorithm 3 where instead of returning

the best feasible solution, we store all the candidate assortment into a set Av.

2.4 Mixtures of multinomial logit model

We next study the assortment optimization problem for a mixture of MNL (mMNL)

model which is given by a distribution over K different MNL models. For all k ∈ [K]

and j ∈ [n], let uj,k denote the MNL parameters for segment k and θk denote the

probability of segment k. For any S ⊆ [n], j ∈ S+ = S ∪ {0}, the choice probability

of product j is given by

π(j, S) =
K∑
k=1

θk
uj,k∑
i∈S+

ui,k
.
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Each product i ∈ [n] has a price pj and weight wi. Let W denote the total available

capacity. mMNL-Capa can be formulated as follows.

max
S⊆[n]

{
K∑
k=1

θk

∑n
j∈S pjuj,k

u0,k +
∑

j∈S uj,k

∣∣∣∣∣ ∑
j∈S

wj ≤ W

}
(mMNL-Capa)

[66] show that without any constraint mMNL-Assort is NP-hard even when K = 2,

i.e. for a mixture of two MNL models. We present a FPTAS for the mMNL-Capa

problem when the number of mixtures is constant. The idea is similar to the FPTAS

for MNL-Capa. Since the objective function is a sum of ratios instead of a single ratio,

we guess the value of each numerator (
∑
j∈S∗

pjuj,k) and each denominator (
∑
j∈S∗

uj,k),

for an optimal solution, S∗ within a factor of (1 + ε). We then try to find a feasible

assortment (satisfying the capacity constraint) with the numerator and denominator

values approximately equal to the guesses using a dynamic program. The algorithm

is very similar to the FPTAS for MNL-Capa and we defer the details of the algorithm

to Appendix A.1.

Theorem 2.6. There is a fully polynomial time approximation scheme (FPTAS) for

mMNL-Capa when the number of mixtures, K, is constant.

The running time of our algorithm is exponential in the number of mixtures K.

We next show that a super polynomial dependence on K is necessary for any near-

optimal algorithm. In other words, there exist no near optimal algorithm whose

running time depends polynomially on K.

2.4.1 Hardness for arbitrary number of mixtures

We show that even without any constraint, mMNL-Assort is hard to approximate

within any reasonable factor when the number of MNL segments, K is not constant.

In particular, we show that there is no polynomial time algorithm (polynomial in

n,K and the input size) with an approximation factor better than O(1/K1−δ) for

42



any constant δ > 0 for mMNL-Assort unless NP ⊆ BPP . This implies that if we

require a near-optimal algorithm for mMNL-Assort, a super-polynomial dependence

on the number of mixtures is necessary.

[3] show that the assortment optimization problem is hard to approximate within

a factor of O(1/K1−δ) for any δ > 0 when the choice model is given by a distribution

over K rankings by an approximation preserving reduction from the independent

set problem. We adapt the reduction in [3] to show a hardness of approximation

mMNL-Assort.

Theorem 2.7. There is no polynomial time algorithm (polynomial in n,K and the

input size) that approximates mMNL-Assort within a factor O(1/K1−δ) for any con-

stant δ > 0 unless NP ⊆ BPP .

Proof. We prove this by a reduction from the independent set problem. In a maximum

independent set problem, we are given an undirected graph G = (V,E) where V =

{v1, . . . , vn}. The goal is to find a maximum cardinality subset of vertices that are

independent.

We construct an instance of mMNL-Assort as follows. We have one product and

one MNL segment corresponding to each vertex in G. Therefore, n = K = |V | in the

MMNL model. For any MNL segment k corresponding to vk ∈ V , we only consider

a subset of products corresponding to a subset of neighbors of vk in G. In particular,

we consider the following utility parameters.

uj,k =


1 if j = k or j = 0

n2 if (vj, vk) ∈ E and j < k

0 otherwise

pi = n3(i−1), i ∈ [n]

θk =
θ

n3(k−1)
, k ∈ [n]

(2.15)
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where θ ∈ [1/2, 1] is an appropriate normalizing constant. Note that the utility of

any product j ∈ [n] for segment k ∈ [n], uj,k > 0 only if (vj, vk) ∈ E and j < k.

We first show that if there is an independent set, I ⊆ V where |I| = t, we can

find an assortment with revenue θt/2. Consider the set of products, S corresponding

to vertices in I, i.e.,

S = {j | vj ∈ I}.

Then, it is easy to observe that the revenue of S is exactly θ · t/2.

Next, we show that if there is an assortment S with expected revenue R(S), then

there exists an independent set of size at least b2 ·R(S)/θc. For any segment k ∈ [K],

let Rk denote the contribution of segment k to the expected revenue of assortment

S, i.e.,

Rk = θk ·
∑

j∈S pjuj,k

u0,k +
∑

j∈S uj,k
, and R(S) =

K∑
k=1

Rk.

We show Rk ≥ θ/2 or Rk ≤ (2θ)/n2. Let

N(k) = {j | (vj, vk) ∈ E, j < k}.

Case 1 (N(k) = ∅): If k /∈ S, then Rk = 0. On the other hand, if k ∈ S, then

Rk = θk ·
pkuk,k

u0,k + uk,k
=

θ

n3(k−1)
· n

3(k−1)

2
=
θ

2
. (2.16)

Case 2 (N(k) 6= ∅): In this case, |N(k)| ≥ 1. Therefore,

Rk =
θ

n3(k−1)
·
n3(k−1) + n2 ·∑j∈N(k) n

3(j−1)

2 + |N(k)| · n2
≤ 2 · θ

n2
.

Therefore,(
|{k ∈ S | N(k) = ∅}| · θ

2

)
≤ R(S) ≤

(
|{k ∈ S | N(k) = ∅}| · θ

2

)
+

2 · θ
n
. (2.17)

We can now construct an independent set, I as follows:

I = {vk ∈ V | k ∈ S,N(k) = ∅} .
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We claim that I is an independent set. For the sake of contradiction, suppose there

exist vi, vj ∈ I (i < j) such that (vi, vj) ∈ E. Since vi, vj ∈ I, i, j ∈ S and

N(i) = N(j) = ∅. Moreover, since i < j and (vi, vj) ∈ E, i ∈ N(j) which implies

N(j) 6= ∅; a contradiction. Therefore, I is an independent set. Also,

|I| = |{k ∈ S | N(k) = ∅}| =
⌊

2 ·R(S)

θ

⌋
,

where the second equality follows from (2.17). Therefore, if I∗ is the optimal indepen-

dent set and R∗ is the optimal expected revenue of the corresponding mMNL-Assort

instance (2.15), then ⌊
2 ·R∗
θ

⌋
≤ |I∗| ≤ 2 ·R∗

θ
.

Consequently, an α-approximation for MMNL-Assort implies an O(α)-approximation

for the maximum independent set problem. Since the maximum independent set is

hard to approximation within a factor better than O(1/n1−δ) (where |V | = n = K)

for any constant δ > 0 (see [29]), the above reduction implies the same hardness of

approximation for mMNL-Assort.

The above theorem shows that mMNL-Assort is hard to approximate. The ap-

proximation preserving reduction from the independent set problem gives several in-

teresting insights. First, note that each MNL segment in the reduction only contains

a subset of products corresponding to a subset of vertices in the neighborhood of the

corresponding vertex. This is quite analogous to the consideration set model consid-

ered in [39] where a local neighborhood defines the consideration set. Such graphical

model based consideration set instances are quite natural and our reduction shows

that mMNL-Assort is hard even for these naturally occurring instances. Therefore, our

reduction gives a procedure to construct naturally arising hard benchmark instances

of mMNL-Assort that may be of independent interest.

We can extend the hardness of approximation even for the continuous relaxation

of mMNL-Assort.
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Theorem 2.8. Consider the following continuous relaxation of the mMNL-Assort

problem.

max
x∈[0,1]n

{
K∑
k=1

θk

∑n
j=1 pjuj,kxj

u0,k +
∑n

j=1 uj,kxj

}
(2.18)

There is no approximation algorithm (with running time polynomial in K) that has

an approximation factor better than O(1/K1−δ) for any constant δ > 0 unless NP ⊆

BPP .

We present the proof in Appendix A.3.

In this chapter, we have studied Capa and provided a flexible algorithmic frame-

work to derive FPTAS for various RUM models. For these models, a near-optimal al-

gorithm is best possible since even MNL-Capa is NP-hard. Moreover, for mMNL-Assort,

we strengthen the known hardness result (mMNL-Assort is NP-hard under a mixture

of 2 MNL) and show that when the number of mixtures is arbitrary, the problem

becomes hard to approximate within any reasonable factor. In particular, this pre-

cludes a polynomial dependence on the number of mixtures. Recall that from a

richness standpoint, the MNL model and the mixture of MNL model sit at the two

extremes of the spectrum within the class of RUM models. The stark difference be-

tween MNL-Assort and mMNL-Assort in terms of tractability for even the simplest

problem Assort is a great example of tradeoff between predictive power and tractabil-

ity.
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Chapter 3

Approximation algorithms for assortment optimization

problems under a Markov chain based choice model

In this chapter, we focus on assortment optimization problems under a Markov chain

based choice model. MC-Assort admits a polynomial time algorithm through an LP

reformulation of the problem [10]. We start by showing in Section 3.2 that adding

a cardinality constraint makes the problem much harder. In particular, MC-Card is

NP-hard to approximate within a factor better than some given constant, even when

all products have uniform prices. It is interesting to note that, while MC-Assort can be

solved optimally in polynomial time, MC-Card is APX-hard. In contrast, in both the

MNL and NL models, Assort and Card have the same complexity. We also consider

the case of totally-unimodular (TU) constraints on the assortment. We show that

MC-TU is hard to approximate within a factor of O(n1/2−ε) for any fixed ε > 0, where

n is the number of products. This result drastically contrasts that of [23], who prove

that MNL-TU model can be solved in polynomial time.

The harness results motivate us to consider approximation algorithms for MC-Card

and MC-Capa. For the special case when all product prices are equal, we show in

Section 3.3.1 that we can obtain a (1−1/e)-approximation for MC-Card using a greedy

algorithm. In fact, for this special case of uniform prices, we can get a (1 − 1/e)-

approximation for more general constraints such as a constant number of capacity

constraints and matroid constraint.

In Section 3.3.2 we show that a simple greedy algorithm fails when the prices

are arbitrary. This motivates us to consider an alternative approach to solving this
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problem. In particular, we introduce a new algorithmic framework in Section 3.3.3.

The algorithm is based on a “local-ratio” paradigm that builds the solution itera-

tively. In each iteration, the algorithm makes an appropriate greedy choice and then

constructs a modified instance such that the final objective value is the sum of the

objective value of the current solution and the objective value of the solution in the

modified instance. Therefore, the local-ratio paradigm allows us to capture the ex-

ternality of our action in each iteration on the remaining instance by constructing an

appropriate modified instance; thereby, linearizing the revenue function even though

the original objective function is non-linear. This technique may be of independent

interest.

We next show how to use this framework to solve various assortment optimization

problems. In Section 3.4, we give an alternative exact algorithm to MC-Assort. Section

3.5 gives a 2-approximation algorithm for MC-Card and 3.6 gives a 3-approximation

algorithm for MC-Capa. On top of these worst-case guarantees, we show in Section 3.7

through numerical experiments that our constant factor algorithm exhibit very good

practical performance (both in terms of approximation and running time). Finally,

in Section 3.8, we consider a robust variant of the assortment optimization problem

(MC-Rob) and show how similar ideas can be applied to design an exact algorithm

for this setting. Furthermore, we give insights into the structure of the optimal

assortment for MC-Rob.

Finally, in Section 3.9, we consider a special case of Markov chain model when

the underlying Markov chain has a constant rank. Under this extra assumption, we

can leverage the tools developed in Chapter 2 to design a near optimal algorithm

for MC-Capa. The running time of the algorithm is exponential in the rank of the

underlying Markov chain. We therefore obtain an FPTAS only when the rank is

constant.
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3.1 Markov chain model

We denote the universe of n products by the setN = {1, 2, . . . , n} and the no-purchase

option by 0, with the convention that N+ = N ∪ {0}. We consider a Markov chain

M with states N+ to model the substitution behavior of customers. This model is

completely specified by initial arrival probabilities λi for all states i ∈ N+ and the

transition probabilities ρij for all i ∈ N+, j ∈ N+. If a retailer chooses to offer a

subset of products S to consumers, then the corresponding states in S of the Markov

chain become absorbing states. A customer arrives in state i with probability λi if

the state is absorbing. Otherwise, the customer transitions to a different state j 6= i

and the process continues until the customer reaches an absorbing state. In other

words, the probability of a random customer purchasing product i with S being the

offer set of products is the probability that the customer reaches state i before any

other absorbing states in the underlying Markov chain. As before, let pi denote the

price of product i.

Following [10], we assume that for each state j ∈ N , there is a path to state

0 with non-zero probability. For a given offer set S ⊆ N , let π(i, S) be the choice

probability that item i is chosen when the assortment S is offered. We have

π(i, S) = λi +
∑
j /∈S

λjρj,i +
∑

j /∈S,k/∈S

λjρj,kρk,i + . . .

Additional notation. For any (possibly empty) pairwise-disjoint subsets U, V,W ⊆

N+, let Pj(U ≺ V ≺ W ) denote the probability that starting from j, we first visit

some state in U before visiting any state in V ∪W , and subsequently visit some state

in V before visiting any state in W , with respect to the transition probabilities ofM.

Let P(U ≺ V ≺ W ) =
∑n

j=1 λjPj(U ≺ V ≺ W ). Note that with this notation, we

can write π(i, S) = P(i ≺ S+\{i}) where S+ = S ∪ {0} for all S ⊆ N (in this case,

W = ∅).
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3.2 Hardness of approximation

In this section, we present our hardness of approximation results for the constrained

assortment optimization problem under the Markov chain choice model.

3.2.1 APX-hardness for cardinality constraint with uniform

prices

We show that MC-Card is APX-hard, i.e., it is NP-hard to approximate within a given

constant. In particular, we prove this result even when all products have uniform

prices.

Theorem 3.1. MC-Card is APX-hard, even when all products have equal prices.

Proof. We establish the claim via a gap preserving reduction from minimum vertex

cover on 3-regular (or cubic) graphs. We refer to this problem as VCC. This problem

is known to be APX-hard (see [1]). In other words, for some constant α > 0, it is

NP-hard to distinguish whether the minimum-cardinality vertex cover is of size at

most k or at least (1 + α)k for cubic graphs.

Consider an instance I of VCC, consisting of a cubic graph G = (V,E) on n ver-

tices V = {v1, . . . , vn}. We can assume that k > |E|/3, or otherwise, the distinction

between the two cases above is easy. We construct an instance M(I) of MC-Card

as follows. Each vertex vi ∈ V corresponds to a product i of N . In addition, we

also have the no-purchase option 0. For each vertex v ∈ V , let N(v) denote the

neighborhood of v in G, i.e., N(v) = {u : (u, v) ∈ E}, consisting of exactly 3 vertices.

Now, for all (i, j) ∈ N ×N+ the transition probabilities are defined as

ρij =

 1/4 if vj ∈ N(vi) or j = 0

0 otherwise.
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Finally, for all items i ∈ N , we have an arrival rate of λi = 1/n and a price of pi = 1.

Out of these products, at most k can be selected.

The goal in VCC is to choose a minimum-cardinality set of vertices such that every

edge is incident to at least one of the chosen vertices. Let U∗ ⊆ V be a minimum

vertex cover in G. We show that the instanceM(I) satisfies the following properties:

(a) |U∗| ≤ k ⇒ R(S∗) ≥ 3

4
+

k

4n
,

(b) |U∗| ≥ (1 + α)k ⇒ R(S∗) ≤ 3

4
+

k

4n
− α

16
,

where S∗ is the optimal assortment for M(I). This implies that MC-Card cannot be

approximated within factor larger than 1− α
16

, unless P = NP. To see this, note that

the ratio between 3
4

+ k
4n
− α

16
and 3

4
+ k

4n
is monotone-increasing in k, meaning that

the maximum value attained is 1− α
16

.

Case (a): |U∗| ≤ k. In this case, we can augment U∗ with k − |U∗| additional

vertices chosen arbitrarily from V \ U∗, and obtain a (not-necessarily minimum)

vertex cover U with |U | = k. Now, consider the assortment S = {i : vi ∈ U}, which

is indeed a feasible solution. Since all prices are equal to 1, we can write the expected

revenue of this set as

R(S) = P(S ≺ 0) =
∑
i∈S

λi +
∑
i/∈S

λiPi(S ≺ 0) =
k

n
+

1

n

∑
i/∈S

Pi(S ≺ 0). (3.1)

When starting at any state i /∈ S, the Markov chain moves to 0 with probability 1/4

and gets absorbed. With probability 3/4, the Markov chain moves from i to one of

the vertices in N(i). Since U is a vertex cover, it follows that N(i) ⊆ S. Therefore,

Pi(S ≺ 0) = 3/4 for all i /∈ S. Based on these observations for the optimal assortment

S∗, we have

R(S∗) ≥ R(S) =
k

n
+

3(n− k)

4n
=

3

4
+

k

4n
.
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Case (b): |U∗| ≥ (1 + α)k. Let S be some assortment consisting of k products.

In this case, equation (3.1) is still a valid decomposition of R(S), and we need to

consider two cases for products i /∈ S. If N(i) ⊆ S, then Pi(S ≺ 0) = 3/4 as in

case (a). However, when N(i) * S, there exists j ∈ N(i) such that j /∈ S. Therefore,

there is a probability of 1/16 that starting from i the Markov chain moves to j and

from there to 0. Consequently, for such items, Pi(S ≺ 0) ≤ 3
4
− |N(i)\S|

16
. Therefore,

R(S) =
k

n
+

1

n

∑
i/∈S,N(i)⊆S

3

4
+

1

n

∑
i/∈S,N(i)*S

Pi(S ≺ 0)

≤ 3

4
+

k

4n
− 1

16n

∑
i/∈S,N(i)*S

|N(i)\S|.
(3.2)

To upper bound the latter term, let V (S) be the set of vertices of V corresponding

to S, i.e., V (S) = {vi : i ∈ S}. Let Ē(S) be the set of edges that are not covered

by V (S). We have (2 · |Ē(S)|) =
∑

i/∈S,N(i)*S |N(i)\S|. The important observation

is that |Ē(S)| ≥ αk. Otherwise, V (S) can be augmented to a vertex cover via the

addition of fewer than αk vertices, contradicting |U∗| ≥ (1 + α)k. Now,

|Ē(S)| ≥ αk ≥ α

3
· |E| = αn

2
,

where the second inequality follows from k > |E|/3, and the last equality holds since

|E| = 3n/2, as G is cubic. By inequality (3.2), we have

R(S) ≤ 3

4
+

k

4n
− |Ē(S)|

8n
≤ 3

4
+

k

4n
− α

16
.

Since the above upper bound on R(S) holds for any assortment S of k products, this

must also be true for the maximum-revenue one, S∗.

3.2.2 Totally-unimodular constraints

We show that MC-TU is NP-hard to approximate within factor O(n1/2−ε), for any

fixed ε > 0 for the Markov chain model. This result drastically contrasts that of

[23], who proved that the assortment optimization problem with totally-unimodular
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constraints can be solved in polynomial time when consumers choose according to

the MNL model.

Theorem 3.2. MC-TU cannot be approximated in polynomial-time within a factor

O(n1/2−ε), for any fixed ε > 0, unless P = NP .

To establish our inapproximability results for MC-TU, we demonstrate that totally-

unimodular constraints in the Markov chain model capture the distribution over rank-

ings model as a special case. [3] show that even Assort under a general distribution

over rankings model is hard to approximate within factor O(n1−ε) for any fixed ε > 0

(n is the number of substitutable products). We present the proof in Appendix B.1.

3.3 Local ratio based algorithm design

3.3.1 Special case: uniform price products

When all prices are equal, we show that the revenue function is submodular and mono-

tone. Using the classical result of [59], we have that a greedy algorithm guarantees a

(1− 1/e)-approximation for MC-Card for this special case of uniform prices. We start

with a few definitions. It is worth mentioning that, from a practical point of view, the

uniform-price setting turns the objective function into that of maximizing sales prob-

ability. This scenario is very common when products are horizontally-differentiated,

i.e., differ by characteristics that do not affect quality or price, such as iPads coming

in a variety of colors, or yogurt with different amounts of fat-content.

Definition 3.1. A revenue function R : 2N → R+ is monotone when for all S ⊆ N

and i ∈ N , we have R(S ∪ {i}) ≥ R(S).

Definition 3.2. A revenue function R : 2N → R+ is submodular when for all S ⊆

T ⊆ N and i ∈ N\T , we have R(S ∪ {i})−R(S) ≥ R(T ∪ {i})−R(T ).
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Theorem 3.3. When all products have uniform prices, the revenue function R(·) is

submodular and monotone.

Proof. Let p be the price of every product in N . Since products prices are identical,

for every subset S and product i ∈ N\S, we have

R(S ∪ {i}) = R(S) + p · P(i ≺ 0 ≺ S).

Recall that P(i ≺ 0 ≺ S) is the probability that the Markov chain visits state i

and then visits state 0 without visiting any state in S. When all prices are equal,

the marginal increase in revenue by adding product i is only due to the additional

demand that product i is able to capture. Consequently, R(·) is monotone as the

quantity p · P(i ≺ 0 ≺ S) is non-negative. Moreover, the submodularity of R follows

from the fact that for all S ⊆ T , we have

R(S ∪ {i})−R(S) = p · P(i ≺ 0 ≺ S) ≥ p · P(i ≺ 0 ≺ T ) = R(T ∪ {i})−R(T ).

Therefore, from the classical result of [59] for maximizing a monotone submodular

function subject to a cardinality constraint, we know that the greedy algorithm gives

a (1 − 1/e)-approximation bound for MC-Card with uniform prices. Algorithm 4

describes this procedure in detail. Note that for uniform prices, when |S| < k < n,

Algorithm 4 Greedy Algorithm

1: Let S be the set of states picked so far, starting with S = ∅.
2: While |S| < k and there exists i ∈ N\S such that R(S ∪ {i})−R(S) ≥ 0,

(a) Let i∗ be the item for which R(S ∪ {i}) − R(S) is maximized, breaking ties
arbitrarily.
(b) Add i∗ to S.

3: Return S.

the condition in Step 2 that there exists i ∈ N\S such that R(S ∪{i})−R(S) ≥ 0 is

redundant as the revenue function is monotone, which is not necessarily true for the
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case of arbitrary prices. We include this condition to describe the greedy algorithm

for the general case and to discuss implications for arbitrary prices.

More general constraints for uniform prices. For the special case of uniform

prices, since the revenue function is monotone and submodular, we can exploit the

existing machinery for approximately maximizing submodular monotone functions

subject to a wide range of constraints (see, for instance, [47], [14], [45], [17]). This

way, constant-factor approximations can be obtained for the assortment optimization

under the Markov chain model for more general constraints. For instance, [45] give a

(1− 1/e)-approximation algorithm for maximizing a monotone submodular function

under a fixed number of knapsack (capacity) constraints, and [17] give a (1 − 1/e)-

approximation for maximizing a monotone submodular function under a matroid

constraint.

3.3.2 Bad examples for arbitrary prices

The approximation guarantees we establish for uniform prices do not extend to the

more general setting with arbitrary prices, even for MC-Card. In what follows, we

point out the drawbacks of the natural greedy heuristics, including Algorithm 4, in

approximating MC-Card for arbitrary prices. Intuitively, the performance of Algo-

rithm 4 for general prices can be bad since it can make a low-price product absorbing

that subsequently blocks all probabilistic transitions going into high price products.

We formalize this intuition in the following lemma.

Lemma 3.1. For arbitrary instances of MC-Card with a cardinality constraint of k,

Algorithm 4 can compute solutions whose expected revenue is only O(1/k) times the

optimum.

Proof. Consider the following instance of MC-Card with n = k + 1 items, where k is

the upper bound specified by the cardinality constraint. We have a state s and states
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i = 0, . . . , k. The arrival rates are all equal to 0, except for λs which is equal to 1.

Moreover

pi =

 (1/k) + ε if i = s

1 if i = 1, . . . , k,
ρij =


1/k if i = s and j = 1, . . . , k

1 if i = 1, . . . , k and j = 0

0 otherwise,

where ε ≤ 1/(2k). Figure 3.1 provides a graphical representation of this instance.

Algorithm 4 first picks item s as R({s}) = (1/k) + ε while R({i}) = (1/k), for

s

1

2

k

0

ps =
1
k + ǫ

ρs,i =
1
k

pi = 1

λs = 1

Figure 3.1: A bad example for Algorithm 4.

i = 1, . . . k. Once s is selected, adding any other state cannot increase the revenue.

Therefore, the greedy algorithm gives a revenue of (1/k) + ε. However, the optimal

solution is to offer items 1 to k, which gives a revenue of 1 in total. When ε tends to

0, the approximation ratio goes to 1/k.

In fact, we can show that the above example is the worst possible and Algorithm 4

gives a 1/k-approximation for MC-Card.

Lemma 3.2. Algorithm 4 guarantees a 1/k-approximation for MC-Card.

We present the proof of the above lemma in Appendix B.2.
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Modified greedy algorithm. The bad instance for Algorithm 4 shows that the

algorithm may focus too much on local improvements in each iteration, without

taking into account the information of the entire network induced by the probability

transition matrix or the number of remaining iterations. Therefore, we consider a

modified greedy algorithm that accounts for the Markov chain structure by using

the optimal solution to the unconstrained assortment problem, where there is no

restriction on the number of products picked. This solution can be computed via an

algorithm proposed by [10] (we also give an alternative strongly-polynomial algorithm

for the unconstrained problem in Section 3.4). Intuitively, the products picked by the

unconstrained optimal assortment should not block each other’s demand too much.

Let U∗ be the optimal unconstrained assortment whose associated revenue can be

written as

R(U∗) =
∑
i∈U∗

P(i ≺ U∗+\{i}) · pi. (3.3)

A natural candidate algorithm takes the k products with the largest P(i ≺ U∗+\{i})·pi
value within an unconstrained optimal solution, and sets these states to be absorbing.

Algorithm 5 describes this procedure.

Algorithm 5 Greedy Algorithm on Optimal Unconstrained Assortment

1: Let U∗ be an optimal solution to the unconstrained problem.
2: Sort products of U∗ in decreasing order of P(i ≺ U∗+\{i}) · pi.
3: Return S = {top k products in the sorted order}.

We show in the following lemma that even Algorithm 5 performs poorly in the

worst case. In fact, we present an example where every subset of k items of the

optimal solution U∗ has revenue a factor k away from the optimal.

Lemma 3.3. There are instances where the revenue obtained by Algorithm 5 is far

from optimal by a factor of k/|U∗| where k is the upper bound in the cardinality

constraint.
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Proof. Consider the following instance of the problem with n+2 products (or states).

We have a state s and states i = 1, . . . , n and state 0 corresponding to the no-purchase

option. The arrival rates are all equal to 0, except for λs which is equal to 1. Moreover

pi =

 1− ε if i = s

1 if i = 1, . . . , n,
ρij =


1/n if i = s and j = 1, . . . , n

1 if i = 1, . . . , n and j = 0

0 otherwise,

where ε > 0. Figure 3.2 provides a graphical representation of this instance. For this

s

1

2

n

0

ps = 1− ǫ

ρs,i =
1
n

pi = 1

λs = 1

Figure 3.2: A bad example for Algorithm 5.

example, the unconstrained optimal assortment is U∗ = {1, . . . , n}, and the greedy

algorithm on U∗ selects k products among U∗, meaning that a total revenue of k/n is

obtained. However, the optimal solution of the constrained problem is to only offer

item s, which gives a revenue of 1− ε. As ε tends to 0, the approximation ratio goes

to k/|U∗|.

The poor performance of Algorithm 5 on the above example illustrates that an

optimal assortment for the constrained problem may be very different from that

of its unconstrained counterpart. Hence, searching within an unconstrained optimal

solution for a good approximate solution to the constrained problem can be unfruitful

58



in general. It is worth noting that the lower bound of k/|U∗| for Algorithm 5 is tight,

as stated in the following lemma, whose proof is given in Appendix B.3.

Lemma 3.4. Algorithm 5 guarantees a k/|U∗|-approximation algorithm to MC-Card.

The analysis of the two greedy variants for the cardinality constrained assortment

optimization under the Markov chain model provides important insights that we use

towards designing a good algorithm for the problem.

3.3.3 High-level ideas for algorithm design

As the example in Figure 3.1 illustrates, Algorithm 4 could end up with a highly

suboptimal solution due to picking products that cannibalize, i.e. block, the demand

for higher price products. Picking the highest price product will eliminate such a

concern. However, a high price product might only capture very little demand, and

therefore, generate very small revenue as illustrated in the example in Figure 3.2.

When there is a capacity constraint on the assortment, picking such products may

not be an optimal use of the capacity. This motivates us to choose the highest price

product in an appropriate consideration set. Intuitively, the consideration set will

consist of products that generate sufficiently high incremental revenue.

We first give a high-level description of our algorithm that builds the solution

iteratively. Let Mt denote the problem instance in any iteration t. The algorithm

(ALG) considers the following two steps in each iteration t:

1. Greedy Selection. Define an appropriate consideration set Ct of products, and

pick the “highest price” product from Ct.

2. Instance Update. Construct a new instance, Mt+1, of the constrained assort-

ment optimization problem with appropriately modified product prices and
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transition probabilities such that

ALG(Mt) = ∆t + ALG(Mt+1),

where ALG(·) is the revenue of the solution obtained by the algorithm on a

given instance, and ∆t is the incremental revenue in the objective value from

the item selected in iteration t.

The instance update step linearizes the revenue function even though the original

revenue function is non-linear, which is crucial for our iterative solution approach. We

can also view the update rule as a framework to capture the externality of our actions

in each iteration of the algorithm. To completely specify the algorithm, we need to

provide a precise definition for the consideration set in the greedy step and for the

instance update step. For both MC-Card and MC-Capa, the instance update step is

similar, as explained in Section 3.3.4. The consideration set, however, depends on the

particular optimization problem being considered and will be defined later on. The

intuition is to include products whose incremental revenue is above an appropriately

chosen threshold. Our algorithm can be viewed in a local-ratio framework (see, for

instance, [6], [5] and [7]). Therefore, we will interchangeably refer to the instance

updates as local-ratio updates. However, we would like to note that the local-ratio

framework does not provide a general recipe for designing an update rule or analyzing

the performance bound. In most algorithms in this framework, the update rule follows

from a primal-dual algorithm. However, for MC-Capa, we do not even know of any

good LP formulation and the instance update rule requires new ideas.

3.3.4 Instance update in local ratio algorithm

Notation. Given an instanceM of the Markov chain model, we define an updated

instance M(S) given that S is made absorbing by modifying the product prices as

well as the probability transition matrix. Note that we index the updates by a set
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S. Therefore, the instance Mt introduced in the preceding discussion is going to be

thought of as M(St−1), where St−1 denotes the set of products picked up to (and

including) step t− 1. For an instanceM(S), we will denote by pSi the updated price

of product i, and by ρSij the updated transition probabilities for every i ∈ N , j ∈ N+.

Note that we do not change the arrival rate to any state, i.e., λSi = λi for all i ∈ N .

We also denote by RS : 2N → R the revenue function associated with the instance

M(S) and by PS(·) the probability of any event with respect to the instance M(S).

Price update. First, we introduce the price updates, such that when S is made

absorbing, we account for the revenue generated by every state j ∈ S. To this end,

consider a unit demand at state i /∈ S. This unit demand generates a revenue of pi

when i is made absorbing. On the other hand, when i is not absorbing, this unit

demand at i generates a revenue of∑
j∈S

Pi(j ≺ S+\{j}) · pj.

The above revenue (which was already accounted for by S) is lost when i is also made

absorbing in addition to S. Hence, the net revenue per unit demand at i when we

make it absorbing, provided that S is already absorbing, is

pi −
∑
j∈S

Pi(j ≺ S+\{j})pj,

which we denote as the adjusted price pSi . Note that the adjusted prices can be

negative, corresponding to the situation where adding a product decreases the overall

revenue. The price update is explicitly described in Figure 3.3.

Transition probabilities update. Since the subset of states S is set to be ab-

sorbing, we will simply redirect the outgoing probabilities from all states in S to 0.

This is described in Figure 3.3.

We would like to note that the probabilities Pi(j ≺ S+\{j}), needed for our price

updates, can be interpreted as the choice probability π(j, S) for a modified instance
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Price update:

pSi =

{
0 if i ∈ S

pi −
∑
j∈S

Pi(j ≺ S+\{j})pj otherwise.

Transition probabilities update:

ρSij =


1 if i ∈ S and j = 0
0 if i ∈ S and j 6= 0
ρij otherwise.

Figure 3.3: Instance update in local-ratio algorithm.

with λi = 1 and λ` = 0 for ` 6= i. Therefore, these quantities can be efficiently

computed via traditional Markov chain tools (see, for instance, [? ]).

3.3.5 Structural properties of the updates

We first show that the local-ratio updates allow us to linearize the revenue function.

Lemma 3.5. R(S1 ∪ S2) = R(S1) +RS1(S2) for every S1, S2 ⊆ N .

Proof. Assume without lost of generality that S1 ∩ S2 = ∅, since the products in

S1 ∩ S2 all have 0 as their adjusted price and we can then apply the proof to S2\S1.

Using the definition of the local ratio updates, we have

RS1(S2) =
∑
i∈S2

PS1(i ≺ S2+\{i})pS1
i

=
∑
i∈S2

PS1(i ≺ S2+\{i})
(
pi −

∑
j∈S1

Pi(j ≺ S1+\{j})pj
)

=
∑
i∈S2

PS1(i ≺ S2+\{i})pi −
∑
j∈S1

∑
i∈S2

PS1(i ≺ S2+\{i})Pi(j ≺ S1+\{j})pj.

With the definition of ρS1 , note that all products of S1 are redirected to 0. This,

together with the fact that S1 ∩ S2 = ∅ implies that for all i ∈ S2, we have PS1(i ≺
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S2+\{i}) = P(i ≺ (S2 ∪ S1)+\{i}). Consequently,

R(S1) +RS1(S2) =
∑
j∈S1

(
P(j ≺ S1+\{j})−

∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})Pi(j ≺ S1+\{j})
)
pj

+
∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})pi

=
∑
j∈S1

(P(j ≺ S1+\{j})− P(S2 ≺ j ≺ S1+\{j})) pj

+
∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})pi

=
∑
j∈S1

P(j ≺ (S2 ∪ S1)+\{j})pj +
∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})pi

=R(S1 ∪ S2),

where the second equality holds since∑
i∈S2

P(i ≺ (S2 ∪ S1)+\{i})Pi(j ≺ S1+\{j}) = P(S2 ≺ j ≺ S1+\{j}),

as by the Markov property, both the left and right terms in the above equality denote

the probability that we will visit some state in S2 before any state in S1+, followed

by state j ∈ S1 before any other state in S1+.

The next lemma shows that the composition of two local ratio updates over subsets

S1 and S2 is equivalent to a single local ratio update over S1 ∪ S2. This property is

crucial for repeatedly applying local-ratio updates.

Lemma 3.6. Let S1 ⊆ N be some assortment, and let M1 = M(S1). For any S2

with S1 ∩ S2 = ∅, the instance M1(S2) is identical to the instance M(S1 ∪ S2) in

terms of product prices and transition probabilities.

It suffices to verify that (pS1
i )S2 = pS1∪S2

i for all S1,S2 and i /∈ S1∪S2, as the above

identity clearly holds for the transition matrix updates. The proof is similar to that

of Lemma 3.5, and is presented in Appendix B.4. Putting the previous two lemmas

together gives the following claim.
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Lemma 3.7. RS1(S2 ∪ S3) = RS1(S2) + RS1∪S2(S3) for any pairwise-disjoint sets

S1, S2, S3 ⊆ N .

3.4 Unconstrained assortment optimization

As a warmup, we first present an alternative exact algorithm for MC-Assort by using

the local-ratio framework. Our algorithm is based on the observation that it is always

optimal to offer the highest price product for the unconstrained problem, as it does not

cannibalize the demand of other products. The latter property is implied by a slightly

more general claim, formalized as follows. For any x ∈ R, let [x]+ = max(x, 0).

Lemma 3.8. Let S ⊆ N . For any product i /∈ S with price pi ≥ [maxj∈S pj]
+, we

have R(S ∪ {i}) ≥ R(S).

Proof. From Lemma 3.5, we have that

R(S ∪ {i}) = R(S) +RS({i}) = R(S) + PS(i ≺ 0) · pSi .

Now, pi ≥ [maxj∈S pj]
+ and

pSi = pi −
∑
j∈S

Pi(j ≺ S+ \ {j}) · pj ≥ 0,

which implies R(S ∪ {i}) ≥ R(S).

The Algorithm. Based on the above lemma, we present an alternative exact algo-

rithm for MC-Assort. In particular, we define the consideration set in each iteration

to be the set of all products. Therefore, we select the highest adjusted price prod-

uct in every iteration (breaking ties arbitrarily) and update the prices and transition

probabilities according to the local ratio updates described in Figure 3.3. This se-

lection and updating process is repeated until all adjusted prices are non-positive, as

explained in Algorithm 6.
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Algorithm 6 Local Ratio for Unconstrained Assortment

1: Let S be the set of states picked so far, starting with S = ∅.
2: While there exists i ∈ N\S such that pSi ≥ 0,

(a) Let i∗ be the item for which pSi is maximized, breaking ties arbitrarily.
(b) Add i∗ to S.

3: Return S.

Theorem 3.4. Algorithm 6 computes an optimal solution for MC-Assort.

Proof. The correctness of Algorithm 6 is based on the observation that it is always

optimal to offer the highest adjusted price product, as long as this price is non-

negative. Suppose product 1 is the highest price product. From Lemma 3.8, we get

R(S ∪ {1}) ≥ R(S) for any assortment S. Therefore, we can assume that product 1

belongs to the optimal assortment. From Lemma 3.5, we can write

max
S⊆N

R(S) = R({1}) + max
S′⊆N\{1}

R{1}(S ′).

It remains to show that, when we get to an iteration where our current absorption

set is X, and the adjusted price of every state in the modified instanceM(X) is non-

positive, then X is an optimal solution to M. To see this, by repeated applications

of Lemmas 3.5 and 3.6, we have

max
S⊆N

R(S) = R(X) + max
S′⊆N\X

RX(S ′).

However, since the adjusted price of every state in the instanceM(X) is non-positive,

we must have RX(S ′) ≤ 0 for all S ′ ⊆ N\X. Hence, it is optimal not to make any

state in M(X) absorbing, which implies that X is an optimal solution to M.

Implications. Our algorithm for MC-Assort provides interesting insights for some

known results about both the optimal stopping problem and MNL-Assort. [10] relate

MC-Assort to the optimal stopping time on a Markov chain (see [20]). In this problem,

we need to decide at each state i whether to stop and get the reward pi, or transition

according to the transition probabilities of the Markov chain. Moreover, there is an
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absorbing state 0 with price p0 = 0. Algorithm 6 for MC-Assort gives an alternative

strongly polynomial time algorithm for the optimal stopping problem.

[10] prove that the MNL choice model is a special case of the Markov chain

based choice model. By analyzing Algorithm 6 to solve MNL-Assort, we can recover

the structure of the optimal assortment being nested by prices, i.e., the optimal

assortment consists of the ` top-priced items for some `. We give an explicit expression

for our local ratio updates when the underlying choice model is MNL in Appendix B.5.

3.5 Cardinality constrained assortment

optimization

In this section, we present a (1/2−ε)-approximation for MC-Card, for any fixed ε > 0.

Following the local-ratio framework described in Section 3.3.3, our algorithm for the

cardinality constrained case also selects a product with high adjusted price in each

step from an appropriate consideration set. The consideration set is defined to avoid

picking products that have a high adjusted price but capture very little demand. In

particular, the consideration set includes only products whose incremental revenue is

at least a certain threshold.

The Algorithm. Our algorithm is iterative and selects a single product in each

step. Let St be the set of selected products by the end of step t, starting with S0 = ∅.

We use σt to denote the product picked in step t, meaning that St = {σ1, . . . , σt}. At

every step t ≥ 1, we select the highest adjusted price product (with respect to pSt−1 ,

breaking ties arbitrarily) among products in the following consideration set:

Ct =

{
i ∈ N\St−1 : RSt−1({i}) ≥ α

R(S∗)

k

}
,

where S∗ is the optimal solution, k is the cardinality bound, and α ∈ (0, 1) is a param-

eter whose value will be optimized later. Note that Ct is defined at the beginning of

66



step t, whereas St is defined at the end of step t, and includes the product selected in

this step. Once the item σt is selected, we recompute the adjusted prices via the local

ratio update described in Figure 3.3, and update the consideration set to get Ct+1.

The algorithm terminates when either k products have already been picked (i.e., upon

the completion of step k), or when the consideration set Ct becomes empty.

Guessing the value of R(S∗). Since the optimal revenue R(S∗) is not known

a-priori, we need to describe how the value of R(S∗) is approximately guessed to

complete the algorithm’s description. A natural upper bound for R(S∗) is R(U∗),

when U∗ is the optimal unconstrained solution. From Lemma 3.4, we know that

R(S∗) ≥ k
|U∗|R(U∗). Now, given an accuracy parameter 0 < ε < 1, let

Bj =
k

|U∗|R(U∗)(1 + ε)j, j = 1, . . . , J

J = min {j ∈ N : Bj ≥ R(U∗)} .
(3.4)

Note that J = O(1
ε

log k). For each guess Bj for the true value of R(S∗), we run the

algorithm, and eventually return the best solution found over all runs. Algorithm 7

describes the resulting procedure for a particular choice of Bj and threshold α for the

consideration set. Algorithm 8 describes the full procedure for any given ε > 0.

Algorithm 7 Algorithm with guess Bj and threshold α

1: Let S be the set of states picked so far, starting with S = ∅.
2: For all S, let C(S) = {i ∈ N\S : RS({i}) ≥ α·Bj

k
}.

3: While |S| < k and C(S) 6= ∅,
(a) Let i∗ be the product of C(S) for which pSi is maximized, breaking ties arbi-
trarily.
(b) Add i∗ to S.

4: Return S.

3.5.1 Technical lemmas

Prior to analyzing the performance guarantee of our algorithm, we present two tech-

nical lemmas. We start by arguing that the revenue function is sublinear for general
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Algorithm 8 Local-ratio Algorithm for MC-Card with threshold α

1: Given any ε > 0, let J and Bj, j ∈ [J ] be as defined in (3.4).
2: For all j ∈ [J ], let Sj be the solution returned by Algorithm 7 with guess Bj and

threshold α
3: Return arg maxj∈[J ] R(Sj).

product prices.

Lemma 3.9. For all S1, S2 ⊆ N consisting only of non-negative priced products,

R(S1 ∪ S2) ≤ R(S1) +R(S2).

Proof. We have that

R(S1 ∪ S2) =
∑
j∈S1

P(j ≺ (S1 ∪ S2)+ \ {j}) · pj +
∑

j∈S2\S1

P(j ≺ (S1 ∪ S2)+ \ {j}) · pj

≤
∑
j∈S1

P(j ≺ (S1)+ \ {j}) · pj +
∑
j∈S2

P(j ≺ (S2)+ \ {j}) · pj

= R(S1) +R(S2),

where the first inequality follows as for any j ∈ Si (i = 1, 2), P(j ≺ (S1∪S2)+\{j}) ≤

P(j ≺ (Si)+ \ {j}).

Next, we establish a technical lemma that allows us to compare the revenue of

the optimal solution R(S∗) with the revenue of the set returned by our algorithm,

R(St). First, note that the consideration sets along different steps are nested (i.e.,

C1 ⊇ C2 ⊇ · · · ). Therefore, once a product disappears from the consideration set,

it never reappears. This allows us to partition the products of S∗ according to the

moment they disappear from the consideration set (since either their adjusted revenue

becomes too small or they get picked by the algorithm). More precisely, let Z0 = S∗

and for all t ≥ 1, we define the following sets:

• Zt = S∗ ∩ Ct denotes the products of S∗ which are in the consideration set Ct.

• Yt = Zt−1\Zt denotes the products of S∗ which disappear from the consideration

set during step t− 1.
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• Y +
t = {i ∈ Yt : p

St−1

i ≥ 0} denotes the products of Yt which have a non-negative

adjusted price at step t.

Note that these sets are all defined at the beginning of step t. The following lemma

relates the adjusted revenue of items in Zt−1 and Zt in terms of the marginal change

in revenue, R(St)−R(St−1).

Lemma 3.10. For all t ≥ 1, R(St)−R(St−1) ≥ RSt−1(Zt)− (RSt(Zt+1) +RSt(Y +
t+1)).

Proof. Recall that, by definition, Zt contains the products of S∗ that are in the

consideration set at the beginning of step t. Since our algorithm picks the highest

adjusted price product, σt, in the consideration set Ct, we have pSt−1
σt ≥ p

St−1

i ≥ 0 for

all products i ∈ Zt. Therefore, by Lemma 3.8,

RSt−1(Zt) ≤ RSt−1(Zt ∪ {σt}). (3.5)

We now consider two cases, depending on whether the product σt appears in the

optimal solution S∗ or not.

Case (a): σt /∈ S∗. From Lemma 3.7, RSt−1(Zt ∪ {σt}) = RSt−1({σt}) + RSt(Zt).

Consequently, from inequality (3.5), we have

RSt−1(Zt) ≤ RSt−1({σt}) +RSt(Zt)

= RSt−1({σt}) +RSt(Zt+1 ∪ Yt+1)

≤ RSt−1({σt}) +RSt(Zt+1 ∪ Y +
t+1)

≤ RSt−1({σt}) +RSt(Zt+1) +RSt(Y +
t+1),

where the second inequality holds since removing all negative adjusted price products

can only increase net revenue, and the last inequality follows from Lemma 3.9. Adding

R(St−1) on both sides of the inequality yields the desired inequality by Lemma 3.5.

69



Case (b): σt ∈ S∗. From Lemma 3.7, RSt−1(Zt) = RSt−1({σt}) + RSt(Zt\{σt}).

Then, similar to the previous case, we have

RSt(Zt\{σt}) ≤ RSt((Zt+1 ∪ Y +
t+1)\{σt}) ≤ RSt(Zt+1) +RSt(Y +

t+1\{σt}).

Note that RSt(Y +
t+1\{σt}) = RSt(Y +

t+1) since pStσt = 0 and σt is an absorbing state in

M(St). Adding R(St−1) on both sides of the inequality concludes the proof.

From the above result, we obtain the following claim.

Lemma 3.11. For all t ≥ 0, we have R(St) ≥ R(S∗)−(RSt(Zt+1)+
∑t+1

j=1R
Sj−1(Y +

j )).

Proof. By summing the inequality stated in Lemma 3.10 over j = 1, . . . , t, we obtain

a telescopic sum which yields

R(St) ≥ R(Z1)−
(
RSt(Zt+1) +

t+1∑
j=2

RSj−1(Y +
j )

)
.

Since every product in S∗ must have non-negative price and S∗ = Z1∪Y1 by definition,

we have R(S∗) ≤ R(Z1) +R(Y1) by sublinearity of the revenue function (see Lemma

3.9). Combining these two inequalities concludes the proof.

3.5.2 Analysis of the local-ratio algorithm

We show that the local-ratio algorithm gives a (1/2− ε)-approximation for MC-Card

for any fixed ε > 0. In particular, we have the following theorem.

Theorem 3.5. For any fixed ε > 0, Algorithm 8 gives a (1/2 − ε/2)-approximation

for MC-Card. Moreover, the running time is polynomial in the input size and 1/ε.

Proof. For a fixed ε > 0, let j∗ be such that R(S∗)
1+ε
≤ Bj∗ ≤ R(S∗). Let B = Bj∗ and

consider the solution returned by Algorithm 7 with guess B and threshold α. We

consider two cases based on the condition by which the algorithm terminates.
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1. If the algorithm stops after completing step k, then by linearity of the revenue

when using the local ratio updates (Lemmas 3.5 and 3.6), the resulting solution

Sk has a revenue of

R(Sk) =
k∑
t=1

RSt−1({σt}) ≥ αB ≥ α

1 + ε
·R(S∗) ≥ (1− ε)αR(S∗),

where the above inequality holds since the product σt belongs to the consider-

ation set Ct, and therefore RSt−1({σt}) ≥ αB/k.

2. Now, suppose the algorithm stops at the end of step k′ < k, after discovering

that Ck′+1 = ∅. From Lemma 3.11, we get

R(Sk′) +RSk′ (Zk′+1) ≥ R(S∗)−
k′+1∑
j=1

RSj−1(Y +
j ).

Now, since Ck′+1 = ∅, this implies that Zk′+1 = ∅. Moreover, from Lemma 3.9,

we also have RSj−1(Y +
j ) < |Y +

j | · α ·B/k for all j = 1, . . . , k′ + 1. Therefore,

k′+1∑
j=1

RSj−1(Y +
j ) ≤ α · B

k
·
k′+1∑
j=1

|Y +
j | ≤ αB ≤ αR(S∗),

where the second inequality holds since
∑k′+1

j=1 |Y +
j | ≤ k and the last inequality

holds as B ≤ R(S∗). Therefore,

R(Sk′) ≥ R(S∗)− αR(S∗) = (1− α) ·R(S∗).

This shows that the approximation ratio attained by our algorithm is

min {(1− ε)α, 1− α} .

Picking α = 1/2 we obtain a (1/2− ε/2)-approximation for MC-Card.

Running time. Algorithm 8 considers J = O(1
ε

log n) guesses for R(S∗). For

any given guess Bj, the running time of Algorithm 7 is polynomial in the input size.

Therefore, the overall running time of Algorithm 8 is polynomial in the input size

and 1/ε.
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Tight example. We show that Algorithm 8 is tight in the following sense: consider

Algorithm 7 with input guess as the true value of R(S∗) and threshold α = 1/2, then

there are instances for which the approximation ratio is 1/2. In particular, we consider

an instance with 3 products. The Markov chain has 4 states N+ = {s, 1, 2, 0}. The

prices are: ps = 1, p1 = p2 = 2. The arrival rate for state s is λs = 1 and all

other states have an arrival rate of zero. The transition probabilities are given in

Figure 3.4. Consider the cardinality constrained assortment problem with cardinality

bound, k = 1. The optimal assortment is S∗ = {s} with R(S∗) = 1. With guess

R(S∗) and α = 1/2, the consideration set in the first step is {s, 1, 2}, and therefore

Algorithm 7 picks either 1 or 2, obtaining a revenue of R(S∗)/2.

We would like to note that our algorithm runs Algorithm 7 for different guesses

Bj, j = 1, . . . , J and returns the best solution across all runs. Therefore, the perfor-

mance bound of our algorithm is at least (1/2−O(ε)) and possibly better. In fact, in

our computational study, we observe that the empirical performance of our algorithm

is significantly better than the theoretical bound of (1/2 − O(ε)). We describe the

computational study in Section 3.7. It is an interesting open question to provide a

tighter analysis of the approximation bound for Algorithm 8 that returns the best

solution among several guesses of R(S∗).

λs = 1

ps = 1

1/4
1

2

pi = 2

0s

1/4

1/2

Figure 3.4: A tight example for Algorithm 8.
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3.6 Capacity constrained assortment

optimization

In this section, we show how to approximate MC-Capa within factor 1/3− ε, for any

fixed ε > 0. Recall that, unlike the simpler cardinality case, now each product i has

an arbitrary weight wi, and we have an upper bound W on the available capacity. We

assume without loss of generality that each product individually satisfies the capacity

constraint, i.e., wi ≤ W for all i ∈ N .

The Algorithm. We describe a local-ratio based algorithm, similar in spirit to

the one for the cardinality constrained problem, by suitably adapting the way con-

sideration sets are defined. For this purpose, instead of considering products whose

incremental absorption revenue exceeds a certain threshold, we only consider products

whose incremental absorption revenue per unit of weight exceeds a certain threshold.

Again, our algorithm selects a single product in each step. Let St be the set of

selected products by the end of step t, starting with S0 = ∅. We use σt to denote

the product picked in step t, meaning that St = {σ1, . . . , σt}. At every step t ≥ 1,

we select the highest adjusted price product (with respect to pSt−1 , breaking ties

arbitrarily) among products in the following consideration set:

Ct =

{
i ∈ N\St−1 :

RSt−1({i})
wi

≥ α
R(S∗)

W

}
,

where S∗ is the optimal solution, W is the capacity bound, and α ∈ (0, 1) is a

parameter whose value will be optimized later. Once the product σt is selected, we

recompute the adjusted prices via the local ratio update described in Figure 3.3. This

selection and update process is repeated in every step until either the consideration

set becomes empty or adding the current product violates the capacity constraint.

Let t′ be such a step. In the former case, we stop and return St′−1. In the latter
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case, we take either St′−1 or {σt′}, depending on which of these sets has a larger total

revenue.

Guessing R(S∗). As in the case of cardinality constraints, since the value of R(S∗)

is unknown, we need to approximately guess the value R(S∗). We will use a procedure

similar to the one given in Section 3.5, with the exception of utilizing 1
|U∗|R(U∗) as

a lower bound (see proof of Lemma 3.2 in Appendix B.2), where U∗ is the optimal

unconstrained solution. In particular, we consider the following guesses for R(S∗).

Bj =
1

|U∗|R(U∗)(1 + ε)j, j = 1, . . . , J

J = min {j ∈ N : Bj ≥ R(U∗)} .
(3.6)

Note that J = O(1
ε

log n). Algorithm 9 provides a description of our approximation

algorithm for Capa, given a particular guess Bj for R(S∗) and threshold α, while

Algorithm 10 describes the complete procedure.

Algorithm 9 Algorithm with guess Bj and threshold α

1: Let S be the set of states picked so far, starting with S = ∅.
2: For all S, let C(S) = {i ∈ N : RS({i})

wi
≥ α · Bj

W
}.

3: While
∑

i∈S wi < W and C(S) 6= ∅,
(a) Let i∗ be the product of C(S) for which pSi is maximized, breaking ties arbi-
trarily.
(b) If

∑
i∈S∪{i∗}wi < W , add i∗ to S.

(c) Else return the highest revenue set among {i∗} and S.
4: Return S.

Algorithm 10 Local-ratio Algorithm for MC-Capa with threshold α

1: Given any ε > 0, let J and Bj, j ∈ [J ] be as defined in (3.6).
2: For all j ∈ [J ], let Sj be the solution returned by Algorithm 9 with guess Bj and

threshold α
3: Return arg maxj∈[J ] R(Sj).
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3.6.1 Analysis

To analyze the above algorithm, it is convenient to have a technical lemma similar

to Lemma 3.11. By defining the same sets Yt and Zt with respect to the optimal

assortment S∗ to MC-Capa and the adapted consideration sets Ct, the exact same

lemma holds. We therefore do not restate this claim and its proof, as these are

identical to those of Lemma 3.11. The following theorem shows that the local-ratio

algorithm gives a (1/3− ε)-approximation for MC-Capa for any fixed ε > 0.

Theorem 3.6. For any fixed ε > 0, Algorithm 10 gives a (1/3− ε/3)-approximation

for MC-Capa. Moreover, the running time is polynomial in the input size and 1/ε.

Proof. For a fixed ε > 0, let j∗ be such that R(S∗)
1+ε
≤ Bj∗ ≤ R(S∗). Let B = Bj∗ and

consider the solution returned by Algorithm 9 with guess B and threshold α. We

consider two cases based on the condition by which the algorithm terminates. Let t′

be the step at which the algorithm terminates.

1. Suppose we stop the algorithm since adding the product σt′ violates the capacity

constraint, that is,
∑t′

t=1wσt > W . In this case, we return either St′−1 or {σt′},

depending on which of these sets has a larger revenue. We argue that this choice

guarantees a revenue of at least αR(S∗)/2, since

max {R(St′−1), R({σt′})} ≥ max

{
t′−1∑
t=1

RSt({σt}), RSt′−1({σt′})
}

≥ max

{
α
B

W

t′−1∑
t=1

wσt , α
B

W
wσt′

}

= α
B

W
·max

{
t′−1∑
t=1

wσt , wσt′

}
≥ α

B

2

≥ α · R(S∗)

2(1 + ε)

≥ (1− ε)α · R(S∗)

2
,
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where the third to last inequality holds since max{∑t′−1
t=1 wσt , wσt′} ≥ W/2 and

the second to last inequality follows as B ≥ R(S∗)/(1 + ε).

2. On the other hand, suppose the algorithm terminates since Ct′+1 = ∅. Using

Lemma 3.11 adapted to the capacitated case, we have

R(St′) +RSt′ (Zt′+1) ≥ R(S∗)−
t′+1∑
j=1

RSj−1(Y +
j ).

Since Ct′+1 = ∅, this implies that Zt′+1 = ∅. Moreover, from Lemma 3.9, for all

j = 1, . . . , t′ + 1, we have

RSj−1(Y +
j ) < αB ·

∑
i∈Y +

j
wi

W
.

Since our algorithm stopped prior to reaching the capacity constraint, we have∑t′+1
j=1

∑
i∈Y +

j
wi ≤ W . Consequently,

∑t′+1
j=1 R

Sj−1(Y +
j ) < αB ≤ αR(S∗), and

therefore,

R(St′) ≥ R(S∗)− αR(S∗) = (1− α)R(S∗).

As a result, the approximation ratio attained by our algorithm is

min
{

(1− ε)α
2
, 1− α

}
.

By setting α = 2/3, we obtain an approximation factor of (1/3− ε/3).

Running Time. Algorithm 10 considers J = O(1
ε

log n) guesses of R(S∗). Each run

of Algorithm 9 for a given guess is polynomial time. Therefore, the overall running

time of Algorithm 10 is polynomial in the input size and 1/ε.

Tight example. Our analysis is tight in the following sense. When Algorithm 10

is run with the true value of R(S∗), there are instances for which the approximation

ratio is 1/3. For example, consider the instance given in Figure 3.5. For a capacity

bound of W = 1, the optimal assortment is S∗ = {b, c}. Initially, all the products are
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in the consideration set and the algorithm picks product a, the highest price product.

In the next step, no product can be added to the assortment. The algorithm therefore

returns S = {a} since R({a}) > R({d}) and yields a revenue of R(S∗)/3+O(ε). When

ε goes to 0, the approximation ratio goes to 1/3.

a

c e

0

(1 + 2ǫ, 1
2 + ǫ)

(12 ,
1
2 ) (1, 1

2 )

2
3

1
3

λa = 1
7

λc =
3
7

b d

(12 ,
1
2 ) (1, 1

2 )

1
3λb =

3
7

2
3

i

(pi, wi)

Figure 3.5: A tight example for Algorithm 10.

3.7 Computational experiments

In this section, we present our results from a computational study to test the per-

formance of Algorithm 8 for MC-Card. In particular, we focus on testing: i) the

performance of our algorithm with respect to an optimal algorithm, and ii) the run-

ning time of this algorithm. We first present a mixed-integer programming (MIP)

formulation of MC-Card.
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3.7.1 A mixed-integer programming formulation

We show that the following mixed-integer program (MIP) is an exact reformulation

of MC-Card.

max
n∑
i=1

αipi

s.t. αi + βi −
n∑
j=1

ρjiβj = λi, ∀i = 1, . . . , n

yi ≥ αi, ∀i = 1, . . . , n

n∑
i=1

yi ≤ k

αi ≥ 0, βi ≥ 0, yi ∈ {0, 1}, ∀i = 1, . . . , n.

(3.7)

Lemma 3.12. The mixed-integer program (3.7) is an exact reformulation of MC-Card.

Proof. Consider the following LP:

max
n∑
i=1

αipi

s.t. αi + βi −
n∑
j=1

ρjiβj = λi, ∀i = 1, . . . , n

αi ≥ 0, βi ≥ 0, ∀i = 1, . . . , n.

(3.8)

Let (α, β) be an extreme point solution to the above LP, and let S = {i : αi > 0}.

[30] show that αi is the choice probability π(i, S) when the assortment S is offered

under the Markov chain choice model. Hence, the objective value
∑n

i=1 αiri equals to

R(S). By adding the indicator variables yi, we are restricting ourselves to the subset

of feasible solutions where at most k of the αi-s are allowed to be strictly positive.

Note that the extreme points of this polytope, corresponding to the projection of

the feasible space of the MIP down to the (α, β) coordinates, are exactly the set of

assortments S with cardinality at most k. Hence, (3.7) is a mixed-integer formulation

of MC-Card.
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3.7.2 Settings tested

We proceed by describing the families of random instances being tested in our compu-

tational experiments. Here, each product’s price pi is uniformly distributed over the

interval [0, 1]. Note that since we present statistics regarding approximation factors,

any constant here will give identical results, so the choice of 1 is arbitrary. In each

instance, we compute the optimal unconstrained assortment U∗ using the LP given

by [? ]. We then choose the cardinality constraint k uniformly between 1 and |U∗|/2.

For the transition probabilities ρij and the arrival rates λi, we test our algorithm on

three different settings:

1. We generate n2 independent random variables Xij, each picked uniformly over

the interval [0, 1]. We then set ρij = Xij/
∑n

j=0Xij for all i, j such that i 6=

j. Since we do not allow self-loops (i.e. ρii = 0), the number of random

variables needed is n2. For the arrival rates, we then generate n independent

random variables Yi, each picked uniformly over the interval [0, 1], and set

λi = Yi/
∑n

j=1 Yj for all i 6= 0.

2. In this setting, we sparsify the transition matrix of setting 1. More precisely,

we additionally generate n2 independent random variable Zij, each following

a Bernoulli distribution with parameter 0.2. For all i, j such that i 6= j, we

set ρij = ZijXij/
∑n

j=0 ZijXij, where Xij are generated as in setting 1. This

is equivalent to eliminating each transition (i, j) with probability 0.8 and then

renormalizing. The arrival rates are generated similarly to setting 1.

3. The transition matrix in this last setting is one of a random walk. More

precisely, we generate n2 independent random variable Xij, each following a

Bernoulli distribution with parameter 0.5. We then set ρij = Xij/
∑n

j=0 Xij for

all i, j such that i 6= j. We also generate n random variables Yi, each following
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Setting n
Approximation Ratio # instances within x% of OPT

# instances
Average Minimum 2% 5% 10% 20%

1 30 0.9783 0.7771 664 812 972 998 1,000
2 30 0.9784 0.7734 662 858 956 995 1,000
3 30 0.9830 0.7693 708 884 976 998 1,000
1 60 0.9803 0.8671 622 838 997 1,000 1,000
2 60 0.9796 0.8094 621 888 982 1,000 1,000
3 60 0.9854 0.8885 693 941 998 1,000 1,000
1 100 0.9763 0.9132 52 79 100 100 100
2 100 0.9782 0.8882 59 91 99 100 100
3 100 0.9848 0.9142 70 97 100 100 100

Table 3.1: Performance of Algorithm 8 for MC-Card.

a Bernoulli distribution with parameter 0.5, and set λi = Yi/
∑n

j=1 Yj for all

i 6= 0.

3.7.3 Results

We examine how our algorithm performs in term of both approximation and running

time. Table 3.1 shows the approximation ratio of Algorithm 8 (with ε = 0.1) for

the different settings and the different values of n. As can be observed, the actual

performance of our algorithm is significantly better than its worst case theoretical

guarantee. Indeed, in all settings tested, the average approximation ratio is always

above 0.97. Moreover, the worst approximation ratio over all instances is above 0.77.

The running time of our algorithm also scales nicely. Table 3.2 shows the per-

formance of Algorithm 8 in terms of running time for setting 2. The running times

are very similar for the other settings. On the other hand, while the MIP running

time can be competitive in some cases, it blows up when the number of products n

gets large (see Table 3.2). Note that for n = 100, 12 out of the 100 instances had a

running time of at least 30 minutes. For n = 200, we set a time limit of 2 hours for

the MIP. Out of the 20 random instances generated, 16 reached the time limit with-
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n
Average Running Time Maximum Running Time

# instances
Algorithm 8 MIP Algorithm 8 MIP

30 0.18 0.17 0.67 0.25 1,000
60 0.74 0.67 1.25 29.34 1,000
100 3.18 278.20 9.16 10,226.98 100
200 31.98 ** 47.38 ** 20

Table 3.2: Running time of Algorithm 8 and the MIP for setting 2. ** Denotes the
cases when we set a time limit of 2 hours.

out terminating. Therefore, these numerical experiments suggest that Algorithm 8

is computationally efficient and that its numerical performance is significantly bet-

ter than the theoretical worst-case guarantee. Numerical experiments conducted for

Algorithm 10 yield similar observations for MC-Capa.

3.8 Robust assortment optimization

In this section, we consider a robust assortment problem under the Markov chain

model. To formulate the robust assortment problem, for any given offer set S, we let

π(i, S,P ) be the choice probability that product i is chosen when the assortment S

is offered and the transition probabilities are given by the matrix P = (ρi,j)i∈N ,j∈N+ .

Let pi denote the price of product i. For any assortment S, the expected revenue can

be written as

R(S,P ) =
∑
i∈S

π(i, S,P ) · pi.

The uncertainty in the parameters of the Markov chain model is represented by

an uncertainty set P ∈ Rn×n. In our model, we want to find an assortment S

that maximizes the worst-case expected revenue over all model parameters P ∈ P ,

corresponding to the optimization problem

max
S⊆N

min
P∈P

R(S,P ). (MC-Rob)

We further make the following assumption on the form of the uncertainty set.
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Assumption 3.1. The uncertainty set is a row-wise uncertainty. In particular,

P = ×ni=1Pi,

where Pi ⊆ {(ρi1, . . . , ρin) ∈ Rn
+ | ρi1 + . . . + ρin ≤ 1} is a convex set of uncertain

probability transition vectors (ρij)
n
j=1 out of state i.

We start by giving some structural properties of the optimal solution. These are

in the same spirit than those known for MNL-Rob [67]. We further show that we can

adapt our local-ratio framework presented in Section 3.3.3 to give a exact algorithm

for MC-Rob. Finally, we provide some comparative statistics and operational insights.

Notation Let S∗ be an optimal assortment for MC-Rob. Moreover, for all P ∈

P , let S∗(P ) be an optimal assortment when the transition matrix is given by P .

Similarly, let P ∗(S) be the worst case matrix P for assortment S.

3.8.1 Characterization of the optimal assortment

For each product i and set S, we define Ri(S,P ) as the expected revenue when

transitioning out of state i. In particular, for all i ∈ [n], we have

Ri(S,P ) =
∑
j∈S

ρi,jpj +
∑
j /∈S

ρi,jR
j(S,P ).

Note that even if i ∈ S, Ri(S,P ) assumes that we transition out of i. In the following

lemma, we characterize when adding a product increases the expected revenue.

Lemma 3.13 (When is adding a product beneficial?). For any assortment S and

i /∈ S, the following three statements are equivalent.

(a) pi ≥ minP∈P R
i(S,P ),

(b) pi ≥ minP∈P R
i(S ∪ {i},P ),

(c) minP∈P R(S,P ) ≤ minP∈P R(S ∪ {i},P ).
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Proof. We first prove that (a) is equivalent to (b) and then that (a) is equivalent to

(c).

(a) =⇒ (b). We prove that pi < minP∈P R
i(S∪{i},P ) =⇒ pi < minP∈P R

i(S,P ).

Let P ∗ = P ∗(S). We have by Markov property,

Ri(S ∪ {i},P ∗) = P ∗(i ≺ S+|i)pi + (1− P ∗(i ≺ S+|i))Ri(S,P ∗).

Furthermore, we have by assumption and definition of P ∗,

Ri(S ∪ {i},P ∗) ≥ min
P∈P

Ri(S ∪ {i},P ) > pi.

Combining the first equality with the second inequality yields

.(1− P ∗(i ≺ S+|i))Ri(S,P ∗) ≥ (1− P ∗(i ≺ S+|i))pi.

Moreover, we can assume without loss of generality that P ∗(i ≺ S+|i) < 1 which

implies

min
P∈P

Ri(S,P ) = Ri(S,P ∗) > pi.

(b) =⇒ (a). Similarly, we prove that pi < minP∈P R
i(S,P ) =⇒ pi < minP∈P R

i(S∪

{i},P ). Let P ∗ = P ∗(S ∪ {i}). We have,

Ri(S ∪ {i},P ∗) = P ∗(i ≺ S+|i)pi + (1− P ∗(i ≺ S+|i))Ri(S,P ∗)

≥ P ∗(i ≺ S+|i)pi + (1− P ∗(i ≺ S+|i)) min
P∈P

Ri(S,P )

> pi.

(a) =⇒ (c). We prove the last two implications using the following fact. For

a fixed set S, consider the dynamic problem where for any random walk on the

Markov chain, an adversary is allowed to choose a new transition matrix P ∈ P

before every transition in order to minimize the expected revenue. Note that by the
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Markov property, any knowledge of previous past transitions cannot contribute to

the decision. Moreover, because of Assumption 3.1, i.e. the row-wise structure of

the uncertainty set, the adversary only needs to choose a single row at a time. This

implies that there exists a stationary policy, corresponding to a single matrix P ∈ P

to that problem. In particular, if we let R̂(S,P ) be the revenue of a problem where

we follow P but if we reach i we switch to P ∗(S), we have

min
P∈P

R̂(S,P ) = min
P∈P

R(S,P ).

However, by assumption, we have for all P ∈ P

R̂(S,P ) ≤ R(S ∪ {i},P ).

Minimizing both sides with respect to P ∈ P yields the desired result.

(c) =⇒ (a). We prove that

pi < min
P∈P

Ri(S,P ) =⇒ min
P∈P

R(S,P ) > min
P∈P

R(S ∪ {i},P ).

Let R̂(S,P ) be the revenue of a problem where we follow P but if we reach i we

switch to P ∗(S). By the above discussion, we have

min
P∈P

R̂(S,P ) = min
P∈P

R(S,P ).

However, by assumption, we have for all P ∈ P

R̂(S,P ) > R(S ∪ {i},P ).

Minimizing both sides with respect to P ∈ P yields the desired result.

Another interesting implication of the proof of Lemma 3.13 is that P ∗(S) also

minimizes Ri(S,P ∗(S)) for all i. In other words, the worst case matrix P for a

given set S is independent of the arrival rate λ. We will see that the optimal robust
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assortment is also independent of λ. Using the same proof ideas, we get the following

corollary.

Corollary 3.1. For all set S and i /∈ S, we have

pi ≥ Ri(S,P ) =⇒ Rj(S ∪ {i},P ) ≥ Rj(S,P ),∀j 6= i.

We now provide a structural property of the optimal robust assortment S∗. The

result shows that the optimal robust assortment consists of products i ∈ [n] whose

revenues exceed a particular value, which corresponds to the expected revenue the

optimal assortment S∗ gets when transitioning out of i.

Theorem 3.7 (Characterization of the optimal robust assortment). There exists an

optimal assortment S∗ such that

S∗ =
{
i : pi ≥ Ri(S∗,P ∗(S∗))

}
.

Proof. We first show that {i : pi ≥ Ri(S∗,P ∗(S∗))} ⊆ S∗. Suppose on the contrary

that there exists a product i such that pi ≥ Ri(S∗,P ∗(S∗)) and i /∈ S∗. By Lemma

3.13, minP∈P R(S∗ ∪ {i},P ) ≥ minP∈P R(S∗,P ). Therefore, S∗ ∪ {i} is also an

optimal assortment.

To complete the proof, we show that S∗ ⊆ {i : pi ≥ Ri(S∗,P ∗(S∗))}. Assume

on the contrary that there exists a product i ∈ S∗ such that pi < Ri(S∗,P ∗(S∗)).

By Lemma 3.13, minP∈P R(S∗,P ) > minP∈P R(S∗ ∪ {i},P ). This contradicts the

optimality of S∗ and concludes the proof.

Note that when P is a singleton, this provides an alternative characterization of

the optimal assortment when there is no uncertainty, i.e. for MC-Assort. Moreover,

in the case of the MNL model, which is a special case of the Markov chain based

choice model, Ri(S,P ) is independent of i and we recover the characterization of the
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optimal solution given in [67] for the case where there is no uncertainty. However,

note that this result does not imply the characterization of the robust solution for

MNL obtained in [67]. Indeed, a row-wise uncertainty set for the Markov chain model

is not the same as having an uncertainty set of the MNL parameters.

3.8.2 Computing the optimal assortment

For the MNL model, Theorem 3.7 implies that the optimal robust assortment is nested

by revenue since the threshold is independent of the product. Therefore, it provides

a very efficient way of computing the optimal assortment. Indeed, one only needs to

enumerate over the n possible nested assortment and return the revenue maximizing

one. In our setting, it is not a priori clear how to compute the optimal assortment

using the characterization of Theorem 3.7. However, using the ideas developed in

this chapter, in particular, the local ratio framework, we give an efficient algorithm

to find S∗. In particular, we give a sequential algorithm which adds a product at

every step and finishes with an optimal assortment. Interestingly, the greedy step

will be similar to that of Algorithm 6 and we will see how to appropriately modify

the update step to accommodate for the parameters uncertainty.

The following lemma allows us to decide which product to add at every step.

Lemma 3.14 (Which product to add next?). Let S be a given assortment and P ∈ P

a given transition matrix. Let

i∗ = argmaxi/∈S
{
pi −Ri(S,P )

}
.

If pi∗ −Ri∗(S,P ) ≥ 0, then for all S ′ ⊆ [n]\S ∪ {i∗}, we have

min
P∈P

R(S ∪ S ′ ∪ {i∗},P ) ≥ min
P∈P

R(S ∪ S ′,P ).
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Proof. For a given Q ∈ P and S ′ ⊆ [n]\S ∪ {i∗}, we have

Ri∗(S ∪ S ′,P ) =
∑

j∈S∪S′
Q(j ≺ (S ∪ S ′)+|i∗)pj

=
∑
j∈S

Q(j ≺ (S ∪ S ′)+|i∗)pj +
∑
j∈S′

Q(j ≺ (S ∪ S ′)+|i∗)pj.

By definition of i∗, we have for all j ∈ S ′,

pj −
∑
k∈S

P (k ≺ S+|j)pk ≤ pi∗ −
∑
k∈S

P (k ≺ S + |i∗)pk,

which implies

pj ≤ pi∗ +
∑
k∈S

P (k ≺ S+|j)pk −
∑
k∈S

P (k ≺ S+|i∗)pk.

Therefore,

Ri∗(S ∪ S ′,Q) ≤
∑
j∈S

Q(j ≺ (S ∪ S ′)+|i∗)pj

+
∑
j∈S′

Q(j ≺ (S ∪ S ′)+|i∗)
(
pi∗ +

∑
k∈S

P (k ≺ S+|j)pk −
∑
k∈S

P (k ≺ S+|i∗)pk
)

=
∑
j∈S′

Q(j ≺ (S ∪ S ′)+|i∗)
(
pi∗ −

∑
k∈S

P (k ≺ S+|i∗)pk
)

+
∑
k∈S

pk

(
Q(k ≺ (S ∪ S ′)+|i∗) +

∑
j∈S′

P (k ≺ S+|j)Q(j ≺ (S ∪ S ′)+|i∗)
)

≤ pi∗ +
∑
k∈S

(Ak(Q)− P (k ≺ S+|i∗)pk,

where for all Q ∈ P ,

Ak(Q) = Q(k ≺ (S ∪ S ′)+|i∗) +
∑
j∈S′

P (k ≺ S+|j)Q(j ≺ (S ∪ S ′)+|i∗).

Note that for all k ∈ S, by the Markov property, we have

Ak(P ) = P (k ≺ S+|i∗).

Therefore, minimizing on both sides of the inequality with respect to Q ∈ P yields

min
Q∈P

Ri∗(S ∪ S ′,Q) ≤ pi∗ .
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Using Lemma 3.13 concludes the proof.

Motivating by Lemma 3.14, we build a consideration set at every step and add

the highest adjusted price product to our current assortment. We stop when the

consideration set becomes empty. Algorithm 11 describes the procedure in more

detail.

Algorithm 11 Algorithm for MC-Rob

1: Let S be the set of states picked so far, starting with S = ∅.
2: For all S, let C(S) = {i : pi ≥ minP∈P R

i(S,P )}
3: While there exists i ∈ C(S),

(a) Let i∗ be the product for which pi−minP∈P R
i(S,P ) is maximized, breaking

ties arbitrarily.
(b) Add i∗ to S.

4: Return S.

Theorem 3.8. Algorithm 11 returns an optimal assortment to MC-Rob.

The correctness of the algorithm follows from inductively using Lemma 3.14. Note

that the running time of Algorithm 11 is polynomial in the time needed to compute

minP∈P R
i(S,P ) for a given S. Note that this algorithm can be interpreted through

our local ratio framework where the greedy rule corresponds to picking the highest

adjusted price product and the update step consists of updating all prices according

to the following update rule:

p̂i = pi −min
P∈P

Ri(S,P ).

Note how this is a robust version of the update presented in Figure 3.3.

Polyhedral uncertainty set. We show how to efficiently compute minP∈P R
i(S,P )

when each Pi is a polyhedron. For a given assortment S, we can find P ∗ using the
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following linear program, where P i is the ith row of P ,

max λTg

gi = pi,∀i ∈ S

gi ≤ minP i∈Pi(P
i)Tg,∀i /∈ S

g ≥ 0.

Taking the dual in the minimization yields for all i

min gTP i = max (bi)Tx

QjP i = bi (Qi)Tx ≤ g

P i ≥ 0

Therefore, the problem is equivalent to solving the following linear program.

max λTg

gi = pi,∀i ∈ S

gi ≤ (bi)Tx, ,∀i /∈ S

(Qi)Tx ≤ g,∀i /∈ S

g ≥ 0.

Note that when solving the above linear program, we will have for all i /∈ S, g∗i =

Ri(S,P ∗(S)).

3.8.3 Comparative statistics and operational insights

We begin by showing that surprisingly there exists a min-max relation for our prob-

lem.

Theorem 3.9.

min
P∈P

max
S

R(S,P ) = max
S

min
P∈P

R(S,P )

Proof. Suppose by contradiction that maxS minP∈P R(S,P ) < minP∈P maxS R(S,P ).

Our assumption implies that

R(S∗,P ∗(S∗)) < R(S∗(P ∗),P ∗(S∗)).
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By Lemma 3.14, we know that S∗(P ∗) ⊆ S∗. Therefore, there exists {i1, . . . , iK}

such that

S∗ = S∗(P ∗) ∪ {i1, . . . , iK}.

By Theorem 3.7, for all k ∈ [K],

pik ≥ Rik(S∗(P ∗) ∪ {i1, . . . , iK},P ∗).

Therefore, for all k = 1, . . . K − 1,

pik ≥ Rik(S∗(P ∗) ∪ {i1, . . . , iK−1},P ∗)

by Corollary 3.1. Iterating this procedure, we get that

pi1 ≥ Ri1(S∗(P ∗),P ∗)

which contradicts the optimality of S∗(P ∗).

Note that for general uncertainty sets, this relations is not true. We can restate

the min-max relation by saying that the optimal robust assortment is also optimal

for its worst case matrix, i.e.

S∗ = S∗(P ∗(S∗)).

We next prove that the robust assortment corresponds to the largest optimal assort-

ment among {S∗(P ) : P ∈ P}.

Lemma 3.15 (Largest optimal assortment is robust).

S∗ =
⋃
P∈P

S∗(P ).

Proof. By Theorem 3.9, we have

S∗ = S∗(P ∗(S∗)) ⊆
⋃
P∈P

S∗(P ).
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By Theorem 3.7, note that for all P ∈ P ,

S∗(P ) = {i : pi ≥ Ri(S∗(P ),P )}

= {i : pi ≥ max
S

Ri(S,P )}

⊆ {i : pi ≥ min
P∈P

max
S

Ri(S,P )}

⊆ {i : pi ≥ max
S

min
P∈P

Ri(S,P )} = S∗.

We next analyze how the robust assortment changes with the uncertainty set.

It turns out that to protect against larger uncertainty in the model parameters, we

should offer a larger assortment. This result is stated in the next corollary, whose

proof follows immediately from Theorem 3.15.

Corollary 3.2 (Larger uncertainty implies larger assortment). For any P1 ⊆ P2,

min
P∈P1

R(S,P ) ≤ min
P∈P2

R(S,P ) and S∗1 ⊆ S∗2 ,

where S∗i is the optimal assortment when the uncertainty set is Pi.

The next corollary shows that as the revenue of each product increases by the

same additive increment, the robust optimal assortment becomes larger. For any

δ ≥ 0, let S∗δ be the optimal assortment when all the revenues are increased by δ.

Corollary 3.3 (Additive incremental revenues lead to larger robust assortment). For

any δ ≥ 0,

S∗ ⊆ S∗δ .

Proof. For any assortment S, P ∈ P and i ∈ S, we have

Ri(Sδ,P ) ≤ R(S,P ) + δ.
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Minimizing on both side with respect to P and then maximizing with respect to S

yields

max
S

min
P∈P

Ri(Sδ,P ) ≤ max
S

min
P∈P

Ri(Sδ,P ) + δ.

Therefore,

S∗ = {i : pi ≥ Ri(S∗,P ∗(S∗)} ⊆ {i : pi + δ ≥ Ri(S∗δ ,P
∗(S∗δ )} = S∗δ .

3.9 Near optimal algorithm under constant rank

As a consequence of Theorem 2.7, no near-optimal algorithm is possible for MC-Capa

in general. In order to get a near-optimal algorithm, we need to make additional

assumptions on the structure of the Markov chain. We explore one such assumption

in this section. In particular, we assume that the matrix of transition probabilities has

a fixed rank K and propose a FPTAS for MC-Capa when the rank K is constant using

ideas from Chapter 2. [30] study the network revenue management problem under

the Markov chain model and give a linear programming based algorithm. They show

that for any assortment S and i ∈ S, the choice probabilities π(i, S) can be computed

using the following system of linear equations.

π(i, S) = λi +
∑
j /∈S

βjρji,∀i ∈ S,

βi = λi +
∑
j /∈S

βjρji,∀i /∈ S.
(3.9)

We leverage this formulation to give an FPTAS for MC-Capa. In order to leverage

the algorithmic ideas of Chapter 2, we express the revenue of any assortment as a

function of a small number of linear terms.
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3.9.1 Rank one Markov chain

We begin with the case where K = 1, i.e. a rank one underlying transition probability

matrix. [10] show that special cases of rank one Markov chain models are equivalent

to the MNL model or the Generalized Attraction Model (GAM). When K = 1, we

can without loss of generality assume that there exist (ui)i∈[n]+ and (vi)i∈[n]+ such that

for all (i, j) ∈ [n]+ × [n]+, ρij = uivj. The system of equations (3.9) then becomes.

π(i, S) = λi + vi
∑
j /∈S

βjuj,∀i ∈ S

βi = λi + vi
∑
j /∈S

βjuj, ∀i /∈ S.

Using the set of equations for i /∈ S, we have

∑
j /∈S

βjuj =

∑
j /∈S

ujλj

1− ∑
j /∈S

ujvj
=

∑
j /∈S

ujλj

 ∞∑
m=0

∑
j /∈S

ujvj

m .

Consequently, MC-Capa can be reformulated as

max
S⊆[n]

∑
i∈S

pi

λi + vi

∑
j /∈S

ujλj

 ∞∑
m=0

∑
j /∈S

ujvj

m ∣∣∣∣∣ ∑
j∈S

wj ≤ W

 .

This reformulation allows us to use the machinery from Chapter 2. In particular, for

given guesses (`, h, g), we try to find, using a dynamic program, a minimum weight

assortment assortment S such that

∑
j∈S

pi

(
λi + vi

h

1− g

)
≥ `,

∑
j /∈S

ujλj ≥ h and
∑
j /∈S

ujvj ≥ g.

Ideas from Algorithm 2 can be adapted straightforwardly to this setting to get an

FPTAS.

Theorem 3.10. When the underlying Markov chain has rank one, MC-Capa admits

an FPTAS.

We give the details of the algorithm and the proof of correctness in Appendix B.6.
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3.9.2 Constant rank markov chain

We extend the result to a constant rank Markov chain model in a similar way we

extended the FPTAS from MNL to a mixture of MNL. Let K be the rank of the

underlying Markov chain. We can write ρij =
∑K

k=1 u
k
i v

k
j for some (uki )i∈[n]+ and

(vi)i∈[n]+ for all k ∈ [K]. The system of linear equations (3.9) becomes

π(i, S) = λi +
K∑
k=1

vki
∑
j /∈S

βju
k
j ,∀i ∈ S

βi = λi +
K∑
k=1

vki
∑
j /∈S

βju
k
j ,∀i /∈ S.

For all k ∈ [K], let Lk =
∑

j /∈S βju
k
j . We can rewrite for all i /∈ S,

βi = λi +
K∑
k=1

vki L
k.

For all k ∈ [K], we therefore get

Lk =
∑
j /∈S

ukjλj +
K∑
m=1

∑
j /∈S

ukjv
m
j

Lm.

Let Q(S) be a K×K matrix such that for all (k,m) ∈ [K]× [K], Q(S)km =
∑
j /∈S

ukjv
m
j

and b(S) be a K length vector such that for all k, b(S)k =
∑

j /∈S u
k
jλj. With this

notation,

Lk = [(I −Q(S))−1b(S)]k =

[(
∞∑
m=0

Q(S)m

)
b(S)

]
k

.

Consequently, we can rewrite MC-Capa as

max
S⊆[n]

{
K∑
k=1

∑
i∈S

pi
(
λi + vki Lk

) ∣∣∣∣∣ ∑
j∈S

wj ≤ W, Lk =

[(
∞∑
m=0

Q(S)m

)
b(S)

]
k

,∀k
}

Instead of guessing numerators and denominators, we guess the entries of Q(S) and

b(S). In particular, for given guesses Q̃ and b̃ as well as a guess `, we find, using a

dynamic program, the minimum weight assortment such that∑
i∈S

ri(λi + vki Lk) ≥ `k,
∑
j /∈S

ukjv
m
j ≥ Q̃km,∀(k,m) ∈ [K,K], and

∑
j /∈S

ukjλj ≥ b̃k,∀k ∈ [K],
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where

Lk =

[(
∞∑
m=0

Q̃m

)
b̃

]
k

.

Note that this guarantees the desired approximation because all the entries of Q(S)

and b(S) are non-negative. Consequently, Lk is increasing as a function of any of

these entries. This is very similar to the setting for mMNL-Capa and we can adapt

Algorithm 15 to get an FPTAS for this problem. Note that the running time is

exponential in the rank K.

Theorem 3.11. There is an FPTAS for MC-Capa when the rank of the underlying

Markov chain is constant.

In this chapter, we have studied a wide variety of assortment problems under the

Markov chain model. [10] show that the Markov chain model generalizes the MNL

model and approximates a mixture of MNL. We help assess its tractability: it is less

tractable than the MNL model, as our hardness results show, but more tractable than

a mixture of MNL. In particular, we are able to develop a new algorithmic frame-

work which lead to efficient and practical algorithms for different variant assortment

problems. This suggests that the Markov chain model strikes a good balance between

expressiveness and tractability.
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Chapter 4

Mallows-smoothed distribution over rankings approach for

modeling choice

In this chapter, we address the two key computational challenges that arises when

using a mixture of Mallows model: (a) efficiently computing the choice probabilities

and hence, the expected revenue, for a given offer set S and (b) finding a near-optimal

assortment.

In Section 4.2, we present an efficient procedure to compute the choice proba-

bilities π(i, S) exactly under a general mixture of Mallows model. We exploit the

structural symmetries in the Mallows distribution to derive an efficiently computable

closed-form expression for the choice probabilities for a given offer set under the

mixture of Mallows distribution. In particular, we first consider a single Mallows

distribution and show that the choice probabilities under the Mallows distribution

can be expressed as a discrete convolution. Using fast Fourier transform, the choice

probabilities can be computed in O(n2 ·log n) time where n is the number of products.

Therefore, we obtain a procedure with running time O(K · n2 · log n) to compute the

choice probabilities for a fixed offer set under a mixture of K Mallows distribution.

In Section 4.3, we present a polynomial time approximation scheme (PTAS) for a

large class of constrained assortment optimization for the mixture of Mallows model

including cardinality constraints, knapsack constraints, and matroid constraints. Our

PTAS holds under the assumption that the no-purchase option is ranked last in the

modal rankings for all Mallows segments in the mixture. Under the above assumption

and for any ε > 0, our algorithm computes an assortment with expected revenue
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at least (1 − ε) times the optimal in running time that is polynomial in n and K

but depends exponentially on 1/ε. The PTAS is based on establishing a surprising

sparsity property about near-optimal assortments, namely, that there exist a near-

optimal assortment of size O(1/ε). To the best of our knowledge, this is the first

provably near-optimal algorithm for the assortment optimization under Mallows or

the mixture of Mallows model in such generality.

In Section 4.4.1, we present a compact mixed integer linear program (MIP) with

O(K ·n3) variables, O(n) binary variables and O(K ·n3) constraints for the constrained

assortment optimization under a general mixture of Mallows model with K segments.

The compact formulation is based on an alternative efficient procedure to compute

the choice probabilities for a fixed offer set exactly. In particular, we exploit the

repeated insertion method (RIM) introduced by [25] for sampling rankings according

to the Mallows distribution and show that the choice probabilities for the Mallows

model can be expressed as the unique solution to a system of linear equations that can

be solved in O(n3) time. This gives us an alternate procedure to efficiently compute

the choice probabilities for a fixed offer set exactly. While this is less efficient than

using fast Fourier transform (O(n3) versus O(n2 · log n)), it allows us to formulate a

compact MIP for the constrained assortment optimization problem under a general

mixture of Mallows model. Our MIP formulation holds for general mixture of Mallows

model and does not require any assumption on the rank of no-purchase in the modal

rankings.

We conduct numerical experiments to test the computational performance of the

MIP. In particular, we implement a variable bound strengthening and observe that

the MIP is efficient for reasonably sized assortment optimization problems. Therefore,

the MIP provides a practical approach for assortment optimization under a general

mixture of Mallows model.
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4.1 Model and problem statement

Notation. We consider a universe N of n products. In order to distinguish products

from their corresponding ranks, we let N = {a1, . . . , an} denote the universe of

products, under an arbitrary indexing. Preferences over this universe are captured

by an anti-reflexive, anti-symmetric, and transitive relation �, which induces a total

ordering (or ranking) over all products; specifically, a � b means that a is preferred to

b. We represent preferences through rankings or permutations. A complete ranking

(or simply a ranking) is a bijection σ : N → [n] that maps each product a ∈ N to

its rank σ(a) ∈ [n], where [j] denotes the set {1, 2, . . . , j} for any integer j. Lower

ranks indicate higher preference so that σ(a) < σ(b) if and only if a �σ b, where �σ
denotes the preference relation induced by the ranking σ. For simplicity of notation,

we also let σi denote the product ranked at position i. Thus, σ1σ2 · · ·σn is the list of

the products written by increasing order of their ranks. Finally, for any two integers

i ≤ j, let [i, j] denote the set {i, i+ 1, . . . , j}.

Mallows model. The Mallows model is a member of the distance-based ranking

family models (see [58]). This model is described by a modal ranking ω, which

denotes the central or modal permutation, and a concentration parameter θ ∈ R+,

such that the probability of each permutation σ is given by

λ(σ) =
e−θ·d(σ,ω)

ψ(θ)
,

where ψ(θ) =
∑

σ exp(−θ · d(σ, ω)) is the normalization constant, and d(·, ·) is the

Kendall-Tau metric of distance between permutations defined as

d(σ, ω) =
∑
i<j

1l[(σ(ai)− σ(aj)) · (ω(ai)− ω(aj)) < 0].

In other words, d(σ, ω) counts the number of pairwise disagreements between the

permutations σ and ω. It can be verified that d(·, ·) is a distance function that is right-

invariant under the composition of the symmetric group, i.e., d(π1, π2) = d(π1π, π2π)
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for every π, π1, π2, where the composition σπ is defined as σπ(a) = σ(π(a)). This

symmetry can be exploited to show that the normalization constant ψ(θ) has a closed-

form expression [52] given by

ψ(θ) =
n+1∏
i=1

1− e−i·θ
1− e−θ .

Note that ψ(θ) depends only on the concentration parameter θ and does not depend

on the modal ranking. Intuitively, the Mallows model defines a set of consumers whose

preferences are “similar”, in the sense of being centered around a common permuta-

tion, where the probability for deviations thereof are decreasing exponentially. The

similarity of consumer preferences is captured by the Kendall-Tau distance metric.

Mixture of Mallows model. The mixture of K Mallows models is given by K

segments where for each segment k = 1, . . . , K, we are given its probability µk and

the Mallows distribution with modal ranking ωk and concentration parameter θk.

Therefore, the probability of any permutation σ in the mixture model is given by

λ(σ) =
K∑
k=1

µk ·
e−θk·d(σ,ωk)

ψ(θk)
.

4.1.1 Problem statement

Choice probabilities computation. We first focus on efficiently computing the

probability that a product a will be chosen from an offer set S ⊆ N under a given

mixture of Mallows model. When offered the subset S, the customer is assumed to

sample a preference list according to the mixture of Mallows model and then choose

the most preferred product from S according to the sampled list. Therefore, the

probability of choosing product a from the offer set S is given by

π(ai, S) =
∑
σ

λ(σ) · 1l[σ, ai, S], (4.1)
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where 1l[σ, ai, S] indicates whether σ(ai) < σ(aj) for all aj ∈ S, j 6= i. Note that the

above sum runs over n! preference lists, meaning that it is a priori unclear if π(ai, S)

can be computed efficiently.

Assortment optimization. Once we are able to compute the choice probabilities,

we consider the assortment optimization problem. In the assortment optimization

problem, each product a has an endogenously fixed price pa. Moreover, there is an

additional product aq that represents the outside option (no-purchase), with price

pq = 0 that is always included in the assortment. Let S ⊆ 2N be denote a set of

feasible assortments. We assume that S satisfied the following assumption:

Assumption 4.1. Let S be the set of feasible assortments. We assume that S

satisfies the following properties.

• (Membership) For any S ⊆ N , it is easy to test whether S ∈ S or not.

• (Closure) For any S ∈ S and T ⊆ S implies that T ∈ S .

This is a fairly general assumption satisfied for a large class of constraints in-

cluding cardinality constraints, multi-dimensional knapsack constraints and matroid

constraints. The goal in the assortment optimization problem is to determine a fea-

sible subset of products that maximizes the expected revenue (4.2):

max
S∈S
R(S) = max

S∈S

∑
a∈S

π(a, S ∪ {rq}) · pa. (4.2)

We would like to note that even the unconstrained version where S contains all

possible subsets of N is hard to approximate within a factor better than O(1/n1−ε)

under a general distribution over permutation model [3].
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4.2 Choice probabilities: closed-form expression

In this section, we show that the choice probabilities can be computed efficiently under

the Mallows model. Note that this directly give a efficient procedure to compute the

choice probabilities under a mixture of Mallows model. Without loss of generality,

we assume from this point on that the products are indexed such that the central

permutation ω ranks product ai at position i, for all i ∈ [n]. The next theorem shows

that, when the offer set is contiguous, the choice probabilities enjoy a rather simple

form. Using these expressions as building blocks, we further derive a closed-form

expression for general offer sets.

Theorem 4.1 (Contiguous offer set). Suppose S = a[i,j] = {ai, . . . , aj} for some

1 ≤ i ≤ j ≤ n. Then, the probability of choosing product ak ∈ S under the Mallows

model with modal ranking ω and concentration parameter θ is given by

π(ak, S) =
e−θ·(k−i)

1 + e−θ + · · ·+ e−θ·(j−i)
.

The choice probability under a general offer set has a more involved structure for

which additional notation are needed. For a pair of integers 1 ≤ m ≤ q ≤ n, define

ψ(q, θ) =

q∏
s=1

s−1∑
`=0

e−θ·` and ψ(q,m, θ) = ψ(m, θ) · ψ(q −m, θ).

In addition, for a collection of M discrete functions hm : Z → R, m = 1, . . . ,M

such that hm(r) = 0 for any r < 0, their discrete convolution is defined as

(h1 ? · · · ? hm) (r) =
∑

r1,...,rM :∑
m rm=r

h1(r1) · · ·hM(rM).

Theorem 4.2 (General offer set). Suppose S = a[i1,j1] ∪ · · · ∪ a[iM ,jM ] where im ≤ jm

for 1 ≤ m ≤ M and jm < im+1 for 1 ≤ m ≤ M − 1. Let Gm = a[jm,im+1] for

1 ≤ m ≤ M − 1, G = G1 ∪ · · · ∪ GM , and C = a[i1,jM ]. Then, the probability of

choosing ak ∈ a[i`,j`] can be written as

π(ak, S) = e−θ·(k−i1) ·
∏M−1

m=1 ψ(|Gm| , θ)
ψ(|C| , θ) · (f0 ? f̃1 ? · · · ? f̃` ? f`+1 ? · · · ? fM)(|G|),
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where:

• fm(r) = e−θ·r·(jm−i1+1+r/2) · 1
ψ(|Gm|,r,θ) , if 0 ≤ r ≤ |Gm|, for 1 ≤ m ≤M .

• f̃m(r) = eθ·r · fm(r), for 1 ≤ m ≤M .

• f0(r) = ψ(|C| , |G| − r, θ) · eθ·(|G|−r)
2/2

1+e−θ+···+e−θ·(|S|−1+r) , for 0 ≤ r ≤ |G|.

• fm(r) = 0, for 0 ≤ m ≤M and any r outside the ranges described above.

Proof. At a high level, deriving the expression for a general offer set involves breaking

down the probabilistic event of choosing ak ∈ S into simpler events for which we can

use the expression given in Theorem 4.1, and then combining these expressions using

the symmetries of the Mallows distribution.

For a given vector R = (r0, . . . , rM) ∈ RM+1 such that r0 + . . . rM = |G|, let h(R)

be the set of permutations which satisfy the following two conditions: i) among all

the products of S, ak is the most preferred, and ii) for all m ∈ [M ], there are exactly

rm products from Gm which are preferred to ak. We denote this subset of products

by G̃m for all m ∈ [M ]. This implies that there are r0 products from G which are

less preferred than ak. With this notation,

π(ak, S) =
∑

R:r0+...rM=|G|

∑
σ∈h(R)

λ(σ).

Recall that for all σ, we have

λ(σ) =
e−θ·

∑
i,j ξ(σ,i,j)

ψ(θ)
,

where ξ(σ, i, j) = 1l[(σ(ai)− σ(aj)) · (ω(ai)− ω(aj)) < 0]. For all σ, we can break

down the sum in the exponential as follows:

∑
i,j

ξ(σ, i, j) = C1(σ) + C2(σ) + C3(σ),

where
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• C1(σ) contains pairs of products (i, j) such that ai ∈ G̃m for some m ∈ [M ] and

aj ∈ S,

• C2(σ) contains pairs of products (i, j) such that ai ∈ G̃m for some m ∈ [M ] and

aj ∈ Gm′\G̃m′ for some m 6= m′,

• C3(σ) contains the remaining pairs of products.

For a fixed R, we show that C1(σ) and C2(σ) are constant for all σ ∈ h(R).

Part 1. C1(σ) counts the number of disagreements (i.e., number of pairs of products

that are oppositely ranked in σ and ω) between some product in S and some product

in G̃m for any m ∈ [M ]. For all m ∈ [M ], a product in ai ∈ G̃m induces a disagreement

with all product aj ∈ S such that j < i. Therefore, the sum of all these disagreements

is equal to,

C1(σ) =
M∑
m=1

∑
aj∈S
ai∈G̃m

ξ(σ, i, j) =
M∑
m=1

rm · (jm − i1 + 1).

Part 2. C2(σ) counts the number of disagreements between some product in any G̃m

and some product in any Gm′\G̃m′ for m′ 6= m. The sum of all these disagreements

is equal to,

C2(σ) =
∑
m6=m′

∑
ai∈G̃m

aj∈Gm′\G̃m′

ξ(σ, i, j) =
M∑
m=2

rm ·
m−1∑
j=1

(|Gj| − rj)

=
M∑
m=2

rm ·
m−1∑
j=1

|Gj| −
M∑
m=2

rm ·
m−1∑
j=1

rj

=
M∑
m=2

rm

m−1∑
j=1

|Gj| −
1

2
(|G| −m0)2 +

1

2

M∑
m=1

r2
m.

Consequently, for all σ ∈ h(R), we can write d(σ, ω) = C1(R) + C2(R) + C3(σ) and

therefore,

π(ak, S) =
∑

R:r0+···+rM=|G|

e−θ·(C1(R)+C2(R))

ψ(θ)
·
∑

σ∈h(R)

e−θ.C3(σ).
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Computing the inner sum requires a similar but more involved partitioning of the

permutations as well as using Theorem 4.1. The details are presented in Appendix

C.1. In particular, we can show that for a fixed R,
∑

σ∈h(R) e
−θ.C3(σ) is equal to

ψ(|G| −m0, θ) · ψ(|S|+m0, θ) ·
e−θ·(k−1−

∑`−1
m=1 rm)

1 + · · ·+ e−θ·(|S|+m0−1)
·
M∏
m=1

ψ(|Gm|, θ)
ψ(rm, θ) · ψ(|G|m − rm, θ)

.

Putting all the pieces together yields the desired result.

Due to representing π(a, S) as a discrete convolution, we can efficiently compute

this probability using fast Fourier transform in O(n2 · log n) time (see for instance

[21]), which is a dramatic improvement over the exponential sum (4.1) that defines

the choice probabilities. Note that for a mixture of K Mallows, this implies that we

can compute the choice probability π(a, S) in O(K · n2 · log n) time.

4.3 A PTAS for the assortment optimization

In this section, we present a polynomial time approximation scheme (PTAS) for the

assortment optimization problem under the mixture of Mallows model described by

(4.2). In other words, for any accuracy level ε > 0, we compute an assortment with

expected revenue at least (1−ε) times the optimal. For every fixed ε, the running time

is polynomial in n and K. For ease of exposition, we first focus on a single Mallows

model and thus drop the index corresponding to the Mallows segment. At the end of

the section, we explain how the results extend to a mixture of Mallows model. Before

describing the algorithm, we introduce a number of structural properties relative to

the Mallows distribution.

4.3.1 Probabilistic claims

We first show that for any pair of products (ai, aj) such that i < j (i.e. ai is preferred

to aj in ω), and for a permutation σ drawn from a Mallows distribution, we have
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P (ai �σ aj) ≥ 1/2 . Note that when θ = 0, since the distribution is uniform, we have

P (ai �σ aj) = 1/2. Moreover, when θ → ∞, P (ai �σ aj) = 1. Our result extends

these extreme cases to all values of θ.

Claim 4.1. For any pair of products (ai, aj) such that i < j, if σ is drawn from a

Mallows distribution, we have,

P (ai �σ aj) ≥
1

2
.

Proof. Let A = {σ : ai �σ aj} and B = {σ : ai ≺σ aj}. We consider the bijection

f : A→ B which switches ai and aj. More precisely, for all σ ∈ A,

f(σ)(ak) =


σ(ai) if k = j

σ(aj) if k = i

σ(ak) otherwise

.

We show that for all σ ∈ A, d(σ, ω) ≤ d(f(σ), ω) which in turn implies the desired

result. Note that for any σ ∈ A, we have

d(f(σ), ω)− d(σ, ω) = 1 +
∑

k:ai�σak�σaj

[ξ(f(σ), i, k)) + ξ(f(σ), j, k)− ξ(σ, i, k))− ξ(σ, j, k)],

where ξ(σ, i, j) = 1l[(σ(ai)− σ(aj)) · (ω(ai)− ω(aj)) < 0]. Since ai �ω aj, we have

three cases to consider.

Case 1: ai �ω ak �ω aj. In that case, ξ(f(σ), i, k))+ξ(f(σ), j, k) = 2 and ξ(σ, i, k))+

ξ(σ, j, k) = 0.

Case 2: ak �ω ai. In that case, ξ(f(σ), i, k)) + ξ(f(σ), j, k) = 1 and ξ(σ, i, k)) +

ξ(σ, j, k) = 1.

Case 3: aj �ω ak. In that case, ξ(f(σ), i, k)) + ξ(f(σ), j, k) = 1 and ξ(σ, i, k)) +

ξ(σ, j, k) = 1.

In each case, ξ(f(σ), i, k)) + ξ(f(σ), j, k)− ξ(σ, i, k))− ξ(σ, j, k) ≥ 0, which concludes

the proof.
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We also extend this result to a tuple of products (i1, . . . , im). More precisely, if

i1 < · · · < im (i.e. ai1 is the most preferred product of (ai1 , . . . , aim) in ω), then

if σ is drawn from a Mallows distribution, we have P (ai1 �σ aij ,∀j ≥ 2) ≥ 1/m.

Again, note that when θ = 0, we have P (ai1 �σ aij ,∀j ≥ 2) = 1/m. Moreover, when

θ →∞, P (ai1 �σ aij ,∀j ≥ 2) = 1.

Claim 4.2. For any tuple of products (ai1 , . . . , aim) such that i1 < · · · < im, if σ is

drawn from a Mallows distribution, we have

P (ai1 �σ aim ,∀j ≥ 2) ≥ 1

m
.

Proof. Let Ak = {σ : aik �σ ai` ,∀` 6= k} be the set of permutations in which aik

appears first among ai1 , . . . , aim . For a fixed pair (k,m) such that k < m, consider

the bijection f : Am → Ak which switches m and k. More precisely, for all σ ∈ Am,

f(σ)(`) =


σ(ak) if ` = m

σ(am) if ` = k

σ(a`) otherwise

.

The proof of Claim 4.1 shows that for all σ ∈ Am, d(σ, ω) ≤ d(f(σ), ω). This in turn

implies that for all k < m,

P (aik �σ ai` ,∀` 6= k) ≥ P (aim �σ ai` ,∀` 6= m),

and concludes the proof.

4.3.2 A PTAS for the assortment optimization problem

We now present a polynomial time approximation scheme (PTAS) for the assortment

optimization problem under the Mallows distribution under an additional assump-

tion. Our algorithm is based on establishing a surprising sparsity property, proving

the existence of small-sized near-optimal assortments, crucially utilizing certain sym-

metries in the distribution over permutations.
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Description of the algorithm. Let S∗ be the optimal assortment. Let M = 1/ε,

where without loss of generality, assume that M takes an integer value. We enumerate

all possible subsets of S of size less or equal than M and return the best candidate

assortment. Algorithm 12 describes the procedure.

Algorithm 12 Computing choice probabilities

1: Let Ŝ = arg maxS∈S {R(S) : |S| ≤M}.
2: Return Ŝ.

Assumption 4.2. The outside option is ranked last in the central permutation ω,

i.e. q = n.

Theorem 4.3. Under Assumption 4.2, Algorithm 12 is a PTAS for the assortment

optimization problem (4.2) under the Mallows distribution.

Proof. We first argue the correctness of the algorithm, i.e., that the assortment re-

turned is a (1 − ε)-optimal solution. Again, let S∗ be the optimal assortment. Note

that if |S∗| < M , then S∗ is one of the candidate assortments we examine, and there-

fore the algorithm returns the optimal solution. We therefore assume that |S∗| ≥M .

In this case, let Sε consists of the M highest revenue product of S∗. Note that Sε

is among the candidate assortment constructed by the algorithm. Moreover, it is a

feasible assortment by Assumption 4.1. We show that Sε is (1 − ε)-optimal using a

sample-path analysis. In particular, let σ be a fixed preference list. Let R(σ, S) be

the revenue obtained by σ when assortment S is offered. In particular,

R(σ, S) =
∑
a∈S

1l[σ, a, S] · ra.

We consider two cases.

Case 1. We first assume that aq �σ ai for all i ∈ Sε. In this case, R(σ, Sε) = 0. On

the other hand, offering a single product ai is always a feasible solution. Therefore,
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by Claim 4.1,

R(S∗) ≥ R({i∗}) = P (ai∗ � aq) · ri∗ ≥
ri∗

2
,

where ai∗ is the highest price product. Moreover, note that all product in S∗\Sε have

revenue smaller or equal to ri∗ . Therefore, any product in S∗\Sε has revenue less or

equal than 2 · R(S∗). This implies that R(σ, S∗) ≤ 2 · R(S∗).

Case 2. In this case, we assume that in the permutation σ, there exists a product

ai ∈ Sε such that ai � aq and R(σ, Sε) = rai . We show that R(σ, Sε) ≥ R(σ, S∗).

Indeed, suppose that there exists a product aj is in S∗\Sε such that aj �σ ai. Since

Sε contains the M highest revenue product of S∗, it must be that rj ≤ rj. Therefore,

R(σ, Sε) ≥ R(L, S∗).

We now combine the two cases. For case 1 to happen, note that aq has to be

preferred to all products from Sε. From Claim 4.2, this event occurs with probability

at most 1/|Sε| = 1/M = ε. Consequently,

R(S∗)−R(Sε) =P (Case 1) · E [R(S∗)−R(Sε)|Case 1]︸ ︷︷ ︸
≤0

+ P (Case 2) · E [R(S∗)−R(Sε)|Case 2]︸ ︷︷ ︸
=E[R(S∗)|Case 2]

≤ε · E [R(S∗)|Case 2]

≤2 · ε · R(S∗).

From a running time perspective, the number of candidate assortment is equal to

n1/ε. By Theorem 4.2, we can compute R(S) for any assortment S in O(n3 · log(n)).

Therefore the overall running time of the algorithm is O(n1/ε · n3 · log(n)).

Extension to a mixture of Mallows model. The PTAS extends to a mixture

of Mallows model as long as Assumption 4.2 holds for each segment. Indeed, since the

probabilistic claims hold for each segment, we can adapt the proof of Theorem 4.3 to

the case of a mixture of Mallows model. Moreover, we would like to emphasize that the
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running time scales linearly inK, the number of segments of the Mallows model. More

precisely, Algorithm 12 returns a (1−ε)-optimal assortment in O(K ·n1/ε ·n3 · log(n)).

The PTAS presented in this section provides an approximation algorithm with

provable guarantees for a special case of a mixture of Mallows model. However, it

requires Assumption 4.2 to hold. We next present an alternative way of solving the

assortment optimization problem using a MIP formulation which does not require

any assumption. To this end, we first present an alternative method for computing

the choice probabilities by means of dynamic programming.

4.4 Integer programming formulation

While Section 4.2 allows computing the choice probabilities efficiently, the approach

does not lend itself to solving the assortment optimization problem. For that reason,

we present an alternative algorithm for computing the choice probabilities which

will then lead to a MIP formulation for the unconstrained assortment optimization

problem.

4.4.1 Choice probabilities: a dynamic programming

approach

In what follows, we present an alternative algorithm for computing the choice prob-

abilities under a Mallows model. Again, note that this directly implies an efficient

algorithm for computing the choice probabilities under a mixture of Mallows model.

Our approach is based on an efficient procedure to sample a random permutation

according to a Mallows model with modal ranking ω and concentration parameter θ.

The random permutation is constructed sequentially, as explained in Algorithm 13.

Lemma 4.1 (Theorem 3 in [49]). The repeated insertion procedure generates a ran-

dom sample from a Mallows distribution with modal ranking ω and concentration
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Algorithm 13 Repeated insertion procedure

1: Let σ = {a1}.
2: For i = 2, . . . , n, insert ai into σ at position s = 1, . . . , i with probability

αi,s =
e−θ·(i−s)

1 + e−θ + · · ·+ e−θ·(i−1)
.

3: Return σ.

parameter θ.

Based on the correctness of this procedure, we describe a dynamic program to

compute the choice probabilities of a general offer set S. The key idea is to decompose

these probabilities to include the position at which a product is chosen. In particular,

for i ≤ m and s ∈ [m], let π(i, s,m) be the probability that product ai is chosen (i.e.,

appears first among products in S) at position s after the m-th step of Algorithm 13.

In other words, π(i, s,m) corresponds to a choice probability when restricting N to

the first m products, a1, . . . , am. With this notation, we have for all i ∈ [n],

π(ai, S) =
n∑
s=1

π(i, s, n).

We compute π(i, s,m) iteratively for m = 1, . . . , n. In particular, in order to compute

π(i, s,m+ 1), we use the correctness of the sampling procedure. Specifically, starting

from a permutation σ that includes the products a1, . . . , am, the product am+1 is

inserted at position j with probability αm+1,j, and we have two cases to consider.

Case 1: am+1 /∈ S. In this case, π(m + 1, s,m + 1) = 0 for all s = 1, . . . ,m + 1.

Consider a product ai for i ≤ m. In order for ai to be chosen at position s after am+1

is inserted, one of the following events has to occur:

i) ai was already chosen at position s before am+1 is inserted, and am+1 is inserted

at a position ` > s,

ii) ai was chosen at position s− 1, and am+1 is inserted at a position ` ≤ s− 1.
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Consequently, we have for all i ≤ m,

π(i, s,m+ 1) =
m+1∑
`=s+1

αm+1,` · π(i, s,m) +
s−1∑
`=1

αm+1,` · π(i, s− 1, k)

= (1− γm+1,s) · π(i, s,m) + γm+1,s−1 · π(i, s− 1,m),

where γm,s =
∑s

`=1 αm,` for all m, s.

Case 2: am+1 ∈ S. Consider a product ai with i ≤ m. This product is chosen at

position s only if it was already chosen at position s and am+1 is inserted at a position

` > s. Therefore, for all i ≤ m, π(i, s,m+ 1) = (1− γm+1,s) · π(i, s,m). For product

am+1, it is chosen at position s only if all products ai for i ≤ m are at positions ` ≥ s

and am+1 is inserted at position s, implying that

π(m+ 1, s,m+ 1) = αm+1,s ·
∑
i≤m

n∑
`=s

π(i, `,m).

Algorithm 14 summarizes this procedure.

Algorithm 14 Computing choice probabilities

1: Let S be a general offer set. Without loss of generality, we assume that a1 ∈ S.
2: Let π(1, 1, 1) = 1.
3: For m = 1, . . . , n− 1,

(a) For all i ≤ m and s = 1, . . .m+ 1, let

π(i, s,m+ 1) = (1− γm+1,s) · π(i, s,m) + 1l[am+1 /∈ S] · γm+1,s−1 · π(i, s− 1,m).

(b) For s = 1, . . . ,m+ 1, let

π(m+ 1, s,m+ 1) = 1l[am+1 ∈ S] · αm+1,s ·
∑
i≤m

n∑
`=s

π(i, `,m).

4: For all i ∈ [n], return π(ai, S) =
∑n

s=1 π(i, s, n).

Theorem 4.4. For any offer set S, Algorithm 14 returns the choice probabilities

under a Mallows distribution with modal ranking ω and concentration parameter θ.

This dynamic programming approach provides an O(n3) time algorithm for com-

puting π(a, S) for all products a ∈ S simultaneously. Moreover, as explained in the
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next section, these ideas lead to an algorithm to solve the assortment optimization

problem.

4.4.2 Assortment optimization: integer programming

formulation

Building on Algorithm 14 and introducing a binary variable for each product, we can

reformulate the assortment optimization problem (4.2) under a mixture of Mallows

model as a mixed inter program (MIP). Although the MIP formulation does not enjoy

the theoretical guarantees of the PTAS (i.e. upper bound on the running time), it

does not require Assumption 4.2 to hold. Again, we start with a single Mallows

model. In particular, we give a MIP with only O(n3) variables and constraints, with

only n 0-1 variables. We assume for simplicity that the first product of S (say a1)

is known. Since this product is generally not known a-priori, in order to obtain an

optimal solution to problem (4.2), we need to guess the first offered product and

solve the above integer program for each of the O(n) guesses. We would like to note

that the MIP formulation is presented for the unconstrained assortment optimization

problem but is quite powerful and can handle a large class of constraints on the

assortment (such as cardinality and capacity constraints).

Theorem 4.5. Conditional on a1 ∈ S, the following mixed integer program (MIP)

computes an optimal solution to the unconstrained assortment optimization problem
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under a Mallows model:

max
∑
i,s

pi · π(i, s, n)

s.t. π(1, 1, 1) = 1, π(1, s, 1) = 0, ∀s = 2, . . . , n

π(i, s,m+ 1) = (1− wm+1,s) · π(i, s,m) + yi,s,m+1, ∀i, s,∀m ≥ 2

π(m+ 1, s,m+ 1) = zs,m+1, ∀s,∀m ≥ 2

yi,s,m ≤ γm+1,s−1 · π(i, s− 1,m− 1), ∀i, s,∀m ≥ 2

0 ≤ yi,s,m ≤ γm+1,s−1 · (1− xm), ∀i, s,∀m ≥ 2

zs,m ≤ αm+1,s ·
n∑
`=s

m−1∑
i=1

π(i, `,m− 1), ∀s,∀m ≥ 2

0 ≤ zs,m ≤ αm+1,s · xm, ∀s,∀m ≥ 2

x1 = 1, xq = 1, xm ∈ {0, 1}

Proof. Let x = (x1, . . . , xn) be a feasible binary vector to the MIP and let S = {ai :

xi = 1}. Note that there is a one to one correspondence between feasible vector x to

the MIP and feasible assortment S such that a1 ∈ S and aq ∈ S. Consequently, we

can rewrite the MIP as

max
S⊆U
aq∈S

max
∑
i,s

pi · π(i, s, n)

s.t. π(i, s,m+ 1) = (1− wm+1,s) · π(i, s,m) + yi,s,m+1, ∀i, s,∀m ≥ 2

π(m+ 1, s,m+ 1) = zs,m+1, ∀s,∀m ≥ 2

0 ≤ yi,s,m ≤ 1l[am+1 /∈ S] · γm+1,s−1 · π(i, s− 1,m− 1), ∀i, s,∀m ≥ 2

0 ≤ zs,m ≤ 1l[am+1 ∈ S] · αm+1,s ·
n∑
`=s

m−1∑
i=1

π(i, `,m− 1), ∀s,∀m ≥ 2

π(1, 1, 1) = 1

Note that it is always optimal to set yi,s,m and zs,m at their upper bound because all

the coefficients in the objective function are non-negative. The correctness of Algo-
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rithm 14 then shows that the MIP is an equivalent formulation of the unconstrained

assortment optimization problem under a Mallows model.

We now present the MIP formulation for the unconstrained assortment optimiza-

tion problem for a mixture of Mallows model. Again, we want to emphasize that the

binary variables allow capturing a wide variety of constraints.

Theorem 4.6. Conditional on a1 ∈ S, the following mixed integer program (MIP)

computes an optimal solution to the unconstrained assortment optimization problem

under a mixture of Mallows model:

max
∑
i,s,k

pi · µk · πk(i, s, n)

s.t. πk(1, 1, 1) = 1, πk(1, s, 1) = 0, ∀s = 2, . . . , n, ∀k

πk(i, s,m+ 1) = (1− wm+1,s) · πk(i, s,m) + yki,s,m+1, ∀i, s, k,∀m ≥ 2

πk(m+ 1, s,m+ 1) = zks,m+1, ∀s, k, ∀m ≥ 2

yki,s,m ≤ γm+1,s−1 · πk(i, s− 1,m− 1), ∀i, s, k,∀m ≥ 2

0 ≤ yki,s,m ≤ γm+1,s−1 · (1− xωk(am)), ∀i, s, k,∀m ≥ 2

zks,m ≤ αm+1,s ·
n∑
`=s

m−1∑
i=1

πk(i, `,m− 1), ∀s, k, ∀m ≥ 2

0 ≤ zks,m ≤ αm+1,s · xωk(am), ∀s, k, ∀m ≥ 2

x1 = 1, xq = 1, xm ∈ {0, 1}

4.5 Numerical experiments

In this section, we examine the numerical performance of the MIP. We consider the

following simulation setup for a single Mallows model. Product prices are sampled

independently and uniformly at random from the interval [0, 1]. The modal ranking

is fixed to the identity ranking with the outside option ranked at the top. The outside
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option being ranked at the top is characteristic of applications in which the retailer

captures a small fraction of the market and the outside option represents the (much

larger) rest of the market. Indeed, most of the customers visiting a website or a store

leave without making a purchase. Because the outside option is always offered, we

need to solve only a single instance of the MIP (described in Theorem 4.5). Note

that in the more general setting, the number of MIPs that must be solved is equal

the minimum of the rank of the outside option and the rank of the highest revenue

item. Because the MIPs are independent of each other, they can be solved in parallel.

We solved the MIPs using the Gurobi Optimizer version 6.0.0 on a computer with

processor 2.4GHz Intel Core i5, RAM of 8GB, and operating system Mac OSX El

Capitan. In order to improve the running time of the MIP, we first strengthen the

big-M constraints. We describe this strengthening below.

Strengthening of the MIP formulation. We use some structural properties

of the optimal solution to tighten some of the upper bounds involving the binary

variables in the MIP formulation. In particular, for all i, s, and m, we replace the

constraint

yi,s,m ≤ γm+1,s−1 · (1− xm),

by the following constraint

yi,s,m ≤ γm+1,s−1 · ui,s,m · (1− xm),

where ui,s,m is the probabliity that product ai is selected at position (s− 1) after the

mth step of Algorithm 13 when the offer set is S = {ai∗ , aq}, i.e. when only the highest

priced product is offered. Since we know that the highest price product is always

offered in the optimal assortment, this is a valid upper bound to π(i, s − 1,m − 1)

and therefore a valid strenghtening of the constraint. Similarly, for all s and m, we

115



replace the constraint,

zs,m ≤ αm+1,s · xm,

by the following constraint

zs,m ≤ αm+1,s · vs,m · xm,

where vs,m is equal to the probability that product that product i is selected at

position ` = s, . . . , n when the offer set is S = {aq} if ai �w ai∗ , and S = {aq, ai∗}

otherwise. Again using the fact that the highest price product is always offered in

the optimal assortment, we can show that this is a valid upper bound.

Results and discussion. Table 4.1 shows the running time of strengthened MIP

formulation for different values of e−θ and n. For each pair of parameters, we gener-

ated 50 different instances.

n e−θ
Without strengthening With strengthening
Average (s) Max (s) Average (s) Max (s)

10 0.8 4.60 5.64 4.65 7.17
10 0.9 4.72 5.80 4.58 5.73
15 0.8 19.04 27.08 17.4 18.73
15 0.9 21.30 28.79 19.67 23.61
20 0.8 65.43 87.48 48.08 58.09
20 0.9 222.19 626.08 105.30 189.93
25 0.8 ** ** 143.21 183.78
25 0.9 ** ** 769.78 1,817.98

Table 4.1: Running time of the strengthened MIP for various values of e−θ and n.
(**the solver did not terminate in 8 hours)

We would like to note that the strengthening improves the running time consid-

erably. Under the initial formulation, the MIP did not terminate after several hours

for n = 25 whereas it was able to terminate in a few minutes with the additional

strengthening. Our MIP obtains the optimal solution in a reasonable amount of time

for the considered parameter values. Outside of this range, i.e. when e−θ is too small
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or when n is too large, there are potential numerical instabilities. The strengthening

we propose is one way to improve the running time of the MIP but other numerical

optimization techniques may be applied to improve the running time even further.

Finally, we emphasize that the MIP formulation is necessary because of its flexibility

to handle versatile business constraints (such as cardinality or capacity constraints)

that naturally arise in practice.

In this chapter, we have studied the mixture of Mallows model. Despite being

a distribution over rankings whose support is exponential, we show that this dis-

tribution is still very tractable. Using the symmetries of the Mallows distribution,

we develop efficient procedures to compute choice probabilities and give tractable

approaches to the assortment optimization problem. Therefore, smoothing a sparse

distribution increases its predictive power and interpretability without affecting its

tractability.
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Chapter 5

Design of Futures Contract for Risk-averse Online

Advertisers

5.1 Introduction

Why does advance selling (i.e., buyers purchasing items before they actually become

available for use) occur? There are several explanations for this widespread phe-

nomenon, some of which have been well studied in the academic literature. One

reason is that sellers can benefit by more accurately forecasting demand, reducing

the risk of either insufficient inventory or overproduction and wastage, thus manag-

ing their production costs and supply chains more effectively. To incentivize buyers to

provide such forecasts, sellers often offer discounts for pre-ordering, commonly seen in

the publishing and manufacturing industries. Another reason is that it allows sellers

to segment the market by using a price discrimination strategy, which is typical in

the travel and tourism industries: For example, leisure travelers with more flexibility

get a lower price for booking flights or hotel rooms far in advance, while relatively

price-insensitive business travelers pay a higher price for urgent last-minute bookings.

In both these cases, as it has been shown in the Marketing literature, advance selling

induces a discounted price for the consumers that are willing to commit and buy in

advance (see, e.g., [69] and [28]).

A slightly different setting is that of futures contracts in finance, which emerged

in the fifties. These contracts allow sellers and buyers to agree upon a price of a

commodity (e.g., oil) that will be delivered at a specified future date. Here, the
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contract exists to protect both buyers and sellers from uncertainty in future prices

(often due to unpredictable factors such as market fluctuations, weather, or supply-

demand mismatches). Since both parties benefit from advance selling, the price is not

necessarily discounted; it usually depends on risk factors that leads to a no-arbitrage

pricing policy (see, e.g., [41] and [38]).

In this chapter, we study a different case for advance selling, that does not appear

to have been considered before in the literature in this form: In a supply-constrained

world, particularly with variable demand, buyers may face significant uncertainty in

both pricing and allocation. To reduce this uncertainty, risk-averse buyers may be

willing to pay a premium for an advance purchase that guarantees they will both (a)

receive the item being sold and (b) pay a fixed price. That is, a risk-averse buyer

can hedge against the possibility of a ‘stock out’ (i.e., not receiving the item) due to

high demand, and against the possibility of a high price that prevents the buyer from

spending her budget in a controlled manner.1 Our motivating application throughout

this chapter will be that of Internet display advertising, which inspired this work, but

these ideas apply to other settings, such as pricing cloud computing services.

One of the main goals of this chapter is to propose a model for advance selling for

Internet advertising, and to show that it is beneficial for both sellers (publishers of

Internet content, who sell advertising space) and buyers (advertisers purchasing the

right to display their ad adjacent to the content). Traditionally, display advertising

is sold in two ways: First, through reservation contracts sold in advance, where an

advertiser enters into an agreement with a publisher, paying a fixed price for its

ads to be shown to a specified volume of visitors to the publisher’s website, perhaps

satisfying certain additional criteria. For example, Nike may pay $50,000 to have its

ads shown to 5 million espn.com website users who are based in the US and frequently

1The idea of buyers paying premiums for higher levels / quality of service has been studied in
the literature, but as we shall see, our work differs from this in important ways.
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visit the basketball section of the website. Reservation contracts have guaranteed

spend from the advertiser, and guaranteed number of impressions (an impression or

ad view occurs when one ad is shown to a user) by the publisher. Second, display

advertising may be sold through real-time bidding, in which advertisers and publishers

meet through an exchange platform (such as Google’s DoubleClick Ad Exchange).

When a user visits the publisher’s website, the exchange may request real-time bids

from multiple advertisers and run an auction, awarding the ad slot to the highest

bidder. This is usually a second-price auction for each individual impression, with no

guarantees to either publisher or advertiser; in some cases, instead of an auction, the

seller posts a fixed price.

Reservations and Market Maker: Typically, costs per impression are several

times higher for reservation contracts than for auction purchases, even though auc-

tions allow advertisers more fine-grained tracking and targeting of their ads to indi-

vidual users. Why is this the case? One of the main insights of this chapter is an

explanation for this difference; we model buyers as risk-averse rational agents that fol-

low commonly used utility models, and show that they are willing to pay a premium

for the guaranteed impression volume and guaranteed prices offered by reservations,

providing higher revenue to publishers.2 Recent independent work [37] in the context

of pricing for Cloud Computing has also posited risk aversion as the reason for the

existence of a guaranteed option at a higher price relative to the expected clearing

price of an auction; see our discussion of related work. Further, we go beyond this

qualitative insight, mathematically characterizing the appropriate premiums. In par-

ticular, we propose a new type of contract, referred to as Market-Maker contracts,

2One might note that there is a large and ever-increasing supply of Internet content; in such
a supply-rich world, why should advertisers pay reservation premiums, since they can always buy
ads on other websites? In line with our reasoning, the large mass of small publishers barely sell
reservation contracts, instead using auction-based platforms like Google’s AdSense. However, there
is a limited supply of high-quality content; large publishers with such differentiated content and
audiences (such as The New York Times, The Economist, or YouTube) are indeed the most likely
to sell reservation contracts and charge high premiums.
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that can replace or complement reservations: For risk-averse buyers concerned about

having to pay an unpredictable high price, or possibly not receiving impressions at

all, the Market-Maker is a system that quotes a price higher than the expected price

of an impression. Buyers can choose whether to pay this higher price or take their

chances in the open auction. The Market-Maker contract guarantees (like reserva-

tion contracts) that buyers who purchase it will receive their impressions. It is then

the responsibility of the Market-Maker to purchase these impressions on behalf of its

buyers, even if it has to pay a price higher than it charged the buyers.

Advantages of Market-Maker: We first claim that compared to a world with no

contracts or guaranteed sales, the addition of the Market-Maker benefits both buyers

and sellers:

• Since the risk-averse buyers obtain guarantees, they may derive higher utility

even though they pay the Market-Maker a higher price.

• This higher price obtained from buyers can be passed on to the seller as addi-

tional revenue (after deducting a share for the Market-Maker’s assumption of

risk).

In settings that currently offer both contracts and auctions, such as Internet display

advertising, the Market-Maker can replace existing forms of contracts, by automating

reservations. There are multiple advantages to Market-Maker as an alternative to

reservations:

• The current sales process for reservations involves considerable manual effort

and long-term human negotiations; some publishers report up to $10,000 in

costs to service a single guaranteed reservation advertising campaign [61], which

can be a sizable fraction of the total campaign spend. Offering publishers an

automated option that provides a reservation-like premium can allow them to

obtain more revenue at lower costs.
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• Currently, advertisers can only practically sign contracts with a small number

of publishers, and vice versa. An automated system like the Market-Maker

can scale better to a larger number of buyers and sellers, reducing search and

transaction costs for such contracts, and extend to more complex contracts with

finer targeting.

We next describe our model and contributions in more detail.

5.1.1 Contributions

At a high level, we make the following contributions:

• Framework to study guarantee-based premiums. We introduce a framework for

mathematically analyzing the benefits of guarantees for risk-averse Internet

advertisers. We consider the addition of guaranteed-delivery sales to the two

predominant existing modes of real-time-bidding based sales. The first is fixed-

price deals (commonly called preferred deals, a part of private marketplaces),

in which the seller invites buyers to participate at a posted price determined

by the seller. The other is the classic second-price auction setting. We study

the benefits of adding a Market-Maker purchase option which provides buyer

guarantees in each of these settings.

• Equilibrium buyer behavior analysis. The introduction of a new option for

buyers changes the equilibrium that would exist without this option. We assume

that buyers choose their preferred option to maximize their utilities, and study

several common utility models. We use an envy-based utility model in the

fixed-price / preferred deals setting and two widely used utility models, namely

CARA and Standard deviation models, for the auction setting. For each of

these settings, and each of these utility models, we characterize how to set the
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Market-Maker price, and analyze the equilibrium buyer behavior in the presence

of this additional Market-Maker option.

• Reducing allocation and price uncertainties. In the new equilibrium after the

addition of a Market-Maker option, we show that buyers who opt for the Market-

Maker reduce both their allocation uncertainty and price uncertainty. In par-

ticular, compared to the equilibrium clearing price that would have existed in

the absence of the Market-Maker, the Market-Maker charges a premium above

this price as a fee that buyers pay for reducing their allocation and price un-

certainties.

• Pareto improvement in seller’s revenue and sum of buyer utilities. We show

that in all the settings we consider, adding the Market-Maker contract can only

increase both the seller’s revenue and the sum of buyer utilities. For some

commonly used buyer value distributions, we further prove that this increase is

significant.

We now describe these contributions more fully, including some of the challenges

faced, and surprising observations.

Throughout this chapter, we assume for simplicity that there is a large inventory I

of identical, indivisible items. Each buyer is interested in exactly one unit of inventory,

and has a private value drawn independently from a common distribution F .3

In preferred deals sold on Ad Exchanges, sellers and buyers agree on a fixed

(posted) price per impression, but there is no guarantee that buyers will bid in any

volume, nor does the seller guarantee that there will be any inventory available to

bid on, let alone sufficient inventory for all the buyers interested in purchasing at

3In practice, a seller’s inventory may be segmented into different sections with different values,
but each segment can be treated independently. Similarly, buyers typically want to buy a large
number of impressions d, but one can break up each such buyer into d single-unit buyers. In reality,
buyers may have different valuation distributions, overlapping targeting, etc., and extending our
model to some of these more realistic cases is an interesting direction for future work.
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the posted price. When multiple buyers bid at this price, the impression is allocated

randomly to one of them. This motivates an envy-based utility model, where a

buyer receives negative utility for not being allocated even though he was willing

to pay the price at which another buyer was. In the absence of the Market-Maker,

we show examples where the total welfare can be significantly lower than optimal,

but flexibility in adding a second pricing option (i.e. the Market-Maker option) can

result in near-optimal welfare. Further, adding the Market-Maker option can result

in a Pareto improvement in both the seller revenue and the utility for each buyer.

In the auction setting, we assume a standard multi-unit auction (that is, the I

items are sold to the I highest bidders at a price equal to the the (I+1)th-highest bid).4

However, there is an additional layer of complexity in analyzing the equilibrium both

with and without the Market-Maker. When utilities are not quasi-linear, it is not

clear how buyers should bid at all, since it is not immediately obvious that a second-

price auction (or its generalization to the multi-unit case) is truthful. For example,

buyers may choose to shade their bids in order to decrease their pricing uncertainty

by avoiding a small probability of a very high price. We prove that the auction is

indeed truthful in the standard risk-aversion models we consider, demonstrating the

robustness of the second-price auction even in the presence of risk aversion. Armed

with these results, we can analyze outcomes in the auction setting.

In the auction setting, we first consider the case in which all buyers exhibit the

same degree of risk aversion (though this is perhaps unrealistic, it provides useful

insights for heterogenous degrees of risk aversion, which we consider later, and is

interesting in its own right). We show that there is a unique Market-Maker price such

that (a) the Market-Maker runs no risk of defaulting (which could be a possibility if

more than I buyers choose this option) and (b) at least one buyer opts for the Market-

4In reality, there are I repeated second-price auctions, but if buyers are paying a price higher
than the (I + 1)th bid, they have an incentive to lower their bids. Therefore, we assume that all I
items are sold at this price.
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Maker (if no buyer opts for it, it serves no purpose). We prove this by showing that

for any price p quoted by the Market-Maker, there is a threshold value v(p) such that

any buyer with value at least v(p) will choose the Market-Maker, and no buyer with

lower value will choose it. This also results in the somewhat counter-intuitive fact

that even the buyers with very high values (who have zero allocation uncertainty,

since they know they will always win in the auction) will choose the Market-Maker;

this is because in the homogenous risk-aversion case, the Market-Maker only changes

prices, and not the allocation, meaning that the premium is paid purely to reduce

pricing uncertainty. At this unique Market-Maker price, we show that there is a

Pareto increase in both the seller revenue and the sum of buyer utilities.

We then consider the more realistic case of heterogenous risk aversion; here, the

Market-Maker can change the allocation in addition to reducing pricing uncertainty.

In particular, a more risk-averse buyer may buy the Market-Maker contract and win

an impression, while a less risk-averse buyer with a higher value who decided to take

a chance may be left unallocated. Now, the Market-Maker price is no longer unique,

and we characterize the range of feasible Market-Maker prices. We prove that there

exists at least one price that gives a Pareto improvement in the seller revenue and

the sum of buyer utilities; choosing other points in the range allows trading off these

two objectives.

We believe that a significant strength of our paper is that all the results described

above for the auction setting hold in both the models we consider (though the proofs

are quite different), showing that our results are robust and not tied to a particular

model for risk aversion.

5.1.2 Related Literature

As we discussed, this chapter is related to several streams of literature.

In the Marketing community, the topic of advance selling has received great at-
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tention in the last two decades (see, e.g., [69], [70] and [28]). In [69], the authors

show that advance selling allows sellers to improve profits. In particular, they prove

that when buyers are homogeneous in the advance period purchase, advance selling

can attain the profits from first degree price discrimination (even when the seller

cannot price discriminate in the consumption period). Subsequently, [70] extend the

treatment to competitive environments and show that the relative profit advantage

from advance selling in a competitive market can be higher or the same relative to a

setting with a monopolist.

In the Operations Management community, advance selling was also studied (see,

e.g., [63], [19], [15] and [12]). The work by [63] study advance selling in a newsvendor

setting. The authors examine the advance selling price and inventory decisions in a

two-period setting, and conclude that advance selling is not always optimal. In [19],

the authors study a supply chain setting with a manufacturer who produces and sells

a seasonal product to a retailer under uncertain supply and demand. They model

the problem as a Stackelberg game and study the impact of advance selling on both

the manufacturer and the retailer. In [15], the author studies how the allocation of

inventory risk impacts the supply chain efficiency under advance-purchase discount

contracts. It is shown that if firms consider advance-purchase discounts, then the

coordination of the supply chain and the arbitrary allocation of its profit is possible.

In [12], the authors study a model that uses the acquired advance sales information

to decide the capacity. They derive a threshold policy that determines when to stop

acquiring advance sales information and show that advance selling can improve profit

significantly. Finally, the recent article [16] studies a similar problem as this chapter in

the context of an online multi-unit auction. In their model, the seller faces a Poisson

arrival stream of consumers who can get the product from the auction or from a list

price channel. Each consumer maximizes his own surplus, and must decide either to

buy at the posted price and get the item at no risk, or to join the auction and wait
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until its end. This chapter differs by explicitly modeling the risk aversion of buyers

in the utility function, instead of assuming different arrival times that are Poisson

distributed. In addition, we focus on studying how to design and set the price of the

advance selling option and we study the impact on the buyers and the sellers. We

note that in both the Marketing and Operations Management literatures, most of

the previous works on advance selling aim to mitigate the uncertainty in the buyer’s

valuation (or the consumption level). One of the key messages is that advance selling

helps the seller to increase its profit by offering a discounted price to the buyers

who can commit to make the purchase in advance. In this chapter, however, the

motivation is different in nature as our goal is to capture the risk aversion of buyers

(or advertisers) and to offer a premium price for the Market-Maker contract. In this

paper, we show that in addition to the benefit for the buyers, it also increase the

revenue of the seller.

In the Finance literature, futures contracts are a very well studied area of research

(see, [41], [40], [38] and the references therein). As we previously mentioned, the

financial contract exists to protect both buyers and sellers from uncertainty in future

prices. Since both parties benefit from advance selling, the price is not necessarily

discounted and usually depends on risk factors that leads to a no-arbitrage pricing

policy. A large number of strategies that aim to price such contracts were developed

and implemented but this is beyond the scope of this chapter.

Finally, several relatively recent papers in the CS/Econ community are also re-

lated. Notably, [37] independently considered the problem of guaranteed and spot

markets coexisting, specifically in the cloud computing market. One important differ-

ence is that their model assumes that the seller is the agent offering the two options,

and explicitly sets aside inventory for the purchasers of the guarantee. In contrast,

our market maker cannot set aside inventory, as it is not the seller;5 it bids in the auc-

5Individual publishers in the display advertising context are unlikely to have the scale and/or
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tion to obtain inventory for its buyers, and hence makes a loss with some probability

(though it makes a profit in expectation). As such, this service can be offered by any

arbitrary third party wiling to accept the arbitrage risk, though it is likely to be the

exchange, passing on a large portion of the profits to publishers. A few other papers

consider settings in which buyers can pay more to get a higher chance of winning an

item, but they are not motivated by risk aversion: [74] describes how publisher can

sell an options contract that gives advertisers the right to buy ads later at a particular

price; their work differs from ours by focusing on reducing seller revenue volatility

by accepting lower average revenue. [56] studies how publishers can increase revenue

by bundling impressions and offer advertisers a fixed take-it-or-leave-it price. In this

work, advertisers who buy a bundle do receive a guarantee, but they are not moti-

vated to do so by risk aversion; instead, if they reject the bundle, they are barred from

the auction. Finally, [18] describes a modified auction where for each item, buyers

are offered the choice between paying a high fixed price, or taking their chances in a

lottery; the authors show that this tool can extract additional revenue particularly

in thin auctions where only a single buyer is likely to have a high value.

Structure of the chapter. We first study the case of a posted price in Section

5.2. In Section 5.3, we consider the case where ads are sold via auctions and extend

our analysis to this setting. In Section 5.4, we run computational experiments on

commonly used distributions to illustrate the lift in revenue and buyer utilities that

we get from adding the Market-Maker contract.

5.2 Posted price

In this section, we consider a setting with a posted price contract which corresponds to

the fixed-price cpm deals in the online advertising world. More precisely, online adver-

technological sophistication to offer such a service.
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tisers can sign contracts at a pre-determined posted price set by the seller. Typically,

these types of contracts do not provide any guarantee of delivery to the advertisers;

they only provide a price guarantee if allocated. Our goal is to study the benefits

of introducing a new additional type of contract, called the Market Maker contract,

that provides a delivery guarantee. The seller will offer both types of contracts to

advertisers, who can then choose between the two options.

5.2.1 Model

Consider a single seller or publisher (e.g., a website such as the New York Times

selling online ads). Let I be the amount of inventory (number of ads available), and

N be the number of buyers or advertisers interested in purchasing this inventory. For

simplicity, we assume that all the inventory units are identical,6 that each buyer is

interested in a single unit, and each unit is equally valuable to all N buyers. For

example, the seller wants to sell I ads slots for a specific day next month or for a

special event (e.g., Valentine’s day). We assume that I and N are deterministic and

known to the seller7 (for instance, the publisher has a reasonably accurate estimate

based on the number of users that visited his website in the past, and similarly

the number of buyers with whom he has long-term relationships with). Each buyer

has a private valuation v drawn i.i.d. from some discrete distribution F . We focus

specifically on discrete distributions because several aspects of the buyer population

like re-marketing buyers etc. make the distribution bimodal or multi-modal and

discrete distributions model this well8. The seller decides upon a posted price p

6This is indeed the case if we partition the inventory/user-eyeballs that the seller has available
into several segments based on the feature-list of each user, and focus on each segment separately.
Within each segment, buyers have the same value for any unit.

7Even with I and N deterministic we show that an additional market-maker price can signifi-
cantly increase seller revenue, buyer utilities, and efficiency of allocation.

8For the continuous distribution case where even a single price is enough to optimize welfare
and efficiency.
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and then, the inventory is randomly allocated among all the buyers with valuation

that exceeds p. The random allocation mechanism is motivated by the fact that

the buyers arrive in a random order, and are served on a first-come-first-serve basis.

Consequently, depending on I, N and the buyers’ value distribution, some buyers may

not be served even though their valuations are above p. (Indeed this happens with real

world fixed-price cpm deals, and is part of the reason why these deals don’t promise

allocation guarantees). This phenomenon makes such buyers experience envy: the

inability to purchase a good that was priced below their value, whereas another buyer

could. We consider a utility model for the buyer that captures her envy when a good

is not allocated. More precisely, we consider the following utility model:

U(v, p, β) =


v − p if v ≥ p and allocated an item at price p

−β · (v − p) if v ≥ p and not allocated an item

0 otherwise.

If the valuation v is less than the posted price p, the buyer perceives 0 utility. If v ≥ p,

the buyer is interested in purchasing the item. If the buyer is allocated, her utility is

equal to the quasilinear utility v − p, and if she is not allocated (due to the random

allocation mechanism), she perceives a negative utility equal to −β · (v − p), where

β represents the envy parameter of the buyer, and could be different for different

buyers. In this case, the buyer can afford the item, and seeing others receiving the

item, makes her perceive a disutility/envy.

Welfare vs Efficiency. Efficiency of an outcome is the sum of valuations of buyers

who were allocated. Welfare of an outcome is the sum of utilities of all buyers and

sellers. With quasilinear utilities, welfare = efficiency. But with the envy-based utility

we study, some buyers could experience disutility due to envy and therefore, we have

welfare ≤ efficiency.
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Market-Maker price. We study the effect of adding a Market Maker contract

here, namely, we provide an additional price pM along with the guarantee that buyers

who pay pM are guaranteed to get an item, and those who pay p will enter a uniformly

random lottery along with other buyers who also paid p, and the remaining inventory

after serving the market-maker confirmed buyers will be distributed in this random

fashion.

Fluid assumption. We assume N is large enough such that for each point x in the

support of F , the number of buyers with value less than x is exactly N(1−F (x)). I.e.,

when N is large, concentration bounds puts this number very close to N(1− F (x)),

and the fluid assumption makes this exactly at N(1 − F (x)). This assumption is

to simplify exposition and avoid notational clutter from concentration bounds that

doesn’t add any insight.

Further, we assume that the distribution F is non-trivial, namely, there is at least

one point x in the support of F such that N(1 − F (x)) < I. In words, there is at

least point in the support of F where the supply is not exhausted completely. If F is

trivial, by definition of triviality, no collection of prices is enough to give allocation

guarantees, and we therefore ignore this case.

5.2.2 Results

The main message is that adding a market-maker price will simultaneously (some-

times only weakly) increase seller’s revenue and sum of buyer’s utilities. We now

establish this result in the posted-price setting. In fact in this setting, we also show

that adding the market-maker price also increases efficiency of allocation, namely the

sum of valuations of the buyers who get allocated.

We analyze the effect of adding a market-maker price to an existing posted price.

If the posted-price was already not exhausting supply, it does not make sense to add a
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market-maker at a higher price. Assume therefore that the prior posted price exhausts

the supply. Among all supply exhausting prices, the chosen one could have optimized

revenue or welfare or efficiency etc.. But we show in the following theorem that

there exists a single price that simultaneously optimizes seller’s revenue, efficiency of

allocation and total welfare in the system (sum of utilities of seller and buyers). It

therefore unambiguously establishes that the single posted price that existed before

Market-Maker was added should have been p−. We then show that offering a market

maker price of pM simultaneously with p− Pareto improves all quantities of interest.

The definitions of p− and pM are given in the statement of Theorem 5.1

Notation. We will often be interested in the quantity F<(x) = Pr[v < x], as

opposed to the regular cdf F (x) = Pr[v ≤ x].

Theorem 5.1. For any I, N and non-trivial value distribution F , and arbitrarily

heterogeneous risk averse parameters (βi for buyer i), the following are true.

1. Let S = {p in support of F : N(1− F<(p)) ≥ I} be the finite set of prices that

exhaust supply. Let p− = maxp∈S p. In the domain S, revenue, welfare and

efficiency are all optimized simultaneously at p−.

2. There exists a market-maker price pM such that offering prices pM and p− to

buyers (with pM guaranteeing allocation), will:

a) attain optimal efficiency: E(pM , p−) is exactly the sum of the I highest

values;

b) attain optimal welfare, and no buyer experiences envy: W (pM , p−) =

E(pM , p−);

c) strictly increase revenue: R(pM , p−) > R(p−), except, when N(1−F<(p−)) =

I we have R(pM , p−) = R(p−);
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d) strictly increase at least one buyer’s utility: there exists an i for which

U(vi, (p
M , p−), β) > U(vi, p

−, βi), except when N(1−F<(p−)) = I we have

U(vi, (p
M , p−), β) = U(vi, p

−, βi) for all i.

e) weakly increase each buyer’s utility: for each i, we have U(vi, (p
M , p−), βi) ≥

U(vi, p
−, βi).

Proof. We prove the theorem in two parts.

Proof of part-1 Consider the smallest point larger than p− in the support of F .

Call it p+. Note that N(1 − F<(p−)) ≥ I by definition of set S (note that S 3 p− )

and N(1− F<(p+)) < I.

1. Revenue: Since the market clears for all prices in S, the revenue R(p) for any

p ∈ S is exactly I · p. Since p− is the maximum price in S, among all p ∈ S,

the revenue R(p) is maximized at p−.

2. Efficiency: Consider any price p ≤ p−. Let Ip be the number of buyers with

value at least p. Note that Ip > I whenever p ≤ p−. Let v1 ≥ · · · ≥ vIp be the

values of all the buyers with value at least p. The efficiency at any at p is:.

E(p) =
I

Ip

Ip∑
i=1

vi.

As we decrease p, Ip increases, making the inventory open to more and more

lower value buyers, at the cost of decreased probability of allocation for high

value buyers. It immediately follows that E(p) increases with p and the optimal

efficiency among points in S is obtained at p−.

3. Welfare: Let p ∈ S, Ip and v1 ≥ . . . vIp be defined as before. Welfare at p, which

is the sum of all buyer’s utilities and seller’s revenue, is defined as follows.

W (p) =
I

Ip

Ip∑
i=1

vi −
(

1− I

Ip

) Ip∑
i=1

βi · (vi − p).
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The first term constitutes the quasi-linear utility of the buyers plus the seller’s

revenue (that’s why the prices cancel each other and don’t appear). The second

term constitutes the envy experienced by buyers. Note that since Ip decreases

as p increases, the first term clearly increases with p. In the second term, the

factor (1− I
Ip

) clearly decreases with p, and so does the factor vi− p. Thus the

second term decreases with p. Thus W (p) increases with p, showing that W (p)

is maximized at p− among all prices p ∈ S.

Proof of part-2 Consider posting a Market-maker price of pM = p−+ε for a tiny ε.

We analyze the buyer behavior equilibrium, namely, which set of buyers will purchase

at Market-Maker price of pM , and which set of buyers will buy at p−.

Claim 5.1. The unique equilibrium at prices (pM , p−) is as follows. When N(1 −

F<(p−)) = I, the top I buyers get allocated at the price of p−, and no buyers will every

choose the Market-Maker price, and no buyer experiences envy, and optimal welfare

and efficiency are already achieved without Market-Maker. But if N(1−F<(p−)) > I,

buyers with v ≥ p+ will purchase at Market-Maker price of pM = p− + ε, and buyers

with v = p− will opt for a price of p− and enter a lottery to randomly share the left

over I−Ip+ items (left over after Market-Maker serves Ip+ buyers with values at least

p+). Buyers with v < p− do not get allocated.

Proof of Claim. The proof for N(1− F<(p−)) = I is immediate. We prove the other

case in the claim in three parts:

1. Buyers with v < p− do not face any envy even if unallocated since both prices

are strictly larger than p−, and hence will go unallocated.

2. Buyers with v = p− will also face no envy because their quasi-linear utility

when opting for a price of p− is exactly v − p− = 0. Thus they will prefer to

get a 0 utility than opting for pM and getting negative utility.
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3. To see that all the Ip+ buyers with v ≥ p+ will opt for the Market-Maker price

of pM : suppose on the contrary only 0 ≤ d < Ip+ buyers with v ≥ p+ opt for

Market-Maker price of pM . Under this equilibrium, consider the utility of a

buyer i with value vi ≥ p+ who has not opted for the Market-Maker. There are

only I − d units available for sale after serving Market-Maker buyers.

U(vi, p
−, βi) =

I − d
Ip−

(vi − p−)− βi
(

1− I − d
Ip−

)
(vi − p−).

Clearly, U(vi, p
−, βi) < vi − p− because I − d ≤ I < Ip− . Thus, there exists a

sufficiently small ε such that U(vi, p
−, βi) < vi − (p− + ε) = vi − pM . Thus it

was strictly sub-optimal for the buyer to have not opted for the Market-Maker

price. This proves the claim.

Armed with the claim, we now show prove the theorem.

1. Optimal efficiency achieved: E(pM , p−) is the optimal efficiency achievable, i.e.,

it is the sum of the highest I values. This is immediate because the highest Ip+

values pick Market-Maker price and are guaranteed to get allocated. All the

remaining buyers who get allocated are at the next highest possible value after

p+, namely p−. It does not matter which among the buyers with v = p− are

getting allocated, so randomness in allocation for those buyers will not affect

efficiency.

2. Optimal welfare achieved: We show that W (pM , p−) = E(pM , p−). As explained

in Section 5.2.1, welfare is always at most efficiency. Since we have already

shown that E(pM , p−) is optimal, if we now show that W (pM , p−) = E(pM , p−),

it follows that welfare is also optimal at pair (pM , p−). To establish that, all we

have to show is that no buyers experience envy in the equilibrium allocation

(i.e., there is no loss in utility due to envy), and then it immediately follows
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that welfare = efficiency. Clearly buyers with value v ≥ p+ don’t experience

envy because they choose the Market-Maker price and are guaranteed to get

allocated. Buyers with value v = p− have 0 quasi-linear utility, and therefore

even if they don’t get allocated due to the randomness in allocation, they don’t

experience envy. This proves the optimality of welfare.

3. Strictly increase revenue: The fact that R(pM , p−) > R(p−) (in the case when

N(1 − F<(p−)) > I) immediately follows from noting that R(p−) = I · p−,

and R(pM , p−) = Ip+(p− + ε) + (I − Ip+)p− > R(p−) (our equilibrium behavior

analysis says that Ip+ buyers purchase at a price of pM when N(1−F<(p−)) > I)

. When N(1− F<(p−)) = I, no buyer chooses pM , and revenue is R(pM , p−) =

R(p−).

4. Strictly increase at least one buyer’s utility: Buyers with value v ≥ p+ get strictly

higher utility after adding Market-Maker option, i.e., if vi ≥ p+, we have

vi − pM > U(vi, p
−, βi) (we proved this while deriving the equilibrium).

5. Weakly increase each buyer’s utility: To show that for all buyers i, U(vi, (p
M , p−), βi) ≥

U(vi, p
−, βi), note that buyers with values v ≤ p− get 0 utility before and af-

ter adding Market-Maker price. Buyers with value v ≥ p+ experience a strict

increase in utility as was just discussed in point 4 above.

In Theorem 5.1, we show that the price pair (pM = p− + ε, p−) optimizes welfare

and efficiency, and Pareto improves other quantities of interest. While the ε was to

just show existence, in practice one could significantly increase the Market-Maker

price beyond p− and significantly increase revenue. We demonstrate this for a few

distributions in Section 5.4

While Theorem 5.1 establishes that Market-Maker price can simultaneously im-

prove all quantities of interest, while also achieving optimal welfare and optimal
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efficiency, it does not quantify the extent of improvement that Market-Maker can

provide. To do this, we show in Theorem 5.2 that having just a single posted price

can lead to really bad welfare, i.e., we show that there exist distributions for which

the single posted-price’s welfare can be arbitrarily small as β gets very large.

Theorem 5.2. Even when the risk aversion parameter β is the same across all buyers,

there exists I, F,N such that the welfare from any single price is at most 1
2+β

of the

optimal welfare.

Proof. Consider a setting where the support of F has two values v2 and v1 > v2. We

pick our v1, v2, F so that Let N
[
1− F<(v1)

]
< I, i.e., the number of buyers Iv1 with

value at least v1 is strictly smaller than I, namely at a price of v1, we don’t exhaust

supply. We further ensure that v2 ·
[
I − Iv1

]
= (1 + β) · v1 · Iv1 . (Note that we just

have imposed 2 constraints so far, and we have 3 degrees of freedom namely v1, v2

and F (v2).). In this case, the optimal welfare is given by:

W ∗ = v1 · Iv1 + v2 ·
[
I − Iv1

]
= (2 + β) · v1 · Iv1

=
2 + β

1 + β
· v2 ·

[
I − Iv1

]
.

We next compute the welfare evaluated at both values v1 and v2. Note that the values

v1 and v2 are the only two relevant candidates for the posted price.

When the price is set to v1, we have: W (v1) = v1 · Iv1 and therefore:

W (v1)

W ∗ =
1

2 + β
.

When the price is set to v2, we have:

W (v2) =
I

N
· v1 · Iv1 − β(1− I

N
)(v1 − v2)Iv1 +

I

N
· v2 · (N − Iv1).

Note that we have included seller’s revenue also in this welfare, and that’s why the

first term has just v1 instead of v1 − v2, and similarly that’s why the third term has
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just v2 instead of v2 − v2. Now, set N >> I >> Iv1 , and ignore the term I
N

in the

above expression (except for the I
N

in the last term because it has a large multiplier,

namely N − Iv1). This gives us

W (v2) ' 0− β(v1 − v2)Iv1 +
I

N
· v2 · (N − Iv1)

≤ v2I + βv2Iv1 − βv1Iv1 (by ignoring the term
I

N
· v2 · Iv1)

= v2I + βv2Iv1 −
β

1 + β
v2(I − Iv1)

= v2I
1

1 + β
+ βv2Iv1

2 + β

1 + β

Now consider W (v2)
W ∗

, and substitute for W ∗ from the above derivation. We have

W (v2)

W ∗ =
1

2 + β

I

I − Iv1
+ β

Iv1
I − Iv1

' 1

2 + β
.

This completes the proof.

As β grows large, the welfare grows arbitrarily bad with a single price, i.e., there is

a lot of disutility in the system because of the envy that arises out of random allocation

hurting high value buyers. Note that even at β = 0, the welfare approximation by a

single price is at least a factor 2. Where as, like we saw in Theorem 5.1, the addition

of a single Market-Maker price, gives us the optimal welfare and efficiency for all β.

While we skip the proof here, it turns out that the factor 2 +β is tight, i.e., there

is a single posted price that can give a 2 + β approximation to optimal welfare.

5.3 Auctions

In this section, we consider the most popular setting for Internet advertising, where

the publisher sells the items via an auction mechanism, instead of a posted price. Note

that a large fraction of real-time bidding exchanges operate under such a mechanism.
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Buyers can post a bid for the item in real-time, and the I inventory units are allocated

to the I highest bidders. More precisely, the I highest bidders win the auction, and

they all pay the (I+1)-th bid, also called the auction clearing price. This mechanism

is called a standard multi-unit auction and generalizes the second price auction, and is

very common in both the academic literature and in practice. Our goal is to study the

benefit of adding the Market Maker contract in such an auction setting. In particular,

we show that it allows the seller to significantly increase both seller revenue and sum

of buyer utilities.

5.3.1 Model

As discussed, we consider a setting where the items are allocated by running a second

price auction. Note that buyers can suffer from two types of uncertainty: (i) allocation

uncertainty, and (ii) price uncertainty. In other words, the buyers are not guaranteed

to be allocated and if they are, the clearing price is also uncertain.

Fluid assumption. As in the posted-price setting, we make the fluid assumption

that N is large, and consequently, the number of buyers with each value in the support

of F is deterministic (i.e., it is so concentrated that it is effectively deterministic).

A consequence of the fluid assumption is that when N is deterministic, the auction

clearing price, which is just the I + 1-th order statistic among N draws from N is

also deterministic. Thus, there is no uncertainty in allocation or pricing when N

is deterministic. Note that this is unlike in the posted-prices setting where even

at deterministic N there was significant allocation uncertainty due to the uniformly

random allocation used when demand exceeded supply. The auction on the other

hand is efficient, and doesn’t have this issue. Therefore, adding the Market Maker

contract when N is deterministic is not relevant. In reality, N is very often unknown

and we study the stochastic N case in this section.
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N from discrete distribution, v from continuous or discrete distribution

F . In particular, we assume that N has a finite support distribution supported in

[Nmin, Nmax]. The buyer values could be drawn from either discrete or continuous

distribution. Note that the utility model used in Section 5.2 is not relevant here. In

particular, the auction is efficient by nature, and no disutility/envy is perceived by

the buyers. As a result, we consider two different utility models that are commonly

used in the literature and capture the risk-aversion of the buyers.

Note that for each realization of N , we obtain a corresponding clearing price

that is simply a deterministic function of the number of buyers N , due to the fluid

assumption. Under this assumption, there exists a deterministic mapping between

the uncertainty in N and the uncertainty in the clearing price p. Therefore, instead

of considering the uncertainty in N , we use the uncertainty in the clearing price.

In order to model the buyer’s risk aversion, we consider the two following utility

models:

UA(v, b) =

 Ep [(v − p)Ix]− β ·
√

Varp [(v − p)Ix] (Standard Deviation (SD) model),

Ep

[
1− e−α·(v−p)Ix

]
(CARA model).

(5.1)

Here, α ≥ 0 and β ≥ 0 are the parameters of each model that capture the risk

aversion of the buyers, and Ix is the indicator that the buyer is allocated the item

at his bid of b. In addition, Ep and Varp denote the expectation and variance oper-

ators over the distribution of the auction clearing price. These two classes of utility

models are commonly used in the literature and aim to capture the risk aversion of

buyers. The SD model is used in finance (e.g., portfolio optimization) and in various

Marketing applications. The Constant Absolute Risk Aversion (CARA) model is a

very commonly used risk aversion model.
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Truthfulness. Before introducing the Market-Maker option, is the I + 1-th price

auction even truthful with the above two utilities? Is it clear that the buyer doesn’t

stand to benefit by over-bidding or under-bidding? It is straight-forward to see this in

the CARA model, but the proof is involved in the SD model. We skip the truthfulness

proof here, and provide it in the full version of the paper.

Lemma 5.1. The I+1-th price auction is truthful under the above two utility models,

i.e.:

1. In the CARA model, ∀α ≥ 0, ∀v′ 6= v, UA(v, v) ≥ UA(v, v′).

2. In the SD model, ∀β ≥ 1 ∀v′ 6= v:

a) If UA(v, v) ≥ 0, then UA(v, v) ≥ UA(v, v′).

b) If UA(v, v) < 0, then UA(v, v′) < 0.

We note the subtlety in Lemma 5.1; we don’t claim that utility never increases by

misreporting one’s bid. We show that if the true utility is positive, one’s misreported

bid never yields anything more than the true utility. If the true utility is negative,

one’s misreported bid could yield higher than the true utility, but it is still negative

as well. An agent with negative utility simply does not participate in the auction,

and gets 0 utility instead.

Is a negative utility at one’s true value meaningful? We claim that it is meaningful.

It means that the agent is so risk averse that any amount of uncertainty in outcome

is enough to cause net disutility to her. Such agents simply don’t participate in the

auction at all. Importantly, Market-Maker helps such buyers by providing a risk-free

option that they will consider purchasing. Namely, the Market-Maker increases the

net buyer participation.

Now that we said that the auction is truthful, we rewrite the utilities by dropping

the bid (bid = value) as:
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UA(v) =

 Ep [(v − p)+]− β ·
√

Varp [(v − p)+] (Standard Deviation (SD) model),

Ep

[
1− e−α·(v−p)+

]
(CARA model).

(5.2)

Market-Maker and auction. Assume that we now introduce the Market Maker

option at a price pM . The buyer’s utility with valuation v for selecting the Market

Maker contract is given by:

UM(v, pM) =

 (v − pM)+ (SD model),

1− e−α·(v−pM )+ (CARA model).

Note that in the SD model, the standard deviation term disappears as the value of

pM is deterministic. The Market-Maker bids on behalf of its buyers in the auction. It

bids a very high number (essentially∞) so that it is guaranteed to get allocated. The

only way a Market-Maker can default on its allocation promise is when more than I

buyers choose to buy Market-Maker. The Market-Maker price has to be designed to

avoid this, and yet should not be too high to get 0 or tiny incremental revenue.

Equilibrium behavior. If provided both the market-maker and the auction, how

will the equilibrium buyer behavior be? Which buyer values will choose which option?

The buyers while making this decision know their own values, but do not know the

total number of buyers N who are entering the system. This causes some allocation

and pricing uncertainty in the auction. In the next section, we analyze this setting.

We use our equilibrium behavior analysis to guide how the market-maker price should

be set so that the Market-Maker never defaults, i.e., never gets into a demand-more-

than-supply situation. What will happen to total revenue? What will happen to

total utility? All these in next section.
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5.3.2 Homogeneous risk-aversion

In this section, we consider the setting where all the buyers have the same risk-

aversion parameter (β and α for the SD and CARA models respectively). We will

extend our results for the case of heterogeneous risk-aversion in Section 5.3.3. Our first

result characterizes the equilibrium induced by the coexistence of both the auction

mechanism and the Market Maker contract. In particular, we show that the buyers

with high valuations choose the Market Maker.

Theorem 5.3. For both CARA and SD utility models, and for a given price pM , if

there exists a value ṽ such that UM(ṽ, pM) ≥ UA(ṽ), then for all v ≥ ṽ, UM(v, pM) ≥

UA(v).

Proof. We give separate analyses for the two utility models. For ease of exposition,

we assume that the distribution of values is continuous for this proof.

Proof for SD model : We show that the difference of the Market-Maker and

Auction utilities is increasing, thereby establishing the threshold property. We first

rewrite the utility derived from the auction. Note that if N has a discrete distribution,

then the auction clearing price is discrete as well. Let G(·) denote its cdf and let g(·)

be the probability mass function of the clearing price. A clearing price only exists

only when the game has an equilibrium; we begin by assuming that a clearing price

exists, and later prove that because equilibrium exists, our assumption is valid.

UA(v) =

∫ v

0

(v − p) · g(p) · dp− β ·
√

Varp[(v − p)+].

We compute the derivative of each term separately. For the first term:

∂

∂v

(∫ v

0

(v − p) · g(p) · dp
)

=

∫ v

0

g(p) · dp = G(v).
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The derivative of the second term can be written as:

∂

∂v

(
Varp[(v − p)+]

)
=

∂

∂v

(
Ep[((v − p)+)2]− Ep[(v − p)+]2

)
=

∂

∂v

(∫ v

0

(v − p)2 · g(p) · dp
)
− 2 · Ep[(v − p)+] ·G(v)

= 2 ·
∫ v

0

(v − p) · g(p) · dp− 2 · Ep[(v − p)+] ·G(v)

= 2 · Ep[(v − p)+]− 2 · Ep[(v − p)+] ·G(v)

= 2 · Ep[(v − p)+] ·G(v).

Here, G(v) = 1−G(v) denotes the complementary cdf of the auction clearing price.

Note that the variance is an increasing function of v. Putting the two terms together,

we obtain:

∂

∂v
UA(v) = G(v)− β · Ep[(v − p)+] ·G(v)

2
√

Varp[(v − p)+]
.

Since UM(·) is a linear function of v for v ≥ pM , its derivative is equal to 1 for those

values. Consequently,

∂

∂v
(UM(v)− UA(v)) = G(v) ·

(
1 + β · Ep[(v − p)+]

2
√

Varp[(v − p)+]

)
≥ 0.

Consequently, the difference in the utility functions is increasing with v, which shows

the desired threshold property.

CARA model Unlike the SD model’s proof, where we studied the derivative of the

difference of utilities, here we study the derivative of the ratio of utilities. As before,

we begin by computing the derivatives of the utility functions. For v ≥ pM , we have:

∂

∂v
UM(v, pM) = e−α·(v−p

M ) ≥ 0,

∂2

∂2v
UM(v, pM) = −α · e−α·(v−pM ) ≤ 0.

In addition, one can write:

∂

∂v
UA(v) =

∫ v

0

e−α·(v−p) · g(p) · dp ≥ 0.
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This shows that UM(·, pM) and UA(·) are both increasing functions in v. In addition,

UM(·, pM) is concave in v. Using the expressions for the derivatives, we have:

∂UA

∂v
(v)

/
∂UM

∂v
(v) =

∫ v

0

e−α·(pM−p) · g(p)dp. (5.3)

Note that the ratio in (5.3) is an increasing function of v. Furthermore, we can rewrite

(for any v ≥ pM):

∂

∂v
UM(v, pM)

∣∣∣
v=vmax

= 1− UM(v, pM),

∂

∂v
UA(v)

∣∣∣
v=vmax

= 1− UA(v).

Therefore, we obtain:

∂UA

∂v
(v)

/
∂UM

∂v
(v, pM)

∣∣∣∣
v=vmax

=
1− UA(vmax)

1− UM(vmax, pM)
. (5.4)

Here, vmax denotes the maximal value of the valuation v (if the support of v is

unbounded, one can take vmax =∞ and use a limit argument).

Note that for v ≤ pM , UM(v, pM) = 0. Consequently, UA(pM) ≥ UM(pM , pM) =

0. We consider 2 different cases. First, assume that UA(vmax) ≤ UM(vmax, p
M) so

that the ratio in (5.4) is larger than 1. Since UA(pM) ≥ UM(pM , pM) = 0, the two

functions UA(·) and UM(·, pM) have to intersect at least once. In other words, there

must exist at least one value v̄ > pM such that UM(v̄, pM) = UA(v̄). In addition, it’s

not possible to have an even number of crossing points. Otherwise, it will contradict

that UA(vmax) ≤ UM(vmax, p
M). Assume by contradiction that the number of crossing

points is at least 3. In this case, this contradicts the fact the ratio of derivatives is

increasing in v (using equation (5.3)). Therefore, there exists a single value v̄ such

that for all v ≥ v̄, UM(v, pM) ≥ UA(v).

In the second case, we assume that UA(vmax) > UM(vmax, p
M) so that the ratio

in (5.4) is smaller than 1. Since the ratio of derivatives is an increasing function of v,

the two functions UA(·) and UM(·, pM) will not intersect. As a result, there cannot

exist any value v such that UM(v, pM) = UA(v). Indeed, since the ratio of derivatives
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always remains strictly less than 1, this would contradict UA(vmax) > UM(vmax, p
M).

This concludes the proof.

Corollary 5.1. From Theorem 5.3 it follows that for any given pM , there exists

a threshold value v̄(pM) such that for all v ≥ v̄(pM), UM(v, pM) ≥ UA(v), and

UM(v, pM) < UA(v) otherwise.

Note that the threshold result is not immediately intuitive. One would expect

that buyers with very high value feel certain about their allocations, and hence don’t

go for the Market-Maker option. But the opposite is true, as Theorem 5.3 shows. The

reason for this is that although the allocation uncertainty is tiny for high value buyers,

there is significant pricing uncertainty that stems from unknown number of buyers

N ∈ [Nmin, Nmax] (recall that buyers don’t know N when they make the auction vs.

Market-Maker decision).

Engineering the Market-Maker price. Armed with Theorem 5.3, we now con-

sider the question of how the designer should design the Market-Maker price. The

price should be such that the Market-Maker is never over demanded (i.e., never more

than I buyers ask for it), and at the same time, increase revenue for seller and utility

for buyers.

Theorem 5.4. Let pmax be the auction clearing price (without the presence of Market-

Maker) when N = Nmax. Let pM∗ be the Market Maker price such that v̄(pM∗ ) = pmax.

Then, we have:

1. A closed form formula for pM∗ is given by:

pM∗ =


min(µA + β · σA, pmax) (SD model),

min

(
1

α
log (Ep[e

α·p]) , pmax

)
(CARA model).

(5.5)

Here µA and σA are the mean and standard deviation of the auction clearing

price (without the Market-Maker option).
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2. Equilibrium buyer behavior: Buyers with value v ≥ pmax purchase the Market-

Maker option, and buyers with v < pmax buy in the auction. In addition, for

any value v ≥ pmax, we have UA(v) = UM(v, pM∗ ), i.e., buyers who buy Market-

Maker are indifferent between Market-Maker and auction.

3. Rev(auction, pM∗ ) > Rev(auction).

4. Welfare(auction, pM∗ ) > Welfare(auction).

5. The unique feasible Market-Maker price is pM∗ . Any price above pM∗ will not

be chosen by any buyer, and any price below pM∗ will make the Market-Maker

default on his promise when Nmax buyers arrive.

Proof. Note that for v ≥ pmax, we have (v − p)+ = v − p for all p. This implies that

(after realizing that since v is fixed, the variance of (v − p) is simply the variance of

p which is σA):

UA(v) =

 v − µA − β · σA (SD model)

1− e−α·vEp[e
α·p] (CARA model)

=

 v − p∗M (SD model)

1− e−α·(v−p∗M ) (CARA model)

= UM(v, p∗M).

Note that this means that all the buyers with value v ≥ pmax are indifferent between

the Market Maker contract and the auction mechanism. We claim that such indiffer-

ent buyers still choose Market-Maker because the price is always fixed at pM∗ whereas

the auction could at times be pmax, where as pM∗ ≤ pmax. Note that pM∗ > µA, i.e.,

the Market-Maker marks up the price above the mean auction clearing price, but it

is smaller than the largest value that the auction clearing price can take.

For the revenue claim, note that since only buyers with value v ≥ pmax buy

via Market-Maker the auction clearing price after Market-Maker is introduced never
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changes. I.e., only previously winning buyers continue to win now. Therefore, revenue

from buyers with v < pmax remains the same. Whereas the revenue from buyers with

value more than pmax has increased from µA to µA + βσA. We can show this for the

CARA model as well.

For welfare, note that since the auction clearing price was unaffected, the utility

of auction buyers was not affected. Market-Maker buyers were also unaffected as they

were indifferent. Revenue strictly increases. Thus welfare strictly increases.

For unique feasible price, note that any price above pM∗ is rejected by all buyers.

This is clear because already at pM∗ , buyers were indifferent between auction and

market-maker. When Market-Maker puts a price below pM∗ , when Nmax buyers are

realized Market-Maker will default. Note that currently Market-Maker sells all I

units when Nmax is realized (the threshold pmax by definition has I people above it

because it is obtained as I item auction’s clearing price). If Market-Maker goes any

smaller, it will have more than I demand and will immediately default.

Some remarks.

1. The Market-Maker price of pM∗ strictly increases with risk-parameter α and β

(see Theorem 5.5 below). It also strictly increases with the variance of auction

clearing price σA. This is true for both utility models.

2. Market-Maker clearing price is higher than the average auction clearing price

of µA, but smaller than the highest possible auction clearing price of pmax.

3. Only buyers with value above pmax buy Market-Maker. The mass of these

buyers is (1 − F<(pmax)). And each of these buyers pays pM∗ − µA additional

money in expectation. For the SD model, it is immediate to see this works

out to (1 − F<(pmax))βσA as incremental revenue per buyer. Similarly for the

CARA model, we can derive a closed form using the formula for pM∗ that we

give.
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We next show that the optimal Market Maker price p∗M increases with respect to

the risk aversion parameter (α or β) and with respect to the variance of the auction

clearing price (σA).

Theorem 5.5. p∗M is an increasing function of the risk aversion parameter (α in

CARA and β in SD). In addition, p∗M is an increasing function of σA.

Proof. Note that for the SD model, the results directly follows from the expression

in (5.5). We next prove the result for the CARA model. The first order derivative

with respect to α is given by:

(p∗M)′(α) = − 1

α2
· log(Ep[e

α·p]) +
1

α
· Ep[p · eα·p]

Ep[eα·p]
= − 1

α2
· h(α),

where we denote:

h(α) = log(Ep[e
α·p])− α · Ep[p · eα·p]

Ep[eα·p]
.

Note that h(0) = 0 and therefore, it suffices to show that h′(α) ≤ 0 for all α ≥ 0.

The first derivative of h(α) is given by:

h′(α) =
Ep[p · eα·p]
Ep[eα·p]

− Ep[p · eα·p]
Ep[eα·p]

− α · Ep[p
2 · eα·p] · Ep[e

α·p]− Ep[p · eα·p]2
Ep[eα·p]2

= −α · Ep[p
2 · eα·p] · Ep[e

α·p]− Ep[p · eα·p]2
Ep[eα·p]2

≤ 0,

where the last inequality follows from the Cauchy-Schwarz inequality. Since h′(α) ≤ 0

for all α ≥ 0 and h(0) = 0, we have: h(α) ≤ 0 for all α ≥ 0 and therefore, (p∗M)′(α) ≥ 0

for all α ≥ 0.

In conclusion, we have shown that adding the Market Maker contract allows to

reduce the price uncertainty for high valuation buyers (v > pmax), without changing

the allocation. We also demonstrated that there exists a unique Market Maker price

that increases with both the risk aversion and the variability. Therefore, by assuming

that indifferent buyers choose the Market Maker, the seller can strictly increase its
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revenue without changing the surplus of the buyers. For example, using the SD model,

the revenue increase amounts to F̄ (pmax)βσA. In Section 5.4 in Appendix, we show

computationally that for realistic instances, this revenue increase can be significant.

5.3.3 Heterogeneous risk aversion

So far, we consider that all the buyers have the same risk aversion parameter (either

α or β depending on the utility model). In practice, different buyers may behave

differently with regard to risk. We study the setting where the buyers have hetero-

geneous risk aversion, and show the benefit of adding the Market Maker contract in

such a setting. Let there be k different populations, with ρi mass in population i.

Theorem 5.6. In the heterogeneous risk-averse buyers setting, the Market-Maker

price is not necessarily unique. There exists a range of possible prices depending on

the range of the risk-parameters. But there always exists a single price that strictly

increases seller revenue and system welfare, i.e., offers a Pareto improvement.

Proof. Let β1 < . . . βk be the risk-aversion parameters. Clearly βk is the most risk-

averse buyer. Set the Market-Maker price assuming that the entire population mass

is at βk. I.e., set a price of pM∗ = µA +βkσA (and similarly for the CARA model). By

our argument in the homogeneous case, buyers in the k-th population with value at

least pmax will be indifferent between auction and Market-Maker and will purchase

Market-Maker. But the less risk-averse buyers are strictly preferring auction at this

price. At this price, the auction clearing price is unaffected, and revenue strictly

increases, just like the homogeneous setting. This proves the Pareto-improvement

part.

For the range of prices, note that as we keep decreasing the Market-Maker price,

one-by-one the less risk-averse population will switch to Market-Maker till Market-
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Maker defaults. As Market-Maker price falls, and as more agents choose Market-

Maker, the auction clearing price rises.

Homogeneous vs Heterogeneous: Change in allocation A notable aspect of

the heterogeneous Market-Maker dynamics is that a lower value buyer from a higher

risk-averse population gets allocated when a higher value buyer from a lower risk-

averse population doesn’t. To see this, let Nmax buyers be realized, and at Market-

Maker clearing price of pM∗ , the threshold for Market-Maker is exactly pmax for βk

population. At this point there are exactly I buyers with value above pmax and only

Iρk of them take Market-Maker and rest win in auction as they strictly prefer auction.

The rest of the population is fully composed of non-βk buyers. As the Market-Maker

price decreases by a tiny ε, population-k buyers with value just below pmax, who

would have no chance in a pure auction, will now switch to Market-Maker and get

allocated. For every population-k buyer that moves to Market-Maker with value

below pmax, some non-population-k buyer with value above pmax loses in the auction

after Market-Maker because there are only I units available! The natural question is,

why does the buyer who gets edged out not buy the Market-Maker herself instead of

getting 0 utility, given that she can afford Market-Maker? The answer is that such a

buyer doesn’t get 0 utility — she loses her allocation only when Nmax realizes. For

much smaller values of N , she will get allocated in auction and get a much higher

utility. As the Market-Maker price keeps dropping, the auction clearing price keeps

increasing because of migration of low value population-k buyers to Market-Maker.

At some point buyers from population-k − 1 make the switch to Market-Maker and

so on.

While our theorems establish structure of Market-Maker and show the Pareto-

improvement provided by it, we show in the next section that for several commonly

used distributions the lift in revenue and buyer utilities is significant.
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5.4 Computational experiments

We first consider the setting with the auctions and study computationally the benefit

of adding the Market-Maker. Then, we also consider the posted price environment.

5.4.1 Auctions

We first consider the setting with auctions. Our goal is to illustrate and quantify the

results developed in Section 5.3.

5.4.1.1 Homogeneous risk aversion

In Section 5.3.2, we have shown that there exists a unique Market-Maker price p∗M .

In addition, we characterized this optimal price in closed form for both the SD and

the CARA utility models. We also demonstrated that adding the Market-Maker

contract increases the seller revenue without changing the utility of the buyers (as it

does not modify the allocation). More precisely, the revenue increase per buyer that

chooses the Market-Maker contract amounts to F̄ (pmax)β(pM − µA). Our goal is to

show that this revenue improvement is significant relative to the revenue generated

without the presence of the Market-Maker contract. We consider a setting with

uniform valuations between 0 and 1 and two possible values for the number of buyers

N (with equal probability). We assume that these two different values induce two

distinct values of the auction clearing price: pL = 0.2 and pH = 0.8 (each with

probability 0.5). In Figure 5.1, we vary the risk aversion parameter (β for the SD

model and α for the CARA model) and compute the relative revenue improvement

obtained by adding the Market-Maker contract. Note that in both utility models, we

obtain a similar behavior as well as a potentially significant increase in revenue. In

this example, the relative revenue improvement for the SD model when β is between

1 and 2 is between 38% and 76%, whereas for the CARA model, the relative revenue
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improvement is between 3% and 8% (when α is between 1 and 2).

(a) SD model (b) CARA model

Figure 5.1: Relative improvement in the seller revenue by adding the Market-Maker
contract for for the setting with auctions and homogeneous risk aversion.

5.4.1.2 Heterogeneous risk aversion

In Section 5.3.3, we studied the setting where buyers have heterogeneous risk aversion

parameters. Next, we computationally illustrate and quantify the impact of adding

the Market-Maker contract. We consider a setting with two populations of buyers:

β1 = 1 and β2 = 2, i.e., population 2 is more risk averse. We assume that the propor-

tions are equal, i.e., ρ1 = ρ2 = 0.5 and consider two different valuation distributions:

uniform between 0 and 1 and exponential with mean 0.5. For each realization of

the number of buyers N , we independently draw a split of the N buyers into the

two populations. In addition, we consider a setting with two different values of N

that induce two distinct auction clearing prices: pL = 0.2 with probability 0.8 and

pH = 0.8 with probability 0.2.

In Figure 5.2, we plot the relative improvement in the seller revenue and in the

sum of buyer utilities as a function of pM for both uniform and exponential valuation

distributions. One can see that adding the Market-Maker contract yields a clear

Pareto improvement. In other words, both the buyers and the seller will benefit
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from adding the Market-Maker contract. Note that the minimal meaningful value

of pM is such that the buyers in population 2 (i.e., the more risk averse buyers)

are indifferent between the auction and the Market-Maker contract. As we saw in

Section 5.3, this value is given by: min(µA + β2σA, pH) and is denoted by Γ. In this

example, we have: µA = 0.32, β2 = 2 and σA = 0.48 so that Γ = 0.8 (this corresponds

to the rightest point on the x-axis in Figure 5.2). Then, when we start decreasing

pM below Γ, some buyers from population 2 will strictly prefer the Market-Maker

contract. In this case, some buyers from population 2 will choose the Market-Maker

contract, and some buyers from population 1 will be allocated via the auction. As pM

decreases, additional buyers from population 2 will choose the Market-Maker contract.

Consequently, the auction clearing price increases, and some buyers from population

1 are not allocated anymore. In other words, items are secured through the Market-

Maker contract from risk averse buyers at the expense of buyers from population

1 that now lose the auction. We continue decreasing pM until the point where the

Market-Maker defaults. Note that when pM = Γ, the buyers from population 2 are

indifferent between the two options so that the sum of buyers utilities stay the same.

As we start decreasing pM , it yields a Pareto improvement for both the sellers and

the buyers.

In Figure 5.3, we plot the utilities of the buyers for each population separately as

a function of pM . As we decrease pM , we increase the utilities of population 2 (more

risk averse) and decrease the utilities of population 1. This follows from the fact that

additional buyers from population 2 choose the Market-Maker in order to secure an

allocation. At the same time, since the auction clearing price increases, less buyers

from population 1 are allocated so that the utilities of population 1 reduce.
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(a) Uniform valuations (b) Exponential valuations

Figure 5.2: Relative improvement in the seller revenue and the sum of buyer utilities
by adding the Market-Maker contract for the setting with auctions and heterogeneous
risk aversions.

(a) Uniform valuations (b) Exponential valuations

Figure 5.3: Relative changes in the buyer utilities by adding the Market-Maker con-
tract for the setting with auctions and heterogeneous risk aversions.

5.4.2 Posted price

We now consider the setting with a posted price mechanism which is studied in Section

5.2. We next illustrate the fact that having only a posted price mechanism can suffer

from a poor welfare performance, as we have shown in Theorem 5.2. We consider

the setting where the number of buyers N is deterministic and equal to 2I, and the

valuations follow a 2-point distribution (v = 1 with probability 0.1 and v = 0.1
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with probability 0.9). This setting can capture the realistic situation of retargeting

in Internet display advertising. In Figure 5.4, we consider different values of the

envy parameter β (β = 0, 0.3, 0.6) and plot the welfare attained by the posted price

mechanism relative to the optimal welfare W ∗ (for more details, see Section 5.2). One

can see that in this example, the welfare loss is quite significant (about 18%). Note

that in Figure 5.4, the best fixed price yields the same welfare independent of the

value of β. Indeed, when the price is high enough, no buyer experiences any envy

and therefore, the welfare is independent of the parameter β. Recall that we have

shown in Theorem 5.1 that adding the Market-Maker contract recovers the optimal

welfare and at the same time, increases both the seller revenue and the sum of the

buyer utilities.

Figure 5.4: Welfare performance of the posted price for different values of β.

In Figure 5.5, we set the posted price to 0.1 and vary the price of the Market-

Maker contract pM between 0.1 and the value at which the Market-Maker defaults

(i.e., more than I buyers choose this option). We consider two values of β (β = 0.3

and β = 0.6). One can see that for a wide range values of pM , adding the Market-

Maker contract yields a Pareto improvement in both the seller revenue and the sum

of the buyer utilities relative to the case with only a posted price. Note that these
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relative improvements can be very significant (in this example, more than 70% in

both metrics) and their magnitude increase with β.

(a) Setting with β = 0.3 (b) Setting with β = 0.6

Figure 5.5: Relative improvement in the seller revenue and the sum of buyer utilities
by adding the Market-Maker contract.

This illustrates the fact that adding the Market-Maker contract to the existing

posted price mechanism allows to attain a significant Pareto improvement for both

the seller and the buyers.

In conclusion, we saw that the Market-Maker contract improves both the seller

revenue and the sum of buyer utilities. It allows to reduce both the price and alloca-

tion uncertainties for risk averse buyers who are willing to pay a premium over the

expected auction clearing price. In addition, when the buyers have heterogeneous risk

aversions, the Market-Maker contract allows the buyers with a higher risk aversion

to secure a higher probability of being allocated.
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Appendix A

Near optimal algorithms for capacity constrained

assortment under random utility models

A.1 FPTAS for mMNL-Capa

High-level description. Let p (resp. P ) be the minimum (resp. maximum) revenue

and u (resp. U) be the minimum (resp. maximum) value of the utility parameters over

all segments. We assume wlog. that uj,k > 0 for all j, k. Otherwise, we can replace

uj,k by ûj,k = εup/(nR) for all j, k such that uj,k = 0 where u = min {ui,k | ui,k > 0}

. This only changes the objective function by a factor of (1 + ε) (see Appendix A.2).

For a given ε > 0, we use the following set of guesses.

Γε,K = (Γε)
K and ∆ε,K = (∆ε)

K ,

where

Γε = {pu(1 + ε)`, ` = 0, . . . , L1} and ∆ε = {u(1 + ε)`, ` = 0, . . . , L2}, (A.1)

and L1 = O (log (nPU/p) /ε) and L2 = O (log ((n+ 1)U/p) /ε). Note that for con-

stant K, the number of guesses is polynomial in the input size and 1/ε. For a given

guess (h, g) ∈ Γε,K ×∆ε,K , we discretize the coefficients as follows,

p̃i,k =

⌊
piui,k
εhk/n

⌋
and ũi,k =

⌈
ui,k

εgk/(n+ 1)

⌉
. (A.2)

We use a dynamic program to find a feasible assortment S such that for all k ∈ [K]∑
j∈S

pjuj,k ≥ hk and
∑
j∈S+

uj,k ≤ gk. (A.3)
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Let us now present the dynamic program. Let I = bn/εc − n and J = d(n +

1)/εe + (n + 1). For each (i, j, `) ∈ [I]K × [J ]K × [n], let F (i, j, `) be the minimum

weight of any subset S ⊆ {1, . . . , `} such that for all k ∈ [K],

∑
s∈S

p̃s,k ≥ ik and
∑
s∈S+

ũs,k ≤ jk.

We can compute F (i, j, `) for (i, j, `) ∈ [I]K×[J ]K×[n] using the following recursion.

F (i, j, 1) =


w1 if 0 ≤ i ≤ p̃1 and j ≥ ũ0 + ũ1

0 if i ≤ 0 and j ≥ ũ0

∞ otherwise

F (i, j, `+ 1) = min{F (i, j, `), w`+1 + F (i− p̃`+1, j − ũ`+1, `)}

(A.4)

Let I (resp. J) be the vector with all components being I (resp. J). In order to show

that (A.4) correctly finds a subset satisfying (A.3), we have the following lemma.

Lemma A.1. For any guess h, g, if there exists a feasible S such that (A.3) is

satisfied, then F (I,J , n) ≤ W . Moreover, if F (I,J , n) ≤ W , then the DP finds a

subset S̃ such that for all k ∈ [K],

∑
j∈S

pj,kuj,k ≥ hk(1− 2ε) and
∑
j∈S+

uj,k ≤ gk(1 + 2ε).

Proof. Consider S satisfying (A.3) for given guesses h, g. Scaling the inequalities

yields for all k ∈ [K]

∑
j∈S

pjuj,k
εhk/n

≥ hk
εhk/n

and
∑
j∈S+

uj,k
εgk/(n+ 1)

≤ gk
εgk/(n+ 1)

.

Rounding down and up the previous inequalities gives for all k

∑
j∈S

p̃j,k ≥ bn/εc − n = I and
∑
j∈S+

ũj,k ≤
⌈

(n+ 1)

ε

⌉
+ (n+ 1) = J,

which implies that F (I,J , n) ≤ W .
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Conversely, suppose F (I,J , n) ≤ W and let S̃ be the corresponding subset. We

have

∑
j∈S̃

pjuj,k ≥ I
εhk
n
≥ hk(1− 2ε) and

∑
j∈S̃+

uj,k ≤ J
εgk
n+ 1

≤ gk(1 + 2ε).

We can now present the FPTAS for mMNL-Capa.

Algorithm 15 FPTAS for mMNL-Capa

1: procedure FPTAS(ε)
2: for (h, g) ∈ Γε,K ×∆ε,K do
3: Compute discretization of coefficient r̃i,k and ũi,k using (A.2)
4: Compute F (i, j, `) for all (i, j, `) ∈ [I]K × [J ]K × [n] using (A.4)
5: If F (I,J , n) ≤ W , then let S̃h,g be a the corresponding subset
6: end for
7: return S that maximizes the expected revenue over {S̃h,g, (h, g) ∈ Γε,K ×

∆ε,K}
8: end procedure

Theorem A.1. Algorithm 15 returns an (1 − ε)-optimal solution to mMNL-Capa.

Moreover, the running time is O
(
log(nPU)K log(nU)Kn2K+1/ε4K

)
.

Proof. Let S∗ be the optimal solution to mMNL-Capa and (ˆ̀
1, ˆ̀2) such that for all

k ∈ [K]

pu (1 + ε)
ˆ̀
1,k ≤

∑
i∈S∗

piui,k ≤ ru (1 + ε)
ˆ̀
1,k+1 and u (1 + ε)

ˆ̀
2,k−1 ≤

∑
i∈S∗+

ui,k ≤ u (1 + ε)
ˆ̀
2,k .

From Lemma A.1, we know that for (h, g) = (pu (1 + ε)
ˆ̀
1 , u (1 + ε)

ˆ̀
2), Algorithm 15

returns S̃ such that for all k ∈ [K]

∑
i∈S̃

piui,k ≥ pu (1 + ε)
ˆ̀
1,k (1− 2ε) and

∑
i∈S̃+

ui,k ≤ u (1 + ε)
ˆ̀
2,k (1 + 2ε).

Consequently,

f(S̃) =
K∑
k=1

θk

∑
i∈S̃ piui,k∑
i∈S̃+

ui,k
≥ 1− 2ε

1 + 2ε
f(S∗) ≥ (1− 4ε)f(S∗).
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Running Time. We try LK1 · LK2 guesses for the numerators and denominators

values, (h, g), of the optimal solution. For each guess, we formulate a dynamic

program with O
(
n2K+1/ε2K

)
states. Therefore, the running time of Algorithm 15

is O
(
LK1 L

K
2 n

3/ε2
)

= O
(
log(nPU) log(nU)n2K+1/ε4K

)
which is polynomial in input

size and 1/ε.

A.2 Assumption of ui,k > 0 in mMNL-Capa

We show that wlog. we can assume ui,k > 0 for all i ∈ [n], k ∈ [K] in the mMNL-Capa

problem. Let u = min {ui,k | ui,k > 0}. Suppose uj,k = 0 for some j, k. Then,

consider the following modified utility parameters for all j, k.

ûj,k =

 εup/(nP ) if uj,k = 0

uj,k otherwise

We show that replacing uj,k by ûj,k in mMNL-Capa changes the expected revenue of

any subset by a factor of [1 − ε, 1 + ε]. In particular, for any x ∈ {0, 1}n, for all

k ∈ [K],

n∑
j=1

pjuj,kxj ≤
(

n∑
j=1

pjûj,kxj

)
≤

n∑
j=1

rjuj,kxj +
rj,k
R
· εpu ≤ (1 + ε) ·

n∑
j=1

pjuj,kxj.

Similarly for all k ∈ [K],

u0,k +
n∑
j=1

uj,kxj ≤
(
û0,k +

n∑
j=1

ûj,kxj

)
≤ (1 + ε) ·

(
u0,k +

n∑
j=1

uj,kxj

)
.

Therefore, for each rational terms in the expression for the expected revenue, both

the numerator and denominator increase by a factor of at most (1 + ε). Let z∗ be the

optimal value of mMNL-Capa and ẑ be the optimal value of the modified problem with

parameters, ûj,k. Using the previous set of inequalities, we have (1−ε)ẑ ≤ z∗ ≤ (1+ε)ẑ

and we can equivalently approximate the modified problem.
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A.3 Proof of Theorem 2.8

As in Theorem 2.7, we prove this by a reduction from the independent set problem

where we are given an undirected graph G = (V,E) and the goal is to find a maximum

cardinality subset of vertices that are independent. Let V = {v1, . . . , vn}.

We construct an instance of MMNL-Assort similar to the proof of Theorem 2.7.

We have one product and one MNL segment corresponding to each vertex in G.

Therefore, n = K = |V | and we consider the following utility parameters:

uj,k =


1 if j = k or j = 0

n3 if (vj, vk) ∈ E and j < k

0 otherwise

pi = n3(i−1), i ∈ [n]

θk =
θ

n3(k−1)
, k ∈ [n]

(A.5)

where θ ∈ [1/2, 1] is an appropriate normalizing constant.

Consider an optimal independent set, I∗ of size t∗. Consider the following assort-

ment

S = {j | vj ∈ I∗}.

It is easy to observe that the expected revenue of S is exactly θt∗/2.

Conversely, consider an optimal fractional assortment x∗ ∈ [0, 1]n with revenue

z∗. Then we show that there exists an independent set of size b2z∗/θc. Let ε = 1/4n.

Consider a modified solution x̃ defined as follows. For all k ∈ [K],

x̃k =

 0 if x∗k ≤ ε

x∗k otherwise.

Also, let z̃ be the revenue associated with solution x̃. It is easy to observe that the

revenue of each nest only decreases by at most θε. Consequently,

z̃ ≥ z∗ − nθε ≥ z∗ − θ

4
≥ z∗

2
,
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where the last inequality follows as z∗ ≥ θ/2. For any k ∈ [K], let

z̃k = θk ·
∑n

j=1 pjuj,kx̃k

u0,k +
∑n

j=1 uj,kx̃j
, and z̃ =

K∑
k=1

z̃k.

We show that for any k ∈ [K], z̃k ≥ θ/(5n) or z̃k ≤ θ/n2. Let

N(k) = {j | j < k, (vj, vk) ∈ E, x̃j ≥ ε}.

Case 1 (N(k) = ∅): In this case

z̃k =
θx̃k

1 + x̃k
≤ θ

2
.

Therefore, if x̃k < ε, it implies x̃k = 0 (by construction) and z̃k = 0.

Case 2 (N(k) 6= ∅): In this case,

z̃k ≤
θ

n3(k−1)(1 + n3
∑

j∈N(k)

x̃j)

n3(k−1) + n3
∑
j∈N(k)

n3(j−1)x̃j


≤ θ

n3(k−1)(2 + n3ε)

(
n3(k−1) + n3

k−1∑
j=1

n3(j−1)

)

≤ 2θ

n2
,

where the second inequality follows as N(k) 6= ∅ and there exists j ∈ N(k) such that

x̃j ≥ ε. Now, we construct an independent set, I as follows.

I = {vk ∈ V | x̃k ≥ ε, N(k) = ∅} .

Since for all k such that vk ∈ I, N(k) = ∅, we know that I is an independent set

(using an argument similar to proof of Theorem 2.7). From the above case analysis,

we know ∑
k:vk∈I

z̃k ≤ z̃ ≤
∑
k:vk∈I

z̃k +
2θ

n
, (A.6)

where the second inequality follows from the fact that z̃k ≤ 2θ/n2 if vk /∈ I. We also

know that z̃ ≥ z∗/2 ≥ θ/4 and z̃k ≤ θ/2 for all k : vk ∈ I. Therefore,

z∗ ≤ 2z̃ ≤ 2

( ∑
k:vk∈I

θ

2

)
+

4θ

n
≤ |I| · θ +

8z∗

n
,
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which implies

|I| ≥
(
1− 8

n

)
θ

· z∗ ≥ 1

2θ
· z∗.

Therefore,

1

2θ
· z∗ ≤ t∗ ≤ 2

θ
· z∗.

Recall that θ is a constant in [1/2, 1]. Therefore, an α-approximation for the con-

tinuous relaxation of MMNL-Assort implies an O(α)-approximation for the maximum

independent set problem. Since the maximum independent set is hard to approxi-

mation within a factor better than O(1/n1−δ) (where |V | = n = K) for any constant

δ > 0 (see [29]), so must be the continuous relaxation of MMNL-Assort. This concludes

the proof.
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Appendix B

Approximation algorithms for assortment optimization

problems under a Markov chain based choice model

B.1 Proof of Theorem 3.2

In an instance of the assortment optimization problem over the distribution over

rankings model, we are given a collection of products N = {1, . . . , n} with prices p1 ≤

· · · ≤ pn, respectively. In addition, we are given an arbitrary (known) distribution

on K preference lists, L1, . . . , LK , each of which specifies a subset of the products

listed in decreasing order of preference. A customer with a given preference list

selects the most preferred product that is offered (possibly the no-purchase option)

according to his/her list. The goal is to find an assortment such that the expected

revenue is maximized. [? ] show that unconstrained assortment optimization over the

distribution over permutations model is hard to approximate within factor O(n1−ε)

for any fixed ε > 0 even for the case where the number of preference lists is equal to

the number of items, i.e., K = n.

We consider an instance I of the assortment optimization problem over distri-

bution over permutations model with n preference lists: L1, . . . , Ln. We construct

a corresponding instance M(I) of the assortment optimization under the Markov

chain model as follows. Each of the original items in N has a separate copy as a

state inM(I) for every list that contains it. More precisely, for every list Li and for

every 1 ≤ j ≤ |Li|, we have a state (j, i) corresponding to the j-th most preferred

item in Li. In addition, there is a state 0 corresponding to the no-purchase option.
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Therefore, the set of states is:

S = {0} ∪ {(j, i) : i = 1, . . . , n, j = 1, . . . , |Li|}.

The transition probabilities between these states are given by:

ρ((j,i),s) =


1 if j < |Li| and s = (j + 1, i)

1 else if j = |Li| and s = 0

0 otherwise.

In other words, for each list there is a directed path (with transition probabilities

1) over its corresponding states in decreasing order of preference, ending at the no-

purchase option. This is illustrated in Figure B.1. Finally, the arrival rates are defined

by

λ(j,i) =

 ψi if j = 1

0 otherwise,

where ψi is the probability of list Li. With this construction, each row corresponds

to a list, and each column correspond to an item.

λ(1,1) = ψ1

λ(1,2) = ψ2

λ(1,4) = ψ4

1, 1 2, 1 3, 1 4, 1

1, 2 2, 2

1, 4

1, 3

2, 4

2, 3

3, 2

3, 4

0

λ(1,3) = ψ3

Figure B.1: Sketch of our construction for an instance on 4 items, where L1 = (1 �
2 � 3 � 4), L2 = (1 � 3 � 4), L3 = (2 � 3), and L4 = (1 � 2 � 4). Note,
for example, that the state (2, 2) corresponds to the second item of L2, but actually
corresponds to item 3.

In order to obtain a one-to-one correspondence between the solutions to I and

M(I), it remains to ensure that, when item i is offered in I, all of its corresponding
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copies (appearing in the same column) are offered in M(I), and vice versa. This

restriction can be captured by the constraints x(j,i) = x(k,`), for every i, ` ∈ {1, . . . , n}

such that j ≤ |Li|, k ≤ |L`| and such that the jth item in Li is the kth item in L`.

This way, we guarantee that each column is either completely picked or completely

unpicked in the instanceM(I). The resulting set of inequalities specifies a constraint

matrix with a single appearance of +1 and −1 in each row, where all other entries are

0. Such matrices are well-known to be totally-unimodular (see, for example, [68]).

To complete the proof, note that the original instance I consists of n items and

n preference lists and therefore, the Markov chain instance M(I) has O(n2) states.

Since the former problem is NP-hard to approximate within factor O(n1−ε), for any

fixed ε > 0, it follows that TU cannot be efficiently approximated within O(n1/2−ε),

unless P = NP . This concludes the proof.

B.2 Proof of Lemma 3.2

This result is an immediate corollary of the following (more general) claim: Let Sg

be the solution returned by Algorithm 4, and let S be any subset of states. Then,

R(Sg) ≥ R(S)

|S| .

To prove this claim, let g be the first item selected by Algorithm 4, which nec-

essarily exists as long as there is an item i with pi > 0. Then, by definition of the

greedy algorithm, we have R({g}) ≥ R({i}) for every item i ∈ S. Therefore,

R(Sg) ≥ R({g}) ≥ 1

|S| ·
∑
i∈S

R({i}) ≥ R(S)

|S| ,

where the last inequality follows from the sublinearity of the revenue function (Lemma 3.9).
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B.3 Proof of Lemma 3.4

Let Sgu be the set of states selected by Algorithm 5. Note that for every i ∈ Sgu, we

have that P(i ≺ Sgu+ \{i}) ≥ P(i ≺ U∗+\{i}) since Sgu is a subset of U∗. Thus,

R(Sgu) =
∑
i∈Sgu

P(i ≺ Sgu+ \{i})pi

≥
∑
i∈Sgu

P(i ≺ U∗+\{i})pi

≥ k

|U∗|
∑
i∈U∗

P(i ≺ U∗+\{i})pi

=
k

|U∗|R(U∗)

≥ k

|U∗|R(S∗),

where S∗ is the optimal solution to Card. Here, the second inequality holds due to

picking the top k states in terms of P(i ≺ U∗+\{i}) values. The last inequality holds

since the optimal unconstrained revenue provides an upper bound on the optimal

revenue in the constrained case.

B.4 Proof of Lemma 3.6

It suffices to verify that (pS1
i )S2 = pS1∪S2

i for all S1,S2 and i /∈ S1 ∪ S2, as the above

identity clearly hold for the transition matrix updates. We have

(pS1
i )S2 =pS1

i −
∑
j∈S2

PS1
i (j ≺ S2+\{j})pS1

j

=pi −
∑
l∈S1

Pi(l ≺ S1+\{l})pl︸ ︷︷ ︸
A

−
∑
j∈S2

PS1
i (j ≺ S2+\{j})pS1

j︸ ︷︷ ︸
B

.
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Using the definition of the updated prices,

B =
∑
j∈S2

PS1
i (j ≺ S2+\{j})pj −

∑
j∈S2

PS1
i (j ≺ S2+\{j})

∑
l∈S1

Pj(l ≺ S1+\{l})pl

=
∑
j∈S2

Pi(j ≺ (S2 ∪ S1)+\{j})pj −
∑
j∈S2

PS1
i (j ≺ S2+\{j})

∑
l∈S1

Pj(l ≺ S1+\{l})pl︸ ︷︷ ︸
C

.

We can now combine A and C,

A− C =
∑
l∈S1

(
Pi(l ≺ S1+\{l})−

∑
j∈S2

Pi(j ≺ (S2 ∪ S1)+\{j})Pj(l ≺ S1+\{l})
)
pl

=
∑
l∈S1

(Pi(l ≺ S1+\{l})− Pi(S2 ≺ l ≺ S1+\{l})) pl

=
∑
l∈S1

Pi(l ≺ (S2 ∪ S1)+\{j})pl.

Putting everything together, we get

(pS1
i )S2 = pi −

∑
j∈(S2∪S1)

Pi(j ≺ (S2 ∪ S1)+\{j})pj = pS1∪S2
i .

B.5 Application of Algorithm 6 to MNL

In the MNL model, we are given a collection of items, 1, . . . , n, along with the no-

purchase option, which is denoted by item 0. Each item i has a utility parameter ui

and a price pi. Without loss of generality, we can assume that
∑n

i=0 ui = 1. For any

given assortment S, each item i ∈ S is picked with probability

π(i, S) =
ui

u0 +
∑

i∈S ui
,

making the expected revenue

R(S) =
∑
i∈S

ui
u0 +

∑
`∈S u`

pi.

[10] prove that the MNL choice model is a special case of the Markov chain model.

More precisely, when ρij = uj for all j and λi = ui for all i, the choice probabilities
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of the two models are identical. In this special case, our local ratio updates can be

written as

pSi =


0 if i ∈ S

pi −
∑
j∈S

uj
u0 +

∑
`∈S u`

pj otherwise.

Note that in the above update, the subtracted term is independent of i. Therefore,

the ordering of the prices does not change after each update. Since we are picking

the highest adjusted price item at each step, it follows that the optimal assortment is

nested by price, i.e., consists of the top ` priced items, for some `. This is a well known

structural property that we recover here as a direct consequence of our algorithm.

Moreover, the updated prices provide a criteria for when to stop adding items to the

assortment.

B.6 FPTAS for MC-Capa under rank one

assumption

Recall that MC-Capa can be formulated as

max
S⊆[n]

∑
i∈S

pi

λi + vi

∑
j /∈S

ujλj

 ∞∑
m=0

∑
j /∈S

ujvj

m ∣∣∣∣∣ ∑
j∈S

wj ≤ W

 .

Without loss of generality, we assume that u0, λ0, v0 > 0. As before, let p (resp. P )

be the minimum (resp. maximum) revenue and u, v (resp. U, V ) be the minimum

(resp. maximum) MNL parameter. We can assume wlog. that p, u, v > 0; otherwise,

we can clearly remove the corresponding item from our collection and continue. For

any given ε > 0, we use the following set of guesses.

Γε = {λ0u(1 + ε)`, ` = 0, . . . , L1},

∆ε = {uv(1 + ε)`, ` = 0, . . . , L2},

Λε = {λ0pvu(1 + ε)`, ` = 0, . . . , L3},
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where L1 = O(log(nU/λ0u)/ε), L2 = O(log(nUV/uv)/ε) and L3 = O(log(n2PV U/λ0pvu)/ε).

The number of guesses is polynomial in the input size and 1/ε. For a given guess

h ∈ Γε, g ∈ ∆ε and t ∈ Λε, we try to find a feasible assortment S with∑
j∈S

pi

(
λi + vi

h

1− g

)
≥ t,

∑
j /∈S

ujλj ≥ h and
∑
j /∈S

ujvj ≥ g, (B.1)

using a dynamic program. In particular, we consider the following discretized values,

p̃j =

⌊
pj(λj + vj(h/1− g))

εt/n

⌋
, ũj =

⌊
ujλj
εh/n

⌋
and ṽj =

⌊
ujvj
εg/n

⌋
, ∀j. (B.2)

Let I = bn/εc − n, J = b(n + 1)/εc − (n + 1). We can now present our dynamic

program. For each (i, j, k, `) ∈ [I] × [J ] × [J ] × [n], let F (i, j, k, `) be the minimum

weight of any subset S ⊆ {1, . . . , `} such that∑
s∈S

p̃s ≥ i,
∑
s/∈S

ũs ≥ j and
∑
s/∈S

ṽs ≥ k. (B.3)

We compute F (i, j, k, `) for (i, j, k, `) ∈ [I]×[J ]×[J ]×[n] using the following recursion.

F (i, j, 1) =


w1 if 0 ≤ i ≤ p̃1, j ≤ ũ0, and k ≤ ṽ0

0 if i ≤ 0 and j ≥ ũ0

∞ otherwise

F (i, j, k, `+ 1) = min{F (i, j − ũ`+1, k − ṽ`+1, `), w`+1 + F (i− p̃`+1, j, k, `)}

(B.4)

Using this dynamic program, we construct a set of candidate assortments Sh,g,` for

all guesses (h, g, t) ∈ Γε ×∆ε × Λε. Algorithm 16 details the procedure to construct

the set of candidate assortments.

Algorithm 16 Construct Candidate Assortments

1: For (h, g, t) ∈ Γε ×∆ε × Λε,
(a) Compute discretization of coefficients p̃i, ũi and ṽi using (B.2).
(b) Compute F (i, j, k, `) for all (i, j, k, `) ∈ [I]× [J ]× [K]× [n] using (B.4).
(c) Let Sh,g,t be the subset corresponding to F (I, J, J, n).

2: Return A = ∪(h,g,t)∈Γε×∆ε×ΛεSh,g,t.

Let us show that Algorithm 16 correctly finds a subset satisfying (B.1). In par-

ticular, we have the following lemma.
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Lemma B.1. Let A be the set of candidate assortment returned by Algorithm 16.

For any guess (h, g, t) ∈ Γε × ∆ε × Λε, if there exists S such that W (S) ≤ W and

(B.1) is satisfied, then W (Sh,g,t) ≤ W . Moreover, Sh,g,t satisfies (B.1) approximately,

i.e.∑
j∈Sh,g,t

pj

(
λi + vi

h

1− g

)
≥ t(1−2ε),

∑
j /∈Sh,g,t

ujλj ≥ h(1−2ε) and
∑

j /∈Sh,g,t

ujvj ≥ g(1−2ε).

Proof. Consider S satisfying (B.1) for given guesses h, g, t. Scaling the three inequal-

ities yield ∑
j∈S

1

εt/n
pj

(
λi + vi

h

1− g

)
≥ t

εt/n
,

∑
j /∈S

ujλj
εh/(n+ 1)

≥ h

εh/(n+ 1)
,

∑
j /∈S

ujvj
εg/(n+ 1)

≥ g

εg/(n+ 1)
.

Rounding down and up the previous inequalities gives∑
j∈S

p̃j ≥ I,
∑
j /∈S

ũj ≥ J and
∑
j /∈S

ṽj ≥ J,

which implies that F (I, J, J, n) ≤ W . Moreover, let Sh,g,t be the corresponding subset.

We have ∑
j∈Sh,g,t

pj

(
λi + vi

h

1− g

)
≥ I

εt

n
≥ t(1− 2ε),

∑
j /∈Sh,g,t

ujλj ≥ J
εh

n+ 1
≥ h(1− 2ε),

∑
j /∈Sh,g,t

ujvj ≥ J
εg

n+ 1
≥ g(1− 2ε).

Now that we have constructed a set of candidate assortment, the second part

of the algorithm consist of returning the best possible feasible assortment. We can

therefore present in Algorithm 17 a complete description of the algorithm.
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Algorithm 17 FPTAS for MC-Capa

1: Construct a set of candidate assortment A using Algorithm 16.
2: Return the best feasible solution to MC-Capa from A.

Theorem B.1. Algorithm 17 returns an (1− ε)-optimal solution to MC-Capa. More-

over, the running time is O (log(nU) log(nUV ) log(nPV U)n4/ε6).

Proof. Let S∗ be the optimal solution to MC-Capa and (ˆ̀
1, ˆ̀

2, ˆ̀
3) such that

λ0pvu (1 + ε)
ˆ̀
1 ≤

∑
i∈S∗

pi

(
λi + vi

λ0u(1 + ε)
ˆ̀
2

1− uv(1 + ε)ˆ̀
3

)
≤ λ0pvu (1 + ε)

ˆ̀
1+1 ,

λ0u (1 + ε)
ˆ̀
2 ≤

∑
i/∈S∗

uiλi ≤ λ0u (1 + ε)
ˆ̀
2+1 ,

uv (1 + ε)
ˆ̀
3 ≤

∑
i/∈S∗

uivi ≤ uv (1 + ε)
ˆ̀
3+1 .

From Lemma B.1, we know that for (h, g, t) = (λ0u (1 + ε)
ˆ̀
2 , uv (1 + ε)

ˆ̀
3 , λ0pvu(1 +

ε)
ˆ̀
1), A contains an assortment S̃ such that∑

i∈S̃

pi

(
λi + vi

h

1− g

)
≥ t(1− 2ε),

∑
i/∈S̃

uiλi ≥ h(1− 2ε)

∑
i/∈S̃

uivi ≥ g(1− 2ε).

Consequently,

f(S̃) =
∑
i∈S̃

pi

λi + vi

∑
j /∈S̃

ujλj

 ∞∑
m=0

∑
j /∈S̃

ujvj

m
≥
∑
i∈S̃

pi

(
λi + vi

h(1− 2ε)

1− g(1− 2ε)

)

≥
∑
i∈S̃

pi

(
λi + vi

h

1− g

)
≥ `(1− 2ε) ≥ f(S∗)

1− 2ε

1 + ε

Running Time. The running time analysis is similar than for the previous algo-

rithms.
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Appendix C

Mallows-smoothed distribution over rankings approach for

modeling choice

C.1 Proof of Theorem 4.2 (continued)

In this section, we prove that for a fixed R,
∑

σ∈h(R) e
−θ.C3(σ) is equal to

ψ(|G| −m0, θ) · ψ(|S|+m0, θ) ·
e−θ·(k−1−

∑`−1
m=1 rm)

1 + · · ·+ e−θ·(|S|+m0−1)
·
M∏
m=1

ψ(|Gm|, θ)
ψ(rm, θ) · ψ(|G|m − rm, θ)

.

We use a similar approach than in the first part of the proof. Let Γ be the set

of (G̃1, . . . , G̃M) ⊆ (G1, . . . , GM) such that |G̃m| = rm for all m ∈ [M ]. For all

γ = (G̃1, . . . , G̃M) ∈ Γ, let t(γ) be the set of permutations σ which satisfy the

following two conditions:

• σ ∈ h(R).

• for all m ∈ [M ], the subset of products from Gm which is preferred to ak is

exactly G̃m.

With this notation, we can write

∑
σ∈h(R)

e−θ.C3(σ) =
∑
γ∈Γ

∑
σ∈t(γ)

e−θ·(D1(σ)+D2(σ)+
∑
m∈[M ]D3(σ,m)),

where,

• D1(σ) is the sum of disagreements ξ(σ, i, j) over pairs of products (i, j) such

that either i = k and ak �σ aj or ak �σ ai and ak �σ aj.
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• D2(σ) is the sum of disagreements ξ(σ, i, j) over pairs of products (i, j) such

that ai �σ ak and aj �σ ak.

• for all m ∈ [M ], D3(σ,m) is the sum of disagreements ξ(σ, i, j) over pairs of

products (i, j) such that ai ∈ G̃m and aj ∈ Gm\G̃m.

Using the definition of D1(σ) and D2(σ) together with Theorem 4.1, we have that∑
σ∈t(γ) e

−θ·(D1(σ)+D2(σ)+
∑
m∈[M ]D3(σ,m)) is equal to

ψ(|G| −m0, θ) · ψ(|S|+m0, θ) ·
e−θ·(k−1−

∑`−1
m=1 rm)

1 + · · ·+ e−θ·(|S|+m0−1)
·
∑
σ∈t(γ)

e−θ·
∑
m∈[M ]D3(σ,m)).

To complete the proof, it remains to compute
∑

γ∈Γ

∑
σ∈t(γ) e

−θ·
∑
m∈[M ]D3(σ,m). Using

the definition of the normalization constant, we have for all m ∈ [M ],

ψ(|Gm|, θ) = ψ(rm, θ) · ψ(|Gm| − rm, θ) ·
∑
γ∈Γ

∑
σ∈t(γ)

e−θ·D3(σ,m),

which implies that

∑
γ∈Γ

∑
σ∈t(γ)

e−θ·
∑
m∈[M ]D3(σ,m) =

M∏
m=1

ψ(|Gm|, θ)
ψ(rm, θ) · ψ(|Gm| − rm, θ)

,

and concludes the proof.
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