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ABSTRACT

Discovering new drug-drug interactions using data science:

Applications to drug-induced Long QT Syndrome

Tal Lorberbaum

Commonly prescribed small molecule drugs can have net-positive and well-

understood safety profiles when prescribed individually, but unexpected consequences

when taken at the same time. Detection of these drug-drug interactions (DDIs) con-

tinues to be a critical and unmet area of translational research. The Centers for

Disease Control and Prevention (CDC) estimate that one third of Americans are

concurrently taking two or more prescription drugs, and DDIs are estimated to be

responsible for 17% of all drug adverse events. The consequences of DDIs can be

relatively minor (headache, skin rash) or much more severe (bleeding, liver toxicity).

At a cellular level, DDIs can occur as a result of both drugs competing for metabolism

(known as pharmacokinetic interactions) or targeting the same protein target or bi-

ological pathway (pharmacodynamic interactions). Clinical trials typically focus on

the effects of individual drugs, leaving DDIs to usually be discovered only after the

drugs have been approved.

One of the most carefully studied drug adverse events is long QT syndrome

(LQTS), an unexpected change in the heart’s electrical activity that can lead to

a potentially fatal ventricular tachycardia known as torsades de pointes (TdP). Some

patients have genetic mutations that lead to congenital forms of LQTS, while drug-

induced LQTS typically occurs via block of the hERG potassium channel (KCNH2)

responsible for ventricular repolarization. After a number of high profile drugs were

withdrawn from the market due to discovered risk of TdP, the FDA issued guide-

lines so that pharmaceutical companies could anticipate and test for this side effect

before a new drug is approved. These recommendations have helped prevent new

QT-prolonging drugs from entering the market, but nonetheless over 180 approved



drugs have been associated with drug-induced LQTS. While information on individ-

ual QT-prolonging drugs is thus readily available to clinicians, little has remained

known about DDIs (QT-DDIs). There are many more commonly prescribed drugs

that are safe when given individually but could increase TdP risk when administered

together. This troubling situation is compounded by the fact that traditional post-

market surveillance algorithms are poorly equipped to sensitively and specifically

detect DDIs.

Data science – the application of rigorous analytical methods to large datasets –

offers an opportunity for predicting previously unknown QT-DDIs. Some biomedical

datasets (such as drug-target binding affinities and experiments to determine protein-

protein interactions) have been collected explicitly for research, while other valuable

datasets (such as electronic health records) were initially recorded for billing purposes.

Each data modality has its own important set of advantages and disadvantages, and

integrative data science approaches can incorporate multiple types of data to help

account for these limitations. In this thesis we develop new data sciences techniques

that combine clinical, biological, chemical, and genetic data. These approaches are

explicitly designed to be robust to biased and missing data. We apply these new

methodologies to (1) predict new QT-DDIs, (2) validate them experimentally, and

(3) investigate their molecular and genetic mechanisms. We exemplify this approach

in the discovery of a previously unknown QT-DDI between ceftriaxone (cephalosporin

antibiotic) and lansoprazole (proton pump inhibitor); importantly, both drugs have

no cardiac indications and are safe when given individually.

The clinical data mining, drug target prediction, biological network analysis, ge-

netic ancestry prediction, and experimental validation methods described in this the-

sis form the basis for a comprehensive pipeline to predict QT-DDIs rapidly and ro-

bustly. They also provide an opportunity for further enriching our understanding of

LQTS biology and ultimately enabling the design of safer drugs.
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Introduction

Drug–drug interactions (DDIs) account for 74,000 emergency room visits and 195,000

hospitalizations in the US annually [105], and are responsible for 17% of all drug

adverse events (AEs) [109]. The Centers for Disease Control and Prevention (CDC)

estimate that one third of Americans are concurrently taking two or more prescription

drugs, making detection of DDIs a critical and unmet area of translational research.

DDIs can be broadly grouped into two categories: pharmacokinetic and pharma-

codynamic. Pharmacokinetic DDIs are colloquially described as “what the body does

to the drugs”; more concretely, these interactions occur when the presence of one drug

affects the ADME (absorption, distribution, metabolism, and excretion) of the second

drug. In metabolic pharmacokinetic DDIs, one drug will affect the plasma concentra-

tion of a second drug by competing for metabolite conversion by the same cytochrome

P450 – or “CYP” – enzyme in the liver and/ or small intestine [102]. The archetypi-

cal example of such a pharmacokinetic interaction is that between furanocoumarins

in grapefruit juice and approximately 50% of drugs metabolized by CYP3A4 [108],

including benzodiazepines such as diazepam (Valium) [101], some statins (e.g. atorvas-

tatin, lovastatin, and simvastatin) [82], and anti-arrhythmics such as amiodarone [3].

Other high-profile pharmacokinetic DDIs include those between clopidogrel (Plavix)

and over 250 drugs – including atorvastatin and omeprazole (Prilosec) – that cause

reduced conversion of clopidogrel (a prodrug) to its active antiplatelet metabolite [5],

and warfarin–drug interactions that increase the risk of bleeding [48].

1



Pharmacodynamic DDIs refer to “what the drugs do to the body” and can more

specifically be due to each drug affecting the same protein target, the same biological

pathway, or two previously redundant pathways in a cell [47]. A key component in

the investigation of pharmacodynamic DDIs is the concept of drug synergy, which

measures the degree to which the biological activity of two drugs deviates from their

expected additive activity [142]. Unlike pharmacokinetic DDIs, which can be more

readily predicted using a range of CYP binding prediction software packages [70],

prediction of pharmacodynamic DDIs is much more daunting due to the complex

interplay of interacting genes and proteins whose expression differs across all of the

different cell types in the body.

Clinical trials typically focus on the effects of single drugs, leaving DDIs to usually

be discovered only after the drugs have been approved. Regulatory agencies such as

the Food and Drug Administration therefore rely on post-marketing surveillance for

detecting DDIs. However, these strategies typically require direct evidence between

the DDI and the adverse event (i.e. a minimum number of reports that specifically

mention both drugs and the event). In the case of DDIs, such evidence is typically

not available.

A striking example of the paucity of validated DDIs is for those contributing to

sudden cardiac death (SCD). Although cardiac mortality rates have declined over

time, SCD as a consequence of ventricular arrhythmia remains a major public health

problem, with national estimates of SCD or out-of-hospital cardiac arrest ranging

from 400,000 to 450,000 events annually [90, 174].

An important cause of SCD is torsades de pointes (TdP), so-called for the abnor-

mal “twisting of the points” waveform observed on the electrocardiogram. TdP is a

ventricular tachycardia that occurs in the setting of congenital or drug-induced pro-

longation of the QT interval on the electrocardiogram (Long QT syndrome, LQTS)

[118]. While not every patient with QT prolongation develops ventricular arrhyth-

2



mias, it is well established that a QT interval > 500 ms (normal range of 350–440

ms) confers a high risk for TdP formation [26].

Since the first reports of TdP in the 1960s [66], mutations in 13 genes coding for

cardiac ion channels and their associated proteins have been found to play roles in

LQTS [8, 89, 92, 118]. Congenital LQTS can result from mutations that disrupt the

IKs, IKr, or INa ion currents and/ or their regulation by neurohormones; however, the

acquired form of LQTS (which is often drug-induced) typically occurs via block of the

hERG channel (Kv11.1) which conducts the IKr delayed rectifier potassium current,

a key determinant of ventricular repolarization [92]. Other contributing factors to

acquired LQTS include bradycardia and electrolyte imbalances such as hypokalemia

or hypomagnesemia [66]; the effect of drugs on IKr current has been found to be

inversely related to both heart rate and the extracellular potassium concentration

[167].

Drug-induced inhibition of IKr was first discovered for the antiarrhythmic quini-

dine in the 1980’s [120]. Since then, 180 drugs with both cardiac and non-cardiac

indications have been associated with a known, possible, conditional, or congenital

link to dangerously prolonging the QT interval [164]. A continuously updated list of

these drugs has been maintained by AZCERT, Inc. at www.CredibleMeds.org [129].

The hERG channel is notorious for being an off-target for a wide range of molecules

[166], and even sufficiently high concentrations of grapefruit juice alone have been

shown to directly inhibit the channel and cause QT interval prolongation [175]. In

2005 the FDA released guidances for industry (S7B and E14) explicitly discussing

pre-clinical and clinical testing for the torsadogenicity of a lead molecule [29, 30]. In

vitro hERG screening of lead compounds and the thorough QT study in the clinic

have since become hallmarks of the drug development process [36].

Terfenadine (an allergy medication) and cisapride (used to treat acid reflux) are

two high-profile medications that were withdrawn from the market in 1997 and 2000
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respectively for prolonging the QT interval and causing TdP [165]; 14 drugs have been

removed from the market due to TdP since 1989 [129]. Estimates suggest that as many

as 23% of patients continue to be prescribed at least one QT-prolonging medication,

and 9% have been concomitantly prescribed two QT-prolonging medications [20].

While IKr blockade remains the most common source of drug-induced arrhythmia,

the recently announced comprehensive in vitro proarrhythmia assay (CiPA) is a push

by the FDA and others to conduct studies of drug off-target effects on a more complete

panel of cardiac ion channels, all of which can impact QT intervals and play critical

roles in the development of life threatening arrhythmia [27].

Despite the increasingly comprehensive resources available to clinicians for linking

individual drugs to TdP, little remains known about DDIs (QT-DDIs). One of the

few known QT-DDIs at the outset of this work was a pharmacokinetic interaction

between methadone (an analgesic) and quetiapine (an antipsychotic), with patients

prescribed quetiapine found to have elevated plasma methadone concentrations [150].

In the case of LQTS/ TdP, we hypothesize that the most likely target for a pharma-

codynamic QT-DDI is the hERG channel, although other ion channels and accessory

proteins could also be involved. While the FDA has required clinical studies to as-

sess the effects of drug interactions, it remains intractable to prospectively evaluate

every possible drug combination. Crucially, studies of QT-DDIs to date have focused

on identifying concomitant medications that exacerbate the effects of known QT-

prolonging drugs [162]; however, there are many more potential pairs of drugs that

are benign when prescribed individually but only manifest a QT-prolonging effect

when given together.

Data science offers a unique opportunity to leverage a range of chemical, biologi-

cal, genetic, and clinical data for the prediction of drug adverse events (AEs) and – in

particular – DDIs. Biological data used in this thesis will include drug-target binding

affinities and networks assembled from experimentally derived protein-protein inter-
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actions. Clinical data will be either from publicly available spontaneous reporting

systems (e.g. FDA Adverse Event Reporting System) or private electronic health

records (e.g. NewYork-Presbyterian Hospital) and encompass drug exposures, labo-

ratory results, and phenotypic information (e.g. condition terms or billing codes).

Important domains of biomedical data science incorporated in this thesis include

systems pharmacology and clinical data mining. Systems pharmacology (also referred

to as chemical systems biology) is the application of systems biology methods to ana-

lyze drug effects in the context of all of the molecular interactions in a cell (referred to

as the “interactome”) and includes drug target prediction, biological pathway analy-

sis, and network analysis [7, 11]. Modeling the interactome as a network – with nodes

representing drugs and genes/ proteins and edges representing interactions between

them – formulates the complex interplay of cellular behavior into a data structure

amenable to algorithms from seemingly disparate fields such as social network and

world wide web analysis; “hub” nodes therefore represent important biological me-

diators, and multiple distance and connectivity metrics allow for prioritizing links

between drugs and AE genes [58, 84]. Systems pharmacology approaches have also

specifically been used in the prediction of DDIs, including calculating shortest paths

between the protein targets of a drug pair in a gene interaction network [157] and

weighting edges in a protein-protein interaction network using correlations in gene

co-expression [53].

Chemoinformatics is a subdomain of systems pharmacology that utilizes the chem-

ical structures of drugs. An advantage of this approach is that the 3D structure of

protein targets is not necessary to predict a ligand’s affinity for the target. Chemoin-

formatics algorithms will often leverage chemical similarity by incorporating “molec-

ular fingerprinting”; this procedure represents each chemical structure as a series

of binary digits (bits) describing the presence or absence of chemical substructures,

facilitating the use of set similarity metrics such as the Tanimoto coefficient (also
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known as the Jaccard index) to quantify the similarity between drugs. A critical

development in the chemoinformatics field has been the similarity ensemble approach

(SEA), which utilizes chemical similarity to predict new drug targets on the basis

of a query molecule’s similarity to known ligands of a target [68, 69, 87]. Another

common approach in chemoinformatics is to model quantitative structure-activity

relationships (QSAR) that utilize a drug’s physicochemical properties (e.g. molecu-

lar weight, solubility) and the steric and electrical consequences of chemical moeities

(known as pharmacophores) to predict biological activity. A variety of strategies have

been proposed for extending QSAR modeling to the prediction of DDIs [93, 171].

While systems pharmacology and chemoinformatics approaches offer the possibil-

ity of predicting DDIs before a new drug reaches clinical trials or regulatory approval,

the enormous number of predictions generated by these algorithms (many of which

are likely false positives) means that at best they continue to offer a complementary

approach to experimental data. Clinical data mining has the advantage of effectively

representing billions of (albeit poorly controlled) in vivo experiments conducted dur-

ing routine clinical care. Importantly, use of these data also helps narrow the focus

of DDI discovery to those drug pairs that are actually prescribed together in clinical

practice.

Multiple approaches have been developed and are currently utilized by regulatory

agencies such as the FDA to predict AEs using clinical data during post-market

surveillance (pharmacovigilance) [44]. These methods primarily rely on sponta-

neous reporting systems (SRSs), such as the FDA Adverse Event Reporting Sys-

tem (FAERS), that collect voluntary submissions from healthcare providers and pa-

tients as well as mandatory submissions from pharmaceutical companies. Due to

the lag time between AE occurrence and reporting, interest has shifted to Medicare

claims data (e.g. Observational Medical Outcomes Partnership [122]) and the elec-

tronic health records (e.g. FDA’s Mini-Sentinel [113]) where AEs could potentially
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be detected in closer to real-time.

Pharmacovigilance methods are primarily based on disproportionality analysis, in

which a ratio of the observed occurrence of a drug-AE combination to the expected

occurrence for other drugs is calculated to quantify the combination’s “unexpected-

ness” [4]. It is crucial to note that in spite of the undeniable utility of these data

sources, a naïve analysis will lead to many false positive and false negative signals

due to issues of reporting biases (such as reporting disease symptoms as adverse

events) and sampling variance (e.g. under- or over-reporting of events depending on

how established the drug-event relationship is) [4, 137]. AE detection in EHRs is also

stymied by issues of complex, inaccurate, and missing data [50]. There is therefore an

opportunity to build upon previous work in addressing these limitations [23, 127, 134,

143, 147] to both advance the field of biomedical data science and generate clinically

actionable predictions that achieve both high specificity and sensitivity.

A growing number of studies have found improved AE prediction by integrating

biological, chemical, and clinical data [13, 25]. Different measures of “similarity”

can also be combined to predict AEs [153]. These include predicting drug targets

using a combination of chemical similarity and side effect similarity (where drugs

with similar side effects were predicted to share targets) [14]. More comprehensive

bit vectors for calculating similarity and predicting DDIs can also be assembled by

combining 2D & 3D chemical, side effect, protein target, known DDI, and Anatomical

Therapeutic Chemical (ATC) classification data [155]. Such integrative approaches

offer one strategy to account for the biases inherent to the use of any dataset in

isolation.

Several previous studies have applied data science approaches to the study of drug-

induced LQTS. A landmark study by Berger, et al. used network analysis to identify

a LQTS “neighborhood” within a protein-protein interaction network by calculating

the mean first passage time between LQTS gene products and all other proteins in
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the network; they then used FAERS to investigate whether drugs targeting proteins

in the LQTS neighborhood had also been reported with LQTS [8]. Other work has

focused on developing QSAR models that use drug chemical structures to predict

hERG block [156]. Another recent study applied machine learning to dimensionality-

reduced features obtained from a cardiac action potential model to predict TdP risk of

individual drugs; they then confirmed their predictions across a range of drug doses

and investigated the use of a synthetic patient population to further stratify drug

risk [75]. Previous work from our group in mining FAERS using a novel Statistical

Correction for Uncharacterized Bias (SCRUB) found a link between co-administration

of thiazides and selective serotonin reuptake inhibitors (SSRIs) and LQTS [147].

Clinical, biological, chemical, and genetic data all represent complementary ap-

proaches for predicting drug safety. Predictions generated by these methods only

achieve maximal meaning in the context of experimental validation. Therefore in

this thesis we will demonstrate methods to integrate multiple data modalities for the

purpose of predicting QT-DDIs as well as their molecular and genetic mechanisms.

We approach the QT-DDI discovery task using three aims. In Aim 1, we identify

novel QT-DDIs using integrative observational data mining (Chapter 1). In Aim

2, we validate a predicted QT-DDI between two commonly prescribed drugs exper-

imentally using patch-clamp electrophysiology (Chapter 2). Finally, in Aim 3 we

investigate mechanisms of drug-induced LQTS by using biological, chemical, and

genetic data (Chapter 3, Chapter 4, and Chapter 5).
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Chapter 1

Latent signal detection of
QT-prolonging drug-drug
interactions

1.1 Abstract

Introduction

Drug-induced prolongation of the QT interval on the electrocardiogram (long QT

syndrome, LQTS) can lead to a potentially fatal ventricular arrhythmia known as tor-

sades de pointes (TdP). Over 40 drugs with both cardiac and non-cardiac indications

are associated with increased risk of TdP, but drug–drug interactions contributing

to LQTS (QT-DDIs) remain poorly characterized. Traditional methods for mining

observational healthcare data are poorly equipped to detect QT-DDI signals due to

low reporting numbers and lack of direct evidence for LQTS.

Objective

We hypothesized that LQTS could be identified latently using an adverse event (AE)

fingerprint of more commonly reported AEs. We aimed to generate an integrated data

science pipeline that addresses current limitations by identifying latent signals for QT-

DDIs in the US FDA’s Adverse Event Reporting System (FAERS) and retrospectively
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validating these predictions using electrocardiogram data in electronic health records

(EHRs).

Methods

We trained a model to identify an AE fingerprint for risk of TdP for single drugs and

applied this model to drug pair data to predict novel DDIs. In the EHR at Columbia

University Medical Center, we compared the QTc intervals of patients prescribed the

flagged drug pairs with patients prescribed either drug individually.

Results

We created an AE fingerprint consisting of 13 latently detected side effects. This

model significantly outperformed a direct evidence control model in the detection of

established interactions (P = 1.62E−3) and significantly enriched for validated QT-

DDIs in the EHR (P = 0.01). Of 889 pairs flagged in FAERS, eight novel QT-DDIs

were significantly associated with prolonged QTc intervals in the EHR and were not

due to co-prescribed medications.

Conclusions

Latent signal detection in FAERS validated using the EHR presents an automated

and data-driven approach for systematically identifying novel QT-DDIs.

1.2 Introduction

Long QT syndrome (LQTS) is a genetic or acquired change in the electrical activity

of the heart that can increase the risk of torsades de pointes (TdP), a dangerous

ventricular tachycardia that can lead to sudden cardiac death [118]. Diagnosed using

an electrocardiogram (ECG), LQTS is characterized by a prolonged QT interval and
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represents an abnormally increased cardiac action potential duration. While the link

between QT prolongation and TdP is complex and involves the interplay of multiple

factors, a QT interval >500 ms (versus a normal range of 350–440 ms) is nonetheless

considered a significant risk for arrhythmogenesis [26].

Since the first reports of TdP in the 1960s [66], mutations in 13 genes coding for

cardiac ion channels and their associated proteins have been found to play roles in

LQTS [8, 89, 92, 118]. Congenital LQTS can result from mutations that disrupt the

IKs, IKr, or INa ion currents; however, the acquired form of LQTS (which is often drug-

induced) is almost exclusively due to block of the human ether-à-go-go-related gene

(hERG) channel (KCNH2), which plays a role in the IKr delayed rectifier potassium

current responsible for ventricular repolarization [66]. Drug-induced inhibition of

IKr was first discovered for the antiarrhythmic quinidine [120], and since then over

40 drugs with both cardiac and non-cardiac indications have been found to possess

either a known, possible, conditional, or congenital link to dangerously prolonging

the QT interval [164]. Terfenadine (an allergy medication) and cisapride (used to

treat acid reflux) were withdrawn from the market in 1997 and 2000, respectively, for

prolonging the QT interval [165], and risk of TdP is now the second leading cause for

approved drug withdrawal [26].

Drug–drug interactions (DDIs) such as those between methadone (an analgesic)

and quetiapine (an antipsychotic) have also been reported to increase the risk for

TdP [150]. Despite the increasingly comprehensive resources available to clinicians

for linking single drugs to TdP, little remains known about DDIs (QT-DDIs). We

define a QT-DDI as a measurable change in effect (QT interval duration) for a drug

pair compared with the effect observed for either drug alone. This includes both phar-

macokinetic interactions (such as the increased plasma concentrations of methadone

in patients also taking quetiapine [150]), as well as pharmacodynamic interactions.

While the FDA has required clinical studies to assess the effects of drug interactions,
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it is intractable to prospectively evaluate every possible drug combination. With

DDIs thought to play a role in upwards of 17% of adverse events (AEs), and an in-

creasingly aging population taking multiple drugs concurrently [40, 109], there is a

pressing need for methods to identify potential interactions.

Molecular mechanism-based approaches such as biological network analysis have

been previously used to prioritize drugs with molecular links to LQTS genes, but

they remain limited to known drug targets and often only apply to individual drugs

[8]. More recent work using machine learning on network data can overcome the

requirement for known targets [84]; however, this approach has only been validated

for individual drugs.

Observational healthcare datasets such as the US FDA Adverse Event Reporting

System (FAERS) and electronic health records (EHRs) provide invaluable resources

for adverse event prediction, but their use is tempered by multiple limitations. Spon-

taneous reporting systems such as FAERS are known to suffer from both reporting

bias and sampling variance [4], and methods for mining FAERS traditionally rely on

direct evidence between a drug exposure and AE (i.e. the number of reports with

the drug and AE co-mentioned). While methods have been developed to limit high

false positives by correcting for unsubstantiated drug–AE signals [143], this leads

to a tradeoff between reducing false positive rates and the ability to actually detect

AEs. Direct detection of AEs falters in the prediction of DDIs, where reporting num-

bers are often lower than for single drugs and unanticipated or unexpected events

with no understood molecular explanation can go unreported. A number of advances

have been made in the field, including the observation that additive baseline models

tend to outperform multiplicative ones [65] and that case reports can be combined

with mechanistic information such as shared cytochrome P450 (CYP) metabolism to

develop more sophisticated triage algorithms [139]. Nonetheless, most DDI signal de-

tection algorithms have had limited success [24, 43, 97]. Additionally, AE detection
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in EHRs can be challenging as such data are often complex, inaccurate, and missing

[50]. While use of either dataset alone can thus be problematic for QT-DDI detection,

integration of these two sources using data science offers an opportunity for improved

performance.

In previous work, our group demonstrated that a novel signal detection algorithm

could be used for detecting latent signals of previously unknown DDIs for eight severe

AE classes [145, 146]. Importantly, each individual drug in the drug pair had no pre-

viously known connection to the AE class of interest. In this chapter, we introduce an

updated pipeline called DIPULSE (Drug Interaction Prediction Using Latent Signals

and EHRs) that uses latent signal detection in FAERS to generate an AE fingerprint

for LQTS. This AE fingerprint — trained on individual drugs with a known link to

prolonging the QT interval — represents a profile of more commonly reported side

effects that together are highly predictive of underlying QT interval prolongation. We

apply this fingerprint model to an independent test data set of drug pairs to predict

new QT-DDIs where neither drug alone has a known association to this phenotype.

We validate these predictions using ECG laboratory results in EHRs.

1.3 Materials and Methods

A graphical overview of DIPULSE can be found in Figure 1.1. The individual steps

of the pipeline corresponding to each panel of the figure are described in detail below.

Briefly, we used AE reporting frequencies for individual drugs to identify an AE

fingerprint for increased risk of TdP. We then apply this model to a test data set of

AE reporting frequencies for drug pairs. We filtered for high-confidence predictions

and proceeded to validate these putative QT-DDIs in the EHR by comparing the

QTc (heart rate-corrected QT) intervals of patients prescribed the flagged drug pair

with patients prescribed either drug alone. Finally, we perform a confounder analysis
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to remove any associations that can be explained by co-prescribed medications, and

generated a final candidate list of novel QT-DDIs.

In developing the pipeline, our rationale was to prioritize high precision over

high recall to obtain a final list of high-confidence interactions; therefore, the choices

we made in designing the filtering steps described below reflect this conservative

approach. We implemented the method using Python 2.7.9 and R 3.1.0.

1.3.1 Primary Data Sources

We downloaded a snapshot of the FAERS database containing 1,851,171 reports (cor-

responding to the first quarter of 2004 to the first quarter of 2009). Each report in

FAERS contains the drugs prescribed to the patient, the drug indications, and the

observed AEs. We included suspected, interacting, and concomitant drugs on the

reports.

As positive controls, we downloaded a list of 180 drugs with known (n = 47),

possible (n = 75), conditional (n = 31), or congenital (n = 27) risk of TdP from

CredibleMeds, an online compendium of drugs associated with LQTS [164]. We also

obtained a list of 2856 critical and significant DDIs from the Veteran Affairs Hospital

[100].

To validate the DDI predictions, we used EHR data from Columbia University

Medical Center (CUMC). In addition to patient demographics, drugs prescribed, and

diagnosis codes, we also used QTc (heart rate-corrected QT interval) values obtained

from ECG laboratory results. The study was approved by the CUMC Institutional

Review Board.
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Figure 1.1: Overview of DIPULSE pipeline, which combines mining of FAERS and
EHRs to flag novel QT-prolonging DDIs. FAERS: We generate an AE reporting
frequency table (dimensions, N drugs by M AEs) for single drugs in FAERS. The
value at a row and column represents the fraction of reports for drug i containing
AE k (Fik). We label a drug as a positive example (shown in red) if it has a known
risk of TdP (obtained from http://www.CredibleMeds.org). All drugs not found
in CredibleMeds were labeled as negative examples (shown in green). We use ma-
chine learning to generate an AE fingerprint model that identified the most predictive
subset of features (AE reporting frequencies, Fik) as latent evidence for predicting
whether a drug does or does not prolong the QT interval (gray boxes). We then
apply this fingerprint model to an independent test data set consisting of a matrix
(with AE reporting frequencies Fijk) for drug pairs. We send pairs receiving high
classifier probabilities (but where neither individual drug is known to prolong the QT
interval) for EHR validation (in this case pairs (DN−1, DN−2) [purple-blue] and (DN−1,
DN) [purple-orange]). EHR: We validate putative interactions using electrocardio-
gram laboratory results in the EHRs by determining whether patients prescribed a
predicted interacting drug pair had increased QTc intervals compared with patients
taking either drug alone. In this example, patients prescribed the drug pair (DN−1,
DN−2) have a significantly increased QT interval compared with patients on either
drug alone. This is not observed for drug pair (DN−1, DN) so it is filtered out. Finally,
we performed a confounder analysis to confirm that the significant increase observed
in QTc interval is not due to other co-prescribed medications.
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1.3.2 Generating Adverse Event (AE) Reporting Frequency

Tables

We pre-processed the reports from FAERS to generate the intermediate AE reporting

frequency tables in the Offsides (single drug) and Twosides (drug pair) databases

[147]. Offsides and Twosides were created by training propensity score matching

models to match patients exposed to a single drug or drug pair to unexposed controls

on the basis of co-prescribed medications and drug indications; an advantage of this

approach is that only patients for whom controls could be matched are used for drug

safety prediction [147].

An intermediate step in this process is the assembly of AE frequency reporting

tables for both single drugs and drug pairs, as seen in Figure 1.1, with each row

representing a drug and each column representing one of the AEs in FAERS. For single

drugs, the value at a given row and column represents the frequency of reporting Fik,

defined as the fraction of reports for drug i containing the AE k. Similarly, for drug

pairs, the reporting frequency Fijk corresponds to the fraction of reports for drug pair

(i, j) containing the AE k. We used the former matrix to train the fingerprint model,

and the latter for DDI prediction.

1.3.3 Training AE Fingerprint Model

We used the AE reporting frequencies (Fik) in the frequency table for single drugs as

features to train a logistic regression classifier. The binary classifier models the log

odds ratio of a drug prolonging the QT interval as a linear combination of each AE

reporting frequency in the model multiplied by a weight (known as a β coefficient);

depending on the probability threshold set, a drug above the threshold is classified as

increasing the risk of TdP, and a drug below the threshold is classified as safe. Training

the model requires both positive and negative examples. As positive examples, we
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used the subset of the 47 drugs with a known risk of TdP in CredibleMeds that

were also in FAERS (n = 23). As negative controls, we selected all drugs in FAERS

that did not appear in CredibleMeds (i.e. have no known, possible, conditional, or

congenital risk of TdP; n = 530).

Because the number of features (11,305 AEs) is much greater than the number of

examples (553 drugs), overfitting of the model to the training data is a concern. To

ensure the model generalized to the test data set (drug pairs), we reduced the number

of features by using L1 (lasso) regularization [148]. Unlike L2 (ridge) regularization

(which penalizes the squares of the feature weights), L1 regularization penalizes their

absolute values and is therefore preferred because it results in sparse models (i.e. most

of the feature weights will be driven to zero). We generated five models, each of which

contained between 5 and 20 features obtained by varying the regularization strength

for the given model. We evaluated these models using 10-fold cross-validation, and

then re-fit the classifier using only the selected features. The features for each of these

models constitute an AE fingerprint that represents latent evidence for QT interval

prolongation.

As a control, we generated a logistic regression model built solely using direct

evidence of QT interval prolongation (standardized Medical Dictionary for Regulatory

Activities [MedDRA] query for ‘Torsade de Pointes/QT prolongation’). There were

only six AEs corresponding to QT interval prolongation or TdP (Table 1.2), and

therefore feature selection was not necessary.

1.3.4 Predicting Novel Drug–Drug Interactions (DDIs)

Using the Fingerprint Model

We next applied the QT fingerprint model to an independent test data set consisting

of the AE reporting frequencies (Fijk) in the frequency table for drug pairs. The

model outputs a probability for a given drug pair to prolong the QT interval. We
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assessed model performance using two references. In the first, we labeled each drug

pair containing a drug known to increase the risk of TdP as a positive example. While

these may not be bonafide DDIs, they demonstrate the ability of the fingerprint model

to ‘re-discover’ drugs known to prolong the QT interval within the drug pair data.

We used this validation to select the optimal fingerprint model. We also performed

an additional validation using a list of critical and significant DDIs from the Veteran

Affairs Hospital. For both of these evaluations, we compared the performance of the

‘latent’ AE fingerprint model with the ‘direct evidence’ control model using DeLong’s

test [115].

To obtain a candidate list of novel DDIs predicted by the fingerprint model, we

first removed all drug pairs containing a drug in the CredibleMeds list. We then

filtered for all novel predictions found at a classifier probability below a 4% false

positive rate according to the CredibleMeds evaluation. We chose this false positive

rate threshold by modeling the expected increase in false discovery rate as a function

of false positive rate (see Figure 1.2 and accompanying legend for a description of

the analysis). Finally, we removed drug pairs that would receive high classifier scores

regardless of the features used in the model by generating 100 logistic regression

models using randomly chosen features and estimating empirical p-values for each

drug pair. We removed any drug pairs receiving an empirical p-value ≥ 0.01.

1.3.5 Validating Novel DDIs Using Electronic Health

Records

While the novel DDIs predicted using the signal detection algorithm each contain

latent evidence for prolonging the QT interval, ECG values in EHRs allow us to

retrospectively evaluate the effect of these drug pairs (cases) on QT interval duration

compared with either drug alone (controls). Because QT interval durations differ

between males and females [112], we evaluated the effects of a given drug pair on
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Figure 1.2: False positive rate threshold analysis. As part of filtering for novel QT-
DDIs in FAERS we only kept predictions below a certain false positive rate (FPR)
threshold. To determine this threshold, at each FPR from 1-100% (1-10% FPR
shown) we first calculated the mean false discovery rate (FDR) for the true Cred-
ibleMeds evaluation labels (i.e. any pair containing a known CredibleMeds drug is
labeled as a positive example) after randomly sampling with replacement from the
set of drug pairs over 1000 iterations (blue). We also calculated the FDR for 1000
iterations of random shuffling of these labels (orange). We next fit a sigmoid function
to the bootstrapped mean FDRs representing the expected increase in FDR as the
FPR threshold increases. Because a number of the “false positives” as evaluated with
the CredibleMeds validation represent previously unknown QT-DDIs, we selected 4%
FPR as it was the smallest false positive rate whose mean FDR was above the best
fit line while also ensuring a sufficient number of predictions for retrospective valida-
tion in the electronic health records (white text on blue bars). This FPR threshold
corresponds to a classifier probability of 33.26%.
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each sex separately.

To obtain cases, we selected patients at New York-Presbyterian Hospital/

Columbia University Medical Center who were prescribed each drug in a given drug

pair within a 7-day period. Patients were also required to have an ECG lab — and

corresponding QTc (heart rate-corrected QT interval) — within 36 days of the second

drug prescription. We chose this limit to minimize the potential for new confounding

drug prescriptions or interventions; additionally, because follow-up visits are often

scheduled in units of weeks, we allowed for 5 weeks plus 1 day for laboratory tests to

be performed [145]. For patients with multiple QTc values within this time period,

we used the maximum value.

To obtain controls, we selected patients taking whichever individual drug in the

pair yielded the greatest median QTc within a 36-day period from drug prescription;

we call this drug the ‘control’ drug. We then compared QTc values between cases

and controls and assessed significance using a Mann–Whitney U test, correcting for

multiple hypothesis testing using Bonferroni’s method.

In order to demonstrate that the predictions being sent for EHR validation were

enriched for drug interactions that actually prolonged the QT interval, we ran the

above EHR case-control analysis on a set of drug pairs equal in number to that

generated by the latent signal detection but randomly chosen from the frequency

table for drug pairs. To generate a more representative comparison, we required

that each pair be comprised of a randomly chosen drug paired with a ‘control’ drug

(i.e. the drug with the greatest QTc interval alone from the latent evidence pairs).

Additionally, to ensure equivalent statistical power we matched the number of patients

in the case groups of the randomly chosen pairs to the case group sizes of the pairs

prioritized by the latent signal detection. We counted the number of random pairs

that had significant increases in QT interval, and repeated this sampling procedure

1000 times to build an empirical distribution of how many significant results would
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Figure 1.3: Evaluation of QT fingerprint models. (A) As part of building models
based on latent evidence, we confirmed that the model could correctly classify the
single drugs known to increase risk of TdP in the training set using 10-fold cross-
validation. The model generated with 13 features achieved the greatest area under
the ROC curve (AUROC) of 0.89. (B) After applying each fingerprint model to the
drug pair data, we used the CredibleMeds evaluation (each drug pair containing a
known CredibleMeds drug labeled as a positive example) to select the optimal QT
fingerprint model. The model with 13 features achieved the greatest AUROC of 0.69.

be expected after EHR analysis by chance alone.

Finally, we adjusted for confounders by confirming that the elevated QTc interval

on the drug pair was not due to other co-prescribed medications. For each sets of cases

(patients on a given drug pair) and controls (patients on an individual drug in the

pair), we identified possible confounder drugs by counting the number of exposures

to each drug prescribed up to 36 days prior. We evaluated each potential confounder

by confirming that it was correlated both with the exposure condition and with QTc

values. For the former, we determined whether the covariate was more likely to be

prescribed with the drug pair compared with the single drug using a Fisher’s exact

test; for the latter, we compared the QTc values for patients exposed to the covariate

versus those unexposed using a Mann–Whitney U test. Both of these evaluations were

performed using a Bonferroni correction for multiple hypothesis testing. We collected
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all drug covariates that passed these two requirements and assessed their significance

(for males and females separately) using an analysis of covariance (ANCOVA). To

obtain the final list of validated novel DDIs, we only kept those results (drug pairs

for a given sex) receiving significant ANCOVA p-values (P < 0.05) for the DDI.

1.4 Results

1.4.1 QT Fingerprint Model Significantly Outperforms

Model Built Using Only Direct Evidence

Of the five fingerprint models evaluated, we found that the model containing 13

features achieved the best performance for drug pair data (area under the curve

[AUC] = 0.69 using pairs containing a known CredibleMeds drug) (Figure 1.3); see

Table 1.1 for the list of features that constitute the QT AE fingerprint. Importantly,

the QT fingerprint model significantly outperformed the model built using direct

evidence, as evaluated by both the CredibleMeds (P = 1.62E−3) and Veteran Affairs

(P = 5.22E−10) drug pair standards (Figure 1.4). After filtering using both empirical

p-values and the 4% false positive rate cutoff, we obtained 889 putative novel DDIs

to be validated in the EHR.

1.4.2 EHR Validation and Confounder Analysis Confirms

Novel Drug Interactions Prolonging the QT Interval

The EHR evaluation yielded 49 results (drug pairs for males and/or females) that

had significantly increased QTc intervals on the drug pair compared with either drug

alone (Figure 1.5). This number of results was significantly greater than for randomly

generated input to the EHR validation (P = 0.01) (Figure 1.6). After confounder

analysis, we obtained ten results (corresponding to eight distinct drug pairs) which
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Table 1.1: Features in QT fingerprint model

Adverse Event Beta
Drug interaction 0.52
Atrial fibrillation 0.50
Arrhythmia 0.29
Electrocardiogram QT prolonged 0.28
Tachycardia ventricular 0.28
Asystole 0.27
Torsades de pointes 0.24
Completed suicide 0.21
Rhabdomyolysis 0.17
Agitated 0.07
Drug ineffective -0.36
Accident -0.25
Heart attack -0.18

Table 1.2: Features in direct evidence model

Adverse Event Beta
Electrocardiogram QT prolonged 0.28
Torsades de pointes 0.24
Electrocardiogram QT corrected interval prolonged 0.07
Long QT syndrome 0.0033
Long QT syndrome congenital 0.0002

represent validated novel DDIs that increase the risk of acquired LQTS (Table 1.3).

The greatest increase in median QTc (30 ms) was for octreotide (a somatostatin

analog used to lower growth hormone levels) and lactulose (administered to treat

constipation) compared with octreotide alone (P = 2.48E−4) in males, and males

prescribed this pair were 2 times as likely to have a QTc interval ≥ 500 ms.For

females, co-prescription of mupirocin and vancomycin was associated with a 20 ms

increase in median QTc compared with vancomycin alone (P = 1.3E−4); females

prescribed the pair were 1.7 times as likely to have a QTc interval ≥ 500 ms. A

complete list of retrospectively validated interactions and the number of patients in

the case and control groups can be found in Table 1.3.
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BA

Figure 1.4: Receiver operating characteristic curves for adverse event fingerprint
model and direct evidence control. (A) Model validation was performed by labeling
drug pairs containing a drug with known increased risk of TdP as positive examples.
We compared the performance of a model built using latent evidence (AE fingerprint
model) to a control model using only direct evidence of QT prolongation. (B) A
second evaluation performed using a list of critical and significant DDIs from the
Veteran Affairs Hospital in Arizona. For both validations, the AE fingerprint model
significantly outperformed the model built solely with direct evidence. Area under
the curve (AUC) is indicated in parentheses.

1.5 Discussion

1.5.1 Data-driven models for uncovering drug interactions

Drug-induced LQTS and its potential for fatal arrhythmia (TdP) make this disorder of

critical importance both to drug discovery and pharmacovigilance. Indeed, an impor-

tant step in the drug development process is confirming that the lead compound does

not significantly block the hERG channel that contributes to TdP [26]. However, the

inability to prospectively identify this risk is highlighted by the increasing number of

drugs found to increase the risk for TdP [164]. Even more difficult to detect are DDIs

that contribute to LQTS, as experimental evaluation of all possible QT-DDIs is not

feasible and traditional methods for mining observational data are poorly equipped
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Figure 1.5: Scatter plot comparing median QTc intervals (in milliseconds) on single
drug (x-axis) and combination therapy (y-axis). (A) Results for males. (B) Results
for females. In both panels a minimum of 50 patients on the drug pair was necessary
for inclusion in the plot. A red circle indicates a drug pair that had significantly
increased QTc compared to the single drug control in the EHR analysis. A green
circle indicates a drug pair that had significantly decreased QTc compared to the
single drug control. The best fit line is indicated in dashed gray.
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Table 1.3: List of novel DDIs generated by DIPULSE and validated in the EHR

Drug 1 Drug 2 Control Sex
Estimate 

[95% CI]
P

Median QTc 
cases

Median QTc 
controls

QTc 

(ms)

# 

Cases

# 

Controls

Octreotide Lactulose Octreotide M 74.8 [34.8, 114.8] 2.48E-04 485 455 30 333 603

Mupirocin Vancomycin Vancomycin F 54.5  [26.6, 82.4] 1.30E-04 476 456 20 810 10,165

Metoprolol Fosphenytoin Metoprolol M 40.9  [25.5, 56.4] 2.19E-07 462 444 18 549 24,717

N-acetylcysteine Vancomycin Vancomycin M 17.4   [7.8, 27.0] 3.74E-04 469 453 16 2,633 9,789

Cefazolin Meperidine Cefazolin F 27.6  [15.2, 40.0] 1.29E-05 455 441 14 1,025 9,172

Cefazolin Meperidine Cefazolin M 18.2  [11.5, 24.9] 8.97E-08 452 440 12 2,110 10,013

Ceftriaxone Lansoprazole Ceftriaxone M 39.1  [26.1, 52.2] 4.21E-09 458 446 12 934 5,734

N-acetylcysteine Morphine N-acetylcysteine M 12.1   [1.0, 23.1] 3.19E-02 460 451 9 2,525 6,046

Meperidine Vancomycin Vancomycin F 34.6  [10.6, 58.7] 4.77E-03 464 457 7 1,105 9,894

N-acetylcysteine Morphine N-acetylcysteine F 22.3   [9.3, 35.4] 7.93E-04 459 455 4 1,900 4,803

to handle low reporting numbers and high false positive rates. Because analyses of

spontaneous reporting systems (such as FAERS) and EHRs alone have many limita-

tions, in this chapter we developed an integrative pipeline that incorporates multiple

dimensions of observational data to allow for identification of true QT-DDI signals.

We demonstrated the applicability of this data science approach by identifying latent

signals of LQTS in FAERS and retrospectively validating these novel QT-DDI pre-

dictions using EHRs. Comparing the AE fingerprint model for QT prolongation with

a direct evidence control demonstrated that latent evidence of drug-induced LQTS in

FAERS can outperform direct evidence in the detection of established interactions.

1.5.2 Limitations

While most drugs prolong the QT interval by interacting with the hERG channel,

the clinical data used in this analysis do not permit a mechanistic explanation for

the synergistic effects of the identified DDIs. Electrophysiology experiments to di-

rectly assay the effect of individual drugs and drug pairs on hERG channel activity

can provide further evidence for, and molecular mechanisms of, these effects [26].

Importantly, QTc correction formulas still used today were developed in 1920 and
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Figure 1.6: DIPULSE generates significantly more true predictions than would be
expected by chance alone. DIPULSE generated 889 putative DDIs for EHR analysis,
of which 49 results (drug pair and a given sex) were found to be significant (red
line). Over 1000 iterations, we randomly selected 889 pairs from the frequency table
for drug pairs such that one of the drugs in the pair was a “control” drug (i.e. the
drug with the greatest QTc interval alone from the latent evidence pair). We also
matched the number of cases (patients prescribed the drug pair) in the random pairs
to the case group sizes in the latent evidence pairs. For each iteration we counted
the number of significant results to build an empirical distribution (blue). DIPULSE
significantly enriched for drug interactions that actually prolong the QT interval (P
= 0.01).
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are known to be inaccurate when heart rate changes occur outside the baseline range

used to define the formula [26]. As such, drugs that do not directly affect ventricular

repolarization but instead alter the patient’s heart rate may be incorrectly attributed

to increasing the QTc. It is possible that some of the interactions we identified were

confounded by this complexity. This limitation highlights the need for experimental

validation of the QT-DDI predictions to directly assess hERG channel block or effects

on other ion channels.

In considering the features selected for the QT fingerprint model (Table 1.1),

many of the features are expected, including ECG QT prolonged, TdP, arrhythmia,

and even rhabdomyolysis, as this condition can be induced by hypokalemia which

also predisposes patients to LQTS [66, 151]. The “drug interaction” feature received

the greatest beta coefficient; we interpret inclusion of this reaction as a way for the

reporter to indicate a suspicion that two or more drugs taken by the patient could be

interacting and leading to the other reactions listed on the report. However, other

features are more unexpected, including completed suicide and agitation. One expla-

nation for the selection of these features is that a number of the positive control drugs

(including chlorpromazine, citalopram, and haloperidol) from CredibleMeds are indi-

cated for conditions characterized by agitation and suicidality. We purposefully did

not manually exclude any features on the basis of wanting to develop a purely data-

driven model that is not limited to current clinical knowledge of (non-cardiac) side

effects that are highly predictive of underlying QT prolongation; however, because of

the relatively small number of positive controls (predominantly with psychological,

antibacterial, and anti-arrhythmic indications), we acknowledge the possibility that

inclusion of these features may be driven by the indications of the positive controls

rather than their effects on QT prolongation.

The EHR control analysis (while limited to comparing the number of significant

findings prior to confounder adjustment) demonstrated that the method significantly
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enriched for QT-prolonging drug pairs compared with random selection. Approx-

imately 4% of pairs investigated ‘passed’ the EHR validation prior to confounder

analysis. Of the 889 pairs flagged by latent signal detection in FAERS, 251 of these

pairs (28%) had no patients prescribed the pair in the CUMC EHR and therefore

could not be evaluated. The other pairs that did not pass validation were either

prescribed at low numbers (and could therefore be false negatives due to insufficient

statistical power) or may be false positives from FAERS. While we believe the 7-day

window between drug prescriptions represents a fairly stringent cutoff for confirming

that patients were taking both drugs in a pair concurrently, challenges in estimating

the duration of treatment in EHRs also has implications for accurately selecting all

of the desired patients in the case group. Follow-up analyses could repeat the EHR

analysis at additional institutions to both replicate these results and investigate drug

pairs that could not be validated in the CUMC EHR.

Because the EHR analysis filtered for interactions (pairs with significantly greater

QT interval prolongation compared with either drug alone), a final potential expla-

nation for pairs identified in FAERS that could not be validated in the EHR is that

the highlighted pair represented a novel single drug that prolongs the QT interval.

While we limited the scope of this chapter to identifying QT-DDIs, resources such as

CredibleMeds continue to use signals in FAERS as part of their evidence portfolio for

the inclusion and removal of new individual drugs to/ from the database [163]. An

important challenge to overcome in the evaluation of potential QT-prolonging single

drugs in the EHR would be the identification of proper controls; propensity score

matching offers one opportunity for addressing this [147].

We note that the AE reporting frequencies for drug pairs (Fijk) cannot intrinsically

distinguish between interactions and single-drug effects from either drug i or drug j

alone. To distinguish between these two explanations for a drug pair receiving a high

classifier score, it is therefore necessary to remove all single-drug effects (attributable
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to not only a known but also possible, conditional, or congenital link to TdP). Credi-

bleMeds uses a number of signals (including FAERS, laboratory and clinical research

reports, and clinical trial data) to populate their database [163]. Thus, while it is

possible that CredibleMeds does not contain complete coverage of all QT-prolonging

drugs, we believe it represents the most reliable resource for justifying removal of

drug pairs that receive high scores due to the effects of single drugs. Application of

this method to other AEs would therefore necessitate a similarly reliable resource of

single-drug effects to minimize the possibility of falsely labeled interactions. While

the confounder analysis investigated the effects of co-prescribed medications in ad-

dition to the drug pair of interest, follow-up work could also incorporate the dose of

each drug in the pair as a potential confounder.

While cases of drug-induced LQTS have predominantly been found to be due to

blocking of IKr, we do not discount the possibility for other potential mechanisms

of these QT-DDIs. Biological network analysis [8, 84] may be useful for identifying

other proteins, in addition to or instead of hERG, that are affected by these drugs.

1.6 Conclusion

In this chapter we have developed and validated DIPULSE, an automated integrated

pipeline for flagging novel DDIs that can prolong the QT interval using data from both

spontaneous reporting systems (FAERS) and EHRs. By identifying latent signals of

QT interval prolongation, this method is able to overcome some of the limitations in

mining for DDIs. The method significantly outperforms DDI detection solely using

direct evidence for QT prolongation in the detection of established interactions. This

work highlights the utility of integrative data science approaches in mining for new

and potentially fatal DDIs.
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Chapter 2

Validating a predicted
QT-prolonging drug-drug
interaction between ceftriaxone
and lansoprazole

2.1 Abstract

Background

QT interval-prolonging drug-drug interactions (QT-DDIs) may increase the risk of

life-threatening arrhythmia. Despite guidelines for testing from regulatory agencies,

these interactions are usually discovered after drugs are marketed and may go undis-

covered for years.

Objectives

Using a combination of adverse event reports, electronic health records (EHR), and

laboratory experiments, the goal of this chapter was to develop a data-driven pipeline

for discovering and validating QT-DDIs.
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Methods

1.8 million adverse event reports were mined for signals indicating a QT-DDI. Using

1.6 million electrocardiogram results from 380,000 patients in our institutional EHR,

these putative interactions were either refuted or corroborated. In the laboratory,

we used patch-clamp electrophysiology to measure the human ether-à-go-go-related

gene (hERG) channel block (the primary mechanism by which drugs prolong the QT

interval) to evaluate our top candidate.

Results

Both direct and indirect signals in the adverse event reports provided evidence

that the combination of ceftriaxone (a cephalosporin antibiotic) and lansoprazole

(a proton-pump inhibitor) will prolong the QT interval. In the EHR, we found that

patients taking both ceftriaxone and lansoprazole had significantly longer QTc in-

tervals (up to 12 ms in white men) and were 1.4 times more likely to have a QTc

interval above 500 ms. In the laboratory, we found that, in combination and at

clinically relevant concentrations, these drugs blocked the hERG channel. As a neg-

ative control, we evaluated the combination of lansoprazole and cefuroxime (another

cephalosporin), which lacked evidence of an interaction in the adverse event reports.

We found no significant effect of this pair in either the EHR or in the electrophys-

iology experiments. Class effect analyses suggested this interaction was specific to

lansoprazole combined with ceftriaxone but not with other cephalosporins.

Conclusions

Coupling data mining and laboratory experiments is an efficient method for identi-

fying QT-DDIs. Combination therapy of ceftriaxone and lansoprazole is associated

with increased risk of acquired long QT syndrome.
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2.2 Introduction

Torsades de pointes is a ventricular tachycardia that can result in sudden death [119]

and occurs as an adverse effect of more than 40 medications that prolong the QT

interval, referred to as acquired long QT syndrome (LQTS) [164]. The U.S. Food

and Drug Administration (FDA) has established strict guidelines for evaluating the

risk of acquired LQTS for new compounds when administered individually. Nonan-

tiarrhythmic compounds that increase the QT/QTc interval by 20 ms or more are

unlikely to be approved, and a compound associated with an increase of 10 ms or

more would face many challenges [26]. Even a 5 ms increase would prompt an evalu-

ation of the risks and benefits of the new compound [26]. Studies of both cardiac and

noncardiac compounds found that a QTc interval above 500 ms is associated with

significant risk of torsades de pointes [131, 165].

Acquired LQTS is of particular concern when it is not anticipated and occurs

as the result of a QT interval-prolonging drug-drug interaction (QT-DDI) [56, 164].

QT-DDIs are not routinely evaluated pre-clinically and can go undiscovered for years.

For example, quetiapine (an antipsychotic agent) was on the market for nearly 10

years before reports of a QT-DDI with methadone (an analgesic agent) prompted

investigation into a possible mechanism [150]. It took 3 more years before a label

change was made to caution against the use of quetiapine in combination with other

drugs known to prolong the QT interval.

Large clinical databases, such as electronic health records (EHR), represent an op-

portunity to rapidly detect QT-DDIs and save lives [51, 110]. Drug safety algorithms

could be applied to health record data in near real time, flagging potentially danger-

ous drug interactions before they become widespread. Furthermore, these analyses

are in situ and therefore focus on the most important drug combinations: those that

are actually used in clinical practice. Unfortunately, analysis of medical records is

complex, due to issues of missing data, noise, and bias [50]. This leads to high false
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positive rates and algorithms that often will mislead health care providers. Labo-

ratory experiments, especially if they are high-throughput, can be used to screen

data-mined hypotheses for plausibility. Following observational analysis with confir-

matory prospective experiments can remove the spurious signals, enabling clinically

useful discoveries [145].

We developed a data science pipeline to mine potential QT-DDIs from clinical

databases. In this pipeline, we combine evidence of QT-DDIs from the FDA Adverse

Event Reporting System (FAERS) and the EHR at New York-Presbyterian/Columbia

University Medical Center (CUMC-EHR). We identified a putative interaction be-

tween lansoprazole (a proton-pump inhibitor [PPI]) and ceftriaxone (a cephalosporin

antibiotic). Importantly, this is an interaction that would not have been suspected

using current surveillance methods. We used patch-clamp electrophysiology of cells

stably expressing human ether-à-go-go-related gene (hERG) channels to establish a

physiological mechanism. We further confirmed the specificity of this pipeline by

also investigating the combination of cefuroxime (another cephalosporin) and lanso-

prazole, a drug pair that did not have evidence of an interaction in FAERS. In the

clinic, patients on the combination of ceftriaxone and lansoprazole had 12 ms (95%

confidence interval [CI]: 7 to 15 ms) longer QTc intervals than patients exposed to

either drug alone and were 1.4 times as likely to have a QTc interval above 500 ms.

The negative control showed no significant effect. A QT-DDI between ceftriaxone

and lansoprazole has the potential for significant morbidity and mortality.

2.3 Materials and Methods

2.3.1 Data sources

We used 2 independent databases to investigate possible QT-DDIs. The first database

(Twosides) was a derivative of 1.8 million adverse event reports from FAERS mined
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for evidence of adverse drug-drug interactions that could not be explained by the indi-

vidual effects of the drugs [147]. The second database consisted of 1.6 million electro-

cardiograms (ECGs) from 382,221 patients treated at New York-Presbyterian/CUMC

between 1996 and 2014. To obtain the heart rate-corrected QT (QTc) intervals, we

wrote a parser to automatically extract the patient identifier, laboratory date, and

QTc value from the ECG reports. QTc values were calculated using Bazett’s formula.

We manually checked 50 abnormal ECGs (defined as QTc >500 ms) to confirm we

were extracting the correct values and found that the parser obtained 100% precision

and recall. We implemented the pipeline using Python 2.7.9 and R version 3.2.2.

2.3.2 Identification of candidate QT-DDIs

We used the side effect reporting frequencies in Twosides to find drug pairs signifi-

cantly over-reported with the 6 adverse events in the standardized MedDRA (Medical

Dictionary for Regulatory Activities) query for “Torsade de Pointes/QT prolonga-

tion”; we call this the direct evidence model [147]. However, most drug pairs are

not directly reported with QT prolongation. In addition, we performed latent signal

detection, a method we have previously validated [85, 146], to identify candidate QT-

DDIs that lacked prior direct evidence. To perform latent signal detection, we used

machine learning to define and validate a side effect profile of 13 side effects associ-

ated with known QT-prolonging compounds. Some of these latently identified side

effects (such as arrhythmia and rhabdomyolysis) are positively correlated with QT

interval prolongation, whereas others (such as hemorrhage and myocardial infarc-

tion) are negatively correlated (Figure 2.1B). We previously validated the method

using drug pairs containing a known QT-prolonging drug [164] and demonstrated

high specificity and sensitivity (Figure 1.4). We then scanned for novel drug interac-

tions in the Twosides database that matched the side effect profile; we refer to this

as indirect evidence. We scored each drug pair for the amount of both direct and

36



Table 2.1: Demographic and Clinical Characteristics of Cohort

Variable Males Females
Combination: Ceftriaxone + Lansoprazole
N 934 1414
Demographic

Age (mean ± SD) 61.3 ± 16.9 66.5 ± 18.5
Race (% of group)

White 57.3 52.9
African American 18.9 20.2
Other/unknown 23.8 26.9

Median QTc (ms) [95% CI] 458 [454, 462] 457 [454, 459]
Patients with QTc ≥ 500ms (%) 19.27 16.34

Combination: Cefuroxime + Lansoprazole
N 107 228
Demographic

Age (mean ± SD) 66.1 ± 15.7 67.6 ± 17.9
Race (% of group)

White 56.1 60.1
African American 13.1 14.9
Other/unknown 30.8 25

Median QTc (ms) [95% CI] 450 [437, 459] 443.5 [437, 450]
Patients with QTc ≥ 500ms (%) 14.95 11.4

Ceftriaxone only
N 5734 6850
Demographic

Age (mean ± SD) 59.5 ± 17.9 63.7 ± 19.8
Race (% of group)

White 46.6 45.1
African American 19 18.4
Other/unknown 34.4 36.5

Median QTc (ms) [95% CI] 446 [445, 447] 448 [447, 449]
Patients with QTc ≥ 500ms (%) 14.21 11.43

Cefuroxime only
N 636 957
Demographic

Age (mean ± SD) 61.5 ± 17.6 66.0 ± 19.3
Race (% of group)

White 54.1 50.3
African American 20.6 19.3
Other/unknown 25.3 30.4

Median QTc (ms) [95% CI] 435 [432, 440] 439 [436, 441]
Patients with QTc ≥ 500ms (%) 11.16 9.09

Lansoprazole only
N 12271 13074
Demographic

Age (mean ± SD) 60.0 ± 15.8 63.1 ± 17.7
Race (% of group)

White 60.8 54.6
African American 13.9 16.7
Other/unknown 25.3 28.7

Median QTc (ms) [95% CI] 443 [442, 444] 445 [445, 446]
Patients with QTc ≥ 500ms (%) 12.84 12.07
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indirect evidence.

2.3.3 Evaluation of candidate QT-DDIs using the EHR

We attempted to corroborate (or refute) each of the candidate QT-DDI hypotheses

using the heart rate-corrected QTc values from ECGs stored in the CUMC-EHR. For

each candidate drug-drug interaction, we defined an exposed cohort and 2 control

cohorts. Those patients included in the exposed cohort were administered both of

the drugs within a 7-day window. Those in the control cohorts had evidence of

exposure to only 1 of the 2 drugs ever in their records. Only patients who had at

least 1 ECG in the following 36 days after drug exposure (either combination or single)

were included. Corroboration required that we found significantly longer heart rate-

corrected QTc intervals in patients on combination treatment compared with patients

on either drug alone. The CUMC-EHR uses Bazett’s formula by default; we also

evaluated the change in QT interval using the Fridericia, Framingham, and Hodges

correction formulae [54]. Because the distributions of QTc intervals were non-normal,

we assessed significance using a Mann-Whitney U test with a Bonferroni correction for

multiple hypothesis testing. We further verified that this effect could not be explained

by concomitant medications (analysis of covariance with concomitant medications

modeled as categorical variables) [85]. This analysis was stratified by sex because QT

interval durations are known to differ between men and women [112]. We evaluated

the effects of each drug pair both on individual races and on all races combined

(Mann-Whitney U test). We also performed a post hoc power analysis to estimate

our ability to detect a change in QTc interval for the sample and effect sizes present

in our EHR [18]. Only those QT-DDIs corroborated by the EHR data (in either men,

women, or both) were considered for laboratory analysis.
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2.3.4 Patch-clamp electrophysiology

QT-prolonging drugs have in common the ability to block the hERG channel (which

conducts IKr) in the heart. We evaluated the combination of ceftriaxone and lanso-

prazole by performing patch-clamp electrophysiology of cells stably expressing IKr.

Using an automated patch-clamp system (PatchLiner, Nanion, Germany) in voltage

clamp mode, we examined the concentration-dependent block of the IKr current by

each drug individually, as well as in combination, using dimethyl sulfoxide as vehicle

control (Figure 2.1D). We applied a voltage protocol with a step to +40 mV, followed

by a return to −40 mV, to elicit the inward-rectifying tail current. This protocol

was repeated every 20 s for the length of the experiment, and after 10 consecutive

sweeps in each concentration, the concentration was increased. We then averaged

the current at the end of each drug application and normalized it to the control to

measure the block by each compound. We assessed significance by using a test of

repeated measures on the log-normalized block percentages.

We performed patch-clamp electrophysiology experiments as described for cef-

triaxone alone, lansoprazole alone, and ceftriaxone and lansoprazole combined, and

similarly for the negative controls of cefuroxime alone and cefuroxime and lansopra-

zole combined. We evaluated the ability of ceftriaxone or cefuroxime to block the

hERG channel at concentrations of 0.1, 1, 10, 50, and 100 µM. For lansoprazole, we

evaluated at 0.1, 1, and 10 µM. We performed 3 combination experiments. For the

combination of ceftriaxone and lansoprazole, we held lansoprazole constant at either

1 µM or 10 µM and increased the dose of ceftriaxone stepwise from 0.1 to 100 µM. To

evaluate our negative control of cefuroxime and lansoprazole, we held lansoprazole

constant at 1 µM and increased the dose of cefuroxime stepwise from 0.1 to 100 µM.

The concentrations tested were chosen to include the range of plasma concentrations

reached during routine clinical use of the drugs (1.9 to 3.9 µM for lansoprazole, 24 to

228 µM for ceftriaxone, and 35 to 428 µM for cefuroxime) [31, 117, 124, 149].
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2.3.5 Computational mechanistic model

We used a computational model of the human ventricular myocyte [57] to simulate

the action potential for the hERG block we experimentally observed for ceftriaxone,

lansoprazole, and the combination. We ran the model for a ventricular action poten-

tial paced at 1 Hz with baseline conditions and 10% or 55% block of hERG current

(chosen using the current block observed in the electrophysiology experiments). We

evaluated the action potential duration at 70% of repolarization (APD70).

2.4 Results

2.4.1 Candidate QT-DDI discovery via data science

We detected 889 putative signals in FAERS, of which 34 (1.42× more than expected

by chance, p = 0.003) were corroborated in the EHR, after multiplicity correction.

Twenty-six signals were eliminated by confounder analysis for concomitant medica-

tions. The remaining 8 combinations could not be explained by concomitant medi-

cations and were not previously associated with acquired LQTS [85]. We prioritized

the combination of ceftriaxone and lansoprazole for experimental validation, as lanso-

prazole is available over the counter and is one of the top 200 most-prescribed drugs

(totaling over 2.6 million prescriptions in 2010) [107]. An interaction with a PPI

could therefore have a profound impact on patient safety. As a negative control, we

chose to evaluate the combination of cefuroxime and lansoprazole as, according to

our algorithm, it did not match the side-effect profile for QT prolongation in FAERS

(Figures 2.1A and 2.1B).
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Figure 2.1: Data Science and Experimental Pipeline for Identifying and Validating QT-DDIs.
(A) Chemical structures for ceftriaxone (cephalosporin) and lansoprazole (proton pump inhibitor),
which we predicted would have a QT-DDI. We predicted cefuroxime (cephalosporin) and lansopra-
zole not to interact. (B) QT-DDI discovery in FAERS: data-driven side effect profile containing
latent evidence of a QT-DDI (solid boxes = positive correlation with QT prolongation; open boxes =
negative correlation). Each bar represents the reporting frequency of a given side effect in FAERS for
ceftriaxone (green), lansoprazole (blue), cefuroxime (orange), ceftriaxone + lansoprazole (red), and
cefuroxime + lansoprazole (purple). (C) Retrospective corroboration in electronic health records.
(Left) Differences in QTc interval (mean ± 95% CI) between cases (patients prescribed the drug
pair) and controls (patients on only 1 drug). We stratified the analysis by sex (men = gray; women
= teal) and evaluated all races combined, as well as whites, blacks, and “other, including Hispanic”
separately. The asterisk indicates the change in QTc intervals is statistically significant (Mann-
Whitney U test with Bonferroni correction). We obtained 95% CIs by bootstrapping case and
control QTc distributions and calculating the change in median QTc for each iteration. (Right)
Percentage of patients with a QTc interval ≥500 ms (mean ± 95% CI), stratified by sex and race.
The asterisk indicates the combination had a significantly greater proportion of patients with a
QTc interval ≥500 ms than either drug alone (independent samples Student t-test with Bonferroni
correction, comparing means of single drug and combination therapy percentage≥500 distributions
generated using bootstrapping). (D) Experimental validation using patch-clamp electrophysiol-
ogy. (Left) Change in hERG current from control (mean ± SD) for increasing concentrations of
cephalosporin alone (dashed line), and increasing concentrations of cephalosporin in the presence of
a single concentration of lansoprazole (solid lines). (Right) Representative traces from each patch-
clamp electrophysiology experiment. (Top to bottom) hERG channel current in the presence of
vehicle only (control), and then cephalosporin at 3 concentrations (0.1, 10, and 100 µM); hERG
channel current in the presence of lansoprazole alone and then in combination with progressively
increasing concentrations of cephalosporin.
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2.4.2 Co-medication of ceftriaxone and lansoprazole is

associated with prolonged QT in the EHR

Overall, the QTc intervals (Bazett’s correction) for male patients taking this com-

bination were 12 ms (95% CI: 7 to 15 ms; n = 934) longer than those of patients

taking either drug alone (p < 0.001); for female patients, QTc intervals for patients

taking the combination were 9 ms (95% CI: 5.2 to 11.3 ms; n = 1,414) longer than

those of patients taking either drug alone (p < 0.001) (Figure 2.1C). We evaluated

QT interval prolongation post hoc using the Fridericia, Framingham, and Hodges

correction formulae. In men, all 3 formulae were significant, with p < 0.01 (Table

2.2), and in women, Fridericia and Hodges formulae were significant, with p < 0.01.

Confidence intervals for the median QTc in Tables 2.1 and 2.2 have been updated

from the original manuscript [86]. When stratifying by race in addition to sex, we

observed the largest effects were in white men (12 ms increase; 95% CI: 6.5 to 17

ms; p < 0.001) and in black women (12 ms increase; 95% CI: 3.7 to 18.5 ms; p <

0.001). We performed a regression analysis which confirmed the increased sensitivity

to the drug pair in white patients (p = 0.049) (Table 2.3). In 19% of men taking the

combination, the QTc was ≥500 ms, an accepted threshold for clinical concern [26],

compared with 14% (p < 0.001) of patients taking only 1 drug (Table 2.1).

Applying the same case-control analysis to cefuroxime and lansoprazole showed

no significant differences in QTc intervals for either men (7 ms increase; 95% CI: −4.5

to 17 ms, n = 107; p = 0.167) or women (1.5 ms decrease; 95% CI: −9.3 to 4.3 ms; n

= 228; p = 0.155). We observed no significant changes in QTc interval when further

stratifying by race. See Figure 2.1C for complete results.

We performed sample-size and effect-size analyses, which demonstrated that, with

100 patients prescribed either combination, we would be able to detect a 10 ms QT

interval prolongation with 80% power; with 1,000 patients, the same effect size could

be detected with 100% power (Figure 2.2).
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Table 2.2: QT interval changes assessed using four heart rate correction formulae.

Ceftriaxone + Lansoprazole

Bazett Fridericia Framingham Hodges

Males
Ceft + 
Lanso

Ceft Lanso
Ceft + 
Lanso

Ceft Lanso
Ceft + 
Lanso

Ceft Lanso
Ceft + 
Lanso

Ceft Lanso

Median QTc 
(ms) [95% CI]

458.0 
[454.0, 
462.0]

446.0 
[445.0, 
447.0]

442.0 
[441.0, 
443.0]

430.5 
[427.0, 
434.0]

422.0 
[421.0, 
423.0]

425.0 
[424.0, 
426.0]

428.0 
[424.0, 
430.0]

420.0 
[419.0, 
421.0]

423.0 
[422.0, 
424.0]

434.0 
[431.0, 
436.0]

425.0 
[424.0, 
425.5]

426.0 
[426.0, 
427.0]

% Patients with 
QTc  500ms

19.27 14.21 12.41 9.85 7.73 7.53 8.24 5.91 6.62 8.99 6.38 7.01

QTc (ms) 
[95% CI]

12.0 [7.0, 15.0] 5.5 [3.0, 8.5] 5.0 [1.5, 7.0] 8.0 [4.0, 10.0]

P 3.09E-12 1.32E-04 2.65E-03 1.06E-07

Females

Median QTc 
(ms) [95% CI]

457.0 
[454.0, 
459.0]

448.0 
[447.0, 
449.0]

444.0 
[443.0, 
445.0]

429.0 
[427.0, 
432.0]

422.0 
[421.0, 
423.0]

427.0 
[426.0, 
427.0]

426.0 
[424.0, 
428.0]

420.0 
[419.0, 
421.0]

425.0 
[425.0, 
426.0]

432.0 
[429.0, 
433.0]

425.0 
[424.0, 
426.0]

428.0 
[427.0, 
428.0]

% Patients with 
QTc  500ms

16.34 11.43 11.61 8.56 5.4 6.45 6.72 4.39 5.47 7.85 4.98 5.96

QTc (ms) 
[95% CI]

9.0 [5.2, 11.3] 2.0 [0.0, 5.0] 1.0 [-2.0, 3.0] 4.0 [0.5, 5.8]

P 2.55E-13 0.012 0.129 7.09E-06

Cefuroxime + Lansoprazole

Bazett Fridericia Framingham Hodges

Males
Cefu + 
Lanso

Cefu Lanso
Cefu + 
Lanso

Cefu Lanso
Cefu + 
Lanso

Cefu Lanso
Cefu + 
Lanso

Cefu Lanso

Median QTc 
(ms) [95% CI]

450.0 
[437.0, 
459.0]

435.0 
[432.0, 
440.0]

443.0 
[442.0, 
444.0]

429.0 
[415.0, 
435.0]

416.5 
[412.0, 
419.5]

425.0 
[425.0, 
426.0]

427.0 
[414.0, 
433.0]

415.5 
[411.0, 
418.0]

424.0 
[423.0, 
424.0]

428.0 
[416.0, 
436.0]

418.5 
[415.0, 
422.0]

427.0 
[426.0, 
427.0]

% Patients with 
QTc  500ms

14.95 11.16 12.84 7.48 5.5 7.68 7.48 3.77 6.7 7.48 4.72 7.14

QTc (ms) 
[95% CI]

7.0 [-4.5, 17.0] 4.0 [-13.1, 9.0] 3.0 [-10.0, 8.0] 1.0 [-8.6, 9.0]

P 0.167 0.283 0.227 0.332

Females

Median QTc 
(ms) [95% CI]

443.5 
[437.0, 
450.0]

439.0 
[436.0, 
441.0]

445.0 
[445.0, 
446.0]

422.5 
[418.5, 
431.5]

416.0 
[414.0, 
419.0]

427.0 
[427.0, 
428.0]

422.0 
[417.0, 
427.0]

415.0 
[413.0, 
417.0]

426.0 
[425.0, 
426.0]

426.0 
[421.0, 
433.5]

418.0 
[417.0, 
421.0]

428.0 
[428.0, 
429.0]

% Patients with 
QTc  500ms

11.4 9.09 12.07 7.89 4.08 6.66 4.82 3.45 5.68 5.26 3.76 6.23

QTc (ms) 
[95% CI]

-1.5 [-9.3, 4.3] -4.5 [-8.8, 4.0] -4.0 [-7.8, 0.8] -2.0 [-7.0, 5.3]

P 0.155 0.043 0.037 0.101
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Table 2.3: Regression analysis confirming interaction effect between drug pair expo-
sure and race.

Drug 1 Drug 2 Race Intercept DDI Exposure Race Sex DDI  Race

Ceftriaxone Lansoprazole White

451.25 

(450.52, 451.99) 

P<2e-16

8.01 

(5.33, 10.71) 

P=3.937e-09

0.62 

(-0.24, 1.49) 

P=0.158

-0.70 

(-1.53, 0.14) 

P=0.104

3.61 

(0.02, 7.23) 

P=0.049

Ceftriaxone Lansoprazole Black

451.20 

(450.59, 451.82) 

P<2e-16

9.92 

(7.90, 11.96) 

P=3.805e-22

2.10 

(0.94, 3.27) 

P=3.928e-04

-0.62 

(-1.46, 0.22) 

P=0.145

0.18 

(-4.29, 4.71) 

P=0.936

Ceftriaxone Lansoprazole Other

452.12 

(451.47, 452.77) 

P<2e-16

11.34 

(9.24, 13.46) 

P=1.249e-26

-1.86 

(-2.81, -0.90) 

P=1.497e-04

-0.74 

(-1.57, 0.10) 

P=8.513e-02

-5.49 

(-9.57, -1.37) 

P=9.085e-03

Cefuroxime Lansoprazole White

450.71 

(449.80, 451.62) 

P<2e-16

1.99 

(-5.19, 9.29) 

P=0.589

0.33 

(-0.70, 1.37) 

P=0.529

-0.96 

(-1.98, 0.06) 

P=6.524e-02

-2.28 

(-11.53, 7.17) 

P=0.634

Cefuroxime Lansoprazole Black

450.28 

(449.53, 451.02) 

P<2e-16

1.16 

(-3.81, 6.20) 

P=0.648

3.66 

(2.24, 5.09) 

P=4.111e-07

-0.85 

(-1.86, 0.17) 

P=0.103

-3.13 

(-16.03, 10.15) 

P=0.640

Cefuroxime Lansoprazole Other

451.53 

(450.75, 452.31) 

P<2e-16

0.04 

(-5.23, 5.37) 

P=0.988

-2.38 

(-3.56, -1.20) 

P=8.287e-05

-1.04 

(-2.06, -0.01) 

P=4.683e-02

2.40 

(-8.44, 13.50) 

P=0.668

We modeled the log(QTc) interval as a linear model of DDI exposure, sex, race, and
the interaction of DDI exposure and race. Estimates above have been exponentiated
back from the log scale and converted to units of milliseconds. Categorical variables:
Exposure = 1 if exposed to drug pair, 0 otherwise. Race = 1 if patient is of the given
race, 0 otherwise. Sex = 1 if patient is male, 0 if female. Each cell contains the
coefficient estimate, 95% confidence interval, and p-value. We observed a significant
positive interaction between exposure and race for whites (bolded).

A total of 603 patients taking ceftriaxone and lansoprazole had ECGs both before

and after they started combination treatment. To control for baseline confounders,

we performed a paired analysis comparing each of these patient’s highest QTc in-

terval from ECGs performed up to 36 days before and after exposure to ceftriaxone

and lansoprazole. We stratified the analysis by both sex and race. We observed a

statistically significant increase in QTc interval for both white men (14.0 ± 4.0 ms

increase; p = 6.56 × 10−4) and white women (12.9 ± 3.3 ms increase; p = 1.03 ×

10−4). We observed no significant change in QTc interval for patients prescribed our

negative control. See Table 2.4 for complete results.

44



Table 2.4: Paired analysis of patients with ECG reports before and after combination
therapy exposure. Numbers represent changes in the QTc (after exposure – before
exposure).

Drug Pair Sex White
Black/African 

American
Other, including 

Hispanic

Ceftriaxone + Lansoprazole M
14.0 ± 4.0 ms** 

(N=155)
1.5 ± 7.5 ms 

(N=51)
10.6 ± 6.8 ms 

(N=44)

Ceftriaxone + Lansoprazole F
12.9 ± 3.3 ms** 

(N=198)
-8.3 ± 5.1 ms 

(N=82)
8.4 ± 4.9 ms 

(N=73)

Cefuroxime + Lansoprazole M
22.1 ± 10.5 ms 

(N=15)
N/A

43.0 ± 15.3 ms 
(N=3)

Cefuroxime + Lansoprazole F
-5.0 ± 6.8 ms 

(N=37)
1.7 ± 8.0 ms 

(N=7)
53.1 ± 27.0 ms 

(N=12)

† P < 0.05, one sample Student’s T test
** P < 0.01

2.4.3 In combination, ceftriaxone and lansoprazole block

the hERG channel

Using a test of repeated measures, we found no significant effect from ceftriaxone on

the hERG channel (p = 0.096). We found a significant effect from lansoprazole alone

(p = 1.63 × 10−4), causing a drop in current to 86.6 ± 16.7% at 10 µM (no effect

at 1 or 0.1 µM). In the presence of 1 µM lansoprazole, ceftriaxone caused a dose-

dependent drop in current (96.8 ± 13.2% of control at 0.1 µM; and 89.3 ± 13.2% at

100 µM; p = 1.07 × 10−4). In the presence of 10 µM lansoprazole, ceftriaxone caused

a dose-dependent drop in current (63.1 ± 10.9% of control at 0.1 µM; and 42.4 ±

11.6% at 100 µM; p < 3.45 × 10−5) (Figure 2.1D, left). For our negative control, we

saw a small block in cefuroxime alone (94.0 ± 14.8% of control at 100 µM cefuroxime;

p = 5.62 × 10−5) but no dose-dependent response of cefuroxime combined with 1

µM lansoprazole (p = 0.083) (Figure 2.1D, right).
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A B

Figure 2.2: Power analysis for retrospective QT-DDI corroboration in electronic
health records. Because the distributions of QTc intervals were non-normal, we used
the method of Collings and Hamilton to estimate the power of the Mann-Whitney U
test to detect a change in QTc interval [18]. (A) Power as a function of the magnitude
of effect size. For our predicted drug-drug interaction (ceftriaxone and lansoprazole,
red) and our combination predicted not to interact (cefuroxime and lansoprazole,
purple), we held the sample size constant (number of patients prescribed the combi-
nation) and estimated the statistical power to detect an effect size (change in QTc
interval) between 1 and 20ms; the analysis was stratified by sex (males: solid lines;
females: dashed lines). The dotted line represents the commonly used threshold
for desired statistical power of 80%. For males (circles) and females (triangles), the
marker indicates the effect size and corresponding power we observed for the given
combination and sex in our EHR. (B) Power as a function of sample size. For cef-
triaxone+lansoprazole and cefuroxime+lansoprazole, we held the effect size constant
(10ms) and estimated the statistical power to detect that change in QTc interval while
varying the sample size (number of patients prescribed the combination). Markers
represent the number of patients prescribed each combination (stratified by sex) and
the corresponding power; note that for both sexes prescribed both combinations we
have sufficient statistical power to detect a 10ms change in QTc interval.

2.4.4 Computational model recapitulates clinical

observations

Using the hERG current blocks observed in the electrophysiology experiments as

input to the computational model, the APD prolongation (measured as APD70) was

9 ms for the combination of 1 µM lansoprazole and 100 µM ceftriaxone and 50 ms

for 10 µM lansoprazole and 100 µM ceftriaxone (Figure 2.3). For the combination of

1 µM lansoprazole and 100 µM cefuroxime, the APD70 was shortened by 2 ms.
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Figure 2.3: Results of the Computational Model of Ventricular Epicardial Myocytes.
The APD prolongation (measured as APD70) for each case are 9 ms and 50 ms,
simulating 1 µM lansoprazole + 100 µM ceftriaxone and 10 µM lansoprazole + 100
µM ceftriaxone, respectively. Briefly, the model was run for a ventricular action
potential paced at 1 Hz with baseline conditions (black) and 10% or 55% block of
peak hERG current (brown and red respectively). APD70 = action potential duration
at 70% of repolarization.

2.4.5 No evidence of class effects between cephalosporins

and PPIs

Given our identification of a putative drug interaction between a cephalosporin an-

tibiotic and a PPI, we systematically evaluated all combinations of cephalosporins

and PPIs for evidence of a drug interaction in FAERS, EHR, or both (Figure 2.4).

The combination of ceftriaxone and lansoprazole in men was the only drug pair that

had evidence in both FAERS and the EHR that also passed our confounder analysis

for concomitant medications.
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2.5 Discussion

2.5.1 New data sources present new avenues for discovery

Data science and large clinical databases present new opportunities to discover ad-

verse drug effects and drug-drug interactions. This is especially true in situations

where traditional methods are impractical or unfeasible, as is often the case for DDIs.

There are many advantages to taking a retrospective approach for detecting DDIs.

The analyses are relatively rapid and inexpensive to perform, and because they are

in situ, they focus on drug combinations that are actually used together in clinical

practice. In particular, our use of latent signal detection to mine for DDIs using

side-effect profile models allowed us to circumvent many of the limitations inherent

in conventional data mining approaches that rely solely on direct evidence between

drug pairs and side effects [85, 146]. However, there are many disadvantages as well.

Retrospective analysis, and data mining in particular, are notorious for their poten-

tial biases and high false discovery rates. There are simply too many potentially

confounding variables to make strong statements about causal relationships.

Here, we present a novel strategy that couples observational data mining with lab-

oratory experiments to identify QT-DDIs. Our observational analysis establishes the

presence of a clinically significant association between co-medication and a prolonged

QT interval. There are many hypotheses that may explain such an association. For

example, a patient prescribed the putative interacting drugs may also be prescribed

a known QT-prolonging agent. In fact, this is what we observed. Of 34 drug com-

binations that were associated with increased QT intervals, 26 could be dismissed

as likely confounded by a known agent. Alternatively, it may be that there is a

real drug interaction, in the pharmacological sense. The most common physiological

explanation would be hERG block; therefore, we tested this hypothesis for our top

prediction (ceftriaxone/lansoprazole) by using patch-clamp electrophysiology. This
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Figure 2.4: Analysis of Class Effects Between Cephalosporins and PPIs. We analyzed
each cephalosporin and PPI pair for evidence of an interaction in FAERS (solid box
= drug pair matches side effect profile), EHR (red = patients on combination have
significantly prolonged QT intervals compared with those on either drug alone; blue
= no significant change between cases and controls; open = no patients on the drug
pair in the EHR), and that the change seen in the EHR was not due to concomitant
medications (red star). We stratified the analysis between men and women. Only
ceftriaxone and lansoprazole in men passed each of these criteria.
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atypical path, going from the clinic into the laboratory, has great potential to increase

the efficiency of DDI discovery.

2.5.2 Critical evaluation of data mining using laboratory

experiments

We combined data from FAERS with our local EHR to find evidence of QT-prolonging

drug interactions. Either data source alone provides only weak evidence of a potential

DDI producing thousands of equivalent hypotheses. By integrating these data, we

increased power and focused the analysis on only the strongest candidates. Most

importantly, we followed up on these DDI hypotheses by using laboratory experiments

to identify a possible mechanism.

2.5.3 An interaction between ceftriaxone and lansoprazole

is unexpected

Our top candidate, ceftriaxone and lansoprazole, would not have been suspected using

current surveillance methods. In the clinical records, we found that co-medication of

these 2 common drugs is associated with significantly prolonged QTc intervals. This

increase was highest for white men and black women, in whom we observed an average

increase of 12 ms. It is important to note that, if this effect size was observed for a

single drug, it would be well above the threshold for regulatory concern during the

approval stage [26]. In the laboratory, we found that, in combination, lansoprazole

and ceftriaxone block the hERG channel up to 57.6%, corresponding to an APD70

increase of 50 ms. At these higher lansoprazole concentrations, it is likely that,

if treated as a single entity, the combination would not have received regulatory

approval.
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2.5.4 Limitations

We discovered that ceftriaxone and lansoprazole were significantly associated with

prolonged QT intervals using clinical data. Our laboratory analysis suggests that

this effect may be mediated through the hERG potassium channel, the most com-

mon mechanism by which drugs prolong the QT interval. However, the molecular

explanation is not clear. Possibilities include a chemical interaction between the 2

compounds, cooperative binding to the channel, or an indirect mechanism through

proteins that function with hERG. While most drugs bind hERG within the inner

cavity of the channel pore [106], there is previous evidence of negative allosteric mod-

ulators of hERG that bind at sites distal to the pore and reduce the affinity of known

channel blockers such as dofetilide [168–170]. It is possible that ceftriaxone acts as

a positive allosteric modulator that interacts with atypical residues on hERG and in

turn increases the binding affinity of lansoprazole within the pore cavity.

Furthermore, we found significantly different effects when our analysis was strat-

ified by race and ethnicity. White men and women appear to be sensitive to the

interaction, whereas black men experience only an intermediate change, and women

identifying as “other, including Hispanic” experience no detectable effect. This is con-

sistent with the large amount of ethnic heterogeneity in cardiac potassium channels

[1, 91] and may guide a structural analysis of the interaction.

2.5.5 Prior evidence of related adverse events

Lansoprazole is a commonly used PPI that is available over-the-counter. In retro-

spective analyses, PPIs were associated with a slightly increased risk of myocardial

infarction [130]. Additionally, there have been a large number of deaths reported

to the FDA for patients taking this class of drugs, although this association is not

statistically significant. Our discovery of a drug interaction with a PPI may explain

these observations, although this requires follow-up study. Notably, evaluation of ce-
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furoxime and lansoprazole, a pair predicted not to interact from the FAERS reporting

frequencies, suggests that our pipeline is capable of distinguishing between safe and

unsafe pairs, even within the same drug class.

2.6 Conclusion

We present evidence of a novel QT-DDI between lansoprazole and ceftriaxone. This

interaction was discovered by using a combination of data mining and laboratory

experiments. Our clinical data suggest that patients taking this pair of interacting

drugs are more likely to have acquired LQTS, and the experimental study suggests

that this effect may be mediated by blocking the hERG channel, the most common

mechanism of acquired LQTS. This interaction appears to be specific to ceftriaxone

and does not extend to other cephalosporin antibiotics in combination with lanso-

prazole. Follow-up studies are required to confirm our findings and should include

evaluation of the mechanism of the interaction at the hERG channel, the effect of

ceftriaxone and lansoprazole on other ion channels, and investigation of these drugs

in combination with other hERG blockers.
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Chapter 3

Augmenting drug safety
surveillance using systems
pharmacology

3.1 Abstract

Small molecule drugs are the foundation of modern medical practice yet their use

is limited by the onset of unexpected and severe adverse events (AEs). Regula-

tory agencies rely on post-marketing surveillance to monitor safety once drugs are

approved for clinical use. Despite advances in pharmacovigilance methods that ad-

dress issues of confounding bias, clinical data of AEs are inherently noisy. Systems

pharmacology – the integration of systems biology and chemical genomics – can il-

luminate drug mechanisms of action. We hypothesized that these data can improve

drug safety surveillance by highlighting drugs with a mechanistic connection to the

target phenotype (enriching true positives) and filtering those that do not (depleting

false positives). We present an algorithm, the modular assembly of drug safety sub-

networks (MADSS), to combine systems pharmacology and pharmacovigilance data

and significantly improve drug safety monitoring for four clinically relevant AEs.
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3.2 Introduction

Small molecule drugs are essential in modern medical practice. However, all drugs

have the potential to cause severe side effects and even the most efficacious drugs

can turn out to be dangerous (e.g. Vioxx, Avandia) [38, 96]. Indeed, one of the

primary reasons drugs fail during clinical trials is that they are found to cause ad-

verse events (AEs) [72]. While clinical trials aim to address drug safety issues, their

inherent limitations (including number of patients, duration of study, and homogene-

ity of the study population) lead to new AEs often being discovered only after a

drug has been approved [9, 147]. The FDA relies on pharmacovigilance methods to

monitor drug safety in the post-marketing phase. These methods primarily rely on

spontaneous reporting systems (SRSs), such as the FDA Adverse Event Reporting

System (FAERS), that collect voluntary submissions from healthcare providers and

patients as well as mandatory submissions from pharmaceutical companies. However,

because these data are passive collections of events their use is limited in cases where

reporting lags behind safety events. Interest has shifted to Medicare claims data (e.g.

Observational Medical Outcomes Partnership) and the electronic health records (e.g.

FDA’s Mini-Sentinel) where adverse drug events may potentially be detected in near

real time.

Multiple quantitative signal detection algorithms have been developed to mine ob-

servational health data for adverse drug events [44, 122]. These methods are primarily

based on disproportionality analysis, wherein a ratio of the observed occurrence of

a drug-AE combination to the expected occurrence for other drugs is calculated to

quantify the combination’s “unexpectedness” [4]. In spite of the utility of these meth-

ods, they suffer from known limitations due to both sampling variance (e.g. under-

or over-reporting of events depending on how established the drug-event relationship

is) and reporting biases (such as reporting disease symptoms as adverse events) [4,

137]. Pharmacovigilance methods, such as the multi-item gamma Poisson shrinker
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(MGPS) currently used by the FDA, correct for sampling variance by estimating

confidence intervals for the disproportionality statistics to dampen unsubstantiated

drug-event signals [23, 143]. High-dimensional propensity scoring techniques [147]

and self-controlled case series [134] have been developed to address issues of report-

ing biases. Both of these methods work by defining a well-matched set of controls.

Despite these advances, however, pharmacovigilance methods continue to suffer from

both high false positive and false negative rates [4, 23, 122].

These persistent limitations suggest that biological data regarding a drug’s tar-

geted proteins and pathways may represent a complementary avenue for predicting

drug safety. In addition, it has become increasingly apparent that the traditional

pharmacological paradigm of “one drug one target” has broken down [49], with off-

target, unknown interactions leading to unintended consequences. It is imperative,

therefore, to investigate drug effects in a more holistic context [58].

Systems pharmacology (also referred to as chemical systems biology) is an emerg-

ing field integrating physiological, biochemical, genomic, and chemical data to analyze

drug actions and side effects in the context of the molecular interactions in the cell

(the “interactome”) [6]. For example, chemical data (e.g. a drug’s chemical struc-

ture) and biological data (e.g. a drug’s protein targets) were recently integrated to

explore common mechanisms of adverse events [25]. To do so the authors looked

for common chemical substructures or protein features across drugs or their targets

for a subset of drugs known to cause a given side effect. A typical approach in sys-

tems pharmacology is to convert these data to a “network” consisting of nodes and

edges. Nodes represent biological entities, such as proteins or small molecules, and

edges represent relationships between these entities, such as protein-protein interac-

tions or drug-target binding affinities. This representation enables the application of

graph theory – a mature sub-domain of mathematics – to systems pharmacology data

[58]. Graph theoretic approaches were used to discover that proteins commonly form
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highly intra-connected sub-networks called modules according to shared biological

function [58]. These modules have been used to identify pathways that mediate the

therapeutic and adverse effects of drugs [8, 37] and to predict previously unknown

AEs [13]. While systems pharmacology data has been used in specific cases to predict

drug side effects, it has not yet been established that integrating these approaches

would improve pharmacovigilance.

We hypothesized that incorporating systems pharmacology data into drug safety

surveillance would improve pharmacovigilance by reducing the rate of false positives

while simultaneously enriching for true positives. Here we present a method called

the Modular Assembly of Drug Safety Subnetworks (MADSS). For a given adverse

event, MADSS integrates multiple chemical and biological data sources into a com-

mon network and identifies a module, which we refer to as an “AE neighborhood,”

representing a putative AE mechanistic pathway. The AE-module and the network

are then used to evaluate each drug for its potential relationship to the AE. Our hy-

pothesis is that drugs targeting proteins in this “AE neighborhood” are more likely

to cause the AE. A recent “medication-wide association study” (MWAS) performed

a multivariate analysis to generate pharmacovigilance statistics for four clinically im-

portant adverse events - upper gastrointestinal bleeding, acute liver failure, acute

myocardial infarction, and acute kidney failure - but was unable to eliminate many

false positives and false negatives [123]. We validate MADSS by showing that the

combination of systems pharmacology models and MWAS statistics leads to signifi-

cant improvements in safety predictions for all four AEs individually and combined

compared to MWAS alone. We evaluated multiple network analysis parameters to

demonstrate the flexibility of the method in evaluating either an individual or combi-

nation of AEs. Finally, using the chemical and biological data integrated in MADSS

we investigate the potential mechanisms of drug AEs and show that multiple drug

classes can act through shared functional clusters to elicit AEs.

56



3.3 Materials and Methods

3.3.1 Modular Assembly of Drug Safety Subnetworks

An outline of MADSS (Modular Assembly of Drug Safety Subnetworks) can be found

in Figure 3.1. We applied MADSS to four pathological conditions, which may be

drug-induced adverse events (AEs) – upper gastrointestinal bleeding (GI), acute liver

failure (LF), acute myocardial infarction (MI), and acute kidney failure (KF).

3.3.2 Pruning network

We first pruned an initial protein-protein interaction (PPI) network representative of

a composite human cell to eliminate low-confidence interactions. We used STRING

9.1 (Search Tool for the Retrieval of Interacting Genes/Proteins), a meta-database of

PPIs including data from BioGRID, MINT, KEGG, HPRD, and Reactome, as well

as co-occurrence and natural language processing text mining [32]. Beginning with

all PPIs in humans, we pruned the network to only utilize PPIs with a confidence

score ≥700 (out of a maximum score of 1000). We refer to this pruned network as

the interactome.

3.3.3 Assigning adverse event (AE) seeds

We identified a small set of proteins with established relationships to each of these

four conditions and annotated these proteins as AE seeds. We call this set the “AE

seed set” and these proteins “seeds.” In general, however, the molecular etiology

of adverse events is not well understood. Therefore, we curated initial lists of seed

proteins by manually mining GeneCards [136] and PubMed for gene or protein names

and aliases co-occurring with these four conditions irrespective of drug involvement.

We then refined these initial lists by omitting references involving cancer and

ranked the remaining seeds for their internal consistency. This was determined using
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Figure 3.1: Overview of modular assembly of drug safety subnetworks (MADSS). Or-
ange boxes indicate data sources used in this analysis. Gray boxes indicate additional
data sources not used in this work but supported by the method. Beginning with
a human protein–protein interaction network (interactome) built from such data as
experimental evidence, metabolic pathway databases, text mining, and interactions
predicted from coexpression data, we isolated all medium-confidence interactions and
above. Seed proteins with demonstrated genetic links to the adverse event (AE) are
subsequently annotated. We then apply four adapted network analysis functions to
score all proteins in the interactome on their connectivity to the seed set. Proteins
with high scores embody an AE neighborhood (gray dotted circle); drugs targeting
proteins in this subnetwork are predicted to elicit AEs. We assign positive and neg-
ative control drugs to their highest-scoring target. We then combine the four AE
neighborhoods (one for each pairwise network function) by training a random forest
classifier to generate a subnetwork (SubNet) model (red dotted circle). We inte-
grate MWAS and systems pharmacology (SubNet) models using a logistic regression
classifier to predict drug safety.

58



leave-one-out analysis; each seed, from the refined list, was removed one-at-a-time

and then scored for its connectivity to the rest of the seeds. Connectivity to the seeds

(Sj) was determined using mean first passage time (see Equation 3.1), an established

method for this analysis [8].

For the final AE seed set we selected seeds that either received high ranks or had

substantial support in the literature for being involved in the condition. In keeping

with previous work we wanted to derive relatively small seed set sizes and thus limited

the number of seeds to 35. We then validated the derived seed sets using leave-one-out

analysis to ensure that no seeds received a negative Sj score.

3.3.4 Building AE neighborhoods

Multiple metrics exist for characterizing the connectivity between two nodes in a given

network. These include mean first passage time (which measures the proximity of two

nodes); betweenness centrality (the fraction of shortest paths containing a node of

interest); shared neighbors (the fraction of shared adjacent nodes between two nodes

of interest); and inverse shortest path (the smallest number of edges connecting two

nodes). We adapted each of these functions to score proteins in the interactome on the

basis of their connectivity to the seed proteins. Proteins receiving high connectivity

scores are on average more connected to the seeds than to the rest of the network

and thus constitute a subnetwork of the global interactome which we call an AE

neighborhood. Below are equations and descriptions for each of the four connectivity

functions.

Mean first passage time: measurement of the proximity of node i to node j:

Sj =

∑
i ̸⊂C

⟨
Tij

⟩
|C ′|

−

∑
i⊂C

⟨
Tij

⟩
|C|∑

i

⟨
Tij

⟩
|C|+ |C ′|

(3.1)
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where Tij refers to the average number of steps a random walker takes to reach node

j beginning at node i.

Adapted betweenness centrality: measurement of the fraction of shortest

paths containing a node of interest j:

Sj =

∑
s⊂C

σ (s, t | j)
σ (s, t)(

|C| − 1C

{
1 if j ⊂ C
0 if j ̸⊂ C

) −

∑
s ̸⊂C

σ (s, t | j)
σ (s, t)(

|C ′| − 1C′

{
0 if j ⊂ C
1 if j ̸⊂ C

)
∑
s

σ (s, t | j)
σ (s, t)

(|C|+ |C ′| − 1)

(3.2)

where σ (s, t) is the number of shortest paths (i.e. smallest number of edges) between s

and t, and σ (s, t | j) is the number of shortest paths between s and t passing through

j.

Adapted shared neighbors: measurement of the fraction of shared adjacent

nodes (Tanimoto coefficient, Tc) between two nodes of interest:

Sj =

∑
i⊂C

Tc (i, j)

|C|
−

∑
i ̸⊂C

Tc (i, j)

|C ′|∑
i

Tc (i, j)

|C|+ |C ′|

=

∑
i⊂C

|ni ∩ nj|
|ni ∪ nj|
|C|

−

∑
i ̸⊂C

|ni ∩ nj|
|ni ∪ nj|
|C ′|∑

i

|ni ∩ nj|
|ni ∪ nj|

|C|+ |C ′|

(3.3)

where ni = {neighbors of i} and nj = {neighbors of j}.

Adapted inverse shortest path: measurement of the shortest path length

connecting two nodes of interest:

Sj =

∑
i⊂C

1

ℓs (i, j)

|C|
−

∑
i ̸⊂C

1

ℓs (i, j)

|C ′|∑
i

1

ℓs (i, j)

|C|+ |C ′|

(3.4)
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where ℓs (i, j) is the smallest number of edges between i and j.

3.3.5 Connecting drugs to their targets

We downloaded DrugBank 3.0, a manually annotated database connecting 1691 ap-

proved drugs to 2074 protein targets [71]. Only those drugs in the reference standard

which could be mapped to DrugBank IDs (143 of 149) were used in this analysis.

For a given adverse event and reference standard drug, we compared the connectivity

scores of each protein target and assigned the drug to its highest scoring (i.e. highest

connectivity) non-seed target.

We investigated assigning the average connectivity score across all drug targets

but found that using the best score led to improved performance (Figure 3.2). 51 of

the 143 drugs evaluated were found to have seed proteins as targets. We evaluated

assigning drugs to seeds in addition to non-seeds and found that with the exception of

GI, all other AEs individually had comparable performance to only using non-seeds

(Figure 3.3). Because seed proteins received the highest connectivity scores, assigning

drugs to non-seeds allowed me to characterize the quality of the network predictions

and identify other potential mediators of AEs without biasing the results solely to

seed drug targets.

The result of this is a data matrix for each adverse event where each row represents

a drug and each column represents one of the four connectivity functions. The value

at a given row and column is the connectivity score for the given drug’s highest

scoring target.
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A
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Figure 3.2: Evaluation of drug target aggregation metric. (A) Receiver operating
characteristic (ROC) curves generated for gastrointestinal bleeding (Gastro), acute
liver failure (Liver), acute myocardial infarction (MI), and acute kidney failure (Kid-
ney) from AE neighborhoods constructed using mean first passage time (MFPT).
Drug scores were assigned using either the highest-scoring (“best”) non-seed target
or by averaging the connectivity scores of all non-seed drug targets. (B) Quantifica-
tion of performance using mean F1 score over 20 iterations of classification.

3.3.6 Fitting subnetwork model (SubNet) and predicting

drug safety

We initially attempted to model the drug connectivity scores from all four functions

using logistic regression but found that it performed poorly due to difficulty in mod-

eling interaction effects (Figure 3.4).

For each adverse event, we therefore trained a random forest (RF) classifier using

the drug scores for the four network functions as input parameters (or “features”).

The classifier uses patterns within these features to predict whether a given drug

will or will not cause an AE. To minimize correlation between trees we built random

forest classifiers with a maximum of one feature per tree and each forest was composed

of 100 trees (chosen by an error analysis). We utilized out-of-bag (OOB) scores to
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A B C

Figure 3.3: Evaluation of random forest (RF) classifier performance when seed pro-
teins can be used for scoring drugs. (A) Receiver operating characteristic (ROC)
plot showing performance of RF classifier for all AEs both with seeds used for scoring
(teal) and no seeds used for scoring (condition used for MADSS; red). Area under
the ROC curve (AUROC) is indicated in parentheses. (B) ROC curves demonstrat-
ing performance for individual AEs: gastrointestinal bleeding (Gastro), acute liver
failure (Liver), acute myocardial infarction (MI), and acute kidney failure (Kidney).
AUROCs for seeds used (teal) and no seeds used (red) are indicated. (C) Quantifica-
tion of classifier performance averaged over 20 replicates using the commonly applied
metrics of F1 score (measuring classifier precision and recall), AUROC, and accuracy.

get an unbiased estimate of classifier performance (for a primer on machine learning

approaches, see Appendix A). To account for the stochastic nature of random forests

we used the mean and standard deviation of 20 replicates to characterize performance.

We refer to these systems pharmacology subnetwork models as SubNet. SubNet

defines a network link between a drug, target proteins, AE neighborhood proteins,

and AE.

To determine the combined performance of SubNet models and pharmacovigilance

statistics (MWAS), we trained a logistic regression classifier on the predictions (OOB

estimates) from the final SubNet models and the MWAS drug scores as features.

We characterized the generalization error using mean and standard deviation 10-fold

cross-validation (MWAS+SubNet). We used an analysis of variance (ANOVA) to

determine the additive contribution of the systems pharmacology models (SubNet)

with the statistical pharmacovigilance methods (MWAS).
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A B

Figure 3.4: Evaluation of logistic regression versus random forests (RF) for modeling
systems pharmacology data. (A) Receiver operating characteristic (ROC) showing
performance of logistic regression (blue) and RF (red) for all adverse events (AEs)
combined. Area under the ROC curve (AUROC) is indicated in parentheses. (B)
ROC curve demonstrating performance for each pairwise network connectivity func-
tion for all AEs combined. The performance of the raw connectivity score without
logistic regression or RF (gray) is also shown. AUROC is indicated in the lower-right
corner of each panel.

3.3.7 Evaluating the subnetwork (SubNet) models

We performed two sets of evaluations: (i) evaluating the overall performance com-

bining all four adverse events and (ii) evaluating the performance for each of the

four adverse events independently. In either case we generated receiver operating

characteristic (ROC) curves for MWAS alone, SubNet alone, and then for MWAS

and SubNet combined. In addition we also calculated the mean and 95% confidence

intervals for area under ROC curve (AUROC), F1 score (a measure combining both

precision and recall), and accuracy. All evaluations were conducted using estimates

derived from OOB predictions or cross-validation.
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3.3.8 Evaluating model parameters

SubNet models integrate multiple data sources (Figure 3.1) including protein-protein

interaction data and drug target data (both predicted and established). For each

of these data sources there are heterogeneous data types. We performed a series of

experiments to evaluate the effect of the different model parameters on performance.

We compared performances using mean and standard deviation F1 scores.

We used the similarity ensemble approach (SEA) to predict new targets for drugs

on the basis of their chemical similarity to known ligands of that target [68] using

RDKit ECFP4 molecular descriptors. The target library consisted of 264,813 lig-

ands organized into 1,886 molecular targets via 1,087,365 binding activities extracted

from ChEMBL-17 [33] and standardized as previously described [69]. We evaluated

the performance of incorporating predicted drug targets by assigning drug scores to

predicted targets in addition to or in lieu of DrugBank targets.

3.3.9 Identifying shared mechanisms of adverse events

For each adverse event, we calculated shortest paths through the derived systems

pharmacology AE neighborhoods to each of the seeds from the drug targets receiving

high mean first passage time connectivity scores. We manually grouped intermediate

proteins (those between drug targets and AE seed proteins) by their connectivity

profiles in this network and performed enrichment analysis to assign functional labels.

We consolidated edges from multiple targets to the same intermediate or seed. We

weighted edges between a seed and the adverse event by the number of shortest paths

that were integrated by that particular seed. All intermediate proteins involved in

shortest paths from targets to seeds were used to generate the representation in Figure

3.7.
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3.3.10 Implementation

All scripts were written in Python 2.7.5. Network analysis was performed using cus-

tom scripts and NetworkX [128]. Machine learning was performed using Scikit-learn

[104]. Logistic regression and ANOVA were performed using glm in R 3.0.3. AUROC

comparison (DeLong’s test) was performed using pROC in R 3.0.3 [115]. Enrich-

ment analysis was performed using DAVID Functional Annotation [52]. Network

representations were created using Cytoscape 3.0.2 and 3.1.0 [135].

3.4 Results

We used the Modular Assembly of Drug Safety Subnetworks (MADSS) algorithm

(Figure 3.1) to integrate human protein-protein interaction (PPI) data from the

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [32] with

genetic data for four adverse events: gastrointestinal bleeding (GI), acute liver fail-

ure (LF), acute myocardial infarction (MI), and acute kidney failure (KF). The PPI

network from STRING contains 13,926 proteins (nodes) and 217,823 interactions

(edges) derived from physical interaction experiments, co-expression data, literature

co-mentions, and molecular pathway databases. We curated a set of proteins with

primary data linking them to each of the four conditions irrespective of drug involve-

ment (8, 58, 320, and 41 genes for GI, LF, MI, and KF, respectively). We pared

down these protein sets to ensure high interconnectivity, resulting in 8, 15, 10, and

35 proteins in the “AE seed sets” for GI, LF, MI, and KF, respectively (Tables 3.1,

3.2, 3.3, and 3.4).

Our hypothesis is that drugs targeting proteins with high connectivity to the seed

sets will be more likely to cause the adverse event. We scored all 13,926 proteins for

their connectivity to each AE seed set using four functions.We then used a reference

standard containing a total of 149 positive and negative control drugs for each of the
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Table 3.1: Upper gastrointestinal bleeding seed set

Gene Name Description LOO Rank Degree
F2 coagulation factor II (thrombin) 10 96
F3 coagulation factor III 19 55
PTGS2 cyclooxygenase 2 57 208
SST somatostatin 240 182
F9 coagulation factor IX 339 16
PTGS1 cyclooxygenase 1 614 44
OTC ornithine carbamoyltransferase 2169 19
HRH2 histamine receptor H2 3215 10

LOO = Leave-one-out

Table 3.2: Acute liver failure seed set
Gene Name Description LOO Rank Degree
IL6 interleukin 6 18 289
POMC adrenocorticotropin hormone 30 283
ALB albumin 61 184
CCL20 chemokine (C-C motif) ligand 20 120 160
IL1B interleukin 1, beta 177 177
PTGS2 cyclooxygenase 1 178 208
F2 coagulation factor II (thrombin) 186 96
IL10 interleukin 10 215 112
ESR1 estrogen receptor 1 236 328
F3 coagulation factor III 253 55
MAPK8 mitogen-activated protein kinase 8 268 177
F5 coagulation factor V 300 56
FASLG Fas ligand 419 99
HMOX1 heme oxygenase (decycling) 1 446 70
GFAP glial fibrillary acidic protein 804 50

Table 3.3: Acute myocardial infarction seed set

Gene Name Description LOO Rank Degree
VEGF vascular endothelial growth factor A 17 345
IL6 interleukin 6 19 289
IFNG interferon, gamma 119 170
ESR1 estrogen receptor 1 131 328
TNF tumor necrosis factor 161 130
ACE angiotensin I converting enzyme 835 40
CD14 CD14 molecule 992 46
ADRB1 adrenoceptor beta 1 1093 82
THBD thrombomodulin 1643 23
HMGCR HMG-CoA reductase 2036 42
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Table 3.4: Acute kidney failure seed set

Gene Name Description LOO Rank Degree
ALB albumin 10 184
KNG1 kininogen 1 41 342
HP haptoglobin 103 24
AMBP alpha-1-microglobulin/bikunin pre-

cursor
127 55

NPPA natriuretic peptide A 130 79
MAPK14 mitogen-activated protein kinase 14 204 260
B2M beta-2-microglobulin 248 158
CAT catalase 427 36
HPRT1 hypoxanthine phosphoribosyltrans-

ferase 1
513 62

MB myoglobin 514 16
PLA2G2A phospholipase A2, group IIA 668 88
G6PD glucose-6-phosphate dehydrogenase 775 43
CST3 cystatin C 777 27
IL18 interleukin 18 787 73
PIK3C2A PI3-kinase-C2-alpha 844 33
HGF hepatocyte growth factor 894 74
CHKA choline kinase alpha 1002 17
REN renin 1159 36
GPT alanine aminotransferase 1271 7
PARP1 poly (ADP-ribose) polymerase 1 1359 121
RBP4 retinol binding protein 4, plasma 1511 8
XDH xanthine dehydrogenase 1524 15
CHKB choline kinase beta 1675 9
LCN2 lipocalin 2 1890 14
PYGM phosphorylase, glycogen, muscle 1903 26
PRTN3 proteinase 3 1933 23
HMGCR HMG-CoA reductase 1999 42
BMP7 bone morphogenetic protein 7 2288 48
CPT2 carnitine palmitoyltransferase 2 2351 23
C1S complement component 1S 2600 14
HBG2 hemoglobin, gamma G 2620 8
SLC9A3 sodium-hydrogen antiporter 3 3066 17
CFH complement factor H 3267 9
ADAMTS13 von Willebrand factor-cleaving pro-

tease
5018 2

SLC22A6 organic anion transporter 1 6915 1
LOO = Leave-one-out

68



four adverse events (GI, LF, MI, and KF) created by combining literature review and

natural language processing of product labels [123]. Of 149 total drugs, there were

77, 95, 79, and 53 controls for GI, LF, MI, and KF, respectively.

We assigned each drug the score of its most highly connected target protein that

was itself not a seed protein (Figure 3.3). This results in a dataset with each drug

being represented by four scores of connectivity functions. We used these connectiv-

ity scores to train two machine learning algorithms, logistic regression and random

forests. This results in four drug safety subnetwork (SubNet) models (one for each

AE). In addition, we also grouped all AEs together to build a global model of adverse

effects (Materials and Methods). We found that the random forest algorithm signif-

icantly outperformed logistic regression at linking drugs to their known side effects

for each of the four events (Figure 3.4).

3.4.1 Improving drug safety predictions using systems

pharmacology

We investigated the additive contribution of systems pharmacology models (SubNet)

to pharmacovigilance statistics (MWAS) in predicting drug safety. We found that,

individually, both MWAS (β = 0.79± 0.18, P = 1.05E−5) and SubNet (β = 4.34±

0.58, P = 7.42E−14) were significant predictors of adverse events. In addition, we

found the combined model outperformed the univariate models (χ2 = 75.9, P < 1

×10−15). The Area Under the Receiver Operating Characteristic Curve (AUROC)

is the probability of successfully differentiating two randomly chosen drugs, one that

causes the AE and one that does not.

For the combined model we found an AUROC of 0.85 compared to 0.81 and

0.69 for SubNet-alone and MWAS-alone, respectively (Figure 3.5A). In addition to

outperforming overall, the combined model also outperformed for each adverse event

individually (Figure 3.5B) with improvements in AUROC of 6.2% (P = 0.10), 33.9%
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A B C MWAS + SubNetSystems Pharmacology
Alone (SubNet)

SubNet (0.81)
MWAS+SubNet (0.85)

MWAS (0.69)

Statistics Alone (MWAS)

Figure 3.5: Systems pharmacology data significantly improve drug safety predic-
tions. (A) Receiver operating characteristic (ROC) curve showing performance of
pharmacovigilance statistics (MWAS) alone, systems pharmacology (SubNet) alone,
and MWAS+SubNet for four adverse events (AEs) combined. The true-positive rate,
or sensitivity, is plotted against the false-positive rate, or 1-specificity. Area under
the ROC curve (AUROC) is indicated in parentheses; an AUROC of 0.50 is equiva-
lent to random classification and 1 represents perfect classification. MWAS+SubNet
performs significantly better than MWAS alone. (B) ROC curves demonstrating per-
formance for individual AEs: gastrointestinal bleeding (Gastro), acute liver failure
(Liver), acute myocardial infarction (MI), and acute kidney failure (Kidney). AU-
ROCs for MWAS alone (black), SubNet alone (red), and MWAS+SubNet (green) are
indicated. (C) Quantification of classifier performance using the commonly applied
metrics of F1 score (measuring classifier precision and recall), AUROC, and accuracy.

(P = 0.047), 15.3% (P = 0.01), and 27.3% (P = 0.007) for GI, LF, MI, and KF,

respectively. We found these results are reliable across different performance measures

(Figure 3.6C). Finally, we observed improvements in both sensitivity and specificity

in MWAS+SubNet compared to MWAS and SubNet alone for each AE (Table 3.5).

At a false positive rate of 20%, sensitivity (i.e. recall) improves from 42%, for MWAS

alone, to 70% when drug safety statistics are combined with systems pharmacology

data.

3.4.2 Evaluating choice of model parameters

MADSS has many parameters (network connectivity function, validated versus pre-

dicted drug targets, PPI confidence, PPI relationship, PPI data source, and drug

target type) (Figure 3.1). We evaluated the effects of each of these parameters on
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Table 3.5: Comparison of sensitivity (true positive rate, TPR) and specificity (true
negative rate, TNR) for drugs receiving high MWAS+SubNet (Both) scores across
all four adverse events (AEs). GI, gastrointestinal bleeding; LF, acute liver failure;
MI, acute myocardial infarction; KF, acute kidney failure.

Drug AE
Caused

MWAS
Sensitivity

SubNet
Sensitivity

Both
Sensitivity

MWAS
Specificity

SubNet
Specificity

Both
Specificity

Diflunisal GI 62% 62% 100% 87% 71% 100%
Ibuprofen GI 52% 57% 100% 91% 71% 100%
Flurbiprofen GI 10% 33% 100% 100% 89% 100%
Indomethacin GI 24% 29% 50% 98% 89% 100%
Oxaprozin GI 19% 19% 50% 100% 89% 100%
Lamotrigine LF 87% 87% 100% 13% 48% 100%
Nevirapine LF 39% 90% 100% 78% 39% 100%
Ofloxacin LF 66% 79% 83% 39% 52% 100%
Stavudine LF 58% 66% 83% 52% 61% 100%
Acetazolamide LF 52% 68% 71% 52% 61% 100%
Desipramine MI 70% 85% 100% 60% 74% 100%
Darbepoetin alfa MI 49% 73% 100% 80% 86% 100%
Estradiol MI 67% 52% 75% 60% 89% 100%
Frovatriptan MI 42% 64% 75% 89% 86% 100%
Imipramine MI 64% 58% 67% 71% 89% 100%
Captopril KF 84% 84% 100% 35% 100% 100%
Cyclosporine KF 63% 90% 100% 92% 100% 100%
Lisinopril KF 47% 79% 100% 92% 100% 100%
Etodolac KF 37% 32% 100% 92% 100% 100%
Hydrochlorothiazide KF 5% 95% 100% 100% 89% 100%

model performance for each AE while holding all other parameters constant (Figure

3.6). We found the best performance when using all PPIs of “medium” confidence

and above and all known drug targets.

3.4.3 Exploring mechanisms of adverse events

To interrogate potential mechanisms of adverse events, we investigated the interac-

tions between high-scoring drug targets and seed proteins. While some drug targets

were direct neighbors of seeds, others were linked to seed proteins through interme-

diates. We calculated the shortest paths from high-scoring drug targets to all seeds

and mapped the AE neighborhood by clustering drugs, drug targets, and intermediate

proteins into functional groups (Figure 3.7, 3.8, 3.9, and 3.10). The AE neighborhood

for MI is enriched for drug targets involved in G-protein signaling coupled to cyclic

nucleotide second messengers (P = 3.4E−7) (HTR1A, HTR1B, ADRB2, CHRM2,
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Figure 3.6: Evaluation of network analysis parameters and optimization across multiple AEs.
We determined the individual contributions of parameters by calculating mean F1 score over 20
replicates. (A) Evaluation of pairwise network functions used to assign connectivity scores. MFPT:
mean first passage time; BC: betweenness centrality; SN: shared neighbors; ISP: inverse shortest
path; All: SubNet. (B) SubNet model performance using drug targets predicted by the similarity
ensemble approach (SEA). Using three confidence cut-offs for predicted targets, we evaluated low-
confidence cut-off predicted targets alone and combined with targets present in DrugBank. We also
investigated medium- and high- confidence predicted drug targets combined with DrugBank targets.
(C-F) Evaluation of data subtypes using MFPT (mean first passage time), one of the functions
utilized to build SubNet models. (C) Evaluation of interactome size on model performance. Three
levels (low: 773,395; medium: 218,163; high: 76,709 interactions) of predictions confidence were
investigated. (D) Scoring of classifier performance using interactomes consisting only of the listed
interaction relationship. Post-trans mod: post-translational modification. Numbers within each bar
represent the number of drugs the method was able to evaluate given the limited interaction data.
(E) Evaluation of STRING data type using experimental and text mining evidence alone or with
predicted interactions. (F) Drug target assignment based on direct binders (targets), metabolizing
enzymes, or transporters. Optimization across all AEs requires use of all drug target types.
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Figure 3.7: Network flow representation of acute myocardial infarction AE neigh-
borhood. Red triangles represent drug classes. Blue nodes with red borders are high-
scoring drug targets; red nodes are seed proteins. Blue nodes in the center represent
intermediates linking drug targets to seeds. Intermediate node size and edge thick-
ness are representative of the number of shortest paths traveling through them. The
AE neighborhood for MI constructed using MADSS is enriched for genes involved in
cAMP biosynthesis and inflammatory response.

and DRD2; see Figure 3.7). Intermediate proteins connecting targets to MI seeds

are involved in cAMP biosynthesis (P = 1.9E−17) and inflammatory responses (P =

7.2E−17). Seeds integrating the greatest number of shortest paths were the beta-1

adrenergic receptor (ADRB1) and interleukin 6 (IL6) (61 and 52 shortest paths (sp),

respectively).

We found enrichment for cytochrome P450 enzymes for both GI and LF high-

scoring targets (P = 2.4E−7 and P = 5.5E−4, respectively) (Figures 3.8 and 3.9).
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Figure 3.8: Network flow representation of gastrointestinal bleeding AE neighbor-
hood. The AE neighborhood for GI constructed using MADSS is enriched for genes
involved in arachidonic acid metabolism.

Intermediates in the AE neighborhood for GI were enriched for proteins involved in

arachidonic acid metabolism (P = 4.3E−37), and the seeds integrating the majority

of shortest paths were COX-1 and COX-2 (PTGS1 (97 sp) and PTGS2 (108 sp),

respectively). In the AE neighborhood for LF, we observed enrichment of interme-

diates involved in cellular calcium ion homeostasis (P = 2.8E−27), with the seeds

liver activation regulated chemokine (CCL20, 115 sp) and corticotropin (POMC, 124

sp) integrating most of the shortest paths. Lastly, high-scoring drug targets within

the AE neighborhood for KF were enriched for proteins involved in blood pressure

regulation (P = 1.3E−5) (Figure 3.10). Intermediates consisted mainly of organic ion

transporters (P = 1.4E−3), with renin (REN, 6 sp), albumin (ALB, 4 sp), kinogen-1

(KNG1, 4 sp), and hepatocyte growth factor (HGF, 4 sp) acting as the most highly

integrative seeds.
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Figure 3.9: Network flow representation of acute liver failure AE neighborhood. The
AE neighborhood for LF constructed using MADSS is enriched for genes involved in
calcium ion homeostasis.
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3.5 Discussion

Drug safety surveillance resources (e.g. spontaneous adverse event reports and elec-

tronic health records) suffer from issues of confounding bias, noise, and missing data.

These challenges limit the usefulness of pharmacovigilance algorithms because they

lead to inadvertently flagging false signals and hiding true ones. We reasoned that

incorporation of an approach never exposed to these biases – systems pharmacology

models of the molecular connections between drugs and AEs – could help alleviate

these shortcomings. Furthermore, with ever-growing resources of interaction data on

the horizon [77], a mechanistically driven method that scales to large and diverse

data sets has the potential to shape the drug safety landscape. We demonstrate this

potential by successfully combining our systems pharmacology approach (MADSS)

with traditional pharmacovigilance statistics to significantly improve the prediction

of four serious adverse drug events.

3.5.1 High-scoring targets are biologically relevant

mediators of adverse events

Many of the high-scoring drug targets in the AE neighborhoods received support

in the literature for their involvement in mediating adverse events. For example,

decreases in prostacyclin synthesis due to COX-2 (PTGS2) inhibition is well-known

to increase risk of myocardial infarction [74]. Serotonin has also been implicated in

coronary artery disease [152], a major cause of myocardial infarction [94], and sero-

tonin 5-HT1B receptors (HTR1B) mediate coronary vasoconstriction [95]. HTR1A

and HTR1B ranked 245 and 269 (top 2%), respectively in the AE neighborhood for

MI constructed using mean first passage time (MFPT); activation of another sero-

tonin receptor (HTR2A, rank 379) is known to increase synthesis of interleukin-6 (IL6,

one of the MI seeds) in vascular smooth muscle, contributing to pro-inflammatory
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pathways [55].

Other high-scoring targets such as RXRA suggest less-characterized potential

mechanisms of adverse events. Etodolac, a non-steroidal anti-inflammatory drug

(NSAID), binds to the retinoid X receptor-α (RXRα), leading to its degradation

[73]. Complexes of peroxisome proliferator-activated receptors (PPARs) and RXRα

are thought to play anti-inflammatory and anti-atherogenic roles in coronary artery

disease [81]. Additionally, decreased expression of RXRα has been associated with

more pronounced carotid atherosclerotic disease progression [34]; carotid atheroscle-

rosis has been shown to be predictive of future MI [41].

3.5.2 AE neighborhood intermediates are important

transducers of drug action

Pathways enriched in the AE neighborhoods are also supported in the literature. For

MI, inflammatory pathways are a key element of coronary artery disease progres-

sion [42]. The role of cAMP biosynthesis by adenylyl cyclase downstream of beta

adrenergic receptor activation during heart failure is also well-established [88]. In

the AE neighborhood for GI, genes related to arachidonic acid metabolism have long

been recognized to be involved in NSAID-induced gastric bleeding [76]. Additionally,

perturbations to calcium ion homeostasis have been implicated as a mechanism of

drug-induced liver injury [141].

3.5.3 Limitations

There are several existing limitations to the method described. First, the method is

dependent on the existence of a seed set of proteins that are, ideally, causally linked

to the adverse event. Except for a few instances, such genes are largely unavailable

for adverse events. To address this issue in this chapter we used genes linked to the
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four conditions (i.e., gastrointestinal bleeding, acute liver failure, acute myocardial

infarction, and acute kidney failure) irrespective of drug association. In addition, we

currently assume a single mechanism of action for each AE. Off-target screening and

quantitative structure-activity relationship (QSAR) models would complement our

approach in cases when drug target information is lacking or absent.

The results of the model evaluation showed that optimization across multiple AEs

occasionally involved making sacrifices to the quality of an individual AE’s predic-

tions. For example, we observed better performance for MI alone when only protein-

protein interactions related to expression were used. Additionally, the performance

for GI was lower than for the other three AEs; allowing the use of seeds for drug

scoring led to an increase in performance for GI with no comparable improvement

for the other AEs, suggesting that more drugs in the GI reference standard (such as

non-steroidal anti-inflammatory agents) act mechanistically through the seeds than

through alternative targets (Figure 3.3). Future applications of MADSS can benefit

from the flexibility of optimizing across multiple or individual AEs.

We were unable to completely eliminate incidence of false positives using MADSS,

although we observed improvements in both sensitivity and specificity compared to

MWAS for each AE (Table 3.5).

In addition to predicting single drug adverse events, systems pharmacology is also

poised to help identify drug-drug interactions (DDIs) [15, 158, 173]. Future itera-

tions of MADSS could combine network-based predictions of DDIs with statistical

predictions [147].

3.6 Conclusion

In this chapter we present a new method leveraging protein-protein interaction net-

work analysis to improve pharmacovigilance. The method is by design modular,
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allowing for the incorporation of diverse data sets and optimization for the desired

adverse event(s). While we elected to use the self-controlled case series statistics

used in the MWAS study in combination with SubNet, an individual or regulatory

agency using MADSS can easily substitute any desired pharmacovigilance statistic.

In addition, seed sets for new adverse events can be generated with minimal input,

and new drugs can quickly be evaluated using predicted targets. Regulatory agencies

can flag signals enriched using this method for follow-up study. We demonstrate that

combining systems pharmacology models with pharmacovigilance leads to significant

and meaningful improvements in predicting drug safety.
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Chapter 4

Investigating mechanisms of
drug-induced QT prolongation
using chemical and biological data

4.1 Abstract

Drug-drug interactions that prolong the QT interval (QT-DDIs) can lead to poten-

tially fatal arrhythmias but remain poorly characterized. Chemical informatics and

biological network analysis offer opportunities to predict QT-DDIs and investigate

their mechanism of action. To predict new QT-DDIs we created a hybrid feature

clustering algorithm that clusters drug pairs based on chemical and biological fea-

tures. We identify clusters significantly enriched for drug pairs that were flagged

using a separate case-control electronic health record analysis and propose distinct

mechanisms for these novel interactions.

4.2 Introduction

Long QT syndrome (LQTS) is a genetic or acquired change in the heart’s electri-

cal activity that can increase risk of Torsades de Pointes (TdP), a potentially fatal

ventricular tachycardia. More than 40 drugs with both cardiac and non-cardiac indi-

cations have been found to dangerously prolong the QT interval and increase risk of
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TdP [164]. While extensive resources have been curated for linking individual drugs

to increased risk of TdP, little remains known about QT-prolonging drug-drug inter-

actions (QT-DDIs). Drugs typically prolong the QT interval by blocking the hERG

channel (IKr, KCNH2) contributing to ventricular repolarization, but other molecular

mechanisms may be at play for QT-DDIs.

In 2005 the FDA released the S7B and E14 guidance for industry documents

recommending pre-clinical hERG screening and clinical thorough QT studies, respec-

tively, to evaluate potential risk of TdP [29, 30]. Since 2005, the number of new

drugs found to even moderately prolong the QT interval during clinical trials has

plummeted [36], and no newly approved drugs have been withdrawn due to an in-

creased risk of TdP [138].

A key concern however is that testing solely on IKr may have high sensitivity

at the cost of low specificity [17]. Molecules that block the late sodium current in

addition to hERG (e.g. ranolazine [64]) can prolong the QT interval but with only

minimal risk of developing TdP [63].

To this end, the recently announced Comprehensive in vitro Proarrhythmia Assay

(CiPA) is a push by the FDA and others to conduct studies of drug off-target effects

on a more complete panel of cardiac ion channels, all of which can impact the QT

interval and play critical roles in the development of TdP [27].

CiPA is divided into four main “work streams”. The first is the evaluation (via

voltage clamp) of drug effects on multiple human cardiac currents including ICaL

(CACNA1C), INa (SCN5A), and IKs (KCNQ1 and KCNE1). The second tier in-

volves reconstructing human ventricular electrophysiology in silico using dynamical

modeling [57, 99]. Third is the further characterization of human stem cell-derived

cardiomyocytes to confirm the voltage clamp and in silico results; it is important to

note that many issues remain in addressing discrepancies in ion channel expression

variation and action potential duration and morphology [114]. All of these efforts
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will culminate in the fourth component, which involves providing new regulatory

guidelines including eliminating the thorough-QT study.

Importantly, evaluation of drug-drug interactions appears to be beyond the scope

of CiPA. Recent work from the FDA has investigated the effects of drug pairs where

one drug is a known hERG blocker (e.g. dofetilide, moxifloxacin) and the second a late

sodium (e.g. mexiletine, lidocaine) or calcium (e.g. diltiazem) channel blocker [63].

However, these efforts have sought to better describe the motivation for comprehen-

sive assays on multiple ion channels rather than investigating synergistic effects on

channel current that do not manifest when either drug is administered individually.

We have previously used observational data mining, patch clamp electrophysi-

ology, and in silico action potential modeling to successfully identify and validate

novel QT-DDIs [85, 86]. However, chemoinformatics [93, 155, 171] and biological

network analysis [84, 144] offer a complementary opportunity to predict drug-drug

interactions and identify their mechanisms. Previous studies have developed quan-

titative structure-activity relationship (QSAR) models to predict IKr block by small

molecules [62]. Here we present a potential framework for predicting QT-DDIs us-

ing only pre-clinically available data. We develop high-accuracy chemical structure

models for hERG as well as ICaL, INa, and IKs. We develop an algorithm called

HyFI (Hybrid Features to predict Interactions) clustering that integrates this mod-

eling strategy with network connectivity to known LQTS genes to propose distinct

mechanisms for these interactions.

4.3 Materials and Methods

4.3.1 Data sources

We obtained chemical structures (recorded as simplified molecular-input line-entry

system [SMILES] strings; see Figure 4.1) from ChEMBL [33] for every drug assayed
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Figure 4.1: Chemoinformatics molecular fingerprinting procedure. Example shown
for cisapride, a known QT-prolonging drug that has been withdrawn from the market.
Each drug’s chemical structure is represented as a simplified molecular-input line-
entry system (SMILES) string. We then convert this string to a molecular fingerprint
that describes the chemical structure as a series of binary digits (bits) indicating the
presence or absence of chemical substructures.

for hERG, INa, ICaL, and/ or IKs block and containing an IC50 value. For each of

these drugs we also obtained eight molecular descriptors from ChEMBL: octanol-

water partitioning coefficient, molecular weight, number of hydrogen bond donors/

acceptors, number of rotatable bonds, number of aromatic rings, number of non-

hydrogen atoms, and polar surface area.

4.3.2 Chemical structure model fitting

We converted each drug structure to a FP4 molecular fingerprint using OpenBabel

(149 distinct bits identified) [154]. This procedure represents each chemical structure

as a series of binary digits (bits) describing the presence or absence of chemical

substructures coded in the FP4 SMiles ARbitrary Target Specification (SMARTS

pattern). We used these fingerprint bits and the molecular descriptors as features to

train a multi-class (multinomial) Random Forest classifier to predict five classes of
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ion channel (non-)block: IC50 > 40µM; 10µM < IC50 ≤ 40µM; 1µM < IC50 ≤ 10µM;

100nM < IC50 ≤ 1µM; and IC50 ≤ 100nM. We characterized classifier performance

using out-of-bag estimates (Appendix A). We then applied the classifier to all drugs

in DrugBank [71] to generate five probabilities (one for each class above) for each ion

channel.

4.3.3 Proof of concept clustering

We used the Modular Assembly of Drug Safety Subnetworks (MADSS) algorithm [84]

(see Chapter 3) to identify an adverse event neighborhood for LQTS within a human

protein-protein interaction network. We scored every protein in the network on its

connectivity to a “seed” set consisting of the 13 known proteins involved in LQTS [8].

Using four connectivity functions (mean first passage time, betweenness centrality,

shared neighbors, and inverse shortest path), we assigned a given drug the score of

its most highly connected target (using drug targets from DrugBank), resulting in

four scores for each drug.

As a proof of concept we combined the hERG chemical structure model probabil-

ities with the connectivity scores from MADSS. We call this approach HyFI (Hybrid

Features to predict Interactions) clustering. We created a matrix of drug pairs with a

given row containing 18 features, corresponding to the hERG block probabilities and

connectivity scores for each drug in the pair. We applied k-means clustering using

eight clusters in Scikit-learn to this dataset.

Because no gold standard exists for QT-DDIs, we performed an electronic health

record (EHR) case-control analysis [85] (see Chapter 1) to identify drug pairs for

which cases (patients prescribed the drug pair within a 7-day window) had signif-

icantly prolonged QT intervals (electrocardiogram labs within 36 days of drug ad-

ministration) compared to controls (patients on either drug alone). The study was

approved by the CUMC Institutional Review Board. For each cluster, we calculated
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Figure 4.2: Receiver operating characteristic curves for multinomial ion channel block
classifier for (A) hERG (KCNH2), (B) INa (SCN5A), (C) ICaL (CACNA1C), and (D)
IKs (KCNQ1 and KCNE1). We trained random forest classifiers using IC50 values for
individual drugs from ChEMBL. The micro-average is calculated by summing the
true positives, true negatives, false positives, and false negatives across each of the
classes. AUC = area under the ROC curve; OOB = out-of-bag estimate.

the enrichment for drug pairs flagged using this analysis using a Fisher’s exact test.
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Table 4.1: Number of training examples for each ion channel block class

Class hERG INa ICaL IKs

IC50 > 40µM 565 10 2 23
10µM < IC50 ≤ 40µM 1,689 154 47 8
1µM < IC50 ≤ 10µM 2,332 211 38 15
100nM < IC50 ≤ 1µM 670 44 18 8
IC50 ≤ 100nM 321 19 37 2

4.4 Results

We obtained 5,577 drugs from ChEMBL with assays for hERG; 438 for INa; 142 for

ICaL; and 56 for I IKs. The number of training examples for each class can be found in

Table 4.1. After converting these structures to molecular fingerprints we found 155

distinct bits for hERG, 92 for INa, 89 for ICaL, and 44 for IKs.

The multinomial random forest classifier for hERG achieved a micro-averaged area

under the receiver operating characteristic curve (AUC) of 0.88 (Figure 4.2A). The

classifiers for INa, ICaL, and IKs achieved AUCs of 0.93, 0.96, and 0.90, respectively

(Figure 4.2B-D, Figure 4.3).

4.4.1 Hybrid feature clustering identifies distinct

mechanisms of QT prolongation

We obtained three clusters (1, 3, and 7) significantly enriched for drug pairs that

had significantly elevated QT intervals flagged using the EHR analysis (Table 4.2).

We obtained four clusters (2, 4, 5, 8) significantly depleted for EHR-flagged drug

pairs. We examined each cluster and found an example for each that represents

the mechanism of QT-DDI suggested by the cluster centroid (Table 4.2, Figure 4.3).

These examples are novel QT-DDIs for which neither drug has a known link to TdP.
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A B

C D

Figure 4.3: Box plots comparing true and predicted IC50 using multinomial ion
channel block classifier for (A) hERG (IKr, KCNH2), (B) INa (SCN5A), (C) ICaL
(CACNA1C), and (D) IKs (KCNQ1 and KCNE1).

4.5 Discussion

Prediction of QT-DDIs is of vital importance to patient care and to better understand

mechanisms of drug-induced LQTS. While hERG (KCNH2) was one of the seeds

used for MADSS, only 20 drugs in DrugBank 3 (out of a total of 1373 drugs used

in this analysis) are listed as binding hERG. Therefore many of the drugs that were

classified as blocking hERG yet received low MADSS scores represent new predicted

hERG blockers. One such example, diltiazem (calcium channel blocker), is not listed

as a hERG blocker in DrugBank but was predicted by our multinomial classifier

and shown in the literature to block hERG [172]. We independently identified two

examples (ceftriaxone/ lansoprazole and fosphenytoin/ metoprolol) using latent signal
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Table 4.2: Centroids for drug pair clusters significantly enriched/ depleted for QT-
prolonging drug-drug interactions.

Cluster # Pairs
Odds 
Ratio

P
Proposed 

mechanism
IC50 > 
40uM

(0nM, 
100nM]

(100nM, 
1uM]

(1uM, 
10uM] 

(10uM, 
40uM]

MFPT BC SN ISP

1 2123 1.13 0.018
non-HERG 
— hERG

Drug1  0.29 0.09 0.18 0.23 0.22 0.82 0.82 0.17 0.84

Drug2  0.19 0.08 0.12 0.36 0.25 0.04 0.03 0.02 0.19

3 2128 1.13 0.016
hERG –      

non-hERG

Drug1  0.19 0.08 0.12 0.36 0.25 0.04 0.04 0.02 0.19

Drug2  0.29 0.09 0.17 0.23 0.22 0.82 0.83 0.17 0.84

7 3422 1.60 7.68E-28
hERG – 
hERG

Drug1  0.08 0.30 0.32 0.17 0.14 0.01 0.01 0.01 0.17

Drug2  0.16 0.08 0.12 0.38 0.26 0.02 0.01 0.01 0.01

2 1551 0.73 1.66E-05
weak binding –  

no binding

Drug1  0.17    0.08 0.12 0.38 0.25 0.02 0.01 0.01 0.17

Drug2  0.81    0.01 0.01 0.11 0.06 0.07 0.02 0.03 0.21

4 7973 0.90 2.99E-04
weak binding –  
weak binding

Drug1  0.08 0.07 0.11 0.58 0.15 0.03 0.01 0.01 0.19

Drug2  0.17 0.09 0.13 0.34 0.27 0.02 0.01 0.01 0.16

5 1537 0.75 3.72E-05
no binding –  
weak binding

Drug1  0.81 0.01 0.01 0.11 0.06 0.07 0.02 0.03 0.22

Drug2  0.17 0.08 0.12 0.38 0.25 0.02 0.01 0.01 0.17

8 6806 0.86 3.59E-06
weak binding –  
weak binding

Drug1  0.18    0.06 0.11 0.38 0.28 0.02 0.01 0.01 0.16

Drug2  0.08     0.06 0.11 0.60 0.15 0.03 0.01 0.01 0.19
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detection in the FDA Adverse Event Reporting System [85], increasing our confidence

in these findings. Unsupervised learning methods for clustering drug pairs using

chemical and biological features provide a novel approach for prioritizing potential

QT-DDIs for follow-up study and experimental validation.

The method as described is a proof of concept and requires follow-up calibration

for the number of clusters. To create a viable pre-clinical pipeline for predicting

QT-DDIs, it is necessary to predict the percent block of each ion channel for a drug

combination in addition to individually. Strategies that we investigated included

predicting IC50 and Cmax (maximum serum level typically reached) individually, as

well as directly predicting percent block using only fingerprint and molecular de-

scriptor data; we believe the former is a more promising approach especially with

the availability of pharmacokinetic modeling software such as SimCyp (Certara) [60]

that models virtual patient populations to predict drug serum levels. Recent work
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Lansoprazole

SCN5A
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Figure 4.4: Network representation of different mechanisms of QT-DDIs identified
using HyFI clustering. Red nodes represent LQTS seed proteins; blue nodes are non-
seed proteins; blue nodes with red borders are non-seed drug targets; red triangles
are drugs. Blue edges represent protein-protein interactions; black edges represent
known drug-target interactions; dotted black edges represent predicted drug-hERG
binding. Each circled drug pair contains a reference to its cluster.

has leveraged this pharmacokinetic modeling in tandem with action potential models

to predict the QT-prolonging effects of drug-drug interactions [161]; however, these

approaches have been limited to modeling these interactions as additive [160]. We

have previously discovered QT-DDIs that are clearly synergistic (e.g. ceftriaxone/

lansoprazole). We searched for a database of drug Cmax concentrations and the only

available resource appears to be the GVK Bio GOSTAR Database [59]; a preliminary

search of this database however yielded multiple Cmax values for a given drug, often

varying by orders of magnitude.
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4.6 Conclusion

In this chapter we described a proof-of-concept strategy for combining chemoinfor-

matics and biological network analysis to predict mechanisms of QT-DDIs. Fu-

ture work can focus on approaches for modeling synergy and antagonism leveraging

PK/PD models as well as strategies for predicting ion channel block for drug pairs.

The newly released cryo-electron microscopy structure for hERG [157] presents an-

other promising avenue for proposing binding sites for QT-DDIs such as ceftriaxone

and lansoprazole.
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Chapter 5

Predicting genetic ancestry using
clinical data to interrogate the
genetic bases of drug-induced QT
prolongation

5.1 Abstract

Genetic ancestry is essential for studies aiming to discover variants with clinical sig-

nificance. With existing genetic data, dimensionality reduction techniques such as

principal components analysis can make shared ancestry in complex populations eas-

ily identifiable. Unfortunately, genetic data are not always readily available in clinical

and research settings, making this type of evaluation impossible for most patients.

Clinical data, like those stored in electronic health records (EHRs), are vast but do

not directly capture ancestry information. Here, we present a novel machine learning

algorithm for predicting genetic ancestry using only variables (self-reported race/ eth-

nicity and condition billing codes) routinely captured in EHRs. With a set of 1,161

patients that have both genetic and clinical information at Columbia University/

NewYork-Presbyterian Hospital, we trained a model that can be applied to clinical

data alone to estimate genetic ancestry. As a proof-of-concept, we predicted genetic

ancestry for patients in our EHR exposed to drugs with known, congenital, condi-
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tional, or possible links to QT interval prolongation on the electrocardiogram; we

then sought to correlate incidences of drug-induced QT prolongation in the EHR to

one or more common QT-associated genetic mutations across subpopulations within

our patient record.

5.2 Introduction

Genetic ancestry is a significant factor in drug response (pharmacogenomics) and a

key pillar in the establishment of precision medicine [21]. Every individual has vari-

ants unique to themselves, their close relatives, and their ancestral populations. Mea-

suring and characterizing these variants is both feasible and efficient when genetic

data are available. With existing genetic data, clustering by ancestry is relatively

simple and often achieved with principal components analysis (PCA). PCA reduces

dimensionality while maintaining variability, making shared ancestry in complex pop-

ulations easily identifiable [98]. While genetics is a rapidly advancing field and the

cost of genotyping/ sequencing continues to plummet [46], genetic data are still not

available for the majority of patients in clinical records. This issue is compounded by

the time-consuming nature of genotyping/ sequencing patients en masse combined

with issues of consent for re-use. Additionally, many diseases and clinical outcomes

have unidentified subgroups and variants unique to these populations that can go

undiscovered in genetic research not properly stratified by ancestry [22].

An interim goal is therefore to use data that is routinely collected to systematically

predict the genetic ancestry of patients across an electronic health record (EHR). At

Columbia University Medical Center/ NewYork-Presbyterian Hospital (CUMC-NYP)

we have access to medical records from over 5 million patients via the EHR in the

clinical data warehouse (CDW). The diversity present in the CDW, in terms of race,

ethnicity, and socioeconomic status, as well as the depth of clinical data collected
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(over 20 years), makes it an ideal resource for phenotype selection and subgroup

identification [159].

We hypothesized that these clinical data could also be used to effectively predict

genetic principal component values as well as ancestry. Essentially, if two clinical

concepts are correlated in the EHR and one is known to have a genetic association,

then those genetics may also apply to the second concept. Some variables collected in

the EHR have clear relationships to genetics, for example self-reported ethnicity and

familial relationships, while others are more obscure. To evaluate this, we collected

whole exome sequencing (WES) data from several sources at Columbia. Many of these

patients also had clinical data available. We used the anonymized data from these

patients to assess the ability of clinical data to predict genetic ancestry. Surname and

physical address have been previously used to estimate race and ethnicity [28], and

another study leveraged electronic health records to investigate the genetic bases of

complex diseases by finding clinical phenotypes that co-occur with Mendelian diseases

[10]. However, the use of clinical variables as genetic surrogates is a new approach

that has not yet been systematically explored. Broad phenotypes commonly have

many specific subgroups [16, 116], yet phenotypes mined from clinical data are often

described vaguely as a single diagnosis or trait. However, clinical resources such as

EHRs collect detailed descriptions of a patient’s state far beyond a given diagnosis

code. Further, these records are connected longitudinally, producing a rich timeline

of clinical events for every patient.

For this study, our model formation consisted of five basic steps. First, we col-

lected anonymized genetic data from individuals that consented to have their results

used for research and merged our datasets, using 6,544 common variants from the

1000 Genomes populations [19] as a reference. Second, we conducted principal com-

ponents analysis on the genetic data. Third, we matched the genetic data to clinical

information from the EHR for the same individuals. Fourth, we used machine learn-

93



ing (Random Forest regressor) to predict PC values using the clinical data. Lastly,

we compared these results and refined our model to include the most predictive clin-

ical data. We then applied this model to all the available clinical data to generate

predicted PC values for every individual in the EHR. The result of this pipeline is

a shared principal components space between phenotype-independent genetic data

(1000 Genomes, HapMap [35]) and genetics-independent clinical data (CUMC-NYP

EHR); the former can then be assigned as “proxy genomes” of the latter in regions

of PC space that share overlap between the two.

As a proof-of-concept, we investigated the genetic bases of drug-induced long

QT syndrome (LQTS), a genetic or acquired change in the heart’s electrical activity

that can increase risk of the potentially fatal ventricular tachycardia Torsades de

Pointes (TdP) [118]. A recently conducted genome-wide association study (GWAS)

identified 44 single nucleotide polymorphisms (SNPs) in 27 genes associated with

prolonged baseline QT intervals and independently validated these associations across

patient populations of European and African ancestry [2]. A further study indicated

that these mutations can also be predictive of drug-induced LQTS [140]. Drugs

typically prolong the QT interval by blocking the hERG channel (KCNH2). We

used a previously developed robust phenotyping approach (Appendix B) to identify

patients with electrocardiogram (ECG) data who were exposed to individual drugs

with a link to QT prolongation or drug-drug interactions predicted in previous work

[85, 86]. We then assigned proxy genomes to these patients and investigated the

correlation between mutation frequencies in QT SNPs and LQTS frequencies in the

EHR. This approach has the potential to be extremely valuable for more in-depth

studies using clinical data alone as well as conducting more informed genetic studies.
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5.3 Materials and Methods

5.3.1 Acquiring genetic data at Columbia

We obtained whole exome sequencing (WES) data from the Institute for Genomic

Medicine (IGM) at Columbia for patients that consented to have their results used for

research. From the Wendy Chung lab at Columbia we also collected principal compo-

nent (PC) values from an anonymous patient cohort (referred to as the Chung cohort)

projected onto the 1000 Genomes population [19]. All datasets were processed using

PLINK [111] and custom Python scripts. All SNPs were filtered to exclude indels

and be observed at a minor allele frequency of at least 10 percent and a genotyping

rate of at least 90 percent, and were normalized to a set of shared variants.

5.3.2 Fitting principal components analysis (PCA) model

To fit our samples to the 1000 Genomes PCA, we identified all shared common SNPs

between our datasets, 1000 Genomes, and HapMap (excluding redundant samples

between the latter two datasets) [35]. We began by converting the HapMap SNPs

to the University of California Santa Cruz (UCSC) 2009 Genome Reference Consor-

tium human reference sequence build (GRCh37/hg19) using the liftOver tool [121],

enabling all samples to be compared. We isolated the shared SNPs among this group

and our sequencing data. We then fit a PCA model to 1000 Genomes data using

the shared SNPs and applied this model to HapMap, IGM samples, and the Chung

cohort. We retained the first two PC values for subsequent analysis.

5.3.3 Matching to clinical population

We used a common patient identifier (either the patient medical record number for

the Chung cohort or a hashed derivative for IGM) to determine the subset of patients

with genetic data who also had available clinical data (demographics and conditions).
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This population was used as our training set. The study and use of all clinical and

genetic data was approved by the Columbia Institutional Review Board. See Table

5.1 for a demographic description of the cohort.

5.3.4 Training random forest model to predict principal

components

We trained a Random Forest (RF) regressor to predict PC values from clinical data

using the genetic data training set. To use the clinical data most effectively, we used

billing (ICD-10) codes. We mapped ICD-9 codes in the EHR to ICD-10 using the

General Equivalence Mappings (GEM) and built a hierarchy at four levels (Terminal,

Header, Block, Chapter). These levels are in order of decreasing specificity; for

example: Terminal: (J06.0) Acute laryngopharyngitis; Header: (J06) Acute upper

respiratory infections of multiple and unspecified sites; Block: (J00-J06) Acute upper

respiratory infections; Chapter: (J00-J99) Diseases of the respiratory system. We

used these conditions and patient demographics (self-reported race and ethnicity) as

features to predict PC1 and PC2 for each patient in the training set. We trained the

model using 12 demographic features plus the four levels of condition feature hierarchy

(Terminal: 3437 features; Header: 1081 features; Block: 229 features; Chapter: 21

features).

5.3.5 Evaluating and optimizing model performance

We evaluated the random forest regressor performance using out-of-bag (OOB) pre-

dictions (Appendix A). For PC1 and PC2 separately we calculated the Pearson cor-

relation and root mean squared error (RMSE) between the actual and predicted PCs.

We used both of these measures to choose the optimal ICD-10 hierarchy level.

Random Forest regressors generate predictions for a given sample by averaging the
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Table 5.1: Training set demographics

N 1,161
Age (Mean ± SD) 21.4 ± 17.4
Sex (%)

Male 52
Female 48

Reported Race (%)
White 49.1
Unknown 31.8
Black or African American 8.6
Other 7.0
Asian 2.8
American Indian or Alaska Native 0.5
Other Pacific Islander 0.2

Reported Ethnicity (%)
Hispanic 22
Not Hispanic 43
Not Available 35

votes across each tree in the forest (in this case, 200 estimators). Unlike a classification

problem in which an output probability can be used to determine how confident the

model is in the class assignment, in this regression problem we wished to define

a model-driven metric for assessing prediction quality. We hypothesized that the

decision tree ensemble could be used to define this measure. For a given sample we

first calculated the standard deviation of the distribution of PC1/ PC2 votes across

each tree and investigated whether this measure was correlated with the absolute

error observed for each sample. We used the results of this analysis to define a

quality control filter for all subsequent predictions.

5.3.6 Assigning proxy genomes to patients in the EHR

Clinically-derived PCs (RF model) allow for “overlaying” the genetic-derived PCs

(1000 Genomes, HapMap, and IGM genetic data) to assign proxy genomes to each

patient in a given region of PC1/ PC2 space. A given subregion of PC space may

be more or less accurately predicted by the RF model. We therefore sought to apply
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a data-driven strategy to create the highest resolution bins possible for subgrouping

patients. We created these variably defined bins by first assigning grids in increments

of 5 PC units across PC1 and PC2. We then calculated the median squared error (SE)

within each bin as well as the slope of median SE across adjacent bins in the initial

grid. We merged adjacent bins where the either the median SE or slope exceeded a

threshold. We then applied the pipeline (random forest regressor, ensemble filtering,

and variable binning for proxy genome assignment) to every patient in the EHR.

5.3.7 Proof-of-concept for drug-induced LQTS

We obtained 44 SNPs from a previous GWAS study [2] that were significant predictors

of QT prolongation and were found to be associated with the same directionality of

QT interval change (i.e. prolongation or shortening) in both European- and African-

ancestry cohorts. These SNPs were also found to be predictive of drug-induced LQTS

[140]. We processed the SNP data to define the coded allele as being responsible for

prolonged QT.

As controls we searched for variants that were not identified in the GWAS and did

not show variation with ancestry. Using the allele frequencies in the Exome Aggre-

gation Consortium (ExAC) dataset [80], we performed a chi-square test comparing

the observed and expected allele counts across the seven ancestries in ExAC.

We obtained drugs from CredibleMeds.org with congenital, known, conditional,

or possible link to QT prolongation that were also prescribed in our EHR. We also

investigated the combination of ceftriaxone/ lansoprazole which was predicted in

previous work to prolong the QT interval [85, 86].

To phenotype patients in the EHR we used a variation of a previously validated

∆QT Database methodology (see Appendix B). Briefly, we calculated changes in QTc

(heart rate-corrected QT) interval for each patient by comparing his/her baseline to

the QTc observed after exposure to one or more drugs. Patients were required to
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have at least 2 electrocardiogram (ECG) lab reports for inclusion. We defined each

patient’s baseline QTc interval as the median QTc across all of his/her ECGs. We

then defined an “ECG era” as one or more ECGs occurring within 36 days of the

previous ECG (see Figure B.1 in Appendix B). For each ECG era we selected the

ECG corresponding with the maximum observed QTc interval (maxECG) and then

collected all drug exposures from 0 to 36 days (inclusive) before the maxECG date.

We defined a positive LQTS case in response to a given drug as the patient

having a QTc interval < 500ms at baseline and > 500 ms after drug exposure; this is

an established FDA-derived threshold for clinical concern [26]. We calculated allele

frequency as the percentage of patients homozygous for the coded (i.e. QT-prolonging)

allele.

For a given SNP and drug, we applied the variably defined bins to the shared

PC1/ PC2 space. For each bin containing at least 100 phenotyped patients and a

corresponding minimum 10 samples with genetic data overlaid, we calculated the

Spearman correlation between coded allele frequency and LQTS frequency.

5.4 Results

5.4.1 Acquiring genetic data and matching to clinical

population

We obtained 2,504 samples from 1000 Genomes containing 5,685,915 variants that

passed our minor allele frequency and genotyping rate filters. After conversion to the

GRCh37/hg19 reference build we obtained 650 samples from HapMap not already

present in 1000 Genomes and 1,014,313 variants.

From the IGM we obtained 1,114 samples with 257,646 variants. The Chung

cohort contained 8,744 samples and 24,507 variants shared with 1000 Genomes and

the IGM. From the intersection of each of these datasets we found 6,544 variants
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Figure 5.1: Using clinical data to predict genetic ancestry. Left: Principal components
(PCs) derived from genetic data from patients at Columbia. Right: PCs predicted for
the same patients using random forest model trained on clinical data. Each patient
is labeled using his/ her self-reported race.

Table 5.2: Random forest regressor performance at levels of ICD-10 hierarchy

ICD-10
Level

Num.
condition
features

PC1
Pearson

correlation

PC2
Pearson

correlation

PC1
RMSE

PC2
RMSE

Terminal 3437 0.623 0.578 66.93 38.96
Header 1081 0.617 0.594 67.60 37.20
Block 229 0.620 0.593 66.18 37.22

Chapter 21 0.609 0.600 68.29 36.66

matching chromosome, position, and reference/ alternate alleles.

Of the 9,858 sequences available at Columbia, 1,161 patients also had clinical

data (a total of 12 self-reported race/ ethnicity codes and 3,437 diagnosis codes after

mapping to ICD-10). This population was used as our training set.
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Table 5.3: Top ten feature importances of random forest regressor model (Chapter)

Feature Importance
Black or African American 0.239
Not Hispanic or Latino 0.079
White 0.050
Asian 0.043
Hispanic or Latino 0.032
Diseases of the nervous system (Ch. 6: G00-G99) 0.030
Congenital malformations, deformations and chromosomal abnor-
malities (Ch. 17: Q00-Q99)

0.028

Diseases of the circulatory system (Ch. 9: I00-I99) 0.027
Symptoms, signs and abnormal clinical and laboratory findings, not
elsewhere classified (Ch. 18: R00-R99)

0.026

Mental, Behavioral and Neurodevelopmental disorders (Ch. 5: F01-
F99)

0.025

Endocrine, nutritional and metabolic diseases (Ch. 4: E00-E89) 0.025

5.4.2 Random forest model achieves best performance with

generalized condition features

After training RF regressor models at four levels of ICD-10 hierarchy, we found that

the Chapter level (12 demographic features and 21 condition features) achieved the

greatest Pearson correlation and lowest RMSE for PC2 with only a small change in

performance for PC1 (Table 5.2). We therefore used this model in all subsequent

analyses (Figure 5.1). See Table 5.3 for the feature importances of the model.

We found that the tree ensemble standard deviation was significantly correlated

with the absolute error for both PC1 (Pearson correlation = 0.847, P < 1E-100) and

PC2 (Pearson correlation = 0.849, P < 1E-100) (Figure 5.2A). As a quality control

step we therefore excluded all predicted samples with a PC1 or PC2 tree standard

deviation greater than 10 (Figure 5.2B and C).

Our variable binning strategy suggested that an initial bin width 5 PC units led

to the best separation of ancestries. We merged bins where the median SE exceeded

50 or slope exceeded 10. This resulted in four bins for PC1 and three bins for PC2.
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A

B

C

Figure 5.2: Using tree ensemble votes to filter principal component (PC) predictions. (A) Com-
parison of absolute error (x-axis) to standard deviation across all tree votes in the random forest
(y-axis) for PC1 (left) and PC2 (right). Dotted blue line indicates threshold for filtering. (B) Actual
genetic PC (x-axis) compared to predicted PC (y-axis) for PC1 and PC2 using the ICD-10 Chapter
RF model. (C) Actual versus predicted PC after filtering using a tree standard deviation cutoff of
10. Patients are labeled using the scheme in Figure 5.1.
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We applied the RF model to all patients with condition codes in the EHR. Af-

ter tree ensemble filtering we obtained stable PC1 and PC2 predictions for 586,449

patients (73% of patients).

5.4.3 QT-prolonging drugs proof-of-concept

We obtained drugs from CredibleMeds.org with congenital (n=11), known (n=18),

conditional (n=26), or possible (n=17) link to QT prolongation such that at least 100

patients with ECG data and stable PC1/ PC2 predictions were prescribed each drug.

After applying the ∆QT Database phenotyping strategy we found 14,403 LQTS cases

and 69,523 patients with unaffected QT intervals who also had stable PC1 and PC2

predictions from the RF model.

We calculated the Spearman correlation between every combination of Credi-

bleMeds drug and QT SNP that shared a minimum of 5 bins between the genetic and

clinical data. We evaluated each CredibleMeds drug individually as well as by drug

class.

Across drug classes, we found that the most significant correlations (Spearman

correlation nominal P < 0.05) between allele frequencies and LQTS frequencies were

for rs12997023 (SLC8A1), rs12061601 (ATP1B1), and rs236586 (KCNJ2) in patients

taking antibiotics listed in CredibleMeds (Figures 5.3, 5.4, and 5.5).

Across each individual drug, we found that the allele frequencies of rs12997023

(SLC8A1) and rs12061601 (ATP1B1) were the most frequently significantly correlated

(Spearman correlation nominal P < 0.05) with LQTS frequency (26 and 22 drugs

with significant correlations, respectively). We chose to evaluate these two variants

in greater detail.

We performed a Fisher’s exact test to investigate whether a category in Credi-

bleMeds (congenital, known, conditional, and possible link to TdP) was significantly

over- or under-represented. For rs12997023, we found that drugs with a conditional
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5.20e-09

Figure 5.3: Correlation between rs12997023 (SLC8A1) and LQTS for all antibiotics
in CredibleMeds. Each point’s label corresponds to a bin number (see Figure 5.6).

8.46e-09

Figure 5.4: Correlation between rs12061601 (ATP1B1) and LQTS for all antibiotics
in CredibleMeds. Each point’s label corresponds to a bin number (see Figure 5.6).
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1.30e-05

Figure 5.5: Correlation between rs236586 (KCNJ2) and LQTS for all antibiotics in
CredibleMeds. Each point’s label corresponds to a bin number (see Figure 5.6).

link were significantly enriched (odds ratio [OR] = 3.31, nominal P = 0.02) and drugs

with a congenital link were significantly depleted (OR = 0.14, nominal P = 0.048).

We did not observe a statistically significant enrichment or depletion for drugs with a

known (OR = 1.17, nominal P = 0.78) or possible (OR = 0.46, nominal P = 0.26) link

to TdP. See Figure 5.6 for the correlation between rs12997023 and QT prolongation

following exposure to hydrochlorothiazide, a diuretic with a conditional link to TdP.

For rs12061601, we observed no statistically significant enrichments or depletions

for drugs with a congenital (OR = 0.19, nominal P = 0.15), known (OR = 1.19,

nominal P = 0.77), conditional (OR = 2.33, nominal P = 0.12), or possible (OR =

0.63, nominal P = 0.56) link. For this variant all of the significant correlations with

LQTS frequency were negative. See Figure 5.7 for the correlation between rs12061601

and QT prolongation following exposure to ondansetron, an anti-nausea medication

with a known link to TdP.
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Figure 5.6: Correlation between rs12997023 (SLC8A1) and LQTS for hydrochloroth-
iazide. Left: Variably binned genetic data with QT-prolonging allele labeled red.
Middle: Predicted PCs for patients prescribed hydrochlorothiazide; patients with
prolonged QT are labeled in red. Right: Correlation between QT allele frequency
and LQTS frequency.

Figure 5.7: Correlation between rs12061601 (ATP1B1) and LQTS for ondansetron.
Left: Variably binned genetic data with QT-prolonging allele labeled red. Middle:
Predicted PCs for patients prescribed ondansetron; patients with prolonged QT are
labeled in red. Right: Correlation between QT allele frequency and LQTS frequency.
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Figure 5.8: Correlation between rs7207986 (control SNP, ZZEF1) and LQTS for
hydrochlorothiazide. Left: Variably binned genetic data with QT-prolonging allele
labeled red. Middle: Predicted PCs for patients prescribed hydrochlorothiazide; pa-
tients with prolonged QT are labeled in red. Right: Correlation between QT allele
frequency and LQTS frequency.

We found six control SNPs in ExAC that were also present in our genetic dataset.

As a proof-of-concept we investigated rs7207986 (ZZEF1) and rs3731710 (TRAK2).

For rs7207986, 1 of 72 drugs evaluated had a significant correlation between LQTS

and allele frequency. This proportion was significantly lower than the proportions

of drugs with significant correlations to LQTS we observed across the 44 QT SNPs

(nominal P = 0.02). See Figure 5.8 for the control SNP correlation results between

rs7207986 and QT prolongation following exposure to hydrochlorothiazide (the same

drug as shown in Figure 5.6).

For rs3731710, 9 of 72 drugs evaluated showed a significant correlation (nominal P

= 0.84 compared to the 44 QT SNPs evaluated). We searched the literature and found

that γ-aminobutyric acid receptor-interacting factor 1 (GRIF-1, the protein encoded

by TRAK2) in fact binds to the potassium channel Kir2.1 (KCNJ2), a known LQTS

gene [8], and facilitates proper trafficking to the cell surface [39].

Finally, we investigated the correlation between the 44 QT SNPs and LQTS

frequency for the combination of ceftriaxone and lansoprazole (692 patients). We

observed significant correlations (P < 0.05) for rs2273905 (ANKRD9, Spearman cor-

relation = 0.90), rs2298632 (TCEA3, Spearman correlation = 0.90), and rs6669543
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Figure 5.9: Correlation between rs2273905 (ANKRD9) and LQTS for ceftriaxone/
lansoprazole. Left: Variably binned genetic data with QT-prolonging allele labeled
red. Middle: Predicted PCs for patients prescribed ceftriaxone/ lansoprazole; patients
with prolonged QT are labeled in red. Right: Correlation between QT allele frequency
and LQTS frequency.

(NOS1AP, Spearman correlation = -0.90). See Figure 5.9 for the correlation between

rs2273905 and QT prolongation following exposure to ceftriaxone/ lansoprazole.

5.5 Discussion

The advances in genetics, both in research and the clinic, are significant and contin-

uously expanding. Genetic studies are done more frequently in varying capacities.

However, it can still be difficult to conduct research that yields optimal results, as

organizing a specific study population is not a simple process. On the other hand,

clinical data are abundant but limited by issues of missigness and inaccuracy [50].

This is especially an issue since the EHR can be used as a resource to identify adverse

drug reactions and disease subgroups, providing more informed recruitment criteria

for genetic studies [61]. Currently, clinical data are not being used to full capacity to

support more informed genetic research. One clear example is the limited ancestry

information in the EHR. Here, we analyzed data from the EHR in conjunction with

existing genetic data at Columbia. We then utilized the EHR to predict ancestry,

expanding the classification possibilities from clinical data.
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In this study, we collected anonymized genetic data from individuals that con-

sented to have their results used for research and merged our datasets, using 6,544

common variants from the 1000 Genomes populations [19] as a reference. We con-

ducted principal components analysis on the genetic data and matched the genetic

data to clinical information from the EHR for the same individuals. A relatively small

number of samples with genetic data (4,268 total across 1000 Genomes, HapMap,

and IGM) limited our search for common variants. Future work can incorporate

larger genetic datasets such as the Exome Aggregation Consortium (ExAC; 60,706

unrelated samples with 7,404,909 high-quality variants) [80], or more recent genome

Aggregation Database (gnomAD; 123,136 exome sequences and 15,496 whole-genome

sequences), to include rare variants. We then used machine learning (Random Forest

regressor) to predict PC values using the clinical data, and refined our model to in-

clude the most predictive clinical data. While this model generally yielded accurate

predictions, we found that the model had difficulty in correctly predicting the “tails”

of PC1/ PC2 space (e.g. patients of African or Asian ancestry). In the future, we

will attempt to address these limitations by investigating the use of more performant

algorithms such as deep learning [79].

As a proof-of-concept, we investigated the genetic bases of drug-induced long

QT syndrome (LQTS), a genetic or acquired change in the heart’s electrical activ-

ity that can increase risk of the potentially fatal ventricular tachycardia Torsades

de Pointes (TdP) [118]. We were surprised to see that for the two most frequently

LQTS-correlated SNPs (SLC8A1 and ATP1B1), drugs with a congenital link in Cred-

ibleMeds were depleted. This may be due to the fact that these drugs were assigned

on the basis of more anticipated mutations (i.e. those in KCNH2, KCNQ1, etc. [2])

rather than the genes we investigated. Of note was the observation that drugs with

a conditional link were significantly enriched. CredibleMeds defines a drug with a

conditional link as “associated with TdP BUT only under certain conditions of their
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use (e.g. excessive dose, in patients with conditions such as hypokalemia, or when

taken with interacting drugs) OR by creating conditions that facilitate or induce TdP

(e.g. by inhibiting metabolism of a QT-prolonging drug or by causing an electrolyte

disturbance that induces TdP)”. Follow-up analyses can focus on searching for ab-

normal electrolyte laboratory values for these patients or frequent co-administration

of additional drugs that may be exacerbating the effects of the conditionally-linked

drug.

The consistently negative significant correlations for rs12061601 (ATP1B1) also

warrant further investigation. We only investigated the 44 SNPs from a previous

LQTS GWAS [2] that had the same directionality of QT interval change in cohorts

of European and African ancestry (i.e. the same allele led to QT prolongation or

shortening for both cohorts). We ensured that the coded allele investigated for each

variant was set to be the QT-prolonging allele identified in the GWAS. However,

16 additional variants in the GWAS were significantly associated but led to QT

prolongation in one ancestry and QT shortening in the other. It is therefore possible

that the demographic composition of our EHR led to a similar inconsistency for this

variant.

Additionally, we found that one of the control SNPs evaluated (rs3731710,

TRAK2) was associated with drug-induced LQTS for nine drugs. This unexpected

finding is supported by a previously discovered role for TRAK2 in proper trafficking

of the Kir2.1 channel encoded by KCNJ2, a known LQTS gene [39]. As we continue

to optimize our ancestry prediction pipeline, we anticipate we will be able to identify

other (potentially novel) variants with links to drug-induced LQTS.

A number of parameters remain to be explored in more detail, including allowing

patients to be heterozygous for a trait in calculating allele frequencies; modifying

the LQTS phenotyping strategy (e.g. setting a ∆QTc threshold such as 10 ms); and

further optimizing the tree ensemble SD cutoff for the prediction quality filtering. We
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can also explore other approaches such as Gaussian mixture models for binning regions

of principal component space. Importantly, use of more granular bins would facilitate

the investigation of subgroups within Europeans, Africans, and other ancestries.

5.6 Conclusion

In this chapter we developed a new machine learning approach for predicting genetic

ancestry using only clinical data. These predictions can be used to assign proxy

genomes to patients in the electronic health record for whom genetic data was pre-

viously unavailable. As a proof-of-concept we investigated the effect of multiple QT-

prolonging variants on incidence of drug-induced long QT syndrome for recognized

individual drugs and a predicted drug-drug interaction. There remain a number of

parameters in this pipeline to optimize. Nonetheless, this strategy shows promise in

enabling the study of genetic bases of disease and drug response at scale.

5.7 Acknowledgments

I would like to thank Kayla Quinnies and Rami Vanguri for their invaluable help in

collecting and processing the genetic data at Columbia, implementing the ancestry

prediction pipeline, and analyzing the results. I would also like to thank Hongjian Qi

and Wendy Chung for providing the principal component data for the Chung cohort

used in this study.

111



Conclusion

The prediction and mechanistic evaluation of drug-drug interactions that cause long

QT syndrome (LQTS) is a fascinating case study for the application of data sci-

ence approaches to translational research. LQTS is an extensively characterized and

actively researched side effect across academia, regulatory agencies, and the phar-

maceutical industry with comprehensive genetic and pharmacologic resources; how-

ever, these developments – from databases such as CredibleMeds to new regulatory

paradigms such as CiPA – have only reached a mature state for the study of drugs ad-

ministered individually. There has therefore been a rich opportunity to apply a range

of data science methodologies to further characterize this side effect in the context of

polypharmacy, a routine situation for an ever-increasing number of patients.

In this thesis we have made strides towards addressing this research question

with a number of contributions to both data science and LQTS physiology. From a

data science perspective, we demonstrated that a latent signal detection strategy can

be applied to adverse event reports, corroborated in electronic health records, and

validated experimentally to predict new QT-prolonging drug-drug interactions (QT-

DDIs). We also developed a new biological network analysis algorithm for adverse

event detection, as well as a machine learning approach for predicting genetic ancestry

using only clinical data. The pipelines developed in this thesis could readily be

adapted to other channelopathies (e.g. Brugada syndrome, AV conduction block).

We have also contributed to the LQTS field by using data science to generate a set
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of high-confidence predicted QT-DDIs. We explored our top prediction (a QT-DDI

between ceftriaxone and lansoprazole) in greater detail and found that the interaction

appears to be specific to these two drugs rather than being a drug class effect. En-

couragingly, an independent group presented case studies following the publication

of this work that showed this to be the case as well; they further demonstrated that

combination therapy with ceftriaxone/ lansoprazole causes torsades de pointes (the

ventricular arrhythmia that can lead to sudden cardiac death) at higher frequencies

than most known QT-prolonging drugs [78]. We also demonstrated a proof-of-concept

pipeline for investigating the genetic bases of drug-induced LQTS at scale by predict-

ing the genetic ancestry of patients in the EHR.

There are multiple avenues for expanding upon this work. Chief among them

is the need for additional integrative analyses spanning multiple data modalities.

In this thesis we described multiple combinations of spontaneous reporting sys-

tems (FAERS), electronic health records (EHRs), medication-wide association stud-

ies (MWAS), patch clamp electrophysiology (ePhys), protein-protein interaction net-

works (PPINs), chemoinformatics (Chem), and genetic data (Gen). In Chapter 1 and

Chapter 2 we combined FAERS, EHRs, and ePhys. In Chapter 3 we merged PPIN

analysis with MWAS, and in Chapter 4 we combined Chem and PPIN. Finally, in

Chapter 5 we combined both EHRs and Gen. The success we observed in merging

these datasets suggests that future work could go even further in building pipelines

that integrate all of these modalities.

Another goal for future work can be to expand the QT-DDI (and indeed DDIs

for any side effect) to three or more concomitantly prescribed drugs. The CDC

estimates one third of Americans are concurrently taking two or more prescription

drugs, and over 20% take three or more drugs. While the number of reports in FAERS

and number of patients in EHRs will decrease as more co-administered drugs are

investigated, the ever-increasing number of reports in FAERS and evidence-sharing
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strategies such as those implemented by OHSDI (Observational Health Data Sciences

and Informatics) create the environments for conducting these analyses.

The field of structural biology offers an additional source of data to be further

explored in the prediction of QT-DDIs. Protein 3D structures acquired and analyzed

using X-ray crystallography [103], cryo-electron microscopy [157], and molecular dy-

namics [132, 133] all offer the opportunity for further interrogating the molecular

mechanisms of drug-induced LQTS as well as testing the effects of known and newly

identified mutations on channel structure and function. One opportunity in this area

would be the development of new ligand docking approaches for DDIs that concur-

rently account for the steric and electrical effects of each drug.

For now, experimental validation remains critical to demonstrating the sensitivity

and specificity of novel algorithms to both clinicians and regulatory agencies. Future

advances could attempt to predict experimentally measured parameters (e.g. per-

centage of cardiac ion current block) directly, lessening the need for comprehensive

experimental validation over time.

The machine learning algorithms used in this thesis were sufficiently performant

for both supervised learning (logistic regression, random forests) and unsupervised

learning (k-means clustering). Future work could benefit from increased characteri-

zation and use of deep learning approaches [79], especially as applied to unstructured

data in the clinical notes. Recent work from our group in studying stroke suggests

that word embedding and recurrent neural networks (RNNs) applied to clinical notes

is a promising strategy for improved phenotyping and ultimately for prediction.

Just as the CiPA initiative aims to develop in silico and in vitro assays that are re-

liable surrogates for a drug’s ultimate safety, our goal should be similarly far-reaching

in the study of DDIs. We believe that an ultimate goal of this research should be

a continuously updated resource such as CredibleMeds but for DDIs. Qualification

for inclusion in such a database would be evidence obtained from multiple indepen-
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dent data sources including adverse event reports, electronic health records, in silico

modeling of biological networks and/ or cardiac action potentials, in vitro electro-

physiology of cardiac ion channels, and prospective in vivo evaluation under a con-

trolled clinical trials setting. Such a resource could be utilized by regulatory agencies,

clinicians, pharmaceutical companies, and patients to make more informed decisions

about polypharmacy and ultimately direct the development of safer drugs.
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Appendix A

Machine learning primer

A.1 Machine learning defined

Machine learning is a field within artificial intelligence concerned with giving com-

puters the ability to learn without being explicitly programmed [125]. We wish to

predict a given outcome measurement (e.g. categorizing an incoming email as spam

or non-spam) using a set of features (e.g. words and punctuation within a given

email). A “supervised” machine learning algorithm is initially presented with a data

set where the outcome variable is present (a collection of emails pre-labeled as spam

or non-spam); the algorithm then identifies patterns within this training set. After

this learning process is complete, the model can apply these patterns to make predic-

tions about previously unseen data in the test set (a new email). For the purposes of

the MADSS study (Chapter 3), we wished to classify a drug as causing or not causing

an adverse event (AE) using the AE neighborhood connectivity scores as features. A

key concern in machine learning is overfitting, where a model is built that is overly

specific to the training data and thus suffers when attempting to generate predictions

for new data.
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Figure A.1: Overview of random forest algorithm. Each decision tree is grown using
bagging (e.g. only rows 1, 3, and 4 are used to build tree T1), and random feature
selection (e.g. only feature D is used to create the first split of T1). Characterization
of classifier performance is done using out-of-bag (OOB) predictions. In this example,
item 5 (which was not in the bootstrap sample for T1, T2, T4, and T7) can be applied
to these trees. The classification with the most votes (green) is assigned, in this case
correctly.

A.2 Random forests

Random forests are a learning method that utilize a collection of decision trees con-

structed during model training; each decision tree casts a “vote” as to what class (e.g.

causing or not causing an AE) should be assigned. In the case of a random forest

classifier the majority vote is used [12], and in the case of a regressor an average

across all the votes is taken.

Two key elements of random forests are bootstrap aggregation (bagging) and

random feature selection. Bagging reduces variance by randomly selecting only a

subset of the training data set to grow each decision tree [45]. Additionally, only a

randomly selected subset of features are used when creating each split of the decision
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tree. The algorithm is designed such that using large numbers of trees does not cause

the model to overfit [12].

Characterization of a binary classifier’s performance requires knowledge of the

tested item’s true class. Therefore, classifiers such as logistic regression rely on cross-

validation to estimate performance; in this scheme, a fraction of the training data set

is left out during the learning process and used as the test data. However, an impor-

tant characteristic of random forests is the ability to use out-of-bag (OOB) predic-

tions to characterize classifier performance, eliminating the need for cross-validation.

Because each tree is constructed using a subset of the training data set, a given ob-

servation zi can be evaluated using only the trees constructed for which zi was not

in the bootstrap sample (Figure A.1). Thus random forest classifier performance can

be estimated concurrent with training.

The number of trees in each forest and the number of features selected for each

split in the decision tree can be selected by the user. In general using fewer features

for each split helps minimize correlation between trees [45].

A.3 Acknowledgments
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Appendix B

An online resource for exploring
drug-induced QT prolongation

B.1 ∆QT Database

Prolongation of the QT interval on the electrocardiogram (Long QT Syndrome) can

increase the risk of torsades de pointes (TdP), a potentially fatal ventricular tachy-

cardia. While much is known about the TdP risk of individual drugs [164], recent

work from our group has begun to elucidate the QT-prolonging effects of drug-drug

interactions [85, 86].

Retrospectively collected data such as spontaneous reporting systems (e.g. FDA

Adverse Event Reporting System, FAERS) and electronic health records (EHRs) pro-

vide opportunities for systematically generating and corroborating hypotheses about

drug-induced QT prolongation [85, 86]. Standardization approaches (e.g. Obser-

vational Health Data Sciences and Informatics, www.ohdsi.org) allow for evidence

sharing between researchers at different institutions [83], but the underlying data have

remained siloed to preserve patient privacy. FAERS contains adverse event reports of

prolonged QT intervals and TdP but not QT interval changes in milliseconds. To our

knowledge, no large-scale publicly available resource currently exists for investigating

the effects quantitatively of one or more concurrently taken drugs on QT interval

prolongation.
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Table B.1: Demographic characteristics of patients in ∆QT Database.

Male Female

N 59,061 58,492

Age (mean ± SD) 60.2 ± 16.4 61.1 ± 18.0

Race (% of group)

         White 53.0 44.7

         Black 13.6 14.5

         Other 33.4 40.8

QTc  500 ms (%)

         Baseline 4.3 3.0

         Post-drug 21.4 18.2

Median QTc (ms) [IQR] 19 [6, 41] 17 [5, 37]

Here we present ∆QT Database (www.deltaqt.org), a deidentified database of

EHR data combined with an interactive web-based platform that allows users to

explore the effects of one or more drugs on the QT interval. Importantly, we provide

users with the ability to download these data for use in their own studies.

To create ∆QT Database (∆QTDb), we first mapped EHR data from NewYork-

Presbyterian Hospital/ Columbia University Medical Center to the OHDSI common

data model (CDM), allowing drug exposures to be queried using standard vocabular-

ies. We linked drug exposures to heart rate-corrected QT (QTc) intervals extracted

from 236,577 electrocardiogram (ECG) reports [86].

We calculated changes in QTc interval for each patient by comparing his/her

baseline to the QTc observed after exposure to one or more drugs. We defined each

patient’s baseline QTc interval as the median QTc across all of his/her ECGs. We

define an “ECG era” as one or more ECGs occurring within 36 days of the previous

ECG (Figure B.1); the OHDSI CDM similarly groups multiple subsequent drug ex-

posures into a “drug era”. Because follow-up visits are frequently scheduled in units

of weeks, we allowed for 5 weeks plus 1 day for a post-exposure ECG to be per-

formed. In previous work we established this 36 day limit to minimize the potential

for additional confounding drug exposures or interventions [145]. For each ECG era
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Figure B.1: Sample patient timeline describing the calculated changes in QT interval
using retrospectively collected electronic health record data. A patient’s baseline is
defined as the median QTc (heart rate-corrected QT) interval across all of his/her
recorded ECGs. We group multiple subsequent ECGs into an “ECG era” (up to
36 days allowed from one ECG to the next). For each ECG era we calculate the
change in QTc interval as the difference between the maximum QTc interval for that
era (maxECG) and the globally defined baseline. We then collect all drug exposures
occurring up to 36 days before the maxECG date.

we selected the ECG corresponding with the maximum observed QTc interval (max-

ECG) and then collected all drug exposures from 0 to 36 days (inclusive) before the

maxECG date (Figure B.1).

In preparation for public release we used the HIPAA Safe Harbor rules as our

minimum criteria for patient deidentification. After removing the 18 Safe Harbor

identifiers, we included patients who had at least two ECGs and were exposed to

one or more commonly prescribed drugs (defined as >3000 patients prescribed in our

EHR; N=259). We additionally excluded patients younger than 18 or older than 89

at the time of their ECG and randomly adjusted this age ± 0-5 years.

To further deidentify the data, we randomly swapped a small subset of drug

exposures from one patient “ECG era” to another. To ensure that drugs with a

small effect on the QT interval were swapped more frequently than those with a

larger effect, the swap frequency (minimum 1/1000%, maximum 1%) was set to be

negatively correlated with the drug’s observed median ∆QTc interval. In total, 6.5%

of patients had at least one swapped drug.

Common risk factors for drug-induced TdP include electrolyte imbalances (pre-
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dominantly hypokalemia and hypomagnesemia), as well as other cardiac conditions

such as atrial fibrillation, heart failure, myocardial infarction, left ventricular hy-

pertrophy, structural heart disease, bradycardia, paced rhythms, premature com-

plexes, heart block, and/ or conduction delay [67, 126, 167]. We therefore determined

whether each patient included in the database experienced electrolyte imbalances (hy-

pokalemia and/ or hypomagnesemia) or the above cardiac comorbidities. We required

that electrolyte imbalances occurred within 36 days before or after the maxECG date.

We defined hypokalemic status as a direct diagnosis (ICD-9 276.8), an abnormal lab

value for potassium in serum or plasma (< 3.5 mmol/L), and/ or administration of

potassium chloride. Similarly, we defined hypomagnesemic status as a diagnosis of

ICD-9 275.2, magnesium levels in blood or plasma < 1.8 mg/dL, and/ or prescription

of magnesium sulfate, -oxide, or -gluconate. For cardiac comorbidities, we required

that patients were recorded with the associated diagnosis code(s) (and for bradycar-

dia, a recorded heart rate < 60 BPM) anytime before and up to 36 days after the

maxECG date.

The final database contains 117,553 patients exposed to one or more of 259 com-

monly prescribed drugs (Table B.1). Use of these data was approved by the Columbia

University Institutional Review Board. The protocol we used to deidentify the data

and all source code is maintained on the ∆QTDb website.

The FDA has established a QTc interval of 500 ms as a threshold for clinical

concern. Each “entry” in the database therefore contains i) an arbitrary patient ID

number; ii) the ECG era number for that patient; iii) demographic information: sex,

self-reported race (white, black, other [including Hispanic]), adjusted age; iv) the

drugs the patient was exposed to in the ECG era; v) binary indicators describing

whether the patient’s baseline and maxECG QTc intervals exceed 500 ms; vi) the

change in QTc interval between baseline and maxECG (milliseconds); vii) a binary

indicator describing the presence of hypokalemia and/ or hypomagnesemia; and viii)
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Figure B.2: Example screenshot from ∆QT Database (www.deltaqt.org) showing
histogram of the QT prolongation observed for amiodarone, a known QT-prolonging
drug.

a binary indicator describing the presence of one or more cardiac comorbidities.

We created a front-facing web interface using Python and JavaScript to allow users

to explore the underlying database (Figure B.2). Users can investigate the effects of

one drug, multiple drugs, and/ or drug classes, and the entire database is available

for download.

We validated our ECG era procedure by comparing the median change in QTc

interval (∆QTc) for a given drug to the median ∆QTc observed across the entire

database. We performed this comparison for the 48 drugs in the database with

known, congenital, possible, or conditional links to QT interval prolongation (www.

CredibleMeds.org) and for the 211 drugs not present in CredibleMeds (Table B.2).

We further confirmed that our drug swapping procedure described above did not

affect these results.

∆QTDb has several limitations that predominantly stem from the strict inclusion

and deidentification procedures we employed. For example, a given patient’s ∆QTc

in an ECG era could be due to a rarely prescribed drug that was recorded in our
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Table B.2: Results of ECG era validation.

Positive 0 or Negative

Known 10 2
Congenital 7 1
Conditional 8 9

Possible 4 7
Not in 

CredibleMeds
126 85

Difference in median QTc: 
drug – entire database

C
re

d
ib

le
M

ed
s

We compared the median change in QTc interval for each drug to the median change
observed across the entire database. Results have been grouped by risk category in
CredibleMeds and for all drugs in ∆QTDb that are not in CredibleMeds.

EHR but not included in the publicly released dataset. Additionally, we could not

recapitulate the QT-prolonging effects of 17% of known drugs in CredibleMeds. This

could be due to the demographic distribution of our EHR [50]. These limitations

could be largely addressable by incorporating data from additional OHDSI sites in

the future. We hope that this resource will aid researchers in corroborating their

hypotheses and conducting their own data mining studies.
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