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ABSTRACT 

Computer-based Number Categorization as an Intervention for Computer-based Number Line 

Estimation 

Ama Awotwi 

 
 
The number line is a versatile tool. When used in estimation, it can serve as a visual 

representation of number. This study evaluated the relationship between sorting numbers by 

magnitude and number line estimation performance. Fifty-eight participants in Grades 1, 2, and 3 

estimated values on a 0-100 number line over four sessions. During two intervention sessions 

they sorted numbers into 5 categories either linearly or nonlinearly before they estimated the 

same target values. The linear group’s number line estimates had less error than the nonlinear 

group’s estimates at posttest. In particular, the participants who started with low numeracy scores 

in the linear group outperformed their counterparts in the nonlinear group on the number line 

estimation task. Computer-based number categorization supports computer-based number line 

estimation skills when numbers are categorized linearly. This finding extends the 

representational mapping hypothesis to computer-based scaffolds.  

 

Keywords: number line estimation, number categorization, magnitude, representational mapping 
hypothesis, computer-based 
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Chapter 1 

Introduction 

Mathematics is all around us. Numbers, but one segment of mathematics, are 

omnipresent in our culture. Whether it is locating a building, grocery shopping, taking public 

transportation, or visiting the doctor, the use of numbers is inevitable. Further, it is not enough to 

only know how to count; numbers must have meaning beyond rote counting. Children come to 

school with informal numerical knowledge and need to learn formal mathematics, “a written, 

codified body of material conventionally defined and agreed upon” (Ginsburg, 1997, p. 23). How 

is numerical knowledge learned? What tools do children use to translate informal numerical 

knowledge into understanding about larger exact quantities? 

Core Knowledge 

 A variety of theories exist to explain numerical development and how number is 

understood. Feigenson, Dehaene, and Spelke (2004) propose the presence of two core systems 

that comprise the foundation of numerical understanding.  The two systems behave slightly 

differently for infants and adults.  Core system 1 addresses approximate representations of 

numerical magnitudes.  Core system 2 regards the precise representations of distinct individual 

numbers.  

Core system 1. 

Large numbers can be discriminated without counting and such discriminations “are 

ratio-dependent and robust across modalities” (Feigenson et al., 2004, p. 309). The ability for 

babies to discriminate between large numbers of items depends on the quantitative relationship 

between the numbers (i.e. the ratio) and does not depend on the type of item: for example they 

could be discrete objects or tones. Research controlling for continuous variables, such as 
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perimeter, area, and density, shows that infants are able to distinguish between large numbers of 

things (e.g. 8 and 16 dots) with ratios like 1:2 (Xu & Spelke, 2000). Youths and adults are also 

able to judge large numerosities without counting regardless of modality (e.g. auditory or visual) 

(Barth, Kanwisher, Spelke, 2003) up to the ratio 7:8. 

Core system 2. 

Small numbers of individual objects can be tracked by preverbal children. Infants judge 

the absolute number of items and can distinguish between 1 versus 2 and 2 versus 3.  In studies 

in which infants see objects hidden, babies search for discrete objects up to and including the 

number 3. In adulthood, as with infants, people are especially skilled at enumerating 1 to 4 items, 

which is known as subitizing: enumerating when there are fewer than four items (Trick & 

Pylyshyn, 1994).  Though some adults can subitize up to 7 items, adults’ are able to recognize 1 

to 4 items rapidly and with an accuracy that greatly decreases for more than 4 items. 

Core systems 1 and 2 are independent systems, yet Spelke and Kinzler (2007) cite three 

overlapping properties regarding number representations that the systems share: number 

representations are 1) “imprecise, and their imprecision grows linearly with increasing cardinal 

value” (p. 90); 2) abstract; 3) comparable and can be combined. Feigenson, Dehaene, and Spelke 

(2004) cite a limitation of their theory as being the lack of reference to the development of exact 

large numbers, or “fractions, square roots, or negative numbers” (p. 307). An additional 

limitation of this theory is that it is comprised of two separate systems that differ in adults and 

children. Ideally a theory would be integrated and have continuity across the developmental 

spectrum. 

“Darwinian Competition” Theory 
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Geary (2006) frames the process of mathematical development as analogous to the 

processes of evolution. Children’s mathematical competence and general cognitive development 

can be understood through consideration of variability, competition, and selection (Geary, 2006). 

Goal activation and activation of goal-related information dictates where attention is directed 

within the problem-solving space. Unlike the Core Knowledge Theory, this theory allows for 

many competing problem-solving strategies. “Multiple facts, concepts, and procedures are 

simultaneously activated” (p. 800), and from this the need for inhibiting less useful information 

arises. Not all of this process is explicit. At the neuronal level competition occurs for which 

neuronal groups will be activated and this leads to variation in the expression of strategies.  

A key part of the mathematical development process is consistent selection of 

advantageous (i.e. successfully goal-achieving) strategies. Geary states that associative memory, 

memory in which an association is formed between two or more things (e.g. strategies), is one 

integral component of strategy selection and it leads to “greater variation in the number of 

processes that can be used to achieve a goal, thus greater competition among the processes” (p 

801).   

The Darwinian Competition theory can be seen in the development of basic addition 

skills. Early addition strategies involve counting all of the items in each addend. A student may 

eventually adapt to “counting on”: starting from largest addend and counting the smallest addend 

by ones. In the final stages of the evolution of basic addition a student can retrieve sums from 

memory without counting at all.  According to Geary (2006), “direct retrieval eventually gains a 

selective advantage over execution of counting procedures,” (p. 801) most likely due to speed of 

retrieval and lower working memory demands. The speed of retrieval and accuracy lead to 

memory being a more reliable process than counting strategies – “the goal is achieved before 
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execution of alternative processes” (p. 801). Goal achievement may reinforce the selected 

strategy (i.e. retrieval) and inhibit alternative processes. 

Integrated Theory 

While Geary’s evolutionary theory can include all types of numbers (e.g. fractions, 

negatives), it does not provide specifics for early number development other than to delineate it 

as comprising biologically primary competencies. (For examples see Geary 2006.) Siegler, 

Thompson, and Schneider (2011) propose a theory of numerical development that “emphasizes a 

key developmental continuity across all types of real numbers” (p. 274). Their integrated theory 

of numerical development, which Siegler (2016) later expounds on and expands, outlines 

numerical development from non-symbolic to rational numbers. The theory has four overlapping 

types of changes that occur over development and can be summarized in six main claims, which 

will be stated here. The overarching theme of the theory is that numerical development is the 

“generation of increasingly precise magnitude representations for an increasingly broad range of 

numbers” (Siegler, 2016, p. 342). 

According to the theory the four overlapping outcomes of the developmental process are: 

“(1) generating increasingly precise representations of numbers expressed non-symbolically; (2) 

connecting symbolic to non-symbolic representations of the magnitudes of small whole numbers; 

(3) extending the range of whole numbers whose magnitudes can be accurately represented; (4) 

progressing beyond whole numbers to accurately represent the magnitudes of an increasing range 

of rational numbers” (p. 342).  The integrated theory can be summarized as the following six 

points: 

1. All rational numbers are represented on a mental number line 
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2. Magnitude representations go from compressed to linear within certain number 

ranges with smaller numbers becoming linear earlier than larger ones 

3. The knowledge that real number properties do not apply to all numbers, but that all 

numbers possess magnitude is key to rational number development 

4. Association and analogy are two of the many processes that are essential to numerical 

magnitude development 

5. Magnitude knowledge is at the foundation of numerical development; thus magnitude 

knowledge is “correlated with and causally related to other aspects of mathematics” 

(p. 343) 

6. Interventions designed to improve magnitude knowledge will have positive effects on 

other aspects of mathematics (Siegler, 2016).  

The integrated theory encapsulates the previously mentioned theories of numerical 

development and improves upon them by incorporating all rational numbers. Further, the theory 

captures numerical development from birth to adulthood. Siegler (2016) acknowledges that 

numerous processes affect numerical development and acknowledges the role of other 

mathematical domains in numerical magnitude development, such as spatial reasoning. The 

intersection between numerical development and spatial reasoning will be addressed in later 

sections. 

Numerical Development 

Despite the differences between the theories of numerical development, at the core they 

all share common mathematical tenets regarding counting and numerical magnitude. Common 

principles of enumeration exist across all theories of numerical development. Gelman and 

Gallistel (1978) outline five counting principles that bring clarity and precision to discussions 
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regarding enumeration. The five principles are: one-to-one, stable order, cardinal, abstraction, 

and order irrelevance. Each is described here. 

In the one-to-one principle each item to be counted must correspond to one and only one 

tag (e.g. count word). In order for this to occur enumerators must simultaneously track the items 

to be counted along with those that have already been tagged. Furthermore, the tagging system 

will only be effective if the counter has a set of unique tags from which to draw upon. 

Having a unique set of tags is not sufficient when counting; the order of the tags must 

stay constant. For example, if a young child consistently uses the words ‘one’, ‘two’, ‘three’ to 

count three objects, yet changes the order of the counting words, the final count word will be 

different. The stable order principle, which states that the order of tags stays constant, is 

essential for cardinality. 

When counting the last tag given to an item is the cardinal number and is used to 

represent the entire set: the cardinal principle. This principle is contingent upon the one-to-one 

and stable order principles. To successfully apply the cardinal principle enumerators must track 

the final tag and be able to respond with such when asked the question ‘How many?’ 

The abstraction principle defines to what the preceding principles may be applied or, in 

short, what can be counted. Any set of discrete objects can be counted and the items may be 

counted in any order, which is the order irrelevance principle. Gelman and Gallistel (1978) state 

“the same cardinal number results regardless of order of enumeration” (p. 82).  

To move beyond rote counting enumerators must connect counting words to magnitude. 

Children must know that “each word’s position…relates directly to its meaning – the farther 

along a word occurs in the list the greater numerosity it refers to” (Wynn 1992, p. 220). This is 
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the concept of ordinality: “successive number words represent successively larger quantities” 

(Geary, 2006, p. 786). 

Furthermore, the connection must be made between numbers, symbolic numbers (e.g. 

Arabic numerals), and magnitude. The intersection of numerals and magnitude is the mental 

number line.  

Mental Number Line 

Moyer and Landauer (1967) demonstrated that when comparing two single digit 

numbers, participants took longer to make judgments when the numbers were closer together in 

magnitude. Additionally, participants made more errors when the numbers being compared were 

closer together in magnitude. Moyer and Landauer (1967) state that “the results strongly suggest 

that the process used in judgements [sic] of differences in magnitude between numerals is the 

same as, or analogous to, the process involved in judgements [sic] of inequality for physical 

continua” (p. 1520), such as the lengths of lines.  In other words, mentally comparing number is 

like comparing actual physical distances, suggesting that number is situated on a mental number 

line and different numbers correspond to different distances. 

In an experiment similar to Moyer and Landauer’s (1967), Restle (1970) had participants 

choose which was larger between the sum of two numbers (A + B) and a third number (C). 

Restle (1970) found that when A + B was far from C participants were faster and more accurate 

with making a decision.  Further, when A was far from B speed and accuracy also increased. 

When the difference between A+B and C was small and required more precision, time to answer 

increased, as did the number of errors. Restle hypothesized a model of participants using “a 

number line, an analog system having distinctive markers,” (p. 277) to make magnitude 

judgments. 
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The patterns that Moyer and Landauer (1967) and Restle (1970) observed later came to 

be known as the distance effect and the magnitude effect. The distance effect specifies that it is 

easier and quicker to judge comparisons of numbers that are far apart as opposed to closer 

together (Dehaene, 2011). For example, it is easier to judge which is larger between 10 and 60 

than to judge between 63 and 65. The magnitude effect is that for pairs of numbers that are 

equidistant the smaller pair will be easier to discriminate (Dehaene, 2011).  So if given 3 and 5 or 

63 and 65, people will take less time and be less prone to errors when judging the pair 3 and 5. 

Another well-documented effect that demonstrates the connection between number and 

spatial orientation and points to the existence of a mental number line is the Spatial-Numerical 

Association of Response Codes (SNARC) effect. Dehaene, Dupoux and Mehler’s (1990) study 

led to the discovery of the SNARC effect. In the study participants compared numbers and used 

either their left or right hand to indicate which digit was larger. Participants responded faster and 

more accurately when the larger number corresponded to the right and the smaller number was 

on the left side. The SNARC effect is seen even when the task is a parity task: judgment of odd 

or even and magnitude is irrelevant (Dehaene, Bossini, Giraux, 1993). The SNARC effect 

suggests that people’s mental orientation of number is with larger numbers on the right as with a 

number line. However, it is important to note the SNARC effect as described is found in cultures 

with left-to-right reading and writing orientation (see Ito & Hatta; Shaki & Fischer, 2008; 

Zebian, 2005 for examples of other orientations in other cultures). 

The SNARC effect as evidence of the existence of a mental number line has detractors. 

Santens and Geevers (2008) conducted a study that calls into question the argument that direct 

mapping occurs between numbers and direction. The study had participants respond unimanually 

and unidirectionally (left or right) to say if a number was close or far from a predefined standard 
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number. Participants were faster when close corresponded with smaller numbers and far 

corresponded with larger numbers regardless of direction. The authors present this as evidence 

that the spatial-numerical association is best explained by “an intermediate categorization of 

numbers as relatively small (- polarity) or large (+ polarity)” (p. 269). It is the intermediate 

categorizations that are linked to the response codes (i.e. close/far). 

Santens and Geevers (2008) hypothesize that the SNARC effect is not evidence of the 

existence of a mental number line and rather an intermediate step that exists between the spatial-

numerical association and the response codes. However, the evidence in support of a mental 

number line has been observed on a behavioral level as well as is well documented at the 

neuropsychological level (see Hubbard, Piazza, Pinel & Dehaene, 2005 and Umiltà, Priftis, & 

Zorzi, 2009 for reviews). Thus, this paper operates from the premise that the mental number line 

does exist and is a useful construct. 

While the SNARC effect posits the mental number line, it does not explain the origin of 

the mental number line. Number lines are directly taught in formal schooling as a tool for 

tracking and solving mathematical operations. In the words of Krasa and Shunkwiler (2009) 

“Number lines can also illustrate the conceptual underpinnings of nearly all elementary number 

skills… the number line provides a schematic image or mental template that children can rely on 

and abstract from” (p. 28). Additionally number lines are present in school indirectly, like in 

charts for tracking the days of the school year. Number lines are also visible in objects whose 

primary feature is not to teach number or mathematics (e.g. number keys on a computer 

keyboard). It is possible that the mental number line exists because people are inculcated with 

number lines through school and their daily environment. 

Number Line Estimation Task 
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The number line estimation task is the embodiment of the mental number line. The 

number-to-position (NP) task is done on an open line that typically has its endpoints marked with 

0 and 10, 0 and 100, or 0 and 1000. The task requires estimators to place target values on a line, 

usually one estimate at a time. As Siegler and Ramani (2011) explain, “the number line 

estimation task involves asking [people] to translate between numerical and spatial 

representations” (p. 345).  It is not surprising that number line estimation is considered both a 

numerical and spatial task since theorists propose that a close relationship exists between number 

and space (Mix & Cheng, 2012) and that relationship is evident during the number line 

estimation activity. 

Number line estimation incorporates elements of number, such as magnitude and 

symbolic number (i.e. Arabic numerals). Additionally, elements that are integral to comparing 

numbers, such as proportion and scale, are also present in the number line estimation task. 

Siegler and Ramani (2008) write that one “advantage of this task is that it transparently reflects 

the ratio characteristics of the formal number system” (p. 665).  For example, 30 is half of 60 and 

is located half as far from zero on the number line. Many mathematical elements are 

incorporated into the number line estimation task, yet the task’s design is simple and does not 

require outside knowledge (e.g. units), only the mental representations that are at the foundation 

of number. 

Mental representations. 

What are the underlying mental representations of number that are captured by the 

number line estimation task? Theorists do not agree on one mental representation. One view is 

that there are multiple different representations at play during number line estimation and the 

representation used depends on context and on development (Siegler & Opfer, 2003). This 
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multiple representation view proposes a developmental shift from estimates following a 

logarithmic curve to fitting a linear function (Siegler & Booth, 2004). The logarithmic mental 

representation is prevalent for a number range (e.g. 0 – 100) when children view smaller 

numbers as being further apart than actual and perceive larger numbers as being closer together. 

For example, the estimated location of 15 is near where 60 is actually located (Siegler & Ramani, 

2008). Gradually, with experience, the mental representation shifts to a linear representation 

(Ashcraft & Moore, 2012; Siegler & Booth, 2004) in which a one-to-one relationship exists 

between the number estimated and the target number (i.e. 15 is estimated near its actual 

location). 

 Another established perspective on the mental representation for number is grounded in 

the idea that number line estimation is a proportion-judgment task (Barth & Paladino, 2011; 

Cohen & Blanc-Goldhammer, 2011). The model is based on the premise that the number line 

estimation task requires consideration of part-whole relationships: the ‘part’ is the target number 

and the ‘whole’ is the range. Barth and Paladino’s (2011) proportion-judgment model, which 

extends the cyclical power model (Hollands & Dyre, 2000), proposes a power function to best 

describe estimates graphed against actual magnitudes. A power function captures a key feature of 

number line estimation data: the “systematic patterns of over- and underestimation” (Barth & 

Paladino, 2011, p. 126). Similar to the logarithmic-linear model, the proportion-judgment model 

has two parameters: β, the exponent which determines the shape of the power function that 

relates actual magnitudes and estimates, and W, which represents the subjective scale children 

use and “accounts for young children’s lack of knowledge of the magnitude of 100” (Barth & 

Paladino, 2011, p. 130). The model accounts for use of anchors or reference points (e.g. the 

midpoint) and misjudgment of the whole range (Barth & Paladino, 2011). While the model can 
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account for subjective judgments of the scale of the whole range, Barth and Paladino (2011) 

acknowledge that the model does not incorporate all of the variance that must be present in the 

estimates. In the authors’ words, “children ignorant of the magnitude of ‘100’ are unlikely to 

judge the presented numerals relative to a single stable whole magnitude across trials” (Barth & 

Paladino, 2011, p. 130). Further, it may be possible that children do not attend to the highest 

endpoint and thus do not use it when estimating. In spite of the model’s shortcomings, some 

theorists still consider the proportion-judgment model the best model for the underlying mental 

representation of number exhibited in number line estimation tasks (see Cohen & Blanc-

Goldhammer, 2011; Slusser, Santiago, & Barth, 2013; Sullivan, Juhasz, Slattery, & Barth, 2011) 

Some theorists are proponents of a segmented linear model as the mental representation 

of number underpinning number line estimation (Ebersbach, Luwel, Frick, Onghena, & 

Verschaffel, 2008; Moeller, Pixner, Kaufmann, & Nuerk, 2009; Moeller & Nuerk, 2011). The 

segmented linear model proposes using at least a two-phase linear model, two different 

regression line segments, to account for children’s understanding of number. One line segment 

fits familiar numbers, while another segment with a lesser slope fits the unfamiliar numbers. The 

“change point”, the point where the two line segments break, is considered the point at which 

children began to discriminate less between numbers (Ebersbach et al., 2008). (Moeller et al. 

(2009) propose a fixed change point at the number 10.) Thus, Ebersbach et al., (2008) propose 

that a segmented linear model, in addition to being a simpler model, provides more useful 

information than the dominant logarithmic-linear model. 

Regardless of the underlying structure, theorists agree that the locations of larger 

numbers are more difficult to estimate than smaller numbers. Furthermore, regardless of the 

mathematical function that is used to describe the shape of the mental representation in its early 
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stages, theorists are in agreement that a linear function or a linear-looking function is the ideal 

mental representation. Finally theorists concur that the representation of number improves with 

numerical magnitude understanding. The number line estimation task measures the degree of 

linearity in this mental representation, which is one reason it is such a valuable activity. 

Number line estimation and achievement 

 In addition to being a measure of mental number representations, number line estimation 

as a numerical magnitude task is important for its connections to mathematics success. Cowan & 

Powell (2014) found that number line estimation accuracy is related to a range of arithmetic 

skills (i.e. calculation fluency, written arithmetic, word problems). Beyond the relationship 

between number line estimation accuracy and arithmetic, number line estimation performance is 

also related to mathematics achievement more broadly.  

Various studies (Ashcraft & Moore, 2012; Booth & Siegler, 2006; Siegler & Booth, 

2004; Sasanguie, De Smedt, Defever, Reynvoet, 2012) have documented the relationship 

between number line estimation and standardized mathematics tests. Sasanguie et al., (2012) 

found an association between number line estimation and curriculum-based standardized 

mathematics achievement test in grades K, 1, 2, and 6. The authors noted that the more linear 

estimates were associated with higher scores on the mathematics achievement test (Sasanguie et 

al., 2012). 

 The associations between number line estimation accuracy and mathematics success are 

not only evident in the short term (see Krasa & Shunkwiler, 2009).  Functional numeracy 

measures are assessments that tend to be more focused than achievement tests in that they assess 

“mathematical competencies that influence economic opportunity and other real-world 

outcomes” (Geary, Hoard, Nugent, & Bailey, 2013). Early number system knowledge, which 
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includes tasks like number line estimation, predicts performance on functional numeracy 

measures as much as six years later (Geary, et al, 2013). Geary et al. (2013) found that these 

results occur even after controlling for other important factors, such as intelligence, working 

memory, general mathematics achievement, and demographic statistics. The connection between 

early number system knowledge and later scores on functional numeracy measures suggests that 

number line estimation accuracy is essential beyond success in formal mathematics within 

school. The skills captured through number line estimation are an indicator for later life success. 

Number line estimation skills and strategies. 

What skills are needed for number line estimation? Sullivan, Juhasz, Slattery, and Barth 

(2011) identify that the “…[task involves] at least three number-related components: observers’ 

understanding of symbolic number systems, mental representations of numerical quantity, and 

strategies for mapping numerical information onto space” (p. 557). Let us examine these three 

components further. Estimators must be able to read symbolic number (e.g. Arabic numerals) 

and map magnitude onto the numbers they read. For example, if shown the number 63 an 

estimator would need to be able to read the numeral and have a sense of how much 63 is. The 

estimator’s “mental representation of numerical quantity” is the skill that allows her to draw 

meaningful relationships between different numerals, such as knowing that 63 is more than 50 

and less than 100. Finally, Krasa and Shunkwiler (2009) suggest an association exists between 

spatial skill and number-line placement accuracy. Specific strategies for mapping number onto 

space will be discussed in detail in the following section.  

Similar to the range of skills encompassed in number line estimation, a range of strategies 

exists for performing number line estimation. Some strategies are more effective than others, 

people’s degree of cognizance about strategy usage may vary, and no evidence suggests that 
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people exclusively use one strategy to estimate a target value. Siegel, Goldsmith, and Madson 

(1982) conducted an estimation study in which they identify the strategies used by estimators. 

While the authors’ study involved estimating length, height, and discrete quantity (numerosity), 

some of the ten strategies they identify still apply here. Benchmark comparison, also called 

anchor (Ebersbach et al., 2008; Siegler, 2016), landmark (Siegler & Opfer, 2003), reference 

point (Cohen & Blanc-Goldhammer, 2011), or simply benchmark (Ebersbach et al., 2008), is 

when comparison to another distance is used to estimate (Siegel et al, 1982). For example, a 

child may know the midpoint of a range and use that information to estimate numbers that are 

near the midpoint. Endpoints may be used as reference points. The use of landmarks 

demonstrates use of the proportional relationships referenced in the proportion-judgment model. 

However, it is not clear that proportions are used exclusively. For example, to estimate the 

number 53 a child may use the midpoint of the 0-100 range to orient herself, then may count up 3 

spaces to get to 53. Decomposition/Recomposition is another strategy and involves breaking the 

target value into parts and then recombining parts (Siegel et al., 1982) in order to place the 

estimate. For example, to estimate the number 40, a child may estimate ten four times. 

The distinctions between number line estimation strategies need further study. However, 

it is clear that the use of certain strategies results in more accurate estimates than others. Crites 

(1992), using the same strategy categories as Siegel et al. (1982), interviewed estimators and 

found that more highly skilled estimators used benchmarks and decomposition/recomposition, 

whereas less skilled estimators tended to not verbalize a strategy, to guess, or to inaccurately 

decompose. Ashcraft and Moore’s (2012) study of participants in Grades 1 through 5 and 

college-aged adults demonstrates a progression of strategies used by estimators. By analyzing 

variability in errors it appears participants in Grade 1 estimated from the origin, in an “origin-up” 
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(p. 266) strategy, whereas participants in Grade 2 estimated from both endpoints. By Grade 3 

evidence suggests participants are using the midpoint as well as the endpoints to estimate, a trend 

that continues and strengthens into adulthood. The developmental trajectory of strategies from 

the origin-up strategy to using the midpoint would suggest that perhaps Barth and Paladino’s 

(2011) proportional judgment model would not apply to all developmental groups of estimators. 

Beyond using the midpoint, data indicate that people may divide the number line into quarters 

(see Siegler & Opfer, 2003). Siegler & Opfer (2003) comment that, “… the number of landmarks 

may vary with task characteristics, but… relying on subjective landmarks is one effective 

strategy for generating linearly increasing estimates” (p. 242). Cohen & Blanc-Goldhammer 

(2011) also noted that the standard deviation of estimates was lower near reference points. 

Building number line estimation skills and strategies. 

Recognizing the importance of number line estimation, a few studies have sought to 

improve number line estimation skills or the underlying magnitude knowledge that number line 

estimation measures. Researchers have attempted to build number line estimation accuracy 

primarily through feedback and games. Below is a brief summary of several studies that focus on 

building number line estimation skills. 

Opfer and Siegler (2007) provided feedback to second grade participants at several points 

along the number line including at the point of greatest discrepancy between logarithmic and 

linear curves, 150, on a 0-1000 number line. The authors hypothesized that feedback at the 

greatest discrepancy point would lead to the greatest change because they supported the 

logarithmic-linear model as the mental representation underlying numerical development. 

Participants who received feedback were able to shift their representation from logarithmic to 

linear, with those who received feedback at 150, the point of greatest discrepancy on the 0-1000 
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range, making the shift faster than those who received feedback on other numbers. From their 

study Opfer and Siegler (2007) conclude that “feedback on numerical magnitudes [is] a potent 

source of change” (p. 190). 

Siegler & Ramani (2008) attempted to improve low-performing children’s number line 

estimation skills by introducing a linear numerical board game that children played in 15-minute 

sessions. The alternative to playing the linear numerical board game was to play a linear game 

with colors instead of numbers. The children who played on the numerical game board improved 

their number line estimation linearity and accuracy. The best fitting linear function accounted for 

52% of variance at pretest and 96% of variance at posttest. Percent absolute error (PAE) (see 

Siegler & Ramani, 2008), decreased from 28% to 20%, t(17) = 2.43, p < .05, d = .71, 

demonstrating a significant improvement in accuracy. The children who played the color board 

game did not show improvements on linearity (R2 was 73% at pretest and 36% at posttest), nor 

did number line estimation accuracy improve (PAE was 27% vs. 28%). Thus, playing the color 

board game did not impact children’s understanding of numerical magnitudes, whereas playing 

the linear numerical game significantly improved knowledge of numerical magnitudes.  

In 2009, Siegler and Ramani again tested linear numerical board games. However this 

time they contrasted linear numerical board games versus circular numerical board games and a 

group that did numerical activities. The number line estimates for the children in the linear board 

game condition were significantly more linear and more accurate. The best fitting linear function 

accounted for 22% of variance at pretest and 94% of variance at posttest. Accuracy was again 

measured as PAE and for the linear board game participants absolute error decreased from 

pretest (29%) to posttest (21%) (t (29) = 4.85, p < 0.001, d = 1.01). The group that played the 

circular board game had a small change in linearity (11% vs 26%) and a small but significant 
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decrease (improvement) in accuracy (29% to 26%, t (28) = 2.14, p < 0.05, d = 0.43). It is in this 

study that Siegler and Ramani (2009) propose the representational mapping hypothesis: “The 

greater the transparency of the mapping between physical materials and desired internal 

representations, the greater the learning of the desired internal representation” (p. 547). In this 

instance the desired internal representation was a linear number line, so a linear board game 

helped to improve learning that internal representation.  

Creighan (2014) investigated how MathemAntics Number Line (MANL), a digital 

number line activity, promotes number sense in Grade 2 children and particularly about the use 

of a flexible response range, the user-defined range (UDR). Suppose that a child sets the 

manipulatable range very wide, for example 20 numbers above and 20 numbers below the 

estimate number. If the target number is 41, and the child estimates that the number is 22, the 

estimate will be considered correct because it is within the ±20 answer range. But in the same 

situation, if the child sets the range to ± 2 of the target number, and estimates that it is 44, she 

will be wrong because 41 lies outside the range. A wide range is extremely tolerant of error and 

wary of risk; a short range is risky and intolerant of error.  This approach differs from the 

traditional paper-pencil number line estimation task that asks participants to locate a point on the 

line. 

While no effects were found on the number sense measures used in Creighan’s (2014) 

study, children’s performance on MANL improved over time. Further, Creighan (2014) found 

that prior number sense ability affects how children engage with MANL. Children with low 

number sense ability performed better with the fixed response range (FR) and children with high 

number sense ability performed better with the UDR. The children in the UDR condition, 

regardless of having low or high number sense ability, used better expressed strategies than the 
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children in the FR condition. These findings suggest that MANL UDR condition helped some 

children improve their number line estimation abilities and helped build expressive strategies. 

One study (Laski & Siegler, 2007) used a combination of a game-like activity and 

feedback to improve number line estimation skills. In this study participants categorized numbers 

as Really Small, Small, Medium, Big, and Really Big and some participants received feedback on 

the accuracy of their categorizations. The authors found that number categorization followed a 

logarithmic to linear developmental progression similar to that of number line estimation. The 

authors also found that number categorization improved regardless of the provision of feedback. 

Finally, although there was no training on number line estimation, the authors also found that 

after number categorization with feedback the number line estimation linearity also improved. 

Laski & Siegler (2007) attribute the change in number line estimation linearity to the “divide and 

conquer” approach. Number categorization helps divide the number line into five equal size 

categories decreasing the cognitive demand of the full, undivided number line. Further, I propose 

number categorization may support the “generation of increasingly precise magnitude 

representations for an increasingly broad range of numbers” (Siegler, 2016, p. 342), the crux of 

the integrated theory of numerical development. Number categorization helps build associations 

between symbolic number and the objective numerical categories into which the numbers are 

sorted. As stated above, one of the six main points of the integrated theory of numerical 

development is that the building of associations is key to numerical understanding. Additionally, 

number categorization encourages the use of efficient strategies to estimate on the number line 

by demonstrating that the number line can be decomposed into equal linear categories. It moves 

estimators beyond “origin-up” (Ashcraft and Moore, 2012) or “endpoint-down” strategies toward 

more advanced strategies (e.g. benchmark comparison, decomposition/recomposition). 
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Research Questions 

The five studies summarized above suggest it is possible to improve number line 

estimation skills. This study extends the previous studies to answer several questions: How do 

children perform on a computer-based number categorization task? How do children perform on 

a computer-based number line estimation task? How does number line estimation performance 

change over time? How does number categorization affect number line estimation? How do 

individual differences affect number categorization and number line estimation? The following 

sections will briefly describe the study and address each question. 

The study 

The study incorporates a computerized number categorization task into a number line 

estimation task. One group of children, the Linear condition, saw 5 boxes horizontally arranged 

in a row. On each box was written one of the following words in the following order: Really 

Small, Small, Medium, Big, and Really Big. A second group of children, the Non-Linear 

condition, saw the same 5 boxes except arranged in a configuration that is a 2 by 2 array with the 

Medium box in the middle. After categorizing a number children estimate the location of that 

number on the number line. 

1. How do children perform on a computer-based number categorization task? 2. 

How do children perform on a computer-based number line estimation task? 

The study expands on Laski and Siegler (2007) by having a computerized number 

categorization activity and number line estimation task. Computers are able to support student 

learning and allow for exploration in a way that paper and analog tasks do not. Ginsburg, 

Jamalian, and Creighan, (2013) capture the benefits of software and scaffolds for building new 

strategies: 
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“Software has unique affordances to encourage the use of strategies by 

highlighting the advantages of new strategies or limiting the resources needed to 

use another strategy…. Carefully designed scaffolds could also help a child in 

adopting a new strategy. Scaffolding may highlight the features of the problem 

that are relevant to a strategy, ease the difficulties involved in adaptation of a new 

strategy, and model the strategy for the child.” (p. 97, 99) 

The computerized number categorization may act as a scaffold for children’s number line 

estimation by encouraging them to think about the entire number line from the really small 

numbers to the really big numbers. Additionally, the categories may promote more advanced 

strategies, such as decomposition/recomposition (Siegel et al., 1982) strategies. 

The computer-based version of the activity also supports research into children’s learning 

because of the rich backend information that the activity provides. The backend data, or log data, 

has record of where users click, the time it takes to complete each task, or trial, if they use help 

features, and a variety of other data. Within the log data are clues about estimation behavior. For 

example, if a child’s initial click is near zero on all trials regardless of the target value, it could 

be surmised that the child is using an “origin-up” (Ashcraft and Moore, 2012) strategy. However, 

if the initial click location varies with the target value it could be hypothesized that multiple 

strategies are being employed. It should also be noted that the initial click location might not 

correspond to the first place the child uses to determine the estimate’s location, so such data 

needs to be examined with caution. 

Computer-based learning has a third potential benefit that may be particularly important 

for students of color and girls. Students are affected by perceived stereotypes in their learning 

environment (Steele, 1997).  One prevalent stereotype is that mathematics is a subject for white 
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males (Epstein, Mendick & Moreau, 2010; Oakes, 1990). While empirical research has not been 

collected to support this claim, a high quality computerized mathematics activity, which provides 

feedback solely based on input and not user demographics, may act as an unbiased learning tool 

that allows all students to thrive. 

While a computer-based activity has the aforementioned affordances, it is expected that it 

will still measure performance at least as accurately as the analog version of the activity does. If 

the computer-based activity is measuring accurately then one would expect to see differences 

between the participants of different grades. On the number categorization task and on the 

number line estimation task the oldest participants should outperform the youngest participants 

mirroring the results seen in other studies (e.g. Laski & Siegler, 2007; Siegler & Opfer, 2003) 

3. How does number line estimation performance change over time?  

Studies of growth over time are essential to the study of cognitive development. Using 

multiple measurements over a brief period of time, similar to a microgenetic (Kuhn, 1995; 

Siegler & Crowley, 1991) approach, affords the ability to study mechanisms of growth and 

answer questions about which strategies are being used. Siegler (1998) describes the overlapping 

waves theory of strategy development: at any given moment people have multiple strategies 

available to them and strategy selection depends on the context of the problem-space. As 

learning occurs the use of some strategies decrease and while other, usually more efficient, 

strategies increase. An examination of the variability in number line estimates can provide clues 

into children’s strategy use. For example, accuracy may be greatest and variability least for 

numbers near the origin, suggesting an “origin-up” (Ashcraft and Moore, 2012) strategy. As 

number line estimation skills improve, numbers near the endpoint and midpoint will have an 

increase in accuracy and decrease in variability suggesting an adaptation in strategy use, such as 
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starting from the endpoint for higher numbers and using the midpoint as an anchor. For numbers 

in the final quintile (i.e. target values 80-100) if participants develop an “endpoint down” number 

line estimation strategy, then over the sessions accuracy should increase and the standard 

deviation should decrease. 

4. How does number categorization affect number line estimation?  

While analog number categorization helps number line estimation, it is not known 

whether categorization needs to be into linear categories or if categories can be non-linear and 

still beneficial to number line estimation. From Bächtold, Baumüller, and Brugger’s (1998) study 

in which priming with a clock face led to a “reverse” SNARC effect as if numbers were mapped 

clockwise, and from Siegler & Ramani’s (2009) study in which a linear board game was 

compared with a circular board game, one can conclude that the spatial orientation of how 

numbers are presented matters for some tasks. Does spatial orientation also affect number 

categorization? When describing the benefits of the “divide and conquer” approach Laski and 

Siegler (2007) write of participants “…using the categorizations to constrain number line 

estimates … by mapping the categories onto corresponding parts of the number line…” (p. 

1741). From the representational mapping hypothesis (Siegler & Ramani, 2009) we know that 

“mapping” in the context of board games becomes easier or more difficult depending on the 

orientation of the representation that is being mapped. Applying the representational mapping 

hypothesis and extending it from board games to a computer-based categorization task, the study 

will evaluate whether linearity is a component of categorization that supports number line 

estimation skills by contrasting a linear with a non-linear categorization orientation. If 

categorizing numbers linearly supports number line estimation than the participants in the linear 

group should estimate more accurately on the number line than the participants in the nonlinear 
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group. If the linearity of categorization does not matter than the two groups will estimate equally 

well.  

5. How do individual differences affect number categorization and number line 

estimation? 

Previous number line estimation studies (e.g. Ramani & Siegler, 2008) have shown the 

importance of pretest differences in predicting the response to interventions. Participants with 

low initial knowledge were still at the low end of performance at the study’s close and vice 

versa. While other number line estimation studies (e.g. Siegler & Ramani, 2009) have shown that 

those who perform worse at the start make the larger gains after the intervention and catch up to 

their higher performing peers. And another number line estimation study (e.g. Creighan, 2014) 

showed mixed results in performance, with those participants who initially performed above the 

median for number knowledge continuing to perform well in particular contexts. 

For the present study, initial individual differences in numeracy, as measured by a 

magnitude comparison task, and a numeral identification task may dictate student performance 

throughout the study. The participants who have lower numeracy and number identification 

skills at the start may make larger gains than the participants with higher numeracy and number 

identification skills at the study’s outset. It is also possible that individual performance will 

depend on the context of the study: participants with low numeracy and number identification 

skills will perform well in certain conditions, while the participants on the higher end will 

perform well under other conditions. 

Learning Study 

Beyond the broader questions the study addresses, this is a project of software 

development and a “learning study” (see Ginsburg, Labrecque, Carpenter, & Pagar, 2015). 
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Learning studies, among other characteristics, “tend to include a small-to-medium sized sample 

and are highly focused on specific learning objectives or particular aspects of the software” 

(Ginsburg, Labrecque, Carpenter, Pagar, 2015). In game design, it is not enough to assume a 

spatial orientation for number categorization, a feature that is essential to the activity’s learning 

experience, is beneficial. Different orientations must be tested so the one that most supports 

learning can be incorporated into the design, if indeed one orientation supports learning more 

than another. A learning study is needed to determine the effectiveness of the software and which 

orientation for the sorting categories is best. This particular learning study examines number 

categorization and the linearity of the boxes that serve as the categories for sorting in order to 

determine which boxes are effective scaffolds. If the linear boxes are more effective scaffolds 

than the nonlinear boxes, then the participants in the linear group will make gains above and 

beyond those of the nonlinear group on number categorization and number line estimation. If the 

nonlinear boxes are the better feature, then participants in the nonlinear group will make more 

significant gains on the number tasks. If the scaffolds perform equally well or detract from task 

success, the participants of both groups will make equal gains or will see a decrease in their 

performance respectively. 
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Chapter 2 

Method 

Participants 

The study included 58 participants from Grades 1 through 3 at the start. As happens over 

the course of a study, attrition occurred. Table 1 presents the sample breakdown and mean age 

over the course of the four study phases. 

 

Table 1. Participant sample and mean age  
 Pretest Session 1 Session 2 Posttest 

n (boys, girls) 58 (29, 29) 48 (20, 28) 40 (16, 25) 29 (11, 18) 
Mean age in months 
(SD) 

7 years, 7 months 
(11.90 months) 

7 years, 7 months 
(11.57 months) 

7 years, 8 months 
(11.62 months) 

7 years, 8 months 
(12.87 months) 

 

The children were from a large urban school district. The city’s schools are 48.6% female and 

are comprised of the following race/ethnicity demographics: 15.5% Asian, 27.1% Black, 40.5% 

Hispanic, 2.1% Other, and 14.8% White. However, most of the study’s participants were Black 

and Latino. The two programs from which the participants were recruited were free summer 

programs in Harlem that serve low- to medium-socioeconomic status families within the 

neighboring community. 

Procedure and Materials 

Overview  

Participants first met with a researcher one-on-one to complete a numeral identification 

task derived from mCLASS Math (©Wireless Generation) and a magnitude comparison task 

(Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013). These were included to establish a 

baseline of participants’ basic number competency: numeral reading ability and magnitude 

comparison are key aspects of general number sense (Gersten, Jordan, & Flojo, 2005). 
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Participants also did 25 trials of a computer-based number line estimation task, MathemAntics 

Number Line Estimation (MANL). After the pretest, participants attended two sessions in small 

groups of 5 – 8 participants, during which time they completed the MathemAntics Sort and 

Estimate (MASE) number line task independently on a laptop. For the posttest, participants did 

the same MANL activity they completed during the pretest, to provide a comparison point.  (See 

Table 2.) Each task is described in detail below. 

 
Table 2. Tasks within each study phase. 
 Pretest Session 1 Session 2 Posttest 
Numeral Identification X    
Magnitude Comparison X    
MANL X   X 
MASE  X X  

 

Each participant used an Apple MacBook Air or MacBook Pro Laptop preloaded with the 

digital measures, MANL and MASE. Participants were given headphones to reduce the 

likelihood of distractions from fellow participants’ audio. In previous pilot studies, in which 

young participants used laptops, some participants had difficulty controlling the cursor with the 

built in mouse control mechanism, the track pad. External mouses were offered to each 

participant to use as an alternative to the laptop’s track pad. Each session participants elected to 

use either the mouse or the track pad depending on which they found to be more comfortable. At 

the end of each phase participants chose a sticker as a reward. 

Tasks 

Number identification and magnitude comparison. 

Participants completed a number identification task during which they were asked to read 

aloud as many numerals as they could within 60 seconds (©Wireless Generation). After 

completing the number identification task, participants completed the numeracy screener, a two-
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minute paper/pencil task of symbolic (digits) and non-symbolic (dots) numerical magnitude 

comparisons (Nosworthy et. al., 2013). 

MathemAntics Number Line Estimation. 

 Following the paper-and-pencil tasks, participants used computers to do the computer-

based number line estimation task. MathemAntics Number Line Estimation (MANL) was one 

task in the estimation “environment” in a suite of computer-based mathematics activities, 

MathemAntics. MathemAntics was designed for students between 3 years old and Grade 3 

(Ginsburg, Carpenter, & Labrecque, 2011). MANL allowed users to explore estimation using a 

horizontal number line. While the activity had many versions, the version participants used in 

this study had them determine the location of a given value on a horizontal line, a number-to-

position task (see Figure 1). Participants indicated the estimate’s location with a horizontal range 

that was preset to 5 units, with 2.5 units on either side of a red, downward-pointing arrow. (See 

Figure 1.) MANL was not network- or Internet-dependent. The software had the capability to 

record user data in a log and captured information such as performance accuracy data, 

timestamps and precise estimate locations. 

 

Figure 1. MathemAntics Number Line Activity. 
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Participants completed 25 trials with the values: 1, 7, 8, 13, 16, 20, 25, 27, 34, 35, 43, 44, 

47, 56, 59, 61, 63, 66, 76, 77, 81, 84, 87, 92, 96 presented in random order. The numbers were 

selected for balance across the number line: there were five numbers for each range of 20, or 

quintile. On each trial one of the above written numbers was shown 4.5 cm above the 15 cm long 

number line and participants had one attempt to estimate the number’s location on the line.  

Twenty-five questions was a typical number in comparison to previous estimation studies, which 

had 22 test trials (Laski & Siegler, 2007) and 26 trials (Booth & Siegler, 2006). Unlike the cited 

studies, this study did not oversample numbers in the first few decades because one goal was to 

have a balanced number of trials across the number line in order to have a more accurate 

measure of performance across the number line 

 MathemAntics Sort and Estimate. 

 MathemAntics Sort and Estimate (MASE) was a three-part activity. First, participants 

watched a demonstration video that oriented them to the activity’s range, the boxes’ ranges, and 

gave instructions on the activity’s controls.  

a)  b)  
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c)  

Figure 2. a) Sort: Linear activity of MASE; b) Sort: Nonlinear activity of MASE; c) Estimate 

activity of MASE 

Second, after the demonstration video, MASE then had a magnitude categorization task, 

Sort. During Sort, participants were shown a number and were asked to indicate in which of 5 

boxes a number belongs. The 5 boxes were labeled Really Small, Small, Medium, Big, and Really 

Big. The narrator gave the instructions: “Here are boxes labeled “really small”, “small”, 

“medium”, “big”, and “really big”. Click the box where n belongs?” The number could only be 

placed in one box.  Participants saw one of two versions of Sort: Linear or Nonlinear. In Sort: 

Linear the 5 categorical boxes (i.e. Really Small, Small, Medium, Big, and Really Big) spanned 

the entire number line in size order. In Sort: Nonlinear boxes were arranged in a 2-by-2 array 

with the extra box in the middle. (See Figure 2.) Participants completed 7 practice Sort trials to 

further orient them to the range of boxes in which they would later categorize numbers: the two 

endpoints of the number line (i.e. 0 and 100) and the 5 box midpoints (i.e. 10 [half way between 

0 and 19], 30 [half way between 20 and 39], and so on, to get 50, 70, 90).  

 The third and most substantial part of the activity was a series of 16 trials during which 

participants did a sort trial immediately followed by an estimation trial. Estimate, immediately 

followed each Sort task. (See Figure 2.) Estimate contained the same features and components 
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found in the pretest activity, MANL, except for the addition of an adjustable range, or the user-

defined range (UDR) (Creighan, 2014). The UDR replaced the 5-unit horizontal range 

participants used to indicate their estimate in session 1 and was adjustable in length. It allowed 

participants to use the range length to indicate their level of confidence in their estimates.  If very 

confident, they could use a very narrow range.  If not confident, they could enlarge the range. 

The UDR was controlled by moving the mouse or the ‘Left’ and ‘Right’ arrow keys and was 

made wider or narrower by manipulating its endpoints. Because the UDR did not have maximum 

or minimum restrictions, users could make the range as large as the number line or as small as a 

point. The default size of the UDR was 5 units. The narrator gave the estimation instructions as 

follows: “The number line is from 0 to n. (Target value appears). Where does n belong on the 

number line? Show how sure you are.” 

Participants estimated the same numbers as in the sort portion of the activity. The 

numbers were presented in the same randomized order as Sort. The numbers selected for the 

trials provide a balanced set of data points across the number line and are as follows: 3, 9, 17, 24, 

31, 36, 45, 49, 52, 58, 64, 72, 78, 85, 93, 95.  Three numbers were selected for each range of 20 

numbers, or quintile, except for the middle quintile, which had four numbers – two on either side 

of the midpoint, 50. Participants saw one number at a time. While the 16 trials were fewer than 

was used in MANL and in other number line studies (e.g. Opfer & Siegler, 2007), because 

MASE was a two-part activity it was as though the number of trials was doubled. Further, an 

informal pilot study suggested fatigue and boredom were an issue with higher numbers of trials, 

particularly for the younger participants in this cross-sectional study. 
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Chapter 3 

Results 

Analysis 

When considering number line estimates, one can think about the bias of estimates as a 

magnitude of error, namely percent absolute error (PAE) (Booth & Siegler, 2006; Opfer & 

Thompson, 2008), or about the precision of estimates as the standard deviation. To determine the 

percent absolute error, the absolute value of the difference of the estimate and the actual 

magnitude is divided by the range: 

PAE= !"#$%&#'!!"#$%& !"#$%
!"#$%

×100 (Siegler & Ramani, 2009). 

The PAE gives a nuanced view of number line estimation behavior by providing a specific 

magnitude of error, not only a binary, like correct versus incorrect. It is characteristic of the PAE 

that as number line estimation skill improves PAE decreases.  

The standard deviation of the estimates is a measure of how spread the estimates are on 

the number line. A large standard deviation means that the estimates are widely dispersed. A 

small standard deviation means that the estimates are close together.  

To analyze the PAE and the standard deviation I conducted a systematic examination of 

the means. I used t-tests when comparing a pair of means. I used analyses of variance 

(ANOVAs) to determine if a group of means significantly vary. Along with the ANOVA, I used 

Tukey’s honest significant difference (HSD) tests in order to find the pairs of means that 

significantly differ while adjusting for doing multiple comparisons. Finally, I used hierarchical 

linear models (HLMs) to examine the difference in PAE on an individual level. Typical 

regression models assume independent errors and that “regression coefficients apply equally to 
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all contexts” (Luke, 2004, 7). Because sessions are nested within participants, error cannot be 

assumed to be independent and coefficients may differ across sessions.  

Initial analysis of the PAE showed that the data was non-normal (see Figures 3-4). As the 

PAE is not normally distributed I used a natural log transformation to normalize the data prior to 

carrying out analyses (see Figures 5-6). The logit mean PAE is used for all analysis.  

 
Figure 3. Non-transformed percent absolute error (PAE) by phase by condition. 
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Figure 4. Quartile-Quartile plot of untransformed PAE data 

 
Figure 5. Log transformed percent absolute error by phase by condition 
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Figure 6. Quartile-Quartile plot of transformed PAE data 
 
In service of answering the broader question, Can a computer-based number 

categorization task and a computer-based number line estimation task improve children’s 

number line performance?, the following questions are addressed: 

1) How do children perform on a computer-based number categorization task? 2) How do 

children perform on a computer-based number line estimation task? 3) How does number line 

estimation performance change over time? 4) How does number categorization affect number 

line estimation? 5) How do individual differences affect number categorization and number line 

estimation? 

 The first two questions provide a descriptive look at the data. The third question is a 

comparative question that examines the data with respect to time. The fourth question compares 

the linear and nonlinear groups. And the fifth and final question takes into account individual 

differences while examining performance over time and across conditions.  

1) How do children perform on a computer-based number categorization task? 

Examination of the bar graphs (Figure 7) of the mean percentage of correct 
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categorizations from session 1, suggests that differences occur between grades. The mean 

percents increase as grade-level increases (Table 3). A one-way analysis of variance (ANOVA) 

that has mean percentage of correct categorizations as the outcome variable and grade-level as 

the predictor variable shows that the grade-level means do significantly differ (F (2, 45) = 8.185, 

p = .001, η2 = 0.27). In order to know specifically which means differed I conducted a post-hoc 

analysis using Tukey’s honest significant difference (HSD) test. (See Table 4.) For mean percent 

correct, Grade 1 differs from Grades 2 and 3. The first grade participants, on average, sorted 

fewer numbers correctly than the participants in Grades 2 and 3. As hypothesized older grades 

outperform younger grades in number categorization. 

 

 
Figure 7. Mean accuracy for number categorization in percent for session 1. 
*p<.05;  ***p<.001. 
  
Table 3 Mean percentages for number categorization accuracy  
Grade Means 
1 41.05% 
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2 55.68% 
3 68.75% 
 
 
Table 4 Post-hoc comparisons of grade-level number categorization percent accuracy 
Grades Mean 

difference 
p-value 

1 vs 2 -0.14635 .030 
1 vs 3 -0.27703 .001 
2 vs 3 -0.13068 .143 
 

In addition to understanding the differences in performance on the number categorization 

task, it is important to examine the differences in performance on the number line estimation task 

to better understand from where participants are starting. I compared the mean PAE for the 

pretest across grade-levels to determine if participants in different grades perform differently on 

the computer-based number line estimation task and report the results in the following question.  

2) How do children perform on a computer-based number line estimation task? 

From the boxplots (Figure 8) we see lower medians and less variation as grade increases. 

The variability in Grade 1 is aligned with Barth, Starr, & Sullivan (2009) assessment that in this 

age range knowledge of numbers up to 100 is highly variable. 
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Figure 8. Mean PAE (Logit) for number line estimation. The red line represents the median PAE. 
*p<.05. 
 
A one-way ANOVA with mean PAE as the outcome variable and grade as the predictor variable 

suggests that mean PAEs do significantly differ (F (2, 55) = 4.005, p = .024, η2 = 0.13). The 

mean PAEs for each grade are shown in table 5: mean increases as grade increases with Grade 3 

having the lowest mean PAE. 

Table 5 Mean PAE (Logit) for number line estimation 
Grade Means 
1 -2.1315968 
2 -2.6157668 
3 -2.7586448 
A post-hoc test compared each grade’s mean PAE (Table 6). Again, as with the categorization 

task, grade-level differences are present. Grade 3 has significantly lower mean PAE than Grade 

1. Grade 2’s mean PAE is trending toward being significantly lower than Grade 1’s mean PAE.  

Table 6 Post-hoc test comparing mean PAEs 
Grades Mean p-value 



	

	
	

39	

difference 
1 vs 2 0.484169945 .052 
1 vs 3 0.62704796 .047 
2 vs 3 0.142878018 .831 

 
3) How does number line estimation performance change over time? 

To see how number line estimation performance changes over time the session data for 

the non-treatment (i.e. nonlinear) group is helpful. From the session data of the nonlinear group a 

U-shaped trend is noticeable (Figure 9); mean PAE first decreases than increases to its original 

starting point. From the graph it appears there is not an overall change in error over time. To test 

if the sessions significantly vary from one another would require an analysis method that can 

accommodate the sessions being nested within participants. Overall, participants are performing 

about the same on all sessions without the linear treatment. 

 
Figure 9. Mean PAE (Logit) for each phase for the non-treatment (i.e. nonlinear) group. 

 
4) How does number categorization affect number line estimation? 
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Error is comparable between the linear and nonlinear groups for the first three phases. 

(See Figure 10.) The two groups have comparable mean PAEs for all the phases of the study 

until the posttest where the groups diverge. The linear group has less mean PAE (t(27) = -2.4421, 

p = .029, d = 0.86), or is performing better, than the nonlinear group. (See Table 7.) 

 

 
Figure 10. Mean PAE (Logit) over phases of study. 
*p<.05. 
 
Table 7 Comparison of mean PAE by session across conditions.  

Session Nonlinear Linear t df p-value 

1 -2.4228393 -2.5289790 -0.556 56 .580 

2 -2.6078034 -2.5386248 0.334 46 .740 

3 -2.5719528 -2.6766666 -0.534 39 .597 

4 -2.4421 -2.9614 -2.304 27 .029 
In comparing the standard deviation of the linear group to the nonlinear group over the 

four sessions (see Figure 11), the two groups do not differ much (Table 8) except in session 1, 

where the linear group has a substantially smaller standard deviation (t(46) = 2.181, p =.034, d = 

* 
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0.63). Or stated differently, the linear group has less dispersed estimates in session 1, the first 

session with the scaffold.  

 
Figure 11.  Standard deviation of mean PAE (Logit) over phases of study. 
*p<.05. 
 
Table 8 t-tests comparing the standard deviation of the mean PAE 

Session Nonlinear Linear t df p-value 

1 1.27092306 1.21061416 0.638 56 .526 

2 1.30884454 1.12736868 2.181 46 .034 

3 1.18359386 1.25941145 -0.783 39 .439 

4 1.27730901 1.38947161 -0.850 27 .403 

 
When examined simultaneously, the error and standard deviation of the estimates do not 

increase and decrease in a similar pattern. In the treatment condition, the linear group, first a 

decrease in standard deviation occurs, followed by an increase in the standard deviation but an a 

decrease in PAE. And the results of the comparisons hold regardless of whether looking at the 

full sample or only at the participants who complete all four phases (Table 9). Thus, the results 

* 
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are likely not an effect of attrition.   

 
Table 9. Mean PAE and standard deviation by condition across study phases for the entire 
sample and for the group that completed all four phases. 
 Pretest Session 1 Session 2 Posttest 
Full Sample     

Nonlinear 
Mean PAE 

Mean SD 

 
-2.4228 
1.2709 

 
-2.6078 
1.3088 

 
-2.5720 
1.1836 

 
-2.4421 
1.2773 

Linear 
Mean PAE 

Mean SD 

 
-2.5290 
1.2106 

 
-2.5386 
1.1274* 

 
-2.6767 
1.2594 

 
-2.9614* 
1.3895 

Completed     
Nonlinear  
Mean PAE 
 Mean SD 

(n=14) 

 
-2.4033 
1.3599 

 
-2.7096 
1.3943 

 
-2.6423 
1.0999 

 
-2.4421 
1.2773 

Linear 
Mean PAE 

Mean SD 
(n=15) 

 
-2.6388 
1.2447 

 
-2.7465 

1.1020*** 

 
-2.9147 
1.2035 

 
-2.9614* 
1.3895 

Note. *p<.05; ***p<.001 
 
The differences between the linear and nonlinear group are also apparent when looking at 

performance by number line quintiles. Number line estimation performance varies by number 

(Creighan, 2014) with smaller numbers being easier to estimate than larger numbers (Opfer & 

Siegler, 2007). Examining number line quintiles allows investigation of bands of common 

numbers and is a more parsimonious approach than exploring differences by each individual 

number. Figure 12 shows number line estimation error by each quintile for the four phases for 

the linear and nonlinear groups. The linear and nonlinear groups perform comparably well on the 

five quintiles at each phase until the fourth phase, the phase in which the scaffold is removed. In 

the posttest the linear group estimates better than the nonlinear group in quintile 1 (0-19) and 

quintile 2 (20-39).  
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Figure 12. Mean PAE by quintiles by study phase. 
*p<.05. 
 

5) How do individual differences affect number categorization and number line estimation? 

As predicted initial individual differences in numeracy as measured by a magnitude comparison 

task dictated student performance throughout the study. The participants with lower numeracy, 

those who scored lower on the digit comparison task at the start who were in the linear group, 

had significantly less error on their estimates than the nonlinear low numeracy participants, 

whereas the linear and nonlinear groups with high numeracy at the study’s outset did not differ 

(see Figure 13). 

* * 
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Figure 13. Comparing number line estimation mean PAE by condition in low- and high-scoring 
digit comparison groups. Of the participants who scored low on the digit comparison task, the 
linear group did significantly better than the nonlinear group at posttest (p = .032, d = 1.298). 
*p<.05. 

 

Growth Curves 

Growth and learning occur within and across the phases of the study. Further, to 

understand growth in the scope of number line estimation skills it is necessary to take into 

account all the variables that could account for a change in PAE. To identify patterns of growth 

in mean PAE over time I used a 2-level growth curve model that takes into account the 

individual differences that affect number line estimation. Mean PAE was the outcome variable 

(i.e. MEANLOGITPAE). The time variable (i.e. SESSPOST) was centered at phase 4 of the 

study, so phase 4, the point at which there was the most data and at which the greatest 

differences were expected, was the intercept of the model.  Time (i.e. SESSPOST) was added at 

level 1 of the model. 

* 
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I incorporated various predictor variables to control for their role in predicting mean 

PAE, the most relevant of which was student’s score on the pretest MANL task. All level 2 

variables were grand-mean centered so that the intercept could be interpreted as the average 

outcome for the average student in the control condition. The mixed model is shown below: 

MEANLOGITPAEij = γ00 + γ01*PRETESTj + γ02*TREATMENTj + γ03*SCHOOLj + 

γ04*AGEj + γ05*SEXj + γ06*GRADE2j + γ07*GRADE3j  

+ γ10*SESSPOSTij + γ11*PRETESTj*SESSPOSTij + γ12*TREATMENTj*SESSPOSTij+ 

γ13*SCHOOLj*SESSPOSTij+ γ14*AGEj*SESSPOSTij+ γ15*SEXj*SESSPOSTij+ 

γ16*GRADE2j*SESSPOSTij+ γ17*GRADE3j*SESSPOSTij 

+ u0j+ rij  

Table 10 provides all the variables in the model along with their definitions. 

Table 10. Terms in the main hierarchical linear model 
Variable Definition 

MEANLOGITPAE Outcome variable; mean percent absolute error in logits 

PRETEST Pretest score: Mean PAE on the MANL task 

TREATMENT Whether the participant was in the treatment group or not; linear versus nonlinear 

SCHOOL Which school the participant attended 

AGE Participant’s age 

SEX Participant’s sex 

GRADE2 Whether the participant was in Grade 2 or not 

GRADE3 Whether the participant was in Grade 3 or not 

SESSPOST Session centered at phase 4 of the study 

 

Table 11 shows the results of the final main model and Figure 14 shows the average 

relationship over time between the treatment (i.e. linear) and control (i.e. nonlinear) groups. 

Table 11 The HLM results for the main effects model. PRETEST has been grand mean centered 

Fixed Effect  Coefficient 
 Standard 
error  t-ratio 

 Approx. 
d.f.  p-value 
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For INTRCPT1, β 0 
    INTRCPT2, γ00 -2.393747 0.134650 -17.778 41 <.001 
    PRETEST, γ01 0.270336 0.119886 -2.255 41 .030 
    TREATMENT, γ02 -0.293460 0.164067 -1.789 41 .081 
For SESSPOST slope, β 1 
    INTRCPT2, γ10 0.157280 0.071593 2.197 61 .032 
    PRETEST, γ11 -0.183659 0.060780 -3.022 61 .004 
    TREATMENT, γ12 -0.246264 0.083590 -2.946 61 .005 
Note: Model also adjusted for School, Age, Sex, and Grade all of which were grand mean 
centered. 
 
Table 11 indicates that while the treatment group had logit (PAE) -.29 points lower than the 

control group at Phase 4, posttest, this difference was not statistically significant (p = .081). 

However, the change in logit (PAE) over time does differ in the treatment and control groups (p 

= .005). In particular, while the logit (PAE) was found to increase over time (0.15 for each time 

point), in the treatment group the logit (PAE) decreased over time (0.15 – 0.24 = -0.09 for each 

time point). In other words the linear group is growing in number line estimation skills at a faster 

rate than the nonlinear group.  

In Figure 14, the graphic representation of the model reflects the results shown in Table 

11. Additionally, the graph suggests that initially the nonlinear group has a lower mean PAE. 

Over time the groups switch positions with the linear group having the lower mean PAE and that 

relationship stays constant. The figure also suggests that – if the trends in both groups continued 

– the differences between the treatment and control groups would grow over time. While this is 

an extrapolation, it generates hypotheses regarding directions for future research. 

	 



	

	
	

47	

 
Figure 14. The main effects model in graphical form. The blue line is the nonlinear group. The 
green line is the linear group. The black double-sided arrow indicates the difference in mean 
PAE at posttest. The dashed lines represent an extrapolation of the trend if more time points were 
observed. The slopes of the two lines are significantly different (p = .005). 

 
Treatment Effects by Pretest Ability 

 As stated in Chapter 1, pretest differences have been important in number line estimation 

studies (Creighan, 2014; Ramani & Siegler 2008; Siegler & Ramani, 2009). Ramani and Siegler 

(2008) found that those participants who had low pretest scores performed at the low end. 

Another study (Siegler & Ramani, 2009) found that participants with low pretest scores made the 

largest gains in number line estimation skills. In order to assess if there are pretest differences in 

this study participants must be separated by their pretest scores and analyzed. 

In order to study the effect of the pretest, I used a median-split to group participants by 

their performance on the MANL pretest task and added this categorical variable (i.e. PREHIGH) 

to the model to explore if there were differences in growth curves for the participants who scored 

low and high on the MANL pretest task. The models for the low and high pretest groups are 
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identical and also identical to the main model shown above. For convenience the mixed model is 

presented again below: 

MEANLOGITPAEij = γ00 + γ01*PRETESTj + γ02*TREATMENTj + γ03*SCHOOLj + 

γ04*AGEj + γ05*SEXj + γ06*GRADE2j + γ07*GRADE3j  

+ γ10*SESSPOSTij + γ11*PRETESTj*SESSPOSTij + γ12*TREATMENTj*SESSPOSTij+ 

γ13*SCHOOLj*SESSPOSTij+ γ14*AGEj*SESSPOSTij+ γ15*SEXj*SESSPOSTij+ 

γ16*GRADE2j*SESSPOSTij+ γ17*GRADE3j*SESSPOSTij 

+ u0j+ rij 

The variables are defined in Table 10. Tables 12 and 13 give the model coefficients for the low 

and the high pretest groups. The treatment (i.e. linear vs. nonlinear) is not significant at the 

intercept for either the low or high group. Thus, at Phase 4, the posttest, the linear and nonlinear 

groups do not differ in mean PAE regardless of if they had a low or high MANL pretest score. 

However the treatment variable is significant in the slope of the low pretest score group (p = 

.007), but not the high pretest score group. Focusing only on the low pretest score group: the 

negative coefficient on TREATMENT indicates that the linear group’s mean PAEs are getting 

more negative over time (0.23 - 0.55 = -0.32) and at a rate that is significantly different (p = 

.007) from the nonlinear group. Growth in the linear group is faster than growth in the nonlinear 

group. 

Table 12. The HLM results for the low pretest score group.  

Fixed Effect  Coefficient  Standard 
error  t-ratio  Approx. 

d.f.  p-value 

For INTRCPT1, β 0 
    INTRCPT2, γ00 -2.034320 0.264534 -7.690 18 <.001 
    PRETEST, γ01 0.411394 0.279231 1.473 18 .158 
    TREATMENT, γ02 -0.602098 0.367254 -1.639 18 .118 
For SESSPOST slope, β 1 



	

	
	

49	

    INTRCPT2, γ10 0.234110 0.137915 1.697 21 .104 
    PRETEST, γ11 -0.155064 0.134243 -1.155 21 .261 
    TREATMENT, γ12 -0.551187 0.184448 -2.988 21 .007 
Note: Model adjusted for School, Age, Sex, and Grade all of which were grand mean centered. 

Table 13 The HLM results for the high pretest score group. 

Fixed Effect  Coefficient  Standard 
error  t-ratio  Approx. 

d.f.  p-value 

For INTRCPT1, β 0 
    INTRCPT2, γ00 -2.632218 0.170269 -15.459 15 <.001 
    PRETEST, γ01 0.511361 0.373334 1.370 15 .191 
    TREATMENT, γ02 -0.377875 0.206867 -1.827 15 .088 
For SESSPOST slope, β 1 
    INTRCPT2, γ10 0.135419 0.082647 1.570 32 .126 
    PRETEST, γ11 0.057464 0.182074 0.316 32 .754 
    TREATMENT, γ12 -0.161903 0.099161 -1.633 32 .112 
Note: Model adjusted for School, Age, Sex, and Grade all of which were grand mean centered. 

Figure 15 shows the graphs for the low and high pretest groups. In the graphs the low and 

high pretest groups follow the same growth pattern that was in the main model: the nonlinear 

groups start with a lower mean PAE than the linear groups and gradually the linear groups’ mean 

PAE becomes lower. Over time the linear groups perform better, although not significantly, 

similar to the performance pattern seen in the main linear model. The low group’s growth is a 

steeper downward slope than that of the high group, which is almost flat. The low group’s 

growth mirrors that which was seen in the main effect model.  Most of the linear group’s 

significant growth rate from the main model is being accounted for by the growth rate of the low 

linear group, since the high linear group is hardly contributing. This result provides hypotheses 

for future research into if participants with low pretest scores decrease their number line 

estimation error faster than participants with high pretest scores. 
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a                b 

 
Figure 15. The model in graphical form for participants who scored low (15a) and high (15b) on 
the pretest MANL task. The blue lines are the nonlinear groups. The green lines are the linear 
groups. The black double-sided arrow indicates the difference in mean PAE at Phase 4, the 
posttest. The dashed lines represent an extrapolation of the trend if more time points were 
observed. 
 
 Finally, it was important to test if an interaction existed between the low and high pretest 

score groups. The mixed model for testing that interaction is below: 

MEANLOGITPAEij = γ00 + γ01*PREHIGHj + γ02*TREATMENTj + γ03*SCHOOLj + 

γ04*AGEj + γ05*SEXj + γ06*GRADE2j + γ07*GRADE3j  + γ08* TRTMNTxPREHIGH j  + 

γ10*SESSPOSTij + γ11*PRETESTj*SESSPOSTij + γ12*TREATMENTj*SESSPOSTij+ 

γ13*SCHOOLj*SESSPOSTij+ γ14*AGEj*SESSPOSTij+ γ15*SEXj*SESSPOSTij+ 

γ16*GRADE2j*SESSPOSTij+ γ17*GRADE3j*SESSPOSTij γ13* 

TRTMNTxPREHIGHj*SESSPOSTij  

+ u0j+ rij .  

The terms in the model are defined in Table 14.  

Table 14 Terms in the hierarchical linear model in which pretest MANL task performance 
divides participants into a high and a low group. 

Variable Definition 

MEANLOGITPAE Outcome variable; mean percent absolute error in logits 

PREHIGH Whether the participant was in the high pretest score group based on a median split 

-3.5	

-3	

-2.5	

-2	

-1.5	

M
ea
n	
PA

E	
(L
og
it)
	

Time	

-3.5	

-3	

-2.5	

-2	

-1.5	

M
ea
n	
PA

E	
(L
og
it)
	

Time	

1 2 Posttest Posttest 1 2 



	

	
	

51	

TREATMENT Whether the participant was in the treatment group or not; linear versus nonlinear 

SCHOOL Which school the participant attended 

AGE Participant’s age 

SEX Participant’s sex 

GRADE2 Whether the participant was in Grade 2 or not 

GRADE3 Whether the participant was in Grade 3 or not 

SESSPOST Session centered at phase 4 of the study 

TRTMNTxPREHIGH Interaction term for treatment and the digit comparison task groups 

 

Table 15 HLM for participants who scored low and high on the pretest MANL task. 

Fixed Effect  Coefficient  Standard 
error  t-ratio  Approx. 

d.f.  p-value 

For INTRCPT1, β 0 
    INTRCPT2, γ00 -2.235999 0.195685 -11.427 40 <.001 
    PREHIGH, γ01 -0.231241 0.273146 -0.847 40 .402 
    TREATMENT, γ02 -0.537797 0.293542 -1.832 40 .074 
    TRTMNTxPREHIGH, γ08 0.230537 0.396148 0.582 40 .564 
For SESSPOST slope, β 1 
    INTRCPT2, γ10 0.086194 0.096629 0.892 60 .376 
    PREHIGH, γ11 0.121861 0.126402 0.964 60 .339 
    TREATMENT, γ12 -0.400071 0.141021 -2.837 60 .006 
    TRTMNTxPREHIGH, γ18 0.277216 0.184614 1.502 60 .138 
Note: Model also adjusted for School, Age, Sex, and Grade all of which were grand mean 

centered. 

Table 15 shows the coefficients for the interaction model with participants broken into 

groups based on performance on the pretest MANL task. The coefficients for PREHIGH and for 

the interaction variable (i.e. TRTMNTxPREHIGH) are not significant at the intercept or the 

slope of the model (all p >.1). These results suggest that the high and low groups do not have 

different mean PAEs. Also, since the interaction variable is not significant, the growth pattern in 

the low group is the same as the growth pattern in the high group.   
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Chapter 4 

Discussion 

Number line estimation performance reflects children’s understanding of magnitude and 

their understanding of the relationships between numbers. Number line estimation is associated 

with performance on other mathematical tasks, such as functional numeracy measures (Geary et. 

al., 2013), arithmetic (Booth & Siegler, 2008; Cowan & Powell, 2014) and standardized 

mathematics assessments (Ashcraft & Moore, 2012; Booth & Siegler, 2006; Siegler & Booth, 

2004; Sasanguie, De Smedt, Defever, Reynvoet, 2012). Since number line estimation is 

associated with performance on other mathematical tasks, improving number line estimation 

skills may improve performance on the tasks with which number line estimation is associated. 

Regardless of the possibility that number line estimation can improve performance on other 

mathematical tasks, it is a strong measure and tool in itself. It is important to improve number 

line estimation skills.  

The present study sought to improve number line estimation skills through a 

computerized magnitude-based intervention. Participants categorized numbers according to their 

subjective view of the magnitude of those numbers. They categorized numbers according to 

magnitude linearity or in a nonlinear configuration. I explored five questions in the study to 

better understand the relationship between computer-based categorization and number line 

estimation. According to research, one would expect there to be age or grade-level differences 

evident in categorization accuracy (Laski & Siegler, 2007) and in number line estimation error 

(Opfer & Siegler, 2007) with the older participants outperforming the younger participants. 

Further, I expected participants would improve in number line estimation error over time, from 

session to session, due to Creighan’s (2014) work. Additionally, I hypothesized that the 
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participants in the linear group would improve their number line estimation error more than the 

participants in the nonlinear group because of the representational mapping hypothesis (Siegler 

& Ramani, 2009). Finally, I hypothesized that participants’ individual performance on numeracy 

and number identification measures would be related to their number line estimation error and 

the gains they made. Let us examine each question and the associated results. 

Question 1: How do children of different ages perform on the number categorization task? 

Older participants performed best on the number categorization task, similar to Laski and 

Siegler’s (2009) results. Participants in Grade 3 categorized more accurately than Grade 1 

(p=0.001) and Grade 2 also categorized better than Grade 1 (p=0.030). Laski and Siegler’s 

(2007) participants were in grades Kindergarten – 2nd and their categorization task involved 

placing numbers into physical baskets. The present study had an older participant age range and 

used a computerized categorization task. However, the similarities in grade-level differences 

lend validity to the computer-based version of the number categorization task. 

Question 2: How do children perform on a computer-based number line estimation task? 

There was a positive relationship between grade and performance on the number line 

estimation task with older participants performing better than younger participants. Grade 3 

participants estimated with significantly less error than Grade 1 participants (p=0.047). And 

while Grade 2 participants did not estimate significantly better than Grade 1 participants 

(p=0.052), their performance was trending in that direction. These results mirror previous cross-

sectional studies (e.g. Siegler & Booth, 2004) and lend validity to this computer-based number 

line estimation task 

Question 3: How does number line performance change over time? 

The non-treatment (i.e. nonlinear) group’s performance was in a u-shaped pattern: 
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number line estimation error reduced than increased back to its original starting point for no net 

change in error, although the changes in error were not significant. From a previous study 

(Creighan, 2014) I expected that number line estimation skills would improve over time simply 

from exposure to the number line estimation task. A decrease in percent absolute error (PAE) 

would demonstrate an improvement in number line estimation skills. This was not the case. The 

nonlinear number categorization task in this study was not present in Creighan’s (2014) study 

and the task may have interfered with improvement occurring in number line estimation error. 

While number line estimation error did not improve, it is important to note that the nonlinear 

categorization participants did not worsen either. 

Question 4: How is computer-based number categorization associated with computer-

based number line estimation? 

Exposure to the linear boxes scaffold was associated with an improvement in number line 

estimation error, whereas exposure to the nonlinear boxes scaffold was not associated with an 

improvement in number line estimation error. At pretest the linear and nonlinear groups did not 

differ in number line estimation error. However, by the posttest, on average, the linear 

participants had significantly lower PAE than the nonlinear participants (t(27)=-2.9614, p<0.05). 

These findings suggest that linearity is an important aspect to increasing number line estimation 

performance. The phenomenon with the linear boxes was similar to what Laski and Siegler 

(2007) found, namely that participants who categorized numbers by magnitude improved their 

number line estimation linearity without training on number line estimation. One major 

difference between Laski and Siegler’s (2007) study and this study is that in the present study 

participants did not receive feedback when sorting. Laski and Siegler (2007) implicate feedback 

as being the mechanism for change in number line estimation linearity. However, since no 
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feedback was given during the present categorization intervention it was unlikely that feedback 

was the sole cause for change in number line estimation performance in Laski and Siegler 

(2007). Alternate theories for the improvement in number line estimation are offered later in this 

chapter.	

The difference in number line estimation error between the linear and nonlinear groups at 

posttest was not evident for all segments of the number line. Error differed by quintiles, with the 

linear group performing better in quintiles 1 (t(27)=2.277, p=0.031) and 2 (t(27)=2.361, 

p=0.026) and not performing differently for quintiles 3, 4, and 5 (all p>0.075). Potential reasons 

for the difference in quintile performance will be discussed later in the chapter. 

Question 5: How is individual difference related to number line estimation performance? 

Of the pretreatment measures (i.e. number identification, dot comparison, and digit 

comparison), only the digit comparison task differentiated participants. I used a median split to 

stratify participants into a low and high group. Participants with low scores on the digit 

comparison task in the linear condition performed better on the number line estimation task at 

posttest than the participants with low scores in the nonlinear group (t(11.832)=2.429,p=0.032). 

Participants with high scores on the digit comparison task performed similarly on the number 

line estimation task regardless of if they were in the linear or nonlinear group (all p>0.2). Based 

on the results, the linear intervention was particularly useful for participants who started with 

low numeracy skills, giving further credence to the conclusion that the linear boxes scaffold is 

effective. 

To further evaluate the individual differences on number line estimation error 

hierarchical linear models (HLMs) were constructed. The models took into account all factors 

that might affect changes in mean PAE (e.g. sex, grade-level). In addition to the ancillary factors 
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that were considered, the models controlled for scores on the MANL pretest. When considering 

all potential predictor variables, including MANL pretest score, the average difference between 

the linear and nonlinear condition was no longer present at Phase 4, the posttest. This means 

once the predictors accounted for variation, the mean PAE for the linear and nonlinear group did 

not differ significantly.  

A benefit of HLM is that it can provide information about the growth rate of a variable, in 

this case the mean PAE, in addition to giving a comparison of groups at a fixed time point. The 

ideal growth of mean PAE is to become more negative over time. The results for the main effects 

model demonstrated that the treatment group’s (i.e. linear) mean PAE was decreasing at a faster 

rate (-0.09 logits PAE) than the nonlinear group (p=0.005). So while at posttest the linear and 

nonlinear groups did not differ, the difference in growth rates suggests that perhaps with more 

sessions they would have reached a point when they did differ significantly.  

The MANL pretest scores being significant in the model led to further exploration. I used 

the median MANL pretest score to split the participants into two groups, low and high. The 

results showed that the low linear group’s mean PAE was decreasing at a faster rate (-0.32 logits 

PAE, p=0.007) than the low nonlinear group’s mean PAE. The high linear and nonlinear groups’ 

growth rates did not significantly differ. The linear intervention was particularly useful for 

helping participants with low MANL pretest scores decrease their mean PAE at a faster rate.  

Linearity as an Intervention 

What factors besides feedback could contribute to the improvements in number line 

estimation ability? I propose that categorizing numbers into a straight line is an essential factor in 

the improvement in number line estimation error growth rate. Placing numbers into categories 

linearly reinforces key numerical properties. One numerical property that the linear boxes 
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reinforce is the ordinal property. “…Numbers have an ordinal property in that they are 

sequenced” (Sarama & Clements, 2009, 85). Having participants identify numbers as really 

small, small, medium, big, and really big linearly encourages consideration of the sequence of 

numbers in a linear fashion and builds ordinality. Another numerical property that linear 

categorization reinforces is “later is greater” (Gunderson, Spaepen, & Levine, 2015):  numbers 

that occur later in the count order or further to the right on the number line are greater in 

magnitude.  

Another potential reason for the linear group’s improvement in number line estimation 

skills is that the representational mapping hypothesis (Siegler & Ramani, 2009) extends beyond 

physical board games to computer-based number categorization tasks. The representational 

mapping hypothesis states that it is easier to learn the desired internal representation the more the 

physical representation transparently maps onto the internal representations (Siegler & Ramani, 

2009). The mental number line is linear (Zorzi, Priftis, & Umiltà, 2002) and number line 

estimation is a visual representation of the internal representation of number (Elofsson, 

Gustafson, Samuelsson, & Träff, 2016): thus the linear categorization task led to improvements 

on number line estimation error. While the representational mapping hypothesis specifies the 

physical representations mapping to internal representations, this study demonstrates the 

connection between virtual (i.e. computer-based) representations and internal representations.  

At posttest the linear group’s error was less than the nonlinear group’s in quintiles 1 and 

2. Stated another way, the linear group outperformed the nonlinear group when estimating 

numbers that fell between 0 and 39 on the number line. One of the proposed representations of 

numerical development is a shift from a logarithmic or compressed number line to a more evenly 

spaced, linear number line (Siegler & Booth, 2004). In the shift from logarithmic to linear 
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number representation smaller numbers improve first (Opfer & Siegler, 2007).  Smaller numbers 

are the numbers that people encounter most frequently and with which people are most familiar. 

It follows logically that if an intervention on number is effective, it will be most effective first 

with the numbers with which children are most familiar. Larger numbers are more difficult thus 

participants need more time to learn the scaffold and apply it to the more challenging numbers.  

Learning Study 

As stated in chapter 1, this study was also a learning study (see Ginsburg, Labrecque, 

Carpenter, Pagar, 2015).  What conclusions does the current study support about the activity’s 

design? A significant finding is that this computer-based number categorization task is 

comparable to the categorization task done with baskets in Laski and Siegler’s (2007) study. 

Further, the computer-based number line estimation task is also comparable to the paper and 

pencil (e.g. Elofsson, Gustafson, Samuelsson, & Träff, 2016) or alternative (e.g. Ebersbach et. 

al., 2008) number line estimation tasks that are often administered. When the number 

categorization task is coupled with the number line estimation task, number line estimation error 

can be reduced. However, the task’s boxes should be arranged linearly for optimal performance 

on the number line estimation task. Two sessions with the linear intervention leads to changes in 

number line estimation error on the first 2 quintiles. Further study is needed to determine how 

many sessions are associated with changes in number line estimation error for all five quintiles. 

Implications for the Classroom 

 Because magnitude knowledge is foundational to numerical development, teachers 

should incorporate tasks such as the number categorization and number line estimation tasks 

described here into their instruction. The tasks can act as an embedded assessment tool in that it 

gives a measure of students’ magnitude understanding. Further, performance on the number line 
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estimation task prior to categorizing numbers could help teachers identify students who are still 

using a logarithmic representation of number and for which numbers they are using that 

representation. 

 During early childhood education in school children begin to move from concrete 

representations of number (e.g. ten frames) to increasingly abstract number representations (e.g. 

traditional algorithms). Number line estimation could be a useful tool in transitioning from 

concrete to the more abstract in that it provides a visual representation of number and magnitude. 

Further, the task presented in this study could provide the first foray into proportional reasoning 

and rational number.   
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Chapter 5 

Conclusion 

The present study aimed to improve children’s number line estimation skills through a 

linear number categorization intervention. Both the number line estimation task and the number 

categorization task were computer-based. Linear categorization was associated with improved 

number line estimation error, especially for the participants who started with low numeracy 

scores. This provides evidence that computer-based linear number categorization can be used to 

improve computer-based number line estimation. This is important because number line 

estimation is a foundational task which measures understanding of magnitude and the 

relationships between numbers. Further, number line estimation is associated with mathematics 

achievement. However, more study is needed to know if building number line estimation skills 

leads to higher scores on mathematics achievement measures. 

The current study has limitations. The sample size of the current study made it difficult to 

find strong trends in the data. With a larger sample size it would have been easier to tease out 

possible group differences. Further, with a small sample size, generalizability of the results is 

difficult. Additionally, I administered the treatment for only two sessions and the participants in 

the linear group improved their estimation skills on the first two quintiles. An increase in 

treatment dosage may have led to growth on more quintiles.  

In the future it would be beneficial to replicate this study with a larger sample and with 

the addition of a broad measure of mathematics achievement as a far transfer task. It would also 

be helpful to know how much participants used the midpoints of the boxes, the category 

prototypes, when categorizing to determine the utility of the demonstration videos that introduce 

the task. Additionally, the number of boxes that are used for the linear sort should be varied and 
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tested. As Siegler and Opfer (2003) suggest, people may use different landmarks in different 

contexts. While quintiles were used here, quartiles, deciles (e.g. ten boxes) or some other 

configuration may work better. Finally, there is much to be learned about children’s number line 

estimation strategies. It has been suggested that use of the origin and endpoints are some of the 

first estimation strategies children use (Ashcraft & Moore, 2012). However, from the growth 

happening in the first two quintiles and not the first and last quintiles, it suggests that participants 

were not using the endpoint to anchor their estimates. Future studies should incorporate a clinical 

interview (Ginsburg, 1981) to collect data on the types of strategies children are using to place 

their estimates. 
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