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ABSTRACT

Cooperative Sequential Hypothesis
Testing in Multi-Agent Systems

Shang Li

Since the sequential inference framework determines the number of total samples

in real-time based on the history data, it yields quicker decision compared to its

fixed sample-size counterpart, provided the appropriate early termination rule. This

advantage is particularly appealing in the system where data is acquired in sequence,

and both the decision accuracy and latency are of primary interests. Meanwhile,

the Internet of Things (IoT) technology has created all types of connected devices,

which can potentially enhance the inference performance by providing information

diversity. For instance, smart home network deploys multiple sensors to perform

the climate control, security surveillance, and personal assistance. Therefore, it has

become highly desirable to pursue the solutions that can efficiently integrate the

classic sequential inference methodologies into the networked multi-agent systems. In

brief, this thesis investigates the sequential hypothesis testing problem in multi-agent

networks, aiming to overcome the constraints of communication bandwidth, energy

capacity, and network topology so that the networked system can perform sequential

test cooperatively to its full potential.

The multi-agent networks are generally categorized into two main types. The first

one features a hierarchical structure, where the agents transmit messages based on

their observations to a fusion center that performs the data fusion and sequential

inference on behalf of the network. One such example is the network formed by wear-

able devices connected with a smartphone. The central challenges in the hierarchical



network arise from the instantaneous transmission of the distributed data to the fu-

sion center, which is constrained by the battery capacity and the communication

bandwidth in practice. Therefore, the first part of this thesis is dedicated to address

these two constraints for the hierarchical network. In specific, aiming to preserve the

agent energy, Chapter 2 devises the optimal sequential test that selects the “most

informative” agent online at each sampling step while leaving others in idle status.

To overcome the communication bottleneck, Chapter 3 proposes a scheme that allows

distributed agents to send only one-bit messages asynchronously to the fusion center

without compromising the performance.

In contrast, the second type of networks does not assume the presence of a fu-

sion center, and each agent performs the sequential test based on its own samples

together with the messages shared by its neighbours. The communication links can

be represented by an undirected graph. A variety of applications conform to such

a distributed structure, for instance, the social networks that connect individuals

through online friendship and the vehicular network formed by connected cars. How-

ever, the distributed network is prone to sub-optimal performance since each agent

can only access the information from its local neighborhood. Hence the second part

of this thesis mainly focuses on optimizing the distributed performance through lo-

cal message exchanges. In Chapter 4, we put forward a distributed sequential test

based on consensus algorithm, where agents exchange and aggregate real-valued lo-

cal statistics with neighbours at every sampling step. In order to further lower the

communication overhead, Chapter 5 develops a distributed sequential test that only

requires the exchange of quantized messages (i.e., integers) between agents. The

cluster-based network, which is a hybrid of the hierarchical and distributed networks,

is also investigated in Chapter 5.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The sequential hypothesis test comprises of the stopping rule that terminates the ob-

servation process, and the terminal decision function that chooses between hypotheses

upon stopping. The optimal stopping rule is able to substantially reduce the sample

size compared to the fixed-sample-size framework. Notably, for the simple null versus

simple alternative hypothesis testing, the sequential probability ratio test (SPRT) at-

tains the minimum expected sample sizes under both hypotheses subject to the error

probability constraints [1, 2].

Meanwhile, the recent decade has witnessed the surge of smart devices that can

be connected through wireless links and form cooperative networks, giving rise to the

Internet of Things (IoT). Some examples include the body network where wearable

devices are connected to the smartphone for health monitoring, the vehicular net-

work as part of the intelligent transportation system, and the social network that

connects people through online friendship. Many applications pertaining to these

examples involve choosing between hypotheses with stringent requirements on the

decision latency, necessitating solutions that can integrate the sequential hypothesis

testing technique into the cooperative networks. For instance, vehicular networks

can cooperatively detect the hazardous road condition in a timely fashion; or social

networks can determine whether a restaurant is good or bad with the help of the
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FC

(a) Hierarchical network (b) Distributed network

Figure 1.1: Illustration of the two types of multi-agent systems.

so-called collective wisdom.

There are primarily two types of network architectures, depending on whether or

not there exists a central processing unit, or fusion center. In the presence of a fusion

center, the network features a hierarchical structure (c.f., Fig. 1.1-(a)), i.e., all sensors

directly transmit data to the fusion center, where the data fusion and sequential

test are performed. The body network mentioned above falls under this category,

usually with the smartphone functioning as the fusion center. The main challenge

associated with the hierarchical network arises from the communication burden from

sensors to the fusion center, which is subject to agent battery and channel bandwidth

constraints. The first part of this thesis (Chapter 2 and Chapter 3) aims to optimize

the performance of the multi-agent sequential test under these two constraints.

In specific, Chapter 2 considers the scenario where one can only activate one sensor

at each sampling step such that the other idle sensors can preserve their battery. As

such, the “most informative” sensor needs to be selected in order that the sequential

test can yields minimum sample sizes. Moreover, the sensor selection is constrained

by the usage control for certain low-battery sensors. Through solving a constrained

Markov decision process, we develop the optimal online sensor selection strategy that

activates sensor on the go based on the history data. It is shown that the proposed

online algorithm significantly outperforms the conventional method that combines
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offline random selection and sequential probability ratio test.

Chapter 3 addresses the limited communication bandwidth in the hierarchical

network. To lower the communication burden, the sensors need to quantize their

raw samples into finite-bit messages that demand less bandwidth for transmission.

However, the sequential test at the fusion center may suffer from information loss

due to these coarse quantization. As a remedy, for the composite hypothesis testing

problem, we devise a data-driven approach in Chapter 3, where the transmission

time and the quantized message at each agent are determined by a level-crossing

event. The level-crossing based scheme only requires each agent to transmit one-bit

message to the fusion center every (random) period of time, thus significantly lowers

the communication overhead. More importantly, we show that, despite the one-bit

quantization, the proposed sequential test based on level-crossing scheme attains the

asymptotic optimality, which ensures that the decision latency of the sequential test

increases at the optimal rate when the error probabilities approach zeros.

In spite of its simple structure, the hierarchical network suffers from several limita-

tions. First, it is susceptible to the fusion center malfunctioning. Second, it becomes

very inefficient in the networks where there is no fusion center and every sensor needs

to function as a decision-maker. A typical example is the vehicular, where each

vehicle is able to make individual decision by exchanging data with other vehicles

within its communication range. Accordingly, the distributed architecture (c.f., Fig.

1.1-(b)) is more natural and accurate in this case. In specific, the sensors are con-

nected by wireless links, which allow them to exchange data, and each sensor makes

distributed decision based on its own available information. However, compared to

the hierarchical network, the distributed network is prone to sub-optimal cooperative

performance due to the lack of central coordination. Therefore, the key challenge is to

devise efficient information exchange mechanisms such that each sensor can optimize

its distributed sequential test, and, if feasible, achieve the globally optimal perfor-

mance. In the second part of this thesis (Chapter 4 and Chapter 5), we address this
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challenge by incorporating the message-exchange algorithms with the sequential test.

In Chapter 4, the distributed sequential test based on real-valued message-exchange

between neighbour sensors is investigated. Different from most literature, the sam-

pling process and the message-exchange process in our framework take place simulta-

neously, thus cannot be decoupled from one another. Two message-exchange schemes

are considered, based on which the sequential probability ratio test is carried out

respectively. The first scheme features the dissemination of the raw samples. Specif-

ically, every sample propagates over the network by being relayed from one sensor

to another until it reaches all the sensors in the network. However, such a scheme

incurs excessive inter-sensor communication overhead due to the exchange of raw

samples with index information. The second scheme adopts the consensus algorithm,

where the local decision statistic is exchanged between sensors instead of the raw

samples, thus significantly lowers the communication requirement compared to the

first scheme. In particular, the decision statistic for the sequential test at each sensor

is updated by the weighted average of the decision statistics at neighbour sensors at

every message-exchange step. We show that, under certain conditions, both the pro-

posed distributed sequential tests yield asymptotically optimal performance at every

sensor.

Furthermore, Chapter 5 investigates the distributed sequential test in the dis-

tributed network with quantized communication channels. That is, all sensors need

to quantize their local statistics before sharing information with neighbours at ev-

ery sampling and message-exchange step. In this setup, a modified level-triggered-

quantization scheme is proposed in conjunction with a quantized message-exchange

algorithm. We show that, under certain conditions, the proposed distributed se-

quential test achieves asymptotic optimality. Moreover, Chapter 5 also considers the

distributed sequential test in the cluster-based network, which is a hybrid network

that incorporates both the hierarchical and distributed architectures.
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Chapter 2

Optimal Sequential Test with

Online Sensor Selection

2.1 Introduction

In this chapter, we consider the sequential hypothesis test when sensor access at

the fusion center is restricted, and efficient sensor scheduling/selection is of interest.

That is, the sensor network with different types of sensors (i.e., heterogenous sensors)

and a fusion center aims to test between two hypotheses; however, only one of the

available sensors can take samples and communicate with the fusion center at each

sampling instant. Such a setup often arises when the sensors are equipped with

limited battery, thus need to switch between the active status and idle status, or the

sensors in some applications could contradict/exclude one another. For instance, the

echo-based sensors like sonar sensors can interfere with each other [3]. In practice,

the heterogenous sensors could also refer to multiple information resources, and the

processing unit (i.e., fusion center) can only analyze one at a time. This model

well describes, for example, the human decision process. As such, in order to reach

a quick and reliable decision, strategically selecting the “most informative” sensor,

which often depends on the parameter values or the true hypothesis that is unknown,
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has become the pivotal problem.

In the context of fixed-sample-size statistical inference, sensor selection has been

well studied, mainly from the optimization standpoint. In particular, [3] proposed

a random selection scheme to minimize the error covariance of a process tracking

problem; for the Kalman filter, [4] devised a multi-stage strategy to select a subset of

sensors so that an objective function related to the error covariance matrix was min-

imized; [5] put forth a convex-optimization-based approach to select multiple sensors

for the parameter estimation in linear system. For the fixed-sample-size hypothesis

test, [6] investigated sensor scheduling based on information-metric criteria such as

Kullback-Leibler and Chernoff distances.

The studies on the sensor selection for sequential hypothesis test have mainly

branched into the offline (a.k.a. open-loop) and online (a.k.a. closed-loop) ap-

proaches. The former category essentially involves independent random selection

over time, with the probability preassigned to each sensor. Along this direction, [7, 8]

introduced random sensor selection to the multi-hypothesis sequential probability ra-

tio test (SPRT), and designed the selection probability such that its approximate

decision delay was minimized. They concluded that the optimal random selection

strategy involve at most two sensors for binary-hypothesis test. Namely, the fusion

center should either always use one sensor, or randomly switch between two sensors,

and disregard the rest. Similar techniques were later applied to the quickest detection

with stochastic surveillance control [9]. Recently, focusing on the binary-hypothesis

test, [10] further imposed constraints on the sensor usages, i.e., sensors, on aver-

age, cannot be selected more than their prescribed limits, and obtained the selection

probabilities for SPRT with random sensor selection.

Despite their simple implementations, the open-loop approaches do not make use

of the accumulating sample information, thus are suboptimal in general. On the

contrary, the online approaches take all previous samples into account at each step

for sensor selection, and generally yield superior performance. As a matter of fact,
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dynamic sensing control is one of the major advantages of sequential processing. To

this end, [11] selected the sensor that was most informative under the most likely true

hypothesis at each step. [12–14] investigated the sequential multi-hypothesis test with

observation control, and provided lower and upper bound for its asymptotic perfor-

mance. Two asymptotically optimal algorithms were proposed there. The variant of

sequential hypothesis test—changepoint detection with observation control were con-

sidered by [15, 16] based on Bayesian and non-Bayesian settings respectively. Mean-

while, [17] assumed identical sensors, and studied the Bayesian changepoint detection

with control on the number of active sensors. Most of the above online approaches are

based on heuristics and perform well in the asymptotic regime, where error probabil-

ities are extremely low. On the other hand, focusing on the non-asymptotic regime,

[18] considered the online sensor selection strategy for the SPRT. However, it aimed to

minimize the decision delay given that SPRT was used. Instead, the recent work [19]

jointly solved a Bayesian hypothesis testing problem for both the optimal sequential

test and online selection strategy.

In this chapter, we also aim for the optimal sequential test and online sensor

selection simultaneously. Moreover, we further introduce the constraints on the sensor

usages into the formulation, which would potentially embrace a much wider range of

practical problems. That is, certain sensors in the network are not allowed to be

selected more than a prescribed number of times on average. The usage constraints

naturally arise when one intends to restrain the sensors from being overused due

to their limited battery/lifetime, or if the fairness for all sensors in the network is

important [10]. We summarize the contributions as follows:

• To the best of our knowledge, this is the first work that jointly solves for the

optimal sequential test and online sensor selection when sensor usage constraints

are considered. Moreover, this work distinguishes from [10], where the usage-

constrained sensor selection is also studied, in terms of its online/closed-loop

setup.
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• Note that most of the existing works on sensor selection for sequential test only

apply to infinite-horizon, where sample size (or decision delay) at a specific

realization can go to infinity if necessary. This may not be realistic in some

applications. In contrast, we consider both the infinite-horizon and finite-horizon

scenarios. In the later case, a fixed upper bound is imposed on the random

sample size at every realizations.

• We propose practical algorithm to systematically evaluate the parameters in the

optimal sequential test and selection strategy. As long as the test performance

constraints and the sensor usage constraints remain the same, this algorithm

only needs to be run once offline. That is, once the parameters are calculated,

they can be stored at the fusion center, based on which, the sequential test can

be easily implemented.

2.2 Problem Statement

Consider a system consisting of K sensors and a fusion center that aims to test

between two hypotheses, whose priors are given as P (H = i) = πi, i = 0, 1. At each

time instant, the fusion center selects one sensor to take a sample that is sent to

the fusion center. This process continues until a reliable decision can be made. It is

assumed that the fusion center possesses the statistical characterization of all sensors.

That is, the conditional probability density functions f `H(x) of the random samples

collected by sensor `, ` = 1, 2, . . . , K are known to the fusion center. Without loss of

generality, we assume that the sensor network is heterogenous, i.e., there are no two

sensors with identical f `H(x)’s. In addition, the random samples are assumed to be

independent and identically distributed (i.i.d.) over time for the same sensor `, and

independent across different sensors.

On one hand, if there is a dominant sensor that always outperforms all other

sensors, the fusion center should always use it in the absence of usage constraint. Then
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the problem reduces to a single-sensor sequential hypothesis test, and the SPRT yields

the quickest decision. One such example is the test between zero (H0) and non-zero

Gaussian means (H1), where the sensor with the largest mean shift under H1 should

prevail. On the other hand, the efficiency of a sensor generally depends on the true

hypothesis. For example, some sensors can be more informative under H0 and less

so under H1, thus accelerating the decision speed when H0 is true, and slowing down

the decision speed otherwise. Moreover, even the dominant sensor cannot be used all

the time if its usage is restrained. In general, the online sensor selection procedure

is performed based on the accumulated sample information, which is explained as

follows.

There are three essential operations in the online procedure:

1. Sensor selection strategy: Let Π , {1, 2, . . . , K} be the set of all sensors, and

{X1, . . . , Xt} denote the sequence of samples received at the fusion center. Then

the sensor selected at time t can be defined as δt : {X1, . . . , Xt−1} → j ∈ Π.

In addition, we denote the sequence of sensor selections from time i to time j

as δi:j, and δi:j , ∅ if i > j. Note that since at any time, the distribution of

the next sample depends on the selection function, the fusion center observes

dependent random samples {Xt}.

2. Stopping rule: The random sample size is characterized by the stopping time

T. In specific, the event {T = t} means that the sample size is equal to t, which

depends on {X1, . . . , Xt}. We particularly focus on the deterministic stopping

rule, i.e., P (T = t|X1, . . . , Xt) is either zero or one.

3. Decision function: Upon stopping at T = t, a final decision between the two

hypotheses is made, Dt : {X1, . . . , Xt} → {0, 1}.

As such, the fusion center is faced with the following hypothesis testing problem:

H0 : Xt ∼ f δt0 (x), t = 1, 2, . . .

H1 : Xt ∼ f δt1 (x), t = 1, 2, . . . .
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The performance indicators for sequential hypothesis test include the expected sam-

ple size and the error probabilities. In particular, the expected sample size ET =

π0E0 (T)+π1E1 (T) is the weighted sum of the conditional expected sample sizes, and

the type-I and type-II error probabilities are P0 (DT = 1) and P1 (DT = 0) respec-

tively1. Here the expectation E (·) is taken over the joint distribution of H and Xt,

and Ei (·) is taken over the distribution of Xt conditioned on {H = i}.

Moreover, we also impose constraints on the usage of sensors. Denote Ω as the

set of sensors whose usages are restrained. Then for each sensor ` ∈ Ω, the average

number of times that sensor ` is selected, E
(∑T

t=1 1{δt=`}

)
, is constrained to be no

greater than T ` ∈ R+. As such, we arrive at the following constrained sequential

problem:

min{δ1:T,DT,T} ET

subject to P0 (DT = 1) ≤ α, P1 (DT = 0) ≤ β,

E
(∑T

t=1 1{δt=`}

)
≤ T `, ` ∈ Ω.

(2.1)

In the following sections, we will solve (2.1) under both the finite-horizon and infinite-

horizon setups. The finite-horizon setup imposes an upper bound on T for any re-

alization, beyond which no sample can be taken; whereas the infinite-horizon setup

allows the sequential test to continue as long as the termination condition is not met.

In addition to its relevance in many applications, the finite-horizon case can also be

used as a building block for the infinite-horizon problem. For notational convenience,

we define the class of infinite-horizon procedures:

C
(
α, β, {T `}`∈Ω

)
,
{
{δ1:T, DT,T} : P0 (DT = 1) ≤ α,

P1 (DT = 0) ≤ β, and E

(
T∑
t=1

1{δt=`}

)
≤ T `, ` ∈ Ω

}
, (2.2)

1One can also use the weighted sum of type-I and type-II error rates as the error probability.

Here we adopt the formulation in [10], and consider them individually. Nevertheless, the method

developed here can be applied to the former case.
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and the class of finite-horizon procedures:

CN

(
α, β, {T `}`∈Ω

)
,
{
{δ1:T, DT,T} ∈ C

(
α, β, {T `}`∈Ω

)
: T ≤ N

}
. (2.3)

Our goal is to find the optimal triplets {δ1:T,T, DT} that yield the smallest expected

sample sizes ET in the classes CN

(
α, β, {T `}`∈Ω

)
and C

(
α, β, {T `}`∈Ω

)
respectively.

2.3 Optimal Algorithm

In this section, we first recast (2.1) into an unconstrained optimal stopping problem,

which we then solve under both finite-horizon and infinite-horizon setups. The solu-

tions lead us to the optimal sequential solutions to the original constrained problem

(2.1).

By introducing Lagrange multipliers to (2.1), we arrive at the following Bayes

objective function:

R(δ1:T, DT,T) , ET + µ0π0P0 (DT = 1) + µ1π1P1 (DT = 0) +
∑
`∈Ω

λ` E

(
T∑
t=1

1{δt=`}

)

= E

(
T + µ01{DT=1;H=0} + µ11{DT=0;H=1} +

∑
`∈Ω

λ`

(
T∑
t=1

1{δt=`}

))

= E

 T∑
t=1

(
1 + 1{δt∈Ω}λδt

)︸ ︷︷ ︸
Cδt

+µ01{DT=1;H=0} + µ11{DT=0;H=1}︸ ︷︷ ︸
µ(DT,H)

. (2.4)

Note that Cj , 1 + λj and λj ≥ 0 for j ∈ Ω, and Cj , 1 for j /∈ Ω.

2.3.1 Finite-Horizon Solution

In this subsection, under the finite-horizon setup, we aim to find the optimal sen-

sor selection, stopping time and decision rule such that the Bayes risk in (2.4) is

minimized, i.e.,

min
{δ1:T,DT,T},T≤N

R (δ1:T, DT,T) = E

(
T∑
t=1

Cδt + µ (DT,H)

)
. (2.5)
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Define the cumulative log-likelihood ratio (LLR)

Ln ,
n∑
t=1

log
f δt1 (Xt)

f δt0 (Xt)︸ ︷︷ ︸
lδt (Xt)

, (2.6)

and the posterior probabilities πi(t) , P (H = i|X1:t, δ1:t), i ∈ {0, 1} with πi(0) = πi.

These two statistics relate to each other as follows

π1(n) =
π1e

Ln

π0 + π1eLn
=

π1(n− 1)elδn

π0(n− 1) + π1(n− 1)elδn
, Ln = log

π0π1(n)

π1π0(n)
. (2.7)

2.3.1.1 Terminal Decision Function

We begin with solving the terminal decision function. Since

R (δ1:T, DT,T) =E

(
T∑
t=1

Cδt

)
+
∞∑
t=1

E
[
1{T=t}

(
µ01{DT=1;H=0} + µ11{DT=0;H=1}

)]
=E

(
T∑
t=1

Cδt

)
+
∞∑
t=1

E
(
EH
(
µ01{Dt=1;H=0} + µ11{Dt=0;H=1}

∣∣X1:t, δ1:t

)
1{T=t}

)
=E

(
T∑
t=1

Cδt

)
+
∞∑
t=1

E
[(
µ0π0(t)1{Dt 6=0} + µ1π1(t)1{Dt 6=1}

)
1{T=t}

]
,

(2.8)

we have D?
t = 1{µ0π0(t)≤µ1π1(t)} given T = t, i.e.,

D?
T = 1{µ0π0(T)≤µ1π1(T)}. (2.9)

2.3.1.2 Selection Strategy and Stopping Rule

For notational convenience, define the class

ANn , {{δn+1:T,T} : n ≤ T ≤ N} , (2.10)

in which the procedures do not stop before n and can not go beyond N . By substi-

tuting DT with (2.9), (2.5) becomes

min
{δ1:T,T}∈AN0

E

 T∑
t=1

Cδt + min {µ0π0(T), µ1π1(T)}︸ ︷︷ ︸
φ(π1(T))

 , (2.11)
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where φ(x) , min{µ1x, µ0(1−x)}. We next solve (2.11) to obtain the optimal sensor

selection strategy and stopping rule.

Define the optimal cost of the procedures that do not stop before t = n, i.e., the

“cost-to-go” function

VNn (X1:n, δ1:n) , min
{δn+1:T,T}∈ANn

E

(
T∑
t=1

Cδt + φ (π1(T))

∣∣∣∣∣X1:n, δ1:n

)
(2.12)

Note that VN0 (which is not a function of any samples) is equal to (2.11) by definition

and VNN (X1:N , δ1:N) = φ (π1(N)) +
∑N

t=1 Cδt since the test has to stop at N if not

before it. Invoking the technique of dynamic programming, the cost-to-go (2.12) can

be recursively solved by the following backward recursion [2]:

VNn (X1:n, δ1:n) = min

φ (π1(n)) +
n∑
t=1

Cδt︸ ︷︷ ︸
rs(X1:n,δ1:n)

, min
δn+1

[
E
(
VNn+1 (X1:n+1, δ1:n+1)

∣∣X1:n, δ1:n

)]
︸ ︷︷ ︸

rc(X1:n,δ1:n)

 ,

(2.13)

with n = N − 1, N − 2, . . . , 1, 0. According to the principle of optimality, the optimal

stopping time happens when the cost of stopping at the present instant is lower

than the expected cost of continuing [1, 20], i.e., T? = min{n : gn(X1:n, δ1:n) ,

rs (X1:n, δ1:n)− rc (X1:n, δ1:n) ≤ 0}, where

gn (X1:n, δ1:n) = φ (π1(n)) +
n∑
t=1

Cδt −min
δn+1

[
E
(
VNn+1 (X1:n+1, δ1:n+1)

∣∣X1:n, δ1:n

)]
= φ (π1(n))−min

δn+1

{
Cδn+1 + min

{δn+2:T,T}∈ANn+1

[
E

(
φ(π1(T)) +

T∑
t=n+2

Cδt

∣∣∣∣∣X1:n, δ1:n

)]}
,

(2.14)

where the second equality is due to the definition of VNn in (2.12).

In theory, (2.13) and T? fully characterize the optimal stopping rule and selection

strategy from the first to the N -th steps. However, this result is of limited practical

value due to the high complexity brought by the high-dimensional quantities (i.e.,
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X1:n and δ1:n). To this end, the following lemma significantly simplifies T? and (2.14),

since it states that the hypothesis posterior (or equivalently, the LLR) is the sufficient

statistic for the optimal stopping rule.

Lemma 1. The optimal stopping rule for (2.5) is a function of time and hypothesis

posterior, i.e., a time-variant function of the posterior, T? = min{n : gn(π1(n)) ≤ 0}.

Proof. See Appendix.

The important implication of Lemma 1 is that the selection strategy, which de-

pends on all previous samples, can be summarized into a more compact form.

Lemma 2. The optimal selection strategy for (2.5) is characterized by a time-variant

function of the hypothesis posterior (or equivalently, the LLR), i.e., δ?n+1 = ψn+1(π1(n)).

Proof. From (2.13), the optimal selection strategy for t = n+ 1 is

δ?n+1 = arg min
δn+1

E
(
VNn+1 (X1:n+1, δ1:n+1)

∣∣X1:n, δ1:n

)
, (2.15)

and, by its definition, we have

VNn+1 (X1:n+1, δ1:n+1) = min {rs (X1:n+1, δ1:n+1) , rc (X1:n+1, δ1:n+1)}

= min {0,−gn+1(π1(n+ 1))}+ rs (X1:n+1, δ1:n+1)

= φ (π1(n+ 1)) +
n+1∑
t=1

Cδt −max {gn+1(π1(n+ 1)), 0} . (2.16)

Substituting (2.16) into (2.15) and neglecting the term
∑n

t=1 Cδt that is independent

of δn+1, we arrive at

δ?n+1 = arg min
δn+1

{
Cδn+1 + E

[
φ (π1(n+ 1))−max {gn+1 (π1(n+ 1)) , 0}

∣∣∣X1:n, δ1:n

]}

= arg min
δn+1

Cδn+1 + E
[
φ (π1(n+ 1))−max {gn+1 (π1(n+ 1), n+ 1) , 0}

∣∣∣ π1(n)
]

︸ ︷︷ ︸
un(π1(n),δn+1)

 .

(2.17)
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Note that the fact that the expectation term in the bracket is a time-variant function

of π1(n) and δn+1 (i.e., un (π1(n), δn+1)) follows from the relation between π1(n) and

π1(n + 1) given by (2.7). Then δ?n+1 = arg minδ ũn (π1(n), δ) , Cδ + un (π1(n), δ)

which implies that the optimal selection is a time-variant function of the posterior,

i.e., δ?n+1 = ψn+1 (π1(n)).

This result agrees with the intuition. Since the sensor efficiency depends on the

actual hypothesis, it is reasonable to base the sensor selection upon the present belief

(i.e., posterior) on the hypothesis.

Next we continue to study the stopping rule T? in more details. Define

GNn (X1:n, δ1:n) , VNn (X1:n, δ1:n)−
n∑
t=1

Cδt

= min
{δn+1:T,T}∈ANn

E

(
T∑

t=n+1

Cδt + φ (π1(T))

∣∣∣∣∣X1:n, δ1:n

)
. (2.18)

Meanwhile, GNn (X1:n, δ1:n) can be written as a function of π1(n) by using (2.16) as

GNn (X1:n, δ1:n) = φ (π1(n))−max {gn(π1(n)), 0} = GNn (π1(n)) , (2.19)

where GNN (X1:N , δ1:N) = φ (π1(N)).

Then, by substracting
∑n

t=1 Cδt on both sides of (2.13), we obtain

rs −
n∑
t=1

Cδt = φ(π1(n)), (2.20)

and rc (X1:n, δ1:n)−
n∑
t=1

Cδt = min
δn+1

E

[
VNn+1 (X1:n+1, δ1:n+1)−

n∑
t=1

Cδt

∣∣∣∣∣X1:n, δ1:n

]
= min

δn+1

E
[
Cδn+1 + GNn+1 (π1(n+ 1))

∣∣X1:n, δ1:n

]
(2.21)

= min
δn+1

Cδn+1 + E
[
GNn+1 (π1(n+ 1))

∣∣ π1(n)
]
, (2.22)

where (2.21) follows from the definition of GNn , and (2.22) holds since Cδn+1 is constant

given {X1:n, δ1:n} and E
[
GNn+1 (π1(n+ 1))

∣∣X1:n, δ1:n

]
= E

[
GNn+1 (π1(n+ 1))

∣∣ π1(n)
]
.
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Substituting (2.20)-(2.22) into (2.13), the backward recursion is significantly simpli-

fied to the following

GNn (π1(n))=min


φ (π1(n)) ,min

δn+1

Cδn+1 +E

(
GNn+1

(
π1(n) exp

(
lδn+1

)
π0(n) + π1(n) exp

(
lδn+1

))∣∣∣∣∣ π1(n)

)
︸ ︷︷ ︸

GNn (π1(n),δn+1)




,

(2.23)

with n = N − 1, N − 2, . . . , 1, 0. Obviously, we have

GN0 (π1) = VN0 (π1) (2.24)

due to the definition in (2.18).

With the lemma below, we can further analyze the optimal stopping rule given in

Lemma 1.

Lemma 3. GNn (π1(n), δn+1) is a concave function of π1(n). Moreover, the function

G̃Nn (π1(n)) , min
δn+1

GNn (π1(n), δn+1) (2.25)

is concave with G̃Nn (0) > 0, G̃Nn (1) > 0, for n = 0, 1, . . . , N .

Proof. First, GNN (π1(N)) = φ(π1(N)) = min{µ1π1(N), µ0(1 − π1(N))} is concave.

Second, the recursion (2.23) suggests that, if GNn+1(π1(n + 1)) is concave, GNn (π1(n))

is concave as well. This can be shown as follows:

Assume that GNn+1(x) is concave, since
x exp(lδn+1)

1−x+x exp(lδn+1)
is an increasing function

of x and the expectation operation preserves the concavity, the compound function

E
(
GNn+1

(
x exp(lδn+1)

1−x+x exp(lδn+1)

)∣∣∣∣ π1(n) = x

)
is concave, which further leads to the con-

cavity of GNn (π1(n), δn+1) in terms of π1(n); in addition, regarding GNn (π1(n), δn+1)

as a series of concave functions indexed by δn+1, since the point-wise minimum pre-

serves the concavity, G̃Nn (π1(n)) is a concave function; due to the same argument, the

point-wise minimum of G̃Nn (π1(n)) and φ(π1(n)), i.e., GNn (π1(n)), is concave as well.
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Therefore, by induction, we conclude that GNn (π1(n)), n = 0, 1, . . . , N are con-

cave functions. Furthermore, from the proof above, we know that the concavity of

GNn (π1(n)) leads to the concavities of GNn (π1(n), δn+1) and G̃Nn (π1(n)). Thus GNn (π1(n), δn+1)

and G̃Nn (π1(n)) for n = 0, 1, . . . , N are concave functions.

Together with Lemma 1, Lemma 3 reveals the following optimal stopping rule.

Lemma 4. T? = min{n : π1(n) /∈ (an, bn)}, where an and bn are roots for

µ0(1− x) = G̃Nn (x) and µ1x = G̃Nn (x), (2.26)

respectively. Moreover, a0 < a1 < . . . < aN = µ0

µ0+µ1
, and b0 > b1 > . . . > bN = µ0

µ0+µ1
.

Proof. See Appendix.

Now we have obtained the optimal solution {δ?1:T? , D
?
T? ,T

?} to (2.5), which is

summarized in the theorem below. Note that we have changed the sufficient statistic

π1(n) to its equivalent form, i.e., LLR Ln to draw parallel to the well-known SPRT,

and with an abuse of notation, the selection function is also denoted as ψt+1(Lt).

Theorem 1. The optimal sequential procedure that solves (2.5) features a sequential

probability ratio test with curved stopping boundary, and time-variant sensor selection

strategy, i.e.,

1. The optimal sensor selection rule is a time-variant function of LLR: δ?t+1 ,

ψt+1(Lt);

2. The optimal stopping rule is in the form of a truncated SPRT, i.e.,

T? = min{t : Lt /∈ (−At, Bt)}, with (2.27)

B0 > B1 > . . . > BN = log
µ0π0

µ1π1

, and A0 > A1 > . . . > AN = − log
µ0π0

µ1π1

;

(2.28)

3. The optimal decision rule D?
T? decides H0 if LT? ≤ −AT?, and decides H1 if

LT? ≥ BT?.
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For the scheme given in Theorem 1, T? ≤ N is guaranteed by noting that −AN =

BN = log µ0π0

µ1π1
, and (−AN , BN) is an empty set. In other words, any value of LN

results in stopping. In specific, LN ≥ BN gives decision δN = 1, and LN ≤ −AN
gives decision δN = 0. Since LN = −AN = BN = log µ0π0

µ1π1
holds with zero probability,

the equality situation for decision can be ignored in this case. Theorem 1 reveals

the important structure of the optimal solution to (2.5), while the specific values of

At, Bt and ψt+1(Lt) need to be evaluated by solving the dynamic program (2.23).

In specific, in the posterior domain, the continuation region (i.e., the sequential test

stops if the posterior goes beyond this region) and the selection region for sensor `

are given respectively by

Rt , {π1(t) : φ(π1(t)) ≥ G̃Nt (π1(t))}, (2.29)

D`t ,
{
π1(t) : ` = arg min

δ
GNt (π1(t), δ)

}
, ` = 1, . . . , K. (2.30)

Transforming Rt and D`t into the LLR domain according to (2.7), which we denote

as R̃t and D̃`t , then the thresholds in Theorem 1 are evaluated as

At = −min{Lt : Lt ∈ R̃t}, Bt = max{Lt : Lt ∈ R̃t}. (2.31)

Moreover, Lemma 3 and (2.30) indicate that the selection strategy boils down to

finding the minimum of K concave functions, i.e., GNn (π1(t), δ), δ = 1, . . . , K, in

the domain of posterior. Since concave functions are nicely behaved functions, the

resulting selection scheme essentially partitions the domain of posterior into a finite

number of intervals (assuming K is finite) and assign each interval with the sensor

index, whose value of GNn is minimum within that interval. This observation suggests

that, once computed offline, the sensor selection strategy can be easily stored in

the fusion center. In practice, the recursion (2.23), the sensor selection function

(2.30), and the stopping rule (2.29) and (2.31) are implemented by discretizing the

domain of posterior π1(t). We summarize this procedure in Algorithm 1, where ν

and L are vectors containing the discrete values of π1(t) and Lt respectively, G(ν, t)

and ψ(ν, t + 1) and ψ(L, t + 1) are vectors formed by evaluating the function for
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each element of ν and L, representing the functions GNt (π1(t)) and ψt+1(π1(t)), and

ψt+1(Lt) respectively. The expectation E(·) = π0E(·|H0) + π1E(·|H1) therein is taken

w.r.t. the distribution of random sampleX, and is evaluated by numerical integration.

The output ψ(L, t+1), t = 0, 1, . . . , N−1 (i.e., a sequence of vectors) and {A(t), B(t)}

give the selection function and decision thresholds respectively, and G(π1, 0) gives the

optimal cost GN0 (π1) (or equivalently, VN0 (π1)), which will be used in Section 2.4.

Algorithm 1 : Procedure for computing At, Bt and ψt+1(Lt) in Theorem 1

1: Input: N, π1, µ0, µ1, {λj}j∈Ω, the distributions of X under H0 and H1

2: Initialization:

G(ν, N)← min (µ1ν, µ0(1− ν)), ψ(ν, N)← 0, L← log π0ν
π1(1−ν)

3: for t = N − 1 to 0 do

4: Evaluate selection function at t+ 1:

ψ(ν, t+ 1)← arg minδ

{
Cδ + E

[
G( νelδ(X)

1−ν+νelδ(X) , t+ 1)
]}

5: Update “cost-to-go”:

G(ν, t)← min
{

min (µ1ν, µ0(1− ν)) , Cψ(ν,t+1) + E
[
G( νe

lψ(π,t+1)(X)

1−ν+νe
lψ(π,t+1)(X) , t+ 1)

]}
6: Evaluate stopping thresholds:

a(t)← min
{
ν ∈ ν : min (µ1ν, µ0(1− ν)) ≥ Cψ(ν,t+1) + E

[
G( νe

lψ(ν,t+1)(X)

1−ν+νe
lψ(ν,t+1)(X) , t+ 1)

]}
b(t)← max

{
ν ∈ ν : min (µ1ν, µ0(1− ν)) ≥ Cψ(ν,t+1) + E

[
G( νe

lψ(ν,t+1)(X)

1−ν+νe
lψ(ν,t+1)(X) , t+ 1)

]}
7: Transform to the domain of LLR:

A(t)← − log π0a(t)
π1(1−a(t))

B(t)← log π0b(t)
π1(1−b(t))

ψ(L, t+ 1)← ψ( π1eL

π0+π1eL
, t+ 1) (which is evaluated in step 4)

8: end

9: Output:

G(π1, 0), ψ(L, t+ 1), A(t), B(t) for t = 0, 1, . . . , N
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2.3.2 Infinite-Horizon Solution

Next, by building on the finite-horizon results developed in the last subsection, we

consider the infinite-horizon version of the problem in (2.5).

The essential step of bridging the two problems is to show that the finite-horizon

case approaches the infinite-horizon case as N →∞ [2, 19, 20]. Then the results in the

last subsection can be readily generalized to the infinite-horizon scenario. Defining

the optimal cost of the infinite-horizon Bayesian problem:

Ṽ(π1) , min
{T,DT,δ1:T}

R (δ1:T, DT,T) (2.32)

where π1 is the prior on H1. First, note that the optimal decision function derived

in (2.8) is independent of the horizon limit, thus D?
T in (2.9) can be substituted into

(2.32), which gives the similar optimal stopping problem as that in (2.11):

Ṽ(π1) = min
{T,δ1:T}∈A∞0

E

(
T∑
t=1

Cδt + φ(π1(T))

)
. (2.33)

Recalling that VN0 (π1) = min{δ1:T,DT,T},T≤N R (δ1:T, DT,T) according to (2.12), we

have the following lemma.

Lemma 5. limN→∞ VN0 (π1) = Ṽ(π1) for all π1 ∈ [0, 1].

Proof. Let {δ?1:T? , D
?
T? ,T

?} be the optimal solution to the infinite-horizon problem

(2.32). Define the auxiliary procedure {δ?
1:T̂N

, D?
T̂N
, T̂N} where T̂N = min{T?, N},

then we have

R
(
δ?

1:T̂N
, D?

T̂N
, T̂N

)
−R (δ?1:T? , D

?
T? ,T

?)

= E

(
1{T?≥N}

(
φ
(
π1(T̂N)

)
− φ (π1(T?))−

∞∑
t=N+1

Cδt

))
≤ E

(
1{T?≥N}

(
φ
(
π1(T̂N)

)))
(2.34)

= E
(
φ (π1(N))1{T̂N=N}

)
, (2.35)
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where (2.34) follows from the fact that φ(π1(T?)) and Cδt are positive, and (2.35)

is true because T̂N = N holds with probability one given that T? ≥ N due to the

definition of T̂N . Using (2.35) and the fact that VN0 (π1) is the optimal cost for all

T ≤ N whereas {δ?
1:T̂N

, D?
T̂N
, T̂N} is a constructed scheme for T ≤ N , we arrive at

the following inequalities

VN0 (π1) ≤ R
(
δ?

1:T̂N
, D?

T̂N
, T̂N

)
≤ R (δ?1:T? , D

?
T? ,T

?) + E
(
φ (π1(N))1{T̂N=N}

)
.

(2.36)

By the strong law of large number, we know that LN → ∞, a.s. as N → ∞, thus

φ (π1(N)) = min{µ0π0(N), µ1π1(N)} → 0 a.s. as N → ∞ [20]. Taking N → ∞ on

both sides of (2.36), we have

lim
N→∞

VN0 (π1) ≤ R (δ?1:T? , D
?
T? ,T

?) = Ṽ(π1). (2.37)

On the other hand, VN0 (π1) ≥ R (δ?1:T? , D
?
T? ,T

?), since VN0 (π1) is the minimal cost for

the finite-horizon problem, i.e., T ≤ N , whereas R (δ?1:T? , D
?
T? ,T

?) is the minimal cost

for the infinite-horizon problem, where no bound on T is imposed. Thus, we have

limN→∞ VN0 (π1) ≥ R (δ?1:T? , D
?
T? ,T

?) = Ṽ(π1) that, together with (2.37), completes

the proof.

Meanwhile, in the finite-horizon solution (2.23), since GNn (π1(n)) is a function of

the homogenous Markov chain π1(n), we have GNn (x) = GN−n0 (x) = VN−n0 (x). The

first equality follows from the homogeneity property, and second equality follows from

definitions. Therefore, the backward induction (2.23) can be equivalently expressed

as the recursion

VN−n0 (x) = min

{
φ (x) ,min

δn+1

[
Cδn+1 + E

(
VN−n−1

0

(
x exp

(
lδn+1

)
1− x+ x exp

(
lδn+1

)))]} ,
(2.38)

with V0
0 (x) = φ(x). By letting N →∞, and invoking Lemma 5, we arrive at

Ṽ(x) = min

{
φ (x) ,min

δ

[
Cδ + E

(
Ṽ
(

x exp (lδ)

1− x+ x exp (lδ)

))]}
. (2.39)
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This is the Bellman equation for the infinite-horizon Bayesian problem (2.32). Note

that, thanks to Lemma 5, Ṽ (x) preserves the concavity of VN0 . Therefore, (2.39)

reveals that the stopping boundaries under infinite-horizon are constants. Moreover,

the sensor selection function δt+1 depends only on the posterior/LLR, and is inde-

pendent of time. We summarize the optimal solution to the infinite-horizon problem

in the theorem below.

Theorem 2. The optimal procedure that solves (2.5) features an SPRT with station-

ary sensor selection strategy, i.e.,

1. The optimal sensor selection rule is a time-invariant function of the likelihood

raito, i.e., δ?t+1 = ψ(Lt).

2. The stopping rule is in the form of the SPRT T? = min{t : Lt /∈ (−A,B)}.

3. The optimal decision rule D?
T? decides H0 if LT? ≤ −A, and decides H1 if

LT? ≥ B.

The function ψ(Lt) and the thresholds A,B can be evaluated numerically by solving

the Bellman equation (2.39).

The proof for Theorem 2 follows similarly to that of Theorem 1 by using the Bell-

man equation (2.39). In brief, Ṽ(x) and E(x) , minδ

[
Cδ + E

(
Ṽ
(

x exp(lδ)
(1−x+x exp(lδ))

))]
can be proved to be concave functions with E(0) > 0 and E(1) > 0 by letting N →∞

in Lemma 3; then the operation minδ in E(x) indicates that the selection rule is a time-

invariant function of the posterior, leading to Theorem 2-(1); moreover, analogous to

(2.26) in Lemma 3, the stopping thresholds are given by the roots for µ0(1−x) = E(x)

and µ1x = E(x) which are constants, leading to Theorem 2-(2). The key difference

here is that E(x) is independent of n in contrast with G̃Nn (x) in the proof of Theorem 1.

Interestingly, Theorem 2 implies that the stopping thresholds and selection strategy

of the infinite-horizon Bayesian problem converge to a sequential procedure that, in

essence, is a combination of the SPRT and stationary sensor selection function ψ(Lt).
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Several approaches are available to solve the Bellman equation for ψ(Lt) and A,B.

Here, by virtue of Lemma 5, we solve a finite-horizon problem with sufficiently large

N to approximately obtain them, which will be explained in Section 2.4.

2.3.3 Proof of Optimality

Now that the Bayesian optimal stopping problem is solved in the previous subsections,

we are ready to establish the optimal sequential procedure for (2.1) as follows.

Theorem 3. Let µ , [µ0, µ1] be chosen such that the reliability constraints are sat-

isfied with equalities; let λ , {λj}j∈Ω be chosen such that all usage constraints are

satisfied, and moreover, the usage constraints for the sensors in Ωc , {` : λ` > 0}

are satisfied with equalities. Then the optimal sequential procedure given by Theorems

1 and 2 give the optimal triplets {T?, D?
T? , δ

?
1:T?} that solve the constrained problem

(2.1) in finite-horizon and infinite-horizon scenarios, respectively.

Proof. The proofs are the same for finite-horizon and inifite-horizon problems, thus

we only show the latter for conciseness.

Considering the results in Section 2.3.1-2.3.2, we haveR (δ1:T, DT,T) ≥ R (δ?1:T? , D
?
T? ,T

?)

for any procedure {δ1:T, DT,T}. That is

ET+µ0π0P0 (DT = 1) + µ1π1P1 (DT = 0) +
∑
`∈Ωc

λ`E

(
T∑
t=1

1{δt=`}

)

≥ ET? + µ0π0P0 (D?
T? = 1) + µ1π1P1 (D?

T? = 0) +
∑
`∈Ωc

λ`E

(
T?∑
t=1

1{δ?t=`}

)

= ET? + µ0π0α + µ1π1β +
∑
`∈Ωc

λ`T
`. (2.40)

Note that µ0 ≥ 0, µ1 ≥ 0 and λ` > 0 for ` ∈ Ωc, thus ET ≥ ET? must hold true for

any procedure {δ1:T, DT,T} ∈ C
(
α, β, {T `}`∈Ω

)
.

The insight for Theorem 3 is intuitive. The sensors in Ωc (referred to as the effec-

tive set henceforth) will be overused without imposing the constraint, thus additional
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sampling cost λ` > 0 is assigned to penalize their usages (recall the definition of Cδt in

(2.4)). Nevertheless, in order to optimize the test performance, they should be used

at full capacity, i.e., usage constraints are satisfied with equalities. Section 2.4 will

address how we obtain Ωc from a general set Ω that are under usage constraints in

the formulation (2.1).

Next, we investigate the performance of the optimal sequential procedure under

infinite-horizon. The challenge stems from the fact that random samples are no

longer i.i.d., and the typical method based on Wald’s identity fails to given valid

performance analysis. However, by capitalizing on the optimal structures revealed in

Theorems 2 and 3, we can derive an insightful bound to approximately characterize

the performance. Define the Kullback-Leibler divergence (KLD):

D`i
(
f `i ||f `j

)
, Ei

(
log

f `i (X)

f `j (X)

)
. (2.41)

Proposition 1. Based on the Wald’s approximation [2] (i.e., LT? ≈ −A given D?
T? =

0 or LT? ≈ B given D?
T? = 1), the expected sample size for the optimal procedure for

the infinite-horizon problem of (2.1) is lower bounded by

ET? ≥

π0
D (α||1− β)

max`∈Ωc
D`0

+ π1
D (1− β||α)

max`∈Ωc
D`1
−
∑
`∈Ωc

(
max

{
D`1

max`∈Ωc
D`1
,

D`0
max`∈Ωc

D`0

}
− 1

)
T `,

(2.42)

where D (p||q) , p log p
q

+ (1 − p) log 1−p
1−q is the KLD of binary distributions, and

Ωc , Π\Ωc contains all sensors except those in Ωc.

Proof. See Appendix.

The performance characterization agrees with intuition. The first two terms on

right-hand side of (2.42) characterize the asymptotic performance of the optimal

sequential procedure as α and β go to zero, or D (α||1− β) and D (1− β||α) go

to infinity. It is seen that the asymptotic expected sample size is determined by the
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KLDs of the sensors in Ωc, i.e., the free sensors that do not reach their full usage. This

result is consistent with that in [12], where all sensors are constraint-free. Meanwhile,

the third term on the right-hand side of (2.42) accounts for the effect of the fully

used sensors, which depends on their KLDs compared to that of the free sensors. If

max
{

D`1
max`∈Ωc

D`1
,

D`0
max`∈Ωc

D`0

}
> 1, then sensor ` decreases the expected sample size due

to its larger KLDs; otherwise, sensor ` increases the expected sample size.

2.4 Parameters Design

In previous sections, we derived the optimal solutions to (2.1) under both finite-

horizon and infinite-horizon setups, given that µ and λ are set to satisfy certain

conditions as given in Theorem 3. These multipliers determine the parameters in the

optimal sequential test and selection function, i.e., At, Bt, ψt+1(Lt) for finite-horizon,

and A,B, ψ(Lt) for infinite-horizon. In practice, one can choose the multipliers by

manually refining their values according to the simulation results; however, it is not

an efficient approach, especially when the number of constraints is large. In this

section, we propose a systematic approach to approximately evaluate the multipliers,

which involves minimizing a concave function.

By drawing on the idea of the recent work [21], we evaluate the multipliers by

introducing the dual problem of (2.1):

max
{λ,µ}∈R+

min
{δ1:T,DT,T}

L({δ1:T, DT,T},λ,µ), (2.43)

where the Lagrangian admits

L({δT1 , DT,T},λ,µ) , ET + µ0π0 (P0 (DT = 1)− α)

+ µ1π1 (P1 (DT = 0)− β) +
∑
`∈Ω

λ`

(
T∑
t=1

1{δt=`} − T `
)

= R(δ1:T, DT,T)− µ0π0α− µ1π1β −
∑
`∈Ω

λ`T
`. (2.44)
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The reason is that if there exist multipliers such that the constraints hold as equalities,

they must reside in the saddle point as expressed in (2.43).

We first begin with the N -horizon problem. Since the Bayesian problem is solved

in Section 2.3, (2.43) becomes

max
{λ,µ}∈R+

L̃N(λ,µ) , min
{D,T,δ1:T}

E

(
T∑
t=1

Cδt + µ (DT,H)

)
︸ ︷︷ ︸

VN0 (π1,λ,µ)

−
∑
`∈Ω

λ`T
` − µ0π0α− µ1π1β,

(2.45)

where L̃N(λ,µ) is a concave function of λ and µ. Note that VN0 (π1,λ,µ) is the same

function as defined in (2.24) while we explicitly show the variables λ and µ here for

clarity.

Note that (2.45) is a constrained concave problem that still requires complex

solving process, for example, the interior-point method [22]. In this thesis, we propose

a simple procedure based on gradient ascent. In brief, we first assume that the

effective set of constraints Ωc is known, based on which, (2.45) can be recast into an

unconstrained optimization problem; we then give the scheme for evaluating Ωc. The

detailed procedure includes the following steps:

• Given any Ωc, it is known that the optimal multipliers µ0 > 0, µ1 > 0, λj > 0

for j ∈ Ωc and λj = 0 for j ∈ Ωc (cf. Theorem 3). Consequently, the original

problem (2.45) can be reduced to an unconstrained problem by removing λj, j ∈

Ωc:

max
λΩc ,µ

L̃N(λΩc ,µ) , VN0 (π1,λΩc ,µ)−
∑
`∈Ωc

λ`T
` − µ0π0α− µ1π1β, (2.46)

with λΩc , {λj}j∈Ωc , since the optimal values of λj, j ∈ Ωc and µ reside in the

interior of the positiveness constraint. Now (2.46) can be solved with the gra-

dient ascent algorithm. To this end, note that VN0 (π1,λΩc ,µ) can be obtained

efficiently given any value of the variables µ,λΩc through the dynamic program-

ming (2.23), i.e., Algorithm 1. This allows us to approximate the gradients at
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the tth iteration by using small shifts ∆λ and ∆µ for λΩc and µ respectively.

Moreover, since µ and λΩc are typically at different scales, for example, µ are

usually in the order of hundreds, while λΩc are fractional numbers, we apply the

alternating minimization to speed up the convergence. Algorithm 2 summarizes

the procedure for evaluating the multipliers and the resulting parameters (i.e.,

At, Bt, ψt+1(Lt)) for the finite-N optimal sequential test, where Alg1(·) invokes

Algorithm 1. In addition, pt and qt are step-sizes obtained by backtracking line

search [22], µint,λint are initial values to begin the iterations.

• To obtain the effective set Ωc, we add an outer iteration to Algorithm 2. In

particular,

1. Begin with an empty set of effective usage constraints (i.e., Ωc = ∅).

2. Solve the problem

min
{δ1:T,DT,T}∈CN(α,β,{T `}`∈Ωc)

ET. (2.47)

3. Evaluate the sensor usages based on the solution to (2.47), and find the

set of sensors in Ω whose constraints are violated (denoted as Λ). Update

the effective set Ωc ← Ωc ∪ Λ.

4. Go to step 2) and solve (2.47) for the updated Ωc.

This loop of 2)-4) continues until no inequality constraints are violated. Upon

termination, Ωc is effective set of constraints, whose associated multipliers are

positive, whereas the rest of constraints are naturally satisfied with zero multi-

pliers.

Next we consider the infinite-horizon scenario, whose evaluation of multipliers

boils down to the following optimization problem:

max
{λ,µ}∈R+

Ṽ(π1,λ,µ)− µ0π0α− µ1π1β −
∑
`∈Ω

λ`T
`

s.t. Ṽ(x,λ,µ)=min

{
µ0(1− x), µ1x,min

δ

(
1+λδ+E

(
Ṽ(

xelδ

1− x+ xelδ
,λ,µ)

))}
, x ∈ [0, 1].
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Algorithm 2 : Procedure for solving (2.46)

1: Initialization: t← 0,µ(0) ← µint,λ
(0)
Ωc
← λint

2: while ‖∇λL̃N(λ
(t)
Ωc
,µ(t))‖2 > ε0 or ‖∇λL̃N(λ

(t)
Ωc
,µ(t))‖2 > ε1 do

update µ:

3: VN0 (π1,λ
(t)
Ωc
,µ(t))← G(π1, 0)← Alg1(π1,λ

(t)
Ωc
,µ(t))

4: VN0 (π1,λ
(t)
Ωc
,µ(t) + ∆µ)← G(π1, 0)← Alg1(π1,λ

(t)
Ωc
,µ(t) + ∆µ)

5: Evaluate L̃N(λ
(t)
Ωc
,µ(t)) and L̃N(λ

(t)
Ωc
,µ(t) + ∆µ) by its definition in (2.46)

6: Approximate the gradient ∇µL̃N(π,λ
(t)
Ωc
,µ(t))

7: Update µ(t+1) = µ(t) +pt∇µL̃N(π,λ
(t)
Ωc
,µ(t)), where pt is the step-size computed

by

backtracking line search

update λ:

8: VN0 (π1,λ
(t)
Ωc
,µ(t+1))← G(π1, 0)← Alg1(π1,λ

(t)
Ωc
,µ(t+1))

9: VN0 (π1,λ
(t)
Ωc

+ ∆λ,µ
(t+1))← G(π1, 0)← Alg1(π1,λ

(t)
Ωc

+ ∆λ,µ
(t+1))

10: Evaluate L̃N(π1,λ
(t)
Ωc
,µ(t+1)) and L̃N(π1,λ

(t)
Ωc

+ ∆λ,µ
(t+1)) by its definition in

(2.46)

11: Approximate the gradient ∇λL̃N(π,λ
(t)
Ωc
,µ(t+1))

12: Update λ
(t+1)
Ωc

= λ
(t)
Ωc

+qt∇λL̃N(π,λ
(t)
Ωc
,µ(t+1)) where qt is the step-size computed

by

backtracking line search

13: t← t+ 1

14: end while

15: Output:

λ?Ωc ← λ
(t)
Ωc

, µ? ← µ(t), {ψ(L, t), A(t), B(t)}Nt=0 ← Alg1(π1,λ
?
Ωc
,µ?)
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Table 2.1

η`0 η`1 D`
0 D`

1

Sensor 1 0.5 1 0.2692 0.1739

Sensor 2 1 0.5 0.1739 0.2692

Sensor 3 0.52 1 0.3069 0.1931

Sensor 4 1 0.52 0.1931 0.3069

One option is to adopt the method in [21] (only SPRT and µ were of interest there),

which discretizes x,λ,µ, and recasts the above problem into a linear program. How-

ever, this approach becomes computationally infeasible due to the high-dimensional

variables in our problem. To that end, by the virtue of Lemma 5, we propose to

approximate the infinite-horizon problem through finite-horizon approach (2.45), i.e.,

Ṽ ≈ VN0 with sufficiently large N . Moreover, we obtain the multipliers and the re-

sulting test parameters (i.e., A,B, ψ(Lt)) for the optimal infinite-horizon sequential

test by setting A← A(0), B ← B(0), ψ(L)← ψ(L, 1), where A(0), B(0) and ψ(L, 1)

are the thresholds and selection function respectively evaluated for the finite-horizon

problem with large N .

2.5 Numerical Results

In this section, we provide numerical results to illustrate the theoretical findings in

previous sections, and also to compare with the existing methods. Our experiments

focus on the following hypotheses

H0 : Xt ∼ exp
(
η`0
)
, t = 1, 2, . . . , ` ∈ {1, 2, . . . , 4},

H1 : Xt ∼ exp
(
η`1
)
, t = 1, 2, . . . , ` ∈ {1, 2, . . . , 4}.

In particular, the LLR at sensor ` is

l`(Xt) = Xt

(
η`0 − η`1

)
+ log

(
η`1
η`0

)
(2.48)
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and the KLDs are expressed respectively as

D`1 = E0

(
l`
)

=
η`0
η`1
− 1− log

(
η`0
η`1

)
, (2.49)

D`0 = E0

(
−l`
)

=
η`1
η`0
− 1− log

(
η`1
η`0

)
. (2.50)

Table 2.1 lists the distribution parameters and KLD for each sensor. Throughout the

experiment, the domain of posterior [0, 1] is discretized into 8000 points to implement

Algorithm 1.

We first consider a finite-horizon problem with sample size limit N = 100.

Fig. 2.1 illustrates the decision region of the N -horizon sequential test, includ-

ing the stopping boundaries (i.e., [−At, Bt]) and selection function (i.e., ψt+1(Lt)).

Note that, hereafter, we represent the results in terms of the sufficient statistic LLR,

which is equivalent to the posterior given the prior. The black, blue, red, and green

colors represent the intervals within which Sensor 1, 2, 3, and 4 should be selected

respectively. The following observations are made:

• The curved stopping boundaries comply with the result in Theorem 1-(b).

• The selection function ψt+1(Lt) in Theorem 1-(a) is represented by simple par-

titions of the LLR domain. In specific, the fusion center decides the selected

sensor at t + 1 based on the region that Lt resides in. Interestingly, the selec-

tion function from t = 1 → N is highly structured, and does not require large

memory for storage.

• The sensor usages are equal to the discrete time that LLR spends in the cor-

responding region before stopping. Thus the selection strategy controls the

sensor usages by altering these selection regions. In Fig. 2.1-(a), if all sensors

are constraint-free, then Sensor 1 and Sensor 2 are always preferred over the

other two. Intuitively Sensor 1 dominates sensor 3, Sensor 2 dominates Sensor

4, since their KLDs under both hypotheses are larger. In Fig. 2.1-(b), if we

impose the usage constraints on Sensors 1 and 2, then Sensors 3 and 4 are used
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(a) Unconstrained (b) T 1 = 7, T 2 = 7

(c) T 1 = 6, T 2 = 9

Figure 2.1: The stopping boundaries and selection region for N = 100. We set

α ≈ 0.01, β ≈ 0.01. Black: sensor 1. Blue: sensor 2. Red: sensor 3. Green: sensor 4.
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more, thus the partition of LLR domain is reassigned to comply with the con-

straints. That is, the selection region for Sensor 1 is split mainly by Sensor 3,

while that of Sensor 2 by Sensor 2. Fig. 2.1-(c) shows that the selection regions

alter as the usage constraints change from T 1 = 6, T 2 = 9 to T 1 = 7, T 2 = 7. In

specific, the selection region of Sensor 1 shrinks while that of Sensor 2 expands.

From Section 2.3, we know that the selection regions, and thus the sensor usages,

are governed by the multipliers, which are the parameters one can choose to meet the

usage constraints. Bearing this in mind, Fig. 2.2 illustrates how we can control the

sensor usages by setting the values of multipliers. In particular, Fig. 2.2-(a) shows

that the usage of Sensor 1 decreases from the full usage to zero as λ1 increases, while

other sensors increase their usages. Fig. 2.2-(b) shows that the usage of Sensor 2

decreases to zero as λ2 increases with fixed λ1 = 0.15.

Finally, in Fig. 2.3, we compare the proposed finite-N sequential test with the

existing method in [10], which is an offline random selection algorithm. The com-

parison is carried out at varying error probabilities α = β, and fixed sensor usage

constraints for Sensor 1 and 2 (T 1 = 6, T 2 = 9, and Sensor 3 and 4 are free sensors).

The corresponding multipliers are evaluated using the algorithm in Section 2.4. It is

seen that the proposed online algorithm consistently outperforms the offline scheme

with the same usage constraints and error probabilities. The improvement becomes

more significant as the error probabilities decrease. Furthermore, Fig. 2.4 depicts the

sensor usages of the proposed scheme in this experiment. When error probabilities

are moderate (α = 0.1→ 0.06 in Fig. 2.4), Sensors 1 and 2 operate in free mode, and

Sensors 3 and 4 are idle, which corresponds to the unconstrained scenario (i.e., the ef-

fective set of constraints are empty Ωc = ∅). This is similar to the case in Fig. 2.1-(a).

As error rates decrease (α = 0.04 and 0.02), Sensor 1 reaches the usage constraint

first, while Sensor 2 still operates in free mode (i.e., Ωc = {1}). After α ≤ 0.01, both

Sensor 1 and 2 reach their usage limit and are under constraints (i.e., Ωc = {1, 2}).

In this regime, we find multipliers such that constraints are satisfied with equalities.
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Figure 2.2: The sensor usage decreases as its associated multiplier increases. The

error probabilities are set as α ≈ 0.0018, β ≈ 0.0025. (a) λ2 = 0; (b) λ1 = 0.15.
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Figure 2.3: Comparison of the proposed sequential test and the SPRT with offline

random selection strategy.

As error rates further decrease, free sensors like Sensors 3 and 4 are used more often,

while Sensor 1 and 2 remain maximum usages at T 1 = 6 and T 2 = 9.

In what follows, the performance of the proposed scheme in the infinite-horizon

setup is examined. We use a finite-horizon problem with sufficiently large N = 200

to approximately evaluate the parameters (i.e., A, B and selection regions) of the

optimal sequential test.

Again, Fig. 2.5 depicts the decision regions for the finite-horizon problem with

N = 200. Since a larger N is used, compared to Fig. 2.1, Fig. 2.5 shows that the

stopping boundaries and section strategy converge to the stable one at t = 0, which

is approximately the infinite-horizon solution according to Lemma 5. Unlike in the

finite-horizon scenario, the fusion center only needs to store stopping boundaries and

selection regions at t = 0, which is depicted in Fig. 2.6, and use it for any t. This

further lowers the storage demand. In specific, the selected sensor at t+ 1 is decided

by which interval the LLR resides in at time t within the stopping boundaries. We
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Figure 2.4: Sensor usages of the proposed scheme corresponding to the experiment

in Fig. 2.3.

clearly see that the selection functions in Fig. 2.6-(a) change to that in Fig. 2.6-(b)

as the usage constraints alter.

Finally, in Fig. 2.7, we compare the proposed scheme with the existing offline

random selection scheme in [10]. Compared to Fig. 2.3, the expected sample size

slightly decreases due to the removal of the hard limit on horizon N . Again, the

proposed online scheme increasingly outperforms the offline selection scheme as the

error probabilities become small. In addition, we also plot the close-form approxima-

tion for the optimal performance, which is given by (2.42). Note that this analytical

result (i.e., the red solid line) lies parallel to the performance curve of the proposed

scheme (i.e., the black line with circle marks), indicating its accurate characterization

for the asymptotical performance. The constant gap in between is largely caused by

the inequality (2.74) that lower bounds the constant term (i.e., independent of α and

β) in (2.73), which ultimately leads to (2.42). Therefore, the constant gap can be

small if (2.74) is tight, depending on the specific model. To see this, assuming that
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(a) T 1 = 6, T 2 = 9 (b) T 1 = 7, T 2 = 7

Figure 2.5: The stopping boundaries and selection function for N = 200. We set

α ≈ 0.01, β ≈ 0.01. Black: sensor 1. Blue: sensor 2. Red: sensor 3. Green: sensor 4.

we derive the performance formula directly based on (2.73) (specifically, T `0 and T `1

in (2.73) need to be evaluated through simulation), it is shown in Fig. 2.7 that the

resulting lower bound (i.e., the green dash line) aligns closely to the performance of

the proposed scheme.

2.6 Conclusion

In this chapter, we have studied the sequential hypothesis testing with online sen-

sor selection and sensor usage constraints. The optimal sequential test and selection

strategy are obtained for both the finite-horizon and infinite-horizon scenarios. We

have also proposed algorithms to approximately evaluate the parameters in the opti-

mal sequential procedure. Finally, extensive numerical results have been provided to

illustrate the theoretical findings and comparison with the existing method. Future

works may include applying the same framework to address the usage-constrained

sensor selection in other sequential problems, for example, change-point detection.

Instead of the average sample size, other objective can also be studied, for exam-
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Figure 2.6: The stopping boundaries and selection intervals for the infinite-horizon

problem.
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random selection strategy.
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ple, the worst-case sample size. The applications in distributed sensor networks can

be considered as well. For example, dynamic selection of quantization mode in the

sequential detection [23, 24].

2.7 Appendix to Chapter 2

2.7.1 Proof of Lemma 1

Proof of Lemma 1. We want to prove that gn (X1:n, δ1:n) = gn (π1(n)). It suffices to

prove that for any realizations of {X1:n, δ1:n}, i.e., {x1:n, s1:n} and {x̄1:n, s̄1:n}, that

lead to equal posteriors π1(n) = π̄1(n), we have gn (x1:n, s1:n) = gn (x̄1:n, s̄1:n).

Conditioned on the event {T = n}, by (2.14), it is obvious that gn (x1:n, s1:n) =

gn (x̄1:n, s̄1:n) = φ (π1(n)). Conditioned on the event {n < T ≤ N}, we will prove by

contradiction. On one hand, assume that gn (x1:n, s1:n) > gn (x̄1:n, s̄1:n), then there

exists a procedure
{
δ̃n+1, {δ̃n+2:T̃, T̃} ∈ ANn+1

}
(given {x1:n, s1:n}) such that

gn(x1:n, s1:n) ≥ φ (π1(n))−

E
φ(π1(T̃)

)
+

T̃∑
t=n+1

Cδ̃t

∣∣∣∣∣∣X1:n = x1:n, δ1:n = s1:n


︸ ︷︷ ︸

g̃n(x1:n,s1:n)

> gn (x̄1:n, s̄1:n), (2.51)

due to the definition of gn in (2.14).

On the other hand, we construct the following procedure
{
δ̂n+1, {δ̂n+2:T̂, T̂} ∈ ANn+1

}
(given {x̄1:n, s̄1:n}). Let

δ̂n+1(x̄1, . . . , x̄n) = δ̃n+1(x1, . . . , xn), (2.52)

and, given the same samples after time n (denoted as xn+1, xn+2, . . .),

δ̂t(x̄1, . . . , x̄n, xn+1, . . . , xt−1) = δ̃t(x1, . . . , xn, xn+1, . . . , xt−1), t = n+ 2, . . . , N.

(2.53)



CHAPTER 2. OPTIMAL SEQUENTIAL TEST WITH ONLINE SENSOR
SELECTION 40

Moreover, let T̂ stop if T̃ stops given the same samples {xn+1, xn+2, . . .}, and the

decision rule

D̂(x̄1, . . . , x̄n, xn+1, . . . , xT̂) = D̃(x̄1, . . . , x̄n, xn+1, . . . , xT̃).

In short, the procedure
{
δ̂n+1:T̂, T̂

}
is designed to yield the exact same actions as that

of the procedure
{
δ̃n+1:T̃, T̃

}
given the same samples at time n, i.e., {xn+1, xn+2, . . .}.

Note that, according to the above construction process,
{
δ̂n+1:T̂, T̂

}
and

{
δ̃n+1:T̃, T̃

}
are not identical procedures since {x1:n, s1:n} 6= {x̄1:n, s̄1:n}.

Again, due to the definition of gn in (2.14), we also have

gn (x̄1:n, s̄1:n) ≥ φ (π1(n))−

E
φ(π1(T̂)

)
+

T̂∑
t=n+1

Cδ̂t

∣∣∣∣∣∣X1:n = x̄1:n, δ1:n = s̄1:n


︸ ︷︷ ︸

ĝn(x̄1:n,s̄1:n)

.

(2.54)

Next, we prove that

ĝ (x̄1:n, s̄1:n) = g̃ (x1:n, s1:n) , (2.55)

which requires

E

φ(π1(T̃)
)
+

T̃∑
t=n+1

Cδ̃t

∣∣∣∣∣∣X1:n=x1:n, δ1:n=s1:n

=E

φ(π1(T̂)
)
+

T̂∑
t=n+1

Cδ̂t

∣∣∣∣∣∣X1:n= x̄1:n, δ1:n= s̄1:n

 .

(2.56)

First, due to the construction of
{
δ̂n+1:T̂, T̂

}
, we have

T̃− n
∣∣∣ {X1:n = x̄1:n, δ1:n = s̄1:n} = T̂− n

∣∣∣ {X1:n = x1:n, δ1:n = s1:n}, a.s.. (2.57)

To show that the first terms on both sides of (2.56) are equal, i.e.,

E
(
φ
(
π1(T̃)

)∣∣∣X1:n, δ1:n

)
= E

(
φ
(
π1(T̄)

)∣∣ X̄1:n, δ̄1:n

)
, (2.58)
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notice that

π1(T̃) =
π1(n)e

∑T̃
t=n+1 lδ̃t

π0(n) + π1(n)e
∑T̃
t=n+1 lδ̃t

(2.59)

has the same distribution conditioned on {x̄1:n, s̄1:n} as that of

π1(T̂) =
π̄1(n)e

∑T̂
t=n+1 lδ̂t

π̄0(n) + π̄1(n)e
∑T̂
t=n+1 lδ̂t

(2.60)

conditioned on {x1:n, s1:n}. This is true because π1(n) = π̄1(n) and
∑T̃

t=n+1 lδ̃t has the

same posterior distribution as
∑T̂

t=n+1 lδ̂t due to (2.52)-(2.53) and (2.57). In addition,

the second terms on both sides of (2.56) are also equal by combining (2.52)-(2.53)

and (2.57).

Using (2.54)-(2.55), we arrive at

gn (x̄1:n, s̄1:n) ≥ ĝn (x̄1:n, s̄1:n) = g̃n (x1:n, s1:n) (2.61)

which contradicts with (2.51).

Similar contradiction appears if we assume gn (X1:n, δ1:n) < gn
(
X̄1:n, δ̄1:n

)
.

2.7.2 Proof of Lemma 4

Proof of Lemma 4. By the concavity of G̃Nn (x), we know that the continuation region

at t = n is an interval confined by the roots of the following equations (denoted as

an and bn respectively):

µ0(1− x)G̃Nn (x), and µ1x = G̃Nn (x), n < N. (2.62)

Since G̃Nn−1(x) < G̃Nn (x), thus an−1 < an and bn−1 > bn. At t = N , the procedure has to

stop and make decision, thus aN = bN . µ1π1(N) ><µ0π0(N) which gives π1(N) >< aN =

µ0/(µ0 + µ1).
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2.7.3 Proof of Proposition 1

Proof of Proposition 1. Note that for the LLR statistic, we have

E0 (LT) = E0

[
T∑
t=1

(∑
`∈Ωc

lδt1{δt=`} + lδt1{δt∈Ωc}

)]
. (2.63)

The first term of (2.63) can be expressed as

E0

[
T∑
t=1

∑
`∈Ωc

lδt1{δt=`}

]
=
∑
`∈Ωc

E0

(
∞∑
t=1

lδt1{δt=`}1{T≥t}

)

=
∑
`∈Ωc

E0

(
∞∑
t=1

E0

(
lδt |X1:(t−1), δ1:t−1

)
1{δt=`}1{T≥t}

)

=−
∑
`∈Ωc

D`
0 E0

(
∞∑
t=1

1{δt=`}1{T≥t}

)

=−
∑
`∈Ωc

D`
0T

`
0 , (2.64)

where D`
0 , E0 (−l`) is the KLD of sensor ` and T `0 , E0

(∑T
t=1 1{δt=`}

)
is the mean

usage under H0. Furthermore, the second term of (2.63) can be bounded as follows

E0

[
T∑
t=1

lδt1{δt∈Ωc}

]
=E0

(
∞∑
t=1

lδt1{δt∈Ωc}1{T≥t}

)

=E0

(
∞∑
t=1

E0

(
lδt |X1:(t−1), δ1:t−1

)
1{δt∈Ωc}1{T≥t}

)
(2.65)

≥−max
`∈Ωc

D`
0 E0

(
∞∑
t=1

1{δt∈Ωc}1{T≥t}

)

=−max
`∈Ωc

D`
0

(
E0T−

∑
`∈Ωc

T `0

)
, (2.66)

where inequality (2.65) holds because E0

(
lδt |X1:(t−1), δ1:t−1

)
1{δt∈Ωc} ≥ min`∈Ωc

E0 (l`)1{δt∈Ωc}.

Applying (2.64) and (2.66) to (2.63) results in

E0 (LT) ≥ −
∑
`∈Ωc

D`
0T

`
0 −max

`∈Ωc

D`
0

(
E0T−

∑
`∈Ωc

T `0

)
, (2.67)
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which leads to the bound for mean sample size under H0:

E0T ≥

[
−E0 (LT)−

∑
`∈Ωc

D`
0T

`
0 + max

`∈Ωc

D`
0

∑
`∈Ωc

T `0

]
1

max`∈Ωc
D`

0

=
−E0 (LT)

max`∈Ωc
D`

0

+
∑
`∈Ωc

(
1− D`

0

max`∈Ωc
D`

0

)
T `0 . (2.68)

Under H1, similarly as in (2.64) and (2.66), we have

E1

[
T∑
t=1

∑
`∈Ωc

lδt1{δt=`}

]
=
∑
`∈Ωc

D`
1T

`
1 , (2.69)

and E1

[
T∑
t=1

lδt1{δt∈Ωc}

]
= E1

(
∞∑
t=1

lδt1{δt∈Ωc}1{T≥t}

)

= E1

(
∞∑
t=1

E1 (lδt |Ft−1)1{δt∈Ωc}1{T≥t}

)

≤ max
`∈Ωc

D`
1 E1

(
∞∑
t=1

1{δt∈Ωc}1{T≥t}

)

= max
`∈Ωc

D`
1

(
E1T−

∑
`∈Ωc

T `1

)
, (2.70)

that lead to

E1 (LT) = E1

[
T∑
t=1

∑
`∈Ωc

lδt1{δt=`}

]
+ E1

[
T∑
t=1

lδt1{δt∈Ωc}

]

≤
∑
`∈Ωc

D`
1T

`
1 + max

`∈Ωc

D`
1

(
E1T−

∑
`∈Ωc

T `1

)
. (2.71)

As a result, we can bound the mean sample size under H1 by

E1T ≥

[
E1 (LT)−

∑
`∈Ωc

D`
1T

`
1 + max

`∈Ωc

D`
1

∑
`∈Ωc

T `1

]
1

max`∈Ωc
D`

1

=
E1 (LT)

max`∈Ωc
D`

1

+
∑
`∈Ωc

(
1− D`

1

max`∈Ωc
D`

1

)
T `1 . (2.72)
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Finally, the expected mean sample size, i.e., ET = π0E0T + π1E1T, can be bounded

below as follows:

ET ≥ π0
−E0 (LT)

max`∈Ωc
D`

0

+ π1
E1 (LT)

max`∈Ωc
D`

1

+
∑
`∈Ωc

T ` −
∑
`∈Ωc

(
π0D

`
0

max`∈Ωc
D`

0

T `0 +
π1D

`
1

max`∈Ωc
D`

1

T `1

)
(2.73)

≥ π0
−E0 (LT)

max`∈Ωc
D`

0

+ π1
E1 (LT)

max`∈Ωc
D`

1

+
∑
`∈Ωc

(
1−max

{
D`

1

max`∈Ωc
D`

1

,
D`

0

max`∈Ωc
D`

0

})
T `,

(2.74)

where the second inequality is obtained by noting that π0T
`
0 + π1T

`
1 = T `, thus

π0D
`
0

max`∈Ωc
D`

0

T `0 +
π1D

`
1

max`∈Ωc
D`

1

T `1 ≤ max

{
D`

1

max`∈Ωc
D`

1

,
D`

0

max`∈Ωc
D`

0

}
T `, (2.75)

with equality holds if T ` = πiT
`
i , i = arg max

{
D`1

max`∈Ωc
D`1
,

D`0
max`∈Ωc

D`0

}
.

Next, by drawing on the Wald’s approximation [2], i.e., LT? ≈ −A given D?
T? = 0

or LT? ≈ B given D?
T? = 1, we obtain

E0 (LT?) = αE0 (LT?|D?
T? = 1) + (1− α)E0 (LT?|D?

T? = 0)

= αB − (1− α)A, (2.76)

E1 (LT?) = (1− β)E1 (LT?|D?
T? = 1) + βE1 (LT?|D?

T? = 0)

= (1− β)B − βA. (2.77)

Moreover, invoking the change of measure technique and the Wald’s approximation,

we have

α = E0

(
1{D?

T?
=1}

)
= E1

(
1{D?

T?
=1}e

−LT?

)
≈ e−B (1− β) , (2.78)

β = E1

(
1{D?

T?
=0}

)
= E0

(
1{D?

T?
=0}e

LT?

)
≈ e−A (1− α) , (2.79)

which lead to

B ≈ log
1− β
α

, A ≈ log
1− α
β

. (2.80)

Substituting (2.80) into (2.76)-(2.77) gives E0(LT?) ≈ −D(α||1 − β) and E1(LT?) ≈

D(1− β||α).
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Chapter 3

Composite Sequential Test with

One-Bit Communication

3.1 Introduction

The composite hypothesis testing problem is of significant interest since the param-

eters of the sample distributions are often unknown in practice. In this chapter, we

consider this problem in the hierarchical network, where all sensors can observe sam-

ples concurrently and communicate with the fusion center. In the ideal case, if the

system is capable of precisely relaying the local samples from sensors to the fusion

center whenever they become available, we are faced with a centralized multi-sensor

hypothesis testing problem. However, the centralized setup amounts to instantaneous

high-precision communication between sensors and the fusion center (i.e., samples

quantized with large number of bits are transmitted at every sampling instant). In

practice, many systems, especially wireless sensor networks, cannot afford such a

demanding requirement, due to limited sensor batteries and channel bandwidth re-

sources. Aiming at decreasing the communication overhead, many works proposed

the decentralized schemes that allow sensors to transmit small number of bits at lower

frequency. In particular, [25] described five (“case A” through “case E”) scenarios



CHAPTER 3. COMPOSITE SEQUENTIAL TEST WITH ONE-BIT
COMMUNICATION 46

of decentralized sequential test depending on the availability of local sensor memory

and feedback from the fusion center to sensors. There, the optimal algorithm was

established via dynamic programming for “case E” which assumed full local memory

and feedback mechanism. However, in resource-constrained sensor networks, it is not

desirable for sensors to store large amount of data samples and for the fusion center

to send feedback. Therefore, in this chapter, we assume that sensors have limited

local memory and no feedback information is available.

As mentioned above, decreasing the communication overhead can be achieved from

two perspectives: First, sensors use less bits to represent the local statistics; second,

the fusion center samples local statistics at a lower frequency compared to the sam-

pling rate at sensors. On one hand, in many cases, the original sample/statistic is

quantized into one-bit message, which is then transmitted to the fusion center. As

such, [26, 27] showed that the optimal quantizer for fixed-sample-size test corresponds

to the likelihood ratio test (LRT) on local samples. Then [23] demonstrated that the

LRT is not necessarily optimal for sequential detection under the Bayesian setting, due

to the asymmetry of the Kullback-Leibler divergence between the null and alterna-

tive hypotheses. [24, 28, 29] further investigated the stationary quantization schemes

under the Bayesian setting. One the other hand, in order to lower the communication

frequency, all the above work can be generalized to the case where quantization and

transmission are performed every fixed period of time. These schemes generally in-

volve fixed-sample-size test at sensors and sequential test at the fusion center, which

we refer to as the uniform sampling and quantization strategy. Alternatively, [30] pro-

posed that each sensor runs a local sequential test and local decisions are combined

at the fusion center in a fixed-sample-size fashion. Furthermore, [31] proposed to

run sequential tests at both sensors and the fusion center, amounting to an adaptive

transmission triggered by local SPRTs, though no optimality analysis was provided

there. To fill that void, [32] defined such a scheme as level-triggered sampling and

proved its asymptotic optimality in both discrete and continuous time. However,
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[31–34] only considered the simple hypothesis test, where the likelihood functions can

be specified under both hypotheses.

In spite of its broad spectrum of applications, the multi-sensor sequential compos-

ite hypothesis test remains to be investigated from both algorithmic and theoretical

perspectives. Owing to the unknown parameters, the LR-based decentralized algo-

rithms using either uniform sampling or level-triggered sampling as mentioned above

are no longer applicable. Hitherto, some existing works have addressed this problem

in the fixed-sample-size setup. For example, [35] developed a binary quantizer by min-

imizing the worst-case Cramer-Rao bound for multi-sensor estimation of an unknown

parameter. Recently, [36] proposed to quantize local samples (sufficient statistics) by

comparing them with a prescribed threshold; then, the fusion center performs the

generalized likelihood ratio test by treating the binary messages from sensors as ran-

dom samples. A similar scheme was established in [37] for a Rao test at the fusion

center. Both [36, 37] assumed that the unknown parameter is close to the parameter

under the null hypothesis. In [38], a composite sequential change detection (a variant

of sequential testing) based on discretization of parameter space was proposed.

In this chapter, we propose two decentralized schemes for sequential composite

hypothesis test. The first is a natural extension of the decentralized approach in [36],

that employs the conventional uniform sampling and quantization mechanism, to its

sequential counterpart. The second builds on level-triggered sampling and features

asynchronous communication between sensors and the fusion center. Moreover, our

analysis shows that the level-triggered sampling based scheme exhibits asymptotic

optimality when the local and global thresholds grow large at different rates, whereas

the uniform sampling scheme is strictly suboptimal. Using the asymptotically optimal

centralized algorithm as a benchmark1, it is found that the proposed level-triggered

1The performance of the decentralized scheme is supposed to be inferior to that of the centralized

one because the fusion center has less information from the local sensors (i.e., a summary of local

samples within a period of time, instead of the exact samples at every time instant).
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sampling based scheme yields only slightly larger expected sample size, but with

substantially lower communication overhead.

The key contribution here is that we have applied the level-triggered sampling to

the decentralized sequential composite hypothesis test and provided a rigorous anal-

ysis on its asymptotic optimality. Though [39, 40] have applied the level-triggered

sampling to deal with multi-agent sequential change detection problem with unknown

parameters, no theoretical optimality analysis was provided there. The main chal-

lenge for analysis lies in characterizing the performance of the generalized sequential

probability ratio test for generic families of distributions, which has not been fully

understood. To that end, the recent work [41] provides the analytic tool that is in-

strumental to the analysis of the decentralized sequential composite test based on

level-triggered sampling in this chapter. Note that, in essence, [41] studied the single-

sensor sequential composite test, whereas we consider the sequential composite test

under the decentralized multi-sensor setup here.

3.2 Problem Statement

Suppose that K sensors observe samples y`t , ` = 1, . . . , K, at each discrete time t,

and communicate to a fusion center which makes the global decision based upon its

received messages from sensors. Assuming the existence of density functions, the

observed samples are distributed according to hγ(x) under the null hypothesis H0

and fθ(x) under the alternative hypothesis H1. We assume that γ and θ fall within

the parameter sets Γ and Θ respectively. Given γ and θ, the random samples under

both hypotheses are independent over time and across the sensors. Under such a

setup, we arrive at a composite null versus composite alternative hypothesis testing

problem:

H0 : y`t ∼ hγ (x) , γ ∈ Γ, ` ∈ L, t = 1, 2, . . .

H1 : y`t ∼ fθ (x) , θ ∈ Θ, ` ∈ L, t = 1, 2, . . .
(3.1)
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where L , {1, . . . , K}. In general, hγ and fθ may belong to different families of

distributions. The goal is to find the stopping time T that indicates the time to

stop taking new samples and the decision function D that decides between H0 and

H1, such that the expected sample size is minimized given the error probabilities are

satisfied, i.e.,

inf
T

ExT, x ∈ Γ ∪Θ (3.2)

subject to sup
γ

Pγ (D = 1) ≤ α, sup
θ

Pθ (D = 0) ≤ β, (3.3)

where Eθ denotes expectation taken with respect to (w.r.t.) fθ and Eγ w.r.t. hγ.

Note that (3.2)-(3.3) are in fact (possibly uncountably) many optimization problems

(depending on the parameter spaces Θ and Γ) with the same constraints. Unfor-

tunately, unlike the simple null versus simple alternative hypothesis case, finding a

unique optimal sequential test for these problems is infeasible, even when a single-

sensor or a centralized setup is considered. Therefore, the approaches that possess

asymptotic optimality become the focus of interest. In the following sections, we start

by briefly introducing the generalized sequential probability ratio test (GSPRT) as an

asymptotically optimal solution for the centralized system; then, two decentralized

schemes will be developed based on uniform sampling and level-triggered sampling

respectively. In particular, we will show that the latter scheme is asymptotically opti-

mal when certain conditions are met. Here we first give the widely-adopted definition

of asymptotic optimality [32, 41].

Definition 1. Let T (α, β) be the class of sequential tests with stopping time and de-

cision function {T′, D′} that satisfy the type-I and type-II error probability constraints

in (3.3). Then the sequential test {T, D} ∈ T (α, β) is said to be asymptotically opti-

mal, as α, β → 0, if

1 ≤ ExT
inf{T′,D′}∈T (α,β) ExT′

= 1 + oα,β(1), (3.4)

or equivalently, ExT ∼ inf{T′,D′}∈T (α,β) ExT′ for every x ∈ Γ∪Θ. Here, x ∼ y denotes

x/y → 1 as x, y →∞.
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3.3 Centralized Algorithm

In this section, we consider the centralized scenario, where local samples
{
y`t
}

are

made available at the fusion center in full precision. Note that the centralized multi-

sensor test is not much different from the single-sensor version except that, at each

time instant, multiple samples are observed instead of one. Since finding the optimal

sequential composite hypothesis testing is impossible, the solutions with asymptotic

optimality become the natural alternatives. In particular, the GSPRT is obtained

by substituting the unknown parameter with its maximum likelihood estimate in the

SPRT; alternatively, one can perform an SPRT using the marginal likelihood ratio

by integrating out the unknown parameters when the priors on unknown parameters

are available. In this work, we avoid presuming priors on parameters and adopt the

GSPRT.

Due to the conditional independence for samples over time and across sensors, the

global likelihood ratio function is evaluated as

St(γ, θ) ,
K∑
`=1

t∑
j=1

s`j(γ, θ), s`j(γ, θ) , log
fθ(y

`
j)

hγ(y`j)
. (3.5)

Then the centralized GSPRT can be represented with the following stopping time

Tc , inf
{
t ∈ N+ : S̃t , max

θ∈Θ

K∑
`=1

t∑
j=1

log fθ(y
`
j)

−max
γ∈Γ

K∑
`=1

t∑
j=1

log hγ(y
`
j) /∈ (−B,A)

}
, (3.6)

and the decision function at the stopping instant

DTc ,

 1 if S̃Tc ≥ A,

0 if S̃Tc ≤ −B.
(3.7)

Here S̃t is referred to as the generalized log-likelihood ratio (GLLR) of the samples up

to time t, and A,B are prescribed constants such that the error probability constraints

in (3.3) are satisfied. Practitioners can choose their values according to Proposition 2
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given below which relates A,B to type-I and type-II error probabilities asymptotically.

Also note that, since discrete-time system is considered in this work, we particularly

focus on discrete-time stopping rule henceforth. Before delving into the performance

characterization of the centralized GSPRT (3.6)-(3.7), we recall the Kullback-Leibler

(KL) divergence between two distributions hγ and fθ:

D (fθ||hγ) = Eθ
(

log
fθ (Y )

hγ(Y )

)
, D (hγ||fθ) = Eγ

(
log

hγ(Y )

fθ (Y )

)
. (3.8)

Assume that the following conditions/assumptions hold,

A1) The distributions under the null and the alternative hypotheses are strictly

separated, i.e., infθ,γ D (fθ||hγ) > ε and infθ,γ D (hγ||fθ) > ε for some ε > 0.

This condition implies that the GLLR S̃t takes different drifting directions in

expectation under the null and the alternative hypotheses ;

A2) D (fθ||hγ) and D (hγ||fθ) are twice continuously differentiable w.r.t. γ and θ;

A3) The parameter spaces Γ and Θ are compact sets;

A4) Let S(γ, θ) = log fθ(Y ) − log hγ(Y ). There exists η > 1, x0 such that for all

γ ∈ Γ, θ ∈ Θ, x > x0, we have

Pγ
(

sup
θ∈Θ
|∇θS(γ, θ)| > x

)
≤ e−| log x|η , (3.9)

and Pθ
(

sup
γ∈Γ
|∇γS(γ, θ)| > x

)
≤ e−| log x|η . (3.10)

This condition imposes that the tail of the first-order derivative of the likelihood

ratio w.r.t. γ or θ decays faster than any polynomial.

Remark 1. Condition A4 is satisfied by most parametric families practically in

use. We verify it for exponential families, location and scale families. For expo-

nential families where fθ(x) = f0(x)eθx−ϕf (θ) and hγ(x) = h0(x)eγx−ϕh(γ), we have

|∇θlθγ| = |x − ϕ′g(θ)| ≤ |x| + O(1). Thus Condition A4 is satisfied if |x| has a fi-

nite moment generating function. For location families where fθ(x) = f(x − θ),
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we have |∇θlθγ| =
∣∣∣f ′(x−θ)f(x−θ)

∣∣∣, which usually has a finite moment generating function

for light-tailed distributions (Gaussian, exponential, etc.) and is usually bounded for

heavy-tailed distributions (e.g. t-distribution). It can be verified similarly for scale

families.

According to [41], the performance of the GSPRT can be characterized asymptotically

in closed form, which we quote here as a proposition.

Proposition 2. [41, Theorem 2.2-2.3] For the composite hypothesis testing problem

given by (3.1), the GSPRT that consists of stopping rule (3.6) and decision function

(3.7) yields the following asymptotic performance

sup
γ∈Γ

logPγ(DTc = 1) ∼ −A, sup
θ∈Θ

log Pθ (DTc = 0) ∼ −B, (3.11)

Eγ (Tc) ∼
B

infθ∈ΘD (hγ||fθ)K
, Eθ (Tc) ∼

A

infγ∈ΓD (fθ||hγ)K
, (3.12)

as A,B →∞.

Proposition 2 indicates that the GSPRT, i.e., (3.6) and (3.7), is asymptotically

optimal among the class of K-sensor centralized tests T Kc (α, β) in the sense that

Ex (Tc) ∼ inf
{T,D}∈T Kc (α,β)

Ex (T) , x ∈ Γ ∪Θ, (3.13)

as α , supγ Pγ (DTc = 1) → 0 and β , supθ Pθ (DTc = 0) → 0 [41, Corollary 2.1].

However, as mentioned in Section 3.1, in spite of its asymptotic optimality, the cen-

tralized GSPRT yields substantial data transmission overhead between the sensors

and the fusion center; therefore, it may become impractical when the communication

resources are constrained. Moreover, the centralized scheme puts all computation

burden at the fusion center. Hence, it is of great interest to consider the decentral-

ized scheme where the computation is distributed among the sensors and the fusion

center, with much lower communication overhead between the sensors and the fusion

center.
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3.4 Decentralized Algorithm

In this section, we investigate the decentralized sequential composite hypothesis test,

where the fusion center is only able to access a summary of local samples. In par-

ticular, each sensor transmits a one-bit message to the fusion center every T0 (deter-

ministically or on average) samples. We first consider the conventional decentralized

scheme based on the uniform sampling and one-bit quantization. That is, every

sensor sends its one-bit quantized local statistic to the fusion center every fixed T0

samples. Then we propose a decentralized scheme based on level-triggered sampling

(LTS), where the one-bit transmission is stochastically activated by the local statis-

tic process at each sensor, and occurs every T0 samples on average. Interestingly,

we show that such LTS-based decentralized scheme provably achieves the asymptotic

optimality with much lower communication overhead compared with the centralized

scheme.

3.4.1 Decentralized Test Based on Uniform Sampling and

Quantization

The decentralized scheme based on uniform sampling and quantization is a natural

extension of the decentralized fixed-sample-size composite test in [36] to its sequential

counterpart. In general, the one-bit message quantization at each sensor is charac-

terized by a quantization function q`n : RT0 → {−1,+1}, and the nth message sent

by sensor ` is q`n

(
y`(n−1)T0+1, ..., y

`
nT0

)
, n ∈ N+ with {y`(n−1)T0+1, ..., y

`
nT0
} denoting the

((n − 1)T0 + 1)th to the nT0th samples at sensor `. In many cases of application,

the information at each sensor can be summarized through a scalar sufficient statistic

and the quantization function q`n can be defined as a thresholding of the sufficient

statistic. Denote the sufficient statistic of the jth to the kth samples at sensor ` as

φk,`j , φ
(
y`j, . . . , y

`
k

)
. On one hand, at every sensor, the statistic is quantized into
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one-bit message by comparing it with a prescribed threshold λ, i.e.,

q`n(T0) , sign
(
φnT0,`

(n−1)T0+1 − λ
)
. (3.14)

Note that (3.14) corresponds to a stationary quantizer that does not change over time

and is studied in decentralized estimation [37, 42] and detection [36] problems due to

its simplicity. On the other hand, the fusion center receives q`n, ` = 1, . . . , K, as its

own random samples every T0 interval. To that end, the fusion center runs a GSPRT

on the basis of the received q`n’s, which are Bernoulli random variables with different

distributions under the null and alternative hypotheses [43]:

Tq , inf
{
t ∈ N+ : G̃t ,sup

θ∈Θ

(
rt0 log

(
1− pT0

θ

)
+ rt1 log pT0

θ

)
− sup

γ∈Γ

(
rt0 log

(
1− pT0

γ

)
+ rt1 log pT0

γ

)
/∈ (−B,A)

}
, (3.15)

where pT0
x , Px

(
q`n(T0) = 1

)
, x ∈ {γ, θ}, and rt1, r

t
0 represent the number of received

“+1” and “−1” respectively, i.e., rt0 ,
∑K

`=1

∑
n:nT0≤t 1{q`n=1}, r

t
1 ,

∑K
`=1

∑
n:nT0≤t 1{q`n=−1}.

Upon stopping, H1 is declared if G̃Tq ≥ A, and H0 is declared if G̃Tq ≤ −B, i.e.,

DTq , 1{G̃Tq≥A}
. Assuming that conditions A1-A4 listed in the preceding section are

satisfied by the Bernoulli random samples q`n, the decentralized GSPRT based on uni-

form sampling and quantized statistics can be characterized by invoking Proposition

2. That is, as A,B →∞, the type-I and type-II error probabilities admit

sup
γ∈Γ

logPγ
(
DTq = 1

)
∼ −A, sup

θ∈Θ
logPθ

(
DTq = 0

)
∼ −B, (3.16)

and the expected sample sizes under the null and alternative hypotheses admit the

following asymptotic expressions, respectively:

Eθ(Tq) ∼
A(

infγ D
(
pT0
θ ||p

T0
γ

)
/T0

)
K
, (3.17)

and Eγ(Tq) ∼
B(

infθD
(
pT0
γ ||pT0

θ

)
/T0

)
K
. (3.18)

It is well known thatD
(
pT0
θ ||pT0

γ

)
/T0 < D (fθ||hγ) [44], which leads to infγ D

(
pT0
θ ||pT0

γ

)
/T0 <

infγ D (fθ||hγ); therefore, the decentralized GSPRT implemented by (3.14) and (3.15)
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yields suboptimal performance, where the suboptimality is determined by the KL

divergence between the distributions of quantized sufficient statistics under null and

alternative hypotheses. The performance also depends on the choice of the quantiza-

tion threshold λ:

• The quantization threshold λ can be chosen such that either infγD
(
pT0
θ ||pT0

γ

)
or

infθD
(
pT0
γ ||p

T0
θ

)
is maximized. In general, these two terms cannot be maximized

simultaneously. Therefore, a tradeoff is required between the expected sample

sizes under the null and alternative hypotheses.

• Given that typically the expected sample size under the alternative hypothesis

is of interest, the optimal λ, in general, depends on the unknown parameter

{θ, γ}. One possible suboptimal solution is to find the optimal quantizer for

the worst-case scenario, i.e.,

λ? = arg max
λ

min
θ,γ
D
(
pT0
θ ||p

T0
γ

)
. (3.19)

Nonetheless, the performance is expected to degrade when the actual parame-

ters deviate from the worst-case scenario.

3.4.2 Decentralized Test Based on Level-Triggered Sampling

Next, we develop a level-triggered sampling (LTS) scheme for the decentralized se-

quential composite test. Here, each sensor runs its own local GSPRT and reports

its local decision to the fusion center repeatedly. And a global GSPRT is performed

by the fusion center based on the received local decisions from all sensors until a

confident decision can be made. As opposed to the uniform sampling scheme, the

LTS-based decentralized scheme features asynchronous one-bit communication be-

tween local sensors and the fusion center. The idea of running SPRTs at both the

sensors and the fusion center was first proposed by [31] for simple hypothesis test, and

was further analyzed in [32, 33]. In this work, we apply it to the sequential composite
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test. The essence of level-triggered sampling is to adaptively update local statistic

to the fusion center, i.e., transmit messages only when sufficient information is accu-

mulated, which results in substantially lower communication overhead and superior

performance compared with the decentralized scheme based on uniform sampling and

finite-bit quantization. For the simple SPRT, level-triggered sampling is equivalent to

Lebesgue sampling of local running LLR. However, since the LLR is not available in

the composite case, we obtain a different procedure than that in [31–33]. Nevertheless,

our analysis shows that, in the asymptotic regime, our proposed procedure inherits

the same optimality as for the simple test scenario. In the proposed LTS-GSPRT,

each sensor employes a sequential procedure instead of a fixed-sample-size procedure.

As we show in the following subsections, such a refinement greatly enhances the

performance of decentralized detection and leads to the asymptotic optimality.

3.4.2.1 LTS-based Approximate GSPRT

Now we derive the LTS-based decentralized sequential composite testing algorithm.

First let us determine the communication protocol and one-bit message at each sensor.

Considering that sensors possess limited memory (i.e., scenario A in [25]), every time a

local decision is made and transmitted, the corresponding sensor refreshes its memory

and runs another GSPRT based on newly arriving samples (Thus the fusion center

receives i.i.d. information bits). Then the nth transmission time at sensor ` is a

stopping time random variable recursively defined as

t`n , inf
{
t ∈ N+ : S̃t,`

t`n−1+1
/∈ (−b, a)

}
, n = 1, 2, . . . , t0 = 0, (3.20)

with

S̃t,`k , sup
θ∈Θ

t∑
j=k

log fθ(y
`
j)− sup

γ∈Γ

t∑
j=k

log hγ(y
`
j), (3.21)

and a, b are prefixed constants. Note that (3.20) is equivalent to a local GSPRT at

sensor `, thus different {a, b} lead to different inter-communication period, or sampling
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frequency by the fusion center. Correspondingly, the one-bit message amounts to the

local decision, i.e.,

u`n ,

 +1, if S̃
t`n,`

t`n−1+1
≥ a ,

−1, if S̃
t`n,`

t`n−1+1
≤ −b .

(3.22)

Intuitively, (3.20)-(3.22) indicate that sensors run GSPRT repeatedly in parallel and

their decisions are transmitted to the fusion center in an asynchronous fashion. Given

the level-triggered sampling scheme at sensors, we proceed to define an approximation

to the GLLR at the fusion center,

Ṽt =
K∑
`=1

N`
t∑

n=1

(
a1{u`n=1} − b1{u`n=−1}

)
, (3.23)

where N `
t = max{n : t`n ≤ t}. The fusion center stops receiving messages at the

stopping time

Tp , inf
{
t : Ṽt /∈ (−B,A)

}
, (3.24)

and makes the decision

DTp ,

 1 if ṼTp ≥ A,

0 if ṼTp ≤ −B.
(3.25)

In effect, as we will see later, (3.24) amounts to an approximation to the GSPRT

at the fusion center based on the received one-bit messages
{
u`n
}

. The proposed

decentralized sequential composite test procedure based on level-triggered sampling

is summarized as Algorithm 3a-3b.

3.4.2.2 A Closer Look at the LTS-based Approximate GSPRT

Next we discuss how Algorithm 3a-3b approximates the optimal procedure, i.e.,

GSPRT, at the fusion center. The optimal rule at the fusion center is to compute the
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Algorithm 3a : Repeated GSPRT at Local Sensors

1: Initialization: t← 0, ts ← 1, S̃` ← 0

2: while S̃` ∈ (−b, a) do

3: t← t+ 1 and take new sample y`t

4: Compute S̃` = S̃t,`ts according to (3.21)

5: end while

6: ts ← t

7: Send u` = 1{S̃`≥a} − 1{S̃`≤−b} to the fusion center

8: Reset S̃` ← 0 and go to line 2.

Algorithm 3b : Global GSPRT at Fusion Center

1: Initialization: Ṽ ← 0

2: while −B < Ṽ < A do

3: Listen to the sensors and receive information bits, say, r0 “+1”s and r1 “−1”s

4: Ṽ ← Ṽ + r1a− r0b

5: end while

6: if Ṽ ≥ A then decide H1

7: else decide H0
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LLR of the local GSPRT decisions, i.e.,

Vt(γ, θ) =
K∑
`=1

N`
t∑

n=1

v`n(γ, θ) (3.26)

and v`n(γ, θ) ,

 log 1−β̃θ
α̃γ

if u`n = 1 ,

log β̃θ
1−α̃γ if u`n = −1 ,

(3.27)

where v`n(γ, θ) is the LLR of the Bernoulli sample u`n, and α̃γ and β̃θ are the type-I

and type-II error probabilities respectively at the local sensor, i.e.,

α̃γ , Pγ(u`n = 1), β̃θ , Pθ(u`n = −1). (3.28)

Note that Vt(γ, θ) is again a function of the unknown parameters since the distribution

of u`n varies with γ and θ. To that end, employing the GSPRT as that in (3.6) and

(3.15), the standard global stopping time is expressed as

inf

{
t : inf

γ
sup
θ
Vt(γ, θ) /∈ (−B,A)

}
. (3.29)

The global GSPRT involves solving the maximization in (3.29) whenever a new mes-

sage u`n is received. However, unlike in the uniform sampling case, solving this opti-

mization problem is no easy task since the distribution of u`n as a function of θ and γ

is unclear. Aiming for a computationally feasible algorithm, we continue to simplify

(3.29) in what follows. Using (3.26)-(3.27),

inf
γ

sup
θ
Vt(γ, θ) = inf

γ
sup
θ

K∑
`=1

N`
t∑

n=1

(
log

1− β̃θ
α̃γ

1{u`n=1} + log
β̃θ

1− α̃γ
1{u`n=−1}

)

≈ inf
γ

sup
θ

K∑
`=1

N`
t∑

n=1

(
− log α̃γ1{u`n=1} + log β̃θ1{u`n=−1}

)

=
K∑
`=1

N`
t∑

n=1

(
− sup

γ∈Γ
log α̃γ 1{u`n=1} + sup

θ∈Θ
log β̃θ 1{u`n=−1}

)
, as a, b→∞,

(3.30)

where the second line of approximation follows from the fact that α̃γ, β̃θ → 0 as a, b→

∞. Therefore, denoting α̃ , supγ α̃γ, β̃ , supθ β̃θ, the global GLLR is approximately
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a simple random walk process

K∑
`=1

N`
t∑

n=1

(
− log α̃ 1{u`n=1} + log β̃ 1{u`n=−1}

)
∼

K∑
`=1

N`
t∑

n=1

(
a1{u`n=1} − b1{u`n=−1}

)
,

(3.31)

due to Proposition 2. The above expression implies that the stochastic process Ṽt as

defined in (3.23) approximates the GLLR infγ supθ Vt(γ, θ).

3.4.3 Performance Analysis

In this subsection, we show that the LTS-based decentralized scheme serves as a supe-

rior solution to the uniform-sampling-based scheme because it preserves the asymp-

totic optimality of the centralized scheme. This interesting property allows us to

achieve the same centralized asymptotic performance, but consuming significantly

lower communication resources. In particular, the expected sample size under the

null and alternative hypotheses are characterized asymptotically by the following

theorem.

Theorem 4. In the asymptotic regime where b, a → ∞ and A/a,B/b → ∞, the

expected sample sizes of LTS-GSPRT admit the following asymptotic expressions

Eγ (Tp) ∼
B

infθD (hγ||fθ)K
, (3.32)

Eθ (Tp) ∼
A

infγ D (fθ||hγ)K
. (3.33)

Proof. See Appendix.

Notably, as opposed to that of the uniform sampling scheme in (3.17)-(3.18), the

expected sample sizes of the proposed LTS-based decentralized scheme preserve the

KL divergences between fθ and hγ as the denominators. In fact, Eγ (Tp) and Eθ (Tp)

increase with A and B at the same rate as that of the centralized GSPRT (cf. (3.12)).

We next proceed to relate the type-I and type-II error probabilities of the LTS-based

decentralized scheme to the global decision thresholds {−B,A} by the theorem below.
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Theorem 5. In the asymptotic regime where b, a → ∞ and A > a,B > b, the type-

I and type-II error probabilities of the LTS-GSPRT admit the following asymptotic

expressions:

sup
γ∈Γ

logPγ(DTp = 1) ∼ −A, (3.34)

sup
θ∈Θ

log Pθ
(
DTp = 0

)
∼ −B. (3.35)

Proof. See Appendix.

Combining (3.32)-(3.35), we arrive to the following conclusion on the asymptotic

optimality of the proposed LTS-based decentralized algorithm.

Corollary 1. Let T Kd (α, β) be the class of any K-sensor decentralized sequential tests,

of which the type-I and type-II error probabilities are bounded by α and β respectively.

Then the proposed LTS-based GSPRT {Tp, DTp} is asymptotically optimal within this

class, i.e.,

Ex (Tp) ∼ inf
{T,D}∈T Kd (α,β)

Ex (T) , x ∈ Γ ∪Θ, (3.36)

as α , supγ Pγ
(
DTp = 1

)
→ 0 and β , supθ Pθ

(
DTp = 0

)
→ 0.

Proof. Given the same error probabilities α = supγ Pγ (DTc = 1) = supγ Pγ
(
DTp = 1

)
and β = supθ Pθ (DTc = 0) = supθ Pθ

(
DTp = 0

)
, the expected sample sizes of the

centralized and LTS-based decentralized scheme Tp admit the following asymptotic

performance, as α, β → 0:

EγTc ∼ EγTp ∼
− log β

infθD (hγ||fθ)K
, (3.37)

EθTc ∼ EθTp ∼
− logα

infγ D (fθ||hγ)K
. (3.38)

These expressions suggest that the LTS-based decentralized scheme inherits the asymp-

totic performance of the centralized GSPRT. As a result, it is also safe to say that
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LTS-GSPRT is asymptotically optimal among the decentralized schemes that satisfy

the same error rate constraints, since

1 ≤ ExTp
inf{T,D}∈T dL (α,β) ExT

≤ ExTp
inf{T,D}∈T cL(α,β) ExT

=
ExTp
ExTc

ExTc
inf{T,D}∈T cL(α,β) ExT

= 1 + oα,β(1). (3.39)

The second inequality holds true by noting that no decentralized scheme can outper-

form the centralized one because less information is available at the fusion center.

The last asymptotic relation is obtained by using (3.37)-(3.38) and the conclusion in

Proposition 2, i.e., ExTc ∼ inf{T,D}∈T cL(α,β) ExT.

Remark 2. In this work, we have assumed that the sensors refresh their memory

whenever a local binary message is generated. In some applications, storing the past

samples at local sensors may be possible, and one can exploit that data to further

improve the performance of the proposed LTS-GSPRT. One such example is to use

all past samples to compute the MLE {θ̂, γ̂} in the GLLR statistic instead of samples

starting from previous refresh time. Nevertheless, Theorem 5 and Corollary 1 can

provide insightful performance lower bounds to that scenario, whose analysis becomes

more complicated owing to the dependence between successive binary messages, and

is beyond the scope of this work. In addition, the improvement brought by the storage

of full history samples would be marginal since the LTS-GSPRT already achieves the

asymptotic optimality.

Recall that, for the simple null versus simple alternative hypothesis test, where

the SPRT is optimal, the centralized and LTS-based decentralized SPRT (denoted as

τc and τp respectively) provide the following asymptotic performance [33, 34]:

Eγτc ∼ Eγτp ∼
− log β

D (hγ||fθ)K
, (3.40)

Eθτc ∼ Eθτp ∼
− logα

D (fθ||hγ)K
, (3.41)
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where α , Pγ (D = 1) , β , Pθ (D = 0). Compared to the simple test where param-

eter values are given, the proposed sequential composite test requires larger expected

sample sizes under both hypotheses (since the expected sample sizes are inversely

proportional to infγ∈ΓD (fθ||hγ), infθ∈ΘD (hγ||fθ) instead of D (fθ||hγ), D (hγ||fθ), as

seen by comparing (3.37)-(3.38) and (3.40)-(3.41)). This is the price we pay for not

knowing the exact parameters.

3.5 Numerical Results

There are a wide range of applications where the decentralized sequential composite

hypothesis test plays an important role. In this section, we apply the proposed

centralized and decentralized sequential tests to two examples: one is to detect the

mean shift of Gaussian random samples; and the other involves spectrum sensing in

cognitive radio systems.

3.5.1 Detecting the Mean-Shift of Gaussian Samples

Detecting the mean shift of Gaussian random samples has many applications. For

example, suppose we intend to detect the presence of a unknown parameter θ as soon

as possible in the environment contaminated by white Gaussian noise. Here θ could

be the energy of an object that is monitored by a wireless sensor network or a multi-

station radar system. The target parameter is assumed to be within a certain interval,

i.e., θ ∈ [θ0, θ1], θ0 > 0. Then we have an K-sensor hypothesis testing problem:

H0 : y`t = e`t, ` ∈ L, t = 1, 2, . . .

H1 : y`t = θ + e`t, 0 < θ0 ≤ θ ≤ θ1, ` ∈ L, t = 1, 2, . . .
(3.42)

where e`t ∼ N (0, σ2). Sensors are able to transmit one-bit every T0 sampling instants

on average. For this model, both fθ and hγ are Gaussian probability density functions

and γ = 0. The sufficient statistic of the jth to kth samples at sensor ` is their
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summation, denoted as φk,`j = Sk,`j ,
∑k

i=j y
`
i . First of all, we verify that the log

likelihood ratio of y`t , i.e.,

S(γ, θ) =

(
(θ − γ)y`t −

θ2

2
+
γ2

2

)
/σ2 (3.43)

satisfies the conditions A1-A4. While conditions A2-A3 are easily verified, conditions

A1 and A4 require the following check:

• The KL divergence admits D (fθ||hγ) = D (hγ||fθ) = (θ − γ)2/(2σ2). By choos-

ing 0 < ε <
θ2
0

2σ2 , we haveD(fθ||h0) = θ2

2σ2 > ε and infθ0≤θ≤θ1 D(h0||fθ) =
θ2
0

2σ2 > ε;

• For (3.9), let x > x0 ≥ θ1−θ0
2σ2 , then we have

Pγ
(

sup
θ0≤θ≤θ1

|∇θS(θ, γ)| > x

)
=Pγ

(
sup

θ0≤θ≤θ1
|y`t − θ| > xσ2

)
=Pγ

(
|y`t − θ0| > xσ2; y`t ≥

θ0 + θ1

2

)
+ Pγ

(
|y`t − θ1| > xσ2; y`t <

θ0 + θ1

2

)
=Pγ

(
y`t > xσ2 + θ0

)
+ Pγ

(
y`t < −xσ2 + θ1

)
=Φ

(
−xσ

2 + θ0 − γ
σ

)
+ Φ

(
−xσ2 + θ1 − γ

σ

)
(3.44)

Note that Φ (−x) ∼ e−x
2

for large x, hence we can always find a sufficiently large

x0 ≥ θ1−θ0
2σ2 such that x2 > | log x|η , or equivalently, Pγ

(
supθ0≤θ≤θ1 |∇θS(θ, γ)| > x

)
≤

e−| log x|η for x > x0, η > 1. Similarly, we can show that (3.10) holds as well.

Therefore, Proposition 2 and Theorems 4-5 can be applied to characterize the asymp-

totic performance of the centralized GSPRT and LTS-based GSPRT for the problem

under consideration.

To implement the centralized GSPRT in (3.6)-(3.7), the global GLLR at the fusion
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center is computed as

S̃kj = sup
θ0≤θ≤θ1

(
θ

K∑
`=1

Sk,`j −K (k − j + 1)
θ2

2

)
/σ2

=

θ̂kj K∑
`=1

Sk,`j −K (k − j + 1)

(
θ̂kj

)2

2

 /σ2, (3.45)

with θ̂kj = E
(∑K

`=1 S
k,`
j / (k − j + 1) /K, θ0, θ1

)
, which is the MLE for θ at the fusion

center based on the samples from sensors, and

E(x, θ0, θ1) ,


x, if x ∈ [θ0, θ1],

θ1, if x > θ1,

θ0, if x < θ0.

(3.46)

Substituting S̃t in (3.6)-(3.7) with S̃t1 computed by (3.45) gives the centralized GSPRT

(C-GSPRT).

For the LTS-based GSPRT (LTS-GSPRT), note that the parameter MLE at

sensor ` based on the jth to kth samples is straightforwardly computed as θ̂k,`j =

E
(
Sk,`j / (k − j + 1) , θ0, θ1

)
, which leads to the local GLLR statistic at sensor `:

S̃t,`j =

θ̂kjSk,`j − (k − j + 1)

(
θ̂k,`j

)2

2

 /σ2. (3.47)

Substituting (3.47) into (3.20) and (3.21), the LTS-GSPRT can be implemented ac-

cording to Algorithm 3a-3b.

To implement the uniform sampling based GSPRT (U-GSPRT), we quantize the

sufficient statistics SnT0,`
(n−1)T0+1 at the nth transmission period at local sensors by

q`n = sign
(
SnT0,`

(n−1)T0+1 − λ
)
. (3.48)

Given the threshold λ, and the distribution of statistic

SnT0,`
(n−1)T0+1 ∼

 N (0, σ2T0) under H0,

N (θT0, σ
2T0) under H1,

(3.49)
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we have the distribution of Bernoulli samples as

Px
(
q`n = 1

)
= pT0

x (λ) = 1− Φ

(
λ− xT0

σ
√
T0

)
, x ∈ {0, [θ0, θ1]}. (3.50)

Again we first verify that the log likelihood ratio of q`n, i.e.,

Su(θ, γ) = q`n log
pT0
θ (λ)

pT0
γ (λ)

+
(
1− q`n

)
log

1− pT0
θ (λ)

1− pT0
γ (λ)

(3.51)

satisfies conditions A1-A4. Specifically, A2-A3 is easy to verify, and we check A1 and

A4 as follows:

• Since pT0
θ 6= pT0

γ for all θ0 ≤ θ ≤ θ1 and γ = 0, it is guaranteed that D
(
pT0
θ ||p

T0
0

)
and thus infθD

(
pT0

0 ||pT0
θ

)
are positive, and there exists an ε > 0 such that

D
(
pT0
θ ||p

T0
0

)
> ε and infθD

(
pT0

0 ||pT0
θ

)
> ε.

• To verify (3.9) for Su (γ, θ), we have

Pγ
(

sup
θ0≤θ≤θ1

|∇θSu(θ, γ)| > x

)
=Pγ

(
sup

θ0≤θ≤θ1

∣∣∣∣ q`npT0
θ

− 1− q`n
1− pT0

θ

∣∣∣∣ ∂pT0
θ

∂θ
> x

)
=Pγ

(
sup

θ0≤θ≤θ1

∣∣∣∣∣ q`n − p
T0
θ

pT0
θ

(
1− pT0

θ

)∣∣∣∣∣ ∂pT0
θ

∂θ
> x

)

=Pγ

(
sup

θ0≤θ≤θ1

∣∣∣∣∣ q`n − p
T0
θ

pT0
θ

(
1− pT0

θ

)∣∣∣∣∣ ∂pT0
θ

∂θ
> x; q`n = 1

)

+ Pγ

(
sup

θ0≤θ≤θ1

∣∣∣∣∣ q`n − p
T0
θ

pT0
θ

(
1− pT0

θ

)∣∣∣∣∣ ∂pT0
θ

∂θ
> x; q`n = 0

)
=pT0

γ 1
{

supθ0≤θ≤θ1
∂p
T0
θ
∂θ

/p
T0
θ >x

} +
(
1− pT0

γ

)
1{

supθ0≤θ≤θ1
∂p
T0
θ
∂θ

/(1−pT0
θ )>x

}, (3.52)

Note that
∂p
T0
θ

∂θ
=
√
T0√

2πσ
exp (−(λ− θT0)2/(2σ2T0)) ≤

√
T0√

2πσ
, and 0 < pT0

θ0
≤ pT0

θ ≤

pT0
θ1
< 1, which lead to

sup
θ0≤θ≤θ1

∂pT0
θ

∂θ
/pT0

θ ≤
√
T0√

2πσ

1

pT0
θ0

and sup
θ0≤θ≤θ1

∂pT0
θ

∂θ
/(1− pT0

θ ) ≤
√
T0√

2πσ

1

1− pT0
θ1

.
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Hence, by letting x0 = max

{
√
T0√

2πσ
1

p
T0
θ0

,
√
T0√

2πσ
1

1−pT0
θ1

}
, we have Pγ (supθ |∇θSu(θ, γ)| > x) =

0 < e−| log x|η all x > x0, η > 1. Similarly, condition (3.10) holds as well.

As a result, the performance of U-GSPRT can be characterized asymptotically by

(3.16)-(3.18).

Next, we solve for the constrained MLE of the unknown parameter up to nth

transmission period:

θ̂n = arg max
θ0≤θ≤θ1

rn0 log
(
1− pT0

θ (λ)
)

+ rn1 log pT0
θ (λ)

= arg max
θ0≤θ≤θ1

rn0 log Φ

(
λ− θT0

σ
√
T0

)
+ rn1 log

(
1− Φ

(
λ− θT0

σ
√
T0

))
, (3.53)

where rn0 and rn1 represent the number of received “−1” and “+1” respectively among

the first received n bits. By noting that the objective in (3.53) is a concave function

of θ, we can invoke the optimality condition and find the MLE as

θ̂n = E
(
λ/T0 − Φ−1

(
rn0

rn0 + rn1

)
σ/
√
T0, θ0, θ1

)
.

In the simulation experiment, we set the algorithm parameters as follows. The

noise variance is normalized as one, i.e, σ2 = 1. The parameter interval is θ ∈ [0.4, 2].

The U-GSPRT is implemented in two settings, i.e., the inter-communication period

T0 = 10 and T0 = 1 respectively. The expected inter-communication period for the

level-triggered sampling scheme is fixed as approximately ET0 ≈ 10 by adjusting the

local thresholds {a, b}. In both cases, the binary quantizer in the minimax sense, i.e.,

the threshold that solves (3.19), is found to be λ/T0 ≈ 0.32.

In Figs. 3.1-3.2, the performances of C-GSPRT, U-GSPRT and LTS-GSPRT are

examined based on a two-sensor system. Specifically, Fig. 3.1 depicts the expected

sample size under the alternative hypothesis (with θ = 0.4) as a function of the false

alarm probability, with the miss detection probability equal to β ≈ 10−4. Fig. 3.2

depicts the expected sample size under the null hypothesis as a function of the miss
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Figure 3.1: Expected samples versus false alarm probability α.
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Figure 3.2: Expected sample size versus miss detection probability β.
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Figure 3.3: Expected sample size versus varying parameter values.
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Figure 3.4: Expected sample size versus number of sensors.
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Figure 3.5: Expected sample size versus inter-communication period.

detection probability, with the false alarm probability equal to α ≈ 10−4. In these

two figures, the black solid lines correspond to the following asymptotic formulas

respectively (cf. (3.37)-(3.38) without the o(·) terms),

EθT =
− logα

D (fθ||h0)K
=
− logα

θ2K/2
, E0T =

− log β

infθD (h0||fθ)K
=
− log β

θ2
0K/2

.

Note that since the true parameter in the experiment is θ0 = 0.4, infθD(h0||fθ) =

D(h0||fθ), the black-solid lines in Figs. 3.1-3.2 also correspond to the performance of

SPRT for the simple null versus simple alternative test. As expected, both C-GSPRT

and LTS-GSPRT align closely with the asymptotic analysis. Notably, LTS-GSPRT

only sacrifices a fractional sample-size compared to C-GSPRT while yielding substan-

tially lower overhead through low-frequency one-bit communication. Figs. 3.1-3.2 also

clearly show that U-GSPRT diverges from C-GSPRT and LTS-GSPRT by an order

of magnitude due to the smaller value of the KL divergence (i.e., D (fθ||h0) = 0.08 >

D (p10
θ ||p10

0 ) /10 ≈ D (p1
θ||p1

0) ≈ 0.051 and infθD (h0||fθ) = 0.08 > infθD (p1
0||p1

θ) ≈



CHAPTER 3. COMPOSITE SEQUENTIAL TEST WITH ONE-BIT
COMMUNICATION 71

0.050 > infθD (p10
0 ||p10

θ ) /10 ≈ 0.042). Note that we also plot the performance of

U-GSPRT for T0 = 1 that corresponds to a binary quantization at every instant. It

is seen that even with ten times more frequent communication to the fusion center,

U-GSPRT is still outperformed by LTS-GSPRT substantially.

Fig. 3.3 illustrates the performances of C-GSPRT, U-GSPRT, LTS-GSPRT for

varying parameter values. Note that all algorithms are implemented without this

knowledge, hence this figure shows how they adapt to different parameter values,

which is a critical performance indicator for composite test. The error probabilities

are fixed at α ≈ 2 × 10−4, β ≈ 10−4. As θ varies from 0.4 to 2, the fusion center

samples faster from the sensors, i.e., Eθ(T0) ≈ 10 → 1.5, due to the embedded

adaptive mechanism. Specifically, we predesign the local thresholds {a, b} for LTS-

GSPRT such that the inter-communication period satisfies Eθ=0.4(T0) ≈ 10. However,

as θ increases, the alternative hypothesis becomes further separated from the null,

and the inter-communication period can be smaller (i.e., more frequent sampling at

the fusion center). This can be considered as that the sensors are able to adapt

to the increase of parameters, and become more urgent to communicate with the

fusion center in the presence of more informative samples. On the contrary, the inter-

communication period of U-GSPRT is fixed, which lacks such adaptiveness. In Fig.

3.3, U-GSPRT with the best time resolution T0 = 1 is examined. It is clearly shown

in Fig. 3.3 that LTS-GSPRT is able to align with C-GSPRT closely and consistently

outperforms U-GSPRT over all parameter values. Again, LTS-GSPRT results in the

lowest communication overhead among these three tests.

Fig. 3.4 further examines the centralized and decentralized algorithms under

different number of sensors with the actual parameter value θ = 0.4. The error

probabilities are fixed at α ≈ 2× 10−4, β ≈ 10−4. Clearly, using more sensors brings

down the sample size given a target accuracy. It is seen that, for a reasonable number

of sensors in practice, e.g., eight sensors, LTS-GSPRT stays close to the centralized

scheme and consistently exhibits smaller sample size compared to the uniform sam-
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pling based decentralized scheme.

Finally, Fig. 3.5 depicts how the inter-communication interval affects the expected

sample sizes. We set θ equal to 0.6 and the error probabilities α ≈ 2×10−4, β ≈ 10−4.

We assign different local thresholds a, b to the LTS-GSPRT such that different inter-

communication periods (i.e., Eθ(T0) ≈ Eγ(T0)) are obtained. It is seen that the

U-GSPRT yields larger sample size as the inter-communication period increases due

to the more coarse time resolution. On the other hand, the LTS-GSPRT is much

robust to the increasing inter-communication period, and provides smaller sample

size as E(T0) increases. This agrees with the intuition that the larger E(T0) allows

more accurate MLE of θ, which is also implied by Theorems 4-5, where a, b → ∞ is

required for the asymptotic optimality of LTS-GSPRT.

3.5.2 Collaborative Sequential Spectrum Sensing

In this subsection, we consider the collaborative sequential spectrum sensing in cogni-

tive radio systems. To cope with the ever-growing number of mobile devices and the

scarce spectrum resource, the emerging cognitive radio systems enable the secondary

users to quickly identify the idle frequency band for opportunistic communications.

Moreover, secondary users can collaborate to increase their spectrum sensing speed.

Specifically, if the target frequency band is occupied by a primary user, the received

signal by the `th secondary user can be written as

y`t = h`tst + e`t (3.54)

where h`t ∼ N (0, 1) is the normalized fading channel gain between the primary user

and the `th secondary user, independent of the noise e`t and st is the unknown signal

transmitted by the primary user with energy E|st|2; otherwise if the target frequency

band is available, secondary users only receive noise. To this end, the sequential spec-

trum sensing can be modelled as the following composite hypothesis testing problem
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[45]:

H0 : y`t ∼ N (0, γ) , 0 < γ0 ≤ γ ≤ γ1, ` ∈ L, t = 1, 2, . . . ,

H1 : y`t ∼ N (0, θ) , γ1 < θ0 ≤ θ ≤ θ1 ` ∈ L, t = 1, 2, . . . ,
(3.55)

where the parameter intervals [γ0, γ1] and [θ0, θ1] are prescribed by practitioners.

We begin by verifying that the log-likelihood ratio of y`t , i.e.,

S(γ, θ) =
1

2

(
|y`t |2

γ
− |y

`
t |2

θ

)
+

1

2
log

γ

θ
, (3.56)

satisfies the conditions A1-A4. While conditions A2-A3 are easily verified, conditions

A1 and A4 can be checked as follows:

• The KL divergences admit

D (fθ||hγ) =
1

2

(
θ

γ
− 1

)
+

1

2
log

γ

θ
,

and D (hγ||fθ) =
1

2

(γ
θ
− 1
)

+
1

2
log

θ

γ
,

which are both decreasing functions of γ and increasing functions of θ. Let 0 <

ε < min{D (hγ1||fθ0) ,D (fθ0||hγ1)}, we have infγ0≤γ≤γ1 D (fθ||hγ) ≥ D (fθ0||hγ1) >

ε and infθ0≤θ≤θ1 D(hγ||fθ) ≥ D (hγ1||fθ0) > ε;

• For (3.9), let x > 1
2θ0

> 0, then we have

Pγ
(

sup
θ0≤θ≤θ1

|∇θS(θ, γ)| > x

)
=Pγ

(
sup

θ0≤θ≤θ1

1

2θ2

∣∣(y`t)2 − θ
∣∣ > x

)
≤Pγ

(
sup

θ0≤θ≤θ1
max{ 1

2θ
,
(y`t)

2

2θ2
} > x

)
=Pγ

(
(y`t)

2

2θ2
0

> x

)
(3.57)

=2Φ

(
−
√

2xθ0√
γ

)
, (3.58)

where the inequality holds because (y`t)
2 ≥ 0, θ > 0 and |{(y`t)2} − θ| ≤

max{(y`t)2, θ}, and (3.57) holds because x > 1
2θ0

. Again, since Φ(−
√

2xθ0/
√
γ) ∼
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e−xθ
2
0/γ, we can always find a sufficiently large x0 such that x > | log x|η , or

equivalently, Pγ
(
supθ0≤θ≤θ1 |∇θS(θ, γ)| > x

)
≤ e−| log x|η for x > x0, η > 1. Sim-

ilarly, we can show that (3.10) holds as well.

WithA1-A4 satisfied, we proceed to employ the centralized and LTS-based GSPRTs

to solve the collaborative sequential spectrum sensing problem, which can be charac-

terized asymptotically by Proposition 2 and Theorems 4-5. Particularly, the central-

ized LLR at the fusion center is evaluated as

Skj (γ, θ) = log

1
θK(k−j+1)/2 exp

(
−1

2

∑K
`=1

∑k
t=j

|y`t |2
θ

)
1

γK(k−j+1)/2 exp
(
−1

2

∑K
`=1

∑k
t=j

|y`t |2
γ

)
=

(
1

2γ
− 1

2θ

)
Wk

j +
K(k − j + 1)

2
log

γ

θ
, Wk

j ,
K∑
`=1

k∑
t=j

|y`t |2. (3.59)

As such, the centralized MLE of the unknown parameters γ and θ are easily obtained

as γ̂kj = E
(
Wk

j / (k − j + 1) /K, γ0, γ1

)
and θ̂kj = E

(
Wk

j / (k − j + 1) /K, θ0, θ1

)
. Then

the centralized GSPRT given by (3.6)-(3.7) can be implemented based on the GLLR

S̃kj = Skj

(
γ̂kj , θ̂

k
j

)
. In order to implement LTS-based GSPRT, the local LLR at sensor

` is

Sk,`j (γ, θ) =

(
1

2γ
− 1

2θ

)
Wk,`

j +
k − j + 1

2
log

γ

θ
, Wk,`

j ,
k∑
t=j

|y`t |2. (3.60)

Substituting γ̂k,`j = E
(
Wk,`

j / (k − j + 1) , γ0, γ1

)
and θ̂k,`j = E

(
Wk,`

j / (k − j + 1) , θ0, θ1

)
into (3.60) gives local GLLR S̃k,`j (γ̂k,`j , θ̂k,`j ), which is further plugged into (3.20)-(3.21)

to run the LTS-GSPRT Tp. To realize U-GSPRT for this problem, given the inter-

communication period T0, the sufficient statistic is found to be φk,`j =Wk,`
j , which is

defined in (3.60), with different distributions under the null and alternative hypothe-

ses:

WnT0,`
(n−1)T0+1/γ

H0∼ χ2
T0

(0) , WnT0,`
(n−1)T0+1/θ

H1∼ χ2
T0

(0) . (3.61)

Therefore, the binary quantizer for this problem is written as

q`n = sign
(
WnT0,`

(n−1)T0+1 − λ
)
, (3.62)
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whose distribution is

pT0
x (λ) = 1− ξT0

(
λ

x

)
, x ∈ [γ0, γ1] ∪ [θ0, θ1], (3.63)

where ξk (x) is the CDF of the chi-squared distribution with degree of freedom k. By

solving the maximum likelihood problem, it is straightforward to find the estimates

of γ and θ respectively as

θ̂n = E

 λ

ξ−1
T0

(
rn0

rn0 +rn1

) , θ0, θ1

 , γ̂n = E

 λ

ξ−1
T0

(
rn0

rn0 +rn1

) , γ0, γ1

 . (3.64)

Note that the log likelihood ratio of q`n is the same as (3.51) with pT0
x (λ) replaced

by (3.63). Therefore, conditions A1 and A4 are verified by noting that

• pT0
θ (λ) 6= pT0

γ (λ) for all θ ∈ [θ0, θ1] and γ ∈ [γ0, γ1], given any λ;

• supθ0≤θ≤θ1
∂p
T0
θ

∂θ
/pT0

θ and supθ0≤θ≤θ1
∂p
T0
θ

∂θ
/(1− pT0

θ ) are bounded, thus the same

argument as in (3.52) applies. This is seen by recalling the density function of

the chi-squared distribution,

∂pT0
x

∂x
=

λ

x2
ξ′T0

(
λ

x

)
≤
(
λ

x

)T0/2 1

2T0/2Γ(T0/2)x
,

with x residing in a compact set, i.e., x ∈ [γ0, γ1] ∪ [θ0, θ1].

Then we can also asymptotically characterize the performance of U-GSPRT in the

sequential spectrum sensing problem by (3.16)-(3.18).

In the simulation experiment, the parameter intervals of interest are set as γ ∈

[0.2, 1] and θ ∈ [2, 5]. We consider U-GSPRT with the best time resolution T0 = 1,

where the minimax quantizer λ = arg max minθD (fθ||hγ) ≈ 3.8. The expected inter-

communication period for LTS-GSPRT is again set approximately as ET0 ≈ 10.

In Fig. 3.6-3.7, the performances of two-user C-GSPRT, U-GSPRT and LTS-

GSPRT are examined with γ = 1, θ = 2 in terms of the expected sample size (i.e.,

spectrum sensing speed) as a function of the false alarm probability and miss detection
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Figure 3.6: Spectrum sensing speed versus false alarm probability α.

probability respectively (with β ≈ 10−4 in Fig. 3.6 and α ≈ 10−4 in Fig. 3.7). In both

figures, the asymptotic optimality of LTS-GSPRT is clearly demonstrated as it aligns

closely with C-GSPRT. In contrast, U-GSPRT diverges significantly from C-GSPRT

and LTS-GSPRT due to the smaller values of the KL divergence. Furthermore, Fig.

3.8 compares the three sequential schemes for different parameter values and Fig. 3.9

further depicts their performances with different number of collaborative secondary

users with the error probabilities α ≈ β ≈ 10−4. Note that, although U-GSPRT sends

local statistics to the fusion center every sampling instant, it is consistently outper-

formed by LTS-GSPRT where each user transmits the one-bit message only every ten

sampling instants on average. More importantly, LTS-GSRPT only compromises a

small amount of expected sample size compared to the C-GSPRT while substantially

lowering the communication overhead. In cognitive radio systems, such an advantage

brought by LTS-GSPRT allows the secondary users to identify available spectrum

resource in a fast and economical fashion.
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Figure 3.7: Spectrum sensing speed versus miss detection probability β.

3.6 Conclusion

This chapter has investigated the sequential composite hypothesis test based on data

samples from multiple sensors. We have first introduced the GSPRT as an asymp-

totically optimal centralized scheme that serves as a benchmark for all decentralized

schemes. Next a decentralized sequential test based on conventional uniform sam-

pling and one-bit quantization has been studied, which is shown to be strictly sub-

optimal due to the loss of time resolution and coarse quantization. Then, by employ-

ing the level-triggered sampling, we have proposed a novel decentralized sequential

scheme, where sensors repeatedly run local GSPRT and report their decisions to the

fusion center asynchronously, and an approximate GSPRT based on the local deci-

sions is performed at the fusion center. The LTS-based GSPRT significantly lowers

the communication overhead through low-frequency one-bit communication, and is

easily implemented both at sensors and the fusion center. Most importantly, we have
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Figure 3.8: Spectrum sensing speed versus different parameter values with and with-

out the primary user.
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shown that the proposed LTS-based decentralized scheme achieves the asymptotical

optimality as the local thresholds and the global thresholds grow large at different

rates. Finally, extensive numerical results have corroborated the theoretical results

and demonstrated the superior performance of the proposed method.

3.7 Appendix to Chapter 3

3.7.1 Proof of Theorem 4

We first introduce the following result as an extension to the Wald’s identity, that

can be found in [32, Lemma 3].

Lemma 6. Let {t`n} be defined by (3.20). Consider a sequence {ψ`n} of i.i.d. random

variables where each ψ`n is a function of the samples y`
t`n−1+1

, . . . , y`
t`n

acquired by sensor

` during its nth inter-communication period. Then the following equality holds:

Ex

N`
T+1∑
n=1

ψ`n

 = Ex
(
ψ`n
)
Ex
(
N `

T + 1
)
, x ∈ Γ ∪Θ. (3.65)

Here, (3.65) differs from the standard Wald’s identity because N `
T + 1 is no longer

a stopping time adapted to {ψ`n}. Next we proceed to analyse the expected sample

size under level-triggered sampling. Since the proof is concentrated on the LTS-based

decentralized scheme only, we use T for Tp (cf. (3.24)) for notational simplicity.

Proof of Theorem 4. Note that the global statistic in (3.23) can be rewritten as

Ṽt =
K∑
`=1

N`
t∑

n=1

ṽ`n

=
K∑
`=1

N`
t+1∑
n=1

ṽ`n − ṽ`N`
t+1


=

K∑
`=1

N`
t+1∑
n=1

ṽ`n −
K∑
`=1

ṽ`N`
t+1, (3.66)
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where ṽ`n ,
(
a1{u`n=1} − b1{u`n=−1}

)
. Thus, invoking Lemma 6, we have

Ex
(
ṼT

)
=

K∑
`=1

Ex
(
N `

T + 1
)
Ex(ṽ`n)−

K∑
`=1

Ex
(
ṽ`N`

T+1

)
, x ∈ Γ ∪Θ. (3.67)

Denote the inter-communication period τ `n , t`n−t`n−1. Further defineR` ,
∑N`

T+1
n=1 τ `n−

T ≥ 0, by noting that T ≤
∑N`

T+1
n=1 τ `n. As a result, we can write down the following

equality for each sensor:

Ex (T +R`) = Ei

N`
T+1∑
n=1

τ `n

 = Ex
(
N `

T + 1
)
Ex
(
τ `n
)
, ` = 1, . . . , K. (3.68)

Combining (3.68) and (3.67) yields

Ex
(
ṼT

)
=

K∑
`=1

Ex (T +R`)

Ei (τ `n)
Ei(ṽ`n)−

K∑
`=1

Ex
(
ṽN`

T+1

)
= Ex (T)

K∑
`=1

Ex(ṽ`n)

Ex (τ `n)
+

K∑
`=1

(
Ex(R`)

Ex(ṽ`n)

Ex (τ `n)
− Ex

(
ṽN`

T+1

))
. (3.69)

Furthermore, upon level-trigger sampling, the local statistic either hits the upper or

the lower boundary, i.e.,

Eθ
(
ṽ`n
)

= −β̃b+ (1− β̃)a ∼ a, as β̃ → 0, (3.70)

and Eγ
(
ṽ`n
)

= α̃a− (1− α̃)b ∼ b, as α̃→ 0, (3.71)

and, according to Proposition 2, we can apply (3.12) to the level-triggered sampling

process, which essentially is a local GSPRT, and thus arrive at

a ∼ Eθ
(
τ `n
)

inf
γ
D (fθ||hγ), as β̃ → 0, (3.72)

and − b ∼ −Eγ
(
τ `n
)

inf
θ
D (hγ||fθ), as α̃→ 0. (3.73)

Considering the sensor samples under hypothesis H1, (3.70) and (3.72) gives

Eθ(ṽ`n)

Eθ (τ `n)
= inf

γ
D (fθ||hγ) ,
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and thus (3.69) becomes

Eθ
(
ṼT

)
= Eθ (T)

K∑
`=1

inf
γ
D (fθ||hγ)−

K∑
`=1

(
Eθ
(
ṽN`

T+1

)
− Eθ(R`) inf

γ
D (fθ||hγ)

)
︸ ︷︷ ︸

R`θ

,

(3.74)

which leads to

Eθ (T) =
Eθ
(
ṼT

)
+
∑K

`=1R`
θ

infγ D (fθ||hγ)K
∼ A+

∑K
`=1R`

θ

infγ D (fθ||hγ)K
, as α̃→ 0, β̃ → 0. (3.75)

Similarly, substituting (3.73) into (3.69) gives

Eγ
(
ṼT

)
= −Eγ (T)

K∑
`=1

inf
θ
D (hγ||fθ)−

K∑
`=1

(
Eγ
(
ṽN`

T+1

)
+ Eγ(R`) inf

θ
D (hγ||fθ)

)
︸ ︷︷ ︸

R`γ

,

(3.76)

and the expected sample size under the null hypothesis is

Eγ (T) =
−Eγ

(
ṼT

)
−
∑K

`=1R`
γ

infθD (hγ||fθ)K
∼

B −
∑K

`=1R`
γ

infθD (hγ||fθ)K
as α̃→ 0, β̃ → 0. (3.77)

We also have Eθ
(
ṼT

)
→ A, Eγ

(
ṼT

)
→ −B, as A,B →∞ and a = o (A) , b = o (B).

Note thatR`
θ andR`

γ only depend on local thresholds {b, a}, which are of a lower order

of {B,A}; therefore, we have proved the asymptotic formulas (3.32) and (3.33).

3.7.2 Proof of Theorem 5

The proof considers the asymptotic regime where a, b → ∞ and A > a and B > b.

Again, T is used for Tp for notational simplicity.

Proof. For simplicity of notations, we assume K = 2 in the proof. When K > 2, the

proof is similar and is thus omitted. Thanks to the symmetry of type I and type II

error probabilities, it is sufficient to compute the type I error probability. For any

γ ∈ Γ, we consider the probability

Pγ(ṼT ≥ A). (3.78)
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We first define the local discretized approximated generalized log-likelihood ratio

process,

Ṽ
(`)
t =

N`
t∑

n=1

a1{u`n=1} − b1{u`n=−1}, ` = 1, 2, ..., K.

Then (3.78) has the following upper bound

Pγ(ṼT ≥ A) ≤ Pγ(sup
t
Vt ≥ A) ≤ Pγ

(
sup
t
Ṽ

(1)
t + sup

t
Ṽ (2) ≥ A

)
. (3.79)

The first inequality is due to the definition of T, and the second inequality is because

supVt ≤
∑K

`=1 supt Ṽ
(`)
t . We proceed to split the last probability in (3.79) into error

probabilities detected by the local sensors. Let ε be an arbitrary positive constant,

then

Pγ
(

sup
t
Ṽ

(1)
t + sup

t
Ṽ

(2)
t ≥ A

)
≤

b1/εc∑
k=1

Pγ
(
kεA ≤ sup

t
Ṽ

(1)
t ≤ (k + 1)εA; sup

t
Ṽ

(2)
t ≥ (1− (k − 1)ε)A

)
+Pγ

(
sup
t
Ṽ

(1)
t ≤ εA; sup

t
Ṽ

(2)
t ≥ (1− ε)A

)
.

Note that the stochastic processes {V (1)
t : t > 0} and {V (2)

t : t > 0} are independent

and identically distributed, so the right-hand side of the above inequality equals to

b1/εc∑
k=1

Pγ
(
kεA ≤ sup

t
Ṽ

(1)
t ≤ (k + 1)εA

)
Pγ
(

sup
t
Ṽ

(1)
t ≥ (1− (k − 1)ε)A

)
+Pγ(sup

t
Ṽ

(1)
t ≤ εA)Pγ

(
sup
t
Ṽ

(1)
t ≥ (1− ε)A

)
,

which can be further bounded above by

b1/εc∑
k=1

Pγ
(

sup
t
Ṽ

(1)
t ≥ kεA

)
Pγ
(

sup
t
Ṽ

(1)
t ≥ (1− (k−1)ε)A

)
+Pγ

(
sup
t
Ṽ

(1)
t ≥ (1− ε)A

)
.

(3.80)

For each k such that 1 ≤ k ≤ b1
ε
c, we have ε ≤ kε ≤ 1 and (1− (k−1)ε) = 1−kε+ε.

Consequently, (3.80) can be further bounded above by

ε−1 sup
ρ∈[ε,1]

Pγ
(

sup
t
Ṽ

(1)
t ≥ ρA

)
Pγ
(

sup
t
Ṽ

(1)
t ≥ (1− ρ+ ε)A

)
. (3.81)
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Then we use the following lemma whose proof is given below to complete the proof

of Theorem 5.

Lemma 7. For ε > 0 and ρ ≥ ε,

Pγ
(

sup
t
Ṽ

(1)
t ≥ ρA

)
≤ e−(1+o(1))ρA as A→∞.

The above limit is uniform with respect to ρ and γ.

Applying Lemma 7 to (3.81) gives the result in Theorem 5.

Proof of Lemma 7. To start with, we write Ṽ
(1)
t in terms of the sum of i.i.d. variables,

Ṽ
(1)
t =

Nt∑
n=1

a1{u1
n=1} − b1{u1

n=−1}.

Therefore, the event {supt Ṽ
(1)
t ≥ ρA} is the same as the event{

sup
N

N∑
n=1

Yn ≥ ρA
}
,

where

Yn = a1{u1
n=1} − b1{u1

n=−1}, n = 1, 2, ...

The above event further implies the event

{N∗ <∞},

where N∗ = inf{N :
∑N

n=1 Yn ≥ ρA}. Therefore,

Pγ
(

sup
t
Ṽ

(1)
t ≥ ρA

)
= Pγ

(
N∗ <∞

)
.

We apply a change of measure to provide an upper bound to the above expression.

Let P̃ and Q̃ be probability measures under which Yn, n = 1, 2, ... are i.i.d. random

variables and

P̃(Yn = a) = p and P̃(Yn = −b) = 1− p,

and

Q̃(Yn = a) = q and Q̃(Yn = −b) = 1− q,
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where p = (ea − e−b)−1(1 − e−b) and q = (ea − e−b)−1ea(1 − e−b). With a change of

measure, we have

Pγ(N∗ <∞) = EQ̃
[dPN∗
dP̃N∗

dP̃N∗
dQ̃N∗

;N∗ <∞
]
, (3.82)

where dPN∗
dP̃N∗

and dP̃N∗
dQ̃N∗

denote the likelihood ratios between Pγ and P̃, and between P̃

and Q̃ at the stopping time N∗ respectively. We compute dP̃N∗
dQ̃N∗

as follows. Under P̃

the likelihood for Y1, ..., Yn is

p#{i≤n:Yi=a}(1− p)#{i≤n:Yi=−b}.

Similarly, under Q̃ the likelihood is

q#{i≤n:Yi=a}(1− q)#{i≤n:Yi=−b}.

Taking their ratio, we arrive at

dP̃n
dQ̃n

(Y1, ..., Yn) = (p/q)#{i≤n:Yi=a}[(1− p)/(1− q)]#{i≤n:Yi=−b}.

Noting that p/q = e−a and (1− p)/(1− q) = eb, we simplify the above display,

dP̃n
dQ̃n

(Y1, ..., Yn) = exp
(
− a#{i ≤ n : Yi = a}+ b#{i ≤ n : Yi = −b}

)
,

which leads to
dP̃N∗
dQ̃N∗

= exp
(
−

N∗∑
n=1

Yn

)
.

Because N∗ < ∞ implies
∑N∗

n=1 Yn ≥ ρA, the probability in (3.82) has an upper

bound

e−ρAEQ̃
[dPN∗
dP̃N∗

;N∗ <∞
]
.

EQ̃
[
dPN∗
dP̃N∗

;N∗ <∞
]

can be written as the sum

EQ̃
[dPN∗
dP̃N∗

;N∗ ≤ κ
A

a

]
︸ ︷︷ ︸

I1

+
∞∑

k=κ+1

EQ̃
[dPN∗
dP̃N∗

; kρ
A

a
≤ N∗ ≤ (k + 1)

A

a

]
︸ ︷︷ ︸

I2

. (3.83)
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It is sufficient to show that I1+I2 can be bounded by eo(A) as A→∞ for some constant

κ that is sufficiently large. We provide upper bounds for I1 and I2 separately. We

start with an upper bound for I1. Notice that under Pγ, Yn, n = 1, 2, ... are i.i.d.

random variables and

Pγ(Yn = a) = α̃γ and Pγ(Yn = −b) = 1− α̃γ,

where α̃γ is defined in (3.28); then

dPn
dP̃n

=

(
α̃γ
p

)#{i:Yi=a, and i≤n}(
1− α̃γ
1− p

)#{i:Yi=−b, and i≤n}

≤ eo(a)n. (3.84)

To see the second inequality, we apply Proposition 2 (under the assumption that

a→∞) and obtain that α̃γ ≤ e−(1+o(1))a. Combining this with the approximation p =

e−a(1+o(1)) as a, b→∞, we arrive at the second inequality of (3.84). Consequently,

I1 ≤ eκAo(a)/a ≤ eo(A). (3.85)

We proceed to an upper bound of I2. According to (3.84), we have

I2 ≤
∞∑

i=κ+1

e(k+1)o(A)Q̃
(

sup
1≤n≤kA

a

n∑
i=1

Yi < ρA
)
≤

∞∑
k=κ+1

e(k+1)o(A)Q̃

bkAa c∑
i=1

Yi < A

 .

(3.86)

The event
{∑bkA

a
c

i=1 Yi < A
}

implies that #{i : Yi = −b, and i ≤ n} ≥ (k−1)A
b

.

Therefore,

Q

bkAa c∑
i=1

Yi < A

 ≤ Q̃
(

#
{
i : Yi = −b and i ≤ bkA

a
c
}
≥ (k − 1)A

b

)
.

To obtain an upper bound of the above probability, we notice that #
{
i : Yi =

−b and i ≤ bkA
a
c
}

follows a binomial distribution with m , bkA
a
c trials and parame-

ter u1 , 1−q. As a, b→∞, we have the approximation u1 = e−b(1+o(1)). Note that

as a, b, A→∞, u2 , (k−1)A
b

/m ≥ a
2b

, which is greater than u1 as b→∞. This allow
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us to apply the Chernoff-Hoeffding bound for binomial distribution (see, for example,

[46, 47]) that for a binomial random variable W with m trials and parameter u1,

Q
(
W ≥ u2m

)
≤ e−Hu1 (u2)m (3.87)

where we define Hu1(u2) , u2 log(u2

u1
) + (1 − u2) log(1−u2

1−u1
). We continue to analyze

this tail bound. Note that when u2 is greater than 1, the tail probability is trivially

zero. Therefore, we focus on the case that u2 ∈ [ a
2b
, 1). Because of the approximation

of u1 = e−b(1 + o(1)), we have the approximation

Hu1(u2) = u2 log u2 + (1− u2) log(1− u2) + u2b(1 + o(1))− (1− u2)o(1)

≥ u2 log(u2) + (1− u2) log(1− u2) +
a

2b
b+ o(1).

Note that the function h(x) = x log(x) + (1 − x) log x ≥ −1 for all x ∈ [0, 1]. So we

further obtain a lower bound of the above display,

Hu1(u2) ≥ a− 2.

We plug the above inequality into (3.87) and arrive at

Q
(

#{i : Yi = −b and i ≤ bkA
a
c} ≥ (k − 1)A

b

)
≤ e−m(a−2) = e−bk

A
a
c(a−2).

According to the assumption that a→∞ we further simplify the above inequality

Q
(

#{i : Yi = −b and i ≤ bkA
a
c} ≥ (k − 1)A

b

)
≤ e−ε0kA (3.88)

for some positive constant ε0. Combining (3.86) and (3.88), we have

I2 ≤
∞∑
k=κ

e(k+1)o(A)e−ε0kA ≤ e−
1
2
ε0κA.

We complete the proof by combining the upper bounds for I1 and I2.
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Chapter 4

Distributed Sequential Test with

Real-Valued Message-Exchange

4.1 Introduction

In this chapter, we study the sequential test in the distributed network, where data

dissemination is required such that every sensor in the network can perform coop-

erative sequential test. Since the seminal work by DeGroot [48], the information

aggregation in distributed networks has been widely studied. A majority of the ex-

isting literature builds on the fixed-sample-size paradigm. That is, each sensor starts

with a private sample and aims to obtain the average of all private samples in the

system (termed as “reaching consensus”) through inter-sensor information exchange.

The most popular information exchange protocols include the “consensus algorithm”

and “gossip algorithm”, whose comprehensive surveys can be found in [49] and [50]

respectively. More sophisticated scenario involving quantized message-exchange and

random link failures was investigated by [51]. In these works, a new sample is not

allowed to enter into the network during the process of “reaching consensus”, thus

they are only relevant to the fixed-sample-size inference problems.

In contrast, the distributed sequential inference problem, where the complication
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arises from the successively arriving samples, is much less understood. Preliminarily,

some existing works tackle this challenge by assuming that the consensus is reached

before new samples are taken, which essentially decouples the sampling and the infor-

mation aggregation processes and reduces the problem to the fixed-sample-size cat-

egory [52–55]. The more practical and interesting scenario is that the sampling and

information aggregation processes take place simultaneously, or at least in comparable

time-scales. Under this setup, [56] proposed the “consensus + innovation” approach

for distributed recursive parameter estimation; [57] intended to track a stochastic pro-

cess using a “running consensus” algorithm. The same method was then applied to

the distributed locally optimal sequential test in [58], where the alternative parameter

is assumed to be close to the null one. Moreover, the distributed sequential change-

point detection was also investigated based on the concept of “running consensus”

[59–61].

While most of the above works focus on reaching (near) consensus on the value of

local decision statistics, limited light has been shed upon the expected sample size, i.e.,

stopping time, and error probabilities of the distributed sequential test. Recently, [62,

63] analyzed the distributed sequential test based on diffusion process (the continuous-

time version of the consensus algorithm). For the discrete-time model, [64] used the

“consensus + innovation” approach in combination with the sequential probability

ratio test to detect the mean-shift of Gaussian samples. Closed-form bounds for the

error probabilities and expected sample sizes of the distributed sequential test are

derived. However, their analyses are restricted to one specific testing problem, and

do not reveal any asymptotic optimality.

In this chapter, we consider two message-exchange based distributed sequential

tests. One requires the exchange of raw samples between adjacent sensors, while the

other adopts the consensus algorithm as in [64]. To the best of our knowledge, this

work is the first to show the asymptotic optimality of a fully distributed sequential

hypothesis test procedure. Again, we emphsize that, due to the constantly arriving
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samples, reaching consensus on the values of the decision statistics at all sensors is

generally impossible. Rather, our ultimate goal is to achieve the global (asymptoti-

cally) optimal performance at every sensor in the network. In particular, the main

contributions are summarized as follows.

• We consider a new distributed sequential test in Section III based on sample

propagation, which allows each sample to reach other sensors as quickly as

possible. This scheme is proved to achieve the order-2 asymptotically optimal

performance at all sensors.

• We investigate the consensus-algorithm-based distributed sequential test for

a generic hypothesis testing problem, whereas [64] considered the particular

problem of detecting the Gaussian mean-shift. Moreover, we allow multiple

rounds of message-exchange between two sampling instants instead of one round

as in [64].

• We derive tighter analytical bounds to characterize the consensus-algorithm-

based distributed sequential test, which leads to the order-2 asymptotic optimal-

ity. Our analyses also reveals that the constant gap to the optimal centralized

performance can be reduced by increasing the number of message-exchanges

between two adjacent sampling instants.

4.2 Problem Statement

Consider a network of K sensors that sequentially take samples in parallel. Condi-

tioned on the hypothesis, these samples are independent and identically distributed

at each sensor and independent across sensors, i.e.,

H0 : X
(k)
t ∼ f

(k)
0 (x),

H1 : X
(k)
t ∼ f

(k)
1 (x), k = 1, 2, . . . , K, t = 1, 2, . . .
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The log-likelihood ratio (LLR) and the cumulative LLR up to time t are denoted

respectively as

s
(k)
t , log

f
(k)
1 (X

(k)
t )

f
(k)
0 (X

(k)
t )︸ ︷︷ ︸

l
(k)
t

, and S
(k)
t ,

t∑
j=1

s
(k)
j . (4.1)

The inter-sensor communication links determine the network topology, which can be

represented by an undirected graph G , {N , E}, with N being the set of sensors and

E the set of edges. In addition, let Nk be the set of neighbouring sensors that are

directly connected to sensor k, i.e.,

Nk , {j ∈ N : {k, j} ∈ E}.

In distributed sequential test, at every time slot t and each sensor k, the following

actions take place in order: 1) taking a new sample, 2) exchanging messages with

neighbours, and 3) deciding to stop for decision or to wait for more data at time t+1.

Note that the first two actions, i.e., sampling and communication will continue even

after the local test at sensor k stops so that other sensors can still benefit from the

same sample diversity, until all sensors stop. Mathematically, three components are

to be designed for the distributed sequential test at each sensor:

• Exchanged messages: We denote the information transmitted from sensor k to

its adjacent sensors at time t as V(k)
t . In general, V(k)

t can be a set of numbers

that depend on {
X

(k)
1 , . . . , X

(k)
t ,
{
V(`)

1

}
`∈Nk

, . . . ,
{
V(`)
t−1

}
`∈Nk

}
(4.2)

due to the distributed and causal assumptions.

• Stopping rule: The test stops for decision according to a stopping time random

variable T that is adapted to the local information, i.e.,

T(k) ∼
{
X

(k)
t ,
{
V(`)
t

}
`∈Nk

}
t∈N+

. (4.3)
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Since we consider deterministic stopping rules, (4.3) means that

P
(
T(k) ≤ t

∣∣X(k)
1 , {V(`)

1 }`∈Nk , . . . , X
(k)
t , {V(`)

t }`∈Nk
)
∈ {0, 1}.

• Decision function: Upon stopping at time T(k) = t, the terminal decision func-

tion chooses between the two hypotheses, i.e.,

D
(k)
t : {X(k)

1 , {V(`)
1 }`∈Nk , . . . , X

(k)
t , {V(`)

t }`∈Nk} → {0, 1}. (4.4)

For notational simplicity, we will omit the time index and use D(k) henthforth.

Accordingly, two performance metrics are used, namely, the expected stopping times

EiT(k), i = 0, 1, and the type-I and type-II error probabilities, i.e., P0

(
D(k) = 1

)
and

P1

(
D(k) = 0

)
respectively. The expected stopping times represent the average sample

sizes under both hypotheses, and the error probabilities characterize the decision

accuracy. As such, for the distributed sequential hypothesis testing, we aim to find

the message design, stopping rule T(k) and terminal decision function D(k) such that

the expected stopping times at sensors under H0 and H1 are minimized subject to

the error probability constraints:

min
{T(k),D(k),{V(`)

t }`∈Nk}
Ei
(
T(k)

)
, i = 0, 1 (4.5)

subject to P0

(
D(k) = 1

)
≤ α,

P1

(
D(k) = 0

)
≤ β, k = 1, 2, . . . , K.

Note that an implicit constraint in (4.5) is given by the recursive definition of V
(k)
t in

(4.2). Moreover, the above optimization is coupled across sensors due to the coupling

of V
(k)
t .

Solving (4.5) at the same time for k = 1, 2, . . . , K is a formidable task except

for some special cases (for example, the fully connected network where all sensor

pairs are connected, or the completely disconnected network where no two sensors

are connected); therefore the asymptotically optimal solution is the next best thing
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to pursue. Here as opposed to Definition 1, we introduce a stronger sense of order-2

asymptotic optimality [32].

Definition 2. Let T? be the stopping time of the optimum sequential test that satisfies

the two error probability constraints with equality. Then, as the type-I and type-II

error probabilities α, β → 0, the sequential test that satisfies the error probability

constraints with stopping time T is said to be order-2 asymptotically optimal if

0 ≤ Ei (T)− Ei (T?) = O(1).

Clearly, the order-2 asymptotic optimality is stronger than the asymptotic opti-

mality in Definition 1 since the expected stopping time of the latter scheme can still

diverge from the optimum, while the former scheme only deviates from the optimum

by a constant as the error probabilities go to zero.

Aiming at the asymptotically optimal solution, we start by finding a lower bound

to (4.5). To this end, let us first consider the ideal case where the network is fully

connected, i.e., Nk = N \{k} for k = 1, 2, . . . , K. Then by setting V(k)
t = {X(k)

t }, k =

1, 2, . . . , K, every sensor can instantly obtain all data in the network, hence the sys-

tem is equivalent to a centralized one. Consequently, given the error probability

constraints, we can write

min
{T(k),D(k),{V(`)

t }`∈Nk}
Ei
(
T(k)

)
≥ min
{T(k),D(k),{X(`)

t }`∈N }
Ei
(
T(k)

)
= min
{T,D}

(EiT) , (4.6)

where T denotes the stopping time for the sequential test when all samples in the

network are instantly available (referred to as the centralized setup). Naturally, in-

voking the classic result by [1], min{T,D} EiT in (4.6) is solved with the centralized

SPRT (CSPRT):

Tc , min

{
t : St ,

K∑
k=1

S
(k)
t /∈ (−A,B)

}
, Dc ,

 1 if STc ≥ B,

0 if STc ≤ −A,
(4.7)

where {A,B} are constants chosen such that the constraints in (4.5) are satisfied with

equalities. The asymptotic performance for the CSPRT as the error probabilities go

to zero can be characterized by the following result [2].
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Proposition 3. The asymptotic performance of the CSPRT is characterized as

E1 (Tc) =
− logα∑K
k=1D

(k)
1

, E0 (Tc) =
− log β∑K
k=1D

(k)
0

, as α, β → 0, (4.8)

where D(k)
i , Ei

(
log

f
(k)
i (X)

f
(k)
1−i(X)

)
is the Kullback-Leibler divergence (KLD) at sensor k.

Proposition 3 gives the globally optimal performance that can only be achieved

in the centralized step, whereas, in reality, the network is often a sparse one, far from

being fully connected. Nevertheless, Tc will be used as a benchmark to evaluate our

proposed distributed sequential tests in the next two sections. More specifically, by

(4.6), we have

min
{T(k),D(k),{V(`)

t }`∈Nk}
Ei
(
T(k)

)
≥ min
{T,D}

Ei (T) = Ei (Tc) ; (4.9)

therefore, if any distributed sequential test attains the globally optimal performance

given by (4.8) in the sense defined by Definition 2 at all sensors, it is asymptotically

optimal.

A naive approach is to perform the local distributed SPRT (L-DSPRT), which

adopts the same message-exchange as the centralized test V(k)
t = {X(k)

t }. Hence the

general definition of the stopping time in (4.3) becomes T(k) ∼ {X(`)
t , ` ∈ {k,N k}}t∈N+ ,

i.e., the event {T(k) ≤ t} (or its complementary event {T(k) > t}) only depends on

{X(`)
j , ` ∈ {k,N k}}j=1,...,t, and the L-DSPRT is defined as

T
(k)
local , min

t :
∑

`∈{k,Nk}

S
(`)
t /∈ (−A,B)

 , D
(k)
local ,


1 if

∑
`∈{k,Nk} S

(`)

T
(k)
local

≥ B,

0 if
∑

`∈{k,Nk} S
(`)

T
(k)
local

≤ −A.

(4.10)

Similarly, the asymptotic performance for L-DSPRT is readily obtained as

E1

(
T

(k)
local

)
=

− logα∑
`∈{k,Nk}D

(`)
1

, E0

(
T

(k)
local

)
=

− log β∑
`∈{k,Nk}D

(`)
0

, as α, β → 0. (4.11)

Thus, compared with (4.8), Tlocal is sub-optimal in general, and may deviate substan-

tially from the globally optimal performance, especially for the sensor with a small

set of neighbours.



CHAPTER 4. DISTRIBUTED SEQUENTIAL TEST WITH REAL-VALUED
MESSAGE-EXCHANGE 96

In the next two sections, we will consider two message-exchange-based distributed

sequential tests, and show that they achieve order-2 asymptotic optimality (i.e., only

deviate from (4.8) by a constant), thus solving the distributed sequential hypothesis

testing problem (4.5) in the asymptotic regime where α, β → 0.

4.3 Sample Dissemination Based Sequential Test

In this section, we consider the first distributed sequential test based on sample

dissemination. Simply put, in this scheme, every sample (or equivalently, the LLR

of the sample) propagates through the network until it reaches all sensors. To some

extent, it resembles the scheme in [65], which, however, treats the message-exchange

and sequential test in decoupled manner. In our scheme, these two processes take

place at the same time.

In order for the samples to reach all sensors, every new sample at one sensor needs

to be relayed to the adjacent sensors at every message-exchange step. These new sam-

ples include the newly collected sample and the external samples that come from the

neighbours and have not been received before. To implement this dissemination

process, an implicit assumption is made that the samples are sent with index infor-

mation such that they can be distinguished from one another. As indicated by the

sub- and super-script of s
(k)
t , the index should include the sensor index k that collects

the sample and the time stamp t. Overall, during the message-exchange stage, each

sensor needs to broadcast to its neighbours an array of messages, each of which is a

sample with index information.

To start with, we define two important quantities. The first is the information set

M(k)
t that contains all samples stored at sensor k up to time t, which include both local

samples and external samples. For example, in set M(1)
2 =

{
s

(1)
1 , s

(1)
2 , s

(2)
1 , s

(2)
2 , s

(3)
1

}
,

{s(1)
1 , s

(1)
2 } are local samples, and {s(2)

1 , s
(2)
2 , s

(3)
1 } are external samples from sensors 2

and 3. The second is the message set V(k)
t whose general form is given by (4.2). In
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the sample dissemination scheme, they can be recursively updated as follows.

1. Sensor k sends to the adjacent sensors the innovation s
(k)
t and new external

samples at last time t− 1:

V(k)
t , {s(k)

t } ∪
(
M(k)

t−1 −M
(k)
t−2 − {s

(k)
t−1}

)
︸ ︷︷ ︸

New external samples

(4.12)

where A− B denotes the complementary set to B in A.

2. Sensor k updates its information set with the innovation s
(k)
t and the messages

from its neighbours, i.e, ∪`∈NkV
(`)
t :

M(k)
t =M(k)

t−1 ∪ {s
(k)
t } ∪`∈Nk V

(`)
t , M(k)

0 = ∅. (4.13)

In essence, each sensor stores new LLRs and relays them in the next time slot to

its neighbours except that the newly collected sample is transmitted immediately at

the same time slot. This is due to the setup that the sampling occurs before the

message-exchange within each time slot.

Then the sample-dissemination-based distributed SPRT (SD-DSPRT) is performed

at each sensor with the following stopping time and decision function:

T
(k)
sd , min

t : ζ
(k)
t ,

∑
s∈M(k)

t

s /∈ (−A,B)

 , D
(k)
sd ,


1, if

∑
s∈M(k)

T
(k)
sd

s ≥ B,

0, if
∑

s∈M(k)

T
(k)
sd

s ≤ −A.

(4.14)

Clearly, since the sample dissemination and the sequential test occur at the same

time, M(k)
t 6= {{s

(1)
j }tj=1, {s

(2)
j }tj=1, . . . , {s

(K)
j }tj=1} in general for k = 1, 2, . . . , K. In

other words, the samples suffer from latency to reach all sensors in the network,

which will potentially degrade the performance of T
(k)
sd compared to Tc. Note that

the sample dissemination scheme under consideration may not provide the optimal

routing strategy with respect to communication efficiency, but it guarantees that each
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sample is received by every sensor with least latency, which is beneficial in terms of

minimizing the stopping time. In particular, the information set at sensor k and time

t is given by

M(k)
t =

{
s

(`)

(j−ν`→k+1)+ , for ` = 1, 2, . . . , K and j = 1, 2, . . . , t
}
, (4.15)

where ν`→k is the length (number of links) of the shortest path from sensor ` to k,

and s
(`)
0 , 0 and νk→k , 1 for notational convenience in the subsequent development.

The next result shows that the SD-DSPRT is order-2 asymptotically optimal.

Theorem 6. The asymptotic performance of the SD-DSPRT as α, β → 0 is charac-

terized by

E1

(
T

(k)
sd

)
≤ − logα∑K

k=1D
(k)
1

+O(1), E0

(
T

(k)
sd

)
≤ − log β∑K

k=1D
(k)
0

+O(1), k = 1, 2, . . . , K.

(4.16)

Proof. On the account of the information set M(k)
t in (4.15), which is yielded by the

sample dissemination process (4.12)-(4.13), the decision statistic for SD-DSPRT at

sensor k, i.e., the quantity ζ
(k)
t defined in (4.14), can be further written as

ζ
(k)
t =

∑
s∈M(k)

t

s =
t∑

j=1

K∑
`=1

s
(`)

(j−ν`→k+1)+ . (4.17)

By noting that the stopping time at sensor k is adapted to M(k)
t , i.e., the event

{T(k)
sd ≤ t} (or its complementary event {T(k)

sd > t}) is fully determined by M(k)
t , we

have

Ei
(
ζ

(k)

T
(k)
sd

)
= Ei

T
(k)
sd∑
j=1

K∑
`=1

s
(`)

(j−ν`→k+1)+


=Ei

[
∞∑
j=1

1{j≤T(k)
sd }

Ei

(
K∑
`=1

s
(`)

(j−ν`→k+1)+

∣∣∣∣∣M(k)
j−1

)]
(4.18)

=Ei

[
∞∑
j=1

1{j≤T(k)
sd }

K∑
`=1

Ei
(
s

(`)

(j−ν`→k+1)+

∣∣∣M(k)
j−1

)]
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=Ei


∞∑
j=1

1{j≤T(k)
sd }

K∑
`=1

Ei
(
s

(`)

(j−ν`→k+1)+

)
︸ ︷︷ ︸

D(`)
i

1{j≥ν`→k}

 (4.19)

=Ei

[
∞∑
j=1

(
1{j≤max` ν`→k}

K∑
`=1

D(`)
i 1{j≥ν`→k} + 1{max` ν`→k<j≤T

(k)
sd }

K∑
`=1

D(`)
i 1{j≥ν`→k}

)]
(4.20)

=Ei

{
∞∑
j=1

[
1{j≤max` ν`→k}

K∑
`=1

D(`)
i

(
1− 1{j≤ν`→k−1}

)
+ 1{max` ν`→k<j≤T

(k)
sd }

K∑
`=1

D(`)
i

]}

=Ei


∞∑
j=1


(
1{j≤max` ν`→k} + 1{max` ν`→k<j≤T

(k)
sd }

)
︸ ︷︷ ︸

1
{j≤T

(k)
sd
}

K∑
`=1

D(`)
i − 1{j≤max` ν`→k}

K∑
`=1

D(`)
i 1{j≤ν`→k−1}




=Ei

[
∞∑
j=1

(
1{j≤T(k)

sd }

K∑
`=1

D(`)
i −

K∑
`=1

D(`)
i 1{j≤ν`→k−1}

)]

=Ei

(
T

(k)
sd

K∑
`=1

D(`)
i −

K∑
`=1

D(`)
i (ν`→k − 1)

)

=Ei
(
T

(k)
sd

) K∑
`=1

D(`)
i −

K∑
`=1

(ν`→k − 1)D(`)
i , (4.21)

where (4.18) holds due to Tower’s property (i.e., E(X) = E [E (X|Y )]) and the

definition of the stopping time T
(k)
sd ; (4.19) holds because s

(k)
0 = 0 and s

(k)

(j−ν`→k+1)+

is independent of M(k)
j−1 due to (4.15); (4.20) is obtained by splitting 1{j≤T(k)

sd }
=

1{j≤max` ν`→k} + 1{max` ν`→k<j≤T
(k)
sd }

.

Under H1, the local statistic ζ
(k)

T
(k)
sd

either hits the upper threshold (i.e., correct de-

cision) with probability 1−β or the lower threshold (i.e. false alarm) with probability

β. Thus its expected value upon stopping is expressed as

E1

(
ζ

(k)

T
(k)
sd

)
= β (−A− ς0) + (1− β)(B + ς1)

→ B +O(1), as A,B →∞, (4.22)

where ςi’s are the expected overshoots, which are constant terms (i.e., independent
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of A,B) that can be evaluated by renewal theory [2, 66]. Therefore, using (4.21) and

(4.22), we have

E1

(
T

(k)
sd

)
=

B∑K
k=1D

(k)
1

+

∑K
`=1 (ν`→k − 1)D(`)

1 +O(1)∑K
k=1D

(k)
1︸ ︷︷ ︸

O(1)

. (4.23)

Similarly, we can also obtain

E0

(
T

(k)
sd

)
=

A∑K
k=1D

(k)
0

+

∑K
`=1 (ν`→k − 1)D(`)

0 +O(1)∑K
k=1D

(k)
0︸ ︷︷ ︸

O(1)

. (4.24)

On the other hand, since ζ
(k)

T
(k)
sd

is the sum of independent LLRs, it is readily

obtained by the Markov inequality that

α , P0

(
ζ

(k)

T
(k)
sd

≥ B

)
≤ e−B E0

[
exp

(
ζ

(k)

T
(k)
sd

)]
= e−B, (4.25)

β , P1

(
ζ

(k)

T
(k)
sd

≤ −A
)
≤ e−A E1

[
exp

(
−ζ(k)

T
(k)
sd

)]
= e−A. (4.26)

The equalities in (4.25) and (4.26) follow from the optional sampling theorem [67] by

noting that exp

(
ζ

(k)

T
(k)
sd

)
and exp

(
−ζ(k)

T
(k)
sd

)
are martingales under H0 and H1 respec-

tively. In specific, E0

[
exp

(
ζ

(k)

T
(k)
sd

)]
= E0

[
exp

(
ζ

(k)
0

])
= 1, and E1

[
exp

(
−ζ(k)

T
(k)
sd

)]
=

E1

[
exp

(
−ζ(k)

0

)]
= 1.

Combining (4.23)-(4.26) leads to the results in (4.16).

Remark 3. According to (4.24) and (4.23) in the proof of Theorem 6, the condi-

tion that every sample reaches all sensors via the shortest paths is sufficient but not

necessary for the order-2 asymptotic optimality. In particular, we can further relax

ν`→k in (4.24) and (4.23) to be any finite number (i.e., samples travel from sensor

` to k within finite number of hops), and still preserve the constant terms, which

are essential for the order-2 optimality. However, the resulting scheme yields larger

constant deviation from the centralized test than that in the proposed scheme, thus is

less efficient in terms of the stopping time.
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Note that the bounds in (4.25) and (4.26) provide accurate characterizations for

the error probabilities, as shown in Section 4.5. Therefore, in practice, the sequential

thresholds can be set according to A = − log β and B = − logα.

Although the distributed sequential test SD-DSPRT achieves the order-2 asymp-

totically optimal performance at every sensor, it is at the cost of the significant

communication overhead that arises from the exchange of sample arrays with the

additional index information. In particular, an increase in the network size K will

significantly increase the dimension of sample array and the index information, mak-

ing the sample dissemination practically infeasible. In the next section, we consider

another message-exchange based distributed sequential test that avoids the high com-

munication overhead, yet still achieves the same order-2 asymptotic optimality at all

sensors.

4.4 Consensus Algorithm Based Sequential Test

In this section, we consider the distributed sequential test based on the communication

protocol known as the consensus algorithm, in which the sensors exchange their local

decision statistics instead of the raw samples (which is an array of messages), i.e., V(k)
t

only contains a scalar. Moreover, we assume that q rounds of message-exchanges can

take place within each sampling interval. Denoting the decision statistic at sensor

k and time t as η
(k)
t , then during every time slot t, the consensus-algorithm-based

sequential test is carried out as follows:

1. Take a new sample, and add the LLR s
(k)
t to the local decision statistic from

previous time:

η̃
(k)
t,0 = η

(k)
t−1 + s

(k)
t , (4.27)

where η̃
(k)
t,0 is the intermediate statistic before message-exchange, and we denote

the statistic after mth message-exchange as η̃
(k)
t,m, m = 0, 1, 2, . . . , q which is

computed in the next step.
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2. For m = 0, 1, 2, . . . , q, every sensor exchanges its local intermediate statistic

η̃
(k)
t,m with the neighbours, and updates the local intermediate statistic as the

weighted sum of the available statistics from the neighbours, i.e.,

η̃
(k)
t,m = wk,k η̃

(k)
t,m−1 +

∑
`∈Nk

w`,k η̃
(`)
t,m−1, for m = 1, 2, . . . , q, (4.28)

where the weight coefficients wi,j will be specified later.

3. Update the local decision statistic for time t as η
(k)
t = η̃

(k)
t,q .

4. Go to Step 1) for the next sampling time slot t+ 1.

To express the consensus algorithm in a compact form, we define the following

vectors:

η̃t,m , [η̃
(1)
t,m, η̃

(2)
t,m, . . . , η̃

(K)
t,m ]T , ηt , [η

(1)
t , η

(2)
t , . . . , η

(K)
t ]T ,

st , [s
(1)
t , s

(2)
t , . . . , s

(K)
t ]T .

Then each message-exchange in (4.28) can be represented by

η̃
(k)
t,m = Wη̃

(k)
t,m−1, for m = 1, 2, . . . , q, (4.29)

where the matrixW , (wi,j) ∈ RK×K is formed by wi,j’s defined in (4.28). Combining

(4.27) and (4.28), the decision statistic vector evolves over time according to

ηt = W q (ηt−1 + st) , with η0 = 0. (4.30)

Based on (4.30), the decision statistic vector at time t can also be equivalently ex-

pressed as

ηt =
t∑

j=1

W q(t−j+1)sj, t = 1, 2, . . . . (4.31)

As such, the consensus-algorithm-based distributed SPRT (CA-DSPRT) at sensor

k can be implemented with the following stopping time and decision rule:

T(k)
ca , inf

{
t : η

(k)
t /∈ (−A,B)

}
, D(k)

ca ,

 1 if η
(k)

T
(k)
ca

≥ B,

0 if η
(k)

T
(k)
ca

≤ −A,
(4.32)
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where {A,B} are chosen to satisfy the error probability constraints.

Note that (4.30) resembles the consensus algorithm in the fixed-sample-size test

[58], where no innovation are introduced, i.e., ηt = W qηt−1. In that case, un-

der certain regularity conditions for W , consensus is reached in the sense ηt →[
1
K

∑K
i=1 η

(k)
0 , . . . , 1

K

∑K
i=1 η

(k)
0

]T
as t → ∞. In contrast, with the new samples con-

stantly arriving, how such a message-exchange protocol can affect the sequential test

at each sensor has not been investigated in the literature. In the following subsec-

tion, we will show that the above CA-DSPRT enables every sensor to attain the

order-2 asymptotically optimal test performance, instead of reaching consensus on

the decision statistics.

4.4.1 Performance Analysis

To begin with, we first impose the following two conditions on the weight matrix W

and the distribution of LLR respectively.

Condition 1. The weight matrix W satisfies

W1 = 1, 1TW = 1T , 0 < σ2 (W ) < 1,

where σi (W ) denotes ith singular value of W .

Condition 2. The LLR for the hypothesis testing problem satisfies that Ei
(
eK
√
K|s(k)

j |
)

is bounded for i ∈ {0, 1}, k = 1, . . . , K.

The first condition essentially regulates the network topology and weight coeffi-

cients in (4.30). If we further require wi,j ≥ 0, then Condition 1 is equivalent to W

being doubly stochastic. The second condition regulates the tail distribution of the

LLR at each sensor, which in fact embraces a wide range of distributions, for example,

the Gaussian and Laplacian distributions.
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Theorem 7. Given that Conditions 1-2 are satisfied, the asymptotic performance of

the CA-DSPRT as α, β → 0 is characterized by

E1

(
T(k)

ca

)
≤ − logα∑K

k=1D
(k)
1

+
σq2(W )

1− σq2(W )
O(1), E0

(
T(k)

ca

)
≤ − log β∑K

k=1D
(k)
0

+
σq2(W )

1− σq2(W )
O(1).

(4.33)

Therefore, the CA-DSPRT achieves the order-2 asymptotically optimal solution to

(4.5) for k = 1, 2, . . . , K.

Theorem 7 can be readily proved by invoking the following two key lemmas.

Lemma 8. All sensors achieve the same expected stopping time in the asymptotic

regime:

E1

(
T(k)

ca

)
=

B∑K
k=1D

(k)
1 /K

+O(1), E0

(
T(k)

ca

)
=

A∑K
k=1D

(k)
0 /K

+O(1), (4.34)

for k = 1, 2, . . . , K, as A,B →∞.

Proof. For notational convenience, we omit the subscript of T
(k)
ca and use T(k) for the

stopping time of the CA-DSPRT throughout the proof.

We first define J , 1
K

11T , where 1 is an all-one vector. Note that the following

equality will become useful in our proof later:

W t − J = (W − J)t , for t = 1, 2, . . . , (4.35)

which can be shown by induction as follows: 1) For t = 1, (4.35) obviously holds true;

2) assume W n − J = (W − J)n, then

(W − J)n+1 = (W − J)n (W − J)

= (W n − J) (W − J)

= W n+1 − JW −W nJ + J2

= W n+1 − J , (4.36)
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where the last equality holds true because Condition 1 implies that JW = 1
K

11TW =

1
K

11T = J , and furthermore

W nJ = W n−1

(
1

K
W11T

)
= W n−1J = · · · = J ,

and JJ = 1
K2 11T11T = J follows by definition.

Another useful inequality holds for any matrix Θ ∈ RL×L and x ∈ RL [68]

‖Θx‖2

‖x‖2

≤ sup
x∈RL

‖Θx‖2

‖x‖2

= σ1 (Θ) , (4.37)

where ‖·‖2 is the L2-norm, and σ1(·) is the largest singular value of a given matrix.

Moreover, Condition 1 implies that W has the maximum singular value σ1(W ) = 1,

and W = 1
K

11T +
∑K

i=2 σi(W )uiv
T
i , where ui and vi are singular vectors associated

with σi (W ), leading to

σ1 (W − J) = σ2(W ). (4.38)

For notational simplicity, σ2 will represent σ2(W ) henceforth unless otherwise stated.

Substituting Θ = W − J into (4.37), we have the following bounds for any random

vector sj (that consists of LLRs at time j):

‖(W − J)q(t−j+1) sj‖2 = ‖(W − J) (W − J)q(t−j+1)−1 sj‖2

≤ σ2‖(W − J)q(t−j+1)−1 sj‖2

≤ σ2
2‖(W − J)q(t−j+1)−2 sj‖2

· · ·

≤ σ
q(t−j+1)
2 ‖sj‖2. (4.39)

Denoting ek , [0, . . . , 1︸︷︷︸
kth element

, . . . , 0]T and invoking (4.35) and (4.39) give the fol-

lowing inequalities

∣∣eTk (W q(t−j+1) − J
)
sj
∣∣ ≤ ‖(W q(t−j+1) − J

)
sj‖2 ≤ σ

q(t−j+1)
2 ‖sj‖2, a.s.. (4.40)
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Then expanding the leftmost term in (4.40) gives

−σq(t−j+1)
2 ‖sj‖2 + eTkJsj ≤ eTkW q(t−j+1)sj ≤ σ

q(t−j+1)
2 ‖sj‖2 + eTkJsj, a.s.. (4.41)

Summing (4.41) from j = 1 to j = t, and using (4.31), we have

−
t∑

j=1

‖sj‖2σ
q(t−j+1)
2 + eTkJ

t∑
j=1

sj ≤ eTk
t∑

j=1

W q(t−j+1)sj︸ ︷︷ ︸
ηt

≤
t∑

j=1

‖sj‖2σ
q(t−j+1)
2 + eTkJ

t∑
j=1

sj, a.s.

(4.42)

for any t = 1, 2, . . .. Taking expectations on both inequalities of (4.42), we arrive at

−Ei

T(k)∑
j=1

‖sj‖2σ
q(T(k)−j+1)
2

+ eTkJEi

T(k)∑
j=1

sj

 ≤ Ei
(
eTk ηT(k)

)
= Ei

(
η

(k)

T(k)

)

≤ Ei

T(k)∑
j=1

‖sj‖2σ
q(T(k)−j+1)
2

+ Ei

eTkJ T(k)∑
j=1

sj

, i = 0, 1.

(4.43)

Let us look at the first inequality in (4.43) first. We have

eTkJEi

T(k)∑
j=1

sj

 ≤ Ei
(
η

(k)

T(k)

)
+ Ei

T(k)∑
j=1

‖sj‖2σ
q(T(k)−j+1)
2

 , (4.44)

where the second term on the right-hand side can be further bounded above by

Ei

T(k)∑
j=1

‖sj‖2σ
q(T(`)−j+1)
2

 ≤ Ei

(
sup
t

t∑
j=1

‖sj‖2σ
q(t−j+1)
2

)

= Ei

(
sup
t

t∑
j=1

‖sj‖2σ
qj
2

)
(4.45)

= Ei

(
∞∑
j=1

‖sj‖2σ
qj
2

)
=

σq2
1− σq2

Ei‖sj‖2, (4.46)
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where (4.45) holds since sj are independent and identically distributed for all j.

Meanwhile, the left-hand side of (4.44) for i = 1 (i.e., under H1) can be expressed

as

eTkJ E1

T(k)∑
j=1

sj

 = eTk
1

K
11T E1

(
∞∑
j=1

1{j≤T(k)}sj

)

= eTk
1

K
11T E1

(
∞∑
j=1

1{j≤T(k)}E1 (sj| sj−1, sj−2, . . . , s1)

)
(4.47)

= eTk
1

K
11T E1

 ∞∑
j=1

1{j≤T(k)} E1 (sj)︸ ︷︷ ︸
[D(1)

1 ,D(2)
1 ,...,D(K)

1 ]T


= eTk

1

K
1 1T [D(1)

1 ,D(2)
1 , . . . ,D(K)

1 ]T︸ ︷︷ ︸∑K
k=1D

(k)
1

E1

(
T(k)

)

= E1

(
T(k)

) K∑
k=1

D(k)
1 /K, (4.48)

where (4.47) is obtained by the Tower’s property and the fact that {T(k) ≥ j} (or its

complementary event {T(k) ≤ j − 1}) is fully determined by sj−1, sj−2, . . . , s1.

Combining (4.44), (4.46), and (4.48) for i = 1 gives

E1

(
T(k)

)
≤

E1

(
η

(k)

T(k)

)
∑K

k=1D
(k)
1 /K

+
σq2

1− σq2
E1 (‖sj‖2)∑K
k=1D

(k)
1 /K

. (4.49)

Note that, under H1, η
(k)

T(k) either hits the upper threshold with probability 1 − β or

the lower threshold with probability β, i.e.,

E1

(
η

(k)

T(k)

)
= β (−A− ς0) + (1− β)(B + ς1)

→ B +O(1), A,B →∞, (4.50)

with the constant expected overshoots ςi’s (i.e., independent of A,B) that can be

evaluated by renewal theory [2, 66].

Moreover, by noting that
√
K|s(k)

j | < 1+K
√
K|s(k)

j | ≤ eK
√
K|s(k)

j | (since 1+x ≤ ex),
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then Condition 2 indicates that

√
K Ei

(
|s(k)
j |
)
< Ei

(
eK
√
K|s(k)

j |
)
≤ C, k = 1, 2, . . . , K, (4.51)

which, together with the relation between the L2 and L∞ norms, further implies

Ei (‖sj‖2) ≤
√
K Ei (‖sj‖∞) ,

√
K max

k
Ei
(
|s(k)
j |
)
< C. (4.52)

As a result, Condition 2 provides the sufficient condition such that Ei (‖sj‖2) is

bounded above by some constant, and hence Ei (‖sj‖2) = O(1).

Therefore, the following inequality follows from (4.49):

E1

(
T(k)

)
≤ B∑K

k=1D
(k)
1 /K

+
σq2

1− σq2
O(1), A,B →∞. (4.53)

Similarly, from the second inequality in (4.43), we can establish

E1

(
T(k)

)
≥ B∑K

k=1D
(k)
1 /K

− σq2
1− σq2

O(1), A,B →∞, (4.54)

which, together with (4.53), proves the asymptotic characterization for E1

(
T(k)

)
given

by (4.34).

By treading on the similar derivations as above, E0

(
T(k)

)
can be bounded by

A∑K
k=1D

(k)
1 /K

− σq2
1− σq2

O(1) ≤ E0

(
T(k)

)
≤ A∑K

k=1D
(k)
0 /K

+
σq2

1− σq2
O(1), A,B →∞,

(4.55)

which completes the proof.

Lemma 8 characterizes how the expected sample sizes of the CA-DSPRT vary as

the decision thresholds go to infinity. The next lemma relates the error probabilities

of the CA-DSPRT in the same asymptotic regime to the decision thresholds.

Lemma 9. The error probabilities of CA-DSPRT in the asymptotic regime as A,B →

∞ at each sensor is bounded above by

logP0

(
D(k)

ca = 1
)
≤ −KB +O(1), logP1

(
D(k)

ca = 0
)
≤ −KA+O(1). (4.56)
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Proof. Again, the proof makes use of the inequality (4.42) to bound the local statistic.

In the following, we show the proof for the Type-I error probability, while that for

the Type-II error probability follows similarly.

First, due to (4.42), note the following relation

{
D(k)

ca = 1
}
,

eTk
T

(k)
ca∑
j=1

W
q
(
T

(k)
ca −j+1

)
sj ≥ B

 ⊂


T
(k)
ca∑
j=1

‖sj‖2σ
q
(
T

(k)
ca −j+1

)
2 + eTkJ

T
(k)
ca∑
j=1

sj ≥ B

 .

Therefore,

P0

(
D(k)

ca = 1
)
≤ P0


T

(k)
ca∑
j=1

‖sj‖2σ
q
(
T

(k)
ca −j+1

)
2︸ ︷︷ ︸

φ
T

(k)
ca

+eTkJ

T
(k)
ca∑
j=1

sj ≥ B


= P0

exp

K
φ

T
(k)
ca

+ eTkJ

T
(k)
ca∑
j=1

sj

 ≥ eKB


≤ e−KB E0

exp

K
φ

T
(k)
ca

+ eTkJ

T
(k)
ca∑
j=1

sj


︸ ︷︷ ︸

Bk

(4.57)

where the second inequality follows from the Markov inequality.

In order to show the results in (4.56), the remaining task is to bound the coefficient

term

Bk = E0

eKφT(k)
ca exp

 K∑
`=1

T
(k)
ca∑
j=1

s
(`)
j


= E0

eKφT(k)
ca

T
(k)
ca∏
j=1

K∏
`=1

l
(`)
j


= E1

(
e
Kφ

T
(k)
ca

)
, (4.58)

where the last equality is obtained by changing the probability measure of the expec-
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tation from H0 to H1. To that end, the following inequalities are useful

E1

(
e
Kφ

T
(k)
ca

)
≤ E1

(
eK supt φt

)
=

∞∏
j=1

E1

(
eK‖sj‖2σ

qj
2

)
≤

∞∏
j=1

(
E1

(
eK‖sj‖2

))σqj2 ,

(4.59)

where the second inequality follows from the Jenson’s inequality since xa is a concave

function for a < 1. Thanks to (4.59), Condition 2 (i.e., there exists a finite number

M such that Ei
(
eK
√
K‖sj‖∞

)
≤ M) is sufficient to ensure that Bk in (4.57) is upper

bounded by a constant term (i.e., independent of A,B) due to the following:

Bk ≤
∞∏
j=1

(
E1

(
eK‖sj‖2

))σqj2 ≤
∞∏
j=1

E1

(
eK
√
K‖sj‖∞

)
︸ ︷︷ ︸

≤M


σqj2

≤ exp

(
∞∑
j=1

σqj2 logM

)
= M

σ
q
2

1−σq2 = O(1). (4.60)

As a result, (4.57) implies that

logP0

(
D(k)

ca ≥ B
)
≤ −KB +

σq2
1− σq2

O(1), (4.61)

proving the asymptotic characterization of the Type-I error probability given by

(4.56).

4.4.2 Approximate Performance Characterization

Although the asymptotic upper bounds in Lemma 9 are sufficient to reveal the asymp-

totic optimality of the CA-DSPRT, their constant terms are not specified in analytical

form. Thus the analytical characterization in Lemma 9 offers limited guidance for

setting the thresholds {A,B} such that the error probability constraints can be met.

To address this limitation, we next provide a refined asymptotic approximations to

the error probabilities.
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Defining the difference matrix ∆t , W t − J , then the Type-I error probability

can be rewritten as

P0

(
D(k)

ca = 1
)

=P0

eTk
T

(k)
ca∑
j=1

W
q
(
T

(k)
ca −j+1

)
sj

 ≥ B


=P0

eTk
T

(k)
ca∑
j=1

Jsj +

T
(k)
ca∑
j=1

∆
q
(
T

(k)
ca −j+1

)sj
 ≥ B


=P0

T
(k)
ca∑
j=1

1Tsj +KeTk

T
(k)
ca∑
j=1

∆
q
(
T

(k)
ca −j+1

)sj ≥ KB

 . (4.62)

Note that W under Condition 1 satisfies that W t → J as t → ∞ [69]. Drawing on

this property, we approximate ∆t ≈ 0, for t > t0q, where t0 can be selected to be

sufficiently large according to σ2(W ) and q, and is independent of A,B. The smaller

σ2(W ) is, or the greater q is, the faster that W t approaches J and ∆t approaches 0.

Applying the Markov inequality to (4.62), we have

P0

(
D(k)

ca = 1
)
≤ e−KB E0

T
(k)
ca∏
j=1

K∏
`=1

l
(`)
j exp

eTk
K T

(k)
ca∑
j=1

∆
q
(
T

(k)
ca −j+1

)sj


= e−KB E1

exp

eTk
K T

(k)
ca∑
j=1

∆
q
(
T

(k)
ca −j+1

)sj


≈ e−KB E1

exp

eTk
K T

(k)
ca∑

j=T
(k)
ca −t0+1

∆
q
(
T

(k)
ca −j+1

)sj


≈ e−KB E1

(
exp

(
eTk

(
K

t0∑
j=1

∆qjsj

)))
︸ ︷︷ ︸

Cα

, (4.63)

where the constant factor Cα can be readily computed by simulation since t0 is a

prefixed number. Similarly, we can derive the same approximation to the Type-II
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error probability:

P1

(
D(k)

ca = 0
)
≤ e−KA E1

T
(k)
ca∏
j=1

K∏
`=1

1/l
(`)
j exp

eTk
K T

(k)
ca∑
j=1

∆
q
(
T

(k)
ca −j+1

)sj


= e−KA E0

exp

eTk
K T

(k)
ca∑
j=1

∆
q
(
T

(k)
ca −j+1

)sj


≈ e−KA E0

exp

eTk
K T

(k)
ca∑

j=T
(k)
ca −t0+1

∆
q
(
T

(k)
ca −j+1

)sj


≈ e−KA E0

(
exp

(
eTk

(
K

t0∑
j=1

∆qjsj

)))
︸ ︷︷ ︸

Cβ

. (4.64)

In essence, (4.63) and (4.64) further specify the constant terms in Lemma 9, or

tighten the constant Bk in (4.57). As we will show through the simulations in Section

4.5, these bounds accurately characterize the error probabilities of the CA-DSPRT

with proper t0. By the virtue of these refined approximations, the practitioners can

determine the thresholds to satisfy the error probability constraints in (4.5) by

A = − 1

K
log

β

Cβ
, and B = − 1

K
log

α

Cα
, (4.65)

which considerably simplifies the thresholds selection for the CA-DSPRT.

4.5 Numerical Results

In this section, we examine the performance of the two message-exchange-based dis-

tributed sequential tests using two sample distributions. Extensive numerical results

will be provided to corroborate the theoretical results developed in this chapter.

We begin by deciding the weight matrix for the consensus algorithm. There are

multiple methods to choose W such that Condition 1 can be satisfied, one of which is

assigning equal weights to the data from neighbours [64, 69]. In specific, the message-
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exchange protocol (4.28) becomes

η̃
(k)
t,m = (1− |Nk|δ) η̃(k)

t,m−1 + δ
∑
`∈Nk

η̃
(`)
t,m−1,

= η̃
(k)
t,m−1 + δ

∑
`∈Nk

(
η̃

(`)
t,m−1 − η̃

(k)
t,m−1

)
for m = 1, 2, . . . , q. (4.66)

As such, the weight matrix admits

W = I− δ
(
D −A︸ ︷︷ ︸

L

)
, (4.67)

where A is the adjacent matrix, whose entries ai,j = 1 if and only if {i, j} ∈ E , and

D , diag {|N1|, |N2|, . . . , |NK |} is the called the degree matrix. Their difference is

called the Laplacian matrix L which is positive semidefinite. First, W1 = 1 and

1TW = 1T hold for any value of δ due to the definition of L (i.e., L1 = 0 and

1TL = 0T ). Second, note that W in (4.67) is a symmetric matrix, whose second

largest singular value

σ2 (W ) = max {1− δλn−1 (L) , δλ1 (L)− 1} < 1,

if and only if 0 < δ < 2
λ1(L)

. Within this interval, we set δ = 2
λ1(L)+λn−1(L)

such that

the constant terms in Theorem 7 are minimized, or equivalently, σ2(W ) is minimized.

Condition 2 on the LLR distribution will be verified for the particular testing problem

in Section 4.5.1 and 4.5.2 respectively.

In the following experiments, we consider a specific class of network topology as

an example, where each sensor is connected to sensors within m links, as denoted as

G(n,m). For instance, in G(12, 2) illustrated in Fig. 4.1, each sensor is connected to

the sensors within range 2.

4.5.1 Detecting the Mean-Shift of Gaussian Samples

First we consider the problem of detecting the mean-shift of Gaussian samples. With-

out loss of generality, the variance is assumed to be one in the hypothesis testing
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Figure 4.1: The sensor network represented by a graph G(12, 2).

problem, i.e.,

H0 : X
(k)
t ∼ N (0, 1),

H1 : X
(k)
t ∼ N (µ, 1), k = 1, 2, . . . , K, t = 1, 2, . . .

The LLR at sensor k is given by

s
(k)
t = X

(k)
t µ− µ2

2
∼

 N
(
−µ2

2
, µ2
)
, under H0,

N
(
µ2

2
, µ2
)
, under H1,

(4.68)

with KLDs equal to

D(k)
0 = D(k)

1 =
µ2

2
.

Note that

E0

(
eK
√
K|s(k)

t |
)

= E1

(
eK
√
K|s(k)

t |
)

= e(K
√
K+1)K

√
Kµ2/2Φ

((
K
√
K +

1

2

)
µ

)
+ e(K

√
K−1)K

√
Kµ2/2Φ

((
K
√
K − 1

2

)
µ

)
(4.69)

turns out to be a constant, thus the LLR (4.68) satisfies the Condition 2. As a result,

the CA-DSPRT achieves the order-2 asymptotically optimal performance at every
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sensor. Moreover, for comparison, we will also plot the analytical bounds derived in

[64] for the error probabilities of the CA-DSPRT with q = 1, i.e.,

P0

(
D(k)

ca = 1
)
≤

2 exp
(
− σ2(W )KB

8(Kσ2(W )2+1)

)
1− exp

(
− KD1

4(Kσ2(W )2+1)

) , (4.70)

and for the stopping time characterization, i.e.,

Ei
(
T(k)

ca

)
≤ 10 (Kσ2

2(W ) + 1)

7
Ei (Tc) , i = 0, 1, (4.71)

given the same error probabilities. They are referred to as the existing analysis for the

CA-DSPRT. Note that the analysis in [64] does not reveal the asymptotic optimality

of T
(k)
ca .

Since sensors in the network have the identical sample distributions, identical

adjacent sensors and message-exchange weights, they should result in identical test

performance under SD-DSPRT, CA-DSPRT and L-DSPRT respectively. Thus, we

only plot the performance at sensor 1 for illustrative purpose, bearing in mind that

the performance at other sensors align identically to that of sensor 1. In addition,

due to the symmetry of the statistic distribution under H0 and H1, it is sufficient

to plot the performance under one hypothesis, while the other follows identically.

Accordingly, we demonstrate the false alarm probability α and expected sample size

E1 (T) henceforth.

Let us first consider the sensor network G (12, 2) as depicted in Fig. 4.1 whose

weight matrix (4.67) has σ2 (W ) = 0.6511. The alternative mean is set as µ = 0.3.

The number of message-exchanges for the CA-DSPRT at each time slot is fixed as

q = 1. Fig. 4.2 illustrates how the error probability and expected sample size change

with the threshold in SD-DSPRT and CA-DSPRT. Specifically, Fig. 4.2-(a) shows

that the error probability of the SD-DSPRT (marked in red squares) is the same

as that of the CSPRT (marked in black solid line), i.e., e−KB, while that of the

CA-DSPRT (marked in blue circles) aligns parallel to the solid line, as expected by

Lemma 9. Moreover, the refined approximation (4.63) accurately characterizes the
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Figure 4.2: The false alarm probability and expected sample size in terms of the

threshold B for the network G (12, 2).
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Figure 4.3: Stopping time performances of different message-exchange-based dis-

tributed sequential tests for the network G (12, 2).
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error probability with t0 = 10 whereas the curve by (4.70) deviates far away from the

simulation result. Fig. 4.2-(b) shows that the expected sample sizes of SD-DSPRT

and CA-DSPRT align parallel to that of the CSPRT as the threshold increases, which

agrees with (4.23) and Lemma 8.

Combining 4.2-(a) and (b) gives the performance curves as shown in Fig. 4.3.

First, both the performances of SD-DSPRT and CA-DSPRT only deviate from the

global optimal performance by a constant margin as A,B →∞, exhibiting the order-

2 asymptotic optimality as stated in Theorems 6 and 7. Particularly, SD-DSPRT

shows relatively smaller degradation compared to the CA-DSPRT. However, this

superiority is gained at the cost of substantially heavier communication overhead.

In addition, we also plot the performance of L-SRPRT (marked in green diamonds),

which is clearly seen to be sub-optimal and diverges from the optimal performance

by orders of magnitude. The curve by (4.71) again substantially deviates from the

true performance.

Another experiment is demonstrated in Figs. 4.4 and 4.5 based on the network

G(20, 2) with σ2 (W ) = 0.8571. It is seen that our analyses still accurately character-

ize the performances of SD-DSPRT and CA-DSPRT in the asymptotic regime where

A,B → ∞ and α, β → 0. Note that for q = 1, the constant gap between the CA-

DSPRT and CSPRT is greater compared to the preceding simulation due to a larger

σ2 (W ). Interestingly and expectedly, if we increase the number of message-exchanges

by one, i.e., q = 2, the constant gap between the CA-DSPRT and CSPRT can be

substantially reduced. This implies that, in practice, we can control the number of

message-exchanges in the consensus algorithm to push the CA-DSPRT closer to the

global optimum. Nevertheless, changing q only varies the constant gap; in any case,

the order-2 asymptotic optimality of the SD-DSPRT and CA-DSPRT are clearly seen

in Fig. 4.5.
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Figure 4.4: The false alarm probability and expected sample size in terms of the

threshold B for the network G (20, 2).
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Error probability: α (=β)
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Figure 4.5: Stopping time performances of different message-exchange based dis-

tributed sequential tests for the network G (20, 2).
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4.5.2 Detecting the Mean-Shift of Laplacian Samples

Next we apply the message-exchange-based distributed sequential tests to detect the

mean-shift of the Laplace samples, whose the dispersion around the mean is wider

than the Gaussian samples. Laplace distribution is widely used for modelling the data

with heavier tails, with applications in speech recognition, biological process analysis,

and credit risk prediction in finance. Without loss of generality, we assume b = 1 for

the probability density function f (x) = 1
2b

exp
(
− |x−µ|

b

)
, i.e.,

H0 : X
(k)
t ∼ Laplace (0, 1) ,

H1 : X
(k)
t ∼ Laplace (µ, 1) , k = 1, 2, . . . , K, t = 1, 2, . . . ,

with the LLR at sensor k given by

s
(k)
t =


µ X

(k)
t < 0,

2X
(k)
t − µ 0 ≤ X

(k)
t ≤ µ,

−µ X
(k)
t ≥ µ,

(4.72)

and KLDs equal to

D(k)
0 = D(k)

1 = |µ| − 1 + e−|µ|. (4.73)

Under this problem setting, Condition 2 is easily verified by noting that |s(k)
t | is

bounded above by µ, thus Ei
(
eK
√
K|s(k)

t |
)

is bounded above by constant eK
√
Kµ.

We consider the network G (26, 2) whose weight matrix (4.67) has σ2 (W ) =

0.9115, and the alternative mean is fixed as µ = 0.2. In Fig. 4.6-(a), the error

probability of the SD-DSPRT is the same as that given by the asymptotic analysis,

i.e., e−KB, while that of the CA-DSPRT stays parallel to the asymptotic result. Sim-

ilarly, the expected sample sizes shown in Fig. 4.6-(b) also agree with the asymptotic

analysis. Again, slightly increasing q is seen to quickly narrow down the constant

gaps. In Fig. 4.7, both SD-DSPRT and CA-DSPRT (for any value of q) deviate from

the global optimal performance by a constant margin as the error probabilities go
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Figure 4.6: The false alarm probability and expected sample size in terms of the

threshold B for the network G (26, 2).
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to zero. In particular, the CA-DSPRT becomes nearly the same as the SD-DSPRT

for q = 3, with much less communication overhead. In contrast, the naive L-DSPRT

substantially diverges from the global optimum for small error probability.

4.6 Conclusion

In this chapter, we have investigated the fully distributed sequential hypothesis test-

ing, where each sensor performs the sequential test while exchanging information with

its adjacent sensors. Two message-exchange-based schemes have been considered.

The first scheme hinges on the dissemination of the data samples over the network,

and we have shown that it achieves the order-2 asymptotically optimal performance

at all sensors. However, the dissemination of data samples across the network be-

comes impractical as the network size grows. In contrast, the second scheme builds

on the well-known consensus algorithm, that only requires the exchange of local de-

cision statistic, thus requiring significantly lower communication overhead. We have

shown that the consensus-algorithm-based distributed sequential test also achieves

the order-2 asymptotically optimal performance at every sensor. Several future di-

rections can be pursued. First, one can improve the SD-DSPRT by introducing more

efficient sample dissemination scheme. Second, note that Condition 1 on the network

topology is in fact more strict than that given in [69]. It would be interesting to

investigate whether the same condition in [69] can lead to the asymptotic optimality

of the CA-DSPRT. It is also of interest to integrate the quantized consensus algo-

rithm into the distributed sequential test, where local decision statistics are quantized

into finite bits before message-exchange. Moreover, it is practically and theoretically

interesting to study the effect of the time-varying network topology and link failures

on the distributed sequential test. Last but not least, it is of interest to consider fully

distributed sequential change-point detection and its asymptotic property.
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Chapter 5

Distributed Sequential Test with

Quantized Message-Exchange

5.1 Introduction

Thus far, the distributed sequential tests in Chapter 4 rely on the exchange of real-

valued (i.e., full-precision) messages between neighbour sensors, which may not always

be realistic if the communication links of the distributed network are subject to limited

bandwidth. Despite the rich literature on the quantized versions of the “consensus

algorithm” and “gossip algorithm” [51, 70–73], to the best of our knowledge, no study

has been reported on the sequential hypothesis test in the distributed network that

only allows quantized message-exchange.

Moreover, some applications may involve a hybrid of above two types of networks.

For example, for the first layer of the network, some nodes form a distributed network

according to a certain connection topology; in addition, these nodes each can also be

equipped with a group of sensors that collect and report data directly to them. Such

a hybrid network is often referred to as the cluster-based network [74–76]. Such

cluster-based structure is specially useful when sensors are deployed in a wide area,

for instance, for earthquake detection or agricultural field monitoring [76].
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In this chapter, we consider the distributed sequential hypothesis testing based on

quantized message-exchange, and propose solutions that combine the efficient quan-

tization scheme and integer-exchange protocol such that the distributed performance

can be (asymptotically) optimal at every sensor. In particular, the following contri-

butions are noteworthy.

• We propose a distributed sequential test based on uniform quantization and

an integer message-exchange protocol that satisfies certain conditions (e.g., the

dimension-exchange algorithm). Though such a scheme is easy to implement,

our analysis shows that it cannot guarantee the asymptotically optimal per-

formance at every sensor due to the quantization errors that accumulate over

time.

• Then we propose a distributed sequential test based on the level-triggered quan-

tization, which is a modified level-triggered sampling technique in [32, 33]. We

show that this distributed sequential test achieves order-2 asymptotically op-

timal performance at all sensors, which implies that the expected sample sizes

only deviate from that of the optimal centralized scheme by a constant as the

error probabilities approach zero.

• Moreover, we generalize the proposed distributed sequential tests to the cluster-

based networks.

5.2 Background and Problem Description

Consider a network of K independent sensors, each of which observes sequential

samples that are independent and identically distributed (i.i.d.) over time. Under

the binary hypotheses, the sample distributions are given by

H0 : X
(k)
t

i.i.d.∼ f
(k)
0 (x) ,

H1 : X
(k)
t

i.i.d.∼ f
(k)
1 (x) , t = 1, 2, . . . , k = 1, 2, . . . , K,
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where X
(k)
t is the sample taken by sensor k at discrete time t. In addition to the

local observations, sensors can share information through a predefined communica-

tion topology, which is represented by an undirected graph G. For each sensor k,

its neighbouring sensors (i.e., the sensors that are directly connected to sensor k) is

denoted as Nk. The pair of sensors that are connected by a communication link can

exchange their local information with each other. Particularly, due to the bandwidth

constraint of the communication links, the messages exchanged between connected

sensors can only be integers that represent the quantized local statistics. For ana-

lytical tractability, we do not limit the dynamic range of quantization. In practice,

the dynamic range of the local statistics is finite with high probability and hence the

exchanged messages are represented with finite number of bits.

The standard sequential hypothesis testing problem aims to find the optimal stop-

ping rule T and decision function D : X1, X2, . . . , XT → {0, 1}, such that the expected

stopping times (i.e., expected sample sizes) under both hypotheses are minimized sub-

ject to the error probability constraints [1], i.e.,

inf
T,D

Ei (T)

subject to P0 (D = 1) ≤ α, P1 (D = 0) ≤ β. (5.1)

Note that in the fully distributed setup, every sensor performs its own sequential

test {T(k), D(k)} based on its local samples together with the information from neigh-

bouring sensors. Our goal is to devise the quantization scheme, the communication

protocol, and the sequential test procedure that (approximately) solve (5.1) for each

sensor. While finding the exact solution to (5.1) for K sensors at the same time seems

a formidable task, the next best target to pursue is to design efficient schemes that

achieve the optimal performance asymptotically in the sense defined by Definition 1

or 2.

Note that the optimal performance should be attained by assuming a fully-connected

network (i.e., any two sensor in the network are connected) and full-precision message-
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exchange (i.e., without quantization), in which case, every sensor has instantaneous

access to all samples in the network. Based on these two ideal assumptions and the

optimality of the sequential probability ratio test (SPRT) [1], the best possible per-

formance at each sensor is obtained by the centralized SPRT (CSPRT) as described

below. Define the running log-likelihood ratio (LLR) at the k-th sensor:

S(k)
n =

n∑
t=1

log
f

(k)
1

(
X

(k)
t

)
f

(k)
0

(
X

(k)
t

)
︸ ︷︷ ︸

s
(k)
t

, with S
(k)
0 = 0, (5.2)

then the CSPRT is defined as

Tc = min

{
n ∈ N+ : Sn ,

1

K

K∑
k=1

S(k)
n /∈ (−a, b)

}
, (5.3)

Dc =

 1 if STc ≥ b,

0 if STc ≤ −a,
(5.4)

where a, b > 0 and are selected such that the error probability constraints are satisfied

with equalities. The performance of CSPRT can be characterized in closed-form in

the asymptotic regime as follows [2]:

E1 (Tc) =
− logα∑K
k=1D

(k)
1

+O(1), E0 (Tc) =
− log β∑K
k=1D

(k)
0

+O(1), as α, β → 0, (5.5)

where D(k)
i , i = 0, 1 is the Kullback-Leibler divergence (KLD). As a result, we can

employ CSPRT as the benchmark (i.e., {T?, D?} in Definitions 1-2) to evaluate the

effectiveness of the proposed distributed sequential tests. If any distributed sequential

test enables all sensors to achieve the optimal performance (5.5) in the sense as defined

by Definition 1 or 2, we can conclude that it attains the order-1 or order-2 asymptotic

optimality.

Now let us proceed to the sequential test in a general network (not necessarily

fully-connected). In the presence of quantization, sensors perform the following three

operations at each sampling interval:
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1. Take a new sample, and update the local statistic;

2. Exchange the quantized version of the local statistic (i.e., integer messages)

with neighbours, and update the local statistic based on the received messages;

3. Apply the stopping rule (defined by stopping time) to the local statistic: if the

stopping condition is met, make test decision; otherwise continue to the next

sampling interval.

In the next section, we will consider two distributed sequential tests based on

different quantization schemes and a general quantized message-exchange protocol

that satisfies certain conditions. The first quantization scheme uniformly quantizes

the local statistics at all sensors at every sampling interval, while the second scheme

employs a level-triggered quantization technique, which essentially performs Lebesgue

sampling of the running statistic. It will be shown that the first distributed sequential

test yields sub-optimal performance at every sensor, whereas the second one achieves

the order-2 asymptotically optimal performance.

5.3 Sequential Test in Distributed Network

To begin with, we first specify the quantized message-exchange protocol. Let us de-

note the quantized local message at sensor k and time t as z
(k)
t ∈ {x : x = m∆, m ∈

N}, where ∆ is the quantization interval. Then the message-exchange procedure can

be defined as a function M : z
(k)
t , {z(`)

t , ` ∈ Nk} → z̃
(k)
t ∈ {x : x = m∆, m ∈ N}.

For notational convenience, we simply denote M
(
z

(k)
t , {z(`)

t , ` ∈ Nk}
)

as M
(
z

(k)
t

)
.

Hence,M takes the quantized local message and the quantized messages from neigh-

bours, and produces the updated quantized local message.

Here, we specify a class of message-exchange protocols that satisfy two conditions

stated as below. These two conditions will play a crucial role in our proposed dis-

tributed sequential tests, especially for achieving the asymptotic optimality by the
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level-triggered quantization based test. In Section 5.3.3, a specific quantized message-

exchange protocol, i.e., the dimension-exchange algorithm, that satisfies these two

conditions, will be introduced.

Condition 3. At each time t, the updated quantized local message of each node k

differs from that of any neighbour node by at most ∆, i.e.,

max
`∈Nk

∣∣∣M(
z

(`)
t

)
−M

(
z

(k)
t

)∣∣∣ ≤ ∆, k = 1, 2, . . . , K, t = 1, 2, . . . . (5.6)

Condition 4. Denoting zt = [z
(1)
t , z

(2)
t , . . . , z

(K)
t ]T , the sum of the quantized messages

at all nodes is preserved before and after each message exchange, i.e.,

1Tzt = 1TM (zt) , t = 1, 2, . . . . (5.7)

Here, M (zt) ,
[
M
(
z

(1)
t

)
, . . . ,M

(
z

(K)
t

)]T
.

5.3.1 Distributed Sequential Test Based on Uniform Quan-

tization

We first propose the distributed sequential test that is based on uniform quantization.

Denote the local statistic at sensor k and time t as ϑ
(k)
t . Then the three operations at

each sampling interval as mentioned in Section 5.2 can be further specified as follows:

1. Take a new sample X
(k)
t and compute its LLR s

(k)
t = log

f
(k)
1

(
X

(k)
t

)
f

(k)
0

(
X

(k)
t

) .

2. (a) Update and quantize the local running statistic using an uniform quantizer,

i.e.,

ϑ̃
(k)
t ← Q∆

(
ϑ

(k)
t−1 + s

(k)
t

)
, (5.8)

where

Q∆ (x) = m∆ if x ∈
[
m∆− ∆

2
,m∆ +

∆

2

]
, m ∈ N. (5.9)
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(b) Exchange the quantized statistic with neighbours and update the local

statistic, i.e.,

ϑ
(k)
t ←M

(
ϑ̃

(k)
t

)
.

3. Apply the stopping rule and decision function as given by (5.11)-(5.12).

Note that ϑ
(k)
t is already a quantized statistic, thus the quantization step (5.8) is

equivalent to quantizing the new LLR, i.e.,

Q∆

(
ϑ

(k)
t−1 + s

(k)
t

)
= ϑ

(k)
t−1 +Q∆

(
s

(k)
t

)
.

Arranging the local statistics at all sensors into a vector, and denoting Q∆(·) and

M(·) as element-wise functions, the update of the quantized local statistics can then

be written as

ϑt =M (Q∆ (ϑt−1 + st)) =M (ϑt−1 +Q∆ (st)) . (5.10)

Based on the running statistics in (5.10), we propose the distributed SPRT based on

uniform quantization (UQ-DSPRT) as follows

T(k)
uq , min

{
n ∈ N+ : ϑ(k)

n /∈ (−Ã, B̃)
}
, (5.11)

D(k)
uq =


1 if ϑ

(k)

T
(k)
uq

≥ B̃,

0 if ϑ
(k)

T
(k)
uq

≤ −Ã.
(5.12)

Here Ã and B̃ should be multiples of ∆ (since ϑ
(k)
n ∈ {x : x = m∆,m ∈ N}), and

are selected such that the type-I and type-II error probability constraints in (5.1) are

met with equalities.

Note that UQ-DSPRT is a natural extension of the distributed SPRT based on the

real-valued message-exchange [64, 77] under the quantized communication constraint.

The theorem below characterizes the performance of UQ-DSPRT in the asymptotic

regime where α, β → 0 and ∆ is small.
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Theorem 8. For any quantized message-exchange protocol that satisfies Conditions

3-4, and for quantization step-size ∆ < 2 min{D1,D0}/K, where Di ,
∑K

k=1D
(k)
i is

the sum of the KLDs at all sensors, the asymptotic performance of UQ-DSPRT at

sensor k = 1, 2, . . . , K is characterized by

E1

(
T(k)

uq

)
≤ − logα

ρ̃1 (D1 −K∆/2)
+O(1), E0

(
T(k)

uq

)
≤ − log β

ρ̃0 (D0 −K∆/2)
+O(1),

(5.13)

as α, β → 0, where ρ̃0, ρ̃1 are constants independent of α and β, and ρ̃0, ρ̃1 ≤ 1.

Note that ρ̃i (Di −K∆/2) < Di for sufficiently small ∆, indicating that
Ei
(
T

(k)
uq

)
Ei(T?)

, i =

0, 1 could be greater than one and Ei
(
T

(k)
uq

)
−Ei (T?) could diverge as α, β → 0, thus

UQ-DSPRT cannot guarantee any asymptotic optimality in the sense defined by Def-

inition 1. Intuitively, the sub-optimality of UQ-DSPRT can be explained by the

fact that the uniform quantization incurs error at every quantization instant, which

accumulates over time and leads to escalating information loss. An illustrative ex-

ample is shown in Fig. 5.1, where we compare the quantized LLR based on uniform

quantization with the actual LLR. Note that, if we neglect the message-exchange,

the uniform quantization essentially estimates the actual LLR with the sum of the

quantized incremental LLR (i.e., Q∆(s
(k)
t )) at every sampling interval. In Fig. 5.1,

the incremental LLRs at t = 1, 2, 3 are quantized as zeros, thus leading to errors that

accumulate in the subsequent sampling intervals.

Proof. Define the quantized statistics without message-exchange:

S̃(k)
n =

n∑
t=1

s̃
(k)
t , with s̃

(k)
t = Q∆

(
s

(k)
t

)
, S̃

(k)
0 = 0, (5.14)

since, without taking any sample, S̃
(k)
n has the initial value equal to zero. For nota-
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tional convenience, we also denote

S̃n =
K∑
k=1

S̃(k)
n , s̃t =

K∑
k=1

s̃
(k)
t ; (5.15)

Sn =
K∑
k=1

S(k)
n , st =

K∑
k=1

s
(k)
t ; (5.16)

D̃(k)
i = (−1)(i+1)Ei

(
s̃

(k)
t

)
, D̃i =

K∑
k=1

D̃(k)
i , Di =

K∑
k=1

D(k)
i , i = 0, 1. (5.17)

Denote d as the diameter of the network graph, i.e., the largest number of links

between any two nodes in the network. We first show the following bound on the

difference between the local statistic after integer-exchange and the average value of

the quantized statistics:∣∣∣∣∣ϑ(k)
n −

1

K

K∑
`=1

S̃(`)
n

∣∣∣∣∣ =

∣∣∣∣∣ϑ(k)
n −

1

K

K∑
`=1

ϑ(`)
n

∣∣∣∣∣ ≤ d∆, (5.18)

or equivalently,

−d∆ ≤ ϑ(k)
n −

1

K

K∑
`=1

S̃(`)
n ≤ d∆. (5.19)

In particular, the first equality in (5.18) holds true since
∑K

`=1 S̃
(`)
n =

∑K
`=1 ϑ

(`)
n due

to Condition 4, as follows:

1Tϑn = 1TM (ϑn−1 +Q∆ (sn))

= 1T (ϑn−1 +Q∆ (sn))

= 1Tϑn−1 + 1TQ∆ (sn)

= 1Tϑn−2 + 1T (Q∆ (sn−1) +Q∆ (sn))

...

= 1T

(
n∑
t=1

Q∆ (st)

)
=

n∑
t=1

K∑
`=1

Q∆

(
s

(`)
t

)
︸ ︷︷ ︸

s̃
(`)
t

; (5.20)
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and the inequality in (5.18) is obtained based on Condition 3:∣∣∣∣∣Kϑ(k)
n −

K∑
`=1

ϑ(`)
n

∣∣∣∣∣ =

∣∣∣∣∣
K∑
`=1

(
ϑ(k)
n − ϑ(`)

n

)∣∣∣∣∣ ≤
K∑
`=1

∣∣ϑ(k)
n − ϑ(`)

n

∣∣
≤ K max

k,`

∣∣ϑ(k)
n − ϑ(`)

n

∣∣ ≤ Kd∆. (5.21)

Now we focus on the expected stopping time under H1. Using the first inequality

in (5.19), and taking expectation on both sides, we have

E1

(
ϑ

(k)

T(k)

)
+ d∆ ≥ E1

(
1

K

K∑
`=1

S̃
(`)

T(k)

)

=
1

K
E1

 K∑
`=1

T(k)∑
t=1

s̃
(`)
t


=

1

K
E1

(
K∑
`=1

∞∑
t=1

1{t≤T(k)}s̃
(`)
t

)

=
1

K
E1

(
K∑
`=1

∞∑
t=1

E1

(
1{t≤T(k)}s̃

(`)
t

∣∣∣ {s̃1, . . . , s̃t−1}
))

, s̃t , Q∆ (st)

(5.22)

=
1

K
E1

(
K∑
`=1

∞∑
t=1

1{t≤T(k)}E1

(
s̃

(`)
t

∣∣∣ {s̃1, . . . , s̃t−1}
))

(5.23)

=
1

K
E1


K∑
`=1

T(k)∑
t=1

E1

(
s̃

(`)
t

)
︸ ︷︷ ︸
D̃(`)

1


= E1

(
T(k)

) K∑
`=1

D̃(`)
1 /K, (5.24)

where T(k) stands for T
(k)
uq in this proof; (5.22) invokes the Tower’s property for the

expectation operator; (5.23) is true since {T(k) ≥ t} is determined by {s̃1, . . . , s̃t−1}.

Note that, under H1, ϑ
(k)

T(k) hits B̃ and −Ã with probabilities 1−β and β respectively,

thus

E1

(
ϑ

(k)

T(k)

)
= (1− β) B̃ − βÃ→ B̃, as α, β → 0. (5.25)
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Combining (5.24) and (5.25) gives

E1

(
T(k)

)
≤
K
(
B̃ + d∆

)
D̃1

, for D̃1 > 0, as α, β → 0. (5.26)

Further note that
∣∣∣s̃(k)
t − s

(k)
t

∣∣∣ ≤ ∆/2 due to the uniform quantization, thus we have

D̃1 =
K∑
k=1

E1

(
s̃

(k)
t

)
≥

K∑
k=1

E1

(
s

(k)
t

)
−K∆/2 = D1 −K∆/2 > 0, (5.27)

for ∆ < 2D1/K, leading to

E1

(
T(k)

)
≤
K
(
B̃ + d∆

)
D1 −K∆/2

, as α, β → 0. (5.28)

By treading on the similar procedure, for ∆ < 2D0/K (which implies D̃0 > 0), we

can obtain

E0

(
T(k)

)
≤
K
(
Ã+ d∆

)
D0 −K∆/2

, as α, β → 0. (5.29)

Next we characterize the error probabilities in terms of the thresholds Ã and B̃.

By the virtue of (5.19), we can bound the error probability as follows

α = P0

(
ϑ

(k)

T(k) ≥ B̃
)
≤ P0


1

K

K∑
`=1

S̃
(`)

T(k)︸ ︷︷ ︸
S̃
T(k)

+d∆ ≥ B̃


= P0

(
S̃T(k) ≥ K

(
B̃ − d∆

))
. (5.30)

Prior to further evaluating the bound above, we first seek a constant ρ1 > 0 that

solves the following equation

ψ (ρ) , E0

(
eρs̃t
)

= 1, (5.31)
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where s̃t is defined in (5.15). First we show that such a constant always exists. Note

that ψ (ρ) is a convex function, and ψ (0) = 1 and ψ (ρ)→∞ as ρ→∞; moreover,

ψ (ρ)′
∣∣
ρ=0

= E0 (s̃t) = −D̃0 =
K∑
k=1

E0

(
s̃

(k)
t

)
≤

K∑
k=1

E0

(
s

(k)
t

)
︸ ︷︷ ︸

−D0

+K∆/2 < 0, for ∆ < 2D0/K,

(5.32)

which implies that at least for ρ that is close to zero, ψ (ρ) < ψ (0) = 1. Therefore,

ψ (ρ) must intersect with line y = 1 at the non-zero root ρ1 for (5.31). Based on (5.31),

we can construct a martingale θn , eρ1S̃n =
∏n

t=1 e
ρ1s̃t under H0 since E0

(
eρ1s̃t

)
= 1

and s̃t are independent over time t. Then we can further evaluate (5.30) as follows

α ≤ P0

(
ρ1S̃T(k) ≥ ρ1K

(
B̃ − d∆

))
= P0

(
eρ1S̃T(k) ≥ eρ1K(B̃−d∆)

)
(5.33)

≤ e−ρ1K(B̃−d∆) E0

(
eρ1S̃T(k)

)
︸ ︷︷ ︸

=1

, (5.34)

where the inequality (5.33) is obtained by Markov’s inequality, and the last equality

invokes the optional stopping theorem1 for the constructed martingale θT(k) = eρ1S̃n :

E0 (θT(k)) = E0 (θ0) = E0

(
eρ1S̃0

)
= 1, (5.35)

where S̃0 is defined in (5.14)-(5.15); and both the martingale θn and the stopping

time T(k) are determined by {s̃1, s̃2, . . . , s̃t, . . .}. Consequently, we arrive at

B̃ ≤ − logα

ρ1K
+ d∆. (5.36)

Next we can find a lower bound for ρ1. Recall that s̃t ≤ st +K∆/2, thus

ψ(ρ) = E0

(
eρs̃t
)
≤ E0

(
eρ(st+K∆/2)

)︸ ︷︷ ︸
ψ̃(ρ)

. (5.37)

1For the martingale process θt and the stopping time T that depend on the same filtration, we

have E(θT) = E(θ0).
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The first observation is that the terms on both sides of (5.37) are convex functions

of ρ and both are equal to 1 at ρ = 0; in addition, they both cross y = 1 at some

positive ρ. Note that ψ(ρ) has been shown to cross y = 1 due to (5.32), and we can

claim the same result for ψ̃(ρ) since ψ̃(ρ)′
∣∣∣
ρ=0

= E0 (st) +K∆/2 = −D0 +K∆/2 < 0.

Based on these observations, (5.37) and the convexity of ψ(ρ) and ψ̃(ρ) lead to the

conclusion that the positive root ρ̃1 to ψ̃(ρ) = 1 is a lower bound to ρ1, i.e., ρ1 ≥ ρ̃1.

Thus (5.36) further becomes

B̃ ≤ − logα

ρ̃1K
+ d∆. (5.38)

Similarly, we can obtain the following bound

Ã ≤ − log β

ρ̃0K
+ d∆, with E1

(
eρ̃0(st+K∆/2)

)
= 1. (5.39)

Combining (5.28) and (5.38) leads to

E1

(
T(k)

)
≤ KB̃ +Kd∆

D1 −K∆/2

≤ − logα

ρ̃1 (D1 −K∆/2)
+

2Kd∆

D1 −K∆/2︸ ︷︷ ︸
O(1)

; (5.40)

and combining (5.29) and (5.39) leads to

E0

(
T(k)

)
≤ KÃ+Kd∆

D0 −K∆/2

≤ − log β

ρ̃0 (D1 −K∆/2)
+

2Kd∆

D0 −K∆/2︸ ︷︷ ︸
O(1)

, (5.41)

which completes the proof for (5.13).

To see that ρ̃1 ≤ 1, note that E0

(
eρ(st+K∆/2)

)
> E0 (eρst), and both terms in this

inequality are convex functions of ρ that intersect with y = 1 at ρ = 0 and some

positive ρ. Therefore, the larger function should cross y = 1 at a smaller value of

ρ. Specifically, E0 (eρst) = 1 for ρ = 1, thus ρ̃1 ≤ 1. The similar argument leads to

ρ̃0 ≤ 1.
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5.3.2 Distributed Sequential Test Based on Level-Triggered

Quantization

Next we propose a distributed sequential test based on a new quantization scheme

that avoids the cumulating quantization effect. The essential idea is that, instead of

quantizing the local statistics at each sampling interval, we allow the quantization to

be triggered by the value of the local running statistic, which resembles the Lebesgue

sampling to some extent.

In specific, denoting the cumulative LLR at sensor k from time t0 to t1 as S
(k)
t0:t1 ,∑t1

t=t0
s

(k)
t = S

(k)
t1 − S

(k)
t0−1, the mth quantization instant at sensor k is recursively

defined as

τ (k)
m = min

{
n : S

(k)

τ
(k)
m−1+1:n

/∈ (−∆,∆)

}
. (5.42)

To implement (5.42), let us define the auxiliary variable φ
(k)
n , n = 0, 1, . . ., with φ0 = 0,

then the three operations at each sampling interval are carried out as follows

1. Take a new sample X
(k)
n , and add its LLR s

(k)
n to the auxiliary variable

φ(k)
n = φ

(k)
n−1 + s(k)

n . (5.43)

2. (a) Update the quantized local statistic as follows

η̃(k)
n ← η

(k)
n−1 + ∆

(
1{φ(k)

n ≥∆} − 1{φ(k)
n ≤−∆}

)
; (5.44)

in the case where
∣∣∣φ(k)
n

∣∣∣ ≥ ∆, update φ
(k)
n ← 0. That is, φ

(k)
n is reset to

zero whenever a quantization is triggered at time τ
(k)
m , i.e, φ

(k)

τ
(k)
m

← 0, m =

1, 2, . . ..

(b) Exchange quantized local statistics with neighbours, i.e., η
(k)
n ←M

(
η̃

(k)
n

)
.

3. Apply the stopping rule and decision function as given by (5.49)-(5.50).
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The above level-triggered quantization is a direct application of the level-triggered

sampling in [32], which is designed for the continuous-path running statistic that

exactly hits the threshold ∆ or −∆ at τ
(k)
m , m = 1, 2, . . .. However, in the case of

discrete-time running statistic, such a scheme suffers from overshooting issues, i.e.,∣∣∣∣S(k)

τ
(k)
m−1+1:τ

(k)
m

∣∣∣∣ 6= ∆ in general. Fig. 5.1 illustrates the drawback of this level-triggered

quantization. As compared to the uniform quantization, the original level-triggered

quantization provides a better LLR estimate at t = 3. However, since it throws away

the overshoot error at t = 3, it fails to capture the increase of the actual LLR at t = 4.

Moreover, we see that the actual LLR exhibits an abrupt jump (i.e., large overshoot)

at t = 5; however, the level-triggered quantization significantly underestimates the

actual value since only ∆ is added to the quantized LLR. To address the above issue,

here we propose a modified level-triggered quantization scheme, and show that the

resulting scheme yields asymptotically optimal performance for arbitrary fixed ∆ > 0.

The key modification takes place in the quantization step in the second operation,

i.e.,

2) (a) Update the quantized local statistic as follows

η̃(k)
n ← η

(k)
n−1 +Q∆

(∣∣φ(k)
n

∣∣) (1{φ(k)
n ≥∆} − 1{φ(k)

n ≤−∆}

)
︸ ︷︷ ︸

u
(k)
n

, (5.45)

where Q∆(·) is the uniform quantization function defined by (5.9); in the

case where
∣∣∣φ(k)
n

∣∣∣ ≥ ∆, update

φ(k)
n ← φ(k)

n − u(k)
n︸ ︷︷ ︸

ε
(k)
n

. (5.46)

First, instead of using the binary quantization as in (5.44), (5.45) employs a multiple-

bit quantization of φ
(k)
n , which helps to capture the increments that are greater than

∆; second, compared to (5.42), the overshoot error will be used together with the

cumulative LLR to trigger the quantization, i.e.,

τ (k)
m = min

{
n : ε(k)

n + S
(k)

τ
(k)
m−1+1:n

/∈ (−∆,∆)

}
. (5.47)
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Denoting ut ,
[
u

(1)
t , u

(2)
t , . . . , u

(K)
t

]T
, the update of the quantized statistics at all

sensors is characterized by

ηt =M (ηt−1 + ut) . (5.48)

As such, the distributed SPRT based on level-triggered (adaptive) quantization (AQ-

DSPRT) is expressed as follows

T(k)
aq , min

{
n ∈ N+ : η(k)

n /∈ (−A,B)
}
, (5.49)

D(k)
aq =


1 if η

(k)

T
(k)
aq

≥ B,

0 if η
(k)

T
(k)
aq

≤ −A.
(5.50)

Here A and B should be multiples of ∆ (since η
(k)
t ∈ {x : x = m∆,m ∈ N}), and

are selected such that the error probability constraints are satisfied with equalities.

The asymptotic performance of AQ-DSPRT at all sensors can be characterized by

the theorem below.

Theorem 9. For any quantized message-exchange protocol that satisfies Conditions

3-4, the asymptotic performance of AQ-DSPRT at sensor k = 1, 2, . . . , K is charac-

terized by

E1

(
T(k)

aq

)
≤ − logα

D1

+O(1), E0

(
T(k)

aq

)
≤ − log β

D0

+O(1), (5.51)

as α, β → 0. Recalling the performance of CSPRT in (5.5), we conclude that AQ-

DSPRT achieves the order-2 asymptotically optimal performance at all sensors.

Theorem 9 indicates that the proposed level-triggered quantization succeeds to

overcome the drawback of the conventional approaches, and given the proper message-

exchange protocol, it allows every sensor to achieve the order-2 asymptotically optimal

performance, even under the bandwidth constraint of the communication links.
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Proof. Applying Condition 4 to (5.48), we have

K∑
k=1

η(k)
n = 1Tηn = 1TM (ηn−1 + un)

= 1T (ηn−1 + un)

...

= 1T
n∑
t=1

ut =
K∑
k=1

n∑
t=1

u
(k)
t . (5.52)

Then we can relate the local statistic at sensor k to the statistic of CSPRT as follows:

η(k)
n −

1

K

K∑
`=1

S(`)
n = η(k)

n −
1

K

K∑
`=1

n∑
t=1

u
(`)
t︸ ︷︷ ︸

=
∑K
`=1 η

(`)
n

+
1

K

K∑
`=1

n∑
t=1

u
(`)
t −

1

K

K∑
`=1

S(`)
n

=

(
η(k)
n −

1

K

K∑
`=1

η(`)
n

)
+

1

K

K∑
`=1

(
n∑
t=1

u
(`)
t − S(`)

n

)
. (5.53)

Note that Condition 3 holds true for η
(k)
n , thus, using the same derivation that leads

to (5.21), we can bound the first term in (5.53) by∣∣∣∣∣η(k)
n −

1

K

K∑
`=1

η(`)
n

∣∣∣∣∣ ≤ d∆. (5.54)

In order to bound the second term in (5.53), we express the actual LLR at sensor k

in terms of the messages generated by level-triggered quantization:

S(k)
n = S

(k)

1:τ
(k)
1︸ ︷︷ ︸

φ
τ
(k)
1

=u
(k)

τ
(k)
1

+ε
(k)

τ
(k)
1

+S
(k)

τ
(k)
1 +1:τ

(k)
2

+ S
(k)

τ
(k)
2 +1:τ

(k)
3

+ · · ·+ S
(k)

τ
(k)
m +1:n

= u
(k)

τ
(k)
1

+ ε
(k)

τ
(k)
1

+ S
(k)

τ
(k)
1 +1:τ

(k)
2︸ ︷︷ ︸

φ
τ
(k)
2

=u
(k)

τ
(k)
2

+ε
(k)

τ
(k)
2

+S
(k)

τ
(k)
2 +1:τ

(k)
3

+ · · ·+ S
(k)

τ
(k)
m +1:n

= u
(k)

τ
(k)
1

+ u
(k)

τ
(k)
2

+ ε
(k)

τ
(k)
2

+ S
(k)

τ
(k)
2 +1:τ

(k)
3︸ ︷︷ ︸

φ
τ
(k)
3

=u
(k)

τ
(k)
3

+ε
(k)

τ
(k)
3

+ · · ·+ S
(k)

τ
(k)
m +1:n
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...

= u
(k)

τ
(k)
1

+ u
(k)

τ
(k)
2

+ u
(k)

τ
(k)
3

+ · · ·+ u
(k)

τ
(k)
m

+ ε
(k)

τ
(k)
m

, (5.55)

where τ
(k)
i , i = 1, 2, . . . ,m is defined by (5.47), and φ

τ
(k)
m

represents the auxiliary

variable before the update in (5.46). By noting that u
(k)
n = 0 for n 6= τ

(k)
i , i =

1, 2, . . . ,m, it holds true that∣∣∣∣∣
n∑
t=1

u
(k)
t − S(k)

n

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

u
(k)

τ
(k)
i

− S(k)
n

∣∣∣∣∣ =
∣∣∣ε(k)

τ
(k)
m

∣∣∣ ≤ ∆, (5.56)

where the last inequality is true because ε
(k)

τ
(k)
m

is the quantization residue defined by

(5.46). Substituting (5.54) and (5.56) into (5.53) gives

− (d+ 1) ∆ ≤ η(k)
n −

1

K

K∑
`=1

S(`)
n ≤ (d+ 1) ∆, n = 1, 2, . . . . (5.57)

Consequently, by focusing on the expected stopping time under H1 first, we take

expectation on both sides of the first inequality in (5.57) and arrive at

E1

(
η

(k)

T(k)

)
+ (d+ 1)∆ ≥ E1

(
1

K

K∑
`=1

S
(`)

T(k)

)
= E1

(
T(k)

) K∑
`=1

D(`)
1 /K, (5.58)

where the equality is obtained based on the similar argument that leads to (5.24),

and T(k) stands for T
(k)
aq in this proof. Again, under H1, the local statistic η

(k)

T(k) hits

B or −A with probabilities 1− β and β respectively, thus

E1

(
η

(k)

T(k)

)
= (1− β)B − βA→ B, as α, β → 0.

Together with (5.58), we obtain

E1

(
T(k)

)
≤ KB +K(d+ 1)∆

D1

, as α, β → 0. (5.59)

Following the same procedure, it can be obtained that

E0

(
T(k)

)
≤ KA+K(d+ 1)∆

D0

, as α, β → 0. (5.60)
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Next we proceed to evaluate the error probabilities in terms of the thresholds A

and B. The second inequality in (5.57) implies that{
η

(k)

T(k) ≥ B
}
⊂

{
1

K

K∑
`=1

S
(`)

T(k) + (d+ 1)∆ ≥ B

}
,

which leads to the following bound on the type-I error probability

α = P0

(
η

(k)

T(k) ≥ B
)
≤ P0

 1

K

K∑
`=1

S
(`)

T(k)︸ ︷︷ ︸
S
T(k)

+(d+ 1)∆ ≥ B


= P0

(
eST(k) ≥ eK(B−(d+1)∆)

)
(5.61)

≤ e−K(B−(d+1)∆) E0

(
eST(k)

)︸ ︷︷ ︸
=1

, (5.62)

where the last inequality is obtained by Markov’s inequality, and the last equality

applies the optional stopping theorem to the martingale eSn (the likelihood ratio is a

widely-known martingale under H0; or equivalently, e−Sn is a martingale under H1):

E0

(
eST(k)

)
= E0

(
eS0
)

= 1, (5.63)

by noting that both eSn and T(k) depend on {s1, s2, . . . , st, . . .}.

On the other hand, the first inequality in (5.57) implies that{
η

(k)

T(k) ≤ −A
}
⊂

{
1

K

K∑
`=1

S
(`)

T(k) − (d+ 1)∆ ≤ −A

}
.

As result, we can bound the type-II error probability as follows

β = P1

(
η

(k)

T(k) ≤ −A
)
≤ P1

 1

K

K∑
`=1

S
(`)

T(k)︸ ︷︷ ︸
S
T(k)

−(d+ 1)∆ ≤ −A


= P1

(
e−ST(k) ≥ eK(A−(d+1)∆)

)
(5.64)

≤ e−K(A−(d+1)∆) E1

(
e−ST(k)

)︸ ︷︷ ︸
=1

. (5.65)
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Figure 5.1: An illustration for the uniform-quantization, the original level-triggered

quantization, and the modified level-triggered quantization.

Rearranging (5.62) and (5.65) as

A ≤ − log β

K
+ (d+ 1)∆, B ≤ − logα

K
+ (d+ 1)∆, (5.66)

and substituting (5.66) into (5.59) and (5.60) respectively, we have

E1

(
T(k)

)
≤ − logα

D1

+
2K(d+ 1)∆

D1︸ ︷︷ ︸
O(1)

,

E0

(
T(k)

)
≤ − log β

D0

+
2K(d+ 1)∆

D0︸ ︷︷ ︸
O(1)

, as α, β → 0. (5.67)



CHAPTER 5. DISTRIBUTED SEQUENTIAL TEST WITH QUANTIZED
MESSAGE-EXCHANGE 145

5.3.3 Dimension-Exchange Algorithm for Quantized Message-

Exchange

In this subsection, we introduce a specific message-exchange protocol, i.e., the dimension-

exchange algorithm, that involves only the exchange of integers between sensors and

satisfies Conditions 3-4. The dimension-exchange algorithm was originally proposed

for load balancing in networks, where network nodes are initialized with different

workloads, which are then equalized by transferring them via the network links

[78, 79]. Note that, different from many message-exchange schemes that build on

random selection of communication links, the dimension-exchange algorithm is a de-

terministic communication protocol.

The first step of the dimension-exchange algorithm is to divide the network links

into q disjoint subsets labeled as r = 0, 1, . . . , q − 1 such that no links with the

same labels are connected to a common node. As we will see later, this implies that

no sensor communicates with more than one neighbour at a time. While q varies

depending on the specific network topology, [80] showed that, for a graph with K

nodes, q ≤ K + 1. A greedy partition method is as follows: Denote Ω as the set of

labels which is initialized as an empty set. We sequentially examine each link and

if possible, always assign the current link with a label in Ω; otherwise, assign the

current link with a new label and add this label to Ω.

Now we describe the dimension-exchange algorithm at each sampling interval t,

which is summarized in Algorithm 4. In specific, the subsets are selected in sequence

from r = 0 to r = q−1, and the pair of sensors associated with each link in the selected

subset exchange messages and update their local statistics according to lines 5-18 in

Algorithm 4. The traversal of all subsets is considered as one round of dimension-

exchange. The indicator flagk is introduced to verify that Condition 3 is met for

sensor k, and “&” represents the boolean operator “AND”. Note that if there is no

statistic update at sensor k after one round of dimension-exchange, the indicator

reports flagk = 1, and Algorithm 4 will continue to next round until all flagk =
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1, k = 1, 2, . . . , K.

Algorithm 4 : Dimension-exchange protocol at time t

1: repeat

2: flagk ← 1 for k = 1, 2, . . . , K

3: for r = 0 : q − 1

4: Each pair of sensors across all the links with label (r) exchange and update

the quantized local statistics (let k and j be one such pair of sensors):

5: if η
(k)
t − η

(j)
t ≥ 2∆:

6: η
(k)
t ← d

η
(k)
t +η

(j)
t

2∆
e∆

7: η
(j)
t ← b

η
(k)
t +η

(j)
t

2∆
c∆

8: flagk ← flagk & 0

9: flagj ← flagj & 0

10: else if η
(k)
t − η

(j)
t ≤ −2∆:

11: η
(k)
t ← b

η
(k)
t +η

(j)
t

2∆
c∆

12: η
(j)
t ← d

η
(k)
t +η

(j)
t

2∆
e∆

13: flagk ← flagk & 0

14: flagj ← flagj & 0

15: else:

16: flagk ← flagk & 1

17: flagj ← flagj & 1

18: end if

19: end for

20: until flagk = 1 for k = 1, 2, . . . , K

It is important to notice that, the update rule in lines 6-7 and lines 11-12 pre-

serves the sum of the original quantized local statistics since both z(k) and z(j) are

multiples of ∆. Therefore, it is straightforward to conclude that Condition 4 is

met by the dimension-exchange algorithm. Moreover, [78] has demonstrated that

the dimension-exchange algorithm is guaranteed to enforce Condition 3 within finite
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rounds of dimension-exchange (therefore, we can allow the dimension-exchange al-

gorithm to run until Condition 3 is satisfied). An important observation is that,

since Condition 3 is achieved at every sampling interval, the network only needs to

aggregate the incremental messages (i.e., the quantized LLR of the new samples),

which amounts to small deviation from Condition 3. Thus it is expected that a small

number of rounds should be sufficient to regain Condition 3. Moreover, increasing

the step-size ∆ can further reduce the rounds of dimension-exchange since less integer

messages will be generated at every sampling interval. This insight will be illustrated

by numerical results in Section 5.5.

5.4 Sequential Test in Cluster-Based Network

In this section, we generalize the proposed distributed sequential tests to the cluster-

based network, which corresponds to a wider range of sensor networks in the con-

temporary IoT technology. For example, cars in a vehicular network can form a dis-

tributed network, and in the meantime, each of them also has its own sensor cluster.

In addition, for the sake of scalability, practitioners can also intentionally partition a

distributed network into several clusters to form a cluster-based network [75].

Consider a network of K clusters, indexed as k = 1, 2, . . . , K, and each cluster k

is equipped with a set of Lk sensors indexed as ` = 1, 2, . . . , Lk, one of which plays

the role of cluster-head (indexed as ` = 1). In specific, the cluster-based network

features a two-layer structure. On the first-layer, the cluster-heads form a distributed

network, over which the message-exchange is performed; on the second-layer, the non-

cluster-head sensors (we call them in-cluster sensors henceforth) transmit messages to

their cluster-head, thus forming a hierarchical network. Again, we assume that all the

communication links (including the in-cluster and inter-cluster communication links)

only allow the exchange of quantized messages. In such a network, at each sampling

interval, each in-cluster sensor takes the sample, computes and quantizes the local
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LLR, and then transmits the quantized local LLR to its cluster-head; whereas the

cluster-heads perform the integer message-exchange and the sequential test. In this

section, we denote the sensor index by (k, `).

As such, in order to adopt UQ-DSPRT and AQ-DSPRT in the cluster-based net-

work, the only change that we need to make is the first operation at each sampling

interval, i.e., each cluster-head needs to add up all the received quantized messages

from the in-cluster sensors. Let ζn , [ζ
(1)
n , ζ

(2)
n , . . . , ζ

(K)
n ]T contain the quantized statis-

tics at all cluster-heads at time n. Similar to (5.10) and (5.48), for both UQ-DSPRT

and AQ-DSPRT in the cluster-based network, we can summarize the update of the

running statistics at all cluster-heads as follows:

ζn =M (ζn−1 + νn) , (5.68)

with

ν(k)
n =


∑Lk

`=1 s̃
(k,`)
n , for UQ-DSPRT,∑Lk

`=1 u
(k,`)
n , for AQ-DSPRT,

(5.69)

where s̃
(k,`)
n = Q∆

(
s

(k,`)
n

)
is defined in (5.14) and (5.9), and u

(k,`)
n is defined in (5.45)

for the sensor ` in cluster k. Intuitively, (5.68) and (5.69) indicate that the in-cluster

sensors send their quantized incremental LLRs (i.e., s̃
(k,`)
n or u

(k,`)
n ) to the cluster-

head at each sampling interval, where the message-exchange and sequential test will

be performed.

Accordingly, the cluster-based UQ-DSPRT and AQ-DSPRT can both be expressed

as follows

T(k)
cq , min

{
t : ζ

(k)
t /∈ (−Ā, B̄)

}
, (5.70)

D(k)
cq =


1 if ζ

(k)

T
(k)
cq

≥ B̄,

0 if ζ
(k)

T
(k)
cq

≤ −Ā,
(5.71)

with the associated statistics defined in (5.68) and (5.69). Here Ā, B̄ are multiples of

∆, selected such that type-I and type-II error probabilities are satisfied with equalities.
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Proposition 4. Theorem 8 and Theorem 9 characterize the asymptotic performances

of the cluster-based UQ-DSPRT and AQ-DSPRT respectively, with the total KLDs in

(5.13) and (5.51) replaced with

Di =
K∑
k=1

Lk∑
`=1

D(k,`)
i , i = 0, 1, (5.72)

where D(k,`)
i is the KLD at sensor ` in cluster k.

Proof. To prove Proposition 4, we only need to show that some key derivations in

the proofs of Theorem 8 and Theorem 9 still hold for the cluster-based distributed

sequential tests.

In particular, for the cluster-based UQ-DSPRT, the key inequality (5.19) in the

proof of Theorem 8 becomes

−d∆ ≤ ζ(k)
n −

1

K

K∑
k=1

Lk∑
`=1

S̃(k,`)
n︸ ︷︷ ︸

S̃
(k)
n

≤ d∆, (5.73)

which essentially has the same property as (5.19), thus the rest of the proof in Theorem

8 still applies.

Similarly, for the cluster-based AQ-DSPRT, we need to derive the corresponding

version of (5.57) in the proof of Theorem 9. Note that

ζ(k)
n −

1

K

K∑
k=1

Lk∑
`=1

S(k,`)
n = ζ(k)

n −
1

K

K∑
k=1

n∑
t=1

ν
(k)
t︸ ︷︷ ︸

=
∑K
k=1 ζ

(k)
n

+
1

K

K∑
k=1

n∑
t=1

ν
(k)
t︸ ︷︷ ︸

=
∑K
k=1

∑n
t=1

∑Lk
`=1 u

(k,`)
t

− 1

K

K∑
k=1

Lk∑
`=1

S(k,`)
n

=

(
ζ(k)
n −

1

K

K∑
k=1

ζ(k)
n

)
+

1

K

K∑
k=1

Lk∑
`=1

(
n∑
t=1

u
(k,`)
t − S(k,`)

n

)
.

(5.74)

The first term in (5.74) can be bounded based on Conditions 3-4 in the same way as

(5.21) and (5.54) ∣∣∣∣∣ζ(k)
n −

1

K

K∑
k=1

ζ(k)
n

∣∣∣∣∣ ≤ d∆.
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In the mean time, (5.56) still applies to the second term in (5.74). Therefore,

(5.74) leads to the cluster-based version of (5.57):

−

(
d+

1

K

K∑
k=1

Lk

)
∆ ≤ ζ(k)

n −
1

K

K∑
k=1

Lk∑
`=1

S(k,`)
n ≤

(
d+

1

K

K∑
k=1

Lk

)
∆, n = 1, 2, . . . .

(5.75)

Same as the term (d + 1)∆ in (5.57), the term
(
d+ 1

K

∑K
k=1 Lk

)
∆ in (5.75) is a

constant, thus the rest of the proof in Theorem 9 still applies.

Considering that the cluster-based AQ-DSPRT also achieves the order-2 asymp-

totic optimality, we can intentionally transform a distributed network into a cluster-

based network in order to decrease the communication overhead since the in-cluster

sensors no longer participate in the message-exchange procedure. Moreover, since the

distributed network becomes smaller, the quantized statistics are expected to dissem-

inate over the network more quickly, and the distributed testing performance could

also be improved due to a smaller network diameter d. An illustrative example can be

found in Fig. 5.6, where 5 clusters are formed from the original distributed network

in Fig. 5.2. In Section 5.5, we will also demonstrate the benefits of the cluster-based

structure as opposed to its original distributed structure.

5.5 Numerical Results

In this section, we apply the proposed distributed sequential tests to a specific network

and compare their performances with that of the optimal CSPRT. The numerical

results corroborate with our analyses and insights.

The problem of interest is to detect the mean-shift of Gaussian samples, i.e.,

H0 : X
(k)
t

i.i.d.∼ N
(
0, σ2

)
,

H1 : X
(k)
t

i.i.d.∼ N
(
µ, σ2

)
, t = 1, 2, . . . , k = 1, 2, . . . , K.
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Figure 5.2: Distributed network with 9 sensors. The link labels are {(0), (1), (2)}.

In this case, the LLR for each sample takes the form

s
(k)
t = µX

(k)
t /σ2 − µ2

2σ2
, (5.76)

with D(k)
1 = D(k)

0 = µ2

2σ2 , k = 1, 2, . . . , K. Throughout the experiment, we set µ =

0.2, σ2 = 1.

Note that, in order to examine the asymptotic performance (i.e., α, β → 0) us-

ing Monte Carlo simulation, we need to simulate extremely rare error events. For

example, for small false alarm probability α = E0

(
1{DT=1}

)
, the event {DT = 1}

occurs with considerably small probability under hypothesis H0. To that end, we

employ the importance sampling technique, which changes the probability measure

of the expectation operator. That is, we simulate {DT = 1} under H1, and evaluate

α = E0

(
1{DT=1}

)
= E1

(
e−ST1{DT=1}

)
.

5.5.1 Distributed Network

Let us start with the distributed network in Fig. 5.2 without clustering. As shown

in the figure, the links are labelled with {(0), (1), (2)} for the dimension-exchange

algorithm.

In Figs. 5.3-5.4, the quantized statistics under the uniform quantization and level-

triggered quantization schemes are illustrated given different step-sizes ∆. To high-
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light the quantization effect, we depicts the local quantized LLR (without dimension-

exchange) and the running statistics (with dimension-exchange) respectively in each

figure. For the sake of clarity, we only depict the quantized statistics at sensor 1,

while the other sensors exhibit similar behaviors. Fig. 5.3 shows that the level-

triggered quantization based LLR closely aligns with the actual real-valued LLR,

whereas the uniform quantization based LLR clearly deviates from the actual one

due to the cumulating quantization error. As ∆ increases from 0.2 to 0.5, we see

that the level-triggered quantization based LLR still accurately follows the actual

LLR, while the uniform quantization based one exhibits greater distortion. In Fig.

5.4, we plot the running statistics for CSPRT, UQ-DSPRT and AQ-DSPRT at sen-

sor 1. The statistic for CSPRT is simply the average of the real-valued LLRs at all

sensors, and the statistics for UQ-DSPRT and AQ-DSPRT are obtained with quanti-

zation and dimension-exchange algorithm. Note that the level-triggered quantization

based statistic at sensor 1 centers around the statistic of CSPRT. In comparison, the

uniform quantization based statistic again exhibits diverging behavior even with the

same dimension-exchange algorithm.

Next we illustrate the performances (i.e., expected stopping times vs. error prob-

abilities) of CSRPT, UQ-DSPRT, and AQ-DSPRT in Fig. 5.5. Throughout the

experiment, we let the upper and lower thresholds in all sequential tests have equal

absolute value, i.e., a = b in (5.3), Ã = B̃ in (5.11), A = B in (5.49), and Ā = B̄

in (5.70); and due to the symmetry of the LLR given by (5.76) under H0 and H1,

we have E1(T) = E0(T) and α = β, thus we only need to depict E1(T) vs. α. The

dash line depicts the analytical characterization of the optimal performance given by

(5.5). For the sake of clarity, we only depict the performances at sensor 1 and sensor

9, bearing in mind that the other sensors yield similar performances. First, it is seen

that both sensors provide approximately the same performance, even though they

are separated far from each other in the network. The performance of UQ-DSPRT

in Fig. 5.5-(a) diverges from CSRPT as error probabilities approach zero, indicating
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Figure 5.3: The comparison of the quantized LLR (without dimension-exchange) for

UQ-DSPRT and AQ-DSPRT at sensor 1.
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Figure 5.4: The comparison of the running statistics (with dimension-exchange) for

UQ-DSPRT and AQ-DSPRT at sensor 1.



CHAPTER 5. DISTRIBUTED SEQUENTIAL TEST WITH QUANTIZED
MESSAGE-EXCHANGE 155

its sub-optimality as characterized by Theorem 8. The deviation becomes more sig-

nificant as ∆ grows in Fig. 5.5-(b). On the contrary, the performance of AQ-DSPRT

at both sensors align parallel to that of CSPRT, exhibiting the order-2 asymptotic

optimality as characterized by Theorem 9. The constant gap between AQ-DSPRT

and CSPRT becomes greater due to the larger step-size.

5.5.2 Cluster-Based Network

In this subsection, we transform the distributed network Fig. 5.2 into 5 connected

clusters as shown in Fig. 5.6. In specific, the clusters are formed by letting the sensors

with only one link be the in-cluster sensors, and those with more than one link be

the cluster-heads. As such, the set of sensors for each cluster is {1, 2, 3}, {4}, {5, 6},

{7} and {8, 9} respectively. The cluster-heads that perform the sequential test and

dimension-exchange are {3, 4, 5, 7, 8}. The new link labels for the dimension-exchange

algorithm are also marked as (r), r = 0, 1, 2.

Fig. 5.7 depicts the performances of CSPRT, cluster-based UQ-DSPRT, and

cluster-based AQ-DSPRT at sensor 1 and sensor 9. Note that the performances

at both sensors should be exactly the same as their cluster-heads, i.e., sensor 3 and

sensor 8 respectively. Again, the performance of UQ-DSPRT diverges from CSRPT

as error probabilities approach zero due to its sub-optimality, while AQ-DSPRT yields

order-2 asymptotically optimal performance. Compared to Fig. 5.5, we also clearly

see performance improvement for AQ-DSPRT in the presence of clustering. Partic-

ularly, for ∆ = 0.5, AQ-DSPRT only exhibits fractional constant degradation from

CSPRT at both sensors.

Fig. 5.8 examines the average number of dimension-exchange rounds at each

sampling interval for UQ-DSPRT and AQ-DSPRT respectively. As expected, the

number of rounds at each sampling interval is small even for small step-size ∆ =

0.1, and as ∆ increases, it quickly approaches 1, which is the minimum number of

dimension-exchange round (since one round is necessary to confirm that Condition 3
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Figure 5.5: The comparison of performances for CSPRT, UQ-DSPRT, and AQ-

DSPRT at sensor 1 and sensor 9.
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Figure 5.6: Cluster-based network with 5 clusters. The link labels are {(0), (1), (2)}.

is attained). It also reveals that the number of rounds in the cluster-based network

is lower than that in the distributed network. Intuitively, since the cluster-based

network forms a smaller distributed network consisting of only the cluster-heads, it

can reach Condition 3 more quickly.

5.6 Conclusion

In this chapter, we have studied the sequential hypothesis test in a distributed net-

work with quantized communication channels. We have proposed two distributed

sequential tests based on an integer message-exchange protocol that satisfies certain

conditions (e.g., the dimension-exchange algorithm) combined with two quantization

schemes, namely the uniform quantization and the level-triggered quantization. We

then have provided the performance analyses for these two distributed sequential

tests in the asymptotic regime where error probabilities approach zero. It has been

shown that while the uniform quantization based distributed sequential test exhibits

sub-optimal performance, the one based on level-triggered quantization allows all

sensors to achieve order-2 asymptotic optimality. Moreover, the proposed tests have

been generalized to the cluster-based network. Numerical results have been provided
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Figure 5.7: The comparison of performances for CSPRT, cluster-based UQ-DSPRT,

and cluster-based AQ-DSPRT at sensor 1 and sensor 9.
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Figure 5.8: The average number of dimension-exchange rounds at each sampling

interval for UQ-DSPRT and AQ-DSPRT.
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to corroborate our analyses. Several potential directions are worth pursuing in the

future. For instance, while this work assumes infinite quantization dynamic range,

it would be interesting to study the effect of finite quantization dynamic range on

the distributed sequential test. In addition, alternative quantized message-exchange

protocol that could further improves the performance is also worth investigating.
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Chapter 6

Conclusions

In this thesis, we have studied the sequential hypothesis testing problem in net-

worked multi-agent systems. We have proposed (asymptotically) optimal sequential

tests under different constraints that are tailored to two general network types, i.e.,

the hierarchical and distributed networks. For the hierarchical network, we have

proposed the optimal sensor selection and the level-triggered sampling schemes to

lower the energy consumption and communication overhead respectively. For the dis-

tributed network, the real-valued message-exchange (i.e., consensus-algorithm) based

sequential test has been provided to achieve asymptotic optimality at every agent. To

further reduce the communication burden, we have proposed the quantized message-

exchange based sequential test that only requires integer communication between the

neighbour sensors. In summary, the proposed sequential tests allow the practitioners

to fully exploit the information diversity provided by the multi-agent network, and

perform faster and more reliable hypothesis testing using the IoT devices.
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