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ABSTRACT 

Earth, wind, water, fire: Interactions between land-use and natural disturbance  

in tropical second-growth forest landscapes 

Naomi Schwartz 

 

Climate models predict changes to the frequency and intensity of extreme events, with large 

effects on tropical forests likely. Predicting these impacts requires understanding how landscape 

configuration and land-use change influence the susceptibility of forests to disturbances such as 

wind, drought, and fire. This is important because most tropical forests are regenerating from 

anthropogenic disturbance, and are located in landscape mosaics of forest, agriculture, and other 

land use. This dissertation consists of four chapters that combine remote sensing and field data to 

examine causes and consequences of disturbance and land-use change in tropical second-growth 

forests. In Chapter 1, I use satellite data to identify factors associated with permanence of 

second-growth forest, and assess how estimates of carbon sequestration vary under different 

assumptions about second-growth forest permanence. I show that most second-growth forest is 

cleared when young, limiting carbon sequestration. In Chapter 2, I combine data from weather 

stations, remote sensing, and landowner surveys to model fire activity on 732 farms in the study 

area over ten years. The relative importance of these factors differs across scales and depending 

on the metric of fire activity being considered, illustrating how implications for fire prevention 

and mitigation can be different depending on the metric considered. Chapter 3 combines Landsat 

imagery and field data to map wind damage from a severe convective storm, providing strong 

empirical evidence that vulnerability to wind disturbance is elevated in tropical forest fragments. 

Finally, in Chapter 4 I integrate annual forest census data with LiDAR-derived topography 



 

metrics and tree functional traits in a hierarchical Bayesian modeling framework to explore how 

drought, topography, and neighborhood crowding affect tree growth, and how functional traits 

modulate those effects. The results from these studies demonstrate innovative approaches to 

understanding spatial variation in forest vulnerability to disturbance at multiple scales, and the 

results have implications for managing forests in a changing climate. 
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INTRODUCTION 

Climate models consistently predict changes in the frequency and intensity of extreme 

events, such as tropical cyclones, heavy precipitation, droughts, and fires (Knutson et al. 2010, 

Pechony and Shindell 2010, Moritz et al. 2012, Feng et al. 2013, IPCC 2013, Duffy et al. 2015). 

These events have implications for the global carbon cycle, ecosystem services, biodiversity, 

human health, and the economy. For example, biomass burning releases up to 2.2 Pg carbon into 

the atmosphere every year (Jacobson 2014), and tree mortality from wind, floods, and droughts 

can also lead to significant emissions (Juárez et al. 2008, Phillips et al. 2009). Though 

disturbance is an integral part of many ecosystems, shifts in disturbance regimes can lead to 

drastic ecological changes (Nepstad et al. 2008, Malhi et al. 2009). Disturbance and extreme 

events also affect human health and have major economic impacts (de Mendonça et al. 2004, 

Marlier et al. 2012).  

 Ecological impacts of disturbance tend to be patchy, with patterns resulting from natural 

environmental gradients and anthropogenic modifications to the environment. Variation in 

topography, elevation, and soil type creates heterogeneity in moisture conditions, forest 

structure, and species composition (Stephenson 1990), which leads to spatial variation in 

disturbance impacts. For example, drought-induced mortality is sometimes higher in drier 

landscape positions, such as steep and southwest-facing slopes (Fekedulegn et al. 2003, Guarín 

and Taylor 2005), and fire regimes can be strongly influenced by topography as well (e.g. 

Bradstock et al. 2010, Flatley et al. 2011, Taylor and Skinner 2011). Forest stand characteristics, 

such as forest structure and species composition, can also mediate the effects of disturbance. For 

example, forest flammability often varies with forest structure (Harrod et al. 2000, Ray et al. 

2005, 2010), and vulnerability to fire-induced mortality depends on tree size and species traits, 
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such as bark thickness and wood density (Pinard and Huffman 1997, Barlow et al. 2003, Balch et 

al. 2011, Brando et al. 2012). Extreme wind impacts in forests also depend on individual 

characteristics such as tree size and life history strategy (Everham and Brokaw 1996, Canham et 

al. 2010, Uriarte et al. 2012a), and stand structure variables like canopy height and total basal 

area (McGroddy et al. 2013). Drought effects also depend on individual and species 

characteristics: pioneer species, species with low wood density, and larger trees tend to suffer 

more severe drought effects (Nepstad et al. 2007, Phillips et al. 2010, Greenwood et al. 2017).  

Anthropogenic factors, such as land use, forest fragmentation, and the presence of roads, 

modulate disturbance severity and spatial patterns. For example, land use, land management, and 

other anthropogenic drivers are key determinants of patterns of fire frequency and intensity, 

especially in tropical regions (Nepstad et al. 1999, Van Der Werf et al. 2008, Archibald et al. 

2009, Uriarte et al. 2012b). Forest fragmentation can increase vulnerability to wind damage via 

edge effects on forest structure, microclimate, and species composition (Broadbent et al. 2008, 

Laurance and Curran 2008). Ultimately, climate variability is filtered through these landscape, 

forest stand, species, and individual tree characteristics to generate observed patterns of 

disturbance impacts, the drivers of which vary across spatial scales.  

Today, about 57% of forests are secondary or “naturally regenerating;” that is, they show 

clear signs of logging, agricultural use, or other human activities (FAO 2010). Recent studies 

have highlighted the potential for carbon mitigation from rapid biomass recovery in regrowing 

tropical forests (Poorter et al. 2016): in Latin America alone, second-growth forests could offset 

21 years of the region’s emissions from fossil fuels and other industrial processes (Chazdon et al. 

2016). Furthermore, second growth forests can provide benefits for biodiversity conservation, 

livelihood strategies, and other ecosystem services such as flood or erosion control (Brown and 



 3 

Lugo 1990, Barlow et al. 2007, Chazdon et al. 2009, Locatelli et al. 2015). However, second 

growth forests are particularly vulnerable to disturbance and clearing, making the likelihood that 

they will contribute substantially to climate change mitigation highly uncertain.  

Exposure to natural disturbances such as extreme winds, fires, or drought can cause large 

losses of carbon and affect successional trajectories in regenerating forests (Flynn et al. 2010, 

Anderson-Teixeira et al. 2013, Uriarte et al. 2016b), influencing the degree to which the carbon 

sequestration potential of second-growth forests is achieved. Second-growth forests are typically 

located in landscapes subject to human influence that are mosaics of old growth, second growth, 

and other land cover types (Brown and Lugo 1990), and regrowth often happens along existing 

forest margins (Asner et al. 2009b, Sloan et al. 2016), making second-growth forests highly 

exposed to edge effects, impacts of fragmentation, and anthropogenic disturbances such as fire 

and logging. Second growth forests also contain a high proportion of pioneer and fast growing 

tree species, whose characteristics may make them more vulnerable to drought, wind 

disturbance, or fire (Bazzaz and Pickett 1980, Phillips et al. 2010, Ouédraogo et al. 2013, 

Lohbeck et al. 2013). Furthermore, most second-growth forests are not under formal protection, 

and rates of clearing of second-growth forest tend to be higher than old-growth forest 

(Heinimann et al. 2007, Gutiérrez-Vélez et al. 2011). The carbon benefits, conservation value, 

and other services associated with tropical second-growth forests require long-term permanence 

and protection from frequent disturbance (Liebsch et al. 2008, Chazdon et al. 2009). Accurately 

predicting successional trajectories and biomass recovery in these forests requires that we 

understand their disturbance ecology and how their disturbance regimes are influenced by the 

landscapes in which they are situated.  
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This dissertation aims to understand the drivers of vulnerability to disturbance in tropical 

second-growth forests, and specifically, how landscape characteristics influence observed 

patterns of disturbance impacts. The research was conducted in two regions with unique and 

distinct land-use histories and landscape dynamics. Chapters 1 through 3 focus on the 

heterogeneous and rapidly changing landscape near Pucallpa, Peru, in the western Amazon. The 

landscape is a mosaic of forest patches (old-growth and naturally regenerating, plus a small 

number of forest plantations) surrounded by pastures, oil palm plantations, and smallholder 

farms. Pucallpa is connected to Lima, the capital city, by road, and has been an important 

transport center and a hotspot for in-migration, settlement, and land conversion since the 1960s 

(Oliveira et al. 2007). Agricultural fire-use is common, and these fires occasionally escape, 

burning large areas of the landscape, including forests (Uriarte et al. 2012b, Gutiérrez-Velez et 

al. 2014). A severe windstorm passed through the study area in 2013, and caused widespread 

blowdowns and tree mortality. This region thus provides a useful example for considering 

second-growth forest dynamics in a changing tropical landscape, and given the wind and fire 

disturbances in recent years, an ideal region in which to assess the drivers of fire activity and 

wind damage. 

Chapter 4 was conducted in field plots located in El Verde National Forest, Puerto Rico. 

Puerto Rico was once almost entirely deforested, but due to agricultural abandonment forest 

cover increased from 9% to 37% of the island from 1950 to 1990 (Rudel et al. 2000). The El 

Verde Chronosequence Plots represent a range of forest ages from 35 to 76 years since 

agricultural abandonment, and old-growth forest, and are located across variable topography, 

enabling research about landscape influences on successional forest dynamics.  
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In this dissertation, I developed new methods combining satellite and airborne remote 

sensing and field data to examine causes and consequences of disturbance and land-use change 

in tropical second-growth forests. I consider four types of disturbance to which second-growth 

forests are exposed: clearing, fire, extreme wind, and drought. Chapter 1 aims to characterize the 

landscape context of the study area in Peru, and to identify landscape factors that increase the 

likelihood of forest regrowth and clearing. In Chapter 2, I synthesize data on climate, landowner 

residency, and land cover to model drivers of fire activity, and determine how multiple 

interacting factors at different scales influence fire probability and fire size. Chapter 3 combines 

satellite imagery and field data to map wind damage from a severe convective storm, assessing 

the degree to which vulnerability to wind disturbance is elevated in tropical forest fragments and 

varies with forest age. In Chapter 4, I explore how drought and topography interact to influence 

tree demographics in a tropical second-growth forest. Together, the results from these studies 

demonstrate innovative, interdisciplinary approaches to understanding spatial variation in forest 

vulnerability to disturbance at multiple scales, and the results have implications for managing 

forests in a changing climate.  
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CHAPTER 1: LAND-USE DYNAMICS INFLUENCE ESTIMATES OF CARBON 

SEQUESTRATION POTENTIAL IN TROPICAL SECOND-GROWTH FOREST  

Naomi Schwartz, María Uriarte, Ruth DeFries, Victor Gutierrez-Velez, Miguel Pinedo-Vasquez 

 

Abstract 

Many countries have made major commitments to carbon sequestration through 

reforestation under the Paris Climate Agreement, and recent studies have illustrated the potential 

for large amounts of carbon sequestration in tropical second-growth forests. However, carbon 

gains in second-growth forests are threatened by non-permanence, i.e. release of carbon into the 

atmosphere from clearing or disturbance. The benefits of second-growth forests require long-

term persistence on the landscape, but estimates of carbon potential rarely consider the spatio-

temporal landscape dynamics of second-growth forests. In this study, we used remotely sensed 

imagery from a landscape in the Peruvian Amazon to examine patterns of second-growth forest 

regrowth and permanence over 28 years (1985-2013). By 2013, 44% of all forest cover in the 

study area was second growth and more than 50% of second-growth forest pixels were less than 

5 years old. We modeled probabilities of forest regrowth and clearing as a function of landscape 

factors. The amount of neighboring forest and variables related to pixel position (i.e. distance to 

edge) were important for predicting both clearing and regrowth. Forest age was the strongest 

predictor of clearing probability and suggests a threshold response of clearing probability to age. 

Finally, we simulated future trajectories of carbon sequestration using the parameters from our 

models. We compared this with the amount of biomass that would accumulate under the 

assumption of second-growth permanence. Estimates differed by 900,000 tonnes, equivalent to 

over 80% of Peru’s commitment to carbon sequestration through “community reforestation” 

under the Paris Agreement. Though the study area has more than 40,000 hectares of second-
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growth forest, only a small proportion is likely to accumulate significant carbon. Instead, cycles 

between forest and non-forest are common. Our results illustrate the importance of considering 

landscape dynamics when assessing the carbon sequestration potential of second-growth forests. 

 

Introduction 

Recent studies have highlighted the potential for carbon mitigation from rapid biomass 

recovery in regrowing tropical forests (Poorter et al. 2016). In Latin America alone, second-

growth forests could offset 21 years of the region’s emissions from fossil fuels and other 

industrial processes (Chazdon et al. 2016). Carbon sequestration through reforestation (including 

active restoration and natural regeneration) comprises a major contribution in many countries’ 

Intended Nationally Determined Contributions (iNDCs) to emissions reductions in the UN 

Framework Convention on Climate Change (UNFCCC). However, carbon sequestration in 

forests can be temporary, since forests are always at risk of being cleared or otherwise disturbed. 

Though the UNFCCC recognizes the risk of non-permanence and reversal of carbon gains from 

reforestation (UNFCCC 2014), estimates of potential benefits from second-growth forests 

typically consider just a snapshot of a landscape, without explicit analysis of the spatio-temporal 

dynamics of second-growth forest regrowth and clearing.  

The carbon benefits and other services associated with tropical second-growth forests 

require the forests persist long-term (Chazdon et al. 2009). Accumulating biomass equivalent to 

90% that of old-growth forest takes a median time of 66 years (Poorter et al. 2016). Long-term 

persistence of second-growth forest allows long-lived species and old-growth taxa to regenerate, 

enhancing long-term carbon storage and conservation value (Liebsch et al. 2008, Chazdon et al. 

2009). Therefore, an estimate of the amount of second-growth forest in a region or the amount of 
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land available for reforestation is not enough to quantify these benefits. Predictions of the 

likelihood of forest regrowth and persistence and an understanding of their drivers are necessary 

as well.  

Drivers of forest regrowth range from global macroeconomic conditions to local 

management strategies, and vary across scales. Commodity prices, demand for agricultural and 

forest products, and other global macroeconomic drivers influence rates of deforestation and 

regrowth (Grau and Aide 2008, Lambin and Meyfroidt 2011, Aide et al. 2013). At national 

scales, forest transition theory describes the shift from net deforestation to net increase in forest 

cover that has occurred in many countries as their economies have developed (Mather 1992). 

Mechanisms for forest transitions include agricultural intensification and adjustment to land 

quality, shortages of forest products, or demographic shifts such as rural-to-urban migration and 

associated remittances (Mather 1992, Hecht et al. 2006, Meyfroidt and Lambin 2011). However, 

forest transitions can reverse (Jeon et al. 2014). At sub-national scales, forest regrowth tends to 

occur first in regions with marginal suitability for agriculture (Rudel et al. 2000, Asner et al. 

2009a, Yackulic et al. 2011). Within landscapes, forest regrowth is more likely far from roads 

(Rudel et al. 2002) or closer to forest (Crk et al. 2009, Sloan et al. 2016). Finally, forest regrowth 

may be intertwined in local management strategies, particularly shifting cultivation (Rudel et al. 

2002).   

Far less research has assessed if, when, and why second-growth forests persist. Most 

second-growth forests are not under formal protection, and rates of clearing of second-growth 

forest tend to be higher than old-growth forest (Heinimann et al. 2007, Gutiérrez-Vélez et al. 

2011), though the probability of clearing tends to decline with increasing forest age (Etter et al. 

2005, Helmer et al. 2008). Because regrowth tends to occur along forest margins (Asner et al. 
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2009b, Sloan et al. 2016) and in small fragments (Helmer 2000), second-growth forests are 

highly vulnerable to fire (Alencar et al. 2004, Armenteras et al. 2013) and wind disturbance 

(Laurance and Curran 2008, Schwartz et al. in review). Regrowth forests associated with shifting 

cultivation practices are unlikely to persist longer than the length of the fallow period, often as 

few as 5-7 years (Pinedo-Vasquez et al. 1992, Coomes et al. 2000). Furthermore, many drivers of 

regrowth are transitory. For example, commodity prices fluctuate and economic downturns affect 

the amount of remittances arriving in rural areas (Tilly 2011). These and other changes can lead 

to deforestation and shifts in land-use practices, affecting the likelihood that second-growth 

forests persist and influencing estimates of the carbon sequestration potential of second-growth 

forests.  

In this study, we used remotely sensed imagery to examine patterns of second-growth 

forest development and permanence over 28 years (1985-2013) in a western Amazonian 

landscape. We investigated temporal variation in the amount of second-growth forest, and rates 

of forest regrowth and clearing. We also assess spatial variation in where second-growth forest 

develops and persists within the study landscape. Specifically, we ask:  

1) How has the amount of second-growth forest in the study area changed over the last three 

decades? 

2) What landscape factors are associated with forest regrowth? 

3) What landscape factors are associated with clearing of second-growth forest? 

4) How do estimates of carbon sequestration potential vary under different assumptions 

about second-growth forest persistence? 

Better understanding the dynamics associated with second-growth forest development and 

persistence will allow more realistic estimation of the carbon potential of second-growth forest, 



 10 

and will allow managers interested in promoting forest regrowth to target efforts most 

effectively.  

 

Materials and methods 

Study area 

This research focuses on an area of 215,800 ha near Pucallpa, the capital of the Ucayali 

region of Peru (Figure 1). The landscape is a mosaic of forest (old-growth and naturally 

regenerating, plus a small number of forest plantations) surrounded by pastures, oil palm 

plantations, and smallholder farms. Pucallpa is connected to Lima, the capital city, by road, and 

has been an important transport center and a hotspot for in-migration, settlement, and land 

conversion since the 1960s. Recently, rural-to-urban migration has increased (Instituto Nacional 

de Estadistica e Informatica 2009), which has been associated with cessation of cultivation on 

land owned by absentee landowners and an increase in fire activity in areas with high levels of 

landowner absenteeism (Uriarte et al. 2012b, Schwartz et al. 2015). More recently, there has also 

been expansion of more intensive commodity crops, especially oil palm and cacao, in response to 

government policies incentivizing their cultivation, often into un-protected second-growth forest 

areas (Gutiérrez-Vélez et al. 2011). Shifting cultivation is still a common form of smallholder 

production, with the typical fallow time being around 4-7 years (Pinedo-Vasquez et al. 1992). 

The study area is in the midst of a transition from frontier clearing to small-scale farming and 

intensive agriculture, a common dynamic in some tropical landscapes (DeFries et al. 2004). This 

region thus provides a useful example for considering second-growth forest dynamics in a 

changing tropical landscape. 
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Data collection 

 We developed a 28-year land cover time series with Landsat data spanning from 1985-

2013 (Appendix 1: Table 1). The classification differentiates between old-growth/high-biomass 

forest, young or low-biomass forest, pasture, fallow, oil palm and other land-cover types with an 

overall accuracy of 93%. Methods for the classification are detailed in Gutiérrez-Vélez and 

DeFries (2013) and in Appendix 1.  

Second-growth forest was defined as woody vegetation growing on land that was 

previously classified as non-forest at some point since 1985. Second-growth forest age was 

determined as the number of years since a non-forest land cover type was replaced by forest. We 

identified regrowth events as a transition from non-forest to forest. To be classified as second-

growth forest, we required that a pixel must have been classified as non-forest for at least two 

consecutive years prior, and that the new forest must have persisted for at least two consecutive 

years, to minimize the influence of random noise or classification error on our results. We also 

used the land cover layers to generate a number of predictor variables (Table 1). Predictor 

variables were related to either pixel position on the landscape (distance to roads, rivers, and 

settlements, distance to forest edge, forest patch size, and the amount of forest in the 

neighborhood around the pixel) or pixel history (forest age, number of years cleared before 

regrowth occurred, whether or not the pixel was ever classified as forest, Table 1).  

To develop a relationship between forest biomass and forest age, we collected data on 

above ground biomass in 30 field plots (Schwartz et al. in revision, see SI). We identified the age 

of each plot using the land cover time series. Plots that were classified as forest for the entire 

study period were assigned an age of 30 years, which is a lower bound. We fit a linear model 
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predicting biomass from log-transformed age, as the rate of biomass accumulation tends to slow 

with age (Poorter et al 2016, Appendix 1: Figure 1). The parameters from this model and their 

95% confidence intervals were used to estimate biomass accumulated in second-growth forest 

pixels and associated uncertainty. 

 

Statistical analysis  

 

Modeling forest regeneration 

To assess the factors associated with forest regrowth, we first sampled pixels every 600 

m from a regular grid overlaid across the study area; this sampling scheme facilitates 

computation and avoids spatial autocorrelation. Pixels classified as non-forest were included in 

analyses, with the response variable determined as whether or not that pixel transitioned into 

forest (i.e. regrew) in the subsequent year. Sampled pixels that were always classified as forest 

during the 28-year time-series were not included in analysis. Ultimately, a total of 54,718 pixel-

years were included in analysis, from 4,223 unique pixels. We used the R package ‘lme4’ (Bates 

et al. 2015) to fit generalized linear mixed effects models to assess what landscape characteristics 

best predicted forest regrowth. Fixed effects covariates are listed in Table 1, and pixel ID and 

year were both included as random effects to account for year-to-year variation and repeated 

measures of individual pixels. To ensure that spatial autocorrelation did not bias our results, we 

tested for spatial autocorrelation in the residuals by calculating Moran’s I. To assess goodness of 

fit, we calculated marginal and conditional R2 values using the R package MuMIn, and compared 

predicted probability of regrowth with the proportion of pixels that did regrow (Appendix 1: 

Figure 2).  
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Modeling second-growth forest permanence 

To analyze the degree to which second-growth forests persist and the factors associated 

with persistence, we sampled one pixel from every new second-growth forest patch greater than 

1 ha for all years. For each sampled pixel, we tracked the fate of the pixel (whether it persisted as 

second-growth forest, or was cleared) for each year until the pixel was classified as non-forest, or 

until the end of the study period, whichever came first. This resulted in a total of 142,487 pixel-

years included in analysis, from 19,805 unique pixels. We fit generalized linear mixed effects 

models including random effects for year and pixel ID, to account for repeated measures of 

individual pixels. Predictors included variables related to pixel position and pixel history (Table 

1). We tested for spatial autocorrelation and assessed goodness of fit using the same procedures 

described above.  

 

Simulating future forest regrowth trajectories 

To assess how estimates of carbon sequestration potential vary under different 

assumptions of second-growth forest persistence, we simulated future forest regrowth trajectories 

from the end of the study period until 2050. For each annual time step from 2013 to 2050, we 

recalculated predictor variables. Distance to road, river, and settlement were assumed to remain 

constant over time for pixels, because projections for how the location or number of these 

features will change over time are not available. Then, we calculated the probability of regrowth 

(for non-forest cells) or the probability of clearing (for the second-growth forest cells) using the 

model parameters from the models described above. Because we were interested specifically in 

dynamics surrounding regrowth forest, we assumed all “old-growth” pixels (i.e. pixels that were 
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never detected as a non-forest land cover class) remained old growth forest throughout the 

simulation. However, we included old-growth forest pixels in our simulated landscapes so they 

would be factored in as forest for variables like distance to forest edge and proportion of 

neighborhood made up of forest. To calculate total second-growth forest biomass over time, we 

applied the parameters from the model of biomass vs. forest age to all second-growth forest 

pixels and summed across the landscape (SI). We compared these calculations to the amount of 

biomass that would accumulate on the landscape if the regrowth forest present in the landscape 

at the end of the observation period (2013) was assumed to persist and continue to accumulate 

biomass until 2050.  

 

Results 

Forest regrowth and clearing, 1985-2013 

 From 1985-2013, total forest cover decreased from 162,725 hectares to 97,455 ha (Figure 

2). By 2013, 42,756 hectares of second-growth forest were present in the study area, while only 

54,698 ha of old growth remained (Figure 2). Most of this forest was young, with 57.4% of 

second-growth forest less than 5 years of age, and only 4.3% over 20 years of age (Appendix 1: 

Figure 4).  

 The model of forest regrowth reproduced the patterns observed in the data, but slightly 

over-predicted forest regrowth (R2=0.64, Table 1, Appendix 1: Figure 2). Spatial autocorrelation 

in the model residuals was low (Moran’s I < 0.001, p < 0.05). Both pixel position and pixel 

history were important for predicting forest regrowth (Table 1). The proportion of neighboring 

forest around a focal pixel was the most important predictor of forest regrowth (Table 1), 

suggesting that forest cover is contagious. Distance to nearest road and to nearest settlement 
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were also important predictors of the probability of regrowth, with regrowth more likely to occur 

further from roads, but closer to settlements. Whether a pixel had previously been classified as 

forest was the second most important predictor of regrowth probability, with probability of 

regrowth higher for pixels that were previously classified as forest.  

 The model of second-growth forest clearing somewhat under-predicted clearing of 

second-growth forest (Appendix 1: Figure 3), but explained 35% of the variation in observed 

clearing (Table 1). Spatial autocorrelation in residuals was low (Moran’s I =0.02, p < 0.05). 

Again, both pixel position and pixel history were significant predictors of the likelihood of 

clearing, but the relative importance of predictors differed from the model of regrowth. Age was 

the strongest predictor of clearing, with the probability of clearing first increasing with age, until 

peaking approximately at 5 years of age, and then declining steeply (Figure 3). The number of 

years pixels remained cleared before regrowing was also an important predictor of clearing 

likelihood, with pixels that had been cleared for shorter periods of time more likely to persist as 

second-growth forest. As expected, second-growth forest pixels farther from forest edges were 

more likely to persist, but counter to expectations, pixels in larger patches were more likely to be 

cleared. Pixels far from roads and far from rivers were less likely to be cleared, but these effects 

were weak relative to other significant predictors.  

Forest regrowth trajectories and biomass accumulation 

 Simulations of future forest regrowth trajectories predicted a further increase in the total 

cover of second-growth forest, from 42,756 hectares in 2013 to 50,636 hectares in 2050 (Figure 

2). However, 52% of second-growth forest in 2050 was still under 20 years old in our 

simulations, and only 35% was over 30 (Figure 4).  Our simulations predicted that by 2050, total 

carbon stored in second-growth forest in the study area was 2.724 million tonnes (CI = 0.300, 
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5.536, Figure 4). Under the assumption that all second-growth forest on the landscape in 2013 

persists and continues to age and accumulate carbon, but no new forest emerges, 3.649 (95% CI 

= 0.619, 6.614) million tonnes C are stored in the second-growth forest by 2050 (Fig 5).  

 

Discussion 

 Reforestation is frequently cited as a promising strategy for removing CO2 from the 

atmosphere (Rhodes and Keith 2008, van Vuuren et al. 2013), particularly in the humid tropics 

where second-growth forest can accumulate as much as 225 Mg biomass (113 Mg carbon) per 

hectare in just 20 years (Poorter et al. 2016). Furthermore, forest cover is increasing in many 

countries as forest transitions take place, offering a cost-effective carbon mitigation strategy 

(Rudel et al. 2005, Meyfroidt et al. 2010, Aide et al. 2013). Although reforestation is an 

attractive option, it is also risky: carbon sequestration from reforestation can be rapidly reversed 

because forests are inherently vulnerable to both natural and anthropogenic disturbance (Fuss et 

al. 2014). Our study highlights the role that land-use and land-cover change play in influencing 

carbon sequestration potential of reforestation in tropical landscapes.  

Peru estimates that community-based reforestation could provide up to 1.069 million 

tonnes CO2 equivalent in emissions reductions (Peru 2015). We found that within our relatively 

small study area (0.16% of the area of Peru), estimates of carbon storage potential differed by 

nearly 925,000 tonnes of carbon depending on assumptions made about land-use change and 

disturbance. Though there are more than 40,000 hectares of second-growth forest present in the 

study landscape, only a small proportion of that forest is likely to persist long enough to 

accumulate significant amounts of carbon. Instead, rapid cycles between forest and non-forest 
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land-cover types are the norm. Managing tropical landscapes for climate mitigation will require a 

deeper understanding of the factors that drive these dynamics.  

 Regrowth and clearing varied considerably both temporally and spatially. Rates of 

regrowth and clearing strongly fluctuated from year to year (Figure 4). Large-scale processes, 

such as regional variation in climate and ecological conditions, land-use policies, and 

demographics, likely drive temporal fluctuations in rates of clearing and regrowth. Forest 

disturbance linked with climate conditions, specifically fire activity, could be an important driver 

of observed dynamics. The highest rate of clearing occurred in 2005, coincident with a severe 

drought and the highest levels of fire activity observed in the study area (Appendix 1: Figure 4, 

Fernandes et al 2011). Fire is commonly used for land management, and during dry years it 

frequently burns second-growth forest and can cause conversion to non-forest (Gutiérrez-Velez 

et al. 2014).  

Changes in land-use policies may also underlie temporal fluctuations in regrowth and 

clearing. For example, the Peruvian government has promoted oil palm cultivation in Ucayali 

since 1991 (Potter 2015), and oil palm is often planted in second-growth forest (Gutiérrez-Vélez 

et al. 2011). Up to 42% of smallholder oil palm plantations in Ucayali have been abandoned due 

to crop disease and poor road access (Potter 2015), and abandoned oil palm plantations may 

convert to second-growth forest. Past rural development projects, such as those promoting 

pepper plantations, sugar cane, and rice may also have influenced fluctuations in second-growth 

forest cover and dynamics. However, land-use practices in the study area are particularly diverse 

and heterogeneous (Fujisaka and White 1998), so it may be difficult to distinguish the role of any 

particular policy or practice at the scale of the entire landscape.   
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Demographic changes and associated shifts in demand for forest products also influence 

forest dynamics in the study area. Pucallpa, the city adjacent to our study area, has rapidly grown 

since the 1960s (Padoch et al. 2008). This growth has driven increased demand for cheap 

construction products, which has encouraged smallholder farmers who practice shifting 

cultivation to increase the size of their fallows and manage them to promote cheap and fast-

growing timber species (Padoch et al. 2008). These trees are harvested after four years of growth, 

which corresponds with the maximum probability of clearing occurring at about 4-5 years of age 

observed in our dataset.  

The observed decline in probability of clearing with age is probably also influenced by 

changes in the way that people use and value forest with forest age. In a study nearby in the 

Peruvian Amazon, de Jong et al. (2001) found that 27 percent of land owners intended to 

conserve at least some of their second-growth forest, often with the intention of extracting wood 

or non-timber forest products. Conservation plans were more common for older second-growth 

forest than for young forest. In our study area, once second-growth forests reach about 20 years 

of age the probability of clearing is low, suggesting that the economic or conservation value of 

second-growth forests increases with age.   

Second-growth dynamics also vary spatially. Variables related to pixel remoteness were 

important, but not always in the direction expected. Pixels far from forest edges were less likely 

to be cleared. Regrowth was more likely and clearing less likely far from roads. Similarly, Rudel 

et al. (2002) found that dynamics differed depending on distance to the road: close to roads, 

cyclical dynamics associated with swidden agriculture were common, while regrowth was more 

permanent far from roads. Surprisingly, regrowth was more likely close to settlements, possibly 

because shifting cultivation is more commonly practiced near settlements. However, there was 
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no significant effect of distance to settlement on probability of clearing. This suggests that more 

permanent regrowth may be more common near settlements, possibly because people conserve 

some second-growth forest for ecosystem services beyond carbon storage (de Jong et al 2001). 

Also surprising was our finding that the probability of second-growth forest clearing increased 

with forest patch size. On the national and regional scales that are typically associated with forest 

transitions, increases in forest cover can result from scarcity of forest resources and forest cover 

(Rudel et al. 2005). A similar dynamic, in which small forest patches are more protected because 

forest is locally scarce, might play out on a smaller scale within the study landscape, and could 

explain the fact that second-growth pixels in larger patches were more likely to be cleared than 

those in smaller patches.  

 The simulation results indicate that realistic scenarios of forest regrowth and clearing lead 

to much lower estimates of future carbon storage in the landscape. Our simulations predicted 

over 900,000 tonnes less carbon than the static land-use dynamics scenario, or 25% (Figure 5). 

This is likely a conservative estimate of the discrepancy for several reasons. First, our models 

slightly over-predict regrowth and under-predict clearing (Figures S2, S3). Furthermore, our 

models assume that when a pixel is forested, it continuously accumulates biomass and does not 

experience any disturbance other than clear-cutting, which results in being classified as non-

forest. We do not consider variation in land-use history or in vulnerability to disturbance, 

important factors that affect rates and quantities of biomass accumulation. In the Amazon, the 

legacy of fire can reduce rates of carbon accumulation in second-growth forests (Zarin et al. 

2005). Fire is commonly used for clearing and agricultural management in our study area 

(Schwartz et al 2015) and might be an important factor influencing rates and quantities of 

biomass accumulation. Second-growth forests in our study area also tend to be highly 
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fragmented and close to forest edges (Schwartz et al. in revision). Fragmented forests are more 

susceptible to wind damage (Schwartz et al. in revision) and forest edges tend to have lower 

biomass (Laurance et al. 1997, Haddad et al. 2015). In general, plot-based estimates of biomass 

accumulation rates such as in this study may underestimate disturbance and morality, and 

therefore overestimate biomass accumulation (Fisher et al. 2008, Chambers et al. 2009, Di 

Vittorio et al. 2014). This discrepancy might be particularly important in second-growth forests, 

which are more prone to disturbance. Finally, feedbacks with future climate change could affect 

successional trajectories and rates of biomass accumulation (Anderson-Teixeira et al. 2013, 

Uriarte et al. 2016a). Still, our results illustrate the importance of considering land-use/land-

cover change and landscape dynamics when considering the carbon sequestration potential of 

second-growth forest. 

Conclusions 

 Many countries, including Peru, have ambitious reforestation goals in their iNDCs. Peru 

predicts 1.069 million tonnes carbon sequestration via community reforestation (Peru 2015). 

Brazil plans 12 million ha reforestation (Brazil 2015), China plans 50-100 million ha 

reforestation, equivalent to 1 gigaton carbon (Fransen et al 2015), and India plans 5 million ha 

reforestation (100 million tonnes carbon, India 2015). These are non-trivial contributions to the 

carbon reductions these countries pledged under the Paris Climate Agreement, but the 

assumptions about land-use dynamics and methods to ensure second-growth forest permanence 

are not made clear in the iNDCs. Land-use dynamics reduced projected C storage potential by 

25% in our study area; a similar discrepancy in China’s estimates would lead to 250 million 

tonnes additional emissions. Because land-use dynamics vary across regions, the specific results 

of our study do not apply everywhere, but the approach and predictors we used are generalizable 
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across landscapes. Looking to past dynamics of second-growth forests can help identify where 

second-growth forest is threatened by non-permanence and where to focus reforestation 

programs. Monitoring the fate of new second-growth forests will also be important to ensure that 

the carbon promise of second-growth forests can be achieved.   
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Figures and tables 

Figure 1: Location of study area in Peru, and location/extent of second-growth forest in study 
area in 2013.  
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Figure 2: Forest cover in the study area from 1985-2013.  
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Figure 3: Predicted probability of clearing vs. age based on the coefficients from the model of 
second-growth forest clearing. Bars represent proportion cleared in different age classes in 2010.  
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Figure 4: Observed and projected trajectories for area (top panels) and biomass (bottom panels) 
in different second-growth forest age classes (note: over 30 does not include old-growth forest). 
Left panels illustrate scenario in which all forest present in 2013 is presumed to persist and age 
until 2050 and right panel shows trajectories results from simulations using model parameters.   
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Table 1: Predictor variable descriptions, and results from the mixed effects models predicting 
forest regrowth in cleared areas and clearing of second-growth forest. N.a. indicates parameter 
not included in model, as some parameters (e.g. patch size, distance to edge) were relevant for 
only one of the models. Predictors were standardized to facilitate parameter comparison. 
Standard error values are in parentheses. Parameter significance: ***p<0.001, **p<0.05, n.s. not 
significant.  
  

R2 Description Regrowth  Clearing  
R2

marginal  0.31 0.22 
R2

conditional  0.64 0.35 
Predictor  Model parameters 
Distance to road Pixel distance to nearest road. Constant over 

time because historic roads maps were not 
available. 

0.28 
(0.05)*** 

-0.05 
(0.01)*** 

Distance to river Pixel distance to nearest river or stream. 
Constant over time. 

0.01n.s. -0.02 
(0.01)** 

Distance to 
settlement 

Pixel distance to nearest settlement. Constant 
over time because historic data on the 
existence or location of settlements 
unavailable. 

-0.18 
(0.04)*** 

-0.01n.s. 

Proportion of forest 
in neighborhood 

Amount of forest (old growth and second 
growth) in a 30x30 pixel window around focal 
pixel 

1.56 
(.04)*** 

-0.11 
(0.01)*** 

Ever forest Binary variable variable for whether the pixel 
was ever previously classified as forest before 
time t. 

0.50 
(.10)***  

n.a. 

Distance to edge For forest pixels, the distance to the nearest 
forest edge. 

n.a. -0.60 
(0.02)*** 

Clear length Number of consecutive years that pixel was 
classified as non-forest before regrowth event. 

n.a. 0.3 
(0.01)** 

Patch size For forest pixels, the size of the forest patch in 
which the pixel was located. 

n.a. 0.15 
(0.01)*** 

Age Number of consecutive years classified as 
forest, up to and including present year (log-
transformed). 

n.a. 2.48 
(0.04)*** 
 

Age2 Quadratic log-transformed age. n.a. -2.17 
(0.04)*** 
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CHAPTER 2: CLIMATE, LANDOWNER RESIDENCY AND LAND COVER PREDICT 

LOCAL SCALE FIRE ACTIVITY IN THE WESTERN AMAZON 

Published as: Schwartz, N.B., M. Uriarte, V.H. Guiterrez-Velez, W. Baethgen, R. DeFries, K. 
Fernandes, and M.A. Pinedo-Vazquez (2015) Climate, landowner residency, and land cover 
predict local scale fire activity in the Western Amazon. Global Environmental Change 31, 144-
153. 
 
Abstract 

 The incidence of escaped agricultural fire has recently been increasing in the Western 

Amazon, driven by climate variability, land use change, and changes in patterns of residency and 

land occupation. Preventing and mitigating the negative impacts of fire in the Amazon require a 

comprehensive understanding not only of what the drivers of fire activity are, but also how these 

drivers interact and vary across scales. Here, we combine multi-scalar data on land use, climate, 

and landowner residency to disentangle the drivers of fire activity over ten years (2001-2010) on 

individual landholdings in a fire-prone region of the Peruvian Amazon. We examined the relative 

importance of and interactions between climate variability (drought intensity), land occupation 

(in particular, landowner absenteeism), and land cover variables (cover of fallow and pasture) for 

predicting both fire occurrence (whether or not fire was detected on a farm in a given year) and 

fire size. Drought intensity was the most important predictor of fire occurrence, but land-cover 

type and degree of landowner absenteeism increased fire probability when conditions were dry 

enough. On the other hand, drought intensity did not stand out relative to other significant 

predictors in the fire size model, where degree of landowner absenteeism in a village and percent 

cover of fallow in a village were also strongly associated with fire size.  We also investigated to 

what extent these variables measured at the individual landholding versus the village scale 

influenced fire activity. While the predictors measured at the landholding and village scales were 

approximately of equal importance for modeling fire occurrence, only village scale predictors 
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were important in the model of fire size.  These results demonstrate that the relative importance 

of various drivers of fire activity can vary depending on the scale at which they are measured and 

the scale of analysis. Additionally, we highlight how a full understanding of the drivers of fire 

activity should go beyond fire occurrence to consider other metrics of fire activity such as fire 

size, as implications for fire prevention and mitigation can be different depending on the model 

considered. Drought early warning systems may be most effective for preventing fire in dry 

years, but management to address the impacts of landowner absenteeism, such as bolstering 

community fire control efforts in high-risk areas, could help minimize the size of fires when they 

do occur. Thus, interventions should focus on minimizing fire size as well as preventing fires 

altogether, especially because fire is an inexpensive and effective management tool that has been 

in use for millennia. 

 

Introduction 

 Although humans have long influenced fire regimes on earth, recent anthropogenic 

drivers are causing major shifts in fire activity in some parts of the world and are expected to 

further alter global fire regimes in the near future (Krawchuk et al. 2009, Turner 2010, Bowman 

et al. 2011). These changes will have consequences for biodiversity, conservation, and ecosystem 

processes, along with human health, economics, and wellbeing (Lohman et al. 2007, Bowman et 

al. 2009). Adapting to and mitigating the effects of changing fire regimes requires an 

understanding of the drivers of both broad scale and local heterogeneity in fire activity, and of 

the links, interactions, and interdependencies of the multiple drivers of these changes.  

 An ideal region in which to examine such questions is the western Amazon. Although 

humans have used fire to clear land for agriculture and improve hunting grounds in the Amazon 
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for thousands of years (Bush et al. 2008, Bowman et al. 2008), the incidence of escaped 

agricultural fires has been increasing in recent decades (Aragão et al. 2007, Aragão and 

Shimabukuro 2010, Asner and Alencar 2010, Alencar et al. 2011, Armenteras and Retana 2012). 

Because there are few natural ignitions, fires are associated with human activities (Nepstad et al. 

2001, Cochrane and Laurance 2008). Fire is still a common tool used to prepare land for 

agriculture or grazing, but today, these fires are prone to escaping into adjacent forest or non-

forested land, particularly in dry years (Nepstad et al. 1999, Alencar et al. 2004). Amazonian 

fires can be major sources of greenhouse gas emissions (DeFries et al. 2002, 2008), degrade 

forests, affect biodiversity and ecosystem services (Cochrane and Schulze 1999, Gerwing 2002), 

and cause property loss and respiratory disease (de Mendonça et al. 2004). Although fire is most 

prevalent in the southern and eastern parts of the Amazon basin, its incidence is growing in the 

western Amazon as well (Brown et al. 2011). For example, in the 2005 drought, 22,000 ha 

burned in the Ucayali region of Peru (Gobierno regional de Ucayali 2006).  

 Fire can only occur when conditions are favorable; it requires fuels, an ignition source, 

and sufficiently dry weather conditions to ignite and spread. Fire regimes, the spatial and 

temporal patterns of fire observed in an ecosystem, are the result of vegetation, climate, and 

ignition controls acting simultaneously (Moritz et al. 2005). Human activities can affect fire 

regimes by interfering with any of these controls. For example, land use and management 

activities can change fuel amounts, composition, and configuration and affect the number and 

spatiotemporal patterns of ignitions (Nepstad et al. 1999), while roads can act as fire breaks, but 

also can be a source of anthropogenic ignitions (Cardille and Ventura 2001, Archibald et al. 

2009, Bowman et al. 2011, Hawbaker et al. 2013). Promoting grazing, introducing exotic plants, 
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engaging in fire suppression, and other activities can similarly affect patterns of fire (Bowman et 

al. 2011).  

 The degree to which various controls on fire activity limit fire depends on the study 

location (Bowman et al. 2009, Krawchuk et al. 2009, Parisien and Moritz 2009, Krawchuk and 

Moritz 2011). For example, in places with wet climates where productivity, and thus fuel 

availability, is high, fire is limited by fuel moisture. In very dry climates where fuels are almost 

always dry enough to burn, fuel quantity can be limiting instead (Krawchuk and Moritz 2011). 

Where natural ignitions are very rare, the availability of anthropogenic ignitions changes the 

degree to which ignitions limit fire (Nepstad et al. 2001, Cochrane and Laurance 2008).  

 The spatial scale of analysis also affects which drivers best explain patterns of fire 

activity (Parisien and Moritz 2009, Parks et al. 2012). Climate exerts control across broad areas, 

while topography and vegetation are important in driving finer scale heterogeneity. Within broad 

fire-prone regions there can be considerable spatial and temporal heterogeneity in frequency, 

intensity, and severity of fires, and local patterns of fire activity are the result of climate, fuel, 

and ignition controls acting simultaneously and to different degrees, and reflect the ways humans 

influence each of these controls. Thorough understanding of a fire regime requires examining 

patterns of fire at a number of different spatial scales: focusing on broad scales might blur out the 

drivers of local scale heterogeneity, while focusing only on very local scales may miss 

informative and important regional patterns in fire activity. For example, a focus on climate may 

overlook the role of topography in driving local variation in fire regimes, while a focus on the 

way topography influences patterns of fire might not detect the role of interannual climate 

variability in driving regional synchrony and year-to-year variability in fire activity. 
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 Similarly, the most important biophysical factors predicting fire occurrence (defined as 

whether a particular place burns or not) may be different from those predicting other metrics of 

fire activity such as fire intensity or fire size. In ecosystems where natural ignitions are rare, 

availability of ignitions could be the most important driver of fire occurrence, but once a fire 

starts, fuel quantity could be the strongest predictor of fire intensity and the spatial configuration 

or connectivity of fuels could be most important for fire size. In ecosystems where ignitions are 

frequent but conditions are rarely dry enough for fires to start, fuel moisture might be the most 

important factor limiting fire occurrence, intensity, and size. 

 Here, we combine multi-scalar data on land use, climate, and landowner residence from 

remote sensing, meteorological stations and socio-economic surveys to further disentangle the 

drivers of two different metrics of fire activity – fire occurrence and fire size – over ten years on 

individual landholdings in a fire prone region of the Peruvian Amazon. We focused on the 

following questions:  

1) What is the relative importance of climate, landowner place of residence, and land cover 

for predicting fire activity in the Ucayali region of the Peruvian Amazon and how do 

these drivers interact?  

We expected that climate would exert the strongest control on fire, but in dry years, 

variables related to human activities would play an important role in determining finer 

scale patterns of fire activity.  

2) To what extent do characteristics of a particular landholding, as opposed to 

characteristics of the village or region around it, predict fire activity on that 

landholding? 
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Because most landholdings are relatively small and thus potentially highly susceptible to 

fire spread from adjacent properties, we expected that characteristics of the village 

around a landholding would be a stronger predictor of fire activity than conditions on a 

landholding itself. 

3) Are the drivers of fire occurrence different from those of fire size?  

We expected that the predictors of fire occurrence would be different from those of fire 

size: fire occurrence would be more closely associated with spatial and temporal patterns 

of ignition sources (related to patterns of human activity) while fire size would be 

associated with variables that affect fuel quantity and moisture, in particular land cover 

and drought intensity, and that reflect social control, in particular the number of 

landowners present in the village.  

 

Materials and methods 

Study area 

 This study focused on an area within the Ucayali region of Peru, near the urban areas of 

Pucallpa and Campo Verde (Figure 1). Elevation ranges from 150 to 250 m, and annual mean 

precipitation averages 1500 to 2500 mm/year with an annual dry season from July-September 

(Gutiérrez-Vélez and DeFries 2013). The study region has been connected to Lima and other 

urban centers in the coast and mountains of Peru by a highway and networks of roads for more 

than six decades. It has attracted many migrants from elsewhere in Peru in recent years (Uriarte 

et al., 2012) and has undergone extensive land-use change and deforestation including 

conversion of forest to oil palm (Oliveira et al. 2007, Gutiérrez-Vélez and DeFries 2013). Since 

the early 1980s, there has been significant rural-to-urban migration, with 75% of the population 
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living in cities as of 2007, up from 56% in 1972  (Instituto Nacional de Estadistica e Informatica 

2009). Many households are multi-sited, with property and activities in rural and urban areas 

(Padoch et al. 2008).  

 Several studies have examined the drivers of recent fire activity in the western Amazon, 

and have found it is correlated with repeated droughts over the 2000s, which in turn are 

associated with positive anomalies in the North Atlantic sea surface temperature (Fernandes et al. 

2011, Chen et al. 2011). Recent fires in the Peruvian Amazon have been concentrated in 

provinces where rural-to-urban migration is high, and, within the study area, in villages with 

high levels of landowner absenteeism (Uriarte et al. 2012b). This may be due to decreased 

capacity to control fires in areas where landowners are rarely present on their land, and/or to an 

increase in flammable fallow land. Gutiérrez-Vélez et al. (2014) found that land cover 

composition is significantly correlated with fire probability in individual burned pixels but that 

the magnitude and sign of the correlation depends strongly on drought intensity, successional 

stage of regrowing vegetation and oil palm age. Here, we build on these findings to further 

disentangle the drivers of fire occurrence over ten years on the scale of individual landholdings 

in the Peruvian Amazon. Previous analyses of drivers of fire activity in the region have been on 

disparate scales: province, village, burned 250 m pixel. Conducting analyses on the scale of 

individual landholdings allows us to simultaneously compare the relative importance of the 

climate, residency, and land cover drivers previously identified as important, at a scale relevant 

for local management and prediction of finer scale patterns of fire occurrence.  

 Data were compiled from a number of sources including weather stations, satellites, and 

farmer surveys (Table 1). We focused our analyses on 732 farms within 37 villages in the region 

(Figure 1).  
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Climate data 

 Drought is a major climatic driver of fire in the Amazon (Nepstad et al. 2004, Alencar et 

al. 2006, Fernandes et al. 2011). To quantify drought intensity, we used the Standardized 

Precipitation Index (SPI), calculated as the number of standard deviations that cumulative 

precipitation over a defined period deviates from the long-term average: here, 1970-2010. SPI 

values < -1 indicate drought, while SPI > 1 wet years. We used a map of SPI at 0.25° spatial 

resolution developed by Fernandes et al (2011) to assess the relative and interactive influence of 

drought intensity on fire occurrence and size. The map was derived by interpolating 

meteorological stations’ precipitation data from the Peruvian Meteorological Service (Servicio 

Nacional de Meteorologia e Hidrologia‐SENAMHI) and the Brazilian Agência Nacional de 

Águas (http://hidroweb.ana.gov.br/) using the Cressman method (Cressman 1959). Previous 

analyses have shown that July-August-September (JAS) SPI is the most accurate predictor of fire 

activity for the Peruvian Amazon (Fernandes et al. 2011), so we used JAS SPI as the climate 

variable in our analyses to predict fire activity.  Because of the coarse spatial resolution of the 

SPI data, there were only 6 different values of SPI across the study area each year. Thus, 

variation in SPI mainly represents inter-annual variation in precipitation, as opposed to spatial 

variation.  

 

Fire mapping 

 Annual burn scar maps for every year between 2001 and 2010 were obtained from a 

previous study (Gutiérrez-Vélez et al. 2014). Burn scars were mapped using the daily surface 

reflectance product from the Moderate Resolution Imaging Spectrometer (MODIS) satellite 
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(MOD09GQ) at 250 x 250 m resolution, based on temporal changes in NDVI and in bands 1 

(620-670 nm) and 2 (841-876 nm). The presence of smoke, haze, and clouds during burning can 

prevent the detection of fires at the time of burning. The method used for burn scar mapping 

minimizes these effects in a number of ways. First, the MODIS surface reflectance product 

incorporates an algorithm that reduces the effects of smoke and other aerosols (Vermote et al. 

2002). Second, the method implements a filtering algorithm to remove unreliable pixel 

observations. Third, the method takes into consideration minimum NDVI values measured 

throughout the entire dry season, July through November. Detection of fires that occur towards 

the end of this period may be reduced somewhat, but relatively few fires occur during this time 

period (Gutiérrez-Vélez et al. 2014). 

 Due to the minimum pixel size required for detection, sub pixel-sized fires, such as 

controlled agricultural fires, are not likely to be detected, and the method is most reliable for 

burn scars larger than 10 ha (Gutiérrez-Vélez et al. 2014). Therefore, though it is not possible to 

discriminate controlled vs. escaped fires using this method, the majority of fires included in our 

models likely represent large escaped fires, as controlled agricultural fires are generally smaller 

than 2 ha (Gutierrez-Velez et al. 2014). Therefore, this method allows us to detect and model the 

drivers of large fires; the drivers of small fires may be different.  

In addition, there may be some error in the size of mapped burn scars in both directions, 

due to the lack of information on date of burning. The same fire event may correspond to 

multiple separate mapped burn scars if they are connected through areas smaller than the 

minimum detectable burn scars, leading to some underestimation of fire size. On the other hand, 

single burn scars could correspond to areas burned in different fire events during the same year 

and close enough to be mapped as an individual burn scar, leading to some overestimation. 
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Land cover mapping 

 Land cover maps were obtained from a previous study (Gutiérrez-Vélez and DeFries 

2013). They were classified at the 30x30 m resolution using a combination of Landsat TM and 

ETM optical data and ALOS-PALSAR radar data. We excluded 2007 from analyses because 

there was not a suitable Landsat TM image of the region available. Each pixel was classified as 

oil palm, deforested, fallow, forest, pasture, secondary vegetation, bare, or water with an overall 

accuracy of 93%. 

 

Socio-economic data 

 During 2010 and 2011, we conducted semi-structured interviews at 732 farms in 37 

villages across the study area (Figure 1). A farm is defined here as one spatially continuous 

landholding with one owner. Villages are defined as communities with more than 40 school-aged 

children (the minimum number needed for a private school) and are delineated by the local 

government. We selected these 37 villages via a preliminary survey of fire history and 

landholding types (smallholders versus large holdings). Households were selected from within 

these communities from the population who potentially used fire as a management tool or were 

potentially affected by escaped fires using snowball sampling, in which individual respondents 

helped recruit future respondents from their acquaintances (Goodman 1961). Only heads of 

households or individuals actively involved with farm management were interviewed. Each 

individual was asked about the landowner’s place of residence and fire use and management 

practices. If the current landowner acquired the farm more recently than ten years ago, they were 

included in analyses for all years after they acquired it. Otherwise, they were included for all ten 
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years of the study. This resulted in 5,387 farm-year observations. We assumed that their answers 

in 2010-2011 reflect conditions since the acquisition.  

 Farm boundaries were mapped using GPS points. Mean farm size was 32.5 ha. If any 

burn scar overlapped with a farm in a given year, that farm was classified as “burned” for that 

year, for the model of fire occurrence. Otherwise landholdings were marked as unburned. For 

farms that burned, we calculated the total area of the burn scars that overlapped with the farm for 

use in the model of fire size. For each farm, we tallied the proportion in each land cover class for 

each year between 2001 and 2010. In addition, we calculated the proportion of land cover class 

in each village and the proportion of landowners residing on their property to use as community-

scale predictors in our models of fire activity. 

 

Statistical analysis 

 We used a hierarchical Bayesian modeling framework to predict annual fire activity from 

2001-2010 at the scale of individual farms. We expected that the predictors of fire occurrence 

would be different from those of fire size. Therefore, we built two models to predict fire activity: 

first, to predict the probability that fire occurs on a farm in a given year, and second, for the 

subset of farms that did burn in a particular year (n=1095), the total area of burn scars 

overlapping with each farm. Considering fire size in this way allows us to understand the 

characteristics of farms that are associated with large escaped fires.  

 Predictors varied at the regional (i.e. whole study area), village, and individual farm scale 

and comprised drought intensity (SPI), farm-level land cover (proportion of pasture and fallow), 

place of residence of landowner (on the farm or elsewhere), village land cover (proportion 

pasture and fallow), and percent of landowners residing within the village (Table 1). We also 
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included interactions between SPI and each other predictor. Because we were interested in how 

the relative importance of predictors varied across models, and not in finding the best model to 

predict each metric of fire occurrence, we fit a full model for both fire probability and fire size. 

Farm size (hectares) was included as a covariate to control for the fact that fire is more probable 

in large farms because they cover more area. We included only the fallow and pasture land cover 

classes as predictors to avoid collinearity between land cover predictors and because both have 

been identified as being associated with fire in previous analyses (Gutiérrez-Vélez et al. 2014). 

Collinearity was less than 0.36 for all pairs of predictors (Appendix 2: Table 1).  

 Fire occurrence (yocc) was modeled as a Bernoulli process as follows:  

   𝑦!"",!"   ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝!")     (Eq. 1) 

where pij is the probability of fire on farm I in year j. We modeled the logit of pij as a linear 

combination of the predictors (x), regression coefficients β, and a farm-specific intercept αi: 

     ln !!"
!!!!"

=   𝛼!" +   𝛽!𝑥!,!" +⋯+   𝛽!𝑥!,!"     (Eq. 2) 

The size of fires overlapping with a farm was log transformed, as a few very large fires 

resulted in a long-tailed distribution. We modeled fire size (yfs) using a gamma density function 

as follows: 

    𝑦!"  ~  𝑔𝑎𝑚𝑚𝑎(
!!"
!

!
, !!"
!

)      (Eq. 3) 

  𝜇!" =   𝛼!" +   𝛽!𝑥!,!" +⋯+   𝛽!𝑥!,!"    (Eq. 4) 

where µij is the predicted fire size associated with farm I in year j and σ is the estimated variance. 

In all models for both fire occurrence and fire size, we modeled random effects (αi) for farm I in 

community k drawn from a normal distribution with parameters µk and τk determined by the 

community in which they were located. These parameters were in turn derived from a normal 
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distribution whose mean (µcom) and precision (τcom) were estimated as hyperparameters. Including 

random effects for village helps account for the fact that a farm may be more likely to burn 

simply because it is located in a more fire-prone village.  

 Models were specified using uninformative priors. Posterior distributions for parameters 

were estimated using Markov Chain Monte Carlo (MCMC) sampling. Models were run for 3 

chains and 10,000 iterations burn-in, and then for 10,000 total iterations. Convergence was 

assessed visually by examining chains and the shapes of the posterior distributions of parameters 

and using the Gelman and Rubin Diagnostics (Brooks and Gelman 1998). If the 95% credible 

interval of the posterior distribution of a parameter did not overlap with 0, that parameter was 

determined to be statistically significant. The estimated parameters were used to calculate 

predicted values of fire probability and fire size for each landholding; the predictions were 

plotted against observations to assess model predictive ability (Appendix 2: Figures 1 and 2). All 

statistical analyses were conducted in R (R Development Core Team 2014) using the rjags 

interface (Plummer 2003).  

 

Results 

Fire occurrence model 

 The model of fire occurrence was able to reproduce the patterns observed in the data 

(Appendix 2: Figure 1). Main effects for all predictors were significantly different from zero 

(Figure 2). Consistent with expectations, greater drought intensity (lower SPI values) was 

associated with greater fire occurrence (Figure 2), and the magnitude of the effect of drought 

intensity on fire probability stood out as far larger than the effects of any other predictors; it was 

more than double the magnitude of the next largest effect (farm size). The probability of fire 
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increased with the percent of the farm in fallow and to a slightly lesser extent, in pasture. The 

presence of a landowner on a farm decreased the probability of fire, and fire was less likely on 

farms located in villages with a higher percentage of landowners residing in that village. The 

predicted probability of fire was higher on farms located in villages with a larger percent in 

fallow, but was reduced in villages with a large proportion of pasture.  

 There were significant interactions between the index of drought intensity and both 

percent fallow on the farm and village-scale landowner absenteeism. The magnitude of the effect 

of percent fallow on a farm on the probability of fire was higher in drought years (Figure 3a). In 

wet years, probability of fire increases only slightly as the percent of a farm in fallow increases. 

In dry years, the overall probability of fire is much higher, but also increases more quickly as the 

percent fallow on a farm increases. There was a positive interaction between drought intensity 

and the percent of landowners in a village who live locally. In dry years, farms located in 

villages with high levels of landowner absenteeism were more likely to burn than those in 

villages where more landowners are present (Figure 3b). 

 

Fire size model 

 Results from the model to predict fire size (the total area of fires overlapping with an 

individual farm in a given year) were qualitatively different from the results from the fire 

occurrence model (Figure 4). While the model of fire size accurately reproduced the trend in the 

observed data, the model under-predicted the size of large fires (Appendix 2: Figure 2). SPI was 

negatively correlated with fire size, meaning that fires are larger in drier years. However, unlike 

the model of fire occurrence, here there were other predictors that had effects of almost the same 

magnitude as that SPI.  Several of the village level predictors had effects comparable in 
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magnitude to that of SPI, with larger fires associated with farms within villages with a high 

percent cover of fallow and in villages with fewer landowners residing on site. The only farm-

level predictor that was significant was percent of farm in fallow, with farms with a large percent 

in fallow being associated with larger fires. 

 As in the previous model, there were several significant interactions between SPI and the 

other predictors, but the nature of these interactions was different. The negative interaction term 

between percent of a village in fallow and SPI means that farms located in villages with a high 

percent of fallow land cover tend to be associated with large fires regardless of SPI, whereas 

when there is small area of fallow in a village, climate is more important in determining fire size 

(Figure 5). In other words, the relative effect of SPI is greater in villages with less percent cover 

of fallow.  

 

Discussion 

We combined data from meteorological stations, remote sensing, and landowner surveys 

to examine the relative importance of and interactions between multiple drivers of fire activity in 

the Peruvian Amazon. As expected, drought intensity is an important predictor of fire occurrence 

and fire size, although its relative importance compared to other significant predictors is far 

greater in the model of fire occurrence than in that of fire size. We also found that the relative 

importance of predictors varies depending on the scale at which they are measured: in the model 

of fire occurrence, the predictors at both household and village scales are important, but in the 

model of fire size, the importance of village scale predictors outweighs that of the household 

scale predictors. These differences across scales and across metrics of fire activity have 
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implications for understanding future fire regimes and for fire prevention and mitigation 

activities.  

 

Relative importance of climate, patterns of landowner residency, and land cover for predicting 

fire activity 

 Other studies have shown that because much of the Amazon is so wet, climate exerts a 

strong control on fire (Alencar et al. 2004, 2011, Nepstad et al. 2004, Fernandes et al. 2011). 

Because almost all ignitions are caused by human activities, at some level fire occurrence is 

limited by whether or not there are people present and whether or not they are using fire. 

However, in dry years, fires are more likely to escape, spread further and burn a larger area, 

which increases the likelihood that any given farm is burned by a fire large enough to be detected 

by satellites. While variables associated with human activities were important in our models, we 

found that climate was the most important driver of fire occurrence. In the model of fire 

occurrence, the effect of drought intensity overwhelms the effects of other predictors, with an 

effect about twice the magnitude of any others. Fire is more common in the drier and more 

seasonal eastern Amazon than it is in the more humid western Amazon (DeFries et al. 2008, van 

der Werf et al. 2009), so the constraint of climate on fire occurrence may be particularly strong 

in Ucayali and other regions of western Amazonia. This is consistent with the varying constraints 

hypothesis, which implies that in wet regions fire should be constrained by fuel moisture 

conditions (Krawchuk and Moritz 2011). If it is too wet, agricultural fires will rarely escape 

control, regardless of land cover type, landowner place of residence, or management practices. 

Climate also exerts a strong influence on fire size, with big fires more likely in dry years.  
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 However, within dry years, there is still considerable heterogeneity in spatial patterns of 

fire, driven by factors other than climate. Our results were consistent with other studies that have 

examined the role of human activities in driving patterns of fire in the Amazon.  While 

conventional wisdom has said that more people and more land preparation mean more fires in 

the Amazon, recent findings, including those presented here, indicate that this relationship is 

more complex than previously thought. In the Brazilian Amazon, fire occurrence has increased 

in the majority of the areas where deforestation rates have declined (Aragão and Shimabukuro 

2010). Morton et al. (2013) found high levels of understory fire activity in Mato Grosso, even as 

deforestation rates were some of the lowest in recent decades. Uriarte et al. (2012) found that fire 

activity in the Peruvian Amazon was more extensive in provinces with high levels of rural-to-

urban migration and in villages with high levels of landowner absenteeism. Our results extend 

this finding to a finer spatial scale, demonstrating that fine scale analysis can help explain the 

mechanism behind the observed broad scale trends.  

 Land cover type was significantly related to fire activity in both the fire occurrence and 

size models, although the role of land cover was weaker than that of climate in the model 

predicting fire occurrence. Although not all measures of land cover were significant in both 

models, fallow and pasture were both correlated with fire activity. There are multiple plausible 

mechanisms for the relationship between land cover and fire activity, which could be biophysical 

or related to human activities and decisions. The biophysical explanations relate to differences in 

flammability: fallow land could be more flammable because there are more fuels that can dry out 

relatively quickly compared to forest (Gutiérrez-Vélez et al. 2014). Alternatively, the reason 

fallow land is more prone to fire could be because people frequently burn fallow land for various 

management purposes. Fire is a common tool for land preparation and agricultural management 
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in the Amazon (Bowman et al. 2008, Carmenta et al. 2013), and so the association between 

fallow land and fire could represent people’s uses of fire for land preparation or pasture 

management. However, because of the minimum fire size necessary for satellite detection, the 

fires mapped for this research likely represent escaped fires, suggesting that factors that affect 

the likelihood of fire escaping, i.e. biophysical factors not directly related to ignitions, are 

responsible for this association (Gutiérrez-Vélez et al. 2014).  

 There were significant interaction terms in both models. These interactions illustrate that 

the nature of the relationships between local-scale variables and fire can change depending on 

the prevailing climate conditions within a year. For example, percent of farm in fallow has little 

effect on the probability of fire in wet years, but once it starts getting drier, the amount of the 

farm in fallow can greatly increase the probability of fire (Figure 3a). Gutiérrez-Vélez et al. 

(2014) found that the relationship between land cover types and fire on the pixel scale covaried 

with climate. They found a particularly strong interaction between secondary forest and fire 

activity: the direction of the relationship between secondary forest and fire occurrence switches 

from a negative correlation during wet years to a positive correlation during dry years. In the 

Brazilian Amazon, human activity is key for determining seasonal and annual trends in fire 

occurrence, but the effect of drought can overwhelm that of anthropogenic activities, leading to 

high-fire years when land conversion is low (Aragão et al. 2008). Our results are consistent with 

these findings, which demonstrate a strong interaction between the effects of human activities 

and the effects of climate.   
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Importance of conditions within vs. around a farm 

 Fire can occur on a farm in two ways: the ignition can occur in the landholding, or it can 

spread onto a property from a fire ignited in the area surrounding it. For that reason, we included 

land cover and landowner residency predictors calculated at both the individual landholding and 

the village scale, to compare to what degree landscape context (i.e. characteristics of the village 

in which farms are located) versus characteristics of a property itself are important. 

The importance of variables at the village and individual landholding scale varied 

depending on which metric of fire occurrence was being considered. In the fire occurrence 

model, the parameters for variables measured at the individual farm and village scale were 

approximately of the same magnitude. On the other hand, in the model for predicting fire size, 

the effects of variables at the village scale (percent of landowners living in village and percent of 

village in fallow) were much larger than those at the individual farm scale, of which only one 

predictor, percent of property in fallow, is significant. This suggests that efforts to control fire 

size should target communities, perhaps working to build fire control and firefighting capacity or 

working to manage fallows in a way that would reduce flammability, in addition to targeting 

management practices of individual households. This also corroborates the hypothesis that large 

fires are related to a limited capacity to control fire (Uriarte et al. 2012), as fire control can be a 

community effort (Brondizio and Moran 2008, Bowman et al. 2008). 

 

Drivers of fire occurrence vs. fire size 

 As expected, there were differences between the models predicting fire occurrence and 

fire size (total area of fires overlapping a farm), mostly in terms of differences in the relative 

magnitudes of the coefficients of the various predictors. Fewer of the predictors found to be 
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significant in the model of fire occurrence were significant in the model of fire size. This could 

relate to the fact that the model of fire size in general did a poorer job predicting the observed 

data (Appendix 2: Figure 2) and suggests that there may be factors important for predicting the 

size of fires overlapping with a farm that we did not measure or include in our model, such as 

landscape configuration or fuel connectivity on or around a farm. Gutiérrez-Vélez et al. (2014) 

found that the degree of aggregation and patchiness of some land cover types affected fire 

spread, i.e. the number of pixels burned around a focal pixel. Including such a measure of the 

degree of connectivity or fragmentation of particular fuel types might have improved our 

predictions of fire size. A lower predictability of fire size might also be influenced by limitations 

in fire detection given the relatively coarse resolution of the satellite source (250 m pixel size) 

used for burn scar mapping, the absence of data on the time of burning, and possible errors in 

estimation of fire size, as discussed in section 2.3. 

 One key difference between the models of fire occurrence versus fire size was the 

difference in the strength of the effect of climate relative to the strength of the other significant 

predictors. Climate is an important predictor of fire occurrence and size, but its influence relative 

to other predictors is smaller in the model of fire size. Fires are bigger in dry years, but several 

other predictors also have quite large contributions; in particular, larger fires are associated with 

landholdings located in villages with high levels of landowner absenteeism and in villages with a 

high percent cover in fallow. 

 The significant interaction terms in the model predicting fire size also illustrate that the 

dynamics in models of fire size are different than in those for fire occurrence (Figure 5). Once a 

fire is ignited, it is likely to be large in villages with a high percent cover in fallow regardless of 

a year’s climate conditions. On the other hand, if there is small area of fallow, predicted fire size 
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is much smaller overall, but is significantly larger in dry years than in wet years. In this case, 

local conditions are more important in determining fire size, with big fires happening when 

village conditions are favorable with comparatively less influence of climate conditions. This is 

in contrast to the dynamics observed in models predicting fire probability, where only in dry 

years do conditions such as landowner place of residence and land cover type elevate the 

probability of fire. 

 These results suggest that studies should consider multiple aspects of fire regimes to gain 

full understanding of the relative importance of and interactions between different drivers of fire 

activity. In our study area, conclusions about which fire prevention and mitigation activities are 

most likely to be effective could vary depending on the model being considered. The model of 

fire occurrence suggests that management to lower the probability of fire should mainly focus on 

responding to anticipated climate conditions. Fire prevention interventions to this end include 

early warning systems meant to inform farmers of extreme weather conditions that create high 

risk of escaped fires (Goldammer 1998), coupled with education about how drought affects the 

risk of escaped fire and under what conditions it is safer to burn. However, other variables, 

which could imply different management responses, become equally relevant when fire size is 

considered. For example, targeting fire-fighting efforts and building community fire-control 

capacity in areas with high levels of absenteeism, or building fire breaks in areas with extensive 

fallow land may also be effective at minimizing the occurrence, size and effects of escaped fires. 

Area burned, not just fire occurrence, is important for emissions and property loss. Management 

interventions could usefully focus on minimizing fire size and not just preventing people from 

using fire, especially because fire is an inexpensive and effective management tool that has been 

in use for millennia (Bowman et al. 2008, Carmenta et al. 2013).  
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Future research 

By simultaneously using data on climate variability, landowner residence and land cover 

type to model two different metrics of fire activity, this study provides a deepened understanding 

of the relative importance and interactions between the multi-scalar drivers of fire activity. Yet 

we still require a further understanding of the sources, numbers, and spatio-temporal patterns of 

ignitions. Fires cannot occur without ignitions, and all ignitions in this region come from human 

activities. Changing the spatial and temporal patterns of ignitions could have a major effect on 

patterns of fire activity. While some of the predictors considered in this analysis may reflect 

differences in ignitions – for example, ignitions might be more common in pasture as it is 

frequently burned for management – a more direct examination of the sources and patterns of 

ignitions would help our understanding of the degree to which ignitions are limiting in the 

region.   

Additionally, fire activity may have positive feedbacks: a place that burns once may be 

more likely to burn again in the future because of fire-induced changes to fuel structure. This 

phenomenon has been observed elsewhere in the Amazon (Nepstad et al. 2001); however, it has 

not been investigated in this region. Alternatively, in places that burn frequently, there may be a 

negative fire feedback as fine fuels may become slower to accumulate (Balch et al. 2008). 

Analyses of repeat burns could provide insights into whether or not this phenomenon occurs in 

the wetter Peruvian Amazon as well, which would have implications for our understanding of 

fire regimes in the region and for fire management.   
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Conclusions 

Climate variability and change, land use change, and other shifts in human activity and 

demographics are expected to alter future fire regimes around the world (Krawchuk et al. 2009, 

Bowman et al. 2011), and are projected to lead to increases in future fire activity in the Amazon 

(Silvestrini et al. 2011, Chen et al. 2011). Better understanding of the drivers of fine scale 

patterns of fire activity provides insight into appropriate actions to minimize the risk of escaped 

fires and decrease the risk of property loss to fire in these landscapes (Sorrensen 2009, Carmenta 

et al. 2013). By focusing on the individual farm scale, we were able to combine climate and land 

cover data, along with data on patterns of landowner occupation to better elucidate how these 

variables affect patterns of fire on a relatively fine scale. This study adds to the growing 

literature demonstrating that fire in the wet tropics is not simply a byproduct of deforestation and 

may continue to spread even as deforestation declines (Aragão and Shimabukuro 2010, Uriarte et 

al. 2012b, Morton et al. 2013). Additionally, the differences we found between the models of fire 

occurrence and fire size demonstrate that the metric of fire activity being considered can 

influence results, and highlight the importance of considering multiple aspects of fire regimes. A 

full understanding of drivers of fire, their relative importance, and their interactions can help to 

identify the most effective interventions to prevent and mitigate escaped fires in the tropics. 
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Figures and tables 

Figure 1: Map of study area. Inset shows location in Peru (black rectangle). 
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Figure 2: Standardized regression coefficients for model predicting fire occurrence. 

 

Figure 3: Predictions to illustration interaction terms. A) Predictions for probability of fire as a 
function of percent farm in fallow. When SPI is high (wet year), fire probability is low 
regardless. In wet years, fire probability is higher overall, but increases with percent fallow on a 
parcel. B) Predicted probability of fire as a function of SPI. Blue line depicts predictions for 
village with a high percent of landowners residing in the village (90th percentile) while orange 
line is for villages with a low percentage of farmers residing in village (10th percentile). 
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Figure 4: Standardized regression coefficients from the model to predict fire size 

 



 52 

Figure 5: Predicted fire size as a function of the proportion of a village in fallow. Red line shows 
predictions for a dry year (10th percentile SPI) and blue line shows predictions for a wet year 
(90th percentile SPI). 

 

Table 1: Variables used and their sources. 
Variable Source Citation 

Response variables   

Fire occurrence MODIS Gutiérrez-Vélez et al. 2014 

Burn scar size MODIS Gutiérrez-Vélez et al. 2014 

Predictors – household scale   

Land cover (focal landholding) Landsat Gutiérrez-Vélez and DeFries 2013 

Does landowner live on farm? Landowner survey Uriarte et al. 2012 

Farm size Landowner survey Uriarte et al. 2012 

Predictors – village scale   

Land cover (village) Landsat Gutiérrez-Vélez and DeFries 2013 

% landowners residing in village Landowner survey Uriarte et al. 2012 

Predictors – regional scale   

Climate (SPI) Peruvian Meteorological 
Service and Brazilian 
Agênia Nacional de Águas 

Fernandes et al. 2011 
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CHAPTER 3: FRAGMENTATION INCREASES WIND DISTURBANCE IMPACTS ON 

FOREST STRUCTURE AND CARBON STOCKS IN A WESTERN AMAZONIAN 

LANDSCAPE 

Naomi B. Schwartz, Maria Uriarte, Ruth DeFries, Kristopher Bedka,  

Katia Fernandes, Victor Gutierrez-Velez, Miguel Pinedo-Vasquez 

 

Abstract 

Tropical second-growth forests could help mitigate climate change, but the degree to which their 

carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is 

common in tropical forests, shaping structure, composition, and function, and influencing 

successional trajectories. However, little is known about the impacts of extreme winds on 

second-growth forests in fragmented landscapes, though these ecosystems are often located in 

mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that 

fragmentation increases risk of wind damage in tropical forests, but no studies have found such 

impacts following severe storms. In this study, we ask whether fragmentation and forest type 

(old vs. second growth) were associated with variation in wind damage after a severe convective 

storm in a fragmented production landscape in western Amazonia. We applied linear spectral 

unmixing to Landsat 8 imagery from before and after the storm, and combined it with field 

observations of damage to map wind effects on forest structure and biomass. We also used 

Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest 

and characterizing fragmentation. We used these data to assess variation in wind disturbance 

across 95,596 hectares of forest, distributed over 6,110 patches. We find that fragmentation is 

significantly associated with wind damage, with damage severity higher at forest edges and in 
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edgier, more isolated patches. Damage was also more severe in old-growth than in second-

growth forests, but this effect was weaker than that of fragmentation. These results illustrate the 

importance of considering landscape context in planning tropical forest restoration and natural 

regeneration projects. Assessments of long-term carbon sequestration potential need to consider 

spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing 

fragmentation and isolation could increase carbon sequestration potential.  

  

Introduction 

Tropical second-growth forests, defined here as forests growing on previously cleared land, can 

recover biomass quickly and sequester large amounts of carbon (Poorter et al. 2016). These 

forests could play an important role in mitigating climate change; for example, if allowed to 

grow undisturbed, existing Latin American second-growth forests could accumulate an 

additional 8.48 Pg C in the next 40 years, enough to offset all carbon emissions from fossil fuel 

use and industrial processes in Latin America and the Caribbean from 1993-2014 (Chazdon et al. 

2016). Many factors, including past land use, climate, and soil characteristics influence rates and 

quantities of carbon sequestration in second-growth forests (Anderson-Teixeira et al. 2013, 

Jakovac et al. 2016, Poorter et al. 2016, Uriarte et al. 2016b). In particular, exposure to natural 

disturbances such as extreme winds, fires, or drought can affect successional trajectories in 

regenerating forests (Flynn et al. 2010, Anderson-Teixeira et al. 2013, Uriarte et al. 2016b), 

influencing the degree to which the carbon sequestration potential of second-growth forests is 

achieved. Furthermore, second-growth forests are typically located in landscapes subject to 

human influence that are mosaics of old growth, second growth, and other land cover types 

(Brown and Lugo 1990). Regrowth often happens along existing forest margins (Asner et al. 
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2009b, Sloan et al. 2016), making second-growth forests highly exposed to edge effects, impacts 

of fragmentation, and anthropogenic disturbances such as fire and logging. Accurately predicting 

biomass recovery in these forests requires that we understand their disturbance ecology and how 

their disturbance regimes are influenced by the landscapes in which they are situated.  

Wind is a major disturbance in the tropics and has both short-term impacts and lasting 

legacies in tropical forests (Everham and Brokaw 1996, Laurance and Curran 2008, Lugo 2008). 

Tropical forests are exposed to extreme winds from tropical storms or via convective downdrafts, 

squall lines and isolated cold fronts. Convective downdrafts and squall lines are relatively 

common in the Amazon basin (Garstang et al. 1994, 1998), and associated extreme winds can 

cause large-scale forest disturbance and tree mortality (Espirito-Santo et al. 2010, Negrón-Juárez 

et al. 2010). Tropical storms and heavy precipitation events are expected to become more intense 

with climate change (Knutson et al. 2010, Orlowsky and Seneviratne 2012, IPCC 2013), and 

warming and land use change will affect future convection patterns (Del Genio et al. 2007, da 

Silva et al. 2008). Understanding the determinants of forest susceptibility to extreme winds is 

thus important for modeling and monitoring future impacts of forest disturbance (US DOE 

2012).   

The spatial distribution and size of blowdowns have important consequences for 

understanding biomass dynamics in tropical forests (Fisher et al. 2008, Chambers et al. 2009, Di 

Vittorio et al. 2014, Magnabosco Marra et al. 2016). A number of studies have quantified the 

frequency, return interval, rotation period, and carbon impacts of large blowdowns in the 

Amazon across expanses of old-growth forest (Nelson 1994, Negrón-Juárez et al. 2010, 

Chambers et al. 2013, Espirito-Santo et al. 2014). However, little is known about the impacts of 

extreme winds in the fragmented, mosaic landscapes in which tropical second-growth forests 
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occur. If forest fragmentation increases the impacts of wind disturbance, this difference could 

affect estimates of potential carbon sequestration in tropical second-growth forest.   

Impacts of extreme wind on both individual trees and stand-level carbon balance differ 

depending on species composition and forest structure. Damage is most severe for pioneer 

species, species with low wood density, taller trees, and trees with higher slenderness coefficient, 

i.e. a larger height for a given diameter (Zimmerman et al. 1994, Everham and Brokaw 1996, 

Curran et al. 2008a, Canham et al. 2010, Uriarte et al. 2012a, McGroddy et al. 2013, Ribeiro et 

al. 2016, Rifai et al. 2016). Stand structure characteristics such as canopy height, canopy density, 

basal area, and median diameter are positively correlated with the amount of wind damage in a 

stand (Everham and Brokaw 1996, Uriarte et al. 2004c, McGroddy et al. 2013). Susceptibility to 

damage also increases with stand age in earlier stages of succession, but may decline in older 

stands (Everham and Brokaw 1996). These shifts are due to both changes in forest structure and 

changes in species composition: though canopy height, density, and basal area increase over 

succession, species composition often shifts away from low wood-density pioneers towards late-

successional species with higher wood density (Bazzaz and Pickett 1980, Lohbeck et al. 2013).   

 Though second-growth forests are often highly fragmented and located in mosaic 

landscapes, few studies have considered the influence of landscape and patch structure on wind 

damage. Fragmentation may influence exposure to strong winds because landscape variability 

influences the way wind moves, and generates heterogeneity in wind speeds and wind exposure 

through a number of mechanisms. Wind speeds vary with surface roughness, with winds gaining 

more speed over low-roughness vegetation such as open grassland, brush, or agricultural crops 

(Fons 1940, Oliver 1971, Davies-Colley et al. 2000). Accordingly, wind speeds decline with 

distance from forest-pasture edges (Davies-Colley et al. 2000), and there is strong wind 
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turbulence at high-contrast forest edges (Somerville 1980, Morse et al. 2002). Wind also moves 

more quickly though open forest (Somerville 1980, Kanowski et al. 2008). Forest edges have 

lower biomass and a more open canopy (de Casenave et al. 1995, Laurance et al. 1997, Harper et 

al. 2005), implying that wind speeds should be higher at forest edges than in the interior. 

Furthermore, pioneer species are more common close to forest edges, elevating the vulnerability 

of edge forest to windthrow (Oosterhoorn and Kappelle 2000, Laurance et al. 2006).  

 Despite variation in exposure and vulnerability to extreme winds, evidence for impacts of 

fragmentation on wind damage in tropical forests is lacking. Several studies in temperate 

silvicultural systems have detected edge effects on wind damage (Peltola 1996, Talkkari et al. 

2000, Zeng et al. 2004) but this effect has been more challenging to detect in diverse tropical 

forests. The Biological Dynamics of Forest Fragments experiment in the Brazilian Amazon 

found high tree mortality close to forest edges, with uprooting more frequent relative to standing 

dead trees (Ferreira and Laurance 1997, Mesquita et al. 1999). However, this mortality was not 

linked to specific extreme wind events and could have resulted from other factors (e.g., 

desiccation). Several studies have examined fragmentation effects on wind damage after tropical 

storms, and have found little evidence that damage varies with fragmentation (Catterall et al. 

2008, Grimbacher et al. 2008). The degree to which fragmentation increases the risk of damage 

from extreme winds in tropical forests thus remains an open question.  

Detecting effects of fragmentation on wind damage may be difficult with a field sampling 

approach. Extreme winds can be highly patchy (Bellingham et al. 1992, Imbert et al. 1996, 

Grove et al. 2000, Pohlman et al. 2008). Detecting spatial patterns within heterogeneous, patchy 

phenomena requires large sample sizes, and inadequate sampling can make it difficult or 

impossible to detect patterns (Loehle 1991). Estimates of landscape level mortality based on field 
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plot observations may miss up to 17% of mortality (Chambers et al. 2013), and field plot studies 

may lack the statistical power to detect the effect of fragmentation on wind damage (Grimbacher 

et al. 2008). However, remote sensing allows detection of patterns that may be unfeasible or 

impossible in ground-based studies (Chambers et al. 2007). Recently developed remote sensing 

techniques can detect small blowdowns (Negrón-Juárez et al. 2011). Unlike plot-based 

approaches, remote sensing allows estimation of wind damage across broad areas, and in 

combination with field data can improve our understanding of disturbance and carbon dynamics 

in tropical mosaic landscapes. 

Here, we use remotely sensed data to quantify damage from a mesoscale convective 

storm system across a fragmented production landscape in the Peruvian Amazon. We use these 

data in combination with land cover maps to ask:  

1) Are second-growth forests more severely fragmented than old-growth forests? 

2) How does fragmentation influence forest vulnerability to extreme winds?  

3) Does wind damage severity vary in old-growth versus second-growth forests?  

We predict that second-growth forests in our study area will be more severely fragmented than 

old-growth forests, and hypothesize that severity of wind damage will be highest in small, 

isolated forest fragments and close to forest edges. We expect that second-growth forests, which 

have a higher proportion of pioneer species with low wood density, will suffer more severe 

damage than old-growth forests, composed of less vulnerable high wood density species. This 

variability could affect forest succession in dynamic, fragmented landscapes, with forest patch 

and landscape characteristics influencing rates of biomass recovery via effects on exposure and 

vulnerability to wind disturbance.  

 



 59 

Materials and Methods 

Study area 

 The city of Pucallpa, the capital of the Ucayali region of Peru, is the largest Amazonian 

city connected to the national capital, Lima, by road. As a result, Pucallpa is an important 

transport center, and in recent years has been a hotspot of forest disturbance, deforestation, and 

fire in the Peruvian Amazon (Oliveira et al. 2007, Uriarte et al. 2012b, Schwartz et al. 2015). 

This research focuses on an area of 2,158 km2 near Pucallpa, surrounding the highway from 

Lima to Pucallpa. The landscape is heterogeneous, with patches of old growth and second-

growth forest surrounded by pastures, oil palm plantations, and smallholder farms (Gutiérrez-

Vélez and DeFries 2013; Figure 1). Elevation ranges from 150 to 250 m a.s.l. and total annual 

precipitation ranges from about 1500-2500 mm, with a dry season from July to September.  

On November 30, 2013, a mesoscale convective system (MCS) passed through the study 

area, resulting in widespread blowdowns and tree mortality. Though there is insufficient 

meteorological station data available from the study area to characterize the storm severity, data 

processed from the GOES-13 satellite using the method described in Bedka and Khlopenkov 

(2016) indicates high overshooting top probability during the November 30 storm in the study 

area (Appendix 3: Figure 1). Overshooting tops indicate regions where strong updrafts were 

present within the MCS.  Strong downdrafts are often present near to these updrafts in regions of 

heavy precipitation. Storms with overshooting tops often generate winds that exceed 58 mph, the 

criterion for “damaging wind” by the U.S. NOAA National Weather Service (Dworak et al. 

2012). Given the heterogeneity in land cover, forest age, and patch size, this landscape offers an 

ideal opportunity to study how impacts of damaging winds vary with fragmentation and 

landscape context. 
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Remote sensing of wind damage 

We obtained Landsat 8 OLI scenes covering the study area (path-row 06-066 and 07-066) 

from 2013 (pre-storm) and 2014 (post-storm; Appendix 3: Table 1) at 30 m resolution. All 

scenes were acquired with atmospheric corrections from the Landsat CDR archive (LaSRC 

product; USGS 2016) via USGS Earth Explorer (http://earthexplorer.usgs.gov/). The LaSRC 

product includes a cloud mask band, generated with the FMASK algorithm (Zhu and Woodcock 

2012). We used this band to mask pixels that were cloudy in 2013 or 2014. 1023 ha were masked 

out due to cloud cover, equal to 0.5% of the study area. Because the atmospheric composition 

between multi-temporal images differs, especially regarding water vapor and ozone, we applying 

a radiometric normalization (Hall et al., 1991) to normalize the 2014 scene to the 2013 scene, 

using the MAD algorithm (Canty and Nielsen 2008). All remote sensing data processing was 

conducted in ENVI (Exelis Visual Information Solutions, Boulder, Colorado) unless otherwise 

indicated. 

To map wind damage we follow the approach outlined by Negron-Juarez et al. (2010, 

2011), which uses spectral mixture analysis (SMA) to map the change in non-photosynthetic 

vegetation (NPV) fraction across pixels. SMA assumes that every pixel is a linear combination 

of some number of target endmember spectra, such as vegetation, shade, NPV, and/or bare soil, 

and quantifies the per-pixel fraction of each endmember (Adams and Gillespie 2006). Wind 

damage increases the amount of wood, dead vegetation, and litter exposed to the sensor, and so 

the change in NPV fraction is associated with the amount of wind damage.  

We applied linear spectral unmixing to each image using endmembers for green 

vegetation (GV), NPV, and shade. Endmembers were identified from the 2013 scene using the 
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Pixel Purity Index algorithm (Boardman et al. 1995) available in ENVI (Appendix 3: Figure 2). 

Following unmixing, we normalized the fraction of NPV without shade as NPV/(GV+NPV) so 

that fractions reflected only relative proportions of NPV and GV, and not differences due to 

effects of shading (Adams and Gillespie 2006). Change in NPV (ΔNPV) was calculated by 

subtracting the normalized NPV fraction in 2013 from 2014.  

 

Field data collection 

Wind damage was measured in the field to assess whether ΔNPV provided an adequate 

approximation of damage. Because previous studies (Negron-Juarez et al. 2011, Rifai et al. 

2016) had validated the relationship between ΔNPV and wind damage in old-growth forests, we 

focused our validation and field data collection on second-growth forest. During the months of 

July and August of 2014 and 2015, we established 30-0.1 ha forest plots (Figure 1). We used 

satellite images to identify forest patches, and from those, chose sites where we could locate and 

get permission from the landowners to access their property. Within these areas, plot locations 

were selected to encompass a range of ΔNPV. Because plots were slightly larger than a Landsat 

pixel, plot-level ΔNPV was calculated as the weighted mean of ΔNPV in pixels overlapped by 

the plot. We determined age of the forest plots from a 28-year land cover time series (see 

Chapter 1), as the number of years since the last year that the plot location was classified as non-

forest. Though all forest plots were located within forest classified as second growth (see below), 

not all had been observed as having been clear-cut during the 30 year satellite record, and plot 

ages ranged from 3 years to >30 (i.e. never cleared). Plots were geolocated using a Garmin 

GPSMAP 62sc.  
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In each plot we measured diameter at breast height (dbh) of all trees greater than 5 cm, 

and coded each tree as damaged (uprooted, trunk snapped, or severe branch loss) or undamaged. 

Downed or damaged trees that were severely rotted were marked as such, since these trees were 

likely damaged prior to the 2013 storm. We conducted all analyses including and excluding these 

previously damaged individuals and it did not significantly affect our results; reported results 

exclude these trees. Measures of damage include both stems directly thrown by wind and trees 

that were damaged by other trees, because it is difficult to distinguish between these two types of 

damage in the field. We calculated aboveground biomass (AGB) using the following allometric 

equation developed for secondary forest species in the central Amazon (Nelson et al. 1999): 

ln(biomass) = -1.9968+ 2.4128*ln(DBH) 

We divided biomass by two so that estimates were in terms of kg C instead of kg biomass, under 

the assumption that C makes up 50% of biomass (Brown and Lugo 1982). To characterize plot-

level damage, we calculated total damaged biomass, proportion biomass damaged, total stems 

damaged, and proportion of stems damaged for each plot. We assessed the relationship between 

ΔNPV and wind damage by calculating linear regressions of ΔNPV vs. field measurements of 

wind damage in the 30 forest plots. To estimate AGB loss across the study area, we used the 

parameters from the linear model of ΔNPV vs. total AGB lost in field plots (Appendix 3: Figure 

6c), and applied it to each forest pixel to calculate lost biomass based on a pixel’s NPV. Because 

allometries based on secondary forest species yield lower estimates of biomass, using an 

allometric equation designed for secondary forest species across the whole study area is likely to 

underestimate biomass lost in old-growth forest. Furthermore, wind damage tends to increase 

with age (Figure 3), and so old-growth forests likely experienced more severe damage than 

second-growth forests. However, because we measured wind damage in second-growth forests 
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only, we are extrapolating using parameters derived from the relationship between damage and 

AGB in second-growth forests. Therefore, our estimates represent a conservative estimate of 

biomass lost across in the study area’s forests, particularly for old-growth forests.   

 

Remote sensing of land cover 

We developed a land cover classification at 30 m resolution for use in generating 

predictor variables related to fragmentation and masking analyses to forested areas. The 

classification expanded on the approach laid out in Gutierrez-Velez and DeFries (2013). Land 

use classes were old-growth forest, second-growth forest, mature oil palm (> 3 years old), and 

“other,” which included young oil palm (< 3 years old), bare ground, burned non-forest areas, 

fallow, pasture, degraded pasture, and bodies of water. Training data were collected in the field, 

and for the training data, second-growth forests were identified as tree-dominated vegetation 

growing in areas that had previously been cleared, with significantly lower basal area than old-

growth forests in the study area (Gutiérrez-Vélez et al. 2011). Old-growth forests were identified 

as predominantly residual forest from logging and extraction of non-timber resources, but they 

have significantly higher basal area and biomass than second-growth forests (Gutiérrez-Vélez et 

al. 2011). Ultimately, whether a pixel was classified as old-growth or second-growth depends on 

its spectral properties, which do not always coincide with its land-use history.  

 We classified Landsat 8 OLI images (Appendix 3: Table 1) with a random forest 

classification built with several spectral indices and spectral transformations: i) NDVI, ii) bare 

soil, vegetation, and shade fractions from SMA, iii) brightness, greenness, and third from a 

tasseled cap transformation, and iv) first- and second-order texture measures. Components i-iii 

were shown to be effective for classifying the non-oil palm land cover classes in a land cover 
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classification from the same study area (Gutiérrez-Vélez and DeFries 2013). Component iv, the 

texture measures, were useful for distinguishing oil palm plantations, which are spectrally similar 

to secondary forests but appear more uniform in satellite images due to even-aged planting. 

Training and testing data for land cover classes were collected during a 2015 field campaign and 

included 2198.52 ha total, divided among classes (Appendix 3: Table 2). For more details about 

the classification, see Appendix 3.   

The land cover map from 2014 was used to mask analyses to forested areas (old growth 

and second growth). We also masked areas near known anthropogenic disturbance, since 

spillover disturbance from recent forest clearing might bias results along forest edges. To do so, 

we identified recently deforested areas – areas that were classified as forest in 2013 and as non-

forest in 2014 – and masked all pixels within 60 m to prevent anthropogenic disturbance biasing 

results (Appendix 3: Figure 3).  

 

Characterizing forest fragmentation 

We used Fragstats (McGarigal et al. 2012) to characterize forest patch fragmentation. 

Old-growth and second-growth forests were all treated as a single forest category for the purpose 

of characterizing patches. Fragmentation has three key axes: area, edge, and isolation (Fahrig 

2003, Haddad et al. 2015). We calculated one Fragstats metric to represent each of these axes 

(Figure 2). Patch area (ha) represents patch size. Edginess is quantified with the shape index, 

which is calculated as:  

𝑆𝐻𝐴𝑃𝐸 =   
0.25𝑝
𝑎

 

where p is the patch perimeter and a is the patch area. Shape index increases as the perimeter of a 

patch gets more complex, and equals 1 if a patch is a perfect square. We quantified isolation with 
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the proximity index. The proximity index takes into account the area and distance of forest 

within a particular radius around the focal patch, and increases from zero with the upper limit 

determined by the search radius. For a given patch i, proximity index is calculated as: 

𝑃𝑅𝑂𝑋 =   
𝑎!"
ℎ!"!

!

!!!

 

where aij is the area (m2) of patches j=1…n within specified neighborhood radius (m) of focal 

patch i and hij is the distance (m) between patch i and patch j. Using this formulation assumes 

that larger and closer patches decrease patch isolation more than smaller or more distant ones, a 

reasonable assumption. We calculated proximity index with several radii (250 m, 500 m, 1000 

m, 2000 m, 4000 m and 10000 m), but these indices were highly correlated and there was no 

significant different in model performance depending on the distance, so we used the 1000 m 

radius in our final models. So that higher values represented increasing isolation, we multiplied 

proximity index by -1.  

 

Statistical analysis 

 We compared sizes of damaged vs. undamaged trees, and fragmentation variables in old- 

vs. second-growth forest using t-tests. To test the relationship between wind damage, forest 

fragmentation, and forest age (old vs second growth), we fit a generalized linear model to predict 

ΔNPV at the pixel scale (Table 1). Pixels with ΔNPV less than 0 were excluded from analysis, 

because a decline in NPV cannot represent negative damage and instead likely represents 

changes due to forest succession or recovery from prior disturbance. Both pixel characteristics 

and patch characteristics were included as predictors. Pixel level predictors were distance from 

forest edge and a binary predictor for second-growth forest (0 = old growth, 1 = second growth). 

Patch level predictors were area, edginess, and isolation of the patches in which pixels were 
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located. Because the total number of pixels was large (461,610) and ΔNPV was highly left 

skewed, we stratified pixels according to ΔNPV (0-0.05, 0.05-0.15, 0.15-0.25, >0.25) and 

randomly sampled 2000 pixels from each stratum for use in statistical analyses (Appendix 3: 

Figure 4). The sample was bootstrapped 200 times. ΔNPV was log-transformed to meet the 

assumption of normality. Distance from edge was also log-transformed because it was highly 

left-skewed. To facilitate interpretation, all predictors were scaled to unit standard deviation by 

subtracting the mean and dividing by the standard deviation (Gelman and Hill 2007). To test for 

collinearity among predictors we calculated variance inflation factors (VIF; Fox and Monette 

1992) and condition indices (Belsley 1991). VIF values greater than ~5 indicate strong 

collinearity (Dormann et al. 2013), though values as low as 2 can have impacts on parameter 

estimates (Graham 2003). VIF for all predictors was < 4 with the exception of edginess (VIF = 

5.2). To address this potential collinearity issue we ran the model with all predictors other than 

patch area, which was correlated with the other fragmentation predictors and was the predictor 

with the weakest effect in the full model. The maximum VIF in this partial model was 2.2, and 

the parameters for all remaining predictors were qualitatively the same as in the full model. We 

followed the same steps, removing edginess, which had the highest VIF at 2.2. In this partial 

model, the maximum VIF was 1.4 and still, parameters were qualitatively the same. Condition 

indices greater than 30 indicate substantial collinearity (Belsley 1991). All condition indices in 

our model were < 5. We tested for spatial autocorrelation among model residuals by calculating 

Moran’s I and found no spatial autocorrelation in the model residuals (Moran’s I = 0.0003, p = 

0.45). Model parameters reported are the median estimates of the 200 bootstrapped models and 

95% bootstrapped confidence intervals. Statistical analyses were conducted in R (R 

Development Core Team 2014).  
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Results 

Overview: linking field and remote sensing data  

 Validation of ΔNPV with field observations: Mean pre-damage AGB in field plots was 

62.04 Mg C ha-1 (s.d. = 13.31, Appendix 3: Table 4). Mean AGB damaged was 17.5 Mg C ha-1 

(s.d. = 18.7), or 24.6% of pre-storm AGB (s.d. = 25.1%). Mean stem density in field plots was 

1286 stems ha-1 (s.d. = 342.6), with an average 16.5% of stems damaged (s.d. = 15.7%). 

Damaged stems were significantly larger than undamaged stems (Appendix 3: Figure 5, t = -

9.73, p < 0.0001).  

 ΔNPV was strongly related to damage as measured in the field plots. It was most 

strongly correlated with the proportion of stems damaged in field plots (R2 = 0.699, Figure 3), 

but the relationship held when damage was quantified in terms of total number of stems damaged 

(R2 =0.649), total AGB damaged (R2 = 0.542), or proportion of AGB damaged (R2 = 0.603, 

Appendix 3: Figure 6). On average ΔNPV was low across the landscape: mean ΔNPV was 0.03, 

and standard deviation was 0.04 (Figure 4). Five percent of forest pixels, or 2058 ha, had ΔNPV 

higher than 0.1, corresponding to 20.7% stems damaged, or 31.5% of carbon lost (22.5 Mg C ha-

1, Table 2). ΔNPV was greater than 0.2 in 0.8% of forest pixels (348.5 ha), corresponding to 

48.6% stems damaged, or 82.0% of carbon lost (59.1 Mg C ha-1, Table 2). The total biomass lost 

as a result of the wind event in second-growth forests was 0.161 Tg C (95% CI = 0.026, 0.553, 

Table 2). When extrapolating across the whole study area, carbon lost was approximately 0.296 

Tg C (95% CI = 0.05, 1.02), with 54 percent in second growth forest, and 46 percent in old 

growth (Table 2). Estimates for carbon lost in old-growth forest are based on extrapolation of 
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data from second-growth forest, and therefore they are conservative estimates of total carbon 

lost.  

 Characterizing land cover and fragmentation: The land cover classification accurately 

distinguished between oil palm, old-growth forest, second-growth forest, and other classes 

(Appendix 3: Table 3). Overall accuracy was 96.4%. Forty-four percent of the study area, 95,596 

ha, was classified as forest. Forty percent of forest pixels were classified as old-growth forest, 

and 60% were classified as second-growth forest (Figure 1). There were 6110 forest patches in 

the study area, with a mean area of 42.1 ha (Appendix 3: Figure 7). Mean edginess (shape index) 

was 1.3, and mean isolation (-1*proximity index) was -19688 (Appendix 3: Figure 7).   

 

Fragmentation in old- vs. second-growth forests  

 Degree of fragmentation varied across old-growth and second-growth forest pixels, with 

second-growth forests more fragmented along most measures (Figure 5). Second-growth forest 

pixels were closer to forest edges (t = 237.15, p < 0.001, Appendix 3: Table 5), but in less edgy 

patches (t = 134.76, p < 0.0001, Appendix 3: Table 5). Second-growth pixels were also located 

in smaller (t = 141.28, p < 0.001, Figure 5) and more isolated patches, (t = 47.658, p < 0.0001, 

Figure 5).   

 

Wind damage model 

 Fragmentation and forest type were significantly associated with ΔNPV (R2 = 0.158, 95% 

bootstrap CI = [0.143, 0.173]). Distance to edge had the strongest association with ΔNPV 

(Figure 6), which exponentially decreased with pixel distance from forest edge (Figure 7a). Patch 

edginess was positively associated with ΔNPV, with pixels in edgier patches suffering more 
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severe wind damage (Figure 6, Figure 7c). Isolation also influenced damage: ΔNPV was higher 

in more isolated patches (Figure 6, Figure 7d).  Patch area was negatively associated with 

damage, though this effect was weaker than that of the other fragmentation predictors (Figure 6, 

Figure 7b). Predicted ΔNPV was slightly higher for old-growth forest pixels, though the 

difference between second growth and old growth was small compared to the predicted variation 

in ΔNPV associated with fragmentation (Figure 6, Figure 7).  

 

Discussion 

Effects of fragmentation on wind damage 

This study provides the first unequivocal empirical evidence that fragmentation increases risk of 

damage from extreme wind events in tropical forests. The severe convection event that occurred 

in our study region caused an overall loss of approximately 0.3 Tg C in the study area (0.14 in 

second-growth forest and 0.16 in old-growth). When averaged across the total forested area in 

the study area (95,596 ha), this amounts to 3.09 Mg C ha-1 (2.79 Mg C ha-1 in second-growth, 

and 3.55 in old-growth), more than sixty percent greater per hectare than figures from a recent 

study that estimated annual carbon loss from natural disturbances in the entire Amazon forest 

(Espirito-Santo et al. 2014). That study estimated the total loss at 1.3 Pg C y-1, an average of 1.9 

Mg C ha-1 across the ~6.8 x 108 ha of Amazon forest.  

A number of differences between their study and ours could explain the discrepancy. The 

Espírito-Santo et al. study mapped disturbances across a study area many times the size of ours, 

and developed a disturbance size-frequency distribution for the entire Amazon. The disturbances 

captured in our far smaller study are likely on the intermediate-to-large end of their disturbance 

size-frequency distribution. However, the discrepancy might also reflect differences in landscape 
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structure in the two studies. Espírito-Santo et al. focused on contiguous forest, where, based on 

our results, wind damage is likely to be less severe than in the fragmented landscapes of our 

study region. These findings illustrate the importance of considering fragmented landscapes 

when assessing disturbance regimes in tropical forests. Studies that do not consider the effects of 

landscape configuration may underestimate the importance of wind disturbance for quantifying 

the tropical forest carbon sink. Recent estimates suggest 70% of the world’s forests are within 1 

km of a forest edge (Haddad et al. 2015), and that 19% of tropical forests are less than 100 m 

from an edge (Brinck et al. 2017). Brinck et al. (2017) estimate that edge effects result in 0.34 Gt 

additional carbon emissions from tropical forests per year, though this estimate does not 

explicitly take into account effects of extreme winds. Considering the impacts of extreme winds 

in fragmented landscapes would likely affect estimates of the effects of fragmentation on forest 

carbon balance, and would influence our understanding of the importance of extreme wind 

events for driving carbon cycling in the Amazon.  

Though many studies suggest that fragmented forests should have heightened 

vulnerability to wind damage (SAUNDERS et al. 1991, Laurance and Curran 2008), evidence 

for this phenomenon has been lacking. For example, a number of studies that set out to measure 

effects of fragmentation on wind damage after Cyclone Larry, a category 5 tropical cyclone, 

found little difference in wind damage between fragments and continuous forest (Catterall et al. 

2008, Grimbacher et al. 2008, Pohlman et al. 2008). Our study may have detected an effect 

where former studies did not for several reasons. First, the storm we considered was not as 

intense as a Cyclone Larry, and continuous forest cover may provide a protective benefit only up 

to a certain degree of storm intensity (Catterall et al. 2008). We do not have precise wind speed 

measurements from the date of the storm, but the presence and intensity of overshooting tops 
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indicates that winds were probably ≥ 93 km/h (Bedka and Khlopenkov 2016). By contrast, 

Category 5 tropical storms are associated with sustained winds > 200 km/h. Lending support to 

this threshold hypothesis, a study after Hurricane Hugo in South Carolina found that in areas 

struck by the most intense part of the hurricane, species differences in wind resistance were not 

apparent (Hook et al. 1991). Differences in rates of damage across species were only observed in 

areas where wind speeds were lower. Variation in exposure and vulnerability to extreme winds 

due to species composition and landscape configuration may come into play only when winds 

are not so severe that they cause widespread damage regardless.  

Second, previous studies of fragmentation and wind damage were based on field data 

from a relatively small number of plots. Heterogeneity in damage and wind speeds may have 

affected the statistical ability to detect underlying patterns related to fragmentation (Grimbacher 

et al. 2008). This patchiness and unmodeled variation in wind speeds is likely the reason for the 

substantial unexplained variance in our statistical models. However, because our remote sensing 

approach allows us to consider a broad landscape with a large sample size we are able to detect 

an effect of fragmentation despite the noise, demonstrating, as many other studies have, the 

usefulness of remote sensing for understanding ecosystems at landscape to regional scales 

(Chambers et al. 2007).  

 Fragmented forests may be more prone to wind damage via two main mechanisms: 

because they are exposed to stronger winds than continuous forest, or because they are more 

vulnerable to strong winds due to differences in species composition or forest structure 

(Laurance and Curran 2008). We found effects of all three axes of fragmentation – isolation, 

edge, and area – on wind damage, which suggest possible support for both mechanisms. The 

effects of isolation are probably due to exposure to stronger winds. Forest slows wind down; 
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rougher surfaces exert more drag leading to slower wind speeds (Davies-Colley et al. 2000). 

Wind picks up more speed over smoother vegetation types, like pasture. Because isolated 

fragments are surrounded by larger expanses of open areas and non-forest land cover types, they 

likely are subject to stronger winds.  However, species composition may also differ depending on 

patch isolation. Because we do not have measurements of species composition in relation to 

isolation, we cannot rule out that differences in composition also contribute to the observed 

effect of isolation.  

Edge and area effects on wind damage are more difficult to attribute to exposure versus 

vulnerability, and could be due to either or both mechanisms. We found that pixels close to forest 

edges and pixels in edgier patches were more likely to be severely damaged. We also found a 

weak effect of patch size, likely because pixels in smaller patches are closer to edges. Forest 

edges are exposed to stronger winds (Somerville 1980, Morse et al. 2002), but there are also 

well-documented edge effects on species composition that could increase vulnerability to wind 

damage (Oosterhoorn and Kappelle 2000, Laurance et al. 2006). The degree to which differences 

in exposure or vulnerability explain the relationship between fragmentation and wind damage 

has implications for management actions to minimize impacts of strong winds. Future research 

could focus on disentangling the mechanisms responsible for these patterns. 

 

Wind damage in old- vs. second-growth forest 

 The results from the model predicting wind damage (ΔNPV) indicate that when 

controlling for fragmentation, second-growth forests suffer slightly lower damage (have lower 

ΔNPV) than old-growth forests, counter to our initial hypothesis. Because trees with lower wood 

density are more prone to wind damage and community mean wood density tends to increase 
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over succession in wet tropical forests (Bazzaz and Pickett 1980, Lohbeck et al. 2013), we 

hypothesized that wind damage would be more severe in second-growth forests. Our finding to 

the contrary may be due to differences in tree stature between old-growth and second-growth 

forests. Larger trees and more slender trees are more susceptible to wind damage, in particular to 

uprooting (Putz et al. 1983, Zimmerman et al. 1994, Everham and Brokaw 1996, Canham et al. 

2010, Ribeiro et al. 2016), which translates into differences in damage across sites with different 

forest structure. For example, Uriarte et al. (2004) found that damage after Hurricane Georges in 

the Dominican Republic was higher in sites with higher basal area and that young forests with 

low basal area were not severely affected by hurricane. Similarly, McGroddy et al. (2013) found 

that forest stands in the southern Yucatan with taller canopies and higher basal area suffered 

more severe hurricane damage, and that these structural differences were associated with past 

land use. Furthermore, because of the high levels of anthropogenic disturbance in the study area, 

we do not necessarily expect the successional shifts in species composition that are predicted for 

relatively undisturbed forests. Old-growth forests in the study area have never been completely 

cleared, but they have still been subject to anthropogenic disturbance, such as selective logging 

and fire. Selective logging tends to target timber species with higher wood density (Verburg and 

van Eijk-Bos 2003), so the largest remaining trees in selectively logged forests may be species 

with low wood density. Large stature and low-density wood would make these forest fragments 

especially prone to wind damage, perhaps explaining the higher damage we observed in old-

growth forests. Alternatively, it is possible that large, high wood-density trees are more 

vulnerable to wind, or that when they do fall, they result in larger blowdowns due to a domino 

effect of large, heavy trees causing more damage than trees with lighter wood. In future studies, 

additional field plot data, with information on forest stature, species identification and wood 
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density from damaged vs. undamaged trees could help further elucidate which of these 

mechanisms drives the observed pattern.  

In our model, however, fragmentation had a much stronger influence on damage than 

forest type (Figure 6, 7). Second-growth forests in the study area are more fragmented than old-

growth forests, which ultimately might result in more severe wind impacts in these forests. 

Elsewhere, studies have found that second growth tends to happen along forest margins and in 

small fragments surrounded by non-forest land use (Helmer 2000, Asner et al. 2009b, Sloan et al. 

2016). Wind is not the only disturbance for which risk is higher along edges: fire in the Amazon 

tends to be concentrated along forest edges (Cochrane and Laurance 2002, Alencar et al. 2004, 

Armenteras et al. 2013). There is potential for wind and fire to interact and amplify the other’s 

impacts: studies in temperate ecosystems have found that an earlier fire can increase the severity 

of subsequent blow downs, and wind damage can increase the risk of fire by adding fuels and 

opening up the forest canopy (Myers and Van Lear 1998, Kulakowski and Veblen 2002). These 

interactions might occur in the Amazon, and could exacerbate disturbance effects on forest 

carbon balance.  

Wind and other disturbances can alter successional pathways in regrowing forests 

(Anderson-Teixeira et al. 2013, Uriarte et al. 2016b). Variability in disturbance risk should thus 

be taken into account in spatial planning, management, and carbon accounting in tropical 

second-growth forests where the goal is to promote carbon sequestration. Silviculture has long 

considered wind damage risk in site and species selection and planting configuration (Somerville 

1980, Savill 1983, Talkkari et al. 2000). However, managing tropical second-growth forests for 

carbon is a relatively new endeavor and the way landscape configuration influences 

susceptibility to disturbance is not well understood for tropical forests (US DOE 2012). 
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However, where possible, and where risk of extreme winds is high, minimizing fragmentation 

and isolation could reduce risk of wind damage. Smallholders, too, get services such as timber or 

other forest products from forest fragments on their properties, and may wish to protect their 

forest fragments from the impacts of extreme winds.  Promoting regrowth close to existing 

forests, maintaining less edgy patches, or planting wind-firm species in isolated fragments and 

close to forest edges are all steps that smallholders could take to reduce risk of wind damage in 

their forests.  

Future research should attempt to disentangle the mechanisms behind the patterns 

observed in this study. Understanding the degree to which differences in vulnerability versus 

exposure underlie variation in wind impacts will clarify appropriate management actions to 

minimize risk of wind damage in second-growth or remnant forests. Fragmentation experiments 

such as the Biological Dynamics of Forest Fragments experiment in Brazil have shed light on 

how fragmentation affects forest composition, structure, and microclimate (Laurance et al. 

2002). However, understanding what those changes mean for impacts of extreme winds is not 

straightforward, and doing so would require some “luck” in that a severe windstorm would have 

to strike the experiment. This limitation presents some challenges in studying mechanisms of 

wind damage in fragmented landscapes, but there are ways forward. Fragmentation experiments 

like the aforementioned, but located in landscapes that suffer frequent severe wind events, such 

as Caribbean forests, could be useful in that the likelihood of extreme winds striking an 

experiment would be higher. However, an experimental approach relying on random chance is 

not the only way to further investigate these mechanisms. Improvements in modeling and 

mapping wind speed and in our understanding of how wind interacts with complex landscapes 

will further shed light on how exposure varies with fragmentation. Advances in remote sensing 
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technology, which are beginning to provide a more detailed picture of forest structure and 

composition, will be useful in understanding ecological mechanisms responsible for variability in 

disturbance impacts (Chambers et al. 2007). Finally, much of what we already know about 

variation in species and stand susceptibility to wind comes from opportunistic field sampling 

after extreme winds (e.g. Zimmerman et al. 1994, Uriarte et al. 2004c, McGroddy et al. 2013), 

and there is a need for further opportunistic post-storm sampling in fragmented landscapes. 

Continued monitoring of forest disturbance in fragmented landscapes, such as with the remote 

sensing approach demonstrated in this paper, is essential so that such opportunities are not lost. 

An improved understanding of how and why fragmentation and landscape configuration 

influence disturbance regimes in tropical second-growth forests will help ensure that the carbon 

potential of tropical second-growth forests is better achieved.  
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Figures and Tables 

Figure 1: Location of the study area, near Pucallpa, Ucayali, Peru. Inset depicts forest cover, and 
locations of field plots and roads.  
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Figure 2: Conceptual figure illustrating axes of fragmentation, and variables associated with 
fragmentation included in analyses. Green squares represent forest pixels, and adjacent pixels 
represent a patch. Orange outline indicates focal pixel/patch for distance to edge and isolation 
measures.  
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Figure 3: ΔNPV vs. proportion of stems > 5 cm DBH damaged in second growth forest field 
plots. Shaded areas indicate 95% confidence interval of regression line. Regression p-value < 
0.001.  
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Figure 4: Map of wind damage (ΔNPV) in study area. Insets show two areas of interest where 
several field plots were located.
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Figure 5: Comparison of the distribution of fragmentation variables between old-growth and 
second-growth forest pixels. Boxes show 25, 50, and 75% quantiles and whisker endpoints are 
2.5 and 97.5% quantiles of observed data. Light grey points are outliers. Figures include data 
from all forest pixels in the study area. Fragmentation variables are a) distance to edge, b) area, 
c) edginess, and d) isolation. 
 
 (a)         (b)           (c)       (d) 
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Figure 6: Parameter estimates from wind damage model. Points show the median coefficient 
estimates from the 200 bootstrapped model fits, whiskers show bootstrapped 95% confidence 
interval.   
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Figure 7: Model predictions of ΔNPV and fragmentation predictors. Solid lines depict 
predictions of the median coefficient estimates from bootstrapped model fits, dashed lines and 
shaded areas show predictions of 2.5 and 97.5% quantiles of coefficient estimates.  A) distance 
from edge. B) patch area. C) edginess. D) isolation. 
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Table 1: Model covariates, descriptions, and summary statistics. 

Variable name Description 
Landscape 
mean (SD) 

Bootstrap sample 
mean (95% 
bootstrapped CI) 

Bootstrap sample 
SD (95% 
bootstrapped CI) 

Response     
ΔNPV  Change in non-

photosynthetic 
vegetation fraction in 
pixel, i.e. wind 
damage (log 
transformed). 

0.034 
(0.039) 

0.1560 [0.1556, 
0.1565] 

0.1318 [0.1312, 
0.1322] 

Predictors     
Distance to 
edge 

Pixel distance to forest 
edge (meters) 

102.5 (2.5) 69.4 [68.0, 70.8] 2.39 [2.36, 2.44] 

Secondary  Binary variable for 
second growth. 0 = old 
growth, 1 = second 
growth 

0.53 (0.50) 0.59 [0.58, 0.60] 0.491 [0.490, 
0.493] 

Area Patch size in which 
pixel is located 
(hectares). 

33247.5 
(28869.9) 

33035.4 [32503.2, 
33605.0] 

30899.6 [30592.6, 
31200.1] 

Edginess (shape 
index) 

Shape index for patch 
in which pixel is 
located. 

24.4 (14.6) 24.9 [24.6, 25.2] 15.9 [15.7, 16.0] 

Isolation (-1* 
proximity 
index) 

Proximity index for 
patch in which pixel is 
located. 

75887.7 
(50523.7) 

-71336.3 [-72230.3, 
-70415.9] 

48734.9 [47999.9, 
49327.5] 

 
Table 2: Summary of wind damage effects by forest type. 95% confidence intervals for lost 
carbon are in parenthesis.  
 Old growth Second growth All forest 
Total area (hectares) 38137 57459 95596 
Mean ΔNPV 0.033 0.035 0.034 
Proportion pixels with 
ΔNPV > 0.1 

0.04 0.05 0.05 

Proportion pixels with 
ΔNPV > 0.2 

0.01 0.01 0.01 

Carbon lost (Tg C) 0.135 (0.020, 
0.470) 

0.161 (0.026, 
0.553) 

0.296 (0.05, 
1.02) 

Biomass lost per ha (Mg 
C/ha) 

3.55 (0.519, 
12.32) 

2.79 (0.460, 
9.63) 

3.09 
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CHAPTER 4: TRAITS AND TOPOGRAPHY MODULATE DROUGHT RESPONSE IN 

A TROPICAL SECOND-GROWTH FOREST 

Naomi B. Schwartz, Maria Uriarte, Jess Zimmerman, Bob Muscarella, Nate Swenson 
 

Abstract 

Regional climate is filtered through elevation, topography, and vegetation to generate fine 

scale variation in moisture conditions. Thus, predicting individual drought responses in tropical 

forests remains challenging, in part because individual trees experience drought differently. We 

used a hierarchical Bayesian modeling framework to assess how tree performance and drought 

response vary with microtopography in a tropical second-growth forest. We integrated annual 

census data from the El Yunque Chronosequence plots with functional trait measures and 

LiDAR-derived microtopography measurements to ask how drought, topography, and crowding 

affect individual tree growth and survival, and how functional traits mediate species’ responses 

to those drivers. Drought decreased growth and reduced survival, though effects on growth were 

much stronger than effects on survival. Tree performance and drought effects varied with 

topography, but often not in the directions we expected: trees on topographic positions we 

assumed to be wetter were more negatively affected by drought. Wood density and specific leaf 

area (SLA) affected species average performance and response to topography, and high wood 

density and low SLA were associated with reduced sensitivity to drought and topography. Fine-

scale species sorting across topography may drive observed relationships between average 

performance, drought response, and topography. Our results highlight the complex interactions 

between climate, topography, crowding, and traits that underlie individual and species variation 

in drought response.  
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Introduction 

Tropical rainfall regimes are predicted to change in future climate scenarios, with many 

parts of the tropics getting drier (Feng et al. 2013, Duffy et al. 2015, Chadwick et al. 2015). Drier 

conditions will likely have large impacts on tropical forests: drought influences forest ecosystem 

structure, composition, and function (Bonal et al. 2016, Uriarte et al. 2016b), and importantly, 

could decrease the size of the tropical forest carbon sink (Phillips et al. 2009, Pan et al. 2011, 

Gatti et al. 2014). However, large uncertainties about the impacts of drought on tropical forests 

remain, in part due to the difficulties of manipulating moisture conditions in tropical forests (but 

see Nepstad et al., 2007; da Costa et al., 2010). Observational studies of forest dynamics during 

natural droughts provide an opportunity to learn how drought affects tropical forests, especially 

where long-term data have been collected over multiple years. Understanding the impacts of 

recent droughts will help anticipate future changes in tropical forests caused by shifting 

frequency and intensity of drought. 

Most studies of drought in tropical forests have aimed to quantify drought effects on 

carbon uptake and storage. Drought increases tree mortality and reduces tree growth (Chazdon et 

al. 2005, Feeley et al. 2007, Nepstad et al. 2007, Clark et al. 2010, da Costa et al. 2010, Phillips 

et al. 2010), which can result in large losses of stored carbon from tropical forests (Phillips et al. 

2009, Lewis et al. 2011, Saatchi et al. 2013, Gatti et al. 2014). Other studies have focused on 

how sensitivity to drought varies across species and size classes. Species differences in their 

responses to drought can often be linked to their physiology or functional traits (O’Brien et al. 

2017, Greenwood et al. 2017). For example, turgor loss point, wood density, stem hydraulic 

conductivity, and specific leaf area are all useful traits for predicting species-level variation in 

drought response (Bartlett et al. 2012, Maréchaux et al. 2015, Uriarte et al. 2016a, Greenwood et 
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al. 2017). Growth and mortality of larger trees tend to respond more strongly to drought, though 

this effect varies across sites (Chazdon et al. 2005, Nepstad et al. 2007, Phillips et al. 2010, 

Bennett et al. 2015, Uriarte et al. 2016a).  

However, even within species and/or size classes, there can still be substantial 

unexplained variation in drought response. One hypothesis to explain these differences is fine-

scale variation in the amount of water stress individual trees experience, due to differences in 

moisture availability linked to topography, soils, or competitive environment. Though the 

phenomenon has been little studied in the tropics, studies in other biomes have found drought 

effects can depend on topography. Variation in drainage and runoff means that slopes and ridges 

are drier than valleys (Burt and Butcher 1985, Western et al. 1999, Daws et al. 2002). Southwest 

facing slopes (northwest facing in the southern hemisphere) receive more solar radiation and 

have higher rates of evapotranspiration, and so water stress is typically higher (Stephenson 

1990). Accordingly, drought-induced mortality is often higher in drier landscape positions 

(Fekedulegn et al. 2003, Guarín and Taylor 2005). Few studies have explicitly considered 

topographic variation in drought effects in tropical forests (but see Nakagawa et al., 2000; Silva 

et al., 2013), though several have demonstrated that topography influences species distributions 

both across and within sites (Ashton et al. 2006, Engelbrecht et al. 2007, Bartlett et al. 2016), and 

have linked topographic variation to observed differences in demographic rates (Silva et al. 

2013). Drought could amplify these differences in performance, due to moisture stress being 

more severe at drier topographic positions. Furthermore, variation in performance across 

topography should depend on species and their functional traits, as some species are more 

sensitive to moisture stress and nutrient availability than others.  
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In the tropics and elsewhere, studies linking tree performance, moisture, and topography 

have typically focused on variation across sites or plots (Fekedulegn et al. 2003, Guarín and 

Taylor 2005, Ashton et al. 2006, Engelbrecht et al. 2007, Comita and Engelbrecht 2009). 

However, soil moisture and tree performance both vary with microtopographic relief (Famiglietti 

et al. 1998, Daws et al. 2002, Tenenbaum et al. 2006, Nishimua et al. 2007, Bartlett et al. 2016), 

at scales as small as 1 m (Tenenbaum et al. 2006). Ecological studies of the effects of microsite 

topography on tree performance have typically used categorical designations of topographic 

position (e.g. hummock vs. hollow, Nishimua et al. 2007; dry plateau vs. wet slopes, Englebrecht 

et al. 2007) but it is difficult to scale up these classifications across a landscape. New remote 

sensing techniques can generate digital elevation models (DEMs) at very fine scales (< 1 m), 

which can be used to quantify microtopographic relief and linked to variation in soil moisture 

(Tenenbaum et al. 2006, Buchanan et al. 2014). To our knowledge, no study has linked these 

quantitative characterizations of microsite topography with variation in tree performance during 

drought or otherwise.   

Today, over 50% of tropical forests are classified as second growth (FAO 2010). Second-

growth forests might be particularly sensitive to drought because of intense competition for 

resources and high proportion of drought-sensitive pioneer species in young forests (Uriarte et al. 

2016b). Furthermore, land abandonment tends to happen in more remote, topographically 

complex, marginal locations (Helmer 2000, Asner et al. 2009b), which makes understanding how 

topography affects drought response particularly important in second growth forests. In this 

study, we link annual tree census data from second-growth forest in Puerto Rico with LiDAR-

derived measures of microtopographic relief to assess how drought affects tree demography, and 

if and how traits, topography, and crowding mediate drought response. Specifically, we ask:  
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1) How does drought affect tree growth and survival? We expect growth and survival to be 

reduced during drought years.  

2) How does microtopographic relief affect tree growth and survival, and do its effects 

differ during drought years? We expected that growth and survival would be lower on 

steeper slopes and on ridges (i.e. areas with more convex curvature). Because these 

topographic positions tend to be drier, we also expected the effects of drought on tree 

growth and mortality would be amplified on steeper slopes and more convex surfaces.   

3) How does crowding affect tree growth and survival, and do its effects vary during 

drought years? We expected that crowding would reduce growth and survival, and 

further predicted that the effect of crowding would be amplified during drought years, 

due to more intense competition for water between neighbors. 

4) How does interspecific variation in functional traits mediate the effects of drought, 

topography, and crowding on tree demographics? We expected that trees with traits 

representing more acquisitive strategies would have higher growth rates and lower rates 

of survival than trees with more conservative traits. Furthermore, we predicted that trees 

with acquisitive traits would be more strongly affected by stressful conditions, i.e. 

drought, dry topographic position, and crowding.  

To address these questions, we used hierarchical Bayesian models, which allowed us to examine 

the importance of drought, topography, and crowding for tree performance. We focused on two 

topographic variables that are important for moisture conditions and flow of water across 

surfaces: slope and curvature (Burt and Butcher 1985). This approach also allows us to assess if 

and how functional traits drive intra-specific variation in response to environmental conditions. 

We considered two functional traits that have been found to be important for carbon metabolism 
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and plant hydraulics: specific leaf area (SLA) and wood density (WD).  SLA represents the 

investment in photosynthetic machinery (leaf surface area) relative to total investment in leaf 

biomass. Leaves with high SLA tend to have higher photosynthetic rates and nutrient 

concentrations, and high SLA species typically have higher growth rates (Reich et al., 1998). 

However, high SLA leaves tend to be shorter-lived, potentially leading to shorter full-plant life 

spans (Reich et al. 1992). Wood density represents the investment in wood biomass per volume 

of wood. Investing more in wood biomass means that trees with higher WD tend to have lower 

growth rates (King et al. 2005, Poorter et al. 2008). However, denser wood is more resistant to 

cavitation (Hacke et al. 2001) and structural damage (Everham and Brokaw 1996, Curran et al. 

2008b), so species with higher wood density tend to have longer life spans, higher survival rates, 

and lower sensitivity to drought (Poorter et al., 2008; Phillips et al., 2010; Greenwood et al., 

2017). Better understanding the role of these widely measured traits in driving variation in tree 

species response to drought and other environmental conditions is an important step towards 

building a general predictive framework for species’ responses to future environmental change.  

 

Materials and methods 

Study area and tree census data 

 This study was conducted with data from four forest plots, comprising the El Yunque 

Chronosequence Plots (Table 1). The land-use histories and ages of these plots were determined 

from aerial photographs taken between 1936 and 1977:  three of the plots were previously 

cleared for agriculture, and represent a range of forest ages from 35 to 76 years since agricultural 

abandonment. The fourth plot is primary forest. The plots range in elevation from 100-500 m 

above sea level, and vary in size from ~0.5 to 1 hectare (Table 1). Annual rainfall in the region 
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ranges from 2700 mm to 3500 mm, with a 3,500mm average. Since 2013, All stems > 1 cm 

diameter at breast height (dbh) have been measured, mapped, and identified to species annually. 

We used these data to calculate absolute diameter growth and survival for each individual tree 

for each census interval.  

In 2015, Puerto Rico experienced a severe drought: rainfall in El Yunque was only 2035 

mm, the second lowest recorded. Rainfall was close to average in 2014 and 2016 (3193 and 3506 

mm, respectively). For the purposes of assessing drought effects, we used growth and survival 

data from the 2014 (2013-2014), 2015 (2014-2015), and 2016 (2015-2016) censuses in our 

analyses, and considered drought as a binary variable. The 2015 census was coded as drought 

and the other two years as non-drought. 

 

Functional trait data 

 Wood density and SLA measurements were collected using standard protocols 

(Cornelissen et al. 2003), with minor exceptions noted in Lasky et al. (2015). For all analyses, 

we used the mean trait value for each species. The two traits were weakly correlated (r = -0.35).  

 

Topography data 

 Topography data were derived from airborne LiDAR data, collected by the National 

Center for Airborne Laser Mapping in May 2011. We followed standard procedures to generate a 

digital elevation model (DEM) at 1 m2 resolution from LiDAR returns, using the minimum z-

values of the last-return ground classified points to construct the DEM. Further details about the 

LiDAR data and DEM construction are in Wolf et al. (2016).  
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 We used the DEM to derive topographic slope and hilltop curvature, following methods 

in Hurst et al. (2012). The method uses elevation data to approximate the land surface by fitting a 

six-term quadratic polynomial. We used a 99x99 m moving window to fit this regression, such 

that the surface is fitted for each 1 m2 grid cell of the DEM, but taking into account a 99 m 

neighborhood. This scale best fits soil moisture data collected at a nearby site (Uriarte & 

Zimmerman, Data not shown). Slope and curvature were calculated from the fitted coefficients 

following the methods in Hurst et al. (2012). Hilltop curvature was calculated such that positive 

curvature indicates valley-like topography and negative curvature indicates ridge topography. 

We used the georeferenced stem locations from the plot data to extract slope and curvature at the 

stem location for each tree. Slope and curvature were not correlated (r = -0.004). Though the 

mean slope and curvature differ across plots, plots encompass large, overlapping ranges of 

values for slope and curvature (Appendix 4: Figure 1). 

 

Modeling approach 

We fit hierarchical Bayesian models of annual diameter growth and survival. Growth was 

normally distributed, as negative growth is common due to shrinkage. Our model of the expected 

value of growth took the form: 

𝐸 𝑔!"# =   𝛽!! + 𝛽! ∗ log 𝐷𝐵𝐻!"# + 𝛽!! ∗ 𝑑𝑟𝑜𝑢𝑔ℎ𝑡! + 𝛽!! log 𝑁𝐶𝐼!"# +   𝛽!! ∗ log 𝑠𝑙𝑜𝑝𝑒!"

+ 𝛽!! ∗ 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒!" + 𝛽!! ∗ log 𝑁𝐶𝐼!"# ∗ 𝑑𝑟𝑜𝑢𝑔ℎ𝑡!"# +   𝛽!!

∗ log 𝑠𝑙𝑜𝑝𝑒!" ∗ 𝑑𝑟𝑜𝑢𝑔ℎ𝑡!"# + 𝛽!! ∗ 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒!" ∗ 𝑑𝑟𝑜𝑢𝑔ℎ𝑡!"# +   𝛾! 

(Equation 1) 

where gtsi is absolute diameter growth of individual i of species s at time t. Covariates include 

stem diameter (DBHtsi), a binary indicator for drought/non-drought year (droughtt = 0 in 2014 
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and 2016, droughtt = 1 in 2015), slope and curvature for each stem (slopesi and curvaturesi), and 

NCItsi, a measure of neighborhood crowding. 𝛾! is an individual random effect for each stem. 

DBH, NCI, and slope were highly left-skewed and therefore log-transformed to facilitate 

analysis. Predictors were not strongly correlated (all r < 0.16, Table 2). 

NCI is a dimensionless quantity calculated for each stem, taking into account the 

diameter and distance of all stems within a 10 m radius around the focal tree. Specifically, it is 

calculated as: 

𝑁𝐶𝐼!"# =   
𝐷𝐵𝐻!!

𝑑!"!
!

!!!,!!!
 

(equation 2) 

where stem i has J neighbors within 10 m and dij is the distance from stem i to each neighbor j. 

We used a 10 m radius as prior studies have indicated that this radius is sufficient to capture 

effects of crowding (Uriarte et al. 2004a). Excluding trees less than 10 m from the edge of the 

plot would have resulted in exclusion of a large number of individuals. For those edge trees, we 

scaled their NCI by the ratio of a full-size neighborhood (i.e. a 10 m radius circle) to the size of 

the edge tree’s partial neighborhood.  

The model of survival took a similar form to the model of growth, but we used logistic 

regression and included a predictor term for each stem’s previous year’s growth (gt-1,si). In the 

models of both growth and survival, we included data for all species with more than 20 

individuals, and with available trait data (53 species; Appendix 4: Table 1), though all stems 

were included in calculations of neighborhood crowding. In the growth model, we excluded 

growth observations greater than two standard deviations from the mean, and in both models 

excluded observations with NCI greater than two standard deviations from the mean. This 

resulted in 26,833 growth observations and 28,828 survival observations across all years. 
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We incorporated functional traits into the second level of our model to assess how 

interspecific variation in functional traits mediates the effects of drought, topography, and 

crowding on tree demographics. If variation in functional traits represents variation in plant 

strategies, then species-level responses to stressful or high-resources conditions should vary 

predictably with their trait values. We expected that functional traits might influence average 

growth and survival rates (β1s) along with species’ sensitivities to drought (β3s), crowding (β4s), 

topography (β5s, β6s), and their interactions (β7s, β8s, β9s). We did not model species-specific 

parameters for tree size (β2). For each covariate (k) we modeled the species-specific βks as a 

normally distributed process deriving from a linear function of that species’ traits: 

𝛽!"  ~  𝑛𝑜𝑟𝑚𝑎𝑙(𝑏! + 𝑏!! ∗ log  (𝑆𝐿𝐴!)+ 𝑏!! ∗𝑊𝐷!,   𝜎!   ) 

(equation 3) 

𝜎! is the variance in the covariate effects unexplained by trait variation. Because it was strongly 

left-skewed, we log-transformed SLA. We centered and scaled the traits so that bk represents the 

mean species response to covariate k, and bk1 and bk2 represent the departure from the mean with 

an increase of one standard deviation of log(SLA) and WD, respectively.  

 We standardized all predictors to facilitate model convergence and ease interpretation 

(Gelman and Hill 2007).  We standardized DBH and NCI on a species-by-species basis, to avoid 

confounding their effects with species-specific differences in size and crowding. Other predictors 

were standardized across the whole dataset. We specified uninformative priors for all parameters, 

and estimated posterior distributions using Markov chain Monte Carlo (MCMC) sampling 

implemented in JAGS (Plummer 2003). We verified convergence visually and by ensuring the 

potential scale reduction statistic (𝑅) was equal to 1 (Gelman and Rubin, 1992). Models 

generally converged after 30,000 iterations. We performed posterior predictive checks by 
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simulating predicted growth and survival for all observations and calculating the R2 between 

predicted and observed values. All statistical analyses were conducted in R (R Development 

Core Team 2014) with the packages rjags and R2jags (Plummer et al. 2003, Su and Yajima 

2015).  

 

Results 

Growth model  

Across the study period, the average annual growth rate was 0.06 cm. Average growth 

was lowest during the drought year and highest in the year following the drought (Appendix 4: 

Figure 2). The model predicting tree growth was able to reproduce observed variation in growth 

(R2 = 0.32), though it over/under predicted extreme high/low growth values (Appendix 4: Figure 

3). Drought was the strongest predictor of growth, with lower growth during the drought year 

(Figure 1a). Diameter was also important, with larger trees having higher growth, on average 

(Figure 1a). Topography and crowding variables were significant predictors of tree growth. More 

crowded individuals (trees with higher NCI) had lower growth, as did trees on steeper slopes 

(Figure 1a, 2a, 2c). There was no significant interaction between crowding and drought, or 

between slope and drought, indicating that the effects of crowding and slope on growth were 

similar in drought vs. non-drought years (Figure 1a, 2a, 2c). The main effect for curvature was 

not significant, indicating that on average, curvature does not affect growth. However, there was 

a significant interaction between curvature and drought, indicating that trees located in areas with 

higher curvature were more negatively affected by drought (Figure 1a, 2b). 

 Though most trait effects were not significant, functional traits did influence growth via 

effects on species average growth, drought response, and response to topography (Table 3). High 
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wood density was associated with lower average growth rates (b12 in equation 3, Table 3). Trees 

with high wood density also had significantly less negative responses to drought (Figure 3). 

There were no significant trait associations with sensitivity of growth to crowding. SLA was 

negatively associated with slope response, such that the negative effect of growth was amplified 

for trees with high SLA (Figure 3). SLA also had a negative association with the curvature-

drought interaction term, such that species with high SLA were more negatively affected by 

curvature during drought years (Table 3, Figure 4).  

 

Survival model 

The average survival rate across the whole dataset was 89%, with significant inter-annual 

variation (86% in 2014, 90% in 2015, 93% in 2016). The model of survival reproduced observed 

variation (R2 = 0.56, Appendix 4: Figure 4). DBH and antecedent growth were the most 

important predictors of survival, with larger trees and trees that had experienced higher growth in 

the preceding year having a higher probability of survival. Drought also reduced survival, though 

it did not stand out relative to other predictors the way it did in the growth model (Figure 1b, 

Figure 2). Surprisingly, the effects of slope, curvature, and crowding were opposite to those in 

the growth model. More crowded trees and trees on steeper slopes had a higher probability of 

survival (Figure 1b, 2d, 2f). Higher curvature (i.e., valley habitats) reduced tree survival, 

contrary to expectations (Figure 1b, 2e). In the survival model none of the interaction terms were 

significant, indicating that the effects of topography and crowding on survival were similar, on 

average, across all three years of the study (Figure 2d-f). 

 There were a number of strong trait associations with survival (Table 3). Across the study 

period, trees with high SLA and high wood density had higher average survival, and responded 
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more positively to antecedent growth (Table 3). Wood density was not related to the effect of 

drought on survival. SLA, however, was significantly related to species’ drought response, with 

trees with high SLA more likely to die during drought (Figure 3, Table 3). There were no 

significant trait associations with survival response to crowding.  

However, we found complex interactions between the effects of topography, drought, and 

traits on survival. Both wood density and SLA were negatively associated with the slope effect 

on survival, meaning that trees with high SLA or high wood density had reduced survival on 

steep slopes. These traits were also significantly associated with the interaction between slope 

and drought. For SLA, there was a negative association with the drought-slope interaction, such 

that survival was further reduced for high-SLA trees on steep slopes (Figure 4). Wood density 

had a positive association with the interaction term, such that the negative relationship between 

wood density and the effect of slope on survival weakened during drought years. SLA was 

positively associated with response to curvature, such that trees with high SLA were more likely 

to survive in more valley-like sites (Figure 4). However, we found a significant relationship 

between SLA and the drought-curvature interaction, such that the relationship between SLA and 

the curvature effect flattened during drought years (Figure 4). 

 

Discussion 

 Drought can have large effects on tropical forests, but impacts of drought vary across 

species and space (Bonal et al. 2016). Spatial variability in drought impacts is often driven by 

differences in the microclimates that individual trees experience, because of the way regional 

climate is filtered through topography, vegetation, and other environmental factors that vary on 

small scales (McLaughlin et al. 2017), and by species differences in physiology and drought 
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response. The 2015 drought in Puerto Rico provided a unique opportunity to leverage long-term 

data collected in a topographically complex tropical forest to examine the way that species 

differences and local filtering of climate affect drought response. Our study illustrates an 

integrative approach to predict demographic response to climate variation. We found evidence 

that drought affected tree performance, though effects on growth were stronger than survival. 

Topography and crowding influenced tree performance, but their effects and interactions with 

drought were not always in the direction we expected. Integrating functional traits into these 

models provided insight into the mechanisms by which drought, topography, and crowding affect 

tree performance. 

 

Drought effects on tree performance 

 As expected, drought affected tree performance both directly and via interactions with 

topography. Though our models predicted greater mortality during drought years, the effect of 

drought on survival was relatively weak compared to the effects of topography and crowding on 

survival, and the effect of drought on survival was weaker than its effect on growth (Figure 1, 

Figure 2). In fact, survival was higher during the drought year than in the year preceding the 

drought, but it was lower than the year following the drought. This relatively weak effect of 

drought is consistent with other studies: in two drought experiments in the Amazon, 50-60% of 

rainfall was excluded, but mortality rates were low during the experiments’ first years and major 

die-offs were only observed after about 3 years of prolonged drought (Nepstad et al. 2007, da 

Costa et al. 2010). In 2015, El Yunque rainfall was only 56% of the annual mean, but the drought 

only lasted for one year, perhaps not long enough to cause widespread mortality. 
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 The effects of drought on growth were stronger than the effects on survival (Figure 1, 2). 

Tropical tree growth seems to respond to drought on more rapid time scales than survival: in the 

same throughfall experiments described above, growth impacts were apparent in the 

experiments’ first years (Brando et al. 2008, da Costa et al. 2010). Tree-ring and long-term 

monitoring studies have found strong correlations between diameter growth and rainfall in 

tropical trees (Brienen et al. 2010, Clark et al. 2010). Reductions in radial growth may be driven 

by overall declines in productivity, and/or shifts in allocation from stem growth to leaves, 

branches, roots, or non-structural carbohydrates (Malhi et al. 2015). Trees can use non-structural 

carbohydrates to maintain NPP when photosynthetic rates are reduced during drought (Doughty 

et al. 2014), and shift allocation during and after drought (Metcalfe et al. 2010). The drivers of 

variation in tree allocation of carbon are poorly understood, though they are essential for 

understanding the mechanisms by which drought affects trees (Malhi et al. 2015).  

 

Topography and crowding effects on tree performance 

 Steep slopes can be stressful environments, with lower soil moisture and shallower soil, 

so we expected that tree performance would be lower on steeper slopes. We found that growth 

was lower on steeper slopes, but surprisingly, survival was higher in steeper slopes, and the 

effect of slope did not vary between drought and non-drought years for both growth and survival. 

Though few studies have considered inter-specific variation in demographic rates along fine-

scale topographical gradients in tropical forests, several studies have shown that local variation 

in water availability affects species distributions, with drought-tolerant species showing a 

stronger affinity for dry micro-sites where drought sensitive species may not persist (Ashton et 

al. 2006, Engelbrecht et al. 2007, Comita and Engelbrecht 2009). Such species sorting may occur 
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at our study sites, which would lead to a high abundance of trees with more conservative 

resource use strategies (i.e. lower growth but higher survival, Reich, 2014) on steep slopes. 

Lending some support to this hypothesis, we found a weak, but significant, negative correlation 

between slope and SLA, which is often assumed to be an acquisitive trait (Table 2). We also 

found growth and survival of trees with high SLA were more negatively affected by slope 

(Figure 3). Species sorting could also explain why the slope effect on growth was not stronger 

during drought years; if trees on steep slopes tend to be more drought-tolerant or conservative, 

they may not exhibit an elevated drought response despite experiencing more severe moisture 

stress.  

 The effect of species sorting may also help explain the results we observed with regards 

to curvature. Curvature represents how ridge-like or valley-like a surface is, and so we expected 

tree performance to be enhanced and drought effects to be minimized in valleys (positive 

curvature) relative to ridges. Our finding of lower survival at more positive curvature suggests 

that more acquisitive species—with higher growth rates but lower survival—are more abundant 

at valley-like positions. This possibility is further supported by the positive correlation between 

SLA and curvature and the negative correlation between wood density and curvature observed in 

our dataset (Table 2). 

Our finding that growth did not vary with curvature during non-drought years suggests 

little advantage for trees in valleys (high curvature areas) during normal years, perhaps because 

consistently high rainfall means that soils are close to saturation regardless of their landscape 

position. Results from Panama support this hypothesis: seedling performance varied with 

microsite topography only in the dry season because all soils were at or near saturation during 

the wet season (Comita and Engelbrecht 2009). During drought years, however, there was a 
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negative growth response to curvature (Figure 2), despite our assumption that trees growing in 

areas with more positive curvature would experience less severe moisture deficits, and thus show 

less sensitivity to drought. The correlation between curvature and SLA may be driving this 

result: trees growing in valleys are more frequently of species that are more sensitive to drought 

and thus show a stronger growth response despite experiencing less severe moisture stress. 

 Somewhat contrary to our prediction that crowding would negatively impact tree 

performance, we found crowding reduced growth but, surprisingly, increased survival. While 

many studies have shown that competitive effects from crowding have a negative impact on tree 

performance (Uriarte et al. 2012a), others have shown no effect on growth and/or survival 

(Uriarte et al. 2016, Lasky et al. 2014) or even positive effects (Hurst et al. 2011). Furthermore, 

sensitivity to crowding varies across species (Uriarte et al. 2004b, 2004a, Canham et al. 2009). 

Variation in the effects of crowding across studies and our finding that crowding increased 

survival could have to do with the difficulty of disentangling the competitive impacts of 

crowding from the environmental drivers of crowding. Variation in number and size of stems 

within and across forest stands can be driven by variation in site favorability (Clark and Clark 

2000, Malhi et al. 2006, Alves et al. 2010, Hernández-Stefanoni et al. 2011). If this is the case, 

our finding of enhanced survival in more crowded neighborhoods could reflect site quality. Trees 

in more crowded stands tend to allocate more carbon to height versus radial growth (Holbrook 

and Putz 1989, Weiner and Thomas 1992, Naidu et al. 1998, Poorter 2001), potentially 

explaining the observed negative effect of crowding on stem growth despite the positive effect of 

survival. This hypothesis is also consistent with our finding that crowding effects were not 

amplified during drought years. However, we found very low correlation between both of our 

topographic variables and crowding (Table 2). This lack of relationship suggests that if the 



 102 

effects of crowding are driven by site favorability, soil nutrients or another factor and not 

topography, underlie variation in site favorability. 

 

Interactions between functional traits, drought, topography, and tree performance 

Variation in plant functional traits reflects differences in plant strategies, which span a 

tradeoff axis from “fast,” acquisitive strategies that involve high growth and metabolic rates and 

strong competitive ability to quickly take up resources, to “slow,” conservative strategies which 

entail lower metabolic rates, but enhanced ability to survive under low resource conditions 

(Wright et al. 2004, Reich 2014). These strategies can be manifested as a growth vs. survival 

trade-off, in which slow-growing conservative species have higher rates of survival while fast 

growing species have shorter lifespans (Sterck et al. 2006). The growth-survival tradeoff is 

partially reflected in our results: wood density is negatively related to average growth, but 

positively associated with average survival (b12, Table 3). This supports many studies that have 

found that high wood density is a conservative strategy that entails low growth, but enhanced 

persistence under more stressful conditions (Chave et al. 2009, Poorter et al. 2010). Our results 

for SLA, however, are less consistent with expectations: we found that trees with high SLA had 

slightly above-average growth (non-significant, positive relationship with b11), and above 

average survival. Though surprising, this fits in with the highly variable and poorly resolved 

relationships between SLA and performance in other studies. For example, Lasky et al. (2015) 

found the expected growth-survival tradeoff with SLA, while Poorter et al. (2008) found a 

negative association between SLA and growth, and no relationship between SLA and survival.  

Differences in plant strategies are reflected in variation in performance across 

topography. For example, the reduced performance of high SLA species on slopes, and enhanced 
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growth at high curvature suggests that high SLA is associated with low stress tolerance, but 

enhanced performance in high-resource areas. Apart from a negative effect of wood density on 

the slope effect on survival, there was no relationship between wood density and variation in 

performance across topography. Many studies have linked variation in wood density to shade 

tolerance (Lawton 1984, Poorter et al. 2010, Markesteijn et al. 2011), and so it is possible that 

light, which is likely unrelated to microtopography, is a stronger filter on performance as it 

relates to wood density. These associations between traits, topography, and performance likely 

underlie some of the fine-scale species sorting discussed above. 

By incorporating functional traits into models of tree performance across environmental 

gradients, we can begin to identify general mechanisms by which environmental variation affects 

trees and species differentially. For example, we found that trees with high SLA were more 

likely to die during drought. Trees with high SLA tend to have higher photosynthetic rates and 

accordingly, higher transpiration rates, which predisposes them to higher levels of water loss 

during drought (depending on stomatal regulation, Poorter et al., 2009). Though there was no 

relationship between wood density and the drought effect on survival, growth rates of trees with 

high wood density were less sensitive to drought. During non-drought conditions, trees with high 

wood density typically have slower growth rates due to lower transpiration rates and the higher 

carbon cost of building denser wood (Chave et al. 2009). However, these trees can also maintain 

hydraulic conductivity under drier conditions (Chave et al. 2009, Reich 2014) and so may be 

able to maintain photosynthetic and growth rates closer to normal during drought.  

 Our findings that trees with high wood density were less sensitive to drought, while trees 

with high SLA were more sensitive to drought, are consistent with other studies (Metcalfe et al. 

2010, Phillips et al. 2010, Uriarte et al. 2016a). A recent meta-analysis found that globally, these 
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two traits are associated with sensitivity to drought-induced mortality (Greenwood et al. 2017). 

However, the strength and direction of these relationships have differed across studies (Russo et 

al. 2010, Hoffmann et al. 2011, O’Brien et al. 2017). Though SLA and wood density are 

indirectly related to water use strategies, neither is a direct measurement of plant hydraulics. 

Measuring hydraulic traits such as turgor loss point, water potential at 50% loss of conductivity, 

or stem water potential may provide more power for predicting species’ drought responses 

(Bartlett et al. 2012, Maréchaux et al. 2015, O’Brien et al. 2017). Though these measurements 

can be expensive and time consuming (O’Brien et al. 2017), new methods are making them 

easier (Maréchaux et al. 2015), providing a promising way forward to improving predictions of 

drought response. The modeling framework we demonstrate here, which incorporates functional 

traits, drought response, and environmental variability could easily be applied with hydraulic 

trait data, and could greatly improve our ability to predict drought responses.   

 

Acknowledgements 

This work was supported by US National Science Foundation (NSF) awards DEB-1050957 to 

MU and DEB-1546686 to the Institute for Tropical Ecosystem Studies, University of Puerto 

Rico, working with the International Institute of Tropical Forestry (USDA Forest Service), for 

the Luquillo Long-Term Ecological Research Program. We thank the census crews that collected 

the data. 

 
  



 105 

Figures and Tables 

Figure 1: Average parameters from growth and survival models. Open circles are not significant. 
Parameter values are bk (equation 3) i.e. effects at the mean trait values. 
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Figure 2: Predicted growth (a-c) and probability of survival (d-f) as a function of slope, 
curvature, and neighborhood crowding. Text in the lower left corner indicates whether main 
effects and interactions were significant* or not significant (n.s.).  
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Figure 3: Relationships between traits (x-axis) and select species-specific estimates of model 
parameters (y-axis). All relationships shown were significantly different from zero. a) drought 
effect (growth model) vs. wood density. b) slope effect (growth model) vs. SLA. c) drought 
effect (survival model) vs. SLA. Note that SLA is log-transformed as we log-transformed it for 
our models.  
 

a)    b)        c) 

 
 
 
Figure 4: Relationships between traits (x-axis) and species-specific estimates of model 
parameters (y-axis) for variables which had a significant trait effect on the interaction term. 
Green points show variables’ effects on performance during normal years, beige shows effects 
during drought years. a) Curvature effect (growth model) vs. SLA. b) Slope effect (survival 
model) vs. SLA. b) Curvature effect (growth model) vs. SLA.   
 

a)    b)      c) 
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Table 1: Study site descriptions 
Plot Name Size (m2) Age, determined from aerial 

photos 
Elevation N stems in 

2016 
EV1 10,000  >62 yrs but < 76 yrs ~ 550m 2937 
SB1 4,625  >35 yrs but < 62 yrs ~100-150m 2496 
SB2 6,400  >62 yrs but not primary forest ~100-150m 4665 
SB3 4,800 Primary forest ~100-150m 1756 
 
 
 
Table 2: Correlations between variables and traits in the growth dataset. ** indicates p < 0.01, 
*** indicates p < 0.001. 
 Diameter NCI Slope Curvature SLA WD 
Diameter 1      
NCI -0.07*** 1     
Slope 0.04*** 0.07*** 1    
Curvature -0.02 -0.05*** 0.02** 1   
SLA 0 0 -0.17*** 0.12*** 1  
WD 0 0 0.08*** -0.15*** -0.37** 1 
 
 
Table 3: Trait results w 90% credible intervals. * indicates significant difference from 0. NA 
indicates parameter was not included in model. 
Covariate  SLA Growth Survival 
Intercept b11 0.008 (-0.008, 0.024) 0.41 (0.35, 0.48)* 
Drought b31 0.008 (-0.001, 0.017) -0.22 (-0.31, -0.10)* 
NCI b41 -0.001 (-0.004, 0.003) 0.06 (-0.00, 0.12) 
Slope b51 -0.005 (-0.012, -0.000)* -0.31 (-0.38, -0.25)* 
Curvature b61 0.004 (-0.002, 0.010) 0.39 (0.31, 0.47)* 
NCI x drought b71 -0.002 (-0.008, 0.002) -0.05 (-0.14, 0.03) 
Slope x drought b81 0.004 (-0.002, 0.011) -0.11 (-0.20, -0.02)* 
Curvature x drought b91 -0.008 (-0.015, -0.002)* -0.25 (-0.36, -0.13)* 
Antecedent growth  NA 0.27 (0.22, 0.32)* 
 WD Growth Survival 
Intercept b12 -0.016 (-0.032, -0.000)* 0.12 (0.06, 0.20)* 
Drought b32 0.010 (0.001, 0.018)* 0.03 (-0.07, 0.12) 
NCI b42 -0.001 (-0.005, 0.002) 0.02 (-0.05, 0.09) 
Slope b52 -0.001 (-0.007, 0.004) -0.34 (-0.42, -0.26)* 
Curvature b62 -0.004 (-0.009, 0.001) 0.06 (-0.02, 0.13) 
NCI x drought b72 -0.001 (-0.005, 0.005) 0.02 (-0.08, 0.12) 
Slope x drought b82 0.004 (-0.002, 0.010) 0.11 (0.001, 0.22)* 
Curvature x drought b92 -0.003 (-0.010, 0.002) -0.05 (-0.15, 0.05) 
Antecedent growth  NA 0.06 (0.01, 0.10)* 
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CONCLUSION 

Tropical second growth forests have the potential to provide a wide variety of benefits to 

people and nature on local and global scales (Locatelli et al. 2015, Chazdon et al. 2016), and 

many countries have set ambitious restoration targets under the Paris Climate Agreement and 

other mechanisms (see Chapter 1). However, the degree to which these targets are met and 

sustained will in part depend on forest exposure to disturbance and extreme events, which can be 

high due to second-growth forests’ location in fragmented, human-dominated landscapes and 

their high proportion of vulnerable species (Uriarte et al. 2016). This dissertation examined how 

landscape context influences vulnerability to disturbance and extreme events in tropical second-

growth forests. By integrating a variety of types of data and taking a long-term perspective, I 

hope that my dissertation has improved our understanding of the causes of disturbance in second-

growth forests and the consequences for ecology, carbon sequestration, and management.   

Second-growth forests are, by definition, subject to human influences whether through 

the residual effects of prior land-use or through human activities in and around second-growth 

forests (Guariguata and Ostertag 2001). This dissertation shows that understanding the ecological 

dynamics of second growth forests requires considering them in the context of the human-

dominated landscapes in which they tend to be located. For example, Chapter 1 illustrates that 

where forest is most likely to regrow is strongly influenced by spatial location in the landscape, 

and linked to anthropogenic features such as roads and villages. The results in Chapter 2 

highlight the importance of anthropogenic factors in driving fire activity; forest exposure to fire 

in the study landscape is largely subject to controls linked to human activities and forest position 

on the landscape, and characteristics of the forest itself may be less important. In a similar vein, 

Chapter 3 illustrates how vulnerability to wind damage varies with fragmentation, again 
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emphasizing how important a forest’s location in a landscape matrix is. Finally, Chapter 4 

highlights the importance of non-anthropogenic landscape factors, specifically topography, in 

shaping forest demographics and vulnerability to drought. Considering the role of topography in 

second-growth forest ecology may be particularly important since most land abandonment 

occurs on steep and marginal terrain (Helmer 2000, Asner et al. 2009b). 

The strong influence of landscape context on second-growth forest ecology means that a 

landscape perspective is also highly important for carbon accounting and predicting future 

carbon fluxes. In Chapter 1, I show that estimates of future carbon sequestration in second-

growth forests differ significantly depending on assumptions made about landscape context and 

exposure to clearing. Chapters 2 and 3 show how exposure to disturbance, which can have a 

major impact on rates and quantities of carbon sequestration, varies with land cover and 

fragmentation. Chapter 3 also demonstrates how ignoring the effects of fragmentation can result 

in underestimating the role of extreme winds in driving carbon loss in tropical forests. Finally, 

the results from Chapter 4 highlight the importance of considering topography when modeling 

tree performance and forest dynamics. Currently, most dynamic global vegetation models such 

as the Ecosystem Demography model (Medvigy et al. 2009) and LPJ (Smith et al. 2001) do not 

incorporate topographic indices or lateral movement of water (but see Tang et al. 2014), though, 

as our results illustrate, small-scale topography and hydrologic variation can affect tree 

performance and carbon fluxes (Sjögersten et al. 2006, Pacific et al. 2008, Lecki and Creed 

2016). Incorporating landscape context and topography into these models could affect outputs 

and estimates of future carbon fluxes and other ecosystem properties.  

I hope that the results of this dissertation are useful for people making decisions about 

forest management and landscape planning. Many countries have recently developed plans for 
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large-scale forest restoration and natural regeneration and other countries will likely follow suit 

in upcoming years (Chazdon and Guariguata 2016). Such plans require prioritizing and 

protecting areas where natural regeneration and restoration are likely to be most successful 

(Chazdon and Guariguata 2016). The results from this dissertation could be useful for such 

efforts: for example, forest protection, tree planting, and fire prevention programs could be 

spatially targeted at the most fragmented and vulnerable locations. Furthermore, the 

interdisciplinary approaches demonstrated in this dissertation could be useful for studying other 

landscapes where anthropogenic influences and their impacts on forest ecology may differ.  

Finally, this dissertation illustrates the insight that can be gained by taking a long-term, 

observational approach to understanding ecological processes at a landscape scale. Experimental 

manipulations of tropical forests are logistically difficult and all but impossible to conduct at the 

requisite scale to understand the influence of spatial configuration and landscape context (but see 

Laurance et al. 2002). Satellite remote sensing and long-term data give researchers the ability to 

take a broad-scale perspective, to look back in time, and to “be in the right place all the time” in 

order to observe the impacts of large-scale disturbances and extreme events when they occur. 

However, these approaches, while powerful for detecting spatial and temporal patterns across 

landscapes, may be limited in their ability to observe the processes and mechanisms that generate 

observed patterns. Future research could delve into the biological and social mechanisms behind 

the patterns detected in this study. For example, field measurements of forest structure, 

composition, and wind speed could help disentangle the mechanisms responsible for increasing 

wind damage in fragmented forests. Studying differences in soil moisture and other soil 

characteristics with microtopography could help explain the plant demographic patterns observed 

in Chapter 4. Surveys of people’s land-use practices in the study area could shed light on what 
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drives people’s decisions to clear or protect second-growth forest and help explain the spatial 

patterns in Chapter 1.  

Disturbance, extreme events, and human influences are important and unavoidable parts 

of most ecosystems, especially tropical forests. Better understanding how the biophysical and 

social aspects of landscapes influence vulnerability to disturbance and extreme events allows us 

to anticipate, manage, and/or minimize their negative impacts.  I hope that this dissertation 

broadens and deepens our understanding of the landscape and disturbance ecology of tropical 

forests, and that it contributes to future efforts to conserve and promote tropical second-growth 

forests to benefit humans and nature. 
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Appendix 1: Supplementary information for Chapter 1 

Land cover classification 
This study employed a land cover classification developed and validated in a previous 

study in our study area (Gutiérrez-Vélez and DeFries 2013). The original classification spanned 
10 years (2000-2010). It differentiates between high-biomass forest, low-biomass forest, and 
other land cover types, including oil palm, deforested, fallow, pasture, bare soil, and water, with 
overall accuracy of 93%. We applied the same procedure and classification tree to additional 
images to complete a 30 year time series with 30x30 m pixel resolution. Specifically, we 
identified Landsat TM/ETM+ scenes from 1984-1999, and 2011-2013 (Table 1). All scenes were 
acquired as surface reflectance with atmospheric corrections from the Landsat CDR archive 
(USGS 2017) via USGS Earth Explorer (http://earthexplorer.usgs.gov). Scenes were 
radiometrically normalized to a reference image from the year 2000 using the iMAD algorithm 
(Canty and Nielsen 2008) and clouds and cloud shadows were masked using the Fmask band 
included in the surface reflectance product (Zhu and Woodcock 2012, Zhu et al. 2015, USGS 
2017). We calculated the following band transformations for each image, for use in the 
classification procedure: 1) tasseled cap band transformations (brightness, greenness, third), 2) 
bare, vegetation, and shade fractions from spectral mixture analysis, and 3) NDVI. Finally, we 
applied the previously developed random forest classifier to the transformed bands and masked 
oil palm plantations with a previously developed map of oil palm in the study area (Gutierrez-
Velez and DeFries 2013). To improve accuracy and predict land cover in data gaps or areas 
covered by clouds when possible, we applied a temporal filter to disallowed trajectories (cite). 
Remote sensing analyses were conducted in ENVI 4.8 (Exelis Visual Information Solutions).  

 
Field data collection and calculation of forest biomass 
 To establish the relationship between forest age and biomass accumulation, we used data 
from 30 field plots. In each plot, we measured all stems > 5 cm diameter at breast heigh (dbh). 
To determine plot level biomass, we used the following allometric equation developed for 
secondary forest species in the central Amazon (Nelson et al. 1999): 

ln(biomass) = -1.9968+ 2.4128*ln(DBH) 
We scaled plot-level values to units of Mg/ha, and divided values by two so that estimates were 
in terms of kg C instead of kg biomass, under the assumption that C makes up 50% of biomass 
(Brown and Lugo, 1982). We found a highly significant relationship between biomass and forest 
age (R2 = 0.517, p > 0.001, Figure 1). 
 
References 
Brown S and Lugo A E 1982 The Storage and Production of Organic Matter in Tropical Forests 

and Their Role in the Global Carbon Cycle Biotropica 14 161 Online: 
http://www.jstor.org/stable/2388024?origin=crossref 

Canty M J and Nielsen A A 2008 Automatic radiometric normalization of multitemporal satellite 
imagery with the iteratively re-weighted MAD transformation Remote Sens. Environ. 112 
1025–36 

Gutiérrez-Vélez V H and DeFries R 2013 Annual multi-resolution detection of land cover 
conversion to oil palm in the Peruvian Amazon Remote Sens. Environ. 129 154–67 Online: 
http://dx.doi.org/10.1016/j.rse.2012.10.033 



 132 

Nelson B W, Mesquita R, Pereira J L G, Souza S G a, Batista G T and Couto L B 1999 
Allometric Regressions for Improved of Secondary Forest Biomass in the Central Amazon 
For. Ecol. Manage. 117 149–67 

USGS 2017. Landsat 4-7 climate data record (CDR) surface reflectance. Available at: 
https://landsat.usgs.gov/sites/default/files/documents/ledaps_product_guide.pdf 

Zhu Z and Woodcock C E 2012 Object-based cloud and cloud shadow detection in Landsat 
imagery Remote Sens. Environ. 118 83–94 Online: 
http://dx.doi.org/10.1016/j.rse.2011.10.028 

Zhu Z, Wang S and Woodcock C E 2015 Improvement and expansion of the Fmask algorithm: 
Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images Remote 
Sens. Environ. 159 269–77 Online: http://dx.doi.org/10.1016/j.rse.2014.12.014 

 



 133 

Table 1: Landsat images used for classification (images for 2000-2010 are listed in Gutierrez 
Velez and DeFries 2013). 
Year Julian date Satellite Path/row 

1985 195 Landsat TM 06-066 
1985 218 Landsat TM 07-066 
1987 185 Landsat TM 06-066 
1987 96 Landsat TM 07-066 

1988 204 Landsat TM 06-066 

1988 211 Landsat TM 07-066 
1989 190 Landsat TM 06-066 
1989 221 Landsat TM 07-066 
1990 225 Landsat TM 06-066 

1990 216 Landsat TM 07-066 
1991 164 Landsat TM 06-066 
1991 219 Landsat TM 07-066 

1993 192 Landsat TM 07-066 

1993 217 Landsat TM 06-066 
1995 207 Landsat TM 06-066 

1995 262 Landsat TM 07-066 

1996 265 Landsat TM 07-066 

1996 114 Landsat TM 06-066 
1997 180 Landsat TM 06-066 
1997 251 Landsat TM 07-066 

1998 247 Landsat TM 06-066 

1998 142 Landsat TM 07-066 
1999 218 Landsat TM 06-066 
1999 233 Landsat ETM+ 07-066 
2011 203 Landsat TM 06-066 
2011 226 Landsat TM 07-066 
2013 208 Landsat OLI 06-066 
2013 231 Landsat OLI 07-066 
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Figure 1: Relationship between AGB and age in 30 field plots. 

 
 
Figure 2: Plot of proportion of pixels with predicted probability of regrowth that actually re-
grew. The solid 1:1 line indicates the expected value for a model that perfect predicts probability 
of regrowth. Our model somewhat over-predicts regrowth. 
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Figure 3: Plot of proportion of second-growth forest pixels with predicted probability of clearing 
that were actually cleared. The solid 1:1 line indicates the expected value for a model that perfect 
predicts probability of clearing. Our model somewhat under-predicts clearing. 

 
 
Figure 4: Distribution of forest ages in 2013.  
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Figure 5: Inter-annual variability in probability of clearing and regrowth. Y-axis is the year-
specific intercept from the mixed-effects models, i.e. the probability of event (forest regrowth, or 
second-growth forest clearing) at mean values for all predictors. 
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Appendix 2: Supplementary information for Chapter 2 

 
Table 1: Correlation matrix between predictors used in analyses 

 
 SPI 

fallow 
(farm) 

pasture 
(farm) 

land owner 
present? 

fallow 
(village) 

pasture 
(village) 

% landowners 
living in village 

farm 
area 

SPI 1 
       fallow 

(farm) 0.043 1 
      pasture 

(farm) 0.072 -0.098 1 
     Land owner 

present? 0.002 0.090 0.034 1 
    fallow 

(village) 0.031 0.278 -0.105 0.081 1 
   pasture 

(village) -0.002 0.053 0.386 -0.0359 0.169 1 
  % 

landowners 
living in 
village 0.019 0.170 0.017 0.359 0.211 -0.087 1 

 farm area -0.010 -0.072 -0.042 -0.139 0.027 0.096 -0.105 1 
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Figure 1: Plot of proportion of parcels with predicted probability of fire that actually burned. The 
red dashed line indicates the expected value for a model that perfect predicts probability of fire.  
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Figure 2: Observed fire size vs. predicted fire size. Our model underpredicts large fires.  
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Appendix 3: Supplementary information for Chapter 3 

Additional methods: Land cover classification 
 
 Field reference data for landcover classes were collected during a 2015 field campaign. 

These data were used for training and testing the classification. GPS points were taken at the 

center of uniform areas of the reference land cover categories using a Garmin GPSMAP 62sc. 

These points were later digitized into polygons covering the extent of the uniform area. This 

resulted in 152 polygons, or 2198.52 ha total, divided among classes (Table 2). Each polygon 

was divided into training and testing data, with 60% of pixels used for training and 30% used for 

testing. The middle 10% of pixels were excluded from each polygon so that training and testing 

areas were non-adjacent, to avoid inflating the accuracy of the classification due to spatial 

autocorrelation between training and testing data.   

 Landsat OLI images from 2014 and 2015 were used for the classification (Table 1). The 

2013 land cover layer was obtained from a previous study (Gutiérrez-Vélez & DeFries, 2013). 

Images were calibrated and converted to surface reflectance prior to download, and pre-

processed in the same manner as described for the wind damage mapping. Because field data 

were collected in 2015, we built the classification using the 2015 image and then applied the 

classification tree to the 2014 images. The classification was built using several spectral indices 

and spectral transformations: i) NDVI, ii) bare soil, vegetation, and shade fractions from SMA, 

iii) brightness, greenness, and third from a tasseled cap transformation, and iv) first- and second-

order texture measures. Components i-iii were shown to be effective at classifying the non-oil 

palm land cover types in a land cover classification from the same study area (Gutiérrez-Vélez & 

DeFries, 2013). We used spectral libraries for bare, vegetation, and shade developed for the 

earlier classification for the SMA (Gutiérrez-Vélez & DeFries, 2013).  
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Texture measures were included to improve separation of oil palm plantations, which are 

spectrally similar to secondary forests but appear more uniform in satellite images due to even 

aged planting. Two measures were calculated: variance and homogeneity. Variance is the 

statistical variance in the pixel brightness value in the 3x3 neighborhood. Homogeneity is a 

second-order texture measure, based on a co-occurrence matrix, which characterizes relative 

frequencies between brightness levels (Haralick & Shanmugam, 1973; Rodriguez-Galiano et al., 

2012). Both measures were calculated over 3x3 pixel windows on bare, vegetation, and shade 

fractions from the SMA.  

We used a random forest classifier to classify the images. Random forest is a supervised 

machine-learning algorithm that builds a series of decision trees, each one using a different 

random subset of the training data, and then assigns final classes based on the “votes” of each 

tree (Breiman, 2001). We fit our classification from 1000 decision trees, trying 6 variables at 

each split. Though the classification predicts error internally (Breiman, 2001), we further 

assessed the accuracy of the classification using the 30% of each polygon set aside as testing 

data, to avoid inflating the accuracy assessment of our classification. Because the goals of this 

classification were to accurately map forested areas, we lumped the non-forest and young oil 

palm categories into one “other” category for accuracy assessment. Because mature oil palm is 

common in the study area (Gutiérrez-Vélez et al., 2011) and is easily confused with forest, it was 

not included in the other category to ensure that it was being accurately and effectively 

distinguished from forest. Random forest models were fit using the randomForest package in R. 

After classification, we applied a 3x3 majority filter to reduce speckle and noise. This filter also 

improved classification of edges of oil palm plantations, where texture measures may differ from 

interior pixels of oil palm plantations.   
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We applied a temporal filter for disallowed transitions to the 2014 land cover map 

(Roberts, 2002). This approach looks at three-year periods for every pixel and replaces 

“unreasonable” trajectories with the likely land cover given information from the other years. For 

example, a pixel classified as forest-pasture-forest in a three-year period would be reclassified as 

forest in the second year (Gutiérrez-Vélez & DeFries, 2013). This approach is also useful for 

predicting land cover in masked areas such as clouds or cloud shadows.  
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Figure 1: Maximum observed overshooting top probability on November 30, 2013 between 
19:45 and 23:45 GMT. Center polygon indicates study area. Only values greater than 0.7 are 
shown to coincide with the greatest separation between overshooting top probability of detection 
and false alarm rate. Data derived from GOES-13 satellite following the methods of Bedka and 
Khlopenkov (2016). OT probability is derived from satellite observations made every 30 
minutes, so high OT probability was not necessary confined observed locations. Rather, these 
data indicate high probability severe winds throughout the region on the indicated dates.   
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Figure 2: Endmembers used in spectral unmixing. 

 
 
Figure 3: Schematic illustrating how spillover effects from anthropogenic disturbance were 
masked. A) ΔNPV before masking, with newly deforested areas shown in dark purple. Note high 
ΔNPV on forest edges near locations of recent deforestation. B) ΔNPV after masking 60 m 
buffer around deforested areas. Note that areas with high ΔNPV next to recent anthropogenic 
clearing have been masked. 
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Figure 4: Histograms of ΔNPV. a) Histogram of ΔNPV of all pixels. b) Distribution of ΔNPV in 
a stratified random sample.  
 

 
 
Figure 5: Frequency distributions and box plots of tree sizes for undamaged vs. damaged trees. 
Boxes show 25, 50, and 75% quantiles and whisker endpoints are 2.5 and 97.5% quantiles. 
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Figure 6: Relationships between ΔNPV and field measurements of damage. P-values for all 
regressions are < 0.001. a) ΔNPV vs. number of stems damaged in field plots. b) ΔNPV vs. total 
damaged basal area c) ΔNPV vs. proportion basal area damaged.  
 
     (a)                              (b)              (c) 

 
 
Figure 7: Distribution of patch-level fragmentation variables across the study area. Note that 
these distributions are different from the pixel level distributions of these variables, as each patch 
is comprised of many pixels. a) Distribution of patch sizes (ha), b) Patch edginess, c) Patch 
isolation.  
 
     (a)     (b)            (c) 
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Table 1: List of all Landsat scenes used in analysis. All scenes were downloaded from the 
Landsat CDR archive via USGS Earth Explorer (http://earthexplorer.usgs.gov/). 
Sensor Path-row Year Julian day 
Wind damage mapping 
Landsat OLI 06-066 2013 208 
Landsat OLI 07-066 2013 247 
Landsat OLI 06-066 2014 195 
Landsat OLI 07-066 2014 250 
Land cover mapping  
Landsat OLI 06-066 2015 230 
Landsat OLI 07-066 2015 253 
Landsat OLI 06-066 2014 227 
Landsat OLI 07-066 2014 234 
Landsat OLI 06-066 2013 208 
Landsat OLI 07-066 2013 231 
 
 
Table 2: Number and area of polygons for each LC class. 
Class No. Polygons Training area (ha) Validation area (ha) 
Old-growth forest 8 216.54 108.90 
Second-growth forest 30 129.78 67.05 
Oil palm 25 109.62 57.15 
Other 89 863.46 438.39 
 
Table 3: Accuracy for LC classification. Rows are predicted class, columns are observed class. 
Producer’s, user’s and overall accuracy are presented as proportions, other values as pixel 
counts.  
 Predicted class 

Observed 
class 

 

Old 
growth 

oil 
palm 

Second 
growth other total pixels 

producer's 
accuracy 

Old growth 1104 0 39 0 1143 0.97 
oil palm 2 554 43 36 635 0.87 
second 
growth 77 20 629 19 745 0.84 
other 0 20 10 4841 4871 0.99 
total pixels 1183 594 721 4896 7394  
user's 
accuracy 0.93 0.93 0.87 0.99 

overall 
accuracy = 0.96 
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Table 4: Summary data from the 30 field plots.  
Plot 
No. 

Plot age 
(years) 

Stem density 
(No. stems 
ha-1) 

ABG (Mg 
ha-1) 

Damaged 
stems (No. 
stems ha-1) 

Damaged 
AGB (Mg 
ha-1) 

1 3 1900 36.31 0 0.00 
2 6 1390 25.30 20 0.19 
3 7 1370 80.86 80 14.91 
4 8 1180 44.31 10 0.07 
5 8 2180 55.19 80 11.56 
6 10 1280 64.17 70 5.99 
7 10 1480 46.23 10 0.33 
8 11 1310 65.65 20 0.35 
9 12 1050 55.10 30 1.71 
10 17 1350 65.78 30 1.40 
11 21 1800 47.14 60 1.56 
12 22 870 79.53 300 26.91 
13 30 1120 134.59 180 18.04 
14 30 1710 105.57 300 17.52 
15 30 1160 70.88 290 27.88 
16 30 1120 92.39 210 41.07 
17 30 850 86.88 60 2.56 
18 30 1390 112.13 20 0.37 
19 30 1190 112.01 160 13.38 
20 30 1260 78.11 140 13.02 
21 30 1160 143.90 230 39.94 
22 30 810 89.03 220 20.86 
23 30 720 90.64 250 46.09 
24 30 1010 105.60 300 35.68 
25 30 930 66.10 190 31.88 
26 30 1780 81.24 190 5.86 
27 30 1650 125.36 600 47.99 
28 30 1310 77.34 570 61.40 
29 30 1180 117.01 480 77.09 
30 30 1070 89.77 630 78.82 
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Appendix 4: Supplementary information for Chapter 4 

Table 1: Species included in models  

Species 
N. individuals 
in 2016 SLA WD Present in plots: 

ALCFLO 13 295.00 0.43 EV1, SB3 
ALCLAT 38 191.83 0.40 All 
ANDINE 37 258.06 0.65 SB1, SB2, SB3 
BUCTET 19 271.87 0.64 EV1, SB3 
BYRSPI 36 237.99 0.61 All 
CASARB 382 218.19 0.58 All 
CASSYL 33 152.93 0.71 All 
CECSCH 61 184.78 0.26 All 
COCPYR 23 79.64 0.48 EV1, SB3 
COCSWA 39 77.35 0.68 EV1 
CORBOR 83 179.35 0.71 EV1, SB1, SB3 
DACEXC 82 137.59 0.53 All 
DENARB 18 293.76 0.43 SB1, SB2 
DRYGLA 21 146.75 0.67 SB3 
EUGSTA 259 97.00 0.69 EV1, SB3 
FAROCC 537 242.06 0.60 All 
GUAGLA 13 176.29 0.47 EV1, SB3 
GUAGUI 60 276.74 0.59 SB1, SB2 
HENFAS 17 280.41 0.48 EV1, SB1, SB3 
HIRRUG 156 117.10 0.87 EV1, SB3 
HOMRAC 39 248.28 0.79 EV1, SB1, SB3 
ILESID 21 148.46 0.74 EV1, SB3 
INGLAU 52 198.41 0.63 All 
IXOFER 111 144.19 0.65 All 
MANBID 191 100.83 0.86 All 
MATDOM 12 73.17 0.69 EV1 
MELHER 9 167.37 0.45 SB3 
MICIMP 168 206.54 0.75 EV1, SB1, SB2 
MICMIR 51 123.89 0.60 All 
MICPRA 939 163.62 0.65 All 
MICTET 22 132.45 0.71 EV1, SB2, SB3 
MIRCHR 83 81.50 0.70 EV1 
MYRDEF 641 130.61 0.80 All 
MYRFAL 48 153.54 0.95 EV1, SB1 
MYRLEP 44 162.81 0.80 SB1, SB3 
MYRSPL 37 246.40 0.74 SB1, SB2, SB3 
OCOLEU 258 128.38 0.46 All 
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OCOSIN 5 140.74 0.58 SB2 
ORMKRU 60 176.16 0.48 EV1, SB3 
PALRIP 12 273.31 0.47 EV1, SB1, SB2 
PREMON 772 174.79 0.31 All 
PSYBER 107 372.39 0.47 All 
PSYBRA 1542 302.83 0.38 All 
PSYGRA 104 181.52 0.29 SB2 
RHEPOR 44 72.16 0.83 EV1 
SCHMOR 123 196.85 0.42 All 
SIMTUL 104 96.30 0.56 SB3 
SLOBER 96 119.71 0.77 EV1, SB1, SB3 
SWIMAC 62 249.62 0.52 SB1, SB2 
SYZJAM 538 90.90 0.66 SB1, SB2, SB3 
TABHET 168 167.67 0.66 All 
TETBAL 76 140.50 0.53 SB1, SB3 
TRIPAL 17 238.25 0.69 All 

 
 
Table 2: Model parameters for the growth and survival models. Parameter values are median 
parameter estimates with 95% credible intervals in parentheses. Species-specific parameters (βks) 
are not shown.  
Parameter Description Growth model 
b1 mean intercept 0.096 (0.078, 0.114) 
b11 SLA effect on intercept 0.008 (-0.011, 0.028) 
b12 WD effect on intercept -0.016 (-0.035, -0.003) 
σ1 variance associated with intercept 0.004 (0.003, 0.006) 
b3 mean drought effect -0.047 (-0.057, -0.038) 
b31 SLA effect on drought effect 0.008 (-0.002, 0.019) 
b32 WD effect on drought effect 0.009 (-0.001, 0.019) 
σ3 variance associated with drought effect 5x10-4 (2x10-4, 9x10-4) 
b4 mean crowding effect -0.005 (-0.009, -0.001) 
b41 SLA effect on crowding effect -0.001 (-0.005, 0.004) 
b42 WD effect on crowding effect -0.001 (-0.006, 0.003) 
σ4 variance associated with crowding effect 6x10-5 (2x10-5, 1x10-4) 
b5 mean slope effect -0.009 (-0.016, -0.003) 
b51 SLA effect on slope effect -0.06 (-0.013, 0.001) 
b52 WD effect on slope effect -0.001 (-0.008, 0.005) 
σ5 variance associated with slope effect 2x10-4 (9x10-5, 4x10-4) 
b6 mean curvature effect 0.001 (-0.005, 0.006) 
b61 SLA effect on curvature effect 0.004 (-0.003, 0.011) 
b62 WD effect on curvature effect -0.004 (-0.010, 0.002) 
σ6 variance associated with curvature effect 1x10-4 (5x10-5, 3x10-4) 
b7 mean NCI*drought interaction -0.004 (-0.002, -0.010) 
b71 SLA effect on NCI*drought interaction -0.002 (-0.009, 0.004) 
b72 WD effect on NCI*drought interaction -0.001 (-0.007, 0.006) 
σ7 variance associated with NCI*drought 

interaction 
3x10-5 (8x10-5, 2x10-4) 

b8 mean slope*drought interaction -0.005 (-0.012, 0.001) 
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b81 SLA effect on slope*drought interaction 0.004 (-0.004, 0.012) 
b82 WD effect on slope*drought interaction 0.004 (-0.003, 0.011) 
σ8 variance associated with slope*drought 

interaction 
9x10-5 (3x10-5, 2x10-4) 

b9 mean curvature*drought interaction -0.009 (-0.016, -0.002) 
b91 SLA effect on curvature*drought 

interaction 
-0.008 (-0.017, 0.000) 

b92 WD effect on curvature*drought 
interaction 

-0.003 (-0.011, 0.003) 

σ9 variance associated with 
curvature*drought interaction 

3x10-5 (1x10-4, 3x10-4) 

b10 mean antecedent growth effect NA 
b101 SLA effect on antecedent growth effect NA 
b102 WD effect on antecedent growth effect NA 
σ10 variance associated with antecedent 

growth effect 
NA 

β2 diameter effect 0.038 (0.036, 0.041) 
σgrowth variance in growth 0.025 (0.025, 0.025) 
σindividual variance associated with individual 

effects (γi) 
0.003 (0.002, 0.003) 

 
 
Figure 1: Distribution of topography variables across the four plots. Note that each data point is 
the topography at the location of an individual tree stem.  
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Figure 2: Observed growth across the three study years. 

 
 
Figure 3: Replicated vs. observed growth. Red dashed line is 1:1 line. R2 replicated vs. predicted 
equals 0.32.  
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Figure 4: Predicted probability of survival vs. observed survival. R2 predicted vs. observed 
equals 0.56. 

 
 


