
Long Time Propagation of Stochasticity by

Dynamical Polynomial Chaos Expansions

Hasan Cagan Ozen

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017

c©2017

Hasan Cagan Ozen

All Rights Reserved

ABSTRACT

Long Time Propagation of Stochasticity by

Dynamical Polynomial Chaos Expansions

Hasan Cagan Ozen

Stochastic differential equations (SDEs) and stochastic partial differential equations (SPDEs)

play an important role in many areas of engineering and applied sciences such as atmo-

spheric sciences, mechanical and aerospace engineering, geosciences, and finance. Equilib-

rium statistics and long-time solutions of these equations are pertinent to many applications.

Typically, these models contain several uncertain parameters which need to be propagated

in order to facilitate uncertainty quantification and prediction. Correspondingly, in this

thesis, we propose a generalization of the Polynomial Chaos (PC) framework for long-time

solutions of SDEs and SPDEs driven by Brownian motion forcing.

Polynomial chaos expansions (PCEs) allow us to propagate uncertainties in the coeffi-

cients of these equations to the statistics of their solutions. Their main advantages are: (i)

they replace stochastic equations by systems of deterministic equations; and (ii) they provide

fast convergence. Their main challenge is that the computational cost becomes prohibitive

when the dimension of the parameters modeling the stochasticity is even moderately large.

In particular, for equations with Brownian motion forcing, the long-time simulation by PC-

based methods is notoriously difficult as the dimension of stochastic variables increases with

time.

With the goal in mind to deliver computationally efficient numerical algorithms for

stochastic equations in the long time, our main strategy is to leverage the intrinsic sparsity

in the dynamics by identifying the influential random parameters and construct spectral

approximations to the solutions in terms of those relevant variables. Once this strategy is

employed dynamically in time, using online constructions, approximations can retain their

sparsity and accuracy; even for long times. To this end, exploiting Markov property of

Brownian motion, we present a restart procedure that allows PCEs to expand the solutions

at future times in terms of orthogonal polynomials of the measure describing the solution

at a given time and the future Brownian motion. In case of SPDEs, the Karhunen–Loeve

expansion (KLE) is applied at each restart to select the influential variables and keep the

dimensionality minimal. Using frequent restarts and low degree polynomials, the algorithms

are able to capture long-time solutions accurately. We will also introduce, using the same

principles, a similar algorithm based on a stochastic collocation method for the solutions of

SDEs.

We apply the methods to the numerical simulation of linear and nonlinear SDEs, and

stochastic Burgers and Navier–Stokes equations with white noise forcing. Our methods also

allow us to incorporate time-independent random coefficients such as a random viscosity.

We propose several numerical simulations, and show that the algorithms compare favorably

with standard Monte Carlo methods in terms of accuracy and computational times. To

demonstrate the efficiency of the algorithms for long-time simulations, we compute invariant

measures of the solutions when they exist.

Table of Contents

List of Figures iii

List of Tables vi

1 Introduction 1

1.1 Overview . 1

1.2 Existing Probabilistic Methods . 2

1.3 Motivation and Objective . 6

1.4 Outline of the Thesis . 7

2 Preliminaries 9

2.1 Karhunen–Loeve Expansion . 9

2.2 Polynomial Chaos Expansions . 11

2.3 Estimation of Expectations . 16

2.3.1 Sparse Grid Collocation Method . 17

3 Dynamical gPC for SDEs 19

3.1 Related Work and Motivation . 19

3.2 Description of the Proposed Method . 21

3.2.1 Formulation . 22

3.2.2 Implementation . 25

3.2.3 Computational Complexity . 29

3.2.4 Convergence Results . 32

3.3 Numerical Experiments . 40
i

4 Dynamical gPC for SPDEs 56

4.1 Introduction . 56

4.2 Description of the Methodology . 58

4.2.1 Sparse Truncation . 59

4.2.2 Karhunen–Loeve Expansion . 60

4.2.3 Additional Non-forcing Random Inputs 63

4.2.4 Moments and Orthogonal Polynomials 64

4.2.5 Galerkin Projection and Local Initial Conditions 69

4.2.6 Adaptive Restart Scheme . 70

4.3 Numerical Simulations . 71

4.3.1 Burgers Equation . 72

4.3.2 Navier–Stokes Equations . 85

5 Dynamical SGC method for SDEs 97

5.1 Introduction . 97

5.2 A Simple Stochastic Collocation Method . 98

5.3 Proposed Methodology . 101

5.3.1 Formulation . 101

5.3.2 Implementation . 105

5.4 Numerical Experiments . 109

6 Conclusion 120

6.1 Future Work . 123

Bibliography 126

ii

List of Figures

1.1 Forward and Inverse UQ. 2

2.1 Energy ratios for different values of the truncation parameter D and 5 real-

izations of the process. 11

2.2 A demonstration of sparse quadrature nodes for different levels using one-

dimensional Gauss-Hermite rule. 18

3.1 Propagation of chaos expansions in DgPC. 24

3.2 Hermite PC for the Ornstein-Uhlenbeck process. 42

3.3 DgPC with ∆t = 0.2 and varying K for the Ornstein-Uhlenbeck process. . . 44

3.4 Comparison of K-convergence of Hermite PC and DgPC at different times. 45

3.5 DgPC with ∆t = 0.25 and increasing N for (3.25) with cubic nonlinearity. . 46

3.6 DgPC with ∆t = 0.2, and increasing N and L for the Ornstein-Uhlenbeck

process with a uniformly distributed damping. 47

3.7 DgPC using ∆t = 0.5, 0.3 and 0.1. The random forcing is a nonlinear function

of Brownian motion. 48

3.8 Hermite PC for the nonlinear system (3.21) with periodic deterministic forcing. 50

3.9 DgPC for the nonlinear system (3.21) with periodic deterministic forcing. . 51

3.10 Hermite PC for the nonlinear system (3.21) with zero deterministic forcing. 52

3.11 DgPC using ∆t = 0.1 for the nonlinear system (3.21) with zero deterministic

forcing. 53

3.12 N - and L-convergence in the variance of DgPC at T = 10. 53

iii

3.13 Bivariate cumulants and kurtosis excess obtained by DgPC for the nonlinear

system (3.21) with zero deterministic forcing and av = 0. 54

3.14 Bivariate cumulants and kurtosis excess obtained by DgPC for the nonlinear

system (3.21) with zero deterministic forcing and a perturbation av = 0.03. 55

4.1 Relative errors of centered moments obtained by DgPC with T = 3 and

∆t = 0.1. Exact solution is computed by MC3. 75

4.2 Robustness under the change of samples. 76

4.3 Relative errors of moments obtained by DgPC using current sampling and

re-sampling approaches. 77

4.4 Evolution of the retained energy in KLE for different values of degrees of

freedom. 78

4.5 Evolution of relative errors of moments with adaptive time-stepping using

different threshold values ǫ. 79

4.6 Moments of the invariant measure of Burgers equation at T = 6 obtained by

DgPC. 80

4.7 Convergence behavior of errors of the second order moment using ∆t = 0.1,

0.2, and 0.4. 81

4.8 Convergence behavior of errors of moments using polynomial degrees N = 1,

2, and 3. 82

4.9 Relative errors of moments of the solution and the random viscosity. Errors

are computed by comparing DgPC with D = 8 to a reference calculation

which uses D = 8 and DZ = 3. 85

4.10 Snapshots of the second order moments of Burgers equation on [0, T] = [0, 4]

and one-point probability density function at T = 4. 86

4.11 Initial conditions for vorticity w and temperature θ. 89

4.12 Moments of vorticity w obtained by DgPC with D = 8 at T = 1. 90

4.13 Moments of temperature θ obtained by DgPC with D = 8 at T = 1. 91

4.14 Different initial conditions for vorticity w. 94

iv

4.15 L2-norm of successive differences of moments using three different initial con-

ditions. Each column corresponds to an initial condition depicted in Figure

4.14. 95

4.16 Statistical moments of the invariant measure of the vorticity at time t = 250

obtained by DgPC. 96

5.1 Relative errors of the variance for different times T = 1, 2, 4, 8, 16 and differ-

ent number of random variables K = 8, 16, 32, 64. 101

5.2 Convergence behaviors in N , λbu , and ∆t for the Ornstein-Uhlenbeck process

with random damping. 111

5.3 Evolution of the mean and the variance of the CIR model, and convergence

behaviors in N . 114

5.4 Condition numbers of the constraint matrix A in the optimization procedure

(5.4) for different degrees of freedom N and different choices of Tα. 116

5.5 N -convergence of the method for the nonlinear system of SDEs. 117

v

List of Tables

2.1 An ordering for the multi-index set and Hermite basis. 14

3.1 Association between continuous probability distributions and orthogonal poly-

nomials. 20

3.2 Comparison of computational costs for Hermite PC and DgPC. 30

3.3 Cumulants at T = 4 obtained by three different methods. 45

3.4 Cumulants at T = 8 obtained by three different methods. 47

4.1 Relative errors of centered moments by DgPC and MC methods at T=6.

Each time ratio is computed by comparing to MC3. 77

4.2 Relative errors of moments of vorticity w at T = 1 and timing. Exact solution

is taken as algorithm MC3. 92

4.3 Elapsed times and relative errors of moments of vorticity w at T = 1. The

random projection technique with the parameter l = D + 10 is used to ac-

celerate computation of the KLE. 92

4.4 Relative errors of moments of vorticity w at T = 0.5. Elapsed times are

compared to Algorithm MC3. 93

5.1 Comparison of the accuracy of quadrature rules for two independent Gaussian

variables using different transformations. 107

5.2 Cumulants obtained by Algorithm 3 and Fokker-Planck equation at T = 8

for the Ornstein-Uhlenbeck process with random damping. 112

5.3 Cumulants obtained by Algorithm 3 and Fokker-Planck equation at T = 4

for cubic nonlinearity. 112

vi

5.4 Errors of the variance at T = 1, and relative timings of DSGC and MC

methods using different degrees of freedom. 115

5.5 Errors of the mean and the variance at T = 1, and relative timings of DSGC,

DgPC, and MC methods using different degrees of freedom. 118

vii

Acknowledgments

First and foremost I offer my most sincere gratitude to my thesis supervisor, Professor

Guillaume Bal, for his support and guidance throughout my research work. I am deeply

grateful for all the advice, critical comments, and insightful discussions. Without his clear

mathematical intuition, this work would not have been achieved.

I would like to thank the thesis committee members, Professor Marc Spiegelman, Pro-

fessor Qiang Du, Professor Kyle Mandli, and Professor Georg Stadler, for taking time to

review my thesis.

I am also grateful to Professor Fatih Ecevit for his support both before and during my

Ph.D. study. His encouragement motivated me to pursue my Ph.D. and his passion for

mathematics has always inspired me.

I wish to thank Kevin Carlberg, Khachik Sargsyan, and Mohammad Khalil for giving me

the opportunity to work with them during my internship at Sandia National Laboratories.

My thanks to my friends, Alex Watson, Chenxi Guo, Roshan Sharma, Owen Evans,

Hande Öztürk, Olgun Adak, and Jak Akdemir, with whom I have shared many meals,

drinks, music, and fruitful discussions throughout my study.

I would like to thank to my beloved parents Birol Özen and Emine Özen for their endless

support and having confidence in me.

Last but not least, my lovely wife, Filiz Carus Özen who has supported me for many

long arduous years, deserves a special thanks. Without her company and support, I could

not have survived this journey. This thesis is dedicated to her and my parents.

viii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Overview

The modeling and numerical simulation of complex real-world problems requires addressing

several sources of uncertainties such as model discrepancies, parametric input uncertainties,

measurement errors and uncertainties, and numerical errors. Accordingly, the following two

questions are usually posed in uncertainty quantification (UQ) framework: How accurate

are the models representing the true physics? What are the effects of the uncertainties on

the quantity of interest? UQ aims to answer these questions in order to achieve accurate

predictive simulations for applications.

Many physical and engineering phenomena can be modeled using ordinary differential

equations (ODEs) and partial differential equations (PDEs). In the presence of uncertain-

ties, these models incorporate stochastic processes and/or random variables to represent

the uncertain sources. The source of uncertainty typically includes uncertain physical pa-

rameters, uncertain initial and boundary conditions, and random forcing terms. Stochastic

variants of ODEs and PDEs are called stochastic differential equations (SDEs) and stochas-

tic partial differential equations (SPDEs), respectively.

Typical UQ work flow is demonstrated in Figure 1.1 in a Bayesian framework. Prior

knowledge of the uncertain parameters is updated through Bayes likelihood using experi-

ment data and as a result, a posterior is obtained. This is the model calibration step. Once

the model is calibrated and probability distributions of the input variables are characterized,

CHAPTER 1. INTRODUCTION 2

the input variables ξ are propagated through the model, which in turn yields the quantity

of interest u(ξ) parametrized by the input. This step requires simulation of a possibly high

dimensional model M, which represents either a SDE or a SPDE here. The forward propa-

gation involves computation of statistical properties of the response u such as realizations,

probability density functions, prediction intervals, and moments. Statistical knowledge of

the response is then utilized in predictions. If necessary, a post-processing step involving a

sensitivity analysis can be carried out to characterize the impact of the input on the output

variability and re-calibrate the model for ensuing uncertainty propagation [110].

In this thesis, we are primarily interested in the forward problem and developing efficient

numerical algorithms to be used in propagating uncertainties in the coefficients of SDEs and

SPDEs. We will focus on stochastic evolution equations which describe the evolution of an

uncertain dynamics in time depending on the input stochasticity. The type of stochasticity

that we propagate includes random initial conditions, non-forcing physical parameters, and

high-dimensional, time-dependent stochastic forcing terms.

Prior p(ξ(ω))

Experiments DLD(ξ)Posterior p(ξ|D)

Update ξ

Model calibration

Input ξ M(u, ξ) = 0 Output u(ξ)

Prediction

Figure 1.1: Forward and Inverse UQ.

1.2 Existing Probabilistic Methods

In the following, we discuss probabilistic methods to solve time-dependent stochastic evo-

lution equations by focusing on two popular methods: Monte Carlo (MC) and Polynomial

CHAPTER 1. INTRODUCTION 3

Chaos (PC).

There are several techniques designed for solving stochastic evolution equations and

propagating statistical information of the solution in time. For instance, the method of

moments aims to derive a system of coupled differential equations for moments of the

solution. Each equation describes the evolution of a certain moment. Typically, lower

order moment equations depend on higher order moments yielding infinite set of equa-

tions. Moment-closure techniques then “close” these equations by truncating the mo-

ment equations into a low-dimensional system based upon physical considerations or some-

times heuristics. In the simplest settings, underlying distributions are approximated by

Gaussian distributions and only second order moments of the solution are propagated.

However, for nonlinear systems, it is difficult to find good closures and therefore, low-

dimensional approximations to the moment equations might yield considerable errors [79;

16; 65].

Fokker-Planck equation-based methods offer a way to propagate the probability density

function (pdf) of the random solution. For Itô diffusions, under appropriate assumptions,

one can derive a PDE (called Fokker-Planck or Kolmogorov forward equation), which de-

scribes the evolution of the transition probabilities of the Markov semigroup. Numerical

approximation requires solving a PDE of spatial dimension the same as the dimension of the

SDE system. Thus, for high-dimensional SDEs, pdf-based techniques become prohibitively

expensive. For SPDEs driven by white noise, Fokker-Planck equation becomes an infinite-

dimensional system and has been mostly a theoretical tool in stochastic analysis [23]; see

also [106; 27] for some recent numerical approximations. Although Fokker-Planck equations

will not be the main focus of this thesis, we will utilize them to compare the accuracy and

convergence of different methods.

Undoubtedly, Monte Carlo method has been one of the most popular methods to sim-

ulate stochastic equations. The popularity is due to its robustness and easy-to-implement

nature. For SDEs and SPDEs, it is usually of interest to compute expectations (integrals

with respect to a probability distribution) of functionals of the solutions. MC method relies

on the law of large numbers and estimates these expectations by considering realizations of

the solution. For each realization, one can use existing deterministic numerical methods to

CHAPTER 1. INTRODUCTION 4

easily estimate expectations.

The accuracy of MC methods depends on the sample size and is not dependent on the

dimensionality of the stochastic system. Although MC methods are applicable to high-

dimensional systems, their efficiency for complicated systems is limited by their slow con-

vergence. The typical convergence rate of MC methods is O(1/
√

Msamp), where Msamp is

the sample size of the realizations of the source of randomness. The convergence can be

accelerated by quasi-Monte Carlo methods, which can push the convergence rate to almost

O(1/Msamp). There are also variance reduction techniques such as antithetic variables,

control variates, importance sampling, and stratified sampling, which aim to reduce the

sample-size-independent constant in the error to obtain a better precision. These accelera-

tion techniques usually assume that the distribution of the quantity of interest is known.

For stochastic evolution equations, MCmethods have to be coupled with time-integration

methods. Due to the nature of stochastic integrals, straightforward application of existing

time-integration methods usually yields low order convergence in terms of the time-step

compared to the convergence behavior of deterministic methods. With special care of ran-

dom forcing terms, higher order convergence can be achieved in the strong (pathwise) and

weak (distributional) senses, though the numerical implementation gets complicated [64;

61]. The convergence rate of the law of large numbers still applies and limits the efficiency

of standard MC methods for complicated dynamics. There has been a growing interest

in designing multilevel Monte Carlo methods, which use a hierarchy of grid discretization

(similar to multigrid methods) and optimize the number of samples at each level to accel-

erate the convergence. These methods offer substantial speed-ups compared to standard

MC methods provided that the variance of multilevel corrections decay sufficiently fast with

the refinement [43]. However, divergence of these methods has been noted for SDEs with

nonlinear coefficients if an inappropriate time-stepping method is incorporated [59]. Thus,

a judicious design of time-integration methods is needed; see also [9] and references therein.

Polynomial chaos is a popular spectral method that is used to propagate uncertainties in

the coefficients of differential equations to the statistics of their solutions. The method dis-

cretizes the random space using global spectral basis of polynomials. It originated from the

works of Wiener [121], and Cameron and Martin [17] on the decomposition of functionals

CHAPTER 1. INTRODUCTION 5

of Brownian motion in a basis of Hermite polynomials of Gaussian random variables. Ap-

plications of such a framework to random flows and turbulence theory are examined in [82;

92; 21]. More recently, works of Ghanem et al. [41; 42] combined the standard Her-

mite PC method with the Karhunen–Loeve expansion (KLE) [62; 72] to study structural

mechanics problems. They used finite element bases in spatial variables and a spectral

basis obtained by the KLE discretization of the stochastic input in the random space.

A deterministic system of equations for the PC coefficients is obtained by the Galerkin

projection in the Hilbert space. The method is called stochastic finite elements and it re-

vived the interest in spectral methods for stochastic equations. Xiu and Karniadakis [125;

128; 122] next extended the Hermite PC to a set of non-Gaussian random parameters,

and studied numerical convergence and efficiency in flow simulations. Their method is

called generalized polynomial chaos (gPC). Rather than classical Hermite polynomials,

gPC uses tailored orthogonal polynomials associated to the distribution of the uncer-

tainty to provide optimal representations. The works [73; 83; 84] laid down theoretical

foundations of the Hermite PC applied to SPDEs driven by Brownian motion. Numer-

ical approximations to fluid dynamics equations of this framework are considered in [57;

75]. For other extensions and discussions of the PC framework, we refer to [67; 112; 7; 26;

33; 81; 119; 118; 85; 66; 37; 30; 4; 16].

The main advantage of the PC method is that it allows us to propagate stochasticity

by providing expansions of quantities of interest in terms of appropriate uncertainties while

in effect replacing the stochastic equations by a system of deterministic equations. Once

these deterministic equations are solved, statistical properties of the solution including

higher order moments can be readily inferred from the coefficients of the expansion, which

facilitates uncertainty quantification. In contrast to MC methods, the PC method leverages

the regularity of the solution in the input stochasticity and offers fast convergence when

it is coupled with Galerkin projection. For instance, exponential convergence with respect

to the degree of polynomials has been usually observed in simulations [41; 125; 128; 119].

All these advantages have made the PC method a viable alternative to MC methods in

engineering applications.

CHAPTER 1. INTRODUCTION 6

1.3 Motivation and Objective

Polynomial chaos expansions (PCEs) provide an explicit expression of quantities of interests

as functionals of the underlying uncertain parameters and in some situations allow us to

perform uncertainty propagation and quantification at a considerably lower computational

cost than Monte Carlo methods [41; 125; 128; 57; 16; 93; 8; 94]. However, they suffer from

the curse of dimensionality and thus typically work efficiently for systems involving low-

dimensional uncertainties. The efficiency of the method is reduced because of the large

number of terms that appear in the expansion. A related major drawback appears in the

long-time integration of evolution equations. The presence of a temporal random forcing is

a serious challenge to the PC method as the number of stochastic variables increases with

time, which hinders the capability of the PC method for long-time computations [57; 16;

93; 94]. Moreover, standard PCE utilizes orthogonal polynomials of the initial distribution,

and as time evolves, the dynamics deviate from the initial data substantially, e.g., due to

nonlinearities, and the solution may become poorly represented in the initial basis.

In this thesis, focusing on SDEs and SPDEs driven by additive Brownian motion forc-

ing, our main objective is to offer efficient numerical algorithms which alleviate the two

major drawbacks of the PC method: (i) curse of dimensionality; and (ii) loss of optimality

in long-time integration. For Markovian systems, one can leverage the intrinsic sparsity of

the dynamics in the sense that a sparse representation of the solution at a future time can

be obtained in terms of the solution variables (or a compressed version of the solution vari-

ables) at the current time and the random variables that represent the random forcing for

the future. In other words, one can “forget” about the past and as a consequence keep the

dimension of the uncertainty fixed and independent of time. Such a forgetting strategy re-

quires construction of dynamical algorithms which adapt to evolving, arbitrary probability

measures of the solution. It also involves selecting the most influential variables automat-

ically on-the-fly and constructing approximations based on them. This time-dependent

adaptation is in some sense similar to and extends the gPC method, which constructs op-

timal representations by taking into account the distribution of the uncertainty. To this

end, the algorithms we propose here carry in time essential information, e.g., orthogonal

polynomials and in some cases quadrature nodes, to characterize the pertaining measures.

CHAPTER 1. INTRODUCTION 7

1.4 Outline of the Thesis

Chapter 2 reviews the theory of the Karhunen-Loeve expansion and polynomial chaos ex-

pansions, discusses non-intrusive and intrusive implementations focusing on sparse grid

collocation method, and establishes the notations used in the subsequent chapters.

In Chapter 3, we propose a PC-based method, called Dynamical generalized Polyno-

mial Chaos (DgPC), for long-time evolution of SDEs with Brownian motion forcing. The

method constructs evolving chaos expansions based on polynomials of projections of the

time-dependent solution and the random forcing through a restarting mechanism. More

precisely, chaos expansions at each restart are constructed based on the knowledge of the

moments of underlying distributions at a given time. In the setting of dynamics satisfying a

Markov property, we crucially exploit this feature to introduce projections of the solution at

prescribed time steps that allow us to forget the variables in the past and keep reasonably

sparse random bases. Orthogonal bases that the method propagates in time are the optimal

ones associated to the solution variables. Thus, chaos bases are adapted to the evolving

dynamics with the following consequences: (i) DgPC retains its optimality for long times;

and (ii) the curse of dimensionality is mitigated. Notably, we establish, with appropriate

modifications, theoretical convergence analysis which sheds light on our numerical findings.

Further, asymptotic analysis for computational complexity will also be discussed. Inspired

by examples of [38; 16], we will apply our method to a nonlinear coupled system of stochastic

differential equations and its variants.

Chapter 4 builds upon the method introduced in Chapter 3 for SDEs and extends it to

SPDEs driven by white noise. While solutions to SPDEs are, in general, high-dimensional

random fields, they may lend themselves in some cases to low-dimensional representa-

tions [41; 12; 60; 107; 57; 28; 105; 20]. Armed with this fact, we propose at each restart

to use the KLE to compress the solution into a representation involving a finite number of

random modes. In cases where the modeling equations contain non-forcing random inputs

other than Brownian forcing, such as a random viscosity, the KLE is applied to the solu-

tion and the random parameters together so that the algorithm automatically selects the

intrinsic variables, which have the largest influence on the solution. The KLE is a compu-

tationally expensive procedure as it requires solving a large eigenvalue problem. We offer

CHAPTER 1. INTRODUCTION 8

different methods such as Krylov subspace methods and low-rank approximations to large

covariance matrices to mitigate the computational cost. A few dominating random KLE

modes are then chosen and incorporated into PCE to represent the future solution. The

computation of orthogonal polynomials of multivariate distributions is based upon estima-

tion of multivariate moments using a sampling procedure. To keep the number of terms

in DgPC small, we make use of a sparse truncation technique for multi-indices [57; 75;

13]. We present both short- and long-time computations for a randomly forced 1D Burgers

equation and a stochastic 2D stochastic Navier–Stokes (SNS) system. In some cases, we

provide a purely PCE-based numerical verification of the convergence of the process to its

invariant measure.

Chapter 5 goes back to the setting of SDEs and proposes a stochastic non-intrusive

method based on sparse grid collocation (SGC) for long-time simulations. The method uses

pre-determined sparse quadrature rules for the forcing term and constructs evolving set of

sparse quadrature rules for the solution variables in time. In contrast to methods developed

in the previous chapters, this method propagates deterministic samples of the distribution

of the solution. We carry out a similar restart scheme to keep the dimension of the random

variables for the forcing term, therefore also the number of quadrature points, independent

of time. At each restart, a sparse quadrature rule for the solution variables is constructed

from the knowledge of previous quadrature rules through an optimization procedure. In this

way, the method allows us to accurately capture the long-time solutions using small degrees

of freedom. We apply the algorithm to low-dimensional nonlinear SDEs and demonstrate

its ability to reach accurate long-time simulations numerically.

Finally, Chapter 6 concludes with a summary of the thesis and offers several future work

directions.

CHAPTER 2. PRELIMINARIES 9

Chapter 2

Preliminaries

2.1 Karhunen–Loeve Expansion

Let G ∈ R
d be a compact spatial domain. Given a probability space (Ω,F ,P), where Ω is a

sample space equipped with the sigma-algebra F and the probability measure P, we denote

by L2(G × Ω) the Hilbert space of square integrable random fields on G, i.e. second order

stochastic processes. For a random field u ∈ L2(G× Ω), we define the expectation

ū(x) := E[u(x, ω)] =

∫

Ω
u(x, ω)P(dω),

and the covariance

Covu(x, y) := E[(u(x, ω)− ū(x)) (u(y, ω) − ū(y))′], x, y ∈ G, (2.1)

where ′ denotes the transpose. We denote by 〈·, ·〉L2(G) the spatial inner product on L2(G).

Associated to a continuous covariance, there is a linear integral operator, called co-

variance kernel, which is a self-adjoint, positive semidefinite Hilber-Schmidt operator on

L2(G) [58]. Then, by Mercer’s theorem, the covariance admits the following representation

Covu(x, y) =
∞
∑

l=1

λl φl(x)φl(y),

where λl’s and φl’s are the eigenvalues and the eigenfunctions of the associated covariance

kernel, i.e.

〈Covu(x, ·) , φl〉L2(G) = λl φl(x), x ∈ G.

CHAPTER 2. PRELIMINARIES 10

The eigenvalues are non-negative and the eigenfunctions constitute a complete orthonormal

set in L2(G); 〈φl, φk〉L2(G) = δlk, where δlk denotes the Kronecker delta function.

Any random field u ∈ L2(G × Ω) with a continuous covariance admits the following

spectral expansion, which is called the Karhunen–Loeve expansion (KLE) [41]:

u(x, ω) = ū(x) +
∞
∑

l=1

√

λl ηl(ω)φl(x), (2.2)

where random variables ηl are mean zero and given by the projection onto eigenfunctions

ηl(ω) = λ
−1/2
l 〈[u(·, ω) − ū] , φl〉L2(G). (2.3)

The random modes also satisfy orthogonality, i.e. E[ηl ηk] = δlk; see also [62; 72].

The major feature of the KLE is that the truncation after a finite number, denoted by

D hereafter, of terms is optimal in L2 sense, i.e. the error resulting from projecting the

stochastic process onto any other orthogonal spatial set using (2.3) is always greater than the

error of the truncation of the KLE (2.2). How D should be chosen obviously depends on the

spectrum of the covariance kernel. When the process shows a high degree of correlation, then

typically D may be chosen relatively small due to the rapid decay of the eigenvalues [41; 66;

107]. This property makes the KLE a useful dimensionality reduction technique in many

applications and will play a crucial role in Chapter 4 to compress the dimensionality of

solutions of SPDEs.

The L2-norm of the error of D-term truncation of the KLE (2.2) goes to zero as the

degrees of freedom goes to infinity:

∞
∑

l>D

λl → 0, D → ∞.

Then, the energy retained in the expansion can be defined as the ratio

∑D
l=1 λl

∑∞
l=1 λl

, (2.4)

which is an indication of how fast the eigenvalues decay.

We consider a simple demonstration to show the rate of decay of the eigenvalues for a

mean zero process (2.2) with the periodic exponential covariance function

Covu(x, y) = exp

(

− 2

l2corr
sin2(π(x− y))

)

, x, y ∈ [0, 1],

CHAPTER 2. PRELIMINARIES 11

where lcorr is the correlation length [102]; and see also Section 4.3.1. The random modes

in the KLE are selected as uniformly distributed independent random variables on [−1, 1].

The energy ratio (2.4) for different values of the correlation length, lcorr = 0.5, 0.1, and

0.05, is depicted in Figure 2.1a. We observe that the smaller the correlation length, the

more terms needed to retain the same energy level. Specifically, to capture 95% of the

total energy, 9, 40, and 78 terms are needed in each scenario, respectively. Figure 2.1b

shows 5 different realizations of the process u(x, ω) with the correlation length lcorr = 0.1.

The realizations are obtained by sampling the random KLE modes using 40 terms. The

periodicity of realizations is mandated by the form of the covariance function and the period

is 1 in this case.

20 40 60 80

D

0

0.2

0.4

0.6

0.8

1

E
n
er

g
y
 R

at
io

l
corr

=0.5

l
corr

=0.1

l
corr

=0.05

(a) Energy ratio vs D

0 0.5 1

x

-2

-1

0

1

2

u
(x

,
)

(b) Realizations

Figure 2.1: Energy ratios for different values of the truncation parameter D and 5 realiza-

tions of the process.

2.2 Polynomial Chaos Expansions

Consider L2(Ω,F ,P), the space of real-valued random variables with finite second order

moments. Let ξ = (ξ1, ξ2, . . .) be a countable collection of independent and identically

distributed (i.i.d.) standard Gaussian random variables belonging to the probability space,

CHAPTER 2. PRELIMINARIES 12

and F = σ(ξ). Then, we define the Wick polynomials by the tensor product

Tα(ξ) :=

∞
∏

k=1

Hαk
(ξk),

where α belongs to set of multi-indices with a finite number of nonzero components

J = {α = (α1, α2, . . .) |αk ∈ N0, |α| =
∞
∑

k=1

αk <∞},

and N0 := N ∪ {0}. Hn is the nth order normalized one-dimensional Hermite polynomial

given by the formula

Hn(x) =
1√
n!

(−1)n ex
2/2 dn

dxn
e−x2/2.

Note that the Wick polynomials are orthogonal to each other with respect to the measure

induced by ξ:

E[Tα(ξ)Tβ(ξ)] = δαβ.

The Cameron and Martin theorem [17] establishes that the Wick polynomials form a

complete orthonormal basis in L2(Ω,F ,P). This means that any functional u(·, ξ) ∈ L2,

can be expanded as

u(·, ξ) =
∑

α∈J
uα(·)Tα(ξ), uα(·) = E[u(·, ξ)Tα(ξ)], (2.5)

and the sum converges in L2. Here (·) notation represents deterministic independent argu-

ments; e.g. spatial and temporal variables. The spectral expansion (2.5) is called polynomial

chaos expansion (PCE) [121; 41]. Here we emphasize that the expansion is convergent for

general random variables provided second order moments exist and the measurability con-

dition is satisfied. The expansion can be seen as a sum of a Gaussian approximation and

a non-Gaussian part; the terms that satisfy |α| ≤ 1 and |α| > 1, respectively. The decay

rate of the coefficients uα depends on the smoothness of the solution in the random param-

eters and typically, low-order coefficients dominate high-order ones in most applications.

In the subsequent chapters, we will also use the term Hermite PCE to emphasize that the

expansion utilizes Gaussian random variables.

CHAPTER 2. PRELIMINARIES 13

One of the notable features of PCE is that it separates the randomness in u such that

the coefficients uα are deterministic and all statistical information is contained in the coef-

ficients. In particular, the first two moments are given by

E[u] = u0 and E[u2] =
∑

α∈J
|uα|2.

Higher order moments may then be computed using the triple products of Wick polynomials:

E[Tα(ξ)Tβ(ξ)Tγ(ξ)] =
∞
∏

k=1

E[Hαk
(ξk)Hβk

(ξk)Hγk(ξk)] =
∞
∏

k=1

√
αk!βk! γk!

(m− αk)! (m− βk)! (m− γk)!
,

for even m = (αk + βk + γk)/2 and m ≥ αk, βk, γk; otherwise the product is zero [122;

123]. For instance, PCE coefficients for u2 and u3 are given by

(u2)α = E[u2 Tα(ξ)] =
∑

β∈J

∑

γ∈J
uβ uγ E[Tα(ξ)Tβ(ξ)Tγ(ξ)],

(u3)α = E[u3 Tα(ξ)] =
∑

β∈J

∑

γ∈J
(u2)β uγ E[Tα(ξ)Tβ(ξ)Tγ(ξ)].

Moments can also be computed by repeated application of the Hermite product formula [84;

75]:

u2 =
∑

α∈J

∑

γ∈J

∑

0≤β≤α

C(α,β,γ)uα−β+γ uβ+γ Tα(ξ), (2.6)

where

C(α,β,γ) =

[(

α

β

)(

β + γ

γ

)(

α− β + γ

γ

)]1/2

.

In numerical computations, the doubly infinite expansion (2.5) is truncated so that it

becomes a finite expansion

u ≈ uK,N(·, ξ1, . . . , ξK) :=
∑

|α|≤N

uα(·)
K
∏

k=1

Hαk
(ξk), (2.7)

where we used polynomials up to degree N in the variables (ξ1, ξ2, . . . , ξK). We define the

corresponding multi-index set

JK,N := {α = (α1, . . . , αK) |αk ∈ N0, |α| ≤ N}. (2.8)

CHAPTER 2. PRELIMINARIES 14

The equation (2.7) is nothing but an orthogonal projection of u onto polynomial basis and

leads to

M :=

(

K +N

K

)

terms in the approximation. Throughout the thesis, we use graded lexicographic ordering for

multi-indices [123]; unless otherwise stated. An example of this ordering with two variables

is given in Table 2.1.

|α| α Tα(ξ)

0 (0,0) 1

1 (1,0) ξ1

(0,1) ξ2

2 (2,0) 1√
2
(ξ21 − 1)

(1,1) ξ1ξ2

(0,2) 1√
2
(ξ22 − 1)

3 (3,0) 1√
6
(ξ31 − 3ξ1)

(2,1) 1√
2
(ξ21 − 1)ξ2

(1,2) 1√
2
ξ1(ξ

2
2 − 1)

(0,3) 1√
6
(ξ32 − 3ξ2)

...
...

...

Table 2.1: An ordering for the multi-index set and Hermite basis.

In the context of white noise–driven SDEs, the solution u(t, ω), t ∈ [0, T] and ω ∈ Ω, is

a functional of paths of Brownian motion W (t, ω)

u = u(t; {W (τ), 0 ≤ τ ≤ t}).

For the sake of brevity, we sometimes omit ω-dependence and write W (t) for W (t, ω).

Throughout the thesis, all stochastic integrals are considered in the Ito sense [90].

The random variables ξk can be obtained by the projection

ξk(ω) =

∫ T

0
mk(t) dW (t, ω),

CHAPTER 2. PRELIMINARIES 15

where mk(t) is a deterministic, complete orthonormal system in L2[0, T]. Then, ξ = (ξk)k

is comprised of i.i.d. standard Gaussian random variables and the expansion

∞
∑

k=1

ξk

∫ t

0
mk(τ)dτ, (2.9)

converges in L2 to Brownian motion for all t ≤ T , i.e.

E

[

W (t)−
K
∑

k=1

ξk

∫ t

0
mk(τ)dτ

]2

→ 0, K → ∞, (2.10)

[10, Chapter 6]. Here, Brownian motion {W (t), 0 ≤ t ≤ T} is projected onto L2[0, T] for a

fixed time T > 0 so that the corresponding PCE basis Tα(ξ) depends implicitly on T . In

this thesis, Brownian motion and its “derivative”, white noise, are interpreted through the

infinite linear combination (2.9).

Typical examples of mk’s are trigonometric functions and wavelets [15; 78; 57; 10;

31]. For instance, if we choose the orthonormal basis

mk(t) =

√

2

T
cos

(

(k − 1/2)πt

T

)

, k = 1, 2, . . .

then the expansion (2.9) is the KLE of Brownian motion on [0, T]:

W (t) =

∞
∑

k=1

√
2T

(k − 1/2)π
sin

(

(k − 1/2)πt

T

)

ξk.

Another choice of orthonormal set of functions is

m1(t) =
1√
T
, mk(t) =

√

2

T
cos

(

(k − 1)πt

T

)

, k = 2, 3,

Under this choice, the expansion becomes

W (t) =
t√
T
ξ1 +

∞
∑

k=2

√
2T

(k − 1)π
sin

(

(k − 1)πt

T

)

ξk, (2.11)

and the K-term truncation L2-error (2.10) can be derived as

∑

k>K

(
∫ t

0
mk(τ)dτ

)2

=

∞
∑

k=K

2T

k2π2
sin2

(

kπt

T

)

,

=

O(TK−1), if 0 < t < T,

0, if t = T,

CHAPTER 2. PRELIMINARIES 16

see also [75]. It is interesting to note that both representations violate Markov property of

Brownian motion for times 0 < t < T as they use global bases on [0, T]. It is also possible

to filter Tα(ξ) with respect to the σ-algebra generated by Brownian motion up to time t.

Resulting basis will not violate Markov property. However, since it is not orthogonal, this

basis will not be considered here; see [73; 84; 75].

2.3 Estimation of Expectations

Approximation of an output u(ξ) ∈ R
d of a stochastic model parametrized by a stochastic

input variables ξ ∈ R
K typically involves computation of expectations of functionals of

u. For instance, as we saw in the preceding section, PCE projects the output u onto

orthogonal polynomial basis Tα(ξ) and the coefficients of the expansion are given in the

form of expectations with respect to the probability measure of ξ; see (2.5). The dimension

K of the stochastic input variables ξ is usually large in most applications, which in turn

requires efficient estimations of high-dimensional integrals.

There are mainly two types of methods available for computing expectations: intru-

sive and non-intrusive methods. Intrusive methods, also called Galerkin methods, are

based on the orthogonality between the projected solution and the residual to form deter-

ministic governing equations for expansion coefficients. On the other hand, non-intrusive

methods rely on realizations of the input variables ξ to estimate averages. Random sam-

pling methods, for instance, use pseudo-random number sequences in the estimation. An

alternative way is to compute a sequence of deterministic sampling points by consider-

ing quadrature rules associated to the measure of input variables. The latter is usually

called stochastic collocation method, or sometimes non-intrusive spectral projection [124;

66].

We defer detailed discussions of intrusive Galerkin methods to the ensuing chapters and

focus on quadrature-based collocation methods in the next section.

CHAPTER 2. PRELIMINARIES 17

2.3.1 Sparse Grid Collocation Method

Assuming the probability distribution of the input variables ξ is known, e.g. given in

the Askey family [125], and the components are independent, one can construct multi-

dimensional quadrature rules by employing tensorization of one-dimensional quadrature

rules. For the sake of brevity, we consider evaluation of K-dimensional integrals of the

output u(ξ) with respect to a Gaussian probability measure pξ(ξ) ∝ exp(−||ξ||2/2).
In one dimension, we define the Gauss-Hermite quadrature rules IQ consisting of the

weights and nodes {wq, ξq}Qq=1, Q ∈ N and ξ ∈ R:

IQ(u)(ξ) :=

Q
∑

q=1

wq u(ξq),

where ξq are the roots of the Hermite polynomialsHQ and the weights wq = 1/(Q2(HQ−1(ξ
q))2).

It is known that IQ is exact if u is a polynomial of degree less than or equal to 2Q− 1; [25].

For the multi-dimensional case, the integral E[u(ξ)] can be approximated by the tensor

product formula

E[u(ξ)] ≈ I⊗K
Q :=

Q
∑

α1=1

. . .

Q
∑

αK=1

u(ξα1
1 , . . . , ξαK

K)wα1
1 . . . wαK

K .

Here we use the multi-index notation: α = (α1, . . . , αK) ∈ N
K with |α| =

∑K
k=1 αk.

We denote by Qξ the total number of resulting quadrature nodes. Approximations based

on this tensor product suffer from curse of dimensionality and computational costs scale

exponentially with dimension K, i.e. Qξ = QK .

If the dimension of the random variables is moderately high, a sparse quadrature rule

first proposed by Smolyak, can be used to reduce the number of quadrature nodes while

maintaining the accuracy [111]. Following [120; 40], we write the sparse grid approximation

to the multi-dimensional integral with the level λ

E[u] ≈
∑

λ≤|α|≤λ+K−1

(−1)λ+K−|α|−1

(

K − 1

|α| − λ

)

(Iα1 ⊗ . . . ⊗ IαK
)(u), (2.12)

where α ≥ 1. This quadrature rule is exact for multivariate polynomials of total degree up

to 2λ − 1 and greatly reduces the number of evaluations compared to the tensor product

rule above [40; 89]. In this work, we employ isotropic Smolyak sparse grid quadrature rules

CHAPTER 2. PRELIMINARIES 18

for Gaussian measures, meaning that the level λ is the same for each dimension. We also

note that the weights of this sparse quadrature rule can be negative.

An illustration of the quadrature nodes in two dimensions with different levels λ is given

in Figure 2.2. One-dimensional Gauss-Hermite rules are used to construct sparse quadrature

rules.

-4 -2 0 2 4
-4

-2

0

2

4

(a) λ = 2

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

(b) λ = 3

-10 -5 0 5 10
-10

-5

0

5

10

(c) λ = 4

Figure 2.2: A demonstration of sparse quadrature nodes for different levels using one-

dimensional Gauss-Hermite rule.

CHAPTER 3. DYNAMICAL GPC FOR SDES 19

Chapter 3

Dynamical gPC for SDEs

3.1 Related Work and Motivation

Applicability of polynomial chaos expansions to differential equations with stochastic pa-

rameters have been shown in numerous works [41; 42; 57; 122; 125; 118; 33; 81]. Two major

advantages of PCEs are: (i) they provide deterministic means to compute statistical in-

formation about the response of a random system; (ii) they take advantage of smoothness

of the response parametrized by random parameters to achieve fast convergence. The ef-

ficiency of PCE applied to equations containing low-dimensional random parameters has

been noted in the literature.

For moderate- to high-dimensional random spaces, the efficiency of the Hermite PCE

typically deteriorates. As we noted before in (2.7), if an equation contains K random

variables and a polynomial basis of total order N is used, then the total number of terms

in the approximation becomes
(

K +N

K

)

.

Thus, to maintain a level of accuracy, the number of terms in the expansion should scale

exponentially with K. Then the computational cost increases rapidly with high dimension-

ality, which in turn decreases the efficiency of PCE. This is the “curse of dimensionality”

in this context.

Another related major problem of PC is that expansions may converge slowly and even

fail to converge for long time evolutions [78; 119; 118; 57; 16]. The optimality of the fixed,

CHAPTER 3. DYNAMICAL GPC FOR SDES 20

initial PC basis diminishes in time if the dynamics exhibit considerable deviations from the

initial conditions. These problems led to numerous extensions of the Hermite PCE, which

we now briefly discuss.

The paper [125] proposed a method called generalized polynomial chaos (gPC), in which

the random variables ξ have specific, non-Gaussian, distributions in the Askey family [125;

122]. Although, the Hermite PCE (2.5) converges for any L2 functional, the optimal con-

vergence is usually achieved when the underlying uncertainty is nearly Gaussian [122;

125]. The main idea of [125] is then to represent the randomness in the system in a

sparser way using a polynomial basis which is orthogonal with respect to the distribution

of the input random parameters. Table 3.1 summarizes the optimal choices of orthog-

onal polynomials for different one-dimensional continuous probability distributions [122;

125].

distribution density function polynomials

Gaussian 1√
2π
e−ξ2/2 Hermite

U(a,b) 1
b−a Legendre

β(a, b) ξa−1(1−ξ)b−1

B(a,b) Jacobi

Γ(a, b) ba

Γ(a)ξ
a−1e−bξ Laguerre

Table 3.1: Association between continuous probability distributions and orthogonal poly-

nomials.

Further generalizations to arbitrary probability measures beyond the Askey family were

proposed in [119; 118], where the probability space is decomposed into multiple elements

and local chaos expansions are employed in each sub-element. This approach allows PC to

adapt to different regions in the random space and extends the valid integration time of

gPC for low-dimensional systems. The approach taken in [37] is to use a restart procedure,

where the chaos expansion is restarted at different time-steps in order to mitigate the

long-time integration issues of chaos expansions. Another generalization toward arbitrary

CHAPTER 3. DYNAMICAL GPC FOR SDES 21

distributions is presented in [91], using only moment information of the involved distribution

with a data-driven approach.

Although most of the extensions offer considerable improvements over the Hermite PCE,

problems related to high dimensionality and long-time integration of spectral expansions

still persist in most applications. For instance, in case of evolution equations with complex

stochastic forcing (e.g. white noise), the limitations of PCE are discussed in [57; 16]. Both

manuscripts noted that a rapidly increasing number of terms in PCE is needed to get a

reasonable representation of the solution as time evolves. In this connection, we propose

a method which addresses these drawbacks and offers a viable way to compute long-time

solutions of evolution equations driven by white noise.

The plan of the rest of the chapter is as follows. Our methodology, Dynamical generalized

Polynomial Chaos, is described in detail in Section 3.2. Numerical experiments comparing

DgPC to Hermite PC and Monte Carlo simulations are presented in Section 3.3.

3.2 Description of the Proposed Method

Our key idea is to adapt the PCE to the dynamics of the system. Consider for concreteness

the following SDE:

du(t) = L(u) dt+ σ dW (t), u(0) = u0, t ∈ [0, T], (3.1)

where L(u) is a general function of u (and possibly other deterministic or stochastic param-

eters), W (t) is a Brownian motion, σ > 0 is a constant, and u0 is an initial condition with

a prescribed probability density. We assume that a solution exists and is unique on [0, T].

We also use Wt and W (t) interchangeably.

As the system evolves, a fixed polynomial chaos basis adapted to u0 and dW may not

be optimal to represent the solution u(t) for long times. Moreover, the dimension of the

representation of dW increases with time t, which renders the PCE method computationally

intractable even for moderate values of T . We will therefore introduce an increasing sequence

of restart times 0 < tj < tj+1 < T and construct a new PCE basis at each tj based on the

solution u(tj) and all additional random variables that need to be accounted for. A very

similar methodology with σ = 0 was considered earlier in [37; 56]. When random forcing is

CHAPTER 3. DYNAMICAL GPC FOR SDES 22

present and satisfies the Markov property as in the above example, the restarting strategy

allows us to “forget” past random variables that are no longer necessary and focus on a

significantly smaller subset of random variables that influence the future evolution. As an

example of application, we will show that the restarting strategy allows us to capture the

invariant measure of the above SDE, when such a measure exists.

To simplify notation, we present our algorithm on the above scalar SDE with L(u) a

function of u, knowing that all results also apply to systems of SDEs with minor modifica-

tions; see sections 3.2.2.4 and 3.3.

3.2.1 Formulation

First, we notice that the solution u(t) of (3.1) is a random process depending on the initial

condition and the paths of Brownian motion up to time t:

u = u(t; {Wτ , 0 ≤ τ ≤ t}, u0).

Therefore, recalling the expansion for W (t) (2.9), the solution at time t can be seen as a

nonlinear functional of u0 and the countably infinite variables ξ. As previously noticed

in [37; 56], the solution u(t) can be represented as a linear chaos expansion in terms of

the polynomials in itself and therefore, for sufficiently small later times t + ε, ε > 0, the

solution u(t+ε) can be efficiently captured by low order chaos expansions in u(t) everything

else being constant. Moreover, the solution u(t + ε) on the interval 0 < ε < ε0 depends

on W[t,t+ε0] and not on values of W outside of this interval. This significantly reduces the

number of random variables in ξ that need to be accounted for. This crucial observation

clearly hinges upon the Markovian property of the dynamics. Hence, dividing the time

horizon into small pieces and iteratively employing PCE offer a possible way to alleviate

both curse of dimensionality and long-time integration problems.

We decompose the time horizon [0, T] into n subintervals; namely [0, t1], [t1, t2], . . . , [tn−1, T]

where 0 = t0 < t1 < . . . < tn = T . The idea is then to employ polynomial chaos expansion

in each subinterval and restart the approximation depending on the distributions of both ξj

and u(tj) at each tj , 1 ≤ j < n; see Figure 3.1. Here, ξj denotes the Gaussian random vari-

ables required for Brownian forcing on the interval [tj, tj+1]. Throughout the chapter, we

CHAPTER 3. DYNAMICAL GPC FOR SDES 23

utilize the term Tα to represent orthonormal chaos basis involving its arguments. In order to

establish evolution equations for chaos basis Tα(ξj), triple products E[Tα(ξj)Tβ(ξj)Tγ(ξj)]

are needed. This procedure basically corresponds to computing the coefficients and indices

in the Hermite product formula (3.3).

The probability distribution of u(tj) does not belong to any classical family such as the

Askey family in general. The construction of the orthogonal polynomials in u(tj) is therefore

fairly involved computationally and is based on the general PCE results mentioned earlier

in the section. At each time step, we compute the moments of u(tj) using its previously

obtained chaos representation and incorporate them in a modified Gram–Schmidt method.

This is a computationally expensive step. Armed with the orthogonal basis, we then com-

pute the triple products in u(tj) to perform the necessary Galerkin projections onto spaces

spanned by this orthogonal basis and thus obtain evolution equations for the deterministic

expansion coefficients [41; 68]. Letting uj := u(tj), equations for the coefficients (uj+1)α of

uj+1 are given in the general form

d(uj+1)α = E

Tα(ξj , uj)L

∑

β

(uj+1)β Tβ(ξj , uj)

 ds+ σ E
[

Tα(ξj, uj) dWt

]

,

where α,β ∈ J . Before integration of these expansion coefficients in time, uj is represented

in terms of its own orthogonal polynomials, which provides a description of the initial

conditions on that interval. We then perform a high order time integration. Cumulants of

the resulting solution are then computed to obtain relevant statistical information about

the underlying distribution.

Remark 3.1. The proposed methodology does not require the computation of any proba-

bility density function (pdf) and rather depends only on its moments at each restart time.

The statistical information contained in such moments provides useful data for decision

making in modeling and, for determinate distributions, moments characterize the distribu-

tion uniquely. This aspect will be essential in the proof of convergence in section 3.2.4.

Comparing our method with probability distribution function methods, e.g., the Fokker–

Planck equation, we note that it essentially evolves the coefficients of orthogonal polynomials

of the projected solution in time instead of evolving the pdf.

CHAPTER 3. DYNAMICAL GPC FOR SDES 24

Let Zj represents the nonlinear chaos expansion mapping (uj−1, ξj−1) to uj. Our scheme

may be demonstrated by Figure 3.1.

0

u0

t1

u1

Z1(ξ0, u0)

t2

u2

Z2(ξ1, u1)

Figure 3.1: Propagation of chaos expansions in DgPC.

Mathematically, we have

uj = Zj(ξj−1, uj−1) =
∑

α∈J
(uj)α Tα(ξj−1, uj−1), j ∈ N. (3.2)

In simulations, ξj is truncated with finite dimension K ∈ N. Let also N ∈ N denote

the maximum degree of the polynomials in the variables (ξj , u(tj)). Here, to simplify, K

and N are chosen independently of j. The multi-indices having K dimensions and degree

N belong to the set JK,N := {α = (α1, α2, .., αK) |αk ∈ N0, |α| ≤ N}.
We now present our algorithm, called Dynamical generalized Polynomial Chaos (DgPC),

in one dimension for concreteness; see also section 3.2.2.4.

Algorithm 1 Dynamical generalized Polynomial Chaos (DgPC) for SDEs

Decompose time domain [0, T] = [t0, t1] ∪ ∪ [tn−1, T]

Initialize degrees of freedom K,N

Compute coefficients/indices in Hermite product formula for ξ0

for each time-step tj ≥ 0 do

calculate moments E[(uj)
m]

construct orthogonal polynomials Tk(uj)

compute triple products E[Tk(uj)Tl(uj)Tm(uj)]

perform Galerkin projection onto span{Tα(ξj, uj)}
set up initial conditions for the coefficients (uj)α

evolve the expansion coefficients (uj)α

compute cumulants

end for

CHAPTER 3. DYNAMICAL GPC FOR SDES 25

Several remarks are in order. First, since our stochastic forcing has identically dis-

tributed independent increments, we observe that at each subinterval the distribution of

ξj is the same. Computing and storing (in sparse format) the coefficients for the product

formula (3.3) only once drastically reduces the computational time.

At each iteration, the random variable u(tj) = uj is projected onto a finite dimensional

chaos space and the next step is initialized with the projected random variable. For a

d-dimensional SDE system, this projection leads to
(K+N

N

)

×
(d+N

N

)

terms in the basis for

the subinterval [tj , tj+1]. Therefore, the total number of degrees of freedom used in [0, t]

becomes n×
(

K+N
N

)

×
(

d+N
N

)

; see also section 3.2.3. We emphasize that small values of K,N

are utilized in each subinterval such that computations can be carried out quickly.

The idea of iteratively constructing chaos expansions for arbitrary measures was con-

sidered earlier in [37; 56; 99; 4; 5; 131]. In [4; 5], an iterative method is proposed to solve

coupled multiphysics problems, where a dimension reduction technique is used to exchange

information between iterations while allowing the construction of PC in terms of arbitrary

(compactly supported) distributions at each iteration. A similar iterative procedure for

Hermite PC was suggested for stochastic partial differential equations (SPDEs) with Brow-

nian forcing in the conclusion section of [57] without any mathematical construction or

numerical example. In [131], a multi-stage PC-based algorithm is presented based on the

recursive formulation in [73] to compute second order moments of linear SPDEs. We also

stress an important difference between our approach and [37]: our scheme solely depends

on the statistical information, i.e., moments, which are available through chaos expansion,

whereas [37] either requires the pdf of uj at tj or uses mappings to transform uj back to

the original input random variables, which in our problem is high dimensional, including

the ξ variables.

3.2.2 Implementation

We now describe the implementation of our algorithm.

CHAPTER 3. DYNAMICAL GPC FOR SDES 26

3.2.2.1 Moments

Provided that the distribution of the initial condition u0 is known, several methods allow

us to compute moments: analytic formulas, quadrature methods, or Monte Carlo sampling.

Also, in the case of limited data, moments can be generated from raw data sets. Throughout

the chapter, we assume that the moments of the initial condition can be computed to some

large finite order so that the algorithm can be initialized.

We first recall the Hermite product formula, which establishes the multiplication of two

PCEs (2.5) for random variables u and v. The chaos expansion for the product becomes

uv =
∑

α∈J

∑

γ∈J

∑

0≤β≤α

C(α,β,γ)uα−β+γvβ+γ Tα(ξ), (3.3)

where C is defined in (2.6); [75; 57]. As our applications include nonlinear terms, this

formula will be used repeatedly to multiply Hermite chaos expansions.

To compute moments of the random variable uj (recall (3.2)) at time step tj , j =

1, . . . , n, we use its chaos representation and previously computed triple products recursively

as follows. Due to the Markov property of the solution, the normalized chaos basis in ξj−1

and uj−1 becomes a tensor product, and thus we can write

uj =
∑

α′

(uj)α′ Tα′(ξj−1, uj−1) =
∑

α,k

(uj)α,k Tα(ξj−1)Tk(uj−1),

where α,α′ ∈ J and k ∈ N0. Then for an integer m > 1,

umj =
∑

α,k

(uj)α,k Tα(ξj−1)Tk(uj−1)
∑

β,l

(um−1
j)β,l Tβ(ξj−1)Tl(uj−1).

Here, α,β ∈ J and k, l ∈ N0. Hence, using (3.3), the coefficients (umj)γ,r, where γ ∈ J
and r ∈ N0, can be calculated using the expression

(umj)γ,r =
∑

α∈J

∑

0≤θ≤γ

∑

k,l

C(γ, θ,α)E[Tr(uj−1)Tk(uj−1)Tl(uj−1)] (u
m−1
j)γ−θ+α,l (uj)θ+α,k,

(3.4)

which allows us to compute moments by simply taking the first coefficient, i.e. E[umj] =

(umj)0,0. Even though the coefficients C(γ, θ,α) can be computed offline, the triple products

E[Tr(uj)Tk(uj)Tl(uj)] must be computed at every step as the distribution of uj evolves.

CHAPTER 3. DYNAMICAL GPC FOR SDES 27

3.2.2.2 Orthogonal Polynomials

Given the real random variable uj obtained by the orthogonal projection of the solution

u onto homogeneous chaos at tj, the Gram–Schmidt orthogonalization procedure can be

used to construct the associated orthogonal polynomials of its continuous distribution. For

theoretical reasons, we assume that the moment problem for uj is uniquely solvable; i.e.,

the distribution is nondegenerate and uniquely determined by its moments [2; 36].

To construct orthogonal polynomials, the classical Gram–Schmidt procedure uses the

following recursive relation

T0 = 1, Tm(uj) = umj −
m−1
∑

l=0

aml Tl(uj), m ≥ 1,

where the coefficients are given by aml = E[umj Tl(uj)]
(

E[T 2
l (uj)]

)−1
. Note that E denotes

the Lebesgue–Stieltjes integral with respect to distribution of uj . We observe that the

coefficient aml requires moments up to degree 2m−1 as Tl is at most of degree m−1. Thus,

normalization would need first 2m moments for orthonormal polynomials up to degree m.

After the construction of orthonormal polynomials of uj , the basis Tα(ξj, uj) can be

generated by tensor products since ξj and uj are independent. Moreover, triple products

E[Tk(uj)Tl(uj)Tm(uj)], where k, l,m = 0, . . . , N, can be found by simply noting that this

expectation is a triple sum involving moments up to order 3N . Hence, the knowledge of

moments yields not only the orthonormal set of polynomials but also the triple products

required at each iterative step.

In our numerical computations, we prefer to utilize a modified Gram–Schmidt algorithm

as the classical approach is overly sensitive to roundoff errors in cases of high dimension-

ality [44]. We refer the reader to [36] for other algorithms, e.g., Stieltjes and modified

Chebyshev methods.

3.2.2.3 Initial Conditions

When the algorithm is reinitialized at the restart point tj, it needs to construct the initial

condition in terms of chaos variables for the next iteration on [tj , tj+1]. In other words, we

need to find the coefficients (uj)α in terms of uj and ξj. To this end, we observe that the

first two polynomials in uj are given by T0(uj) = 1 and T1(uj) = σ−1
uj

(uj − E[uj]), where

CHAPTER 3. DYNAMICAL GPC FOR SDES 28

σuj
is the standard deviation of the random variable uj. Notice that σuj

> 0, because

we assumed in the preceding section that the distribution was nondegenerate. Hence, the

initial condition can be easily found by the relation

uj = E[uj]T0(uj) + σuj
T1(uj) =

∑

α∈J , k∈N0

(uj)α,k Tα(ξj)Tk(uj).

3.2.2.4 Extension to Higher Dimensions

We now extend our algorithm to higher dimensions, and for concreteness, we consider two

dimensions. Let uj+1 = (v1, v2) ∈ R
2 be a two-dimensional random variable obtained by

projection of the solution u onto homogeneous chaos space at time tj+1.

The two-dimensional case requires the calculation of the mixed moments E[vl1 v
m
2], l,m ∈

N ∪ {0}. In the case of independent components v1, v2, the moments become products of

marginal moments and the basis Tα(v1, v2) is obtained by tensor products of the one-

dimensional bases. For a nonlinear system of equations, the components of the solution

typically do not remain independent as time evolves. Therefore, we need to extend the

procedure to correlated components.

Denoting by Zj+1,1 and Zj+1,2 the corresponding chaos expansions on [tj , tj+1] so that

v1 = Zj+1,1(ξj , uj) and v2 = Zj+1,2(ξj , uj), we compute the mixed moments by the change

of variables formula

E[vl1 v
m
2] = E(v1,v2)[v

l
1 v

m
2] = E(ξj ,uj)

[

Z l
j+1,1 Z

m
j+1,2

]

, (3.5)

where E(·) represents the expectation with respect to the joint distribution induced by the

subscript. Note that the latter integral in (3.5) can be computed with the help of previously

computed triple products of ξj and uj . Incidentally, similar transformation methods were

used previously in [56; 4; 5].

Since the components may not be independent, the tensor product structure is lost

but the construction of orthogonal polynomials is still possible. Based on the knowledge

of marginal moments, we first compute the tensor product Tα(v1, v2). However, this set

is not orthogonal with respect to the joint probability measure of (v1, v2). Therefore, we

further orthogonalize it via a Gram–Schmidt method. Note that this procedure requires

only mixed moments E(v1,v2)[v
l
1v

m
2], which have already been computed in the previous step

CHAPTER 3. DYNAMICAL GPC FOR SDES 29

of the algorithm. It is worth noting that the resulting set of orthogonal polynomials is not

unique as it depends on the ordering of monomials [130]. In applications, we consider the

same ordering used for the set of multi-indices; see Table 2.1. Finally, calculation of triple

products and initial conditions can be extended in an obvious way.

3.2.3 Computational Complexity

In this section, we discuss the computational costs of our algorithm using a vector-valued

version of the SDE (3.1) in R
d for a fixed d ∈ N. For each scalar SDE, we assume that the

nonlinearity is proportional to mth order monomial with m ∈ N. Furthermore, we compare

costs of DgPC and Hermite PC in the case where both methods attain a similar order of

error.

Throughout this section, K,N will denote the dimension and the degree in ξ = (ξ1, . . . , ξK)

for Hermite PC. Here ξ represents the truncation of d-dimensional Brownian motion; there-

fore, K ≫ d. The time interval is fixed and given by [0, 1]. We also recall M(K,N) =
(

K+N
K

)

, the degrees of freedom for the simple truncation (2.7). For the DgPC method, we

divide the interval into n > 1 identical subintervals so that ∆t = n−1. We now slightly

change the notation of previous sections and denote by K∗, N∗ the dimension and degree of

polynomials of ξj = (ξjK∗+1, . . . , ξjK∗+K∗
) used in DgPC approximation for each 1 ≤ j < n.

With additional d variables at each restart, the dimension of the multi-index set for DgPC

becomes M(K∗, N∗)M(d,N∗) due to the tensor product structure. Further, let h < 1 and

ζ ≥ 1 denote the time step and global order of convergence for the time integration method

employed in Hermite PC, respectively.

3.2.3.1 Computational costs

With the above notation, we summarize the computational costs in Table 3.2. All terms

should be understood in big O notation.

The estimates in Table 3.2 are obtained as follows. Triple products for ξ with α,β,γ ∈

CHAPTER 3. DYNAMICAL GPC FOR SDES 30

Flops DgPC Hermite PC

Offline K∗ ×M(K∗, N∗)3 K ×M(K,N)3

Time evolution d×h−1×n1/ζ×(M(K∗, N∗)M(d,N∗))×
[1 + (m− 1)× (M(K∗, N∗)M(d,N∗))2]

d×h−1×M(K,N)×[1+

(m− 1)×M(K,N)2]

Moments n × (M(K∗, N∗)M(d,N∗))3 × [(6d −
3d2)×N∗ + (d− 1)×M(d, 3N∗)]

Gram–Schmidt n×M(d,N∗)3

Triple products n×M(d,N∗)6

Initials n× d× (M(K∗, N∗)M(d,N∗))

Table 3.2: Comparison of computational costs for Hermite PC and DgPC.

JK,N can be calculated by the equation

E[Tα(ξ)Tβ(ξ)Tγ(ξ)] = E

K
∏

i=1

Hαi
(ξi)

K
∏

j=1

Hβj
(ξj)

K
∏

k=1

Hγk(ξk)

 ,

=

K
∏

k=1

E[Hαk
(ξk)Hβk

(ξk)Hγi(ξk)].

Thus, the offline cost is of order K×M(K,N)3 assuming that one-dimensional triple prod-

ucts can be read from a precomputed table.

Since a time discretization with error O(hζ) is employed for Hermite PC, then for DgPC

in each subinterval, time steps of order h−1n(1−ζ)/ζ should be used to attain the same global

error. Without nonlinearity, the total cost in Hermite PC for evolution of a d-dimensional

system becomes d × h−1 ×M(K,N). Due to the functional L(u) ∝ um,m > 1, the cost

should also include the computation of um at each time integration step. This requires

additional d× h−1 × (m − 1) ×M(K,N)3 work (see the computation of moments below).

Hence, the corresponding total cost of evolution becomes the sum of these costs.

The coefficients of the kth power of a single projected variable uj are given by

(ukj)γ =
∑

α,β

(uk−1
j)α (uj)β E[TαTβTγ], 2 ≤ k ≤ 3N∗,

assuming that, after each multiplication, the variable is projected onto the PC basis. Here,

CHAPTER 3. DYNAMICAL GPC FOR SDES 31

α,β,γ ∈ JK∗,N∗
⊗ Jd,N∗

. Thus, the computation of marginal moments of all variables

requires d× 3N∗ × (M(K∗, N∗)M(d,N∗))3 calculations at each restart time in DgPC. Since

we use the same ordering for multidimensional moments as Jd,3N∗
, computing joint moments

further needs (d− 1)× (M(d, 3N∗)− 3dN∗)× (M(K∗, N∗)M(d,N∗))3 amount of work.

The Gram–Schmidt procedure costs are cubic in the size of the Gram matrix, which

has dimension M(d,N∗) in DgPC. Each triple product E[Tα(uj)Tβ(uj)Tγ(uj)],α,β,γ ∈
Jd,N∗

, is a triple sum; therefore, the total cost is proportional to M(d,N∗)6. Also, initial

conditions can be computed by orthogonal projection onto the DgPC basis, which costs

M(K∗, N∗)M(d,N∗) per dimension.

Note that although we employed simple truncation (2.7) for multi-indices, sparse trun-

cation techniques can be utilized to further reduce the costs of both computing moments

and evolution; see [75; 57; 66].

3.2.3.2 Error bounds and cost comparison

We now discuss the error terms in both algorithms. We posit that the Hermite PCE

converges algebraically in N and K and that the error at time T satisfies

||u− upce||L2 . T δ (N−η +K−λ), (3.6)

for some constants η, λ > 0 and δ > 1 depending on the SDE. Here A . B denotes that

A ≤ cB for c > 0 with A,B ≥ 0. This assumption enforces an increase in the degrees of

freedom N,K if one wants to maintain the accuracy in the long term. Algebraic convergence

in K and the term T δ stems from the convergence (2.10). We do not show errors resulting

from time discretization in (3.6) since we already fixed those errors to the same order in both

methods. Incidentally, even though we assumed algebraic convergence in N , exponential

numerical convergence, depending on the regularity of the solution in ξ, is usually observed

in the literature [122; 123; 41; 75; 125; 118].

Although it is usually hard to quantify the constants η, λ, δ, this may be done for simple

cases. For instance, for the Ornstein–Uhlenbeck (OU) process (3.24), using the exact solu-

tion and Fourier basis of cosines, we can obtain the parameters δ = 2 and λ = 3/2 for short

times. The parameter η does not play a role in this case since the SDE stays Gaussian and

CHAPTER 3. DYNAMICAL GPC FOR SDES 32

hence we take N = 1. We also note that for complex dynamics, η may depend on N ; see [75;

118] in the case of the stochastic Burgers equation and advection equations.

Now, we fix the error terms in (3.6) to the same order O(ε), ε > 0, by choosing N =

O(Kλ/η). Since DgPC uses truncated ξ of dimension K∗ and polynomials of degree N∗ in

each subinterval of size ∆t = n−1, the L2 error at T = 1 has the form

||u− udgpc||L2 .
n

nδ

(

N−η
∗ +K−λ

∗
)

. (3.7)

Thus, to maintain the same level ε of accuracy, we can choose

n1−δK−λ
∗ ∼= K−λ and n1−δN−η

∗ ∼= K−λ.

From Table 3.2, we observe that to minimize costs for DgPC, we can take K∗ = d and

N∗ = 1 and maximize n according to the previous equation as

n ∼= K
λ

δ−1 . (3.8)

With these choices of parameters, the total computational cost for DgPC is of algebraic

order in K and in general, is dominated by the computation of moments.

For Hermite PC with large K and N = O(Kλ/η) (or N = O(λ/η logK) in the case

of exponential convergence in N), both offline and evolution stages include the cubic term

M(K,N)3. Both costs increase exponentially in K. Therefore, the asymptotic analysis

suggests that DgPC can be performed with substantially lower computational costs using

frequent restarts (equation (3.8)) in nonlinear systems driven by high dimensional random

forcing.

3.2.4 Convergence Results

We now consider the convergence properties of our scheme as degrees of freedom tend to

infinity.

3.2.4.1 Moment problem and density of polynomials

There is an extensive literature on the moment problem for probability distributions; see [2;

11; 97; 34] and their references. We provide the relevant background in the analysis of

DgPC.

CHAPTER 3. DYNAMICAL GPC FOR SDES 33

Definition 3.2. (Hamburger moment problem) For a probability measure µ on (R,B(R)),
the moment problem is uniquely solvable provided moments of all orders

∫

R
xkµ(dx), k ∈ N0,

exist and they uniquely determine the measure. In this case, the distribution µ is called

determinate.

There are several sufficient conditions for a one-dimensional distribution to be determi-

nate in Hamburger sense: these are compact support, exponential integrability and Car-

leman’s moment condition [2; 11]. For instance, Gaussian and uniform distributions are

determinate, whereas the lognormal distribution is not. The moment problem is intrinsi-

cally related to the density of associated orthogonal polynomials. Indeed, if the cumulative

distribution Fu of a random variable u is determinate, then the corresponding orthogonal

polynomials constitute a dense set in L2(R,B(R),Fu) and therefore also in L2(Ω, σ(u),P) [2;

11; 34]. Additionally, finite dimensional distributions on R
d with compact support are de-

terminate; see [97].

Now, let ζ = (ζi)i∈N denote an independent collection of general random variables,

where each ζi (not necessarily identically distributed) has finite moments of all orders and

its cumulative distribution function is continuous. Under these assumptions, [30] proves the

following theorem.

Theorem 3.3. For any random variable η ∈ L2(Ω, σ(ζ),P), gPC converges to η in L2 if

and only if the moment problem for each ζk, k ∈ N, is uniquely solvable.

This result generalizes the convergence of Hermite PCE to general random variables

whose laws are determinate. Notably, to prove L2 convergence of chaos expansions, it is

enough to check one of the determinacy conditions mentioned above for each one-dimensional

ζi.

We now consider the relation between determinacy and distributions of SDEs. Consider

the following diffusion

dut = b(ut) dt+ σ(ut) dWt, u(0) = u0, t ∈ [0, T], (3.9)

where Wt is d-dimensional Brownian motion, u0 ∈ R
d, and b : Rd → R

d, σ : Rd → R
d×d

are globally Lipschitz and satisfy the usual linear growth bound. These conditions imply

CHAPTER 3. DYNAMICAL GPC FOR SDES 34

that the SDE has a unique strong solution with continuous paths [90]. Determinancy of the

distribution of ut is established by the following theorem; see [97; 113; 32] for details.

Theorem 3.4. The law of the solution of (3.9) is determinate if supx ||σσT (x)|| is finite.

3.2.4.2 L2 convergence with a finite number of restarts

Consider the solution of the SDE (3.9) written as

ut = Ft(u0, ξ
t
0), (3.10)

where Ft : R
d × R

∞ → R
d is the exact evolution operator mapping the initial condition u0

and ξt0 = (ξt1, ξ
t
2, . . .) to the solution ut at time t > 0. Here, with a slight change of notation,

ξt0 represents Brownian motion on the interval [0, t]. Note that future solutions ut+τ , τ > 0,

are obtained by Ft(uτ , ξ
t+τ
τ), where ξt+τ

τ denotes Brownian motion on the interval [τ, t+ τ].

Even though the distribution of the exact solution ut is determinate under the hypotheses

of Theorem 3.4, it is not clear that this feature still holds for the projected random variables.

To address this issue, we introduce, for R ∈ R+, a truncation function χR ∈ C∞
c (Rd → R

d)

χR(u) :=

u, when u ∈ AR,

0, when u ∈ R
d \ A3R,

where AR :=
∏d

i=1[−R,R] ⊂ R
d, and such that χR(u) decays smoothly and sufficiently

slowly on Ac
R such that the Lipschitz constant Lip(χR) of χR equals 1; i.e., for | · |, the

Euclidean distance in R
d, |χR(u) − χR(v)| ≤ |u − v|. Such a function is seen to exist by

appropriate mollification for each coordinate using the continuous, piecewise smooth, and

odd function χ(u1) defined by R−|u1−R| on [0, 2R], and extended by 0 outside [−2R, 2R].

This truncation is a theoretical tool that allows us to ensure that all distributions with

support properly restricted on compact intervals remain determinate; see [97].

We can now introduce the following approximate solution operators for R ∈ R+ and

M ∈ N0:

FR
t (u, ξt0) := χR ◦ Ft(u, ξ

t
0) : R

d × R
∞ → A3R, (3.11)

FM,R
t (u, ξt0) := PM ◦ FR

t (u, ξt0) =

M−1
∑

i=0

FR
i,t Ti(u, ξ

t
0), (3.12)

CHAPTER 3. DYNAMICAL GPC FOR SDES 35

where PM denotes the orthogonal projection onto polynomials in u and ξt0, and M is the

total number of degrees of freedom used in the expansion. Throughout this section, we use

a linear indexing to represent polynomials in both u (restricted on A3R) and the random

variables ξ.

The main assumptions we imposed on the solution operator Ft are summarized as fol-

lows:

i) Eξt0
|Ft(0, ξ

t
0)|p ≤ Ct, where 0 < Ct <∞ and p = 2 + ǫ with ǫ > 0.

ii) Eξt0
|Ft(u, ξ

t
0) − Ft(v, ξ

t
0)|p ≤ ρpt |u − v|p, where u, v ∈ R

d, 0 < ρt < ∞, and p = 2 + ǫ

with ǫ > 0.

iii) For ε > 0 and R > 0, there is M(ε,R, t) so that Eξt0
|FR

t (u, ξt0) − FM,R
t (u, ξt0)|2 ≤ ε,

where u ∈ A3R.

Assumption i) is a stability estimate ensuring that the chain remains bounded in pth norm

starting from a point in R
d (here 0 without loss of generality owing to ii)). Assumption ii)

is a Lipschitz growth condition controlled by a constant ρt. These assumptions involve the

Lp norm, and hence are slightly stronger than control in the L2 sense. Note that FR
t also

satisfies assumption ii) with the same constant ρt since Lip(χR) = 1. Finally, assumption

iii) is justified by the Weierstrass approximation theorem for the u variable in A3R and by

the Cameron–Martin theorem to handle the ξ variable.

Consider now the following versions of the Markov chains:

uj+1 := Ft(uj, ξj), j = 0, . . . , n− 1, (3.13)

uRj+1 := FR
t (uRj , ξj), uR0 = χR(u0), j = 0, . . . , n− 1, (3.14)

uM,R
j+1 := FM,R

t (uM,R
j , ξj), uM,R

0 = χR(u0), j = 0, . . . , n − 1, (3.15)

where u0 ∈ R
d (possibly random and independent of the variables ξ) and ξj = ξ

(j+1)t
jt is a

sequence of i.i.d. Gaussian random variables representing Brownian motion on the interval

[jt, (j+1)t]. We also use the notation ξ
jt
0 to denote Brownian motion on the interval [0, jt].

Then we have the first result.

CHAPTER 3. DYNAMICAL GPC FOR SDES 36

Lemma 3.5. Assume i), ii), and iii) hold, and let n ∈ N be finite. Suppose also that

E|u0|p = C0 < ∞. Then, for each ε > 0, there exists R ∈ R+ depending on n, t, and C0

such that E|uj − uRj |2 ≤ ε for each 0 ≤ j ≤ n.

Proof. Let ε > 0 be fixed. Using properties i) and ii), we observe that

E
ξ
(j+1)t
0

|Ft(uj , ξj)|p ≤ 2p−1
(

E
ξ
jt
0
Eξj

|Ft(uj , ξj)− Ft(0, ξj)|p + E
ξ
jt
0
Eξj

|Ft(0, ξj)|p
)

,

≤ 2p−1
(

ρpt Eξ
jt
0
|uj|p + Ct

)

,

where for all j, ξj and ξt0 are identically distributed. Then, by induction, we obtain

E
u0,ξ

(j+1)t
0

|uj+1|p ≤ (2p−1ρpt)
j+1

E|u0|p + Cp
t,n ≤ Ct,n,C0 , 0 ≤ j ≤ n− 1, (3.16)

where the constant Ct,n,C0 is bounded. The last inequality indicates that pth norm of the

solution grows with j, possibly exponentially, but remains bounded.

For uj = Fjt(u0, ξ
jt
0), we note that E|uj |2 = E

u0,ξ
jt
0
|uj |2 since uj is independent of future

forcing. By Markov’s inequality and (3.16), we get

P(uj ∈ Ac
R) ≤

E|uj|2
R2

≤ Ct,n,C0 R
−2, 1 ≤ j ≤ n. (3.17)

Let 1A be the indicator function of the set A. Using (3.16) and (3.17), we compute the

following error bound

E|uj − χRuj|2 = E[(1{uj∈AR} + 1{uj∈Ac
R
})|uj − χRuj |2], 1 ≤ j ≤ n,

≤ 4E[1{uj∈Ac
R
}|uj|2] ≤ 4 (E|uj |p)2/p P(uj ∈ Ac

R)
1/q, p = 2 + ǫ, q = 1 + 2ǫ−1,

≤ Ct,n,C0 R
−2/q. (3.18)

Then, using property ii) gives

Eξj−1
|uj − uRj |2 = Eξj−1

|Ft(uj−1, ξj−1)− FR
t (uRj−1, ξj−1)|2,

≤ (1 + δ−1)Eξj−1
|uj − χRuj|2

+ (1 + δ)Eξj−1
|χRFt(uj−1, ξj−1)− FR

t (uRj−1, ξj−1)|2, δ > 0,

≤ (1 + δ−1)Eξj−1
|uj − χRuj|2 + (1 + δ)ρ2t |uj−1 − uRj−1|2.

CHAPTER 3. DYNAMICAL GPC FOR SDES 37

Taking expectation with respect to remaining measures and using (3.18) yields

E|uj − uRj |2 ≤ (1 + δ)ρ2t E|uj−1 − uRj−1|2 + (1 + δ−1)Ct,n,C0 R
−2/q,

≤ ((1 + δ)ρ2t)
j
E|u0 − uR0 |2 + (1 + δ−1)Ct,n,C0 R

−2/q
j−1
∑

i=0

((1 + δ)ρ2t)
i. (3.19)

Setting δ = 1 in (3.19) entails

E|uj − uRj |2 ≤ 2jρ2jt E|u0 − uR0 |2 + Ct,n,C0 R
−2/q.

Since E|u0|p <∞, we also have E|u0−uR0 |2 = O(R−2/q). Thus, we can choose R(n, t, C0) ∈
R+ large enough such that E|uj − uRj |2 ≤ ε for each 0 ≤ j ≤ n.

Based on the preceding lemma, we prove that the chain (3.15) converges to the solution

of the chain (3.13) in the setting of a finite number of restarts.

Theorem 3.6. Under the assumptions of Lemma 3.5, for each ε > 0, there exists R(n, t, C0) ∈
R+ and then M(R,n, t) ∈ N0 such that E|uj − uM,R

j |2 ≤ ε for each 0 ≤ j ≤ n.

Proof. Let ε > 0 be fixed. By the previous lemma, choose R > 0 such that E|uj−uRj |2 ≤ ε/4

for 0 ≤ j ≤ n. Then, using calculations similar to those above, by ii) we get

Eξj−1
|uRj − uM,R

j |2 ≤ (1 + δ)Eξj−1
|FR

t (uRj−1, ξj−1)− FR
t (uM,R

j−1 , ξj−1)|2

+ (1 + δ−1)Eξj−1
|FR

t (uM,R
j−1 , ξj−1)− FM,R

t (uM,R
j−1 , ξj−1)|2, δ > 0,

≤ 2ρ2t |uRj−1 − uM,R
j−1 |2

+ 2Eξj−1
|FR

t (uM,R
j−1 , ξj−1)− FM,R

t (uM,R
j−1 , ξj−1)|2, δ = 1,

= ρ∗ |uRj−1 − uM,R
j−1 |2 + 2Eξj−1

|FR
t (uM,R

j−1 , ξj−1)− FM,R
t (uM,R

j−1 , ξj−1)|2,

where j ≥ 1 and ρ∗ := 2ρ2t . Then by iii), we choose M(R,n, t) sufficiently large so that

Eξj−1
|uRj − uM,R

j |2 ≤ ρ∗ |uRj−1 − uM,R
j−1 |2 +

ε

4

ρ∗ − 1

ρn∗ − 1
. (3.20)

The last inequality can be rewritten as

E|uRj − uM,R
j |2 ≤ ρj∗ E|uR0 − uM,R

0 |2 + ε/4 = ε/4.

Therefore, E|uj − uM,R
j |2 ≤ ε for each 1 ≤ j ≤ n.

CHAPTER 3. DYNAMICAL GPC FOR SDES 38

3.2.4.3 Convergence to invariant measures and long time evolution

Consider the setting of the solution operator to the SDE given in (3.10). As T increases to

∞, the random variable u(T) may converge in distribution to a limiting random variable u∞,

whose distribution is the invariant measure of the evolution equation (3.10). Although there

are many efficient ways to analyze and compute such invariant measures (see for instance

[108]), we wish to show that our iterative algorithm also converges to that invariant measure

as degrees of freedom tend to infinity. In other words, our PCE-based method allows us to

remain accurate for long-time evolutions.

Now we iterate each discrete chain in (3.13), (3.14) and (3.15) for an arbitrary j ∈ N0.

In order to ensure long-time convergence, we need a stricter condition than ii) and impose

instead the following contraction condition

ii’) Eξt0
|Ft(u, ξ

t
0) − Ft(v, ξ

t
0)|p ≤ ρpt |u − v|p, where 0 < ρt < 1, p = 2 + ǫ, ǫ > 0, and

u, v ∈ R
d.

We first prove the following result about the existence and uniqueness of an invariant

measure for the original chain (3.13).

Lemma 3.7. Under conditions i) and ii’), there exists a unique invariant measure ν of the

chain (3.13) with bounded pth moment. Moreover, if E|u0|p < ∞, then E|uj|p is bounded

uniformly in j.

Proof. For u ∈ R
d (and using that |a+ b|p ≤ (1 + δ)p|a|p + (1 + δ−1)p|b|p), we compute

Eξt0
|Ft(u, ξ

t
0)|p ≤ (1 + δ)p Eξt0

|Ft(u, ξ
t
0)− Ft(0, ξ

t
0)|p + (1 + δ−1)p Eξt0

|Ft(0, ξ
t
0)|p, δ > 0,

≤ ((1 + δ)ρt)
p |u|p + (1 + δ−1)p Ct,

= ρ∗ |u|p + C,

where δ is chosen so that ρ∗ := ((1+ δ)ρt)
p < 1 and C <∞. Thus, there exists a Lyapunov

function V (u) = |u|p with a constant ρ∗ < 1. This in turn implies the existence of an

invariant measure ν with finite pth moment for the process (3.13); see [51, Corollary 4.23].

Uniqueness also follows from assumption ii’); see [51, Theorem 4.25].

CHAPTER 3. DYNAMICAL GPC FOR SDES 39

Let v0 be a random variable with law ν and independent of u0. Consider the chain

vj+1 = Ft(vj, ξj) started from v0. Note vj ∼ ν for all j ∈ N0. Then, from the bound

E|uj − vj|p ≤ (ρpt)
j
E|u0 − v0|p,

we conclude that supj E|uj|p <∞.

The following theorem establishes the exponential convergence of the PC chain (3.15)

to the chain (3.13) as time j increases.

Theorem 3.8. Assume i), ii’) and iii) hold, and E|u0|p <∞. Then, for each ε > 0, there

exists R > 0 independent of j, and then M(R, t) ∈ N0, such that E|uj − uM,R
j |2 ≤ ε for all

j ∈ N0.

Proof. Let ε > 0 be given. By Lemma 3.7, E|uj|p is bounded uniformly in j. The inequality

(3.18) holds with a constant independent of j. Then, choosing δ > 0 so that (1 + δ)ρ2t <

1 in (3.19) implies that there exists a constant R(t, ν) > 0 independent of j such that

E|uj − uRj |2 ≤ ε/4.

As in the proof of Theorem 3.6, we choose δ > 0 so that ρ∗ := (1 + δ)ρ2t < 1. Then,

with M(R, t) ∈ N0 large enough, (3.20) is replaced by

Eξj−1
|uRj − uM,R

j |2 ≤ ρ∗ |uRj−1 − uM,R
j−1 |2 +

ε

4
(1− ρ∗), j ≥ 1.

Therefore,

E|uRj − uM,R
j |2 ≤ ρj∗ E|uR0 − uM,R

0 |2 + ε

4
(1− ρ∗)(1− ρ∗)

−1 = ε/4, j ≥ 1.

This concludes our proof of convergence of the DgPC method to the invariant measure

ν.

Remark 3.9. It would be desirable to obtain that the chain (corresponding to R = ∞,

or equivalently no support truncation) uMj+1 = FM
t (uMj , ξj) remains determinate. We were

not able to do so and instead based our theoretical results on the assumption that the true

distributions of interest were well approximated by compactly supported distributions. In

practice, the range of M has to remain relatively limited for at least two reasons. First,

large M rapidly involves very large computational costs; and second, the determination of

CHAPTER 3. DYNAMICAL GPC FOR SDES 40

measures from moments becomes exponentially ill-posed as the degree of polynomials N

increases. For these reasons, the support truncation has been neglected in the following

numerical section since, heuristically, for large R and limited N , the computation of (low

order) moments of distributions with rapidly decaying density at infinity is hardly affected

by such a support truncation.

3.3 Numerical Experiments

In this section, we present several numerical simulations of our algorithm and discuss the

implementation details. We consider several of the equations described in [16; 38] to show

that PCE-based simulations may perform well in such settings. We mostly consider the

following two-dimensional nonlinear system of coupled SDEs:

du(t) = −(bu + auv(t))u(t) dt + f(t) ds+ σu dWu(t),

dv(t) = −(bv + avu(t)) v(t) dt + σv dWv(t),
(3.21)

where au, av ≥ 0, bu, bv > 0 are damping parameters, σu, σv > 0 are constants, and Wu and

Wv are two real independent Wiener processes.

The system (3.21) was proposed in [38] to study filtering of turbulent signals which

exhibit intermittent instabilities. The performance of Hermite PCE is analyzed in various

dynamical regimes by the authors in [16], who conclude that truncated PCE struggle to

accurately capture the statistics of the solution in the long term due to both the truncated

expansion of the white noise and neglecting higher order terms, which become crucial be-

cause of the nonlinearities. For a review of the different dynamical regimes that (3.21)

exhibits, we refer the reader to [38; 16].

For the rest of the section, T ∈ R+ stands for the endpoint of the time interval while ∆t =

T/n denotes the time-step after which restarts occur at tj = j∆t. Moreover, K denotes

the number of basic random variables ξk used in the truncation of the expansion (2.9). In

the presence of multiple Wiener processes it will denote the total number of variables. We

slightly change the previous notation and let N and L denote the maximum degree of the

polynomials in ξ and uj , respectively. Recall that uj is the projected PC solution at tj.

CHAPTER 3. DYNAMICAL GPC FOR SDES 41

Furthermore, following [75; 57] we choose the orthonormal bases for L2[tj−1, tj] as

mj,1(t) =
1√

tj − tj−1
, mj,k(t) =

√

2

tj − tj−1
cos

(

(k − 1)π(t− tj−1)

tj − tj−1

)

, k ≥ 2, t ∈ [tj−1, tj].

(3.22)

Other possible options include sine functions, a combination of sines and cosines, and

wavelets. We refer the reader to [78] for details on the use of wavelets to deal with

discontinuities for random inputs.

Assuming that the solution of (3.21) is square integrable, we utilize intrusive Galerkin

projections in order to establish the following equations for the coefficients of the PCE:

u̇α = −bu uα − au (uv)α + fδα0 + σuE[ẆuTα],

v̇α = −bv vα − av (uv)α + σv E[ẆvTα].

This system of ODEs is then solved by either a second- or a fourth-order time integra-

tion method. Finally, we note that other methods are also available to compute the

PCE coefficients such as nonintrusive projection and collocation methods [124; 66; 41; 123;

112].

In most of our numerical examples, the dynamics converge to an invariant measure.

To demonstrate the convergence behavior of our algorithm, we compare our results to

exact second order statistics or Monte Carlo simulations with sufficiently high sampling

rate Msamp (e.g., Euler–Maruyama or weak Runge–Kutta methods [64]) where the exact

solution is not available. Comparisons involve the following relative pointwise errors:

ǫmean(t) :=

∣

∣

∣

∣

µpce(t)− µexact(t)

µexact(t)

∣

∣

∣

∣

, ǫvar(t) :=

∣

∣

∣

∣

σ2pce(t)− σ2exact(t)

σ2exact(t)

∣

∣

∣

∣

, (3.23)

where µ, σ2 represents the mean and variance. In the following figures, we plot the evo-

lution of mean, variance, ǫmean and ǫvar using the same legend. In addition, we exhibit

the evolution of higher order cumulants, which will be denoted by κ to demonstrate the

convergence to steady state as time grows. Finally, in our numerical computations, we make

use of the C++ library UQ Toolkit [26].

CHAPTER 3. DYNAMICAL GPC FOR SDES 42

Example 3.10. As a first example, we consider the one-dimensional Ornstein-Uhlenbeck

(OU) process

dv(t) = −bv v(t) dt+ σv dWv(t), t ∈ [0, T], v(0) = v0, (3.24)

on [0, 3] with the parameters bv = 4, σv = 2, v0 = 1. We first present the results of Hermite

PCE.

0 1 2 3

time

0

0.2

0.6

1

m
ea

n
(v

)

exact

K=8

K=16

K=32

K=64

(a) mean

0 1 2 3

time

0

0.25

0.5

v
ar

(v
)

(b) variance

0 1 2 3

time

10
-10

10
-8

10
-6

(c) ǫmean

0 1 2 3

time

10
-5

10
-4

10
-3

10
-2

10
-1

(d) ǫvar

Figure 3.2: Hermite PC for the Ornstein-Uhlenbeck process.

Figure 3.2 shows that Hermite PC captures the mean accurately but approximation for

the variance is accurate only at the endpoint. This is a consequence of the expansion in

(2.11), which violates the Markov property of Brownian motion and is inaccurate for all

0 < t < T , while it becomes (spectrally) accurate at the endpoint T . Using frequent restarts

in DgPC, these oscillations are significantly attenuated as expected; see Figure 3.3b. This

CHAPTER 3. DYNAMICAL GPC FOR SDES 43

oscillatory behavior could also be alleviated by expanding the Brownian motion as in (2.11)

on subintervals of (0, 1). Note that the global basis functions Tα(ξ) which implicitly depend

on the endpoint T may also be filtered by taking the conditional expectation E[Tα(ξ)|FW
t],

where FW
t is the σ-algebra corresponding to Brownian motion up to time t [75; 84]. We do

not pursue this issue here but note that the accuracy of the different methods should be

compared at the end of the intervals of discretization of Brownian motion.

Next, we demonstrate numerical results for DgPC taking N = 1, L = 1 and a varying

K = 4, 6, 8. Figure 3.3 shows that as the exact solution converges to a steady state,

our algorithm captures the second order statistics accurately even with a small degrees

of freedom utilized in each subinterval. Moreover, although we do not show it here, it is

possible, by increasing L, to approximate the higher order zero cumulants κi, i = 3, 4, 5, 6,

with an error on the order of machine precision, which implies that the algorithm converges

numerically to a Gaussian invariant measure.

In Figure 3.4, we illustrate an algebraic convergence of the variance in terms of the

dimension K for T = 3 and T = 15. DgPC uses the same size of interval ∆t = 0.2 for both

cases. For comparison, we also include the convergence behavior of Hermite PCE. Values

of K are taken as (2, 4, 6, 8) for Figures 3.4a and 3.4c and K = (8, 16, 32, 64) for Figures

3.4b and 3.4d. We deduce that our algorithm maintains an algebraic convergence of order

O(K−3) for both T = 3 and T = 15 whereas the convergence behavior of Hermite PCE

drops from O(K−3) to O(K−2) as time increases. This confirms the fact that the degrees

of freedom required for standard PCE to maintain a desired accuracy should increase with

time.

Example 3.11. We now introduce a nonlinearity in the equation so that the damping term

includes a cubic component:

dv = −(v2 + 1)v dt+ σv dWv, v(0) = 1. (3.25)

Figure 3.5 displays several numerical simulations for the degree of polynomials in ξ given

by N = 1, 2, 3 and σv = 2. This is compared with the weak Runge–Kutta method using

Msamp = 200000 and dt = 0.001. We observe that increasing N improves the accuracy of the

solution to this nonlinear equation as expected. Moreover, Table 3.3 presents a comparison

CHAPTER 3. DYNAMICAL GPC FOR SDES 44

0 1 2 3

time

0

0.2

0.6

1

m
ea

n
(v

)

exact

K=4,N=1,L=1

K=6,N=1,L=1

K=8,N=1,L=1

(a) mean

0 1 2 3

time

0

0.25

0.5

v
ar

(v
)

(b) variance

0 1 2 3

time

10
-10

10
-8

10
-6

(c) ǫmean

0 1 2 3

time

10
-5

10
-4

10
-3

10
-2

10
-1

(d) ǫvar

Figure 3.3: DgPC with ∆t = 0.2 and varying K for the Ornstein-Uhlenbeck process.

for statistical cumulants between our method with K = 5, N = 2, L = 4 and Monte Carlo

at time T = 4. The (stationary) cumulants of the invariant measure are also estimated

by solving a standard Fokker–Planck (FP) equation [90; 35] for the invariant measure. We

conclude this example by noting that the level of accuracy of approximations in DgPC for

cumulants is similar to that of the MC method.

Example 3.12. As a third example we consider an OU process (3.24) in which the damping

parameter is random and uniformly distributed in [1, 3], i.e. bv ∼ U(1, 3). This is an example

of non-Gaussian dynamics that may be seen as a coupled system for (v, bv) with dbv = 0.

We consider a time domain [0, 8] and divide it into n = 40 subintervals. The initial

condition is normally distributed v0 ∼ N(1, 0.04) |=Wv and σv = 2. In the next figure,

CHAPTER 3. DYNAMICAL GPC FOR SDES 45

10
0.3

10
0.6

10
0.9

10
−4

10
−2

10
0

K

ǫ
v
a
r

∼ K
−3

ε
var

(a) DgPC at T = 3

10
1

10
2

10
−4

10
−2

10
0

K

ǫ
v
a
r

∼ K
−3

ε
var

(b) Hermite PC at T = 3

10
0.3

10
0.6

10
0.9

10
−4

10
−2

10
0

K

ǫ
v
a
r

∼ K
−3

ε
var

(c) DgPC at T = 15

10
1

10
2

10
−4

10
−2

10
0

K

ǫ
v
a
r

 K
−2

 ∼

ε
var

(d) Hermite PC at T = 15

Figure 3.4: Comparison of K-convergence of Hermite PC and DgPC at different times.

κ1 κ2 κ3 κ4 κ5 κ6

DgPC 3.58E-5 7.33E-1 -2.08E-5 -3.37E-1 6.02E-5 9.35E-1

MC -2.53E-3 7.33E-1 7.85E-4 -3.38E-1 -3.34E-3 9.58E-1

FP 0 7.33E-1 0 -3.39E-1 0 9.64E-1

Table 3.3: Cumulants at T = 4 obtained by three different methods.

we compare second order statistics obtained by our method to Monte Carlo method for

which we use the Euler–Maruyama scheme with the time step dt = 0.002 and sampling rate

Msamp = 1000 × 1000 implying 106 samples in total. We stress again that this problem is

essentially two-dimensional since the damping is random.

CHAPTER 3. DYNAMICAL GPC FOR SDES 46

0 1 2 3 4

time

0

0.4

0.8

1.2
m

ea
n

(v
)

MC

K=5,N=1,L=2

K=5,N=2,L=2

K=5,N=3,L=2

(a) mean

0 1 2 3 4

time

0.2

0.4

0.6

0.8

v
ar

(v
)

(b) variance

0 1 2 3 4

time

0

0.2

0.6

1

1

2

3

(c) cumulants

0 1 2 3 4

time

-0.4

0

0.4

0.8
4

5

6

(d) cumulants

Figure 3.5: DgPC with ∆t = 0.25 and increasing N for (3.25) with cubic nonlinearity.

As expected, the mean decreases monotonically and is approximated accurately by the

algorithm. The estimation of the variance becomes more accurate as N increases. Fur-

thermore, Figures 3.6c and 3.6d show that the cumulants become stationary for long times

indicating that the numerical approximations converge to a measure which is non-Gaussian.

Table 3.4 compares the first six cumulants obtained by our algorithm at time T = 8

with K = 4, N = 3, L = 4 to the Monte Carlo method. For further comparison, we also

provide cumulants obtained by averaging Fokker–Planck density with respect to the known,

explicit, distribution of the damping. It can be observed from the following table that both

our algorithm and Monte Carlo capture cumulants reasonably well although the accuracy

degrades at higher orders.

The above calculations provide an example of stochasticity with two distinct compo-

CHAPTER 3. DYNAMICAL GPC FOR SDES 47

0 2 4 6 8

time

0

0.2

0.4

0.6

0.8

1

1.2
m

ea
n

(v
)

MC

K=4,N=1,L=1

K=4,N=2,L=2

K=4,N=3,L=3

(a) mean

0 2 4 6 8

time

0

0.2

0.4

0.6

0.8

1

1.2

v
ar

(v
)

(b) variance

0 2 4 6 8

time

0

0.5

1

1

2

3

(c) cumulants

0 2 4 6 8

time

-0.4

-0.2

0

0.2

0.4

0.6

4

5

6

(d) cumulants

Figure 3.6: DgPC with ∆t = 0.2, and increasing N and L for the Ornstein-Uhlenbeck

process with a uniformly distributed damping.

κ1 κ2 κ3 κ4 κ5 κ6

DgPC 1.68E-5 1.10 3.80E-5 3.78E-1 8.72E-5 5.04E-1

MC -1.78E-4 1.10 -3.25E-3 3.70E-1 -6.34E-2 4.65E-1

FP 0 1.10 0 3.79E-1 0 5.29E-1

Table 3.4: Cumulants at T = 8 obtained by three different methods.

nents: the variables ξ that are Markov and can be projected out and the non-Markov

variable bv that has long-time effects on the dynamics. The variables (v, bv) are strongly

correlated for positive times. PCE thus need to involve orthogonal polynomials that reflect

CHAPTER 3. DYNAMICAL GPC FOR SDES 48

these correlations and cannot be written as tensorized products of orthogonal polynomials

in v and bv.

Example 3.13. We demonstrate that our method is not limited to equations forced by

Brownian motion. We apply it to an equation where the forcing is a nonlinear function of

Brownian motion:

dv(t) = −bv v(t) dt + σv d(W
2(t)− t), v(0) = 1,

with parameters bv = 6, σv = 1. To depict the effect of different choices of number of

restarts, we take ∆t = 0.5, 0.3, 0.1 using K = 5, N = 2, L = 2 in each expansion.

0 1 2 3

time

0

0.2

0.4

0.6

0.8

1

m
ea

n
(v

)

exact

 t = 0.5

 t = 0.3

 t = 0.1

(a) mean

0 1 2 3

time

0

0.2

0.4

0.6

0.8

1
v
ar

(v
)

(b) variance

0 1 2 3

time

10
-10

10
-8

10
-6

10
-4

(c) ǫmean

0 1 2 3

time

10
-4

10
-3

10
-2

10
-1

10
0

(d) ǫvar

Figure 3.7: DgPC using ∆t = 0.5, 0.3 and 0.1. The random forcing is a nonlinear function

of Brownian motion.

From Figure 3.7, we observe that second order statistics are captured accurately and

CHAPTER 3. DYNAMICAL GPC FOR SDES 49

an increasing number of restarts provides better approximations as anticipated. Although

the system does not converge to a steady state (variance of v(t) increases linearly), this

example illustrates that DgPC is able to capture behaviors of solutions where the forcing is

a nonlinear function of Wiener process.

Example 3.14. This example concerns the nonlinear system (3.21), where the dynamics

of u exhibit intermittent non-Gaussian behavior. A time dependent deterministic periodic

forcing is considered with the second equation being an OU process, i.e. av = 0 in (3.21),

and the parameters are taken as bu = 1.4, bv = 10, σu = 0.1, σv = 10, au = 1, f(t) =

1+1.1 cos(2t+1)+0.5 cos(4t), with initial conditions u0 = N(0, σ2u/8bu) |= v0 = N(0, σ2v/8bv);

see also [16]. The initial variables are independent of each other and of the stochastic forcing.

Intermittency is introduced by using an OU process, which acts as a multiplicative noise

fluctuating in the damping. The second order statistics for this case (av = 0) can be derived

analytically [38] and we plot them in black in the following figures using quadrature methods

with sufficiently high number of quadrature points.

We first depict the results for u obtained by standard Hermite PCE in Figure 3.8. It can

be observed that truncated PC approximations are accurate for short times. However, they

quickly lose their accuracy as time grows. This is consistent with the simulations presented

in [16]. Figure 3.9 shows that the accuracy is vastly improved in DgPC using ∆t = 0.1,

and second order statistics are accurate up to three or four digits. Moreover, errors in the

variance oscillate around O(10−3) for L = 3 throughout the time length suggesting that the

approximation retains its accuracy in the long term, which is consistent with theoretical

predictions. Our algorithm easily outperforms standard PCE in capturing the long-time

behavior of the nonlinear coupled system (3.21) in this scenario.

Example 3.15. For this scenario, we consider the system parameters as au = 1 , av = 0,

bu = 1.2, bv = 0.5,σu = 0.5, σv = 0.5 without the deterministic forcing f = 0 and with the

initials u0 = N(1, σ2u/8bu) |= v0 = N(0, σ2v/8bv). In this regime, the dynamics of u(s) are

characterized by unstable bursts of large amplitude [16].

Second order statistics obtained by Hermite PCE are presented in Figure 3.10. We

observe from Figure 3.10b and Figure 3.10d that the relative errors for standard Hermite

expansions are unacceptably high. On the other hand, as the degrees of freedom is increased

CHAPTER 3. DYNAMICAL GPC FOR SDES 50

0 2 4 6 8

time

0.2

0.6

1

1.4

1.8

m
ea

n
(u

)
exact

K=100,N=1

K=30,N=2

K=20,N=3

K=10,N=4

(a) Hermite PC mean(u)

0 2 4 6 8

time

0.2

0.6

1

1.4

1.8

v
ar

(u
)

exact

K=100,N=1

K=30,N=2

K=20,N=3

K=10,N=4

(b) Hermite PC var(u)

0 2 4 6 8

time

10
-4

10
-3

10
-2

10
-1

10
0

K=100,N=1

K=30,N=2

K=20,N=3

K=10,N=4

(c) Hermite PC ǫmean

0 2 4 6 8

time

10
-2

10
-1

10
0

K=100,N=1

K=30,N=2

K=20,N=3

K=10,N=4

(d) Hermite PC ǫvar

Figure 3.8: Hermite PC for the nonlinear system (3.21) with periodic deterministic forcing.

in DgPC, there is a clear pattern of convergence of second order statistics; see Figures 3.11c

and 3.11d. Note, however, that short-time accuracy is better than accuracy for long times.

This behavior may be explained by the onset of intermittency as nonlinear effects kick in

after short times. Further, Figure 3.12 shows the error behavior of variance at T = 10

as N and L vary, and K is fixed. The rate of convergence is consistent with exponential

convergence in N and L as the logarithmic plot is almost linear. For similar convergence

behaviors, see [122; 75; 125].

Finally, in Figure 3.13, we present the evolution of the first few cumulants obtained

by DgPC, which shows that the system converges to a steady state distribution as time

increases. Bivariate cumulants are ordered so that first and second subscripts correspond

to u and v, respectively. Figure 3.13f shows kurtosis excess for u, v and clearly indicates

CHAPTER 3. DYNAMICAL GPC FOR SDES 51

0 2 4 6 8

time

0.2

0.6

1

1.4

1.8

m
ea

n
(u

)

exact

K=6,N=2,L=2

K=6,N=2,L=3

(a) DgPC mean(u)

0 2 4 6 8

time

0.2

0.6

1

1.4

1.8

v
ar

(u
)

exact

K=6,N=2,L=2

K=6,N=2,L=3

(b) DgPC var(u)

0 2 4 6 8

time

10
-6

10
-5

10
-4

10
-3

K=6,N=2,L=2

K=6,N=2,L=3

(c) DgPC ǫmean

0 2 4 6 8

time

10
-3

10
-2

10
-1

K=6,N=2,L=2

K=6,N=2,L=3

(d) DgPC ǫvar

Figure 3.9: DgPC for the nonlinear system (3.21) with periodic deterministic forcing.

that the dynamics of v stay Gaussian, whereas those of u converge to a non-Gaussian state.

Example 3.16. As a final example, using the same set of parameters of the previous

example, we introduce a small perturbation to the second equation and set av = 0.03

in (3.21). Another choice of perturbation as av = 0.01 was considered before in [16].

Comparing Figures 3.13 and 3.14, we see that evolutions of higher order cumulants are

perturbed in most cases as expected. In this case, it took a longer transient time to converge

to an invariant measure as additional nonlinearity was introduced into the system.

CHAPTER 3. DYNAMICAL GPC FOR SDES 52

0 2 4 6 8 10

time

0.2

0.6

1

m
ea

n
(u

)

exact

K=100,N=1

K=30,N=2

K=20,N=3

K=10,N=4

(a) Hermite PC mean(u)

0 2 4 6 8 10

time

0.02

0.06

0.1

0.14

v
ar

(u
)

exact

K=100,N=1

K=30,N=2

K=20,N=3

K=10,N=4

(b) Hermite PC var(u)

0 2 4 6 8 10

time

10
-8

10
-6

10
-4

10
-2

10
0

K=100,N=1

K=30,N=2

K=20,N=3

K=10,N=4

(c) Hermite PC ǫmean

0 2 4 6 8 10

time

10
-2

10
-1

10
0

K=100,N=1

K=30,N=2

K=20,N=3

K=10,N=4

(d) Hermite PC ǫvar

Figure 3.10: Hermite PC for the nonlinear system (3.21) with zero deterministic forcing.

CHAPTER 3. DYNAMICAL GPC FOR SDES 53

0 2 4 6 8 10

time

0.2

0.6

1

m
ea

n
(u

)

exact

K=6,N=2,L=1

K=6,N=2,L=2

K=6,N=2,L=3

(a) DgPC mean(u)

0 2 4 6 8 10

time

0.02

0.06

0.1

0.14

v
ar

(u
)

exact

K=6,N=2,L=1

K=6,N=2,L=2

K=6,N=2,L=3

(b) DgPC var(u)

0 2 4 6 8 10

time

10
-8

10
-6

10
-4

10
-2

10
0

K=6,N=2,L=1

K=6,N=2,L=2

K=6,N=2,L=3

(c) DgPC ǫmean

0 2 4 6 8 10

time

10
-5

10
-4

10
-3

10
-2

10
-1

K=6,N=2,L=1

K=6,N=2,L=2

K=6,N=2,L=3

(d) DgPC ǫvar

Figure 3.11: DgPC using ∆t = 0.1 for the nonlinear system (3.21) with zero deterministic

forcing.

N,L

1 2 3

ǫ
v
a
r

10
-2

10
-1

10
0

ǫ
var

Figure 3.12: N - and L-convergence in the variance of DgPC at T = 10.

CHAPTER 3. DYNAMICAL GPC FOR SDES 54

0 2 4 6 8 10

time

0

0.2

0.6

1

cu
m

u
la

n
ts

(u
,v

)

10

01

20

11

02

1st and 2nd order

0 2 4 6 8 10

time

-0.03

-0.01

0

0.01

cu
m

u
la

n
ts

(u
,v

)

30

21

12

03

3rd order

0 2 4 6 8 10

time

-0.01

0

0.01

0.02

0.03

cu
m

u
la

n
ts

(u
,v

)

40

31

22

13

04

4th order

0 2 4 6 8 10

time

-0.025

-0.005

0.015

cu
m

u
la

n
ts

(u
,v

)

50

41

32

23

14

05

5th order

0 2 4 6 8 10

time

-0.02

0

0.02

0.04

cu
m

u
la

n
ts

(u
,v

)

60

51

42

33

24

15

06

6th order

0 2 4 6 8 10

time

0

0.4

0.8

1.2

1.6

k
u
rt

o
si

s
ex

ce
ss

(u
,v

)

40
/

20

2

04
/

02

2

kurtosis excess

Figure 3.13: Bivariate cumulants and kurtosis excess obtained by DgPC for the nonlinear

system (3.21) with zero deterministic forcing and av = 0.

CHAPTER 3. DYNAMICAL GPC FOR SDES 55

0 5 10 15 20

time

0

0.2

0.6

1

cu
m

u
la

n
ts

(u
,v

)

10

01

20

11

02

(a) 1st and 2nd order

0 5 10 15 20

time

-0.03

-0.01

0

0.01

cu
m

u
la

n
ts

(u
,v

)

30

21

12

03

(b) 3rd order

0 5 10 15 20

time

-0.01

0

0.02

0.04

cu
m

u
la

n
ts

(u
,v

)

40

31

22

13

04

(c) 4th order

0 5 10 15 20

time

-0.04

-0.02

0
0.01

cu
m

u
la

n
ts

(u
,v

)

50

41

32

23

14

05

(d) 5th order

0 5 10 15 20

time

-2

0

4

8

cu
m

u
la

n
ts

(v
)

10
-4

03

04

05

(e) cumulants of v

0 5 10 15 20

time

0

1

2

3

k
u
rt

o
si

s
ex

ce
ss

(u
,v

)

40
/

20

2

04
/

02

2

(f) kurtosis excess

Figure 3.14: Bivariate cumulants and kurtosis excess obtained by DgPC for the nonlinear

system (3.21) with zero deterministic forcing and a perturbation av = 0.03.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 56

Chapter 4

Dynamical gPC for SPDEs

4.1 Introduction

Although the DgPC algorithm performs well for low-dimensional SDEs, extension to larger

systems is challenging and requires serious modifications. In this chapter, we extend the

DgPC method to the framework of SPDEs driven by white noise.

The Karhunen–Loeve expansion is a popular technique to reduce the dimensionality in

the random space. SPDE solutions are high-dimensional random fields and in some cases,

they enjoy low-dimensional representations which can be provided by the KLE. However,

these low-dimensional representations of solutions are time-dependent [105; 20; 19]. To

provide optimal PCE representations in time, we propose to project the solution at each

restart onto a lower dimensional manifold using its KLE. Since the KLE is known to be

optimal in the mean square sense, at each restart point in time, only a few dominating,

most energetic random modes are chosen and incorporated into PCE to represent the future

solution. For equations with non-forcing random parameters, we apply the KLE to the

combination of the solution and random parameters. Although the random variables for

the random forcing can be forgotten, the effects of non-Markov time-independent random

variables have to be incorporated into evolving PCE representations.

The combination of the random KLE modes and the random forcing variables brings

about high dimensionality. The computational challenges then become: (i) computing

orthogonal polynomials of arbitrary multivariate distributions; and (ii) keeping the number

CHAPTER 4. DYNAMICAL GPC FOR SPDES 57

of terms in the expansion as small as possible.

The construction of orthogonal polynomials of evolving multivariate distributions is pos-

sible by estimating their statistical moments [36; 93], which is, in general, a computationally

intensive procedure; see also the previous chapter. In this chapter, we estimate the moments

of the solution using its PCE through a sampling approach to greatly reduce computational

cost; see [4] for a similar sampling methodology. We also show that the method is robust

with respect to re-sampling.

The second challenge (ii) is a major problem for all PC-based methods. The Karhunen-

Loeve expansion is computationally expensive. For problems of moderate size, we find

that the eigenvalue problem is solved efficiently by using a Krylov subspace method. For

larger problems, in order to mitigate both memory requirements and computational cost

of the KLE, we find low-rank approximations to the covariance matrices based on their

PC representations and without assembling them. The algorithm leverages randomized

projection methods as introduced in [80; 54], and uses appropriate random matrices to

obtain fast and accurate solutions of large eigenvalue problems. After selecting the domi-

nating modes in the KLE, we make use of the sparse truncation technique proposed in [57;

75] to further reduce the number of terms in a PCE. For long-time computations, we also

develop an adaptive restart scheme, which adapts the time lag between restarts based on

the nonlinear effects.

The use of compression techniques to exploit intrinsic lower dimensional structures of

solutions of SPDEs is not new and is in fact necessary in many contexts; see [12; 28; 117;

105; 20; 19]. The novelty of our approach is that a lower dimensional representation of the

solution is learned online and integrated into a PCE to integrate future random forcing and

represent future solutions. This procedure is computationally viable and the combination

of the aforementioned ideas allows us to attain a reasonable accuracy in the long-time

evolutions of SPDEs for a reasonable computational cost.

As we are interested in the long-time evolution of SPDEs, we restrict ourselves here to

dynamics with a dissipation mechanism. Equilibrium statistics and asymptotic properties

of the solutions are relevant in many applications and have been extensively studied in

the literature [92; 21; 109; 57; 52; 85; 16; 98]. Based on these motivations, we provide

CHAPTER 4. DYNAMICAL GPC FOR SPDES 58

numerical experiments for a 1D randomly forced Burgers equation and a 2D stochastic

Navier–Stokes (SNS) system. All equations are driven by white noise and satisfy periodic

(spatial) boundary conditions. To demonstrate the efficiency of our algorithm, we present

both short- and long-time computations. In some cases, we model the viscosity as a time-

independent random process. Statistical moments obtained by the algorithm are compared

to the standard MC methods for short times to assess the accuracy of the algorithm. Results

show promising speed-ups over standard MC methods. We exhibit convergence behavior in

terms of the degree of the expansion, the number of random modes retained in the KLE,

and the (adaptive) restart time. Verifications of invariant measures in the long-time are

also demonstrated in some cases.

4.2 Description of the Methodology

Throughout this chapter, we consider the following time-dependent stochastic partial dif-

ferential equation driven by white noise Ẇ (t, ω):

∂tu(x, t, ω) = L(u(x, t, ω)) + σ(x) Ẇ (t, ω), x ∈ G ⊂ R
d, ω ∈ Ω, t ∈ [0, T],

u(x, 0, ω) = u0(x, ω), x ∈ G, ω ∈ Ω,
(4.1)

where, for concreteness, G is the d-dimensional torus so that u and its derivatives are pe-

riodic functions in the variable x. The DgPC algorithm may easily be extended to more

general boundary conditions and geometries. Above, L is a possibly non-linear differential

operator in the spatial variables. The solution takes values in R
p. In the numerical simula-

tions, the parameters d and p are set to either 1 or 2. We present the algorithmic details of

the DgPC method applied to the general SPDE (4.1) in the following.

Let a decomposition 0 = t0 < t1 < . . . < tn = T be given. Following our discussion in

section 3.2.1 and using the Markov property, the solution u(x, tj+1, ω), 0 ≤ j < n, can be

represented in a PC expansion in terms of u(x, tj , ω) and ξj, where ξj = (ξj,1, ξj,2, . . .) de-

notes the Gaussian random variables required for Brownian forcing on the interval [tj , tj+1].

Let uj(x, tj , ω) denote the projection of the solution u(x, tj , ω) onto the polynomial chaos

space. We will also use the shorthand notation uj to denote this projection. To construct

a PCE in terms of polynomials of uj , we separate the spatial dependence and randomness

CHAPTER 4. DYNAMICAL GPC FOR SPDES 59

via the KLE (2.2):

uj = ūj(x) +
∞
∑

l=1

√

λj,l ηj,l(ω)φj,l(x). (4.2)

Let ηj := (ηj,1, ηj,2, . . .) denote the randommodes. Since the solution u(x, t, ω), t ∈ [tj , tj+1],

is a functional of the random forcing ξj and modes ηj , the next step PCE uj+1(x, t, ω) is

given by

uj+1(x, t, ω) =
∑

α∈J
uj+1,α(x, t)Tα(ξj(ω),ηj(ω)), t ∈ [tj , tj+1], (4.3)

with the notation uj+1(x, tj , ω) = uj, where Tα denotes an orthonormal basis in its ar-

guments. The expansion dynamically needs a PC basis depending on the random forcing

and evolving random KLE modes of the solution. The coefficients uj+1,α(x, t) satisfy a

PDE system obtained by Galerkin projection of the SPDE (4.1) onto the space spanned by

Tα(ξj ,ηj). Statistical properties can be retrieved after solving the induced PDE system.

Here are the computational bottlenecks of this approach: (i) the simple truncation (2.7)

yields a large number of terms in the expansion, which leads to long computational times to

solve the deterministic evolution equations; (ii) estimating the terms appearing in the KLE

(4.2) is a major computational bottleneck, especially in higher spatial dimensions; and (iii)

computation of the orthogonal polynomials Tα(ξj,ηj) may also require intensive amount

of computation. In the following, we address these issues in turn.

4.2.1 Sparse Truncation

The number of terms in the simple truncation (2.7) in the Hermite PCE increases rapidly

with respect to N and K. Given sufficient regularity of the solution, the expansion coeffi-

cients decay both in the number of Gaussian variables K and the degree of polynomials N .

This observation led the authors [57] to introduce a sparse truncation of the multi-index

set and retain a truncated random basis, which keeps lower (higher) order polynomials

in ξi with larger (smaller) subscripts. This truncation can be quantified using an esti-

mate for the decay rate of the coefficients; see [75; 57; 129; 33; 13]. Following [75; 57;

33], we introduce a sparse index

r = (r1, . . . , rK), N ≥ r1 ≥ r2 ≥ . . . ≥ rK ,

CHAPTER 4. DYNAMICAL GPC FOR SPDES 60

and define the corresponding sparse multi-index set

Jr
K,N := {α = (α1, . . . , αK), |α| ≤ N,αk ≤ rk}. (4.4)

Basically, the index r keeps track of how much degree we want in each variable ξi. Using

(4.4), one can define the corresponding version of the PC expansion (2.5) which might have

drastically reduced number of terms. This is possible by a suitable choice of the index r so

that ineffective cross terms in high degree polynomials are eliminated.

4.2.2 Karhunen–Loeve Expansion

At each restart tj, we employ the KLE (4.2) for the projected random field uj, and the

expansion is truncated after a finite number of D terms. The decomposition yields the

eigenvalues λj,l and the eigenfunctions ηj = (ηj,l) for l = 1, . . . ,D. Therefore, in addition

to the Gaussian variables ξj , we have the random modes ηj in the PCE (4.3) so that the

total number of random variables becomes K + D. To accommodate ηj, we extend the

multi-index set (4.4) to J r
K+D,N . This can also be done by the tensorization J r

K,N ⊗ J r
D,N

of the multi-index sets since ξj and ηj are independent. However, since tensorization yields

higher number of terms in the PCE for most values of K and D, it is not considered in the

following.

Assuming that the orthonormal basis Tα(ξj−1,ηj−1) is constructed in the previous step,

the solution u(x, tj , ω) is approximated using the truncated PCE

uj =
∑

α∈J r
K+D,N

uj,α(x)Tα(ξj−1,ηj−1), (4.5)

where the time dependence of the coefficients uj,α(x) is omitted for brevity. To avoid

confusion, we note that both the projection (4.3) and its truncation (4.5) will be denoted by

uj . Armed with this approximation, using the orthogonality of random bases, the covariance

of uj is easily estimated by

Covuj
(x, y) =

∑

α>0

uj,α(x)uj,α(y)
′, x, y ∈ G, (4.6)

where α ∈ J r
K+D,N .

CHAPTER 4. DYNAMICAL GPC FOR SPDES 61

In practice, we consider a discretization of the spatial domain G with an even mesh pa-

rameter Mx ∈ N and grid points xm, m = 1, . . . ,Md
x . Denote by C the resulting covariance

matrix. In general, we can use a spectral method, e.g., Fourier series in the case of periodic

functions, to approximate the coefficients uj,α as

uj,α(x) ≈
Md

x
∑

k=1

ûj,α(k)ϕk(x), (4.7)

where ϕk are orthogonal global basis functions on G and ûj,α(k) = 〈uj,α, ϕk〉L2(G); see

[55]. Thus, uj,α(x) is approximated by a vector (uj,α(xm))
Md

x
m=1 on the grid. Therefore, the

dimension of the covariance matrix C becomes of order O(Md
x ×Md

x).

After computing the covariance matrix, the corresponding eigenvalue problem can be

solved for the first D largest eigenvalues. Then, the random modes ηj are given as

ηj,l =
1

√

λj,l
〈 (uj − E[uj]) , φj,l〉L2(G) =

1
√

λj,l

∑

α>0

〈uj,α, φj,l〉L2 Tα(ξj−1,ηj−1), l = 1, . . . ,D.

(4.8)

This representation yields the random modes ηj as a function of ξj−1 and the previous

modes ηj−1. Here, we assume that the integrals 〈uj,α, φj,l〉L2 can be computed by an

accurate quadrature method.

Remark 4.1. When the solution u is more than one-dimensional, several implementations

of the KLE can be considered. For instance, we may apply the KLE to each component

of the solution u separately and incorporate the resulting individual random modes into

one PCE. Although this approach certainly makes the KLE step faster, we found that it

yielded inaccurate results in DgPC and needed a large number of variables in the PCE to

represent the solution accurately since cross covariance structures between the components

of the solution are lost. Therefore, in the following, we implement the KLE directly to the

multi-dimensional solution and produce one set of random modes η which represents all of

its components.

Depending on the resolution of the discretization of the domain G and the dimension

d, assembling the covariance matrix and solving the corresponding eigenvalue problem may

prove dauntingly expensive. Several methods have been devised to reduce computational

CHAPTER 4. DYNAMICAL GPC FOR SPDES 62

costs, such as fast Fourier techniques (e.g., in the case of stationary covariance kernels) or

sparse matrix approximations together with Krylov subspace solvers [107; 44; 29; 63].

Here, the assembly of the covariance matrix is performed at each restart via the sum-

mation formula (4.6). In our one dimensional simulations, with d = 1, this assembly can be

carried out reasonably fast. Since the solution of the eigenvalue problem is required only

for the number D ≪Md
x of eigenvalues and eigenfunctions, Krylov subspace methods [104]

perform well. We utilize the implicitly restarted Arnoldi method to efficiently find the few

largest eigenvalues and corresponding eigenfunctions; [3; 69].

In the higher dimensional simulations, when d > 1, computing and storing such large

covariance matrices become challenging. Covariance matrices are, in general, not sparse

and require O(M2d
x) units of storage in the memory. Moreover, assembling a large matrix

at every restart is computationally very expensive for long-time simulations. The problem

of computing and storing a large covariance matrix resulting from the KLE was addressed

before in [107; 29; 63; 19]. It was noted that although the covariance matrices were dense,

they were usually of low-rank; [107; 29]. Based on this observation, we next introduce an

approximation approach, which leverages low-rank structures and avoids assembling large

matrices.

A low-rank approximation AB ≈ C ∈ R
Md

x×Md
x tries to capture most of the action of

the matrix C by a product of two low-rank matrices A ∈ R
Md

x×l and B ∈ R
l×Md

x . Several

efficient algorithms, e.g., the fast multipole method and H-matrices, depend on low-rank

approximations [49; 50]. We approximate eigenvalues and eigenvectors of the correlation

matrix C by using low-rank approximations as follows.

Given a low rank approximation Q(Q′C) of the symmetric covariance matrix C, where

the matrix Q is of size R
Md

x×l with l ≥ D orthonormal columns, the eigenvalue problem

of C can be approximated efficiently by applying the QR or SVD algorithm to the much

smaller matrix Q′CQ. In the DgPC setting (4.6), this amounts to computing

R
l×l ∋ Q′CQ =

∑

α>0

(Q′uα) (Q
′uα)

′. (4.9)

The explicit assembly of the covariance matrix C is avoided by computing only the matrix-

vector product Q′uα ∈ R
l×1. An approximate eigenvalue decomposition C ≈ UΛU ′ is

CHAPTER 4. DYNAMICAL GPC FOR SPDES 63

deduced from the eigenvalue decomposition of the smaller matrix Q′CQ = V ΛV ′ by setting

U = QV .

The crucial step of the computation is the construction of a low-rank matrix Q with

l ≪ Md
x orthonormal columns that accurately describes C. We tried an approach based

on the discrete unitary Fourier transform to map the coefficients uα to the frequency space

and retain only the lowest frequencies. Although this approach allowed us to obtain reason-

able compressions of the covariance matrix and enabled faster computations, the following

approach consistently yielded much better results.

Following [80; 54], we construct the matrix Q using random projections. Algorithm

4.1 in [54] draws an Md
x × l Gaussian random matrix O and forms the matrix Y = CO ∈

R
Md

x×l. The matrix Q with l orthonormal columns is then obtained by the QR factorization

Y = QR. Note again that we do not assemble the matrix C. Rather, the matrix-matrix

product CO is computed as in equation (4.9). Since we require the largest D eigenvalues,

the target low-rank becomes D. As indicated in [54], we use an oversampling parameter p

by setting l = D+ p. Typical values of p are 5 or 10. Since eigenvalues decay rapidly in our

applications, we found p = 10 to be accurate. With overwhelming probability, the spectral

error ||C − QQ′C||2 is bounded within a small polynomial perturbation of the theoretical

minimum, the (l + 1)th singular value of C; for relevant theoretical details, see [54, Section

10].

In practice, we found this randomized approach to be highly accurate in our compu-

tational simulations. Moreover, since assembly of large covariance matrices are avoided,

running times and memory requirements for the KLE in R
2 are reduced drastically com-

pared to the previously described methods; see section 4.3.2.

4.2.3 Additional Non-forcing Random Inputs

In this subsection, we consider the case in which the differential operator L in (4.1) contains

additional random input parameters, i.e., L = L(u(x, t, ω), ω). The random inputs will be

denoted by the process Z(x, ω) of a dimension DZ . A typical case is that of a random

viscosity, e.g., depending on a set of uniformly distributed random variables. We assume

that the process Z is independent of time and that the corresponding orthogonal polynomials

CHAPTER 4. DYNAMICAL GPC FOR SPDES 64

are available; for instance in the Askey family [125].

We first observe that the solution u(x, t, ω) is now a functional of Brownian motion W

and the random process Z. Therefore, assuming L2 integrability, it can be written as a

PCE in terms of the associated orthogonal polynomials of W and Z. At the restart tj,

there are two options to carry out the KLE: (i) apply the KLE to only the solution uj and

keep the basis variables for Z in addition to ηj in the next PCE; and (ii) compress the

combined random variable (uj , Z) using the KLE and denote by ηj the combined random

modes which represent both uj and Z. The first approach will yield PCE which provide

functional representations of the solution in terms of W and Z for each time tj. In the

second approach, the functional dependence of the solution in terms of Z is lost in the first

KLE step. However, the moments of the solution can still be computed through the com-

bined random KLE modes. In many UQ settings, rather than a functional dependence, it

is statistical information of the underlying solution, e.g., moments of the invariant measure

in the long-time, that we are after. Moreover, the second approach can be seen as a di-

mensionality reduction technique, which compresses uj and the process Z together, thereby

further reducing the number of terms in PCE. When additional random parameters appear

in the equation, we found it reasonable to implement the second approach to reduce cost

while the first approach may be used as a reference computation to assess accuracy.

Remark 4.2. It is useful to note that by combining the random fields uj and Z, the

algorithm automatically chooses the important part of the random process Z that influences

the solution while keeping the moments of the solution accurate; see section 4.3.

4.2.4 Moments and Orthogonal Polynomials

After obtaining the random modes ηj , j ∈ N ∪ {0}, we need to construct the following

orthonormal basis:

{Tα(ξj ,ηj) : |α| ≤ N,α ∈ J r
K+D,N}. (4.10)

Notice that since ξj is Gaussian and identically distributed for each j, the corresponding or-

thonormal polynomials of ξj are known to be the Hermite polynomials for each j. However,

the probability distribution of ηj is arbitrary and changes at each restart. Therefore, the

CHAPTER 4. DYNAMICAL GPC FOR SPDES 65

computation of orthonormal polynomials is computationally intensive and can be performed

using the Gram–Schmidt method as follows.

We note that the set (4.10) can be computed based on the knowledge of moments of the

variables ξj and ηj. Following [45; 4], we assemble the Gram matrix Hj with the entries

Hj
kl = E[(ξj ,ηj)

αk+αl], αk,αl ∈ J r
K+D,N . (4.11)

The matrix Hj is a |J r
K+D,N |-dimensional, square and symmetric matrix. For theoretical

reasons, we assume that the moments up to 2N exist and the measure of (ξj,ηj) is non-

degenerate. Then, the Cholesky factorization is employed to Hj and the polynomials Tαl

is found by inverting the resulting upper triangular matrix as

Tαl
(ξj ,ηj) =

∑

αk≤αl

akl (ξj ,ηj)
αk , (4.12)

where akl are real coefficients.

Remark 4.3. The KLE yields uncorrelated random variables ηj. If the underlying process

is Gaussian, it is known that these variables are also independent. However, in general,

marginals of ηj are dependent variables. Multi-index operations can still be used to con-

struct the polynomial set (4.10) with respect to the joint distribution, although the esti-

mation of multivariate moments of ηj becomes necessary because of such a dependency.

In this case, it is known that orthogonal polynomials are not unique and depend on the

ordering imposed on the multi-index set; see [130; 4; 30]. In all computations, we use the

graded lexicographic ordering for multi-indices; see Table 2.1.

Remark 4.4. The completeness of the orthogonal polynomials Tα(ξj,ηj) is closely related

to the moment problem of the random variables ξj and ηj . In particular, if the moment

problem is uniquely solvable, i.e., the measure is determinate, then the orthogonal polyno-

mials are dense in L2 [11; 97; 36; 30]; see also the previous chapter. Some basic conditions

that guarantee determinacy of the measure of a continuous random variable on a finite di-

mensional space are compact support and exponential integrability. Gaussian measures are

determinate and the Hermite PCE converges by the Cameron-Martin theorem. However, in

general, whether the distribution of ηj is determinate or not is unknown. This problem is

CHAPTER 4. DYNAMICAL GPC FOR SPDES 66

addressed in the previous chapter in the case of finite dimensional SDE systems; see section

3.2.4. Theoretical results are applied in the setting where the solutions are approximated by

compactly supported distributions under appropriate assumptions. In the following, we as-

sume that the measures associated to ηj are determinate so that convergence is guaranteed,

which is consistent with our numerical simulations; see section 4.3.

Remark 4.5. A quick summary of the measures and corresponding random variables ap-

pearing in this chapter is as follows. The solution to the SPDE with white noise forcing

and possibly random coefficients generates a time-dependent measure on an abstract in-

finite dimensional probability space. A finite dimensional approximation is obtained first

by spatial discretization and second, at each restart of the algorithm, KLE. This gives rise

to a still complicated joint distribution of ηj ∈ R
D, which we never explicitly construct.

As indicated in the preceding remarks, we assume that this measure is determinate or well

approximated by a determinate measure so that its orthogonal polynomials are dense in

the L2 sense. What the algorithm propagates is a finite dimensional set of (approximately)

orthogonal polynomials for this measure, with the assumption that in the limit of infinite

order polynomials, infinite KLE, and vanishing spatial discretization mesh, such a set would

characterize the SPDE solution. If an explicit, approximate construction of the distribu-

tion of ηj ∈ R
D is needed at any particular time, a possible way to do so would be by

means of moment-constrained maximum entropy methods such as those described in [1]

and references therein.

Based on the above discussion, the orthonormal basis (4.10) requires the computation

of the moments (4.11). The exact moments of the Gaussian variables ξj are computed by

analytical formulas and then stored during the offline stage. However, the distribution of

ηj is varying with j. Therefore, the computation of moments should be carried out based

on information provided by the PCE.

Several methods are available to compute moments of probability distributions in the

PC context such as, e.g., quadrature methods, Monte Carlo sampling, or a pure PCE ap-

proach. This procedure is notoriously expensive and ill-posed [36]. The pure PCE approach

computes the moments of ηj by repeatedly multiplying its PCE and taking expectation;

see [26]. This approach is discussed in detail in the preceding chapter and works reasonably

CHAPTER 4. DYNAMICAL GPC FOR SPDES 67

well for a low dimensional SDE systems. However, it becomes prohibitively expensive if

the dimension of the random variables in the PC basis is even moderate; see section 3.2.3.

Therefore, in this chapter, we consider an alternative approach using Monte Carlo sampling,

which drastically reduces the computational cost for computing moments compared to the

pure PCE approach.

We assume that independent samples of the initial condition (therefore, the samples

of η0) are provided so that the algorithm can be initialized. To construct the set (4.10),

based on (4.11), we need to compute the first 2N moments of the joint random variable

(ξj,ηj). Moreover, since the triple products will be required for the evolution of the PCE

coefficients, the first 3N moments need to be computed as well; see section 4.2.5. Using the

same ordering of the multi-index set J r
K+D,3N , we require the computation of the following

moments:

E[(ξj,ηj)
α] = E[ξ

(α1,...,αK)
j]E[η

(αK+1,...,αK+D)
j], α ∈ J r

K+D,3N , (4.13)

where we used the independence of ξj and ηj .

Let ηj(ωi) := (ηj,1(ωi), . . . , ηj,D(ωi)) denote independent samples of the random modes

for ωi ∈ Ω, where i = 1, . . . , S ∈ N. Then, provided the samples ηj(ωi) are given, the

moments of ηj can be approximated by

E[η
(αK+1,...,αK+D)
j] ≈ 1

S

S
∑

i=1

(ηj(ωi))
(αK+1,...,αK+D) =

1

S

S
∑

i=1

D
∏

l=1

(ηj,l(ωi))
αK+l ,

where we used the usual multi-index notation for powers. Therefore, multivariate moments

(4.13) are computed by a combination of the analytical formulas for ξj and a sampling

approximation for ηj . Note that in applications, we use small values of N with a sufficiently

large number of samples S to guarantee accuracy.

Although we discussed computing moments based on samples, we have not explained

how the samples of ηj are acquired except for η0. The distribution of ηj, j ≥ 1, is evolving

in time. However, owing to the PCE (4.8) of the each component ηj,l , we can write

ηj =
∑

α

ηj,α Tα(ξj−1,ηj−1), j ∈ N.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 68

This representation gives a natural way to sample from the distribution of ηj by the recur-

sion

ηj(ωi) =
∑

α

ηj,α Tα(ξj−1(ωi),ηj−1(ωi)), i = 1, . . . , S, (4.14)

assuming that we obtained samples of ηj−1(ωi) at the previous restart tj−1. Indepen-

dent samples ξj−1(ωi) are obtained through sampling a multivariate Gaussian distribution.

Therefore, on the subinterval [tj−1, tj], PCE acts like a transport map which maps previ-

ously obtained samples of ηj−1 and new samples of ξj−1 to the samples of the new random

modes ηj .

Remark 4.6. Note that ηj is a function of the variables ξj−1 and ηj−1. Therefore, the

number of samples of ηj should be ideally S2 provided the same of number of samples S

is used for each ξj−1 and ηj−1. However, in practice, this is not feasible in our method as

the number of samples grows in time. Instead, the equation (4.14) keeps only the diagonal

terms in the sample space. In the numerical simulations, we use large values of S so that

the loss of accuracy incurred from discarding some samples would be minimal. Moreover,

it is important to notice that (4.14) entails samples from the joint distribution of ηj so

that Monte Carlo method is used to approximate the expectations while preserving the

dependence structure of marginals.

Remark 4.7. The method blends Monte Carlo sampling into a PC approach to exploit

the virtues of the both methods, namely, rapid computation of expectations and spectral

accuracy provided by the MC and PC methods, respectively. Although the method is

utilizing samples for the computation of moments, samples are not used in the evolution

stage. The algorithm essentially propagates moments of the measures between successive

times, where moments are computed using a sampling technique. To test the robustness

of the method with respect to sampling, imagine that the algorithm starts with an infinite

supply of independent samples of η0. We discard the first sample after using it to construct

the corresponding orthogonal polynomials at the end of the first time interval and propagate

the remaining samples with the PCE map to construct (an infinite supply of) samples of

η1. The algorithm iteratively estimates the distribution, hence the moments, of each ηj

while samples are discarded at each restart. We tested this idea by starting with a set of

CHAPTER 4. DYNAMICAL GPC FOR SPDES 69

n independent samples of η0 and propagated them by PCE for a maximum of n restarts.

We found that the accuracy of the calculations was not affected by such a re-sampling

tool; see numerical Example 4.8. This comparison showed the robustness of the algorithm

under changes of samples. Since in practice, such re-sampling increases the computational

costs compared to (4.14), it is not considered in the numerical experiments presented in the

next sections. We also emphasize that the sampling approach readily returns samples of

the approximated solution at the endpoint T through its KLE without a further sampling

procedure. These samples can also be useful in uncertainty quantification to estimate further

statistical properties of the solution such as probabilities on prescribed sets or probability

density functions.

4.2.5 Galerkin Projection and Local Initial Conditions

Once an orthonormal basis is obtained, the algorithm performs a Galerkin projection onto

the space spanned by the basis, and this requires the computation of triple products. Using

the representation (4.12), the required triple products can be written as

E[Tαk
Tαl

Tαm] =
∑

αk′≤αk

∑

αl′≤αl

∑

αm′≤αm

ak′k al′l am′m E[(ξj ,ηj)
αk′+αl′+αm′], (4.15)

where all multi-indices belong to the set J r
K+D,N . Thus this formula can be computed by

the knowledge of moments of order up to 3N .

Depending on the choice of the sparse index r, the multi-index αk′+αl′+αm′ ∈ JK+D,3N

might not be an element of J r
K+D,3N . Therefore, once we fix the multi-index set J r

K+D,N

in the offline stage, we also compute and store the indices that are elements of J r
K+D,3N .

Finally, we perform Galerkin projection of the SPDE (4.1) and obtain the following

PDE system for the coefficients uj+1,α(x, t) of (4.3), t ∈ [tj, tj+1] :

∂t(uj+1,α) = E

Tα(ξj ,ηj)L

∑

β

uj+1,β Tβ(ξj ,ηj)

+ σ(x)E[Tα(ξj ,ηj)Ẇ (t)]. (4.16)

The first expectation in the above line is computed with the aid of the triple products (4.15)

and the second using the representation (2.10).

Note that the initial conditions uj+1,α(x, tj) can be obtained by noticing that the rep-

resentation (4.2) of uj is nothing but a sum involving linear polynomials in ηj,l. It can

CHAPTER 4. DYNAMICAL GPC FOR SPDES 70

therefore be rewritten in the basis Tα(ξj ,ηj) with the help of Galerkin projections. Hence,

the only coefficients that survive in (4.3) at tj are the mean and the ones which correspond

to the first degree polynomials in ηj . Then, the PDE system (4.16) can be solved in time

using a time-integration method combined with the aforementioned spectral method (4.7).

If the initial condition u0 of (4.1) is deterministic, we employ the Hermite PCE on the first

interval [0, t1], which does not necessitate the computation of the KLE.

4.2.6 Adaptive Restart Scheme

So far, the method uses a predetermined restart time ∆t. For long-term simulations, an

adaptive restart scheme that sets the restarts online depending on the properties of the

solution can reduce the computational cost.

We propose to adapt the restart time based on the following two criteria: (i) preserve

the accuracy of the representation (2.10) of the random forcing; and (ii) mitigate the effect

the nonlinearities in the accuracy of the polynomial expansions. For a prescribed number

of dimensions to describe the random forcing, the algorithm can not take too large steps to

preserve accuracy. Also, nonlinearities force the solution to be less accurately described by

low-degree polynomials in the initial condition as time increases. In both cases, we wish ∆t

to be as large as possible for a given accuracy in mind.

To this end, let ∆tj denote the adaptive time-step starting from time tj . To ensure an

accurate representation of the forcing term, we set a maximum value ∆tmax for ∆tj for all

j, i.e. ∆tj ≤ ∆tmax. In practice, ∆tmax is based on the error analysis of random forcing

by a finite dimensional approximation; see for instance [57]. To address nonlinearities, we

consider the following ratio for the PC coefficients uj,α:

ρ(t) :=
||∑|α|>1 u

2
j,α(·, t)||L1

||∑|α|>0 u
2
j,α(·, t)||L1

, t ∈ [tj−1, tj−1 +∆tj−1]. (4.17)

The condition measures the norm ratio of the nonlinear terms in the variance to the norm of

the variance. In applications, the ratio is computed at each time integration point. Similar

other conditions were used in different settings in [37; 56].

Consider a threshold value ǫ ∈ (0, 1). We propose the following conditions for adaptive

time-steps using t ∈ [tj−1, tj−1 +∆tj−1] :

CHAPTER 4. DYNAMICAL GPC FOR SPDES 71

i) if ρ(t) ≤ 3ǫ then set the next time-step ∆tj = min(t∗ − tj−1,∆tmax) for ρp(t∗) = 2ǫ,

ii) if ρ(t) > 3ǫ then go back to tj−1 and set ∆tj−1 = min(t∗ − tj−1,∆tmax) for ρ(t∗) =

2ǫ,

where ρp is a polynomial approximation to ρ(t), which can be found by fitting a p-degree

polynomial to ρ(t) on the interval [tj−1, tj−1 +∆tj−1]. This approximation is only required

for time values t satisfying ρ(t) < 2ǫ.

The time-steps ∆tj, j > 0 are set adaptively. For short time-steps, we do not expect

dynamics to change drastically between successive intervals. Therefore, condition i) verifies

whether the ratio is smaller than 3ǫ on the current interval, and then sets the adaptive

time-step for the next interval. When ρ(t) ≤ ǫ, then the algorithm selects a bigger time-

step by finding the root of ρp(t∗) = 2ǫ. Note that the current evolution on the interval

[tj−1, tj−1 +∆tj−1] is not prematurely stopped at the end point. Although PCEs converge

at any point inside the interval, errors, however, are known to wildly oscillate inside the

interval and become spectrally accurate only at the end point; see the previous chapter and

[16]. Condition ii) essentially verifies whether the ratio becomes too large (i.e. > 3ǫ), and

when this happens, forces the evolution to restart from the current initial point tj−1. This

control ensures that the algorithm does not take too large steps.

Our procedure is summarized in Algorithm 2, where, for simplicity, we only present the

version which uses a predetermined number of restarts.

4.3 Numerical Simulations

We now present numerical simulations for the Burgers equation in one spatial dimension

and a Navier–Stokes system in two spatial dimensions both driven by white noise. We

consider these equations for two reasons. First, the statistical behavior of solutions of these

equations is of importance in statistical mechanics and turbulence theory; see, e.g., [41; 84;

52; 53]. Second, they serve as challenging test beds for the PCE methodology.

We illustrate convergence results in terms of the degrees of freedoms D, N , and the

time-step ∆t, and consider both short-time and long-time evolutions. The convergence of

CHAPTER 4. DYNAMICAL GPC FOR SPDES 72

Algorithm 2 Dynamical generalized Polynomial Chaos (DgPC) for SPDEs

Decompose the time domain [0, T] = [0, t1] ∪ . . . ∪ [tn−1, T]

Initialize the degrees of freedom K,N,D, S

Choose the sparse index r = (r1, . . . , rK+D)

Compute the indices used in the triple-product formula (4.15)

Compute moments of ξ0

for each time-step tj ≥ 0 do

apply the KLE to uj and obtain ηj = (ηj,1, . . . , ηj,D)

compute the moments E[(ξj ,ηj)
α]

construct orthogonal polynomials Tα(ξj ,ηj)

compute the associated triple products

perform Galerkin projection onto span{Tα(ξj,ηj)}
set up initial conditions for uj+1

evolve the PCE coefficients of uj+1

end for

the method in terms of K is treated in detail in Chapter 3. As a general comment, we do

not recommend using large values of N since the computation of orthogonal polynomials is

quite ill-posed. In the following, we use polynomials of degree up to N = 3. The algorithm

mitigates the ill-posedness by choosing frequent restarts and small degree; i.e. small ∆t

and N . The settings we consider here closely follow those addressed in the manuscripts [57;

75].

4.3.1 Burgers Equation

We consider the following one dimensional viscous stochastic Burgers equation for u(x, t, ω):

∂tu+ 1
2∂xu

2 = ν ∂2xu+ σ(x)Ẇ (t),

u(x, 0, ·) = u0(x), u(0, t, ·) = u(1, t, ·), (x, t) ∈ [0, 1] × [0, T],

(4.18)

where W (t) is a Brownian motion in time, ν > 0 is the viscosity (which will be either

deterministic or random), the initial condition u0 is deterministic, and the solution itself is

periodic in the spatial domain [0, 1].

CHAPTER 4. DYNAMICAL GPC FOR SPDES 73

Following [75; 57], we choose cosine functions as an orthonormal basis mj,k(t), k ∈ N, for

L2[tj, tj+1]. Employing the equation (2.10) for each subinterval [tj , tj+1] and using Galerkin

projection, we derive the governing equations for the PC coefficients uj+1,α(x, t) of uj+1:

∂t(uj+1,α) +
1

2
∂x (u

2
j+1)α = ν ∂2x uj+1,α + σ(x)

K
∑

k=1

mj,k(t)E[ξj,k Tα(ξj ,ηj)],

where ξj = (ξj,1, ξj,2, . . .). Since the initial condition is deterministic, we employ Hermite

PCE in the subinterval [t0, t1]. The PC coefficients (u2j+1)α of the nonlinearity u2j+1 are

computed by multiplying the corresponding PCEs with the help of pre-computed triple

products.

Since the coefficients uj+1,α(x, t) are periodic in the physical space, we utilize a truncated

Fourier series:

uj+1,α(x, t) ≈
Mx/2
∑

k=−Mx/2+1

ûj+1,α(k, t) e
2π i k x, x ∈ [0, 1],

with the even number of frequencies Mx to be chosen. Further, using the equidistant

partition for the spatial domain [0, 1] and Fast Fourier Transform (FFT), we can compute

the Fourier coefficients ûj+1,α with a reasonable computational cost. This procedure gives

rise to an ODE system which is then integrated in time using a second order predictor-

corrector method combined with an exponential integrator for the stiff term [70].

In the implementation of the Burgers equation, the algorithm assembles the covariance

matrix at each restart as discussed in section 4.2.2. A large memory is not required for such

a one dimensional spatial problem. We found that using the random projection technique

described in section 4.2.2 did not result in significantly shorter total computational times

because the computation of the eigenvalue problem is already efficient in this case by means

of Krylov subspace methods.

Example 4.8. For this numerical simulation, we choose the spatial part of the random

forcing as σ(x) = 1
2 cos(2πx), the initial condition as u0(x) =

1
2 sin(2πx) and set the viscosity

ν = 0.01. Under these sets of parameters, it has been proved that there exists a unique

invariant measure, which is the long-time limit of the dynamics [109, Theorem 2]. Thus,

the main aim of the following simulations is to demonstrate the efficiency of the algorithm

in the long-time setting.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 74

For the parameters of DgPC, we take K = 2, N = 2, and vary the number of the KLE

modes D. Final time is T = 3 and the interval divided into 30 pieces by taking ∆t = 0.1.

The spatial mesh size Mx is set to be 27 and the number of samples S to compute moments

is taken as 105. Finally, sparse indices r are chosen as follows:

i) if D = 3, then r = (2, 2, 2, 1, 1), and if |α| = 2, we set r = (2, 2, 2, 1, ·) resulting in 15

terms in the expansion.

ii) if D = 4, then r = (2, 2, 2, 2, 1, 1), and if |α| = 2, we set r = (2, 2, 2, 2, 1, ·) resulting

in 21 terms in the expansion.

iii) if D = 5, then r = (2, 2, 2, 2, 2, 1, 1), and if |α| = 2, we set r = (2, 2, 2, 2, 2, 1, ·)
resulting in 28 terms in the expansion.

Note that the first K indices in r correspond to degrees of polynomials in ξ and the

remaining to η. Choosing r = (2, 2, 2, 2, 1, 1) means using only first degree polynomials is

η3 and η4. Also, setting r = (2, 2, 2, 2, 1, ·) for |α| = 2 eliminates the cross terms involving

first degree polynomials of η4 in the second order terms. Note that using a sparse index not

only reduces the number of terms in PCE but also alleviates the computation of moments.

To compare our algorithm, we use a second order weak Runge-Kutta scheme since the

exact solution is not available. To make a fair comparison, both algorithms (Monte Carlo

& DgPC) use the same time-step dt = 0.001 and the same mesh size Mx = 27. The number

of samples used in MC algorithms are Msamp = 104, 5× 104 and 105 and the corresponding

algorithms will be denoted by MC1, MC2 and MC3, respectively. The exact solution is

taken as the result of MC3 and the relative L2 error ||E[udgpc]−E[umc]||2/||E[umc]||2 of the

mean is computed. Errors for higher order centered moments are computed similarly.

From Figure 4.1, we observe that all errors grow with time in the initial stages and

in particular, the degree of freedom D = 3 is the least accurate, which is expected as

the dynamics change rapidly during initial stages. Increasing the number of KLE modes

entails more accurate expansion up to some order. It can be observed that all the error

levels stabilize for moderate times while D = 5 is the most accurate. This phenomenon is

explained by the convergence to a stationary measure such that statistics do not change

considerably after some time.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 75

time

0 1 2 3

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-4

10
-3

10
-2

10
-1

Mean

D=3

D=4

D=5

time

0 1 2 3

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-3

10
-2

10
-1

Variance

D=3

D=4

D=5

time

0 1 2 3

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-2

10
-1

10
0

Third order moment

D=3

D=4

D=5

time

0 1 2 3

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-2

10
-1

10
0

Fourth order moment

D=3

D=4

D=5

Figure 4.1: Relative errors of centered moments obtained by DgPC with T = 3 and ∆t = 0.1.

Exact solution is computed by MC3.

To demonstrate that our method is robust with respect to sampling changes and does

not really require the propagation of the same initial set of samples in time, we perform

the following calculations; see Remark 4.7. Let us start with a set containing n = 30

different independent sets of samples η0(wi,1), . . . ,η0(wi,n), i = 1, . . . , S, of η0. The or-

thogonal polynomials at the first restart stage Tα(ξ0,η0) are constructed using the first

samples η0(wi,1). To calculate the next set of samples η1(wi,1), . . . ,η1(wi,n−1) of η1 at the

next restart, we propagate the remaining samples η0(wi,2), . . . ,η0(wi,n) and the samples

ξ0(wi,2), . . . , ξ0(wi,n) of ξ0 through the now available PCE. This approach, which is com-

putationally challenging for n large and here mostly to show robustness with respect to

sample changes, allows us to use different samples to compute orthogonal polynomials at

CHAPTER 4. DYNAMICAL GPC FOR SPDES 76

each restart and then propagate the remaining samples of the next variable; see Figure 4.2

for a visualization of this approach.

tj+1tj

ηj(wi,1) ηj+1(wi,1)

ηj+1(wi,2)

ηj+1(wi,3)

...

ηj(wi,2)

ηj(wi,3)

...

ξj(wi,2)

ξj(wi,3)

Tα(ξj,ηj)

n− j
n− (j + 1)

Tα(ξj+1,ηj+1)

Figure 4.2: Robustness under the change of samples.

With this idea, we re-ran the simulation and report the results in Figure 4.3. This figure

indicates that the latter approach is very comparable in terms of accuracy to the method

described in the paper where the initial set of samples is kept fixed. Our method therefore

appears to be very robust with respect to changes of samples of the distribution of ηj . We

conclude that there seems to be no need to keep propagating the various set of samples.

We now increase the final time to T = 6. DgPC algorithms use the following parameters:

K = 4, N = 2, D = 3, 4, 5, S = 105, and ∆t = 0.1. The corresponding total number of

terms for each subinterval becomes 18, 24 and 31. The mesh size is taken asMx = 28, which

offers better spatial resolution. Table 4.1 summarizes the relative L2 errors of the DgPC

algorithms with different degrees of freedom and the MC methods. All errors are computed

by taking MC3 as the exact solution. The time ratio column is computed as the total time

required by the each algorithm divided by the elapsed time of MC3 with Msamp = 105 and

dt = 0.0005. The parameters for MC1 and MC2 algorithms remain the same as above; the

algorithms are executed a few times and the resulting errors are averaged. We also include

the elapsed times for the offline computation in DgPC algorithms. In practice, the required

data for the offline step can be computed once and stored for further executions of the

algorithm to speed-up the running time.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 77

0 1 2 3

time

10
-4

10
-3

10
-2

10
-1

Mean

D=5

D=5 resampling

0 1 2 3

time

10
-3

10
-2

10
-1

Variance

D=5

D=5 resampling

0 1 2 3

time

10
-2

10
-1

10
0

Third order moment

D=5

D=5 resampling

0 1 2 3

time

10
-2

10
-1

10
0

Fourth order moment

D=5

D=5 resampling

Figure 4.3: Relative errors of moments obtained by DgPC using current sampling and

re-sampling approaches.

Mean Variance 3rd order 4th order Time ratio

DgPC: D = 3 2.21E-2 1.18E-2 5.20E-2 4.04E-2 0.003

DgPC: D = 4 1.86E-2 5.4E-3 3.45E-2 2.41E-2 0.007

DgPC: D = 5 1.67E-2 4.0E-3 1.43E-2 1.09E-2 0.02

MC1 2.29E-2 1.16E-2 4.53E-2 2.27E-2 0.05

MC2 1.17E-2 4.0E-3 1.82E-2 9.4E-3 0.25

Table 4.1: Relative errors of centered moments by DgPC and MC methods at T=6. Each

time ratio is computed by comparing to MC3.

Table 4.1 demonstrates the idea of using low degree polynomials and small number of

terms in PC expansion combined with frequent restarts seems to pay off. DgPC with 31

CHAPTER 4. DYNAMICAL GPC FOR SPDES 78

terms in the expansion (i.e. D = 5) attains comparable accuracy as MC2 (i.e. Msamp =

5×104 and dt = 0.001) with a computational time which is only eight percent of that Monte

Carlo algorithm. Also, we observe that all errors recovered to a level of O(10−2), which is

an acceptable accuracy for long-time simulations.

The evolution of the energy ratio (2.4) in the KLE is depicted in Figure 4.4 for different

values of D. We observe that for the degree of freedom D = 5, the method captures at least

99% of the total energy for all times. Moreover, as the dynamics converge to the invariant

measure, all energy ratios become very close to 100%, which indicates that the invariant

measure lives in a low-dimensional space and the solution can be represented in the KLE

form with a small number of terms (at most D = 3).

0 1 2 3 4 5 6

time

0.975

0.98

0.985

0.99

0.995

1

E
n
er

g
y
 R

at
io

D=3

D=4

D=5

Figure 4.4: Evolution of the retained energy in KLE for different values of degrees of

freedom.

Fixing the degree of freedom as D = 5, we now employ the adaptive time stepping

(4.17) approach. To probe the sensitivity of the algorithm on the threshold parameter ǫ, we

choose ǫ = 0.005, 0.01, 0.02 and the initial time-step ∆t0 = 0.1. Also, we set ∆tmax = 0.4

to get O(10−2) accuracy for the truncation (2.10) of the forcing term using K = 4; see

[57, Theorem 5.1]. We utilize quadratic polynomials as our ansatz to approximate the ratio

(4.17); see condition i) below (4.17).

Using ǫ = 0.005, 0.01 and 0.02 results in 66, 44 and 29 number of restarts with the time

ratios 0.024, 0.018, and 0.015 compared to MC3, respectively. As expected, decreasing

the threshold value implies longer computational time and a larger number of restarts.

Furthermore, from Figure 4.5, we observe that errors corresponding to ǫ = 0.02 are the

CHAPTER 4. DYNAMICAL GPC FOR SPDES 79

time

0 1 2 3 4 5 6

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-4

10
-3

10
-2

10
-1

Mean

ǫ=0.005

 ǫ=0.01

 ǫ=0.02

time

0 1 2 3 4 5 6

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-3

10
-2

10
-1

Variance

 ǫ=0.005

 ǫ=0.01

 ǫ=0.02

time

0 1 2 3 4 5 6

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-2

10
-1

10
0

Third order moment

 ǫ=0.005

 ǫ=0.01

 ǫ=0.02

time

0 1 2 3 4 5 6

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-2

10
-1

10
0

Fourth order moment

 ǫ=0.005

 ǫ=0.01

 ǫ=0.02

Figure 4.5: Evolution of relative errors of moments with adaptive time-stepping using dif-

ferent threshold values ǫ.

largest in the initial stages and the long-term while errors for the smallest value ǫ = 0.005

correspond the most accurate behavior in the long-term.

We make the following remarks: (i) optimal values of ǫ should be chosen according to

the computational time and error level, and for this calculation, ǫ ∈ (0.005, 0.01) seems

optimal; (ii) earlier stages of the evolution should be analyzed carefully since using large

values of the threshold value may result in a loss of accuracy; (iii) using very small values

of ǫ may result in accumulation of errors if errors at each restart are significant, e.g., when

a small number of degrees of freedom is used in the KLE. Finally, we note that fitting a

linear polynomial for (4.17) yields similar results.

To show that the algorithm captures the invariant measure for a long time T = 6, we

CHAPTER 4. DYNAMICAL GPC FOR SPDES 80

consider the following three different initial conditions

u0(x) = 0.15 sin(2πx) & u0(x) = 0.5 cos(4πx) & u0(x) = 0.25(sin(4πx) + cos(8πx)),

and compute the moments at time T = 6. We see from Figure 4.6 that the dynamics

converge to the unique invariant measure, which is a global attractor.

x

0 0.5 1

-0.1

0

0.1

Mean

sin

cos

sin+cos

x

0 0.5 1

0.03

0.06

0.09

Variance

sin

cos

sin+cos

x

0 0.5 1

-0.01

0

0.01

Third order moment

sin

cos

sin+cos

x

0 0.5 1

0.005

0.01

0.015

0.02

Fourth order moment

sin

cos

sin+cos

Figure 4.6: Moments of the invariant measure of Burgers equation at T = 6 obtained by

DgPC.

Example 4.9. The purpose of the following numerical verification is to display the rate of

convergence as ∆t varies for long time simulations. To this end, we take the initial condition

and the forcing

u0(x) = 0.5(exp(cos(2πx)) − 1.5) sin(2π(x+ 0.37)) & σ(x) = 0.5 cos(4πx),

CHAPTER 4. DYNAMICAL GPC FOR SPDES 81

where the initial condition has several nonzero frequency components in the Fourier space.

The viscosity is set to be ν = 0.005. Note that there is no stationary state in the long-term.

Using the same setting of Example 4.8 for parameters of DgPC, we apply DgPC with

the varying values ∆t = 0.1, 0.2 and 0.4 for each final time T = 2.4, 4.8, 9.6 and 14.4. All

simulations use the same time-step dt = 0.001 for time-integration. Figure 4.7 demonstrates

that the order of convergence in long-time is varying between O(∆t0.4) and O(
√
∆t). This

behavior is consistent with the claims made in [57, Theorem 5.1] in the setting of the

Hermite PCE.

∆ t

10
-1

10
0

a
b
s
o
lu
t
e
L
2
e
r
r
o
r

10
-3

10
-2

√

∆t ∼

Second order moment

T=14.4

T=9.6

T=4.8

T=2.4

(a) D = 4

∆ t

10
-1

10
0

a
b
s
o
lu
t
e
L
2
e
r
r
o
r

10
-4

10
-3

10
-2

√

∆t ∼

Second order moment

T=14.4

T=9.6

T=4.8

T=2.4

(b) D = 5

Figure 4.7: Convergence behavior of errors of the second order moment using ∆t = 0.1, 0.2,

and 0.4.

Example 4.10. In this example, we test the accuracy of the algorithm against an exact

solution. When σ(x) = σ is constant, the exact moments of the stochastic Burgers equation

can be computed by solving the deterministic Burgers equation and estimating appropriate

integrals by numerical quadratures.

We set σ = 0.1 in (4.18) and take the initial condition

u0(x) = 0.1 − 4νπ cos(2πx)/(3 + sin(2πx)).

In this case, the exact solution for the deterministic Burgers equation becomes

udet(x, t) = 0.1−4νπ exp(−4νπ2t) cos(2π(x−0.1t))/(3+exp(−4νπ2t) sin(2π(x−0.1t))), t ≥ 0.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 82

The moments of the stochastic solution u(x, t) are then computed by the following integrals:

E[u(x, t)n] =

∫

R2

(udet(x− z, t) + y)np(y, z) dydz,

where p(y, z) =
√
3

πσ2t2
exp

(

−2y2

σ2t
+ 6yz

σ2t2
− 6z2

σ2t3

)

[57, equation (3.13)]. We use a large number

of quadrature points and the periodicity to compute the moments of the solution accurately.

To perform convergence analysis in terms of degree of polynomials, we take N = 1, 2

and 3, and set K = 3, D = 4, S = 3 × 105. This setting results in 8, 18 and 38 number of

terms in the expansion for each time interval. Figure 4.8 demonstrates the resulting relative

errors for the moments of the solution. As expected, we observe that increasing the degrees

of freedom N helps to reduce the errors and an error accuracy of O(10−3) is attained. Since

σ = 0.1 is held constant, the forcing term continuously forces the zeroth order spatial modes

of the high statistical moments, which are not damped by the viscosity and grow with time.

0 0.5 1 1.5 2 2.5

time

10
-7

10
-5

10
-3

10
-1

Mean

N=1

N=2

N=3

0 0.5 1 1.5 2 2.5

time

10
-7

10
-5

10
-3

10
-1

Variance

N=1

N=2

N=3

0 0.5 1 1.5 2 2.5

time

10
-4

10
-2

10
0

Third order moment

N=1

N=2

N=3

0 0.5 1 1.5 2 2.5

time

10
-6

10
-4

10
-2

10
0

Fourth order moment

N=1

N=2

N=3

Figure 4.8: Convergence behavior of errors of moments using polynomial degrees N = 1, 2,

and 3.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 83

Example 4.11. For this simulation, we model the viscosity as an uncertain parameter with

a spatial dependence, which can be useful for quantifying uncertainties in applications [41;

66; 85]. To this end, using the same notation of section 4.2.3, the covariance kernel of

the underlying random process Z(x, ω) is assumed to be the following periodic exponential

kernel

CovZ(x, y) = σ2Z exp

(

− 2

l2Z
sin2(π(x− y))

)

, x, y ∈ [0, 1],

where σZ is the amplitude and lZ is the correlation length. We then compute the truncated

KLE of the mean zero process Z(x, ω) and construct the viscosity as a function of Z as

ν(x, ω) = a1 + Z2(x, ω), where Z(x, ω) =

DZ
∑

l=1

√

λl Ul(ω)φl(x),

with independent uniform random variables Ul ∼ U(−1, 1) and a1 > 0. Armed with this

viscosity, we consider the diffusion term in the Burgers equation (4.18) in divergence form,

i.e., ∂x(ν(x, ω) ∂xu).

We utilize Hermite and Legendre polynomial bases on the first subinterval [0, t1] to

expand both Brownian motion and the random viscosity. Although the viscosity does not

change in time, its PC representation changes as the PC bases differ at each restart time.

Thus, we keep track of the PCEs of both u(x, t, ω) and ν(x, ω). Moreover, we compress

both the solution and the random viscosity at each restart, i.e., the KLE is applied to

the couple (uj , Z); see section 4.2.3. A reference calculation is computed by keeping the

uniform random variables Ul, l = 1, . . . ,DZ , at each restart in a PCE together with ξj and

ηj . Relative errors are computed with respect to this reference calculation.

For the following simulation, the parameters are as follows: K = 2, N = 2, D = 8,

DZ = 3, S = 3 × 105. The correlation length of the periodic kernel is set to lZ = 2. To

avoid confusion, we slightly change the notation and denote by σW the spatial part of the

random forcing and consider three different scenarios:

i) σZ = 0.04 and σW (x) = 0.1 cos(2πx),

ii) σZ = 0.1 and σW (x) = 0.1 cos(2πx),

iii) σZ = 0.1 and σW (x) = 0.04 cos(2πx),

CHAPTER 4. DYNAMICAL GPC FOR SPDES 84

with the same initial condition u0(x) = 0.5 cos(4πx). These parameters correspond to

different relative influences between the viscosity and the random forcing.

We present the evolution of the relative errors for moments of the solution u and the

random viscosity ν for t = 4 in Figure 4.9. Each moment is averaged over distributions of

the random process Z and Brownian motion automatically by the PCE. First, we observe

from the first two subfigures that the relative errors of the moments of the solution are of

O(10−2) in the long-time while the most accurate ones correspond to scenario i). In the

same scenario, we see from the rightmost subfigure that the accuracy in the variance of

ν decreases and stabilizes in time, which substantiates the observation that the algorithm

selects the important part of the moments of the viscosity while keeping the solution ac-

curate. Nevertheless, if slight changes in the moments of the viscosity become significant

and accuracy needs to be improved, the KLE can be carried out using correlation matrices

rather than covariance matrices.

Regarding the computational time, we note that the DgPC with K +D = 10 number

of variables requires almost one eighth of the run time of the reference calculation which

utilizes K + D + DZ = 13 number of variables in each PCE. Therefore, in cases where

random parameters in the equation are high dimensional, applying the KLE to combined

random variables is advantageous in terms of speed given a prescribed accuracy.

Figures 4.10a and 4.10b show forty snapshots of the moments of the solution in time for

the scenario iii), where black curves indicate the initial states for each moment. Note that

since the viscosity is random, for each realization of the viscosity there is a unique invariant

measure, and what these figures exhibit is the steady state, which is obtained by averaging

these measures over the distribution of the viscosity. We also see that the moments of

this averaged measure differ in magnitude compared to those in Figure 4.6 as the relative

influences of viscosity and Brownian motion are changed. The rightmost sub-figure plots

the one-point probability density function corresponding to this steady state. The density

function is easily obtained using the samples of the approximated random field via a kernel

density estimation procedure; see Remark 4.7 and [14]. We see that for each point x ∈ [0, 1],

the density function is unimodal and has peaks near the points x, where the variance is

minimum. We finally note that the cross covariance structure of the solution on the spatial

CHAPTER 4. DYNAMICAL GPC FOR SPDES 85

time

0 1 2 3 4

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-4

10
-3

10
-2

10
-1

Mean u

σW = 0.04 cos,σZ = 0.1

σW = 0.1 cos,σZ = 0.1

σW = 0.1 cos,σZ = 0.04

time

0 1 2 3 4

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-3

10
-2

10
-1

Variance u

σW = 0.04 cos,σZ = 0.1

σW = 0.1 cos,σZ = 0.1

σW = 0.1 cos,σZ = 0.04

time

0 1 2 3 4

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-4

10
-3

10
-2

Mean ν

σW = 0.04 cos,σZ = 0.1

σW = 0.1 cos,σZ = 0.1

σW = 0.1 cos,σZ = 0.04

time

0 1 2 3 4

r
e
la
t
iv
e
L
2
e
r
r
o
r

10
-3

10
-2

10
-1

10
0

Variance ν

σW = 0.04 cos,σZ = 0.1

σW = 0.1 cos,σZ = 0.1

σW = 0.1 cos,σZ = 0.04

Figure 4.9: Relative errors of moments of the solution and the random viscosity. Errors are

computed by comparing DgPC with D = 8 to a reference calculation which uses D = 8 and

DZ = 3.

mesh can also be easily deduced from the algorithm if needed.

4.3.2 Navier–Stokes Equations

In this section, we provide applications of our algorithm to solve a two-dimensional system

of stochastic Navier–Stokes equations (SNS). We consider the following coupled system:

θt + u · ∇θ = µ∆θ,

ut + u · ∇u = ν∆u−∇P + σẆ(t),

∇ · u = 0,

(4.19)

CHAPTER 4. DYNAMICAL GPC FOR SPDES 86

x

0 0.2 0.4 0.6 0.8 1
-0.5

-0.2

0

0.2

0.5
Mean u

(a) Mean over time

x

0 0.2 0.4 0.6 0.8 1

×10
-3

2

4

6

Variance u

(b) Variance over time

(c) One-point pdf at final time

Figure 4.10: Snapshots of the second order moments of Burgers equation on [0, T] = [0, 4]

and one-point probability density function at T = 4.

where θ, the temperature, is convected by the stochastic velocity field u = (u, v), which is

forced by a Brownian motion W = (W1,W2) with independent components and the spatial

part σ(x, y) = diag(σ1(x, y), σ2(x, y)), x, y ∈ [0, 1]. The temperature diffusivity and fluid

viscosity are denoted by µ and ν, respectively. Notice that equations are coupled only

through velocity term and the temperature is convected by the random velocity passively.

We take the computational domain [0, 1] × [0, 1] ⊂ R
2, and assume that θ and u are

doubly periodic. It is then possible to introduce the stream function ψ such that u =

CHAPTER 4. DYNAMICAL GPC FOR SPDES 87

(ψy,−ψx), define the vorticity w = vx − uy and rewrite the system (4.19) as:

θt + (uθ)x + (vθ)y = µ∆θ,

wt + (uw)x + (vw)y = ν∆w + (σ2)xẆ2 − (σ1)yẆ1,

−∆ψ = w, u = ψy, v = −ψx.

(4.20)

We also suppose that the stream function is periodic. Following [57; 75], the initial condition

for the vorticity w is chosen to be

w(x, y, 0) = C − 1

2δ
exp

(

−I(x)(y − 0.5)2

2δ2

)

, (4.21)

where I(x) = 1 + ε(cos(γ 2πx) − 1) with γ ∈ N, and C is a constant to make the initial

condition mean zero on [0, 1]2. This choice corresponds to a flat shear layer of width δ

concentrated at y = 0.5. The width is perturbed sinusoidally with the amplitude ε and

spatial frequency γ. In our numerical experiments, we will also consider the reflected initial

condition w(y, x, 0) for which the layer is concentrated vertically; see Figures 4.11 and 4.14.

We consider the following initial condition for the temperature:

θ(x, y, 0) =

Hδ(y − 0.25), if y ≤ 0.4,

1− 2Hδ(y − 0.5), if 0.4 < y < 0.6,

−Hδ(0.75 − y), if y ≥ 0.6,

,

where

Hδ(x) =

0, if x < −δ,
x+δ
2δ + sin(πx/δ)

2π , if |x| ≤ δ,

1, if x > δ

is the mollified Heaviside function. This formulation yields an initial condition, which

consists of four connected layers, where interfaces between layers have thickness δ. As

discussed in [57; 75], setting small values to δ creates a sharp shear layer and temperature

interface. As a consequence of Kelvin-Helmholtz instability, the fluid then will roll-up, and

the temperature will be convected and mixed up [74].

The Hermite PCE is effectively applied to stochastic Navier–Stokes equations (in most

cases without Brownian motion forcing) in various manuscripts [67; 122; 128; 119; 57; 75].

CHAPTER 4. DYNAMICAL GPC FOR SPDES 88

The presence of Brownian motion forcing makes the system very hard to solve even for

short times due to the overwhelming number of random variables needed in the Hermite

PCE. Therefore, we now apply the DgPC algorithm to the system (4.20).

We choose the same orthonormal system mj,k(t) on [tj , tj+1] as in the previous section

and project each component W1(t) and W2(t) of the Brownian motion to obtain ξj . The

total number of ξk’s will be denoted by K, where the first (last) K/2 variables correspond

to the first (second) component of W(t). Assuming the variables w, θ,u and ψ admit PCEs,

the method keeps track of the corresponding expansions. At each time-step tj, the KLE is

applied to (wj, θj) and the mode ηj is obtained. Then, Galerkin projection of (4.20) onto

the space span{Tα(ξj ,ηj) : α ∈ J r
K+D,N} yields the following equations:

∂t(θj+1,α) + ∂x(uj+1θj+1)α + ∂y(vj+1θj+1)α = µ∆θj+1,α,

∂t(wj+1,α) + ∂x(uj+1wj+1)α + ∂y(vj+1wj+1)α = ν∆wj+1,α

+(σ2)x

K
∑

k=K/2+1

mj,k−K/2(t)E[ξj,k Tα]− (σ1)y

K/2
∑

k=1

mj,k(t)E[ξj,k Tα],

−∆ψj+1,α = wj+1,α, uj+1,α = ∂y(ψj+1,α), vj+1,α = −∂x(ψj+1,α).

(4.22)

The resulting deterministic PDE system (4.22) is solved utilizing a truncated Fourier series

and FFT in two dimensions on a mesh of size Mx ×Mx.

As we discussed in Section 4.2.2, there are two main methods to compute KLE: (i)

assemble the full covariance matrix using (4.6) and use a Krylov subspace method to find

largest eigenvalues (as was done in the previous section); or (ii) use the random projection

technique to accelerate the computation by equation (4.9) and find eigenvalues of the re-

sulting small matrix. To show the computational savings incurred by the second method,

some SNS systems were solved using both methods and accuracies are compared.

Example 4.12. This simulation concerns the short-time accuracy and the computational

time of the DgPC algorithm, which will be assessed using comparisons with Monte Carlo

methods with a sufficiently high number of samples.

We set µ, ν = 0.0002 and take the spatial part of forcing as

(σ1)y = 0.1π cos(2πx) cos(2πy), (σ2)x = 0.1π cos(2πx) sin(2πy).

CHAPTER 4. DYNAMICAL GPC FOR SPDES 89

The parameters δ = 0.025, ε = 0.3 and γ = 2 give rise to the initial conditions which are

depicted in Figure 4.11. Similar parameters can be found in [57, Section 4.1].

Figure 4.11: Initial conditions for vorticity w and temperature θ.

We apply the DgPC with the following parameters: K = 4, N = 2, S = 2× 105, T = 1,

∆t = 0.1, Mx = 27 and D = 4, 6, 8. Sparse indices r are chosen as:

i) if D = 4, then r = (2, 1, 2, 1, 2, 2, 1, 1), and if |α| = 2, we set (2, ·, 2, ·, 2, 2). This results

in 19 coefficients in the PCE.

ii) if D = 6, then r = (2, 1, 2, 1, 2, 2, 1, 1, 1, 1), and if |α| = 2, we set (2, ·, 2, ·, 2, 2, 1, 1).
This results in 30 coefficients in the PCE.

iii) ifD = 8, then r = (2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1), and if |α| = 2, we set (2, ·, 2, ·, 2, 2, 2, 2, 2).
This results in 41 coefficients in the PCE.

We note that sparser sets of indices can be chosen more aggressively in applications to

provide faster offline and online computations.

The first four moments of vorticity and temperature are plotted in Figure 4.12 and

Figure 4.13. Higher order moments are centered. Roll-up of the fluid is clearly observed

in the mean temperature. Due to the Kelvin-Helmholtz instability and the structure of

the initial vorticity, the thin shear layer evolves, rolls up and eventually forms two vortices

concentrated at the same locations of sinusoidal perturbations; see [74; 57] for the previous

results and discussions.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 90

Figure 4.12: Moments of vorticity w obtained by DgPC with D = 8 at T = 1.

To make comparisons as meaningful as possible, we use second order integration meth-

ods, namely weak Runge-Kutta and predictor corrector, with the same time-step dt = 0.001

in both Monte Carlo and DgPC algorithms. Diffusion terms are integrated analytically

by an exponential integrator scheme. The number of samples used in MC are Msamp =

1000, 5000, 10000, and the corresponding algorithms will be denoted by MC1, MC2 and

MC3, respectively. Relative L2 errors and computational times are computed using the

algorithm MC3 as the “exact” solution.

Relative errors for the moments of the vorticity w are given in Table 4.2. In this

implementation, the algorithm assembles the full covariance matrix at each restart using

(4.6) and uses the Arnoldi method to compute the largest D eigenvalues. We found that

error levels and convergence behavior for the moments of the temperature θ were very

CHAPTER 4. DYNAMICAL GPC FOR SPDES 91

Figure 4.13: Moments of temperature θ obtained by DgPC with D = 8 at T = 1.

similar and hence are not displayed. It can be observed that using D = 8 random modes in

DgPC with second degree polynomials yields a similar accuracy to that achieved in MC2.

Convergence order of DgPC in terms of the parameter D seems to be at least quadratic

whereas convergence of MC is approximately of O(1/
√

Msamp); especially for higher order

moments.

For comparison, we now apply the random matrix technique discussed in Section 4.2.2

to compute the KLE at each restart. Recall that this technique does not require assembling

any covariance matrix and is therefore memory efficient. Table 4.3 shows the resulting errors

of the DgPC algorithm using this technique with the target rank parameter l = D+p, where

we used p = 10 for the oversampling parameter. Comparing Table 4.2 and 4.3, we observe

that the error levels remain comparable while the computational costs are not. Elapsed

CHAPTER 4. DYNAMICAL GPC FOR SPDES 92

Algorithm Mean Variance 3rd order 4th order Time ratio

DgPC: D = 4 8.2E-3 1.58E-1 7.50E-1 4.90E-1 0.025

DgPC: D = 6 2.7E-3 3.57E-2 1.55E-1 8.34E-2 0.041

DgPC: D = 8 2.1E-3 2.64E-2 7.01E-2 5.98E-2 0.073

MC1 4.3E-3 7.26E-2 1.42E-1 1.16E-1 0.1

MC2 3.4E-3 2.90E-2 5.40E-2 4.65E-2 0.5

Table 4.2: Relative errors of moments of vorticity w at T = 1 and timing. Exact solution

is taken as algorithm MC3.

times are approximately divided by 8, 4 and 2 for the degrees of freedom D = 4, 6 and

D = 8, respectively. For D = 8, this shows that the (total) algorithm now runs in about

half the time. Specifically for the KLE step, we found computational times are reduced by

approximately 1000. This simulation confirms that the computation of the KLE becomes

a serious computational bottleneck in high dimensions when the covariance matrices are

assembled (accounting for half of the time of the full algorithm). Thanks to the random

projection method, the KLE no longer constitutes a computational bottleneck for the SNS

simulations presented here. The computational costs are now mostly dominated by time

evolution and restart procedures.

Algorithm Mean Variance 3rd order 4th order Time ratio

DgPC: D = 4 8.2E-3 1.59E-1 7.57E-1 4.98E-1 0.003

DgPC: D = 6 2.8E-3 3.73E-2 1.58E-1 8.25E-2 0.010

DgPC: D = 8 2.1E-3 2.58E-2 6.67E-2 5.90E-2 0.035

Table 4.3: Elapsed times and relative errors of moments of vorticity w at T = 1. The random

projection technique with the parameter l = D + 10 is used to accelerate computation of

the KLE.

Example 4.13. Using the same scenario as in the previous example, we consider a stochas-

tic viscosity ν = U(0.0002, 0.0004) and set µ to be the same random variable, i.e. µ = ν.

Since the Monte Carlo simulation takes a very large amount of time to compute, we restrict

CHAPTER 4. DYNAMICAL GPC FOR SPDES 93

ourselves to the final time T = 0.5 and the mesh size Mx = 26. Monte Carlo algorithms

MC1, MC2 and MC3, are executed with the number of samples 100 × 100, 200 × 200 and

300× 300, respectively. These samples correspond to the samples of Brownian motion and

the viscosity. The parameters of DgPC remain the same except we increase S to 3× 105 as

there is an additional random coefficient in the system.

Algorithm Mean Variance 3rd order 4th order Time ratio

DgPC: D = 4 3.26E-4 2.42E-2 3.05E-1 5.77E-2 0.0009

DgPC: D = 6 2.85E-4 1.63E-2 1.95E-1 4.89E-2 0.0025

DgPC: D = 8 2.74E-4 4.45E-3 6.27E-2 3.30E-2 0.0067

MC1 2.60E-3 2.29E-2 9.59E-2 5.25E-2 0.11

MC2 1.11E-3 8.51E-3 4.10E-2 2.07E-2 0.44

Table 4.4: Relative errors of moments of vorticity w at T = 0.5. Elapsed times are compared

to Algorithm MC3.

Table 4.4 exhibits the relative errors of DgPC for the vorticity using the random matrix

approach for the KLE. Comparing Table 4.4 and 4.3, we see that relative elapsed times of

DgPC with respect to MC3 are further improved. Additional randomness for MC means an

extra dimension to sample from, whereas for DgPC, it means an extra variable that needs

to be compressed into the modes η. Since the dynamics crucially depend on the behavior

of the viscosity, using few realizations for viscosity sampling in MC is not recommended.

In this setting, we found that our MC simulations demanded a high CPU time compared

to DgPC. Note, however, that viscosity sampling could clearly be performed in parallel in

a MC framework—something that is not as easily feasible in the PCE setting.

Example 4.14. The preceding simulations were concerned with short time evolutions of

SNS and comparisons of the proposed algorithm with a Monte Carlo method. Numerical

results for reasonably short time computations indicated that our algorithm achieved a

similar accuracy compared to MC typically for a smaller computational cost.

We are now interested in long time simulations and convergence to steady states. Since

there is no random forcing acting upon the temperature equation in (4.20), the (uncoupled)

CHAPTER 4. DYNAMICAL GPC FOR SPDES 94

temperature diffuses to zero quickly. Therefore, we only solve the vorticity equation in the

system (4.20).

The following numerical experiment considers the vorticity equation with a deterministic

viscosity ν = 0.00055 and a spatial forcing as described in Example 4.12. The parameters

of the simulation are Mx = 26, S = 3× 105, T = 288 and ∆t = 0.12. PC expansions with

thirty number of terms are employed on each subinterval. The four-step Adams predictor-

corrector method is used for the time integration.

Figure 4.14 shows three different initial conditions for the vorticity. The first layer is

supported around x = 0.5 while the others are aligned horizontally. Widths of all layers are

widened and different sinusoidal perturbations are considered.

Figure 4.14: Different initial conditions for vorticity w.

In Figure 4.15, we show the L2-norm of the successive differences of the first two moments

in time. Each column represents one of the initial conditions presented in the corresponding

column in Figure 4.14. After a (very) long time, the norms of the successive differences drop

below O(10−3), which (numerically) indicates that statistical moments no longer change

significantly in time. In all cases, we found that the dynamics converged to the same state,

which is shown in Figure 4.16. Notice that the invariant measure is a non-Gaussian random

field and the moments have oscillations in the x variable. We also see that high variance

regions correspond to where the mean fields display peaks. Based on these findings for this

scenario, we assert that the dynamics converge to an invariant measure which is numerically

captured in the long-time by the DgPC algorithm.

Remark 4.15. In long time computations, the MC method usually requires the propagation

CHAPTER 4. DYNAMICAL GPC FOR SPDES 95

Figure 4.15: L2-norm of successive differences of moments using three different initial con-

ditions. Each column corresponds to an initial condition depicted in Figure 4.14.

of many realizations in time, which renders the method hardly affordable in some cases.

However, if the dynamical system possesses a unique ergodic invariant measure, the MC

method may be carried out to sample such a measure by considering a single, very long time

MC realization, which repeatedly visits the whole state space. While carrying out such a

sampling is also computationally expensive, it is likely to compare favorably to our DgPC

algorithm in this case.

In general, ergodicity or uniqueness of an invariant measure may not be known or not

hold for complicated physical dynamics (e.g., invariant measures parametrized by a random

parameter as in Example 4.13). In such cases, our algorithm offers a viable alternative

to the MC method to capture the long-term dynamics by providing statistical information

resulting from the expansion coefficients.

CHAPTER 4. DYNAMICAL GPC FOR SPDES 96

Figure 4.16: Statistical moments of the invariant measure of the vorticity at time t = 250

obtained by DgPC.

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 97

Chapter 5

Dynamical SGC method for SDEs

5.1 Introduction

In this chapter, we focus on stochastic collocation methods which use deterministic quadra-

ture nodes in the random space to approximate expectations of functionals of solutions.

These methods aim to achieve the ease of implementation of MC methods and fast con-

vergence behavior of stochastic Galerkin methods at the same time. Similar to Galerkin

methods, their convergence depends on the smoothness of the solution in the random in-

put variables. Their effectiveness relies upon the dimensionality of the random parameter

space and they work well if the stochastic system involves random moderate dimensions.

It has been shown, especially in uncertainty quantification literature, that they provide a

strong alternative to MC methods for differential equations with time-independent random

parameters; see e.g. [124; 28; 126; 6; 87; 86; 127; 66].

For equations driven by time-dependent noise, collocation methods with pre-determined

quadrature rules have appeared in the recent literature [40; 39; 132; 133; 77; 71]. Manuscripts

[132; 133] combined a sparse grid collocation (SGC) method with weak sense time-integration

methods to compute second order moments of the solutions of SDEs and SPDEs driven by

white noise. It has been proved and observed numerically in [132] that straightforward ap-

plication of collocation methods leads to failure in long-time integration. As we noted and

observed numerically in the previous chapters, the underlying reason of this failure is that

in the presence of random forcing time, the number of stochastic variables needed to main-

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 98

tain a prescribed accuracy increases with time. This means, for collocation-based methods,

that the number of collocation points should grow with time. The manuscript [132] then

introduces a recursive approach for long times based on the SGC method to compute second

order moments of linear SPDEs; see also [73; 84]. On the other hand, optimal quantization

methods [95; 76; 96] aim to find optimal discrete approximations, e.g. Voronoi quantiza-

tions, to the solutions of SDEs, which are adapted to the dynamics. These quantizations

are obtained by approximating Brownian motion by a finite-dimensional random process,

e.g. truncated KLE of Brownian motion, and deriving ODE systems for the quantizers.

In the following, we propose a dynamical collocation-based method in time to alleviate

long-time integration problems in the setting of SDEs. The method propagates optimal

quadrature rules for the solution in time and uses pre-determined quadrature rules for

the random forcing. In this sense, it can be considered as an extended combination of

the proposed methods in [132; 95]. Using a similar restarting strategy of the preceding

chapters and a time-integration method, the method constructs sparse quadrature rules

for the solution variables on-the-fly. It then estimates expectations of functionals of the

future solution variables by using sparse quadrature rules of the solution variables at the

current time and the random forcing variables. By constructing quadrature rules with a

small number of nodes and employing frequent restarts, the algorithm can utilize small

and time-independent degrees of freedom at each restart, while maintaining the accuracy

in the long time. We demonstrate the efficiency of the proposed method numerically using

low-dimensional nonlinear SDEs.

5.2 A Simple Stochastic Collocation Method

Following the approaches given in the previous chapters, we introduce a sparse quadrature-

based collocation method for the d-dimensional SDE (3.1) with σ > 0 as follows.

First, we consider a time discretization of the interval [0, T]

τi = i dt, i = 0, . . . ,MT ,

where dt = T/MT and approximate the solution u(t;u0, {W (τ); τ ≤ t}) of (3.1) in the

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 99

weak-sense by the Euler-Maruyama scheme

u(τi+1) = u(τi) + L(u(τi)) dt+ σ(W (τi+1)−W (τi)).

Then using the convergence property of the expansion (2.10) in L2, we can approximate

Brownian motion increments by finite dimensional variables ξ = (ξ1, ξ2, . . . , ξK):

u(τi+1;u0, ξ) = u(τi;u0, ξ) + L(u(τi;u0, ξ)) dt + σ
K
∑

k=1

ξk

∫ τi+1

τi

mk(τ)dτ, (5.1)

where u(τ0;u0, ξ) = u0.

Let now {wp
0 , u

p
0}

Qu0
p=1 and {wq, ξq}Qξ

q=1 be pre-determined quadrature rules for the random

variables u0 and ξ with the corresponding levels λu0 and λξ, respectively. Here these

quadrature rules denote any enumerations of their multi-dimensional versions. Then the

equation (5.1) naturally gives rise to a non-intrusive approximation to the SDE by the

following equation:

u(τi+1;u
p
0, ξ

q) = u(τi;u
p
0, ξ

q) + L(u(τi;up0, ξq)) dt + σ

K
∑

k=1

ξqk

∫ τi+1

τi

mk(τ)dτ, (5.2)

for p = 1, . . . , Qu0 and q = 1, . . . , Qξ. This equation dictates the evolution of the initial

particles up0 under the trajectories of the forcing particles ξq. In contrast to Monte Carlo

methods, the random forcing is sampled deterministically and approximated by its finite-

dimensional approximation via the spectral projection (2.10), and the samples of u0 are

taken as quadrature points. Thus, the method is sample-error free.

Remark 5.1. The method introduces three level of approximations. First, SDE is dis-

cretized in time. Then, Brownian motion increments are approximated by their finite-

dimensional approximations. Finally, we approximate the continuous equation (5.1) by

its discrete approximation (5.2) using quadrature rules. Hence, there are three degrees of

freedom that are of interest: dt, K, and λ.

Remark 5.2. Note that although we used the Euler method in the formulation, this is not

required. Any higher order method can be used to discretize SDE in time. Moreover, the

noise amplitude σ can be a function of the solution u; see numerical Example 5.11.

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 100

Remark 5.3. For any fixed K, the finite dimensional approximation (2.10) of Brownian

motion entails a continuous finite-variation process on [0, T]. Thus, the integral with re-

spect to this finite-variation process can be understood in the Stieltjes sense. Then the

main questions are when and in what sense the approximate solution (5.2) converges to

the true solution. Unfortunately, answers to these questions are beyond the scope of this

thesis. For theoretical discussions on the convergence of approximations for SDEs with

smooth coefficients in a similar setting, we refer to [95; 76; 96]. Nevertheless, the numerical

experiments show clear convergence in moments; see Section 5.4.

The approximate solution u(t;up0, ξ
q) of (5.2) readily entails (approximate) statistical

moments by computing

E[u(t;u0, ξ)
α] ≈

Qu0
∑

p=1

Qξ
∑

q=1

wp
0 w

q u(t;up0, ξ
q)α,

where α is a multi-index, see (2.8). Here, we use Smolyak sparse grid quadrature (2.12) for

Gaussian ξ and for u0, any accurate quadrature rule can be considered.

A similar collocation strategy in a Monte-Carlo setting using weak-integration is em-

ployed in [132; 133] to compute the second order moments of the solution. It is noted that

the efficiency of the collocation strategy depends on the strength of the noise and the length

of the time interval. Indeed, in order to maintain a prescribed accuracy the expansion (2.10)

requires the number of stochastic variables to be increasing with time. Thus, the number of

quadrature points needed to maintain an accuracy quickly becomes overwhelming for long

times.

Here is a simple motivating demonstration of the long-time integration problem in case

of the Ornstein-Uhlenbeck process. We set L(u) = 10(0.1 − u) and σ = 4, and take a

deterministic initial condition u0 = 1. We also take K = 8, 16, 32, 64, and consider different

final times T = 1, 2, 4, 8, 16. Since the solution stays Gaussian, we use a sparse Gauss-

Hermite rule for ξ with level λξ = 1. To make a fair comparison, we use the same time

discretization method (second order Runge-Kutta method) with the time step dt = 1E-3

in each scenario. Figure 5.1 shows that as time increases from T = 1 to T = 16, the

convergence behavior in the second moment of this simple method drops from O(K−3)

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 101

to O(K−1). This clearly indicates that the degrees of freedom required for this simple

collocation method to maintain a desired accuracy should increase with time.

10
1

10
2

K

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

Variance

T=16

T=8

T=4

T=2

T=1

(a) Relative error versus K

10
0

10
1

T

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 e
rr

o
r

Variance

K=8

K=16

K=32

K=64

(b) Relative error versus T

Figure 5.1: Relative errors of the variance for different times T = 1, 2, 4, 8, 16 and different

number of random variables K = 8, 16, 32, 64.

5.3 Proposed Methodology

5.3.1 Formulation

To provide an efficient non-intrusive method for SDEs, we propose to evolve quadrature

rules of the solution u(t) and the variables ξ to represent the solution u(t + ǫ) at future

times with a sufficiently small number of quadrature points. As we discussed before in

Section 3.2.1, u(t + ǫ) can be captured by low order polynomials in u(t) provided ǫ > 0

is small, therefore, the quadrature level required to integrate polynomials in u(t) can be

selected small. To be able to leverage this sparsity in time, we need a similar restarting

mechanism proposed in Chapter 3 and Chapter 4.

Let a sequence of restart times 0 < tj < tj+1 < T , with ∆t = tj+1 − tj, be given. Then

the number of quadrature points for ξ on each time interval [tj , tj+1] can also be made

small by selecting a short time horizon, i.e. ∆t = ǫ. By properties of Brownian motion,

quadrature rule for ξ can be read from tables or computed only once in the offline stage.

The challenge is then to compute efficient, sparse quadrature rules for the solution u(t) in

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 102

time. These rules are not straightforward to compute and have to be computed online since

the probability distribution of u(tj) is arbitrary and evolving.

Remark 5.4. This approach is similar to DgPC (Algorithm 2), which computes orthogonal

polynomials of the solution in time to perform Galerkin projection. The major difference

is that DgPC propagates orthogonal polynomials of the solution whereas this approach

propagates quadrature formulas corresponding to the measures of the solution in time. For

classical Gauss quadratures, quadrature formulas and associated orthogonal polynomials

are closely related [36]. Both polynomial-based and quadrature-based approaches leverage

the regularity of the solution in the input randomness while propagating characteristic

information of the measures.

We denote by uj the approximation of u(tj) entailed by the algorithm at tj and by ξj =

(ξj,1, . . . , ξj,K) the variables for the random forcing on the interval [tj , tj+1]. Suppose for now

that sparse quadrature rules {wp
j , u

p
j}

Quj

p=1 and {wq
j , ξ

q
j}

Qξj

q=1 have already been constructed

for uj and ξj at time tj, respectively. An analog of the equation (5.2) can be written for

the approximate solution uj+1(t;uj , ξj) for t ∈ [tj , tj+1]

uj+1(τj,i+1;u
p
j , ξ

q
j)) = uj+1(τj,i;u

p
j , ξ

q
j)) + L(uj+1(τj,i;u

p
j , ξ

q
j)) dt

+ σ
K
∑

k=1

ξqj,k

∫ τj,i+1

τj,i

mj,k(τ) dτ, (5.3)

where mj,·(t) is a complete orthonormal system for L2[tj, tj+1] and τj,·’s denote a time

discretization for the interval [tj , tj+1].

The question here is how to construct an efficient quadrature rule for the next so-

lution variable uj+1 using (5.3). The evolution of the particles {upj , ξ
q
j} via the equa-

tion (5.3) entails a set {up×q
j+1}p,q of particles of the approximate solution uj+1, i.e. the

quadrature nodes at tj follow the trajectories of the dynamics and give rise to an initial

set of nodes at tj+1. The key challenge is then to find a small subset of these nodes

and corresponding weights which accurately integrate polynomials in uj+1. Following [4;

5] and [103], we construct such a sparse quadrature for uj+1 by using the following L1

optimization procedure.

Let the particles up×q
j+1 := uj+1(tj+1;u

p
j , ξ

q
j), where p = 1, . . . , Quj

and q = 1, . . . , Qξj
,

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 103

serve as an initial set of quadrature nodes for uj+1. Let also the set {Tα(u) : α ∈ Jd,N}
be any orthonormal basis of polynomials up to degree N in dimension d. Then to extract

a sparse quadrature rule at tj+1, we solve the convex optimization problem:

min
w∈RQ̃uj+1

||w||1, subject to Aw = b. (5.4)

Here w ∈ R
Q̃uj+1 with Q̃uj+1 = Quj

× Qξj
, and the constraints Aw = b necessitate the

exactness of the quadrature rule up to total degree |α| ≤ N . The corresponding quadrature

level λu in Gaussian quadrature sense is (N + 1)/2 assuming N is odd.

We enumerate the basis Tα(u) and denote it by {Tk(u) : k = 0, . . . ,M}, where M =

|Jd,N |, and then define

A :=

T0(u
1
j+1) . . . T0(u

Q̃uj+1

j+1)
...

...

TM (u1j+1) . . . TM (u
Q̃uj+1

j+1)

,

and the right-hand side vector consisting of the exact moments

b :=
[

E[T0(uj+1)] . . . E[TM (uj+1)]
]T
.

We assume that the moments E[uαj+1], for each tj+1 and |α| ≤ N , are finite and we typically

have that M is much smaller than Q̃uj+1 .

Then a sparse subset denoted by {wp
j+1, u

p
j+1}

Quj+1

p=1 , with Quj+1 ≤ M ≪ Q̃j+1, can be

extracted having at mostM nodes from the solution of the optimization procedure (5.4); see

Section 5.3.2 for possible implementations. Once a quadrature rule for uj+1 is constructed,

the algorithm restarts and evolves the quadrature nodes on the next time interval according

to (5.3); see Algorithm 3.

Remark 5.5. It is useful to note that finding a quadrature rule which is exact for polyno-

mials up to degree N amounts to computing a discrete approximation to the measure of uj

which has the same moments, i.e. the summation of Dirac measures
∑Qj

p=1w
p
j δup

j
and the

continuous measure of uj have the same moments up to degree N .

Remark 5.6. For probability measures on R
d, the existence of a quadrature rule with

positive weights and a degree of exactness 2λ−1 is guaranteed; [115; 100; 24; 36]. In general,

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 104

Algorithm 3 Dynamical Sparse Grid Collocation (DSGC) method for SDEs

Decompose the time domain [0, T] = [0, t1] ∪ . . . ∪ [tn−1, T]

Select a time-integration method

Initialize the degrees of freedom K,N

Compute quadrature rules for ξ0 and u0

for each time-step tj, j > 0, do

evolve the quadrature nodes upj−1 and ξ
q
j−1 by (5.3)

obtain the nodes up×q
j , p = 1, . . . , Quj−1 and q = 1, . . . , Qξj−1

solve the optimization procedure (5.4)

extract a sparse quadrature rule {wp
j , u

p
j}

Quj

p=1

end for

we do not enforce positivity condition for the weights w since a sparse optimal solution with

positive weights may not exist; see Section 5.3.2 for further details. We note that (5.4) is not

the only construction to find optimal quadrature rules; see also [46; 24; 4; 5] and references

therein. Furthermore, the convergence of exact quadrature rules for compactly supported

probability measures has been studied extensively in classical literature [25; 36].

Remark 5.7. We do not tensorize quadrature rules for each component of d-dimensional

random vector uj. It is quite possible that components of uj exhibit correlation; therefore

tensorization is not optimal. However, since we impose constraints on multivariate moments

E[uαj], the algorithm automatically establishes a quadrature rule for the full vector uj.

Moreover, if the dimension d is high, the number of constraints M in (5.4) can be reduced

by considering a sparse version of the multi-index set Jd,N ; see (4.4).

Remark 5.8. This remark concerns the differences and similarities of our approach to the

methods in [132; 133] and optimal quantization methods in [95; 76].

Our method uses pre-determined quadrature rules for the random forcing variables and

does not a have sampling error, which are similar to the method in [132]. The main differ-

ence is that the paper first discretizes the stochastic equations in time and then considers

quadrature rules for the random forcing variables in each time-step, i.e. the dimension of

randomness depends on the resolution of the time-integration and might grow rapidly with

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 105

fine discretization. In contrast, our method discretizes in the random space by considering

the L2-approximation (2.10) of Brownian motion with a fixed degree of freedom K. Al-

though a different restarting mechanism is used in [132], their method can only compute

moments up to second order, whereas approximations to higher order moments are available

in our method by quadrature rules provided higher moments converge.

Our method finds optimal quadrature rules adapted to the evolving solution in a similar

sense to optimal quantization methods. Quantization methods [95; 76] aim to discretize the

paths of an infinite dimensional randomness by a random vector in finite dimension. Finite

dimensional approximations are obtained by the solution of a minimization procedure and

are typically given by Voronoi cell collocation. For Brownian motion, quantizers based on

its KLE are considered. Then evolution of these quantizers for SDEs is obtained by solving

a corresponding integral equation, which is similar to (5.3). The typical convergence order

is logarithmic in the number of quantizers, which is a poor rate of convergence for practical

applications. In contrast, our method utilizes Gaussian-type quadratures tailored for the

solution and the random forcing, which leverage the smoothness of the response to provide

fast convergence. Moreover, frequent restarts allow us to mitigate dimensionality and use

low-dimensional approximations to Brownian motion forcing.

5.3.2 Implementation

5.3.2.1 Offline stage

In the offline stage, certain quadratures need to be computed. First, we compute sparse

quadrature rule for Gaussian ξ0 by using the Smolyak sparse grid with the level λξ0 , which

builds upon the standard 1D Gauss-Hermite rule; see Section 2.3.1. By independent in-

crement property of Brownian motion, all ξj, j ≥ 0, may have the same quadrature rule

assuming K and the level are fixed. Note that although it is not necessary, we keep the

number of variables in ξ the same throughout the evolution. If the distribution of the initial

condition u0 is known, a sparse Gauss quadrature is constructed with the level λu0 . If its

distribution is arbitrary, then the optimization procedure (5.4) can be used with Monte

Carlo initialization. We make use of the C++ library “UQ Toolkit” to compute Gauss

rules [26].

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 106

5.3.2.2 Moments and orthogonal polynomials

At the restart time tj+1, estimation of the right-hand side vector in the constraints in the

optimization problem (5.4) requires the calculation of the multivariate moments E[uαj+1],

where uj+1 = (uj+1,1, . . . , uj+1,d) and |α| ≤ N . These moments are computed using already

available quadrature rules {wp
j , u

p
j}

Quj

p=1 and {wq
j , ξ

q
j}

Qξj

q=1 from time tj :

E[uαj+1] = E(uj ,ξj)
[uαj+1(uj , ξj)] ≈

Quj
∑

p=1

Qξj
∑

q=1

wp
j w

q
j

d
∏

i=1

(uj+1,i(u
p
j , ξ

q
j))

αi .

The optimization procedure does not depend on the particular choice of the set {Tα(u) :

α ∈ Jd,N} of polynomials, e.g. even monomials can be used. However, the choice of Tα

certainly affects the condition number of the constraint matrix, which in turn affects the

stability of the numerical minimization algorithm. To better condition the constraint matrix

and improve the convergence of the optimization algorithm, we make use of couple of linear

transformations as preconditioning steps. Similar transformation techniques are applied

before in the setting of moment-constrained maximum entropy problems [1].

A linear transformation is applied to the solution uj so that it becomes mean zero.

Then a further transformation makes its components uncorrelated, i.e. its covariance matrix

becomes identity. Even with these transformations, a scaling issue related to moments arises

in the constraint equations. For instance, for a standard Gaussian random variable ξ, we

have E[ξ12]/E[ξ2] = 10395, i.e. the twelfth moment is larger than the second moment by 5

orders magnitude. To alleviate this scaling issue, we further scale u by its largest moment

so that maximum moment becomes 1.

A more direct preconditioning can be applied by a judicious selection of the orthonormal

basis Tα. A basis can be selected using an educated guess in the offline stage, which does

not require any online computation. However, since the measure of uj is evolving in time,

this may not be optimal in the long-time in Algorithm 3. An optimal choice for Tα is the

set of polynomials which are orthogonal with respect to the measure of uj. Unfortunately,

corresponding orthogonal system for uj is not available a priori in the algorithm, but it

can be computed online if further preconditioning is required. Although the computation

of orthogonal polynomials is an ill-posed problem, a Gram-Schmidt procedure based on

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 107

the knowledge of multivariate moments can be used in the computation; see (4.11). In

numerical simulations, the choice of the orthonormal system will be explicitly stated.

Here is a simple demonstration of the effects of these transformations. Let ξ1 and ξ2

be two independent N(3, 1) variables and the maximum degree be N = 8. Then, the

number of constraints becomes M = 45. We use 500 samples from normal distribution

to initialize the optimization procedure and keep the samples same for each scenario to

make a fair comparison. A sparse quadrature rule with M nodes is extracted according to

the algorithm discussed in the next section, and afterwards, the right-hand side vector b

is computed numerically using this quadrature rule to check the accuracy. The numerical

approximation of b is denoted by b̃ in the following.

Table 5.1 shows condition numbers of the linear system in (5.4) and the accuracy ||b−
b̃||∞/||b||∞ of the associated quadrature rule. First two scenarios use monomials as the

polynomial basis Tα and the last one uses Hermite polynomials, which are the associated

orthogonal system in this example. Note finally that condition numbers are independent of

the sparse extraction procedure. Clearly, scaling transformations or a careful selection of

the polynomials basis leads to at least 5-digit gain of accuracy in this example.

Without scaling With scaling Hermite poly.

cond(A) 7.01E+9 1.91E+3 2.98E+2

||b− b̃||∞/||b||∞ 3.25E-8 3.95E-13 3.19E-14

Table 5.1: Comparison of the accuracy of quadrature rules for two independent Gaussian

variables using different transformations.

5.3.2.3 Sparse quadrature rules

Algorithm 3 constructs dynamical quadrature rules in time for the solution uj. However,

implementation of the optimization algorithm (5.4) to construct an efficient quadrature

rule is not straightforward. From (5.4), we observe that at each restart tj , the optimization

procedure is initialized with Q̃uj
= Quj−1 ×Qξj−1

number of nodes for uj . Therefore, the

number of quadrature nodes may grow with the number of restarts. The challenge is then

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 108

to compute a sparse quadrature rule containing a smaller set of nodes and weights while

keeping the exactness of the original quadrature rule. To this end, after finding the optimal

solution of (5.4), we further employ an extraction routine.

A straightforward sparsification of the optimal solution of (5.4) would be cutting-off

the weights that are greater than a certain threshold. Depending on the numerical mini-

mization algorithm, this may not be possible. As discussed in [4; 5], an application of the

simplex algorithm yields a sparse optimal solution whereas interior-point methods give a

fully populated solution [88]. We choose to use CVX, a package for specifying and solving

convex programs [48; 47]. Under the hood, CVX uses SDPT3 which employs interior-point

methods to compute the optimal solution [116]. The following procedure is used to extract

a sparse quadrature rule; see [4; 5; 88].

At time tj, the constraints matrix A is of dimension M × Q̃uj
, where Q̃uj

is much

bigger than M . Thus, the dimension of the nullspace of A is at least Q̃uj
− M . The

key observation here is that any vector z ∈ null(A) can be added to the weights without

changing the equality constraints, i.e. A(w + z) = b. Thus, by selecting vectors carefully,

we can construct an iterative routine to make most of the weights zero. Based on these

observations, we follow the approach given in [4; 5; 88] and employ the following routine at

each restart tj.

Algorithm 4 Sparse Quadrature Extraction Routine for (5.4)

Initialize with the optimal weights w ∈ R
Q̃

repeat

find the indices N := {k ∈ {1, . . . , Q̃} : wk = 0}
find z ∈ null(A) with zk = 0, k ∈ N
set β = min{|wk

zk
| : k 6∈ N , sign(zk) 6= sign(wk)}

set w = w + βz

until the number of nonzeros in w is less than or equal to M

This routine allows us to find a sparse quadrature rule {wp
j , u

p
j}

Quj

p=1 with the number of

nodes Quj
satisfying Quj

≤M ≪ Q̃uj
. Thus, the number of nodes can be made independent

of time and frequent restarts can be used in Algorithm 3. A one way to find a vector z in

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 109

the nullspace of A is to compute a basis for the nullspace. In the implementation, we make

use of the QR method to quickly select a vector at each iteration. Finally, we note that this

routine does not necessarily yield nonnegative weights.

An application of this procedure to the two dimensional Gaussian random variable

discussed before in Table 5.1 reduces the size of the quadrature rule from 500 to 45 while

the accuracy remains almost the same as 3.19E-14.

5.4 Numerical Experiments

In this section, we present several numerical simulations of Algorithm 3 using low-dimensional

nonlinear SDE models.

For the rest of the section, T ∈ R stands for the endpoint of the time interval while

∆t = T/n denotes the time-step after which restarts occur at tj = j∆t. Furthermore, we

choose orthonormal bases for L2[tj , tj+1] as cosines (3.22). To solve the equation (5.3), we

utilize either a first- or a second-order time integration method.

In our numerical examples, the dynamics converge to an invariant measure. To demon-

strate the convergence behavior of our algorithm, we compare our results to exact second

order statistics or Monte Carlo simulations with sufficiently high number of samplesMsamp.

We also demonstrate the evolution of relative pointwise errors (3.23) computed at each

restart. In some cases, we give estimations of first six cumulants of the invariant measure.

Example 5.9. As a first example we consider an OU process

du(t) = bu (µ− u(t)) dt+ σu dW (t), t ∈ [0, T], u(0) = u0, (5.5)

where the damping parameter is random and uniformly distributed in [1, 3], i.e. bu ∼
U(1, 3). This is an example of 2-dimensional non-Gaussian dynamics that may be seen as

a coupled system for (u, bu) with dbu = 0; see also Example 3.12.

For the first simulation, we consider the time domain [0, 4]. The mean-return parameter

µ is set to be 0.2. The initial condition is normally distributed u0 ∼ N(1, 0.04) |=W (t) and

σu = 4. We use the Gauss-Hermite rule for the initial condition with the level λu0 = 3,

whereas for the damping parameter bu, we use the Gauss-Legendre quadrature rule with a

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 110

varying λbu . For Brownian motion, we use 2-dimensional approximation with the product

Gauss-Hermite rule of level λξ = 2. We also take the set Tα(u) as Hermite polynomials.

For time integration, we utilize a second-order weak Runge-Kutta method with dt = 5E-4.

In Figure 5.2, we compare second order statistics obtained by our method to the exact

solutions using N = 1, 2, and 3, λbu = 2, 4, and 8, and ∆t = 0.4, 0.2, 0.1, and 0.05. The

results are obtained by calculating the moments in u variable and then taking averaging

with respect to the measure of bu. The rows of the figure correspond to N -, λbu-, and

∆t-convergence of the method while keeping the other two degrees of freedom constant.

For each different restart step ∆t, we keep the time-integration step dt the same.

N -convergence of the method in Figure 5.3a and Figure 5.3b shows that the first two

moments can be captured accurately with N = 2. The level of accuracies are O(10−9)

and O(10−5) for the mean and the variance, respectively. We notice that using a larger

quadrature level λbu and more frequent restarts also help to reduce the relative errors. We

also observe that the convergence behavior of the method in terms of the size of time interval

is at least quadratic in the variance; i.e. O(∆t2).

Table 5.2 exhibits the first six cumulants of the equation (5.5) with µ = 0.0 in the long-

time T = 8. The limiting stationary measure can be obtained by solving the corresponding

standard Fokker-Planck equation; see [16; 64; 90]. The first 6 cumulants, κi, i = 1, . . . 6, are

obtained by computing moments in the solution variable and then averaging with respect

to the damping parameter. The table shows that increasing the degree N of polynomials in

the constraints in (5.4) clearly helps to accurately capture the higher cumulants in the long-

time. We also note that the approximations for the cumulants κ5 and κ6 become accurate

when N = 6 is used while they are inaccurate for N = 4. This type of convergence behavior

is related to the fact that the equation is linear in this case.

Example 5.10. We now consider a nonlinearity in the equation so that the damping term

includes a cubic term:

du(t) = −(u2(t) + 1)u(t) dt + σu dW (t), u(0) = 1.

We take T = 4, ∆t = 0.04, and σu = 2. For Brownian motion we use K = 2 dimensional

vector with a sparse Gauss-Hermite rule of level λξ = 3. We also take the set Tα(u) as

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 111

0 1 2 3 4

time

10
-9

10
-8

10
-7

10
-6

N=1

N=2

N=3

(a) λbu = 8, ∆t = 0.05

0 1 2 3 4

time

10
-5

10
-3

10
-1

10
1

N=1

N=2

N=3

(b) λbu = 8, ∆t = 0.05

0 1 2 3 4

time

10
-10

10
-8

10
-6

10
-4

10
-2

b
u

=2

b
u

=4

b
u

=8

(c) N = 2, ∆t = 0.05

0 1 2 3 4

time

10
-5

10
-4

10
-3

10
-2

b
u

=2

b
u

=4

b
u

=8

(d) N = 2, ∆t = 0.05

0 1 2 3 4

time

10
-9

10
-8

10
-7

10
-6

10
-5

 t=0.4

 t=0.2

 t=0.1

 t=0.05

(e) λbu = 8, N = 2

0 1 2 3 4

time

10
-5

10
-4

10
-3

10
-2

10
-1

 t=0.4

 t=0.2

 t=0.1

 t=0.05

(f) λbu = 8, N = 2

Figure 5.2: Convergence behaviors in N , λbu , and ∆t for the Ornstein-Uhlenbeck process

with random damping.

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 112

κ1 κ2 κ3 κ4 κ5 κ6

DSGC: N = 4 2.09E-5 4.39 1.75E-4 6.06 -7.38 76.00

DSGC: N = 6 2.09E-5 4.39 1.75E-4 6.06 1.96E-3 33.85

Fokker-Planck 0 4.39 0 6.06 0 33.85

Table 5.2: Cumulants obtained by Algorithm 3 and Fokker-Planck equation at T = 8 for

the Ornstein-Uhlenbeck process with random damping.

Hermite polynomials.

In this case, we observe from Table 5.3 that the Algorithm 3 can be executed accurately

in the long-time by increasing the number of degrees of freedom N . Comparing Table 5.3

and Table 5.2, we see that the accuracy in the higher cumulants are slightly decreased and

it is harder to capture higher moments as this is a more complicated dynamics having a

nonlinearity.

κ1 κ2 κ3 κ4 κ5 κ6

DSGC: N = 4 1.26E-2 7.35E-1 4.12E-2 -3.22E-1 2.08E-1 4.75E-1

DSGC: N = 6 -2.01E-3 7.34E-1 8.20E-3 -3.39E-1 -7.27E-2 9.35E-1

DSGC: N = 8 3.48E-4 7.33E-1 -2.91E-3 -3.39E-1 2.40E-3 9.52E-1

Fokker-Planck 0 7.33E-1 0 -3.39E-1 0 9.64E-1

Table 5.3: Cumulants obtained by Algorithm 3 and Fokker-Planck equation at T = 4 for

cubic nonlinearity.

Example 5.11. In this example, we consider a multiplicative noise term and the Cox-

IngerSoll-Ross (CIR) model

du(t) = bu(µ − u(t))dt + σu
√

u(t) dW (t), (5.6)

which is used to describe the evolution of interest rates [22]. The same model is also used in

the Heston model to model random volatility. We impose the condition 2buµ ≥ σ2u so that

the process stays positive. The process has a stationary distribution in the long time and

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 113

the second order statistics can be computed analytically. Note also that the noise amplitude

is non-Lipschitz.

We apply the first-order Milstein method [64]

u(τi+1) = u(τi) + bu

(

µ− u(τi)−
σ2u
4bu

)

dt

+ σu
√

u(τi)(W (τi+1)−W (τi)) +
σ2u
4
(W (τi+1)−W (τi))

2, (5.7)

and then approximate Brownian motion increments by their finite-dimensional approxima-

tions. Since the noise term involves a function of u, it is necessary to use a time-integration

method which takes this dependence into account. We set T = 3, u0 = 1, µ = 0.6, σu = 0.5,

bu = 2, K = 2, λξ = 4, and ∆t = 0.1. We compute the associated orthogonal polynomials

when we solve the optimization procedure.

The first row of Figure 5.3 shows the evolution of the mean and the variance of the model

(5.6) obtained by the analytical solution and Algorithm 3 with N = 4. We observe that in

the long time, the statistics become stationary and are captured well by the algorithm. The

second row shows that the algorithm can be performed accurately in the long-time with a

relatively small noise-level σu = 0.5.

In Table 5.4, we compare the DSGC algorithm and MC method in terms of accuracy

and timing. For a fair comparison and to minimize the error of time integration, both

methods use Milstein’s method with the time step dt = 1E-4. We compare the convergence

behaviors of the variance using N and Msamp for DSGC and MC, respectively. To assess

the robustness of the methods, we take bu = 4 and consider different magnitudes of the

noise: σu = 0.5, 1, and 2. Since MC estimates are noisy, we repeat each MC simulation

20 times and average the errors. We first observe that the accuracy of both methods

drops when σu is increased. Also, if high accuracy is needed, DSGC algorithm can be

executed faster than MC in this scenario, e.g., for σu = 1 and σu = 2, MC should use

at least Msamp = 128E+4 to get to the same level of accuracy of DSGC with N = 4,

which implies that DSGC is 20 times faster with the same accuracy. We also see that

DSGC is very efficient for small magnitude of noise σu = 0.5. The elapsed times for DSGC

seem to scale quadratically with N . Note also that the convergence of MC method is

guaranteed, however, although we observe numerical convergence in DSGC, we do not have

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 114

0 1 2 3

time

0.6

0.8

1
exact

N=4

(a) N = 4 approximation to the mean

0 1 2 3

time

0

0.01

0.02

0.03

0.04

0.05

exact

N=4

(b) N = 4 approximation to the variance

0 1 2 3

time

10
-5

10
-4

10
-3

10
-2

N=1

N=2

N=4

(c) ǫmean for N = 1, 2, 4

0 1 2 3

time

10
-6

10
-4

10
-2

10
0

10
2

N=1

N=2

N=4

(d) ǫvar for N = 1, 2, 4

Figure 5.3: Evolution of the mean and the variance of the CIR model, and convergence

behaviors in N .

a convergence rigorous result for the approximate solution of (5.7). Similar settings of [95;

96; 76] establish convergence results for SDEs with sufficiently smooth coefficients, which

do not apply in this case.

Example 5.12. This example concerns the 2-dimensional nonlinear system

du(t) = −(bu + auv(t))u(t) dt + σu dWu(t),

dv(t) = −bv v(t) dt+ σv dWv(t),

where au > 0, bu, bv > 0 are damping parameters, σu, σv > 0 are constant noise amplitudes,

and Wu and Wv are two real independent Brownian motions. Depending on the regime of

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 115

Algorithm σu = 0.5 σu = 1 σu = 2 Time ratio

DSGC N = 3 1.2E-4 2.2E-3 5.7E-3 0.5

DSGC N = 4 2.9E-5 1.5E-3 1.9E-3 0.8

DSGC N = 5 1.5E-5 1.2E-3 1.3E-3 1.3

DSGC N = 6 1.1E-5 6.3E-4 6.4E-4 2.0

MC Msamp =1E+4 1.21E-2 2.01E-2 2.46E-2 0.125

MC Msamp =2E+4 7.7E-3 1.30E-2 1.74E-2 0.25

MC Msamp =4E+4 5.7E-3 1.00E-2 1.20E-2 0.5

MC Msamp =8E+4 3.5E-3 6.03E-3 7.8E-3 1.0

Table 5.4: Errors of the variance at T = 1, and relative timings of DSGC and MC methods

using different degrees of freedom.

the parameters, the dynamics of the solution u exhibit intermittent non-Gaussian behavior;

see detailed discussions in [38; 16] and also Section 3.3.

Following [16], we consider the system parameters as au = 1, bu = 1.2, bv = 0.5,

σu = 0.5, σv = 0.5, and take the initials u0 = N(1, σ2u/8bu) |= v0 = N(0, σ2v/8bv). In this

regime, the dynamics of u are characterized by unstable bursts of large amplitude and

possess a fat-tailed long-time distribution.

We consider a long-time T = 8 and use K = 4 variables for the random forcing terms

with the quadrature level λξ = 2. A sparse Gauss-Hermite quadrature rule is used for the

random initial conditions. Since we use a small quadrature level λξ, we restart frequently

and take ∆t = 0.02 in the following simulations. The ability to use small degrees of freedom

with frequent restarts is one of the main advantages of the method.

The first simulation concerns the choice of the polynomials Tα(u, v). Figure 5.4 shows

the condition numbers of the constraint matrix A in (5.4) for different choices of polynomi-

als and varying N . We observe that in each case, the lowest condition numbers correspond

to the ones which are obtained by orthogonal polynomials with respect to the joint distri-

bution of (u, v). Although the computation of orthogonal polynomials for large degree of

polynomials is unstable, once the computation is carried out, it yields a well-conditioned

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 116

constraint matrix for fixed N . Moreover, increasing the degree of polynomials N leads to

overall larger condition numbers, which might affect the stability of the numerical mini-

mization procedures for large N .

0 2 4 6 8

time

10
0

10
2

10
4

10
6

10
8

monomials

Hermite

Hermite with scaling

orth. poly. of (u,v)

(a) N = 3

0 2 4 6 8

time

10
0

10
2

10
4

10
6

10
8

monomials

Hermite

Hermite with scaling

orth. poly. of (u,v)

(b) N = 5

0 2 4 6 8

time

10
0

10
2

10
4

10
6

10
8

monomials

Hermite

Hermite with scaling

orth. poly. of (u,v)

(c) N = 7

Figure 5.4: Condition numbers of the constraint matrix A in the optimization procedure

(5.4) for different degrees of freedom N and different choices of Tα.

Using polynomials Tα(u, v) which are orthogonal with respect to the joint distribution of

the solution, we next demonstrate N -convergence of the method in Figure 5.5. We observe

from the figure that the mean and the variance can be captured in the long-time up to

O(10−3) of accuracy. Throughout the time evolution, the number of quadrature points of

the joint distribution of (u, v) is
(N+2

2

)

. For instance, for N = 5, 6, 7, and 8, this number

becomes 21, 28, 36, and 45, respectively. It is useful to note that although increasing N

gives better errors, it also makes the numerical optimization procedure relatively unstable.

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 117

0 2 4 6 8

time

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N=3

N=5

N=7

(a) mean error

0 2 4 6 8

time

10
-5

10
-4

10
-3

10
-2

10
-1

N=3

N=5

N=7

(b) variance error

0 2 4 6 8

time

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N=4

N=6

N=8

(c) mean error

0 2 4 6 8

time

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

N=4

N=6

N=8

(d) variance error

Figure 5.5: N -convergence of the method for the nonlinear system of SDEs.

Finally, we take a relatively short time T = 1, and compare the computational times

and the accuracy of DSGC, DgPC, and MC methods. All methods use a second order time-

integration method with the same time step dt = 2E-4. MC simulations are repeated 20

times to get a stable estimate of the error. Note that it is getting computationally harder to

obtain a stable estimate in MC for longer times since the estimates are noisy. Both DSGC

and DgPC use the restart step ∆t = 0.05. DgPC algorithm uses the sampling approach

discussed in 4.2.

From Table 5.5, we first notice that for the same level of accuracy, DSGC performs bet-

ter than both methods in terms of computational time. This behavior is due to the fact that

the method can utilize a small number of samples and frequent restarts to achieve a high

accuracy in a fast manner. We also observe that DgPC with N = 2 offers a sufficient accu-

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 118

racy for many applications with a longer computational time in this scenario. Thus, DSGC

offers a relatively fast way to propagate samples of the solution in this low-dimensional case.

For high-dimensional cases, we do not expect the current DSGC algorithm outperforms

DgPC algorithm. As we established in Chapter 4, although DgPC is an intrusive method, it

provides fast and accurate long-time simulations for SPDEs compared to sampling methods

with the help of Galerkin projection and propagation of orthogonal polynomials. To achieve

a similar long-time accuracy of DgPC, sampling methods need to use a large number of

samples. In that case, DSGC has an advantage over MC since it leverages the regularity

of the solution. All in all, if a high accuracy is needed, one might prefer DSGC in low-

dimensional cases and DgPC can be used for high-dimensional dynamics.

We conclude with a remark about an extension of DSGC to high-dimensional dynamics.

Algorithm ǫmean ǫvar Time ratio

DSGC N = 3 4.6E-4 3.01E-2 0.095

DSGC N = 5 9.2E-6 4.5E-3 0.2

DgPC N = 2 3.8E-4 3.7E-3 2.28

DgPC N = 3 3.2E-4 1.8E-3 6.71

MC Msamp =4E+4 4.3E-3 6.2E-3 0.5

MC Msamp =8E+4 2.6E-3 4.8E-3 1.0

Table 5.5: Errors of the mean and the variance at T = 1, and relative timings of DSGC,

DgPC, and MC methods using different degrees of freedom.

Remark 5.13. For high-dimensional SDEs or SPDEs, the DSGC algorithm needs consid-

erable modifications. Dynamical sparse quadrature rules for the solution will have higher

degrees of freedom, which, in turn, may hinder the efficiency of the algorithm; especially in

case of complex dynamics. Thus, further dimensionality reduction techniques and simple

parallelization can be considered. Moreover, the stability of the constrained optimization

in high-dimensional cases should also be investigated. We demonstrated such an extension

from SDEs to SPDEs in Chapter 4 in case of DgPC. A similar extension can be done for Al-

gorithm by 3 using the KLE of random solutions in time and constructing sparse quadrature

CHAPTER 5. DYNAMICAL SGC METHOD FOR SDES 119

rules for the selected finite number of KLE random modes.

CHAPTER 6. CONCLUSION 120

Chapter 6

Conclusion

Polynomial chaos expansions applied to the simulation of evolution equations driven by

time-dependent stochastic forcing suffer from two drawbacks: the dimension of randomness

is too large, and the long-time solution may not be sparsely represented in a fixed PCE

basis. In the setting of Markovian random forcing, we proposed a restart method that

addresses these two drawbacks. Such restarts of the PCE, which we called here Dynamical

generalized Polynomial Chaos, allow us both to keep the number of random variables small

and to obtain a solution that remains reasonably sparse in the evolving basis of orthogonal

polynomials—things that can not be achieved without restarts.

We applied DgPC to the long-time numerical simulation of various nonlinear stochastic

differential equations driven by Brownian motion. To demonstrate the ability of the algo-

rithm to reach long-time solutions, we computed invariant measures for SDEs that admit

one, and found a very good agreement between DgPC and other standard methods such

as Monte Carlo-based simulations. We also presented a simple theoretical justification for

such a convergence in Chapter 3.

The main computational difficulty in DgPC, as in most gPC-based methods, is the

estimation of the orthogonal polynomials. Our method is based on estimating moments of

the multivariate distribution of interest and constructing orthogonal polynomials of evolving

arbitrary measures by a Gram–Schmidt procedure. The bottleneck in such estimations is

the cost of computing moments. This is similar to the cost of solving differential equations

by PCE methods, where moment estimations are also the most costly step. However, in

CHAPTER 6. CONCLUSION 121

DgPC, such estimations cannot be performed offline.

From a theoretical point of view, we need to ensure that the evolving measures remain

determinate so that their orthogonal polynomials span square integrable functionals. Since

distributions with compact support are determinate, our theoretical results have been ap-

plied in the setting where SDE solutions are well approximated by compactly supported

distributions. In this connection, we note that the calculation of orthogonal polynomials

from knowledge of moments is an ill-posed problem, which is a serious impediment to gPC

methods in general.

In Chapter 4, we extended DgPC algorithm to tackle long-time integration and high-

dimensional randomness in the context of PDEs with Markovian forcing. To deal with

infinite dimensionality, the Karhunen–Loeve expansion is employed at each restart to find

a representation of the solution which corresponds to a low-dimensional dynamics of the

pertaining physical processes. The most influential modes are then incorporated in a PCE

for the future evolution. Using sparse multi-index sets and frequent restarts, the algorithm

provides an efficient way to capture the solutions in a fairly sparse random bases in terms

of orthogonal polynomials of dynamical measures.

The computational bottlenecks of the algorithm for SPDEs are the simulation of the

deterministic evolution equations, the KLE, and the computation of moments. The cost

of the deterministic evolution is dictated by the complicated nature of the SPDEs. The

KLE is an expensive dimensionality reduction technique. Since the algorithm constructs

PCEs online, the KLE (or other dimensionality reduction techniques) is unavoidable at

each restart. We found that for large covariance matrices, the KLE cost was drastically

reduced when the covariance matrix was estimated by a low-rank approximation obtained

by random projections. The estimation of the orthogonal polynomials and corresponding

triple products of evolving arbitrary measures is also a costly step.

Using 1D Burgers equation and 2D Navier–Stokes system both driven by Brownian

motion, we provided several numerical simulations for both short- and long-time solutions.

We compared the accuracy and computational time of the algorithm to the standard Monte

Carlo method and found that the proposed algorithm achieved similar error levels for a

(generally significant) lower computational cost in most cases. The substantial speed-up

CHAPTER 6. CONCLUSION 122

of DgPC is especially promising when the equation contains additional, time-independent,

random parameter, which is one of the main reasons to use PC–based methods in general. To

demonstrate the efficiency of the algorithm for long-time simulations, we computed invariant

measures for both equations, which is not a trivial task for two dimensional Navier–Stokes

systems.

In Chapter 5, we provided a non-intrusive, MC noise-free sampling method for long-time

solutions of SDEs. The method is based on estimating Brownian motion forcing with a fi-

nite dimensional approximation, which is also of finite variation in time. Then one hopes

to obtain the convergence of the approximate solution to the true solution owing to the

convergence of the approximation of Brownian motion. The method uses a restart mech-

anism, very similar to that of DgPC, to construct sparse quadrature rules for the solution

on-the-fly and incorporates these rules along with the quadrature formulas for the random

forcing to compute expectations of functionals of the solutions. Rather than propagating

orthogonal polynomials, it propagates deterministic samples, i.e. quadrature nodes, of the

solution to provide dynamical approximations. One can easily leverage optimized legacy

differential equation solvers and carry out the evolution of the solution particles in parallel.

The main computational difficulties are to keep the number of quadrature nodes small

in time, and to compute quadrature rules for the solution variables in a stable and efficient

manner on-the-fly. We make use of a minimization procedure with the constraints that the

quadrature rules integrate orthogonal polynomials up to a certain degrees of freedom exactly.

We also discussed how to extract quadrature rules with small number of nodes and presented

several different polynomials bases used in the optimization. All these constructions are

motivated by the interest of computing expectations of functionals of the solutions with a

high accuracy. In the limit of infinite degrees of freedom, the method would approximate

the true measure of the solution with a discrete approximation having the exact moments.

Numerical results for different low-dimensional nonlinear dynamics confirmed the efficiency

of the algorithm in long times and showed that the algorithm compares to standard Monte

Carlo method reasonably well.

To be able to compute long-time solutions of SDEs and SPDEs, one has to keep the di-

mensionality of randomness in check. To this end, we proposed dynamical algorithms, which

CHAPTER 6. CONCLUSION 123

propagate in time approximations to the true probability measures in one form or another.

Specifically, algorithms propagate orthogonal polynomials and quadrature rules associated

to the solutions via a restart procedure. The restarting step of our algorithms remains com-

putationally expensive, especially for problems in two or more spatial dimensions. However,

the restart mechanism provides a viable means to keep the number of random variables to

reasonable levels. Its ability to compute statistical properties of long-time evolutions for

fairly complicated equations is quite promising.

6.1 Future Work

Here are a few directions for possible future work.

Localized expansions: Polynomial chaos expansions and their dynamical versions

that we developed here provide us characteristic statistical information about the response

measures using global orthogonal polynomials in the random space. These global approxi-

mations yield spectral accuracy when the response depends smoothly on the random input.

For strong nonlinear dependencies on the random input and/or discontinuous stochastic

input, the efficiency of the global expansions might deteriorate due to Gibbs-type phe-

nomenon. Moreover, although PCEs give us the means to assess the moments of distri-

butions, the accuracy degrades for higher moments due to the global nature of bases. To

better assess tail behaviors and account for possible stochastic discontinuities, DgPC can be

coupled with local PCEs, which construct localized basis expansions in the random space;

e.g. multi-element gPC by [119], see also [78; 56]. In that case, local orthogonal polynomials

are constructed with respect to measure of the solution restricted to smaller subsets of the

random space. This construction coupled with dynamical expansions in time would have

higher accuracy for tails of distributions and robustness with respect to regularity of inputs.

Non-Markov dynamics: We mainly focused on the dynamics with Markov property

and forgot the past when constructing our approximations. In modeling, a Markov property

is usually desired for computational efficiency. However, not all stochastic processes have

memoryless property and models can be generalized to allow some (long-range or short-

range) dependence on the variables in the past. This dependence can be also exploited in

CHAPTER 6. CONCLUSION 124

forecasting. To give an example, the increments of fractional Brownian motion with Hurst

parameter bigger than 1/2 are positively correlated, thus Markov semigroup theory does

not apply to SDEs driven by this forcing. If a non-Markov process is of interest then our

algorithm might be modified to take into account the variables from the past. The method

certainly can not keep all past variables due to high dimensionality. However, for short-range

dependence, one might be able to compress the past data into a relatively small number

of random variables, and incorporate these and present variables into approximations. In

this case, the computation of compression techniques and the estimation of orthogonal

polynomials would become more intricate.

Elliptic equations: Although we mainly dealt with stochastic systems for which the

randomness is supplied by time-dependent forcing terms, in many engineering applications,

the main source of randomness comes from time-independent random terms. For instance,

for elliptic problems

∇x · (a(x, ω)∇xu(x, ω)) + f(x, ω) = 0, x ∈ G ⊂ R
d, ω ∈ Ω, (6.1)

the stochastic diffusion coefficient, denoted here by a(x, ω), can be a source of high dimen-

sional randomness. The diffusion coefficient is typically modeled by a truncated KLE, which

naturally gives a way to construct PCEs in terms of a few random KLE modes. Then PC

can be coupled with finite element method in G for an approximation of the solution. In

case of high-dimensional diffusion coefficient and fine spatial discretization, the dimension-

ality of the resulting linear system is too large, therefore efficient and scalable methods are

needed.

In the deterministic setting, domain decomposition (DD) methods [101] provide an

efficient way to solve large problems by introducing a partition of the spatial domain of

interest and solving local, small-sized problems in an iterative way. Under appropriate

formulations, the iterative solutions converge to the true solution after typically a few

iterations. The main advantage of these methods is that they avoid expensive global solves.

They also provide natural parallel implementations which improve scalability. DD methods

can be easily extended to the stochastic setting by the help of PC expansions. Depending

on the dimensionality of the diffusion coefficient, the number of terms in the PCE might

be large, which gives rise to a large deterministic linear system. Then DD can be used to

CHAPTER 6. CONCLUSION 125

construct a preconditioner for this linear system [114]. Another approach would be to derive

spatially-local KLEs for random parameters and construct local polynomial expansions in

a lower dimensional space [18].

Assume we are interested in a high-dimensional setting where the spatial domain is

partitioned into several subdomains and local solves in each iteration of a combination of

DD and PC methods are still expensive to carry out. The crucial observation here is that

solution on each subdomain depends on the local, low-dimensional representation of the

random parameter a(x, ω) and the local boundary condition. After a few iterations, the

local boundary condition will depend not only the randomness on the neighbors but also

on all randomness in the system, which leads to high-dimensional representations at the

interface. However, the exchanged information at the local boundary depends strongly on

the nearest neighbors and weakly on the subdomains that are far away since the incom-

ing information is more or less averaged, i.e. homogenized, throughout iterations. Hence,

the local boundary condition is highly compressible and amenable to Karhunen-Loeve-type

dimensionality reduction techniques; see [4; 5] for a similar approach in a multi-physics

setting. To leverage this sparsity, we can introduce an iterative mechanism similar to that

of DgPC. In each iteration of DD, the algorithm would compress the local boundary infor-

mation, and can combine the leading random modes and random variables corresponding

to the local diffusion coefficient into a lower dimensional PCE representation for the local

solution. After solving the local problem, the information is passed back to neighbors and

the algorithm restarts. In this way, local solves can be estimated in a much faster way

although there are additional computational costs associated to the KLE and construction

of orthogonal polynomials. If the diffusion coefficient is low dimensional to begin with, then

the cost of compression techniques and dynamical constructions in each iteration will offset

their computational savings. However, in high-dimensional settings, this proposed algo-

rithm would provide an iterative way to approximate the global high-dimensional solution

using low-dimensional and efficient representations.

Parabolic equations: Let us consider a parabolic equation of the form:

∂tu(x, t, ω) = ∇x · (a(x, ω)∇xu(x, t, ω)) + f(x, ω),

with an appropriate boundary condition, where x ∈ G ⊂ R
d, ω ∈ Ω, and t ∈ [0, T].

CHAPTER 6. CONCLUSION 126

A standard way based on polynomial approach for this problem is to apply the KLE

to the random coefficient a(x, ω), truncate the expansion, and construct PCE in terms of

leading random modes. A fine spatial discretization will give a large system of equations

which needs to be propagated in time.

As we observed in Chapter 4, even though there is a high-dimensional randomness in the

coefficients of the SPDE, the solution itself might be represented in a fairly sparse basis in

time provided dynamical bases are constructed. In other words, the diffusion coefficient can

be high dimensional, whereas the solution itself can be low dimensional due to smoothing

effects. In this case, the main difference with equations forced by time-dependent forcing is

that the randomness a(x, ω) can not be forgotten in time (as in the case of random viscosity

in Chapter 4). Then, at each restart, the KLE should be applied to the solution and the

diffusion coefficient together to extract common dominating modes. Based on these modes,

PCEs can be constructed to represent both u and a. The efficiency of the algorithm will

depend on how fast the eigenvalues of the combined random field (u, a) decay. Moreover,

domain decomposition techniques discussed above can also be incorporated into this scheme

to solve the elliptic part of the equation efficiently at each time-integration step.

Hybrid PC–MC: In applications, higher order terms in the KLE of the random coeffi-

cient a(x, ω) are usually ignored. However, in some cases, a high-dimensional high-frequency

component might have a non-negligible small influence on the solution. This effect might

be captured better using Monte Carlo methods with a reasonable number of samples [8].

Then, an ultimate solver would be the one which exploits the advantages of both PC and

MC methods by combining them: treat large scale, low-dimensional components by PCE

and handle small scale, high-dimensional terms by MC.

BIBLIOGRAPHY 127

Bibliography

[1] Rafail V. Abramov. The multidimensional maximum entropy moment problem: a

review on numerical methods. Commun. Math. Sci., 8(2):377–392, 2010.

[2] N. I. Akhiezer. The classical moment problem and some related questions in analysis.

Translated by N. Kemmer. Hafner Publishing Co., New York, 1965.

[3] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix

eigenvalue problem. Quart. Appl. Math., 9:17–29, 1951.

[4] M. Arnst, R. Ghanem, E. Phipps, and J. Red-Horse. Measure transformation and

efficient quadrature in reduced-dimensional stochastic modeling of coupled problems.

Internat. J. Numer. Methods Engrg., 92(12):1044–1080, 2012.

[5] M. Arnst, R. Ghanem, E. Phipps, and J. Red-Horse. Reduced chaos expansions with

random coefficients in reduced-dimensional stochastic modeling of coupled problems.

Internat. J. Numer. Methods Engrg., 97(5):352–376, 2014.

[6] Ivo Babuska, Fabio Nobile, and Raúl Tempone. A stochastic collocation method for

elliptic partial differential equations with random input data. SIAM J. Numer. Anal.,

45(3):1005–1034, 2007.

[7] Ivo Babuska, Raúl Tempone, and Georgios E. Zouraris. Galerkin finite element ap-

proximations of stochastic elliptic partial differential equations. SIAM J. Numer.

Anal., 42(2):800–825, 2004.

[8] Guillaume Bal. Propagation of stochasticity in heterogeneous media and applications

to uncertainty quantification. In Roger Ghanem, David Higdon, and Houman Owhadi,

BIBLIOGRAPHY 128

editors, Handbook of Uncertainty Quantification, pages 1–24. Springer International

Publishing, Cham, 2016.

[9] Andrea Barth, Annika Lang, and Christoph Schwab. Multilevel Monte Carlo method

for parabolic stochastic partial differential equations. BIT, 53(1):3–27, 2013.

[10] Richard F. Bass. Stochastic processes, volume 33 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2011.

[11] C. Berg and J. Christensen. Density questions in the classical theory of moments.

Ann. Inst. Fourier, 31(3):vi, 99–114, 1981.

[12] Gal Berkooz, Philip Holmes, and John L. Lumley. The proper orthogonal decomposi-

tion in the analysis of turbulent flows. In Annual review of fluid mechanics, Vol. 25,

pages 539–575. Annual Reviews, Palo Alto, CA, 1993.

[13] Géraud Blatman and Bruno Sudret. Adaptive sparse polynomial chaos expansion

based on least angle regression. J. Comput. Phys., 230(6):2345–2367, 2011.

[14] Z. I. Botev, J. F. Grotowski, and D. P. Kroese. Kernel density estimation via diffusion.

Ann. Statist., 38(5):2916–2957, 2010.

[15] John P. Boyd. Chebyshev and Fourier spectral methods. Dover Publications, Inc.,

Mineola, NY, second edition, 2001.

[16] M. Branicki and A. J. Majda. Fundamental limitations of polynomial chaos for un-

certainty quantification in systems with intermittent instabilities. Commun. Math.

Sci., 11(1):55–103, 2013.

[17] R. H. Cameron and W. T. Martin. The orthogonal development of non-linear func-

tionals in series of Fourier-Hermite functionals. Ann. of Math. (2), 48:385–392, 1947.

[18] Yi Chen, John Jakeman, Claude Gittelson, and Dongbin Xiu. Local polynomial chaos

expansion for linear differential equations with high dimensional random inputs. SIAM

J. Sci. Comput., 37(1):A79–A102, 2015.

BIBLIOGRAPHY 129

[19] Mulin Cheng, Thomas Y. Hou, and Zhiwen Zhang. A dynamically bi-orthogonal

method for time-dependent stochastic partial differential equations I: derivation and

algorithms. J. Comput. Phys., 242:843–868, 2013.

[20] Minseok Choi, Themistoklis P. Sapsis, and George Em Karniadakis. A conver-

gence study for SPDEs using combined polynomial chaos and dynamically-orthogonal

schemes. J. Comput. Phys., 245:281–301, 2013.

[21] Alexandre Joel Chorin. Gaussian fields and random flow. J. Fluid Mech., 63:21–32,

1974.

[22] John C. Cox, Jonathan E. Ingersoll, Jr., and Stephen A. Ross. A theory of the term

structure of interest rates. Econometrica, 53(2):385–407, 1985.

[23] Giuseppe Da Prato. Kolmogorov equations for stochastic PDEs. Advanced Courses

in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2004.

[24] Philip J. Davis. A construction of nonnegative approximate quadratures. Math.

Comp., 21:578–582, 1967.

[25] Philip J. Davis and Philip Rabinowitz. Methods of numerical integration. Computer

Science and Applied Mathematics. Academic Press, Inc., Orlando, FL, second edition,

1984.

[26] B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P.

Le Mâıtre. Numerical challenges in the use of polynomial chaos representations for

stochastic processes. SIAM J. Sci. Comput., 26(2):698–719, 2004.

[27] Francisco Delgado-Vences and Franco Flandoli. A spectral-based numerical method

for Kolmogorov equations in Hilbert spaces. Infin. Dimens. Anal. Quantum Probab.

Relat. Top., 19(3):1650020, 37, 2016.

[28] Alireza Doostan, Roger G. Ghanem, and John Red-Horse. Stochastic model reduction

for chaos representations. Comput. Methods Appl. Mech. Engrg., 196(37-40):3951–

3966, 2007.

BIBLIOGRAPHY 130

[29] Michael Eiermann, Oliver G. Ernst, and Elisabeth Ullmann. Computational aspects

of the stochastic finite element method. Comput. Vis. Sci., 10(1):3–15, 2007.

[30] O. G. Ernst, A. Mugler, H-J. Starkloff, and E. Ullmann. On the convergence of gener-

alized polynomial chaos expansions. ESAIM Math. Model. Numer. Anal., 46(2):317–

339, 2012.

[31] Lawrence C. Evans. An introduction to stochastic differential equations. American

Mathematical Society, Providence, RI, 2013.

[32] D. Filipovic and M. Larsson. Polynomial preserving diffusions and applications in

finance. Technical report, Swiss Finance Institute Research Paper, 2014.

[33] Philipp Frauenfelder, Christoph Schwab, and Radu Alexandru Todor. Finite elements

for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. En-

grg., 194(2-5):205–228, 2005.

[34] G. Freud. Orthogonal Polynomials. Pergamon Press, New York, 1971.

[35] A. Friedman. Stochastic differential equations and applications. Vol. 1. Academic

Press, New York-London, 1975.

[36] W. Gautschi. Orthogonal polynomials: computation and approximation. Numerical

Mathematics and Scientific Computation. Oxford University Press, New York, 2004.

Oxford Science Publications.

[37] M. Gerritsma, J-B. van der Steen, P. Vos, and G. E. Karniadakis. Time-dependent

generalized polynomial chaos. J. Comput. Phys., 229(22):8333–8363, 2010.

[38] B. Gershgorin, J. Harlim, and A. J. Majda. Test models for improving filtering with

model errors through stochastic parameter estimation. J. Comput. Phys., 229(1):1–31,

2010.

[39] Thomas Gerstner. Sparse Grid Quadrature Methods for Computational Finance. Uni-

versity of Bonn, 2007.

BIBLIOGRAPHY 131

[40] Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids.

Numer. Algorithms, 18(3-4):209–232, 1998.

[41] R. G. Ghanem and P. D. Spanos. Stochastic finite elements: a spectral approach.

Springer-Verlag, New York, 1991.

[42] Roger Ghanem and John Red-Horse. Propagation of probabilistic uncertainty in

complex physical systems using a stochastic finite element approach. Phys. D, 133(1-

4):137–144, 1999. Predictability: quantifying uncertainty in models of complex phe-

nomena (Los Alamos, NM, 1998).

[43] Michael B. Giles. Multilevel Monte Carlo path simulation. Oper. Res., 56(3):607–617,

2008.

[44] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in

the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth

edition, 2013.

[45] Gene H. Golub and Gérard Meurant. Matrices, moments and quadrature with ap-

plications. Princeton Series in Applied Mathematics. Princeton University Press,

Princeton, NJ, 2010.

[46] Gene H. Golub and John H. Welsch. Calculation of Gauss quadrature rules. Math.

Comp. 23 (1969), 221-230; addendum, ibid., 23(106, loose microfiche suppl):A1–A10,

1969.

[47] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex

programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in

Learning and Control, Lecture Notes in Control and Information Sciences, pages 95–

110. Springer-Verlag Limited, 2008.

[48] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex

programming, version 2.1. http://cvxr.com/cvx, March 2014.

[49] Lars Grasedyck and Wolfgang Hackbusch. Construction and arithmetics of H-

matrices. Computing, 70(4):295–334, 2003.

BIBLIOGRAPHY 132

[50] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput.

Phys., 73(2):325–348, 1987.

[51] M. Hairer. Lecture notes on ergodic properties of Markov processes, 2006.

[52] Martin Hairer and Jonathan C. Mattingly. Ergodicity of the 2D Navier-Stokes equa-

tions with degenerate stochastic forcing. Ann. of Math. (2), 164(3):993–1032, 2006.

[53] Martin Hairer and Jonathan C. Mattingly. Spectral gaps in Wasserstein distances

and the 2D stochastic Navier-Stokes equations. Ann. Probab., 36(6):2050–2091, 2008.

[54] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:

probabilistic algorithms for constructing approximate matrix decompositions. SIAM

Rev., 53(2):217–288, 2011.

[55] Jan S. Hesthaven, Sigal Gottlieb, and David Gottlieb. Spectral methods for time-

dependent problems, volume 21 of Cambridge Monographs on Applied and Computa-

tional Mathematics. Cambridge University Press, Cambridge, 2007.

[56] V. Heuveline and M. Schick. A hybrid generalized polynomial chaos method for

stochastic dynamical systems. Int. J. Uncertain. Quantif., 4(1):37–61, 2014.

[57] T. Y. Hou, W. Luo, B. Rozovskii, and H-M. Zhou. Wiener chaos expansions and

numerical solutions of randomly forced equations of fluid mechanics. J. Comput.

Phys., 216(2):687–706, 2006.

[58] John K. Hunter and Bruno Nachtergaele. Applied analysis. World Scientific Publishing

Co., Inc., River Edge, NJ, 2001.

[59] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden. Divergence of the multi-

level Monte Carlo Euler method for nonlinear stochastic differential equations. Ann.

Appl. Probab., 23(5):1913–1966, 2013.

[60] M. Jardak, C.-H. Su, and G. E. Karniadakis. Spectral polynomial chaos solutions of

the stochastic advection equation. In Proceedings of the Fifth International Conference

on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), volume 17, pages

319–338, 2002.

BIBLIOGRAPHY 133

[61] A. Jentzen and P. E. Kloeden. The numerical approximation of stochastic partial

differential equations. Milan J. Math., 77:205–244, 2009.

[62] Kari Karhunen. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann.

Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1947(37):79, 1947.

[63] B. N. Khoromskij, A. Litvinenko, and H. G. Matthies. Application of hierarchical

matrices for computing the Karhunen-Loève expansion. Computing, 84(1-2):49–67,

2009.

[64] P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations,

volume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.

[65] Christian Kuehn. Moment closure—a brief review. In Control of self-organizing

nonlinear systems, Underst. Complex Syst., pages 253–271. Springer, Cham, 2016.

[66] O. P. Le Mâıtre and O. M. Knio. Spectral methods for uncertainty quantification.

Scientific Computation. Springer, New York, 2010.

[67] Olivier P. Le Mâıtre, Omar M. Knio, Habib N. Najm, and Roger G. Ghanem. A

stochastic projection method for fluid flow. I. Basic formulation. J. Comput. Phys.,

173(2):481–511, 2001.

[68] O. P. Le Matre and O. M. Knio. PC analysis of stochastic differential equations driven

by wiener noise. Reliability Engineering and System Safety, 135:107–124, 2015.

[69] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’ guide: Solution of

large-scale eigenvalue problems with implicitly restarted Arnoldi methods, volume 6 of

Software, Environments, and Tools. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1998.

[70] Randall J. LeVeque. Finite difference methods for ordinary and partial differential

equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, 2007.

[71] C. Litterer and T. Lyons. High order recombination and an application to cubature

on Wiener space. Ann. Appl. Probab., 22(4):1301–1327, 2012.

BIBLIOGRAPHY 134

[72] Michel Loève. Probability theory. Springer-Verlag, New York-Heidelberg, 1977.

[73] Sergey Lototsky, Remigijus Mikulevicius, and Boris L. Rozovskii. Nonlinear filtering

revisited: a spectral approach. SIAM J. Control Optim., 35(2):435–461, 1997.

[74] J. S. Lowengrub, M. J. Shelley, and B. Merriman. High-order and efficient methods for

the vorticity formulation of the Euler equations. SIAM J. Sci. Comput., 14(5):1107–

1142, 1993.

[75] W. Luo. Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial

Differential Equations. ProQuest LLC, Ann Arbor, MI, 2006. California Institute of

Technology.

[76] Harald Luschgy and Gilles Pagès. Functional quantization of a class of Brownian

diffusions: a constructive approach. Stochastic Process. Appl., 116(2):310–336, 2006.

[77] Terry Lyons and Nicolas Victoir. Cubature on Wiener space. Proc. R. Soc. Lond.

Ser. A Math. Phys. Eng. Sci., 460(2041):169–198, 2004.

[78] O. P. Mâıtre, O. M. Knio, H. N. Najm, and R. G. Ghanem. Uncertainty propagation

using Wiener-Haar expansions. J. Comput. Phys., 197(1):28–57, 2004.

[79] Andrew J. Majda and Michal Branicki. Lessons in uncertainty quantification for

turbulent dynamical systems. Discrete Contin. Dyn. Syst., 32(9):3133–3221, 2012.

[80] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A randomized algo-

rithm for the decomposition of matrices. Appl. Comput. Harmon. Anal., 30(1):47–68,

2011.

[81] Hermann G. Matthies and Andreas Keese. Galerkin methods for linear and nonlinear

elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Engrg.,

194(12-16):1295–1331, 2005.

[82] William C. Meecham and Armand Siegel. Wiener-Hermite expansion in model tur-

bulence at large Reynolds numbers. Phys. Fluids, 7:1178–1190, 1964.

BIBLIOGRAPHY 135

[83] R. Mikulevicius and B. Rozovskii. Linear parabolic stochastic PDEs and Wiener

chaos. SIAM J. Math. Anal., 29(2):452–480, 1998.

[84] R. Mikulevicius and B. L. Rozovskii. Stochastic Navier-Stokes equations for turbulent

flows. SIAM J. Math. Anal., 35(5):1250–1310, 2004.

[85] Habib N. Najm. Uncertainty quantification and polynomial chaos techniques in com-

putational fluid dynamics. In Annual review of fluid mechanics. Vol. 41, volume 41

of Annu. Rev. Fluid Mech., pages 35–52. Annual Reviews, Palo Alto, CA, 2009.

[86] F. Nobile, R. Tempone, and C. G. Webster. An anisotropic sparse grid stochastic

collocation method for partial differential equations with random input data. SIAM

J. Numer. Anal., 46(5):2411–2442, 2008.

[87] F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation

method for partial differential equations with random input data. SIAM J. Numer.

Anal., 46(5):2309–2345, 2008.

[88] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer Series in

Operations Research and Financial Engineering. Springer, New York, second edition,

2006.

[89] Erich Novak and Klaus Ritter. Simple cubature formulas with high polynomial ex-

actness. Constr. Approx., 15(4):499–522, 1999.

[90] B. Øksendal. Stochastic differential equations. Universitext. Springer-Verlag, Berlin,

sixth edition, 2003.

[91] S. Oladyshkin and N. Wolfgang. Data-driven uncertainty quantification using the

arbitrary polynomial chaos expansion. Reliability Engineering and System Safety,

106:179–190, 2012.

[92] S. A. Orszag and L. R. Bissonnette. Dynamical properties of truncated wiener-hermite

expansions. Phys. Fluids, 10:2603–2613, 1967.

BIBLIOGRAPHY 136

[93] H. Cagan Ozen and Guillaume Bal. Dynamical polynomial chaos expansions and

long time evolution of differential equations with random forcing. SIAM/ASA J.

Uncertain. Quantif., 4(1):609–635, 2016.

[94] H. Cagan Ozen and Guillaume Bal. A dynamical polynomial chaos approach for

long-time evolution of SPDEs. Journal of Computational Physics, 343:300 – 323,

2017.

[95] Gilles Pagès and Jacques Printems. Functional quantization for numerics with an

application to option pricing. Monte Carlo Methods Appl., 11(4):407–446, 2005.

[96] Gilles Pagès and Afef Sellami. Convergence of multi-dimensional quantized SDE’s.

In Séminaire de Probabilités XLIII, volume 2006 of Lecture Notes in Math., pages

269–307. Springer, Berlin, 2011.

[97] L. C. Petersen. On the relation between the multidimensional moment problem and

the one-dimensional moment problem. Math. Scand., 51(2):361–366 (1983), 1982.

[98] Mass Per Pettersson, Gianluca Iaccarino, and Jan Nordström. Polynomial chaos meth-

ods for hyperbolic partial differential equations. Mathematical Engineering. Springer,

Cham, 2015.

[99] Gaël Poëtte and Didier Lucor. Non intrusive iterative stochastic spectral representa-

tion with application to compressible gas dynamics. J. Comput. Phys., 231(9):3587–

3609, 2012.

[100] Mihai Putinar. A note on Tchakaloff’s theorem. Proc. Amer. Math. Soc., 125(8):2409–

2414, 1997.

[101] Alfio Quarteroni and Alberto Valli. Domain decomposition methods for partial differ-

ential equations. Numerical Mathematics and Scientific Computation. The Clarendon

Press, Oxford University Press, New York, 1999.

[102] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for ma-

chine learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge,

MA, 2006.

BIBLIOGRAPHY 137

[103] Ernest K. Ryu and Stephen P. Boyd. Extensions of Gauss quadrature via linear

programming. Found. Comput. Math., 15(4):953–971, 2015.

[104] Yousef Saad. Numerical methods for large eigenvalue problems, volume 66 of Classics

in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 2011.

[105] Themistoklis P. Sapsis and Pierre F. J. Lermusiaux. Dynamically orthogonal field

equations for continuous stochastic dynamical systems. Phys. D, 238(23-24):2347–

2360, 2009.

[106] Christoph Schwab and Endre Süli. Adaptive Galerkin approximation algorithms for

Kolmogorov equations in infinite dimensions. Stoch. Partial Differ. Equ. Anal. Com-

put., 1(1):204–239, 2013.

[107] Christoph Schwab and Radu Alexandru Todor. Karhunen-Loève approximation of

random fields by generalized fast multipole methods. J. Comput. Phys., 217(1):100–

122, 2006.

[108] T. Shardlow and A. M. Stuart. A perturbation theory for ergodic Markov chains and

application to numerical approximations. SIAM J. Numer. Anal., 37(4):1120–1137,

2000.

[109] Ya. G. Sinăı. Two results concerning asymptotic behavior of solutions of the Burgers

equation with force. J. Statist. Phys., 64(1-2):1–12, 1991.

[110] Ralph C. Smith. Uncertainty quantification, volume 12 of Computational Science &

Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, 2014.

[111] S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain

classes of functions. Soviet Math. Dokl., 4:240–243, 1963.

[112] C. Soize and R. Ghanem. Physical systems with random uncertainties: chaos repre-

sentations with arbitrary probability measure. SIAM J. Sci. Comput., 26(2):395–410,

2004.

BIBLIOGRAPHY 138

[113] J. Stoyanov. Moment problems related to the solutions of stochastic differential equa-

tions. In Stochastic theory and control (Lawrence, KS, 2001), volume 280 of Lecture

Notes in Control and Inform. Sci., pages 459–469. Springer, Berlin, 2002.

[114] Waad Subber and Abhijit Sarkar. A domain decomposition method of stochastic

PDEs: an iterative solution techniques using a two-level scalable preconditioner. J.

Comput. Phys., 257(part A):298–317, 2014.

[115] Vladimir Tchakaloff. Formules de cubatures mécaniques à coefficients non négatifs.

Bull. Sci. Math. (2), 81:123–134, 1957.

[116] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. On the implementation

and usage of SDPT3—a Matlab software package for semidefinite-quadratic-linear

programming, version 4.0. In Handbook on semidefinite, conic and polynomial opti-

mization, volume 166 of Internat. Ser. Oper. Res. Management Sci., pages 715–754.

Springer, New York, 2012.

[117] Daniele Venturi, Xiaoliang Wan, and George Em Karniadakis. Stochastic low-

dimensional modelling of a random laminar wake past a circular cylinder. J. Fluid

Mech., 606:339–367, 2008.

[118] X. Wan and G. E. Karniadakis. Long-term behavior of polynomial chaos in stochastic

flow simulations. Comput. Methods Appl. Mech. Engrg., 195(41-43):5582–5596, 2006.

[119] X. Wan and G. E. Karniadakis. Multi-element generalized polynomial chaos for ar-

bitrary probability measures. SIAM J. Sci. Comput., 28(3):901–928, 2006.

[120] Grzegorz W. Wasilkowski and Henryk Woźniakowski. Explicit cost bounds of algo-

rithms for multivariate tensor product problems. J. Complexity, 11(1):1–56, 1995.

[121] N. Wiener. The Homogeneous Chaos. Amer. J. Math., 60(4):897–936, 1938.

[122] D. Xiu. Generalized (Wiener-Askey) polynomial chaos. ProQuest LLC, Ann Arbor,

MI, 2004. Thesis (Ph.D.)–Brown University.

[123] D. Xiu. Numerical methods for stochastic computations. Princeton University Press,

Princeton, NJ, 2010.

BIBLIOGRAPHY 139

[124] D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations

with random inputs. SIAM J. Sci. Comput., 27(3):1118–1139, 2005.

[125] D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic

differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.

[126] Dongbin Xiu. Efficient collocational approach for parametric uncertainty analysis.

Commun. Comput. Phys., 2(2):293–309, 2007.

[127] Dongbin Xiu. Fast numerical methods for stochastic computations: a review. Com-

mun. Comput. Phys., 5(2-4):242–272, 2009.

[128] Dongbin Xiu and George Em Karniadakis. Modeling uncertainty in flow simulations

via generalized polynomial chaos. J. Comput. Phys., 187(1):137–167, 2003.

[129] J. Xu and J. Li. Sparse wiener chaos approximations of zakai equation for nonlinear

filtering. in Proceedings of the 21st Annual IEEE International Conference on Chinese

Control and Decision Conference (CCDC09), page pp. 910913, 2009,.

[130] Y. Xu. On orthogonal polynomials in several variables. In Special functions, q-series

and related topics, volume 14 of Fields Inst. Commun., pages 247–270. Amer. Math.

Soc., Providence, RI, 1997.

[131] Z. Zhang, B. Rozovskii, M. V. Tretyakov, and G. E. Karniadakis. A multistage Wiener

chaos expansion method for stochastic advection-diffusion-reaction equations. SIAM

J. Sci. Comput., 34(2):A914–A936, 2012.

[132] Z. Zhang, M. V. Tretyakov, B. Rozovskii, and G. E. Karniadakis. A recursive sparse

grid collocation method for differential equations with white noise. SIAM J. Sci.

Comput., 36(4):A1652–A1677, 2014.

[133] Zhongqiang Zhang, Michael V. Tretyakov, Boris Rozovskii, and George E. Karni-

adakis. Wiener chaos versus stochastic collocation methods for linear advection-

diffusion-reaction equations with multiplicative white noise. SIAM J. Numer. Anal.,

53(1):153–183, 2015.

