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ABSTRACT

Time Series Modeling with Shape Constraints

Jing Zhang

This thesis focuses on the development of semiparametric estimation methods for a class of

time series models using shape constraints. Many of the existing time series models assume

the noise follows some known parametric distributions. Typical examples are the Gaussian

and t distributions. Then the model parameters are estimated by maximizing the resultant

likelihood function.

As an example, the autoregressive moving average (ARMA) models (Brockwell and

Davis, 2009) assume Gaussian noise sequence and are estimated under the causal-invertible

constraint by maximizing the Gaussian likelihood. Although the same estimates can also

be used in the causal-invertible non-Gaussian case, they are not asymptotically optimal

(Rosenblatt, 2012). Moreover, for the noncausal/noninvertible cases, the Gaussian likelihood

estimation procedure is not applicable, since any second-order based methods cannot distin-

guish between causal-invertible and noncausal/noninvertible models (Brockwell and Davis,

2009). As a result, many estimation methods for noncausal/noninvertible ARMA models

assume the noise follows a known non-Gaussian distribution, like a Laplace distribution or

a t distribution. To relax this distributional assumption and allow noncausal/noninvertible

models, we borrow ideas from nonparametric shape-constraint density estimation and pro-

pose a semiparametric estimation procedure for general ARMA models by projecting the



underlying noise distribution onto the space of log-concave measures (Cule and Samworth,

2010; Dümbgen et al., 2011). We show the maximum likelihood estimators in this semi-

parametric setting are consistent. In fact, the MLE is robust to the misspecification of

log-concavity in cases where the true distribution of the noise is close to its log-concave

projection. We derive a lower bound for the best asymptotic variance of regular estimators

at rate n−
1
2 for AR models and construct a semiparametric efficient estimator.

We also consider modeling time series of counts with shape constraints. Many of the

formulated models for count time series are expressed via a pair of generalized state-space

equations. In this set-up, the observation equation specifies the conditional distribution of

the observation Yt at time t given a state-variable Xt. For count time series, this conditional

distribution is usually specified as coming from a known parametric family such as the Pois-

son or the Negative Binomial distribution. To relax this formal parametric framework, we

introduce a concave shape constraint into the one-parameter exponential family. This es-

sentially amounts to assuming that the reference measure is log-concave. In this fashion, we

are able to extend the class of observation-driven models studied in Davis and Liu (2016).

Under this formulation, there exists a stationary and ergodic solution to the state-space

model. In this new modeling framework, we consider the inference problem of estimating

both the parameters of the mean model and the log-concave function, corresponding to the

reference measure. We then compute and maximize the likelihood function over both the

parameters associated with the mean function and the reference measure subject to a con-

cavity constraint. The estimator of the mean function and the conditional distribution are

shown to be consistent and perform well compared to a full parametric model specification.

The finite-sample behavior of the estimators is studied via simulation and two empirical

examples are provided to illustrate the methodology.
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Chapter 1

Introduction

1.1 ARMA models

The ARMA models are perhaps the most successful, well studied and easy to use models

for the analysis of univariate time series (Brockwell and Davis, 2009; Rosenblatt, 2012; Box

et al., 2015). These models form an important part of the classical literature in time series

analysis. Probabilistic and statistical aspects of ARMA models related to model identifi-

cation, estimation, model checking, and forecasting have been thoroughly investigated. A

univariate stochastic process {Xt : t = 0,±1,±2, . . . } is called an ARMA(p, q) process if it

is stationary and satisfies the difference equations

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q for all t = 0,±1,±2, . . . (1.1)

where the noise sequence {Zt} is assumed to be independently and identically distributed

(iid) random variables with zero mean and variance σ2. In many applications, the inde-

pendence assumption can be replaced by the weaker condition that {Zt} is white noise.

Throughout this thesis, we consider the iid setting. Moreover, for some applications, the
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noise sequence {Zt} can be allowed to have infinite variance, for example, assuming sym-

metric α−stable noise (Cline and Brockwell, 1985).

Define the autoregressive (AR) polynomial of degree p by φ(z) = 1 − φ1z − · · · − φpzp

and the moving average (MA) polynomial of degree q by θ(z) = 1 + θ1z + · · ·+ θqz
q. Then

(1.1) can be written in a compact form

φ(B)Xt = θ(B)Zt, t = 0,±1,±2, . . . ,

where B is the backward-shift operator defined by BjXt = Xt−j for j = 0,±1,±2, . . . .

The polynomials φ(z) and θ(z) are assumed to have no common roots. Then, the recursive

equations (1.1) admits a unique stationary solution if and only if the AR polynomial φ(z)

has no roots on the unit circle, that is, φ(z) 6= 0 for any |z| = 1. The solution is given by

Xt =
θ(B)

φ(B)
Zt =

∞∑
j=−∞

ψjZt−j , (1.2)

where
∑∞

j=−∞ ψjz
j is the Laurent expansion of θ(z)

φ(z) in an annulus {z : R < |z| < 1
R}

with 0 < R < 1. When θ(z) has no zeros on the unit circle, {Zt} also has a two sided

representation in terms of {Xt}:

Zt =
φ(B)

θ(B)
Xt =

∞∑
j=−∞

πjXt−j , (1.3)

where φ(z)
θ(z) =

∑
j πjz

j in an annulus {z : r < |z| < 1
r} with 0 < r < 1. Throughout this

thesis, we assume that the polynomial φ(z)θ(z) has no zeros on the unit circle such that the

equations (1.2) and (1.3) are well-defined.
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1.1.1 Minimum and nonminimum phase ARMA models

An ARMA(p, q) process is said to be causal-invertible (minimum phase) if

φ(z)θ(z) 6= 0 for any z ∈ C with |z| 6 1.

That is, both the AR and MA polynomials have no zeros inside the unit circle. In such cases,

Xt can be expressed as a function of only the present and the past noise {Zs : s 6 t}, i.e.,

Xt =
∑∞

j=0 ψjZt−j as in (1.2). If φ(z) has any roots inside the unit circle, there are negative

power terms in (1.2) andXt depends on the future noise variables and we sayXt is noncausal.

Correspondingly, invertibility means that Zt can be written as a causal function of {Xt}:

Zt =
∑

j=0 πjXt−j and it only depends on the present and past observations {Xs : s 6 t}.

If the MA polynomial θ(z) has no roots inside the unit circle, then the ARMA(p, q) process

is invertible; otherwise, the process is said to be noninvertible.

It turns out that a general ARMA(p, q) process, φ(B)Xt = θ(B)Zt, which is possibly

noncausal/noninvertible (nonminimum phase), admits an equivalent causal-invertible rep-

resentation (Brockwell and Davis, 2009). More specifically, we can find polynomials φ∗(z),

θ∗(z) and a white noise sequence {Z∗t } that satisfy the difference equations

φ∗(B)Xt = θ∗(B)Z∗t t = 0,±1,±2, . . . ,

where φ∗(z) and θ∗(z) have no zeros inside the unit circle. However, {Z∗t } is not independent

in general. In fact, {Z∗t } is iid if and only if {Zt} is Gaussian, otherwise, {Z∗t } is only

uncorrelated (Breidt et al., 2001). Thus, the Gaussian likelihood cannot distinguish between

causal-invertible and noncausal/noninvertible ARMA models. The assumptions of causality

and invertibility are necessary to ensure identifiability of the model parameters when using

the Gaussian likelihood or any second-order based estimation method.
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Let φ = (φ1, . . . , φq)
T and θ = (θ1, . . . , θq)

T denote the AR and MA coefficients, respec-

tively. If {Zt} is Gaussian, the observed vector Xn = (X1, . . . , Xn)′ is also Gaussian with

zero mean and covariance matrix denoted as Γn(φ, θ, σ2). The likelihood of Xn is

Ln(φ, θ, σ2) = (2π det Γn(φ, θ, σ2))−
n
2 exp

(
−1

2
X′nΓ−1

n (φ, θ, σ2)Xn

)
. (1.4)

The maximizer of the likelihood function above, (φ̂, θ̂), is asymptotically efficient for estimat-

ing the causal-invertible ARMA models driven by Gaussian noise. If {Zt} is non-Gaussian,

Ln(φ, θ, σ2) is referred to as the quasi-Gaussian likelihood function and (φ̂, θ̂) that maximizes

(1.4) is still consistent and asymptotically normal for the true causal-invertible parameters,

but is no longer efficient. One can also derive the Gaussian likelihood function by condi-

tioning on the previous observations for causal-invertible models, by which we have

Ln(φ, θ, σ2) = (2πσ2)−
n
2 (r1r2 · · · rn)−

1
2 exp

(
− 1

2σ2

n∑
i=1

(Xi − X̂j)
2

rj

)
, (1.5)

where X̂j is the one-step linear predictor of Xj given {X1, . . . , Xj−1} and rj =
E(Xj−X̂j)

2

σ2 .

See Brockwell and Davis (2009) for innovation algorithms to calculate X̂j and rj .

The conditional expectation E [Xt | Xs, s < t] is known to be a linear combination of

Xs, s < t when {Zt} is Gaussian. In fact, in the minimum phase case, E [Xt | Xs, s < t] is the

same as the Gaussian case for any iid sequence {Zt} (Rosenblatt, 2012). When {Zt} is non-

Gaussian, we can remove the causal-invertible constraint and allow noncausal/noninvertible

ARMAmodels. In the nonminimum phase case, the conditional expectationE [Xt | Xs, s < t]

is no longer a linear function of Xs, s < t since Xt depends on future noises. Nonminimum

phase ARMA models driven by non-Gaussian noise sequences are useful in a variety of

applications. The Wal-Mart stock volume data in (Andrews et al., 2009), the U.S. infla-

tion data in (Lanne and Saikkonen, 2008) and the Microsoft stock volume data in (Breidt
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et al., 2001) are examples where noncausal models fit better than causal ones. Allowing

noncausality/noninvertibility can enlarge the pool of ARMA models, eliminate more of the

serial dependence of the residuals and enhance our understanding of the data.

Statistical inference for nonminimum phase models is comparatively limited due to the

complicated dependence structure of the process. The standard least squares methods de-

veloped under the causal-invertible constraint are only Gaussian efficient and are not appli-

cable for nonminimum phase models. Many of the existing estimation procedures are based

on the idea of maximum likelihood estimation by assuming a common pre-specified noise

distribution, such as a Laplace or a t distribution. Breidt et al. (1991) considered infer-

ence for the parameters of possibly noncausal AR models by factoring the AR polynomial

φ(z) = 1− φ1z − · · · − φpzp = φ†(z)φ∗(z) with

φ†(z) = 1− θ1z − · · · − θrzr 6= 0 for |z| 6 1

φ∗(z) = 1− θr+1z − · · · − θpzs 6= 0 for |z| > 1

r, s > 0, r + s = p. They derived approximations of the likelihood function and showed

the consistency and asymptotic efficiency of the MLE of the parameters (θ1, . . . , θp). Lii

and Rosenblatt (1992) established similar results for noninvertible MA models. Lii and

Rosenblatt (1996) further studied inference for nonminimum phase ARMA models driven

by non-Gaussian noises. They proposed an approximate maximum likelihood estimation

procedure and established the consistency and asymptotic normality of the MLE.

The least absolute deviation (LAD) criterion based on quasi-Laplace likelihood function

is frequently used for modeling time series in the non-Gaussian setting. While the absolute-

deviation-type estimators are obtained by assuming a Laplace distribution for the noise, they

are still consistent even when the noise distribution is not Laplace under mild conditions.
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Huang and Pawitan (2000) established consistency of LAD estimators for noninvertible

MA processes driven by standard heavy tailed errors. Breidt et al. (2001) studied LAD

estimation for all-pass time series models. All-pass models are a special class of ARMA

models where all of the roots of the AR polynomial are reciprocals of the roots of the

MA polynomials and vice versa. They generate uncorrelated time series, but these series

are not independent in the non-Gaussian case. Wu and Davis (2010) proposed a LAD

estimation procedure for nonminimum phase ARMA models and established the consistency

and asymptotic normality of the LAD estimators.

Moreover, there is a large literature on the nonminimum phase models estimation based

on rank (Andrews et al., 2007) or cumulants of order greater than two (Nikias and Petropulu,

1993). In this thesis, we limit our interest to likelihood based estimation methods.

1.1.2 Semiparametric inference for ARMA mdoels

Maximum likelihood based estimation procedures usually require full knowledge of the un-

derlying noise distribution. However, the error distribution is rarely known in practice. It

may be more realistic to learn the distribution of the noise from the data using a nonpara-

metric estimation approach. The ARMA(p, q) model (1.1) has two parameters: the AR/MA

coefficients (φ, θ) and the noise distribution P . It is then very natural to study ARMA mod-

els from the semiparametric perspective, in which we have a finite dimensional parameter

(φ, θ) and an infinite dimensional parameter P .

Semiparametric inference forms a very important part of classical statistical modeling.

It enjoys the flexibility of nonparametric modeling and has various important applications.

Kosorok (2007) presents an overview of semiparametric inference techniques and provides

full treatments of several useful examples. See also van der Vaart (2002) and Tsiatis (2007).

Estimation of a semiparametric model is more difficult than estimation of any parametric
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submodel. A regular estimator is said to be semiparametric efficient if its information is

equal to the minimum of the information over all efficient estimators for all parametric

submodels. If there exists a parametric submodel that attains this minimum, then it is

called a least favorable submodel. For a semiparameric model Pβ,f , where β is the finite

dimensional parameter and f is the infinite dimensional parameter, the semiparametric

estimators are obtained by jointly maximizing the likelihood function over the parameter

space of β and f . The semiparametric MLE of β, β̂, depends on a random element f̂ and so

is the score function of β̂. Thus, the classical Taylor expansion of the maximum likelihood

equations is not applicable and the semiparametric efficiency of β̂ is not guaranteed. Extra

effort is needed to quantify the smoothness of the model with respect to the nonparametric

component. See a general approach for asymptotic efficiency of semiparametric estimators

via computing efficient score function and constructing a least favorable submodel in van der

Vaart (2002); Kosorok (2007).

Kreiss (1987) considered the problem of estimating the parameters of minimum phase

ARMA models when the noise distribution was unknown. He constructed adaptive estimates

based on the kernel density estimator of the noise distribution. This methodology was able

to establish local asymptotic normality (LAN) of minimum phase ARMA processes. Gassiat

(1993) showed LAN properties and obtained LAM estimators for noncausal AR processes

provided the noise distribution was known. She showed that adaptive efficient estimation

was impossible for the parameters φ of noncausal AR models when the noise distribution was

unknown. Drost et al. (1997) and Koul and Schick (1997) studied adaptive estimation for

more general time series models. We aim to develop a semiparametric estimation procedure

for nonminimum phase ARMA processes using the theory from nonparametric log-concave

density estimation. The asymptotic properties of the resulting semiparametric estimators

are also studied. This topic is the subject of Chapter 2.
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1.2 Time series of counts models

Time series of counts arises naturally from counting the number of discrete events over

some period of time. There are two main frameworks that are typically used for time series

of counts data (Cox et al., 1981): parameter-driven and observation-driven. Parameter-

driven models assume the conditional mean process depends solely on a latent process while

observation-driven models formulate the conditional mean process explicitly as a function

of the lagged observations. Estimation for parameter-driven models is difficult since they

depend on a latent process and it is not easy to evaluate the likelihood function. Simulation-

based numerical methods are used to obtain parameter estimates. In contrast, since the

conditional mean process of observation-driven models is a function of past observations, it

is relatively easy to obtain parameter estimates via maximum likelihood method. However,

stability properties, such as stationarity and ergodicity, are difficult to derive.

We consider observation-driven time series of counts models in this thesis. The classical

ARMA models driven by noise with a continuous distribution are not applicable for modeling

count data. Many time series of counts models then fall into the generalized linear model

(GLM) framework where the conditional distribution of the response is assumed to belong

to an exponential family. One typically assumes a Poisson distribution (Davis et al., 2003;

Heinen, 2003; Ferland et al., 2006; Fokianos et al., 2009) or a Negative Binomial distribution

(Davis and Wu, 2009; Christou and Fokianos, 2014). The observations are generated as

Yt | Ft−1 ∼ Poisson(λt),

where Ft is the filtration generated by observations up to time t; λt = E [Yt | Ft−1] is

the conditional mean process. For the integer-valued generalized autoregressive conditional
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heteroscedasticity (INGARCH) (p, q) process, the conditional mean process is modeled as

λt = γ0 +

p∑
i=1

γiYt−i +

q∑
j=1

δjλt−j ,

where γ0 > 0, γj > 0, i = 1, . . . , p, δj > 0, j = 1, . . . , q. For Poisson INGARCH(p, q) models,

the conditional mean happens to also be the conditional variance. The INGARCH(p, q)

process is an integer-valued analogue of a GARCH(p, q) process introduced in Bollerslev

(1986). Ferland et al. (2006) considered the Poisson INGARCH(p, q) model and showed the

second-order stationarity of the process. Fokianos et al. (2009) studied the consistency and

the asymptotic normality of the MLE for Poisson autoregressive models, where more general

conditional mean models were considered. Davis and Liu (2016) focused on observation-

driven models and studied the theory and inference for a relatively comprehensive class of

count time series models, where the observations were assumed to follow a one-parameter

exponential family given the conditional mean process that was modeled as a function of

lagged observations.

The models considered in Davis and Liu (2016) can be viewed as an extension of the

GLM framework, although no covariates are involved. They showed the stationarity and

ergodicity of the underlying processes under fairly general conditions and established the

asymptotic normality of the maximum likelihood estimators. Another GLM type model is

the generalized linear autoregressive moving average (GLARMA) model (Shephard, 1995;

Davis et al., 1999, 2003; Davis and Wu, 2009), where the observations are assumed to be

generated from a one-parameter exponential family conditional on a latent process and

covariates. See an overview of the likelihood-based estimation methods for analysis and

modeling of count time series from the GLM perspective in Liboschik et al. (2015); Fokianos

(2015).

We exploit the exponential family distribution assumption in GLM and propose a semi-
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parametric estimation framework for modeling time series of counts data. Assume Yt given

the past history Ft−1 is generated as

Yt | Ft−1 ∼ p(y | ηt, ϕ),

where p(y | η, ϕ) = exp (ϕ(y) + ηy −Aϕ(η)) is from an exponential family. Here Aϕ(η) =

log
∑∞

y=0 exp (ϕ(y) + ηy). Let Bϕ(η) = A′ϕ(η). Then the conditional mean process Xt =

E [Yt | Ft−1] enters through the link function Xt = Bϕ(ηt). Allowing the baseline function

ϕ(y) to vary as a parameter leads to a rich and flexible class of models. Many time series of

counts models naturally fall into this formulation. We impose a concave shape constraint on

the function ϕ(y) and illustrate the semiparametric estimation procedure for the observation-

driven models considered in Davis and Liu (2016). The MLEs are shown to be strongly

consistent. This work is described in Chapter 4.

1.3 Shape constraint function estimation

Shape constraint function estimation has been receiving increasing interest in nonparametric

inference. Instead of making smoothness assumptions on the underlying nonparametric

function and using local averaging methods, e.g., kernel smoothing, it assumes the function of

interest satisfies certain qualitative constraints, such as monotonicity, convexity or concavity.

The corresponding estimation procedure is usually fully automatic and is free of choosing

tuning parameters like bandwidth or kernel functions (Dümbgen and Rufibach, 2009; Seijo

and Sen, 2011).

Grenander (1956) was the first to study the non-parametric maximum likelihood estima-

tion of a monotone density. Since then, various nonparametric shape restricted estimators

for different density estimation/regression problems have been developed. For example, the
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nonparametric least squares estimator of a convex (concave) regression function was con-

sidered in Birke and Dette (2007), Shively et al. (2009), Seijo and Sen (2011) and Chen

and Samworth (2015a), and nonparametric least squares estimation of a monotone regres-

sion function was given in Brunk (1955) and Mammen (1991). Related consistency and

asymptotic properties have been studied under suitable smoothness conditions. A general

framework for isotonic optimization (optimizing the likelihood and computing function es-

timators) is described in Mair et al. (2009). Dümbgen and Rufibach (2009), Cule and

Samworth (2010), and Cule et al. (2010) have given comprehensive characterizations of

nonparametric MLE of log-concave densities in regards to existence, consistency, and other

theoretical properties. Kim and Samworth (2016) showed that the minimax risk of log-

concave density estimation with respect to the squared Hellinger loss is lower bounded by

n−
4
5 for d = 1 and n−

2
d+1 for d > 2, where d is the dimension of the observations. Compu-

tational details of univariate and multivariate log-concave density estimators are presented

in Dümbgen and Rufibach (2010) and Cule et al. (2009), respectively.

A probability density function f is said to be log-concave if log f is a concave function.

The family of log-concave measures is a very useful nonparametric class of distributions

and behaves almost like a parametric class (Walther, 2009; Schuhmacher et al., 2011). It

contains many of the commonly used parametric distributions such as the Gaussian density,

logistic density, Laplace density and Gamma densities parameter greater than or equal to

one (Bagnoli and Bergstrom, 2006). Dümbgen et al. (2011) showed that there exists a unique

log-concave density that maximizes the log likelihood type functional
´

log f dP over the

class of log-concave densities if and only if the probability measure P is non-degenerate

and has finite first moment. The maximizer of
´

log f dP is referred to as the log-concave

projection of P onto the space of log-concave densities, which was successfully applied to

regression problems in Dümbgen et al. (2011). Chen and Samworth (2015b) developed a
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semiparametric estimation framework for a class of time series models including causal-

invertible ARMA models by projecting the noise distributions onto the class of log-concave

densities. Inspired by Chen and Samworth (2015b), we study general ARMA processes

without the causal-invertible constraint using log-concave projection in Chapter 2. We also

consider estimating causal vector autoregressive (VAR) models using log-concave projection

in Chapter 3. Chen and Samworth (2015a) considered inference for generalized additive

models with shape restrictions (monotonicity, convexity, and concavity) on each additive

regression function where the response given the covariates follows an exponential family

distribution. Time series of counts models usually assume that the observations follow

an exponential family distribution given the conditional mean process. We exploit this

assumption and propose a semiparametric GLM framework with concave shape constraints

for modeling time series of counts data in Chapter 4.

1.4 Organization of the thesis

Chapter 2 considers inference for nonminimum phase ARMA models driven by non-Gaussian

noise and presents a semiparametric estimation procedure using the log-concave density

estimator. Chapter 3 generalizes this method to causal VAR models. Chapter 4 derives

an extension of the natural one-parameter exponential family by imposing a concave shape

constraint on the baseline function and develops a semiparametric estimation procedure for

the observation-driven time series of counts models. Chapter 5 summarizes our conclusions

and discusses open research questions.
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Chapter 2

Semiparametric Estimation for

Nonminimum Phase ARMA Models

2.1 Introduction

This chapter focuses on the inference for nonminimum phase ARMA models given in (1.1)

driven by non-Gaussian noise. In the case of minimum phase models, one often resorts

to maximizing the Gaussian likelihood even if the noise is non-Gaussian. The parameters

estimated in this fashion have the same asymptotic behavior as in the “Gaussian” case.

However, Gaussian likelihood is blind to minimum and nonminimum phase models. As

a result, the Gaussian noise must be excluded in order to study noncausal/noninvertible

models. On the other hand, it is common to observe non-Gaussian sequences in the real

world and it is very natural and useful to consider nonminimum phase models.

Many of the existing estimation methods postulate a known noise distribution. To re-

lax the parametric distributional assumption, we extend the maximum likelihood principle

to a nonparametric framework and consider semiparametric models. Chen and Samworth

(2015b) studies semiparametric time series models including causal-invertible ARMA pro-
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cesses, in which the distribution of the noise satisfies minor conditions and it has been shown

that the semiparametric estimation procedure produces consistent estimators of the ARMA

parameters. In addition, the estimate of the noise distribution consistently estimates the

log-concave projection of the true density. In particular, if the noise density is log concave,

then the density estimator is consistent. Inspired by Chen and Samworth (2015b), we ap-

ply the log-concave projection method to the noncausal/noninvertible ARMA models. We

show the consistency of the estimators for both the coefficients and the density under mild

conditions. We also obtain a lower bound for the asymptotic variances of regular estimators

at rate n−
1
2 for the semiparametric AR models. We conjecture that the semiparametric

estimators are asymptotically normal, although not proved yet.

The rest of the chapter is organized as follows. Section 2.2 provides a quick review

of the definitions and basic properties of log-concave densities and log-concave projection.

Section 2.3 applies log-concave projection to general ARMAmodels and derives the objective

function. Section 2.4 shows the consistency of the estimators and derives a lower bound for

the asymptotic variances of regular estimators at rate n−
1
2 for general AR models. Section

2.5 presents a simulation study and a real data application to further illustrate the results in

Section 2.4. Appendix 2.6.1 contains the proofs of the propositions. Appendix 2.6.2 presents

the current progress in studying the asymptotic properties of the semiparametric MLE for

AR models.

2.2 The log-concave projection

A probability density function f is said to be log-concave if log f is a concave function. The

family of log-concave densities has some attractive properties and behaves to some extent

as a parametric family; see Bagnoli and Bergstrom (2006) and Walther (2009). It has been

shown that for a given probability measure P on Rd, there exists a unique log-concave density
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f that maximizes the log-likelihood type functional (i.e., the Kullback-Leibler discrepancy)

D(f, P ) :=

ˆ
Rd

log fdP,

when the maximum is with respect to log-concave densities under mild conditions (Cule and

Samworth, 2010; Dümbgen et al., 2011). The log-concave maximum likelihood estimator of

P based on iid observations from P can be viewed as a projection of the empirical measure

onto the space of distributions with log-concave densities. This estimation procedure pos-

sesses good properties and sheds light on the area of nonparametric density estimation. To

apply this nonparametric estimation procedure to ARMA models, it is helpful to review the

properties of such projections first. See Cule and Samworth (2010), Dümbgen et al. (2011),

and Walther (2009) for more details.

Let P denote the class of all probability measures P on Rd such that
´
‖x‖ dP < ∞

and P (H) < 1 for any hyperplane H ⊂ Rd. When d = 1, this means we rule out the Dirac

measure. Let F be the set of log concave densities on Rd. Then the functional mapping

Π : P → F

Π(P ) = arg max
f∈F

D(f, P )

is well-defined if and only if P ∈ P (Dümbgen et al., 2011). The quantity Π(P ) is referred

to as the log-concave projection of P onto F . The maximal function L : P → Rd is defined

as

L(P ) = max
f∈F

D(f, P ),

and is finite if and only if P ∈ P (if the first moment of P does not exist, L(P ) = −∞,

while if P is supported on some hyperplane of Rd, L(P ) =∞). In particular, if P ∈ F , and

hence has all moments, then Π(P ) = P . For convenience, we also use L(X) and Π(X) to

denote L(P ) and Π(P ) respectively when X is some random variable distributed as P . The
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key properties of L(·) and Π(·) are summarized below.

1. Affine equivariance:

L(a+CX) = L(X)− log |detC| for any a ∈ Rd and nonsingular d× d real matrix C.

(2.1)

2. Non-increasing under convolution:

L(X + Y ) 6 L(X) (2.2)

if X is independent of Y and X ∈ P. The equal sign holds if and only if Y = δa for

some vector a ∈ Rd.

3. Mean preservation: ˆ
Rd
x dP (x) =

ˆ
Rd
xΠ(P )(x) d x.

Further interesting properties of Π and L have been presented by (Dümbgen et al., 2011).

Here we state the main results in (Dümbgen et al., 2011) for completeness.

First we introduce two useful measures of distance between probability measures: the

first moment Mallows distance and the bounded Lipschitz metric. Suppose P and Q are

any two probability measures in P. The first moment Mallows distance between P and Q

is defined by

M1(P,Q) := inf
F

(E|X − Y | : (X,Y ) ∼ F,X ∼ P, Y ∼ Q) ,

where X and Y are any integrable random variables distributed as P and Q respectively, and

F is a joint probability distribution of (X,Y ) satisfying the marginal distribution constraint.

M1(·, ·) is also known as the Wasserstein, Monge-Kantorovich or Earth Mover’s distance



17

(Levina and Bickel, 2001). Kantorović and Rubinśteín (1958) established a useful duality

formula for Mallow’s distance:

M1(P,Q) := sup
‖g‖L61

∣∣∣∣ˆ g d (P −Q)

∣∣∣∣ (2.3)

with ‖g‖L = supx 6=y|g(x)− g(y)|/‖x− y‖, and the supremum is over all Lipschitz functions

with Lipschitz constant bounded by one. It’s also known that (Mallows, 1972) for any

sequence of probability measures Qn and Q,

M1(Qn, Q) −→ 0 if and only if Qn
w−→ Q and

ˆ
‖x‖ dQn −→

ˆ
‖x‖ dQ, (2.4)

where w−→ denotes weak convergence. More detailed information about the first moment

Mallows distance can be found in Villani (2008).

The bounded Lipschitz distance metrizes the weak convergence of probability measures

DBL(P,Q) := sup
‖g‖∞61,‖g‖L61

∣∣∣∣ˆ g d (P −Q)

∣∣∣∣
with ‖g‖∞ := supx|g(x)|. It’s obvious that the first moment Mallow’s distance is stronger

than the bounded Lipschitz metric:

DBL(P,Q) 6M1(P,Q).

The following continuity properties of L(·) and Π(·) with respect toM1(·, ·) and DBL(·, ·)

are adapted from Theorem 2.15 in Dümbgen et al. (2011).

Lemma 2.2.1. Let the sequence {Pn} and P be distributions on Rd with finite first moment.

Then
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(a) If limn→∞DBL(Pn, P ) = 0, then lim supn→∞ L(Pn) 6 L(P ).

(b) If limn→∞M1(Pn, P ) = 0, then limn→∞ L(Pn) = L(P ).

(c) If limn→∞M1(Pn, P ) = 0, then Π(Pn) converges to Π(P ) in L1.

Remark 1. For our results, Lemma 2.2.1 will be applied by taking Pn to be the empirical

distribution of observations coming from a stationary ergodic time series. Suppose {Xt}

is a stationary ergodic time series with marginal distribution P in P. Let {Xi}ni=1 be

an observed sequence of {Xt}. Then it follows from (2.4) that the empirical distribution

Pn := 1
n

∑n
i=1 δXi converges to P in the first moment Mallow’s distance almost surely. As a

result, the nonparametric log-concave maximum likelihood estimator f̂n

f̂n := Π(Pn) = arg max
f∈F

1

n

n∑
i=1

log f(Xi) (2.5)

is well defined for large n with probability one and

L(Pn)
a.s−→ L(P ),

ˆ ∣∣∣f̂n −Π(P )
∣∣∣ d x a.s−→ 0.

Lemma 2.2.2 summarizes some convergence results of the log-concave density sequences

shown in Cule and Samworth (2010), which play an important role in the application of the

log-concave density estimator to ARMA processes.

Lemma 2.2.2. Let fn be a sequence of log-concave densities on Rd and f be some density

function on Rd such that Fn
D⇒ F where (Fn, F ) are the associated distributions of (fn, f).

Then,

(i) f is log-concave.

(ii) fn converges to f almost everywhere.
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(iii) Let a0 > 0 and b0 ∈ R such that f(x) 6 e−a0‖x‖+b0 . Then for every a < a0, we have
´
Rd e

a‖x‖|fn(x)− f(x)| dx→ 0. Furthermore, if f is continuous,

sup
x∈Rd

ea‖x‖|fn(x)− f(x)| → 0.

Lemma 2.2.2 further implies that the nonparametric log-concave density estimator f̂n

defined in (2.5) converges to the log-concave projection Π(P ) in a stronger exponential

weighting norm. In particular, for the univariate case, i.e., d = 1, the log level maximum

likelihood density estimator ϕ̂n := log f̂n is shown to be a piecewise linear function with

knots at the observations {Xi}ni=1 and is zero outside the interval
[

min
i=1,··· ,n

Xi, max
i=1,··· ,n

Xi

]
.

It is not differentiable at the sample points {Xi}ni=1. As a substitute for f̂n, a smoothed

log concave density estimator f̂σn , the convolution of f̂n with a zero mean, σ2
n variance

normal density, is proposed in Chen and Samworth (2013). Detailed construction of f̂σn

including the choice of σn can be found in Chen and Samworth (2013). See also Dümbgen

and Rufibach (2010) for a detailed description of the usage of the R package logcondens

to compute f̂n and the smoothed version f̂σn in the univariate case.

2.3 Model specification

Denote φ and θ as the AR and MA parameter vectors (φ1, · · · , φp) ∈ Rp and (θ1, · · · , θq) ∈

Rq respectively. Let the parameter space Θ := {β = (φ, θ)T } be a compact subset of Rp+q

such that the AR and MA polynomials φ(z) and θ(z) have no common zeros and no zeros

on the unit circle. Let β0 = (φ0, θ0)T denote the true parameter vector and P0 denote the

true distribution of Zt. Since the polynomials φ(z) and θ(z) have no zeros of absolute value



20

one, then β(z) := θ−1(z)φ(z) admits a two sided power expansion

β(z) =
∞∑

i=−∞
ai(β)zi

in some annulus {z : 0 < r(β) < |z| < R(β)} where r(β) < 1, R(β) > 1 (Brockwell and

Davis, 2009). The coefficients ai(β) decay geometrically fast to zero as |i| → ∞. Although

Zt is unobserved, it’s expressible in terms of β0 and {Xt}. Rearranging (1.1), we obtain the

linear representation of Zt in terms of {Xt} :

Zt(β0) = β0(B)Xt =
∞∑

i=−∞
ai(β0)Xt−i = Zt.

Analogously, for any β ∈ Θ, define the process

Zt(β) := β(B)Xt = θ−1(B)φ(B)Xt =
∞∑

i=−∞
ai(β)Xt−i.

Since the filter weights ai(β) are absolutely summable, it’s easy to see that Zt(β) is stationary

and ergodic; see Brockwell and Davis (2009). We define a convergent representation of Zt(β)

as introduced in Lii and Rosenblatt (1996):

Zt,m(n)(β) =
∑

|i|6m(n)

ai(β)Xt−i,

wherem(n)→∞ as n→∞ withm(n) = o(n). By such truncation, Zt,m(n)(β) is completely

computable from the observed sequence {X1, · · · , Xn} for t = m(n) + 1, · · · , n−m(n). Let

Pβ,n :=
1

n− 2m(n)

n−m(n)∑
t=m(n)+1

δZt,m(n)(β)
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and

P̃β,n :=
1

n− 2m(n)

n−m(n)∑
t=m(n)+1

δZt(β)

be the empirical measures of the truncated residuals {Zt,m(n)(β)}n−m(n)
t=m(n)+1 and the untrun-

cated residuals {Zt(β)}n−m(n)
t=m(n)+1, respectively. Let Pβ denote the stationary distribution of

Zt(β). Recall β0 denote the true parameters. So Pβ0 is the true disribution P0. We have

the following convergence results for Pβ,n and P̃β,n.

Proposition 2.3.1. Suppose that β0 is an interior point in the compact parameter space Θ

and P0 ∈ P. Then,

sup
β∈Θ

M1(Pβ,n, P̃β,n)
a.s.−→ 0 and sup

β∈Θ
M1(P̃β,n, Pβ)

a.s.−→ 0 as n→∞.

It follows that

sup
β∈Θ

M1(Pβ,n, Pβ)
a.s.−→ 0 as n→∞. (2.6)

Proposition 2.3.1 indicates that the truncated residuals are asymptotically equivalent to

the untruncated version in the first moment Mallow’s distance. Lii and Rosenblatt (1996)

derived the following approximations to the log-likelihood function of β, f given the obser-

vations {Xi}ni=1:

hnβ,f :=
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

lβ,f
(
Zi,m(n)(β)

)
=

ˆ
lβ,fdPβ,n, (2.7)

where

lβ,f (u) := log f(u) + log κ(β),

and f is the assumed pdf of Zt. The deterministic piece κ(β) is the Jacobian of the trans-

formation introduced in deriving hnβ,f , which equals the reciprocal of the products of θ(z)’s
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noninvertiable roots multiplied by the product of φ(z)’s noncausal roots (Lii and Rosenblatt,

1996). The generic notation f used here refers to a certain candidate density of Zt. Since

in reality it is unlikely to know the true distribution of Zt, the error distribution is usually

assumed to belong to a fairly general class of elliptical distributions (Breidt et al., 2001;

Huang and Pawitan, 2000; Lii and Rosenblatt, 1996; Wu and Davis, 2010) to facilitate pa-

rameter estimation. The LAD methods (Breidt et al., 2001; Wu and Davis, 2010) maximize

variants of (2.7) by using a Laplace error distribution and the objective functions generate

consistent estimators under regularity conditions.

In order to relax the distributional assumptions, we consider a semiparametric model

and take the noise distribution as a parameter. The model consists of two parts: the finite

dimensional parameter β and the infinite dimensional nuisance parameter P . Both β and

P are unknown. We adopt the classic semiparametric estimation procedures, which consist

of estimating P first, followed by maximizing the resultant profile likelihood with respect to

β.

In our framework, we consider the log-concave density projection method to estimate P

in step one, that is, projecting the empirical measure of the residuals Pβ,n onto the space

of log concave distributions on R to obtain a log concave maximum likelihood estimator of

P (Cule and Samworth, 2010; Dümbgen et al., 2011). The profile log likelihood can be

expressed as:

hn(β) = max
f∈F

hnβ,f = L(Pβ,n) + log κ(β) for β ∈ Θ. (2.8)

Theorem 2.3.2. Under the assumption that P0 ∈ P and β0 is a interior point of the compact

parameter space Θ, there exists (β̂, f̂) that maximize hnβ,f over Θ×F

Proof. Note that β → Pβ,n defines a continuous mapping from Θ to the space of probability

measures P equipped with the first moment Mallow’s distance. On the other hand, the

functional mapping L(·) is continuous on P with respect to Mallow’s distance. Therefore,
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hn(β) is a continuous function on Θ and attains its maximum on Θ at some β̂ ∈ Θ. Then

it follows that
(
β̂, f̂ := Π(Pβ̂)

)
maximizes hn(β, f) over Θ×F .

The joint maximizer (β̂, f̂) is referred to as the maximum log-concave likelihood estimator

(MLCLE). In Section 2.4, we will show β̂ is strongly consistent.

2.4 Asymptotic results

2.4.1 Consistency

For causal-invertible ARMA models, κ(β) is identically equal to one. Thus (2.7) reduces

to the conditional log-likelihood of the sequence {Xi}ni=1. The maximizer (β̂, f̂) of (2.7) is

exactly the estimator proposed in Chen and Samworth (2015b), where consistency results

were established. We now turn to the general case of noncausal/noninvertible models. The

main result is:

Theorem 2.4.1. In (1.1), suppose Zt satisfies the following condition,

L

( ∞∑
k=−∞

dkZt−k

)
6 L(Zt), (2.9)

for any geometrically decaying sequence dk with
∑∞

k=−∞ d
2
k > 1 and the equality holding if

and only if only one dk is non-zero. Then

β̂
a.s.−→ β0 and

ˆ
|f̂ −Π(P0)| d x a.s.−→ 0 as n→ 0.

Remark 2. In the causal-invertible case, Chen and Samworth (2015b) did not require con-

dition (2.9) because they excluded noncausal/noninvertible models. So if one expands the

family of models to be noncausal/noninvertible, then a condition like (2.9) is required even

if the true model is causal-invertible.
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We state the relevant consistency result shown in Chen and Samworth (2015b) for com-

parison.

Proposition 2.4.2. For causal-invertible ARMA models, assume that P0 ∈ P and the

parameter space Θ is compact, then

β̂
a.s.−→ β0 and

ˆ
|f̂ −Π(P0)| d x a.s.−→ 0 as n→∞.

The consistency of β̂ even when the true density is not log concave is a somewhat

surprising and interesting result. The proof takes advantage of the property (2.2) of the

L(·) function. In short, under causality and invertibility, Zt is independent of Zt(β) − Zt.

Therefore,

L (Zt(β)) = L (Zt + Zt(β)− Zt) 6 L(Zt),

implying that β0 is a global maximizer of L (Zt(β)) over β ∈ Θ. Furthermore, it can be

shown that β0 is actually the unique global maximizer, which is a key ingredient in verifying

the consistency of maximum likelihood estimators. However, for noncausal/noninvertible

models, the same argument does not apply since Xt may depend on future errors and Zt

is not independent of Zt(β) − Zt. We will show the strong consistency of the MLCLE for

general ARMA processes from a different perspective. Recall that Zt(β) is a stationary

ARMA process with AR polynomial φ0(z)θ(z) and MA polynomial φ(z)θ0(z), which is

possibly noncausal or noninvertible. Since φ0(z)θ(z) and φ(z)θ0(z) have no roots on the

unit circle, the Laurent expansion

β(z)β−1
0 (z) =

∞∑
k=−∞

akz
k

is valid on some annulus containing the unit circle. Correspondingly, Zt(β) can be repre-
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sented as

Zt(β) =
∞∑

k=−∞
akZt−k.

Proof of Theorem 2.4.1: From Remark 1, we have L(Pβ,n)
a.s.−→ L(Pβ) for each β ∈ Θ, that

is, the profile log-likelihood function hn(β) = L(Pβ,n) + log κ(β) converges almost surely to

h(β) = L(Pβ)+log κ(β). The proof of the theorem consists of two steps. First we show that

the sequence of functions {L(Pβ,n) + log κ(β)}n converges not only pointwise but uniformly

to L(Pβ) + log κ(β). Second we show that the limiting function L(Pβ) + log κ(β) is uniquely

maximized at β0.

(i) Uniform convergence of the sequence {L(Pβ,n) + log κ(β)}n

Similar to the argument of the continuity of hn(β) in the proof of Theorem 2.3.2, the

limiting function is continuous in β. Define

Ω := {ω : lim
n→∞

sup
β∈Θ

M1(Pβ,n, Pβ) = 0}.

Then for fixed ω ∈ Ω, and for any convergent sequence {βn} ∈ Θ with limit β∗, we

have

M1(Pβn,n, Pβn) 6 sup
β∈Θ

M1(Pβ,n, Pβ)

lim sup
n→∞

M1(Pβn,n, Pβn) 6 lim
n→∞

sup
β∈Θ

M1(Pβ,n, Pβ) = 0.

Furthermore,

lim sup
n→∞

M1(Pβn,n, Pβ∗) 6 lim sup
n→∞

[M1(Pβn,n, Pβn) +M1(Pβn , Pβ∗)] = 0,

since the distribution of Zt(βn) converges in the first moment Mallows distance to the
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distribution of Zt(β?). Then according to Lemma 2.2.1,

|L(Pβn,n)− L(Pβ∗)| −→ 0 as n→∞.

As a result,

|L(Pβn,n)− L(Pβn)| 6 |L(Pβn,n)− L(Pβ∗)|+ |L(Pβn)− L(Pβ∗)| → 0,

for the fixed ω ∈ Ω. Since {βn} is arbitrary and Θ is compact, we have

sup
β∈Θ
|L(Pβ,n)− L(Pβ)| → 0 on Ω.

Now since the function κ(β) is continuous and deterministic on Θ and the set Ω has

probability one, this establishes the uniform convergence of {L(Pβ,n) + log κ(β)}n.

(ii) Unique maximizer of L(Pβ) + log κ(β)

Denote the difference L(Pβ0) + log κ(β0)− L(Pβ)− log κ(β) as d(β):

d(β) = L(Zt)− L (Zt(β)) + log
κ(β0)

κ(β)

= L(Zt)− L

( ∞∑
k=−∞

akZt−k

)
+ log

κ(β0)

κ(β)

= L(Zt)− L

(
κ(β0)

κ(β)

∞∑
k=−∞

akZt−k

)
.

The last equality is due to affine equivariance property; see equation (2.1). According

to Proposition 2.6.2,
(
κ(β0)
κ(β)

)2∑∞
k=−∞ a

2
k > 1. Then by condition (2.9), d(β) > 0 for

all β ∈ Θ, or equivalently, β0 is a global maximizer of L(Pβ) + log κ(β). If there exists

another β 6= β0 ∈ Θ such that d(β) = 0, where the equal sign in (2.9) holds, then we



27

know there is only one ak being non-zero and the coefficients must satisfy

(
κ(β0)

κ(β)

)2 ∞∑
k=−∞

a2
k = 1.

The Laurent expansion of β(z)β−1
0 (z) only has one non-zero coefficient. It then follows

β(z)β−1
0 (z) ≡ 1 and β = β0. Therefore, β0 is the unique global maximizer of the

limiting function L(Pβ) + κ(β).

Since the parameter space Θ is assumed to be compact, it follows from the continuous

mapping theorem that the MLCLE β̂ maximizing L(Pβ,n) + κ(β) converges almost surely

to β0. In addition,

M1(Pn,β̂, Pβ0) 6M1(Pβ̂, Pβ0) +M1(Pn,β̂, Pβ̂)
a.s−→ 0,

from which we conclude that
´
|f̂n −Π(P0)| d x a.s.−→ 0.

Verification of (2.9) has to be checked on a case-by-case basis. We show that (2.9) is

true for log-concave distributions and symmetric α stable distributions with α ∈ (1, 2).

Corollary 2.4.3. If Zt is non-Gaussian and follows a log concave distribution, then the

MLCLE β̂ is strongly consistent for β0 and
´
|f̂ −Π(P0)|d x a.s.−→ 0.

Proof. We will use the celebrated Entropy Power Inequality from information theory, due

to Shannon (Shannon, 2001), to show (2.9) is true for any non-Gaussian log-concave distri-

bution. For completeness, this inequality is stated in Lemma 2.6.1.

For any random variable X that has a log-concave distribution, the entropy of X is

well-defined. Let H(X) denote the differential entropy of X. In this case, the log concave

projection Π(X) is exactly the true density of X itself, implying L(X) = −H(X). For any

geometrically decaying sequence {dk}∞k=−∞ with
∑

k d
2
k > 1, let Yj =

∑
|k|6j dkZt−k. Since
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the log-concave measures are closed under convolution, Yj also has log-concave distribution

under the assumption that Zt is log concave. And hence, L(Yj) = −H(Yj). Applying the

Entropy-Power Inequality repeatedly, we obtain

exp{2H(Yj)} >
∑
|k|6j

exp{2H(dkZt−k)}.

The strict inequality follows from the fact that Zt is assumed to be non-Gaussian. Since

H(dkZt−k) = H(Zt) + log|dk| if dk 6= 0,

∑
|k|6j

exp{2H(dkZt−k)} = exp{2H(Zt)}
∑
|k|6j

d2
k,

and hence

H(Yj) > H(Zt) +
1

2
log

∑
|k|6j

d2
k

 .

Then,

L(Yj) < L(Zt)−
1

2
log

∑
|k|6j

d2
k

 . (2.10)

It’s straightforward to see that Yj converges to
∑∞

k=−∞ dkZt−k in the first moment Mallow’s

distance as j →∞. Thus we can let j goes to infinity in (2.10) and obtain

L(Zt) > L

( ∞∑
k=−∞

dkZt−k

)
+

1

2
log

( ∞∑
k=−∞

d2
k

)
.

Since
∑∞

k=−∞ d
2
k > 1 by assumption, we have

L(Zt) > L

( ∞∑
k=−∞

dkZt−k

)
.

When the equality holds, it’s easy to see
∑∞

k=−∞ d
2
k = 1. If there exists at least two non
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zero terms of these dks, Y :=
∑∞

k=−∞ dkZt−k can be written as a sum of two non-degenerate

independent random variables Y 1 + Y 2, where Y i =
∑

k∈Ji dkZt−k for i = 1, 2 and J1, J2

is a partition of the integers. As linear combinations of independent non-Gaussian random

variables, Y 1 and Y 2 are also non-Gaussian. By the Entropy Power Inequality,

exp{2H(Y )} > exp{2H(Y 1)}+ exp{2H(Y 2)}

>
∑

k∈J1,|k|6N

exp{2H (dkZt−k)}+
∑

k∈J2,|k|6N

exp{2H (dkZt−k)}

= exp{2H(Zt)}
∑

k∈J1,|k|6N

d2
k + exp{2H(Zt)}

∑
k∈J2,|k|6N

d2
k,

where N is some large integer. The first strict inequality is due to the non-Gaussianity of

Y 1 and Y 2. Now by letting N →∞, we obtain

exp{2H(Y )} > exp{2H(Zt)}
∑
k

d2
k.

It follows that

H(Y ) > H(Zt) +
1

2
log
∑
k

d2
k = H(Zt),

since
∑

k d
2
k = 1. As Y is the weak limit of the log-concave distributed sequence Yj =∑

|k|6j dkZt−k, Y has a log-concave distribution, indicating L(Y ) = −H(Y ). We deduce

that

L

( ∞∑
k=−∞

dkZt−k

)
= L(Y ) < L(Zt),

which is a contradiction. Therefore, there is at most one nonzero dk if

L

( ∞∑
k=−∞

dkZt−k

)
= L(Zt).
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And this nonzero term has absolute value one, which indicates that log-concave random

variable satisfies (2.9).

Remark 3. Even under misspecification of log-concavity, the MLCLE may still be consistent

in cases the true distribution P0 is close to it’s log-concave projection Π(P0) and preserves

the property (2.9). Simulation results suggests that β̂ is still consistent given Zt follows the

non log-concave student-t distribution; however, this has not been proved.

Corollary 2.4.4. If Zt is symmetric-α-stable with exponent α ∈ (1, 2), then

β̂
a.s.−→ 0 and

ˆ
|f̂n −Π(P0)| d x a.s.−→ 0. as n→∞.

Proof. For any geometrically decaying sequence {dk}∞k=−∞ with
∑∞

k=−∞ d
2
k > 1,

∑∞
k=−∞ dkZt−k

is equal in distribution to
(∑∞

k=−∞|dk|
α) 1

α Zt. Now for α ∈ (1, 2),

( ∞∑
k=−∞

|dk|α
) 1

α

>

( ∞∑
k=−∞

d2
k

) 1
2

> 1

Therefore,

L

( ∞∑
k=−∞

dkZt−k

)
= L

( ∞∑
k=−∞

|dk|α
) 1

α

Zt


= L(Zt)− log

( ∞∑
k=−∞

|dk|α
) 1

α

6 L(Zt)

When equality holds,
∞∑

k=−∞
|dk|α =

∞∑
k=−∞

d2
k = 1,

implying that there exists only one non-zero dk with absolute value one and all other dks
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being zero. This completes the proof and hence (2.9) is satisfied.

2.4.2 Asymptotic properties

The asymptotic distribution of semiparametric M-estimators has been studied extensively

in the literature: Andrews (1994); Ichimura and Lee (2010); van der Vaart (1996). Unfortu-

nately there is no general approach that is applicable to a wide range of problems. Rather,

each modeling framework, which often involves the interaction of a nuisance parameter with

the main parameter of interest, has to be considered on a case-by-case basis. Specifically,

unlike the classical Taylor expansion of the maximum likelihood equations, the score func-

tion depends on an estimated and hence random nuisance parameter. Therefore, extra

effort is needed to quantify the smoothness of the model with respect to the nonparametric

component. We make the the following assumptions on f0, the true density for Zt:

A1 f0(x) > 0 for all x

A2 f0 is continuously differentiable and (log f0)′′ is bounded

A3

´
zḟ0dz = zf0(z)|∞−∞ −

´
f0(z)dz = −1 and

´
zf0(z)dz = 0

A4 f0 is log-concave and non-Gaussian

Following the ideas in Chapter 7 of van der Vaart (2002), we construct a semiparametric

efficient estimator by using the efficient score function. For notational consistency, β is

again used to denote the parameter vector, where β = φ is the autoregressive polynomial

coefficients of the AR(p) process. Define an augmented process Xt as (Xt, Xt−1, · · · , Xt−p)
T .

Then the residuals Zt(β) = φ(B)Xt = (1,−βT )Xt is a function of Xt, and hence can be

completely recovered from the data for t = p+ 1, · · · , n. So there is no need for truncation.

The derivative of Zt(β) with respect to the vector β: Żt(β), has a nice form in terms of Xt,
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which is

Żt(β) = (−Xt−1,−Xt−2, · · · ,−Xt−p)
T = (0p×1,−Ip×p)Xt.

To simplify notation, we ignore the index t and use Zβ and Żβ to denote Zt(β) and Żt(β),

respectively, for a general t. Recall that the pseudo log-likelihood function is

lβ,f (Zβ) = log f(Zβ) + log κ(β) (β, f) ∈ Θ×F . (2.11)

Since f ∈ F is a log concave function, it is differentiable at all but at most countably many

points. If f is not differentiable at some point, use the left derivative instead. Then we can

differentiate lβ,f with respect to β and obtain the ordinary parametric score for β when f

is fixed:

l̇β,f =
ḟ(Zβ)

f(Zβ)
Żβ +

κ̇(β)

κ(β)
(2.12)

It has been shown in Davis and Song (2012) that the parametric score l̇β,f is unbiased, that

is,

Eβ,f l̇β,f = Eβ,f

(
ḟ(Zβ)

f(Zβ)
Żβ +

κ̇(β)

κ(β)

)
= 0 (2.13)

given f satisfies A1 − A3. The efficient score function for β is defined to be the parametric

score function l̇β,f minus its orthogonal projection onto the closed linear span of the score

functions for the nuisance parameter f (van der Vaart, 2002; Kosorok, 2007). By looking

at the efficient score function, we can obtain a lower bound on the asymptotic variance of

regular estimators at rate n−
1
2 . See Kreiss (1987); Drost et al. (1997); Koul and Schick

(1997) for nice introductions to semiparametric estimation for time series models.

Now we consider the efficient score function. For fixed (β, f) ∈ Θ × F , define a path

s→ (βs, fs) given by:

βs = β + sa, fs = (1 + sg)f, (2.14)
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where a ∈ Rp and g is a bounded continuous function which satisfies the constraint
´
R g(x)f(x) d x =

0. The functions fs are valid densities for s small enough, since g is bounded. Differentiating

the log-likelihood function lβs,fs(Zβs) = log fs(Zβs) + log κ(βs) with respect to s, we obtain

the score function at (β, f) along the one-dimensional parametric submodel (2.14)

Sa,g :=
∂

∂s
lβs,fs |s=0

=
aT Żβs ḟ(Zβs) + g(Zβs)f(Zβs) + s ∂∂s [g(Zβs)f(Zβs)]

f(Zβs) + sg(Zβs)f(Zβs)
+ aT

κ̇(βs)

κ(βs)
|s=0

= aT

(
ḟ(Zβ)

f(Zβ)
Żβ +

κ̇(β)

κ(β)

)
+ g(Zβ)

= aT l̇β,f + g.

The information of this submodel is defined as

Ia,g := Eβ,f (Sa,g)
2 .

For a fixed vector a ∈ Rp, Ia,g is minimized over g ∈ L2(Pf ) when g equals g∗(u) :=

−aTEβ,f
[
l̇β,f | Zβ = u

]
, where Pf is the probability measure associated with density f .

The minimal information over all paths is referred to as the efficient information. If the

minimum is attained, the score of the submodel that has the minimal information (least

favorable submodel) is the efficient score function. Thus, we take a candidate for the efficient

score function to be of the form

l̃β,f =
ḟ(Zβ)

f(Zβ)

(
Żβ − Eβ,f

[
Żβ | Zβ

])
(2.15)

since Eβ,f
(
aT l̃β,f

)2
= inf

g∈L2(Pf )
Ia,g for any a ∈ R.

Proposition 2.4.5. Replacing f with f0, we have Eβ,f0
[
Żt(β) | Zt(β)

]
= κ̇(β)

κ(β)Zt(β). And
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hence,

l̃β,f0 =
ḟ0 (Zt(β))

f0 (Zt(β))

[
Żt(β)− κ̇(β)

κ(β)
Zt(β)

]
. (2.16)

Proof. Each coordinate of the vector Żt(β) admits a unique linear representation in terms

of the sequence {Zt(β)}, so Żt(β) can be expressed as
∑+∞

i=−∞ aβ,iZt−i(β), where aβ,i ∈ Rp

is uniquely determined by β. Then we have

Eβ,f0

(
ḟ0 (Zt(β))

f0 (Zt(β))
Żt(β)

)
= Eβ,f0

(
ḟ0 (Zt(β))

f0 (Zt(β))

+∞∑
i=−∞

aβ,iZt−i(β)

)

=

+∞∑
i=−∞

aβ,iEβ,f0

(
ḟ0 (Zt(β))

f0 (Zt(β))
Zt−i(β)

)

= aβ,0Eβ,f0

(
ḟ0 (Zt(β))

f0 (Zt(β))
Zt(β)

)
= −aβ,0,

which together with (2.13) implies that aβ,0 = κ̇(β)
κ(β) . Therefore,

Eβ,f0
[
Ż(β) | Zt(β)

]
= Eβ,f0

[
+∞∑
i=−∞

aβ,iZt−i(β) | Zt(β)

]
=
κ̇(β)

κ(β)
Zt(β).

Remark 4. Here and after, let l̃β,f = ḟ(Zt(β))
f(Zt(β))

[
Żt(β)− κ̇(β)

κ(β)Zt(β)
]
. Note that by such modi-

fication, l̃β,f may not be the efficient score function at points (β, f) other than (β, f0). The

function l̃β,f is unbiased in the sense that

Eβ,f0 l̃β,f = Eβ,f0
(
ϕ′ (Z(β))

(
Ż(β)− κ̇(β)

κ(β)
Z(β)

))
= 0, (2.17)

where ϕ = log f . Hence Eβ,f0 l̃β,f̂ = 0.

Unfortunately, we are not able to show the asymptotic efficiency of the MLCLE β̂.
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Alternatively, we follow the ideas of the one-step estimators constructed in Chapter 7 of

van der Vaart (2002) and design a semiparametric efficient estimator. Set ϕ̂σn = log f̂σn ,

where f̂σn is the smoothed log-concave density estimator based on convolving f̂n with a

normal density with mean zero and variance σ2
n. Write l̃β,f as a function of the augmented

process {Xt}:

l̃β,f (Xt) = ϕ′
(
(1,−βT )Xt

) [
(0p×1,−Ip×p)Xt −

κ̇(β)

κ(β)

(
(1,−βT )Xt

)]
.

Suppose that an initial
√
n consistent estimator β̃ (LAD estimator as an example) for β0 is

available, and define the one-step estimator as

β̌ := β̃ −

 n∑
i=p+1

l̃β̃,f̂σn
(Xi)l̃

T
β̃,f̂σn

(Xi)

−1
n∑

i=p+1

l̃β̃,f̂σn
(Xi). (2.18)

Theorem 2.4.6. Suppose that f0 satisfies the conditions A1 − A4, and the efficient infor-

mation matrix Ĩβ0,f0 = E
(
l̃β0,f0 l̃

T
β0,f0

)
is nonsingular. Then, β̌ is asymptotic efficient at

(β0, f0) in the sense that
√
n(β̌ − β0)

D−→ N(0, Ĩ−1
β0,f0

).

Proof. The function l̃β,f̂σn is unbiased according to (2.17) and satisfies the integrablibility

conditions stated in Proposition 2.6.4. Then the conclusion follows from Theorem 7.2 in

van der Vaart (2002).

Remark 5. In practice, we can iterate by replacing β̃ with the last update β̌ in equation

(2.18). We suspect that the MLCLE β̂ is semiparametric efficient, although this is not yet

proved. Simulation results for investigating its asymptotic behavior are included in Section

2.5.

For illustration, we compute Ĩβ0,f0 explicitly for the noncausal AR(1) models. In this
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case, Żt(β) = −Xt−1. Since E
[
Żt(β) | Zt

]
= 1

βZt, we have

l̃β0,f0 = ϕ′(Zt)
(
Żt(β)− E

[
Żt(β) | Zt

])
= ϕ′(Zt)

(
−Xt−1 −

1

β
Zt

)
= − 1

β
Xtϕ

′(Zt).

Therefore, Ĩβ0,f0 = E(l̃2β0,f0) = 1
β2EX

2
t Eϕ

′(Zt)
2 = σ2

β2(β2−1)
Eϕ′(Zt)

2, where σ2 is the vari-

ance of Zt. See examples below for calculating the inverse efficient information for the

noncausal AR(1) model: Xt − 2Xt−1 = Zt driven by Laplace and logistic distributed noise,

respectively.

1. Laplace distribution f(x) = 1
2 exp(−|x|): Eϕ′(Zt)2 = 1, σ2 = 2

Ĩβ0,f0 = 1
6 ,

1√
Ĩβ0,f0

=
√

6 ≈ 2.45

2. Logistic distribution f(x) = e−x

(1+e−x)2
: Eϕ′(Zt)2 = 1

3 , σ
2 = π2

3

Ĩβ0,f0 = π2

108 ,
1√
Ĩβ0,f0

= 6
π

√
3 ≈ 3.31

2.5 Examples

2.5.1 Simulation study

A simulation study was conducted to evaluate the finite performance of the MLCLE and

to compare with LAD and MLE methods, when the pdf of Zt is known. The R package

logcondens (Dümbgen and Rufibach, 2010) is used to compute the log-concave density

MLE. We considered a mixed AR(2) process and a ARMA(1,1) process from a symmetric

α−stable (SαS) distribution, respectively, i.e.,

1. Xt − φ1Xt−1 − φ2Xt−2 = Zt

2. Xt − φXt−1 = Zt − θZt−1,
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where {Zt} is a sequence of iid SαS random variables. Three values of α are considered:

1.1, 1.5, 1.9. For each case, a time series of length 500 is simulated and the parameters of

interest are estimated by MLCLE, LAD and MLE methods. This procedure is replicated

5,000 times, and the results of this experiment are summarized in the following tables.

For the mixed AR(2) model, we set the true value (φ1, φ2) to be (1.2, 0.6) so that the AR

roots are 0.63 and −2.63. As shown in Table 2.1, for smaller α, the MLCLE is comparable

to the LAD estimation. As α gets larger, the MLCLE outperforms the LAD estimation. In

addition, as α decreases, both MLCLE and LAD estimation have improved performance. For

the ARMA(1,1) model, we set the (φ, θ) to be (0.5, 1.5) and (1.5, 0.5). Similar conclusions

as for Table 2.1 are seen in Table 2.2.

Zt ∼ SαS
True value α MLE MLCLE LAD

φ1 = 1.2
φ2 = 0.6

1.1
1.2002 (0.0141) 1.2011 (0.0159) 1.2005 (0.0157)

0.6001 (0.0110) 0.6005 (0.0129) 0.6002 (0.0125)

1.5
1.2020 (0.0438) 1.2059 (0.0567) 1.2033 (0.0587)

0.6003 (0.0327) 0.6014 (0.0365) 0.6010 (0.0373)

1.9
1.2059 (0.0709) 1.2034 (0.1124) 1.2045 (0.1449)

0.5981 (0.0593) 0.6044 (0.0620) 0.6011 (0.0709)

Table 2.1: Mean and root-mean-squared error (·) of MLE, MLCLE and LAD estimates for
AR(2)

In regard to the asymptotic behavior, we consider an AR(1) process driven by the follow-

ing log-concave distributions: Laplace distribution with λ equal to one, logistic distribution

with mean zero and scale parameter equal to one. Time series of lengths 100, 500, 1000,

5000, 10000 were simulated and for each realization, an AR(1) model was fitted via the

MLCLE, LAD and MLE methods, respectively. For each sample size, this procedure was

replicated 1000 times. Tables 2.3, 2.4 and 2.5 reports the mean, the root-mean-squared error

and the normalized empirical standard error of each method given different noise distribu-
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Zt ∼ SαS
True value α MLE MLCLE LAD

φ = 0.5
θ = 1.5

1.1
0.5000 (0.0059) 0.4998 (0.0071) 0.5000 (0.0070)

1.5000 (0.0107) 1.5006 (0.0161) 1.5007 (0.0160)

1.5
0.4999 (0.0182) 0.4994 (0.0205) 0.5002 (0.0210)

1.4998 (0.0311) 1.5017 (0.0402) 1.5027 (0.0439)

1.9
0.4994 (0.0364) 0.4977 (0.0422) 0.5000 (0.0479)

1.5009 (0.0445) 1.5040 (0.0831) 1.5089 (0.1001)

φ = 1.5
θ = 0.5

1.1
1.5001 (0.0109) 1.5008 (0.0126) 1.5004 (0.0121)

0.4999 (0.0059) 0.4998 (0.0100) 0.4999 (0.0105)

1.5
1.5010 (0.0316) 1.5038 (0.0406) 1.5023 (0.0414)

0.4997 (0.0188) 0.5000 (0.0211) 0.5001 (0.0219)

1.9
1.5019 (0.0448) 1.5149 (0.0846) 1.5101 (0.0993)

0.5001 (0.0364) 0.5014 (0.0423) 0.5000 (0.0499)

Table 2.2: Mean and root-mean-squared error (·) of MLE, MLCLE and LAD estimates for
ARMA(1,1)

tions. Note that the LAD coincides with MLE for the Laplace distribution. The conjectured

asymptotic variance of the MLCLE, σ2 (the inverse efficient fisher information), under each

setting is contained in Table 2.6. The MLCLE and MLE estimates are comparable for the

three log-concave distributions. As the sample sizes grows, the normalized empirical vari-

ance σ̂2 by the MLCLE approaches the inverse efficient information. For normal and logistic

distributions, the MLCLE outperforms the LAD estimates, suggesting the efficiency of the

MLCLE.
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Zt ∼ Logistic(0, 1), φ = 2

n MLE MLCLE LAD

100 2.1032 (0.4373) [4.3516] 2.1507 (0.4402) [4.3803] 2.1129 (0.5003) [4.9783]

500 2.0178 (0.1548) [3.4570] 2.0303 (0.1593) [3.5583] 2.0198 (0.1804) [4.0295]

1000 2.0095 (0.1070) [3.3824] 2.0134 (0.1097) [3.4666] 2.0102 (0.1234) [3.8989]

5000 2.0025 (0.0473) [3.3410] 2.0032 (0.0473) [3.3473] 2.0023 (0.0545) [3.8557]

10000 2.0013 (0.0330) [3.2997] 2.0012 (0.0334) [3.3399] 2.0014 (0.0383) [3.8324]

Table 2.3: Mean, root-mean-squared error (·) and normalized empirical standard error [·] of
MLE, MLCLE and LAD estimates for non-causal AR(1) model

Zt ∼ N(0, 1), φ = 0.5

MLE MLCLE LAD

100 0.4908 (0.0875) [0.8710] 0.4849 (0.0988) [0.9826] 0.4893 (0.1100) [1.0940]

500 0.4980 (0.0386) [0.8615] 0.4948 (0.0426) [0.9519] 0.4979 (0.0480) [1.0765]

1000 0.4990 (0.0271) [0.8562] 0.4970 (0.0291) [0.9186] 0.4991 (0.0340) [1.0757]

5000 0.4999 (0.0123) [0.8696] 0.4995 (0.0123) [0.8706] 0.4999 (0.0152) [1.0733]

10000 0.4999 (0.0087) [0.8713] 0.4997 (0.0087) [0.8743] 0.4998 (0.0108) [1.0805]

Table 2.4: Mean, root-mean-squared error (·) and normalized root-mean-squared error [·] of
MLE, MLCLE and LAD estimates for causal AR(1) model

Zt ∼ Laplace(1), φ = 2

MLE MLCLE

100 2.0694 (0.3681) [3.6628] 2.1267 (0.3849) [3.8298]

500 2.0115 (0.1208) [2.6994] 2.0196 (0.1238) [2.7663]

1000 2.0057 (0.0819) [2.5874] 2.0097 (0.0851) [2.6908]

5000 2.0012 (0.0352) [2.4900] 2.0019 (0.0356) [2.5194]

10000 2.0000 (0.0248) [2.4825] 2.0005 (0.0249) [2.4912]

Table 2.5: Mean, root-mean-squared error (·) and normalized empirical standard error [·] of
MLE and MLCLE estimates for non-causal AR(1) model

Logistic(0,1) N(0,1) Laplace(1)

Ĩ−1
β0,f0

108
π2 ≈ 10.94 3

4 = 0.75 6

Table 2.6: Inverse efficient information of AR(1) process with AR coefficient equal to two
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2.5.2 An empirical example
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Figure 2.1: The demeaned differences of U.S. Total Government Revenue

Figure 2.1 contains the time series plot of the quarterly data of the demeaned differences

of U.S. total government revenue from 1955:1 to 2000:4 (184 observations). The Jarque-

Bera test for normality gives a p-value smaller than e−12 and the Shapiro-Wilk test gives a

p-value smaller than e−8. Both tests are significant and show strong evidence of rejecting

normality of the data. The sample ACF and PACF plots of xt in Figure 2.2 suggest fitting

an AR(2) model to this data. Table 2.7 compare the log-likelihood function values of the

best fit of causal Gaussian (CG) AR(2), causal non-Gaussian (CN) AR(2) and the mixed

(MX) AR(2).

Model assumptions CG CN MX

Log-likelihood -318.6452 -300.4979 -296.4701

Table 2.7: Comparison of log-likelihood
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Figure 2.2: (a) Sample ACF of xt, and (b) Sample PACF of xt

The best fitting causal Gaussian AR(2) model is given by

Xt − 0.0507Xt−1 − 0.1995Xt−2 = Wt.

While the sample ACF of the residuals {Ŵt} in Figure 2.5.2 indicate that Ŵt is white

noise, the ACF of the absolute values of the residuals {|Ŵt|} and those of the squared

residuals {Ŵ 2
t } show significant lag one correlation. And hence, {Ŵt} is uncorrelated but

not independent. In contrast, the best fitting mixed AR(2) model, by applying the MLCLE

method, is given by

Xt − 1.3042Xt−1 − 0.7606Xt−2 = Zt.

The AR polynomial 1− φ1z − φ2z
2 has one root inside the unit circle and one root outside

the unit circle. Figure 2.5.2 plots the residuals {Ẑt}, the ACF of {Ẑt}, the ACF of {|Ẑt|}

and those of {Ẑ2
t } from the mixed model. The ACF of {Ẑt} looks very similar to those of
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{Ŵt}, indicating both of them effectively remove the serial correlation structure in the data.

Moreover, {Ẑ2
t } is also uncorrelated by looking at the ACF of {|Ẑt|} and those of {Ẑ2

t }.

Therefore, the noncausal model products residuals that look more independent at least in

terms of the squares of the residuals.

Another benefit of the MLCLE estimation is that we can estimate the noise distribution

as well. Figure 2.5 contains the estimated density f̂n based on {Ẑt} which is skewed to the

right. Also plotted is the estimated density based on the residuals from fitting a Gaussian

AR(2) model. From an interpretation perspective, noncausal models may be difficult to

accept since such models imply that shocks depend on the future. However, an alternative

explanation may be that the past, only defined in terms of the time series, is not a rich

enough information set for modeling Xt. That is, the information set should perhaps include

exogenous variables, such as news or auxiliary time series in order to produce a causal model.
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0 5 10 15 20

0.0
0.2
0.4
0.6
0.8
1.0

Lag

A
C

F

ACF of |Ẑt|
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Figure 2.3: AR model-fitting using the MLCLE method
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Figure 2.4: Causal AR model using Least Square
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Figure 2.5: Estimated log-concave densities from MLCLE and GL residuals
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2.6 Appendix

2.6.1 Auxiliary results and proof

Lemma 2.6.1. (Entropy Power Inequality)

exp(2H(X + Y )) > exp(2H(X)) + exp(2H(Y ))

where X and Y are independent real-valued random variables and H(X) is the differential

entropy of the probability density function fX

H(X) = −
ˆ
R
fX(x) log fX(x) d x.

The equality holds if and only only X and Y are normal random variables.

Proof of Proposition 2.3.1: Since the parameter set Θ is assumed to be compact and all

β(z) have no zeros of absolute value one, there exists some 0 < ρ < 1 and K > 0 such that

|aj(β)| 6 Kρ|j| for all j (see Brockwell and Davis (2009)).

M1(Pβ,n, P̃β,n) = sup
‖g‖L61

(
|
ˆ
g dPβ,n −

ˆ
g d P̃β,n|

)

6
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

|Zi,m(n)(β)− Zi(β)|

6
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

∑
|j|>m(n)

Kρ|j||Zi−j |

=
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

Yi,m(n),

where Yi,m(n) =
∑
|j|>m(n)Kρ

|j||Zi−j |. Denote the right-hand side of the last equality above
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as Wn. Then,
∑∞

n=1E(Wn) is finite since

EWn ==
∑

|j|>m(n)

Kρ|j|E|Zi| = 2KE(|Zi|)
ρm(n)

1− ρ
,

indicating that Wn converges to 0 almost surely by the Borel-Cantelli lemma. Thus,

sup
β∈Θ

M1(Pβ,n, P̃β,n)
a.s.−→ 0.

For any β, β′ ∈ Θ,

M1(P̃β,n, P̃β′,n) = sup
‖g‖L61

(
|
ˆ
g d P̃β,n −

ˆ
g d P̃β′,n|

)

6
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

|Zi(β)− Zi(β′)|

6
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

∞∑
j=−∞

|aj(β)− aj(β′))||Zi−j |

6
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

∑
|j|6M

|aj(β)− aj(β′)||Zi−j |+
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

∑
|j|>M

2Kρ|j||Zi−j |

6
max|j|6M |aj(β)− aj(β′)|

n− 2m(n)

n−m(n)∑
i=m(n)+1

∑
|j|6M

|Zi−j |+
1

n− 2m(n)

n−m(n)∑
i=m(n)+1

∑
|j|>M

2Kρ|j||Zi−j |.

The second term converges almost surely to 4KE(|Zi|) ρ
M

1−ρ . Therefore, it can be arbitrarily

small by choosing M large, and for this large M ,

1

n− 2m(n)

n−m(n)∑
i=m(n)+1

∑
|j|6M

|Zi−j |
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converges almost surely to some constant and one can show that

max
|j|6M

|aj(β)− aj(β′))| 6 C‖β − β′‖

for some constant C not depends on β, β′. Therefore,

lim
n→∞

‖β−β′‖→0

M1(P̃β,n, P̃β′,n) = 0 a.s. .

On the other hand, notice that M1(P̃β,n, Pβ)
a.s.−→ 0 since Zt(β) is stationary and ergodic,

and hence M1(Pβ′ , Pβ) is uniformly continuous on Θ×Θ. This implies that M1(P̃β,n, Pβ) is

stochastically equicontinuous since

|M1(P̃β,n, Pβ)−M1(P̃β′,n, Pβ′)| 6M1(P̃β,n, P̃β′,n) +M1(Pβ′ , Pβ).

It follows that

sup
β∈Θ

M1(P̃β, Pβ)
a.s.−→ 0.

Proposition 2.6.2. The coefficients ak of the Laurent expansion of β(z)β−1
0 (z) satisfies the

inequality (
κ(β0)

κ(β)

)2 ∞∑
k=−∞

a2
k > 1. (2.19)

Proof. Let Vt =
∑∞

k=−∞ akWt−k where Wt
iid∼ N(0, 1). There exists a causal-invertible

version of Vt ≡
∑∞

k=0 a
∗
kW

∗
t−k with a∗0 = 1 and var(W ∗t ) =

(
κ(β)
κ(β0)

)2
(Brockwell and Davis,
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2009)). Then we know

∞∑
k=−∞

a2
k = var(Vt) =

∞∑
k=0

a∗k
2 var (W ∗t−k) > var (W ∗t ) =

(
κ(β)

κ(β0)

)2

,

which implies that (
κ(β0)

κ(β)

)2 ∞∑
k=−∞

a2
k > 1.

(
κ(β0)
κ(β)

)2∑∞
k=−∞ a

2
k = 1 implies a∗k = 0 for all k 6= 0.

Proposition 2.6.3. Assume that f0 is continuously differentiable.Then for any compact set

S ⊆ R,

lim
n→∞

sup
x∈S
|ϕ̂σn(x)− ϕ0(x)| = 0 a.s. and lim

n→∞
sup
x:∈S
|ϕ̂′σn(x)− ϕ′0(x)| = 0 a.s. .

Proof. f̂σn is not only log-concave but also infinitely differentiable. In particular, the first

derivative of ϕ̂σn := log f̂σn exists. Since f0 is assumed to be continuous, then according to

Theorem 2 in Chen and Samworth (2013), we have

lim
n→∞

sup
x∈R
|f̂σn(x)− f0(x)| = 0 a.s. .

And accordingly, let S be any compact set in R, we obtain

lim
n→∞

sup
x∈S
|ϕ̂σn(x)− ϕ0(x)| = 0 a.s.,

since f̂σn and f0 are supported on the real line. Note that ϕ̂σn and ϕ0 are continuous

concave functions. Thus, ϕ̂′σ(x) converges pointwise to ϕ′0(x) as n goes to infinity. Further,

since both ϕ̂′σn and ϕ′0 are continuous non-increasing functions, this pointwise convergence
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actually can be strengthened to be uniform, that is,

lim
n→∞

sup
x:∈S
|ϕ̂′σn(x)− ϕ′0(x)| = 0 a.s. .

Proposition 2.6.4. For every deterministic sequence βn converges to β0, the sequence

l̃βn,f̂σn
satisfies the following integrability conditions.

Eβn,f0
[
‖l̃βn,f − l̃β0,f0‖

2
]
|f=f̂σn

= oP (1).

Proof of Proposition 2.6.4: Let µn be the mode of f̂σn , then ϕ̂′σn > 0 for x 6 µn and ϕ̂′σn 6 0

for x > µn. It follows that

ˆ
|ϕ̂′σn |f̂

1
3
σndx =

ˆ µn

−∞
ϕ̂′σn f̂

1
3
σndx−

ˆ ∞
µn

ϕ̂′σn f̂
1
3
σndx = 6f̂

1
3
σn(un)

a.s.−→ 6f
1
3

0 (u),

where µ is the mode of f0. Then, by following the same argument as Lemma 3 in Cule and

Samworth (2010), |ϕ̂′σn |f̂
1
3
σn is uniformly bounded with probability one. Besides, there exists

some c > 0 such that f̂σn > cf0 with probability one according to the proof of Theorem 4.1

of Cule et al. (2010). Thus, |ϕ̂′σn | can be bounded by f−
1
3

0 up to some constant. Proposition

2.6.3 implies l̃βn,f̂σn converges to l̃β0,f0 almost surely. Then the results follow from the

dominated convergence theorem.

2.6.2 Comments on asymptotic properties of MLCLE β̂ for AR models

In this subsection, we present the current progress in studying the asymptotic properties of

MLCLE β̂ for AR models. We consider a path that is similar to the one used in Section 6.2

of Murphy et al. (1999) to find the least favorable submodel with score being a good approx-
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imation of the efficient score function. Define Ψ := {ϕ | ϕ is concave and
´
eϕ(u) d u <∞}

and rewrite the objective function (2.7) in terms of log density ϕ = log f , i.e.,

hnβ,ϕ =
1

n− p

n∑
i=p+1

ϕ (Zi(β))−
ˆ
eϕ(u) d u+ log κ(β)

=

ˆ
ϕdPβ,n −

ˆ
eϕ(u) d u+ log κ(β) (β, φ) ∈ Θ×Ψ. (2.20)

In fact, maximizing (2.7) over Θ × F is equivalent to maximizing (2.20) over Θ × Ψ by

reparametrizing f as eϕ. Although a general concave function ϕ ∈ Ψ is not necessarily

differentiable, there exists a right continuous (or left continuous) non-increasing function ϕ′

that satisfies

ϕ(b) = ϕ(a) +

ˆ b

a
ϕ′(u) d u, when b > a.

For any ϕ ∈ Ψ with ϕ(0) well-defined and γ ∈ Θ such that ‖β − γ‖ is sufficiently close to

zero, we define a path {γ, ξβ,ϕ(γ)} such that ξβ,ϕ(β) = ϕ:

ξβ,ϕ(γ)(u) :=

ˆ u

0
ϕ′
(
y + (β − γ)T

κ̇(β)

κ(β)
y

)
d y + (β − γ)T

[
κ̇(β)

κ(β)
− κ̇(β)

κ(β)
ϕ(0)

]
+ ϕ(0).

Since ϕ′ is non-increasing and 1 + (β − γ)T κ̇(β)
κ(β) is positive when ‖β − γ‖ is small enough,

ξβ,ϕ(γ) is a concave function in u. In particular, {γ, ξβ,ϕ(γ)} is a well-defined concave

function at the MLCLE (β̂, ϕ̂ := f̂) since the support of the density of Zt is assumed to

be R, thus ϕ̂(0) is finite for n large. Similar to the efficient score function l̃β,f0 , for fixed

(β, ϕ) ∈ Θ× Φ, we define

ψβ,ϕ (Z(β)) := ϕ′ (Z(β))

[
Ż(β)− κ̇(β)

κ(β)
Z(β)

]
.

Remark 6. Taking ϕ0 = log f0, we have ψβ,ϕ0 = l̃β,f0 . By equation (2.17), the function ψβ,ϕ
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satisfies

Eβ,f0ψβ,ϕ = Eβ,f0
(
ϕ′ (Z(β))

(
Ż(β)− κ̇(β)

κ(β)
Z(β)

))
= 0. (2.21)

Define Pβ,nψβ,ϕ = 1
n−p

∑n
i=p+1 ϕ

′ (Zi(β))
[
Żi(β)−− κ̇(β)

κ(β)Z(β)
]
. Recall that the smoothed

log-concave density estimator f̂σn is the convolution of f̂ with N(0, σ2
n). Let ϕ̂σn := log f̂σn .

We show β̂ satisfies the equation (2.22)

√
nPβ̂,nψβ̂,ϕ̂σn = op(1) (2.22)

in Proposition 2.6.5. The function ψβ,ϕ (Zt(β)) can be expressed in terms of the augmented

process {Xt} as

ψβ,ϕ(Xt) = ϕ′
(
(1,−βT )Xt

) [
(0p×1,−Ip×p)Xt −

κ̇(β)

κ(β)

(
(1,−βT )Xt

)]
,

and ψβ,ϕ can be viewed as a function from Rp+1 to Rp indexed by (β, ϕ). Let C be the

collection of the ψβ,ϕ functions given by

C := {ψβ,ϕ : ‖β − β0‖ 6 ε1,Eβ0,f0‖ψβ,ϕ − l̃β0,f0‖
2 6 ε2, ϕ ∈ Φ}.

Proposition 2.6.4 implies ψβ̂,ϕ̂σn ∈ C for n large. Although the function ϕ′ is non-increasing

and β is a finite dimensional vector, we are not able to show that the class C is a V-C

subgraph class at this time. We save it for a future work and proceed as if we have this

condition. See Remark 7 for the remaining proof of the asymptotic normality of β̂.

Remark 7. Suppose that f0 satisfies the conditions A1 − A4, the AR(p) process is β-

mixing, the class C is a V-C subgraph class and the efficient information matrix Ĩβ0,f0 :=

E
(
l̃β0,f0 l̃

T
β0,f0

)
is nonsingular. Then,

√
n(β̂−β0) is asymptotically normal with mean 0 and
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covariance matrix given by the inverse of the efficient information matrix; that is

√
n(β̂ − β0)

D−→ N(0, Ĩ−1
β0,f0

).

Proof. For any function ψβ,ϕ ∈ C, defineGnψβ,ϕ :=
√
n (Pβ,n − Pβ0,f0)ψβ,ϕ, where Pβ0,f0ψβ,ϕ =

Eβ0,f0
(
ϕ′(Zβ)

(
Żβ − κ̇(β)

κ(β)Zβ

))
. Since

√
n Pβ̂,nψβ̂,ϕ̂σn = op(1) as shown in Proposition 2.6.5,

we have

Gnψβ̂,ϕ̂σn
= −
√
nPβ0,f0ψβ̂,ϕ̂σn

+ op(1). (2.23)

Note that Xt is assumed to be β-mixing and the class C is a V-C subgraph class. By applying

Theorem 2.1 in Arcones and Yu (1994), the empirical process

{Gnψβ,ϕ :=
√
n (Pβ,n − Pβ0,f0)ψβ,ϕ, ψβ,ϕ ∈ C}

converges in law to a centered, tight Gaussian process indexed by the class C. So the

empirical process {Gnψβ,ϕ} is asymptotically equicontinuous, and we have

Gn

(
ψβ̂,ϕ̂σn

− l̃β0,f0
)

= op(1). (2.24)

Then, by equations (2.21) and (2.23), (2.24) implies

√
n
(
Pβ̂,f0 − Pβ0,f0

)
ψβ̂,ϕ̂σn

= Gn l̃β0,f0 + op(1). (2.25)

To complete the theorem, it remains to show that

√
n
(
Pβ̂,f0 − Pβ0,f0

)
ψβ̂,ϕ̂σn

= Ĩβ0,f0
√
n(β̂ − β0) + op

(√
n(β̂ − β0)

)
. (2.26)
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Equations (2.25) and (2.26) imply

Ĩβ0,f0
√
n(β̂ − β0) = Gn l̃β0,f0 + op

(
1 +
√
n(β̂ − β0)

)
.

The result now follows

√
n(β̂ − β0) = Ĩ−1

β0,f0
Gn l̃β0,f0 + op(1)

D→ N(0, Ĩ−1
β0,f0

).

Due to the square integrability of ψβ̂,ϕ̂σ shown in Proposition 2.6.4 and the fact that the

likelihood function of Xt is differentiable in quadratic mean, the equation (2.26) can be

established in the same way as in the proof of Theorem 6.20 in van der Vaart (2002).

Proposition 2.6.5. There exists a random sequence σn such that β̂ satisfies the equation

Pβ̂,nψβ̂,ϕ̂σn = op(
1√
n

).

Proof. First we calculate the partial derivative of ξβ,ϕ(γ) at β. Define τγ := 1+(β−γ)T κ̇(β)
κ(β) ,

then

ξβ,ϕ(γ)(u) =
1

τγ

ˆ τγu

0
ϕ′(y) d y + (β − γ)T

[
κ̇(β)

κ(β)
− κ̇(β)

κ(β)
ϕ(0)

]
+ ϕ(0)

∂ξβ,ϕ(γ)(u)

∂γ
|γ=β = − τ̇γ

τ2
γ

ˆ τγu

0
ϕ′(y) d y +

1

τγ
ϕ′(τγu)τ̇γu−

[
κ̇(β)

κ(β)
− κ̇(β)

κ(β)
ϕ(0)

]
|γ=β

=
κ̇(β)

κ(β)

ˆ u

0
ϕ′(y) d y − κ̇(β)

κ(β)
ϕ′(u)u−

[
κ̇(β)

κ(β)
− κ̇(β)

κ(β)
ϕ(0)

]
=

κ̇(β)

κ(β)
ϕ(u)− κ̇(β)

κ(β)
ϕ′(u)u− κ̇(β)

κ(β)



53

The partial derivative of ξβ,ϕ(γ) (Z(γ)):

∂ξβ,ϕ(γ) (Z(γ))

∂γ
|γ=β = − τ̇γ

τ2
γ

ˆ τγZ(γ)

0
ϕ′(y)dy +

1

τγ
ϕ′ (τγZ(γ))

[
τ̇γZ(γ) + Ż(γ)τγ

]
− κ̇(β)

κ(β)
[1− ϕ(0)] |γ=β

=
κ̇(β)

κ(β)

ˆ Z(β)

0
ϕ′(y) d y + ϕ′ (Z(β))

[
− κ̇(β)

κ(β)
Z(β) + Ż(β)

]
− κ̇(β)

κ(β)
[1− ϕ(0)]

=
κ̇(β)

κ(β)
ϕ (Z(β)) + ψβ,ϕ (Z(β))− κ̇(β)

κ(β)

The partial derivatives of ξβ,ϕ (Z(γ)) and ξβ,ϕ(u) can be calculated in the same way as above

at the point (β̂, ϕ̂ = log f̂). As ϕ̂ maximizes the function

ˆ
ϕdPβ̂,n −

ˆ
eϕ(y) d y over Ψ,

the derivative of the function v
´
ϕ̂ dPβ̂,n −

´
evϕ̂(y) d y is zero at v = 1, which implies

ˆ
ϕ̂ dPβ̂,n −

ˆ
ϕ̂(y)eϕ̂(y) d y = 0. (2.27)

The function

hn(γ) :=

ˆ
ξβ̂,ϕ̂(γ) dPγ,n −

ˆ
exp ξβ̂,ϕ̂(γ)(u) d u+ log κ(γ)

attains its maximum at β̂. To get around the nondiffiability issue of ϕ̂ on a most countable

set, we consider the smoothed version of the log-concave density estimator f̂σ defined in

Proposition 2.6.3. Define hn,σ(γ) as a substitute of hn(γ)

hn,σ(γ) :=

ˆ
ξβ̂,ϕ̂σ(γ) dPγ,n −

ˆ
exp ξβ̂,ϕ̂σ(γ)(u) d u+ log κ(γ),

where ϕ̂ is replaced by ϕ̂σ. It’s easy to see that hn,σ(γ) converges uniformly to hn(γ) in
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a neighborhood of β̂ as σ approaches zero. Therefore, γ̂, the maximizer of hn,σ(γ), can be

arbitrarily close to β̂ as σ goes to zero. And ‖γ̂ − β̂‖ only depends on σ for fixed n.

On the other hand, Proposition 2.6.3 further implies that the functions ∂hn,σ(γ)
∂γ indexed by

n and σ are uniformly Lipschitz in γ for large enough n and small enough σ. Therefore,

there exists a sequence of σn approaches 0 such that the following conditions are satisfied:

‖∂hn(γ)

∂γ
|γ=β̂ −

∂hn,σn(γ)

∂γ
|γ=γ̂‖ = op(

1√
n

) (2.28)

‖
ˆ
ϕ̂σn dPβ̂,n −

ˆ
ϕ̂σn(y)eϕ̂σn (y) d y‖ = op(

1√
n

) (2.29)

Equation (2.29) follows from (2.27) and the fact that

|
[ˆ

ϕ̂σ dPβ̂,n −
ˆ
ϕ̂σ(y)eϕ̂σ(y) d y

]
−
[ˆ

ϕ̂ dPβ̂,n −
ˆ
ϕ̂(y)eϕ̂(y) d y

]
| → 0

as σ approaches 0 for fixed n.

Since hn,σn(γ) is locally maximized at γ̂, (2.28) actually implies

∂hn,σn(γ)

∂γ
|γ=β̂ = o(

1√
n

),

and

∂hn,σn(γ)

∂γ
|γ=β̂=

ˆ ∂ξβ̂,ϕ̂σn
(γ)(Z(γ))

∂γ
|γ=β̂ dPβ̂,n−

ˆ
exp ϕ̂σn

∂ξβ̂,ϕ̂σn
(γ)(u)

∂γ
|γ=β̂ d u+

κ̇(β̂)

κ(β̂)
.
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Substituting the partial derivatives of ξβ̂,ϕ̂σn into the above equation:

ˆ
∂ξβ,ϕ̂σn (γ) (Z(γ))

∂γ
|γ=β dPβ̂,n =

κ̇(β̂)

κ(β̂)

ˆ
ϕ̂σndPβ̂,n +

ˆ
ψβ̂,ϕ̂σn

dPβ̂,n −
κ̇(β̂)

κ(β̂)ˆ
exp ϕ̂σn

∂ξβ̂,ϕ̂σn
(γ)(u)

∂γ
|γ=β̂ d u =

κ̇(β̂)

κ(β̂)

(ˆ
ϕ̂σn(u)eϕ̂σn (u) d u−

ˆ
uϕ̂′σn(u)eϕ̂σn (u) d u− 1

)
=

κ̇(β̂)

κ(β̂)

ˆ
ϕ̂σn(u)eϕ̂σn (u) d y

The last equality follows from the fact

ˆ
uϕ̂′σn(y)eϕ̂σn (u) d u = ueϕ̂σn (u) |∞−∞ −

ˆ
eϕ̂σn (u) d u = −1

Thus,

∂hn,σn(γ)

∂γ
|γ=β̂ =

ˆ
ψβ̂,ϕ̂σn

dPβ̂,n +
κ̇(β̂)

κ(β̂)

[ˆ
ϕ̂σndPβ̂,n −

ˆ
ϕ̂σn(y)eϕ̂σn (y) d y

]
= op(

1√
n

)

By (2.29), we have

Pβ̂,nψβ̂,ϕ̂σn =

ˆ
ψβ̂,ϕ̂σn

dPβ̂,n = op(
1√
n

).
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Chapter 3

Causal Vector Autoregression with

Log-Concave Projection

3.1 Introduction

A multivariate time series Xt = (Xt,1, · · · , Xt,m)T is a mean zero VAR(p) process if it is

stationary and satisfies the difference equations,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt, (3.1)

where φ1, . . . , φp are real-valued m×m matrices of AR coefficients; Zt = (Zt,1, · · · , Zt,m)T

is an iid sequence of random vectors with mean 0 and distributed as P . Throughout this

chapter, we assume P ∈ P, where P is the set of probability measures on Rm with finite

first moment and not supported on any sub-hyperplane of Rm. Note that P need not to

be continuous and discrete-valued noise is allowed. Define the AR matrix polynomial by

Φ(z) = I− φ1z− · · · − φpzp. Then (3.1) can be written in the compact form Φ(B)Xt = Zt.

The matrix polynomial Φ(z) = I− φ1z − · · · − φpzp satisfies the condition det Φ(z) 6= 0 for
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|z| 6 1. That is, det Φ(z) has no zeros inside the unit circle. Then, the process Xt is said to

be causal and Xt only depends on the past and present shocks Zs, s 6 t (Brockwell and Davis,

2009). Otherwise, the process Xt is noncausal and depends on the future noises. Causal

VAR models usually assume Gaussian innovations. Even if Zt is non-Gaussian, the quasi

Gaussian likelihood estimator is still consistent. But we can get a more efficient estimator

asymptotically by maximizing the actual likelihood function, assuming a known distribution

for Zt. The noncausal VAR models are more complicated than the univariate case. We only

consider estimating causal VAR models using the log-concave density estimator.

Cule et al. (2010) studied maximum likelihood density estimation for multi-dimensional

log-concave measures. See Section 2.2 in Chapter 2 for a quick review of the properties of the

log-concave density estimator. We stick to the notation used in Section 2.2 for consistency.

The rest of the chapter is organized as follows. Section 3.2 describes the semiparametric

estimation framework for causal VAR(p) models and shows the consistency of the estimators.

Section 3.3 contains simulation studies to evaluate the finite sample performance of the

semiparametric estimator.

3.2 Model formulation

Given them×m matrix A, let vec(A) denote the vectorization of them×m matrix A, which

is the m2 × 1 column vector obtained by stacking the columns of the matrix A. Denote Φ

as the VAR parameter vectors
(
vec(φ1)T , vec(φ2)T , . . . , vec(φp)

T
)T ∈ Rm2p. Assume that

the parameter space Θ is a compact subset of {Φ ∈ Rm2p : det Φ(z) 6= 0 for |z| 6 1}. Let Φ0

denote the true parameter and P0 be the true distribution of Zt. Define Zt(Φ) := Φ(B)Xt.

Then Zt(Φ) is stationary and ergodic.
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Define Yt as

Yt =



Xt

Xt−1

...

Xt−p


m(p+1)×1

.

Then Zt(Φ) = ΦYYt, where ΦY =

(
Im −φ1 −φ2 · · · · · · −φp

)
m×m(p+1)

. Let PΦ

denote the stationary distribution of Zt(Φ), so that PΦ0 is the true distribution P0. Given

the observed sequence X1, . . . ,Xn, let PΦ,n := 1
n−p

∑n
i=p+1 δZi(Φ) be the empirical measure

of the residuals {Zi(Φ)}ni=p+1. Recall that the bounded Lipschitz distance DBL (see the

definitions in Section 2.2) metrizes the weak convergence of probability measures; that is,

a sequence of probability measures Qn converges weakly to some probability measure Q if

and only if limn→∞DBL(Qn, Q) = 0. By Theorem 2.2 in Berti et al. (2006), the sequence

of random measures PΦ,n converges weakly to PΦ almost surely for each Φ ∈ Θ, i.e.,

DBL (PΦ,n, PΦ)
a.s.−→ 0 as n→∞.

In fact, as shown in Proposition 3.2.1, PΦ,n admits a stronger convergence result.

Proposition 3.2.1.

sup
Φ∈Θ

DBL (PΦ,n, PΦ)
a.s.−→ 0 as n→∞.

Proof. Let f be a bounded Lipschitz function on Rm with ‖f‖∞ 6 1 and ‖f‖L 6 1. For
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any Φ ∈ Θ and x, x′ ∈ Rm(p+1) we have

∣∣f (ΦY x)− f
(
ΦY x

′)∣∣ 6 ‖ΦY x−ΦY x
′‖

6 ‖ΦY ‖‖x− x′‖

6 sup
Φ∈Θ
‖ΦY ‖‖x− x′‖.

As a result, the function fΦ(x) := f (ΦYx) is a bounded Lipschitz function on Rm(p+1) with

Lipschitz constant ‖fΦ‖L 6 ‖ΦY ‖. Note that

f (Zt(Φ)) = fΦ(Yt).

And hence, ˆ
f d (PΦ,n − PΦ) =

ˆ
fΦ d (Qn −Q) ,

where Qn and Q denote the empirical measure 1
n−p

∑n
i=p+1 δYi and the stationary measure

of the vector Yt, respectively. It then follows that

sup
Φ∈Θ,‖f‖∞61,‖f‖L61

∣∣∣∣ˆ f d (PΦ,n − PΦ)

∣∣∣∣ = sup
Φ∈Θ

sup
‖fΦ‖∞61
‖fΦ‖L6‖ΦY ‖

∣∣∣∣ˆ fΦd (Qn −Q)

∣∣∣∣
6 sup

Φ∈Θ
‖ΦY ‖DBL(Qn, Q). (3.2)

Since Θ is assumed to be compact, the quantity supΦ∈Θ‖ΦY ‖ is finite. And note that Qn

converges weakly to Q almost surely. Therefore, inequality (3.2) implies

sup
Φ∈Θ

DBL (PΦ,n, PΦ)
a.s.−→ 0 as n→∞.
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Let Ψ := {ϕ | ϕ is concave and
´
eϕ(u) d u = 1} denote the set of concave functions ϕ

such that eϕ is a pdf. A log-concave density eϕ is viewed as a generic candidate for the

noise distribution. Then the likelihood of Φ based on the sequence X1,X2, . . . ,Xn and

conditioning on X1,X2, . . . ,Xp is given by

ln(Φ, ϕ) =

ˆ
ϕdPΦ,n,

where ϕ ∈ Ψ. We consider estimating (Φ0, P0) by maximizing ln(Φ, ϕ) over Θ×Ψ. We first

project the empirical measure of the residuals PΦ,n on to the space of log-concave densities

F on Rm to obtain the profile log-likelihood function

L(PΦ,n) = max
ϕ∈Ψ

ln(Φ, ϕ).

Recall that Π(PΦ,n) = arg maxϕ∈Ψ ln(Φ, ϕ) is the log-concave density estimator of PΦ based

on the residuals {Zi(Φ)}ni=p+1.

Proposition 3.2.2. Under the assumption that P0 ∈ P and Θ is compact, there exists a

Φ̂ ∈ Θ maximizes L(PΦ,n) over Θ.

Proof. It is easy to see that Φ → PΦ,n defines a continuous mapping from Θ to the space

of probability measures P on Rm equipped with the first moment Mallow’s distance. Ac-

cording to Lemma 2.2.1, the function L(PΦ,n) of Φ is continuous. Thus, L(PΦ,n) attains

its maximum on Θ at some Φ̂ ∈ Θ. Then we have
(
Φ̂,Π(PΦ̂,n)

)
maximizes ln(Φ, ϕ) over

Θ×Ψ.

We call Φ̂ the maximum log-concave likelihood estimator (MLCLE). Theorem 3.2.3

shows the consistency of
(
Φ̂, Π(PΦ̂,n)

)
.
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Theorem 3.2.3. Under the assumption that P0 ∈ P and Θ is compact, Φ̂ = arg maxΦ∈Θ L(PΦ,n)

is strongly consistent for Φ0 and

sup
z∈Rm

∣∣∣Π(PΦ̂,n)(z)−Π (P0) (z)
∣∣∣ a.s.−→ 0.

Proof. Rewrite Zt(Φ) as

Zt(Φ) = Zt(Φ0) + Zt(Φ)− Zt(Φ0).

The causality of the process Xt implies that Zt(Φ0) is independent of Zt(Φ)−Zt(Φ0). Due

to the non-increasing under convolution property of log-concave projection (see equation

(2.2)), we have

L (Zt(Φ)) = L (Zt(Φ0) + Zt(Φ)− Zt(Φ0))

6 L (Zt(Φ0)) . (3.3)

The inequality holds if and only if Zt(Φ)− Zt(Φ0) = (ΦY −Φ0Y ) Yt = δa for some vector

a ∈ Rm, which implies that Φ = Φ0. Therefore, Φ0 is the unique maximizer of L (Zt(Φ))

over Θ. In addition, by virtue of Lemma 2.2.1 (a), for any Φ ∈ Θ, we have

lim sup
n→∞

L(PΦ,n) 6 L(PΦ) a.s. . (3.4)

Inequalities (3.3) and (3.4) imply

lim sup
n→∞

L(PΦ,n) 6 L(PΦ0) a.s. . (3.5)

Let ω ∈ Ω such that (3.5) holds and limn→∞ L(PΦ0,n) = L(PΦ0). For such ω, let Φ̂n(k) be
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any convergent subsequence of Φ̂ with limit denoted as Φ′, we have

DBL

(
PΦ̂n(k),n(k), PΦ′

)
6 DBL

(
PΦ̂n(k),n(k), PΦ̂n(k)

)
+DBL

(
PΦ̂n(k)

, PΦ′

)
.

6 sup
Φ∈Θ

DBL

(
PΦ,n(k), PΦ

)
+DBL

(
PΦ̂n(k)

, PΦ′

)
.

Since Φ̂n(k) converges to Φ′, we have DBL

(
PΦ̂n(k)

, PΦ′

)
−→ 0. It then follows from Propo-

sition 3.2.1 that

DBL

(
PΦ̂n(k),n(k), PΦ′

)
6 sup

Φ∈Θ
DBL (PΦ,n, PΦ) +DBL

(
PΦ̂n(k)

, PΦ′

)
−→ 0.

Therefore, according to Lemma 2.2.1 (a), we have lim supk→∞ L
(
PΦ̂n(k),n(k)

)
6 L (PΦ′).

Notice that limk→∞ L
(
PΦ0,n(k)

)
6 lim infk→∞ L

(
PΦ̂n(k),n(k)

)
. As a result,

L(PΦ0) 6 lim inf
k→∞

L
(
PΦ̂n(k),n(k)

)
6 lim sup

k→∞
L
(
PΦ̂n(k),n(k)

)
6 L (PΦ′) .

Inequality (3.3) further implies that L (PΦ0) = L (PΦ′). And hence, Φ0 = Φ′. Therefore,

we conclude that Φ̂n converges to Φ0 almost surely.

Note that Zt(Φ̂n) = Φ̂n,YYt. Since Yt is an ergodic process and has finite first moment,

by triangular inequality, we have

1

n− p

n∑
t=p+1

‖Zt(Φ̂n)‖ =
1

n− p

n∑
t=p+1

‖Φ̂n,YYt‖
a.s.−→ E‖Φ0,YYt‖ = E‖Zt‖.

In addition, DBL

(
PΦ̂n

, PΦ0

)
a.s.−→ 0. Therefore, we have M1

(
PΦ̂n

, PΦ0

)
a.s.−→ 0 by property

(2.4). It then follows from Lemma 2.2.1 (c) and Lemma 2.2.2 that

sup
z∈Rm

∣∣∣Π(PΦ̂,n)(z)−Π(P0)(z)
∣∣∣ a.s.−→ 0.
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3.3 Numerical results

In order to evaluate the finite sample behavior of Φ̂ (MLCLE) and to compare its perfor-

mance with quasi Gaussian Likelihood (GL) and MLE (when distribution of Zt is known)

estimation methods, we consider a bivariate VAR(1) process: Xt − φXt−1 = Zt. Set

φ =

0.1 0.3

0.9 −0.5

. The R package LogConcDEAD (Cule et al., 2009) is used to com-

pute the log-concave density MLE. We consider three innovation distributions: bivariate

Normal distribution with mean zero and identity covariance matrix (N(0, I2)); bivariate

Laplace distribution with identity covariance matrix and scale parameter 1 (L1,Σ=I2); bi-

variate t distribution with identity covariance matrix and degree of freedom 6 (t6,Σ=I2).

Note that N(0, I2) and L1,Σ=I2 are log-concave densities while t6,Σ=I2 is not log-concave.

For each case, time series of lengths 100, 200, 500, 1000 were simulated and for each realiza-

tion, a VAR(1) model was fitted via the MLCLE, GL and MLE methods, respectively. For

each sample size, this procedure was replicated 1000 times.

The results are reported in the following tables. Tables 3.1, 3.2, 3.3, 3.4 correspond

to sample size 1000, 500, 200, 100, respectively. For N(0, I2) and L1,Σ=I2 which are log-

concave, the root-mean-squared errors of MLCLE given in (·) are comparable to those of

MLE across all sample sizes, suggesting the asymptotic efficiency of MLCLE when the true

distribution is log-concave. For L1,Σ=I2 , MLCLE has smaller root-mean-squared errors than

those of GL. For t6,Σ=I2 which is not log-concave, MLCLE is slightly better than GL for

moderate sample sizes.
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Zt Method φ11 φ21 φ12 φ22

0.1 0.9 0.3 -0.5

N(0, I2)
GL 0.1004 (0.0290) 0.8991 (0.0288) 0.2986 (0.0178) -0.4991 (0.0182)

MLCLE 0.1004 (0.0294) 0.9001 (0.0290) 0.2983 (0.0194) -0.4999 (0.0193)

L1,Σ=I2

GL 0.0996 (0.0289) 0.8994 (0.0290) 0.2991 (0.0182) -0.4989 (0.0179)

MLCLE 0.0992 (0.0212) 0.9014 (0.0214) 0.2992 (0.0135) -0.4990 (0.0137)

MLE 0.1005 (0.0212) 0.9000 (0.0209) 0.3001 (0.0132) -0.4990 (0.0133)

t6,Σ=I2

GL 0.1003 (0.0285) 0.8992 (0.0283) 0.2987 (0.0182) -0.4993 (0.0178)

MLCLE 0.1004 (0.0256) 0.9002 (0.0266) 0.2983 (0.0176) -0.4999 (0.0171)

MLE 0.1003 (0.0261) 0.8996 (0.0258) 0.2989 (0.0164) -0.4993 (0.0163)

Table 3.1: n = 1000: Mean and root-mean-squared error (·) of GL, MLCLE and MLE for VAR(1)

Zt Method φ11 φ21 φ12 φ22

0.1 0.9 0.3 -0.5

N(0, I2)
GL 0.0998 (0.0406) 0.8980 (0.0414) 0.2970 (0.0256) ) -0.4988 (0.0255)

MLCLE 0.0987 (0.0412) 0.8991 (0.0419) 0.2975 (0.0255) -0.4990 (0.0266)

L1,Σ=I2

GL 0.0999 (0.0407) 0.8989 (0.0417) 0.2979 (0.0256) -0.4980 (0.0257)

MLCLE 0.0986 (0.0321) 0.9000 (0.0317) 0.2987 (0.0202) -0.4990 (0.0196)

MLE 0.1007 (0.0304) 0.9000 (0.0310) 0.2995 (0.0189) -0.4988 (0.0192)

t6,Σ=I2

GL 0.1010 (0.0410) 0.8988 (0.0411) 0.2981 (0.0258) -0.4977 (0.0261)

MLCLE 0.0987 (0.0398) 0.8991 (0.0389) 0.2975 (0.0255) -0.4990 (0.0247)

MLE 0.1010 (0.0373) 0.8991 (0.0374) 0.2985 (0.0233) -0.4979 (0.0237)

Table 3.2: n = 500: Mean and root-mean-squared error (·) of GL, MLCLE and MLE for VAR(1)
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Zt Method φ11 φ21 φ12 φ22

0.1 0.9 0.3 -0.5

N(0, I2)
GL 0.0997 (0.0651) 0.8984 (0.0640) 0.2942 (0.0414) -0.4961 (0.0409)

MLCLE 0.0974 (0.0661) 0.8989 (0.0646) 0.2930 (0.0420) -0.4974 (0.0425)

L1,Σ=I2

GL 0.1017 (0.0634) 0.8977 (0.0649) 0.2955 (0.0411) -0.4962 (0.0404)

MLCLE 0.0967 (0.0553) 0.8948 (0.0578) 0.2968 (0.0338) -0.4980 (0.0344)

MLE 0.1028 (0.0502) 0.9003 (0.0508) 0.2986 (0.0315) -0.4970 (0.0318)

t6,Σ=I2

GL 0.0995 (0.0646) 0.8959 (0.0653) 0.2948 (0.0409) -0.4964 (0.0415)

MLCLE 0.0974 (0.0649) 0.8989 (0.0646) 0.2930 (0.0411) -0.4974 (0.0425)

MLE 0.0992 (0.0594) 0.8967 (0.0599) 0.2956 (0.0375) -0.4971 (0.0379)

Table 3.3: n = 200: Mean and root-mean-squared error (·) of GL, MLCLE and MLE for VAR(1)

Zt Method φ11 φ21 φ12 φ22

0.1 0.9 0.3 -0.5

N(0, I2)
GL 0.1014 (0.0904) 0.8947 (0.0922) 0.2900 (0.0595) -0.4911 (0.0595)

MLCLE 0.0978 (0.1004) 0.8978 (0.1029) 0.2879 (0.0679) -0.4953 (0.0635)

L1,Σ=I2

GL 0.1026 (0.0907) 0.8946 (0.0944) 0.2911 (0.0589) -0.4921 (0.0590)

MLCLE 0.0927 (0.0878) 0.8963 (0.0916) 0.2897 (0.0570) -0.4965 (0.0581)

MLE 0.1021 (0.0759) 0.8988 (0.0761) 0.2955 (0.0479) -0.4940 (0.0480)

t6,Σ=I2

GL 0.1009 (0.0922) 0.8952 (0.0921) 0.2914 (0.0590) -0.4914 (0.0584)

MLCLE 0.0978 (0.1004) 0.8978 (0.1029) 0.2879 (0.0679) -0.4953 (0.0635)

MLE 0.1016 (0.0861) 0.8960 (0.0854) 0.2923 (0.0553) -0.4924 (0.0546)

Table 3.4: n = 100: Mean and root-mean-squared error (·) of GL, MLCLE and MLE for VAR(1)
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Chapter 4

Modeling Time Series of Counts with

Shape Constraint

4.1 Introduction

In recent years there has been an increasing interest in analysis and modelling of time series

of counts. Many time series of counts models assume the observations follow a Poisson dis-

tribution given the conditional mean process that characterizes the serial dynamics of the

observed process, e.g., Davis et al. (2003); Heinen (2003); Ferland et al. (2006); Fokianos

et al. (2009). Davis and Liu (2016) assumed that the observations follow a one-parameter

exponential family distribution given the conditional mean process. They showed the sta-

tionarity and ergodicity of the underlying processes under fairly general conditions and

established the asymptotic normality of the maximum likelihood estimators. The general-

ized linear autoregressive moving average (GLARMA) models (Shephard, 1995; Davis et al.,

1999, 2003; Davis and Wu, 2009) also assumed that the observations are generated from a

one-parameter exponential family distribution conditional on a latent process and covari-

ates. Liboschik et al. (2015); Fokianos (2015) have given a review of the likelihood-based
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estimation methods for analysis and modeling of time series of counts data from a GLM

perspective.

To relax the distributional assumption, we consider nonparametric shape constraints

which are becoming increasingly popular and have various important applications in sta-

tistical inference, e.g., Dümbgen et al. (2011); Chen and Samworth (2015a,b). We take

advantage of the one-parameter exponential family assumption and propose a semiparamet-

ric estimation procedure to the observation-driven models studied in Davis and Liu (2016).

The underlying pmf p from the one-parameter exponential family is assumed to be log-

concave, that is, log p is a concave function. For discrete distributions, “log-concavity” is

defined in the sense that the linear interpolation of the logarithm of the probability mass

function is concave. A more detailed description about the concave shape constraint is given

in Section 4.2.1. This semiparametric estimation framework is rather generic and can be

naturally applied to other time series of counts models which are based on an exponential

family distribution assumption besides the conditional mean models considered in Davis and

Liu (2016).

The rest of the chapter is organized as follows. Section 4.2.1 introduces the extended

natural one-parameter exponential family which incorporates a concave component. Section

4.2.2 applies the extended natural one-parameter exponential family to the observation-

driven models considered in Davis and Liu (2016). Section 4.3 explains some computational

details. Section 4.4 shows the consistency of the MLE for the mean model parameters and

the baseline function. Section 4.5 presents a simulation study and real data applications to

further illustrate the results in Section 4.4. Technical details can be found in the Appendix.
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4.2 Model formulation

4.2.1 Extended one-parameter exponential family

A random variable Y is said to follow a distribution of the one parameter exponential family

if its pdf (or pmf in discrete case) with respect to some σ-finite measure µ can be written

in the form

p(y | η) = h(y) exp (ηy −A(η)) , y > 0, (4.1)

where h(·) is a non-negative function and is supported on X ⊂ R+; η is referred to as the

natural parameter and A(η) is the cumulant function given by

A(η) = log

ˆ
X
h(y) exp (ηy) dµ(y).

The σ-finite measure µ is either Lebesgue measure or counting measure, which depends on

whether p(y | η) is a continuous distribution or not. Since we focus on time series of counts

data, we express A(η) explicitly as A(η) = log
∑∞

y=0 h(y) exp (ηy) , where µ is chosen to

be counting measure and X is the discrete set N0 = {0, 1, · · · }. The natural parameter η

belongs to a subset of R such that A(η) is well-defined, that is, η ∈ {η ∈ R : A(η) <∞}. It’s

known that EY = A′(η). Since Y is assumed to be non-negative, the function A(·) is non-

decreasing. The exponential family enjoys many useful properties and contains many well-

known parametric classes. Distribution families indexed by a single parameter that belong

to the one-parameter exponential family include the Poisson distribution, the exponential

distribution, the Bernoulli distribution. Some of the two-parameter exponential families can

be written in the form of (4.1) by fixing one of the parameters, for example, the normal

distribution and the Gamma distribution. Classic expositions of the exponential family can

be found in Lehmann and Casella (2006); Bickel and Doksum (2006).
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We consider extending the natural one-parameter exponential family (4.1) by allowing

the function h(·) to change. Let ϕ(y) = log h(y) and considering ϕ(y) as a baseline function,

we rewrite p(y | η) explicitly as a function of η and ϕ:

p(y | η, ϕ) =
exp (ϕ(y) + ηy)∑∞
y=0 exp (ϕ(y) + ηy)

, y = 0, 1, 2, . . . . (4.2)

For any function ϕ on the discrete set N0, p(y | η, ϕ) defines a natural one-parameter

exponential family in regards to η as long as
∑∞

y=0 exp (ϕ(y) + ηy) < ∞. For example,

ϕ(y) = − log y! corresponds to the Poisson distribution. By introducing the infinite dimen-

sional parameter ϕ, we will have more flexibility and obtain a richer class of models since

the associated distribution family p(y | η, ϕ) not only retains the good properties of the

exponential family but also avoids being constrained to a particular parametric class. Note

that p(y | η, ϕ) is invariant under shift of ϕ, that is,

p(y | η, ϕ) = p(y | η, ϕ+ constant)

and choices of baseline functions ϕ for the exponential family (4.1) are not unique since

p(y | η, ϕ) = p(y | η − η̃, ϕ+ η̃y).

Thus extra constraints on ϕ are required for identifiability. Denote Aϕ(η) as the log integral

log

∞∑
y=0

exp (ϕ(y) + ηy)

and let Bϕ(η) be the partial derivative of Aϕ(η) with respect to η. It is known that E(Y ) =

Bϕ(η) and V ar(Y ) =
∂Bϕ(η)

η . Thus the function Bϕ(η) is strictly increasing provided that

p(y | η, ϕ) is non-degenerate. As a result, we can establish a one-to-one correspondence
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between η and Bϕ(η) such that the inverse function B−1
ϕ is well-defined. In addition, since

the observations Y considered in this paper are assumed to be non-negative, the function

Aϕ(η) is not only convex but also increasing in η.

A concave shape constraint is imposed on the baseline function ϕ to control the com-

plexity of the exponential families indexed by η and ϕ. For the exponential family p(y | η, ϕ)

with respect to counting measure, its support X is a collection of integers and the baseline

function ϕ is only defined on a countable set. In this case, ϕ is said to be concave if the linear

interpolation of the points {(y, ϕ(y)) : y ∈ X} is concave. More specifically, let {yk}∞k=1 be

the elements in X which is in an increasing order. Define a piecewise linear function through

ϕ̄(y) =

(
1− y − yk

yk+1 − yk

)
ϕ(yk) +

y − yk
yk+1 − yk

ϕ(yk+1) for y ∈ [yk, yk+1] , (4.3)

where ϕ̄(y) = −∞ on R \ [mink yk, supk yk]. Then p(y | η, ϕ) is said to satisfy the concave

shape constraint if ϕ̄ is a concave function. To simplify notation, ϕ̄ is also used to denote

the baseline function ϕ when the distribution (4.2) is continuous, where we actually have

ϕ̄ = ϕ. Although choices of ϕ for (4.2) are not unique, all associated functions ϕ̄ are concave

if one of them is concave. Let H be the collection of concave functions ψ : R+ → R such

that ψ(y) → −∞ as y → ∞ and
´∞
0

eψ(y)dy = 1. Then a probability density function f

on R+ is said to be log-concave if log f ∈ H. We assume that ϕ̄ ∈ H, that is, eϕ̄(y) is a

log-concave density with ˆ ∞
0

eϕ̄(y)dy = 1. (4.4)

Moreover, in order to ensure identifiability, ϕ̄ is also assumed to satisfy

ˆ ∞
0

yeϕ̄(y)dy = 1. (4.5)
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Remark 8. There exists a unique function ϕ̄ satisfying equations (4.4) and (4.5) for the

exponential family (4.2). Let ϕ and ϕ1 be any two functions such that p(y | η, ϕ) = p(y |

η1, ϕ1) on X , where η, η1 ∈ R. Then, for any y ∈ X ,

ϕ(y) + ηy −Aϕ(η) = ϕ1(y) + η1y −Aϕ1(η1),

which implies

ϕ̄1(y) = ϕ̄(y) + (η − η1)y +Aϕ1(η1)−Aϕ(η).

Suppose that both the linear interpolations ϕ̄ and ϕ̄1 satisfy equations (4.4) and (4.5):

ˆ ∞
0

eϕ̄
1(y)dy =

ˆ ∞
0

eϕ̄(y)+(η−η1)y+Aϕ1 (η1)−Aϕ(η)dy =

ˆ ∞
0

eϕ̄(y)dy = 1

ˆ ∞
0

yeϕ̄
1(y)dy =

ˆ ∞
0

yeϕ̄(y)+(η−η1)y+Aϕ1 (η1)−Aϕ(η)dy =

ˆ ∞
0

yeϕ̄(y)dy = 1.

Then the exponential family exp(ϕ̄(y)+ζy)´∞
0

exp(ϕ̄(y)+ζy) d y
supported on R+ has mean value one when

ζ = 0 and ζ = η−η1, which implies η−η1 = 0 since there is a one-to-one mapping from the

natural parameter to the mean of an exponential family. As a result, ϕ̄ = ϕ̄1 and ϕ = ϕ1. It

should be noted that equation (4.5) is only to ensure identifiability of the baseline function

ϕ and can be modified by
´∞
0

yeϕ̄(y) d y = c for any c ∈ R+ with miny∈X y < c < supy∈X y.

Let H1 := {ϕ ∈ H :
´∞

0 yeϕ(y)dy = 1}. Then the extended exponential family (4.2)

indexed by the natural parameter η and function ϕ ∈ H1 is well-defined. For example, the

exponential distribution has a unique representation as in (4.2) by η < 1 and ϕ = −y ∈ H1,

where X = R+ and µ is Lebesgue measure. Many of the standard exponential family

distributions satisfy the concave shape constraint, for example, the Poisson distribution,

the Bernoulli distribution and the exponential distribution. The negative binomial (NB)

distribution NB(r, p), the COM-Poisson distribution (λ, ν), and the Gamma distribution
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Γ(α, β) have concave baseline functions when fixing the parameters r, ν and α, respectively.

Remark 9. Let Γ(z) be the gamma function defined on z > 0. The second derivative of

log Γ(z) is given by
d2 log Γ(z)

dz2
=
∞∑
m=0

1

(z +m)2
for z > 0; (4.6)

see e.g., Medina and Moll (2007). Thus log Γ(z) is a strictly convex function. Taking log of

the Poisson distribution p(y | λ) = e−λλy

y! , we have log p(y | λ) = −λ+ y log λ− log y!. One

of the baseline functions for Poisson distributions, ϕ(y) = − log y!, is concave. And hence,

the piecewise linear interpolation of the points (k,− log k!) , k = 0, 1, . . . is also a concave

function. As a result, the Poisson distribution satisfies the concave shape constraint. Figure

4.1 plots the baseline function ϕ0 ∈ H1 of the Poisson distribution, where the black dots

correspond to − log y!, y = 0, 1, 2, . . . .

0 2 4 6 8 10

−
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−
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x

−log(y!)
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Figure 4.1: Baseline function ϕ0 of the Poisson distribution

Moreover, it follows directly that COM-Poisson distribution p(y | λ, ν) = λy

(y!)ν
1∑∞

j=0
λj

(j!)ν

also has a concave baseline function when the parameter ν is fixed. The logarithm of the
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NB distribution p(y | r, p) =
(
y+r−1
y

)
pr(1− p)y is given by

log p(y | r, p) = log(y + r − 1)!− log y!− log(r − 1)! + y log(1− p) + r log p.

In this case, consider ϕ(y) = log(y + r − 1)!− log y!. According to equation (4.6), we have

ϕ′′(y) =
∞∑
m=0

1

(y + r)2
−
∞∑
m=0

1

(y + 1)2
6 0 for r > 1,

and hence the function ϕ(y) is concave so that the NB distribution also satisfies the concave

shape constraint.

Based on the extended exponential family (4.2) indexed by the natural parameter η and

function ϕ ∈ H1, we develop a semiparametric estimation framework for modeling time series

of counts and show its flexibility compared with traditional parametric inference methods.

4.2.2 Semiparametric time series of counts models

We consider the observation-driven models studied by Davis and Liu (2016) where the

ergodicity and stationarity properties of the underlying process were established. We state

the relevant results in Davis and Liu (2016) for completeness. Let F0 = σ(η1), where η1 is

a natural parameter of (4.2) and is assumed to be fixed. The time series Yt is generated as

follows

Yt | Ft−1 ∼ p(y | ηt, ϕ), Xt = gθ(Xt−1, Yt−1), (4.7)

where Ft = σ = (η1, Y1, . . . , Yt); p(y | ηt, ϕ) is defined in (4.2) with ϕ ∈ H1 and Xt :=

E [Yt | Ft−1] is the conditional mean process. The non-negative bivariate function gθ(x, y)

is defined on [0,∞)×X . Davis and Liu (2016) showed that the process {Xt, Yt} generated

by (4.7) is strictly stationary and ergodic provided that the function gθ(x, y) satisfies a
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contraction condition: there exist two non-negative constants a and b with a + b < 1 such

that for any x, x′ > 0 and y, y′ ∈ X

|gθ(x, y)− gθ(x′, y′)| 6 a|x− x′|+ b|y − y′|. (4.8)

For integer valued Yt, there exists a unique stationary and ergodic solution to the recursive

equation Xt = gθ(Xt−1, Yt−1) in terms of the process {Yt} if gθ(·, ·) satisfies condition (4.8),

that is, Xt can be expressed as

Xt = gθ∞(Yt−1, Yt−2, . . . ), (4.9)

where gθ∞ is a measurable function from N∞0 = {(n1, n2, . . . ), ni ∈ N0, i = 1, 2, . . . } to

[0,∞).

Davis and Liu (2016) provided many examples with completely specified distribution

function p(y | η, ϕ) and gθ(·, ·), for which the expressions of mean, variance and autocorre-

lation functions were derived, and conditions for the maximum likelihood estimator of θ to

be asymptotically normal were presented. Here we briefly cite some of the examples studied

in Davis and Liu (2016).

Integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH)(1, 1)

models: set gθ(x, y) = δ+αx+βy, where θ = (δ, α, β)T ∈ R3 with δ, α, β > 0 and α+β < 1.

1. Poisson INGARCH(1,1) model:

Yt | Ft−1 ∼ Poisson(λt), λt = δ + αλt−1 + βYt−1.

2. NB INGARCH(1,1) model:
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Yt | Ft−1 ∼ NB(r, pt), Xt = δ + αXt−1 + βYt−1, pt =
r

Xt + r
.

3. Gamma INGARCH(1,1) model:

Yt | Ft−1 ∼ Γ(κ, st), st =
δ

κ
+ αst−1 +

β

κ
Yt−1.

Besides the linear dynamic models, Davis and Liu (2016) used spline basis functions to

incorporate nonlinear dynamic models, where gθ(x, y) = δ + αx + βy +
∑K

k=1 βk(y − εk)+.

Here {εk}Kk=1 are the knots and θ = (δ, α, β, β1, . . . , βK)T ∈ RK+3. The parameters satisfy

the constraints α + β < 1, β +
∑K

k=1 βk > 0 and α + β +
∑s

k=1 βk < 1 for s = 1, . . . ,K

to ensure gθ(·, ·) is contractive in the sense of inequality (4.8). Distributions like Poisson,

negative binomial and Gamma are also applicable for the nonlinear conditional mean model

gθ(·, ·).

The dynamic behavior of the conditional mean process Xt is completely characterized

by the recursive equation gθ(Xt−1, Yt−1), which is indexed by a finite dimensional parameter

θ ∈ Rd. The function Bϕ is strictly increasing and its inverse function is well defined. The

corresponding natural parameter ηt is determined as follows

Xt = Bϕ(ηt), ηt = B−1
ϕ (Xt).

It serves as a connection between the parametric part θ and the nonparametric part ϕ. Here

the function B−1
ϕ plays the role of link function as in GLM. Davis and Liu (2016) showed the

consistency and asymptotic normality of the maximum likelihood estimator of θ under some

regularity conditions for fixed ϕ; that is, assuming a known parametric distribution class.

We relax the distributional restriction by introducing the infinite dimensional parameter ϕ
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and propose a semiparametric estimation procedure for model (4.7). Let θ0 and ϕ0 ∈ H1

denote the true parameters. Assumptions (A1-A6) are adapted from Davis and Liu (2016).

(A1) θ0 is an interior point in the compact parameter space Θ ⊂ Rd

(A2) For any θ 6= θ0 and all t, Pθ0 ({Xt(θ) 6= Xt(θ0)}) > 0, that is, Xt(θ) can distinguish θ0

from θ 6= θ0.

(A3) For any y ∈ [0,∞)∞ or N∞0 , the mapping θ → gθ∞ is continuous.

(A4) The mapping θ → gθ∞ is twice continuously differentiable.

(A5) Denote R(Bϕ0) as the range of Bϕ0(η). For any θ ∈ Θ, gθ∞ > x∗θ > 0 ∈ R(Bϕ0).

Moreover x∗θ > x∗ > 0 ∈ R(Bϕ0) for all θ.

(A6) g(x, y) is increasing in (x, y) if Yt given Ft−1 has a continuous distribution.

(A7) There exists some c > 0 such that A′′ϕ0
(η) > c > 0 for all η ∈ [B−1

ϕ0
(x∗),∞) ∩ {η :

Aϕ0(η) <∞}.

(A8) E(X2
t ) <∞.

Remark 10. Assumptions (A7-A8) are sufficient conditions for the semiparametric MLE to

be consistent. Time series models (4.7) based on Poisson, negative binomial and Gamma

distributions all satisfy these two conditions.
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4.3 The likelihood function

The likelihood function of model (4.7) based on the sequence {Y1, · · · , Yn} and conditioning

on η1 is given by

L(θ, ϕ | Y1, · · · , Yn, η1) =

n∏
t=1

p(Yt | ηt(θ), ϕ)

=
n∏
t=1

exp (ϕ(Yt) + ηt(θ)Yt −Aϕ(ηt(θ))) .

The sequence ηt(θ) is calculated through the function B−1
ϕ (Xt(θ)). We can choose X1(θ) = 1

and η1 = 0. The corresponding log likelihood function is

ln(θ, ϕ) :=
1

n
logL(θ, ϕ | Y1, · · · , Yn, η1) (4.10)

=
1

n

n∑
t=1

[ϕ(Yt) + ηt(θ)Yt]−
1

n

n∑
t=1

Aϕ (ηt(θ)) .

For integer-valued Yt, there may be repeated values of the data. Let K be the number of

unique values of {Y1, . . . , Yn} and Y(1), . . . , Y(K) be the corresponding ordered unique values.

Given the order statistics Y(1), . . . , Y(K), let Gn be the collection of vectors (ϕ1, . . . , ϕK) ∈ RK

such that the linear interpolation ϕn(y) through the points
(
Y(k), ϕk

)
, k = 1, . . . ,K, belongs

to H1. That is,

ϕn(y) =

(
1−

y − Y(k)

∆k

)
ϕk +

y − Y(k)

∆k
ϕk+1 for y ∈

[
Y(k), Y(k+1)

]
(4.11)

is concave with
´∞
0

eϕ
n(y)dy = 1 and

´∞
0

yeϕ
n(y)dy = 1, where ∆k = Y(k+1) − Y(k) and

ϕn(y) = −∞ on R \
[
Y(1), Y(K)

]
. The index set of k′s consists of the points in which

the slopes of ϕn change. The function ϕn defined in equation (4.11) is fully specified by

the vector (ϕ1, . . . , ϕK). The elements in Gn can be viewed as piecewise linear functions
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and Gn is essentially a subset of H1. We assume Gn satisfies conditions (G1-G3). For any

ϕn = (ϕ1, . . . , ϕK) ∈ Gn,

(G1) maxk ϕk 6M1,

(G2) 1
n

∑K
k=1

∑
i∈Ik ϕk > −M2,

(G3) B−1
ϕn (Xt(θ)) 6 B−1

ϕn (x∗) +M3 (Xt(θ)− x∗) for t = 1, . . . , n and θ ∈ Θ,

where M1,M2,M3 > 0 are constants such that maxy∈R ϕ0(y) 6 M1, E (ϕ0(Yt)) > −M2

and 1
c 6M3 for the constant c in assumption (A7). In practice, we can choose M1,M2,M3

large. Regularity conditions G1-G3 imposed on Gn play an important role in establishing

the consistency of the estimators. See details in the Appendix.

Let ϕ̃n0 be the function as defined in (4.11) based on the vector
(
ϕ0(Y(1)), . . . , ϕ0(Y(K))

)
.

Note that ϕ̃n0 is concave but does not necessarily belong to Gn. To ensure it belongs to Gn,

we can construct a modified version of ϕ̃n0 as

ϕn0 (y) = ϕ̃n0 (y) + η∗ny − log

ˆ ∞
0

eϕ̃
n
0 (y)+η∗nydy,

where η∗n satisfies the equation
´∞
0

yeϕ̃
n
0 (y)+ηydy´∞

0
eϕ̃
n
0 (y)+ηydy

= 1. Proposition 4.6.10 shows that ϕn0 (y) ∈

Gn for large n a.s. and l(θ0, ϕ0) 6 lim infn→∞ ln(θ0, ϕ
n
0 ) a.s., where

l(θ0, ϕ0) := E [ϕ0(Yt) + ηt(θ0)Yt −Aϕ0 (ηt(θ0))] .

The expectation is with respect to the stationary measure of (Xt, Yt)
T . Given the obser-

vations {Y1, . . . , Yn}, the set Gn is a subset of RK by construction. Hence, maximizing

the log likelihood function ln(θ, ϕ) over Θ × Gn reduces to a finite-dimensional optimiza-

tion problem. For any ϕ = (ϕ1, . . . , ϕK) ∈ Gn and integer-valued Yt, the log integral

Aϕ(η) = log
∑K

k=1 exp
(
ϕk + ηY(k)

)
. It is straightforward to compute ηt(θ) = B−1

ϕ (Xt(θ))
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using a binary search algorithm, where Bϕ(η) = A′ϕ(η). Since Aϕ and Bϕ are both continuous

functions, the log likelihood function ln(θ, ϕ) is continuous on Θ× Gn.

Proposition 4.3.1. Under assumption A1, there exists (θ̂n, ϕ̂n) ∈ Θ × Gn that maximizes

ln(θ, ϕ) over Θ× Gn.

Remark 11. We alternate between maximizing ln(θ, ϕ) in θ and ϕ. Note that the maximiza-

tion in ϕ = (ϕ1, . . . , ϕK) is subject to the following K − 2 linear constraints:

− 1

∆k−1
ϕk−1 + (

1

∆k−1
+

1

∆k
)ϕk −

1

∆k
ϕk+1 > 0 for k = 2, . . . ,K − 1,

which adapt from the inequalities

ϕk+1 − ϕk
∆k

6
ϕk − ϕk−1

∆k−1
for k = 2, . . . ,K − 1,

to ensure concavity of ϕ. We call (θ̂n, ϕ̂n) the CMLE (concave MLE) of (θ0, ϕ0) and we

show its consistency in Section 4.4.

4.4 Consistency

Let Hϕ0
:= {ϕ ∈ H1 : ϕ(y) = −∞ implies ϕ0(y) = −∞ for y ∈ R}. For fixed (θ, ϕ) ∈

Θ×Hϕ0 , by virtue of the mean ergodic theorem, we have ln(θ, ϕ)
a.s.−→ l(θ, ϕ), where l(θ, ϕ)

is the limiting function of (4.10) given by

l(θ, ϕ) = E [log p (Yt | ηt(θ), ϕ)] (4.12)

= E [ϕ(Yt) + ηt(θ)Yt −Aϕ (ηt(θ))] .

Proposition 4.4.1. For any ϕ ∈ Hϕ0 , θ0 is the unique maximizer of l(θ, ϕ); that is, for
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any θ ∈ Θ \ θ0, l(θ, ϕ)− l(θ0, ϕ) < 0.

Remark 12. Following the same argument as in Proposition 4.4.1, we know θ0 is the unique

maximizer of the function l(θ) := E
[
− Yt
Xt(θ)

− logXt(θ)
]
over Θ. In fact, l(θ) is obtained

by substituting p(y | η, ϕ) with the exponential distribution in equation (4.12). Let

θ̃ = arg max
θ∈Θ

1

n

n∑
t=1

[
− Yt
Xt(θ)

− logXt(θ)

]
.

By assumption (A5), there exists x∗ > 0 such that Xt(θ) > x∗ for all t and θ ∈ Θ. Thus,

− Yt
Xt(θ)

− logXt(θ) 6 − log x∗ for all t and θ ∈ Θ.

Let Ẋt = ∂Xt(θ)
∂θ |θ=θ0 and suppose that Ω := E

(
( Yt
X2
t
− 1

Xt
)2ẊtẊ

T
t

)
exists. Then strong

consistency and asymptotic normality of θ̃ directly follow from the proof of Theorem 1 and

Theorem 2 in Davis and Liu (2016), respectively. In particular,

√
n(θ̃ − θ0)

D−→ N(0,Ω−1).

Since θ̃ is obtained by maximizing the quasi-log likelihood function, it is referred to as QMLE

(quasi MLE) and can be used as an initial point when maximizing ln(θ, ϕ). Theorem 4.4.2

shows the consistency of the CMLE (θ̂n, ϕ̂n).

Theorem 4.4.2. Assume (A1-A8). Then, θ̂n
a.s.−→ θ0 and ϕ̂n

a.s.−→ ϕ0.

Proof. Proposition 4.6.10 implies that

l(θ0, ϕ0) 6 lim inf
n→∞

ln(θ0, ϕ
n
0 ) 6 lim inf

n→∞
ln(θ̂n, ϕ̂n) a.s.. (4.13)
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On the other hand, by Proposition 4.6.8,

lim sup
n→∞

ln(θ̂n, ϕ̂n) 6 sup
θ∈Θ,ϕ∈Hϕ0

l(θ, ϕ) a.s.. (4.14)

According to Corollary 4.6.9, for any subsequence of (θ̂n, ϕ̂n)n, we can find a subsequence

(θ̂nk , ϕ̂nk)k that converges pointwise to some (θ∗, ψ) ∈ Θ×Hϕ0 and

lim sup
k→∞

lnk(θ̂nk , ϕ̂nk) 6 l(θ∗, ψ).

Together with inequalities (4.13) and (4.14), we have

l(θ0, ϕ0) 6 l(θ∗, ψ) 6 sup
θ∈Θ,ϕ∈Hϕ0

l(θ, ϕ).

Proposition 4.6.5 further implies that

θ∗ = θ0 and ψ̄ = ϕ̄0 almost everywhere. (4.15)

(4.15) is true for any convergent subsequence of (θ̂n, ϕ̂n). Thus θ̂n
a.s.−→ θ0 and ϕ̂n

a.s.−→ ϕ0.

4.5 Examples

We illustrate the finite-sample performance of the semiparametric estimation procedure

and compare its performance with MLE obtained by maximizing the actual log likelihood

function and QMLE via simulation studies for the linear Poisson model. Empirical examples

are also provided.



82

4.5.1 Poisson INGARCH(1,1) model

We consider the Poisson INGARCH(1,1) model:

Yt | Ft−1 ∼ Poisson(λt), λt = 0.5 + 0.5λt−1 + 0.4Yt−1.

Time series of lengths 500, 1000 are simulated and the parameter θ = (δ, α, β) is estimated

with MLE θ̌, CMLE θ̂ and QMLE θ̃. This procedure is replicated 1,000 times and the

resulting means and root-mean-squared errors of the estimates are summarized in Table 4.1.

The performance of CMLE θ̂ is comparable to MLE θ̌ in terms of root-mean-squared error.

It is not surprising that the MLE θ̌ has relatively smaller root-mean-squared-errors than

the QMLE θ̃. Histograms of the estimators θ̂ and θ̃ are given in Figures 4.3 and 4.4, which

are bell-shaped. The quasi-likelihood estimates θ̃ are asymptotically normal according to

Remark 12. Figure 4.2 shows the estimated conditional distribution p
(
y | B−1

ϕ̂ (x), ϕ̂
)
with

mean x based on one realization of time series Yt of length 1000. It is very close to the

corresponding Poisson distribution with the same mean.

n Estimates δ = 0.5 α = 0.5 β = 0.4

500
θ̌ 0.5954 (0.1771) 0.4702 (0.0612) 0.4097 (0.0412)

θ̂ 0.5645 (0.1690) 0.4934 (0.0591) 0.3933 (0.0429)

θ̃ 0.619 (0.2169) 0.4594 (0.0719) 0.416 (0.0457)

1000
θ̌ 0.5445 (0.1066) 0.4858 (0.0398) 0.4060 (0.0290)

θ̂ 0.5357 (0.1085) 0.4947 (0.0404) 0.3977 (0.0300)

θ̃ 0.5619 (0.1305) 0.4767 (0.0484) 0.4111 (0.0338)

Table 4.1: Estimates of Poisson INGARCH(1,1); Root mean squared error is given in (·).
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Figure 4.2: Red: Estimated conditional distribution p
(
y | B−1

ϕ̂ (x), ϕ̂
)
based on one realiza-

tion of time series Yt of length 1000; Green: pmf of Poisson(x); x denotes the mean of the
exponential family; Left: x = 1; Middle: x = 3; Right: x = 5.

4.5.2 Empirical examples

1. Number of transactions of Ericsson stock

We first look at the number of transactions per minute for the stock Ericsson B during July

2nd, 2002. This dataset is a typical example of time series of counts data and has been con-

sidered by Guikema and Goffelt (2008); Brännäs and Quoreshi (2010); Davis and Liu (2016),

etc. According to the analysis in Davis and Liu (2016), negative binomial based models are

more appropriate than Poisson based models, which is reasonable since the mean number

of transactions per minute is 9.91 with a sample variance of 32.84, indicating strong over-

dispersion in the data. Figure 4.5 contains the plot of the time series and the sample ACF of

the data, which shows positive serial correlation. Davis and Liu (2016) set knots at sample

quantiles and selected the number of knots via AIC for the mean function. They suggest

that the NB INGARCH(1,1) and 1-knot NB models fit relatively better than the Poisson

based models or those with higher number of knots. Therefore, we fit a semiparametric (SP)

INGARCH(1,1) model and a 1-knot SP model by maximizing the objective function (4.10)
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Figure 4.3: Histogram of CMLE θ̂ of Poisson INGARCH(1,1) of sample size 1000; The
dashed vertical lines stand for the true values of the parameters.
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Figure 4.4: Histogram of QMLE θ̃ of Poisson INGARCH(1,1) of sample size 1000; The
dashed vertical lines stand for the true values of the parameters.

over Θ× Gn for comparison.

The fitted SP INGARCH(1, 1) is X̂t = 0.2776 + 0.8392X̂t−1 + 0.1328Yt−1. The fitted

1-knot SP model is

X̂t = 1.1014 + 0.7331X̂t−1 + 0.1275Yt−1 + 0.1085(Yt−1 − 9)+.

According to the analysis of Davis and Liu (2016), the estimated conditional distribution of

the 1-knot NB model was given by NB(8, 8
8+X̂t

). Figure 4.6 plots the estimated conditional

distribution p(y | B−1
ϕ̂ (x), ϕ̂) of the 1-knot SP model for the Ericsson stock data, the negative

binomial distribution NB(8, 8
x+8) and the Poisson(x) distribution, where x denotes the mean

of the distribution. For small mean value, the estimated conditional distribution p(y |
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Figure 4.5: Left: Number of transactions per minute of the stock Ericsson during July 2nd
2002; Right: ACF of the data.

B−1
ϕ̂ (x), ϕ̂) is closer to the negative binomial distribution than to the Poisson distribution

with the same mean. As the mean increases, p(y | B−1
ϕ̂ (x), ϕ̂) is data-driven and is skewed

more to the right. We adopt some of the graphical and quantitative diagnostic tools used

in Davis and Liu (2016) to measure the goodness of the fitted models. See Davis et al.

(2003) and Jung and Tremayne (2011) for a detailed exposition. The standardized Pearson

residuals are calculated according to the formula

et =
Yt − E(Yt | Ft−1)√
V ar(Yt | Ft−1)

.

The residuals should follow a white noise sequence if the model assumptions are correct.

For the SP model, the conditional mean E(Yt | Ft−1) is equal to X̂t = gθ̂(X̂t−1, Yt−1) and

the conditional variance V ar(Yt | Ft−1) can be obtained by computing the second moment

of the estimated conditional distribution p
(
y | B−1

ϕ̂ (X̂t), ϕ̂
)
. As shown in the top of Figure
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Figure 4.6: The red line is the estimated conditional distribution p
(
y | B−1

ϕ̂ (x), ϕ̂
)
for the

transactions data, the blue line is the pmf of NB (8, 8
8+x) and the green line is the pmf of

Poisson(x); x denote the mean of the exponential family; Left: x = 15; Right: x = 20.
.

4.7, the fitted conditional mean process Xt(θ̂) by the 1-knot SP model follows the count time

series very well. The sample ACF of the residuals by SP INGARCH(1,1) and 1-knot SP

models plotted in the bottom of Figure 4.7 do not exhibit any serial correlation, indicating

that the residuals are compatible with white noise.

The probability integral transform (PIT) is another useful tool for testing the distri-

butional assumptions of models, see Fokianos (2001). For a random variable X with a

continuous distribution F , the PIT, F (X), is known to have a standard uniform distribu-

tion. When the underlying distributions are discrete, adjustments are required. We consider

the randomized PIT, which is obtained by perturbing the step-function nature of CDF for

discrete random variables, see Czado et al. (2009). Given time series of counts data Yt, the
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Figure 4.7: Top: The black line is the number of transactions of Ericsson stock, and the
red line is the fitted conditional mean process by 1-knot SP model; Bottom: ACF of the
standardized Pearson residuals of SP INGRACH(1, 1) (left) and 1-knot SP model (right) for
the transactions data.

conditional randomized PIT is defined by

Ut := Ft(Yt−1) + νt [Ft(Yt)− Ft(Yt − 1)] ,

where {νt} is an iid sequence drawn from the standard uniform distribution and Ft(·) is the

predictive cumulative distribution of Yt. If the model is correctly specified, {Ut} should be an

iid sequence distributed as Uniform (0, 1). The histograms and QQ-plots of the randomized

PIT are given in Figure 4.8 to test if Ut follows the standard uniform distribution. The p-

values of Kolmogorov-Smirnov test are reported in Table 4.3. The randomized PIT of the two
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fitted SP models are both close to the uniform distribution. The predictive power of models
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Figure 4.8: Left: Histograms of the randomized PIT for SP INGARCH(1,1) model and
1-knot SP model fitted to the transactions data, respectively; Right: QQ-plots of corre-
sponding randomized PIT against the uniform distribution.

can be assessed by proper scoring rules (Czado et al., 2009; Fokianos, 2015). Denote a scoring

rule for the predictive distribution pt and the observation Yt by S (pt, Yt). The average score

for each model is computed as 1
n

∑n
t=1 S (pt, Yt). Generally, models with the lowest mean

score are preferable. We consider three scoring rules: logarithmic score (LS), quadratic

score (QS), and ranked probability score (RPS). See Table 4.2 for exact formulas. Each

of them measures different distances between the predictive distribution and the observed

data. Table 4.3 reports the scores for the two fitted semiparametric models. The results

for NB INGARCH(1,1) and 1-knot NB models are based on the analysis of Davis and Liu

(2016). As seen from Table 4.3, there are no significant differences between the scores, which

indicates that the negative binomial based models provide good fits to the Ericsson stock

data.
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Scoring rule Definition S (pt, Yt)

logarithmic score − log (pt(Yt))

quadratic score −2pt(Yt) + ‖pt‖2
ranked probability score

∑∞
y=0

(
Ft(y)− δ{Yt6y}

)
Table 4.2: Definitions of some of the scoring rules (Czado et al., 2009); Ft is CDF of pt and
‖pt‖2 =

∑∞
y=0 pt(y)2.

Model log likelihood p−value of PIT LS QS RPS
NB INGARCH(1,1) -1332.02 0.7386 2.8958 -0.0671 2.6063
SP INGARCH(1,1) -1330.67 0.6955 2.8732 -0.0676 2.6038
1-knot NB -1331.34 0.8494 2.8942 -0.0671 2.6021
1-knot SP -1330.56 0.7204 2.8797 -0.0665 2.6175

Table 4.3: Quantitative model checking for Ericsson B stock data.

2. Campylobacter infections in Canada

For the second example, we study the number of campylobacterosis cases (reported every

28 days) in the North of Québec in Canada from January 1990 to the end of October 2000.

Campylobacterosis is an acute bacterial infectious disease and can be caused by eating

unhealthy food. Infected people may suffer from abdominal pain, cramps and fever within

2 or 3 days of exposure to the organism. This dataset is available in R package tscount. A

detailed description of the dataset can be found in Ferland et al. (2006). Figure 4.9 contains

the plot of the data. The empirical ACF shows strong positive serial correlation. Ferland

et al. (2006) considered a Poisson INGARCH(13, 1) model:

Yt | Ft ∼ Poisson(λt), λt = 2.3135 + 0.2752λt−13 + 0.5484Yt−1.

Following the analysis of Ferland et al. (2006), we consider an INGARCH(1,1) model based

on the Negative Binomial distribution and the SP approach, respectively. Table 4.4 reports

the estimates of NB INGARCH(1, 1) and the SP INGARCH(1, 1) models. As seen from

the table, the estimates obtained by different fitting methods are very close. The estimated
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Figure 4.9: Left: Number of campylobacterosis cases (reported every 28 days) in the North
of Québec in Canada between January 1990 and October 2000; Right: Sample ACF of the
data.

conditional distribution of the NB INGARCH(1, 1) model is NB(10, 10
10+X̂t

). The estimated

conditional distribution p(y | B−1
ϕ̂ (x), ϕ̂) of the SP INGARCH(1, 1) model for the campy-

lobacter infections data is given in Figure 4.10. As the mean increases, p(y | B−1
ϕ̂ (x), ϕ̂)

is more skewed to the right, while the negative binomial distribution NB(10, 10
10+x) and the

Poisson distribution with the same mean change only slightly in shape. The top of Fig-

ure 4.11 plots the fitted conditional mean process Xt(θ̂) of the SP INGRACH(1, 1) model,

which moves along with the count time series. The standardized Pearson residuals shown

in the bottom of Figure 4.11 appear to be white noise. The randomized PIT histogram

given in Figure 4.12 corresponding to the SP INGARCH(1,1) model appears to be the clos-

est to the uniform distribution. The scores given in Table 4.5 are also in favor of the SP

INGARCH(1,1) model.
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δ α β

NB INGARCH(1, 1) 2.2132 0.2691 0.5463
SP INGARCH(1, 1) 2.1873 0.2640 0.5465
QMLE θ̃ 1.9248 0.3626 0.4781

Table 4.4: Estimates of the INGARCH(1, 1) models for the campylobacter infections data.
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Figure 4.10: The red line is the estimated conditional distribution p
(
y | B−1

ϕ̂ (x), ϕ̂
)
for the

campylobacter infections data, the blue line is the pmf of NB (10, 10
10+x) and the green line

is the pmf of Poisson(x); x denote the mean of the exponential family; Left: x = 15; Right:
x = 20.

Model log likelihood p−value of PIT LS QS RPS
Poisson INGARCH(13, 1) -435.4042 0.3846 3.1100 -0.0689 2.6870
NB INGARCH(1, 1) -404.1755 0.7409 2.9046 -0.0705 2.6709
SP INGARCH(1, 1) -391.6108 0.8387 2.8141 -0.0717 2.6667

Table 4.5: Quantitative model checking for campylobacter infections data.
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Figure 4.11: Top: The black line is the number of campylobacter cases, and the red line
is the fitted conditional mean process by SP INGARCH(1, 1) model; Bottom: ACF of the
standardized Pearson residuals of Poisson INGARCH(13, 1) (left) and SP INGARCH(1, 1)
(right) for the campylobacter infectious data.
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Figure 4.12: Randomized PIT histograms applied to the campylobacter infections data;
Left: histograms of randomized PIT; Right: QQ-plots of corresponding randomized PIT
against the uniform distribution.
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3. Homicides data

Another example is the weekly number of deaths recorded at the Salt River state mortuary,

Cape Town, for the period time 1986−1991. This dataset can be downloaded from the web-

site http://www.hmms-for-time-series.de/second/data. The left plot in Figure 4.13 shows

this count time series. There are 312 observations in total. The sample mean is 2.63 and the

sample variance is 6.59, indicating overdispersion in the data. The sample ACF of the time

series, as shown in the right plot of Figure 4.13, shows strong positive serial correlation. We

0 50 150 250

0
5

10
15

Time

y t

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F
yt

Figure 4.13: Left: Weekly number of deaths recorded at the Salt River state mortuary, Cape
Town, between 1986− 1991; Right: Sample ACF of the data.

consider an INGARCH(1,1) model based on the SP approach. Table 4.6 shows the MLEs of

the mean model based on the Poisson distribution, the negative binomial distribution and

the SP approach, respectively. The estimators under the different distributional assump-

tions are very close. Note that the three fitted models all give small estimated intercept,

which is reasonable since the sample mean of the homicides data is relatively small. The

http://www.hmms-for-time-series.de/second/data
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distribution coefficient r of the NB INGARCH(1, 1) model is 4. The estimated conditional

distribution p(y | B−1
ϕ̂ (x), ϕ̂) of the SP INGARCH(1, 1) model for the homicides data shown

in Figure 4.14 is skewed to the left when the mean is small and has fatter tails than those of

the negative binomial distribution and the Poisson distribution with the same mean. When

the mean increases, p(y | B−1
ϕ̂ (x), ϕ̂) is skewed to the right. The fitted conditional mean

process Xt(θ̂) shown in the top of Figure 4.15 follows the count time series well and there

is no apparent serial correlation in the standardized Pearson residuals by looking at the

corresponding sample ACF plot in the bottom of Figure 4.15. The randomized PIT of the

SP INGARCH(1,1) model, shown in Figure 4.16, appears to be the closest to the uniform

distribution. The scores given in Table 4.7 are also in favor of the SP INGARCH(1,1) model.

δ α β

Poisson INGARCH(1, 1) 0.0436 0.8641 0.1259
NB INGARCH(1, 1) 0.0474 0.8716 0.1159
SP INGARCH(1, 1) 0.0826 0.8379 0.1307

Table 4.6: Estimates of the INGARCH(1, 1) models for homicides data.

Model log likelihood p−value of PIT LS QS RPS
Poisson INGARCH -631.6997 0.0752 2.0231 -0.1694 1.1026
NB INGARCH(1,1) -610.6602 0.4755 1.9565 -0.1753 1.0857
SP INGARCH(1,1) -607.6660 0.6339 1.9476 -0.1758 1.0884

Table 4.7: Quantitative model checking for homicides data.
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Figure 4.14: The red line is the estimated conditional distribution p
(
y | B−1

ϕ̂ (x), ϕ̂
)
for the

homicides data, the blue line is the pmf of NB (4, 4
4+x) and the green line is the pmf of

Poisson(x); x denote the mean of the exponential family; Left: x = 4; Right: x = 8.
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Figure 4.15: Top: The black line is the weekly number of homicides, and the red line is
the fitted conditional mean process by SP INGARCH(1, 1) model; Bottom: ACF of the
standardized Pearson residuals of the SP INGARCH(1, 1) for homicides data.
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Figure 4.16: Randomized PIT histograms applied to the homicides data; Left: histograms
of randomized PIT; Right: QQ-plots of corresponding randomized PIT against the uniform
distribution.
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4. Breech births data

The left plot of Figure 4.17 shows the number of monthly breech births in Edendale hospi-

tal of Pietermaritzburg in South Africa from February 1977 to January 1986. This count

time series is of length 108 and is reported by Zucchini and MacDonald (2009). It can be

downloaded from the website http://www.hmms-for-time-series.de/second/data. Although

the sample ACF of the data (see the right plot of Figure 4.17) shows a reduced degree of

autocorrelation between successive observations, we can apply the same analysis as in the

previous examples. The data are overdispersed since the sample mean is 18.18 and the

sample variance is 62.24. INGARCH(1,1) models based on the Poisson distribution, the
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Figure 4.17: Left: Number of monthly breech births in Edendale hospital of Pietermaritzburg
in South Africa from February 1977 to January 1986; Right: Sample ACF of the data

negative binomial distribution and the semiparametric approach are considered. The esti-

mates of the three fitted models are reported in Table 4.8. The data analysis in this case

shows again that the semiparametric model is superior to the Poisson and negative binomial

http://www.hmms-for-time-series.de/second/data
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based models.

δ α β

Poisson INGARCH(1, 1) 12.0498 0.0754 0.2675
NB INGARCH(1, 1) 12.3370 0.0537 0.2736
SP INGARCH(1, 1) 12.0999 0.0706 0.2636

Table 4.8: Estimates of the INGARCH(1, 1) models for breech births data.
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Figure 4.18: The red line is the estimated conditional distribution p
(
y | B−1

ϕ̂ (x), ϕ̂
)
for the

breech births data, the blue line is the pmf of NB (8, 8
8+x) and the green line is the pmf of

Poisson(x); x denote the mean of the exponential family; Left: x = 10; Right: x = 25.

Model log likelihood p−value of PIT LS QS RPS
Poisson INGARCH -425.2814 0.0006 3.9694 -0.0236 4.5321
NB INGARCH(1,1) -372.1538 0.8901 3.4554 -0.0372 4.2706
SP INGARCH(1,1) -358.5313 0.9893 3.3266 -0.0396 4.2563

Table 4.9: Quantitative model checking for breech births data
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Figure 4.19: Top: The black line is the number of monthly breech births, and the red line
is the fitted conditional mean process by SP INGARCH(1, 1) model; Bottom: ACF of the
standardized Pearson residuals of SP INGARCH(1, 1) model for breech births data.
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SP INGARCH(1,1)
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Figure 4.20: Randomized PIT histograms applied to the breech births data; Left: histograms
of randomized PIT; Right: QQ-plots of corresponding randomized PIT against uniform
distribution.
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4.6 Appendix

First we state some relevant results in Dümbgen et al. (2011) that have important ap-

plications in our semiparametric estimation framework. Let P denote the collection of

non-degenerate probability measures on the real line with finite first moment. The convex

support of the distribution Q ∈ P is defined as

csupp(Q) := ∩{C : C ⊂ R closed and convex, Q(C) = 1}.

Define

h(Q, x) := sup{Q(C) : C ⊂ R closed and convex, x /∈ interior(C)}.

Dümbgen et al. (2011) have given a nice introduction to the log-concave density class H and

characterized some interesting properties of csupp(Q) and h(Q, x) for a general distribution

function Q ∈ P; see Lemmas 4.6.1, 4.6.2, and 4.6.3.

Lemma 4.6.1. A point x ∈ R is an interior point of the convex support of Q ∈ P if and

only if h(Q, x) < 1.

Lemma 4.6.2. Suppose that a sequence Qn ∈ P converges weakly to Q ∈ P. Then

lim sup
n→∞

h(Qn, x) 6 h(Q, x) for every x ∈ R.

Lemma 4.6.3. For function ϕ ∈ H, we have

ϕ(x) > −
max(N, 0)−

´
ϕdQ

1− h(Q, x)
,

where N := supx∈R ϕ(x).
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Proof. It follows from the proof of Theorem 2.2 in Dümbgen et al. (2011).

Proposition 4.6.4. Suppose that a concave sequence {ϕn ∈ H} converges pointwise to some

function ϕ. Then Aϕn(η) and Bϕn(η) converge to Aϕ(η) and Bϕ(η) on any compact subset of

{η : Aϕ(η) <∞}, respectively. Moreover, the inverse function of Bϕn(η), B−1
ϕn (x), converges

to B−1
ϕ (x) uniformly on any compact set of R(Bϕ).

Proof. Due to the concavity, {ϕn ∈ H} converges uniformly to ϕ on any compact subset

of {y : ϕ(y) > −∞}. For any η ∈ {η : Aϕ(η) < ∞}, the sequence {ϕn(y) + ηy} converges

uniformly to ϕ(y)+ηy on any compact subset of {y : ϕ(y) > −∞} as well. Since Aϕ(η) <∞,

supy∈R (ϕ(y) + ηy) is bounded. As a result, there exist two constants a and b > 0 such that

ϕn(y) + ηy 6 a− by for all n and y ∈ R+.

Recall

Aϕn(η) = log

∞∑
y=0

exp (ϕn(y) + ηy)

and

Bϕn(η) = A′ϕn(η) =

∑∞
y=0 y exp (ϕn(y) + ηy)

exp (Aϕn(η))
.

By the dominated convergence theorem, we have Aϕn(η)→ Aϕ(η) and Bϕn(η)→ Bϕ(η) as

n→∞ for any η ∈ {η : Aϕ(η) <∞}. Note that Aϕn(η) and Bϕn(η) are strictly increasing

functions for n large and their pointwise limits, Aϕ(η) and Bϕ(η), are continuous functions.

Thus the sequences Aϕn(η) and Bϕn(η) converge to Aϕ(η) and Bϕ(η) uniformly on any

compact subset of {η : Aϕ(η) < ∞}, respectively. Furthermore, it’s easy to see that the

inverse function B−1
ϕn (x) converges to B−1

ϕ (x) pointwise on R(Bϕ). The uniform convergence

of B−1
ϕn (x) on any compact set of R(Bϕ) follows from the fact that B−1

ϕn (x) are increasing

functions and the limit B−1
ϕ (x) is continuous.
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Proof of Proposition 4.3.1. Let Qn be the empirical distribution 1
n

∑n
t=1 δYt . For any point

y ∈ interior(cuspp(Qn)) and ϕ = (ϕ1, . . . , ϕK) ∈ Gn, by virtue of Lemma 4.6.3, we have

ϕ(y) > −
max(M1, 0)−

´
ϕdQn

1− h(Qn, y)
.

By construction,
´
ϕdQn 6 −M2 and the empirical distribution Qn ∈ P with probability

one as n→∞. Therefore, the vector ϕ = (ϕ1, . . . , ϕK) belongs to a compact set

[
− max
y∈{Y1,...,Yn}

max(M1, 0) +M2

1− h(Qn, y)
,M1

]K
.

The pointwise limit of a sequence of concave functions preserves concavity and the limit also

satisfies assumptions (G1-G3) by Proposition 4.6.4. As a result, Gn is a compact subset of

RK . Then the continuous function ln(θ, ϕ) attains its maximum on Θ × Gn at some point

(θ̂n, ϕ̂n) ∈ Θ× Gn.

Proof of Proposition 4.4.1. For fixed ϕ ∈ Hϕ0 , p(y | η, ϕ) belongs to the natural exponential

family. Recall ηt(θ) satisfies the equation

Xt(θ) = Bϕ (ηt(θ)) .

Therefore, we have ηt(θ) = B−1
ϕ (Xt(θ)) and

l(θ, ϕ) = E [ϕ(Yt) + ηt(θ)Yt −Aϕ (ηt(θ))]

= E
[
ϕ(Yt) +B−1

ϕ (Xt(θ))Yt −Aϕ
(
B−1
ϕ (Xt(θ))

)]
.

The expectation is taken with respect to the stationary measure of the process {Xt, Yt}.
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Also,

l(θ, ϕ)− l(θ0, ϕ) = E
[
Yt
(
B−1
ϕ (Xt(θ))−B−1

ϕ (Xt(θ0))
)

−
(
Aϕ
(
B−1
ϕ (Xt(θ))

)
−Aϕ

(
B−1
ϕ (Xt(θ0))

))]
= E

[
Xt(θ0)

(
B−1
ϕ (Xt(θ))−B−1

ϕ (Xt(θ0))
)

−
(
Aϕ
(
B−1
ϕ (Xt(θ))

)
−Aϕ

(
B−1
ϕ (Xt(θ0))

))]
=

ˆ
{Xt(θ)6=Xt(θ0)}

Xt(θ0)
(
B−1
ϕ (Xt(θ))−B−1

ϕ (Xt(θ0))
)

−
(
Aϕ
(
B−1
ϕ (Xt(θ))

)
−Aϕ

(
B−1
ϕ (Xt(θ0))

))
dPθ0 .

The second equality is obtained by conditioning on Ft−1. On the set {Xt(θ) 6= Xt(θ0)}, it

follows from the mean value theorem that there exists some ct(θ) ∈ R between B−1
ϕ (Xt(θ))

and B−1
ϕ (Xt(θ0)) such that

Aϕ
(
B−1
ϕ (Xt(θ))

)
−Aϕ

(
B−1
ϕ (Xt(θ0))

)
= Bϕ (ct(θ))

(
B−1
ϕ (Xt(θ))−B−1

ϕ (Xt(θ0))
)
.

Therefore,

l(θ, ϕ)− l(θ0, ϕ) =

ˆ
{Xt(θ) 6=Xt(θ0)}

(Xt(θ0)−B(ct(θ))
(
B−1
ϕ (Xt(θ))−B−1

ϕ (Xt(θ0))
)
dPθ0 .

Note that ct(θ) is a random element that depends on Xt(θ) and Xt(θ0). Since the function

Bϕ(η) is strictly increasing, in the case that Xt(θ) > Xt(θ0), we have

(Xt(θ0)−B(ct(θ))
(
B−1
ϕ (Xt(θ))−B−1

ϕ (Xt(θ0))
)
< 0.

The same result holds as well when Xt(θ) < Xt(θ0). Together with assumption (A2), we

have l(θ, ϕ)− l(θ0, ϕ) < 0 for any θ 6= θ0.



107

Proposition 4.6.5. For any (θ, ϕ) ∈ Θ×Hϕ0 \ (θ0, ϕ0), l(θ, ϕ) < l(θ0, ϕ0).

Proof. Since l(θ, ϕ) < l(θ0, ϕ) for any ϕ ∈ Hϕ0 , we have

sup
θ∈Θ,ϕ∈Hϕ0

l(θ, ϕ) = sup
ϕ∈Hϕ0

l(θ0, ϕ)

= sup
ϕ∈Hϕ0

E
[
log p

(
Yt | B−1

ϕ (Xt), ϕ
)]

= sup
ϕ∈Hϕ0

E
[
E
(
log p

(
Yt | B−1

ϕ (Xt), ϕ
)
| Xt

)]
6 E

[
E
(
log p

(
Yt | B−1

ϕ0
(Xt), ϕ0

)
| Xt

)]
= E

[
log p

(
Yt | B−1

ϕ0
(Xt), ϕ0

)]
.

= l(θ0, ϕ0),

where the inequality follows from the non-negativity of Kullback-Leibler divergence. Equal-

ity holds if and only if p
(
y | B−1

ϕ (x), ϕ
)

= p
(
y | B−1

ϕ0
(x), ϕ0

)
on X , which implies ϕ = ϕ0

almost everywhere. Therefore, (θ0, ϕ0) is the unique maximizer of l(θ, ϕ) over Θ×Hϕ0 .

Proposition 4.6.6. Assume {ϕn ∈ Gn} converges pointwise to some ϕ ∈ H. Suppose that

η is bounded below by some η∗ ∈ {Aϕ(η) < ∞} and A′′ϕ(η) is bounded away from 0 on

[η∗,∞) ∩ {η : Aϕ(η) <∞}. Then there exists some constant c ∈ R+ such that

A′′ϕn(η) > c > 0 for all n large and η ∈ [η∗,∞) ∩ {η : Aϕ(η) <∞}.

Moreover,

B−1
ϕn (x) 6 B−1

ϕn (x∗) +
1

c
(x− x∗).

Proof. Since Aϕ(η) is convex, the set [η∗,∞)∩{η : Aϕ(η) <∞} is an interval [η∗, η1), where

η1 = sup{η : A(η) < ∞} and η1 can be +∞. Let Un,η be a random variable distributed as
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p(· | η, ϕn). Then we have A′′ϕn(η) = V ar(Un,η). If there exists a sequence {ηn} such that

V ar(Un,ηn)→ 0 as n→∞, we consider the two cases:

Case I: There exists a subsequence {ηnk} of {ηn} that converges to some η̃ ∈ [η∗, η1). Since

p(· | ηnk , ϕnk) converges to p(· | η̃, ϕ) pointwise, we can find a, b ∈ R with b > 0 such

that the concave sequence log p(y | ηnk , ϕnk) is uniformly bounded above by a − by.

Hence, by the dominated convergence theorem, we have V ar(Unk,ηnk )→ V ar(U) = 0,

where U is a random variable distributed as p(· | η̃, ϕ). However, the distribution

p(y | η̃, ϕ) is non-degenerate and V ar(U) = A′′ϕ(η̃) > 0, which is a contradiction.

Case II: There exists a subsequence {ηnk} of {ηn} that converges to η1. For notation conve-

nience, let {ηn} itself denote the subsequence {ηnk}. SinceB
(3)
ϕn (η) = E (Un,η − EUn,η)4 >

0, B′′ϕn(η) = E (Un,η − EUn,η)3 is a convex function and it converges pointwise to

B′′ϕ(η) on {η : Aϕ(η) <∞} by the dominated convergence theorem. Thus there exists

η2 ∈ {η : Aϕ(η) <∞} < η1 such that B′′ϕn(η) and B′′ϕ(η) do not change sign on [η2, η1)

for all n large. Then we can see that B′ϕn(η) and B′ϕ(η) are decreasing functions on

[η2, η1) for all n large since limn→∞B
′
ϕn(ηn) = V ar(Un,ηn) = 0, which implies

lim
n→∞

B′ϕ(ηn) = lim
n→∞

B′ϕn(ηn) = 0.

This contradicts the assumption that A′′ϕ(η) is bounded away from 0 on [η∗, η1).

From Cases I and II, we conclude that there exists c > 0 such that A′′ϕn(η) > c > 0 for all n

large and η ∈ [η∗, η1). In addition,

(
B−1
ϕn

)′
(x) =

1

B′ϕn
(
B−1
ϕn (x)

) 6
1

c
, for all n and x ∈ R(Bϕ).
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It then follows that

B−1
ϕn (x) = B−1

ϕn (x∗) +

ˆ x

x∗

(
B−1
ϕn

)′
(v)dv

6 B−1
ϕn (x∗) +

1

c
(x− x∗).

The bounded Lipschitz distance between two probability measures P and Q is defined

as

DBL(P,Q) := sup
‖f‖∞61,‖f‖L61

|
ˆ
fd(P −Q)|,

with ‖f‖∞ := supx|f(x)| and ‖f‖L = supx 6=y|f(x)− f(y)|/|x− y|. It is well-known that the

bounded Lipschitz distance metrizes the weak convergence of probability measures (Pollard,

1984), that is, a sequence of probability measure Qn converges weakly to some probability

measure Q if and only if limn→∞DBL(Qn, Q) = 0. Let Pn(θ) and P (θ) denote the empirical

measure 1
n

∑n
t=1 δ(Xt(θ),Yt)

T and the stationary measure of (Xt(θ), Yt)
T , respectively. By

Theorem 2.2 in Berti et al. (2006), the sequence of random measures Pn(θ) converges weakly

to P (θ) almost surely for each θ ∈ Θ, i.e.,

DBL (Pn(θ), P (θ))
a.s.−→ 0 as n→∞.

In fact, {Pn(θ)}θ admits a stronger convergence result as shown in Proposition 4.6.7.

Proposition 4.6.7.

sup
θ∈Θ

DBL (Pn(θ), P (θ))
a.s.−→ 0 as n→∞.

Proof. For any θ ∈ Θ and any bounded Lipschitz function f on R2 with ‖f‖∞ 6 1 and
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‖f‖L 6 1, by inequality (4.8), we have

|f (gθ(x, y), z)− f
(
gθ(x

′, y′), z′
)
| 6 |gθ(x, y)− gθ(x′, y′)|+ |z − z′|

6 a|x− x′|+ b|y − y′|+ |z − z′|

6 2
1
2

√
(x− x′)2 + (y − y′)2 + (z − z′)2,

for any x, x′ > 0 and y, y′, z, z′ ∈ X , which implies the function fθ(x, y, z) := f (gθ(x, y), z)

is a bounded Lipschitz function on R+ ×X × X with ‖fθ‖L 6
√

2. Note that

f (Xt(θ), Yt) = fθ(Xt−1, Yt−1, Yt).

Hence, ˆ
f d (Pn(θ)− P (θ)) =

ˆ
fθ d (Qn −Q) ,

where Qn and Q denote the empirical measure 1
n

∑n
t=1 δ(Xt−1,Yt−1,Yt)T and the stationary

measure of the vector (Xt−1, Yt−1, Yt)
T , respectively. Then

sup
θ∈Θ,‖f‖∞61,‖f‖L61

∣∣∣∣ˆ f d (Pn(θ)− P (θ))

∣∣∣∣ = sup
θ∈Θ,‖fθ‖∞61,‖fθ‖L6

√
2

∣∣∣∣ˆ fθ d (Qn −Q)

∣∣∣∣
6
√

2DBL(Qn, Q),

which implies

sup
θ∈Θ

DBL (Pn(θ), P (θ))
a.s.−→ 0 as n→∞.
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Proposition 4.6.8.

lim sup
n→∞

sup
θ∈Θ,ϕ∈Gn

ln(θ, ϕ) 6 sup
θ∈Θ,ϕ∈Hϕ0

l(θ, ϕ) a.s.. (4.16)

Proof. First we follow the argument of proof of Theorem 4.5 in Dümbgen et al. (2011)

to show a compactness property of log-concave density sequence. Denote Ω′ as the set

{ω ∈ Ω : limn→∞ supθ∈ΘDBL (Pn(θ), P (θ)) = 0}. For each ω ∈ Ω′, the empirical measure

Qn := 1
n

∑n
t=1 δYt converges weakly to the stationary distribution of Yt, which is denoted as

Q. Thus, by Lemma 4.6.2, we have

lim sup
n→∞

h (Qn, y) 6 h (Q, y) < 1

for any point y ∈ interior(cuspp (Q)). According to Lemma 4.6.3, for any sequence {ϕn ∈

Gn}n, we have

ϕn(y) > −
max(Nn, 0)−

´
ϕn dQn

1− h(Qn, y)
,

where Nn := supy∈R ϕn(y). The sequence Nn is uniformly bounded above by M1 and the

integral
´
ϕn dQn is uniformly bounded below by −M2. As a result,

inf
n>1

ϕn(y) > − M1 +M2

1− h(Q, y)
> −∞

for any y ∈ interior(cuspp(Q)). In addition, since the sequence Nn is uniformly bounded,

we deduce from the proof of Theorem 2.2 in Dümbgen et al. (2011) that there exist two

constants a and b with b > 0 such that

ϕn(y) 6 a− by for all n and y ∈ R.
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Then according to Lemma 4.2 in Dümbgen et al. (2011), there exists a subsequence {ϕnk}k

of {ϕn}n which converges to some concave function ψ pointwise on interior(cuspp(Q)). In

particular, interior(cuspp(Q)) ⊂ {y : ψ(y) > −∞},
´
eψ(y) dy = 1 and

´
yeψ(y) d y = 1

by the dominated convergence theorem, which implies ψ ∈ Hϕ0 . For notation convenience,

let {ϕn}n be the subsequence that converges to the function ψ. Due to the concavity, the

sequence {ϕn}n converges to ψ uniformly on any compact subset of {y : ψ(y) > −∞}.

By virtue of Proposition 4.6.4, the sequences Aϕn(η) and Bϕn(η) converge to Aψ(η) and

Bψ(η) uniformly on any compact subset of {η ∈ R : Aψ(η) <∞}, respectively. The inverse

function B−1
ϕn (x) converges to B−1

ψ (x) uniformly on any compact set of R(Bψ) as well.

Let {θn ∈ Θ}n be any sequence that converges to some θ∗ ∈ Θ. Then Pn(θn) con-

verges weakly to P (θ∗) for the fixed ω ∈ Ω′. We follow the same argument of the proof

for Theorem 4.5 in Dümbgen et al. (2011). By Skorohod’s representation theorem (Billings-

ley, 2013), there exists a probability space (Ω′′,A,P) with bivariate random vectors Zn =

(Zn,1, Zn,2)T ∼ Pn(θn) and Z = (Z1, Z2) ∼ P (θ∗) such that Zn converges to Z almost surely.

Since Aϕn
(
B−1
ϕn (x)

)
is an increasing function, we have

Aϕn(B−1
ϕn (Zn,1))−Aϕn

(
B−1
ϕn (x∗)

)
> 0.

By Fatou’s lemma,

lim inf
n→∞

E
[
Aϕn(B−1

ϕn (Zn,1))−Aϕn
(
B−1
ϕn (x∗)

)]
> E

[
Aψ

(
B−1
ψ (Z1)

)
−Aψ

(
B−1
ψ (x∗)

)]
,

which implies

lim sup
n→∞

E
[
−Aϕn(B−1

ϕn (Zn,1))
]
6 −E

[
Aψ

(
B−1
ψ (Z1)

)]
. (4.17)
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Note that ϕn ∈ Gn and hence by construction, we have

B−1
ϕn (Zn,1) 6 B−1

ϕn (x∗) +M3(Zn,1 − x∗).

Applying Fatou’s lemma again,

lim inf
n→∞

E
[
B−1
ϕn (x∗)Zn,2 +M3(Zn,1 − x∗)Zn,2 −B−1

ϕn (Zn,1)Zn,2
]

> E
[
B−1
ψ (x∗)Z2 +M3(Z1 − x∗)Z2 −B−1

ψ (Z1)Z2

]
.

Hence,

lim sup
n→∞

E
[
B−1
ϕn (Zn,1)Zn,2

]
6 E

[
B−1
ψ (Z1)Z2

]
. (4.18)

Inequalities (4.17) and (4.18) imply that

lim sup
n→∞

E
[
ϕn(Z2) +B−1

ϕn (Zn,1)Zn,2 −Aϕn
(
B−1
ϕn (Zn,1)

)]
6 l(θ∗, ψ).

Therefore, for the fixed ω ∈ Ω′,

lim sup
n→∞

ln(θn, ϕn) 6 l(θ∗, ψ)

6 sup
θ∈Θ,ϕ∈Hϕ0

l(θ, ϕ).

Note that (θn, ϕn) are arbitrary sequences in Θ × Gn and {ω : ω /∈ Ω′} is a null-set. Then

the inequality (4.16) follows.

Corollary 4.6.9. On the set Ω′, {Gn}n is compact in the sense that any subsequence of

{ϕn ∈ Gn}n has a further subsequence with pointwise limit ψ belonging to Hϕ0. In addition,

let {ϕn ∈ Gn}n be the convergent subsequence with limit ψ and {θn ∈ Θ}n be any sequence
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that converges to some θ∗ ∈ Θ. Then

lim sup
n→∞

ln(θn, ϕn) 6 l(θ∗, ψ).

Proof. See the proof of Proposition 4.6.8.

Proposition 4.6.10. ϕn0 ∈ Gn for large n a.s. and l(θ0, ϕ0) 6 lim infn→∞ ln(θ0, ϕ
n
0 ) a.s..

Proof. It’s easy to see that ϕ̃n0 converges pointwise to ϕ0 a.s. and ϕ̃n0 6 ϕ0. By the dominated

convergence theorem, the sequences Aϕ̃n0 (η) and Bϕ̃n0 (η) converge pointwise to Aϕ0(η) and

Bϕ0(η) a.s., respectively. Since both Aϕ̃n0 (η) and Bϕ̃n0 (η) are increasing functions, we have

Aϕ̃n0 (η) and Bϕ̃n0 (η) converge almost surely to Aϕ0(η) and Bϕ0(η) uniformly on any compact

subset of {η ∈ R : Aϕ0(η) < ∞}, respectively. The inverse functions B−1
ϕ̃n0

(x) converge

to B−1
ϕ0

(x) uniformly on any compact set of R(Bϕ0) as well. Note that
´∞
0

yeϕ0(y) d y´∞
0

eϕ0(y) d y
= 1.

Therefore, the sequence η∗n, which satisfies the equation
´∞
0

yeϕ̃
n
0 (y)+ηy d y´∞

0
eϕ̃
n
0 (y)+ηy d y

= 1, converges to

zero almost surely and
´∞
0

eϕ̃
n
0 (y)+η∗ny d y

a.s.−→ 1. Hence ϕn0 converges pointwise to ϕ0 almost

surely. According to assumption (A5), Xt > x∗ ∈ R(Bϕ0). Therefore B−1
ϕn0

(Xt) > B−1
ϕn0

(x∗).

It follows from Assumption (A7) and Proposition 4.6.6 that ϕn0 ∈ Gn for large n a.s..

Recall that the empirical distribution Pn(θ0) = 1
n

∑n
t=1 δ(Xt,Yt)T converges to the sta-

tionary distribution of (Xt, Yt)
T , P (θ0), almost surely. We now apply the idea of the proof

for Theorem 4.5 in Dümbgen et al. (2011) again. By Skorohod’s representation theorem

(Billingsley, 2013), there exists a probability space (Ω,A,P) with bivariate random vectors

Zn = (Zn,1, Zn,2)T ∼ Pn(θ0) and Z = (Z1, Z2)T ∼ P (θ0) such that Zn converges to Z almost

surely. Note that B−1
ϕn0

(Xt)Yt −B−1
ϕn0

(x∗)Yt > 0, and hence by Fatou’s lemma,

lim inf
n→∞

1

n

n∑
t=1

[
B−1
ϕn0

(Xt)Yt −B−1
ϕn0

(x∗)Yt

]
= lim inf

n→∞
E
[
B−1
ϕn0

(Zn,1)Zn,2 −B−1
ϕn0

(x∗)Zn,2

]
> E

[
B−1
ϕ0

(Z1)Z2 −B−1
ϕ0

(x∗)Z2

]
,
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which implies

lim inf
n→∞

1

n

n∑
t=1

B−1
ϕn0

(Xt)Yt > E
[
B−1
ϕ0

(Z1)Z2

]
. (4.19)

For x ∈ R(Bϕ0), the derivative of the function Aϕn0
(
B−1
ϕn0

(x)
)
with respect to x is given by

dAϕn0

(
B−1
ϕn0

(x)
)

dx
= Bϕn0

(
B−1
ϕn0

(x)
)(

B−1
ϕn0

)′
(x)

=
x

B′ϕn0

((
B−1
ϕn0

)
(x)
)

According to assumption (A7) and Proposition 4.6.6, there exists some c > 0 such that

B′ϕn0
(η) > c for n large and η ∈ [B−1

ϕ0
(x∗),∞) ∩ {Aϕ0(η) <∞}. Therefore

dAϕn0

(
B−1
ϕn0

(x)
)

dx
6
x

c
for all n and x ∈ R(Bϕ0).

It then follows that

Aϕn0

(
B−1
ϕn0

(x)
)

= A−1
ϕn0

(
B−1
ϕn0

(x∗)
)

+

ˆ x

x∗

dAϕn0

(
B−1
ϕn0

(v)
)

dv
dv

6 A−1
ϕn0

(
B−1
ϕn0

(x∗)
)

+
1

2c

(
x2 − (x∗)2

)
.

Now applying Fatou’s lemma again,

lim inf
n→∞

E

[
A−1
ϕn0

(
B−1
ϕn0

(x∗)
)

+
1

2c

(
Z2
n,1 − (x∗)2

)
−Aϕn0

(
B−1
ϕn0

(Zn,1)
)]

> E

[
A−1
ϕ0

(
B−1
ϕ0

(x∗)
)

+
1

2c

(
Z2

1 − (x∗)2
)
−Aϕ0

(
B−1
ϕ0

(Z1)
)]
. (4.20)
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Note that EX2
t <∞ by assumption (A8), and hence

lim inf
n→∞

1

n

n∑
t=1

−Aϕn0
(
B−1
ϕn0

(Xt)
)

= lim inf
n→∞

E
[
−Aϕn0

(
B−1
ϕn0

(Zn,1)
)]

> E
[
−Aϕ0

(
B−1
ϕ0

(Z1)
)]
. (4.21)

Combining (4.19) and (4.21), we have

l(θ0, ϕ0) 6 lim inf
n→∞

ln(θ0, ϕ
n
0 ) a.s..
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Chapter 5

Conclusions and Future Work

This thesis focuses on developing applications of shape constraint estimation for time series

models. First, we propose a semiparametric estimation procedure for non-Gaussian non-

minimum phase ARMA models using log-concave projection, where the underlying noise

distribution can be learned simultaneously. The consistency of the semiparametric MLE

follows from the properties of log-concave projection and the Entropy Power Inequality. We

obtain a lower bound for the best asymptotic variance of regular estimators at rate
√
n for

AR models and construct a semiparametric efficient estimator. Extension of this estimation

procedure to causal VAR models is also considered. Second, we take advantage of the

exponential distribution family assumption made in many time series of counts models and

propose a semiparametric GLM framework for modeling count time series by incorporating

an infinite dimensional function parameter to the exponential distribution family.

Future directions of this research:

1. As stated in Remark 5, we conjecture that the MLCLE β̂ is semiparametric efficient

with asymptotic variance given by the inverse efficient information matrix. Appendix

2.6.2 contains the current work in studying the asymptotic properties of the MLCLE



118

β̂. We need to control the complexity of the function class {l̃β,f : β ∈ Θ, f ∈ F}

and show it is of finite VC dimension in order to apply empirical process theory for

dependent data and to complete the proof of the asymptotic efficiency of the MLCLE.

2. Chapter 3 generalizes the semiparametric estimation method to causal VAR models

and only shows the consistency of the MLCLE. We hope to extend the estimation

procedure to noncausal VAR models, for which we are only able to show that the true

VAR coefficients are a local maximum of the limiting function.

3. Chapter 4 applies the one-parameter exponential family with a concave baseline func-

tion to the conditional mean models Xt(θ) = gθ(Xt−1, Yt−1) studied in Davis and Liu

(2016). It may be worthwhile to generalize the extended one-parameter exponential

family to other conditional mean models, such as INGARCH models with covariates.

4. In modeling time series of counts, we only show the consistency of the CMLE. It is

interesting to study the asymptotic properties of the CMLE as well.

5. In Chapter 4, the built-in optimizing function in MATLAB is used to find the MLE

of the concave baseline function. This step is very time consuming. The optimizing

function available in MATLAB is very likely to find a suboptimal point. It would be

worthwhile optimizing the implementation to run more efficiently.
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