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ABSTRACT

Methods for functional regression and nonlinear
mixed-effects models with applications to PET data

Yakuan Chen

The overall theme of this thesis focuses on methods for functional regression and

nonlinear mixed-effects models with applications to PET data.

The first part considers the problem of variable selection in regression models with

functional responses and scalar predictors. We pose the function-on-scalar model

as a multivariate regression problem and use group-MCP for variable selection. We

account for residual covariance by “pre-whitening” using an estimate of the covariance

matrix, and establish theoretical properties for the resulting estimator. We further

develop an iterative algorithm that alternately updates the spline coefficients and

covariance. Our method is illustrated by the application to two-dimensional planar

reaching motions in a study of the effects of stroke severity on motor control.

The second part introduces a functional data analytic approach for the estimation

of the IRF, which is necessary for describing the binding behavior of the radiotracer.

Virtually all existing methods have three common aspects: summarizing the entire

IRF with a single scalar measure; modeling each subject separately; and the imposi-

tion of parametric restrictions on the IRF. In contrast, we propose a functional data

analytic approach that regards each subject’s IRF as the basic analysis unit, models

multiple subjects simultaneously, and estimates the IRF nonparametrically. We pose

our model as a linear mixed effect model in which shrinkage and roughness penalties

are incorporated to enforce identifiability and smoothness of the estimated curves,

respectively, while monotonicity and non-negativity constraints impose biological in-



formation on estimates. We illustrate this approach by applying it to clinical PET

data.

The third part discusses a nonlinear mixed-effects modeling approach for PET

data analysis under the assumption of a compartment model. The traditional NLS

estimators of the population parameters are applied in a two-stage analysis, which

brings instability issue and neglects the variation in rate parameters. In contrast, we

propose to estimate the rate parameters by fitting nonlinear mixed-effects (NLME)

models, in which all the subjects are modeled simultaneously by allowing rate param-

eters to have random effects and population parameters can be estimated directly

from the joint model. Simulations are conducted to compare the power of detect-

ing group effect in both rate parameters and summarized measures of tests based on

both NLS and NLME models. We apply our NLME approach to clinical PET data

to illustrate the model building procedure.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In recent years, data collected in various fields of study tend to be high dimensional

and complicated in structure. In many situations, observations can be regarded as

functions. As a result, functional data analysis (FDA), an important tool for analyzing

functional data (Ramsay and Silverman, 2005), has received a great deal of attention.

Functional data are data that have functional form and vary over a continuum,

where the continuum is often time, but may also be location, probability, etc. The

scope of functional data includes one-dimensional curves and two- or three- dimen-

sional images in which pixel or voxel intensities can be viewed as functions on spatial

positions. A few examples of functional data include the classical Canadian weather

data (Ramsay and Silverman, 2005), human growth data (Ramsay and Silverman,

2005), diffusion tensor imaging (DTI; McLean et al. 2014), electroencephalography

(EEG; Di et al. 2009) and positron emission tomography (PET; Reiss and Ogden

2010).

1.1 Basic Tools for Analyzing Functional Data

Functional data differ from multivariate data in that functional data have natural

ordering among the observations. Although in practice each functional observation
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CHAPTER 1. INTRODUCTION

is recorded discretely at time or location points, it is assumed that functional data

arise from some underlying smooth functions or processes, i.e.

yij = xi(tij) + εij

where xi(·) is a smooth underlying function or process that is observed on a grid

{tij}Jij=1.

As functional data are observed at a finite discrete grid and often with measure-

ment error, a basic idea behind functional data analysis is to represent discrete data

in terms of smooth functions. In terms of data representation, basis expansion and

roughness penalization are often considered (Müller and Yao, 2008). Basis expansion

involves projecting data onto a functional basis. A function x(t) can be expanded as

x(t) =
K∑
j=1

cjφj(t) = Φ(t)c

where Φ(t) = (φ1(t), ..., φK(t)) is a pre-specified or data-driven basis and c = (c1, ..., cK)T

is the vector of coefficients. Common choices of a pre-specified basis include splines,

wavelets, and Fourier bases which are independent of observed data. On the con-

trary, functional principal components analysis provides a data-driven basis which is

estimated from data and the expansion of function is an approximation as long as

finite number of basis functions are used. On the other hand, in order to penalize

the roughness of functions, people can add smoothing penalties in the framework of

least square estimation. In other words, estimated function x(t) can be obtained by

minimizing
n∑
i=1

(yi − x(ti))
2 + λ

∫
[Lx(t)]2dt

where Lx(t) measures the roughness of x(t) and λ is the smoothing parameter. The

roughness penalty based on the second derivative is the most commonly used in

modern statistics literature, although the method can easily be adapted to penalties

based on other derivatives.

2



CHAPTER 1. INTRODUCTION

1.1.1 Splines

Splines are piecewise-defined polynomial functions that are continuous and smooth

at the knots. A spline of order M is constructed of piecewise order M polynomials

and has continuous derivatives up to order M − 2 at the knots (de Boor, 1978).

For example, cubic splines, splines with order 4, have continuous first and second

derivatives. In order to define a spline function, one needs to determine the order of

polynomial, the number of knots, and their locations. One simple way of selecting

knots is to place them at some pre-determined percentiles of the observations.

Functions can be represented using a spline basis. Among the many equivalent

bases, B-spline bases are widely used since any function of a given order can be

uniquely expressed as a linear combination of B-splines of that order. A B-spline

basis includes piecewise polynomial functions that are defined over adjacent intervals

spanned by the knots, each one having a local support. This structure leads to to a

highly sparse design matrix, which is computationally favorable, especially when the

number of knots is large.

Regularization, on the other hand, is necessary to control the complexity of fit.

A smoothing spline estimate is defined as the minimizer x̂ (over the class of twice

differentiable functions) of the penalized residual sum of squares

n∑
i=1

(yi − x(ti))
2 + λ

∫
[x′′(t)]2dt

where λ is the tuning parameter that establishes a trade-off between closeness to the

data and roughness of the function estimate. It has been shown that the minimizer

is a natural cubic spline with knots at ti, i = 1, ..., n (de Boor, 1978). Natural cubic

splines are cubic splines with additional constraint that the function is linear beyond

the boundary knots. The tuning parameter λ can be chosen by cross-validation,

generalized cross-validation (GCV) or restricted maximum likelihood (REML) when

3



CHAPTER 1. INTRODUCTION

connected with mixed model.

1.1.2 Wavelets

In contrast to splines, which often work well for smooth data, wavelets are well suited

for describing functions with localized small scale components including jumps, spikes

and peaks. One appealing property of wavelets is that they are capable of representing

functions well in a sparse way, namely with few coefficients. This property makes

wavelets useful for signal processing, especially in denoising and compression of signals

and images.

Wavelet bases consist of functions with varying scales and locations. There are

several families of wavelet functions. The Haar wavelet basis is the simplest wavelet

basis since it produces a piecewise constant representation. However, it is not widely

used in practice as it’s neither continuous nor differentiable. As a contrast, other mem-

bers of the Daubechies wavelet families are more popular since they give a smoother

representation.

Due to its simplicity, the Haar basis is always a good example to illustrate how a

wavelet basis is constructed. Suppose Vj is the space consisting of functions that are

piecewise-constant over intervals of form [2−jk, 2−j(k+1)], j, k ∈ Z. If φ(t) = I[0,1)(t),

then φ0,k(t) = φ(t − k), k ∈ Z form a orthonormal basis for V0. By dilations and

translations of φ(t), also known as the father wavelet, we can obtain functions

φj,k(t) = 2
j
2φ(2jt− k)

Then φj,k(t), k ∈ Z form a orthonormal basis for Vj. In fact, the Vj spaces are nested,

i.e. V−1 ⊂ V0 ⊂ V1 and they are also called approximation spaces since any function

in L2(R) can be approximated by φj,k(t), k ∈ Z.

4
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The wavelet function ψj,k(t) is defined as

ψj,k(t) =
1√
2
φj+1,2k(t)−

1√
2
φj+1,2k+1(t)

Likewise ψj,k(t), k ∈ Z form an orthonormal basis for a space Wj, which is difference

between successive approximation spaces Vj+1 and Vj. On the other hand, the wavelet

function ψj,k(t) can also be generated by the mother wavelet ψ(t) = φ(2t)−φ(2t− 1)

through dilations and translations

ψj,k(t) = 2
j
2ψ(2jt− k)

One can show that the set of functions ψj,k(t), k ∈ Z form an orthonormal basis

for L2(R) as well. Hence, any square-integrable function x(t) can be expressed as

x(t) =
∑
j

∑
k

dj,kψj,k(t)

where ψj,k(t) is a wavelet function with dilation index j and translation index k

(j, k ∈ Z) and dj,k is the corresponding wavelet coefficient that can be computed as

dj,k = 〈x, ψj,k〉 =

∫
x(t)ψj,k(t)dt

Alternatively, given the basis φj0,k(t), {ψj,k(t)}j=j0, j0+1, ..., k ∈ Z, x(t) can also be

represented as

x(t) =
∑
k∈Z

cj0,kφj0,k(t) +
∞∑
j=j0

∑
k∈Z

dj,kψj,k(t)

where cj0,k = 〈x, φj0,k〉 and dj,k = 〈x, ψj,k〉. If x(t) is defined on the interval [0, 1],

then

x(t) =
2j0−1∑
k=0

cj0,kφj0,k(t) +
∞∑
j=j0

2j−1∑
k=0

dj,kψj,k(t)

In practice, the multiresolution analysis above provides a good way of decomposing

functions observed on a discrete grid in the wavelet basis space, which is known as

5
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discrete wavelet transformation (DWT). Suppose the function is observed at N = 2J

equally spaced time points on the interval [0, 1], denoted as x = {x(tj)}j=1,2,3,...,N .

The DWT of x is

w = Wx

whereW is an orthogonalN×N matrix associated with the pre-specified orthonormal

wavelet basis. w is a N × 1 vector with the wavelet coefficients of x. It consists of

the scaling coefficients µj0,k, k = 0, ..., 2j0 − 1 associated with the scaling wavelet,

and the "oscillation" coefficients νj,k, j = j0, ..., J − 1, k = 0, ..., 2j − 1 associated

with the mother wavelet (Abramovich et al., 2000). For simplicity, we often time set

j0 = 0, in which case there is one scaling coefficients µ0,0 and 2J − 1 "oscillation"

coefficients νj,k, j = 0, ..., J − 1, k = 0, ..., 2j − 1. On the other hand, due to the

orthonormality conditions, µj0,k and νj,k are related to cj0,k and dj,k via

µj0,k ≈
√
ncj0,k νj,k ≈

√
ndj,k

In contrast with decomposing a function, people can reconstruct a function using

a wavelet basis as well. The reconstruction of x from w, known as the inverse discrete

wavelet transformation (IDWT) is simply given by

x = W Tw

In practice, both DWT and IDWT can be performed through a fast O(N) algorithm

(Mallat, 1989), which is based on the two-scale relationship such that the wavelet

coefficients at one level can always be computed using only the coefficients from

another level without integration. In particular, each step of the algorithm involves

the recursive application of some low- and high-pass filters.

A key property of wavelet analysis is that one can represent a function in terms

of a relatively small number of coefficients (others are zero), namely in a sparse

way. However, when the function is contaminated with noise, it yields a problem of

6
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estimating N parameters using N data points. Clearly, some regularization is needed

here. Consider the model

yi = x(ti) + εi i = 1, ..., n

where εi ∼i.i.d. N(0, σ2). The goal is to estimate the function x using the noisy data y.

Let ŵ = {ŵj,k}j=0,...,J−1, k=0,...,2j−1 denote the vector of coefficients obtained by DWT

of the observed {yi}i=1,...,n. The regularization is accomplished by thresholding and/or

shrinkage. Donoho and Johnstone (1994) suggested the hard and soft thresholding

Hard thresholding: w̃j,k = ŵj,k I(|ŵj,k| > λ)

Soft thresholding: w̃j,k = sgn(ŵj,k) (|ŵj,k − λ|)+

Then we can reconstruct x̂i(t) by IDWT of the thresholded wavelet coefficient {w̃j,k}j=0,...,J−1, k=0,...,2j−1.

One common choice for the threshold λ is the universal threshold

λ = σ
√

2 log n

where σ may be estimated by the median absolute deviation method (Donoho and

Johnstone, 1994):

σ̂ =

√
nmedian(|wJ−1,k −median(wJ−1,k)|)

0.6745

1.1.3 Functional Principal Components

Another useful method to represent and analyze functional data is functional prin-

cipal components analysis (FPCA). Unlike splines and wavelets, functional principal

components analysis provides a data-driven basis and is ideally able to capture the

major directions of variability in the data.
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Suppose x(t) is a square-integrable random function with a mean function µ(t) and

a covariance function σ(s, t) = E[(x(s)− µ(s))(x(t)− µ(t))]. Then by the Karhunen-

Loeve decomposition, covariance function can be expressed as

σ(s, t) =
∞∑
j=1

ρjνj(s)νj(t)

where νj(t), j = 1, 2, ... are the principal component eigenfunctions that form an

orthonormal basis and ρj, j = 1, 2, ... are the corresponding eigenvalues. Both eigen-

functions and eigenvalues satisfy the equation∫
σ(s, t)νj(t)dt = ρjνj(s)

Additionally, the total variance of x(t) is given as∫
var[x(t)] dt =

∞∑
k=1

ρk

and the proportion of total variance "explained" by eigenfunction νj(t) is
ρj∑
j ρj

(Ram-

say and Silverman, 2005). In practice, we only need finitely many principal compo-

nents to approximate the function f(t). The number of principal components may

be pre-specified or chosen by cross-validation.

A function x(t) can be expanded as a linear combination of eigenfunctions

x(t) = µ(t) +
∞∑
j=1

ξjνj(t)

where ξj is the functional principal component score which can be obtained by

ξj =

∫
νj(t)[x(t)− µ(t)] dt

In general, there are two approaches to estimate the eigenfunctions and eigenval-

ues. Suppose that X is a n × p matrix whose rows are functions xi(t), i = 1, ..., n

observed on a discrete grid of p points and all the functions have been centered.

8
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The sample variance-covariance matrix Σ̂ = n−1XTX is a p× p matrix with entries

σ̂(tk, tl) where

σ̂(tk, tl) =
1

n

n∑
i=1

xi(tk)xi(tl)

Rao (1958) and Tucker (1958) applied multivariate principal components analysis to

the observed functions, which yield the eigenvectors ν̃j and eigenvalues ρ̃j. Then the

eigenfunctions ν̂j(t) are obtained by interpolating ν̃j by applying some smoothing

techniques.

Another approach involves basis function expansion of xi(t) and νj(t). Suppose

that Φ(t) = (φ1(t), ..., φK(t))T is a pre-defined basis and each function has basis

expansion

xi(t) =
K∑
k=1

cikφk(t) νj(t) =
K∑
k=1

bjkφk(t)

Then X = CΦ and νj(t) = ΦT (t)bj, where C is the n ×K coefficient matrix with

entries cik and bj = (bj1, ..., bjK)T . The covariance function is given in matrix terms

as

σ(s, t) = E[ΦT (s)CTCΦ(t)]

which yields ∫
σ(s, t)νj(t)dt = E

{∫
ΦT (s)CTCΦ(t)ΦT (t)bjdt

}
= E

{
ΦT (s)CTCWbj

}
= ρjνj(s) = ρjΦ

T (s)bj

where W =
∫

Φ(t)ΦT (t) dt. If Φ(t) is an orthonormal basis, W = I, where I is the

identity matrix. Hence, b̂j can be obtained by solving

1

n
CTCWbj = ρjbj

and thereby ν̂j(t) = ΦT (t)b̂j.

9
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In addition, it is necessary to control the roughness of the estimated principal

component functions by incorporating regularizations. One way is to maximize the

sample variance of the principal component score with a penalty term included (Rice

and Silverman, 1991), i.e.

ν̂j(t) = argmax
νj

{
V ar

[∫
x(t)νj(t) dt

]
− λj

∫
ν
′′

j (t)2 dt

}
, subject to

∫
νj(t)

2 dt = 1

where λj are the tuning parameters. The principal component functions can be es-

timated successively. Alternatively, Silverman (1996) proposed the penalized sample

variance, which is defined as

PCAPSV(νj) =
V ar[

∫
x(t)νj(t) dt]∫

νj(t)2 dt+ λ
∫
ν
′′
j (t)2 dt

Then νj can be estimated by maximizing PCAPSV(νj), subject to two constraints:

i)
∫
νj(t)

2 dt = 1; and ii)
∫
νj(t)νk(t) dt+

∫
ν
′′
j (t)2ν

′′

k (t)2 dt = 0.

1.2 Functional Regression Models

After a review of the techniques developed for expressing functional data, we now

focus on building regression models that contain functional variables. There are gen-

erally three scenarios of regression modeling for functional data: scalar-on-function

regression, function-on-scalar regression and function-on-function regression. For sim-

plicity, we assume that the mean curve has been subtracted from each function in the

following discussion.

1.2.1 Scalar-on-function Regression

Given observed data (yi, xi(t)), i = 1, ..., n, t ∈ [0, 1] where yi is a scalar response for

subject i and xi(t) is the functional predictor, a scalar-on-function linear regression

10
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model (Ramsay and Dalzell, 1991) is constructed as

yi = β0 +

∫
xi(t)β(t)dt+ εi (1.1)

where β(t) is the coefficient function that determines the effect of xi(t) on yi and εi

is the error term. James (2002) and Müller and Stadtmüller (2005) extended it to a

functional generalized linear model by incorporating a link function.

In practice, the functions are observed at finitely many points. Both functional

predictors and coefficient function are treated as vectors of the same length. Then it

becomes an ordinary multiple regression problem with model yi = β0 + βTXi + εi.

However, it is oftentimes a p > n problem where p is the number of predictors and n

is the number of observations. Therefore, in order to get reasonable fits, dimension

reduction and/or some regularity are required.

One basic approach to the estimation of the coefficient function is projecting

coefficient function on some basis and converting it to a standard regression problem.

Let

β(t) =
K∑
k=1

ηkBk(t)

where {Bk(t), k = 1, ..., K} is a K-dimensional basis, in this case

yi = β0 +

∫
xi(t)

K∑
k=1

ηkBk(t)dt+ εi = β0 +
K∑
k=1

ηk

(∫
xi(t)Bk(t)dt

)
+ εi

and then ηk can be estimated using least squares with smoothing constraint or other

explicit penalties.

A common approach that has been widely used is functional principal compo-

nent regression (FPCR), which is based on functional principal component anal-

ysis (FPCA) discussed above. The coefficient function β(t) is expanded using K

eigenfunctions ν̂k(t), k = 1, ..., K derived from xi(t), i.e., xi(t) ≈
∑K

k=1 cikν̂k(t) and

β(t) =
∑K

k=1 ηkν̂k(t). The number of principal components K may be determined by

11
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cross validation or a pre-specified proportion of explained variance. The orthonormal-

ity of FPC basis guarantees that
∫
xi(t)β(t)dt =

∑K
k=1 cikηk. Then Model (1) turns

out to be a multiple linear regression with FPC scores cik as predictors.

Alternatively, the penalized spline-based approach enforces smoothness of the co-

efficient function by imposing a roughness penalty. β(t) is expanded using spline basis

and estimate is obtained by minimizing
∑

(yi−β0−
∫
xi(t)β(t)dt)2+λ

∫
(β′′(t))dt. The

tuning parameter, λ may be chosen by cross-validation, generalized cross validation

or restricted maximum likelihood.

On the other hand, Zhao et al. (2012) proposed a wavelet-based approach. Simi-

larly to FPCR, both functional predictor and coefficient function are expanded using

an orthonormal wavelet basis. Then Model (1) becomes simply a multiple regression

model. Lasso penalty is applied to perform variable selection and a sparse solution is

obtained.

1.2.2 Function-on-scalar Regression

Suppose observed data are given as (yi(t),xi), i = 1, ..., n where yi(t) is a functional

response for subject i and xi is a p-vector representing the scalar predictors. One can

construct a function-on-scalar regression model as

yi(t) = xTi β(t) + εi(t)

where β(t) = (β1(t), ..., βp(t))
T is a functional vector and εi(t) is the error function

which is often assumed to be drawn from a stochastic process with expectation zero.

Ramsay and Silverman (2005) outlined an approach to estimate β(t) based on pe-

nalized ordinary least squares. The functional response yi(t) and coefficient functions

βj(t) are both expanded using some functional basis, i.e.,

yi(t) =
K∑
k=1

cikφk(t) βj(t) =
K∑
k=1

bjkφk(t)

12
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The model thereby reduces to a multiple regression problem

C = XB + E

whereX is the n×p design matrix; C is a n×K matrix with elements {cik}i=1,...,n; k=1,...,K ;

andB is a p×K matrix with elements {bjk}j=1,...,p; k=1,...,K . In order to penalize rough-

ness, B is chosen to minimize

||C −XB||2 + λBTPB

where BTPB approximates
∫

(β′′(t))2dt, where β(t) = (β1(t), ... , βp(t)). The solu-

tion turns out to have a similar form as the generalized ridge regression estimator

(Reiss et al., 2010).

Alternatively, rather than response in basis coefficient form, one can estimate

β(t) based on raw response as well. Let Θ denote the D ×K matrix whose columns

correspond to the K basis functions. We then express β(t) as BΘT where B is the

p×K matrix of basis coefficients and the jth row corresponds to βj(t). Additionally

let Y be the n×D matrix whose rows are functional outcomes observed on a grid of

D points, X be the n× p design matrix and ε be the n×D error matrix, our model

becomes

Y = XBΘT + ε

Estimation of B requires vectorizing both sides of equation. vec(Y T ) is the vector

formed by concatenating the rows of Y and vec((XBΘT )T ) = (X ⊗ Θ)vec(BT ),

where ⊗ represents the Kronecker product of two matrices. Hence, vec(BT ) can be

estimated by minimizing

||vec(Y T )− (X ⊗Θ)vec(BT )||2 + vec(BT )TP Λvec(BT )

where P Λ is the penalty matrix parameterized by Λ = (λ1, ..., λp). It is easy to obtain

B̂ by rearranging vec(B̂
T

).

13
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Additionally, Reiss et al. (2010) extends the model above to a penalized generalized

least squares model and performs a fast automatic selection of multiple smoothing

parameters.

1.2.3 Function-on-function Regression

Function-on-function regression may be used to study the association between one

functional response and one or more functional predictors. Let yi(t) be the functional

response for subject i and xi(s) be a functional predictor. The simplest model with

one functional predictor is given as

yi(t) = β0(t) +

∫
β(t, s)xi(s)ds+ εi(t)

where β(t, s) is the coefficient function which in this case is a two-dimensional surface

and εi(t) is a mean zero random stochastic process. Notice that yi(t) and xi(s) may

be defined on different domains.

Several methods have been developed to fit the function-on-function regression

model. Yao et al. (2005a) used principal component expansions for both functional

predictor and the coefficient function. Ivanescu et al.(2013) proposed a penalized

function-on-function regression method using mixed model representation of penalized

regression. They expanded the coefficient surface in a bivariate basis and approximate∫
β(t, s)xi(s)ds with Riemann sums on a fine grid. A penalty term was also added to

enforce some amount of smoothness.
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Chapter 2

Variable Selection in

Function-on-Scalar Regression

2.1 Introduction

Regression models with functional responses and scalar predictors are routinely en-

countered in practice. These models face a challenge that also arises for traditional

models: how to identify the important predictors among a potentially large collection.

Functional-response models face the additional challenges of high dimensionality and

residual correlation. The purpose of this article is to address the current lack of

methods for variable selection in this class of models.

Our work is motivated by two-dimensional planar reaching data. As an assessment

of upper extremity motor control, stroke patients and healthy controls made repeated

reaching movements from a central point to eight targets arranged on a circle. The

dataset consists of 57 subjects, including 33 patients suffering a unilateral stroke

(meaning only one arm is affected) and 24 healthy controls, and contains motions

made with both the dominant and non-dominant hands to each of the eight targets.
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Our analytic goal is to explore the effects of the potential predictors of motor control

on these motions and to identify the most essential ones using variable selection.

Among the potential predictors, the Fugl-Meyer score is a quantity that measures

the severity of arm motor impairment (Fugl-meyer et al., 1975). It ranges from 0 to

66 with smaller values indicating more severe impairment and 66 indicating healthy

function. Other potentially important predictors include target direction, whether

the hand used was the dominant or non-dominant, and whether the hand used was

contralesional (directly affected by the stroke) or ipsilesional (indirectly affected or

unaffected).

Figure 2.1 shows the observed reaching motions for three subjects: a stroke pa-

tient with contralesional dominant hand in the left column; a stroke patient with

contralesional non-dominant hand in the center column and a heathy control in the

right column. Reaching motions made by contralesional hand display deviation from

straight paths from the starting point to each target; these deviations may be con-

sistent for contralesional dominant or non-dominant hands. While deviation from

straightness is not obvious in the ipsilesional arm, other effects, like over-reach, are

observed. The potential for differential effects of stroke severity on reaching motions

indicates the importance of allowing interactions between predictors of interest.

The observed data are horizontal and vertical coordinates of the hand position for

each reaching motion as functions of time. We construct function-on-scalar regression

models for the two outcome functions separately. Given scalar predictors xij, i =

1, ..., n, j = 1, ..., p and functional responses yi(t), i = 1, ..., n, t ∈ T , where T is some

compact finite interval in R, the linear function-on-scalar regression model is

yi(t) = β0(t) +

p∑
j=1

xijβj(t) + εi(t), i = 1, ..., n, t ∈ T (2.1)

where βj(·), j = 0, ..., p are the p + 1 coefficient functions and εi(·) ∼ (0, Σ) is the

error function drawn from a continuous stochastic process with expectation zero and
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Figure 2.1: Observed reaching motions for three subjects. The top row shows the

dominant hand and the bottom row shows the non-dominant hand of three subjects.

The left column is a subject with a contralesional dominant hand. The center column

is a subject with a contralesional non-dominant hand. The right column is a healthy

control subject. Dashed lines are the straight paths to the eight targets terminating

at the target location.

covariance function Σ(s, t) = cov(εi(s), εi(t)), s, t ∈ T .

A common model fitting framework for function-on-scalar regression is outlined by

Chapter 13 of Ramsay and Silverman (2005), in which the coefficient functions βj(·)

are expanded using some set of basis functions and basis coefficients are estimated

using ordinary least squares. The imposition of quadratic roughness penalties to en-

force smoothness of the estimated coefficient functions is also common. Reiss et al.
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(2010) developed a fast automatic method for choosing tuning parameters in this

model and accounted for correlated errors using generalized least squares. Goldsmith

and Kitago (2015) develop a Bayesian approach that jointly models coefficient func-

tions and the covariance structure, and applied their methods to the stroke kinematics

dataset considered here.

When p is large, many scalar predictors may have no effect on the functional

response and the corresponding coefficient functions would equal zero over all time

points. In order to accurately identify the important predictors, we apply variable

selection techniques when estimating the coefficient functions in Model (2.1). Since

the coefficient functions are expanded using basis functions, the shape of each coef-

ficient function is determined by a distinct group of basis coefficients. We therefore

apply variable selection at the group level to include or exclude the vector of basis

coefficients. The group lasso, proposed by Yuan and Lin (2006), is an extension of

the classic lasso (Tibshirani, 1994) to the problem of selecting grouped variables. The

lasso is known to induce biases in the included variables, so two alternative penalties,

the smoothy clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) and the

minimax concave penalty (MCP) (Zhang, 2010), were proposed. These achieve con-

sistency and asymptotic unbiasedness, and have been extended to grouped variable

selection problem (Wang et al. (2007); Breheny and Huang (2013)).

Few approaches that consider variable selection in the context of functional regres-

sion models have been proposed in current literature. Wang et al. (2007) developed a

penalized estimation procedure using group SCAD for variable selection in function-

on scalar regression assuming errors εi(·) are uncorrelated over their domain; this

assumption is clearly violated in practice. Barber et al. (2015) presented Function-

on-Scalar LASSO (FS-LASSO), a framework which extends the group LASSO to

function-on-scalar regression; theory is developed for cases in which predictors are

observed over dense or sparse grids. However, the bias for non-zero coefficients intro-
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duced by LASSO was not addressed, and the method does not account for correlation

among residual curves. Gertheiss et al. (2013) proposed a variable selection procedure

for generalized scalar-on-function linear regression models, in which the predictors are

in the form of functions and responses are scalar; though they also consider regression

models for functional data, the structure of their models is very different from the

one considered here.

We propose a method for variable selection in function-on-scalar regression that

accounts for residual correction using tools from generalized least squares. We develop

theory for this method and demonstrate its effectiveness in simulations that mimic

our real-data application; direct comparisons with the method of Wang et al. (2007)

and Barber et al. (2015) indicate superior performance of our proposed method for

variable selection and prediction.

The rest of the article is organized as follows. In Section 2.2, we describe an

estimation procedure for function-on-scalar regression models with errors that are

uncorrelated over t using grouped variable selection methods. We then introduce our

methods for the estimation of function-on-scalar regression models with correlated

errors, including the development of an iterative method that refines the estimation

of the error covariance and the variable selection. Simulations that resemble our mo-

tivating data examine and compare the numerical performance of competing methods

in Section 2.3. An application of our method to the reaching motion data is given

in Section 2.4. Finally, we present concluding remarks in Section 2.5. Our method

is implemented in the user-friendly fosr.vs() function in the refund package (Ciprian

Crainiceanu et al., 2014), available on CRAN, and code for our simulations is included

in the supplementary material.
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2.2 Methodology

2.2.1 Estimation for models with i.i.d. errors

Suppose {φ1(·), ..., φK(·)} is a set of pre-specified basis functions. The coefficient

functions βj(·), j = 0, ..., p can be expanded as

βj(·) =
K∑
k=1

bjkφk(·). (2.2)

Hence, Model (2.1) is expressed as

yi(t) =
K∑
k=1

b0kφk(t) +

p∑
j=1

xij

(
K∑
k=1

bjkxijφk(t)

)
+ εi(t) (2.3)

The problem is thereby reduced to estimating the basis coefficients {bjk}j=0,...,p; k=1,...,K .

Functional basis should be chosen based on the properties of estimated curves. For

instance, smooth basis, such as orthogonal polynomials or Fourier basis, is preferred

when the estimated functions are assumed to be smooth. For implementations of

our method in Section 2.3 and Section 2.4, we use the popular B-spline basis with

pre-specified number of basis functions that implicitly determines the smoothness of

the curves.

In practice, functions are observed on a discrete grid. For simplicity, we assume

that the grid, denoted {t1, ..., tD}, is shared across subjects. Let Y be the n × D

matrix whose rows are vector-valued functional responses; Φ be the D × K matrix

whose columns correspond to the K basis functions evaluated at {t1, ..., tD}; and B

be the (p+ 1)×K matrix with jth row being the vector of basis coefficients for βj(·).

Then Model (2.3) can be expressed as

Y = XBΦT +E (2.4)
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where X is the n × (p + 1) design matrix and E is the n × D matrix containing

vector-valued error functions.

Model (2.4) can be posed as a standard linear model in the following way. Let

vec(Y T ) be the vector formed by concatenating the rows of Y , and note that vec
(
(XBΦT )T

)
=

(X ⊗Φ)vec(BT ) where ⊗ represents the Kronecker product of two matrices. Then

vec(Y T ) = (X ⊗Φ)vec(BT ) + vec(ET ) (2.5)

and vec(BT ) can be estimated using least squares. An estimate of B̂ is obtained by

rearranging vec
(
B̂
T
)
.

To accurately identify the zero coefficient functions, we apply variable selection

techniques when estimating vec(BT ) in Model (2.5). Let Bj be the vector of coeffi-

cients associated with the jth coefficient function βj(·), specifically the jth row of B.

Note that the “zeroth" row of B corresponds to the intercept function β0(t), which

we do not penalize. Setting the entire βj(·) function to 0 is equivalent to setting all

the entries of Bj to zero. Therefore, we apply variable selection techniques at the

group level.

Variable selection can be achieved by penalizing the estimates of the coefficients.

The general form of a group penalty is
∑p

j=1 pλ,γ(||Bj||), where pλ,γ(·) is the penalty

function for the specific method and λ and γ are the tuning parameters. Therefore,

the penalized estimator is obtained by minimizing

1

2

∥∥∥vec(Y T )− (X ⊗Φ)vec(BT )
∥∥∥2

+ nD

p∑
j=1

pλ,γ(||Bj||). (2.6)

We use group MCP to perform variable selection; the penalty has the form

pmcp(||Bj||) =

 λ||Bj|| − ||Bj ||
2

2γ
if ||Bj|| ≤ γλ,

1
2
γλ2 if ||Bj|| > γλ

where λ and γ are tuning parameters. When ||Bj|| is small, the MCP penalty be-

haves exactly as lasso, but as ||Bj|| increases the amount of penalization is reduced
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until there is no penalization at all, thereby avoiding bias in the estimate of large

coefficients.

In terms of tuning parameter selection, γ is set to be 3 as recommended in Zhang

(2010) and λ is chosen by cross-validation. Another parameter to be determined is

K, the number of basis functions used in the expansion of the coefficient functions.

In the following implementations of our method, a cubic B-spline basis with 10 basis

functions was used. However, since we do not explicitly penalize the roughness of the

estimated coefficient functions, the exact choice of K will vary from application to

application and should be chosen with care.

2.2.2 Estimation for models with correlated errors

The estimation framework discussed in Section 2.2.1 assumes that errors are inde-

pendent and identically distributed over the entire domain, and is similar to the

framework of Wang et al. (2007). In most cases, however, within-function errors are

correlated. Let Σ denote the D ×D covariance matrix for discretely observed data.

For estimation of the Model (2.4) with correlated errors, we use techniques from gen-

eralized least squares. If Σ is known, one can “pre-whiten" both sides of (2.4) with the

lower triangular matrix L obtained by Cholesky decomposition of Σ, i.e., Σ = LLT ,

to construct a new model

Y ∗ = XBΦ∗T +E∗ (2.7)

where Y ∗ = Y (L−1)T , Φ∗ = L−1Φ and the error E∗ = E(L−1)T is independent.

Similarly, parameters in model (2.7) can be estimated by minimizing

1

2

∥∥∥vec(Y ∗T )− (X ⊗Φ∗)vec(BT )
∥∥∥2

+ nD

p∑
j=1

pλ,γ(||Bj||). (2.8)
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For a given Σ, the minimizer of (2.8) can be obtained using existing software by pre-

whitening as described; our implementation is publicly available and uses the grpreg

function in the grpreg package (Breheny and Huang, 2013).

The covariance matrix Σ is unknown in practice and it is necessary to obtain

an estimate Σ̂ of Σ and to use this estimate to pre-whiten data. To obtain this

estimate, we first fit Model (2.5) using ordinary least squares under the assumption

of independence; this provides an unbiased estimate B̂ of the coefficient matrix B.

From this model fit, we obtain the estimated residual matrix Ê = Y −XB̂ΦT . Using

Ê, we consider two approaches for estimating Σ. The first, which we refer as the raw

estimate, is constructed using a method-of-moments approach based on the residual

matrix. The second approach uses functional principal component analysis (Yao et al.,

2005b). Here, the off-diagonal elements of the raw covariance are smoothed and an

eigen-decomposition of the resulting matrix is obtained. Our estimate is

Σ̂ =
L∑
l=1

λ̂lψ̂lψ̂
T

l + σ̂2I (2.9)

where ψ̂1, ..., ψ̂L are the estimated eigenfunctions over the grid {t1, ..., tD}, λ̂l, l =

1, 2, ..., L are the corresponding eigenvalues, σ̂2 is the estimated measurement er-

ror variance and I is the identity matrix. The truncation level L is determined by

the cumulative proportion of variability explained by eigenfunctions. This approach

separates Σ into a smooth covariance over the observed grid and an additional uncor-

related measurement error process. The FPCA-based approach can also be applied

to sparse data with irregular and unequal spaced grid (Yao et al., 2005b). But more

parameters will be introduced in this scenario when estimating the subject-specific

covariance matrices, which is more computationally intensive and time consuming.

Although we focus on these methods for estimating Σ, others that provide consistent

estimators can be substituted.
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2.2.3 Oracle properties of generalized group MCP estimator

We now discuss the theoretical properties of the method described in Section 2.2.2.

Without loss of generality, we assume β0(t) = 0∀ t ∈ T . We also assume the true

coefficient functions βj(t) are in the space spanned by the set of basis functions Φ.

Additionally, we assume the first s groups of coefficients, B+ = (BT
1 , ..., B

T
s )T , are

nonzero and the remaining p − s groups of coefficients, B0 = (BT
s+1, ..., B

T
p )T , are

zero. Let (X⊗Φ)+ denote the design matrix associated withB+ and (X⊗Φ)0 denote

the one associated with B0. Therefore, we have X ⊗Φ = [(X ⊗Φ)+|(X ⊗Φ)0] and

B = [BT
+,B

T
0 ]T . The additional assumptions required for the theorems are

1. lim
n→∞

1
nD

(X ⊗Φ)T (X ⊗Φ) is a positive definite matrix;

2. λn → 0 and
√
nλn →∞ as n→∞;

3. there exists a
√
n-consistent estimate Σ̂ of Σ;

4. the tuning parameter γ of the penalty is fixed.

Then we have the following results:

Theorem 1 (Estimation consistency). Under assumptions 1-4, there exists a local

minimizer B̂ of

Q(B) =
1

2

[
vec(Y T )− (X ⊗Φ)vec(BT )

]T
(In ⊗ Σ̂)−1

[
vec(Y T )− (X ⊗Φ)vec(BT )

]
+ nD

p∑
j=1

pλn,γ(||Bj||)

such that ||vec(B̂
T

)− vec(BT )|| = Op(n
−1/2).

Theorem 2 (Oracle property). Under assumptions 1-4, the
√
n-consistent local min-

imizer B̂ = [B̂
T

+, B̂
T

0 ]T must satisfy
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(1) Sparsity: B̂0 = 0, with probability tending to 1;

(2) Asymptotic Normality:

√
n(vec(B̂

T

+)−vec(BT
+))

D→ N

(
0,

(
lim
n→∞

1

n
(X ⊗Φ)T+(In ⊗Σ)−1(X ⊗Φ)+

)−1
)
.

The proof of these theorems is provided in Appendix A. Note that the length of

the grid D and the number of basis functions K are considered fixed in the theorems

above. Theorems for the scenario in which D and K are unfixed need to be considered

thoroughly and derived separately.

2.2.4 Iterative algorithm for models with correlated errors

The method described in Section 2.2.2 uses ordinary least squares to estimate ba-

sis coefficients and obtains an estimate Σ̂ of the covariance Σ; this estimate is then

used to pre-whiten the data prior to the application of variable selection techniques.

However, re-estimating the covariance after variable selection may give a refined esti-

mate which can, in turn, be used to pre-whiten the data. This intuition suggests an

iterative algorithm:

1. Fit a model using ordinary least squares to obtain an initial estimate B̂
(0)
;

2. Compute residuals and obtain an estimate Σ̂
(0)

of Σ;

3. For k > 0, iterate the following steps until convergence:

(a) Pre-whiten using the covariance Σ̂
(k−1)

;

(b) Minimize (2.8) to obtain B̂
(k)

;

(c) Use B̂
(k)

to construct fitted values and residual curves, and use these to

construct Σ̂
(k)

.
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Various criteria of convergence can be used to monitor convergence of this iterative

algorithm; one possible criterion is
∣∣∣∣∣∣B̂(k+1)

− B̂
(k)
∣∣∣∣∣∣2 < δ, which we use in our im-

plementations. This iterative method will be compared to the one-step approach of

Section 2.2.2 in simulations.

2.3 Simulation

We conducted simulation studies to examine the properties of the proposed approach.

Specifically, we constructed 500 training samples, each consisting of 100 random

curves, and 1 test sample containing 1000 random curves. All curves are generated

from the model

yi(t) =
20∑
j=1

xijβj(t) + εi(t)

where xij
i.i.d.∼ N(0, 10), β1(t), β2(t), β3(t) are non-zero functions, and the remaining

coefficient functions are zero. All functions are observed on a equally spaced grid

of length 25. Errors εi(td) are generated from a multivariate Gaussian distribution

with mean zero and covariance Σ = G + I where G is the error covariance and

I is the identity matrix. the non-zero coefficient functions β1(t), β2(t) and β3(t)

are derived from the motivating data in the following way. Focusing on y position

curves for reaching motions made to the target at 0 degrees, we estimated motions

made by healthy controls, moderately affected stroke patients, and severely affected

patients (stroke severity was defined by thresholding the Fugl-Meyer score). These

estimated motions were the non-zero coefficients, and are shown in the middle panel

of Figure 2.2. The error covariance G was constructed using an FPCA decomposition

of residual curves after subtracting the group-specific means.

Four implementations of our proposed method are considered: one-step approaches
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as described in Section 2.2.2 using raw and FPCA-based covariance matrix estimates,

and iterative approaches as described in Section 2.2.4 using raw and FPCA-based co-

variance matrix estimates. For the FPCA-based covariance matrix estimate, we used

two different values, 0.5 and 0.99, as the cumulative proportion of variance explained

(PVE) threshold to determine L. For comparison, we include an approach that pre-

whitens using true covariance matrix, as well as ordinary least squares, a variational

Bayes method that includes a smoothness penalty (Goldsmith and Kitago, 2015), the

FS-LASSO method that uses group LASSO but does not account for residual corre-

lation or biases due to the LASSO penalty, and a group MCP method that assumes

uncorrelated error curves, analogously to Wang et al. (2007).

Table 2.1 reports the true positive (TP) and true negative (TN) rates of the esti-

mates of both zero and non-zero coefficient functions. We define functions estimated

to be non-zero as “positive" while functions estimated to be zero as “negative". Our

iterative approach using a FPCA-based covariance matrix estimate with PVE=0.99

outperforms most competing approaches in terms of correctly identifying the zero

functions; its performance is comparable to the approach that uses the true covariance

matrix. The approaches using PVE=0.5 perform less well because the estimate of the

covariance matrix omits important structure. Our proposed methods substantially

outperform the method that assumes uncorrelated errors in accurately identifying

zero functions. FS-LASSO has the highest true negative rate but the lowest true

positive rate for β1(t), potentially indicating a tendency to over-shrink coefficients to

zero. All methods are able to identify β2(t) and β3(t) as non-zero.

Estimates of zero and non-zero coefficient functions obtained using the iterative

algorithm with FPCA-based covariance matrix estimate using PVE=0.99 are shown

in the left and middle panels of Figure 2.2, respectively. Because their coefficients are

relatively large, the estimate of β2(·) and β3(·) are approximately unbiased owing to

the structure of the penalty. For β1(·), coefficients are shrunk toward and sometimes
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set equal to zero. We show the mean squared error MSE = E
(
βj(t)− β̂j(t)

)2

and

squared bias E
(
βj(t)− ¯̂

βj(t)
)2

as functions of t in the right panel of Figure 2.2,

where ¯̂
βj(t) is the average curve across all the simulation datasets. For β1(·), both

the MSE and squared bias curves present a sinusoidal shape, which is driven by the

sinusoidal shape of the coefficient function itself and by the shrinkage to zero. There

is an increasing trend in general as t increases for the MSE of β2(·) and β3(·), which

is mostly caused by the increased variability of curves at the end of the distribution

as the biases are relatively small. This plot further emphasizes the lack of bias for

large coefficients stemming from the use of the group MCP penalty, especially in the

case of β3(·).
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Figure 2.2: Estimates of zero functions (left) and non-zero functions (middle) ob-

tained using the iterative approach with FPCA-based covariance matrix estimate

using PVE=0.99 across all simulated datasets. The true functions are overlaid (bold

curves). The right panel shows the both MSE (solid) and squared bias (dashed) as

functions of time for all the coefficient functions.

The left and middle columns of Figure 2.3 display the root mean integrated

squared error (RMISE),
√∫ 1

0

(
βj(t)− β̂j(t)

)2

dt for zero and non-zero functions, re-

spectively; in the top row, the FPCA-based covariance estimate is based on PVE=0.99
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and in the bottom row based on PVE=0.5. The iterative approach with FPCA-based

covariance matrix estimate compares favorably to other approaches, reinforcing the

results from Table 2.1. Indeed, the RMISE of our iterative method is compara-

ble to pre-whitening using the true covariance for both zero and non-zero functions.

Although FS-LASSO is comparable for zero functions, it has substantially higher

RMISE for non-zero functions. Prediction errors on the test sample are shown in the

right panel of Figure 2.3. These errors reflect a combination of RMISEs for zero and

non-zero functions, and display similar patterns: our proposed methods, in particu-

lar when using the FPCA-based estimate of the covariance, have excellent numerical

performance. Although there is a slight decline in performance when PVE=0.5, the

proposed method still outperforms OLS, FS-LASSO and the method that assumes

uncorrelated errors.

Additional simulations that generate uncorrelated errors are presented in detail in

Appendix B. In this case, there is no noticeable disadvantage to using our proposed

approach, which outperforms competing methods in prediction error.

2.4 Application

We now apply our iterative algorithm using the FPCA-based covariance matrix es-

timate described in Section 2.2.4 to our motivating dataset. The X and Y position

functions are the outcomes of interest, and potential predictors include the Fugl-

Meyer score, whether the hand was dominant or non-dominant, whether the hand

was contralesional or ipsilesional, target direction (as a categorical predictor) and the

interactions between these variables. We analyze the X and Y position functions

separately, using the same models and steps.

First, we perform a cross validation analysis to evaluate the algorithm in terms
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Figure 2.3: The top row shows the comparison among the algorithms when PVE

= 0.99 while the second row shows the comparison when PVE = 0.5. The three

columns show RMISE for zero functions (left) and non-zero functions (middle); and

prediction error (right).

of prediction error on the motivating data. Training and test sets are generated in

the following way. For each subject and each hand, we randomly select one motion

to each of the eight target directions. These motions are partitioned so that four

are in the training set and four are in the test set. Previous work on this dataset

(Goldsmith and Kitago, 2015) indicates little or no correlation between motions to

different targets made by the same subject, and so our training and test sets are

approximately independent even though they contain data from the same subjects.

This procedure results in 452 curves in the training set and 452 curves in the test set;
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an example is shown in Figure 2.4.

A function-on-scalar regression model is then constructed on the training sample,

and prediction errors are obtained for the test sample. Four predictors of interest, the

target direction (a categorical variable with eight levels), Fugl-Meyel score (a contin-

uous variable), hand used (dominant/non-dominant) and arm affectedness (contrale-

sional/ipsilesional), are considered in these models. In addition to main effects, all

the possible interactions are included to maximize flexibility and scientific interpre-

tation. Thus, the model has 64 coefficient functions to estimate. Rather than the

typical design that assigns a reference level for each categorical predictor, a constraint

is imposed to the construction of design matrix so that target-specific interpretations

are available. This design matrix is equivalent to building the following model for

each target:

y(t) = β0(t) + β1(t) ∗ Ips.Non. + β2(t) ∗ Con.Dom. + β3(t) ∗ Con.Non. + β4(t) ∗ Fugl-Meyer

+ β5(t) ∗ Fugl-Meyer ∗ Ips.Non. + β6(t) ∗ Fugl-Meyer ∗ Con.Dom.

+ β7(t) ∗ Fugl-Meyer ∗ Con.Non. + ε(t)

(2.10)

where we use the ipsilesional (unaffected) dominant hand of a healthy control as the

reference β0(t). Coefficients β1(t), β2(t) and β3(t) compare ipsilesional nondominant,

contralesional dominant, and contralesional nondominant to the reference, respec-

tively. The effect of increasing motor impairment in the ipsilesional dominant arm

is estimated by β5(t), while differences in the effect of increasing motor impairment

comparing other groups to baseline are given by β6(t), β7(t) and β8(t).

The complete procedure described above, consisting of generating training and test

sets, fitting the full model to the training set, and producing predictions for the test

set, is repeated 100 times. We fit the model using 5, 10, 15 and 20 basis functions, and

found thatK = 15 gave the smallest cross-validated prediction errors. The right panel
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of Figure 2.4 presents the prediction errors obtained using our iterative algorithm

with FPCA-based covariance matrix estimate; we compare to the variational Bayes

approach (without variable selection but with a standard second-derivative penalty).

Our iterative algorithm decreases mean prediction error by around 10% (X direction:

163.8 vs. 144.8; Y direction: 143.6 vs. 132.9) compared to the variational Bayes

approach. In addition, the iterative algorithm seems to be more stable than the

variational Bayes approach as it has fewer outliers and lower median prediction error.
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Figure 2.4: One training sample (left) and one test sample (middle) generated from

the planar reaching data. Highlighted curves are from one subject and show how

each subject contributes to the training and test sets. Violin plots (right) of cross

validation errors using the variational Bayes approach and iterative algorithm.

We next conduct our analysis without splitting data into training and test sets.

The function-on-scalar regression model is estimated using one motion for each subject

and hand to each target with motions drawn randomly for each target and hand. We

repeat this analysis 100 times, and Table 2.2 presents the proportion of times selected

by the algorithm for each of the 64 coefficient functions. Each row of Table 2.2

corresponds to coefficients β0(t), β1(t), ..., β7(t) in Model (2.10) for a specific target.

For instance, the value 0.24 in the third entry of the first row indicates that, in 24 of
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100 datasets, there was an estimated difference between contralesional and ipsilesional

dominant hands when reaching to the target at 0◦.

Large numbers in the table suggest consistent non-zero effects or differences in

effect across datasets. Targets at 90◦ and 270◦ may have zero effects in the X tra-

jectories, since for those targets the X position is roughly constant over time. The

same is true for Targets at 0◦ and 180◦ for the Y trajectories. The results in Ta-

ble 2.2 indicate relatively few differences between ipsilesional and contralesional dom-

inant arms for very mild strokes (Fugl-Meyer = 66), and some differences between

the non-dominant arms and the ipsilesional dominant arm. An effect of increasing

stroke severity is relatively rarely found for the ipsilensional arms but, as expected,

is much more frequently found for the contralesional arms. The conclusions are fur-

ther reinforced by Figure 2.5, where the predicted motions of subjects with different

combinations of Fugl-Meyel Score(66/26), hand used (dominant/non-dominant) and

arm affectedness (contralesional/ipsilesional) are presented.

2.5 Discussion

We proposed a model fitting framework that performs variable selection in the con-

text of function-on-scalar regression allowing within-function correlation. This work

was motivated by two-dimensional planar reaching data gathered to understand the

mechanisms of motor deficit following stroke. We developed an iterative algorithm

that alternatively estimates the coefficient functions and covariance structure. Our

method relies on a reasonable estimate of the covariance structure, and in our simu-

lations and application we found that an estimation procedure based on FPCA works

well. Results from the simulation studies demonstrate the effectiveness of our pro-

posed method in identifying the true zero functions. Indeed, our proposed method has
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Figure 2.5: Predicted reaching motions for eight subjects with different combinations

of Fugl-Meyel Score(66/26), hand used (dominant/non-dominant) and arm affected-

ness (contralesional/ipsilesional). Motions to different targets are distinguished by

colors.

performance comparable to performing variable selection using the true covariance.

The application to the motivating data indicates our proposed iterative algorithm

makes a significant improvement in terms of decreasing prediction errors and identi-

fying true zero functions.

Future extension of our methodology may take several directions. Quadratic

roughness penalties are often applied to enforce smoothness of the coefficient func-

tions in spline-based estimation frameworks. It would be worthwhile to incorporate

an explicit roughness penalty in addition to the variable selection penalty to reduce

sensitivity to the size of the basis expansion. Motivated by our application (in which

repeated motions are made to each target by each subject), the development of meth-

ods that account for subject- and target-specific random effects is necessary.

34



CHAPTER 2. VARIABLE SELECTION IN FUNCTION-ON-SCALAR
REGRESSION

Ta
bl
e
2.
1:

tr
ue

po
si
ti
ve

(T
P
)
an

d
tr
ue

ne
ga

ti
ve

(T
N
)
ra
te
s
of

es
ti
m
at
ed

co
effi

ci
en
t
fu
nc
ti
on

s,
w
he
re

F
N

is
fa
ls
e

ne
ga

ti
ve

an
d
F
P

is
fa
ls
e
po

si
ti
ve
.
T
he
y
ar
e
es
ti
m
at
ed

ac
ro
ss

al
lt
he

tr
ai
ni
ng

sa
m
pl
es
.

T
N

F
P

+
T
N

T
P

T
P

+
F
N

(β
1
)

T
P

T
P

+
F
N

(β
2
)

T
P

T
P

+
F
N

(β
3
)

F
S-
LA

SS
O

0.
95

3
0.
85

0
1.
00
0

1.
00

0

M
C
P

A
ss
um

in
g
In
de
pe

nd
en
t
E
rr
or
s

0.
56

7
1.
00

0
1.
00
0

1.
00

0

O
ne
-s
te
p
w
it
h
R
aw

M
at
ri
x

0.
37

0
1.
00

0
1.
00
0

1.
00

0

It
er
at
iv
e
w
it
h
R
aw

M
at
ri
x

0.
81

3
0.
96

2
1.
00
0

1.
00

0

O
ne
-s
te
p
w
it
h
F
P
C
A
-b
as
ed

M
at
ri
x
(P

V
E

=
0.
5)

0.
75

5
0.
99

6
1.
00
0

1.
00

0

It
er
at
iv
e
w
it
h
F
P
C
A
-b
as
ed

M
at
ri
x
(P

V
E

=
0.
5)

0.
77

9
0.
99

6
1.
00
0

1.
00

0

O
ne
-s
te
p
w
it
h
F
P
C
A
-b
as
ed

M
at
ri
x
(P

V
E

=
0.
99

)
0.
86

3
0.
98

6
1.
00
0

1.
00

0

It
er
at
iv
e
w
it
h
F
P
C
A
-b
as
ed

M
at
ri
x
(P

V
E

=
0.
99

)
0.
91

5
0.
95

6
1.
00
0

1.
00

0

P
re
-w

hi
te
n
w
it
h
Tr

ue
Σ

0.
91

3
0.
96

4
1.
00
0

1.
00

0

35



CHAPTER 2. VARIABLE SELECTION IN FUNCTION-ON-SCALAR
REGRESSION

Ta
bl
e
2.
2:

P
ro
po

rt
io
ns

of
64

co
effi

ci
en
t
fu
nc
ti
on

s
be

in
g
se
le
ct
ed
,o

bt
ai
ne
d
fr
om

m
od

el
s
w
it
h
X

tr
aj
ec
to
ri
es

(t
op

)

an
d
Y

tr
aj
ec
to
ri
es

(b
ot
to
m

).

Ta
rg
et

Fu
gl
-M

ey
er

=
66

∆
Fu

gl
-M

ey
er

=
-1

D
ir
ec
ti
on

Ip
s.
D
om

.
Ip
s.
N
on

.
C
on

.D
om

.
C
on

.N
on

.
Ip
s.
D
om

.
Ip
s.
N
on

.
C
on

.D
om

.
C
on

.N
on

.

0◦
1.
00

0.
21

0.
24

0.
35

0.
41

0.
38

0.
58

0.
34

45
◦

1.
00

0.
20

0.
03

0.
15

0.
16

0.
08

0.
46

0.
37

90
◦

0.
31

0.
65

0.
31

0.
33

0.
30

0.
17

0.
23

0.
60

13
5◦

1.
00

0.
22

0.
16

0.
24

0.
11

0.
48

0.
64

0.
57

18
0◦

1.
00

0.
35

0.
13

0.
40

0.
18

0.
38

0.
48

0.
35

22
5◦

1.
00

0.
18

0.
16

0.
33

0.
08

0.
22

0.
45

0.
36

27
0◦

0.
83

0.
37

0.
19

0.
34

0.
14

0.
35

0.
52

0.
33

31
5◦

1.
00

0.
41

0.
20

0.
33

0.
28

0.
35

0.
57

0.
67

Ta
rg
et

Fu
gl
-M

ey
er

=
66

∆
Fu

gl
-M

ey
er

=
-1

D
ir
ec
ti
on

Ip
s.
D
om

.
Ip
s.
N
on

.
C
on

.D
om

.
C
on

.N
on

.
Ip
s.
D
om

.
Ip
s.
N
on

.
C
on

.D
om

.
C
on

.N
on

.

0◦
0.
34

0.
10

0.
14

0.
11

0.
13

0.
18

0.
66

0.
20

45
◦

1.
00

0.
02

0.
02

0.
05

0.
01

0.
20

0.
36

0.
12

90
◦

1.
00

0.
07

0.
16

0.
15

0.
08

0.
21

0.
17

0.
43

13
5◦

1.
00

0.
05

0.
22

0.
29

0.
05

0.
40

0.
79

0.
43

18
0◦

0.
40

0.
13

0.
11

0.
31

0.
15

0.
25

0.
79

0.
27

22
5◦

1.
00

0.
05

0.
03

0.
11

0.
01

0.
12

0.
33

0.
21

27
0◦

1.
00

0.
03

0.
15

0.
14

0.
06

0.
24

0.
13

0.
22

31
5◦

1.
00

0.
03

0.
22

0.
18

0.
06

0.
36

0.
52

0.
54

36
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Chapter 3

Functional Data Analysis of Dynamic

PET Data

3.1 Introduction

3.1.1 Background on PET

Positron emission tomography (PET) is a nuclear imaging technique that allows the

study of basic mechanisms of the human body. The application of PET imaging in

neuroscience has proven to be a valuable tool to better our current understanding

of changes during brain stimulation, cognitive activation, and metabolic processes

associated with mental illnesses and neurological disorders. One particular application

of PET imaging aims to estimate the density of various proteins throughout the brain.

For instance, investigators use PET imaging to study the density of β-amyloid plaque

that plays a key role in the pathogenesis of Alzheimer’s disease (Zeng and Goodman,

2013); another example is the examination of the serotonin (5-HT) neurotransmitter

system in the pathophysiology of depression (Miller et al., 2013) and bipolar disorder
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(Sullivan et al., 2009), among many others.

The application of PET in such a neuroimaging study begins with the injection

of a radiolabeled compound that has affinity for a particular protein in the human

brain. This radiolabeled compound, or radiotracer, is designed to bind preferentially

to that target protein. Once it is introduced into the bloodstream, the radiotracer

is continuously delivered to the brain by the vascular system. Within the brain,

each tracer molecule exist in one of three biomedical states: it may be “free” in the

synapse, i.e., not bound to any biomolecules; it may be bound “specifically” to the

target protein; or it may be “nonspecifically” associated with other macromolecular

components. While in the brain, tracer molecules can change from one state to an-

other, potentially making many such transitions during the PET scan. Additionally,

because the tracer molecules can cross the blood-brain barriers in both directions,

they may also exit the brain and be delivered by the bloodstream to other organs, or

back to the brain again.

All radiotracer molecules, no matter their biomedical state, undergo radioactive

decay (i.e., emitting positrons) throughout the scan. By detecting the radiation

emitted over a given time interval, a three-dimensional image may be obtained via

a reconstruction algorithm. Thus, dynamic PET data consist of a sequence of these

3-dimensional images, each voxel of which is a measurement of the concentration of

the radiotracer at the corresponding time and location. This concentration depends

on the amount of tracer that has been available for delivery in the bloodstream and

on the binding behavior of tracer molecules in the brain. Neglecting the noise for

the moment, the concentration of the radiotracer may generally be expressed as the

convolution between two functions:

c(t) =

∫ t

0

f(s)g(t− s) ds (3.1)

The function g is the concentration of the radiotracer in the arterial plasma over
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time, corrected to account for radioactive metabolites of the tracer; this is termed

the “input function” since it represents the amount of tracer available to enter the

brain at each time. The function f is the location-specific “impulse response function”

(IRF) that represents what the hypothetical concentration of the tracer would be over

time if the input function were an instantaneous bolus spike (Dirac delta function).

Biologically, if the tracer were to be delivered as an instantaneous bolus spike at time

0, the density of the tracer in the brain would be highest at time 0 and gradually

decrease as tracer molecules exit the brain. Therefore, it is expected that the IRF

will be non-negative and non-increasing over time.

Because the tracer is designed to bind to the target protein, the IRF is related to

the density of that protein in the corresponding location. For instance, in a target-

protein-rich region, the IRF decreases slowly because the tracer molecules tend to

spend much of the time bound to the target protein. In contrast, in a region with no

target proteins, the IRF will decrease at a higher rate. In such a region, because it is

completely devoid of the target protein, tracer molecules can only be free or associated

with macromolecular components other than the target. If such a region exists, it

is termed a “reference region”. The binding capacity in the reference region thus

represents only “non-specific binding”, typically assumed to be uniform throughout

the brain; and as a result, specific binding may be estimated based on the difference

between IRFs of the region of interest (ROI) and the reference region (Innis et al.

(2007); Slifstein and Laruelle (2001)).

For a given voxel, the sequence of concentrations across time is termed the time

activity curve (TAC). In practice, the observed TAC is contaminated with noise and

may be expressed

y(t) =

∫ t

0

f(s)g(t− s) ds+ ε(t) (3.2)

where f and g are, respectively, the IRF and the input function, and ε represents

39



CHAPTER 3. FUNCTIONAL DATA ANALYSIS OF DYNAMIC PET DATA

the errors observed due to radioactive decay, the detection process, processing errors,

and other sources of error. For each subject, the input function is common across

all voxels, but each voxel or region of interest has its specific IRF. In many PET

studies, samples of arterial blood are drawn during the scanning; with each sample,

the concentration of the tracer is measured and a metabolite analysis is performed. In

this way, the input function g can be measured. Although there is some uncertainty

in the measured input function, this is generally small relative to the PET noise so it

is typically considered “known” in expressions like (3.2). Hence, any PET modeling

technique that involves an input function measured from blood samples must involve

deconvolution of the TAC data using this input function to recover the IRF f , which

contains information about the density of the target protein.

3.1.2 Overview of our proposed nonparametric modeling ap-

proach

Many approaches for dynamic PET modeling have been proposed. The preponder-

ance of these methods have three characteristics in common. First, once the estimated

IRF is obtained, it is summarized using a single scalar measure, and subsequently

standard univariate analyses, such as t tests or linear mixed models, are performed

on the scalar measure. While the scalar summaries have straightforward biological

interpretation, by summarizing the entire IRF using a single scalar, it is possible to

lose some important features of this function. Second, all these methods focus on

estimating the IRF for one subject and one region at a time. This tends to limit the

complexity of models that can be fit to PET data. Third, most of the approaches

impose strong parametric assumptions on the model of estimating IRF, and some of

these assumptions may not hold in real data applications.

In this paper, we propose an alternative analytic approach to explore the kinetics
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of the tracer that will improve upon existing techniques in all three of these areas

by estimating the IRF nonparametrically using functional data analytic (FDA) tech-

niques. First, in our approach, the entire functions, rather than just the summarized

scalars, can be compared across subjects/regions. Comparing the entire estimated

IRFs prevents the loss of important information, such as local features of the func-

tion. Second, in contrast to the current state of the art, our approach models TACs

from multiple subjects simultaneously, which can help capture patterns for subjects

with common characteristics. Third, we construct a nonparametric model by applying

FDA techniques, which are an important tool set to analyze data that have functional

form, such as the TAC in dynamic PET imaging studies. Specifically, the effects of

multiple scalar covariates, including continuous covariates, can be incorporated into

our model fitting framework. After incorporating the scalar covariates, which we will

discuss in detail in Section ??, Model (3.2) can be treated as a regression problem

with functional responses and scalar predictors, i.e., a function-on-scalar regression

(Ramsay and Silverman (2005); Reiss et al. (2010); Morris (2015)). Therefore, we

can convert this model to a multivariate regression model by extending current FDA

techniques.

The advances we propose – to emphasize the IRF as the fundamental unit of

interest, rather than a scalar summary; to jointly model IRFs from all subjects; and

to model IRFs using a functional data approach in place of the standard parametric

model – are a direct response to the shortcomings of existing tools for analyzing

dynamic PET data. While our literature review in Section 3.1.3 will identify some

related research, the comprehensive analytic framework developed in this manuscript

is a major departure from available tools.
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3.1.3 Brief overview of current estimation methods for dy-

namic PET data

Traditional approaches for estimating the IRF impose a parametric form on the IRF,

which is motivated by a physiological model for tracer distribution. Among these,

compartment modeling is the most widely used method to describe the uptake and

clearance of a tracer in the tissue (Slifstein and Laruelle, 2001). The compartments of

a system can be defined in our application as biomedical states in which each radio-

tracer molecule can exist: “free”, specifically bound to the target protein, nonspecif-

ically associated with other macromolecular components. For many radiotracers in

neuroreceptor mapping, the kinetics of the tracer in the brain can be approximated

using a three-tissue compartment model (in which compartments are “free” tracer,

tracer specifically bound to the target protein, and tracer nonspecifically associated

with other macromolecular components) or a more common two-tissue compartment

model (in which “free” tracer and tracer nonspecifically associated with other macro-

molecular components are considered as comprising a single compartment). Basic

assumptions of compartment modeling include that all injected tracer molecules will

be in exactly one compartment at any given time and that the rates of transfer be-

tween compartments are constant over time. These assumptions ensure that the IRF

can be expressed as a sum of exponential functions whose time constants and coeffi-

cients are functions of the rate parameters. Rate constants involved in the model can

be routinely estimated by solving ordinary differential equations and applying non-

linear regression modeling techniques (Cunningham and Jones (1993); Gunn et al.

(2001)).

Although kinetic models are well-established and almost universally applied, it is

generally understood that they are inadequate for modeling many radiotracers, and

therefore many alternative modeling strategies have been proposed. For example,
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“spectral analysis” (Cunningham and Jones, 1993) characterizes the IRF in terms of

a set of basis functions and fits the model using non-negative least squares. Gunn et al.

(2002) extended this basis function framework by imposing an L1 penalty. Similarly,

Jiang and Ogden (2008) and Lin et al. (2014) proposed a mixture modeling procedure

in which each IRF is represented in terms of a smaller number of basis functions. In

addition, Logan et al. (1990) introduced “graphical analysis” which is based on the

two tissue compartment model. This approach does not estimate the IRF directly

but instead estimates a scalar summary. Still, all these approaches have their basis

in the standard compartment model.

As with all parametric models, compartment models rely on assumptions about

the data generating process and can perform poorly when these are violated in prac-

tice. One key assumption is the assumed compartmental structure itself, which is

generally understood to be a simplification of a more realistic (but more complex)

model. Additionally, the non-linear least squares methods commonly used to fit com-

partment models tend to have bias that depends on the parameter values, and these

tools can also be somewhat numerically unstable (Peng et al., 2008).

The limitations of parametric methods have helped to motivate the development of

nonparametric approaches that allow model-free estimation. O’Sullivan et al. (2009)

proposed nonparametric “residue analysis” of dynamic PET data based on the in-

dicator dilution theory originally put forth by Meier and Zierler (1954). They base

their modeling on Equation (4.1) but place no parametric restrictions on the IRF f .

Instead, they express it as f(t) = C
(

1−
∫ t

0
h(s)ds

)
, where C is a proportionality

constant that is interpretable as an overall flow and h is a probability density func-

tion. The term 1 −
∫ t

0
h(s)ds is called the tissue residue function, and it reflects the

fraction of radiotracer that remains in the system at time t. With this formulation,

the IRF is constrained to be non-negative and non-increasing over time. In O’Sullivan

et al. (2009), the probability density function h is estimated nonparametrically. It is
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expressed in terms of a natural cubic B-spline basis, and a weighted second derivative

penalty is employed to control the roughness of the estimated curve.

Zanderigo et al. (2015) proposed a nonparametric method that approximates the

problem in terms of a discrete deconvolution operation, which can be solved by using

a singular value decomposition (SVD). This method is, however, rather sensitive to

noise, potentially causing the estimated curve to oscillate considerably, although these

effects can be minimized by eliminating diagonal elements below a certain threshold in

the diagonal matrix constructed from SVD. Jiang et al. (2015) presented a nonpara-

metric approach for estimating the IRF based on a functional principal component

analysis (FPCA). They smoothed the observed PET curves for all voxels using a

pre-specified kernel smoother and subsequently applied FPCA on the pre-smoothed

curves. Deconvolution was only required on the mean function and the eigenfunc-

tions, rendering it more computationally efficient. The IRF is then recovered using

the functions obtained from the deconvolution operator. Regularization is achieved

by selecting the number of components using an ad hoc measure of goodness-of-fit.

Note that each of these methods estimates the IRFs one at a time.

Whether the IRF is estimated using parametric or nonparametric methods, cur-

rent practice involves summarizing the estimated IRF using a single scalar measure

and then comparing this measure across subjects/regions in subsequent analysis. In

the parametric approaches discussed above, these summary measures are related

to some aspect of the density of the target protein. For instance, the total vol-

ume of distribution of tracer (VT ) is defined as a functional of the IRF; specifically,

VT =
∫∞

0
f(t) dt. Even with the nonparametric methods for estimating the IRF, in-

terest generally lies in computing some scalar measure that can then be compared

across subjects/regions. One option is to calculate
∫ tend

0
f(t) dt, the area under the

IRF until the end of the scan. This is a nonparametric analogue to VT , although it

does not have the same clear biological interpretation. Another option is to calibrate
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the nonparametric estimator with a specific compartment model so that the resulting

summary measure will have the same interpretation in the case that the parametric

model holds (O’Sullivan et al. (2009); Zanderigo et al. (2015)).

In contrast to the preceding, we develop a flexible non-parametric approach to

dynamic PET data that 1) focuses on the IRFs, rather than a single summary measure

of these functions, as the basis for comparisons; 2) models data from all subjects

simultaneously; and 3) estimates IRF for each subject and includes covariate effects

using FDA techniques. The first two of these are novel contributions to the PET

literature, and final point required new developments in functional data analysis.

The rest of the article is organized as follows. In Section 3.2, we describe a func-

tional approach to nonparametrically estimate the IRFs of all subjects simultaneously

and to compare the entire estimated IRFs across subjects. We conduct a simulation

study and present the results in Section 3.3. An application of our method on some

clinical PET data is given in Section 3.4. Finally, we present some concluding remarks

in Section 3.5.

3.2 Methodology

3.2.1 Conceptual model

In this article, we consider only the situation in which the input function is observed

for each subject. Following the description given in Section 3.1, our model for subject

i is

yi(t) =

∫ t

0

fi(s)gi(t− s) ds+ εi(t), i = 1, . . . , n (3.3)

In principle, both y and f should be indexed by subject and region because the anal-

ysis can be performed on any voxel/region. For simplicity, we restrict our attention

to a single region and suppress the related index.
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For the purpose of estimating fi in Model (3.3), we assume fi can be separated

into a population-level fixed effect that may depend on some measured covariates and

a subject-level random effect. This formulation allows for the effects of multiple scalar

covariates, including continuous covariates, on the IRF to be directly estimated from

the model. Then

fi(s) = β0(s) +

p∑
j=1

xijβj(s) + δi(s)

= xTi β(s) + δi(s), s ∈ T (3.4)

where xi = (1, xi1, · · · , xip)T is the vector of covariate values for subject i and

β(s) = (β0(s), β1(s), · · · , βp(s))T . Next, by expanding the functions β0(·), β1(·), · · · ,

βp(·), and δi(·) in terms of a pre-specified set of basis functions φ1, · · · , φk, Model (3.4)

becomes

fi(s) = xTi


∑K

k=1 β0kφk(s)
...∑K

k=1 βpkφk(s)

+
K∑
k=1

δikφk(s)

= xTi Bφ(s) + δTi φ(s)

=
(
xTi B + δTi

)
φ(s) (3.5)

where φ(s) = (φ1(s), · · · , φK(s))T ; δi = (δi1, · · · , δiK)T are the basis function co-

efficients of δi(·); and B = (β0, β1, · · · , βp)T , where βj = (βj1, · · · , βjK)T , j =

0, · · · , p are the basis function coefficients corresponding to β0(·), β1(·), · · · and βp(·),

respectively. We then replace fi(s) in Model (3.3) with the expression in (3.5), which

gives

yi(t) =

∫ t

0

(
xTi B + δTi

)
φ(s)gi(t− s) ds+ εi(t). (3.6)
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3.2.2 Model for the observed PET data

In practice, the measured concentration values are derived from the decay counts

observed over a given time interval across a grid of time points {ti`}`=1, ··· , Li . By

design, the time frames are gradually longer over time during the scan, because of the

radioactive decay process and because of decreasing concentration of the tracer. The

change in time frames over the scan has two practical implications. First, the discrete

grid of time points on which TACs are observed is taken to be the midpoints of the

frames, which can be irregular. Second, since data are observed over consecutive

time frames of different lengths, the frame duration, the radioactive decay and the

overall concentration affect the variability of the response. As a result, weighting

schemes that account for these factors are necessary. In the simulation and real data

analyses below, weights are set to be the duration of the time-frame corresponding to

ti` (Zanderigo et al., 2015), although our methodology allows other weighting schemes

to be used. Errors are assumed to be uncorrelated over time as they arise originally

from decay count data, which are naturally independent, and then are reconstructed

and registered separately for each time interval.

With these considerations, the observed data within Model (3.6) can be expressed

in matrix form

yi = Zi

(
BTxi + δi

)
+ εi

= ZiB
Txi +Ziδi + εi

= Zi

(
xTi ⊗ IK

)
β +Ziδi + εi (3.7)

where yi = (yi(ti1), · · · , yi(tiLi))T ; Zi is a Li × K matrix with the (`, k)th ele-

ment
∫ ti`

0
φk(s)gi(ti` − s) ds; In denotes the n × n identity matrix; β = vec(BT ) is

the vector obtained by stacking the rows of B, i.e., β = (βT0 , β
T
1 , · · · ,βTp )T ; and

εi = (εi(ti1), · · · , εi(tiLi))T ∼ N (0, σ2W−1
i ). W i is a diagonal matrix with diagonal
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elements {wi`}l=1, ··· , Li , where {wi`} are as fixed and known observation weights.

Based on our construction, Model (3.7) can be viewed as a linear mixed effects

model where β are the population-level fixed effects and δi ∼ N (0, σ2
δIK) are the

subject-level random effects. Let ⊕ni=1Di denote a block diagonal matrix with diag-

onal matrix elements {D1, · · · , Dn}, i.e.,

⊕ni=1Di = diag(D1, · · · , Dn) =


D1 0 · · · 0

0 D2 · · · 0
...

... . . . ...

0 0 · · · Dn


and let N =

∑n
i=1 Li. By combining the equations for all subjects in Model (3.7), we

now have

y = Z (X ⊗ IK)β +Zδ + ε

= Uβ +Zδ + ε, (3.8)

where y = (yT1 , · · · , yTn )T , Z = ⊕ni=1Zi, X = (x1, · · · , xn)T , δ = (δT1 , · · · , δTn )T ,

ε = (εT1 , · · · , εTn )T and U = Z (X ⊗ IK).

3.2.3 Constrained estimation

As discussed in Section 3.1, the IRF is non-negative and non-increasing over time.

Formally,

1. fi(s) ≥ 0, i = 1, . . . , n (non-negativity);

2. fi(s)− fi(t) ≥ 0, ∀ s ≤ t, i = 1, . . . , n (monotonicity).

In addition, we incorporate a roughness penalty on the estimated curves to prevent

overfitting.
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Based on the likelihood function of Model (3.8) and by incorporating the preceding

constraints and penalties, β and δ can be estimated by minimizing

1

2
(y−Uβ−Zδ)TW (y−Uβ−Zδ) + λ1β

TP T
βP ββ+ λ1δ

TP T
δ P δδ+ λ2δ

Tδ, (3.9)

subject to C(X ⊗ IK)β + Cδ ≥ 0, where W = ⊕ni=1W i, P β = Ip+1 ⊗∆2Φ and

P δ = In ⊗∆2Φ and

C =

 In ⊗Φ

In ⊗∆1Φ

 .

Throughout, ⊗ represents the Kronecker product of two matrices; Φ is the matrix

consisting of basis functions evaluated at a pre-specified dense grid {τd}d=1, ··· , D, which

is equally spaced and lies in the range determined by the irregularly spaced and

subject-specific time points at which the data are observed (i.e., the (d, k)th entry of

Φ is φk(τd) for d = 1, . . . , D and k = 1, . . . , K; and ∆1 and ∆2 are the first and

second order difference matrices, respectively.

In the loss function (3.9), the non-negativity and monotonicity constraints are

implemented by the inequality C(X ⊗ IK)β + Cδ ≥ 0, and the upper and lower

blocks ofC correspond to these two constraints, respectively. The terms λ1β
TP T

βP ββ

and λ1δ
TP T

δ P δδ control the smoothness of fixed and random effects, respectively,

where P β = Ip+1 ⊗ ∆2Φ and P δ = In ⊗ ∆2Φ. The magnitudes of both terms

are controlled by the same tuning parameter λ1 since we expect the smoothness

of both effects to be similar; separate tuning parameters could also be used, but

doing so would be more computationally intensive when choosing the values of the

parameters. The term λ2δ
Tδ in the loss function (3.9) controls the magnitude of the

variance of the individual-specific random effects and implicitly guarantees that the

model is identifiable; this term also reflects the random effects specification in our

mixed model representation.

The algorithm that minimizes the loss function (3.9) is implemented in the pcls
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function in the mgcv package (Wood, 2011), which solves least squares problems

with quadratic penalties subject to linear equality and/or inequality constraints using

quadratic programming.

3.2.4 Tuning parameter selection

The values of the tuning parameters λ1 and λ2 may be chosen by cross validation

through a process we describe below. Another parameter to be determined is K,

the number of basis functions used in the expansion of the IRF, which could also be

determined by cross validation. Provided that the basis set is rich enough to capture

all the details of the functions to be estimated, the choice ofK is not crucial (Ruppert,

2002). However, the exact choice of K may vary from application to application and

some examination of this choice is necessary.

To choose λ1 and λ2 we use a bivariate grid search. In each iteration, we generate

the test sample by randomly selecting two points from the observed TAC for each

subject and treat the unselected data as the training sample. While it is common in

some functional data applications to leave out the entire curves (i.e., performing a

leave-one-out cross validation at the subject level), our model contains an unobserved

subject-level random effect, and therefore randomly leaving out two points from each

curve can help assess the performance of the subject-specific effects. For our data, this

procedure amounts to leaving out roughly 10% of the observations in each training-

test split. The main purpose of performing this “regression-style” cross validation is

to strike a good bias/variance tradeoff at the subject and population level. For each

split, a full model is fit to the training sample, and prediction error is obtained by

applying the fitted model to the test data.
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3.3 Simulation

In this section we conduct a simulation study to assess the quality of our proposed

nonparametric method. Throughout, simulated datasets are generated based on the

motivating DASB data. We also perform a systematic comparison to an existing

parametric method; Frankle et al. (2006) and Ogden et al. (2007) concluded that the

one-tissue compartment model has good performance on DASB binding by evaluated

common competing methods using test-retest data, and therefore we use this as a

comparison approach.

The two methods are compared in two scenarios: first when the data follow the

one-tissue compartment parametric model, and second when they do not. We gener-

ate realistic datasets under both scenarios by first fitting both our proposed method

and the one-tissue compartment model to the motivating data. Estimated IRFs are

computed for both methods and the integrated squared difference is used to assess

agreement between methods. To generate datasets under the parametric model, we

identify the 20 subjects for whom the methods have the best overall agreement. From

these, we randomly choose two parametric estimates and take a weighted average to

obtain the new subject’s “true” IRF; weights for the weighted average are α and

1 − α, where where α is sampled from a Uniform[0, b] distribution with b chosen to

ensure the resulting data has the same mean and variance as the original data. The

simulated TAC is produced using the “true” IRF and an input function randomly

sampled from the observed data according to Model 3.2, with errors generated from

a mean-zero Gaussian distribution with variance equal to the error variance in our

real data analysis. A similar process is used to generate data that does not follow the

parametric model, except that the two subjects are selected from among those with

the least agreement between methods and the “true” IRF is simulated by taking the
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weighted average of their nonparametric estimates. The simulated dataset in each

scenario consists of 100 subjects.

We fit both our proposed model and the one-tissue compartment model to each

simulated dataset. The values of tuning parameters are determined by a bivariate

cross-validation as described in Section 3.2.4, using a 10× 10 grid of possible tuning

parameter value and evaluating each combination on 100 training-test splits.

The root integrated mean square errors of the estimated IRFs obtained from both

scenarios are presented in Figure 3.1. Both methods perform well under the scenario

in which the IRFs used to generate data come from the parametric model, although

there is a small but expected decrease in performance for the non-parametric approach

stemming from the increase in model complexity. For the scenario in which the truth

comes from a non-parametric model, however, the proposed approach substantially

outperforms the parametric method. Indeed, the performance of the proposed ap-

proach is broadly similar across data generating mechanisms, while the performance

of the parametric approach suffers when the assumed model is not true.

3.4 PET data analysis

Impaired serotonergic function has been implicated in the pathophysiology of major

depressive disorder (MDD) and bipolar disorder (BPD). Both have been associated

with suicidal behavior and completed suicide. In these studies, the tracer [11C]DASB

is frequently used to examine the binding capacity of the serotonin transporter in

the serotonin (5-HT) neurotransmitter system in the human brain. The one-tissue

model generally provides reasonable fit to DASB data and also results in reproducible

estimates of binding parameters (Ogden et al., 2007). This model involves a single

brain compartment which exchanges tracer molecules with the blood compartment,

with tracer particles crossing the blood brain barrier (BBB) into the brain at constant
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Figure 3.1: The root integrated mean square errors of the estimated IRFs obtained

from both our proposed method and the one-tissue compartment model when data

follow parametric model (left) and when they do not (right).

rate K1 and flowing in the other direction with rate k2. For this model, the total

volume of distribution can be shown to be VT = K1/k2 (Innis et al., 2007). Binding

potential, a measure related to the density of the target protein in the brain, is

typically calculated indirectly with this model, by comparing total distribution volume

in a region of interest with that in a reference region.

Our data consist of PET scans using the [11C]DASB tracer of 137 subjects be-

longing to three diagnostic groups: BPD (20), MDD (83), and normal control (34).

Details of the data acquisition are given in Miller et al. (2013) and Miller et al. (2016).

To summarize, injected dose averaged approximately 16mCi for each of the groups

with a standard deviation of approximately 2 for all groups. Average injected mass

ranged from 4µg to 5µg for the groups with standard deviation approximately 2. PET
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scanning was done on an Siemens ECAT HR+, and reconstruction was done using

the filtered back projection algorithm. Any subject head motion during scanning was

corrected by applying the FMRIB linear image registration tool (FLIRT). Regions of

interest were identified on a T1-weighted MRI for each subject and transferred to the

PET imaging space by coregistering to the subjects’ corresponding sequence of PET

images. The regions that we consider in this analysis are relatively large and easy to

identify. Arterial samples were drawn every 10 seconds for the first 2 minutes, every

20 seconds for the next two minutes, and then at time points 6, 8, 12, 16, 20, 30, 40,

50, 60, 80, 90, 100, and 120 minutes. Blood samples drawn at 2, 12, 20, 50, 80, and

100 minutes were also analyzed to determine unmetabolized parent compound levels

and the arterial data were corrected accordingly (Parsey et al., 2006b). The model

used to describe the arterial concentration data is linear to the peak and a sum of

three exponentials after the peak, and the fitted model was used at the input function

for each subject.

In this section, we apply our method for estimating IRFs while accounting for

covariate effects and constraints, described in Section 3.2, to this dataset. We first

conduct an analysis on the midbrain, an ROI whose importance in the development

of depression has been previously demonstrated. Serotonin transporter availability in

the midbrain has been shown to be different in depressed subjects by Parsey et al.

(2006a) and Malison et al. (1998) and has been studied in other PET studies of depres-

sion (Miller et al. (2013); Sullivan et al. (2009)). Subsequently, we conduct another

analysis that focuses more closely on the binding specific to the target receptor. Raw

TACs of the ROI and reference region as well as the input functions for all subjects

are shown in Figure 3.2.

54



CHAPTER 3. FUNCTIONAL DATA ANALYSIS OF DYNAMIC PET DATA

TAC for the Region of Interest TAC for the Reference Region Input Function

0 30 60 90 120 0 30 60 90 120 0 30 60 90 120

0.0

0.5

1.0

1.5

Time

Figure 3.2: Raw TACs of the ROI (left) and reference region (middle) and the input

functions (right) for all subjects.

3.4.1 Analysis of the midbrain data

Focusing first on the midbrain, a model with diagnosis group as the only predictor

is fit to the entire dataset. A cubic B-spline basis with 10 basis functions is used

to model IRFs; no appreciable difference is observed when we repeat the analysis

with either K = 5 or 15. Values of the tuning parameters λ1 and λ2 are determined

by cross validation, as discussed in Section 3.2.4, using a 20 × 20 grid of possible

tuning parameter value and evaluating each combination on 100 training-test splits.

Figure 3.3 provides the cross validated prediction error over all values of the tuning

parameters.

After choosing λ1 and λ2, we estimate model parameters using the complete

dataset. The fitted group mean and individual IRFs are shown in the left panel

of Figure 3.4. These results indicate that the mean IRF of the patients with bipolar

disorder tends to be lower than that of the patients with major depression throughout

the entire study period. In addition, the mean IRF of the healthy controls is lower

than the other two groups at the beginning of the scan, but decreases at a slower

rate and is higher than the other groups for most of the scan duration. When the
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Figure 3.3: A heat map of cross validated errors, used to determine the tuning pa-

rameters λ1 and λ2, with contours overlaid.

IRF is estimated according to assumptions required by kinetic models, any difference

between two IRFs can only be attributed to differences in the set of rate parameters

(which combine to determine the density of target proteins), and that is the extent

of the interpretation of such functions. By estimating the IRF nonparametrically,

however, a much more flexible interpretation is possible. The IRF reflects the density

of the target proteins, to be sure, but going well beyond that it also represents the
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rate at which the tracer molecules leave the system, which may be time-varying.

We next construct pointwise confidence bands of the group mean differences using

a bootstrap algorithm in which 1000 bootstrap samples are generated in the following

way. Within each diagnosis group, subjects are chosen with replacement with the

sample size of the bootstrap sample of each group set to be the same as the original

sample size. Then apply our proposed approach on each bootstrap sample to estimate

the group mean curves and take the differences between healthy controls and the other

two groups.

The right panel of Figure 3.4 shows the 95% pointwise bootstrap confidence bands

based on the 1000 bootstrap samples. Due to the relatively large sample size of the

major depression group, the confidence band for the difference between major depres-

sion patients and healthy controls is narrower than that for the difference between

bipolar disorder patients and controls. Figure 3.4 suggests that the mean IRF of

major depression patients is lower than the controls between 75 and 90 minutes and

the mean IRF of the bipolar disorder patients is lower than the controls between 75

and 105 minutes.

To provide a frame of reference, we also model these data using the one-tissue

compartment model, which has been deemed a reasonable compartment model struc-

ture for this tracer (Frankle et al. (2006); Ogden et al. (2007)). IRFs for four selected

subjects, estimated using our approach and the compartment model, are shown in the

top row of Figure 3.5. For the first subject the estimates are similar, but differences

for the remaining subjects can be clearly observed. This suggests that parametric

models may be appropriate for some subjects but not others. The bottom row of Fig-

ure 3.5 shows the observed data and the estimated TACs for the same four subjects

using both methods. Visual inspection of these panels suggest that our method can

substantially outperform the parametric approach in terms of fitted values. Lastly,

Figure 3.6 shows the residuals obtained using both our nonparametric approach and
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Figure 3.4: The left panel shows the estimated IRFs obtained using our method.

Group mean (thick) and individual curves (thin) of different groups are presented

in different colors. The right panel shows the 95% pointwise bootstrap confidence

intervals (shaded areas) with the group mean differences (solid) estimated from the

original sample overlaid.

the parametric method. The residuals obtained using our approach have mean zero

and roughy constant variance, while the residuals obtained through parametric mod-

eling appear to miss trends in the data and have larger variability.

3.4.2 Analysis of the difference between the midbrain and the

reference region

Next, we focus on isolating the binding capacity that is specific to the target pro-

tein. As mentioned in Section 3.1, tracer molecules may bind to their target protein

(“specifically bound”) or they may be associated with other macromolecular compo-

nents (“non-specifically associated”). However, the observed PET data can measure
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Figure 3.5: The top row shows comparisons between estimated IRFs using our pro-

posed approach and the one-tissue compartment model for four selected subjects.

The bottom row shows comparisons between estimated TACs using our proposed ap-

proach and the one-tissue compartment model for the same subjects with observed

curves overlaid.

only total concentration, consisting of unbound molecules as well as those bound to

either type of protein, and is unable to discriminate among those states. Thus, as

mentioned in Section 3.1.1, it is common in practice to designate a region that is

devoid of the target protein as a “reference region”. If non-specific association is uni-

form across the brain (as is always assumed), a reference region, which will allow only

non-specific association, will allow better focus on the binding of the tracer to the

specific target protein.

As we discussed in Section 3.1.3, the total volume of distribution of the tracer

(VT ) is a commonly used summary measure for the parametric approaches. It is
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Figure 3.6: Residuals obtained using our proposed approach (left) and residuals ob-

tained using the 1TC model (right).

made up of two components: one that is only involved with specific binding to the

target; and the other includes everything else, including volume of unbound tracer

and tracer that is associated with other macromolecular components. The VT of the

region of interest represents the total volume of the two components while the VT of

a reference region consists only the second component. Thus, a standard measure of

binding is VT_region − VT_ref =
∫∞

0
fregion(t)dt−

∫∞
0
fref(t)dt =

∫∞
0

(fregion − fref) (t)dt,

i.e., that the binding measure is based on a functional of the difference between two

IRFs. Although VT refers only to parametric analysis, it is still reasonable to take

the difference between the IRFs obtained from nonparametric approaches because the

difference pertains only to specific binding component of the IRF.

In this analysis, we designate the midbrain as the region of interest and the cere-

bellar gray matter as the reference region. We modeled IRFs in both the region of

interest and the reference region using our approach described in Section 3.2, with
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Figure 3.7: The left panel shows the estimated differences in IRFs, including both

group mean and individual curves, obtained using our approach. The right panel

shows the 95% pointwise bootstrap confidence bands (shaded areas) with the group

mean differences (solid) estimated from the original sample overlaid.

values for the tuning parameters determined separately. The differences between

regions within each subject are estimated by subtracting the IRFs of the reference

region from those of the region of interest.

The left panel of Figure 3.7 displays the estimated difference between the IRFs of

the region of interest and reference region using this approach. Results indicate that

the difference curve starts negative and, as time goes on, reaches a peak and then

decreases. The negative difference at the beginning may be due to faster initial uptake

in the reference region than in the midbrain region; this rate is unrelated to receptor

availability. As time goes on, precisely because of the specific binding of the target

protein in the region of interest, tracer molecules in the reference region would tend

to be washed out relatively early compared to those in the midbrain. Comparisons
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across groups indicate that the mean difference IRF of the healthy controls is higher

than the other two groups after 40 minutes and that the mean difference IRFs of the

patients with bipolar disorder and the patients with major depression are not quite

distinguishable.

As in Section 3.4.1, we perform a bootstrap analysis to construct pointwise confi-

dence bands of the group differences of the mean difference IRFs. For each bootstrap

sample, we fit the models on the region of interest and on the reference region. There-

fore, the group differences of the estimated mean difference IRFs can be obtained for

all the bootstrap samples. The 95% pointwise confidence bands shown in the right

panel of Figure 3.7 are constructed based on the bootstrap estimates of the mean

difference curves. In contrast to what we observed with the midbrain TACs in Sec-

tion 3.4.1, both confidence bands cover 0 for the entire time range, indicating an

insignificant difference between health controls and the other two groups in terms of

the mean difference IRFs.

3.5 Discussion

We proposed a nonparametric model fitting framework that estimates the IRF using

functional data analytic techniques. For the first time ever, our method models

dynamic PET data from multiple subjects simultaneously. In our approach, IRFs

are estimated using a linear mixed effects functional data model with population-

level fixed effects and subject-level random effects. In accordance with our biological

understanding of the IRF, we imposed appropriate non-negativity and monotonicity

constraints on the estimates when fitting the model. Because of its flexibility, our

model can be used generally for data with any tracer. The application of our approach

to clinical PET data indicates that it successfully captures the structure in IRF, both

when we model the region of interest only and when we model the difference between
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the region of interest and a reference region. Finally, pointwise confidence intervals

of the estimated curves were constructed based on bootstrap samples.

In the most general sense one can view the relationship between the TAC and

the input function as a function-on-function regression problem (Scheipl et al., 2015),

although it may be more appropriately posed as a model with a historical term relating

recent tracer availability to current tracer density. Our proposal focuses on the use

of functional data approaches to increase the flexibility in estimating the IRF in

comparison to methods that focus the estimation of rate parameters in a compartment

model. We do this through the convolution of the IRF and input function which

reduces the model to a function-on-scalar regression problem. To this framework,

we add scientifically relevant constraints on monotonicity and non-negativity to the

usual estimation process. A careful consideration of the input function and TAC from

the perspective of a function-on-function regression model would allow one to study

the adequacy of the convolution operator, and is an important direction for future

work.

Additional extension of our methodology may take several directions. Because of

the way we construct the model, additional covariates, including continuous variables,

can be incorporated in the model if the IRF is thought to be associated with those

covariates. In addition, it would be useful to develop a goodness-of-fit test based

on the estimated curves to evaluate how well the standard parametric models are

able to describe the observed data. The development of approaches for TACs in

multiple regions is conceptually possible in our modeling framework, but suitable and

computationally feasible models for the covariance across regions may be challenging.

Lastly, the classification of subjects into diagnostic groups based on PET imaging

data is of general interest. However, given the overlap among groups in our data as

shown in Figure 3.4, accurate classification based on PET data alone may not be

successful.
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Chapter 4

Nonlinear Mixed-Effects Models for

PET Data

4.1 Introduction

Dynamic PET imaging has been widely used in studies of mental and neurologi-

cal disorders. One very common application of PET imaging involves estimating

the distribution of various macromolecules, often proteins, throughout the brain. In

dynamic PET studies, a time activity curve (TAC) reflects the sequence of concentra-

tions across time for any given voxel or region and is often used to estimate quantities

related to the density of the target protein at each location.

The TAC, denoted as CT , is conceptualized as the convolution between two func-

tions

CT (t) = (H ⊗ CP )(t) (4.1)

where t is time, CP is the input function and H is the the voxel-specific impulse re-

sponse function (IRF). The input function CP represents the concentration of the

tracer in the arterial plasma over time, corrected to account for the radioactive
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metabolites of the tracer, and quantifies the amount of tracer molecules that are

available to enter the brain at any given time. In practice, the input function re-

quires blood data during the scan. The location-specific IRF may be interpreted as

the hypothetical concentration of the tracer over time in the corresponding region

if the input function were an instantaneous bolus spike. Because the IRF describes

the physiological and pharmacological properties of the system, the analysis of the

kinetic behavior of the tracer centers on estimating the IRF in Model (4.1).

The most widely used approach for tracer kinetic analysis is compartment mod-

eling. Under the assumptions of this approach, the IRF has the form

Hk(t) =
J∑
j=1

Lje
−Rjt, (4.2)

where J is the total number of tissue compartments, and Lj and Rj are functions

of the rate parameters k. The rate parameters are the key elements to be estimated

because they completely characterize the kinetic behavior of the tracer based on

the assumed model. Standard quantities of clinical importance, such as volume of

distribution (VT ) and binding potential (BPND & BPP ), are functions of the rate

parameters. For example, under the assumption of two-tissue compartment model

which has four rate parameters (k1, k2, k3, k4), the forms of these measures are given

by (Innis et al., 2007):

VT =
k1

k2

(1 +
k3

k4

);

BPND =
k1

k2

;

BPP =
k1k3

k2k4

.

A well established and almost universally applied method for estimating the rate

parameters is a two-stage approach: in Stage 1, individual estimates of all kinetic pa-

rameters are obtained by fitting each individual’s data, one subject at a time, using
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Nonlinear least squares (NLS). Standard measure of binding, including VT , BPND,

BPP , etc., can be calculated. Population level effects are estimated by treating the

individual estimates as if they were observed data. In Stage 2, the binding measures

are compared across subjects and population-level effects, such as the difference be-

tween patients and controls, are examined using standard statistical methods. This

two-stage approach has several shortcomings. First, sufficient data from each sub-

ject are needed to obtain reliable individual-level estimates. In practice, the lack

of sufficient data frequently causes numeric instability, especially for complex multi-

tissue compartment models which have many parameters to estimate. Finally, the

two-stage approach treats subjects individually rather than as members of a common

population with shared features, thereby neglecting useful information.

We propose new methods for the analysis of dynamic PET data that provide a

flexible and efficient alternative to the two-stage approach. Specifically, we propose to

model all subjects simultaneously rather than one at a time by fitting nonlinear mixed-

effect (NLME) models. NLME addresses the inherent instability of subject-level

rate parameter estimates in the two-stage approach by jointly modeling all subjects,

and produces improved individual estimates. This approach accounts for subject-

to-subject variability directly by modeling each subject’s rate parameter as coming

from a distribution of rate parameters. For instance, assuming one distribution for

the patients and another for the controls, with an NLME approach, we are really

just analyzing the difference between these two distributions. Under the modeling

framework of our proposed approach, the difference is limited to a mean shift as we

assume there is a shared variability in random effects of both groups. Meanwhile, in

the NLME modeling framework, both individual rate parameters and the effects of

some covariates on the rate parameters can be estimated in a single analysis. Also,

taking this approach allows for more complex models than could be fit otherwise.

In addition to proposing the NLME modeling approach for compartment modeling
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with PET data, we also describe a model building procedure that is important when

applying our approach to real data. Two main issues that need to be addressed are

selecting which explanatory variable should be included as fixed effects and which

parameters should have an associated random effect with non-zero variance. We

illustrate this model building procedure through the careful analysis of our motivating

clinical PET data.

NLME has been used in previous analysis of PET data. Berges et al. (2013)

applies the NLME approach to PET data under the assumption of a PK-receptor

occupancy (PK-RO) model. This model, which has only one kinetic parameter to

estimate, is less complicated than the two-tissue compartment model that we build

in this paper. In addition, Veronese et al. (2013) assumes CP in (4.1) to be a product

of the total tracer activity and a Parent Plasma fraction (PPf) function and applies

the NLME approach to estimate PPf. In contrast we focus on estimating the IRF

directly.

The rest of the paper is organized as follows. In Section 4.2, we present the NLME

modeling framework of PET data and introduce the tests and criteria that can be

used to determine the fixed and random effects. The results of simulations comparing

our proposed NLME method to the two-stage approach are given in Section 4.3, with

particular emphasis on power to detect differences across groups. In Section 4.4, we

illustrate the model building procedure by using clinical PET data as an example.

Finally, we summarize the main results and present a short discussion in Section 4.5.

Code files that are used to generate the results in this paper are provided in the

supplementary materials.
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4.2 Methodology

As the intravascular activity may have significant contribution to the total concen-

tration of the tracer, the whole blood concentration should be accounted for in the

data analysis. Under the assumption of compartment models, Model (4.1) can be

reformulated as

CT (t) = (1− Vb)(Hk ⊗ CP )(t) + VbCB(t) (4.3)

where CB is the time activity curve in the whole blood and Vb is the fractional blood

volume of the tissue. Again, Hk here is the IRF, and under the assumptions of the

compartment models, it depends on a vector of rate parameters k.

We now describe how Model (4.3) can be cast in the general NLME framework.

A general expression for the NLME model is given by

yij = f(θi, zij) + εij, i = 1, · · · , n, j = 1, · · · , ni, (4.4)

where yij is the jth observation of the ith subject, n is the number of subjects, and

ni is the number of measurements for subject i. In practice, the continuous-valued

function CT in (4.3) is observed on a discrete grid of time points {tij}. Therefore,

in the context of Model (4.3), the response yij is the TAC observations CT (tij); f

is defined by the functions Hk, CP and CB; and the parameter vector θi, specific

to subject i, consists of rate parameters ki and the fractional blood volume Vbi, i.e.

θi = (kTi , Vbi)
T . The exact form of f under the assumption of compartment models

is given in the appendix.

Within this modeling framework, the kinetic parameters for each subject can be

thought of as coming from the distribution of kinetic parameters; conceptually, this

distribution characterizes the natural subject-to-subject variability. For example, the

value k4i for patient i comes from a normal distribution with a mean and variance

shared across all patients, while the value k4j for the control subject j comes from
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some other normal distribution. A major goal, then, is to determine whether these

two distributions are the same. In Model (4.4), we expand the subject-level parameter

vector θi as θi = βTxi + bi, where β is a matrix of the fixed effect coefficients; xi is

the design matrix; and bi ∼ N (0,Σ) is the vector of the random effects for the ith

subject, which represent the subject-specific deviations from the population averages.

This expansion separates population averages from subject-specific deviations, and

provides the mechanism through which group-level and subject-level kinetic behaviors

can be understood. The assumption that random effects bi share a distribution arises

from the recognition that subjects come from the same population. By modeling all

subjects simultaneously, the properties of this distribution (especially the variance Σ)

can be inferred and used to stabilize individual-level estimates. This approach allows

us to jointly model all subjects and to directly estimate and test for the significance

of effects of covariates, such as diagnosis or age, on the rate parameters.

Taken together, the fixed and random effects are the parameters of interest in

NLME representation of Model (4.1). These can be estimated either by maximum

likelihood (ML) or by restricted maximum likelihood (REML) using the Lindstrom

and Bates (LB) algorithm (Lindstrom and Bates, 1990). For our analyses, we use the

implementation of this algorithm in the nlme package (Pinheiro et al., 2016) in R.

From the fitted model, estimates of the summarized measures, like binding potentials

(BPND and BPP ) and total volume (VT ) can be computed at the population level

using the fixed effects estimates.

Key issues that arise when fitting NLME models for PET data include selecting

covariates to include as fixed effects and determining which elements of the parameter

vector θi should have associated random components. Because covariates can affect

each of the rate parameters through the fixed effects specification, a global test can

be used to assess the global significance of the covariate effect, for example, whether

there exist non-zero differences comparing patients to controls for any of the rate
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parameters. Choices for determining the fixed effects include the likelihood ratio test

(LRT) (Neyman and Pearson, 1992), alternative likelihood-based tests, such as Wald

test (Wald, 1943) and score test (Rao, 1948), and information criterion statistics, such

as Akaike information criterion (AIC) (Akaike, 1998) and Bayesian information crite-

rion (BIC) (Schwarz et al., 1978). AIC and BIC can also be used to determine which

effects should have associated random components. Alternatively, a non-standard

likelihood ratio test can be applied on nested models to test whether one random

effect component is zero, i.e., whether a parameter has significant between-subject

variability. This non-standard LRT, proposed by Stram and Lee (1994), addresses

the issue that the testing value under the null hypothesis is on the boundary of the

support of the parameter. Lastly, to obtain inferences directly for BPND , BPP and

VT the Delta method (Dorfman, 1938) is used to derive the standard errors based on

the estimates and variance of rate parameter fixed effects.

4.3 Simulation

In this section we undertake a simulation exercise to understand the properties of

NLME modeling for PET data and to compare the performance of the proposed

methods to that of the two-stage approach.

Simulated datasets are designed to mimic our motivating data (PET data with

WAY tracer described in Section 4.4) in the following way. We begin by fitting

Model (4.3) under a two-tissue compartment model assumption to the observed data

with no covariates. From this model fit, we extract estimates of fixed effects β, the

random effect covariance Σ, and of the error variance σ2 and these estimates are set

to be the “truth” for the purposes of this simulation. To simulate new subject data,

we sample observed input functions CP and whole blood time activity curves CB from

subjects in the observed data with replacement. CP and CB in our data have the
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same forms as in Parsey et al. (2000). Subject-specific random effects are generated

from a multivariate normal distribution with mean β and covariance Σ. The sam-

pled functions and generated random effects are combined with estimated fixed effect

parameters to produce simulated time activity curves CT according to Model (4.3).

Simulated errors εij are generated from truncated Gaussian distributions with mean

0 and variance σ2 = 0.01 to ensure the simulated TAC observations are non-negative.

Each simulated dataset consists of 90 subjects, with half in each covariate group.

Values of the β and Σ used to generate individual parameters are provided in the

appendix.

4.3.1 Quality of fixed effect estimation

Our first objective is to assess how well NLME modeling estimates the “true” fixed

effects. To do so, we generate 1000 datasets under the above design. For each of the

simulated datasets, we apply both our proposed approach and two stage approach

assuming there exists a group effect on all rate parameters but not blood volume.

We arbitrarily choose one of the two groups to be the reference group, analogous to

the control group in a medical study. In this simulation, every subject has a different

set of rate parameters, drawn from a distribution that differs for the control group

and the patient group. Also, every subject has a different blood volume Vbi and

subjects in both groups have observations drawn from a common distribution. Below

we compare the estimated values for both approaches to the “truth”, i.e., the values

used to generate the data.

Figure 4.1 compares the estimates of both approaches for fixed effects related to

each rate parameter as well as the summarized measures VT , BPND and BPP . The

top row shows the relative estimation errors β̂−β
β

of fixed effects for subjects in the

reference group, and the bottom row shows the absolute estimation errors β̂ − β
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Figure 4.1: Relative estimation errors of fixed effects in the reference group (top)

and absolute estimation errors of the difference between groups (bottom) using both

approaches.

of the difference between groups. As expected, the distribution of estimated values

for the proposed NLME approach are generally narrower and include fewer outlying

values than the corresponding distributions for the two-stage approach. As described

in Section 4.2, NLME improves and stabilizes the estimation of rate parameters at

the subject level; this, in turn, leads to the observed improvement in estimation for

population-level fixed effects.

4.3.2 Comparison of power for detecting group differences

The preceding simulation indicates that the proposed NLME approach is more accu-

rate than two-stage approach for estimating group differences. We now explore how

this difference affects the power to detect true differences in rate parameters or in

binding measures when testing hypotheses.

We use the simulation design described above, with modifications that allow a

careful comparison of power between approaches. Keeping the fixed effects in the

reference group as they were, we initially set all group differences to zero. Then,
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we gradually increase the group difference for each rate parameter individually while

keeping group differences for other rate parameters equal to zero. For each collection

of true fixed effects, we apply both approaches to 200 simulated datasets.

First, we compare methods on their ability to detect differences for individual rate

parameters. Previous studies focus on testing effects on summarized measurements.

However, with our proposed NLME approach, it’s possible to test effects on individual

rate parameters, e.g., H0` : kControl
` = kPatient

` , where kControl
` and kPatient

` are k`’s

(` ∈ {1, 2, 3, 4}) for controls and patients, respectively. Here we use standard two-

sample t test to examine group differences for the particular rate parameter with

a true difference. Results for the NLME approach are obtained directly from the

model fitting procedure, while for the two-stage approach we perform a t test on the

individual rate parameter estimated from subject-specific NLS fits.

However, in practical settings, these may not be a prior hypothesis about which

parameters are affected by covariates. In this case, it is appropriate to use a global

test that examines group differences across all rate parameters, e.g., H0 : kControl
1 =

kPatient
1 , kControl

2 = kPatient
2 , kControl

3 = kPatient
3 , kControl

4 = kPatient
4 . To test the global

hypothesis using NLME, we use a multivariate analysis of variance (MANOVA) test,

which is designed to test an effect on several dependent variables. In this case, once

we have the individual rate parameters from Stage 1, we can use MANOVA to test

whether there is a significant group effect on any of the four rate parameters. To

conduct this test using the two-stage approach, we use LRT by fitting two models

under different assumptions: none of the rate parameters depend on group and all

the rate parameters depend on group. Then the likelihoods of these two models are

compared.

Figure 4.2 shows results for true differences in each of the four rate parameters,

with power defined as the proportion of rejected null hypotheses across the 200 sim-

ulated datasets for each effect size. Unsurprisingly, the parameter-specific test of the
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Figure 4.2: Power curves of detecting the group mean difference on rate parameters

using four different tests: parameter specific t test of group effect on each rate pa-

rameter using NLME model; LRT of overall group effect comparing nested NLME

models; parameter specific t test of group effect on the rate parameters based on the

two-stage approach; MANOVA test of overall group effect based on the two-stage

approach. The black line in each plot represents the 0.05 nominal level.

from H0` : kControl
` = kPatient

` is more powerful than the global test in all cases. Im-

portantly, for either test, the NLME approach is more powerful than the two-stage

approach, often substantially so. This improvement in power derives from the better

estimation of fixed effects observed in Section 4.3.1.

Next, we compare methods on their ability to detect differences in the summary

measures VT , BPND and BPP . The simulation design is as before, meaning that

differences between groups exist in only one rate parameter at a time. The power

to detect resulting differences in summary measures is shown in Figure 4.3. Because

k1 and k2 do not affect BPND, group differences in these rate parameters are not

detectable through this summary measure. However, VT and BPP are affected by

such differences and NLME has much greater power than the two-stage approach

to detect differences in those measures. Group differences in k3 and k4 affect all
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Figure 4.3: Power curves of detecting the group mean difference on the summarized

measures using six different tests: t test of group effect in VT based on NLME model;

t test of group effect in BPND based on NLME model; t test of group effect in BPP

based on NLME model; t test of group effect in VT based on two-stage approach; t

test of group effect in BPND based on two-stage approach; t test of group effect in

BPP based on two-stage approach. The black line in each plot represents the 0.05

nominal level.

the summary measures, and as these group differences in rate parameters increases

so does the power to detect differences in the summary measures. Again, NLME

uniformly outperforms the two-stage approach.

4.4 PET data analysis

Recent studies have shown that serotonin 1A receptor (5-HT1A) plays a key role in

major depressive disorder (MDD) (Parsey et al., 2010) and bipolar disorder (Sullivan

et al., 2009). The [11C]WAY tracer has been used widely to quantify 5-HT1A binding

and the rate constant parameters when a compartment model is assumed (Parsey

et al., 2000).
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Our data consist of TACs in the midbrain of 97 subjects who can be divided into

three groups based on their prior medication history: MDD subjects who have not

recently been on medication (NRM); antidepressant-exposed (AE) MDD subjects and

MDD subjects who are on an adequate dose of antidepressant for at least 4 weeks

(Parsey et al., 2010); and control subjects. Other covariates that may have effects on

the rate parameters include age and gender. Metabolite corrected plasma data and

whole blood data are available for all subjects.

In this section, we apply the NLME modeling approach described in Section 4.2

to the PET data under the assumption of a two-tissue compartment model. We use

this data as an example to illustrate a model building procedure of NLME models

on PET data. A related model building framework for NLME models can be found

in Pinheiro et al. (1995). Because the primary interest lies in analyzing the group

differences, our starting point is a model that includes this variable. Throughout, we

will use global tests under the assumption that covariates may affect the four rate

parameters but not the blood volume, and to start we assume that all rate parameters

plus Vb have associated random effects.

4.4.1 Testing for random effects

The first question to address is whether all parameters exhibit subject-level variability,

i.e., whether a particular parameter is identical for all the subjects with the same fixed

effect specification or a parameter-specific random effect is needed. We fit separate

models in which each the random effect for each of the parameters is omitted, and

compare the results with the initial model using AIC and the LRT described in

Section 4.2. The initial model has the smallest AIC among all candidate models,

and the p-values from the non-standard LRTs indicate that the random effect on

each of the parameter is significant (largest p-value = 5.667 × 10−4). Thus, both
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criteria indicate that the model in which all the parameters have associated random

components is superior, and we proceed to the selection of covariates for fixed effects.

Results are shown in Table 4.1. Here we refer the model in which only the variance

of random effect of k` is zero as Model ` and the model in which only the variance of

random effect of Vb is zero as Model 5. For instance, Model 1 represents the model

in which the variance of random effect of k1 is zero and the random effects of other

parameters are allowed to have non-zero variances.

Table 4.1: AIC and LRT results for models with different number of random compo-

nents.

Model AIC log likelihood test p-value

Model 0 -11617.98 5837.990

Model 1 -11003.95 5525.974 0 vs 1 6.972× 10−133

Model 2 -11596.87 5822.436 0 vs 2 5.917× 10−6

Model 3 -11606.99 5827.497 0 vs 3 5.667× 10−4

Model 4 -11588.86 5818.430 0 vs 4 1.452× 10−7

Model 5 -11579.03 5813.515 0 vs 5 1.435× 10−9

4.4.2 Including covariate fixed effects

Covariates such as age and gender may affect rate parameters, and we now consider

their addition to our model. We add these variables as fixed effects in a global way by

including covariate effects on all rate parameters, and build our model using forward

selection with a global hypothesis test. Both main effects and interactions between

variables are considered. The results of our model building process are shown in

Table 4.2, and indicate that age and gender are significant predictors and none of the

two-way interactions are significant. Therefore, we determine that the model with
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only the main effects of group, age and gender is our final model. All the estimates

of the final model are given in Table 4.3. The estimated correlation matrix of the

random effects is 

1 −0.552 −0.667 −0.308 0.157

−0.552 1 0.104 0.476 −0.081

−0.667 0.104 1 0.664 −0.160

−0.308 0.476 0.664 1 −0.310

0.157 −0.081 −0.160 −0.310 1


Among the rate parameters, the correlation between k2 and k3, as well as the corre-

lation between k1 and k4, is small. And Vb has a weak correlation with all the rate

parameters.

Table 4.2: Results of LRT comparing nested models with difference combination of

covariates

Model Fixed effect structure Test p-value

1 Group

2 Group + Gender 1 vs 2 0.0293

3 Group + Age 1 vs 3 0.0013

4 Group + Gender + Age 3 vs 4 0.0154

5 Group + Gender + Age + Gender * Age 4 vs 5 0.4331

6 Group + Gender + Age + Group * Gender 4 vs 6 0.4100

7 Group + Gender + Age + Group * Age 4 vs 7 0.6280

4.4.3 Comparison with the two-stage approach

Next, we compare NLS estimates of the parameters obtained from the two-stage

approach by fitting a two-tissue compartment model on each subject to those obtained
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from NLME fit of the final model. Figure 4.4 plots the these estimates for all the

parameters and includes an identity line for reference. The approaches give similar

estimates for k1, but the impact of assuming a random effects structure is clear for

k2, k3, k4 and Vb: the NLME estimates have smaller variances. This “shrinkage”

is expected from the NLME approach, and is a reason why the approach is less

vulnerable to individual outliers than NLS estimates. That is, it is difficult to obtain

accurate and stable estimates for these rate parameters using NLS. In contrast, by

simultaneously estimating rate parameters for all subjects and using the random

effects distribution, NLME is able to balance subject- and population-level data to

improve rate parameter estimation.
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Figure 4.4: Individual NLME estimates vs NLS estimates for the five parameters.

The solid line on each panel is the identity line with intercept 0 and slope 1.

The parameter estimates, standard errors and the p-values of the t tests, are given

in Table 4.3. According to the p-values of t tests associated with the comparisons of

different covariates, our final NLME model identifies gender as a significant factor for

k1, k2, VT , BPND and BPP ; and age is a significant factor for k3, BPND and BPP .

We can draw many conclusions based on the results. For example, adjusted for group

and age, k1 of males is 8.232× 10−3 less than k1 of females. Also, adjusted for group

and gender, as the age increases by 1, k3 decreases by 1.454× 10−4.

Table 4.4 shows the significance level of the overall effects of the covariates in

both NLME and the two-stage approaches. Likelihood ratio tests are performed to
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assess the global effects on all rate parameters for NLME while the MANOVA F -

tests are used for the two-stage approach. Both models identify age as a significant

factor, but only the NLME approach detects a significant overall effect of gender.

Neither approach suggests a significant overall effect of prior medication history group,

although the p-value is somewhat smaller for NLME than for the two-stage approach.

4.5 Conclusion

We proposed a NLME approach for compartment modeling of PET data. The NLME

approach addresses known shortcomings of the standard two-stage approach by fitting

all subjects simultaneously and estimating covariate effects in a one-step model pro-

cess. Our simulations indicate that the proposed NLME approach is more accurate

and correspondingly more powerful in detecting group differences than the two-stage

approach. In real data analyses, the NLME estimates of individual rate parameters

often had narrower distributions than estimates derived from two-stage approach, an

expected byproduct of the balancing subject and population data to estimate individ-

ual effects. We applied a model building procedure for the NLME approach to WAY

tracer based on the two-tissue compartment model, and found effects not detected by

a two-stage approach.

The instability of NLS for estimating rate parameters is a frequently encoun-

tered issue in practice. One way to control outlier rate parameter estimates is to set

bounds. However, it is arbitrary and would have to set separately for each tracer.

These bounds artificially reduce the range of rate parameters, and introduce a new

problem of sensitivity to their specification. Additionally, such bounds still result in

individual estimates of rate parameters, and group differences must be assessed in a

two-stage approach. In contrast, our NLME approach is based on a statistically prin-

cipled model technique that uses available data to stabilize individual rate parameter
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estimates and assesses covariate effects in a single step.

Our work has focused on the two-tissue compartment model; extending this to

a more complicated three-tissue compartment model will introduce additional com-

plexity but which will be important in some applications. Another direction we might

take includes developing an NLME modeling approach to model multiple regions si-

multaneously to account for heterogeneity across regions. Code files that are used

for the simulation and data analysis in this paper are provided in the supplementary

materials.
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Table 4.3: Results of the NLME and two-stage approaches

Parameter Variable NLME Two-stage approach

Estimate Std.Error p-value Estimate Std.Error p-value

k1 AE vs Control −6.183× 10−3 4.023× 10−3 0.125 −6.821× 10−3 4.167× 10−3 0.105

k1 NRM vs Control 5.414× 10−3 4.179× 10−3 0.195 3.827× 10−3 4.235× 10−3 0.369

k1 Gender −8.232× 10−3 3.302× 10−3 0.013 −7.028× 10−3 3.407× 10−3 0.042

k1 Age −2.145× 10−5 1.200× 10−4 0.858 −3.478× 10−5 1.256× 10−4 0.783

k2 AE vs Control 7.854× 10−3 7.959× 10−3 0.324 −1.502× 10−3 1.169× 10−2 0.898

k2 NRM vs Control 1.414× 10−2 8.700× 10−3 0.104 2.240× 10−3 1.188× 10−2 0.851

k2 Gender −1.476× 10−2 6.546× 10−3 0.024 −1.101× 10−2 9.557× 10−3 0.252

k2 Age 1.152× 10−4 2.134× 10−4 0.589 1.546× 10−5 3.525× 10−4 0.965

k3 AE vs Control −1.912× 10−3 2.450× 10−3 0.435 −3.728× 10−3 3.433× 10−3 0.280

k3 NRM vs Control 2.176× 10−3 2.680× 10−3 0.417 6.975× 10−4 3.489× 10−3 0.842

k3 Gender −2.429× 10−3 2.074× 10−3 0.242 −2.084× 10−3 2.807× 10−3 0.460

k3 Age −1.454× 10−4 6.482× 10−5 0.025 −1.214× 10−4 1.035× 10−4 0.244

k4 AE vs Control −2.224× 10−5 9.676× 10−4 0.982 −1.301× 10−4 1.331× 10−3 0.922

k4 NRM vs Control −5.445× 10−4 9.634× 10−4 0.572 −4.758× 10−4 1.353× 10−3 0.726

k4 Gender 5.003× 10−4 7.774× 10−4 0.520 5.360× 10−4 1.088× 10−3 0.624

k4 Age 3.072× 10−5 2.593× 10−5 0.236 6.252× 10−5 4.014× 10−5 0.123

VT AE vs Control −1.992× 10−1 9.498× 10−2 0.039 −4.509 5.484 0.413

VT NRM vs Control 6.454× 10−2 9.654× 10−2 0.506 −3.984 5.574 0.477

VT Gender −1.655× 10−1 7.765× 10−2 0.036 −4.190 4.484 0.352

VT Age −4.699× 10−3 2.864× 10−3 0.104 6.216× 10−2 1.654× 10−1 0.708

BPND AE vs Control −1.036× 10−1 4.330× 10−2 0.019 −21.59 27.29 0.431

BPND NRM vs Control 1.809× 10−1 4.401× 10−2 <0.001 −20.08 27.74 0.471

BPND Gender −1.940× 10−1 3.540× 10−2 <0.001 −20.25 22.31 0.366

BPND Age −1.167× 10−2 1.306× 10−3 <0.001 3.200× 10−1 8.228× 10−1 0.698

BPP AE vs Control −1.531× 10−1 6.978× 10−2 0.031 −4.468 5.487 0.418

BPP NRM vs Control 6.271× 10−2 7.093× 10−2 0.379 −3.994 5.577 0.476

BPP Gender −1.364× 10−1 5.705× 10−2 0.019 −4.163 4.486 0.356

BPP Age −4.303× 10−3 2.104× 10−3 0.044 6.237× 10−2 1.655× 10−1 0.707
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Table 4.4: p-values of overall effects in NLME and two-stage approaches

NLME Two-stage approach

Group 0.0798 0.1140

Gender 0.0154 0.1376

Age 0.0006 0.0006

83



CHAPTER 5. CONCLUSIONS

Chapter 5

Conclusions

The overall theme of this thesis focuses on methods for functional regression and

nonlinear mixed-effects models with applications to PET data.

Chapter 2 considers the problem of variable selection in regression models with

functional responses and scalar predictors. Few methods for variable selection exist for

function-on-scalar models, and none account for the inherent correlation of residual

curves in such models. By expanding the coefficient functions using a B-spline basis,

we pose the function-on-scalar model as a multivariate regression problem. Spline co-

efficients are grouped within coefficient function, and group-MCP is used for variable

selection. We adapt techniques from generalized least squares to account for residual

covariance by “pre-whitening” using an estimate of the covariance matrix, and estab-

lish theoretical properties for the resulting estimator. We further develop an iterative

algorithm that alternately updates the spline coefficients and covariance; simulation

results indicate that this iterative algorithm often performs as well as pre-whitening

using the true covariance, and substantially outperforms methods that neglect the

covariance structure. We apply our method to two-dimensional planar reaching mo-

tions in a study of the effects of stroke severity on motor control, and find that our
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method provides lower prediction errors than competing methods.

Chapter 3 introduces a functional data analytic approach that models multiple

subjects simultaneously, and estimates the IRF nonparametrically. One application

of PET, a nuclear imaging technique, in neuroscience involves in vivo estimation of

the density of various proteins (often, neuroreceptors) in the brain. PET scanning

begins with the injection of a radiolabeled tracer that binds preferentially to the

target protein; tracer molecules are then continuously delivered to the brain via the

bloodstream. By detecting the radioactive decay of the tracer over time, dynamic

PET data are constructed to reflect the concentration of the target protein in the

brain at each time. The fundamental problem in the analysis of dynamic PET data

involves estimating the IRF, which is necessary for describing the binding behav-

ior of the injected radiotracer. Virtually all existing methods have three common

aspects: summarizing the entire IRF with a single scalar measure; modeling each

subject separately; and the imposition of parametric restrictions on the IRF. In con-

trast, we propose a functional data analytic approach that regards each subject’s IRF

as the basic analysis unit, models multiple subjects simultaneously, and estimates the

IRF nonparametrically. We pose our model as a linear mixed effect model in which

population level fixed effects and subject-specific random effects are expanded using

a B-spline basis. Shrinkage and roughness penalties are incorporated in the model

to enforce identifiability and smoothness of the estimated curves, respectively, while

monotonicity and non-negativity constraints impose biological information on esti-

mates. We illustrate this approach by applying it to clinical PET data with subjects

belonging to three diagnosic groups. We explore differences among groups by means

of pointwise confidence intervals of the estimated mean curves based on bootstrap

samples.

Chapter 4 discusses a nonlinear mixed-effects modeling approach for PET data

analysis. The kinetic behavior of many tracers used in neurological mapping studies
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can be approximated using a compartment model. The rate parameters of tracer

transferring between compartments are estimated using NLS approach. The NLS

estimators of the population parameters are applied in a two-stage analysis, in which

individual estimates are obtained by fitting models subject-by-subject and popula-

tion estimates are subsequently computed by treating individual estimates as observed

data. This approach brings instability issue and neglects the variation in rate param-

eters. We propose to estimate the rate parameters by fitting nonlinear mixed-effects

(NLME) models, which addresses both concerns of NLS. In the NLME framework, all

the subjects are modeled simultaneously by allowing rate parameters to have random

effects and population parameters can be estimated directly from the joint model.

Simulations are conducted to compare the power of detecting group effect in both

rate parameters and summarized measures of tests based on both NLS and NLME

models. The results indicate that the test based on NLME model has greater power

compared to its NLS counterpart. We apply our NLME approach to clinical PET

data to illustrate the model building procedure including selecting fixed effects and

determining random effect.

In future research, we will consider adding roughness penalty in addition to

the variable selection to enforce smoothness of the coefficient functions when fit-

ting function-on-scalar regression models. Additionally, it is worthwhile to develop

goodness-of-fit testS based on the estimated curves to evaluate how well our nonpara-

metric and parametric methods are able to describe the observed PET data.
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Appendix A

Appendices to: Variable Selection in

Function-on-Scalar Regression

A.1 Proof of the theorems

These proofs follow the same general strategy of Zeng and Xie (2014) and Peng and

Lu (2012).

For convenience of notation, we denote vec(Y T ) as W , X ⊗Φ as Z, vec(BT ) as

θ and vec(ET ) as ε. Then Model (2.5) can be rewritten as

W = Zθ + ε

where W = (wT
1 , ..., w

T
n )T is a vector of length nD with wi = (wi1, ..., wiD)T , i =

1, ..., n; Z = (zT1 , ..., z
T
n )T is a nD × pK matrix with zi = (zi1, ...,zip), i = 1, ..., n,

where zij, j = 1 ..., p is a D ×K matrix; and θ = (θT1 , ..., θ
T
p )T is a vector of length

Kp with θj = (θj1, ..., θjK)T , j = 1, ..., p. Without loss of generality, we assume

the first s groups of coefficients, θ+ = (θT1 , ..., θ
T
s )T , are nonzero and the rest p − s

groups of coefficients, θ0 = (θTs+1, ..., θ
T
p )T , are zeros Let Z+ denote the design matrix
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associated with θ+ and Z0 denote the one associated with θ0. Therefore, we have

Z = (Z+|Z0) and θ = (θT+,θ
T
0 )T . Also, ε ∼ N (0,V ) where V is a nD × nD block

diagonal matrix with diagonal elements, the D×D matrix Σ, i.e. V = In⊗Σ. The

assumptions required for the proofs are

1. lim
n→∞

1
nD
ZTZ is a positive definite matrix;

2. λn → 0 and
√
nλn →∞ as n→∞;

3. there exists a
√
n-consistent estimate Σ̂ of Σ;

4. the tuning parameter γ of the penalty is fixed.

Proof of Theorem 1:

The penalized least square objective function for estimating θ is

Q(θ) =
1

2
(W −Zθ)T V̂

−1
(W −Zθ) + nD

p∑
j=1

pλn,γ(||θj||)

= L(θ) + nD

p∑
j=1

pλn,γ(||θj||).

Let’s consider a ball B = {θ + n−1/2u : ||u|| ≤ C} where C is a constant. Since

B is a compact set and Q(θ) is a continuous function on B, there exists a minimum

of Q(θ) on B. If Q(θ∗) > Q(θ) for every θ∗ on the boundary of B, then there exists

a local minimizer inside the ball B.

Therefore it suffices to show that for any given ε > 0, there exists a large constant

C such that

P

{
inf
||u||=C

Q(θ + n−1/2u) > Q(θ)

}
> 1− ε. (A.1)
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This implies with probability at least 1 − ε that there exists a local minimizer in

the ball {θ + n−1/2u : ||u|| ≤ C}. Equivalently, for any given ε > 0, there exists a

constant C such that P{n−1/2||θ̂ − θ|| < C} ≥ 1− ε, where θ̂ is the local minimizer

that satisfies ||θ̂ − θ|| = Op(n
−1/2).

Since pλm,γ(0) = 0, we have

Q(θ + n−1/2u)−Q(θ) ≥ L(θ + n−1/2u)− L(θ) + nD

s∑
j=1

pλn,γ(||θj + n−1/2uj||)− nD
s∑
j=1

pλn,γ(||θj||)

=
1

2
n−1uTZT V̂

−1
Zu− n−1/2uTZT V̂

−1
ε

+ nD
s∑
j=1

[
pλn,γ(||θj + n−1/2uj||)− pλn,γ(||θj||)

]
, I1 + I2 + I3.

Under the assumption ε ∼ N (0,V ), since lim
n→∞

1
nD
ZTZ is positive definite and

V̂ → V , we have

I1 =
D

2
uT [

1

nD
ZT V̂

−1
Z]u ≥ Op(1)||u||2D;

and

I2 = − 1√
n
uTZT V̂

−1
ε = Op(1)||u||

√
D.

Hence I1 dominates I2 uniformly in ||u|| = C by choosing a sufficiently large C.

Moreover,

I3 = nD
s∑
j=1

[
pλn,γ(||θj + n−1/2uj||)− pλn,γ(||θj||)

]
= nD

s∑
j=1

[
n−1/2∂pλn,γ(||θj||)

∂θj

T

uj +
1

2
n−1uTj

∂2pλn,γ(||θj||)
∂θj∂θ

T
j

uj{1 + o(1)}
]
,

which is bounded by

sD
√
nmax{∂pλn,γ(||θj||)

∂θj

T

: ||θj|| 6= 0}||u||+sDmax{∂
2pλn,γ(||θj||)
∂θj∂θ

T
j

: ||θj|| 6= 0}||u||2.
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Since λn → 0 as n → ∞, max{∂pλn,γ(||θj ||)
∂θj

T
: ||θj|| 6= 0} → 0 and max{∂

2pλn,γ(||θj ||)
∂θj∂θ

T
j

:

||θj|| 6= 0} → 0 by the definition of the MCP function.

Hence, by choosing a sufficiently large C, I1 dominates all other terms when n is

large enough. Then we have Q(θ + n−1/2u) > Q(θ) with arbitrary large probability

1− ε, i.e., Inequality A.1 holds. Based on the discussions above, there exists a local

minimizer θ̂ such that

||θ̂ − θ|| = Op(n
−1/2).

Proof of Theorem 2:

The partial derivative of Q(θ) with respect to θj is

∂Q(θ)

∂θj
= −

n∑
i=1

zTijΣ̂
−1

(wi − ziθ) + nD
∂pλn,γ(||θj||)

∂θj

, D1 +D2

Since εi = wi − ziθ ∼ N (0,Σ) and Σ̂→ Σ, we have D1 = Op(
√
n).

Furthermore,

D2 = nD(
∂pλn,γ(||θj||)

∂θj1
, ...,

∂pλn,γ(||θj||)
∂θjK

)T = nD(p′λn,γ(||θj||)
θj1
||θj||

, ..., p′λn,γ(||θj||)
θjK
||θj||

)T .

Since
√
nλn →∞ as n→∞, there exists an δ such that C

√
n ≤ δ < λn for sufficient

large n. When ||θj|| < δ, we have p′λn,γ(||θj||) = λn. Hence, D2 dominates D1 and

determines the sign the each element of ∂Q(θ)
∂θj

when n is large enough.

This means as n→∞, with probability tending to 1, for any θ∗ satisfying ||θ∗ −

θ|| ≤ C
√
n and constant C, there exists δ ≥ C

√
n > 0 such that

∂Q(θ)

∂θjk
> 0, for 0 < θjk ≤ ||θj|| < δ,
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∂Q(θ)

∂θjk
< 0, for − δ < −||θj|| ≤ θjk < 0,

which implies

Q((θT+,0)T ) = inf
θ∗:||θ∗−θ||≤C

√
n
Q((θT+,θ

T
0 )T ).

In other words, with probability approaching 1, Q(θ) reaches its minimum when

θj = 0, j > s. In the proof of Theorem 1, we have shown that there exists a constant

C such that ||θ̂ − θ|| < C
√
n. Therefore, θ̂0 = 0 with probability approaching 1.

Next we will prove the asymptotic normality of θ̂+. θ̂+ is the minimizer of

Q(θ)|θ0=0, i.e. ∂Q(θ)
∂θ+
|
θ=(θ̂

T
+,0)T

= 0.

By expanding the equation above, we have

0 = −ZT
+V̂

−1
(W −Z+θ̂+) + nD

s∑
j=1

∂pλn,γ(||θj||)
∂θ+

|θ+=θ̂+

= −ZT
+V̂

−1
(W −Z+θ+) +ZT

+V̂
−1
Z+(θ̂+ − θ+) + nD

s∑
j=1

∂pλn,γ(||θj||)
∂θ+

|θ+=θ̂+

where

nD
s∑
j=1

∂pλn,γ(||θj||)
∂θ+

|θ+=θ̂+
= nD

(
s∑
j=1

∂pλn,γ(||θj||)
∂θ+

|θ+=θ̂+
+

s∑
j=1

∂2pλn,γ(||θj||)
∂θ+∂θ

T
+

|θ+=θ̂+
[θ̂+ − θ+] + op(1)

)
.

Since λn → 0 as n → ∞, we have ||θj|| > γλn, j < s when n is large enough.

Then for sufficiently large n, p′λn,γ(||θj||) = 0 and p′′λn,γ(||θj||) = 0, which indicates

nD
∑s

j=1
∂pλn,γ(||θj ||)

∂θ+
|θ+=θ̂+

is negligible.

Therefore, rearranging the equation above, we have

1√
nD

ZT
+V̂

−1
Z+(θ̂+ − θ+) =

1√
nD

ZT
+V̂

−1
(W −Z+θ+),

(
1

nD
ZT

+V̂
−1
Z+)
√
m(θ̂+ − θ+) =

1√
nD

ZT
+V̂

−1
(W −Z+θ+).

Since V̂ → V , by central limit theorem and Slutsky’s theorem, we have

V̂
−1

(W −Z+θ+)
D→ N (0,V −1).
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Additionally, since lim
n→∞

1
nD
ZTZ is positive definite,

1√
nD

ZT
+V̂

−1
(W −Z+θ+)

D→ N
(

0, lim
n→∞

1

nD
ZT

+V
−1Z+

)
.

Hence,
√
nD(θ̂+ − θ+)

D→ N

(
0,

(
lim
n→∞

1

nD
ZT

+V
−1Z+

)−1
)
,

i.e.,
√
n(θ̂+ − θ+)

D→ N

(
0,

(
lim
n→∞

1

n
ZT

+V
−1Z+

)−1
)
.
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A.2 Simulation results for data with i.i.d. errors

Similar simulation studies were conducted for the case that within-function errors

are uncorrelated. Datasets were constructed in the same way as what we did for the

correlated case in Section 2.3 except that the errors were generated from a Gaussian

distribution with covariance Σ = I. Likewise, we implemented four of our pro-

posed method: one-step approaches using raw and FPCA-based covariance matrix

estimates, and iterative approaches using raw and FPCA-based covariance matrix

estimates. Two different values for PVE, 0.5 and 0.99, were used in the approaches

involving FPCA-based covariance matrix estimate. In addition, the approach that

pre-whitens using true covariance matrix, as well as ordinary least squares, the vari-

ational Bayes approach, FS-LASSO and a method that assumes uncorrelated error

curves, were included for comparison.

Table A.1 reports the true positive (TP) and true negative (TN) rates of the

estimates of both zero and non-zero coefficient functions. Our iterative approaches

using FPCA-based covariance matrix estimate outperform all competing approaches

in terms of correctly identifying the zero functions. In this case, there is no sign of a

substantial decline in performance for the approaches using PVE=0.5 compared with

the ones using PVE=0.99. Most methods are capable of identifying β1(t), β2(t) and

β3(t) as non-zero functions.

Estimates of zero and non-zero coefficient functions obtained using the iterative

algorithm with FPCA-based covariance matrix estimate using PVE=0.99, as well as

the mean squared error and squared bias are shown in Figure A.1. As indicated in

Table A.1, none of the estimates of β1(·), β2(·) and β3(·) are set equal to zero. Driven

by the sinusoidal shape of the coefficient function itself and by the shrinkage to zero,

the squared bias curve of β1(·) presents a sinusoidal shape. On the contrary, the
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estimate of β2(·) and β3(·) are approximately unbiased owing to the structure of the

penalty since their coefficients are relatively large. Due to the increased variability

of curves at both ends of the distribution, large MSE is observed at both ends of the

curves for all three non-zero coefficient functions.
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Figure A.1: Estimates of zero functions (left) and non-zero functions (middle) ob-

tained using the iterative approach with FPCA-based covariance matrix estimate

using PVE=0.99 across all simulated datasets. The true functions are overlaid (bold

curves). The right panel shows the both MSE (solid) and squared bias (dashed) as

functions of time for all the coefficient functions.

RMISE for estimated zero and non-zero functions, as well as the prediction errors

on the test sample are presented in Figure A.2. Comparisons based on PVE=0.99

and PVE=0.5 are shown in the top and bottom rows, respectively. Our iterative algo-

rithm with FPCA-based covariance matrix estimate, in particular when PVE=0.99,

compares favorably to other approaches, reinforcing the results from Table A.1. In

terms of both RMISE and prediction error, it is comparable to the method assuming

independent error and the one that pre-whitens using true Σ.
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Figure A.2: The top row shows the comparison among the algorithms when PVE

= 0.99 while the second row shows the comparison when PVE = 0.5. The three

columns show RMISE for zero functions (left) and non-zero functions (middle); and

prediction error (right).
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Appendix B

Appendices to: Nonlinear

Mixed-Effects Models for PET Data

B.1 Forms of nonlinear models

The exact forms of f in Model 4.4 are shown as follows. The input function CP and

the whole blood function CB have the same forms as in Parsey et al. (2000). 1 is

the indicator function. f is based on an analytic convolution of the functions, while

other approaches just involve in numerical convolutions.
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B.1.1 One-tissue compartment (1TC) model

CP (t) = 1[0, tc)(t)bt+ 1[tc,∞)(t)
3∑
i=1

Ai exp(−λit)

CB(t) = 1[0, t′c)(t)b
′t+ 1[t′c,∞)(t)

3∑
i=1

A′i exp(−λ′it)

R1 = k2

L1 = k1

f(t) = (1− Vb)

[
1[0, tc)(t)

(
bL1

(
exp(−R1t)

R2
1

+
t

R1

− 1

R2
1

))

+ 1[tc,∞)(t)

(
bL1 exp(−R1t)

(
tc
R1

exp(R1tc)−
1

R2
1

exp(R1tc) +
1

R2
1

)

+
3∑
i=1

L1Ai

(
exp(−λ1t)

R1 − λi
− R1tc −R1t− λitc

R1 − λi

))]

+ Vb

(
1[0, t′c)(t)b

′t+ 1[t′c,∞)(t)
3∑
i=1

A′i exp(−λ′it)

)
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B.1.2 Two-tissue compartment (2TC) model

CP (t) = 1[0, tc)(t)bt+ 1[tc,∞)(t)
3∑
i=1

Ai exp(−λit)

CB(t) = 1[0, t′c)(t)b
′t+ 1[t′c,∞)(t)

3∑
i=1

A′i exp(−λ′it)

R1 =
1

2
(k2 + k3 + k4 +

√
(k2 + k3 + k4)2 − 4k2k4)

R2 =
1

2
(k2 + k3 + k4 −

√
(k2 + k3 + k4)2 − 4k2k4)

L1 =
k1(R1 − k3 − k4)

R1 −R2

L2 =
k1(k3 + k4 −R2)

R1 −R2

f(t) = (1− Vb)

[
1[0, tc)(t)

(
bL1

(
exp(−R1t)

R2
1

+
t

R1

− 1

R2
1

)
+ bL2

(
exp(−R2t)

R2
2

+
t

R2

− 1

R2
2

))

+ 1[tc,∞)(t)

(
bL1 exp(−R1t)

(
tc
R1

exp(R1tc)−
1

R2
1

exp(R1tc) +
1

R2
1

)
+ bL2 exp(−R2t)

(
tc
R2

exp(R2tc)−
1

R2
2

exp(R2tc) +
1

R2
2

)
+

3∑
i=1

L1Ai

(
exp(−λ1t)

R1 − λi
− R1tc −R1t− λitc

R1 − λi

)

+
3∑
i=1

L2Ai

(
exp(−λ1t)

R2 − λi
− R2tc −R2t− λitc

R2 − λi

))]

+ Vb

(
1[0, t′c)(t)b

′t+ 1[t′c,∞)(t)
3∑
i=1

A′i exp(−λ′it)

)

B.2 Parameter values used to simulate data

In Section 4.3, the individual parameters are generated from the following multivariate

normal distribution:
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

k1

k2

k3

k4

Vb


∼ N





0.0565

0.1935

0.0510

0.0200

0.0234


,



2.438× 10−4 −1.078× 10−4 −2.855× 10−5 −1.278× 10−5 2.048× 10−5

−1.078× 10−4 2.963× 10−4 −2.155× 10−5 9.736× 10−6 −3.130× 10−6

−2.855× 10−5 −2.155× 10−5 1.036× 10−5 1.921× 10−6 3.104× 10−6

−1.278× 10−5 9.736× 10−6 1.921× 10−6 4.921× 10−6 −4.755× 10−6

2.048× 10−5 −3.130× 10−6 3.104× 10−6 −4.755× 10−6 3.037× 10−5




.
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