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ABSTRACT

Relationship between locked modes and disruptions in the DIII-D tokamak

Ryan Sweeney

This thesis is organized into three body chapters: (1) the first use of naturally

rotating tearing modes to diagnose intrinsic error fields is presented with experimental

results from the EXTRAP T2R reversed field pinch, (2) a large scale study of locked

modes (LMs) with rotating precursors in the DIII-D tokamak is reported, and (3)

an in depth study of LM induced thermal collapses on a few DIII-D discharges is

presented.

The amplitude of naturally rotating tearing modes (TMs) in EXTRAP T2R is

modulated in the presence of a resonant field (given by the superposition of the

resonant intrinsic error field, and, possibly, an applied, resonant magnetic perturba-

tion (RMP)). By scanning the amplitude and phase of the RMP and observing the

phase-dependent amplitude modulation of the resonant, naturally rotating TM, the

corresponding resonant error field is diagnosed.

A rotating TM can decelerate and lock in the laboratory frame, under the ef-

fect of an electromagnetic torque due to eddy currents induced in the wall. These

locked modes often lead to a disruption, where energy and particles are lost from

the equilibrium configuration on a timescale of a few to tens of milliseconds in the

DIII-D tokamak. In fusion reactors, disruptions pose a problem for the longevity

of the reactor. Thus, learning to predict and avoid them is important. A database

was developed consisting of ≥ 2000 DIII-D discharges exhibiting TMs that lock. The

database was used to study the evolution, the nonlinear e�ects on equilibria, and the

disruptivity of locked and quasi-stationary modes with poloidal and toroidal mode

numbers m = 2 and n = 1 at DIII-D. The analysis of 22,500 discharges shows that

more than 18% of disruptions present signs of locked or quasi-stationary modes with



rotating precursors. A parameter formulated by the plasma internal inductance l
i

divided by the safety factor at 95% of the toroidal flux, q95, is found to exhibit pre-

dictive capability over whether a locked mode will cause a disruption or not, and

does so up to hundreds of milliseconds before the disruption. Within 20 ms of the

disruption, the shortest distance between the island separatrix and the unperturbed

last closed flux surface, referred to as d
edge

, performs comparably to l
i

/q95 in its ability

to discriminate disruptive locked modes, and it also correlates well with the duration

of the locked mode. On average, and within errors, the n=1 perturbed field grows

exponentially in the final 50 ms before a disruption, however, the island width cannot

discern whether a LM will disrupt or not up to 20 ms before the disruption.

A few discharges are selected to analyze the evolution of the electron temperature

profile in the presence of multiple coexisting locked modes during partial and full

thermal quenches. Partial thermal quenches are often an initial, distinct stage in the

full thermal quench caused by radiation, conduction, or convection losses. Here we

explore the fundamental mechanism that causes the partial quench. Near the onset

of partial thermal quenches, locked islands are observed to align in a unique way,

or island widths are observed to grow above a threshold. Energy analysis on one

discharge suggests that about half of the energy is lost in the divertor region. In

discharges with minimum values of the safety factor above ≥ 1.2, and with current

profiles expected to be classically stable, locked modes are observed to self-stabilize

by inducing a full thermal quench, possibly by double tearing modes that remove the

pressure gradient across the island, thus removing the neoclassical drive.
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Chapter 1

Introduction

1.1 The promises of fusion energy

Fusion energy, like fission energy, is a result of reorganizing the nucleons (protons and

neutrons) into a lower energy state, and thus, by conservation of energy, releasing

energy in the process. Fusion generally produces a net positive energy when two

elements combine to form an element with a number of nucleons (also known as mass

number) less than or equal to that of iron. This is supported by the diagram of the

binding energy per nucleon plotted as a function of the total number of nucleons. The

diagram is shown in figure 1-1 and peaks at 56 (i.e. iron or isotopes of neighboring

elements on the periodic table).

Releasing nuclear energy through fusion does not produce greenhouse gases, and if

so-called aneutronic reactions are used (i.e. reactions that do not emit neutrons), no

radioactive waste would be produced [16]. In the present approaches to fusion energy

that use deuterium and tritium fuels, the vessel will become radioactive due to neutron

bombardment. The most prominent approaches to fusion energy to date are not

capable of a runaway scenario analogous to the fission melt-down. Another concern

associated with fission reactors is the production of nuclear weapons materials, but

this is not a concern for fusion reactors as they will not readily produce these materials.

Finally, assuming that within tens of thousands of years (the expected supply of first

generation fusion fuels [16]) the conditions necessary for deuterium-deuterium fusion
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Figure 1-1: The average binding energy per nucleon as a function of number of
nucleons is a peaked function, with the maximum at iron (Fe56). In general, to
release energy, one can either combine elements on the left hand side of the peak, or
split elements on the right hand side into other elements also on the right hand side.
Figure taken from [1].

are met in a reactor, the ocean holds enough fuel to sustain year 2007 consumption

levels for 2 billion years [16].

The “tokamak” approach has come very close to demonstrating the ability to

produce more energy from fusion reactions than the energy required to run the reactor.

A ratio of fusion power to input power of Q = 0.64 ± 0.05 was achieved at the

Joint European Torus (JET) [17]. The International Thermonuclear Experimental

Reactor (ITER) [18] is a large tokamak designed to reach Q = 10, and is now under

construction in France.

Despite the successes of the tokamak fusion approach, current scaled versions of

these reactors su�er from disruptive events, where the fusion energy source is lost.

These events will cause damage resulting in significant costs associated with the

repairs and the downtime. The primary focus of this thesis is to better understand

one of the common causes of this disruptive event, with the goal of providing the

knowledge base necessary to avoid this type of disruption all together.
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The reaction rate per unit volume su�cient for a reactor requires temperatures

of about 20 keV [19], or 200 million degrees Celsius, which is around 14 times the

estimated core temperature of the Sun [20]. In heating to these temperatures, matter

undergoes a phase transition from a gas to a plasma. A plasma is an ionized gas where

collective behavior (simultaneous many-body interactions, leading to small-angle de-

flections) dominates over binary collisions and large scattering angles [21]. The fusion

plasmas discussed herein have relatively high temperatures and low densities relative

to, for instance, the ionized gas in a wood fire. In a hot, di�use fusion plasma, the

length over which an electric potential decays, referred to as the Debye length ⁄
D

(see reference [22] for a derivation), is significantly larger than the average distance

between charged particles. Equivalently, the plasma parameter � = n⁄3
D

in such

plasma is much greater than unity, where n is the plasma number density. Finally,

one might also interpret the condition � ∫ 1 as an indication that the kinetic energy

of the charged particles is much greater than the Coulomb potential, except in the

rare case of a binary collision. Although rare, it is during the binary collision of two

fuel ions in a plasma with high kinetic energy that quantum tunneling may result in

a fusion event. Plasmas respond to both the electromagnetic fields produced by its

constituent particles, as well as to externally applied fields which are often dominant

in fusion plasmas.

1.2 The Lawson Criterion and D-T fusion

The criterion for the energy produced by fusion to exceed the energy lost by Bremsstrahlung

radiation, ignoring the conduction and convection losses of energy, is known as the

Lawson criterion [23]. The radiation loss term used by Lawson is often replaced with

the total thermal energy divided by an energy confinement time ·
E

, thus accounting

for all channels of energy loss (radiation, conduction, and convection). The power

produced by fusion reactions per unit volume is given by P
F

= n1n2È‡vÍE where n1

and n2 are the number densities of the reacting fuels, È‡vÍ is the reaction cross-section

multiplied by the relative fuel ion velocity v averaged over a Maxwellian distribution
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at temperature T , and E is the energy released per reaction. First generation fusion

reactors will use deuterium and tritium (D-T) fuels, which produce an alpha particle

and a neutron with energies E
–

= 3.5 MeV and E
neutron

= 14.1 MeV respectively. The

mean free path of neutrons in fusion plasmas is much larger than any feasible reactor

dimension, and hence fusion neutrons do not heat the plasma1. Assuming a 50/50

fuel mix (i.e. n1 = n2 = n/2), and equating the fusion power available for plasma

heating with the energy loss rate, we have,

1
4n2È‡vÍE

–

Ø 3nk
B

T

·
E

(1.1)

where k
B

is Boltzmann’s constant and T is the temperature of the plasma in ther-

modynamic equilibrium. Solving for n·
E

we find,

n·
e

Ø 12k
B

T

È‡vÍE
–

(1.2)

This criterion provides the minimum product of the number density of fuel ions with

the confinement time, n·
E

, in order for the plasma to self-heat at a given temperature.

This inequality is often cast into a pressure p times a confinement time, which we

arrive at by multiplying by 2k
B

T . Using the experimentally measured D-T cross

section averaged over a 15 keV Maxwellian distribution ‡(15 keV) = 3 ◊ 10≠22 m3/s,

the product of pressure and confinement time evaluates to 8 atm·s [16]. The choice

of k
B

T = 15 keV here was not random, as it corresponds to the plasma temperature

at which p·
E

is minimized. A fusion reactor need not be completely self-heated, but

rather must generate more electrical power than is required to run the reactor.

1
Some neutrons will be caught in a “lithium blanket” where they deposit heat and breed tritium.

The neutrons that reach the metal structure of the vacuum vessel will “activate” the metal, rendering

it radioactive. Nuclear engineering knowledge from fission reactors informs the structural metals to

use which will result in relatively short half-lives on the order of 100 years [16].
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1.3 Magnetic confinement

As implied by the Lawson Criterion, the particle constituents of the plasma, storing

the thermal energy, must remain confined for a minimum timescale ·
E

(note that the

energy confinement time ·
E

and the particle confinement time ·
P

need not be the

same, though are often similar in practice). A magnetic field can confine a plasma by

making use of the Lorentz force which causes charged particles to gyrate around field

lines. The radius of this gyration, referred to as the Larmor radius r
L

, for a deuterium

ion at 5 keV in a 2 Tesla magnetic field is r
L

=
Ô

mk
B

T/eB ¥ 0.5 cm; thus, charged

particles are confined to within ≥ 0.5 cm of a given field line. Additionally, field lines

need to be “closed”, in the sense of not intercepting obstacles. If a fusion reactor were

designed using magnetic field lines that pass through solid materials, the material

would act like a heat sink to the hot plasma. A fusion plasma needs to be suspended

in a vacuum, making no direct contact with any other material. The tokamak design

accomplishes this by means of a toroidal field, although a poloidal component is also

needed for confinement, as it will be discussed later.

An example of a tokamak where the vacuum vessel has been removed is shown in

figure 1-2. A tokamak is a torus-shaped vacuum device that confines a torus-shaped

plasma. It consists of many toroidal field coils that circle the short way around

the torus (blue, and “D” shaped in the figure), referred to as the poloidal direction,

producing magnetic field lines that travel the long way around the inside of the torus,

referred to as the toroidal direction. A plasma generated on this torus of magnetic

field lines is unstable to a radial expansion, so vertical field coils (labeled as “outer

poloidal field coils” in the figure) and a plasma current (green arrow with the conical

head) are added to prevent this.

A tokamak requires one more key element. Due to the gradient in the toroidal

field, the ions drift downward while the electrons drift upwards, and then due to the

resultant electric field E, the whole plasma drifts towards the outer wall, under the

E ◊ B/B2 drift that a�ects ions and electrons the same [24]. This undesired drift

is fixed by driving a current through the plasma in the toroidal direction, producing
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Figure 1-2: Schematic of the principal components of a tokamak, excluding the vac-
uum vessel. Figure from [2].

a magnetic field in the poloidal direction (poloidal field shown by the three green

arrows in Fig. 1-2). The resultant magnetic field lines travel both in the toroidal

and poloidal directions, following helical paths (black curves on the plasma surface

in Fig. 1-2). A particle traveling along these field lines still drifts vertically, but over

one full poloidal transit, the drift is away from the core half of the time, and towards

the core during the other half, ultimately averaging to zero. Thus, there is no charge

separation and the radial drift no longer occurs. However, three forces remain in

the major radial direction owing to the so-called “tire tube force” resulting from the

plasma pressure, the 1/R force due to plasma diamagnetism, and to an imbalance of

poloidal field pressure between the inside and outside of the toroidal plasma current

hoop [16]. All three of these outward major radial forces are balanced by applying

a vertical field, which crossed with the plasma current, produces a balancing inward

major radial force. Plasma confinement is now achieved.

The plasma current in the first tokamaks was driven in a way analogous to how

currents are driven in an electrical transformer. Modern tokamaks are equipped to

drive currents inductively in this way, using a central solenoid, but also use non-
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inductive current drive techniques [25, 26, 27], or organize the plasma in such a way

to produce a self-generated current referred to as the “bootstrap current”.

1.3.1 Ideal MHD and the screw pinch

Magnetohydrodynamics (MHD) is a model that describes the dynamics of a plasma

in thermodynamic equilibrium interacting with electric and magnetic fields. MHD

is useful for establishing the conditions necessary for a stable plasma equilibrium,

and thus we will focus on the timescales at which changes in the equilibrium occur.

Tokamak fusion plasmas have a strong equilibrium field, where the magnetic pressure

B2/2µ0 is greater than the thermal pressure p (this ordering is actually a result of

MHD stability). Perturbations of the thermal pressure with length scale a, where

a is the plasma minor radius, along the field line equilibrate on the ion thermal

transit time given by a/v
t,i

where v
t,i

Ã
Ò

k
B

T
i

/m
i

is the ion thermal velocity and T
i

and m
i

are the ion temperature and mass respectively. Perturbations perpendicular

to the field equilibrate on a timescale determined by the magnetic field pressure

given by a/v
A

, where v
A

= B/
Ô

µ0fl is the Alfvén velocity, and µ0 and fl are the

permeability of free space and the fluid mass density respectively. As a result of

p < B2/2µ0, the ion thermal velocity is always slower than the Alfvén velocity in

tokamaks. We therefore choose the timescale a/v
t,i

as the upper limit on the time

required to establish an equilibrium, which is the timescale of interest for equilibrium

MHD studies. The timescale for resistive di�usion of the magnetic field through the

plasma is ·
R

= µ0a
2/÷, where ÷ is the plasma resistivity. In fusion relevant plasmas

·
R

is much longer than the a/v
t,i

MHD timescale, and therefore resistivity can often

be neglected. The resulting model is referred to as Ideal MHD.

The MHD equations are rigorously derived from the kinetic equations in Ref. [28],

and in the restricted realm of Ideal MHD in Ref. [29]. The first three moments of

the kinetic equations provide the fluid conservation of mass, momentum, and energy

for electrons and ions separately. To form a single fluid model, the ion mass density

fl and velocity v are used, the electron inertia is neglected, electron and ion velocities

are used to define a current density J, and the pressure p and temperature T are
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taken to be the sum of the two fluid quantities. Two additional assumptions are

needed to arrive at Ideal MHD: (1) the ions and electrons must be in thermodynamic

equilibrium, requiring both ion-ion and electron-electron collision times that are short

compared with timescales of interest, and (2) the ion Larmor radius r
L,i

= v
t,i

/Ê
c,i

must be much smaller than a (Ê
c,i

= q
i

B/m
i

is the ion gyrofrequency where q
i

is

the charge of the ion). Condition (2) is easily met in fusion experiments, while

condition (1) is rarely met. Despite this discrepancy, Ideal MHD is observed to

describe macroscopic fusion plasma behavior remarkably well. A detailed explanation

of why this discrepancy does not a�ect the phenomena of interest is explained by

Freidberg in [29].

The equations of Ideal MHD are as follows [29]:

ˆfl

ˆt
+ Ò · flv = 0 (1.3)

fl

A
ˆv
ˆt

+ v · Òv
B

= J ◊ B ≠ Òp (1.4)

d

dt

A
p

fl“

B

= 0 (1.5)

E + v ◊ B = 0 (1.6)

Ò ◊ E = ≠ˆB
ˆt

(1.7)

Ò ◊ B = µ0J (1.8)

Ò · B = 0 (1.9)

where “ = 5/3 is the ratio of specific heats, and the displacement current in Ampere’s

law is neglected since the Alfvén velocity is much less than the speed of light.
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The cylindrical equilibrium configuration with an axial field only is referred to as

the “Z-pinch”. The strong axial field stabilizes ideal MHD modes. Although ideal

MHD stable, the toroidal analog of the Z-pinch su�ers from a major radial drift of

the plasma, and from unbalanced major radial forces (the drift and the forces were

discussed in section 1.3).

Alternatively, driving a plasma current in a toroidal geometry produces a poloidal

field that eliminates the major radial drift, and force balance in the major radial

direction can be controlled using a vertical field. The cylindrical configuration with

only azimuthal fields produced by the plasma current is called the “�-pinch”. Al-

though o�ering a solution to the major radial drift and major radial force balance in

the toroidal analog, the �-pinch is unstable to ideal MHD modes.

The “screw pinch” consists of a strong axial field produced primarily by external

coils and a smaller azimuthal field produced by a plasma current. The screw pinch

superimposes the Z-pinch and �-pinch solutions to simultaneously solve the ideal

MHD problem, and the radial drift and radial force balance problems that arise in

toroidal geometry. The screw pinch is the motivation for the toroidal equilibrium

used in tokamak experiments.

The ideal stability of an equilibrium is well described by the Energy Principle,

which determines if a displacement exists that reduces the potential energy of the

plasma. As this work is focused on a resistive instability, which requires a non-ideal

model, a thorough investigation of the ideal stability of the screw pinch is beyond the

scope of this work, but may be found in reference [29].

1.3.2 The DIII-D tokamak

The DIII-D tokamak [30] is operated by General Atomics in La Jolla, California

for the U.S. Department of Energy. DIII-D is capable of producing fusion relevant

plasmas (see table 1.3.2) to conduct research in support of the worldwide fusion

e�ort, including the ITER tokamak (ITER means “the way” in Latin) currently

under construction at Cadarache in France.

The picture in figure 1-3 shows the inside of the DIII-D tokamak. The plasma

9



Figure 1-3: The inside of the DIII-D tokamak is shown on the left. A cross-section of
the torus in the r and ◊ plane has a height of 2.3 m, and major radius of R ¥ 1.7 m, and
a minor radius r ¥ 0.7 m. The image on the right shows the plasma during a lithium
granule experiment. The colder lithium ions near the plasma edge produce green light
as they recombine with electrons. The hottest region of the plasma does not radiate
in the visible spectrum. The curved white contours are reconstructed cross-sections
of the “flux surfaces” in the plasma, while the segmented contour outlines the wall.
Image courtesy of General Atomics (left) and Steve Allen, Lawrence Livermore National Laboratory (right).

facing wall is made of graphite tiles, to handle high heat fluxes. Ports in the first wall

are for input of heating, particles, and electromagnetic waves for probing purposes,

as well as for output for diagnostic purposes.

Paramater Value
R 1.7 m
r 0.6 m
I

p

1.2 MA
B

T

1.9 T
n 4 ◊ 1019 m≠3

T
e

1-10 keV
T

i

1-10 keV

Table 1.1: Typical parameters for DIII-D plasmas. Shown are the major radius
R, minor radius r, plasma current I

p

, toroidal field B
T

, particle number density n
(typically deuterium plasmas, where n

e

¥ n
i

= n), electron temperature T
e

, and ion
temperature T

i

.

The magnetic diagnostics on DIII-D will be used extensively in this work. Al-

though the magnetic diagnostics vary greatly in size and shape [31, 32, 33], the

fundamentals of the measurement are all identical. The magnetic diagnostics are
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coils of wire, where the axis of the coil points in the direction of the measured field.

Integrating Faraday’s Law around a given sensor coil, we find V
sensor

= d�/dt [31].

This voltage induced across the leads of the coil is integrated in time, resulting in

a measurement of magnetic flux
s

V
sensor

dt = �. Finally, assuming the field B to

be locally uniform, the flux can be related to the field by � = N(B · A), where N

is the number of loops of the coil, and A is the area of a single loop, with vector

components pointing normal to the surface. The “magnetic probes” (Fig. 1-4) used

to measure the poloidal and toroidal fields have a cross-sectional area of 7 cm2, and

vary in length from 2.8 to 14 cm [31]. Accounting for the number of turns in a given

coil, the active area ranges from NA = 120 to 600 cm2 [31].

Figure 1-4: Schematic figure [3] of principal magnetic diagnostics used to monitor
the tokamak plasma. The “magnetic field probe” and the “saddle loop” will be used
extensively in this work. Copyright 2006 by the American Nuclear Society, LaGrange
Park, Illinois.

The “saddle loop” magnetic diagnostics (Fig. 1-4) measure the radial field. The

saddle loops used in this work are mounted on the outside of the vessel and span 60¶

each in the toroidal direction, and 1.2 m (74¶) in the poloidal direction [31]. Due to

their large span in the toroidal and poloidal directions, the assumption that B does

not vary over the coil is not accurate. This spatial averaging e�ect will be accounted

for in the analysis that follows. Further, the presence of the conducting vessel obscures

measurements of fields that vary on a timescale comparable to, or shorter than the

resistive di�usion time of the wall. When dealing with time-varying fields, the e�ect

of resistive di�usion in the wall will also be accounted for.
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In addition to magnetics measurements external to the plasma, the Motional Stark

E�ect diagnostic [34] will be used to determine the pitch of the magnetic field across

the minor radius of the plasma. The MSE diagnostic measures the Stark splitting of

lines emitted from injected neutral deuterium. The two components of the split line

emission are polarized parallel and perpendicular to the magnetic field in the plasma.

Frequency separation permits to isolate the component polarized perpendicularly to

the magnetic field. Hence, measuring the polarization angle of such component in the

laboratory frame translates in a measure of magnetic field pitch. The radial profile

of the magnetic pitch is related to the profile of the safety factor q, which is in turn

related to the current profile. The “peakedness” of the current profile is quantified by

the scalar internal inductance l
i

, which will be an important parameter in this work,

used to describe plasma stability.

In a circular cylinder plasma configuration, Ampere’s Law shows that measuring

the azimuthally invariant field (analogous to the poloidal equilibrium field in toroidal

geometry) outside the plasma provides no information on the radial distribution of

current. In a circular cross-section toroidal geometry, the sum of the poloidal beta and

half of the internal inductance —
p

+ l
i

/2 can be constrained by external magnetics, but

these quantities cannot be separated [35], and again, the distribution of the current

profile is unknown. Finally, adding ellipticity to the plasma cross-section does allow

determining —
p

and l
i

separately, but the value of the safety factor on axis is not well

constrained [35]. Properties of the q and current profiles are central to this work,

making the MSE diagnostic an indispensable tool in the following studies. The MSE

and magnetics diagnostics are used to constrain equilibrium reconstructions [12], like

the ones shown by the curved contours in figure 1-3.

In addition to magnetics measurements, the electron temperature profile will be

studied. Two diagnostics are used to measure the electron temperature profile: the

electron cyclotron emission (ECE) radiometer [36] and the Thomson Scattering (TS)

diagnostic [37]. The ECE diagnostic measures the intensity of electron cyclotron

radiation, which is linearly proportional to the electron temperature when the plasma

is optically thick [38]. As per the name, emission occurs at the electron cyclotron
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Figure 1-5: Rendering of the
EXTRAP T2R vacuum ves-
sel (gray), radial field sensors
(blue), copper shells (copper
color), and radial field actuator
coils (red). Figure taken from
reference [4]. © IOP publish-
ing. Reproduced with permis-
sion. All rights reserved.

frequency, therefore emission at a specific frequency originates in a specific radial

location, due to the magnetic field being non-uniform and decaying approximately

as 1/R, where R is the major radius. The TS diagnostic measures the Doppler

broadening of a probe laser that is scattered by electrons, and from this Doppler

broadening, an electron temperature is inferred. The localization of the measurement

results from the intersection of the optical view chord with the laser path [38].

Non-axisymmetric control coils are mounted both inside the DIII-D vessel, re-

ferred to as I-coils, and outside the vessel, referred to as C-coils (see red and orange

coil sets in figure 1-7). The control coils are used both to correct for existing non-

axisymmetric fields, and to apply additional fields used to manipulate magnetohy-

drodynamic (MHD) instabilities.

1.3.3 The EXTRAP T2R reversed field pinch

The EXTRAP T2R reversed field pinch (RFP) [14] is located at the KTH Royal

Institute of Technology in Stockholm, Sweden. An RFP is similar in design to a

tokamak, except the toroidal field is largely produced by currents in the plasma, and

the average toroidal field is on the same order as the average poloidal field. As the

name suggests, the magnitude of the toroidal field passes through zero and “reverses”

near the edge of the plasma.

A rendering of principal components of EXTRAP T2R is shown in figure 1-5.

The RFP is unstable to several magnetohydrodynamic modes. In the case of EX-

TRAP T2R, this motivated the installation of conductive copper shells surrounding

the vessel (Fig. 1-5, copper colored), and an advanced feedback system to control
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these instabilities [39, 40]. In the analysis that follows, a non-ideal MHD instability

referred to as a tearing mode (see next section) will be used to diagnose imperfections

in the equilibrium fields in EXTRAP T2R. Typical plasma parameters for EXTRAP

T2R are shown in table 1.3.3.

Paramater Value
R 1.24 m
r 18.3 cm
I

p

70-100 kA
n 0.5 ≠ 1.5 ◊ 1019 m≠3

T
e

200-400 eV

Table 1.2: Typical parameters for EXTRAP T2R plasmas [14, 15].

1.4 The tearing mode

A tearing mode (TM) is a non-ideal MHD plasma instability. The “classical” TM

[41] occurs when free energy in the current profile overcomes the stabilizing pressure

e�ects [42]. The current then becomes filamented on a surface where field lines, after

m toroidal transits, return to the same point, referred to as a “rational surface”. The

“neoclassical” TM [43, 44] occurs when significant bootstrap current exists, but a local

deficit of such current develops, at a rational surface. Such deficit is equivalent to a

current filamentation, and is due to a large enough initial island seeded for example

by a resonant field. Such island reduces the pressure profile, further reducing the

bootstrap current and reinforcing the initial perturbation. The pitch of these fields

lines relative to horizontal is related to the inverse of the safety factor q = m/n, where

m is the previously mentioned poloidal harmonic, and n is the toroidal harmonic. It

has been observed that plasma with higher values of q at the plasma edge tend to be

more MHD stable [45, 46, 47, 48], hereby the name safety factor. This is supported

by MHD stability analysis [49]. The amplitude of the current on this surface has m

peaks in the poloidal direction, and n peaks in the toroidal direction (see figure 1-6).

These m/n currents produce a perturbed field, much smaller than the equilibrium

field, that also shares this m/n structure. These fields are su�cient to “tear” and
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reconnect the equilibrium magnetic field, forming secondary regions isolated from the

surrounding plasma called “magnetic islands”. This tearing or reconnection process

is analogous to the reconnection that occurs when a solar flare is ejected from Sun.

A flux tube from the interior of a m/n = 2/1 island is shown by the pink helical

structure in figure 1-7.

Figure 1-6: A model of a tearing mode showing the perturbed current distribution.
This tearing mode has poloidal and toroidal harmonics m/n=2/1.

A magnetic island can be illustrated by tracing the trajectories of field lines near

the resonant surface. To illustrate the three-dimensional helical structure in two di-

mensions, we define the helical angle ‰ = ◊ ≠ n

m

„, whose gradient is perpendicular

to the magnetic field at the given m/n resonant surface. We will work in cylindri-

cal geometry and take „ = z/R. We then define the field component Bú in this

perpendicular direction as [50],

Bú(r) = B
◊

3
1 ≠ n

m
q(r)

4
‰̂ (1.10)

where the ‰̂ direction is given by

‰̂ = ◊̂ ≠ (r
s

/R)(n/m)ẑ
Ò

1 + (r
s

/R)2(n/m)2
(1.11)

and where r
s

is the resonant surface where the island forms. By construction, the Bú

field goes to zero at the resonant surface where q(r) = m/n. Taylor expanding Bú to

first order at the resonant surface we find [50],
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Figure 1-7: A tearing mode (tan) is shown in a cutaway of the DIII-D vacuum vessel
(gray) [5]. This tearing mode (TM) circles toroidally twice before returning to the
same point, and is therefore referred to as a m/n = 2/1 TM, where m is the poloidal
harmonic, and n is the toroidal harmonic. The external and internal coils are magnets
used to interact with the TM. Figure taken from [5]. © IOP publishing. Reproduced
with permission. All rights reserved.

Bú(r) ¥ ≠
A

B
◊

dq/dr

q

B

s

(r ≠ r
s

) (1.12)

where the first term inside parenthesis is evaluated at the radius of the resonant

surface r
s

. The Bú field about a given resonant surface is shown in figure 1-8a, where

the resonant surface is shown by the dashed line. Applying a perturbed radial field

at the resonant surface with a distribution given by eim‰, the magnetic topology is

changed, resulting in the island structure shown in figure 1-8b. The center of the

island is referred to as the O-point, and the point of connection between two islands

is referred to as the X-point. The outer boundary of the island region is referred to

as the separatrix.

Magnetic islands cause many problems that will be discussed in detail in this

thesis, but we introduce the zeroth order e�ect on transport now. Transport of

particles and heat in magnetically confined plasmas is fast in the direction parallel to

the field, relative to the direction perpendicular to the field. When islands form and

change the magnetic topology, the field lines at the separatrix connect across the radial

region spanned by the island, allowing fast parallel transport in the radial direction.
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O-point

X-point

(a) (b)

Separatrix

Figure 1-8: (a) Equilib-
rium field lines (solid) in
the direction orthogonal
to the helical field line
on a resonant surface
(dashed line). (b) Mag-
netic island resulting from
a resonant radial field
perturbation. Figure mod-
ified from [6]. Reprinted
with permission from
Nature Publishing group
(https://www.nature.com/).
Adapted by permission
from Macmillan Publishers
Ltd: Nature Physics [6],
copyright (2016)

As a result, the density and temperature become uniform or nearly uniform (“flatten

out”) across the radial extent of the island. The degradation of the plasma thermal

energy can be approximated in the case of a constant plasma density by assuming

the temperature gradient is flattened within a “belt”, or ring, in the poloidal plane

centered about the rational surface where the island exists, and equal in width to the

island. The temperature gradient in the plasma regions on the core-side and vacuum-

side of the belt are assumed to be una�ected. This model is know as the “belt model”

[51].

TMs rotate at a comparatively small velocity o�set from the local plasma velocity.

This o�set is of the order of the ion or electron diamagnetic velocity, in NBI-heated

or Ohmic plasmas, respectively, and depends on local gradients in temperature or

pressure [52, 53]. In present tokamaks with strong torque injection, TM rotation

frequencies often amount to several kHz. TMs can also steadily rotate at frequencies

comparable to the inverse resistive-wall time (tens of Hz, typically), if a stable torque

balance can be established at that frequency. In this case, they are called Quasi

Stationary Modes (QSMs) [54]. Finally, if they are not rotating at all, or are evolving

very slowly (compared with the inverse wall time) they are called Locked Modes (LMs,

discussed further in section 1.6). In ITER, the rotation frequency at the location of
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the m/n = 2/1 island is predicted to be ≥ 300 Hz [55], which is significantly lower

than present day devices, though the wall time is relatively long at 188 ms [56].

Modern tokamak plasma equilibria tend to be classically stable and neoclassically

unstable [57]. However, saturated tearing modes significantly alter the plasma equi-

librium, and might lead to classically marginal, or unstable conditions. Therefore,

classical stability is of great interest in this work.

1.4.1 Reduced MHD

To better understand the structure of the perturbed field produced by TMs, what

types of plasma current profiles are unstable, and the physics governing the evolution

of macroscopic islands, we need an MHD model that retains resistive terms and

thus allows magnetic reconnection. The equations we will derive with this model

are the tearing flux eigenfunction equation, the classical stability index �Õ, and the

Rutherford equation.

Solutions were found for equilibria that are ideal MHD stable on the timescale

a/v
t,i

, but now we now wish to focus on resistive instabilities that occur on longer

timescales. The reduced MHD model retains the resistive term in Ohm’s law which re-

laxes the “frozen-in” [22] condition and allows the field to di�use through the plasma.

The tearing mode dynamics that we will study evolve on the resistive timescale, which

is much longer than the ideal MHD timescale. We will impose a strong guide field in

the ẑ direction, and a weaker field in the plane perpendicular to the guide field, such

that |B‹|/B
z

≥ ‘, where ‘ is a small parameter that we will use for ordering. It can be

shown that the field direction b̂ = B/|B| coincides with ẑ up to second order in ‘ [58].

The tearing modes of interest will have parallel wave-numbers kÎ = 1/Rq with q Ø 1

and perpendicular wave-numbers k‹ = 1/a, such that kÎ/k‹ ≥ ‘. This implies an

ordering of the gradients in the parallel and perpendicular directions of ÒÎ/Ò‹ ≥ ‘.

Equipartition among kinetic, thermal and potential energy in the perpendicular plane

gives [59, 60, 61],
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flv2
‹

2 ≥ p ≥ B2
‹

2µ0
(1.13)

where fl is the mass density. This implies that p ≥ ‘2 (i.e. low —) and v‹ ≥ ‘. Given

this ordering, on the resistive timescale, it may be assumed that the plasma is in

equilibrium in the parallel direction. This can be seen by investigating the parallel

component of the equation of motion,

fl

A
ˆv

z

ˆt
+ v · Òv

z

B

= ≠ÒÎ

A

p + B2

2µ0

B

+
C

B · ÒB
µ0

D

· ẑ (1.14)

Writing B = Bb̂, the magnetic tension term on right hand side may be rewritten as

follows,

B · ÒB
µ0

= Bb̂ · Òb̂B

µ0
= B2(ÒÎb̂)

µ0
+ b̂(ÒÎB

2)
2µ0

(1.15)

Note that the first term on the far right hand side, being the gradient of a unit

vector, is in the perpendicular direction. Thus, we replace the magnetic tension term

in equation 1.14 with the parallel term in equation 1.15 and find,

fl

A
ˆv

z

ˆt
+ v · Òv

z

B

= ≠ÒÎ

A

p + B2

2µ0

B

+ ÒÎB
2

2µ0
= ≠ÒÎp ≥ ‘3 (1.16)

We therefore have that Dv
z

/Dt ¥ 0, where D/Dt = ˆ
t

+ v · Ò, which implies that

v
z

=constant. In particular, we adopt a frame of reference in which v
z

= 0.

Since the dynamics all occurs in the plane perpendicular to the guide field, we

break the field into components as follows:

B = B0z

ẑ + Ò ◊ Âẑ (1.17)

where B0z

is a constant, and all spatial dependence of the field is captured by Ò◊Âẑ.

Using the low frequency Ampere’s law and equation 1.17, we have,

µ0Jz

= ≠Ò2Âẑ (1.18)
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Note that a term going like Ò(Ò · Âẑ) Æ ‘2 resulting from perpendicular currents J‹

was dropped here. This implies that J‹ ≥ ‘2, which with the low frequency Ampere’s

law, shows that variations in B
z

≥ ‘2. We know that B‹ ≥ ‘, and since the curl of Âẑ

in Ampere’s law involves perpendicular derivatives of order 1, we have that J
z

≥ ‘.

Note that the ordering of J‹ ≥ ‘2 is consistent with Ò ·J = 0 and the J
z

≥ ‘ ordering

we just found. It will be advantageous to use properties of the vector potential A

from electrodynamics, so we choose Ò ◊ A = Ò ◊ Âẑ [58]. To equate A and Âẑ, we

must also equate their divergences, according to the Helmholtz decomposition. We

take Ò · Âẑ ≥ ‘2 ¥ 0 = Ò · A, and can now write A = Âẑ. From electrodynamics, we

can write E = ≠ˆ
t

A + Ò‰ where ‰ is the electric potential, and with the resistive

Ohm’s law E + v ◊ B = ÷J and equation 1.18 we have [58],

≠ˆÂ

ˆt
ẑ + v ◊ B = ≠÷Ò2Âẑ + Ò‰ (1.19)

Investigating the perpendicular component of this equation, one finds that the (v ◊

B)‹ drift in the perpendicular plane is driven by the gradient of the electric potential

Ò‹‰. The perpendicular velocity may be defined with a “stream function” „ where

„ = ‰/B
z0 as follows,

v‹ = ẑ ◊ Ò„ (1.20)

This form for v‹ implies that this model is incompressible in the perpendicular plane

(i.e. Ò‹ · v‹ = 0). Finally, after some vector algebra, the reduced MHD induction

equation may be written as follows,

ˆÂ

ˆt
= [„, Â] ≠ ÷Ò2Â + B

z0
ˆ„

ˆz
(1.21)

where the brackets [„, Â] = ˆ
x

„ˆ
y

Â≠ˆ
x

Âˆ
y

„ are the Poisson brackets [58]. This equa-

tion describes the advective and resistive evolution of the magnetic field in reduced

MHD.

To complete the reduced MHD model, we investigate the fluid equation of motion

in the plane perpendicular to the guide field. Specifically, we will look at the ẑ
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component of the curl of the fluid equation of motion. We start by taking the ẑ

component of the curl of the fluid equation of motion,

ẑ · Ò ◊
C

fl

A
ˆv
ˆt

+ v · Òv
B

= J ◊ B ≠ Òp

D

(1.22)

Notice that this operation will annihilate the pressure gradient, and thus pressure

e�ects will not be captured in the resulting equations. We will define the curl of the

velocity to be the vorticity,

Ê̄ = Ò ◊ v‹ = Ò ◊ Ò ◊ „ẑ ¥ ≠Ò2
‹„ẑ (1.23)

It can be shown using basic vector identities, and the properties Ò · Ê̄ = Ò · v = 0

that the ẑ component of the curl of the convective derivative simplifies to v · ÒÊ̄ [58].

The ẑ component of the curl of J ◊ B reduces to (B · Ò)J
z

, where Ò · B = Ò · J = 0

was used, and the term (J · Ò)B
z

≥ ‘4 was dropped. Finally, since the plasma is

incompressible in the perpendicular direction, and sound waves quickly smooth out

variations in the parallel direction, it is reasonable to take fl = fl0 to be constant. We

now have the following equation of motion,

fl0

A
ˆÊ

ˆt
+ v · ÒÊ

B

= (B · Ò)J
z

(1.24)

We can make the replacement v = Ò ◊ „ẑ, and using Poisson brackets we have [58],

fl0
ˆÊ

ˆt
= fl0 [„, Ê] + (B · Ò)(≠Ò2Â) (1.25)

The vorticity equation describes how flows in the perpendicular plane respond to

current gradients along the field line.

1.4.2 Tearing flux eigenfunctions

Understanding the radial structure of the perturbed fields that generate islands will

allow prediction of island sizes from magnetics measurements, and will provide the

basis for evaluating classical stability. In this subsection, we derive the di�erential
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equation describing the perturbed flux function of the tearing mode. The plasma

outside of a small region about the rational surface obeys the equations of ideal

MHD. In response to a field perturbation, the plasma can kink, ensuring that no

normal field exists on a given flux surface. This can be shown by first taking the curl

of the ideal Ohm’s law,

Ò ◊ E = ≠Ò ◊ (v ◊ B) (1.26)

We use Faraday’s law for the left hand side, and linearize the resulting equation.

Assuming no equilibrium flows we find

”B1 = Ò ◊ › ◊ B, (1.27)

where › is the plasma displacement resulting from the integrated perturbed velocity.

The radial component of the above equation, and the relations q = rB
z0/RB

◊

, where

r is the minor radius, and B
◊

is the equilibrium poloidal field, and ”B
r1 = im�/r

yields the following [62],

›
r

= �
B

◊

(1 ≠ nq/m) = mÂ

r(k · B) (1.28)

This radial displacement ›
r

is the response of the plasma to a perturbed field for

which k · B ”= 0, where the wavenumber of the perturbed field evaluates k = (m

r

◊̂ ≠
n

R

ẑ). When k · B is zero, the wavefront is parallel to the equilibrium field, and the

plasma cannot kink in such a way to cancel the applied field. Note that the radial

displacement in equation 1.28 goes to infinity as k · B æ 0, and changes direction on

either side of the rational surface. In reality, the ideal limit of Ohm’s law is not valid

in a small region about the rational surface called the “linear layer” [63], and instead

the resistive term ÷J must be included. This resistive term will allow the perturbed

radial field to penetrate the rational surface, causing tearing and reconnection of field

lines from either side of the surface, resulting in a magnetic island.

Although this resistive layer is central to the tearing instability, we can use ideal

reduced MHD to derive the perturbed flux function associated with the tearing mode
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in the region outside the linear layer. We expect the tearing instability to grow on a

timescale determined by resistive di�usion in the linear layer (i.e. ·
r

= µ0rs

”
s

/÷ where

r
s

is the minor radius of the rational surface, ”
s

is the linear layer width, and ÷ is the

plasma resistivity). Although the linear layer is thin such that ”
s

π a, resistivity in

fusion plasmas is low, making the resistive timescale ·
r

∫ a/v
ti

(recall that the latter

timescale is that of ideal MHD). It follows from this ordering that plasma inertia, at

least in the ideal region outside the linear layer, is negligible for the tearing instability.

The ideal response of the outer region determines the behavior of eddy currents

induced in the linear layer. Depending on the gradient of the equilibrium current,

the kink displacement given in equation 1.28 can either be reinforced, or suppressed.

When the eddy currents in the linear layer reinforce the applied field, the tearing

mode is unstable. Stability to tearing modes occurs when the induced eddy currents

act to cancel the applied field. To determine whether the ideal plasma response is

stable or unstable to tearing, we investigate the vorticity equation (equation 1.25)

with inertia terms neglected:

B · ÒJ
z

= 0 (1.29)

Note that we have used the relation ≠Ò2Â = µ0Jz

. Recall that this term resulted

from [Ò ◊ (J ◊ B)] · ẑ, so this condition requires that the curl of the J ◊ B force in

the perpendicular plane is zero. Linearizing this equation we have,

(B · ÒJ
z

)1 = (B
z

ˆ
z

+ B
◊

ˆ
◊

)J
z1 + B

r1(ˆr

J
z0) = 0 (1.30)

where we have made use of B
r

= 0 and ˆ
◊

J
z

= ˆ
z

J
z

= 0 in the equilibrium. Fi-

nally, all perturbed quantities J1, B1, and � can be Fourier-expanded in components

that depend on the poloidal and toroidal coordinate as ei(m◊≠n„). The superposition

principle allows us to restrict to a single component: the problem has been linearized

and solutions can be superimposed. Noting that B
r1 = im�/r, Ò2� = ≠µ0Jz1, and

q = rB
„0/RB

◊0, equation 1.30 can be rewritten as follows:
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Ò2� + µ0J
Õ(r)

B
◊

(nq/m ≠ 1)� = 0 (1.31)

where J Õ(r) = dJ/dr [50]. This equation describes the spatial distribution of the

perturbed flux function throughout the ideal regions of the plasma. Note that pressure

does not appear in this equation as we took the curl of the fluid equation of motion,

annihilating Òp. It has been shown by Glasser, Greene, and Johnson that pressure

has a stabilizing e�ect on the classical TM [42], referred to as the GGJ term. However,

the e�ect scales with the inverse aspect ratio a/R, and is only significant in low aspect

ratio plasmas such as spherical tori [57]. In general, for arbitrary equilibrium current

profiles, an analytic solution for � is not guaranteed, and therefore the solutions are

often found numerically.

Rewriting equation 1.31 using equation 1.28 provides more intuition regarding

how the ideal plasma response a�ects the solution of �:

Ò2� = µ0
ˆJ

ˆr
›

r

(1.32)

In this form, it is clear that the curvature in the perturbed tearing flux � is driven

by radial kinking in the presence of a radial equilibrium current gradient. As current

is a flux function in ideal MHD (i.e. J · Òp = 0), a non-axisymmetric kink of a

flux surface implies a non-axisymmetric redistribution of equilibrium current. The

resulting perturbed current in the ideal region of the plasma J
z1 is given by J

z1 =

J Õ(r)›
r

. This perturbed current in the ideal region should not be confused with the

eddy currents in the linear layer J
s

. The latter currents are responsible for the jump

in the radial derivative of the tearing flux across the rational surface, though they

are related to the perturbed currents in the ideal region, as we will see in the next

section.

The eigenfunctions of equation 1.31 describe the perturbed poloidal and radial

fields of a tearing mode on the core-side and vacuum-side of the q = m/n rational

surface, where the m/n magnetic island forms. When J is small (or zero) in the

region outside of the rational surface, the radial derivative may be neglected. Outer
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solutions where it is assumed that J Õ(r) ¥ 0 are referred to as “vacuum” solutions,

and will be used in this work to map fields measured at the vessel wall to the rational

surface where they are sourced.

1.4.3 Classical stability index

The classical stability index can be readily derived from equation 1.31. If we multiply

by r�, integrate over all r except within a small distance ” of the rational surface,

and divide by r
s

�2(r
s

), we find [50],

�Õ(r)
�(r

s

)

-----

r

s

+”

r

s

≠”

= 1
r

s

�2(r
s

)

C⁄
r

s

≠”

0

µ0J
Õ(r)

B
◊

(nq/m ≠ 1)�2rdr +
⁄

a

r

s

+”

µ0J
Õ(r)

B
◊

(nq/m ≠ 1)�2rdr

D

(1.33)

where the stabilizing term (B2
1◊

+ B2
1r

) is not shown in the integrands as its con-

tribution goes to zero when we take ” æ 0, the outer integral is truncated at the

plasma boundary. Note that, in integrating the left hand side, we have treated � as

approximately constant within the narrow "linear layer", of thickness 2” ("constant

� approximation"). The second derivative Ò2�, however, is discontinuous and can-

not be factored out of the integral. . The term on the left hand side of equation

1.33 is called the classical stability index, and is denoted as �Õ. When �Õ > 0, the

ideal response of the plasma outside the island reinforces the perturbed field, driving

tearing mode growth. The right hand side shows how �Õ fundamentally depends on

the derivative of the equilibrium current. As this expression for �Õ was derived from

equation 1.31, pressure e�ects do not appear here, though the GGJ term has been

shown to be stabilizing as the plasma — increases [42]. Including this GGJ e�ect, the

condition for instability of classical TMs becomes �Õ > �
c

, where �
c

quantifies this

stabilizing e�ect [49].

In DIII-D plasmas, current profiles are typically monotonically decreasing with r,

and q profiles are typically monotonically increasing with r. For a rational surface

internal to the plasma (i.e. such that q
min

< m/n < q
a

, where q
min

is the minimum

value of the safety factor, and q
a

is the value of the safety factor at the plasma
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boundary), inspection of equation 1.33 shows that the first integral is destabilizing,

while the second integral is stabilizing. The width of the linear layer [64] evaluated at

the q = 2 surface for typical DIII-D parameters is ≥ 0.5 cm, which defines the length

scale 2”.

1.4.4 Modified Rutherford Equation

When a magnetic island has grown larger than the linear layer, its width evolution

is described by the Modified Rutherford Equation (MRE) [64]. The classical form of

the Rutherford equation, describing the evolution of a macroscopic island in response

to the classical stability index �Õ, can be derived from equation 1.21. First, we

substitute equation 1.31 into the Laplacian, and note that the Poisson bracket and

the term involving ˆ„/ˆz are small in the Rutherford regime [65]. Multiplying the

resulting equation by rÂ and integrating in r as we did in the derivation of the classical

stability index, we find the evolution of Â on the left hand side (or the evolution of

the island width as Â Ã w2), and the classical stability index on the right hand side.

In the more general form, additional current terms appear in equation 1.31 and result

in modifications to the classical �Õ. The MRE takes many forms, but the following

form includes all e�ects that will be studied in this work [57, 66]:

·
R

r

dw

dt
= �Õ(w)r + –‘1/2(L

q

/L
p

)—
p

(r/w)
C

w2

w2 + w2
d

≠
w2

pol

w2

D

+ �w2
v

w
cos(�„) (1.34)

Here ·
R

is the resistive di�usion time, w is the island width, – is an ad hoc parameter

accounting for the GGJ stabilizing e�ect [42] due to field curvature (– ¥ 0.75 for

typical DIII-D parameters), ‘ = r/R is the local inverse aspect ratio, L
q

= q/(dq/dr)

and L
p

= ≠p/(dp/dr) are the length scales of the q and pressure profiles, —
p

is the ratio

of the plasma pressure to the poloidal magnetic pressure, w
d

is the island width below

which perpendicular di�usion across the island is faster than parallel di�usion around

the island, w
pol

is the island width below which polarization currents are strongly

stabilizing, � is a function depending on field geometry and boundary conditions,
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w
v

is the vacuum island width generated by a resonant field source external to the

resonant surface, and �„ is the toroidal phase di�erence between O-points of the TM

and vacuum island. The first term on the right hand side shows how classical stability,

derived in the previous subsection, a�ects the island evolution. The second term on

the right hand side describes the e�ect of the perturbed bootstrap current, including

small island stabilization e�ects captured by w
d

and w
pol

. The third term describes

how a resonant field, not generated by currents at the resonant surface, a�ects the

width evolution of the TM [66]. Similar forms of the MRE to equation 1.34 have been

used to describe the evolution of NTMs in various experiments [67, 68, 69, 70].

1.5 Torques on tearing modes

1.5.1 The wall torque

In the previous section, we saw that tearing modes produce a perturbed magnetic

field. This field is the result of the perturbation in the Ohmic current, or in the

current that results from friction between magnetically trapped and passing electrons

in the presence of a pressure gradient, referred to as the bootstrap current. The

perturbed current and field associated with the tearing mode can interact electro-

magnetically with conducting structures and other sources of perturbed fields, such

as those resulting from coil misalignments, referred to as error fields. These interac-

tions result in torques on the tearing mode. An important torque that causes rotating

tearing modes to lose their angular momentum, making them subject to locking in

the lab frame to error fields, results from the interaction with the resistive vessel wall.

We will derive this “wall torque” now, and then investigate the equation of motion

to observe the locking bifurcation.

When a tearing mode rotates in the lab frame, the associated, non-axisymmetric

field rotates as well, and induces eddy currents in the vessel wall. When the timescale

for the resistive decay of such currents, ·
w

, is comparable with the rotation period,

a phase lag occurs between the TM field and the eddy current field, resulting in a
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torque. As the eddy currents are driven by the field of the tearing mode, we start by

deriving the tearing mode fields.

We will work in cylindrical geometry, which is a common approach for modeling

large aspect ratio plasmas (i.e. where the major radius is much larger than the minor

radius). As done in the previous section, we choose Fourier basis functions in the

poloidal and z directions, and solve equation 1.31 for Â(r). The primary tearing mode

of interest in this thesis will be the m = 2 and n = 1, where m and n are the poloidal

and z (or toroidal) harmonics. This tearing mode occurs on the q = m/n = 2 surface

that is typically relatively close to the edge of the plasma. Thus, it is a reasonable

to assume the equilibrium current J
z

to be zero outside of this surface. Making this

assumption, we find what are referred to as “vacuum” solutions of equation 1.31,

which are the solutions satisfying Ò2�ẑ = 0, where � = Â(r)ei(m◊≠n„) and „ = z/R0.

In cylindrical coordinates, the equation writes � = Â(r)ei(m◊≠nz/R0). In the large

aspect ratio ordering, the z-derivate is order ‘ smaller than the poloidal and radial

derivatives, and therefore the second derivative in z is neglected in the Laplacian.

Polynomials in r are found to solve this reduced Laplacian in cylindrical coordinates,

giving the solutions Â(r) Ã rm and Â(r) Ã r≠m. We will use these solutions to

construct the flux function perturbation associated with the tearing mode Â
mode

(r)

and with the eddy currents Â
wall

(r).

Following the derivation in section 3.2 of [64], we assume the ideal MHD response

of the plasma to an externally applied resonant field. An external field described by a

single Fourier basis function with poloidal and toroidal harmonics m and n is resonant

on the surface where q = m/n. At this resonant surface, currents are induced in the

plasma that “shield” the external field from penetrating the surface. In this wall

torque derivation, the field produced by eddy currents in the wall will induce currents

at the resonant surface that we refer to as ”J
zswall

.

Under the assumption that J
z

(r > r
s

) = 0, the tearing perturbed flux takes the

form [64]

Â
mode

(r) = |�|
A

r

r
s+

B≠m

r > r
s+ (1.35)
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where |�| is the reconnected magnetic flux at the rational surface, and r
s+ = r

s

+w/2

where r
s

is the minor radius of the rational surface, and w is the full island width.

The change in time of this flux at the vessel wall r
w

produces an electric field that

drives eddy currents, which produce their own magnetic flux. This flux is given by

[64]

Â
wall

(r) ¥ |�|
S

U
A

r

r
s+

B
m

≠
A

r

r
s+

B≠m

T

V i(Ê·
w

)(r
s+/r

w

)2m

1 ≠ i(Ê·
w

) [1 ≠ (r
s+/r

w

)2m] (1.36)

for r
s+ < r < r

w

and where Ê is the angular frequency of the TM. The flux outside

the wall (i.e. where r > r
w

) produced by eddy currents is given by [64]

Â
wall

(r) ¥ |�|
A

r

r
s+

B≠m

i(Ê·
w

) [1 ≠ (r
s+/r

w

)2m]
1 ≠ i(Ê·

w

) [1 ≠ (r
s+/r

w

)2m] (1.37)

where the finite width of the wall has been neglected.

Assuming the ideal MHD response of the plasma to the flux produced by eddy

currents in the wall, a current ”J
zswall

exists at the rational surface. “...(T)he ‘toroidal’

component of the ‘sheet’ current flowing in the island region owing to the presence of

the conducting wall (i.e. the helical current at r
s

due to Â
wall

) is given by”[64]

”J
zswall

¥ 4fi2R0
m

µ0

C
(Ê·

w

)2(r
s+/r

w

)2m [1 ≠ (r
s+/r

w

)2m] ≠ i(Ê·
w

)(r
s+/r

w

)2m

1 + (Ê·
w

)2 [1 ≠ (r
s+/r

w

)2m]2
|�|

D

.

(1.38)

This current is important as “...the part of ”J
zswall

that is in phase with the island

(i.e. in phase with |�|...) modifies the island stability, whereas the part that is in

phase quadrature gives rise to a J ◊ B torque acting on the island”[64]. Solving for

the poloidal component of this J ◊ B torque, we find [64]:

T
wall

= ≠4fi2R0
m2

µ0

Ê·
w

(r
s

/r
w

)2m

1 + (Ê·
w

)2
Ë
1 ≠ (r

s

/r
w

)2m

È2 |�|2ẑ. (1.39)

This poloidal torque can be converted to an axial torque by noting that T
z

=
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≠(n/m)T
◊

(see equation 7b in [64]). The wall torque decelerates the tearing mode,

and the magnitude of this drag depends on the rotation frequency of the tearing

mode, as shown in figure 1-9.
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Figure 1-9: The drag torque resulting from resistive eddy currents in the vessel wall
as a function of the normalized tearing mode rotation frequency x = Ê/Ê0. Values of
Ê0/2fi = 5 kHz and (2fi·

w

)≠1 = 50 Hz were used to generate this curve.

The frequency x = Ê/Ê0 of the tearing mode in figure 1-9 is normalized to the

“natural” frequency, which is the frequency the mode rotates at when the island width

is small and the wall torque is negligible. Both the inverse wall time (2fi·
w

)≠1 = 50

Hz and the frequency Ê0/2fi = 5 kHz used in figure 1-9 are common values for DIII-D.

The wall torque peaks at the inverse wall time (x = 0.01 in the figure) and vanishes

at much higher or lower frequencies.

1.5.2 The error field torque

The error field torque results from the interaction of a tearing mode with poloidal/toroidal

harmonics m/n with an external field with the same m/n. These external fields are

often the result of coil misalignments, imperfections in their shapes, coil feed-throughs

and other constructive details. External fields might also be intentionally applied by

an operator using active coils. In general, the m/n tearing mode will respond to

the superposition of all fields with the same m/n, including intrinsic error fields and

operator applied fields. In toroidal geometry, modes with the same n but di�erent m

can interact, but this e�ect does not appear in the cylindrical model here.

We choose an error field produced by an external coil �
coil

. Following reference
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[64], we will work in the frame of the tearing mode at the radial location of the

rational surface r
s

, where the error field, fixed in the lab frame, will appear to rotate

with frequency Ê(t). We allow for a time changing rotation frequency as the mode

is expected to accelerate and decelerate once per rotation period in the presence of a

resonant error, and thus in the mode reference frame, the error field will exhibit this

behavior. The flux of the error field can be written as follows [64]

�
coil

(r, t) ¥ |�
vac

| exp
3

i
⁄

t

Ê(tÕ)dtÕ
4

◊
S

U
A

r

r
s+

B
m

≠
A

r

r
s+

B≠m

T

V . (1.40)

where r
s+ = r

s

+ w/2 and where w is the island width, and |�
vac

| is the flux from

the coil at the location of the rational surface in vacuum (i.e. without the response

of the plasma).

“The ’toroidal’ component of the ’sheet’ current flowing in the island region due

to the presence of the external perturbation (i.e. the helical current at r
s

due to �
coil

)

is given by”[64]

”J
zscoil

= 4fi2R0
m

µ0
�

vac

exp
3

i
⁄

t

Ê(tÕ)dtÕ
4

. (1.41)

Note the ideal MHD response of the plasma has been assumed here (equations 61a,

b of reference [64]). “... (T)he part of ”J
zscoil

that is in phase with the reconnected

flux � at the rational surface modifies the island stability, whereas the part that is

in phase quadrature gives rise to a j ◊ B torque acting on the island”[64]. This j ◊ B

torque on the TM in the poloidal direction is given by [64]:

T
error

= ≠4fi2R0
m2

µ0
|�

vac

||�
mode

| sin(�„)ẑ (1.42)

where �„ is the phase di�erence between the O-points of the plasma and the vac-

uum islands, where the latter is the island resulting from superimposing �
coil

on the

vacuum equilibrium fields. This poloidal torque can be converted to an axial torque

by noting that T
z

= ≠(n/m)T
◊

(see equation 7b in [64]). In chapter 2 we will use
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both the torque in equation 1.42 as well as the e�ect of the error field on the mode

stability. For the tearing stability, we use the part of ”J
zscoil

that is in phase with the

reconnected flux �. The tearing stability index is given by [64]:

�Õ
error

r
s

= ≠2m
3

w
vac

w

42
cos(�„) (1.43)

where w
vac

Ã
Ò

|�
vac

|. This term describes the stabilizing and destabilizing e�ect

of an error field on a tearing mode, where stability depends on the relative angle

between the error field and the tearing mode. We will use this term to explain the

high frequency amplitude modulation of the tearing modes in chapter 2.

1.6 What is a locked mode?

A locked mode (LM) is a tearing mode that is not rotating in the lab frame. LMs can

begin as rotating tearing modes that in response to electromagnetic torques applied

by eddy currents in the vessel wall and by error fields [64], decelerate and lock. LMs

may also be “born” locked, as a result of error field penetration [66]. Born locked

modes will not be studied in this thesis.

LMs are known to degrade confinement [51] and cause disruptions in ITER rele-

vant plasma conditions, and thus represent a concern for ITER [19]. LMs are observed

in many tokamaks including JET [71, 7], NSTX [47], DIII-D [72, 73, 13], JT-60U [74],

and KSTAR [75].

The locking of a rotating TM is a bifurcation of the TM, resistive wall, and error

field system across a domain of rotation frequencies where a torque balance does not

exist [64, 66, 76, 77, 5].

The dynamics of locked modes can be described by the following equation of

motion [78],

I
d2„

dt2 = T
wall

+ T
EF

+ T
RMP

+ T
T M

+ T
V isc

+ T
NBI

(1.44)

where I is the inertia associated with the LM, „ is the toroidal position of the LM,
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T
wall

is the drag torque applied by the resistive wall, T
EF

is applied a resonant error

field (EF), T
RMP

captures the torque from applied resonant magnetic perturbations

(RMPs), T
V isc

is the torque imparted by sheared flow, and T
NBI

is the injected neutral

beam torque. Note that the last two torques are imparted to the plasma layer in which

the island is partially “frozen”. A numerical model was developed [5] to study the

inertial, wall, EF, and RMP torques, with the ability to model viscous and neutral

beam torques as a constant, background torque.

1.6.1 The locking bifurcation

The drag imposed by the resistive wall on a tearing mode can become large enough

that the viscous restoring torque is unable to maintain a “high frequency solution”,

resulting in a bifurcation of the torque balance to a “low frequency solution”, where

low and high frequency are relative to the inverse wall time. In the presence of an

error field, and provided the zero frequency viscous torque is not larger than the peak

error field torque, the tearing mode will lock to the error field, and thus attain a

zero frequency solution. To demonstrate this downward bifurcation, we start with a

simple equation of motion including the decelerating wall torque and the restoring

viscous torque,

I
dÊ

dt
= T

wall

+ T
visc

(1.45)

where I is the moment of inertia associated with the tearing mode. The viscous

torque is a result of momentum exchange between nearby flux surfaces in the plasma

resulting from collisions. Part of this torque is indirectly imparted to the island,

which is partly “frozen in” a plasma layer. When the wall torque decelerates the TM,

the nearby plasma which is not directly a�ected by the wall torque delivers some

momentum to the TM through collisions, thus acting as an accelerating torque. The

wall torque is derived in the previous subsection (equation 1.39), and we use a simple

model for the viscous torque where the force is proportional to the di�erence of the

rotation frequency from the natural frequency �� = Ê0 ≠ Ê,
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where µ is a kinetic perpendicular viscosity and – is a scaling factor. We now search

for steady state solutions of this equation by setting the time-derivative equal to zero:

0 = Ê·
w

1 + (Ê·
w

)2 ≠ (–r
s

µÊ0)
4fi2m2R0(rs

/r
w

)2m|�
mode

|2/µ0

3
1 ≠ Ê

Ê0

4
(1.47)

The approximation
Ë
1 ≠ (r

s

/r
w

)2m

È2
¥ 1 was made, and is applicable to all tearing

modes of interest here. We define a normalized rotation frequency x = Ê/Ê0, and a

parameter, z = Ê0·w

, which is large when the natural rotation frequency is larger than

the inverse wall time. The ratio f is defined as the ratio between the peak-values of

wall torque and viscous torque (note that these peaks occur at di�erent frequencies,

Ê·
w

= 1 and Ê = 0). Using these definitions, the equation simplifies to the following:

0 = xz

1 + (xz)2 ≠ 1
2f

(1 ≠ x) (1.48)

The roots of this equation are torque balance solutions. For values z < 5, there are no

bifurcations, but rather a smooth transition from a high-frequency to a low-frequency.

For typical tearing modes in both DIII-D and EXTRAP T2R plasmas, z ∫ 5, and

therefore this low z region is not of interest for this work.

Equation 1.48 can be solved for f(x; z = 100) which describes the wall-viscous

torque ratio f necessary for torque balance to be established at a given rotation

frequency x in typical DIII-D plasmas (where modes initially rotate at or above 5

kHz, i.e. 100 times faster than the inverse wall time).

The blue curve in figure 1-10 is the function f(x; z = 100). With good approx-

imation it is a parabola, as it follows from Eq. 1.48 for x π z=100. Note however

how f æ Œ for x æ 0. The orange and green horizontal lines in figure 1-10 mark the

transitions between solution regions. For 0 < f < 1 (below the orange line, when the

viscous torque dominates), one torque balance solution exists at high frequency. At
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Figure 1-10: The ratio of the wall torque to the viscous torque f which preserves
torque balance as a function of the normalized rotation frequency x = Ê/Ê0. The
horizontal orange line at f = 12.5 shows the approximate torque ratio that leads to
mode locking. For higher values of f , the mode remains locked. To unlock, f must
decrease below 1.

f ¥ 1, two solutions exist, where the low frequency solution is a double root. This

double root is referred to as a “half-stable” root [79], as a zero frequency tearing mode

will accelerate towards this root, and if it “overshoots” due to inertia, the mode by-

passes this solution and continues to accelerate to the high frequency stable root. In

the shaded region between the orange and green lines, three torque balance solutions

exist. The high and low frequency solutions are stable, while the intermediate solu-

tion is unstable. At f ¥ 12.5, the intermediate and high frequency solutions become

degenerate, and we again have a half stable root. This root behaves opposite to the

f ¥ 1 half stable root: if a high frequency tearing mode decelerating towards this

solution “overshoots”, it continues to decelerate to the low frequency stable solution.

Finally, for f > 12.5 (above the green line, when the wall torque dominates), only a

low frequency solution exists.

For an equivalent discussion of how many roots exist for torque balance, and

whether they are stable, let us consider figure 1-11. This shows five wall torque curves

(for five di�erent island widths w) and one viscous torque curve (denoted by the thick

brown line) as functions of the normalized frequency, to be precise, the negative of

the wall torque T
wall

is plotted; its intersections with the T
visc

curve represent torque

balance. From equations 1.47 and 1.48, we see that f Ã |�
mode

|2, which implies that
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f Ã w4. When the island is small, so is T
wall

, and balance with T
visc

can only be

established at high x (blue case). For increasing w, a second, degenerate root appears

at low frequency (orange), which then splits (green). Above a critical island width

(red), the high-frequency solution disappears (purple).
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Figure 1-11: Curves of wall torque compared with the viscous torque. As the island
width w increases, the wall torque scales like w4. The blue and orange curves exhibit
three intersections with the viscous torque (red), representing three torque balance
solutions. The green curve shows the critical island width w

crit

(corresponding to
f = 12.5 in figure 1-10) above which, only a low frequency solution exists.

The wall torque curves in figure 1-11 demonstrate how a high frequency tearing

mode locks. When tearing modes are seeded or driven unstable, they start rotating

at normalized frequency x = 1. As the tearing mode grows, T
visc

grows like the island

width w and T
wall

grows more dramatically, like w4. This results in mode deceleration.

For every new (greater) w, torque balance is established at a new (lower) frequency

x. Note that this is still the "high-frequency" solution in figures 1-10 and 1-11. At a

critical island width w
crit

, corresponding to f = 12.5 in figure 1-10 and the red curve

in figure 1-11, the high frequency solution becomes degenerate, and half stable. In

this simplified treatment, restricted to the wall and viscous torques, this half stable

solution occurs at approximately half of the natural frequency (i.e. at x ¥ 0.5). At

this half stable root, a small increase of the island width causes the system to bifurcate

to the low frequency solution. This low-frequency solution does, indeed rotate at low

frequency, lower than the inverse wall time (tens of Hz at DIII-D). It is called Quasi

Stationary Mode [54]. However, low frequency implies low wall and viscous torques.
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Consequently, if error fields are present and su�ciently strong, the error field torque

dominates over the other torques, and causes the mode to lock.

Figure 1-10 also shows that the locking and unlocking thresholds in f , or equiva-

lently in the island width w, are di�erent. For z = 100, a locked or quasi-stationary

island width must reduce by at least 50% to unlock, as shown by the orange curve in

figure 1-11, corresponding to an island width of w = 0.53w
crit

. To unlock an island in

this way, the width can be reduced by driving current with microwave injection [80],

or it might be reduced passively by a minor disruption.

1.7 What is a disruption?

A disruption is a fast loss of energy and particles from the plasma, where fast is

relative to the typical timescales for heat and particle transport, and resistive di�usion

(·
E

¥ 100 ms and ·
R

¥ 0.5 ≠ 2 s in DIII-D). The thermal energy in DIII-D is lost in

a few milliseconds, while the energy in the poloidal magnetic field is lost in tens of

milliseconds. The toroidal magnetic field is not greatly a�ected during a disruption,

as the majority of this field is produced by coils external to the plasma which maintain

the field throughout the disruption.

Disruptions are a concern as they release a vast amount of energy in a short

amount of time, and can damage the machine. The thermal energy is deposited on

the walls of the confining device. The loss of poloidal magnetic energy by the rapid

decay of plasma current induces high currents in the surrounding conductors, which

interact with the strong toroidal field, causing high electromagnetic stresses.

Many events can cause disruptions, as evidenced by the flowchart in figure 1-

12. The locked mode is a common element in many of the disruption chains, and

is the terminating event in 20% of the 1654 disruptions presented in this chart [7].

Eventually, nearly all disruptions at JET exhibit signs of Mode Locking, as illustrated

by the ML block on the right in figure 1-12.

The plasma contains a large amount of energy stored in the kinetic energy of its

particle constituents, and separately in the magnetic field produced by currents in the
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Figure 1-12: Flowchart showing the various causes of 1654 unintentional disruptions
in JET [7]. The size of the arrow represents the number of events that follow the given
path. Locked modes are responsible for 20% of the disruptions here [7], though they
appear as part of the evolution in many more, virtually all disruptions, as exemplified
by the large "ML" block on the right, for "mode locking". Other notable acronyms are
emergency stop (STOP), neoclassical tearing mode (NTM), magnetohydrodynamic
instabilities (MHD), and vertical displacement events (VDE). For a full list, see [7].
Reprinted with permission from Nuclear Fusion.
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plasma. A typical DIII-D plasma contains 1-2 MJ (mega-joules) of thermal energy,

and 0.5-1.5 MJ of magnetic energy in the plasma current (note that the toroidal field,

produced by magnets outside the plasma, typically stores 25-50 MJ).

In ITER, the stored energy will be considerably larger. The plasma pressure will

be ≥ 7 times that of DIII-D, and the volume is roughly 70 times larger [18]. There-

fore, the stored thermal energy in ITER is roughly 500-1000 MJ. The poloidal field

energy scales roughly as the plasma current squared (15 MA in ITER [18]) times the

inductance, which gives approximately 250-750 MJ in the poloidal field. Disruptions

in ITER must be nearly completely avoided, as the sudden release of this very high

energy could cause significant damage [19]. For comparison, the energy released is

≥500 times higher than at DIII-D, but is deposited in a comparable timescale over

surfaces and volumes which are only about 16 and 64 times, respectively, greater than

at DIII-D.

1.8 Overview of the following chapters

This thesis is organized into three body chapters. Chapter 2 presents work [81] on the

detection of error fields using naturally rotating TMs in EXTRAP T2R. Although

this work is conducted on a reversed field pinch, the fundamental physics underlying

the technique is common to the tokamak. Error fields, when undetected, and thus

uncorrected, apply braking torques to rotating TMs that can result in locking [64],

and in addition, can produce born LMs. Chapter 3 presents a statistical survey of

LMs at DIII-D [13], with a focus on what di�erentiates disruptive from non-disruptive

LMs. This statistical work confirmed some expectations regarding how LMs cause

disruptions, and challenged others, and provided insight for a detailed study on a

small subset of discharges. The final body chapter, chapter 4, presents this small-

scale study on the relationship between locked islands and thermal collapses in DIII-D.

These results are suggestive of the fundamental mechanisms that cause the thermal

collapse, which is often the first, distinct step in a full disruption.
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Chapter 2

Local measurement of error field using naturally

rotating tearing mode dynamics in EXTRAP T2R

Abstract.
An error field (EF) detection technique using the amplitude modulation of a

naturally rotating tearing mode (TM) is developed and validated in the EXTRAP

T2R reversed field pinch. The technique was used to identify intrinsic EFs of

m/n = 1/≠12, where m and n are the poloidal and toroidal mode numbers. The

e�ect of the EF and of a resonant magnetic perturbation (RMP) on the TM, in

particular on amplitude modulation, is modeled with a first-order solution of the

Modified Rutherford Equation. In the experiment, the TM amplitude is measured

as a function of the toroidal angle as the TM rotates rapidly in the presence of

an unknown EF and a known, deliberately applied RMP. The RMP amplitude is

fixed while the toroidal phase is varied from one discharge to the other, completing

a full toroidal scan. Using three such scans with di�erent RMP amplitudes, the

EF amplitude and phase are inferred from the phases at which the TM amplitude

maximizes. The estimated EF amplitude is consistent with other estimates (e.g.

based on the best EF-cancelling RMP, resulting in the fastest TM rotation). A

passive variant of this technique is also presented, where no RMPs are applied,

and the EF phase is deduced.

Available at https://doi.org/10.1088/0741-3335/58/12/124001
© IOP Publishing. Reproduced with permission. All rights reserved.
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Chapter 3

Statistical analysis of m/n = 2/1 locked and

quasi-stationary modes with rotating precursors at

DIII-D

Abstract.
A database has been developed to study the evolution, the nonlinear e�ects on

equilibria, and the disruptivity of locked and quasi-stationary modes with poloidal
and toroidal mode numbers m = 2 and n = 1 at DIII-D. The analysis of 22,500
discharges shows that more than 18% of disruptions are due to locked or quasi-
stationary modes with rotating precursors (not including born locked modes). A
parameter formulated by the plasma internal inductance li divided by the safety
factor at 95% of the poloidal flux, q95, is found to exhibit predictive capability
over whether a locked mode will cause a disruption or not, and does so up to
hundreds of milliseconds before the disruption. Within 20 ms of the disruption,
the shortest distance between the island separatrix and the unperturbed last
closed flux surface, referred to as dedge, performs comparably to li/q95 in its ability
to discriminate disruptive locked modes. Out of all parameters considered, dedge

also correlates best with the duration of the locked mode. Disruptivity following
a m/n = 2/1 locked mode as a function of the normalized beta, —N , is observed
to peak at an intermediate value, and decrease for high values. The decrease is
attributed to the correlation between —N and q95 in the DIII-D operational space.
Within 50 ms of a locked mode disruption, average behavior includes exponential
growth of the n = 1 perturbed field, which might be due to the 2/1 locked mode.
Surprisingly, even assuming the aforementioned 2/1 growth, disruptivity following
a locked mode shows little dependence on island width up to 20 ms before the
disruption. Separately, greater deceleration of the rotating precursor is observed
when the wall torque is large. At locking, modes are often observed to align
at a particular phase, which is likely related to a residual error field. Timescales
associated with the mode evolution are also studied and dictate the response times
necessary for disruption avoidance and mitigation. Observations of the evolution
of —N during a locked mode, the e�ects of poloidal beta on the saturated width,
and the reduction in Shafranov shift during locking are also presented.

Available at https://doi.org/10.1088/0029-5515/57/1/016019

Reproduced with permission from Nuclear Fusion. All rights reserved.
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Chapter 4

Relationship between locked

islands and thermal collapses in

DIII-D

This chapter originated from the profile analysis of some locked mode discharges,

following the locked mode database work of the previous chapter. While “automat-

ically” I investigated hundreds of discharges from the locked mode database, inter-

esting phenomena in the electron temperature profile were observed, prior to each

thermal quench, which motivated the more detailed, “manual” analysis presented in

this chapter. All sections in this chapter were written by the author. Experimen-

tal observations suggested the presence of stochastic fields, prompting the author to

ask V. Izzo to investigate a single discharge using the NIMROD [128] 3D nonlinear

MHD code. Initial conditions for these simulations were provided by the author with

assistance from O. Meneghini. Figures 4-8 and 4-9 show the results of these simula-

tions and were produced by V. Izzo. The section describing these results was written

by the author. The divertor heat flux analysis shown in figure 4-6 was done by M.

Knolker. The magnetics analysis technique in section 4.2.1, all temperature profile

observations and magnetics analysis regarding the thermal collapse in section 4.3,

and the observations of the major disruptions and the self-stabilizing locked modes

in sections 4.5 and 4.6 were made by the author.

123



Disruptions pose a significant problem for reactor scale tokamaks. This chapter

presents the first empirical measurements on DIII-D of multiple locked islands grow-

ing to a width at which they are expected to overlap and generate stochastic fields.

Multiple locked islands are observed to exist prior to the disruption precursor referred

to as the T
e,q2 collapse. Further, the O-points of the outermost n = 1 islands are ob-

served to align at the outboard or inboard midplanes prior to the onset of the T
e,q2

collapses, which is an unexpected result. The observations here improve our under-

standing of disruptions, and might better inform disruption avoidance and mitigation

techniques.

4.1 Introduction

Improving our physical understanding of the processes leading up to a disruption

might lead to better disruption prediction and avoidance, which are considered a

requirement for the success of ITER [19] and future reactor-scale tokamaks.

It is well known that locked modes [129], when not controlled (for instance by

a combination of applied magnetic perturbations and Electron Cyclotron Current

Drive [80, 130, 131]) are one of the main causes of disruptions. This was shown,

among others, in statistical studies of disruptions at JET [46, 7] and NSTX [47]

and in a statistical study of locked modes with rotating precursors at DIII-D [13].

Notably, nearly all disruptions at JET exhibit signs of mode locking, as illustrated

by the “ML” block in Fig. 4 of Ref.[7].

The physics of locked mode disruptions and the role of locked modes in other types

of disruptions are not well understood. Here “other types” include disruptions due

to high density, low safety factor q or high normalized pressure, — [132, 104, 19, 108].

The coupling between MHD stability and transport during disruptions was simu-

lated in the 1980’s [119, 120]. Detailed observations of locked modes in density-limit

disruptions were reported on JET discharges [71]. Locked modes have also been ob-

served during massive gas injection at DIII-D [133, 92], and similar conditions have

been simulated in Alcator C-Mod [107]. Recently, two- and three-dimensional elec-
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tron temperature measurements of locked-mode-induced minor and major disruptions

were made at KSTAR [75].

In this work we analyze the evolution of electron temperature profiles in the pres-

ence of multiple locked islands during a particular type of thermal collapse that a�ects

the outer ≥ 60% of the profile, with little e�ect on the core. This type of collapse is

referred to as a T
e,q2 collapse, where the subscript refers to the q = 2 rational sur-

face where the dominant locked island, of poloidal/toroidal mode number m/n=2/1,

forms. The T
e,q2 collapse is observed to be the first stage in the full thermal collapse

of most locked mode disruptions in DIII-D.

In this work, we draw a distinction between types of thermal collapses, which are

the minor disruption, and the T
e,q2 collapse. The T

e,q2 collapse is usually the first stage

of the minor disruption, where the outer ≥ 60% of the electron temperature profile

collapses, with little e�ect on the core. The distinction between a minor disruption

and a T
e,q2 collapse is then the fast collapse of the core temperature in the former, or a

full recovery of the temperature profile in the latter. Not all minor disruptions begin

with a T
e,q2 collapse, as some exhibit a single global collapse of the entire temperature

profile instead of the two staged outer and core collapses.

Similar to a T
e,q2 collapse often being a distinct stage in the minor disruption,

a minor disruption may be thought of as a common distinct stage in the major

disruption. A minor disruption is characterized by a complete loss of thermal energy.

Following a minor disruption, the temperature profile might recover, or a current

quench is initiated, turning the minor disruption into a major disruption. In all

disruptions caused by locked modes, the minor disruption is the first stage of a major

disruption. Disruptions do exist, for example those caused by vertical displacement

events (VDEs), where the thermal and current quenches occur simultaneously. Note

that although it is possible for a LM to cause loss of vertical stability, leading to a

VDE disruption, from a physics standpoint, we do not consider this a LM disruption

as the physics of the terminating event is di�erent.

Using electron temperature diagnostics in di�erent toroidal and poloidal locations,

the T
e,q2 collapse is shown to be consistent with an axisymmetric collapse. In dis-
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charges where 3D magnetics analysis is performed, the collapse appears coincident

with the alignment of island O-points on the midplane, or with growth of the locked

islands, or both. Energy conservation analysis conducted on one of these collapses

shows that the primary channels for energy loss are radiation localized in the divertor

and conduction or convection to the divertor. Nonlinear MHD simulations were con-

ducted with the NIMROD code [128]. The simulations were initialized with a DIII-D

equilibrium prior to a T
e,q2 collapse, and evidenced the formation of large regions of

stochastic fields outside of the q = 2 surface. This is consistent with measurements

of wide, closely spaced magnetic islands, which, if overlapping, cause stochastic fields

[124].

The thermal quench prior to a major disruption is also analyzed. In most locked

mode induced thermal quenches, after the T
e,q2 collapse, the temperature also col-

lapses in the core, on a timescale much shorter than a di�usive timescale, suggesting

destabilization of some core mode. Finally, a class of locked-mode-induced minor

disruption in which the tearing mode is fully stabilized is presented and discussed.

Minor disruptions are characterized by a thermal quench that a�ects the entire radial

electron temperature profile, but are not followed by a current quench.

The chapter is organized as follows. In section 4.2, methods for mapping magnetics

to rational surfaces and accounting for wall eddy currents are presented. Section 4.3

reports observations of T
e,q2 collapses. Section 4.4 presents resistive MHD simulations

of a T
e,q2 collapse using the NIMROD code. Section 4.5 reports observations of a

major disruption. In section 4.6, an example of a self-stabilizing locked mode is

shown. Appendix F explains why one island, many non-overlapping islands, or any

non-resonant perturbation are not probable explanations of the T
e,q2 collapse.
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4.2 Methods

4.2.1 Mapping of measured fields to rational surfaces

The quantity of interest here is the strength of a given perturbed field at the rational

surface where it is sourced, because the square-root of that field-strength is propor-

tional to the island-width [50]. To infer this value from measurements taken at the

wall (tens of centimeters away), the radial tearing eigenfunctions must be estimated.

In the circular cylinder, infinite aspect ratio, vacuum approximation, the tearing

field falls o� outside of the rational surface where it is sourced as follows:

Bm,n(r)
Bm,n(rm,n) =

A
r

r
m,n

B≠(m+1)

, (4.1)

where r
m,n

is the minor radius where the safety factor q equals m/n, and r Ø r
m,n

is the minor radius where the field is evaluated. Note that this is the field produced

by the TM only (a compensation for the wall eddy currents will be added in section

4.2.3).

Due to the di�erent r
m,n

and m, the largest perturbed field at the wall might

not be the largest field at the corresponding rational surface. Similarly, the largest

resonant field at a rational surface does not necessarily correspond to the largest

island. This is due to considerations on the q-profile and poloidal wavelength.

Herein, most magnetics data are presented in terms of island widths and island

phases. In one figure, however (Fig. 4-3), the square-root of the perturbed field is

plotted instead of the island width. This is because not necessarily islands exist for

all the field harmonic shown, hence it is not always appropriate to speak of island

width.

4.2.2 Assumption of vacuum eigenfunctions

The tearing eigenfunctions are modified by equilibrium current gradients [64], but

vacuum eigenfunctions are assumed here for the field mapping just advocated in

section 4.2.1.
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Due to the LM, the plasma is in the low-confinement mode, or L-mode (thus

there is no edge electron pressure pedestal) during all periods where this mapping is

performed. The degraded edge confinement produces a ring of cold, resistive plasma,

making current generation less e�cient. In constant-current feedback, the plasma

control system ramps the central solenoid faster. This produces a stronger current

source at the edge, often resulting in a local maximum of the equilibrium current in

the edge. Nevertheless, we assume for simplicity that vacuum eigenfunctions are valid

for estimating the perturbed field at the 2/1, 3/1, and 4/1 rational surfaces.

The island widths of the 2/1, 3/1, and 4/1 are presented in this work, and are

calibrated using the 2/1 width measured from the flattening in the T
e

profile. This

calibration is expected to partially correct for the vacuum assumption.

The 1/1 and 3/2 rational surfaces are located in regions of significant equilibrium

current, and therefore vacuum eigenfunctions are likely not valid. In figures where

the 1/1 and 3/2 amplitudes appear, they will be labeled with asterisks to remind the

reader that the magnitudes of these harmonics should not be compared with others.

Note that this mapping has no e�ect on their phases, and therefore their phases can,

and will, be compared with other harmonics.

4.2.3 Compensation of wall eddy currents

In this work we use the poloidal field Mirnov probes to measure the amplitude and

phase of both rotating and locked TMs. To understand the evolution of the mode-

width from rotation to locking, it is crucial to properly compensate for the e�ect of

eddy currents in the wall, as this can quite di�erent when the mode rotates or is

nearly locked in the laboratory frame.

The simple compensation technique presented here is valid at any TM rotation

frequency. This includes the limit of zero rotation frequency, i.e. perfect locking, i.e. no

eddy currents (provided that the island does not grow, decay or radially move), hence

no compensation. Eddy currents also a�ect the measured phases, but phases will only

be of interest during locking, when eddy currents are mostly negligible.

In the presence of rapidly rotating tearing modes, eddy currents in the wall double
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the 3D poloidal fields at the inner surface of the wall, cancel them everywhere outside

the wall, and cancel the 3D radial fields both on the inner surface of the wall and

everywhere outside of it. For TMs rotating at frequencies similar to the inverse of

the wall time ·
w

≥ 5 ms [10], the e�ect of the eddy currents is more complicated.

As mentioned, we adopt the infinite aspect ratio, circular cylinder approxima-

tion. In this approximation, the perturbed flux generated by eddy currents in a thin

resistive wall, induced by a rotating TM, and evaluated at the wall is given by [64]

Â
w

(r
w

) = �
A

r
w

r
s+

B≠m

i(Ê·
w

) [1 ≠ (r
s+/r

w

)2m]
1 ≠ i(Ê·

w

) [1 ≠ (r
s+/r

w

)2m] . (4.2)

Here r
w

is the minor radius of the wall, r
s+ = r

s

+ w/2 is the minor radius of the

rational surface r
s

plus the island half-width w/2, m and Ê are the poloidal harmonic

and poloidal angular frequency of the TM, and ·
w

is the resistive di�usion timescale

of the wall.

The reconnected flux at the rational surface is given by � = Â(r) exp[i(m◊ ≠

nz/R)], where z is the coordinate parallel to the cylinder axis, and R is the major

radius of the modeled toroidal plasma.

For rational surfaces located outside of the majority of the equilibrium plasma

current, the perturbed flux function of a tearing mode mapped to the wall is given

by [64]

Â
mode

(r
w

) ¥ �
A

r
w

r
s+

B≠m

. (4.3)

The total perturbed flux measured by a sensor fixed to the inner-wall-surface (not

to be confused with the high-field-side wall) is the superposition of the flux Â
mode

generated by the TM, which is the quantity of interest in this chapter, and the flux

Â
w

generated by the wall, which will have to be subtracted.

The radial and poloidal field at the inner-surface of the outboard-side wall are the

components of B̃ = Ò ◊ �ẑ:
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”Bmeas

r

= im

r

w

[Â
mode

(r
w

) + Â
w

(r
w

)]

”Bmeas

p

= ≠ m

r

w

[Â
mode

(r
w

) ≠ Â
w

(r
w

)]

(4.4)

The magnitudes of these complex components can be evaluated using equations 4.2

and 4.3:

Î”Bmeas

r

Î = m|�|
r

w

1
r

w

r

s+

2≠m

[1 ≠ �(Ê)]1/2 ,

Î”Bmeas

p

Î = m|�|
r

w

1
r

w

r

s+

2≠m

[1 + 3�(Ê)]1/2 ,

(4.5)

where

�(Ê) = (Ê·
w

)2[1 ≠ (r
s+/r

w

)2m]2
1 + (Ê·

w

)2[1 ≠ (r
s+/r

w

)2m]2 . (4.6)

Equations 4.5 show the expected suppression of ”Bmeas

r

and amplification of ”Bmeas

p

(recall that the measured quantities here are evaluated on the inner-side of the wall).

Forming a linear combination of the squared magnitudes of the fields in equation

4.5, it is possible to remove �(Ê), and thereby the e�ect of the wall. The correct

linear combination is:

3 (”Bmeas

r

)2 +
1
”Bmeas

p

22
= 4

1
mÂ

r

w

2 1
r

w

r

s+

2≠2m

= 4
Ë
”Bmode

p

(r
w

)
È2

.

(4.7)

where the latter equality follows from multiplying equation 4.3 by ẑ and taking the

curl. Finally, solving for the poloidal field of the mode, we conclude that

Î”Bmode

p

(r
w

)Î = “Î”Bmeas

p

Î, (4.8)

where the factor

“ = 1
2

ı̂ıÙ1 + 3
A

Î”Bmeas

r

Î
Î”Bmeas

p

Î

B2

(4.9)
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accounts for the e�ect of the eddy currents at the wall. Note that the right hand side

of equation 4.8 only contains measured quantities.

4.2.4 Compensating for saddle loop spatial averaging

A significant number of magnetic sensors were added during a recent “3D upgrade” at

DIII-D [32]. This has enabled the multi-harmonic LM analysis presented here. The

techniques used to extract the 3D fields of LMs on the order of 10≠4 of the equilibrium

field are reported in reference [33].

A toroidal array of six saddle-loops external to the vessel and located on the out-

board midplane is used here to measure the radial fields. The saddle loop signals are

di�erenced to remove equilibrium fields, and a combination of hardware and software

compensation removes DC coupling of small non-axisymmetric fields produced by

nominally axisymmetric and 3D control coils.

The external saddle loops span ≥ 1.1 m in the poloidal direction, and ≥ 2.6 m in

the toroidal direction. In the large aspect ratio, circular cross-section approximation,

taking the saddle loops to span ≥ 90¶ in the poloidal direction (note the actual span

is closer to 72¶), the attenuation factor –m,n of measured harmonic m/n due to spatial

averaging can be approximated as follows:

–m,n =
C

1 ≠ 6
fi2

⁄
fi/6

≠fi/6

⁄
fi/4

≠fi/4
cos(m◊ ≠ n„)d◊d„

D

. (4.10)

Quantifying the errors in this cylindrical model would require a comparison with syn-

thetic diagnostics in a 3D MHD simulation, and is beyond the scope of this analysis.

Instead, errors are assumed to be on the order of ±10%. The poloidal spectrum of

the measured n = 1 field is plotted in figure 4-1, for m < 7.

The poloidal fields are measured using Mirnov probes covering the outboard and

inboard walls. These probes have a negligible poloidal extent relative to the m Æ 5

poloidal wavelengths of interest.

For the eddy current compensation technique presented in section 4.2.3, we as-

sume that the poloidal spectrum of the n = 1 field measured by the saddle loops is
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Figure 4-1: Poloidal spectrum of n = 1 field amplitude measured by the external
saddle loops, normalized to the corresponding m,n peak-amplitude at the detector.
Less than 0.15 ± 0.10 of each field with m > 7 is measured (not shown).

dominated by the m = 2 mode. Therefore, prior to taking the ratio of the n = 1

radial and poloidal fields to calculate “ (equation 4.9), the n = 1 Fourier amplitude

measured by the saddle loops is multiplied by 1/(1 ≠ –2,1) ¥ 1.7.
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4.3 Te,q2 collapse

The T
e,q2 collapse is characterized by a large region of reduced electron temperature

gradient extending from the plasma separatrix to around the q = 3/2 surface. This

is distinct from the non-axisymmetric T
e

flattening due to the 2/1 island as it a�ects

a region 2-3 times wider, and measurements are consistent with axisymmetry.

The Thomson Scattering (TS) and ECE diagnostics in DIII-D [36] are used to-

gether to measure the electron temperature radial profile along two di�erent view

chords; one vertical, one horizontal, and at di�erent toroidal locations (Fig. 4-2). In

particular, the sign of the field helicity and the radial location of the q = 2 surface

in the discharges presented here are such that while one diagnostic views the 2/1

island O-point, the other views a region near the X-point (this will be confirmed by

simulations in Fig. 4-7).

A T
e,q2 collapse begins without any change in core T

e

where q ≥ 1, and can heal

without any response from the core. In other cases, the core T
e

partially degrades,

but on a much longer timescale than the edge collapse.

An example of T
e,q2 collapse will be shown in figures 4-3-4-4. The discharge

(154576) was part of an experiment to measure the e�ects of collisionality on pedestal

properties using neon seeding [134]. The discharge operated with a slightly elevated

minimum safety factor q
min

¥ 1.1, and an edge safety factor of q95 ¥ 4.1. Immediately

prior to the onset of a rotating m/n = 2/1 TM, the normalized plasma beta —
N

transiently reached 3. This was achieved using a neutral beam power of ≥ 7 MW,

and with a neutral beam torque of ≥ 6 Nm. The line-averaged electron density at the

onset of the TM is n
e

¥ 8 ◊ 1019 m3. After the 2/1 TM locks, the electron density

and normalized beta continuously reduce over the 130 ms before the T
e,q2 collapse

shown in figure 4-3 to n
e

= 3 ◊ 1019 m3 and —
N

= 0.8.

4.3.1 Profile measurements

Figure 4-3a presents TS and ECE measurements of the electron temperature profile

before (blue), during (orange) and after (red) a T
e,q2 collapse. TS density data (not
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Figure 4-2: EFIT [12] equilibrium reconstruction for discharge 154576 at t = 3220 ms,
constrained by magnetics and Motional Stark E�ect data. Some rational flux surfaces
are shown in light blue, and the + marks the magnetic axis. The plasma separatrix
and two scrape o� layer poloidal flux contours are shown in black. Also shown are the
lines of sight for: selected channels of the upper (yellow) and lower (blue) bolometer
(used in section 4.3.5), electron cyclotron emission (ECE, red) and Thomson Scatter-
ing laser (green). Note that the ECE and Thomson Scattering are located at di�erent
toroidal locations „. The inner divertor region viewed by the IR camera (used in Fig.
4-6) is highlighted in red.

shown), and the fact that ECE temperatures are finite and in approximate agreement

with TS, confirm that the plasma is not overdense (i.e., ECE is not cuto�) and that

it is optically thick. Hence, the ECE temperature measurements are reliable.

According to ECE, which is more highly time-resolved than TS, the T
e,q2 collapse

begins at ≥ 3214 ms. However, for comparison, ECE profiles are only plotted at times

at which the TS laser is fired and thus TS profiles are available. The time-interval

interested by the T
e,q2 collapse is clearly marked in figures 4-3b-c, along with vertical

solid lines marking the TS laser-pulses.

A flattening is noticeable in the TS profiles at the q = 2 location at all times
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considered. This is indicative of a 2/1 island of finite amplitude (figure 4-3b, black)

that we know, from magnetic measurements, to be locked (figure 4-3c, black). From

magnetics we also know that the island is locked with such a toroidal phase (figure

4-3c, black) that the TS diagnostic is observing the island O-point, whereas the ECE

is observing the X-point. This is due to the distinct locations and view-chords of these

diagnostics (figure 4-2), and explains why there is no flattening in the ECE profiles

in figure 4-3, before and after the collapse. There is however flattening during the

collapse (orange), both in the TS and ECE profiles. Such flattening is not restricted

to the q = 2 location. Rather, it extends to both outer radii (at least to the q = 3

or q = 4 locations, and possibly to the plasma separatrix S) and inner radii (q = 3/2

location). Also note that the same flattening is observed at the drastically di�erent

poloidal and toroidal locations of the TS and ECE diagnostics.

An axisymmetric collapse is the simplest and most likely explanation of this obser-

vation. It is argued in Appendix F that non-axisymmetric interpretations are either

not consistent with the magnetics data, or require large parallel T
e

gradients, and

thus, are unlikely.

The cause of this axisymmetric collapse could be island overlap and consequent

field stochastization. Note that a significant amount of overlap is required to fully

stochastize the broad region under consideration. This interpretation is supported by

theoretical arguments in [124] and by simulations to be presented later, in figure 4-8.

The expectation from figures 4-3b-c is that the 2/1 island is present throughout the

collapse, and that its amplitude and phase remain approximately constant. The blue

and red profiles in figure 4-3a are consistent with this expectation. The orange profile

is also consistent, but a richer physics is taking place, besides the presence of the 2/1

island. Here by richer physics we mean complex MHD at various m and n (figure

4-3b-c) and a complex T
e

evolution over a broad range of radii that encompasses the

corresponding q = m/n locations (figure 4-3a).

The single orange TS data point between the q = 1.5 and q = 2 locations is a

slight outlier, within the error bar, relative to the orange ECE profile. In fact, it

seems more consistent with the blue and red TS points (before and after the collapse)
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Figure 4-3: (a) Electron cyclotron emission (ECE, solid curves) and Thomson Scat-
tering (TS, symbols with error-bars) electron temperature profiles shown at the be-
ginning (blue), middle (orange), and recovery (red) of a “T

e,q2 collapse”. Times are
relative to t0 = 3214 ms. Vertical lines show locations of rational surfaces, the mag-
netic axis, and the separatrix (S), and vary by only ±1 cm during this time interval.
The horizontal black bars centered about the q = 2, 3, and 4 surfaces are approximate
island widths before the T

e,q2 collapse, measured magnetically and calibrated with the
flattening in the TS T

e

profile. (b) Square-root of the perturbed fields mapped to their
respective rational surfaces as a function of time. Vertical lines with colored symbols
mark the times of the profiles in (a). The asterisks on the 1/1 and 3/2 field labels
remind that these fields should not be compared with others (see section 4.2.1).

at the same radial location. It is possible that temperature gradients across some

fraction of the nested surfaces in the island are sustained during the collapse. In the

simulations to be presented in figure 4-8, 3/1 and 4/1 islands are still present despite

stochastization of their separatrices. This might explain why T
e

is not perfectly flat

during the T
e,q2 collapse in figure 4-3a. Similar observations were made during other

T
e,q2 collapses.

As for T
e

in the core, this is remarkably flat, within error, over a broad range of

radii. Measurements are shown in Fig. 4-3a, and are reminiscent of earlier simulations

of LM disruptions in Ohmically heated plasmas [119, 120]. In those simulations the

136



current-density profile was flat in the core, due to the requirement that q
min

Ø 1 for

stability of the internal kink. As a result, the simulated T
e

profiles were also flat in

the core. This is due to the T
e

profile being related to the current profile, in Ohmic

plasmas. It should be clarified that discharge 154576 was not Ohmic, but heated with

neutral beams, hence it is not obvious that the T
e

profile should resemble the current

profile. Yet the experimental current density profile (not shown) resembles those in

the simulations [119, 120]. Core confinement in the vicinity of the q = 1 surface is

not studied here, and remains an interesting open question for future work.

The profile ≥ 24 ms after the onset of the collapse shows a reduction in core T
e

of 200-300 eV. This T
e

decay progresses in a continuous manner (as will be shown in

figure 4-4a), unlike the transient edge collapse. The relatively slow evolution of the

core is not studied here.

This locked 2/1 mode does not spin up or decay, and is present during the final

disruption ≥ 30 ms after the last time-slice of figure 4-3a. By spin-up here we mean

attainment of a rotation frequency well above the inverse wall time. Section 4.5 will

examine the T
e

profile evolution during a disruption, and will show that it begins

with a T
e,q2 collapse similar to the one presented in this section, with the notable

exception that the edge temperature does not recover.

As mentioned in the introduction, T
e,q2 collapses are also observed in non-disruptive

discharges. The T
e,q2 collapse may be a common onset of LM disruptions, though it

alone is not a su�cient condition for a disruption: the requisite thermal collapse in

the core, and the requisite current quench, may or may not follow the T
e,q2 collapse.

4.3.2 Relationship between locked mode amplitudes

Figures 4-3b-c showed the coexistence of several fields of di�erent m and n of finite

amplitude (Fig. 4-3b) and approximately constant phase (Fig. 4-3c), i.e., locked. An

examination of their time evolution in figures 4-3b-c suggests that some of these fields

are correlated (coupled) with each other, whereas others evolve in an uncorrelated,

independent manner. Table 4.1 summarizes the correlations in time of the various

m/n components.
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2/1 3/1 4/1 3/2
1/1 0.1 0.7 0.0 0.1
2/1 -0.2 0.9 0.6
3/1 -0.4 -0.3
4/1 0.7

Table 4.1: Correlations of the time-dependent mode amplitudes for each harmonic
pair. Correlations evaluated between 3100 and 3300 ms. The five highest correlations
(i.e. largest absolute value) are bolded.

Flattened regions appear in the TS profiles at the q = 2, 3, and 4 surfaces,

consistent with m = 2, 3, and 4 islands, before and during the collapse (Fig. 4-3a).

Upon recovery of the temperature profile (red), a flattening is observed at the q = 2

and 4 surfaces in the TS profile, while a gradient appears across the q = 3 surface.

The latter is consistent with the reduction in the 3/1 perturbed field (Fig. 4-3b),

and the change in the 3/1 phase (Fig. 4-3c). The square-root of the 3/1 field upon

recovery (red profile) is reduced by ≥ 40% relative to its value prior to the collapse

(blue profile), implying a 40% reduction in the island size. Further, the phase changes

by ≥ 90¶. This brings the island O-point closer to the ECE view chord than the TS

view chord. An inflection point appears in the recovered T
e

profile as measured by

ECE, though this is not su�cient to conclude the presence of a small 3/1 island.

The 2/1 and 4/1 amplitudes are highly correlated, as shown in table 4.1. The

phases also appear nearly locked (Fig. 4-3c), though some independent variation

can be observed. It is possible that their amplitudes are coupled through the 2/0

ellipticity [113], and their phases locked by electromagnetic torques.

4.3.3 Inter-island phase relationship as a Te,q2

onset indicator

(when combined with su�cient values of the Chirikov

parameter)

The phase relationship of the locked islands shows unique behavior coincident with

the onset of the T
e,q2 collapse in discharge 154576. For this study, the full time over

which the n = 1 islands are locked is considered (t = 3085 ms to disruption, Fig. 4-4).
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During this time interval, there are at least three T
e,q2 collapses, where the last one

is followed by a core collapse and current quench. The ECE channels are cuto� due

to high density during the first ≥ 50 ms after locking, which occurs at ≥ 3085 ms.

For this reason, those ≥ 50 ms of data are omitted from figure 4-4a.
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Figure 4-4: (a) Electron temperature at the core, and the 2/1, 3/1, and 4/1 island
locations as measured by ECE. (b) Time trace of the toroidal phase di�erence between
the 4/1 and 3/1 island O-points on the outboard midplane as measured by magnetics.
Vertical lines indicate the approximate onset times of T

e,q2 collapses. The dashed
horizontal line marks the approximate T

e,q2 collapse onset threshold of 10¶. (c) The
Chirikov parameter for the 3/1 and 4/1 islands (red), with error margin shown by
the shaded region between the black curves. The dashed horizontal indicates where
the sum of the island half-widths is equal to the distance between the q = 3 and 4
surfaces.

Let us consider the O-points of two n = 1 TMs whose poloidal mode numbers

di�er by |�m| = 1 (e.g. m = 3 and m = 4). It can be shown that these O-points

can only exist on the same radial chord in a single poloidal and toroidal location. We

refer to this unique angular coordinates as �
align

and �
align

.

We define the toroidal position of a given tearing mode as the toroidal angle where

its O-point reaches the outboard midplane. This location is also unique, for an n = 1

TM. We then introduce the di�erence �„ between the toroidal positions (as just
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defined) of two n = 1 TMs. It can be shown that

◊
align

= |�„|. (4.11)

where ◊
align

= |�
align

|, and is defined on the domain [0, fi]. This definition of ◊
align

cannot di�erentiate between alignment at some ◊
align

above the midplane and the

corresponding ≠◊
align

below the midplane. However, no observations have been made

to suggest that the interaction between TMs above and below the midplane are dif-

ferent. Thus, this definition of ◊
align

is su�cient for the studies herein. This simple

relationship will allow us to investigate ◊
align

by measuring |�„| for two n = 1 TMs

with |�m| = 1. Figure 4-4b shows ◊
align

for the 3/1 and 4/1 islands as a function

of time. When this phase-di�erence vanishes, the two O-points are aligned on the

outboard midplane, at some toroidal location.

In figure 4-4b, ◊
align

drops below 10¶ (dashed line) near the time of the three known

T
e,q2 collapses (vertical lines). Said otherwise, the O-points align with each other

at a particular poloidal position coincident or nearly coincident with the outboard

midplane (within 10¶ from it). The first of such alignment events occurs at the

same time as the T
e,q2 collapse. The second and third event occur ≥ 1 ms after the

corresponding collapses. At first sight this might suggest that island-alignment is

an e�ect of the collapse, and not the cause. However, it should be noted that the

n = 1 wall time in DIII-D is ≥ 3 ms. Consequently, sudden phase-changes (faster

than ≥ 3 ms) are detected with some delay. On the other hand, ECE measurements

do not su�er from any delay. Therefore, the data are consistent with the hypothesis

that O-point alignment within 10¶ of the outboard midplane triggers the collapse.

Shown in figure 4-4a is T
e

at various locations as a function of time. During the

first marked T
e,q2 collapse, the T

e

gradient collapses first between the q = 3 and q = 4

locations, followed by a transient collapse between q = 2 and q = 3. This suggests

that the T
e,q2 collapse, at least in this case, begins in the region outside of the q = 3

surface and travels inward.

The Chirikov parameter for the 3/1 and 4/1 islands is formulated as follows:
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‡3,1≠4,1 = 1
2

w3,1 + w4,1

r
q4 ≠ r

q3
, (4.12)

where r
q4 and r

q3 are the minor radii of the q = 4 and 3 surfaces. When this parameter

exceeds 1, the island separatrices overlap, which is known to generate stochastic

fields [124]. Indeed this parameter, plotted in figure 4-4c, often equals or exceeds 1,

suggesting island overlap. However, the electron temperature at the q = 3 surface

is observed to collapse only transiently, and recovering to temperatures of ≥ 500 eV,

even at times when ‡3,1≠4,1 >1. Note however the large uncertainty on the Chirikov

parameter (shown by the red shaded region in figure 4-4c. This large error is the

result of propagating errors in the island widths and island locations according to

equation 4.12.

The apparent onset when the 3/1 and 4/1 O-points align at the outboard midplane

(Fig. 4-4b) might suggest that in toroidal, shaped plasmas, the critical condition

for loss of confinement between two islands depends on the poloidal angle at which

O-points align. If the onset is due, for instance, to the distance between island

separatrices in real space, perhaps as a result of the finite ion Larmor radius, then for

fixed island widths, the distance is minimized when the O-points are on the inboard

or outboard midplanes, due to flux compression resulting from ellipticity. On the

outboard midplane, the Shafranov shift and ion banana orbits might also play a role

in setting the critical distance between O-points, above which confinement is lost in

the region between two islands.

In conclusion, all the rest being equal (island widths and radial locations), it

is plausible that di�erent poloidal phasings cause more or less stochastization. In

particular, flux compression on the outer midplane can favor field stochastization,

even in cases in which the Chirikov parameter is marginal (‡ ¥1 instead of ‡ >1),

Cylindrical simulations found that O-point alignment at some toroidal angle is a

consistent feature of disruptions caused by multiple magnetic islands [135]. Experi-

ments on the TFR tokamak [136] revealed that the m/n =2/1 O-point aligns with

another O-point at the outboard midplane. The latter had m =1 and unspecified n,
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and was located near the q = 1 surface.

4.3.4 Te,q2

collapse coincident with critical island widths

In a di�erent discharge, the Chirikov parameter, formulated now for the 2/1 and 3/1

islands, approaches and often exceeds 1 (figure 4-5d) about 5 ms before each T
e,q2 col-

lapse (figure 4-5b). This happens in four out of the five collapses. At about the same

times, the O-points approach alignment, but at the inboard midplane (◊
align

¥ 180¶

in figure 4-5c, as opposed to ◊
align

¥ 0¶ in figure 4-4b). Few milliseconds afterwards,

however, ◊
align

æ 0¶ in figure 4-5c, implying O-point alignment on the outboard side.

The causes for the di�erent behaviors of ◊
align

in figures 4-4b and 4-5c are not well

understood. Di�erences in the evolution of ◊
align

are also noticeable in the first three

collapses in 4-5c (marked by thin vertical lines), compared with the last two (marked

by thick lines). The causes are unknown, but they might be related to the fact that,

unlike the first three collapses, the last two extend as far in as to the q = 3/2 location

(as implied by the time-trace for T
e

at the q = 3/2 location, in green in figure 4-5b).

This is suggestive of a large 3/2 island overlapping with a neighbouring island. The

presence of a large 3/2 island might a�ect how the phases of the other modes (mostly

of n = 1) evolve.

Prior to the collapse, the temperature between the q = 2 and q = 3 locations is

degraded. This is visible both in the black time-trace in figure 4-5b and in the blue

profile in figure 4-5a. About 2 ms later, the collapsed T
e

gradient extends as far in

as to the q = 3/2 surface (orange profile), and is observed by both TS and ECE.

This discharge has the same helicity sign and similar q = 2 radius to the discharge

discussed before, where the 2/1 O- and X-point roughly align with the TS view and

ECE view, respectively (Fig. 4-7). Therefore, a similar diagnostic spacing relative to

the 2/1 island is expected here.

The 2/1 and 3/1 island half-widths are comparable with the distance between the

q = 2 and q = 3 surfaces immediately before the last T
e,q2 collapse, shown by the

horizontal bars in figure 4-5a. Island asymmetries are not considered here, and might

a�ect the distance between these island separatrices. Within 17 ms of the onset of
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Figure 4-5: (a) T
e

as a function of the
major radius at times relative to the
T

e,q2 collapse at t = 1659 ms. Verti-
cal lines show rational surfaces and the
magnetic axis. Horizontal bars show
the 2/1 and 3/1 island widths prior
to the collapse. (b) T

e

measured by
ECE as a function of time. Di�er-
ent types of T

e,q2 collapses that ex-
tend or not to the q = 3/2 location
are marked by thin and thick verti-
cal lines respectively. The profiles in
(a) are measured shortly before, during
and after the collapse marked in thick
red. (c) Absolute value of the toroidal
phase di�erence between the 3/1 and
2/1 O-points on the outboard mid-
plane. (d) Half-widths of the 2/1 and
3/1 islands, and their sum. The esti-
mated distance between the q = 2 and
3 surfaces is shown by the solid line,
with lower error shown by the dashed
line. (e) Bolometer signal from chan-
nel 6 which intersects the inner diver-
tor leg. (f) Filterscope measurement of
lower divertor D

–

light intensity.
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the T
e,q2 collapse, the edge T

e

recovers, as shown by the red profile. Note that the

core region between the axis and R ¥ 190 cm is not a�ected by this T
e,q2 collapse.

An axisymmetric collapse that occurs at a critical value of (w3,1 + w2,1)/2 and starts

with a perturbation in T
e

between the q = 2 and q = 3 surfaces is consistent with

stochastic transport due to overlap of the 3/1 and 2/1 islands.

4.3.5 Energy losses during the Te,q2

collapse

The primary goal of this section is to determine if the energy lost during a T
e,q2

collapse is consistent with a transport of heat and particles to the scrape o� layer, or

with a radiation imbalance. We investigate the last T
e,q2 collapse in figure 4-5. At the

time of the collapse, the plasma electron density is n
e

¥ 2 ◊ 1019 m≠3, well below the

Greenwald density limit [122] of n
G

= 1.3 ◊ 1020 m≠3. Therefore, a global radiation

imbalance would not be expected. However, a su�cient influx of impurities could

increase the radiated power in the edge and cause the collapse. Therefore a radiation

imbalance, possibly combined with other mechanisms, is not ruled out.

The peak heat-flux to the inner-divertor leg during the T
e,q2 collapse increases

transiently as shown in figure 4-6a. Figure 4-6b shows that the spatial distribution

of this transient heat-flux is peaked.

After integrating over this spatial distribution and integrating in time throughout

the duration of the collapse, we find that 20 ± 5 kJ have been deposited on the

inner-divertor leg. The outer-divertor leg is not imaged by the infrared camera, and

therefore the energy deposited in that region cannot be estimated.

The lower poloidal array of bolometers [137] measures the power radiated along

the chords illustrated in Fig. 4-2. During and after a collapse, the only significant

changes in radiated power are measured by channel 6 and 7. These channels view

the inner divertor region. In fact, their view chords intersect the region of increased

divertor heat flux (see blue shaded rectangles in figure 4-6b), and collect ≥ 95% of

the energy radiated during this time interval.

The raw voltage signal from channel 6 is plotted in figure 4-5e. It exhibits a latent

response over ≥ 15 ms following the two major T
e,q2 collapses. This is consistent with
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Figure 4-6: (a) Peak heat flux on the inner-divertor leg as a function of time as
measured by an infrared camera during a T

e,q2 collapse. The time is relative to the
time t

p

at which the heat flux peaks, reported in the legend, and is approximately
equal to the onset time of the last collapse in Fig. 4-5. (b) Spatial distribution of heat
flux on the inner-divertor leg, measured by the infrared camera, at times preceding
and including the peak shown in (a). Profiles are taken at di�erent times with 0.17 ms
time-step. Blue shaded regions show the locations of lower array bolometer channels
6 and 7. The solid vertical line shows the location of the strike point, as estimated
by equilibrium reconstructions.

the response to short-lived radiation events, shorter or much shorter than ≥ 15 ms,

and thus e�ectively similar to delta-functions of time.

Integrating the change in radiated power in channels 6-8 from the onset of the last

T
e,q2 collapse to 15 ms post-collapse, and assuming toroidal invariance of the radiation

source, we find 24 ± 5 kJ of radiated energy. Channels 11 and 12 of the upper fan

array view the same region of the inner wall (Fig. 4-2), and provide a redundant

measurement of the radiated energy from this area. Using the upper array, the

radiated energy is estimated at 22 ± 5 kJ, in agreement with the lower array.

A full energy accounting would also require considering energy sources such as the

injected neutral beam power and Ohmic heating. The missing heat flux measurements

145



on the outer-divertor preclude a full energy accounting. In total, 44 ± 7 kJ of energy

are conducted and convected to the divertor and radiated. The energy incident on

the outer-divertor leg was not measured, and is expected to increase this total. Some

double-counting of radiated energy is expected due to radiant heating of the inner-

divertor leg. We conclude that the majority of the lost energy appears in the divertor

region, in the form of heat on the inner-divertor surface and in the form of radiation

from a source located near the inner-divertor; the magnitude of the heat flux on the

outer-divertor is unknown.

The increased heat flux to the inner-divertor, the transient increases in D
–

line

radiation in figure 4-5f, and the localized radiation in the divertor region are all con-

sistent with a transport of particles and energy to the divertor. Stochastic transport

resulting from overlap of edge island chains is a candidate explanation. Radiation

localized at inboard side of the plasma, referred to as a MARFE [138], has been

observed during the early stages of density limit disruptions. However, MARFE ra-

diation becomes isotropic once the T
e

profile starts to contract [71]. Instead, here we

observe the radiation to be localized on the inner divertor throughout the collapse,

and to peak at a specific location (figure 4-6).

The present results neither validate nor invalidate recent theoretical work [121]

attributing density-limit disruptions to an excess of radiative losses by the island

relative to the Ohmic heating of the island, leading to exponential growth. First, the

plasma densities in the discharges presented here are all below the Greenwald limit

[122]. Moreover, we have made no observations pertaining to the source of the island

growth, but rather to the critical amplitude and phase conditions resulting from the

presence of multiple macroscopic islands. Specifically, we have not estimated the

Ohmic power deposited in the islands, which is left as future work.
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4.4 Simulations of a Te,q2 collapse

The NIMROD [128] code is a three dimensional, nonlinear resistive MHD solver used

for initial value problems. Here we use the single fluid model to time evolve a plasma

equilibrium reconstructed by EFIT [12] 4 ms prior to a T
e,q2 collapse. In particular,

this is the second collapse in figure 4-3.

Figure 4-7: Poincaré plots showing initialization of NIMROD simulation of discharge
154576 at t = 3210 ms at the toroidal locations of the ECE and TS diagnostics.
Island alignment is chosen to match t = 3215 ms from the experiment when X-points
of n = 1 islands are aligned with each other at the outboard midplane. (a) The TS
laser (vertical red) is shown intersecting the 2/1 island O-point, marked by the red
“O”. (b) The ECE view chord (red) is shown viewing the 2/1 island X-point, marked
by the red “X”. The mutual alignment of n = 1 X-points and a 3/2 O-point in this
poloidal cross-section implies that all n = 1, and a second 3/2 O-point are mutually
aligned at the outboard midplane in the poloidal cross-section 180¶ away toroidally.

Macroscopic 3/2, 2/1, 3/1, and 4/1 islands are initialized (Fig. 4-7 and 4-8a),

approximately matching the experimental islands sizes. Close matching was deemed

unnecessary, as the nonlinear solver is expected to relax the island-widths to self-

consistent saturated values anyway. The phase-relationship of the initialized islands
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matches measurements at the onset time of the collapse, ≥ 3214 ms, when O-points

are aligned on the outboard midplane.

In all three simulations, the perpendicular and parallel di�usion coe�cients are

set to ‰‹ = 0.1 m/s and ‰Î = 108 m/s. The ‰‹ value is chosen to match expected

experimental conditions, and ‰Î is set as large as is numerically tractable, although

realistic ‰Î values can be even higher.

Figure 4-8: Poincaré plots showing NIMROD simulations of the equilibrium and
locked mode (LM) conditions in discharge 154576. Islands are traced with black field
lines, and other surfaces are traced with turquoise field lines. Magenta field lines
are initialized at selected surfaces, and clearly show stochastic fields when they are
not confined to a surface. (a) Initial conditions showing 3/2, 2/1, 3/1, and 4/1 O-
point alignment on the outboard midplane. This cross-section is separated by 180¶

toroidally from the initialization shown in Fig. 4-7b. (b) Poincaré plot after evolving
both the equilibrium and the MHD modes by 9.6 ms, when an approximate steady
state is reached. The fields in the region between the 2/1 island and the plasma
separatrix are stochastic, as shown by the random distribution of magenta points.

Figure 4-8 shows Poincaré plots from the highest resistivity case at initialization,

and 9.6 ms into the simulation. A significant region of stochastic fields develops. The

region of stochasticity appears to extend from the plasma edge inward, reaching the
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outer separatrix of the 2/1 island, which is likely the result of the 3/1 and 4/1 islands

overlapping. The resilience of the 2/1 island to stochastization is also observed in two

other completed simulations with lower resistivities, not shown.
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Figure 4-9: Axisymmetric (n = 0) temperature profiles for three simulations, for
di�erent levels of resistivity, taken at the time where an approximately steady state is
reached. The initial fluid temperature T0 for all simulations is shown in black. This
initial temperature is the experimental ion temperature, which is roughly twice the
experimental electron temperature for the red and blue traces. The initial density was
doubled relative to the experimental value in one case (dashed magenta) in order to
reduce the fluid temperature to match the experimental electron temperature profile.
Resistivity scales like ÷ Ã T ≠3/2. The magnitude of the resistivity di�ers in each
curve. At the point where all curves intersect, the resistivity of each curve is reported
in the legend in units of (µ010≠2 �m).

Across the stochastic region shown in figure 4-8b, the temperature gradient is

weak, as seen in figure 4-9 (blue) starting ≥ 2 cm outside of the q = 2 surface and

extending through to the plasma edge. The simulated axisymmetric degradation of

T
e

is consistent with experiments, in the outer region. However, it does not extend

as far inwards as to the q = 3/2 location (see Fig. 4-3a for comparison).

The 2/1 island is observed to decay significantly between t = 0 and t = 9.6 ms

(the time-origin here is at the onset of the T
e,q2 collapse). This is not consistent with

(B2,1
p

)1/2 undergoing a 25% oscillation in figure 4-3b, but not decaying significantly.

The 3/2 island width does not change considerably in the Poincaré plots, in agreement

with the roughly constant (B3,2
p

)1/2. A small 5/3 island also appears in the simulation

between the 2/1 and 3/2 locations.
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Increasing resistivity appears to degrade the profile more and more, as seen in

figure 4-9. The resistivities used correspond to Spitzer resistivities with Z
eff

= 4.9

(blue), Z
eff

= 2.8 (magenta), and Z
eff

= 1 (red). This scan shows that the degrada-

tion in T
e

increases with increasing resistivity (Fig. 4-9), though the experimentally

observed degradation (Fig. 4-3) is even more severe than the most severe simulated

degradation, for the highest assumed resistivity.

Note that the profiles in figure 4-9 are axisymmetric (n = 0). That is, they

are evaluated on the midplane (◊ = 0), but not at a specific „. Rather, they are

averaged over all „. The flattening of the profiles at the q = 3 and q = 4 locations

is a consequence of the 3/1 and 4/1 island overlap and consequent stochastization

reported in figure 4-8b. The finite gradient at the q = 2 location is compatible with

the 2/1 island not being stochastized in figure 4-8b. The reduction of the 2/1 island

size in the simulation might prevent it from becoming stochastic. The larger region

over which the collapse is observed in experiment suggests that the 2/1 island might

also become stochastic, like the 3/1 and the 4/1 in the simulation.

In the single fluid initialization, NIMROD uses the pressure profile and the electron

density to infer the fluid temperature. In the experiment, the ion temperature is

approximately twice the electron temperature across the whole radial profile. In

one simulated case, the initialized density is doubled in order to reduce the fluid

temperature by a factor of 2 (dashed magenta), and thus match the experimental T
e

profile. No significant di�erence in the dynamics was observed.

Physical processes that might be important to the T
e,q2 collapse that are not

included in these NIMROD simulations are radiation losses, two fluid e�ects, and

kinetic e�ects such as finite Larmor radii and banana orbits. It is not obvious how

the results would change if two fluid e�ects were included. Radiation losses and kinetic

e�ects are both expected to increase perpendicular thermal and particle transport,

which would likely further degrade the simulated T
e

profiles, and possibly lead to

stochastization of the 2/1 island. We conclude that single fluid resistive MHD is a

su�cient physics basis to describe the onset of chaotic fields in the vicinity of the 3/1

and 4/1 islands, but other physics is needed to describe the inward propagation of
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the collapse to the q = 3/2 surface.
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4.5 Major disruptions

In this section, we show how the T
e,q2 collapse can lead to a major disruption. The

physics that di�erentiates a T
e,q2 collapse from a major disruption, namely the mech-

anisms responsible for the collapse of the core, and separately for the current quench,

are not studied in this work. Most major disruptions caused by LMs in DIII-D, par-

ticularly those at a high l
i

/q95, begin with a T
e,q2 collapse, followed by a collapse of

the core thermal energy some time later. Here, we revisit discharge 154576 which

was discussed in section 4.3, but at a later time when a major disruption occurs.

Unlike the T
e,q2 collapse shown in section 4.3, here the edge temperature profile never

recovers.

The T
e,q2 collapse occurs in ≥ 5 ms with only a small change in the core temper-

ature of about 100 eV, as shown in figure 4-10b. Like the previous T
e,q2 collapses in

this discharge, this collapse begins when the phase-di�erence between the 4/1 and

3/1 O-points at the outboard midplane goes to zero (see the third vertical line marker

in figure 4-4b). Further, note the similarity in the collapsed T
e

profiles at 4.8 ms in

4-10b (the disruptive case) and at 10 ms in figure 4-3a (the benign T
e,q2 collapse case).

The di�erence between the two cases is that the initial T
e,q2 collapse is followed or

not by a complete thermal quench (including the core) and current quench.

As shown in figure 4-10c, the fast collapse of the core occurs ≥ 23 ms after the

T
e,q2 collapse, which lasts ≥ 5 ms. This temporal separation of the T

e,q2 and core

collapses suggests that they are triggered under di�erent conditions. The collapse of

the core is a necessary step in a major disruption, and therefore core MHD stability

(e.g. 1/1 stability) likely di�erentiates a full thermal quench from a T
e,q2 collapse.

Core stability was not investigated in this work.

The large growth of the perturbed fields in this disruption occurs after the majority

of the thermal energy is quenched. When the T
e

profile becomes hollow (at 27.6 ms

in figures 4-10c-d), the 1/1, 2/1, 4/1, and 3/2 fields start growing rapidly, as shown in

figure 4-11. So does the 3/1 mode as well, about 1 ms later. All harmonics continue

this growth until the current quench begins, about 2 ms later (vertical dashed line).
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Figure 4-10: ECE profiles during a
major disruption at various times rel-
ative to the disruption onset at t =
3284.8 ms. Vertical lines show lo-
cations of rational surfaces and the
magnetic axis. Equilibrium recon-
structions constrained by magnetics
and the Motional Stark E�ect diag-
nostic produce variations in the ratio-
nal surface positions of ±1 cm dur-
ing this time interval. (a) The re-
covered profile following the T

e,q2 col-
lapse in fig. 4-3 is shown in red. The
temperature immediately before the
final T

e,q2 collapse, ending in disrup-
tion, is shown in orange. The start of
the T

e,q2 gradient degradation is ob-
served by the time of the green pro-
file. (b) Collapse of edge temperature
in ≥ 5 ms with only modest change
in the core. (c) Relatively slow drop
in core T

e

and outward movement
of steep T
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gradient. The profile at
27.6 ms shows a hollowing of the tem-
perature profile, and marks the start
of the core collapse. (d) Fast collapse
of the core T
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and formation of o�-
axis peak (purple) followed by near
complete gradient flattening at radii
inside of q = 4 surface.
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The growth might be caused by the destabilizing redistribution of equilibrium current

observed in locked mode disruption simulations [135], or by the radiative tearing drive

[124].
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Figure 4-11: (a) Plasma current and electron temperature in the core during the
thermal and current quenches. The vertical dashed line marks the beginning of the
current quench. (b) The square-root of the perturbed field of various harmonics
during the thermal and current quenches. For harmonics for which an island exists,
this quantity is proportional to the island width. Note, however, that large islands
might overlap and stochastize.

154



4.6 Self-stabilizing locked modes

An interesting, distinct class of locked modes that self-stabilize has been found. Self-

stabilizing LMs induce a minor disruption, significantly reducing the pressure gradient

and thereby removing the neoclassical tearing drive, leading to self-suppression. Note

that, as discussed in the introduction, we distinguish T
e,q2 collapses from minor dis-

ruptions: in the former T
e

only drops at outer radii, usually restricted to the region

outside of the q = 3/2 surface, whereas in the latter the profile keeps evolving, and

T
e

also drops in the core. A minor disruption di�erentiates from a major one in that

the plasma recovers from this T
e

drop, without ever reaching the current quench.

These self-stabilizing LMs tend to occur in plasmas with a minimum q well above 1

(i.e. q
min

> 1.2). Besides its fundamental relevance, a self-stabilizing LM is obviously

preferable over a disruptive LM. Yet, self-stabilizing LMs can still damage reactor-

scale tokamaks by way of excessive heat flux in the divertor region.

An example of a self-stabilizing LM is shown in figure 4-12. A small n = 1

rotating precursor grows until locking at ≥ 1920 ms (Figs. 4-12b-c). During locking,

the plasma normalized beta —
N

decreases (Fig. 4-12e). In an e�ort to maintain the

requested —
N

, the feedback-controlled neutral beam power is increased to ≥ 14 MW

(Fig. 4-12f), also increasing the injected torque from 2.5 Nm to 4 Nm (not shown).

The LM grows to ≥ 100 G (Fig. 4-12a), causing a minor disruption at 1965 ms. Prior

to that, q0 > 2 and q
min

< 1.5 (Fig. 4-12d), producing double q = 2 and q = 3/2

surfaces. The T
e

profile prior to the collapse shows large flattened regions around the

outer q = 2 surface and inner q = 3/2 surface (figure 4-13, black).

At the onset of the thermal collapse, when the n = 1 field is maximum, the ECE

data become chaotic outside of the inner q = 3/2 surface. This is illustrated by

the red crosses in Fig. 4-13, suggesting that the electron-velocity distribution is non-

Maxwellian at this time. A possible interpretation is island overlap might redistribute

flux on a fast timescale, producing an electric field through ˆB/ˆt, which could modify

the electron velocity distribution. Within 1 ms of this event, the plasma appears to

be Maxwellian again, but significantly colder (T
e

< 300 eV, in green in Fig. 4-13).
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Figure 4-12: Example of a "self-
stabilizing" LM. Vertical lines mark
the times and their markers match
the colors of the ECE profiles in fig-
ure 4-13. (a) Time trace of the
n = 1 Fourier amplitude of the
poloidal field (compensated for wall
eddy currents using the method of
section 4.2.3). The mode is sup-
pressed by ≥ 1985 ms. (b) Phase
of n = 1 poloidal field. (c) The
“ function (equations 4.8-4.9) quan-
tifies the correction for eddy cur-
rents applied in figure (a). (d) Time
trace of q on axis, q0, and minimum
q, q

min

, from 2D equilibrium recon-
structions constrained by magnetics
and the Motional Stark E�ect mea-
surements. (e) Plasma normalized
beta —

N

. (f) Neutral beam injection
(NBI) power and electron cyclotron
heating (ECH) power. (g) The ra-
tio of internal inductance and safety
factor l

i

/q95 remains below the em-
pirical DIII-D locked mode disrup-
tion limit [13]. (h) Plasma current
shows a small dip and recovery fol-
lowing the minor disruption.
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Following the minor disruption, q0 and q
min

decrease (Fig. 4-12d) and l
i

increases,

indicating transport of toroidal current towards the core. Despite the increase in

l
i

, the ratio l
i

/q95 remains below the disruption threshold for LMs with rotating

precursors to cause disruptions [13]. In agreement with that limit, the plasma does

not undergo a major disruption. Following the near complete thermal quench (green

profile in figure 4-13), the plasma current undergoes only a small oscillation and does

not quench (Fig. 4-12h). The T
e

profile largely recovers by 2000 ms (blue profile in

figure 4-13), and the n = 1 mode is no longer present (Fig. 4-12a-b).
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Figure 4-13: Electron temperature profiles measured by ECE during a minor dis-
ruption that leads to LM self-stabilization. Red crosses show the ECE data during
the onset of the collapse; the erratic behavior for R > 190 cm might indicate a non-
Maxwellian velocity distribution. If so, the quantity plotted should not be interpreted
as T

e

, at that particular time, but as the radiative temperature T
rad

. The vertical
dashed and dash-dotted lines show the existence of double q = 2 and q = 3/2 surfaces
at the time of the first profile.

At the time of the thermal quench, the pressure gradient at the q = 2 surface

is approximately zero, and therefore the bootstrap drive is negligible. The decay of

the 2/1 mode at this time implies that the island-width-dependent classical stability

index �Õ(w) is negative (i.e. stabilizing). The 2/1 mode stabilizes before the bootstrap

term is re-introduced by the recovering T
e

profile. Decay of the LM is rarely observed

in discharges with high values of l
i

/q95, suggesting a connection between l
i

/q95 and

�Õ(w), which is investigated numerically in [117]. Later in the discharge, another 2/1

mode also self-stabilizes after causing a minor disruption, though this time l
i

/q95 =
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0.33 is above the empirical disruption limit of 0.28, where a disruption is otherwise

expected. Although a strong correlation between the likelihood of LM disruptions and

l
i

/q95 is presented in [13], it is clear that additional factors exist that are not captured

by this parameter. The discharge ends without LMs with a pre-programmed ramp-

down (i.e. safely and without any disruption avoidance actuators).

Most self-stabilizing LMs are observed to cause a sudden “global” thermal col-

lapse, like the one presented in figure 4-13, unlike LM induced non-self-stabilizing

minor disruptions or major disruptions which typically occur in two phases: (1) a

T
e,q2 collapse at outer radii, followed by (2) a collapse in the core. This suggests

that the underlying physical mechanism responsible for the thermal collapse in the

self-stabilizing case might be di�erent from that of the non-self-stabilizing minor dis-

ruption (not shown) or the major disruption (Fig. 4-10). The thermal collapse in the

self-stabilizing case might be related to the presence of multiple q = 3/2 or q = 2

surfaces, and the overlap of double 3/2 or double 2/1 TMs. The lack of a current

quench might be related to the relatively low value of l
i

/q95.
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4.7 Summary and conclusions of the relationships

between locked islands and thermal collapses

In this chapter we analyzed the e�ect of locked modes on temperature profiles in the

DIII-D tokamak in order to better understand when and how locked modes cause

thermal quenches and, eventually, major disruptions. It was found that locked modes

of poloidal/toroidal mode number m/n=2/1 often cause the electron temperature

T
e

to transiently collapse in a region extending from the island to the plasma edge.

Such collapses should not be confused with the local non-axisymmetric flattening of

T
e

which occurs at the island location -whether locked or rotating. Instead, these

collapses appear axisymmetric, they span a broader radial range crossing several low-

order rational surfaces, and appear to be due to the mutual interaction of several

n=1 islands, of m=2, 3 and 4, and possibly others. The measured island widths are

comparable with the island mutual distances, as confirmed by the calculated Chirikov

parameters, and thus consistent with field stochastization. In turn, this is compatible

with enhanced transport and a decrease of the T
e

profile. Nonlinear MHD simulations

performed with the NIMROD code support the interpretation that the field becomes

stochastic in the plasma region on the vacuum side of the 2/1 island, though the

2/1 island itself does not become stochastic. The lack of stochasticity at the q = 2

surface might be attributed to the significant decay of the 2/1 island in the simulation,

which is not consistent with experimental magnetics data. Additional mechanisms of

plasma-edge cooling by the locked mode are not excluded. However, initial evidence

suggests heat to be predominantly lost in the divertor region, through radiation and

conduction or convection.

Experimentally, the relative phase between the islands also plays a role. In par-

ticular, their O-points tend to toroidally align with each other on the midplane at the

time of the T
e

collapse. The conditions for island-overlap might depend on poloidal

angle, and might become critical when O-points align at the outboard or inboard

midplanes.

These T
e

collapses are common but not su�cient conditions for thermal quenches.
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The main di�erence is that in the former, the temperature only collapses at outer

radii, whereas in the latter, it also decreases in the core, at a later time that distinctly

separates it from the T
e,q2 collapse. The decrease in the core is not fully understood,

but it might be due to an instability associated with the 1/1 mode.

In turn, the thermal quench may or may not initiate a current quench. When it

does, a major disruption occurs. When it does not, the disruption is minor, the locked

mode tends to decay -at least partially- or unlock and spin-up, and confinement is

recovered. Previous work [13] helps discriminating between major and minor disrup-

tions: at DIII-D, locked modes tend to cause major disruptions when l
i

/q95 >0.28.

Here l
i

is the internal inductance, q95 the edge safety factor, and l
i

/q95 is believed to

be a proxy for the classical stability parameter �Õ [117]. Finally, as a special case

of minor disruptions, locked modes were observed to “self-heal” or completely stabi-

lize themselves. The behavior was ascribed to the reduction of pressure, hence of

pressure-gradient and consequent removal of the neoclassical drive of the island in

discharges which are believed to be classically stable due to the low value of l
i

/q95.

In the future, an extensive statistical survey of many T
e,q2 collapses might be

necessary to assess the universality, or lack thereof, of the results obtained in the

selected discharges presented herein. Analysis of core 1/1 stability might provide

the insight necessary to di�erentiate between a relatively benign T
e,q2 collapse that

recovers, from a minor or major disruption. Physical understanding of this instability

and of its causes might improve disruption avoidance techniques. More generally,

techniques to prevent the T
e,q2 collapse might significantly reduce the occurrence of

locked mode disruptions.
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Chapter 5

Conclusions and future work

5.1 Conclusions

This thesis studies the resistive magnetohydrodynamics instability referred to as the

tearing mode (TM). TMs can rotate with the plasma (kHz frequencies in the devices

studied herein) or they can come to rest (“lock”) in the laboratory frame. The decel-

eration of the initially rotating mode is due to an electromagnetic drag imposed by

the resistive vessel wall, and the final locking is typically due to a torque resulting

from imperfections in the externally applied fields known as error fields (EFs). Fol-

lowing the locking of a TM, the plasma often loses all thermal energy on a timescale

much shorter than typical energy confinement times. Subsequently, the cold, resis-

tive plasma loses all the stored magnetic field energy; the event where all thermal

and magnetic energy are lost in an uncontrolled manner is referred to as a disruption.

Experimental results from two toroidal plasma configurations called the reversed field

pinch and the tokamak are used in this work. The reversed field pinch studied herein

is located in Stockholm, Sweden and is called EXTRAP T2R. The tokamak studied

herein is located in San Diego, California and is called DIII-D.

Here, the first use of TMs to diagnose resonant error fields is demonstrated, results

of a locked mode (LM) database on DIII-D pertaining to nonlinear plasma and mode

properties and LM disruptivity are presented, and experimental observations of the

onset mechanism of LM induced partial and full thermal quenches are shown. The
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error field and database works are published in references [81] and [13] respectively.

Here we summarize the primary findings of each of these studies.

It is demonstrated for the first time that naturally rotating TMs can be used to

diagnose EFs in the plasma conditions of EXTRAP T2R. The tearing mode (TM)

amplitude is observed to modulate in the presence of a resonant field, resulting from

the superposition of an intrinsic error field (EF) and a known, applied resonant mag-

netic perturbation (RMP). By scanning the amplitude and phase of the RMP, the

amplitude and phase of the intrinsic EF are estimated. The fastest TM rotation, and

a decoupling of the modulations in the TM amplitude from its phase are observed

when the predicted intrinsic EF is approximately canceled.

The statistical study of m/n = 2/1 (where m and n are the poloidal and toroidal

harmonics) LMs with rotating precursors, also referred to as initially rotating locked

modes (IRLMs), in DIII-D confirmed some expectations, and challenged others.

Among the confirmed expectations are the shorter slow-down times for tearing modes

(TMs) when the wall torque is large, the significant e�ect of locked modes on the nor-

malized beta —
N

, and the common toroidal angle where locked modes (LMs) tend to

align, probably as a result of residual error fields.

Results that were not expected include:

1. The maximum —
N

achieved during the discharge does not strongly influence

whether an IRLM will disrupt or not. Note that —
N

is significantly degraded

during the locked phase, and thus the —
N

prior to disruption is often much less

than the maximum value in the discharge, and typically much less than the

ideal wall and no-wall stability limits.

2. The following parameters, when considered alone, do not di�erentiate disruptive

from non-disruptive IRLMs well:

(a) The plasma internal inductance l
i

(b) The safety factor q95

(c) The island width w
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(d) The radial derivative of the q profile at the q = 2 location dq/dr|
q2

3. The following parameters do di�erentiate disruptive from non-disruptive IRLMs

well:

(a) The ratio of the internal inductance to the safety factor l
i

/q95

(b) A linear combination of the island width and radial position, d
edge

= a ≠

(r
q2 + w/2), where a and r

q2 are the minor radii of plasma and the q = 2

surface. The quantity d
edge

can be interpreted as the minimal distance

between the island outer separatrix and the unperturbed plasma edge.

The ratio l
i

/q95 is believed to be related to the free energy in the current profile

to drive TMs, commonly referred to as �Õ. A numerical work [117] found a similar

connection between l
i

/q95 and �Õ. This is the first empirical work to identify this

parameter as a robust disruption limit for LMs with rotating precursors, independent

of other plasma parameters. l
i

/q95 has been identified as a disruption limit in both

high density discharges in JET [71], and current ramp-down disruptions in JT-60U

[74], attributed to tearing instabilities in both. It is possible that the density limit and

current ramp-down are not causes of disruptions, but rather conditions under which

locked modes often form, the l
i

/q95 disruption threshold is exceeded, and disruptions

occur.

Although by definition current quenches are not observed in discharges with

non-disruptive IRLMs, thermal quenches often are observed. Discharges with non-

disruptive IRLMs tend to have low values of l
i

/q95 (less than ≥ 0.28). We o�er a

hypothesis as to the role of l
i

/q95 in distinguishing disruptive from non-disruptive

LMs:

• It is possible that l
i

/q95 determines the dynamics immediately following the ther-

mal quench, allowing plasma recovery when l
i

/q95 is low, or causing a current

quench when it is high. For instance, l
i

/q95 might determine whether LMs decay

when the neoclassical drive becomes negligible following the thermal quench, or

whether they continue to grow, somehow inducing the current quench.
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The parameter d
edge

might approximately indicate when neighboring island chains

will overlap, resulting in stochastic magnetic fields and poor confinement. As d
edge

is defined for a single island, d
edge

is not su�cient to determine when two separate

island chains overlap. Nevertheless, when d
edge

is comparable to the m/n = 2/1 island

half-width, it is likely that overlap would occur if other islands on the vacuum side of

the 2/1 exist (e.g. if islands with m > 2 and n = 1 exist). It is likely that these other

islands exist, as toroidal coupling implies that the m/n = 3/1 island will be driven

by the m/n = 2/1. Poloidal spectra of locked modes confirm the existence of many

island chains in these discharges, including the 3/1 and 4/1.

d
edge

is found to correlate best with the time duration between locking and disrup-

tion, suggesting that it might be related to the disruption onset mechanism. It also

performs comparably to the parameter l
i

/q95 in its ability to distinguish disruptive

from non-disruptive locked modes.

The database analysis revealed a fairly reproducible feature ("T
e,q2 collapse") in

the evolution of the electron temperature profile during locked mode disruptions.

This motivated a more detailed analysis that, however, due to its complexity, was not

automated, but only conducted on a handful of discharges.

All observations of the T
e,q2 collapse are consistent with the overlap of n = 1

islands being the cause, though the statistics of this study are small. The following

observations were made in two discharges with IRLMs:

1. The electron temperature T
e

flattens in a region extending from the edge to

locations where the safety factor evaluates q = 3/2

(a) Both the Electron Cyclotron Emission and Thomson Scattering diagnostics

-in di�erent toroidal and poloidal locations-measure the collapse, suggest-

ing an axisymmetric perturbation

2. All T
e,q2 collapses (often multiple per discharge) occur when the Chirikov pa-

rameter for the outermost n = 1 islands approaches or exceeds unity, and when

the island O-points align with each other at the outboard or inboard midplanes
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These observations are consistent with the outermost n = 1 islands overlapping or

nearly overlapping with each other, resulting in stochastic fields, and an axisymmetric

collapse of the edge electron temperature. Due to the Shafranov shift and the elliptical

shaping, the O-points of separate island chains are closer in real space when aligned

at the outboard midplane than when aligned at any other poloidal position. It is

possible that this point of closest approach is related to the physics of the onset, as

it is comparable with other transport length scales like the ion banana width and ion

gyroradius.

The T
e,q2 collapse proceeds in a similar way to the onset of a density limit disrup-

tion, though their respective onset mechanisms appear to be di�erent. In a density

limit disruption, radiative losses overcome heating at the plasma edge resulting in an

axisymmetric T
e

collapse. Radiation accounts for 100% of the lost thermal energy,

and TMs appear as a result of the collapse [71]. In the case of the T
e,q2 collapse, the

density is often well below the density limit, and the collapse occurs coincident with

MHD activity. Further, tracking the lost thermal energy during a single T
e,q2 collapse

shows 50-60% radiated in the divertor region, with the remaining energy conducted

or convected to the divertor. No increase in divertor heat flux is expected at the onset

of the density limit disruption.

The NIMROD nonlinear, single fluid, resistive magnetohydrodynamics code cor-

roborates the presence of stochastic magnetic fields under the conditions when the

T
e,q2 collapse is triggered. The fields in the plasma region outside of the q = 2 sur-

face become stochastic, and an axisymmetric collapse of the temperature profile is

observed. However, the temperature decrease observed in the simulations is smaller

than observed in experiments, suggesting that a larger region of stochastic fields might

exist in the experiments.

5.2 Future work

The error field detection technique might be considered for use on other reversed

field pinches and tokamaks. In ITER, simple scaling arguments presented in section
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2.7.2 suggest that the modulation in the island rotation frequency is expected to be

measurable, while the modulation in the island amplitude might not be.

The database and thermal quench work suggest that the first transient loss of

thermal energy is caused by overlap of the outermost n = 1 islands, and that classical

tearing stability determines whether a current quench follows the thermal quench or

not. Future work might attempt to further solidify these findings by completing the

following steps:

1. Extend the analysis of the T
e,q2 collapse to a larger set of randomly chosen locked

mode discharges to confirm or deny the universality of the onset mechanism.

2. Test the dependence of stochastic field generation on the poloidal position at

which the O-points of neighboring n = 1 island chains align, using NIMROD or

an equivalent nonlinear resistive MHD code.

• If no dependence is found using a resistive MHD fluid code like NIMROD,

then the mechanism is likely not a fluid e�ect, and a kinetic explanation

should be sought.

3. Calculate the classical stability index �Õ by solving for the perturbed flux func-

tion using JÎ from Motional Stark E�ect constrained equilibrium fit reconstruc-

tions during the existence of locked modes. Next, compare the calculated �Õ

with l
i

/q95 to confirm or deny the expected correlation.

Future work should also explore ways to avoid the T
e,q2 collapse, as this might

lead to avoiding the subsequent thermal quench and current quench (that is, the

disruption). Avoidance techniques might include:

1. Changing the global current profile during the existence of a locked mode to

reduce l
i

, and thus reduce �Õ.

2. Reduce the magnetic shear at the edge to prevent edge island overlap by in-

creasing plasma current in the edge.

166



• Both techniques 1 and 2 could make use of electron cyclotron current drive

(ECCD). They should not, however, be confused with ECCD stabilization

of the LM. Note that the ECCD e�ciency is expected to be low in the cold

plasma edge.

3. Alternatively, the plasma current might be increased inductively at the highest

allowable central solenoid ramp-rate so as to drive more edge-current than core-

current. This is obviously only a transient solution, to be paired with an island

suppression method. Note that this technique would reduce q95, potentially

with adverse e�ects on the classical stability of the LM, or possibly destabilize

an ideal kink.
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Appendix A

The DIII-D initially rotating

locked mode database

Details on the structure of the database and how to access it can be found at the

following link:

https://docs.google.com/document/d/1wqhvH8c6Ue9smP6kmsc8LTy1tIHLO4MTLRjjBCq4bTA/edit
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Appendix F

Discussion of non-axisymmetric

interpretations of the Te,q2

collapse

Here, we investigate non-axisymmetric interpretations that are consistent with the

electron temperature profile observations. These interpretations are shown to be in-

consistent with the magnetics data, or require parallel electron temperature gradients,

making all non-axisymmetric interpretations unlikely. The axisymmetric collapse in-

terpretation caused by overlapping islands is discussed in the main text.

By non-axisymmetric collapse, we mean that at a fixed toroidal angle, and on any

flux surface in the region of the observed collapse, there ought to exist a poloidal

angle where the temperature during the collapse is similar to the pre-collapse value.

This property would be satisfied, for example, if a single, large island was responsible

for the T
e,q2 collapse.

Single island interpretation

In this interpretation, we assume that the flattened T
e

profiles in figure 4-3a are the

result of a single, large island. The poloidal fields of the various m/n harmonics do

not significantly decay as it might be expected if only one large island existed, as

shown in figure 4-3b. The arguments below further challenge this interpretation.

For this single island interpretation, and the multi-island interpretation in section

179



F, we note that it is possible for a sudden change in island topologies to cause both

the ECE and TS diagnostics to view only island O-points. In order for an island to

align with both the ECE and TS diagnostic, they must satisfy the following helicity

constraint:

‰ = n(q�◊ + �„) ¥ nfi
3

q

3 + 1
5

4
¥ 2Nfi (F.1)

where ‰ is the helical angle on a flux surface that is perpendicular to the equilibrium

field, n is the toroidal harmonic, q is the safety factor at the island location, �◊ ¥ fi/3

and �„ ¥ fi/5 are the angular separations of the TS and ECE diagnostics, and N is

any non-zero integer.

We consider only the harmonics for which the corresponding rational surface exists

in the region of the collapse. The 4/2, 5/2, and 5/3 harmonics are the only ones for

which the helical angle ‰ comes within 0.3fi radians of the constraint in equation F.1,

exist on a rational surface in the range q = 1.5 to 4, and have m < 9. We will now

investigate the width of each of these islands.

For the observed profiles to be explained by a single island, the island width must

be 10-15 cm. The cylindrical island width of the m/n island is given by [50],

wm,n = c

ı̂ıÙ 16RBm,n

r

q2

mB
T

(dq/dr) , (F.2)

where c is a toroidal correction factor, R is the major radius, Bm,n

r

and dq/dr are

the radial field and the radial derivative of the safety factor at the q = m/n rational

surface, and B
T

is the toroidal field at the magnetic axis.

We seek the required values of the 4/2, 5/2, and 5/3 perturbed fields to produce

an island that is at least 50% larger than the 2/1 island width in figure 4-3a, and

then compare these with the measured values.
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Magnetic requirements for 4/2 island interpretation

Assuming c to be mode independent (here, and in the following subsections), in order

for the 4/2 island width to be at least 50% larger than the 2/1 width, the following

condition on the perturbed radial field must be true,

Ò
B4,2

r

Ø 2.1
Ò

B2,1
r

(F.3)

Taking the pre-collapse value of
Ò

B2,1
r

¥ 8 G1/2 from figure 4-3b, we find the condition
Ò

B4,2
r

Ø 17 G1/2. The measured value of
Ò

B4,2
r

during the T
e,q2 collapse is 9 G1/2,

which is too small. In addition, it is observed to transiently decrease coincident with

the onset of the T
e,q2 collapse, whereas an increase would be expected (Fig. 4-3b).

We conclude that the interpretation of a single 4/2 island causing the collapse is not

consistent with the magnetics data.

Magnetic requirements for 5/2 island interpretation

We can formulate a similar argument for the interpretation of a single 5/2 island

causing the T
e,q2 collapse. Requiring that the 5/2 island be at least 50% larger than

the 2/1 island, we find the following condition,

Ò
B5,2

r

Ø 1.9
ı̂ıÙ(dq/dr)5,2

(dq/dr)2,1

Ò
B2,1

r

(F.4)

where (dq/dr)5,2 and (dq/dr)2,1 are the radial derivatives of the safety factor at the

q = 5/2 and the 2/1 surfaces. For simplicity, we will set the ratio of the 5/2 and

2/1 radial derivatives of the safety factor to unity, though in reality, this ratio is

greater than unity in discharge 154576 (as it is in most DIII-D discharges). Taking

the pre-collapse value of
Ò

B2,1
r

¥ 8 G1/2, equation F.4 requires
Ò

B5,2
r

Ø 15.2 G1/2. A

decomposition of the magnetics using basis functions with 0 < m Æ 5 and 0 < n Æ 2

finds
Ò

B5,2
r

= 5.4 G1/2 at the onset of the T
e,q2 collapse. This signal is much too

small to produce an island width of 10-15 cm, and therefore, the interpretation of a

single 5/2 island causing the observed profiles in figure 4-3a is not consistent with the
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magnetics data.

Magnetic requirements for 5/3 island interpretation

Finally, we consider the 5/3 island. Requiring this island to be 50% larger than the

pre-collapse 2/1 width, we find,

Ò
B5,3

r

Ø 1.6
ı̂ıÙ(dq/dr)5,3

(dq/dr)2,1

Ò
B2,1

r

(F.5)

With (dq/dr)5,3 = 6.5 m≠1 and (dq/dr)2,1 = 10.5 m≠1, the condition in equation

F.5 evaluates to
Ò

B5,2
r

Ø 10 G1/2. A decomposition of the magnetics using basis

functions with 0 < m Æ 5 and 0 < n Æ 3 finds
Ò

B5,3
r

= 8.7 G1/2. Although this

field is comparable to 10 G1/2, note that the condition in equation F.5 is already

rather conservative in requiring that the 5/3 island width be only 50% larger than

the 2/1. Further, the q = 5/3 surface is near the inner-side of the collapsed region,

requiring this island to be radially asymmetric in a way opposite to the typical island

asymmetries observed in DIII-D (e.g. see the 2/1 flattening in the TS profile in figure

4-3a).

Multiple, non-overlapping island interpretation

For this interpretation, we assume that more than one island chain is responsible for

the profiles in figure 4-3a, and that the islands do not overlap, (as overlap would cause

stochastic fields, resulting in an axisymmetric collapse). In this and the following

subsection, the fast thermal conductivity and transport parallel to the magnetic field

is used to challenge the interpretations.

Excluding large parallel T
e

gradients, T
e

should not change along the island sepa-

ratrix. Therefore, the temperatures at the inner and outer boundaries of the O-point,

and the X-point should be the same. That is to say that measuring T
e

at the O-point

separatrix provides an approximate measurement of the X-point temperature.

If multiple island X-point gradients do exist in the discharge shown in figure 4-3a,

and are all not in view of the TS or ECE view chords, the O-points of neighboring
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island chains should have di�erent temperatures, producing a profile with a “stair-

step” characteristic. The orange profile in figure 4-3a does not show this “stair-step”

characteristic, but rather shows a steady weak gradient. We conclude that a non-

axisymmetric collapse caused by multiple non-overlapping island chains, excluding

large parallel T
e

gradients, is not consistent with the measured profiles.

Non-resonant interpretation

A 3D non-resonant temperature collapse necessarily implies large parallel T
e

gradi-

ents. By definition, the wave-vector of a non-resonant perturbation k is not perpen-

dicular to the equilibrium field, which implies that a single field line traverses peaks

and troughs of the wave, or in this case, traverses high and low temperature regions.
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