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ABSTRACT

Distinguished representations of the metaplectic
cover of GLn

Vladislav Petkov

One of the fundamental differences between automorphic representations of classi-

cal groups like GLn and their metaplectic covers is that in the latter case the space of

Whittaker functionals usually has a dimension bigger than one. Gelbart and Piatetski-

Shapiro called the metaplectic representations, which possess a unique Whittaker model,

distinguished and classified them for the double cover of the group GL2. Later Pat-

terson and Piatetski-Shapiro used a converse theorem to list the distinguished rep-

resentations for the degree three cover of GL3. In their milestone paper on general

metaplectic covers of GLn Kazhdan and Patterson construct examples of non-cuspidal

distinguished representations, which come as residues of metaplectic Eisenstein series.

These are generalizations of the classical Jacobi theta functions. Despite some im-

pressive local results to date, cuspidal distinguished representations are not classified

or even constructed outside rank 1 and 2. In her thesis Wang makes some progress

toward the classification in rank 3.

In this dissertation we construct the distinguished representations for the degree

four metaplectic cover of GL4, applying a classical converse theorem like Patterson

and Piatetski-Shapiro in the case of rank 2. We obtain the necessary local properties

of the Rankin-Selberg convolutions at the ramified places and finish the proof of the

construction of cuspidal distinguished representations in rank 3.
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1 Introduction

The subject of automorphic representations of metaplectic groups lies in the study of classical

modular forms for the group PGL2(Z) of rational weight. A famous example of such a form is the

Dedekind eta function. Perhaps, the most famous example is the Jacobi theta function

θ(z) =

∞∑
n=−∞

eπin
2z,

which is a modular form of weight 1
2 for the congruence group Γ0(4). Shimura was the first to

observe a close relation between the half-integer weight and the integer weight modular forms.

In his paper [23] he described this relation by associating to a weight w
2 form a modular form of

weight w − 1. This relation is known today as the Shimura lift.

To transfer the subject into the modern language of automorphic forms and representations,

one can observe that functions like θ(z) correspond to automorphic forms for a double cover G̃L2

of the classical group GL2

1→ {±1} → G̃L2 → GL2 → 1.

Waldspurger [30] proved in 1980 an adelic equivalent of the Shimura lift, relating metaplectic

and classical representations, developing what is known today as the theta or Shimura correspon-

dence. It was Kubota [18] who first studied automorphic forms on the nth metaplectic cover of

GL2. Kazhdan and Patterson [17] developed the theory of a metaplectic covers of any degree

n for a general linear group GLr of any rank r. Ever since then there has been an attempt to

prove a generalized theta correspondence, which relates automorphic representations of the meta-

plectic cover and the underlying classical group GLr. For example in [7] such correspondence is

proven for the nth metaplectic cover GL
(n)
2 of GL2 via a trace formula. Some further steps towards

generalizing this method have been done in [8] and [19].

A less ambitious, yet extremely interesting question, is to study the so called theta repre-

sentations, which are analogues to the half-integer weight theta functions. What makes them

particularly appealing is that unlike most metaplectic representations they have unique Whittaker

models.
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Definition 1. Let k be a number field containing the set of nth roots of unity µn and let Ak be its

adele ring. A genuine irreducible automorphic representation π = ⊗πν of the nth metaplectic cover

G̃ = GL
(n)
r (Ak) of GLr(Ak) is called distinguished, if the space of local Whittaker functionals at

every place ν is one dimensional.

Kazhdan and Patterson [17] have a well known global construction of a theta representation,

which appears as the residue of a minimal parabolic Eisenstein series of GL
(n)
r . Although this

non-cuspidal representation is distinguished if and only if r = n, the cases when r < n are also

of great interest to number theorists, since the Fourier coefficients of the non-distinguished forms

have some surprising arithmetic properties (see for example [4]).

On the other hand, the question of the existence and construction of cuspidal distinguished

representations is to date left open, despite some partial progress. The first example of cuspidal

half-integer weight theta functions was given by Serre and Stark in [22]. It is interesting that the

first cuspidal theta function occurs for the group Γ0(576).

Piatetski-Shapiro and Gelbart proposed and later proved in [13] that the distinguished rep-

resentations of the double metaplectic cover GL
(2)
2 are what they called elementary theta series,

which they defined through the method of Weil representations. They proved that the cuspidal

distinguished representations are in one-to-one correspondence with odd Hecke characters. More

information of the relation between Weil representations and the Shimura correspondence can be

found in [12] and [13]. Unfortunately, this method is not applicable for metaplectic covers of higher

degree.

In [21] Patterson and Piatetski-Shapiro construct and classify the distinguished metaplectic

representations of GL
(3)
3 by applying a converse theorem. They proved that the cuspidal distin-

guished representations are induced from Hecke characters, which do not satisfy χ = χ3
1, for some

other Hecke character χ1. In the case of a general cover GL
(n)
r there are very explicit local results,

although the global question is still far from solved. In [26] and [27] Suzuki proposes a conjecture

that a distinguished automorphic representation of the group GL
(n)
r exists only when r = nl and

it corresponds to an automorphic representation of the classical group GLl. He computes the local

Rankin-Selberg integrals for the spherical vectors at the totally unramified places for the cases

l = 1, 2 and suggests that the study of these integrals can be a path towards the proof of his

conjecture. The study of Rankin-Selberg convolutions of a metaplectic form with a distinguished
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theta form is a very interesting subject, as it was observed first by Bump and Hoffstein [3] and

later by Friedberg and Ginzburg [9] that such convolutions could be Eulerian, something that is

not guaranteed when one works with metaplectic forms.

In [10] Friedberg and Ginzburg give particular criteria that a global representation of GL
(n)
r

has to satisfy, in order to be locally induced by a certain character at almost all finite places. With

their divisibility condition they confirm the condition r = n suggested in Suzuki’s conjecture, when

l = 1.

In another recent paper [11] Gao presents an upper and a lower bound for the dimension of the

space of local Whittaker functionals of an unramified representation of the nth metaplectic cover

of a split reductive group G. In the case of G = GLr he also confirms the divisibility condition.

His impressive results, however, deal only with the unramified case. In his work [26, 28] Suzuki

works with unramified representations, that are induced by an unramified character of the diagonal

subgroup. If one is to prove the conjecture and classify the distinguished representations in higher

rank, one should also study convolutions with local representations induced from different non-

minimal parabolic subgroups or even supercuspidal representations. This is a very complicated

question, as shown by the work of Mezo [20] and very recently Takeda [24, 25]. Although they are

not interested in distinguished representations in particular, they do study a method to induce a

local metaplectic representation of a complicated Levi subgroup of G
(n)
r from representations of

the separate blocks. Takeda also proves a local to global result that allows the construction of a

global representation of the Levi that coincides with the locally induced reresentations at almost

all places.

A main obstacle on the path from these local results to a classification of global distinguished

representations is that they are not proven at the harder ramified places. In particular, the places

that divide the degree of the cover are studied only in a few cases. Patterson and Piatetski-Shapiro

[21] solve the case of rank 2, while Suzuki [28] computes some local Rankin-Selberg integrals in

rank 3.

To date the only known theta representations for rank r > 2 are constructed as residues

of metaplectic Eisenstein series as in [17]. In her thesis Wang [31], makes significant progress

towards the proof of a converse theorem for the group GL
(4)
4 with the intention of describing the

distinguished representations.
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The aim of this dissertation is to take the next step and construct and classify the cuspidal

distinguished representations of GL
(4)
4 . Our method follows the strategy of [21] and [31], as sug-

gested by Suzuki in [27], of using a converse theorem. Unlike [31], we are not aiming to construct

a converse theorem for a general metaplectic representation, but rather reduce our problem to

applying one for the particular candidate for a cuspidal theta representation.

One of the key ingredients of this construction are the local theta representations, which appear

as special quotients of reducible principal series representations. Kazhdan and Patterson computed

in [17] that these exceptional local representations are in fact distinguished. We will review the

definition of the metaplectic principal series and the local theta representations in Chapter 3.

The following theorem is the main result in this dissertation. It based on some conditions listed

in Section 4.3. In Chapter 4 we give some evidence that these conditions should hold in the general

statement of the theorem.

Theorem 2. Let k be a number field containing the 4th roots of unity and let Ak be its adele ring.

Let χ be a Hecke character of Ak trivial on k. Let θ(χν) be the distinguished local theta repre-

sentation, formally defined in Section 3.3. Define a global representation Θ(χ) := ⊗θ(χν). The

representation Θ(χ) is weakly automorphic, i.e. it corresponds to an automorphic representation

πχ = ⊗πν , such that πν ∼= θ(χν) for all, but finitely many ν.

If π = ⊗πν is a distinguished representation of G
(4)
4 , then there exists a finite set of places S

such that πν ∼= θ(χν), if ν /∈ S for some Hecke character χ. Finally, Θ(χ) is cuspidal if and only

if χ 6= χ2
1 for some Hecke character χ1.

We prove Theorem 2 in Chapter 6, essentially applying a metaplectic analogue of a converse

theorem as in [21]. In Chapter 2 we recall the definition and some common properties of the

metaplectic group G
(n)
r . In Chapter 3 we recall the construction of the local principal series

representations and the local distinguished theta represntation. In Chapter 4 we investigate the

local Rankin-Selberg integrals and prove the local results, which play an essential role in the proof

of Theorem 2. In Chapter 5 we briefly recall some details about the classical converse theorem for

GLn proven in [6].
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2 The metaplectic group and basic notation

In this chapter we review the definition of the metaplectic group, as well as some other basic facts

that will be needed in the following chapters.

Henceforth, let µn be the set of nth roots of unity and let k be a number field containing µn.

We choose an embedding ε : k ↪→ C. Let Gr = GLr be the group of invertible matrices of rank r.

2.1 Local metaplectic covers

Let F be a localization of k at a place ν. In order to define the local metaplectic extension, we

need to define a block compatible metaplectic cocycle σr : (Gr(F ), Gr(F )) → µn. Let (·, ·)F be

the classic nth Hilbert symbol.

When r = 2 Kubota [18] defined the cocycle directly. For g =

a b

c d

, let

x(g) =

 c if c 6= 0,

d if c = 0.

The (untwisted) cocycle is given as

σr(g1, g2) =

(
x(g1g2)

x(g1)
,
x(g1g2)

x(g2)

)
F

(
det(g1),

x(g1g2)

x(g1)

)
F

. (1)

We will abuse notation and write σr(·, ·) for every place as well as for the global metaplectic

cocycle.

As mentioned in [17] and [1], for each t ∈ Z/nZ one can also define other twisted cocycles as

σtr(g1, g2) = σr(g1, g2)(det(g1),det(g2))tF .

Let H = {diag(h1, . . . ,hr)} be the subgroup of diagonal matrices and let N be the standard

maximal unipotent subgroup.

Let Φ be a root system for Gr. A set of simple positive roots 4 ⊂ Φ is identified with the set{
(i, i+ 1)

∣∣ 1 ≤ i ≤ r − 1
}

. A simple root α ∈ 4, corresponding to (i, i+ 1), is associated with a
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reflection wα in the Weyl group W of Gr, where

wα :=



Ii−1

0 −1

1 0

Ir−i−1


.

From the Bruhat decomposition if g ∈ Gr(F ) we get g = n1hwn2, where h ∈ H(F ) is diagonal,

n1, n2 ∈ N(F ) and w ∈W . Recall that the set of simply reflections wα form a set of generators of

W . Thus we can write w = wα1
wα2

. . . wαm .

By Theorem 7 in [1] the untwisted block compatible metaplectic cocycle is uniquely determined

by the properties given in the following Lemma.

Lemma 3. Define the following map t : Gr → H(F ) by t(g) = h, using the Bruhat decomposition

g = n1hwn2. Let h = diag(h1, . . . ,hr). Then

(a) σr(g, n) = σr(n, g) = 1, for any g ∈ Gr(F ) and n ∈ N(F ),

(b) σr(h, h
′) =

∏
i<j

(hi, h
′
j)F , for any h, h′ ∈ H(F ),

(c) σr(h, g) = σr(h, t(g)), for any h ∈ H(F ) and g ∈ Gr(F ),

(d) σr(wα, g) = σr
(
t(wαg)t(g)−1,−t(g)

)
, for any g ∈ Gr(F ) and α ∈ 4.

The general formula for the cocycle is given in the next Lemma.

Lemma 4. Let g = n1hwn2 and g′ = n′1h
′w′n′2 as above and w = wα1 . . . wαm . Then

σr(g, g
′) = σr(h,wα1

. . . wαmn2g
′)σr(wα1

, wα2
. . . wαmn2g

′) · · ·σr(wαm , n2g′). (2)

The cocycle is block compatible, i.e., if r = r1 + . . .+ rl and g = diag(g1, . . . , gl) and

g′ = diag(g′1, . . . , g
′
l) are block diagonal of type (r1, . . . , rl) then

σr(g, g
′) =

l∏
i=1

σri(gi, g
′
i)
∏
i<j

(det(gi),det(g′j))F . (3)
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Note that this cocycle coincides with the ”Kubota cocycle” when r = 2 and avoids the problem

with the cocycle defined in [17] when (−1,−1)F 6= 1. Thus we do not require that F contains µ2n.

Definition 5. The local nth metaplectic cover of Gr(F ) is defined as a central extension

1→ µn
i−→ G(n)

r (F )
p−→ Gr(F )→ 1.

The elements of G
(n)
r (F ) are written as (g, ζ), where g ∈ Gr(F ) and ζ ∈ µn, and multiplication

is defined by (g, ζ)(g′, ζ ′) = (gg′, σr(g, g
′)ζζ ′).

Note that σr(·, ·) = 1 only if F = C, in which case the extension splits. We will assume that

n > 2 so the extension splits at every infinite place.

2.2 Global metaplectic cover and cuspidal automorphic representations

We can now define the global metaplectic group.

Definition 6. Let k be a number field containing the nth roots of unity µn and let Ak be the adele

ring of k. The nth metaplectic extension of Gr(Ak) is a central extension

1→ µn
i−→ G(n)

r (Ak)
p−→ Gr(Ak)→ 1.

The elements of G
(n)
r (Ak) are written as (g, ζ), where g ∈ Gr(Ak) and ζ =

∏
ζν , for ζν ∈ µn

and ζν = 1 for almost all places ν. Multiplication is defined as (g, ζ)(g′, ζ ′) = (gg′, σr(g, g
′)ζζ ′),

where the global metaplectic cocycle is defined as σr(g, g
′) =

∏
σ(gν , g

′
ν).

Let ν be a finite place of k and let F = kν , with OF being the ring of integers. Since gν ∈ OF ,

for F = kν and almost every ν, the group law is well defined.

Denote by B, N , H, Z the Borel, the standard maximal unipotent, the diagonal subgroup,

and the center of Gr respectively. From [1] there is a local section s : Gr(F ) → G
(n)
r (F ) such

that s(N(F )) splits. The subgroup s(H(F )) is no longer abelian and its center is s(Hn(F )), where

Hn = {hn|h ∈ H(F )}. Sometimes for a subgroup M ⊂ Gr we will write M̃ := p−1(M) and

M∗ := s(M). Set H̃∗ to be a maximal abelian subgroup of H̃ and let B̃∗ = H̃∗Ñ .
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Definition 7. Let F be non-archimedian. Let $ be a prime element of OF . The R-ring of F is

defined as follows

RF =

 OF if |n|F = 1,

Z +$lFOF if |n|F 6= 1,

where lF is the smallest number such that (·, ·)F = 1 on Z +$lFOF .

For example, if n = 4, k = Q(
√
−1) and |2|F 6= 1, then lF = 4 (see [28]).

Let KF =

 GLr(RF ) if F is non-archimedian,

U(r) if F is archimedian.
.

Then KF is the maximal compact subgroup of Gr(F ), such that s(KF ) splits (see [28]).

As shown in [1], there is a natural global section s : Gr(Ak)→ G
(n)
r (Ak) coming from the local

sections given above. Abusing notation we will write s(·) both in the local and global cases.

The maximal compact subgroup of Gr(Ak), on which s(·) splits, is K∗ =
∏
KF (see [28]).

Another subgroup, on which the section splits, is the diagonal embedding of Gr(k) in Gr(Ak).

Next we define the basic properties of the metaplectic representations of G
(n)
r .

Definition 8. A genuine automorphic representation (π, V ) is an irreducible representation inside

L2
(
Gr(k)\G(n)

r (Ak)
)

, such that for every f ∈ V and every (g, ζ) ∈ G(n)
r (Ak) we have

f
(
(g, ζ)

)
= ζ · f

(
(g, 1)

)
.

An anti-genuine representation is an irreducible representation inside L2
(
Gr(k)\G(n)

r (Ak)
)

,

such that for every f ∈ V and every (g, ζ) ∈ G(n)
r (Ak) we have

f
(
(g, ζ)

)
= ζ−1 · f

(
(g, 1)

)
.

The representation is called cuspidal, if for every parabolic group P ⊂ Gr(Ak) with maximal

unipotent subgroup NP the following integral vanishes:

∫
N∗P

f(ng)dn = 0.

As usual dn denotes the natural Weyl measure inherited from NP .
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It is an established fact that the space of genuine automorphic representations of G
(n)
r splits

into a space of cuspidal representations, residual representations and metaplectic Eisenstein series.

In certain cases there is even an established correspondence between automorphic representations

of G
(n)
r and automorphic representations of the classic group Gr. See for example [7] for the case

of GL
(n)
2 .

3 The local theta representation - non archimedian case

Throughout this chapter we assume that the local field F is non-archimedian and (r, n − 1) = 1.

We begin with the definition of the irreducible principal series representation for G
(n)
r .

3.1 Irreducible principal series and exeptional representations

Let h = diag(h1,h2, . . . ,hr) ∈ H be a diagonal matrix and let α ∈ Φ be a simple positive root,

which corresponds to (i, i+1). Define hα := hi/hi+1 and extend the definition to all positive roots.

We recall that the half sum over the positive roots is defined as ρ = 1
2

∑
α>0 α. We define the

following

µ(h) = hρ =
∏
α>0

|hα|
1
2

F .

Extend µ to all G, by µ(g) = µ(t(g)), where t(g) = h is as in Lemma 3.

Let Ω(H) denote the set of characters of the diagonal subgroup H of G. We can extend

ω ∈ Ω(H) to the Borel subgroup, by defining it trivially on the unipotent subgroup N . Recall

that the principal series representation V (ω) is defined as the space of locally constant functions

f : G→ C, which satisfy

f(bg) = ω(b)µ(b)f(g), for b ∈ B. (4)

If we consider H as (F×)
r

we may write a character ω ∈ Ω (H), as ω = ω1 × ω2 × · · · × ωr.

Let α ∈ Φ+ be the positive root of Gr corresponding to the entry (ij) and define ωα := ωi/ωj .

Furthermore, if w ∈W is an element of the Weyl group we define wω(h) := ω(hw) = ω(w−1hw).

A character ω ∈ Ω(H) is called exceptional (resp. anti-exceptional), if for every simple positive
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root ωα = | |F (resp. ωα = | |−1F ). A character ω of a one dimensional group is always exceptional

or anti-exceptional.

Consider two exceptional characters

ω = ω1 × ω2 × · · · × ωr ∈ Ω(Hr),

ω′ = ω′1 × ω′2 × · · · × ω′r′ ∈ Ω(Hr′).

We say that ω and ω′ are linked if either is true

• ω1 = ω′r′ | |
−1
F or ω′1 = ωr| |−1F ;

• If 4 = {ωi} and 4′ = {ω′i}, then 4∩4′ 6= ∅, 4 6⊂ 4′ and 4′ 6⊂ 4.

Let r = r1 + r2 + . . .+ rl be a partition of r. We say that a character ω ∈ Ω(Hr) is exceptional

of type (r1, r2, . . . , rl), if ω = ωr1 ×ωr2 ×· · ·×ωrl , for a set of exceptional characters ωri ∈ Ω(Hri),

which are pairwise not linked. We define the notion of anti-exceptional of type (r1, r2, . . . , rl)

analogously.

It is a classical result that the principal series representation V (ω) is irreducible if and only

if ω is not exceptional or anti-exceptional of any type. If ω is exceptional and w0 is the longest

Weyl element, the character w0ω is anti-exceptional. Furthermore, V (w0ω) has a unique irreducible

subrepresentation V0(w0ω) and V (ω) has a unique irreducible subquotient representation V0(ω).

These are isomorphic and V0(ω) is the image of

Iw0 : V (ω)→ V (w0ω).

We define the metaplectic principal series representation in a similar manner. Recall that

H̃ = p−1(H) is the pullback of H in the metaplectic cover. Then a maximal abelian subgroup

of H̃ is given by H̃∗ = H̃nZ̃
(
H̃ ∩KF

)
. Let Ω

(
H̃∗

)
be the set of characters of H̃∗, and let

Ω0

(
H̃∗

)
⊂ Ω

(
H̃∗

)
be the set of unramified characters. Let ω′ be a quasicharacter of H̃nZ̃ and

let ω̃ ∈ Ω
(
H̃∗

)
be an extension of ω to a character of the maximal compact subgroup H̃∗. Extend

ω̃ to B̃∗ = H̃∗Ñ by ω̃(nh) = ω̃(h) for h ∈ H̃∗ and n ∈ Ñ .
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Definition 9. For ω̃ as above let V (ω̃) be the space of locally constant functions f : G̃→ C, which

satisfy:

f(bg) = ω̃(b)µ(p(b))f(g), for b ∈ B̃∗. (5)

Next we will define a lift from a classical principal series representation V (ω) of Gr to a

metaplectic representation V (ω̃) of G
(n)
r .

Let ω ∈ Ω(H) be a character of H ⊂ Gr and let ω̃ ∈ Ω
(
H̃∗

)
be a character satisfying

• ω̃ ◦ i = ε, where ε : µn ↪→ C is the chosen embedding of the nth-roots of unity.

• ω̃(hn) = ω(p(h)), for h ∈ H̃,

• ω̃
(
H̃ ∩K ′

)
= 1, where K ′ is the conductor of ω.

In fact, if ω is unramified, i. e. if K ′ = KF , and (r, n− 1) = 1, then ω̃ is uniquely determined

by the above properties [17]. We extend the action of the Weyl group to Ω(H̃∗) in the natural way.

We say that the character ω̃ is exceptional (resp. anti-exceptional) of type (r1, r2, . . . , rl) if the

underlying character ω is exceptional (resp. anti-exceptional) of type (r1, r2, . . . , rl). From [17] we

have the following result:

Proposition 10. If ω̃ ∈ Ω(H̃∗), the principal series representation V (ω̃) is irreducible if and only

if ω̃ is not exceptional or anti-exceptional of any type. If ω̃ is exceptional and w0 is the logest

Weyl element, the character w0 ω̃ is anti-exceptional. Furthermore, V (w0 ω̃) has a unique irreducible

subrepresentation V0(w0 ω̃) and V (ω̃) has a unique irreducible subquotient representation V0(ω̃).

These are isomorphic and V0(ω̃) is the image of the induced map

Iw0 : V (ω̃)→ V (w0 ω̃).

For more general characters ω̃ we have the following proposition.

Proposition 11. Let r = r1+r2+ . . .+rl be a partition of r and let ω̃ = ω̃1×ω̃2×· · ·×ω̃l ∈ Ω(Hr)

be an exceptional character of type (r1, r2, . . . , rl) and let ω̃′ =w′ ω̃ =wr1,0 ω̃1×wr2,0 ω̃2×· · ·×wr1,0 ω̃2

be the associated anti-exceptional character of type (r1, r2, . . . , rl). Here the special Weyl element
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is w′ = wr1,0 ×wr2,0 × · · · ×wrl,0, where wi,0 is the long Weyl element for the corresponding block

of the Levi.

Then V (ω̃) has a unique irreducible subquotient representation V0(ω̃) and V (ω̃′) has a unique

irreducible subrepresentation V0(ω̃). The two irreducible representations are isomorphic and V0(ω̃)

is realized as the image of the induced intertwining map

Iw′ : V (ω̃)→ V (ω̃′).

We will review some of the basic properties of the representations V0(ω̃) and V0(w0 ω̃) in Sec-

tion 3.3. First we need to consider the space of Whittaker functionals of the principal series

representation V (ω̃).

3.2 Whittaker models of metaplectic representations

For a local field F let ψ be an additive character of the maximal unipotent subgroup N ⊂ Gr. We

can extend ψ to the maximal unipotent Ñ ⊂ G
(n)
r (F ), since the metaplectic cocycle splits on Ñ .

We will use the notation ψ in both cases.

For an admissible metaplectic representation (π, V ) the space Whψ(π) of ψ−Whittaker func-

tionals is defined as the space of linear functionals λ : V → C, such that 〈λ, π(n)ξ〉 = ψ(n)
〈
λ, ξ
〉
,

for all n ∈ N and ξ ∈ V .

Let λ be a Whittaker functional and let ξ ∈ V . The λ-Whittaker function associated to ξ is

defined as Wλ,ξ(g) =
〈
λ, π(g)ξ

〉
. We will write Whittψ(λ, π) or simply Whittψ(π) for the space

of such functions. We will also omit the index λ and write Wξ(g) when either λ is understood or

its choice does not affect the statements.

Remark: Whψ(π) is the space of all Whittaker functionals on π, while Whittψ(λ, π) denotes

the space of Whittaker functions for a single functional λ ∈Whψ(π).

Unlike the classical case, the space Whψ(π) is not always of dimension one. Nevertheless, we

have the following theorem (Theorem I.5.2 in [17]):

Theorem 12. The space Whψ(π) is finite dimensional. Also if π is supercuspidal Whψ(π) 6= 0.

In fact when π is a principal series representation a particular basis for Whψ(π) is formed by

12



the functionals given in the following definition.

Definition 13. Define an explicit Whittaker functional corresponding to t ∈ H̃ by the map:

λt : f 7→ µ(p(t))−1
∫
Ñ

f(tw0n)ψ(n)dn, (6)

where w0 is the long Weyl element.

Let H̃∗ ⊂ H̃ be a maximal abelian subgroup of the lift of the diagonal subgroup H ⊂ Gr. Let

t1, . . . tl be a set of representatives of H̃∗\H̃ and let λi = λti be as in (6). Then the set {λ1, . . . , λl}

gives a basis for Whψ(π) (see [17]).

We need to recall the following definitions.

Definition 14. Let (π, V ) be an unramified admissible representation of G
(n)
r (F ). When |n|F < 1

note that KF 6= Kr = Gr(OF ) - the maximal compact subgroup. In this case no vector can be fixed

by Kr, however, if v0 is fixed by KF , we will still say that the representation is unramified and

that v0 is a spherical vector. Note that if π is irreducible v0 is unique up to a constant [17].

A Class 1 Whittaker function W 0
π ∈ Whittψ(π) is a Whittaker function associated to the

KF−fixed vector v0 ∈ V . This function satisfies W 0
π (xgκ) = ψ(x)W 0

π (g) for all x ∈ Ñ and all

κ ∈ K̃F .

Another analogous property of the metaplectic Whittaker models is that just like clasical Whit-

taker functions they have local gauge functions. In other words there is a complex number w

depending only on the local representation and a gauge function β : Gr(F ) → R>0, such that for

any Whittaker functional λ and any Whittaker function Wλ,ξ ∈Whitt(λ, π), the following holds

|Wλ,ξ(g)| ≤ β(g)|det g|w (7)

We recall the definition of a gauge function for the convenience of the reader.

Definition 15. A local gauge β on Gr(F ) is a function that is left invariant by Nr and right

invariant by the maximal compact Kr and satisfies
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β



r∏
i=1

ai

. . .

ar−1ar

ar


= |a1a2 . . . ar−1|−tΦ(a1, a2, . . . , ar−1), (8)

where t is a positive real number, Φ is a Schwartz function on F r−1, diag(a1a2 . . . ar, . . . , ar) ∈ Hr

is a general diagonal matrix in Gr and | · | is the local norm on F .

Let t ∈ H̃∗\H̃ and let ψt(x) = ψ(t−1xt). Note that if Wξ(g) = Wλ,ξ(g) ∈ Whittψ(λ, π), the

function Wξ(tg) is a Whittaker function Wλt,ξ(g) in the space Whittψt
(λt, π). We will use this

later in Chapter 4.

3.3 Local theta representation

In this chapter we will review some basic properties of the irreducible representation V0(ω̃) and

the space of Whittaker functionals Whψ(V0(ω)).

Let ω̃ = ω̃1 × ω̃2 × · · · × ω̃l ∈ Ω(Hr) be an exceptional character of type (r1, r2, . . . , rl) and let

ω̃′ =w′ ω̃ = be the associated anti-exceptional character of type (r1, r2, . . . , rl) as in Proposition 11.

Kazhdan and Patterson proved in [17] the following result (Theorem I.3.5[17]) about the dimension

of the space Whψ(V0(ω̃)).

Proposition 16. If ri > n for any 1 ≤ i ≤ l, there is no non-zero Whittaker functional.

Let |n|F = 1 and let (r, n− 1) = 1. Suppose that ω̃i is unramified for all i. Then

dim
(
Whψ

(
V0(ω̃)

))
=

(
n

r1

)(
n

r2

)
. . .

(
n

rl

)
,

where
(
n
ri

)
is the usual binomial coefficient.

They also prove a weaker result (Corollary II.2.6 [17]), which works in the case |n|F < 1.

Proposition 17. The space Whψ(V0(ω̃)) is one dimensional, if and only if one of the following

cases occurs:
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(1) r = n− 1;

(2) r = nl and ω̃ is exceptional of type (n, n, . . . , n).

Let (r, n − 1) = 1 and let r = nl. We will describe how one can induce a distinguished

metaplectic representation V0(ω̃) of type (n, n, . . . , n) from a classical principal series representation

of Gn as in [17], [26] or [28]. Let ω = ω1×ω2×· · ·×ωn for ωi ∈ Ω1(F×), be non-exceptional of any

type. In other words ωα 6= | |±1F for any root α in the root system Φ of Gn. Define the following

character

ω ⊗ µ := (ω1| |
r−1
2

F × ω2| |
r−1
2

F × · · · × ωn| |
r−1
2

F )× (ω1| |
r−3
2

F × ω2| |
r−3
2

F × · · · × ωn| |
r−3
2

F )

× · · · × (ω1| |
1−r
2

F × ω2| |
1−r
2

F × · · · × ωn| |
1−r
2

F ).

Let ω̃ ⊗ µ be the lift to a character of the maximal abelian subgroup H̃∗ ⊂ G
(n)
r defined in

Section 3.1. Then define the distinguished theta representation as the representation V0

(
ω̃ ⊗ µ

)
given in Proposition 11. For convenience we will denote this representation as θ(ω). From the

aforementioned results in [17] we can conclude the following.

Proposition 18. Each representation θ(ω) is a distinguished representation of G
(n)
nl . Furthermore,

if (r, n − 1) = 1 and π is a distinguished representation of G
(n)
r , then r = ln and π ∼= θ(ω) for

some positive integer l and some character ω of Hn. Thus in the unramified case there is a

direct correspondence between an irreducible principal series representation V (ω) and the induced

distinguished representation θ(ω).

This proposition motivated Suzuki [27] to propose the following conjecture

Conjecture 1. (Suzuki, [27]) Let k be a number field containing µn and let (r, n−1) = 1. There is

a correspondence between distinguished representations of the metaplectic group G
(n)
r and classical

representations of the group Gl. This correspondence satisfies the following properties.

(1) If a distinguished representation π exists, then r = nl, for some positive integer l.
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(2) If τ is an irreducible automorphic representation of Gl, then there is an irreducible distin-

guished representation π of G
(n)
nl , such that locally at every unramified place πν ∼= θ(ων),

where ων is the character, which induces the unramified local representation τν .

(2) Every irreducible distinguished representation is obtained through such a lift.

(4) The distinguished representation π is cuspidal if τ is cuspidal and τ is not a Shimura lift

from any metaplectic automorphic representation of G
(d)
l , for any d|n.

Note that the last point agrees with the fact that the globally constructed theta representations

in [17], which occur as residual representations of minimal parabolic metaplectic Eisenstein series

for the group G
(n)
n , indeed correspond to a Heche character χ = χn1 that can be viewed as a

”Shimura” lift from a character on G
(n)
1 . Also note that, if this conjecture holds, the division

condition in [10], can be replaced by equality.

This global conjecture suggests a very interesting question. If the local correspondence between

unramified distinguished representations and classical unramified representations is explicitly given

by the induction τν = V0(ων) 7→ θ(ων), what is the respective local correspondence at ramified

places. In particular what happens when τν is supercuspidal. This is a very mysterious case, since

very little has been done in the area of local lifts of supercuspidal representations. Aside from the

rank one case solved in [7], Blondel constructs certain supercuspidal representations of the group

G
(n)
n that correspond to classical supercuspidal representations of Gn. Some of the so constructed

representations are distinguished and as noted by Blondel in the case of rank 1 and 2 they coincide

with the distinguished local odd Weil representations in [13] and [21].

In this work we will restrict ourselves only to the case of distinguished representations of the

group G
(n)
n , corresponding to a Hecke character χ. In Chapter 6 we will denote by θ(χν) the

induced local theta representation of G
(n)
n (kν).

4 Local Rankin-Selberg convolutions

In this chapter we study the local Rankin-Selberg convolutions of the local distinguished theta

representation.
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4.1 The totally unramified case

Let ψ be the additive character of the unipotent subgroup N from Section 3.2.

Let (π, Vπ) =
(
θ(χν), Vθ(χν)

)
be the unramified distinguished representation of G

(n)
n and let

(τ̃ , Vτ̃ ) be a non-distinguished unramified genuine representation of G
(n)
r for 0 < r < n and

gcd(r,n−1) = 1. Let Wπ ∈Whittψ(π) and Wτ̃ ∈Whittψ(τ̃) be type 1 Whittaker functions, which

are associated to the K̃F−invariant vector in Vπ and Vτ̃ respectively.

Recall that s(·) denotes the special section from Chapter 2 and define the following Rankin-

Selberg integrals

Ψ (s,Wπ ×Wτ̃ ) =

∫
Nr\Gr

Wπ

s

 g 0

0 In−r


W τ̃

(
s(g)

)
|det g|s−

n−r
2 dg, (9)

Ψ̃ (s,Wπ ×Wτ̃ ) =

∫
Nr\Gr

∫
x∈F r

Wπ

s


g 0 0

x 1 0

0 0 In−r−1


 dx ·W τ̃

(
s(g)

)
|det g|s−

n−r
2 dg. (10)

Since τ̃ is unramified it will correspond to a unramified classical representation τ ∈ V0(ω) where

ω = ω1 × · · · × ωt ∈ Ωr is an anti-exceptional character of type (r1, r2, . . . , rt).

Define the following L−function

L (s, χν × τ) =

l∏
i=1

(
1− χνωiq−sF

)−1
,

where qF is the cardinality of the reside field of OF .

Then as proven in Theorem 6.2 in [26] we have the following Theorem.

Proposition 19. (Suzuki, [26]) Let s ∈ C. For Re(s) large enough the integral in (9) converges

absolutely and

Ψ (s,Wπ ×Wτ̃ ) = Wπ (In)Wτ̃ (Ir)L

(
ns− n− 1

2
, χν × τ

)
.

As proven by Suzuki in [26] and explained in [31] the local integral Ψ (s,Wπ ×Wτ̃ ) has analytic
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continuation and satisfies a functional equation similar to the functional equation of L (s, χν × τ).

We will apply this in the following sections.

4.2 Rankin-Selberg convolutions when |n|F = 1 and τ̃ is not supercuspi-

dal

In this section we will consider Rankin-Selberg integrals of general Whittaker functions or of

ramified representations.

Let π = θ(χν) be the local theta representation for G
(n)
n and let τ̃ be an irreducible admis-

sible genuine automorphic representation of G
(n)
r realized as a quotient of some principal series

representation induced from a character ω ∈ Ω(Hr).

Let ξ ∈ π and η ∈ τ̃ be two vectors and Wξ(g) = Wλ,ξ(g) and Wη = Wλ′,η(g) be the corre-

sponding ψ-Whittaker functions for some Whittaker functionals λ ∈ Whψ(π) and λ′ ∈ Whψ(τ̃).

Consider the following integral

Ψ (s,Wξ ×Wη) =

∫
Nr\Gr

Wξ

s

 g 0

0 In−r


W η

(
s(g)

)
|det g|s−

n−r
2 dg. (11)

Let ι : Gr → Gn be the embedding g 7→

 g 0

0 In−r

 . Let p2 : G
(n)
n → µn be the projection

(g, ζ) 7→ ζ, where g ∈ Gn. We will use the same notation for the map G
(n)
r → µn. Then if g, g′ ∈ Gr

we have p2
(
s(g)s(g′)

)
= p2

(
s(gg′)

)
σ(g, g′) and p2

(
s(ι(g))s(ι(g′))

)
= p2

(
s(ι(gg′))

)
σ(g, g′). Using

the fact that ξ and η are genuine we see that

Wξ

s

 gg′ 0

0 In−r


W η

(
s(gg′)

)
= Wξ

s

 g 0

0 In−r

 s

 g′ 0

0 In−r


W η

(
s(g)s(g′)

)
.

In particular we can split the integral as separate integrals over the corresponding subgroups in

any decomposition of Gr. From the Iwasawa decomposition we can write g = xhk, where g ∈ Gr,

x ∈ Nr, h ∈ Hr and k ∈ Kr = GLr(OF ). Let A = {hi} be a set of representatives of Hr/H
n
r . Note
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that we can now write g = hix
′hnk, where x′ = h−1i xhi. If ψi(x) = ψhi(x) = ψ

(
h−1i xhi

)
. Then the

function Wi,η(g) = Wη

(
s(hi)g

)
is a Whittaker function in Whittψi

(
λ′hi

, τ̃
)
, where λ′hi ∈Whψi (τ̃)

is another Wittaker functional. Similarly Wi,ξ(g) = Wξ

(
s(ι(hi))g

)
is a ψi-Whittaker function

associated to ξ (in this case the Whittaker functional is unique).

Using this we can rewrite (11) as

∑
hi∈A

|dethi|s−
n−r
2

∫
Hnr Kr

Wi,ξ

s

 g 0

0 In−r


W i,η

(
s(g)

)
|det g|s−

n−r
2 dg. (12)

Now assume that π and τ are unramified. Then we can again rewrite the above as

∑
hi∈A

ci(s)

∫
k∈Kr

∫
h∈Hr

Wi,ξ

s

 hnk 0

0 In−r


W i,η

(
s(hnk)

)
|dethn|s−

n−r
2 dkdh, (13)

where ci(s) = Vol(H̃r ∩Kr)
−1|det hi|s−

n−r
2 , for hi ∈ A.

Since π and τ are admissible there exists a group K0 ⊂ Kr, such that K∗0 = s(K0) fixes

η and s(ι(K0)) fixes ξ. Let A′ = {κj} be a set of representatives of Kr/K0. For each j let

ξj = π
(
s(ι(κj))

)
· ξ and let ηj = τ̃

(
s(κj)

)
· η. Then we can rewrite the above as

Ψ (s,Wξ ×Wη) =
∑
i,j

ci(s)Ψ2

(
s,Wi,ξj ×Wi,ηj

)
, (14)

where

Ψ2

(
s,Wi,ξj ×Wi,ηj

)
= V ol(K0)

∫
H

Wi,ξj

s

 hn 0

0 In−r


W i,ηj

(
s(hn)

)
|dethn|s−

n−r
2 dh. (15)

Let wn−r is the long Weyl element in Wn−r and let wn,n−r ∈Wn be the Weyl element

wn,n−r =

 Ir 0

0 wn−r

 .
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Define W̃ξ(g) = Wξ(wn
tg−1) and W̃η(g) = Wη(wr

tg−1), as Whittaker functions of the contragra-

dient representations of π̌ and ˇ̃τ , respectively.

Consider the following Rankin-Selberg integral

Ψ′1

(
s, W̃ξ × W̃η

)
=

∫
Nr\Gr

∫
F r

wn,n−r · W̃ξ

s

 g 0

0 In−r

 s


Ir 0 0

x 1 0

0 0 In−r−1




· W̃ η

(
s(g)

)
(detwn−r,det g)F |det g|s−1+

n−r
2 dxdg. (16)

Note that the (detwn−r,det g)F factor in the integral comes from the fact that σ(ι(g), wn,n−r) =

(det g,detwn−r). For g ∈ Nr\Gr, let g′ = wtrg
−1 ∈ Nr\Gr and write g′ = hih

nk, for hi ∈ A,

h ∈ Hr and k ∈ Kr. Then

wn,n−r · W̃ξ

s

 g 0

0 In−r

 s


Ir 0 0

x 1 0

0 0 In−r−1


 (detwn−r,det g)F W̃η

(
s(g)

)

= wn,n−r ·Wξ

wns


Ir −x 0

0 1 0

0 0 In−r−1

 s

 tg−1 0

0 In−r




· (detwn−r,det g)FW η

(
s(wtrg

−1)
)

= wn,n−r ·Wξ

wns


Ir −x 0

0 1 0

0 0 In−r−1

 s

 wrg
′ 0

0 In−r




· (detwn−r,det g′−1)FW η

(
s(g′)

)

= wn,n−r ·Wξ

wns


Ir −x 0

0 1 0

0 0 In−r−1

 s

 wrhiwrwrh
nk 0

0 In−r




· (detwn−r,deth−1i )FW η

(
s(hih

nk)
)
.
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Above, we used the fact that (detwn−r,det(hnk))F = 1, because det(hnk) ∈ O×F (F×)
n

and

µn ⊂ O×F . Note that from the properties of the metaplectic cocycle

σ(ι(wrhiwr), ι(wrh
nk)) = σ(hi, h

nk),

it follows that the nth roots of unity ζi = σ(ι(wrhiwr), ι(wrh
nk)) and ζ ′i = σ(hi, h

nk) that come

out of the two Whittaker functions cancel when we separate the matrices s(hih
nk) 7→ s(hi)s(h

nk)

and s(ι(wrhiwrwrh
nk)) 7→ s(ι(wrhiwr))s(ι(wrh

nk). Since the metaplectic cocycle σ(g, x) = 1 for

any unipotent x ⊂ Nn we can observe that the matrices

s


Ir −x 0

0 1 0

0 0 In−r−1

 and s

 wrhiwr

In−r


commute, just like in the classical case. Thus we can rewrite the above as

wns


Ir −x 0

0 1 0

0 0 In−r−1

 s

 wrhiwrwrh
nk 0

0 In−r



= wns

 wrhiwr 0

0 In−r

 s


Ir −x 0

0 1 0

0 0 In−r−1

 s

 wrh
nk 0

0 In−r

 ζi

= wns

 wrhiwr 0

0 In−r

wnwns


Ir −x 0

0 1 0

0 0 In−r−1

 s

 wrh
nk 0

0 In−r

 ζi

= s

 hi

In−r

wns


Ir −x 0

0 1 0

0 0 In−r−1

 s

 wrh
nk 0

0 In−r

 ζi.

Making another change of variables g1 =t (wrh
nk)−1 we get
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wn,n−r ·Wi,ξ

wns
 Ir −x 0

0 0 In−r−1

 s

 tg−11 0

0 In−r


W i,η

(
wrs(

tg−11 )
)

= wn,n−rW̃i,ξ

s

 g1 0

0 In−r

 s


Ir 0 0

x 1 0

0 0 In−r−1


 W̃ i,η

(
s(g1)

)
.

Substituting back in (16)we get

Ψ′1

(
s, W̃ξ × W̃η

)
=
∑
i,j

bi(s)Ψ
′
2

(
s, W̃i,ξj × W̃i,ηj

)
, (17)

where

Ψ′2

(
s, W̃i,ξj × W̃i,ηj

)
= Vol(K0)

∫
H

∫
Fr

W̃i,ξj

s

 hn

In−r

 s


Ir

x 1

In−r−1




· W̃i,ηj

(
s(hn)

)
|dethn|s−1+

n−r
2 dxdh, (18)

and where bi(s) = Vol(H̃r ∩Kr)
−1|det hi|1−s−

n−r
2 , for hi ∈ A.

Next, assume that π or τ̃ are ramified. Then, if ω̃π and ω̃τ̃ are the characters inducing the two

representations as in sections 3.1 and 3.3, they will act on H̃l∩KF as characters χπ and χτ̃ , where

l = r, n and KF = GLl(OF ). It is easy to see that if χπ 6= χτ̃ , when we restrict to the image of

the embedding ι, the Rankin-Selberg integrals will vanish. In the other case we can change Wξ(g)

and Wη(g) to Wξ(g)χπ(g) and Wη(g)χτ̃ (g), then follow the above argument.

We will now prove the following lemma.

Lemma 20. The integral Ψ (s,Wξ ×Wη), given in (11), is absolutely convergent for Re(s) � 1

and the integral Ψ′1 (s,Wξ ×Wη), given in (16), is absolutely convergent for Re(s) � 1. The two

integrals have analytic continuation to the whole complex plane and are bounded on vertical strips.
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Proof. Recall the definition of Ψ2

(
s,Wi,ξj ×Wi,ηj

)
, given in (15), and Ψ′2

(
s, W̃i,ξj × W̃i,ηj

)
, given

in (18). First observe that bi(s) and ci(s) are entire functions and that bi(1− s) = ci(s) for every

i. Therefore, it is enough to prove the statements for the functions

Si (s,Wi,ξ ×Wi,η) =
∑
κj∈B

Ψ2

(
s,Wi,ξj ×Wi,ηj

)
, (19)

and

S′i

(
s, W̃i,ξ × W̃i,η

)
=
∑
κj∈B

Ψ′2

(
s, W̃i,ξj × W̃i,ηj

)
. (20)

Now consider the separate terms in the sums. Let β (resp. β′) be a local gauge function on

Gn(F ) (resp. Gr(F )) as in Definition 15 in Section 3.2, such that

|Wi,ξj | ≤ β(g)|det(g)|w, for every g ∈ Gn,

|Wi,ηj | ≤ β′(g)|det(g)|w
′
, for every g ∈ Gr.

These gauge estimates imply that every integral Ψ2(s,Wi,ξj ×Wi,ηj ) is absolutely convergent

for s in some right half-plane and is bounded on vertical strips. Similarly each of the integrals

Ψ′2(s, W̃i,ξj×W̃i,ηj ) is absolutely convergent for s in some left half-plane and is bounded on vertical

strips.

Our aim is to prove that the two integrals (11) and (16) are related trough an appropriate

functional equation. We do this in the case n = 4 and r = 2 in the following section.

4.3 Convolution with supercuspidal τ̃ and functional equation

In this section we restrict to the case n = 4, so π = θ(χν) is the local distinguished theta rep-

resentation of G
(4)
4 and (τ̃ , Vτ̃ ) is a non-distinguished supercuspidal representation of G

(4)
2 . Let

ξ ∈ Vπ and η ∈ Vτ̃ and define the Rankin-Selberg integrals (11) and (16) as before. To prove the

functional equation we need the following proposition.
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Proposition 21. Let F be a local field and let G
(n)
2 be the local metaplectic cover of degree n.

Let τ̃ be a genuine admissible irreducible representation of G
(n)
2 with central character ω̃′. Then

there exists a classical admissible irreducible representation τ of G2, which satisfies the following

properties:

• The central character ω of τ satisfies ω′(z) = ω̃′(s(zn));

• If χτ̃ and χτ are the character functions of the corresponding representations there is a trace

formula correspondence1

4(g̃)χτ̃ (g̃p2(g̃)−1) =


4(g)χτ (g) if g is elliptic,

1
n

∑
ζ∈µn

4(gζ)χτ (gζ) otherwise.

Furthermore, spherical metaplectic representations correspond to classical spherical represen-

tations and square integrable metaplectic representations correspond to classical square integrable

representations. In fact, if n is odd, supercuspidal metaplectic representations will correspond to

classical supercuspidal representations.

Proof. See [7].

The correspondence is more explicit when τ̃ is a principal series representation. In this case, if

τ̃ ∈ V (ω̃′), comes from a diagonal character ω̃′ of H̃2 the corresponding representation τ is induced

by the diagonal character ω′ of H2, which is defined as ω′(h) := ω̃′
(
s(h4)

)
.

When τ̃ is supercuspidal, for each i the Whittaker functions in Whittψi
(τ) satisfy the following

properties:

• For x ∈ N2 and g ∈ G2 we have W (xg) = ψi(x)W (g);

• For z ∈ Z2 and g ∈ G2, we have W (zg) = ω(z)W (g);

• There exist a compact subgroup K ⊂ GL2(OF ) of finite index, which fixes W (g);

• W (g) is compactly supported modulo the subgroup N2Z2.

1The definitions of the functions 4(g̃) and 4(g) and the element gζ are given in [7]. Since they will not be
relevant for our work, we simply list them for consistency.
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Define the function Fi,j(h) = Wi,ηj

(
s(h4)

)
p−12

(
s(h4)

)
and extend it to the Borel subgroup B2

by Fi,j(xg) := ψi(x)Fi,j(g) for any x ∈ N2. Note that for a central element z ∈ Z2

Fi,j(zh) = Wi,ηj

(
s(z4h4)

)
p−12

(
s(z4h4)

)
= ω̃′

(
s(z4)

)
Wi,ηj

(
s(h4)

)
p−12

(
s(h4)

)
= ω′(z)Fj(h).

For b ∈ B2 write b = xz

 a

1

, where x ∈ N2 is unipotent and z ∈ Z2 is in the center.

Since Fi,j(b) = ψi(x)ω(z)Fi,j

 a

1

, the function Fi,j(h) is determined by the restriction to

matrices of the form

 a

1

, where a ∈ F×.

Consider the Kirillov model Kτ of the representation τ . When τ is supercuspidal Kτ coincides

with the Schwartz space of compactly supported and locally constant functions S(F×). On the

other hand, fi,j(a) := Fi,j

 a

1

 is locally constant and compactly supported, because τ̃ is

admissible. Therefore, there will exist a unique vector η′j = Vτ such that Wη′j

 a

1

 coincides

with the restriction of Fi,j .

Therefore, there exists a unique vector η′j ∈ Vτ and an associated ψi−Whittaker function Wi,η′j

such that Fi,j(h) = Wi,η′j
(h). Consequently, if η′j = τ(κj) · η′, we can define Wi,η′(hκ).

Thus the integral Si (s,Wi,ξ ×Wi,η) is a convolution with a classical Whittaker function in

Whittψi
(τ).

Recall that qF = |OF /$OF | is the size of the residue ield of the local field F . Note that from

the standard theory of Rankin-Selberg integrals there is a rational function in qsF , denoted by

γ(s,Wξ ×Wη), such that

S′i

(
1− s, W̃ξ × W̃ηj

)
= γ (s, Wξ ×Wη)Si (s,Wξ ×Wη) . (21)

Furthermore, this gamma factor does not depend on the choice of the vector ξ in the distin-

guished representation. If π is unramified let ξ = ξ0 be the spherical vector. Following Suzuki’s

argument in [26] for the case when |2|F = 1 and in [28] when |2|F < 1 we see that when Wξ is a
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class 1 Whittaker function the gamma factor is γ
(
4s− 3

2 , χν × τ
)
. In the case when χν is ramified

we can twist the theta representation by a suitable character. Unfortunately, in the case where

τ̃ is a principal series representation we could not prove that the gamma factor will be the same.

Therefore, we propose the following conjecture.

Conjecture 2. Let (π, Vπ) be the local distinguished representation induced from a character χν

and let (τ̃ , Vτ̃ ) be an admissible representation of G
(4)
2 . Let τ be the classical irreducible repre-

sentation in Proposition 21, which corresponds to τ̃ . Let ξ ∈ Vπ and η ∈ Vτ̃ be two vectors and

let Ψ (s,Wξ ×Wη) and Ψ′1

(
s, W̃ξ × W̃η

)
be the Rankin-Selberg integrals defined in the previous

section. Then Ψ (s,Wξ ×Wη) is absolutely convergent for Re(s)� 1 and Ψ′1

(
s, W̃ξ × W̃η

)
is ab-

solutely convergent for (Re)(s)� 1. They are bounded on vertical strips, have analytic continuation

to the whole complex plain and satisfy the functional equation

Ψ′1

(
1− s, W̃ξ × W̃η

)
= γ

(
4s− 3

2
, χν × τ

)
Ψ (s,Wξ ×Wη) , (22)

where γ(s, χν × τ) is the classical gamma factor from the functional equation of the Rankin-Selberg

convolution of χν and τ .

4.4 Archimedian places

Since n > 2, if ν is an infinite place, the local field F = C and the metaplectic cocycle is trivial.

Let (π, Vπ) be a genuine local representation of G
(4)
4 and (τ̃ , Vτ̃ ) be a genuine local representation

of G
(4)
2 . If ξ ∈ Vπ and η ∈ Vτ̃ are two vectors the functions ξ′(g) := ξ

(
s(g)

)
p−12

(
s(g)

)
and

η′(g) := η
(
s(g)

)
p−12

(
s(g)

)
are vectors in the underlying classical representations V0(ω) and Vτ .

Consequently, the local Rankin-Selberg integrals Ψ (s,Wξ ×Wη) and Ψ′1 (s,Wξ ×Wη) are the

same as the classical Rankin-Selberg integrals and satisfy a functional equation with the appropri-

ate gamma factor.

5 Converse theorems

In this chapter we briefly summarize some of the steps involved in the classical converse theorems

for GLn. Generally speaking a converse theorem is result that states that, if a certain family of
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functions satisfies an appropriate set of functional equations, they must be the Mellin transform of

modular forms. The family of functions is usually the set of twists of an L−function by Dirichlet

characters or other automorphic representations. In 1936 Hecke [14] proved that a Dirichlet series,

which satisfies set of functional equations, is a Mellin transform of a weight 1 modular form.

Later Weil [32] proved an adelic analogue of Hecke’s result showing that, if π is a representa-

tion of G2(A) and for every Hecke character χ the twisted L−function L(s, π × χ) has analytic

continuation, is bounded on vertical strips, and satisfies a functional equation, the representation

π is automorphic. Cogdell and Piatetski-Shapiro [5] prove that for general n one needs to consider

the twisted L−functions L(s, π × τ), where τ is an irreducible automorphic representation of Gm,

for 1 ≤ m ≤ n − 1. In [6] they strengthen their result and show that one only needs to twist by

representations of Gm for 1 ≤ m ≤ n−2. In that paper they also propose the following conjecture.

Conjecture 3. (Cogdell-Piatetski-Shapiro, [6]) Let π = ⊗πν be a representation of Gn(A). As-

sume that for every 1 ≤ m ≤ bn2 c and every automorphic representation τ of Gm the twisted

L−function L (s, πν × τν) has analytic continuation, is bounded on vertical strips and satisfies the

usual functional equation. Then the representation π is automorphic.

There is another version of these converse theorems. If we fix a finite set of places S and

assume that L (s, πν × τν) have nice properties for the representations τ , which are unramified at

the places in S, we can conclude that π is weakly automorphic. Note that the classical converse

theorems deal with Whittaker type representations [5], which have unique Whittaker models. If

both πν and τν are of Whittaker type, the local twisted L−function appears as the greatest common

denominator of the different Rankin-Selberg integrals. Also the ”nice” properties of L (s, π × τ)

imply directly the nice properties of any related Rankin-Selberg integral, which allows the elegant

formulation of the classical converse theorems. In our case, however, the representation τ̃ν is never

distinguished and thus the notion of an ”L−function” is not clear. Therefore, in the case of meta-

plectic representations we need to prove the ”nice” properties of the Rankin-Selberg convolutions

directly.

The trick to proving the converse theorem in [6] is to embed the candidate representation into

the space L2(Gn(k)\Gn(Ak)). Let π = ⊗πν be the considered representation of Whittaker type

and let ξ = ⊗ξν be a vector in its space. Choosing a global Whittaker function Wξ, Cogdell and

27



Piatetski-Shapiro construct the following two functions:

Uξ(g) =
∑

p∈N(k)\P (k)

Wξ(pg),

and

Vξ(g) =
∑

q∈N ′(k)\Q(k)

Wξ(qg),

where P is a certain standard parabolic subgroup, Q is a certain mirabolic subgroup and N and N ′

are the corresponding maximal unipotent subgroups respectively. Since Uξ(g) (resp. Vξ(g)) is left

invariant by P (k) (resp. Q(k)), if Uξ(g) = Vξ(g), then the function will be an automorphic form and

hence the representation π will be automorphic. To achieve this Cogdell and Piatetski-Shapiro use

the properties of the Rankin-Selberg integrals to prove that for the function Fξ(g) = Uξ(g)−Vξ(g)

the following is true (Corollary 2 in [6])

Fξ


1 x

In−2

1

 = Fξ(In),

where x ∈ Ak is any. Choosing a special vector ξ0,ν0 at one finite place ν0, they prove that

Fξ(g) ≡ 0, when ξν = ξ0,ν0 . Finally, they induce an automorphic representation π′, which is

isomorphic to π at all places ν 6= ν0. Our strategy in the next chapter will be the same. From

this point, however, we will be unable to follow the last steps of the proof of the classical converse

theorem. Cogdell and Piatetski-Shapiro rely on the weak multiplicity one and strong multiplicity

one theorems, which are known for Gn, to prove that actually π′ is invariant of the choice of ν0

and in fact π′ ∼= π at all places. As we will explain, in the metaplectic case we are only able to

prove the weak automorphicity of the candidate representation π, just as in the proof of the second

type converse theorem in [6].

28



6 Proof of the main theorem

We will prove Theorem 2 using a converse theorem for GL4. Let k be a number field containing

the fourth roots of unity and let χ be a Hecke character of k. Let Θ(χ) = ⊗θ(χν), where θ(χν) is

the local theta representation defined in Section 3.3. We will write (π, Vπ) as shorthand for Θ(χ),

to make easier reference to the notation in Chapter 4.

Definition 22. A global gauge β on Gr(Ak) is a function that is left invariant by Nr(Ak) and

right invariant by the maximal compact Kr and satisfies

β



r∏
i=1

ai

. . .

ar−1ar

ar


= |a1a2 . . . ar−1|−tΦ(a1, a2, . . . , ar−1), (23)

where t is a positive real number, Φ is a Schwartz function on Ar−1k , diag(a1a2 . . . ar, . . . , ar) ∈ Hr

is a general diagonal matrix in Gr and | · | is the adele norm on Ak. Without lost of generality we

may assume that Φ is a tensor product of local Schwartz functions which implies that β = ⊗βν is

a tensor product of local gauge functions.

Since the central character ω of π is trivial on the diagonal embedding Zr(k), for any ξ ∈ Vπ

there will exist a global gauge β, such that for some complex number w ∈ C, independent of ξ, the

following is satisfied

Wξ(s(g)) ≤ β(g)|det g|w, for g ∈ Gr. (24)

Above Wξ is a Whittaker function associated to ξ. Note that since πν are distinguished, Wξ is

determined up to a constant.

Let (̃τ , Vτ̃ ) be an irreducible automorphic representation of GL
(4)
2 .
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Define P to be the maximal mirabolic subgroup fixing t(0, 0, 0, 1):

P =





∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1




.

Let

X =





1 0 0 x1

0 1 0 x2

0 0 1 x3

0 0 0 1




,

and let ψ1(x) = ψ(x3) be a character of X(k)\X(Ak).

Let Q be the maximal mirabolic subgroup fixing the vector t(0, 0, 1, 0):

Q =





∗ ∗ 0 ∗

∗ ∗ 0 ∗

∗ ∗ 1 ∗

∗ ∗ 0 ∗




.

Let N ′ = w−1Nw ⊂ Q be the maximal unipotent, where w is the Weyl element

w =



0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


.

We proceed with the proof of the main theorem. Let ξ ∈ Vπ and let Wξ = ⊗Wξν be a Whittaker

function associated to ξ (recall that π is distinguished). Using the above gauge estimate we can

define the following functions:

Uξ(g) =
∑

γ∈N(k)\P (k

Wξ

(
s(γ)g

)
,
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Vξ(g) =
∑

γ∈N ′(k)\Q(k)

Wξ

(
s(γ)g

)
.

Our aim is to prove that Uξ(g) = Vξ(g), which would imply that Uξ is left invariant by G4(k).

Lemma 23. The functions Uξ and Vξ are not identically zero.

Proof. Temporarily for i = 2, 3, 4 write Pi (respectively Ni) for the maximal parabolic (respectively

maximal unipotent) subgroup of the embedding of Gi into the upper right block of G4.

As in [5] we compute the ψ−Whittaker coefficient of Uξ.

∫
N4(k)\N4(Ak)

Uξ (s(n)g)ψ(n)dn =

∫
N4(k)\N4(Ak)

∑
γ∈N(k)\P (k)

Wξ

s

 γ 0

0 1

 s(n)g

ψ(n)dn

=
∑

γ∈N3(k)\G3(k)

∫
N4(k)\N4(Ak)

∫
X(k)\X(Ak)

Wξ

s

 γ 0

0 1

 s(x)s(n)g

ψ(x)dxψ(n)dn.

Since G3 normalizes n we have

Wξ

s

 γ 0

0 1

 s(x)s(n)g

 = Wξ

s

 γ 0

0 1

 s(x)s

 γ 0

0 1


−1

s

 γ 0

0 1

 s(n)g



= ψ

s

 γ 0

0 1

 s(x)s

 γ 0

0 1


−1Wξ

s

 γ 0

0 1

 s(n)g

 .

Thus the inner integral becomes

∫
X(k)\X(Ak)

ψ

s

 γ 0

0 1

 s(x)s

 γ 0

0 1


−1ψ(x)dx =

 1 if γ ∈ P3,

0 othewise.
(25)

By induction, we get that the only γ ∈ N3(k)\G3(k) for which the inner integral does not

vanish is the identity. Thus we have
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∫
N4(k)\N4(Ak)

Uξ
(
s(n)g

)
ψ(n)dn = Wξ(g). (26)

Since π has unique local Whittaker model Wξ is non zero. Therefore, the function Uξ is not

identically zero. The proof for the function Vξ is analogous.

Recall that G∗2 = s (G2). Since X∗ = s(X) ∼= X for any subgroup of the maximal unipotent,

we will simply write X is both cases. Let φ ∈ Vτ̃ be an automirphic form and define the following

integrals

I(s, Uξ, φ) =

∫
G∗2(k)\G∗2(Ak)

∫
X(k)\X(Ak)

Uξ

s(x)

 g 0

0 I2


ψ−11 (x)dx · φ(g)|det g|s−1dg. (27)

Similarly

I(s, Vξ, φ) =

∫
G∗2(k)\G∗2(Ak)

∫
X(k)\X(Ak)

Vξ

s(x)

 g 0

0 I2


ψ−11 (x)dx · φ(g)|det g|s−1dg. (28)

Using the gauge bound for Wξ we see that I(s, Uξ, φ) is absolutely convergent for Re(s) � 0

and I(s, Uξ, φ) is absolutely convergent for Re(s)� 0.

Let wl be the long Weyl element for l = 2 or 4, and let

w4,2 =


I2 0 0

0 0 1

0 1 0

 .

Denote by g · ξ the right regular action of G4 on Vπ. Then we have the following lemma.
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Lemma 24. Define

Wφ =

∫
N2(k)\N2(Ak)

φ
(
s(n)g

)
ψ(n)dn.

Recall from Chapter 4 that W̃ξ(g) := Wξ(w4
tg−1) and W̃φ(g) := Wφ(w2

tg−1).

Then for Re(s)� 0

I(s, Uξ, φ) =

∫
N2(Ak)\G2(Ak)

Wξ

s

 g 0

0 I2


Wφ

(
s(g)

)
|det g|s−1dg. (29)

For Re(s)� 0

I(s, Vξ, φ) =

∫
N2(Ak)\G2(Ak)

∫
A2
k

w4,2 · W̃ξ

s


g 0 0

x 1 0

0 0 1


 dx

· W̃φ

(
s(g)

)
(−1,det g)|det g|−sdg. (30)

In the above (·, ·) is the Hilbert symbol.

Further, the integrals have analytic continuation as entire functions and

I(s, Uξ, φ) = I(s, Vξ, φ). (31)

With this in mind we claim that

I (s, Uξ, φ) = Ψ (s,Wξ ×Wφ) , (32)

and

I (s, Vξ, φ) = Ψ̃
(

1− s, W̃ξ × W̃φ

)
, (33)

where we define the global Rankin-Selberg integrals as
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Ψ (s,Wξ ×Wφ) =

∫
N2(Ak)\G2(Ak)

Wξ

s

 g 0

0 I2


Wφ

(
s(g)

)
|det g|s−1dg, (34)

and

Ψ̃
(

1− s, W̃ξ × W̃φ

)
=

∫
N2(Ak)\G2(Ak)

∫
A2
k

w4,2 · W̃ξ

s


g 0 0

x 1 0

0 0 1


 dx

· W̃φ

(
s(g)

)
(−1,det g)|det g|−sdg. (35)

Proof. The proof follows the proof for the classical Rankin-Selberg integrals as presented in [6].

First the convergence of the integrals in the appropriate regions follows from the gauge estimate

for Wξ, which is a consequence of the fact that π is admissible. We unfold the first integral.

I(s, Uξ, φ) =

∫
G∗2(k)\G∗2(Ak)

∫
X(k)\X(Ak)

∑
N(k)\P (k)

Wξ

s(γ)s(x)

 g 0

0 I2




· ψ−11 (x)dxφ(g)|det(g)|s−1dg

=

∫
G∗2(k)\G∗2(Ak)

∑
N2(k)\G2(k)

Wξ

s

 γ 0

0 I2


 g 0

0 I2


φ(g)|det(g)|s−1dg

=

∫
N2(k)\G2(Ak)

Wξ

s

 g 0

0 I2


φ

(
s(g)

)
|det(g)|s−1dg

=

∫
N2(Ak)\G2(Ak)

∫
N2(k)\N2(Ak)

Wξ

s

 ng 0

0 I2


φ

(
s(ng)

)
|det(ng)|s−1dndg

=

∫
N2(Ak)\G2(Ak)

Wξ

s

 g 0

0 I2


 ∫
N2(k)\N2(Ak)

φ
(
s(ng)

)
ψ(n)dn|det(g)|s−1dg

= Ψ (s,Wξ ×Wφ) .
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The last equality follows directly from the definition of Wφ.

The proof for I (s, Vξ, φ) is analogous.

As we have seen in Chapter 5, the next step in applying a converse theorem is to prove

that I (s, Uξ, φ) = I (s, Vξ, φ) utilizing the functional equation and analytic properties of the local

L−functions. In the metaplectic case, however, the two integrals (34) and (35) are not Eulerian.

Nevertheless, this can be amended using the following lemma.

Lemma 25. The integrals Ψ (s,Wξ ×Wφ) and Ψ̃
(
s, W̃ξ × W̃φ

)
, defined in (34) and (35), are a

finite sum of Eulerian integrals:

Ψ (s,Wξ ×Wφ) =
∑
i

Ψ (s,Wi,ξ ×Wi,φ)

and

Ψ̃
(
s, W̃ξ × W̃φ

)
=
∑
i

Ψ̃
(
s, W̃i,ξ × W̃i,φ

)
.

Furthermore, for each i the Eulerian factors Ψ (s,Wi,ξ ×Wi,φ) and Ψ̃ (s,Wi,ξ ×Wi,φ) will corre-

spond as implied by the notation, i.e. each local factor in their products will have the properties of

the local Rankin-Selberg integrals in Chapter 4.

Proof. Let S′ = S′(ψ, ξ, φ) be a finite set of places, which contains every archimedian place, each

place lying over 2, each finite place where ψ is ramified and each finite place where ξ or φ are

not fixed by the maximal compact subgroup. Recall that S′ is indeed finite, since π and τ̃ are

admissible representations.

By Theorem 9.2 in [26], which is a corollary of Theorem 6.2 in [26], which we stated as Propo-

sition 19, the integral Ψ (s,Wξ ×Wφ) equals:

∫
N2(AS′ )\G2(AS′ )

Wξ

s

 g 0

0 I2


Wφ

(
s(g)

)
|det(g)|s−1dgL

(
4s− 3

2
, χS

′
× τS

′
)
,

where AS′ =
∏
ν∈S′ kν and L(s, χS

′ × τS′) is the partial L−function and τS
′

= ⊗ν /∈S′τν , for τν the

local classical representation associated to τ̃ν in [7].
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The partial integral

∫
N2(AS′ )\G2(AS′ )

Wξ

s

 g 0

0 I2


Wφ

(
s(g)

)
|det(g)|s−1dg

is not Eulerian, however, it is a product of an integral over the infinite places and another over the

set of finite places in S′. Since Wξ = ⊗Wξν by construction, using that πν is distinguished, the

only obstacle for the integral above to be Eulerian is the fact that Wφ might not be a product of

local Whittaker functions. More specifically the partial integral

Wφ =

∫
N2(k)\N2(AS′ )

φ
(
s(n)g

)
ψ(n)dn

will not be a product of local Whittaker functions. Remember that for each finite place of the

number field k, τ̃ is admissible, thus, the space of ψ-Whittaker functionals Whψ(τ̃ν) is finite

dimensional. Therefore, since S′ is finite there is a finite number of combinations of products of

local Whittaker functions that can combine to Wφ as defined above.

The argument for Ψ̃(s, W̃ξ × W̃φ) is analogous. Finally, the correspondence stated at the end

of the lemma follows directly from the relation between the global Whittaker functions Wφ and

W̃φ(g) := Wφ

(
w2

tg−1
)
.

This concludes the proof of the lemma.

Lemma 26. Let Ψ(s,Wi,ξ×Wi,φ) = ⊗Ψν(s,Wi,ξ×Wi,φ) and Ψ̃(s,Wi,ξ×Wi,φ) = Ψ̃ν(s,Wi,ξ×Wi,φ)

be the Eulerian integrals defined in Lemma 25. Then they have analytic continuation to entire

functions and satisfy the following functional equation

Ψ (s,Wi,ξ ×Wi,φ) = Ψ̃ (1− s,Wi,ξ ×Wi,φ) . (36)

Proof. By definition there are ξν ∈ πν and η ∈ τ̃ν , such that Ψν (s,Wi,ξ ×Wi,φ) = Ψ (s,Wξν ×Wη)

and Ψ̃ν

(
s, W̃i,ξ × W̃i,φ

)
= Ψ′1

(
s, W̃ξν × W̃η

)
, which are the local Rankin-Selberg integral defined

in Chapter 4. Assuming equation (22) in Conjecture 2 and Proposition 19 the local integrals

Ψ (s,Wξν ×Wη) and Ψ′1

(
s, W̃ξν × W̃η

)
satisfy the appropriate local functional equations with the
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classic γ−factors γν
(
4s− 3

2 , χν × τν
)
. Recall that χ is a Hecke character and by Theorem 5.3 in

[7] τ is automorphic. Consequently,

∏
ν

γν

(
4s− 3

2
, χν × τν

)
= 1.

This concludes the proof of the lemma.

As an immediate corollary we get

Ψ (s,Wi,ξ ×Wi,φ) = Ψ̃ (1− s,Wi,ξ ×Wi,φ) , (37)

which in turn leads to the equality (31) in Lemma 24.

The next step of the proof of Theorem 2 is to prove an analogous result to Lemma 4.1 in [6]

for the local theta representation at the ”bad” places ν.

Reall that $ = $ν is a uniformizer for the local ring of integers OF . Define for an integer

mν ≥ 1 local congruence subgroups of the group Gr(OF ) as follows:

Kν($mνOF ) =
{
g ∈ Gr

∣∣∣ g ≡ Ir (mod$mνOF)
}
,

K0,ν ($mνOF ) =

g = (gi,j) ∈ Gr

∣∣∣∣∣∣∣∣∣∣
gi,j ∈ $mνOF , for j = 1, 1 < i < r− 1,

gi,j ∈ $mνOF , for i = 1, 1 < j < r− 1,

gr,1 ∈ $2mνOF .

 .

Lemma 27. Let ν ∈ S′ be a finite ”bad” place. Let (πν , Vπν ) be the local distinguished theta

representation. There exists a vector ξν,0, such that πν(s(ι(g))) · ξ0,ν = ξ0,ν for g ∈ Ko,ν(ϕmν ) and

∫
($OF )−1

πν


s



1 0 0 0

0 1 0 0

0 0 1 y

0 0 0 1




· ξ0,νdy = 0.
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Proof. The proof uses the fact that πν is distinguished and follows the proof in the classical case.

Since πν is distinguished, even in the case |2|ν < 1, the following map is injective

ξν 7→Wξν

 g

1

 , for g ∈ G3.

Furthermore, as in the classical case the set space of Whittaker functions Wξ maps surjectively

onto the space of locally constant functions f(g) on G
(4)
3 , which are compactly supported modulo

the maximal unipotent N and satisfy f(ng) = ψ(n)f(g), where n ∈ Ñ .

Thus there exits a unique ξ0,ν ∈ Vπν , such that

Wξ0,ν

 g

1

 =

 ψ(n) if g = nt, n ∈ N3, t ∈ T,

0 otherwise.
(38)

In the above equation T ⊂ G(4)
3 (KF ) is the open subset of matrices satisfying also the condition

|t1,3|ν = 1, for each (ti,j) ∈ T . The so chosen vector ξ0,ν clearly has the desired properties in the

lemma.

Consider the function Fξ(g) = Uξ(g)−Vξ(g). From the above lemma and equation (31), which

holds for each τ̃ genuine automorphic representation of G
(4)
2 , the following holds

∫
G2(k)\G2(Ak)

∫
X(k)\X(Ak)

Fξ (s(x)s(ι(g)))ψ1(x)dx φ
(
s(g)

)
dg = 0. (39)

Consider the function F 1
ξ (g) :=

∫
X(k)\X(Ak)

Fξ (s(x)ι(g))ψ1(x)dx. This is a rapidly decreasing

function and is left invariant by G∗2(k). Let Eϕ(g, s) be a metaplectic Eisenstein series for G
(4)
2 (Ak),

induced by some character φ on the diagonal H2(Ak). As in Proposition 6.4 in [5] we can prove

that, if F 1
ξ is cuspidal the following integral vanishes

∫
G2(k)\G2(Ak)

F 1
ξ

(
s(g)

)
Eϕ
(
s(g), s

)
dg.

On the other hand, if F 1
ξ (g) is not cuspidal and one of the above integrals does not vanish,

from the spectral decomposition of L2
(
G2(k)\G(4)

2 (Ak)
)

given in [7] we see that F 1
ξ (g) is in a
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residual representation θ2(χ′) of G
(4)
2 , since F 1

ξ (g) was induced initially from a character χ it

means that χ = χ2
1 or χ4

1. In the latter case, as shown in [17], (π, Vπ) is the residual automorphic

metaplectic representation of G
(4)
4 , which comes from the minimal parabolic metaplectic Eisestein

series Eχ(g, s), induced by χ.

If this is not the case, using the spectral theory for G
(4)
2 in [7], we see that F 1

ξ (g) ≡ 0.

Lemma 28. Assume that for ξ ∈ Vπ we have
∫

X(k)\X(Ak)
Fξ
(
s(x)

)
ψ1(x)dx = 0.

Then we have for any x ∈ Ak

Fξ(I4) = Fξ



1

1

1 x

1


. (40)

Proof. The proof of this lemma is analogous to the proof of Corollary 2 in [6].

Let ν0 be a finite place and let ξ = ⊗ξν ∈ Vπ be such, that ξν0 = ξ0,ν0 , where ξ0,ν0 is the

special vector in Lemma 27. For such ξ we see that Fξ(I4) = 0. Let G̃′ = Stab
(
ξ,G

(4)
4 (Ak)

)
be

the stabilizer in the group G
(4)
4 (Ak) of ξ. Then Fξ(g

′) = Fπ(g′)·ξ(I4) = 0 for each g′ ∈ G̃′. As in

[6] for any ξ ∈ Vπ, the function Uξ(g) is in L2
((
G4(k) ∩ G̃′

)
\G̃′
)

.

From the classical weak approximation we have G4(Ak) = G4(k)G0 for any subgroup G0 of

finite index. This implies that G
(4)
4 (Ak) = G4(k)G̃′, hence the function Uξ(g), which is defined on

the subgroup G̃′, can be uniquely extended to a function on the full group G
(4)
4 (Ak). Thus we can

extend π = ⊗πν to an genuine admissible automorphic representation Π = ⊗Πν . Let π′ = ⊗π′ν be

one irreducible constituent of this induced representation. Then this will be the irreducible genuine

admissible automorphic representation in Theorem 2, which corresponds weekly to π. Note that,

since neither weak multiplicity one nor strong multiplicity one is known for the group GL
(4)
4 , we

cannot conclude that the representation π′ is unique and π′ ∼= π. However, we do obtain a weakly

functorial correspondence between Hecke characters χ and distinguished representations of G
(4)
4 .

Assume that ν is outside the finite set of places where π is ramified. Then π′ν and πν are local

unramified distinguished representations and thus by Proposition 17 the two local representations
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are isomorphic. Consequently, we have π′ν
∼= πν for almost all ν.

In [7] it is proven that weak multiplicity one and strong multiplicity one do hold for metaplectic

covers like G
(n)
2 for arbitrary n > 1 and it is reasonable to expect that they will also extend to the

cover group G
(4)
4 . Thus we propose the following conjecture.

Conjecture 4. The global representation Θ(χ) in Theorem 2 is automorphic. Furthermore, each

Hecke character χ corresponds to a unique distinguished representation.

Note that in order to prove Theorem 2 we did not need to prove Lemma 24 for all automorphic

representations τ̃ . If we assume that we can prove the lemma only when τ̃ is unramified at every

bad place, we can still complete the proof of the main theorem using the following lemma.

Lemma 29. Let ξ0,ν ∈ Vν be the special vector given in Lemma 27, where ν runs over the set of bad

places S′. Assume τ̃ is ramified at some place ν0 ∈ S′. Then for any ξ′ = ⊗ν∈Sξ0,ν ⊗ν /∈S ξν ∈ Vπ

the two global integrals I(s, Uξ, φ) and I(s, Vξ, φ) vanish.

Proof. Let kS′ = ⊗ν∈S′kν and let G∗2(kS′) =
∏
ν∈S′

G∗2(kν). The vector ξS′ = ⊗ν∈S′ξ0,ν is invariant

under the maximal compact subgroup of the upper diagonal embedding of G∗2 in G
(4)
4 . Therefore,

if τ̃ is ramified the integrals I(s, Uξ, φ) and I(s, Vξ, φ) will equal zero.

Although Lemma 24 holds for any τ̃ , we believe that the argument above has its merit. For

example, if we try to work in higher dimension r we need to consider Rankin-Selberg convolutions

with metaplectic representations of G
(r)
l for l ≤ b r2c, even if the important conjecture in [6] is

assumed. Since local correspondence between classical representations of Gl and G
(r)
l for l > 2 is

not established in general, and in particular at bad primes, we expect that a proof of an equivalent

result to Lemma 24 will require to impose some restrictions to τ̃ .

Note that, if the conjecture in [6] is proven, the main result in this dissertation extends to the

case of rank 4, i.e. the group G
(5)
5 . In view of the remarkable recent results of Jacquet and Liu

[15], that conjecture might be proven in the not too distant future.
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