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ABSTRACT 

Using interspecies biological networks to guide drug therapy 
 

Alexandra Jacunski  
 
 

The use of drug combinations (DCs) in cancer therapy can prevent the development of drug 

resistance and decrease the severity and number of side effects. Synthetic lethality (SL), a 

genetic interaction wherein two nonessential genes cause cell death when knocked out 

simultaneously, has been suggested as a method of identifying novel DCs. A combination of two 

drugs that mimic genetic knockout may cause cellular death through a synthetic lethal pathway. 

Because SL can be context-specific, it may be possible to find DCs that target SL pairs in 

tumours while leaving healthy cells unscathed. 

However, elucidating all synthetic lethal pairs in humans would take more than 200 million 

experiments in a single biological context – an unmanageably large search space. It is thus 

necessary to develop computational methods to predict human SL. 

In this thesis, we develop connectivity homology, a novel measure of network similarity 

that allows for the comparison of interspecies protein-protein interaction networks. We then use 

this principle to develop Species-INdependent TRAnslation (SINaTRA), an algorithm that 

allows us to predict SL between species using protein-protein interaction networks. We validate 

it by predicting SL in S. pombe from S. cerevisiae, then generate over 100 million SINaTRA 

scores for putative human SL pairs. We use these data to predict new areas of cancer 

combination therapy, and then test fifteen of these predictions across several cell lines. Finally, 

in order to better understand synergy, we develop DAVISS (Data-driven Assessment of 

Variability In Synergy Scores), a novel way to statistically evaluate the significance of a drug 

interaction.
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CHAPTER 1 – INTRODUCTION 

To begin, we will introduce three concepts that are necessary to understand this body of 

research: systems biology, synthetic lethality, and drug synergy. We will then describe how we 

integrate these sections by outlining the results presented in subsequent chapters of this thesis. 

SYSTEMS BIOLOGY 

The need for systems biology 
In a 2002 article [1], Yuri Lazebnik asked a simple question – “Can a biologist fix a radio?” 

– in order to illustrate the methodology of  ‘traditional,’ experimental biology. When presented 

with a broken radio, a biologist would acquire a number of functioning radios and try to replicate 

the problem by breaking or removing different components within it. This can be called a 

reductionist, or bottom-up, approach: to understand  

a complex problem, one must take it apart and understand how the parts interact.  

There are many benefits to reductionism, including a detailed understanding of all moving 

parts within the system. Furthermore, reductionist methodologies have been essential to a 

number of important biological discoveries, especially pertaining to Mendelian diseases. 

However, in certain cases, reductionism is insufficient. For example, the removal of several 

different components may cause the same problem; the issue may not be replicable without 

altering a number of parts simultaneously; and tunable components may be involved, making the 

search space infinitely complex. Furthermore, there may be factors that unnecessarily confound 

the analysis, such as whether the colour of a part alters its function. In short, simply cataloguing 

the function and importance of each part will be a time-consuming process, and may only help 

fix a subset of all possible problems. Intuitively, we know that a high-level understanding of how 
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a radio functions — for example, understanding the schematic — will make the process of fixing 

it easier. 

Removing components in a radio has a parallel in biology: genetic knockouts. Applying a 

reductionist approach to human biology can result in similar drawbacks to what we observe in 

radios. First, multiple proteins may be essential to a process, and knocking out any one will 

cause a disease; for example, mutations in a number of different genes can cause Seckel 

syndrome [2]. Furthermore, complex diseases, such as cancer, are caused by the malfunction of 

multiple genes simultaneously [3]; thus, finding the correct combination requires an extremely 

large number of experiments – something near impossible without guidance or sheer luck. Some 

diseases show differences in penetrance or severity depending on a variety of factors aside from 

genetics, such as the presence of short-term gestational hypoxia as a potential trigger for the 

genesis of scoliosis [4]. As with the radio, these cases are too complex to approach with a 

traditional knock-out approach.  

A schematic of human systems would be useful in such cases, and systems biology attempts 

to provide just such a map. It can be used to compliment traditional biological experiments, 

providing a top-down perspective to guide and inform our understanding of human health. 

An introduction to systems biology 
Systems biology is an interdisciplinary field of study that focuses on the “bird’s-eye view” 

of biology. Here, a system can be defined as a set of relationships between biological concepts. 

They can be as large-scale as the relationships between diseases, or as specific as the 

interconnected metabolic pathways of a cell. At its core, systems biology is about providing 

relational structure to observations, such that no single datum lives in a vacuum.  

Importantly, systems biology integrates work from areas such as biology, computer science, 

statistics, physics, and bioinformatics. Unifying these fields allows researchers to use existing 
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data to develop predictive biological models, which are then used to generate hypotheses that can 

be tested in experimental settings. Arguably the best work in systems biology establishes a 

consistent positive feedback loop between the development of computational models, the 

creation of hypotheses based on these models, and the experimental testing thereof. This allows 

for the continuous refinement of our understanding of a particular problem.  

Another important aspect of systems biology is the integration of new technology. 

Although systems biology isn’t synonymous with Big Data, much of the work in the field has 

used new technological developments in areas such as sequencing and large-scale assays to 

develop multidimensional models of human systems. 

Finally, systems biology represents another step towards a new paradigm of looking at 

human health: from reactive to predictive [5]. Historically, the treatment of human disease has 

shifted from purely curative, relying on the identification and treatment of symptoms, to 

preventative, such as the use of vaccines. With the advent of genomic sequencing, it has added a 

predictive element, such as in prenatal and carrier testing. The integrative nature of systems 

biology means that patient-specific data can be incorporated into models, allowing for 

individualized predictions for their health [6]. 

Work in systems biology has influenced the study of cancer, viruses, and neuroscience, 

among many others. For example, one paper differentiated gene mutations causative to, rather 

than simply associated with, cancer by identifying the frequency of genetic interaction within 

biological subsystems [7]. Another investigated the aetiology of viral disease by integrating 

virus-host and host-host interactions to understand how viruses manipulate host cell machinery 

[8]. A third looked at the topology of an individual’s brain during MRI scans to predict subjects 

at high risk for schizophrenia [9]. Although these publications are vastly different, they hold one 
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particular tenet of systems biology in common: the use of networks to represent the relationships 

between elements of a system.  

Network theory 
Networks, also known as graphs, are highly versatile, visual representations of connections 

among data. Nodes denote objects, and the edges that join them symbolize associations. They 

can be used to depict almost any type of relationship across almost any area of study: social 

interactions, as in the famous ‘small world’ experiment that led to the idea of six degrees of 

separation [10]; the Internet, and how Google returns search results [11]; and the inner metabolic 

workings of a cell [12]. 

In brief, a node with n connections is of degree n; more edges signify higher degree. Causal 

relationships are represented with the use of directed edges, while relationships that vary in 

magnitude can be indicated using weighted edges.  

Multigraphs may be used to depict relationships where two nodes are connected by more than 

one edge, or one node has an edge leading to itself. 

One important measure of networks is distance. Two nodes connected by an edge are a 

distance of one step from each other; they are neighbours. If Node A connects only to B, and B 

connects only to C, then A and C are a distance of two steps from each other. Often, there are 

many paths between two nodes; in this case, the shortest path between them can be used to 

measure their distance. If there are no paths between two nodes, the distance between them is 

infinite. 

The topology of the network can be used to infer information about its components. A list 

of common terms is available in Table 1.1. Two important topological characteristics are hubs 

and modules. Hubs are nodes that are considered central due to their high degree. Modules are 

highly connected subcomponents of a network;  
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a specific subtype of modules is a clique, in which every node is connected to every other node 

in that subset. Cliques offer a large benefit in analysis because of their closed nature; they are 

much less computationally intensive to find than modules, which are open subnetworks [13].  

 

Term	 Definition	
Network	 Also	called	a	graph,	it	consists	of	nodes	(e.g.,	genes)	that	are	connected	by	defined	

relationships	(e.g.,	coexpression)	with	edges.	
Neighbour	 Any	node	connected	by	an	edge	to	the	node	of	interest.	
Bipartite	network	 A	network	in	which	nodes	of	one	group	(e.g.,	genes)	are	connected	to	nodes	of	another	

(e.g.,	diseases),	but	no	within-group	edges	exist	(i.e.,	no	gene	is	connected	to	another	
gene).	

Hub	 A	central,	highly	connected	node	within	a	network;	often	represents	essential	genes	when	
applied	to	biological	networks.	

Clique	 A	subset	of	a	module,	in	which	all	nodes	are	connected	to	all	other	nodes	in	the	clique.	A	
maximal	clique	is	the	largest	clique	that	can	be	found	within	a	given	module.	

Motif	 A	recurrent,	statistically	significant	subgraph	or	pattern.	In	biology,	these	can	include	
negative	autoregulation,	feed-forward	loops,	and	so	on.	They	can	be	particularly	
important	in	metabolic	networks.	

Scale-free	network	 The	degrees	of	nodes	in	a	network	tend	to	be	distributed	according	to	a	power	law,	such	
that	a	new	edge	being	assigned	to	the	graph	tends	to	be	given	to	a	node	of	high	degree.	
Biological	networks	tend	to	have	this	property.	

Small-world	property	 Most	nodes	are	not	directly	connected,	but	the	majority	of	nodes	can	be	reached	from	all	
others	by	crossing	a	relatively	small	number	of	edges.	The	strict	definition	states	that	the	
average	path	length	is	of	the	order	of	log(N),	where	N	is	the	size	of	the	network.	Biological	
networks	also	tend	to	have	this	property.	

Table 1.1: The vocabulary of networks  
 
 

Network topology can also be defined mathematically, making networks highly 

quantifiable. Several examples of this are depicted in Figure 1.1. More complex parameters 

include closeness centrality, which measures how close a node, A, is to the rest of the network by 

calculating the shortest distance of A to all other nodes. Betweenness centrality describes the 

number of times Node A appears in the shortest path of all pairs of nodes in the network. 

Methods of calculating some of these are listed in Table 1.2. These parameters facilitate the 

comparison of features not just within one network, but also between many.  
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Figure 1.1: Network measures  
Red nodes in A.) through E.) indicate the node of interest. A.) Degree is the number of edges connected to a node. 
B.) Bridging centrality represents the extent to which nodes link highly connected subcomponents (modules). C.) 
Betweenness centrality is a representation of the “traffic” that a node experiences, and it measures how many times 
a given node appears in the shortest path between all other node pairs in the network. D.) Closeness centrality 
measures how close a node is to all other nodes in the network. E.) The clustering coefficient shows how connected 
the direct neighbours of a node are. F.) Modularity describes the degree of network separation into modules. 
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	 Property	 Equation	 Description	
A	 Degree	

𝑘" = 𝐴"%

&

%'(

	

where	Aij	=1	if	there	exists	an	
edge	between	nodes	i	and	j,	and	
0	otherwise	

The	degree	is	the	sum	of	all	edges	connected	to	a	node	in	an	
undirected	network;	for	a	directed	network,	it	may	be	calculated	as	
the	sum	of	the	incoming,	outgoing,	or	total	edges.	

B	 Bridging	
centrality	 BC" =

𝑘"
)(

𝑑%
)(

+,-'(
	 The	bridging	centrality	is	the	inverse	degree	of	the	node	divided	by	

the	sum	of	inverse	degrees	of	its	neighbours.	

C	 Betweenness	
centrality	 𝑘" =

𝜎/%(𝑖)
𝜎/%

&

%'(

	
The	betweenness	centrality	of	i	is	the	number	of	shortest	paths	(σ)	
between	nodes	h	and	j	that	pass	through	node	i	divided	by	all	
shortest	paths	between	h	and	j.	

D	 Closeness	
centrality	 𝑐" =

1
𝜎"%&

%'(
	 Closeness	centrality	is	the	inverse	sum	of	the	shortest	paths	

between	i	and	all	other	nodes	in	the	network.	
E	 Clustering	

coefficient	
𝐶" = 	

𝑘%+,-	'(

𝑘"(𝑘" − 1)
	

The	clustering	coefficient	describes	how	connected	the	neighbors	of	
i	are	by	calculating	the	number	of	connections	between	all	the	
neighbors	of	i	and	dividing	it	by	the	maximum	possible	number	of	
connections	among	them.	

F	 Modularity	(for	
two	groups)	 𝑀 =

1
𝑘"&

"
𝑔(𝐴"% −

𝑘"𝑘%
𝑘"&

"
)

":%

	

where	g=1	if	i	and	j	are	in	the	
same	group,	and	0	otherwise	

First,	all	edges	are	cut	in	half	into	“stubs”	such	that	there	are	∑kN	
total	stubs	in	the	network.	These	are	randomly	reconnected	into	
edges.	M	is	calculated	as	the	actual	number	of	edges	in	a	group	
minus	the	expected	number.	Positive	modularity	indicates	the	
likelihood	of	community	structure		

Table 1.2: Calculating network properties 
In this table, we list the network properties described in Figure 1.1 and how to calculate them.  

In all, networks are a viable and robust approach to representing biological systems without 

oversimplifying the complex nature of the cell. In addition, the tools previously described allow 

networks to be efficiently analyzed, paving the way for drawing meaningful conclusions about 

biological function, disease, and potential treatments. 

Network biology 
Networks can be used to define a number of biological systems. These data can be of 

experimental origin, such as genetic co-expression or protein–protein interactions (PPIs), or 

taken from clinical findings, such as correlations between genetic mutations and disease 

phenotype. 

Previously, two overarching types of biological networks have been described: molecular 

and phenotypic [14]. Molecular networks include those depicting PPIs, metabolic reactions, 

regulatory relationships such as those between transcription factors and genes, and RNA 
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networks such as microRNA-associated gene expression. Phenotypic networks include those 

depicting gene co-expression or gene–phenotype relationships, such as gene–disease 

associations. 

Biological networks have a number of similar properties. For example, in molecular 

networks, hub nodes have been associated with essential genes [15]. Modules often represent 

subnetworks that are associated with a unique biological function. Disease modules are an 

interpretive extension of functional modules; a disruption in various parts of a functional module 

can lead to identical or related diseases. 

Hypothesis generation with networks 
Networks can be used to generate hypotheses. For example, Ciriello et al. integrated the 

human PPI network with the hypothesis of mutual exclusivity in cancer, based on the 

observation that cancer patients tend to harbour only one mutation per pathway, though each 

pathway may be altered in various locations [7]. They first identified genes most likely to 

participate in tumour progression, and then found modules in the PPI network significantly 

enriched for those genes. Maximal cliques were extracted from network modules and assessed 

for mutual exclusivity. This method successfully confirmed previously recognized altered 

pathways and also found unexpected mutual exclusivity between the gene RBBP8 and the 

BRCA/Rb pathway that may indicate a novel role for the gene in different parts of the cell cycle. 

Network-based predictive models 
Biological networks can be used to create predictive models using machine learning (ML). 

ML is a branch of computer science, wherein computers can “learn” without being programmed. 

There are a number of methodologies in ML; here, we will focus on classification, where the 

property being learned is a status, such as diseased vs. healthy. Typically, ML requires two types 

of inputs: labels, such as disease status, and feature vectors, such as gene expression. In the case 



 

9 

of supervised learning, labels and features are provided to create a model. A new feature vector 

can then be fed into the model to predict its label. 

Using networks in machine learning is possible because of their mathematical properties. In 

this case, the features are a series of values that describe the node, node pair, module, or network, 

such as shortest path, betweenness centrality, degree, etc. For example, Lorberbaum et al. 

developed the Modular Assembly of Drug Safety Subnetworks (MADSS), a network analysis-

based algorithm that identifies adverse event neighbourhoods within the human interactome [16]. 

Drugs targeting proteins within this neighbourhood are predicted to be more likely to cause the 

ADR than drugs targeting proteins outside the neighbourhood. Beginning with a small “seed” set 

of highly interconnected proteins with a direct genetic link to an ADR of interest, the authors 

then scored every protein in the human PPI network on how well-connected it was to the seed set 

using multiple network connectivity functions, including shortest path and shared neighbours. 

They trained a random forest classifier using each of the connectivity metrics as features to 

generate drug safety subnetwork models, then evaluated drug safety using both known and 

predicted drug targets. 
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SYNTHETIC LETHALITY 

Biological understanding and theory 
Synthetic lethality (SL) occurs when changes in two otherwise nonessential genes results in 

an unviable cell or organism (Figure 1.2A). Although these perturbations can be of various types, 

most commonly, they refer to the removal or full inhibition of a particular gene. Synergistic 

interaction between genes to the point of lethality was first described in Drosophila 

melanogaster in 1922 [17], then confirmed in Drosophila pseudoobscura in 1964 [18]. To date, 

synthetic lethality has been described in numerous organisms, including humans.  For example, 

in Saccharomyces cerevisiae, cytidine 5′-triphosphate synthetase catalyzes the conversion of 

uridine 5′-triphosphate to cytidine 5′-triphosphate. URA7 and URA8 are nonessential genes that 

redundantly code for the same enzyme; however, knocking out both URA7 and URA8 results in 

synthetic lethality [19]. 

SL has a number of possible mechanisms through which it can occur [20,21]; several of 

these are illustrated in Figure 1.2B. For example, in the case of parallel pathways that both lead 

to an essential product, knocking out one gene in one of the arms won’t affect the viability of the 

pathway, as the other arm serves as a backup. Similarly, knocking out two genes within the same 

arm will still leave the other one as a backup. However, knocking out two genes in different arms 

(A/X, A/Y, B/X, B/Y) will lead to lethality, as both arms of the pathway will collapse, and the 

essential downstream protein will no longer be produced. Other possible mechanisms include 

homodimerization and functional redundancy. In short, synthetic lethality can be thought of as a 

function of genetic buffering [22]. 
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Figure 1.2: Mechanisms of synthetic lethality 
A.) Synthetic lethality occurs when two genes that can be knocked out individually with no harm to the viability of 
the cell, but knocking out both together causes cell death. B.) There are a number of possible mechanisms by which 
synthetic lethality can occur. In a parallel pathway, knocking out A and B or X and Y has no effect on the viability of 
the cell, but knocking out two genes on either arm of the pathway will cause cell death. In the case of potential 
homodimerization, knocking either gene out may not affect viability, but both will. Finally, in the case of an 
essential product with a redundant copy, knocking out only one will still leave a backup, but losing both proves 
fatal.   

Experimental approaches 
Typically, synthetic lethality has been studied in model organisms such as S. cerevisiae 

[23], S. pombe [24], and C. elegans [25] due to the ease with which they can be manipulated. To 

identify synthetic lethality, organisms are observed for growth and fecundity; a complete lack 

thereof indicates synthetic lethality. Significantly decreased growth may be dubbed “synthetic 

sickness.” However, depending on the organism, different methods must be used to create 

double-mutant organisms or colonies, and the type of organism (single-cell vs. multicellular) 

may affect assessment of growth.  

In organisms like C. elegans, RNA interference (RNAi) may be used to knock out genes. 

RNAi uses double-stranded RNA to trigger a gene-silencing pathway, and is common in a 

number of eukaryotic species. In one study [26], researchers used C. elegans with wild-type 

bmk-1 or bmk-1(ok391), which harbours a genetic deletion allele. They induced genetic 

knockdown by RNAi with a genome-wide library, and assessed synthetic lethality using 

fluorescence microscopy. 
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RNAi has also been used to test synthetic lethality in humans. However, testing for lethality 

on humans is considered unethical; therefore, these screens are conducted in human cells. These 

can be both established cell lines, or patient-derived ones [27]. 

In S. cerevisiae, RNAi is ineffective [28], so a different approach must be used. There, two 

parental strains that each have a single gene deletion are used to create double-mutant progeny 

[23]. The growth of these offspring may be compared to the single-mutant colonies in order to 

identify pairs that have fitness defects that are greater than expected [24]. 

Computational models of synthetic lethality 
Previous work has predicted synthetic lethality in yeast using the protein-protein interaction 

(PPI) network [29]. The authors hypothesized that the topology of node pairs in the network will 

change depending on the SL status of their associated genes. This hypothesis relies in part on the 

existence of functional modules in biological networks, as often, the topological similarity of two 

nodes indicates shared function, and many SL pairs have also been shown to share functional 

annotations [30].  

In this paper, the authors used machine learning to create these models. Each gene pair was 

associated with a label and a feature vector. For the label, the researchers used experimental data 

to describe the pair as SL or non-SL. For each feature vector, they used node or node-pair 

properties such as degree, shortest path, and number of shared neighbours. These were fed into a 

support vector machine to create a classifier that predicts a gene pair’s label from its associated 

feature vector. The classifier was successful, achieving an area under the receiver operating 

curve (AUC) of at least 0.89 for all cross-validation runs. This suggests that PPI networks are 

highly informative for predicting SL in yeast. 
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DRUG SYNERGY 

Introduction to drug interactions 
In certain situations, drug effects may change due to the presence of other drugs or 

chemicals. For example, grapefruit juice interacts with a number of drugs, including simvastatin 

[31], because it decreases the activity of the enzyme that metabolizes them. This causes the drug 

to remain in the system for longer, and may lead to overdose. Drug interactions may also 

decrease the effect of a drug. For example, nalaxone acts as  

a competitive antagonist of the mu-opioid receptor. Therefore, nalaxone can be used to reverse 

the effects of a morphine overdose [32]. 

Each drug interaction occurs through one of two mechanisms: pharmacokinetic or 

pharmacodynamic. Pharmacokinetics can be considered the study of the body’s effect on the 

drug — how a drug is absorbed, distributed, and metabolized. Therefore, in  

a pharmacokinetic interaction, one drug affects how another is processed. For example, 

ciprofloxacin is an inhibitor of CYP3A4, the prime metabolizer of the antidiabetic glyburide 

[33]. If they are given together, in some patients, ciprofloxacin may increase the effects of 

glyburide and lead to hypoglycemia [34]. 

Pharmacodynamics, on the other hand, is the drug’s effect on the body.  

A pharmacodynamic interaction therefore occurs when two drugs exhibit similar mechanistic 

spheres of influence. Combining antipsychotics (dopamine antagonists) with levodopa (a 

Parkinson’s drug that raises dopamine levels) can result in an interaction where one drug negates 

the effect of another. Taking the drugs simultaneously could therefore cause a relapse of 

psychosis, or a worsening of motor function [35]. 
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Although the potential for adverse drug interactions is possible, multidrug therapy can also 

have significant benefits. For example, in HIV therapy, using multiple drugs at once prevents the 

rise of resistance in the virus [36]. Furthermore, the use of multidrug therapy in cancer can both 

prevent drug resistance, and also reduce the dose of each drug required for an effect, reducing 

drug side effects [37] . 

The effect of multiple drugs simultaneously falls into one of three bins: “synergy,” 

“additivity,” and “antagonism” (Figure 1.3).  In the case of additivity, the effect of the two drugs 

is unchanged from taking them separately - that is, taking A and B together results in an effect of 

A + B (Figure 1.3B). Additivity may occur because the drugs are completely unrelated both 

pharmacodynamically and pharmacokinetically, or because they are very similar in both respects 

— for example, acetaminophen and aspirin. 

 

 

Figure 1.3: Illustrations of drug interactions 
A. In an antagonistic interaction the effect of giving drugs A and B simultaneously lessens the effect of one or both 
drugs given independently of each other. B. Additivity means that the effect of giving two drugs at the same time is 
the sum of giving them independently. C. In synergy, the effect of one or both drugs is magnified when they are given 
in combination. 

Drug synergy occurs when the effect of using Drug A and Drug B together is greater than 

the expected additive effect (Figure 1.3C). This may be because one drug slows the metabolism 
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of the other, or because they affect different pathways that produce the same final result. 

Simvastatin and grapefruit juice produce a synergistic drug interaction, as does ciprofloxacin 

with glyburide. Finally, drug antagonism occurs when drugs taken together have a smaller effect 

than expected (Figure 1.3A). Morphine taken with nalaxone is an example of this. 

Although the effects listed above have been described in vivo, it is also possible to test for 

drug interactions in the laboratory. The first of these tests is usually in vitro, in  

a cell line; here, cell growth or death may be measured as a proxy for effect. These drugs can 

later be tested in vivo in model organisms, such as rats or mice, although these experiments have 

their own limitations in translation to humans [38]. 

Models of measuring drug synergy 
Drug synergy can be measured using a number of different methods [39,40]. They may be 

chosen on the basis of drug mechanism and effect. In this section, we will outline several of the 

most common ones.  

Loewe additivity was developed in 1953 [41]. Here, a desired response level is chosen for 

each drug. In our case, let us say that X µM of Drug A is required for this effect, and YµM of 

Drug B. Next, the concentration of Drug A is plotted on the x-axis, and that of Drug B on the Y. 

A straight line is drawn between X µM and Y µM, and it is used to represent the isobole. If the 

drugs have an additive effect, varying the concentration of A or B should result in an effect 

existing on that line. This can be described by the equation:  

𝑥
𝑋 +

𝑦
𝑌 = 1 

where 𝑋 is the concentration of Drug A alone for the desired effect; 𝑌 is the concentration of 

Drug B alone for the desired effect; and 𝑥 and 𝑦 are the concentrations of Drugs A and B, 

respectively, when the two are taken together. An effect occurring above the line (@
A
+ B

C
> 1) 
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indicates synergy, while an effect below the line (@
A
+ B

C
< 1) indicates antagonism. This model 

has several drawbacks. In some cases, the isobole may not be a straight line, and the equation can 

be adjusted based on the expected response. This may occur in cases where the maximum effect 

of Drug A and Drug B are significantly different. In addition, the model is based on the idea that 

the two inhibitors act through similar mechanisms, and is thus inappropriate for very different 

drugs. 

A number of other methods exist that relate the combination to the effects of individual 

components — that is, the expected effect of Drug A and B taken together (EAB) is a function of 

the effects of Drug A (EA) and Drug B (EB) alone [39]. These are an improvement over Loewe 

additivity in that they are not limited to combinations of similar drugs. 

Combination subthresholding [42] relies on identifying doses at which Drug A and B are 

ineffective on their own, but become significantly effective when given together. The 

significance of these effects is determined by comparing them to a control group given neither 

drug; however, the reliance on p-values means that statistical blips may falsely indicate synergy. 

For example, at a cut-off of p=0.05, single-drug effects at p=0.05001 compared to a combined 

effect of p=0.04999 would be defined as significantly synergistic.  

Highest single agent [43,44] compares the combined effect (EAB) to the highest effect of 

each individual drug (max(EA,EB)) in order to determine synergy and assess significance. The 

combination index (CI) can be described as CI	 = 	max(KL,KN)
KLN

, where CI < 1 indicates synergy. 

This method shows improvement over a single drug, but doesn’t necessarily indicate synergy. 

However, it may be useful in cases where the second drug shows little to no effect on its own. 
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Response additivity [45] follows a similar principle, but CI is calculated using the 

formula	CI	 = 	 KLOKN
KLN

. Although this formula assesses synergy as a combination of both drugs’ 

effects, it assumes linear dose-effect curves, which is inaccurate for many drugs.  

Bliss independence [46] relies on a probabilistic model of drug action. The expected effect 

of a drug pair is defined as 𝐸+ + 𝐸Q − 𝐸+×𝐸Q, where EA and EB are values between 0 and 1. In 

this case, therefore, raw cell counts or specific concentrations cannot be used; the effect must be 

described in relation to the control (e.g. as growth inhibition). Excess over Bliss (EOB) can be 

used to describe synergy: 

EOB = Observed− Expected = 𝐸+Q − (𝐸+ + 𝐸Q − 𝐸+×𝐸Q) 

An EOB > 0 indicates synergy, as the observed effect is greater than the expected; EOB < 0 

indicates antagonism. Bliss Independence is one of the most popular methods of predicting drug 

synergy due to its versatility and simplicity, and it is the method that we will focus on for the 

remainder of this work. 

Shortcomings of Bliss independence 
Although Bliss Independence is an extremely popular method of calculating drug synergy, 

it has certain limitations. These are of two kinds: theoretical and practical. 

Theoretical concerns 

The first of these is that drugs themselves are often messy, with multiple targets and many 

known (and, often, unknown) mechanisms of action. Therefore, the use of a model that assumes 

independence may be inappropriate for a number of drug combinations, and this may not be clear 

at the time of experiments.  

Next, because EOB is a probabilistic model, the numbers used in its calculation must be 

[0,1]. Therefore, if the control sample has 14,000 cells, and the drug-treated one has 7,000, the 

effect of the drug would be calculated as (14,000-7,000)/(14,000) = 0.5. However, if the drug 
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causes accelerated growth, and cell count after drug is 21,000, the effect would be calculated as 

(14,000–21,000)/14,000 = -0.5, which is not feasible for use in calculating EOB.  

Finally, the assumption that drugs have exponential dose-effect curves [44] may lead to an 

incorrect calculation that a drug is synergistic with itself – which, by definition, is an 

impossibility [39]. 

Practical concerns 
There are two primary practical concerns in the use of EOB to measure drug synergy. The 

first is the use of replicates in experimental biology. These are necessary to ensure that statistical 

fluctuation isn’t the reason for a designation of drug synergy. However, this does affect the 

calculation of percent inhibition in EOB. 

Let us assume that we perform an experiment with three replicates per dose level. 

Therefore, to measure effect of a given drug or drug pair at a specific concentration, we must 

compare the three dosed replicates to three control samples. Typically, the effect is calculated for 

each dosed replicate against the median of control samples. Then, the median EOB is reported to 

describe synergy. However, in so doing, researchers do not account for variance in either the 

control samples or dosed ones; at best, the standard error of EOB can be reported. 

In addition, experimental fluctuation may also lead to ‘impossible’ effect scores (Figure 

1.4). For example, in the case where the lowest dose of a drug is generally ineffective, comparing 

the replicates to the median of control scores may still lead to net growth — e.g. a score of -0.05. 

Because the maximum effect score in the calculation of EOB is 1, the replicate must be either 

invalidated, or artificially set to a score of 0.00 (no effect). This will artificially inflate the 

expected score of a combination. 
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Figure 1.4: Bliss independence and experimental replicates 
We present the simulated distribution of cell counts in three replicates each of control, dose X, and dose Y 
experiments. In typical use of EOB, the median score of the control samples would be used to determine the effect 
(e.g. percent inhibition) of each replicate of a dosed sample. This would mean that two replicates at Dose X and one 
replicate at Dose Y would be seen as having negative effects; however, in the case of Dose X, all effects actually fall 
within the range of control wells, meaning that the effect being reported is not accurate. 

Furthermore, it doesn’t account for experimental variance properly; at a dose of X, the drug 

shows negative inhibition compared to the control median, even though the distribution of 

responses is within the distribution of control wells. In contrast, the results at dose Y are mostly 

out of the control range, but they would be considered equivalent to dose X if adjustment 

occurred. This is clearly inaccurate.  

Second, the establishment of statistical significance is a problem in the practical application 

of Bliss Independence. In particular, there is no statistic of significance to describe EOB. An 

EOB of 0.001 is considered synergistic — as is 0.0001, 0.05, or 0.99. Thus, even if the standard 

error indicates that the EOB is net positive, it is hard to trust that a score of 0.0001 is true 

synergy and not merely a statistical blip. 
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Based on these shortcomings, a version of Bliss independence that takes into account the 

variation in control and experimental replicates would be a useful and necessary step forward in 

assessing drug synergy. 
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PREDICTING AND EVALUATING DRUG SYNERGY USING 
SYNTHETIC LETHALITY 

In this work, we aim to synthesize the fields described in this introduction to address two 

questions: can we develop a computational model of human synthetic lethality, and can these 

predictions be used to inform combination cancer drug therapy? 

Computational models of human synthetic lethality 
Given the previous success of developing computational models of synthetic lethality (SL) 

[29], we hypothesize that we can leverage the similar structures of protein-protein interaction 

(PPI) networks and  experimental yeast data to predict SL in humans. We do so by first 

developing the notion of connectivity homology, a method through which we can compare 

interspecies protein-protein interaction networks (Chapter 2). We then use connectivity 

homology to create an algorithm, Species-INdependent TRAnslation (SINaTRA): an 

interspecies, machine-learning model of synthetic lethality based on S. cerevisiae experimental 

data and validate it in S. pombe (Chapter 3). Finally, we apply the model to human PPI data 

(Chapter 4). 

Synthetic lethality and drug synergy 
In Chapter 5, we test ten putative human SL pairs and five predicted non-SL gene pairs for 

synergy using drug combinations in a number of cell lines. To do so, we develop DAVISS (Data-

driven Assessment of Variability In Synergy Scores), a novel method of testing the statistical 

significance of drug synergy based on Bliss independence that takes into account the variance of 

control wells. 
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CHAPTER 2 – CONNECTIVITY HOMOLOGY  

INTRODUCTION 

Biological networks have a number of similar properties. For example, protein-protein 

(PPI) networks tend to be similar in terms of connectivity patterns, regardless of species. 

Research has suggested that they are connected according to a scale-free, power law distribution, 

where a new node being added to a network is more likely to connect to an existing node of high 

degree [49]. Furthermore, biological networks can also be described as “small world” [50], 

where each node is connected to every other one with a relatively small number of steps.  

In spite of these structural similarities, PPI networks are typically constructed using genes 

as nodes; thus, species with more genes will necessarily have larger networks. Furthermore, 

different networks may have different levels of completeness [51];  

an organism that is well studied will have more nodes and edges than a less-studied one, even if 

the two organisms have similar genome sizes. Therefore, upon calculating the parameters of the 

two networks, such as shortest path and degree, the distributions will be different between the 

two species. This, in turn, will mean that they the two networks not be immediately comparable; 

what is considered a high value in one network may be low in another. 

Here, we introduce the concept of connectivity homology, a measure of relatedness between 

genes based on protein-protein interaction networks. Connectivity homology is independent of 

structure, function, or genetic homology. We first illustrate this concept with two toy networks. 

Next, we perform a brief experiment illustrating the principle of connectivity homology in 

networks evolved in silico. We show that a node in a network evolved via preferential 

attachment retains similar properties throughout network growth, and thus exhibits higher 

connectivity homology, compared to one in an evolving random network.  
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Finally, we explore connectivity homology in S. cerevisaie, S. pombe, and human PPI 

networks using well-known graph properties, such as degree centrality and shortest path 

[14,47,52,53]. We find that both orthologous and non-orthologous genes of the same function 

have similar connectivity patterns between species.  

 These results suggest that connectivity homology is an inherent property of biological 

networks based on their evolutionary patterns; thus, it is useful for the understanding of 

biological phenomena on an interspecies level. 
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RESULTS 

Defining connectivity homology 
We define two proteins as being connectively homologous if they share similar connectivity 

profiles in their respective networks. A connectively homologous relationship may exist between 

two proteins in the same species, or between proteins of different species. This concept can be 

generalized for pairs of proteins, or even groups of proteins (i.e. modules). For example, two 

pairs of proteins may be connectively homologous because both pairs are connected to each 

other in a similar way. 

We illustrate this concept in Figure 2.1, where we present two networks of different sizes 

and topologies. We used two network parameters to describe the network: degree and 

betweenness centrality. These network parameters are not immediately comparable; for example, 

the range of degrees in Network 1 is [1,3], while it is [2,5] in Network 2. However, we can 

compute very simple connectivity profiles for each parameter of each node, where it is classified 

as either low (blue), medium (white), or high (red). When comparing the connectivity profiles of 

various nodes, it becomes apparent that certain sets of nodes are connectively homologous with 

each other (e.g. Node B/Node 2/Node 3). In contrast, nodes with the same raw parameters (e.g. 

Node A/Node 1) may not necessarily be connectively homologous.  
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Figure 2.1: An illustration of connectivity homology  
Each node is described by two parameters (degree [deg.] and betweenness centrality [bet.cent.]) at three levels: 
low, medium, and high. Certain nodes have the same vectors (Node B/Node 2/Node 3); these nodes can be said to be 
connectively homologous (CH). Other nodes do not (Node A/Node 1); these are non-connectively homologous (non-
CH). 

In silico evolution of networks indicates biological bases for connectivity homology  

Biological networks have been suggested to follow a power law distribution, where nodes 

of high degree are more likely to receive new connections when a new node joins the network 

[49]. Given this model of preferential attachment, it is intuitive that overarching connectivity 

patterns will remain similar in biological networks as they grow. This means that orthologous 

genes are likely to maintain similar connectivity, regardless of time. 

To confirm this, we generated and evolved two types of networks: one observing growth by 

preferential attachment (PA network), and another grown randomly (RD network) (Figure 2.2).  
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Figure 2.2: Network evolution 
To evolve both random and preferential attachment networks, we first started with a parent node constructed 
according to each kind (Node 1). We then created two ‘evolved’ children (Nodes 2 and 3) by adding 100 nodes to 
the parent and connecting them to the network according to the method of attachment being used. Each child of the 
original parent would then be similarly evolved, until we had a perfect binary tree of 16 levels. 

When we compared the connectivity patterns of the original 1,000 nodes of each network 

over the network’s evolution, we found that the median differences in degree and betweenness 

centrality were significantly more similar in PA networks than in RD ones (p<2.2e-16, Mann-

Whitney U test; Figure 2.3). 
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Figure 2.3: Median parameter differences between co-evolved networks 
We selected 100 networks from two different evolved “phylogenies” (random and preferential attachment), then 
compare the median parameters of the 1,000 original nodes of the parent network: degree (left) and betweenness 
centrality (right). 

Furthermore, when we compared Spearman correlation between a parameter of two 

networks (Figure 2.4), we found that PA networks had significantly higher Spearman correlation 

than RD networks for both degree and betweenness centrality (p<2.2e-16 for both, Mann-

Whitney U test). This is partially because PA networks are significantly closer in ‘evolutionary 

distance’ than RD ones (Figure 2.A.1). Thus, a single “step” in a PA network’s evolution brings 

about less change than one in an RD network.  
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Figure 2.4: Spearman correlation between evolved networks 
We selected 100 networks from each evolved phylogeny (random and preferential attachment), and then computed 
the Spearman correlation of two parameters (degree and betweenness centrality) for the 1,000 nodes from the 
original network. We find that networks with preferential attachment (red) have significantly higher Spearman R 
values than those with random attachment (gray), even when the networks have large distances between them.  

Connectivity homology can be evaluated with network parameters 
As in the previous section, we show connectivity profiles using vectors of network 

parameters. A vector of eight parameters represents each gene (Tables 2.1 and 2.A.1). Each gene 

pair is represented by four node-pair parameters as well as the individual profiles for each gene 

in the pair, leaving each pair with a connectivity profile defined by a vector of 20 network 

parameters. For the purposes of this investigation, we chose to use protein-protein interaction 

(PPI) networks because of the wide availability of data across many species. PPI data was 

downloaded from BioGRID [54] to construct graphs, which are pruned to contain one connected 

component (Materials and Methods). We computed the connectivity profiles for 5,810 proteins 

in S. cerevisiae, 1,919 in S. pombe, 4,233 in M. musculus, and 14,820 proteins in humans as well 

as for 16.8 million, 1.8 million, 8.9 million, and 109.8 million pairs of proteins for S. cerevisiae, 

S. pombe, M. musculus, and humans, respectively. 

Parameter Context Description 
2nd degree shared neighbours Single The sum of all nodes two edges away from the node 
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node of interest 

Betweenness centrality Single 
node 

The sum of the fraction of shortest paths between two 
other nodes passing through the node of interest 

Closeness centrality Single 
node 

The inverse sum of all shortest paths that originate at 
the node of interest 

Communicability Node pair The sum of all closed walks between a pair of nodes 

Current-flow betweenness 
centrality 

Single 
node 

Analogous to betweenness centrality, but with all 
paths instead of shortest paths. Also known as 
random walk betweenness centrality. 

Degree centrality Single 
node 

The fraction of edges a node has of all possible 
edges 

Eccentricity Single 
node 

The maximum distance from the node of interest to 
any other node in the network 

Eigenvector centrality Single 
node 

The eigenvector for the largest eigenvalue of the 
matrix adjacency network 

Inverse shortest path Node pair The inverse of the smallest number of edges 
connecting two nodes of interest 

PageRank Single 
node 

The rank of a graph’s nodes based on the number of 
incoming links 

Shared neighbours Node pair The intersection of two nodes’ sets of immediate 
neighbours. 

Shared non-neighbours Node pair The number of nodes that are not immediate 
neighbours of the two nodes of interest 

Table 2.1: Parameter descriptions 
Here, we describe the network parameters used to explore connectivity homology in the S. cerevisiae, S. pombe, 
mouse, and human networks. 

We found that the distributions and ranges of network parameter values differed 

significantly between species (Fig 2.A.2; Table 2.2). To correct for this (Figure 2.5), we chose to 

use rank normalization to rescale the values of each parameter between 0 and 1; this allows them 

to be comparable between species. We refer to normalized data as being translated. 
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Table 2.2: Comparison of network parameter distributions  
Distribution of all untranslated network parameters between species, described using the Mann-Whitney U test 
(“MWU”) and associated p-values.  

 

 

Figure 2.5: Parameter correction from S. cerevisiae to S. pombe 
The use of normalization makes network parameters that are not comparable before translation (red) easily 
compared after (gray). 

Similarity between connectivity vectors is indicative of shared function 
We found that proteins with similar connectivity profiles (i.e. those that are connectively 

homologous) were more likely to share functional annotations. We used the Euclidean distance 

between connectivity profiles as a measure of connectivity homology (Materials and Methods). 
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We compared this distance between genes that share genetic homology (orthologs) and specific 

functional annotations (Gene Ontology [GO]) [55,56] between S. cerevisiae and S. pombe 

(Sc/Sp) (Figure 2.6A) and between  

S. cerevisiae and humans (Sc/H) (Figure 2.6B). We found that proteins annotated with the same 

function had significantly lower distances (Sc/Sp median = 1.04, Sc/H median = 0.92) than those 

annotated with different functions (Sc/Sp median = 1.08, p<2.2e-16; Sc/H median = 1.04, 

p<2.2e-16). 
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Figure 2.6: Interspecies gene-pair connectivity homology 
We measure this using the Euclidean distance between vectors of single-node parameters for both genes (lower 
distance implies higher similarity). We find that gene pairs with the same specific function (≤100 genes annotated 
with that GO term) are significantly more similar to each other than gene pairs with different functions; this effect is 
consistent even when accounting for homology (*: p<0.05; **: p<0.01; ***: p<2.2e-16. Mann-Whitney U test). 

This result holds even when orthologs are not considered. Non-orthologous genes annotated 

with the same function had significantly lower distances than non-orthologous genes annotated 
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with different functions (Figure 2.6, p<2.2e-16). We also found that orthologs had significantly 

lower distances than non-orthologous pairs (Figure 2.6, p<2.2e-16). These differences were 

consistent across all levels of functional specificity (Figure 2.7). These results suggest that 

network substructure, and therefore network signals, are conserved between species based on 

both homology and function. 

 

Figure 2.7: Interspecies connectivity homology vs. functional specificity 
Interspecies gene-pair connectivity homology is measured using the Euclidean distance between vectors of single-
node parameters for both genes (lower distance implies higher similarity). The maximum number of genes 
annotated by each GO term was changed to determine how specific each function is (x-axis). For each cutoff, the 
median distance between non-homologous gene pairs with different functions is higher than for all homologous 
gene pairs, and for non-homologous gene pairs with the same function. 
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DISCUSSION 

In this chapter, we introduce the idea of connectivity homology, which exists when two 

genes share similar connectivity patterns quantified by network and graph theoretic parameters. 

We explored connectivity homology first by defining it in two toy networks, and then showed 

that orthologous nodes of networks evolved in silico have comparable parameters. Finally, we 

considered connectivity homology and its relation to genetic homology and function in S. 

cerevisiae, S. pombe, and H. sapiens. We found that homologous genes exhibit higher 

connectivity homology; in turn, interspecies gene pairs that share the same specific function have 

higher connectivity homology than interspecies gene pairs of different functions, regardless of 

orthology.  

There are certain limitations to this exploration. In particular, our model of network 

evolution is oversimplified. Current network evolution theory believes that protein-protein 

interaction networks grow via a duplication-divergence model [57-60]. In this case, a node is 

duplicated, and each of its associated edges copied over with some probability. In addition, some 

nodes develop new edges connecting them to other nodes, which mimics spontaneous mutation 

generation. In a case where a node ends up with no edges, it may be considered a non-coding 

gene.  

Although the preferential attachment model is much simpler than the duplication-

divergence one, they are related. In the case of duplication-divergence, although each node has 

the same probability of being duplicated, “preference” is still shown because of existing edge 

distribution. That is to say, most nodes have a small degree, so  

a duplication will not significantly affect the rank of existing nodes.  
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Based on these data, we hypothesize that there are connectivity patterns between pairs of 

genes that are indicative of a synthetic lethal relationship, and that, by using supervised machine 

learning, we will discover these patterns are discovered in a source species where synthetic 

lethality has been well-characterized and then identify them in  

a target species to predict synthetic lethal pairs of genes. We explore this hypothesis in the 

following chapter. 
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METHODS 

Defining connectivity homology 
We manually constructed the networks in Figure 2.1, then calculated their node parameters 

using Cytoscape [61]. We defined the connectivity profiles by binning the parameters of each 

species’ network independently into one of three levels: low, medium, or high. 

Network evolution 
We evolve two types of networks: random and preferential attachment. We use modified 

versions of two NetworkX graph generators. The random is based on the Erdős-Rényi model 

[62], and the preferential on the Holme and Kim algorithm [63]. 

In both cases, we started with a seed network of 1000 nodes (node 1). A child is generated 

from a parent node by adding 100 nodes to the parent according to the appropriate evolutionary 

method. We generate 32,767 nodes for each method. 

We seed the random network with 1000 nodes, with a probability of edge creation P=0.007. 

We ensure the presence of only one component by randomly wiring unattached nodes to other 

components.  

We seed the preferential attachment network with 1000 nodes, with m=4 edges added for 

each node and an initial probability of p0 = 0.2 for creating a triangle after adding a random edge. 

These parameters allowed for a similar starting density for parent nodes of both PA and RD 

networks.  

We modified the Holme-Kim algorithm two ways. First, we updated the probability of 

adding a triangle with each level of the ‘phylogeny,’ such that p = p0+0.03*level. Second, instead 

of attaching m edges to the newly generated node, we added one edge between the new node and 

an existing one according to preferential attachment, and then three other edges between random 



 

38 

pairs nodes in the network, again via preferential attachment. This allowed for a distribution of 

edges more similar to a protein-protein interaction network.  

Although we “evolved” each parent network by 100 nodes at each step, that does not 

necessarily mean that the “distance” between two child nodes would be 200, as nodes may attach 

in similar patterns. Therefore, we calculated the actual distance between child nodes in both 

random and preferential attachment networks with the following equation: 

∆TU,TV= sum(abs 𝑝TU − 𝑝X − 𝑝TV − 𝑝X ) 

where 𝑝	is a parameter (in this case, degree or betweenness centrality), 𝑝X is the parameters of all 

nodes in the parent network, 𝑝TU is the parameter of the nodes in the parent network as they 

appear in the network of the first child, and 𝑝TV is the parameter of the nodes in the parent 

network as they appear in the network of the second child. We compared the children of all 

parent networks in this way, and plot histograms of their ∆TU,TV distributions in Figure 2.A.1.  

Comparison of network evolution  
We next compared network parameters between networks of different ‘evolutionary’ 

distance. We hypothesized that, the farther the networks were in their ‘phylogeny,’ the less 

similar their parameters would be, but that networks evolved via preferential attachment would 

be more similar than those evolved randomly.  

To do so, we calculated the degree and betweenness centrality of the original 1,000 nodes 

for each network in the phylogeny. Then, we sampled 100 networks from the phylogeny, 

choosing at least two from each level and excluding Node 1, the original network. We calculated 

the difference between the parameters using: 

∆YZ[,YZ\= abs 𝑝YZ[ − 𝑝YZ\  
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where 𝑝YZ[and 𝑝YZ\are the degree or betweenness centrality for the original 1,000 nodes 

between Network X and Network Y, respectively, and ∆YZ[,YZ\is a vector of length 1,000. We 

then compared the distribution of med(∆YZ[,YZ\) for each pair of networks for RD and PA 

networks. We tested the differences between evolution distributions using Mann-Whitney’s U 

test [64]. 

Next, we calculated the Spearman correlation between 𝑝YZ[ and 𝑝YZ\for both degree and 

betweenness centrality, for all pairwise combinations of X and Y in our sampled networks, for 

both RD and PA networks. We illustrated these results as scatterplots in Figure 2.4. We used 

Mann-Whitney’s U to compare their distributions between RD and PA networks.  

Calculation of translated network parameters 
To rank-normalize data for a given species, we calculated all individual single- and paired-

node parameters. Then, for each parameter, we ranked all calculated values from smallest to 

largest, resolving ties at random. We then divided all values by the total number of genes in the 

network (for single-node parameters) or the total number of gene pairs (for node-pair 

parameters). This resulted in all genes or gene pairs having all parameter values be a value 

between 0 and 1.  

Similarity between connectivity vectors is indicative of shared function 
We defined a vector of single-node network parameters (see Table 2.1) for each gene in the 

S. cerevisiae, S. pombe, and human networks. We calculated the connectivity homology of each 

interspecies node pair using Euclidean distance. A lower distance implies greater connectivity 

homology (similarity). 

We first divided all gene pairs into same specific function or different specific function. We 

then further divided these groups into homologous/non-homologous. Specific functions were 
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defined as all GO terms related to process or function (excluding molecular_function or 

biological_process) where the number of genes annotated with that GO term in each species was 

less than or equal to a given cutoff. This cutoff was set to 100 at first, and then expanded to 10, 

15, 20, 25, 50, 75, 100, 150, 200, 250, 500, and 750 genes per GO term. 

 

 

APPENDIX 

 
Figure 2.A.1: Distribution of distances between child networks of parents in evolved random and 
preferential attachment networks 
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We calculated an approximation of ‘evolutionary distance’ between all child nodes in each network model 
(Materials and Methods) and found that preferential attachment (PA) has significantly lower average distances than 
random attachment (RD) (Mann-Whitney U=268,387,251, p<2.2e-16). This is intuitive, as preferential attachment 
will necessarily mean that certain nodes are more likely to get picked than others.  
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Parameter Context Description Equation 

2nd degree 
shared 
neighbours 

Single node The sum of all nodes two edges away 
from the node of interest.  

Betweenness 
centrality Single node 

The sum of the fraction of paths passing 
through the node of interest of all 
shortest paths between the two other 
nodes. 

𝜕(𝑠, 𝑡|𝑣)
𝜕(𝑠, 𝑡)

d:e:f

 

Closeness 
centrality Single node The inverse sum of all shortest paths 

that originate at the node of interest. 
𝑛 − 1
𝜕(𝑠, 𝑡)Y

d:f
 

Communicability Node pair The sum of all closed walks between a 
pair of nodes. 𝜌(𝑠, 𝑡)

Y

d:f

 

Current-flow 
betweenness 
cenrality 

Node pair 

Analogous to betweenness centrality, but 
with all paths instead of shortest paths. 
Also known as random walk 
betweenness centrality. 

𝜌 𝑠, 𝑡|𝑣d:e:f

𝜌(𝑠, 𝑡)
 

Degree centrality Single node The fraction of edges a node has of all 
possible edges. 

𝜖(𝑠, 𝑡)Y
d:f
𝑛 − 1

 

Eccentricity Single node The maximum distance from the node to 
any other node in the network. max	(𝜌 𝑠, 𝑡 ) 

Eigenvector 
centrality Single node 

The eigenvector for the larges 
eigenvalue of a matrix adjacency 
network. 

1
𝜆

𝜖(𝑠, 𝑡)𝑥f
Y

d:f
 

Inverse shortest 
path Node pair The inverse of the smallest number of 

edges connecting two nodes of interest. 
1

𝜕(𝑠, 𝑡)
 

PageRank Single node The rank of a graph’s nodes based on 
the incoming links. See [65] 

Shared 
neighbours Node pair 

The intersection of two nodes’ sets of 
immediate neighbours  
(i.e. 𝜖 𝑠, 𝑣 = 𝜖 𝑡, 𝑣 = 	1) 

𝜖 𝑠, 𝑣 ×𝜖(𝑡, 𝑣)
d:f:e

 

Shared non-
neighbours Node pair 

The number of nodes that are not 
immediate neighbours of either node of 
interest. 

(1 − 𝜖 𝑠, 𝑣 )(1 − 𝜖 𝑡, 𝑣 )
d:f:e

 

Table 2.A.1: Network parameter descriptions 
When 𝜖 𝑠, 𝑡 = 1, there is an edge between nodes s and t. In addition, 𝜕 represents shortest path; 𝜌 represents a 
path of any length.  
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Figure 2.A.2: Distribution of network parameters for the S. cerevisiae (red) and S. pombe (blue) 
networks 
Mann-Whitney U test indicates that the parameters are significantly differently distributed between species.  
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CHAPTER 3 – INTERSPECIES MODELS OF 
SYNTHETIC LETHALITY IN MODEL 

ORGANISMS 

INTRODUCTION 

Synthetic lethality (SL) occurs when two nonessential genes cause cellular inviability after 

being knocked out simultaneously [22]. Although SL has mainly been studied in model 

organisms such as D. melanogaster [17] and S. cerevisiae [23], it can be a powerful tool for 

studying drug action in humans; for example, SL may guide the development of cancer 

combination therapy [67,68] and inform drug-drug interactions. SL interactions may differ 

between cellular contexts [69]; a gene pair that is SL in one cell type may not be SL in another. 

This can provide a tremendous therapeutic boon when two drugs targeting two gene products 

mimic an SL interaction in cancer cells and leave healthy cells unaffected. However, drug-

induced SL interactions may also cause adverse events via unexpected cell death. Thus, mapping 

SL in humans is necessary to understanding mono- and polypharmacological effects. 

Most gene pairs have not been interrogated for SL in humans, and several factors impede a 

species-wide evaluation of this interaction. These include the ethical implications of studying SL 

directly, the inability to discern state-specific SL interactions from global ones in experimental 

cell lines (e.g. cancer [69,70]), and – most significantly – the heavy experimental burden. Over 

200 million assays would be required to determine the SL status of all human gene pairs in just a 

single cellular context. In silico methods are therefore necessary to guide the identification of SL 

in human systems and disease. 

Previous work on leveraging model organisms to predict human SL has focused in 

particular on genetic homology, under the hypothesis that SL status will be maintained between 
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orthologous gene pairs [52]. This approach has two major limitations. First, there are only 

approximately 2,000 homologous genes between S. cerevisiae and humans (NCBI Homologene 

[71]). This accounts for a mere 1% of all possible human pairs, leaving the majority with no 

predictive data regarding SL status. 

Second, genetic redundancies that developed independently in each species since deviation 

from a common ancestor may affect synthetic lethal status. For example, 228 gene duplication 

events have been suggested between S. cerevisiae and S. pombe [59] in the ~400 million years of 

evolution between the two species [72]; this number is certainly even higher between S. 

cerevisiae and humans. Each of these events may introduce a functional redundancy that alters 

SL relationships in the organism by causing a gain or loss of SL. Focusing solely on genetic 

homology does not account for these complexities. 

In this chapter, we first evaluate the performance of genetic homology in predicting SL. We 

also consider structural similarity using protein structure families, domain similarity using 

protein domains, and functional similarity with gene ontology annotations. We additionally 

consider information centrality, a univariate network-based model. We show that homology, 

structural similarity, and information centrality are limited in their ability to predict SL. 

We observe that relationships between genes and proteins, including redundancies, may be 

illustrated through the use of biological networks, and we hypothesize that the network 

connectivity profiles between two genes will better characterize their potential for an SL 

relationship. Therefore, we leverage the concept of connectivity homology to develop an 

algorithm, Species-INdependent TRAnslation (SINaTRA), that predicts interspecies SL using 

well-known graph properties, such as degree centrality and shortest path [14,47,52,53], and 

machine learning. We first develop the model in S. cerevisiae, and then validate it in S. pombe 
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and M. musculus. We show that SINaTRA significantly outperforms previously published 

models of predicting SL in translation, and that the method is robust to network incompleteness. 
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RESULTS 

Previous methods of modeling synthetic lethality: genetic homology, 
structural similarity, and functional similarity 

We began our study by considering two published methods of predicting SL, protein 

homology [73] and bi-nodal information centrality [59,74], and implemented the algorithms as 

described by the authors. In addition, we hypothesized that structural homology, domain 

homology, and functional homology may be able to predict SL and designed models based on 

these parameters for comparative analysis. 

In Wu et al. [73], the authors constructed a model to predict SL in S. cerevisiae, then 

hypothesized that human gene pairs homologous to SL pairs in S. cerevisiae would also be SL in 

humans. We implemented the latter part of the approach and evaluated it by predicting SL in S. 

pombe. By restricting our analysis to only genes that are homologous between S. cerevisiae and 

S. pombe, we find a significant predictive effect (OR = 145, 95% CI: 93–219, p < 2.2e-16, 

Fisher’s exact test), corresponding to an area under the receiver operating characteristic curve 

(AUC) of 0.60. Model performance decreased to OR = 45.9 (p<2.2e-16) and an AUC = 0.52 

when expanding the model to include all gene pairs (Materials and Methods). 

We next hypothesized that structural, domain, and functional similarity may be predictors 

of SL. We trained these models in S. cerevisiae and applied them to S. pombe. We used SCOP 

protein classifications to describe the former, and assigned each gene pair a value between 0 (no 

similarity) and 4 (same class) based on their products’ structural similarity. The model was 

trained and tested only on pairs with SCOP data associated with both genes. Only 399 SL pairs 

and 109,357 non-SL pairs had SCOP data for S. cerevisiae (16,765,399 pairs skipped) and 2 

SL/298 non-SL pairs had SCOP data in S. pombe (1,840,021 pairs skipped). The SCOP-based 

model had an AUC of 0.62. We additionally created a domain-based model from PFam [75,76] 
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to predict SL. Domain data exists for a larger number of proteins (9,424 SL/10,280,492 non-SL 

in S. cerevisiae; 514/1,431,764 for S. pombe), allowing us to score more pairs than the SCOP-

based model (Materials and Methods). The AUC in the domain-based model was 0.56. We 

described functional homology using annotations from Gene Ontology (GO) (Materials and 

Methods). Functional similarity attained an AUC of 0.81. 

Finally, we calculated the pairwise information centrality [74] in S. pombe and found no 

significant predictive performance identifying SL pairs (AUC = 0.46, Logistic Regression). Bi-

nodal information centrality did not require interspecies translation. 

We hypothesized that multivariate, network-based models of synthetic lethality can able to 

capture SL interactions both within and between species more accurately. 

Networks successfully predict within-species synthetic lethality 
We used machine learning algorithms to build two models of synthetic lethality (SL) using 

the connectivity profiles we derived for pairs of proteins – one for  

S. cerevisiae and one for S. pombe. We illustrate this in Figure 3.A.1. We trained these models 

using experimentally established SL gene pairs from BioGRID (N = 13,196 for S. cerevisiae and 

N = 628 for S. pombe) as our positive training examples. We randomly selected pairs not listed 

as SL in the database as non-synthetic lethal (non-SL) pairs and used these as negative examples. 

Our assumption that any pair without experimental evidence for synthetic lethality is non-SL will 

be incorrect for a small number of pairs that are SL but have not yet been investigated (i.e., false 

negatives); however, this will introduce only negligible error due to the rarity of SL interactions 

(estimated 0.1% in diploid organisms [77]). 

We evaluated these models using cross-validation and area under the receiver operating 

characteristic curve (AUC). Random forest (RF) significantly outperformed logistic regression 

(LR) for both S. cerevisiae (AUCRF = 0.92, AUCLR = 0.77; p<2.2e-16, De Long’s Test) and S. 
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pombe (AUCRF = 0.93, AUCLR = 0.86; p<2.2e-16, De Long’s Test) (Figure 3.1A). We found that 

within-species model performance is consistent regardless of normalization method (Materials 

and Methods; Figure 3.1B, C). 

 

 

Figure 3.1: Within- and between-species classification of synthetic lethality 
 A.) We performed classification of SL within two species: S. cerevisiae and S. pombe. We considered logistic 
regression (LogReg) vs. random forest (RanFor) to pick the more robust method. We found that random forest 
significantly outperformed logistic regression in both species (p<0.0001, De Long’s Method). B.) Receiver 
operating characteristic for within-species classification of SL in S. cerevisiae using raw (red) and rank-normalized 
(yellow) data; both achieved an AUC of 0.91. In addition, SL labels were permuted (blue), achieving an AUC no 
better than chance. C.) Correlation between 5,000 gene pairs’ SINaTRA scores using raw and rank-normalized 
data. Pearson R correlation is 0.97 (p<0.0001). D.) SINaTRA score cutoff vs. positive predictive value. We 
computed PPV at each SINaTRA score cutoff (all gene pairs with SINaTRA score greater than the cutoff were 
considered to be SL), and found that it increased to approximately 0.1 at a SINaTRA score cutoff of 0.95. 

 



 

51 

Translation of synthetic lethality between S. cerevisiae and S. pombe 
In order to create network models of synthetic lethality in translation, we developed the 

SINaTRA algorithm (Species INdependent TRAnslation). The schematic is illustrated in Figure 

3.2.  

 

Figure 3.2: Schematic of the SINaTRA algorithm 
We begin with the PPI networks of both our source and target species, calculate the network parameters 
(independently), and normalize the values of all parameters. Next, we use machine-learning methods on the 
normalized network parameters of our source species as well as experimentally derived labels of synthetic lethality 
to construct a species-independent model of SL. Finally, we apply this model to the normalized network data of our 
target species in order to attain SL predictions in our target. 

To apply SINaTRA to S. cerevisiae and S. pombe, we created two translational, network-

based models that use data from a source species to infer the SL status of gene pairs in a target 

species. The first was trained on S. cerevisiae to predict SL in S. pombe; the second was trained 

on S. pombe to predict in S. cerevisiae. For each model, we randomly selected an equal number 

of non-SL pairs as SL pairs (13,196 for S. cerevisiae; 628 for S. pombe). We built random forest 

models with 100 trees for each species. We evaluated these two models for their ability to predict 
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SL gene pairs in the target species. Each model generates a SINaTRA score for each pair 

between 0 (predicted non-SL) and 1 (predicted SL). 

Using S. cerevisiae as the source and S. pombe as the target, we found that untranslated 

parameters resulted in poor inter-species SL prediction (AUC = 0.67). We tested all methods of 

normalization in translation (Figure 3.A.2) and found that the model significantly improves with 

any translational method with rank normalization performing best (AUC = 0.86; p<2.2e-16, De 

Long’s method) (Figure 3.3A). We also found that parameter normalization improved the 

precision from 50% to 98% at a recall rate of 30% (Figure 3.3B) in our testing data. The 

translated model also significantly outperforms the untranslated one when using S. pombe as the 

source species and S. cerevisiae as the target (AUCtranslated = 0.74, AUCraw = 0.67, p < 2.2.e-16, 

DeLong’s method, Figure 3.A.3). 

 

 

Figure 3.3: SINaTRA predictions, S. cerevisiae to S. pombe 
A.) Receiver operating characteristic (ROC) curves for classification of SL/non-SL gene 
in S. pombe using S. cerevisiae as source. Comparison of untranslated (“raw”) parameters (gray, AUC = 0.67) and 
the translated parameters used in SINaTRA (red, AUC = 0.86). B.) ROC curve of SL predictions using SINaTRA 
(AUC = 0.86) compared functional homology of gene pair products (AUC = 0.81) and gene homology (AUC = 
0.60). The model based on gene homology was created using only gene pairs with homology data. C.) Positive 
predictive value (PPV) of all (dark gray) and within-complex (red) gene pairs. When accounting for the expected 
ratio of SL:non-SL (1:1000), a SINaTRA score threshold of 0.95 yields a median PPV of 17% (a 170-fold increase 
over what is expected by chance). At 0.85, the PPV drops to 7%. PPV increases in within-complex gene pairs, 
suggesting that this may be a good initial filter for experimental validation. D.) At each SINaTRA score cut-off, we 
plot the number of experimentally identified SL pairs in that bin (red), as well as the number we expect to find at 
each level (gray). 
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SINaTRA outperforms translation-free and non-network methods 
After evaluating SINaTRA in S. pombe and S. cerevisiae, we compared its performance to 

those of models based on genetic homology and functional similarity. We show ROC curves of 

each previously discussed methods and compared it to that of SINaTRA (Figure 3.3B) and use 

the AUC as a summary performance statistic. We additionally compared the performance of 

SINaTRA to domain similarity, structural similarity, and information centrality (Figure 3.A.4). 

We found that SINaTRA had significantly higher AUC than any other method we considered 

(p<2.2e-16, DeLong’s test, all comparisons). 

We then estimated the PPV for all gene pairs at 20 SINaTRA score thresholds (Figure 

3.3C); the ratio of SL:non-SL pairs was held at the expected ratio (1:1000 [77]). We found a 

significant improvement over chance (Odds ratio = 121.1, p = 2.72e-32, Fisher exact test). For 

example, at a SINaTRA score of 0.85, the PPV is approximately 7% — 70 times higher than 

expected by chance. It increases to 17% at a cut-off of 0.95, corresponding to a 170-fold increase 

over chance. In comparison, the untranslated method of SL prediction rises to a PPV of 17% at a 

cut-off of 0.65 and dips sharply at 0.70. No gene pairs receive a score higher than 0.70 in the 

untranslated model. 

We also found that no model out of genetic homology, functional similarity, structural 

similarity, or bi-nodal information centrality had a gene pair score higher than 0.05; therefore, 

we first identified which cut-off would provide the highest PPV, and plotted each value as dotted 

lines in Figure 3.3C. We also provide a direct comparison between true and false positives and 

negatives for SINaTRA compared to homology in Figure 3.A.5. We found that, for all 

homologous pairs, the model achieves an OR of 144.9 (p<2.2e-16, Fisher’s exact test), 

corresponding to an AUC of 0.60. In contrast, SINaTRA achieves an OR of 929.6 (p<2.2e-16, 

Fisher’s exact test) and a corresponding of AUC = 0.91 (Figure 3.A.4) when using a SINaTRA 
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cutoff of 0.85 on this same subset of pairs (any pair where at least one gene is not in the network 

is given a SINaTRA score of 0). 

When we expand our data to the ‘whole genome,’ comprising all possible pairs from the set 

of Homologene and network genes (Materials and Methods), the homology-based method attains 

a lower, but significant, OR (OR = 60.1, p<2.2e-16) and an AUC of 0.52. A similar expansion in 

SINaTRA yields an OR of 304.2 (p<2.2e-16) when considering gene pairs with SINaTRA scores 

≥ 0.85 as SL (Figure 3.A.5). 

We used Analysis of Variance (ANOVA) to evaluate the independent contributions of the 

methods when combined with SINaTRA. We found that genetic homology, protein similarity, 

and univariate connectivity contributed no significant improvement in performance over the 

SINaTRA-only model. This result held for genetic homology even when considering only the 

subset of ~2 million gene pairs that are homologous between S. cerevisiae and S. pombe (Χ2 = 

407.66, p = 0.64). Functional similarity, represented by gene ontology [GO], significantly 

improved the SINaTRA model (Χ2 = 445.09, p<2.2e-16, ANOVA) (Table 3.A.1). 

SINaTRA identifies missing synthetic lethality in S. pombe 
We estimated the number of previously unidentified synthetic lethal pairs at 20 SINaTRA 

thresholds (Figure 3.3D). For example, at a SINaTRA ≥ 0.85, we expect to find 177 SL pairs but 

only 65 have previously been experimentally identified. 1,759 gene pairs have a score of 0.85 or 

greater in S. pombe, corresponding to an expected hit rate of 1 in 15. 

Synthetic lethality is enriched in protein complexes 
We identified all within-complex gene pairs in S. pombe (N = 5,806, Materials and 

Methods) and found 46 experimentally identified SL pairs. We found that the positive predictive 

value (PPV) is consistently higher in within-complex pairs, reaching 0.27 at a cut-off of 0.95 

(Odds ratio = 148.4, p = 1.33e-37, Fisher exact test). 
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Translated models are robust to network completeness 
One network property that varies significantly between species is density, defined as the 

fraction of edges that exist in the network compared to the total possible number of edges [78]. 

Density can be affected by at least two factors: network size (see  

Note 3.A.1) and network completeness. A complete network would have all known edges 

elucidated, so that every non-edge would be certain to indicate a non-interaction, rather than 

being either a non-interaction (true negative) or a lack of information on that interaction (false 

negative). 

Although we cannot be certain of the underlying reason for the differences, the densities of 

the networks used in this dissertation do vary widely; S. cerevisiae has one of the highest 

(density = 0.004), while those of S. pombe, M. musculus, and H. sapiens are lower, with densities 

of approximately 0.003, 0.001, and 0.001, respectively. We tested the extent to which SINaTRA 

was sensitive to these differences by ablating the target network (S. pombe) to densities between 

90% and 50% of the original network (Materials and Methods). The lowest density approximates 

that of the human and mouse PPI networks. Untranslated parameters achieve AUCs between 

0.43 and 0.60 for all ablated graphs. We found that ablation by 10% decreased rank-normalized 

AUC from 0.86 to 0.83, and ablation by 50% dropped the AUC to 0.79 (Figure 3.A.6). 

Prediction of synthetic lethality is not driven by node popularity 
Higher degree nodes are more likely to be studied, and more popularly studied genes may 

also be more likely to have been tested for synthetic lethality. As a measure of this potential bias, 

we defined a normalized popularity measure (degree/popularity), where popularity is the number 

of times a particular gene appears in the BioGrid database. Although SINaTRA score is 

correlated with degree and, thus, popularity, it is not correlated with normalized popularity in 

either S. cerevisiae or S. pombe (Figure 3.A.7). Further, we found that the predictive 
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performance of SINaTRA is independent of each of the three measures (degree, popularity, and 

node popularity) according to ANOVA (p < 0.0001 for both comparisons). 

Prediction of synthetic lethality in mice 
We used the model trained on S. cerevisiae as the source species and M. musculus as the 

target. There is no comprehensive database of SL in mouse, and only nine mouse SL pairs are 

recorded in BioGrid. Of these, eight were predicted to be SL with a score ≥0.5; five had scores 

≥0.70. SL prediction achieved an AUC of 0.937, significantly outperforming GO similarity 

(AUC = 0.687; p = 1.556e-11, DeLong’s method). 
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DISCUSSION 

In this chapter, we present a computational method, Species INdependent TRAnslation 

(SINaTRA), for predicting synthetic lethal (SL) relationships in any species with an available 

protein-protein interaction (PPI) network. Our approach uses SL data from S. cerevisiae, the 

most well-characterized organism for this interaction, to train a statistical model that identifies 

network connectivity profiles indicative of synthetic lethality. Once trained, the model can be 

applied to any other species for which PPI data exist. The model takes a feature vector of PPI 

network parameters for a gene pair as its input, and returns a probabilistic score between 0 and 1 

that we deem the SINaTRA score. These scores represent the likelihood of an SL relationship 

between the two genes. 

We validated our method by predicting which pairs are likely to be SL in S. pombe, another 

species for which a large number of SL pairs are known. We additionally tested on M. musculus, 

for which fewer pairs are known. Our approach significantly outperforms others we tested. Most 

notably, our method does not rely on any knowledge of gene structure, sequence, or function; 

instead, it uses only the connectivity patterns exhibited by synthetic lethal pairs of genes as they 

appear in a protein-protein interaction network. Future work may focus on integrating other 

sources of knowledge with the goal of improving predictive performance and understanding the 

role of connectivity under different functional conditions. 

Previous interspecies methods of predicting synthetic lethality 
Previous work on interspecies SL prediction has focused on the use of genetic homology 

[73]. We found that the method has fairly high predictive power between  

S. cerevisiae and S. pombe when considering only gene pairs with known homology (Figure 

3.3B). Unfortunately, many genes have no known homology information and, because of this, 



 

58 

model performance suffers when considering all interspecies gene pairs. Genes with multiple 

homologues further complicate prediction, as they result in ambiguous predictions. In an effort to 

address some of these challenges with using established orthologs, we also implemented two 

additional methods: one using shared structural domains, and one derived from structural 

families. Neither method outperformed SINaTRA. The most successful comparison method was 

the number of shared functional annotations in the Gene Ontology (AUC = 0.81), which 

performed almost as well as SINaTRA (AUC = 0.86). We additionally found that the 

information contained in the functional annotations and SINaTRA was not redundant, suggesting 

that a model that combines connectivity profiles with functional annotations may yield improved 

performance. 

Connectivity homology as a novel method for predicting synthetic lethality 
We validated our connectivity-homology-centered approach in two species where SL has 

been experimentally explored (S. cerevisiae and S. pombe). We found that our approach, called 

SINaTRA, significantly outperformed published methods at predicting SL genes in the target 

species and we achieve precision up to 150 times higher than expected by chance. This precision 

increased to over 250 times higher than chance when using additional biological priors. 

False positive rate in predictions of synthetic lethality 
For very rare biological phenomena, it is essential to consider the false positive rate of any 

experimental or computational approach. An unbiased random selection of gene pairs would 

yield approximately one synthetic lethal pair for every 1,000 tested. If biased by biological 

priors, such as limiting the analysis to pairs of genes with products in the same protein 

complexes, this yield may increase 8-fold, to one out of every 125 pairs tested. 

The SINaTRA score we present can also be used as a biological prior. In this case, it is the 

connectivity pattern of the pair of proteins that makes them more likely to participate in a 
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synthetic lethal interaction. For example, a score of 0.85 or greater would yield approximately 1 

SL for every 10 pairs tested. Combined with other biological priors, the SINaTRA score can be a 

powerful tool for directing experimental exploration of synthetic lethality. Figure 3.3D illustrates 

this expected hit rate versus the number of experiments that would be necessary. These scores 

can be used to guide experimental exploration depending on the throughput and cost of the 

experimental approach. 

Limitations 
Our method for predicting SL relies on the availability of protein-protein interaction data. 

Due to the existence of high-throughput experimental techniques, such as tandem affinity 

purification and yeast two-hybrid, these are some of the most widely available -omic data. 

However, comprehensive networks are only available for a handful of species. Future work with 

this method may be but served by integrating other available data, such as genetic sequence or 

gene expression. These other data sources may help address the issue of context-specificity in 

our predictions. 

In this study, we used 12 distinct graph theoretic parameters to describe each gene pair. The 

choice of these parameters was based on what was available and has been used in prior work, 

and is not an exhaustive list. Other methods for computing connectivity may be incorporated in 

future versions of the algorithm, such as spectral methods. 

Overall, we believe this section has shown the utility of connectivity homology to the 

prediction of synthetic lethality between species, as long as both species have well-populated 

protein-protein interaction networks, and one of the species has been interrogated thoroughly for 

synthetic lethality. We find that even ~700 SL pairs are sufficient for constructing a successful 

model, as evidenced by S. pombe; however, at this time, S. cerevisiae remains the best source 

species, with approximately 13,000 SL pairs as of a 2013 database. 
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In the next chapter, we will apply our SINaTRA model built on S. cerevisiae data to predict 

synthetic lethality in human networks. 
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METHODS 

Previous methods of modeling synthetic lethality: genetic homology, 
structural similarity, and functional similarity 

We downloaded protein homology data from Homologene [71], protein structure data from 

SCOP [79,80], and GO data from Entrez [56,81]. We used PFam [75,76] data for protein domain 

similarity; IDs were mapped to Entrez gene IDs for S. cerevisiae and S. pombe using DAVID 

[82,83]. We calculated bi-nodal information centrality for each gene pair based on Kranthi et al. 

[74]. 

In order to create the homology-based model, we replicated a previous paper [73] that 

defined a gene pair as SL if its homologous pair in another species is SL. Gene pairs were 

defined as SL if the homologous pair in the source species was SL. In the case of multiple 

homologous pairs in the source species, gene pairs were classified as SL if at least one of the 

homologous pairs was known to be SL. Homology-based models use only genes with known 

homologs between the two species of interest. Whole-genome, homology-based models are the 

union of all genes in the homologous dataset with all genes that appear in our protein-protein 

interaction network. Genes with no known homologs are given a feature value of 0. 

Protein similarity was defined using values between 0 (no match) and 4 (same class) 

according to SCOP annotations. Functional similarity was defined using GO process and 

function terms, excluding “molecular_function” and “biological_process.” Gene pairs were 

assigned a value based on the number of overlapping GO terms assigned to each gene. Using 

PFam domain data, we used the size of PFam ID overlap (range: [0,8)) for within-species gene 

pairs. For SCOP-, GO-, and PFam-based models, we trained the logistic regression model on S. 

cerevisiae and applied it to S. pombe. The homology-based model was already “translated,” and 

the model was trained and tested in S. pombe alone using logistic regression and five-fold cross-
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validation. Information centrality does not require translation and was calculated in S. pombe 

alone; the model was constructed using logistic regression and tested with five-fold cross-

validation. 

Calculation of translated network parameters 
In order to rank-normalize data for a given species, we calculated all individual single- and 

two-node parameters. Then, for each parameter, we ranked all calculated values from smallest to 

largest, resolving ties at random. We then divided all values by the total number of genes in the 

network (for single-node parameters) or the total number of gene pairs (for node-pair 

parameters). This resulted in all genes or gene pairs having all parameter values between 0 and 1.  

In Figure 3.1.B, we mention three other methods of translation: Normalized, tied-rank 

normalized, and quantile normalized. Regular normalization of a parameter returns each value 

divided by the maximum value of that parameter, such that each value is between 0 and 1. Tied-

rank normalization assigns median rank to all equal values, and then normalizes single-node 

parameters by the number of genes in the network, and node-pair parameters by the total number 

of pairs. To account for different-sized networks in quantile normalization [84], we upsampled 

parameter values.  

Building connectivity-homology-based models of synthetic lethality 
We generated PPI networks using data gathered from BioGrid [54]; each node represents a 

gene, while edges represent a physical interaction between gene protein products. We pruned all 

disconnected nodes to ensure one connected component. 

BioGrid additionally provided SL data used in this investigation. S. cerevisiae had over 

14,000 unique SL pairs and S. pombe have over 700, while M. musculus has 8 pairs. Gene pairs 

may have one of two classes: SL or non-SL. Because of the scarcity of SL pairs, pairs not 

explicitly labeled as SL are considered non-SL. 
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We used the NetworkX (version 1.8.1) package for Python [85] to calculate all network 

parameters except shared neighbours, shared non-neighbours, and shared 2nd-degree neighbours, 

which were elucidated from adjacency matrices for each network. All single-parameter 

classifiers employ logistic regression due to its high interpretability and simple nature. We 

implemented multi-parameter classifiers using random forests [86], which are accurate and 

efficient on large datasets, as well as resistant to over-fitting data. We used five-fold cross-

validation in classifier construction, where training occurs with 80% of the data, and classifier 

evaluation uses the remaining 20%. Finally, to avoid positional bias in case of a single node 

having exceptionally high values, we shuffled the order in which each single-node parameter 

appears. We calculated parameter importance using the built-in function from Python’s sklearn 

package [87]. 

Networks successfully predict within-species synthetic lethality 
We predicted SL within a species using the network parameters defined in  

Table 1.2 without any normalization (raw) as features of the classifier, and experimental data 

from BioGrid [54] as the known classes. From these, we performed five-fold cross-validation by 

randomly selecting 1/5 of the data on which to train our classifier, and testing it on the remaining 

4/5. We trained models using either logistic regression or random forest. 

Translation of synthetic lethality between S. cerevisiae and S. pombe 
To predict synthetic lethality, we trained classifiers on raw and translated parameters of our 

source species, using SL status downloaded from BioGrid as labels. We then applied the 

classifier to data from our target species. Here, S. cerevisiae is the source species, and we used 

its network parameters to train classifiers. S. pombe is the target species. Classifier inputs were 

vectors of network parameters. 
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SINaTRA outperforms translation-free and non-network methods 
Synthetic lethality is expected to occur in 1/1000 gene pairs in diploid organisms [77]; 

therefore, the positive predictive value (PPV; the fraction of true positives out of all called 

positives) expected by chance is 0.001. We calculated the PPV on all S. pombe gene pairs, and 

on all gene pairs in the same complex. We selected 1000X the number of non-SL pairs as SL and 

bootstrapped the 99% CI of the PPV for both untranslated and SINaTRA-based predictions. To 

calculate PPV at each cutoff C, gene pairs with SINaTRA ≥ C were considered to be SL, while 

pairs with SINaTRA < C were considered non-SL. 

Complex membership was identified by using the Entrez GO database and filtering all GO 

terms that contained the word “complex” and were in the “component” category. This amounted 

to 8,365 pairs, of which 5,806 appeared in our network. 46 of these were experimentally known 

SL pairs, leaving a ratio of approximately 3:400 SL:non-SL. We estimated that, because many 

SL pairs are unknown in S. pombe, the ratio of SL:non-SL in within-complex pairs will be 

approximately 1:50, and selected SL:non-SL pairs in  

a ratio of 1:50 in order to estimate within-complex PPV. This simulation was performed 1,000 

times to identify the 99th percentile CI. 

We additionally plotted the PPV of SL prediction using genetic homology, structural 

similarity, functional similarity, and information centrality. The expected PPV of all of these 

were calculated using SL:non-SL gene pairs in ratios of 1:1000; because the cut-offs occurred in 

a range significantly smaller than [0,1], we selected the cut-off that would provide the optimal 

PPV for the given model (all pairs), then calculated the PPV when adjusting for SL:non-SL ratio. 

The PPV of genetic homology was calculated using only S. pombe pairs that have homologs in S. 

cerevisiae. 
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We identified the true and false positives and negatives for homology and whole-genome 

homology as follows: if the input score was >0 and the target species pair was SL, it was a true 

positive; if non-SL, it was a false positive. If the input score was 0 and the target species was 

non-SL, it was a true negative; else, if SL, it was a false negative. In whole-genome models, all 

node pairs with no homology information for at least one node were given a score of 0. Odds 

ratios were calculated using confusion matrices of form [[TP,FP],[FN,TN]] and Fisher’s exact 

test. 

For whole-genome SINaTRA methods, if the gene pair SINaTRA score ≥ given cutoff and 

the target species pair was SL, it was a true positive; else, if non-SL, it was  

a false positive. If the gene pair SINaTRA score < given cutoff and the target species pair was 

non-SL, it was a true negative; else, if SL, it was a true positive. In a whole-genome SINaTRA 

model, nodes that appeared in the Homologene database but not in the network were assigned 

SINaTRA scores of 0. 

We identified the expected number of unidentified SL pairs in S. pombe by taking the PPV 

at each SINaTRA cutoff and multiplying it by the number of putative hits at that cutoff. We then 

transformed this cumulative plot into bins, such that for cutoff C, the number in that bin 

represents all expected pairs with C ≤ SINaTRA < C+0.05. 

Translated models are robust to network completeness 
We ablated the S. pombe network to 90, 80, 70, 60, and 50% of its original size by 

removing (100-N)% edges at random. We trained a random forest classifier on the complete S. 

cerevisiae network and tested it on the ablated S. pombe networks and measured classifier 

success again using AUROC. 
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Prediction of synthetic lethality is not driven by node popularity 
We plotted the median SINaTRA score of genes in S. cerevisiae, S. pombe, and humans by 

the node’s degree, popularity (the number of times it appeared in the BioGRID database), and 

normalized popularity (degree/popularity). We calculated the Spearman correlation coefficient 

for all plots, for all species. 

Prediction of synthetic lethality in mice 
We predicted SL pairs in mice as we did with S. pombe, using S. cerevisiae as the source 

species. 

Statistical analyses and software 
We calculated network parameters using the NetworkX version 1.8.1. We performed 

statistical analysis in R version 3.0.2. De Long’s test for comparing ROC curves was 

implemented using the pROC library [88]. Scripts use Python version 2.7.5. Graphics were 

generated using Python’s Matplotlib [89]. BioGrid release 3.2.104 was used in all analyses. 
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APPENDIX 

 

Figure 3.A.1: Calculating network parameters for machine learning 
We illustrate the creation of network-based classifiers using untranslated data (top) and rank-normalized 
(translated) data (bottom). 
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Figure 3.A.2: Prediction of synthetic lethality from S. cerevisiae to S. pombe 
A.) Normalization method performance in SL prediction from S. cerevisiae to S. pombe. Normalization methods are 
described in Materials and Methods. B.) Precision-recall curves for SINaTRA (red) and untranslated (blue). 
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Figure 3.A.3: Prediction of synthetic lethality from S. pombe to S. cerevisiae 
The black dotted line represents expected ROC by chance. Raw and SINaTRA ROC curves were significantly 
different (DeLong’s test). 
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Figure 3.A.4: Prediction of synthetic lethality using translational and non-translational methods 
We create classifiers based on genetic homology (AUC = 0.60), genetic homology extrapolated to the whole genome 
(WG Homology; AUC = 0.52), protein domain (PFam; AUC = 0.56), protein structure (SCOP; AUC = 0.62), bi-
nodal information centrality (AUC = 0.46), and function (GO; AUC = 0.81), and compare these performances to 
SINaTRA (AUC = 0.86) and SINaTRA restricted to only pairs existing in the homology database (SINaTRA (Hom.); 
AUC = 0.91) when predicting SL in S. pombe. 
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Figure 3.A.5: SINaTRA vs. homology 
For each table, the upper left corner is true positives (TP); upper right is false positives (FP); bottom left is false 
negatives (FN); and bottom right is true negatives (TN). We found that the number of true positives, as well as the 
PPV, is significantly higher in SINaTRA-based methods than homology-based ones. See Materials and Methods for 
details. 
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Data	 Individual	AUC	
Model+	
SINaTRA	 ChiSq	 p-value	

SINaTRA	 0.8603	 -	 -	 -	

Genetic	homology	 0.519	 0.8603	 0.16962	 0.6804	

Genetic	homology	(homologs	only)	 0.5171	 0.8801	 0.21458	 0.6432	

Structural	similarity	 0.5016	 0.8602	 1.5494	 0.2132	

Functional	similarity	(binary)	 0.7876	 0.8981	 407.66	 <2.2e-16	

Functional	similarity	(discrete)	 0.8069	 0.8958	 445.09	 <2.2e-16	

Univariate	connectivity	 0.4463	 0.8603	 0.0014578	 0.9695	

Table 3.A.1: SINaTRA vs. other models of predicting SL 
Columns 2–3 represent AUCs of models based on non-translational or non-network methods of predicting SL, and 
those methods plus SINaTRA. Columns 4–5 describe results of ANOVAs of nested general linear models of 
SINaTRA, then SINaTRA plus each of the methods. Only functional similarity provides an improved model when 
combined with SINaTRA. 
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Note 3.A.1: Density of biological networks 

 
Here, we consider the density of biological networks of different species. The density of a 

network is defined as: 

														𝜌&k = 	
										𝐸									

l(lmU)
V

 

where 𝐸 is the number of edges in the network and 𝑁 is the number of nodes. If a network grows 

by 𝑀 nodes and 𝜇 edges, it has 𝐸p = 	𝐸( + 𝜇.  

In order for a network to maintain its density, we have: 

𝜌&kU = 	𝜌&kV 

	
										𝐸(									

l(lmU)
V

= 	
										𝐸p									
(lqr)(lqrmU)

V
 

																	
										𝐸(									
𝑁(𝑁 − 1) = 	

										𝐸( + 𝜇									
(𝑁 +𝑀)(𝑁 +𝑀 − 1) 

																																𝜇 = 𝐸(
𝑀(𝑀 + 2𝑁 − 1)

𝑁(𝑁 − 1)  

If we expect the network to grow by one node (i.e. 𝑀 = 1), this becomes: 

											𝜇 = 𝐸(
2

𝑁 − 1 

Given that 𝜌&k = 	 										K									l(lmU)
V

, this can be rearranged to: 

						𝜇 = 𝑁𝜌&kU 

If we consider the S. cerevisiae network, with 𝑁 = 5,810, 𝑀 = 79,642, and 𝜌&kU =

0.004, this means that adding one node will require 𝜇 = 𝑁𝜌&k = 27.4 edges. However, the 

median degree in the network is 12.5, and the mode is 3. Given the duplication-divergence model 

of network evolution [57], each node is equally likely to be duplicated; therefore, it is likely that 

the next node added will decrease the density of the network. This suggests that the larger the 

network, the less dense it will be.    
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Figure 3.A.6: Network ablation and the prediction of synthetic lethality 
A.) SL prediction from full S. cerevisiae to ablated S. pombe networks using untranslated parameters. Black line 
represents AUC, while coloured lines represent ROC; red is highest ablation (50%), while violet is lowest (10%). 
B.) SL prediction from full S. cerevisiae to ablated S. pombe networks using SINaTRA. Black line represents AUC, 
while coloured lines represent ROC; red is highest ablation (50%), while violet is lowest (10%). C.) Precision-recall 
curves of SL prediction from full S. cerevisiae to ablated S. pombe networks using untranslated parameters. D.) 
Precision-recall curves of SL prediction from full S. cerevisiae to ablated S. pombe networks using SINaTRA. 
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Figure 3.A.7: SINaTRA and node popularity 
We plotted the median SINaTRA score of all genes for S. cerevisiae (top) and S. pombe (bottom) vs. node degree 
(left), node popularity (center; the number of times it appears in the BioGrid database), and normalized popularity 
(right; popularity/degree). We found that, while SINaTRA score is correlated with the former two measures, it is not 
correlated with the latter, which gives a better approximation of research bias. 
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CHAPTER 4 – INTERSPECIES MODELS OF 
SYNTHETIC LETHALITY IN HUMANS  

INTRODUCTION 

Synthetic lethality (SL) has been suggested as a powerful tool for studying drug action in 

humans; for example, it can guide the development of cancer combination therapy [67,68] and 

inform drug-drug interactions. Although SL has been studied extensively in yeast, few genome-

wide studies have occurred in humans, and several factors impede a species-wide evaluation of 

SL. These include the ethical implications of studying SL directly, the inability to discern state-

specific SL interactions from global ones in experimental cell lines (e.g. cancer), and – most 

significantly – the heavy experimental burden. Over 200 million assays would be required to 

determine the SL status of all human gene pairs in just a single cellular context. In silico methods 

are therefore necessary to guide the identification of SL in humans.  

In the previous chapter, we showed that we are able to predict synthetic lethality in species 

with no known synthetic lethal pairs, given a species in which SL is well studied. The only 

necessary information is experimentally derived protein-protein interaction (PPI) networks for 

both the source and target species, and the SL data of the source species. Here, we use SINaTRA 

to predict SL in humans to assign each human gene pair a score between 0 and 1, indicating the 

likelihood that the two genes exhibit an SL relationship. As a post-processing step to enrich our 

predictions, we use databases of population genetic variation in humans to filter out likely false 

positives. Finally, we evaluate of the biomedical implications of our human SL gene pairs by 

discovering “hot zones” of putative SL pairs that suggest novel cancer combination therapies.  
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RESULTS 

Prediction of synthetic lethality in humans 
We applied the SL model trained on S. cerevisiae to human network parameters and 

generated a SINaTRA score between 0 and 1 for all human gene pairs; a higher score indicates 

greater evidence of SL according to our model. We next compiled  

a database of severe, tolerated, homozygous, deleterious co-mutations. These occur when at least 

one patient is homozygous for a deleterious mutation in both genes of  

a given pair in either of two datasets (1000 Genomes [90,91] and Sweden-Schizophrenia 

Population-Based Case-Control Exome Sequencing [dbGaP accession: phs000473.v1.p1 [92-

94]]). We evaluated all gene pairs and found 450,010 that match these criteria (0.4% of all 

possible pairs). We found that, on average, the filtered gene pairs had significantly lower 

SINaTRA scores (median score = 0.116) versus all gene pair scores (median = 0.122; Mann 

Whitney U = 98,055,441,225.5, p ≤ 2.2e10-16). We removed the filtered pairs from our 

predictions as likely non-SL pairs. Using a SINaTRA cutoff ≥0.85, we find the false discovery 

rate (FDR) from this filtering is 0.36% (61 false positives to 16,886 true positives). 

In the interests of space, we provide a filtered list of 1,311 gene pairs with SINaTRA ≥0.95 

in Table 4.A.4 as an embedded table, and in the supplementary results of Jacunski et al. as a 

CSV file [66], and provide the complete list of 109,358,780 gene pairs and SINaTRA scores as a 

database download at the Tatonettti laboratory website (URL: 

http://tatonettilab.org/resources.html). 

Putative synthetic lethal pairs are more likely to be in the same pathway 
Previous work has shown that SL pairs tend to be part of the same pathway [20,22,30]. We 

validated this in our predicted human SL pairs using KEGG annotations [95]. We found that 

gene pairs with SINaTRA scores ≥0.95, 0.90, and 0.80 were all significantly enriched for intra-
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pathway interactions compared to pairs selected at random (p<2.2e-16, Fisher’s exact test, all 

cutoffs). The ten highest-scoring gene pairs with the same pathway annotation are shown in 

Table 4.1. 

 

Gene	1	 Gene	2	 SINaTRA	Score	 Pathway	Name	

KYNU	 SMS	 0.99	 Tryptophan	metabolism	

KYNU	 GSR	 0.987	 Tryptophan	metabolism	

SOS1	 BCR	 0.986	 MAPK	signaling	pathway	

MSH3	 PMS2	 0.986	 Mismatch	repair	

RCOR1	 REST	 0.985	 Huntington's	disease	

BIRC5	 CASP9	 0.985	 Pathways	in	cancer	

KYNU	 NAGK	 0.984	 Tryptophan	metabolism	

POLR1B	 POLR1A	 0.98	 Purine	metabolism	

RIPK1	 RIPK3	 0.98	 Apoptosis	

MAPK9	 MAP2K7	 0.98	 MAPK	signaling	pathway	

Table 4.1: The top ten highest-scoring within-pathway, putative SL gene pairs. 
 
Protein complexes are significantly enriched for putative synthetic lethal pairs 

A protein complex may be functional with one deleteriously mutated component, but 

present with a lethal phenotype when two such mutations occur [20]. Our results corroborate this 

pattern. We randomly selected 20 sets of mutually exclusive protein complexes with five 

subunits from the Comprehensive Resources of Mammalian Protein Complexes (CORUM) 

[96,97] and plotted the SINaTRA scores of all the associated genes as a heat map (Figure 4.1A). 

We observed that genes with their products in the same protein complex had significantly higher 

SINaTRA scores (U = 3,425.5, p<2.2e-16; Figure 4.1B). Additionally, within-complex pairs 

were significantly enriched for higher SINaTRA scores for complexes of size ≤10 proteins (U = 

3,114,511.5, p<0.0001), and complexes of all sizes (U = 295,820,010, p<0.0001). Finally, as the 

size of a complex increases, the distributions of within-complex gene pair SINaTRA scores shifts 

to a leftward skew, echoing the distribution of gene pairs not in complexes. The proportion of 



 

80 

gene pairs that have products in the same complex is significantly higher than expected by 

chance (p<0.0001, Fisher’s exact test, all SINaTRA score cutoffs) (Figure 4.1C). 
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Figure 4.1: Protein complex subunits are more likely to be predicted synthetic lethal  
A.) We randomly selected 20 mutually exclusive groups of protein complexes that contained exactly five subunits; 
we mapped the corresponding gene pairs to SINaTRA scores, and plotted a heat map of the results. Data are not 
clustered and only one randomly sampling was performed. We observed that within-complex gene pairs have 
significantly higher SINaTRA scores (p<0.0001, Fisher’s exact test). B.) We compared the SINaTRA scores of gene 
pairs with products in the same vs. different complexes for complexes with of 5 protein subunits (top), ≤10 proteins 
(middle), and any number (bottom). Although proteins in the same complex are always enriched for higher 
SINaTRA score, as complex size increases, complex membership becomes less indicative of two genes being SL. C.) 
We compared the fraction of gene pairs with products in the same vs. different complexes for three SINaTRA cutoffs 
(0.95, 0.80, 0.50) as well as for all gene pairs. A SINaTRA cutoff of 0.95 has approximately half of its pairs 
associated with the same complex; however, a decrease in the cutoff shifts this balance. This may indicate an 
increase in different mechanisms of SL in pairs with lower scores. “All Pairs” shows the expected proportion of in-
complex pairs in our data. 

Prediction of synthetic lethality is not driven by node popularity 
As in S. cerevisiae and S. pombe, we were concerned about research bias, as higher degree 

nodes are more likely to be studied, and more popularly studied genes may be more likely to 

have been tested for synthetic lethality. As a measure of this potential bias, we defined a 



 

82 

normalized popularity measure (degree/popularity), where popularity is the number of times a 

particular gene appears in the BioGrid database. We found that, as in S. cerevisiae and S. pombe, 

SINaTRA score is not correlated with normalized popularity in humans (Figure 4.A.1). We 

found that the predictive performance of SINaTRA is independent of each of the three measures 

(degree, popularity, and node popularity) according to ANOVA (p < 0.0001). 

Context-specific synthetic lethality 
Synthetic lethality can change between contexts [69]; a gene pair that is SL in  

a cancer cell may not be in healthy tissue. This may occur due to changes in protein expression, 

as well as activation or inactivation of protein pathways, which can alter context-specific PPIs 

[98]. 

S. cerevisiae and S. pombe are unicellular organisms; therefore, models based on these 

species will necessarily focus on high-level, context-free synthetic lethal predictions. As such, 

the initial predictions from SINaTRA present all pairs that have synthetic lethal potential in their 

global connectivity patterns. 

In order to explore context-specific SL pairs, we identified all human gene pairs with SINaTRA 
score ≥0.85. We next created tissue- and cell-line-specific lists of SL pairs by removing a gene 
pair if that tissue is not known to express both gene products according to the Human Protein 
Atlas [99,100]. The proportion of SL pairs retained after filtering is illustrated in Figure 4.2A 
(tissue) and Figure 4.2B (cell); bars are color-coded by biological system. Although the number 
of proteins removed from the network is correlated with the number of SL pairs filtered from 
each given tissue or cell line (Figures 4.2C-D), we find that the number of filtered SL pairs is, at 
times, lower or higher than expected by chance (Table 4.A.1-2) (Materials and Methods). For 
example, rectal tissue has approximately half as many SL pairs filtered out (70) as expected 
(146; OR = 0.477,p = 1.6e-5, Fisher’s exact test). In contrast, tissue of the small intestine has 
over twice as many SL pairs filtered (1653) than expected (826; OR = 2.11, p<2.2e-16, Fisher’s 
exact test). Respiratory epithelial cells also have a high number of filtered SL pairs (O: 550, E: 
280; OR = 2.00,p<2.2e-16). 
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Figure 4.2: Tissue-Specific Synthetic Lethality 
We identified all human gene pairs with SINaTRA≥0.85 and all tissue- and cell-line-specific SL pairs by filtering out 
all gene pairs where neither gene product is expressed in the tissue/cell-line. A.) The proportion of retained SL 
pairs by tissue. Tissues are color-coded by the system to which they belong (legend: far left). B.) The proportion of 
retained SL pairs by cell type. Cells were associated with tissue and mapped to system. Cells occurring in multiple 
tissues from different systems are coded as “other.” C.) The observed number of retained tissue-specific SL pairs 
(blue) versus the expected number (red; model described in Materials and Methods). D.) The observed (blue) vs. 
expected (red) number of retained cell-specific SL pairs. The presence of higher- or lower-than-expected numbers of 
retained SL pairs may indicate context-specific resistance or susceptibility to SL interactions. 

Comparisons with previously published methods 
Recent work on human SL includes the Syn-Lethality database [101], which compiles 

experimentally identified human SL pairs, and the DAISY method [102],  

a computational method of identifying SL pairs. We found that the gene pairs from both datasets 

had significantly higher SINaTRA scores (Syn-Lethality: U = 12,265, p<2.2e-16; DAISY 

(VHL): U = 299, p = 5.86e-6; DAISY (cancer): U = 1992856, p<2.2e-16; Figure 4.3A). 

Compared to the median of untested pairs (0.122; 99% CI: [0.122,0.122]), DAISY’s cancer 

predictions had a median score of 0.233 (99% CI: [0.225,0.243]); its VHL predictions had a 

median score of 0.255 (99% CI:[0.195,0.368]) and the  

Syn-Lethality dataset had a median score of 0.459 (99% CI: [0.397,0.514]). 
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Figure 4.3: SINaTRA versus previously published methods 
A.) SINaTRA scores of all human predictions, as well as pairs predicted or found to be SL in two datasets: DAISY 
and Syn-Lethality. B.) We compare the predictive ability of SINaTRA score to identify genes belonging to DAISY 
(tested) and Syn-Lethality datasets compared to functional similarity and homology. 

From the Syn-Lethality database, we selected only SL gene pairs involving genetic 

deficiency, inactivation, or mutation. Of the 88 pairs matching these criteria, all were in our 

network, and we found 34 of these to have SINaTRA ≥0.5 (p = 4.8e-11, Fisher’s exact test), and 

11 with SINaTRA≥0.75 (p = 0.0070, Fisher’s exact test). 2,816 gene pairs were predicted to be 

SL specifically in cancer using DAISY, and 2,576 were in our network; of those, we found that 

151 had SINaTRA≥0.5 (p = 7.5e-24, Fisher’s exact test), and 14 had SINaTRA≥0.75 (p = 

0.00096, Fisher’s exact test). 
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We observed that SINaTRA score could predict genes in both the DAISY and Syn-

Lethality datasets with AUCs of 0.73 and 0.93, respectively. (Figure 4.3B). In turn, homology 

was not at all predictive in either dataset (AUC = 0.50 for both; no homology data present for the 

pairs), unlike functional annotations (AUC = 0.786, DAISY; AUC = 0.904, Syn-Lethality). We 

then considered the precision-recall curves of these data and found that SINaTRA in both 

datasets outperformed function in DAISY, while function in Syn-Lethality had similar 

performance to that of SINaTRA (Figure 4.4). 

 

Figure 4.4: Precision-recall of SINaTRA, DAISY, and Syn-Lethality 
Precision-recall curves for SINaTRA and functional homology’s abilities to predict members of the DAISY and Syn-
Lethality studies. 

The landscape of human synthetic lethality 
We identified 1,311 predicted SL gene pairs with SINaTRA≥0.95. These pairs contained 

986 unique genes, of which 402 existed in only one pair (repetition count range: [1,26]; median: 

2). From this list, we found 458 gene pairs that were associated with biological pathway data 
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from Reactome [103] (357 unique genes, of which 167 exist in only one pair; see Table 4.A.3). 

We present these gene pairs as a network of networks (Figure 4.5). Hexagonal nodes represent 

pathways, and edges connect pathways when SL pairs are predicted between-pathway (i.e. with 

one member in each). Within each hexagonal node is a pathway-specific synthetic lethal 

network, where genes are nodes, and edges appear where the genes have a SINaTRA score 

≥0.95. We found that 334 (73%) of these interactions are within-pathway and 124 (27%) are 

between-pathway (OR = 3.69, p<0.0001, Fisher Exact Test).  

Among the within-pathway SL pairs, we found that apoptosis, the immune system, and 

gene expression have low closeness centrality in their SL networks, which indicates high 

interconnectedness. The immune system has the highest number of associated SL gene pairs 

(101); the most central of these is RIPK1, with 15 connections. Several functions have no 

associated SL pairs, including extracellular matrix organization, metabolism of proteins, and 

reproduction. These functions may have little functional redundancy that allows for SL to occur. 

Of the between-pathway SL pairs, we found that each pair of pathways shares an average of 2.8 

SL pairs. The immune system/signal transduction between-pathway pairs are the most numerous 

(11 pairs). 
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Figure 4.5: The landscape of human synthetic lethality 
This network depicts all gene pairs with SINaTRA score ≥0.95 (1,229 SL pairs) that map to Reactome pathways 
(458 pairs). Here, each hexagon represents one high-level pathway designation in Reactome. Larger nodes indicate 
more SL pairs with that designation. Within the hexagonal nodes, we show the networks of synthetic lethality where 
both members have the same function in Reactome. Each node is a gene and an edge represents a predicted SL 
interaction. Gene nodes are weighted by degree and coloured by closeness centrality. In turn, weighted edges join 
hexagonal nodes if pathway-divergent pairs exist; that is, one member of the pair is of one pathway while the second 
member is of the other. Edges are weighted by the number of pathway-divergent gene pairs associated with both 
pathways. 

Function-specific mechanisms of synthetic lethality 
We grouped gene pairs into 17 high-level Reactome functional categories and clustered 

them by their parameter values (Materials and Methods). We found pathway-specific parameter 

enrichment exists in node-pair parameters (inverse shortest path, communicability, shared 

neighbours, and shared non-neighbours), but not in single-node parameters, as evidenced by the 

increase in variance of paired parameters versus single-node parameters (Figure 4.6). For 

example, the signal transduction pathway has higher values for node-pair parameters than other 
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functions and all SL pairs. In contrast, apoptosis, DNA repair, and DNA replication have node-

pair signals that are closer to the mean of all of its within-function pairs than between functions. 

 

 
Figure 4.6: SINaTRA and functional signals of synthetic lethality 
The heat map represents the ratio of median parameters for the SL pairs of a given function versus all pairs of a 
given function. For example, the SL pairs of Signal Transduction have values for inverse shortest path that are twice 
as great as the non-SL pairs of Signal Transduction. Rows are clustered by node-pair parameter values (see Table 
1.1). Parameter variance is plotted above the heat map. Single-node parameters (see Table 1.1) are consistently 
altered in SL regardless of function. However, node-pair parameters differ between functions. This distinction 
suggests that network substructure may dictate SL mechanisms associated with a specific function. 

 
We then annotated each putative SL gene pair from these 17 functional categories for three 

possible mechanisms: (1) complex, where the proteins products of the pair are known to form a 
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complex, (2) parallel, where the proteins function in the same pathway with no known direct or 

indirect interaction, and (3) other, for gene pairs that do not fit in (1) or (2). In total, there were 

5,249 putative SL gene pairs for the 17 categories. Most of these pairs were in the same complex 

(56.2%, N = 2,950), followed by parallel (24.0%, N = 1,260) and other (19.8%, N = 1,039). We 

tested each function category for enrichments for particular mechanisms of SL. We found that 

each function has different proportions of putative mechanistic annotations (Figure 4.7). 

 

Figure 4.7: Reactome annotation proportions by function 
Putative functional SL pairs were annotated using Reactome pathways and grouped into three sets: within-complex 
interaction, other interaction, and unknown. The fraction of SL pairs in each group is illustrated here by function. 

We found that immune system (OR = 1.48, p = 0.000001) and signal transduction (OR = 

1.42, p = 0.000894) were significantly enriched for SL genes that function in parallel, after 

multiple hypothesis correction (Table 4.2). We found four categories were enriched for SL genes 
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that were components in complexes: gene expression (OR = 1.38, p = 0.000298), meiosis (OR = 

4.31, p = 0.046), chromatin organization (OR = 2.10, p = 0.008499), and DNA repair (OR = 

4.76, p < 2.2e-16) (Table 4.2). Finally, we found that Cluster 1 (Figure 4.6), which includes 

transmembrane transport, metabolism, hemostasis, developmental biology, cell-cell 

communication, muscle contraction, and the immune system, is significantly enriched for SL 

genes that function in parallel (OR = 1.36, p = 0.00008). 

Function	 Complex	
(Count/OR)	

Other	
(Count/OR)	

Parallel	
(Count/OR)	

	Transmembrane	transport	of	small	molecules	 52/2.04**	 8/0.5	 12/0.63	

Cl
us
te
r	1

	

Metabolism	 330/1.04	 86/0.68**	 162/1.27**	

Hemostasis	 86/0.75	 44/1.39	 44/1.07	

Developmental	biology	 191/1.13	 70/1.13	 62/0.74**	

Cell-cell	communication	 20/1.2	 8/1.3	 5/0.56	

Muscle	contraction	 2/0.22**	 5/5.08**	 2/0.9	

Immune	system	 606/0.64*	 286/1.25**	 377/1.48*	

Signal	transduction	 352/0.55*	 213/1.58*	 239/1.42*	 Cluster	2	

Membrane	trafficking	 71/1.51**	 18/0.81	 19/0.67	

Cl
us
te
r	3

	Gene	expression	 572/1.37*	 143/0.71**	 199/0.86	

Meiosis	 22/4.31**	 3/0.53	 1/0.13**	

Chromatin	organization	 77/2.1**	 9/0.37**	 20/0.73	

Cell	cycle	 124/1.48**	 46/1.31	 20/0.36*	

DNA	replication	 96/1.54**	 6/0.17*	 43/1.35	
Cl
us
te
r	4

	
Apoptosis	 124/1.48**	 46/1.31	 20/0.36*	

DNA	repair	 124/4.76*	 15/0.46	 6/0.13*	

Cellular	responses	to	stress	 101/1.27	 33/1.03	 29/0.68	

Table 4.2: Within-function enrichment of putative SL pairs based on gene product interactions 
Complex describes all gene pairs that are within the same pathway. Other represents all pairs that have another 
described PPI. Parallel refers to all pairs with no known PPI between them. Interactions are determined using 
Reactome data. 

Putative synthetic lethal pairs suggest novel cancer therapies 
We identified 58 unique genes from high-scoring gene pairs (SINaTRA≥0.85) where both 

members were targets of cancer therapies (68 unique drugs). These genes were clustered by 

SINaTRA score (Figure 4.8A) using hierarchical clustering; areas of high (red) and low (blue) 

SINaTRA scores are easily observed. We found that gene pairs that are targeted by drugs have 
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significantly higher SINaTRA scores than those that are not; median SINaTRA score increases 

significantly from pairs that are targeted by only one drug (median score = 0.156), to those 

targeted by two drugs (median score = 0.166), to those targeted by only one cancer drug (median 

score = 0.211), to those targeted by two cancer drugs (median score = 0.283) (Figure 4.A.2). 

Next, we identified which of these gene pairs were filtered out through co-mutation analysis 

(gray), as well as those linked to single-drug therapies (red), drug combination therapies in the 

clinical pipeline (blue: preclinical; green: in clinical trials). These data were overlaid on the heat 

map (Figure 4.8B). We found that gene pairs targeted by cancer drugs have significantly higher 

SINaTRA scores than filtered pairs and pairs not under investigation (Figure 4.8D; U = 44,964, p 

< 0.0001, Mann-Whitney U test). 

We also visually identified “hotspots” of drug combinations (black boxes, Figure 4.8A and 

4.8B) that correspond to gene pairs with high SINaTRA scores (Figure 4.8C). We found that 

Area 1 alone contains genes related to gene expression (p = 0.040), transcription initiation from 

RNA polymerase II promoter (p = 0.025), and steroid hormone receptor activity (p = 0.025; 

Fisher’s exact test with multiple hypothesis testing). In addition, Area 2 is associated with 

protein autophosphorylation (OR = 39.1, p = 0.000613; Fisher’s exact test). Areas 3 and 4 are 

not significantly associated with any GO terms. 
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Figure 4.8: SINaTRA and drug combinations 
A.) Druggable gene pairs clustered by SINaTRA score. Sixty-two unique genes that participated in predicted SL 
interactions with SINaTRA scores >0.85, where both genes mapped to drugs in DCDB, were identified. All pairwise 
SINaTRA scores were computed and clustered by score. Areas of high- and low SINaTRA scores are clearly visible. 
B.) All possible gene pairs identified in Part A were mapped to DCDB, and gene pairs whose products are targeted 
by single drugs and combination therapies in the clinical pipeline were highlighted (pre-clinical, blue; clinical 
trials, green; single drug, red; gene pairs filtered out by genetic analysis, gray; filtered gene pairs associated with 
drugs, black [n = 0]). Areas enriched for drug combinations were highlighted in both parts A and B. C.) Enrichment 
of tested compounds in the four areas of interest were calculated using the Fisher Exact Test, and p-values were 
calculated. Areas 1, 2 and 4 were significantly enriched. D.) Distributions of SINaTRA score by drug type. 
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DISCUSSION 

In this chapter, we expand on a computational method, Species INdependent TRAnslation 

(SINaTRA), for predicting synthetic lethal (SL) relationships in any species with an available 

protein-protein interaction (PPI) network. Here, we use SL data from S. cerevisiae – the most 

well characterized organism for this interaction – to predict SL in humans. 

Possible mechanisms of synthetic lethality 
Several mechanisms of synthetic lethality have previously been proposed [21]; these 

include within complex, parallel pathways, and essential linear pathways. Connectivity 

parameters provide hints to the mechanisms driving a particular gene pair to SL. Our data 

suggest that function-specific network substructures are different, and may be related to trends of 

SL mechanism within a function. For example, metabolism has a much higher proportion of 

‘unknown’ pathway annotations than does apoptosis (Figure 4.7). This suggests that putative 

metabolic SL pairs act through parallel pathways, while apoptotic pairs may act through within-

complex mechanisms. Further, gene pairs in apoptotic pathways are farther apart and have lower 

communicability than gene pairs in metabolic pathways, which may also change the proportion 

of SL pairs that have that functional annotation. 

We also observe that a fraction of the predicted SL pairs had between-pathway interactions, 

where members of an SL pair do not share any single function (Figure 4.5). The respective gene 

products may act at an interface between two related functions; the putative SL pair may be a 

false positive; or – most interestingly – one (or both) genes have previously unidentified 

functions that cause their SL behavior. One such example is the putative SL pair, BAIAP2 

(insulin receptor signaling; UniProt DB) and ALDH7A1 (protection from oxidative stress; 

UniProt DB) (SINaTRA score: 0.957). Oxidative stress is associated with insulin resistance 
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[104], and knocking out both of these genes may mimic or exacerbate insulin resistance, leading 

to complications and adverse events. 

Context-specific synthetic lethality 
Biological contexts, such as tissue type and disease state, can influence synthetic lethal 

interactions [69]. In translating SL between species, certain factors must be kept in mind; for 

example, S. cerevisiae is a unicellular organism, whereas humans are not. Thus, a gene pair that 

is SL in one human cell type may not be SL in another. Although this can provide a tremendous 

therapeutic boon when two drugs targeting two gene products mimic an SL interaction in cancer 

cells and leave healthy cells unaffected, it also complicates using SL patterns between species of 

varying complexity.  

At this time, cellular and tissue specificity are not captured by the SINaTRA model. 

However, we can customize our predictions for a given cell or tissue by pruning away any 

predicted genes that are known not to be expressed in the given context. We used the Protein 

Atlas [99] to perform this customization and found that certain tissues and cell types had 

significantly more or fewer SL pairs removed using this method. These deviations may suggest 

tissue or cell types that are particularly robust, or susceptible, to SL interactions. For example, 

respiratory epithelial cells and endothelial cells have many more SL pairs filtered out than 

expected by chance; this suggests that the tissues are not as susceptible to SL reactions. These 

trends require further investigation, as they may have significant implications for human health. 

Predicted synthetic lethal pairs in humans inform cancer polypharmacology 
Leveraging synthetic lethal relationships specific to cancer cells has been a strategy in drug 

discovery for nearly a decade. Therefore, we applied our predictions of synthetic lethality to the 

study of pharmacology. We found that many cancer combination therapies currently in the 

clinical pipeline target genes with high SINaTRA scores, suggesting that they use mechanisms of 
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synthetic lethality as their modes of action. Clustering reveals hotspots of high SINaTRA scores 

that are significantly enriched for combination therapies under investigation. Importantly, our 

algorithm was able to identify these without any a priori knowledge of the drug combination. 

Gene pairs found in these hotspots that have not been previously investigated may be promising 

leads for novel polyphamacological treatments, and we will consider these in the following 

chapter. 

 

In summary, the methodology presented in this chapter can help to inform a wide variety of 

studies in human health by utilizing information gathered in model species. In particular, the 

differential mechanistic analysis that highlights how biological functions may be targeted using 

synthetic lethality and the “hot spots” of drug synergy highlighted by our cancer therapy analysis 

indicate promising areas for novel therapeutics.  
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METHODS 

Prediction of synthetic lethality in humans 
After establishing the success of parameter translation, we applied the rank-normalized 

inter-species classifier to human gene pairs. 

In order to filter human predictions for false positives, we obtained the VCF files from two 

studies and annotated them for patients homozygous for significantly deleterious mutations (high 

impact, resulting in nonsense mutation, early stop, or loss of start). We then identified gene pairs 

where both genes were simultaneously significantly deleteriously mutated in at least 1 patient but 

no more than 5% of patients in one study, and filtered these out as confirmed non-SL pairs (N = 

405,010). 

We compared the SINaTRA scores of the ‘confirmed non-SL’ pairs to all SINaTRA scores 

by randomly selecting an equal number of the remaining pairs and applying the Mann-Whitney 

U test. 

We chose high-confidence SL predictions to be those which our classifier assigned 

SINaTRA scores of >0.95 that were not filtered out by our genetic screen. 

Putative synthetic lethal pairs are more likely to be in the same pathway 
We identified all putative SL pairs with SINaTRA scores >0.95, 0.90, and 0.80; these 

groups consisted of 1,224, 6,366, and 32,290 gene pairs, respectively. For all cut-offs, we 

mapped the genes to their respective pathways using the KEGG database. We compared the 

number of putative SL gene pairs with the same pathway to the number expected in a group of 

that size at random. Significance was assessed using the Fisher exact test. 
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Protein complexes are significantly enriched for putative synthetic lethal pairs 
We identified all complexes from the CORUM mammalian protein complex database 

where all members of the complex mapped unambiguously to one Entrez gene ID. We then 

randomly selected 20 mutually exclusive complexes composed of five proteins each, and 

identified the SINaTRA scores for all pairwise combinations of the genes associated with these 

products. We plotted the SINaTRA scores as a heat map. To test significance, we randomly 

selected the same number of inter-complex gene pairs as there were intra-complex gene pairs, 

and applied the Mann-Whitney U test. 

We additionally investigated whether this trend of significance would hold for all protein 

complexes that were composed of ≤10 proteins from our filtered list, and for all protein 

complexes in our filtered list. Significance was tested using the same methodology and the 

Mann-Whitney U test. 

Prediction of synthetic lethality is not driven by node popularity 
As with S. cerevisiae and S. pombe in the previous chapter, we plotted the median 

SINaTRA score of genes in humans versus the node’s degree, popularity (the number of times it 

appeared in the BioGRID database), and normalized popularity ( degree
popularity

). We calculated the 

Spearman correlation coefficient for all plots. 

Context-specific synthetic lethality 
Protein expression data in tissues was downloaded from the Protein Atlas. ENS 

identification codes were mapped to Entrez gene IDs, and putative SL pairs at each SINaTRA 

cutoff were determined to be non-SL in context if both proteins were not detected in the tissue of 

choice. We identified all gene pairs with SINaTRA≥0.85. For each tissue and cell line, we 

removed a gene pair from the context-specific SL pair list if both genes’ products were found not 

to be expressed in the given context. The SL pairs that were not filtered out by this method were 
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considered the retained SL pairs. We calculated the number of expected retained gene pairs as 

follows: 

1 −
#𝑟𝑒𝑚𝑜𝑣𝑒𝑑	𝑝𝑎𝑖𝑟𝑠
𝑡𝑜𝑡𝑎𝑙	ℎ𝑢𝑚𝑎𝑛	𝑝𝑎𝑖𝑟𝑠 ∗ 𝑁 

where N is the total, unfiltered number of gene pairs that are SL at the chosen cutoff. 

Comparisons with previously published methods 
SL predictions from the Syn-Lethality and DAISY papers were mapped to their Entrez gene 

terms, and we found the SINaTRA score of each pair. Significance compared to random 

SINaTRA pairs was evaluated using the Mann-Whitney U test. We constructed classifiers for 

DAISY and Syn-Lethality using SINaTRA scores as the features and status in the given dataset 

as the class. We compared this with homology and functional similarity (GO). 

We next tested the ability of three methods (SINaTRA, functional similarity, homology) to 

predict membership in the DAISY and Syn-Lethality datasets. We used only pairs from the 

tested VHL predictions from DAISY. We selected an equal number of gene pairs belonging in 

the dataset (positive examples) and not in the dataset (negative examples), and identified the 

SINaTRA scores, homology-based SL status from S. cerevisiae, and discrete within-species 

functional similarity score for each. These scores were used in calculation of the ROC curve and 

precision-recall curves. 

The landscape of human synthetic lethality 
In order to graphically explore the landscape of human synthetic lethality, we identified all 

gene pairs with SINaTRA scores ≥0.95. These were mapped to the Reactome database, using the 

highest terms in the hierarchy: apoptosis; binding and uptake of ligands by scavenger receptors; 

cell cycle; cell-cell communication; cellular response to stress; chromatin organization; circadian 

clock; developmental biology; disease; DNA repair; DNA replication; extracellular matrix 
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organization; gene expression; hemostasis; membrane trafficking; metabolism; metabolism of 

proteins; muscle contraction; neuronal system; organelle biogenesis and maintenance; 

reproduction; signal transduction; and transmembrane transport of small molecules. Of the 1,229 

gene pairs with SINaTRA scores ≥0.95, there were 458 with both members mapped to a 

Reactome label. 

SL pairs were represented in pathway-specific networks visualized in Cytoscape [61], 

where both genes were part of the same pathway. Genes are nodes, and two nodes are connected 

if their SINaTRA score is ≥0.95. Nodes are coloured by closeness centrality, and their size 

depends on node degree. Pathway-specific networks are designated by hexagons, which are 

joined to each other with edges weighted by the number of inter-pathway SL pairs that exist; that 

is, gene pairs with mutually exclusive pathway designations. 

Function-specific mechanisms of synthetic lethality 
We identified all gene pairs of the functions from the previous section, as well as an SL 

subset (SINaTRA score ≥0.85). We then found the median value of all node-pair and single-node 

parameters and plotted a heat map of the ratio of SL to all gene parameters. Because of the low 

variance between single-node parameters, we clustered each function by the node-pair 

parameters. 

We next annotated all SL pairs with Reactome pathways into three groups: complex, 

parallel, and other. Two genes were annotated with “complex” if their protein products were 

known to participate in a protein complex together. Two genes were annotated with “parallel” if 

they had the same functional annotation but no direct interaction according to Reactome. Finally, 

two genes were annotated as other if they did not fit these either the “complex” or “parallel” 

definitions. For each functional category we tested if the gene pairs were enriched for parallel or 

complex annotations using a Fisher’s exact test. 
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Mapping drugs to gene product targets 
We first mapped all gene pairs with SL score > 0.85 to drugs in the Drug Combination 

Database (DCDB) [105], such that both genes in a pair mapped to a cancer drug that targeted 

their products. Cancer drugs were identified from DCDB as those with indications containing the 

terms cancer, leukemia, carcinoma, myeloma, tumour, sarcoma, lymphoma, or neoplasm. From 

these gene pairs, we identified all unique genes among the pairs. We found a list of 52 unique 

genes from a list of 381 pairs. 

Putative human synthetic lethal pairs are predictive of investigative cancer 
therapy 

Using the aforementioned list of genes, we identified the SINaTRA score for all pairwise 

combinations of genes. We plotted these as a heat map, clustering the rows and columns by 

SINaTRA score. We then found all known single-drug and cancer combination therapies in 

experimental and clinical pipelines using DCDB, and overlaid these data on the clustered heat 

map to visually identify clusters of therapies and their correspondence to SINaTRA score. We 

additionally inspected all pairs of genes that were filtered out using our co-mutation analysis, and 

confirmed that none of them were also targets of cancer drugs. We performed a Mann-Whitney 

U test on distributions of SINaTRA scores for non-tested and filtered gene pairs vs. gene pairs 

associated with drugs, vs. single-drug gene pairs, vs. drug combinations in preclinical testing, 

and vs. drug combinations in clinical testing. 

In order to identify GO enrichment, we tested the GO terms of within-box genes compared 

to all remaining genes from Figure 4.8. Statistical testing was performed using Fisher’s exact 

test. 
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Statistical analyses and software 
We calculated network parameters using the NetworkX version 1.8.1. We performed 

statistical analysis in R version 3.0.2. De Long’s test for comparing ROC curves was 

implemented using the pROC library [88]. Scripts use Python version 2.7.5. Graphics were 

generated using Python’s Matplotlib [89]. BioGrid [54] release 3.2.104 was used in all analyses. 
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APPENDIX 

 

Figure 4.A.1: SINaTRA and node popularity 
We plotted the median SINaTRA score of all human genes vs. node degree (left), node popularity (center; the 
number of times it appears in the BioGrid database), and normalized popularity (right; popularity/degree). We 
found that, while SINaTRA score is correlated with the former two measures, it is not correlated with the latter, 
which gives a better approximation of research bias. 
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Tissue	 Removed	 Remaining	
Expected	
Removed	

Expected	
Remaining	 OR	 p-value	

All	 0	 16886	 0	 16886	 -	 -	
Gallbladder	 102	 16784	 95	 16790	 1.074068	 0.668224	
Stomach	2	 272	 16614	 294	 16591	 0.923889	 0.351466	
Rectum	 70	 16816	 146	 16739	 0.477257	 0	
Duodenum	 1038	 15848	 610	 16275	 1.747487	 0	
Bone	marrow	 93	 16793	 89	 16796	 1.04513	 0.823629	
Urinary	bladder	 780	 16106	 440	 16445	 1.81004	 0	
Small	intestine	 1653	 15233	 826	 16059	 2.109725	 0	
Nasopharynx	 330	 16556	 294	 16591	 1.124822	 0.157236	
Stomach	1	 412	 16474	 304	 16581	 1.364066	 0.000051	
Epididymis	 69	 16817	 81	 16804	 0.851193	 0.327724	
Bronchus	 684	 16202	 456	 16429	 1.521016	 0	
Fallopian	tube	 752	 16134	 522	 16363	 1.461061	 0	
Adrenal	gland	 88	 16798	 103	 16782	 0.853555	 0.277611	
Thyroid	gland	 139	 16747	 152	 16733	 0.913709	 0.444875	
Skin	2	 99	 16787	 111	 16774	 0.891201	 0.407329	
Prostate	 56	 16830	 82	 16803	 0.681831	 0.02676	
Seminal	vesicle	 320	 16566	 184	 16701	 1.753303	 0	
Esophagus	 684	 16202	 453	 16432	 1.531368	 0	
Placenta	 371	 16515	 320	 16565	 1.162885	 0.054549	
Parathyroid	gland	 640	 16246	 420	 16465	 1.544351	 0	
Testis	 790	 16096	 488	 16397	 1.649125	 0	
Oral	mucosa	 372	 16514	 338	 16547	 1.102791	 0.210652	
Salivary	gland	 217	 16669	 261	 16624	 0.829173	 0.042776	
Lymph	node	 80	 16806	 89	 16796	 0.898342	 0.489041	
Vagina	 157	 16729	 171	 16714	 0.917305	 0.438012	
Tonsil	 652	 16234	 453	 16432	 1.456848	 0	
Appendix	 288	 16598	 237	 16648	 1.218851	 0.027761	
Pancreas	 150	 16736	 172	 16713	 0.870895	 0.218634	
Heart	muscle	 144	 16742	 185	 16700	 0.776426	 0.023182	
Cervix,	uterine	 123	 16763	 145	 16740	 0.847112	 0.177957	
Skeletal	muscle	 66	 16820	 84	 16801	 0.784827	 0.141824	
Kidney	 170	 16716	 146	 16739	 1.165986	 0.19354	
Lung	 126	 16760	 128	 16757	 0.984199	 0.899985	
Colon	 364	 16522	 231	 16654	 1.588347	 0	
Spleen	 721	 16165	 461	 16424	 1.58905	 0	
Smooth	muscle	 116	 16770	 121	 16764	 0.958335	 0.745068	
Lateral	ventricle	 75	 16811	 81	 16804	 0.92554	 0.631389	
Ovary	 497	 16389	 298	 16587	 1.687934	 0	
Endometrium	1	 1156	 15730	 654	 16231	 1.823882	 0	
Hippocampus	 1052	 15834	 651	 16234	 1.656798	 0	
Skin	1	 471	 16415	 405	 16480	 1.167568	 0.026015	
Endometrium	2	 82	 16804	 81	 16804	 1.012346	 1	
Cerebellum	 63	 16823	 80	 16805	 0.786657	 0.155456	
Liver	 154	 16732	 161	 16724	 0.956064	 0.692438	
Breast	 115	 16771	 127	 16758	 0.90481	 0.439831	
Soft	tissue	2	 262	 16624	 291	 16594	 0.898719	 0.214081	
Soft	tissue	1	 74	 16812	 105	 16780	 0.70342	 0.020262	
Cerebral	cortex	 218	 16668	 202	 16683	 1.080179	 0.461455	

Table 4.A.1: Tissue-specific synthetic lethality 
The number of edges removed in each tissue-specific context compared to the expected number removed. OR and p-
values are calculated using Fisher’s exact test. 
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Cell	 Removed	 Remaining	
Expected	
Removed	

Expected	
Remaining	 OR	 p-value	

All	 0	 16886	 0	 16886	 -	 -	
Hematopoietic	cells	 435	 16451	 306	 16579	 1.432629	 0.000002	
Urothelial	cells	 125	 16761	 109	 16776	 1.147815	 0.325124	
Cells	in	tubules	 244	 16642	 188	 16697	 1.302162	 0.007668	
Trophoblastic	cells	 1216	 15670	 677	 16208	 1.857827	 0	
Follicle	cells	 641	 16245	 409	 16476	 1.589523	 0	
Cells	in	seminiferous	ducts	 803	 16083	 552	 16333	 1.477323	 0	
Decidual	cells	 335	 16551	 292	 16593	 1.150172	 0.090358	
Respiratory	epithelial	cells	 550	 16336	 280	 16605	 1.996631	 0	
Macrophages	 436	 16450	 291	 16594	 1.511397	 0	
Epidermal	cells	 265	 16621	 253	 16632	 1.048124	 0.626256	
Leydig	cells	 89	 16797	 95	 16790	 0.936452	 0.658358	
Exocrine	glandular	cells	 77	 16809	 68	 16817	 1.132892	 0.50568	
Non-germinal	center	cells	 372	 16514	 348	 16537	 1.070454	 0.386259	
Lymphoid	tissue	 240	 16646	 182	 16703	 1.323197	 0.005176	
Germinal	center	cells	 102	 16784	 114	 16771	 0.894044	 0.41385	
Keratinocytes	 549	 16337	 380	 16505	 1.459594	 0	
Peripheral	nerve/ganglion	 116	 16770	 121	 16764	 0.958335	 0.745068	
Myoepithelial	cells	 128	 16758	 127	 16758	 1.007874	 1	
Islets	of	langerhans	 694	 16192	 482	 16403	 1.458597	 0	
Chondrocytes	 86	 16800	 89	 16796	 0.966062	 0.820717	
Purkinje	cells	 170	 16716	 247	 16638	 0.685048	 0.000145	
Cells	in	red	pulp	 553	 16333	 417	 16468	 1.3371	 0.000011	
Melanocytes	 760	 16126	 469	 16416	 1.649611	 0	
Pneumocytes	 70	 16816	 146	 16739	 0.477257	 0	
Cells	in	glomeruli	 336	 16550	 225	 16660	 1.503259	 0.000003	
Hepatocytes	 213	 16673	 184	 16701	 1.159553	 0.157391	
Neuronal	cells	 185	 16701	 170	 16715	 1.089148	 0.455122	
Cells	in	white	pulp	 154	 16732	 228	 16657	 0.672411	 0.000137	
Squamous	epithelial	cells	 110	 16776	 123	 16762	 0.893563	 0.393819	
Langerhans	 300	 16586	 219	 16666	 1.37647	 0.000392	
Cells	in	molecular	layer	 514	 16372	 299	 16586	 1.741534	 0	
Smooth	muscle	cells	 204	 16682	 204	 16681	 0.99994	 1	
Myocytes	 371	 16515	 258	 16627	 1.447736	 0.000006	
Endothelial	cells	 896	 15990	 428	 16457	 2.154599	 0	
Cells	in	granular	layer	 141	 16745	 208	 16677	 0.675132	 0.000306	
Glandular	cells	 581	 16305	 422	 16463	 1.390119	 0	
Ovarian	stroma	cells	 627	 16259	 421	 16464	 1.508089	 0	
Peripheral	nerve	 194	 16692	 148	 16737	 1.314345	 0.014339	
Bile	duct	cells	 305	 16581	 287	 16598	 1.063807	 0.480902	
Fibroblasts	 103	 16783	 110	 16775	 0.935917	 0.631306	
Glial	cells	 497	 16389	 298	 16587	 1.687934	 0	
Cells	in	endometrial	stroma	 390	 16496	 313	 16572	 1.251747	 0.003742	
Neuropil	 83	 16803	 125	 16760	 0.662301	 0.003467	
Adipocytes	 74	 16812	 105	 16780	 0.70342	 0.020262	

Table 4.A.2: Cell-specific synthetic lethality 
The number of edges removed in each cell-specific context compared to the expected number removed. OR and p-
values are calculated using Fisher’s exact test. 
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ABCD1	 CDC45	 GTF2F1	 MED22	 POLR1A	 SYK	
ABCD3	 CDC7	 GTF2F2	 MED25	 POLR1B	 TAB2	
ABL1	 CDCA8	 GTF2H1	 MED30	 POLR1D	 TAF1	
ACVR1B	 CFLAR	 GTF3C2	 MED7	 POLR2E	 TAF13	
ADSL	 CHMP4A	 GTF3C3	 MET	 POLR2F	 TAF1D	
ADSS	 CLINT1	 GTF3C4	 MIS12	 POLR2G	 TAF6	
ALDH7A1	 CLSPN	 GTF3C5	 MNAT1	 POLR2H	 TALDO1	
ANAPC1	 COPE	 HARS	 MOB1A	 POLR3C	 TAX1BP1	
ANAPC10	 CPSF1	 HERC2	 MTA1	 POLR3D	 TCEA1	
ANAPC11	 CRKL	 HGS	 MTA3	 POLR3F	 TEC	
ANAPC2	 CTSA	 HIRA	 MVD	 PPP2CB	 TGFBR1	
ANAPC4	 CXCR4	 HRAS	 NAPA	 PPP2R1B	 THRA	
ANAPC5	 CYLD	 IDH1	 NCAPD2	 PPP2R5A	 TICAM1	
AP1B1	 DAPK1	 IL1R1	 NCAPG	 PPP2R5C	 TIRAP	
AP2A1	 DCK	 IL6ST	 NCOA1	 PPP2R5D	 TLR4	
APAF1	 DCP2	 INCENP	 NCOA2	 PRKCI	 TNF	
ARCN1	 DLAT	 ING4	 NCOA6	 PRKCQ	 TNFAIP3	
ARHGEF1	 DMAP1	 ING5	 NCOR1	 PRKCZ	 TNFRSF10B	
ARHGEF6	 DNMT3A	 INSR	 NDC80	 PSME2	 TNFRSF1A	
ARHGEF7	 DR1	 IRAK4	 NDUFS2	 PTTG1	 TOLLIP	
ASH2L	 DSN1	 IRF7	 NDUFS3	 PXN	 TPM2	
ASS1	 DVL1	 IRS1	 NDUFS6	 RACGAP1	 TPM3	
ATG12	 DVL3	 IRS2	 NDUFS8	 RAD17	 TRADD	
ATG5	 DZIP3	 ITK	 NDUFV1	 RAD9A	 TRAF3	
AURKB	 E2F4	 KAT6A	 NDUFV2	 RAE1	 TRIM25	
AXIN1	 ECHS1	 KIF23	 NFKB2	 RANGAP1	 TRIM37	
BAIAP2	 EDC4	 KIF3A	 NFYA	 RAP1A	 TSC22D3	
BAK1	 EED	 KIFAP3	 NFYB	 RBCK1	 UBE2B	
BAX	 EHMT2	 KIT	 NME1	 RFC1	 UBE2C	
BCAP31	 EPN1	 KLC1	 NME2	 RFC3	 UBE2R2	
BCAR1	 ERBB3	 KLC2	 NOD1	 RHEB	 UBE2S	
BCL2L1	 ERCC1	 KLC4	 NOD2	 RIPK1	 UBE2V1	
BCR	 ERCC2	 KMT2D	 NOS3	 RIPK2	 UBE3A	
BID	 ERCC3	 KYNU	 NPEPPS	 RIPK3	 UGDH	
BIRC2	 ERCC4	 LATS1	 NR1I2	 RPS6KA3	 USP8	
BIRC3	 EXOC1	 LATS2	 NSL1	 RRN3	 VAMP2	
BIRC5	 EXOC4	 LCK	 NT5C2	 SARS	 VAMP8	
BMPR1A	 EXOC8	 LEF1	 NUBP2	 SEC24A	 VAPA	
BRAF	 EXOSC1	 LEO1	 NUF2	 SEC24C	 VAPB	
BRCA2	 EXOSC6	 LSM3	 NUP98	 SEC61A1	 VAV2	
CABIN1	 FADD	 LSM5	 ORC3	 SEC61B	 VAV3	
CAMK2A	 FANCC	 LSM6	 ORC4	 SGK1	 VPS25	
CARD11	 FANCG	 MAD2L1	 ORC5	 SHC1	 VPS36	
CASC5	 FANCL	 MALT1	 ORC6	 SMAD6	 VPS4A	
CASP10	 FAS	 MAP2K1	 PAK2	 SMAD7	 WAPAL	
CASP2	 FBXO5	 MAP2K2	 PARD3	 SMC2	 WARS	
CASP3	 FZR1	 MAP2K4	 PARD6A	 SMS	 WAS	
CASP7	 GATAD2B	 MAP2K6	 PARD6B	 SNAP23	 WDR5	
CASP8	 GCDH	 MAP2K7	 PARK2	 SNF8	 WIPF1	
CASP9	 GNA12	 MAP3K14	 PDGFRB	 SOCS1	 WWP1	
CAV1	 GOLGA2	 MAPK10	 PDHB	 SOCS3	 XIAP	
CBLB	 GORASP1	 MAPK8	 PDPK1	 SOS1	 XPC	
CCDC101	 GOT1	 MAPK9	 PDS5A	 SREBF1	 XPO5	
CCNA1	 GSK3A	 MBIP	 PFAS	 STAG1	 YEATS4	
CCNB1	 GSR	 MCM10	 PGD	 STAG2	 ZAP70	
CCNT1	 GSS	 ME1	 PHF1	 STAM	 ZFYVE9	
CD44	 GTF2A1	 MEAF6	 PIK3C3	 STAM2	 ZWINT	
CDC16	 GTF2B	 MED12	 PIK3CA	 STAT3	 		
CDC23	 GTF2E1	 MED15	 PIK3R4	 STAT5B	 		
CDC25C	 GTF2E2	 MED16	 PLCG2	 STX4	 		

Table 4.A.3: List of genes in the “Landscape of Synthetic Lethality” 
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Figure 4.A.2: Median SINaTRA scores of drug targets 
We observed that gene pairs targeted by drugs are significantly enriched in SINaTRA score, and the median scores 
increase from genes that contain only one non-cancer drug target, to those that are affected by two non-cancer drug 
targets, to those that contain one cancer drug target, to those that contain two. The differences are significant for all 
comparisons. 
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Table 4.A.3: List of human gene pairs with SINaTRA ≥ 0.95 (p.107-116) 
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Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
SMS	 6611	 KYNU	 8942	 0.990	
MAP2K1	 5604	 BRAP	 8315	 0.988	
PAWR	 5074	 SNX6	 58533	 0.988	
GSR	 2936	 KYNU	 8942	 0.987	
MSH3	 4437	 PMS2	 5395	 0.986	
PPP2R5D	 5528	 TPD52L2	 7165	 0.986	
PPIB	 5479	 RBMS1	 5937	 0.986	
BCR	 613	 SOS1	 6654	 0.986	
USP33	 23032	 USP28	 57646	 0.986	
RCOR1	 23186	 REST	 5978	 0.985	
MRPL2	 51069	 MRPL9	 65005	 0.985	
BIRC5	 332	 CASP9	 842	 0.985	
MSH3	 4437	 RAD9A	 5883	 0.984	
NAGK	 55577	 KYNU	 8942	 0.984	
OPTN	 10133	 RIPK1	 8737	 0.983	
TWF2	 11344	 CAPN2	 824	 0.982	
TNIP1	 10318	 TAX1BP1	 8887	 0.982	
MARK2	 2011	 PARD6A	 50855	 0.982	
PACSIN3	 29763	 WIPF1	 7456	 0.982	
PPIB	 5479	 SUGP1	 57794	 0.982	
VAPB	 9217	 SEC22B	 9554	 0.982	
C11orf58	 10944	 KYNU	 8942	 0.982	
RTF1	 23168	 WDR61	 80349	 0.982	
GSE1	 23199	 MTA3	 57504	 0.981	
SFXN3	 81855	 SFXN1	 94081	 0.981	
KMT2A	 4297	 AFF1	 4299	 0.981	
POLR3C	 10623	 GTF3C5	 9328	 0.981	
GATAD2B	 57459	 MTA3	 57504	 0.981	
SNX6	 58533	 SHMT1	 6470	 0.981	
BIRC5	 332	 CDCA8	 55143	 0.981	
MAPK9	 5601	 MAP2K7	 5609	 0.980	
RAD17	 5884	 RFC3	 5983	 0.980	
HRAS	 3265	 BRAP	 8315	 0.980	
TPD52	 7163	 TPD52L2	 7165	 0.980	
NSF	 4905	 STX7	 8417	 0.980	
TOPBP1	 11073	 ATRIP	 84126	 0.980	
POLR1A	 25885	 POLR1B	 84172	 0.980	
RIPK3	 11035	 RIPK1	 8737	 0.980	
GSPT1	 2935	 RDX	 5962	 0.980	
CASP7	 840	 CASP10	 843	 0.979	
CBX1	 10951	 DNMT3A	 1788	 0.979	
TIMM44	 10469	 PPIB	 5479	 0.979	
TNK2	 10188	 BCAR1	 9564	 0.979	
HEXIM1	 10614	 AFF1	 4299	 0.979	
ATG7	 10533	 SNX6	 58533	 0.979	
APAF1	 317	 CASP9	 842	 0.979	
C11orf58	 10944	 SMS	 6611	 0.979	
FAS	 355	 RIPK1	 8737	 0.979	
JUNB	 3726	 FOSL1	 8061	 0.979	
MALT1	 10892	 USP2	 9099	 0.979	
PACSIN2	 11252	 WIPF1	 7456	 0.979	
DDOST	 1650	 AUP1	 550	 0.979	
RBMS1	 5937	 SCP2	 6342	 0.979	
STX7	 8417	 SCO2	 9997	 0.979	
RBMS1	 5937	 STX7	 8417	 0.979	
HEXIM1	 10614	 BRD4	 23476	 0.979	
TOR1AIP1	 26092	 RIF1	 55183	 0.979	
GDI2	 2665	 RAB1A	 5861	 0.978	
GABPA	 2551	 SP3	 6670	 0.978	
CASP10	 843	 RIPK1	 8737	 0.978	
DNM1L	 10059	 CYHR1	 50626	 0.978	
UBQLN2	 29978	 PFDN2	 5202	 0.978	
SEL1L	 6400	 DERL1	 79139	 0.978	
RBCK1	 10616	 NOD2	 64127	 0.977	
ARPC1B	 10095	 PPP2R5D	 5528	 0.977	
PPP1R2	 5504	 NAE1	 8883	 0.977	
MALT1	 10892	 PRKCQ	 5588	 0.977	
ZMYND8	 23613	 INTS1	 26173	 0.977	
POLR3F	 10621	 POLR3C	 10623	 0.977	
POLR1A	 25885	 POLR2H	 5437	 0.977	
VAV2	 7410	 CD44	 960	 0.977	
USP21	 27005	 USP2	 9099	 0.977	

Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
MKRN3	 7681	 RNF7	 9616	 0.977	
E2F6	 1876	 RYBP	 23429	 0.976	
MET	 4233	 SOS1	 6654	 0.976	
CARD11	 84433	 USP2	 9099	 0.976	
BAIAP2	 10458	 CDC25C	 995	 0.976	
UBE2J1	 51465	 AUP1	 550	 0.976	
NME1	 4830	 NME2	 4831	 0.976	
ADSS	 159	 DCK	 1633	 0.976	
USP8	 9101	 KIF23	 9493	 0.976	
PPIB	 5479	 ZC3H11A	 9877	 0.976	
MRPL9	 65005	 MRPL44	 65080	 0.976	
TNF	 7124	 TNFRSF1B	 7133	 0.976	
DLAT	 1737	 PDHB	 5162	 0.976	
TRIP4	 9325	 MED13	 9969	 0.976	
TAF1	 6872	 TAF7	 6879	 0.976	
STX4	 6810	 SNAP23	 8773	 0.976	
PPP2R1B	 5519	 PPP2R5D	 5528	 0.976	
MED28	 80306	 MED7	 9443	 0.976	
TICAM1	 148022	 TRAF5	 7188	 0.975	
HK1	 3098	 CAPN2	 824	 0.975	
MAP2K1	 5604	 WNK1	 65125	 0.975	
DNMT3A	 1788	 POLR2H	 5437	 0.975	
APEH	 327	 SNX6	 58533	 0.975	
INSR	 3643	 SOCS3	 9021	 0.975	
WARS	 7453	 XPNPEP1	 7511	 0.975	
TPRKB	 51002	 OSGEP	 55644	 0.975	
UBE2V2	 7336	 TRIM5	 85363	 0.975	
ADSS	 159	 PTMS	 5763	 0.975	
IKZF1	 10320	 GATA1	 2623	 0.975	
MAP2K1	 5604	 LAMTOR3	 8649	 0.975	
MARK3	 4140	 CDC25C	 995	 0.975	
TPD52L2	 7165	 AARSD1	 80755	 0.975	
ERLIN2	 11160	 FLOT2	 2319	 0.975	
ATG4B	 23192	 ULK1	 8408	 0.975	
STX7	 8417	 VAMP8	 8673	 0.975	
DNM1L	 10059	 PSMG3	 84262	 0.975	
GATA1	 2623	 SMARCD1	 6602	 0.974	
RIPK1	 8737	 USP2	 9099	 0.974	
RBCK1	 10616	 RIPK1	 8737	 0.974	
PIK3R4	 30849	 PIK3C3	 5289	 0.974	
LCK	 3932	 BCAR1	 9564	 0.974	
BAX	 581	 CASP9	 842	 0.974	
TOPBP1	 11073	 PMS2	 5395	 0.974	
BAK1	 578	 BAX	 581	 0.974	
DNM1L	 10059	 APEH	 327	 0.974	
GSR	 2936	 PEPD	 5184	 0.974	
DNMT3A	 1788	 EHMT1	 79813	 0.974	
ORC4	 5000	 MCM10	 55388	 0.974	
BRD4	 23476	 RFC3	 5983	 0.974	
INTS6	 26512	 SEM1	 7979	 0.974	
STX4	 6810	 VAMP8	 8673	 0.974	
PEPD	 5184	 KYNU	 8942	 0.973	
UBE2V2	 7336	 MKRN3	 7681	 0.973	
GPS2	 2874	 THRA	 7067	 0.973	
OPTN	 10133	 TNIP1	 10318	 0.973	
ORC5	 5001	 CDC45	 8318	 0.973	
RCOR1	 23186	 SNAI1	 6615	 0.973	
XPNPEP1	 7511	 API5	 8539	 0.973	
PDPK1	 5170	 PRKCQ	 5588	 0.973	
RBCK1	 10616	 USP21	 27005	 0.973	
RNF31	 55072	 NOD2	 64127	 0.973	
RBMS1	 5937	 RRBP1	 6238	 0.973	
CEBPG	 1054	 JUNB	 3726	 0.973	
TRIP4	 9325	 MED23	 9439	 0.973	
TAF7	 6879	 SETD7	 80854	 0.973	
CABIN1	 23523	 HIRA	 7290	 0.973	
OSGEP	 55644	 ZPR1	 8882	 0.973	
IDH1	 3417	 PTMS	 5763	 0.973	
SH3GLB2	 56904	 SH3GL1	 6455	 0.973	
EHMT2	 10919	 DNMT3A	 1788	 0.973	
DNM1L	 10059	 TBC1D15	 64786	 0.973	
CSF1R	 1436	 SOS1	 6654	 0.973	
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Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
MCM10	 55388	 CDC45	 8318	 0.972	
NSF	 4905	 NAPA	 8775	 0.972	
VPS36	 51028	 VPS25	 84313	 0.972	
ARAF	 369	 MAP2K1	 5604	 0.972	
ARHGEF7	 8874	 ARHGEF6	 9459	 0.972	
XPNPEP1	 7511	 GTF3C4	 9329	 0.972	
TTC9C	 283237	 VPS4B	 9525	 0.972	
PAWR	 5074	 CARS	 833	 0.972	
TES	 26136	 OSGEP	 55644	 0.972	
RTF1	 23168	 TCEA1	 6917	 0.972	
BIRC5	 332	 INCENP	 3619	 0.972	
ECHS1	 1892	 GSS	 2937	 0.972	
ORC3	 23595	 CDC45	 8318	 0.972	
NFYA	 4800	 NFYB	 4801	 0.972	
PPP2R5A	 5525	 PPP2R5C	 5527	 0.972	
TNIP1	 10318	 TNF	 7124	 0.972	
RBMS1	 5937	 ZC3H11A	 9877	 0.972	
TAF6	 6878	 SETD7	 80854	 0.972	
TAF1	 6872	 TAF13	 6884	 0.972	
STX7	 8417	 SNX3	 8724	 0.972	
SCFD1	 23256	 SNAP23	 8773	 0.972	
AP2A1	 160	 EPN1	 29924	 0.972	
STAG1	 10274	 WAPL	 23063	 0.972	
NDC80	 10403	 ZWINT	 11130	 0.972	
PEPD	 5184	 CTSA	 5476	 0.972	
DCK	 1633	 THOP1	 7064	 0.972	
WDR5	 11091	 KAT6A	 7994	 0.972	
PACSIN2	 11252	 UGP2	 7360	 0.971	
RAB1A	 5861	 RAB11B	 9230	 0.971	
INSR	 3643	 SOCS1	 8651	 0.971	
DCK	 1633	 PTMS	 5763	 0.971	
BID	 637	 CASP2	 835	 0.971	
ARAP1	 116985	 INPP5D	 3635	 0.971	
SIAH2	 6478	 SKI	 6497	 0.971	
INPP5D	 3635	 BCR	 613	 0.971	
GORASP2	 26003	 TBCD	 6904	 0.971	
SEC61B	 10952	 ASNA1	 439	 0.971	
MFAP1	 4236	 SNIP1	 79753	 0.971	
VAPB	 9217	 VAPA	 9218	 0.971	
ATG12	 9140	 ATG5	 9474	 0.971	
ARPC3	 10094	 CALU	 813	 0.971	
ERP44	 23071	 PAK2	 5062	 0.971	
OSGEP	 55644	 LAGE3	 8270	 0.971	
CPSF1	 29894	 GTF3C3	 9330	 0.971	
PEPD	 5184	 CASP7	 840	 0.971	
TBCB	 1155	 ERP44	 23071	 0.971	
LEO1	 123169	 DNMT3A	 1788	 0.971	
TRAIP	 10293	 TNFRSF1B	 7133	 0.971	
TRAF5	 7188	 RIPK1	 8737	 0.971	
UBE2J1	 51465	 DERL1	 79139	 0.971	
CBX1	 10951	 CHD1L	 9557	 0.971	
MNAT1	 4331	 USP2	 9099	 0.971	
TNK2	 10188	 AMPH	 273	 0.971	
BACH1	 571	 BRCA2	 675	 0.971	
APC2	 10297	 ANAPC10	 10393	 0.971	
UBE2J1	 51465	 YOD1	 55432	 0.971	
VAMP8	 8673	 NAPA	 8775	 0.971	
OSGEP	 55644	 TPD52L2	 7165	 0.971	
GLRX3	 10539	 IDH1	 3417	 0.971	
CRKL	 1399	 CBLB	 868	 0.970	
STN1	 79991	 MED27	 9442	 0.970	
TOPBP1	 11073	 BACH1	 571	 0.970	
S100A16	 140576	 VAPB	 9217	 0.970	
CSTF2	 1478	 GET4	 51608	 0.970	
NFYB	 4801	 CNTN2	 6900	 0.970	
ANAPC10	 10393	 PTTG1	 9232	 0.970	
TWF2	 11344	 OGFOD1	 55239	 0.970	
RAD9A	 5883	 CLSPN	 63967	 0.970	
POLR2G	 5436	 RECQL5	 9400	 0.970	
TGFB1I1	 7041	 TRAF4	 9618	 0.970	
BRCA2	 675	 SEM1	 7979	 0.970	
ATG3	 64422	 ATG12	 9140	 0.970	

Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
VAV2	 7410	 SOCS1	 8651	 0.970	
STAG1	 10274	 PDS5A	 23244	 0.970	
TIMM44	 10469	 RBMS1	 5937	 0.970	
SOS1	 6654	 LRRK1	 79705	 0.970	
BRD4	 23476	 AFF1	 4299	 0.970	
TOPBP1	 11073	 RAD9A	 5883	 0.970	
NME1	 4830	 WDR1	 9948	 0.970	
WAPL	 23063	 PDS5A	 23244	 0.970	
POLR2G	 5436	 MED28	 80306	 0.970	
ADSL	 158	 API5	 8539	 0.970	
ADSL	 158	 UBQLN2	 29978	 0.970	
PHF1	 5252	 HIST1H3E	 8353	 0.970	
ZAP70	 7535	 CBLB	 868	 0.970	
HEXIM1	 10614	 CCNT1	 904	 0.970	
CHAF1B	 8208	 HIST1H3E	 8353	 0.970	
BAP1	 8314	 HAT1	 8520	 0.970	
NDUFS8	 4728	 NDUFV2	 4729	 0.969	
NCDN	 23154	 PPP1R2	 5504	 0.969	
BID	 637	 FADD	 8772	 0.969	
IRS1	 3667	 PIK3CA	 5290	 0.969	
HIC1	 3090	 EED	 8726	 0.969	
MARK2	 2011	 HDAC7	 51564	 0.969	
ERLIN2	 11160	 INSIG1	 3638	 0.969	
PLIN3	 10226	 ADSL	 158	 0.969	
VAV2	 7410	 CBLB	 868	 0.969	
RNF31	 55072	 TRIM25	 7706	 0.969	
TMED9	 54732	 SEC22B	 9554	 0.969	
NDUFA7	 4701	 STX7	 8417	 0.969	
MAP2K7	 5609	 MAP2K4	 6416	 0.969	
ARPC1A	 10552	 TPD52L2	 7165	 0.969	
ANAPC11	 51529	 PTTG1	 9232	 0.969	
TAL1	 6886	 TCF4	 6925	 0.969	
PLIN3	 10226	 IPO11	 51194	 0.969	
AFF1	 4299	 CCNT1	 904	 0.969	
FERMT2	 10979	 ERP44	 23071	 0.969	
UBQLN2	 29978	 RPA2	 6118	 0.969	
DNM1L	 10059	 SEC24A	 10802	 0.969	
TNK2	 10188	 PDGFRB	 5159	 0.969	
NOD2	 64127	 RIPK1	 8737	 0.969	
NDUFS2	 4720	 NDUFV2	 4729	 0.969	
UBQLN2	 29978	 TPD52L2	 7165	 0.969	
MPRIP	 23164	 RACGAP1	 29127	 0.969	
NCOA6	 23054	 KMT2B	 9757	 0.969	
GSPT2	 23708	 RDX	 5962	 0.969	
CASP2	 835	 CASP7	 840	 0.969	
TCEA1	 6917	 WDR61	 80349	 0.969	
TAF6	 6878	 TAF13	 6884	 0.969	
VPS29	 51699	 TBCD	 6904	 0.969	
NFKB2	 4791	 MAP3K14	 9020	 0.969	
ASS1	 445	 ATG3	 64422	 0.969	
MAFG	 4097	 BACH1	 571	 0.968	
VAMP8	 8673	 VAMP3	 9341	 0.968	
SSSCA1	 10534	 VPS4B	 9525	 0.968	
SMARCD1	 6602	 SMARCD2	 6603	 0.968	
LEO1	 123169	 WDR61	 80349	 0.968	
ANKRD28	 23243	 PPP6C	 5537	 0.968	
BIRC3	 330	 BIRC5	 332	 0.968	
LSM6	 11157	 LSM5	 23658	 0.968	
FBXO5	 26271	 CDC23	 8697	 0.968	
MED15	 51586	 TRIP4	 9325	 0.968	
DNM2	 1785	 PACSIN3	 29763	 0.968	
NUBP2	 10101	 PFDN2	 5202	 0.968	
RBCK1	 10616	 TRIM25	 7706	 0.968	
SAE1	 10055	 ADSL	 158	 0.968	
MARK2	 2011	 USP21	 27005	 0.968	
TICAM1	 148022	 RIPK1	 8737	 0.968	
EXOSC2	 23404	 AICDA	 57379	 0.968	
PLIN3	 10226	 RPRD1A	 55197	 0.968	
PFDN2	 5202	 VBP1	 7411	 0.968	
RAB8A	 4218	 SCP2	 6342	 0.968	
FAS	 355	 BID	 637	 0.968	
INTS1	 26173	 POLR2H	 5437	 0.968	
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Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
SBDS	 51119	 STX7	 8417	 0.968	
SERTAD1	 29950	 CCND2	 894	 0.968	
LPP	 4026	 TPRKB	 51002	 0.968	
PPP2CB	 5516	 PPP2R5D	 5528	 0.968	
GTF3C2	 2976	 GTF3C5	 9328	 0.968	
PRKCQ	 5588	 CARD11	 84433	 0.968	
INTS9	 55756	 SEM1	 7979	 0.968	
ANKFY1	 51479	 ROCK1	 6093	 0.968	
POLR3C	 10623	 GTF3C2	 2976	 0.968	
CHRAC1	 54108	 PTMS	 5763	 0.968	
ATG7	 10533	 ATG3	 64422	 0.968	
ZWINT	 11130	 NUF2	 83540	 0.968	
USP33	 23032	 USP21	 27005	 0.968	
UBE2O	 63893	 TRAF5	 7188	 0.968	
SSSCA1	 10534	 UBQLN2	 29978	 0.968	
PAWR	 5074	 SHMT1	 6470	 0.968	
FERMT2	 10979	 DFFA	 1676	 0.968	
SURF4	 6836	 SEPT7	 989	 0.968	
ADSS	 159	 HSPE1	 3336	 0.968	
KRT85	 3891	 USP8	 9101	 0.968	
SCP2	 6342	 STX7	 8417	 0.967	
SEC24A	 10802	 STMN2	 11075	 0.967	
USP28	 57646	 UCHL3	 7347	 0.967	
LPP	 4026	 PPP2R5D	 5528	 0.967	
ASS1	 445	 CTSA	 5476	 0.967	
FANCG	 2189	 BRCA2	 675	 0.967	
CASP7	 840	 CASP8	 841	 0.967	
TIRAP	 114609	 TLR4	 7099	 0.967	
ETF1	 2107	 GSPT1	 2935	 0.967	
MRPL50	 54534	 MRPL44	 65080	 0.967	
MRPL10	 124995	 MRPL41	 64975	 0.967	
CASP10	 843	 MAP3K14	 9020	 0.967	
CASP2	 835	 CASP10	 843	 0.967	
DIAPH1	 1729	 KLC1	 3831	 0.967	
DNM1L	 10059	 VPS26A	 9559	 0.967	
IPO11	 51194	 TPD52L2	 7165	 0.967	
DMAP1	 55929	 YEATS4	 8089	 0.967	
FAS	 355	 TRADD	 8717	 0.967	
RYBP	 23429	 PCGF2	 7703	 0.967	
ACBD3	 64746	 TBCD	 6904	 0.967	
MALT1	 10892	 CARD11	 84433	 0.967	
YAF2	 10138	 PCGF2	 7703	 0.967	
RAD9A	 5883	 RAD17	 5884	 0.967	
RIC8A	 60626	 WDR61	 80349	 0.967	
INSR	 3643	 STAT5B	 6777	 0.967	
PARD6A	 50855	 MARK4	 57787	 0.967	
SNX6	 58533	 SNX1	 6642	 0.967	
ADSS	 159	 WDR1	 9948	 0.967	
ORC3	 23595	 ORC5	 5001	 0.967	
MSH3	 4437	 SLX4	 84464	 0.967	
FBXO5	 26271	 UBE2S	 27338	 0.967	
APEH	 327	 PAWR	 5074	 0.967	
NIPBL	 25836	 SP100	 6672	 0.967	
RNF31	 55072	 RIPK2	 8767	 0.967	
THY1	 7070	 SCO2	 9997	 0.967	
FERMT2	 10979	 ALDH7A1	 501	 0.967	
AP1B1	 162	 CLINT1	 9685	 0.967	
RIPK1	 8737	 TAX1BP1	 8887	 0.967	
TWF2	 11344	 PDIA4	 9601	 0.966	
MRPL24	 79590	 MRPL45	 84311	 0.966	
TYMS	 7298	 VPS4B	 9525	 0.966	
RNF31	 55072	 TNF	 7124	 0.966	
CBLC	 23624	 ZAP70	 7535	 0.966	
WDR4	 10785	 ADSL	 158	 0.966	
GTF2A1	 2957	 TAF1	 6872	 0.966	
TAF1	 6872	 CCNT1	 904	 0.966	
DRAP1	 10589	 TAF9B	 51616	 0.966	
MAPK9	 5601	 MAP2K4	 6416	 0.966	
PAFAH1B2	 5049	 PPP5C	 5536	 0.966	
SCFD1	 23256	 NSF	 4905	 0.966	
SCAF4	 57466	 COA7	 65260	 0.966	
GSS	 2937	 PPP5C	 5536	 0.966	

Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
RASSF1	 11186	 LATS1	 9113	 0.966	
DNMT3A	 1788	 RTF1	 23168	 0.966	
SPEN	 23013	 RUNX1T1	 862	 0.966	
SCFD1	 23256	 MRPL40	 64976	 0.966	
VAV3	 10451	 INSR	 3643	 0.966	
ERCC4	 2072	 SLX4	 84464	 0.966	
TRAIP	 10293	 RNF114	 55905	 0.966	
METTL1	 4234	 IPO11	 51194	 0.966	
ERBB3	 2065	 ZAP70	 7535	 0.966	
CEBPG	 1054	 FOSL1	 8061	 0.966	
VAMP2	 6844	 VAPB	 9217	 0.966	
RAP1GDS1	 5910	 NAE1	 8883	 0.966	
SMAD6	 4091	 TSC22D1	 8848	 0.966	
HRAS	 3265	 PIK3CA	 5290	 0.966	
MRPL3	 11222	 MRPL42	 28977	 0.966	
ORC3	 23595	 MCM10	 55388	 0.966	
PFDN2	 5202	 TPD52L2	 7165	 0.966	
FGFR1OP2	 26127	 ZRANB1	 54764	 0.966	
TRIM33	 51592	 LDB1	 8861	 0.966	
DNM2	 1785	 AMPH	 273	 0.966	
CEBPD	 1052	 LEF1	 51176	 0.966	
SYK	 6850	 CBLB	 868	 0.966	
PCGF3	 10336	 BCOR	 54880	 0.966	
BAIAP2	 10458	 KLC4	 89953	 0.966	
PAWR	 5074	 SNX2	 6643	 0.966	
USP28	 57646	 USP8	 9101	 0.966	
WDR82	 80335	 ASH2L	 9070	 0.966	
SRPRB	 58477	 RRBP1	 6238	 0.966	
NUBP2	 10101	 DSTN	 11034	 0.966	
YOD1	 55432	 TRIM54	 57159	 0.966	
PACSIN3	 29763	 ITSN1	 6453	 0.966	
STX4	 6810	 VAPB	 9217	 0.966	
VPS29	 51699	 SHMT1	 6470	 0.966	
LSM6	 11157	 LSM3	 27258	 0.966	
TRIM23	 373	 USP2	 9099	 0.966	
CFLAR	 8837	 MAP3K14	 9020	 0.966	
MAP2K1	 5604	 MAP2K2	 5605	 0.965	
SHMT1	 6470	 CARS	 833	 0.965	
KIT	 3815	 CBLB	 868	 0.965	
SMG1	 23049	 GSPT1	 2935	 0.965	
SWAP70	 23075	 PPP2R5C	 5527	 0.965	
UFM1	 51569	 OSGEP	 55644	 0.965	
RPS6KA3	 6197	 NPEPPS	 9520	 0.965	
GSS	 2937	 GINS3	 64785	 0.965	
SMAD6	 4091	 ACVR1B	 91	 0.965	
GARS	 2617	 UGDH	 7358	 0.965	
GTF3C4	 9329	 GTF3C3	 9330	 0.965	
SARS	 6301	 TBCD	 6904	 0.965	
RAB8A	 4218	 RAB11B	 9230	 0.965	
SEL1L	 6400	 SYVN1	 84447	 0.965	
TDP2	 51567	 TRAF5	 7188	 0.965	
DPP3	 10072	 ASS1	 445	 0.965	
IDH1	 3417	 NME1	 4830	 0.965	
SNF8	 11267	 ACBD3	 64746	 0.965	
ADSL	 158	 WARS	 7453	 0.965	
TWF2	 11344	 HK1	 3098	 0.965	
CHMP5	 51510	 CHMP1B	 57132	 0.965	
CASP10	 843	 TNFRSF10A	 8797	 0.965	
GPS2	 2874	 TBL1XR1	 79718	 0.965	
ALDH7A1	 501	 PGD	 5226	 0.965	
REST	 5978	 CDYL	 9425	 0.965	
FAS	 355	 CFLAR	 8837	 0.965	
SH3GLB2	 56904	 AARSD1	 80755	 0.965	
WWP1	 11059	 SMAD6	 4091	 0.965	
PLIN3	 10226	 ANKMY2	 57037	 0.965	
OSGEP	 55644	 P3H1	 64175	 0.965	
RFC1	 5981	 RFC3	 5983	 0.965	
INPP5D	 3635	 LRRK1	 79705	 0.965	
TNFRSF1B	 7133	 TRADD	 8717	 0.965	
KMT2A	 4297	 CCNT1	 904	 0.965	
OSGEP	 55644	 NIF3L1	 60491	 0.965	
ATG3	 64422	 ATG5	 9474	 0.965	
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Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
MRPL3	 11222	 MRPL4	 51073	 0.965	
PFDN2	 5202	 PFDN5	 5204	 0.965	
PARD6A	 50855	 PARD6B	 84612	 0.965	
AMBRA1	 55626	 ULK1	 8408	 0.965	
ARAF	 369	 WNK1	 65125	 0.965	
RIPK2	 8767	 TRAF4	 9618	 0.965	
PAWR	 5074	 VPS29	 51699	 0.964	
ADSL	 158	 NPLOC4	 55666	 0.964	
INTS1	 26173	 CPSF3L	 54973	 0.964	
PFDN1	 5201	 PFDN2	 5202	 0.964	
CYLD	 1540	 RIPK1	 8737	 0.964	
BIRC2	 329	 RIPK1	 8737	 0.964	
ITK	 3702	 WAS	 7454	 0.964	
NDUFS2	 4720	 NDUFS3	 4722	 0.964	
METTL1	 4234	 TPD52L2	 7165	 0.964	
WARS	 7453	 GTF3C4	 9329	 0.964	
ING4	 51147	 JADE1	 79960	 0.964	
ZWINT	 11130	 DSN1	 79980	 0.964	
SRPRB	 58477	 RBMS1	 5937	 0.964	
UFM1	 51569	 UBE2V2	 7336	 0.964	
NCOA6	 23054	 MED15	 51586	 0.964	
VAMP8	 8673	 SNAP23	 8773	 0.964	
PEPD	 5184	 GDA	 9615	 0.964	
PPP5C	 5536	 GINS3	 64785	 0.964	
ATG4B	 23192	 ATG12	 9140	 0.964	
PQBP1	 10084	 ZC3H11A	 9877	 0.964	
RAB1A	 5861	 RAB7A	 7879	 0.964	
NCOA1	 8648	 TRIP4	 9325	 0.964	
RAB4A	 5867	 RABEP2	 79874	 0.964	
KIT	 3815	 TEC	 7006	 0.964	
CD2AP	 23607	 CBLB	 868	 0.964	
RYBP	 23429	 BCOR	 54880	 0.964	
LATS2	 26524	 AJUBA	 84962	 0.964	
ADSS	 159	 IDH1	 3417	 0.964	
C11orf58	 10944	 NAGK	 55577	 0.964	
BRD4	 23476	 MED14	 9282	 0.964	
MGA	 23269	 PCGF6	 84108	 0.964	
MAP3K11	 4296	 MAP2K7	 5609	 0.964	
ERCC1	 2067	 TAF7	 6879	 0.964	
PAFAH1B2	 5049	 NAE1	 8883	 0.964	
MRPL38	 64978	 MRPL11	 65003	 0.963	
FBXO5	 26271	 ANAPC11	 51529	 0.963	
EHD4	 30844	 GTF3C4	 9329	 0.963	
TRIM5	 85363	 USP2	 9099	 0.963	
RBCK1	 10616	 UBE2S	 27338	 0.963	
NUBP2	 10101	 UBA6	 55236	 0.963	
PFDN4	 5203	 VBP1	 7411	 0.963	
MAPK10	 5602	 MAP2K4	 6416	 0.963	
RYBP	 23429	 TFDP1	 7027	 0.963	
PLIN3	 10226	 WDR4	 10785	 0.963	
OS9	 10956	 UBE2J1	 51465	 0.963	
RPRD1B	 58490	 STAT5B	 6777	 0.963	
NDUFA7	 4701	 ZC3H11A	 9877	 0.963	
MAT2B	 27430	 SNX1	 6642	 0.963	
WDR61	 80349	 CTR9	 9646	 0.963	
HES1	 3280	 FANCL	 55120	 0.963	
ME1	 4199	 UGDH	 7358	 0.963	
SUGP1	 57794	 STX7	 8417	 0.963	
FADD	 8772	 TNFRSF10A	 8797	 0.963	
PLIN3	 10226	 ANP32A	 8125	 0.963	
HMG20A	 10363	 MTA3	 57504	 0.963	
PPP1R8	 5511	 EED	 8726	 0.963	
EPOR	 2057	 STAT5A	 6776	 0.963	
RIPK1	 8737	 CFLAR	 8837	 0.963	
CTPS2	 56474	 WARS	 7453	 0.963	
DPP3	 10072	 PEPD	 5184	 0.963	
USP33	 23032	 TRIM63	 84676	 0.963	
SBDS	 51119	 RBMS1	 5937	 0.963	
GDI2	 2665	 RAB11B	 9230	 0.963	
GTF3C5	 9328	 GTF3C3	 9330	 0.963	
ERLIN2	 11160	 DERL1	 79139	 0.963	
PACSIN3	 29763	 WAS	 7454	 0.963	

Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
MRPL3	 11222	 MRPL9	 65005	 0.963	
TAF6	 6878	 TAF7	 6879	 0.963	
RBMS1	 5937	 SNX3	 8724	 0.963	
SNX3	 8724	 ZC3H11A	 9877	 0.963	
NUP98	 4928	 RAE1	 8480	 0.963	
LGALS1	 3956	 PSMG1	 8624	 0.963	
OLA1	 29789	 RAP1GDS1	 5910	 0.963	
BCL2L1	 598	 TP53BP2	 7159	 0.963	
MCL1	 4170	 BAX	 581	 0.963	
KMT2D	 8085	 ASH2L	 9070	 0.963	
PHF1	 5252	 EED	 8726	 0.963	
SAE1	 10055	 WDR4	 10785	 0.962	
ZRANB1	 54764	 STRIP1	 85369	 0.962	
GTF2E2	 2961	 GTF2F2	 2963	 0.962	
PDCD10	 11235	 HK1	 3098	 0.962	
PDCD10	 11235	 ERP44	 23071	 0.962	
NDUFA7	 4701	 SCO2	 9997	 0.962	
UBE2S	 27338	 ANAPC11	 51529	 0.962	
ERLIN2	 11160	 UFD1L	 7353	 0.962	
GTF2B	 2959	 TCEA1	 6917	 0.962	
MRPL13	 28998	 MRPL44	 65080	 0.962	
AUP1	 550	 SYVN1	 84447	 0.962	
PAK2	 5062	 UBE2R2	 54926	 0.962	
HDLBP	 3069	 VPS36	 51028	 0.962	
METTL1	 4234	 NPLOC4	 55666	 0.962	
CSNK1D	 1453	 PPP1R14A	 94274	 0.962	
TACC3	 10460	 SSSCA1	 10534	 0.962	
MED4	 29079	 TRIP4	 9325	 0.962	
TOMM40	 10452	 TOMM22	 56993	 0.962	
TRPC4AP	 26133	 RIPK1	 8737	 0.962	
FKBP9	 11328	 API5	 8539	 0.962	
FANCC	 2176	 FANCL	 55120	 0.962	
NSF	 4905	 SNAP23	 8773	 0.962	
SUGP1	 57794	 ZC3H11A	 9877	 0.962	
ZC3H15	 55854	 THOC2	 57187	 0.962	
PQBP1	 10084	 RRBP1	 6238	 0.962	
RAB7A	 7879	 RAB11A	 8766	 0.962	
VAMP2	 6844	 SEC22B	 9554	 0.962	
KLC1	 3831	 KLC4	 89953	 0.962	
AGFG1	 3267	 TPRKB	 51002	 0.962	
AP2A1	 160	 DAB2	 1601	 0.962	
NUDC	 10726	 UGP2	 7360	 0.962	
TRAF3	 7187	 CBLB	 868	 0.962	
GTF2H1	 2965	 MNAT1	 4331	 0.962	
VAV3	 10451	 PDGFRB	 5159	 0.962	
TWF2	 11344	 ASNS	 440	 0.962	
ATF6	 22926	 NFYA	 4800	 0.962	
PHF8	 23133	 ASH2L	 9070	 0.962	
TRIM37	 4591	 TRAF3	 7187	 0.962	
POLR3C	 10623	 GTF3C4	 9329	 0.962	
GTF2F2	 2963	 POLR2H	 5437	 0.962	
TRAF5	 7188	 MAP3K14	 9020	 0.962	
PTPN12	 5782	 UGP2	 7360	 0.962	
ADSL	 158	 NT5C2	 22978	 0.962	
MED15	 51586	 MED28	 80306	 0.962	
MRPL38	 64978	 MRPL44	 65080	 0.962	
TOMM22	 56993	 LAMTOR3	 8649	 0.962	
TAF9B	 51616	 TAF1	 6872	 0.962	
TAF7	 6879	 CCNT1	 904	 0.962	
PHLPP1	 23239	 WDR20	 91833	 0.962	
MRPL37	 51253	 MRPL45	 84311	 0.961	
MECP2	 4204	 SKI	 6497	 0.961	
PQBP1	 10084	 NDUFA7	 4701	 0.961	
CABIN1	 23523	 AMPH	 273	 0.961	
TSC22D3	 1831	 SGK1	 6446	 0.961	
COMMD1	 150684	 RELB	 5971	 0.961	
CXCR4	 7852	 SOCS3	 9021	 0.961	
SNF8	 11267	 VPS36	 51028	 0.961	
HGS	 9146	 ZFYVE9	 9372	 0.961	
ARPC5	 10092	 TPRKB	 51002	 0.961	
MRPL2	 51069	 MRPL23	 6150	 0.961	
MAP2K2	 5605	 BRAF	 673	 0.961	
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NDUFS3	 4722	 NDUFV2	 4729	 0.961	
CAV1	 857	 CD44	 960	 0.961	
POLR1D	 51082	 POLR1B	 84172	 0.961	
SBDS	 51119	 SNX3	 8724	 0.961	
DCP2	 167227	 EDC4	 23644	 0.961	
DERL2	 51009	 UBE2J1	 51465	 0.961	
SEC61B	 10952	 SEC61A1	 29927	 0.961	
PARD6A	 50855	 PRKCI	 5584	 0.961	
AP1M2	 10053	 SCNN1B	 6338	 0.961	
TICAM1	 148022	 TLR4	 7099	 0.961	
MRPL40	 64976	 MRPL24	 79590	 0.961	
S100A16	 140576	 SUCLA2	 8803	 0.961	
CBX1	 10951	 MECP2	 4204	 0.961	
TRIM32	 22954	 TRIM5	 85363	 0.961	
TAL1	 6886	 LDB1	 8861	 0.961	
E2F6	 1876	 TFDP1	 7027	 0.961	
H2AFZ	 3015	 YEATS4	 8089	 0.961	
PTPRS	 5802	 PPFIA1	 8500	 0.961	
BIRC3	 330	 DZIP3	 9666	 0.961	
DR1	 1810	 METTL1	 4234	 0.961	
COPZ1	 22818	 TLE3	 7090	 0.961	
COPZ1	 22818	 KLC1	 3831	 0.961	
VPS29	 51699	 SNX6	 58533	 0.961	
GNA12	 2768	 GSK3A	 2931	 0.961	
UBE2J1	 51465	 SEL1L	 6400	 0.961	
TAF9B	 51616	 TAF13	 6884	 0.961	
TRAPPC8	 22878	 TRAPPC9	 83696	 0.961	
OPTN	 10133	 TAX1BP1	 8887	 0.960	
USP33	 23032	 TRIM54	 57159	 0.960	
BCCIP	 56647	 KYNU	 8942	 0.960	
RIPK3	 11035	 FADD	 8772	 0.960	
CTDP1	 9150	 TRIP4	 9325	 0.960	
POLR1A	 25885	 TAF1D	 79101	 0.960	
ADSS	 159	 CHRAC1	 54108	 0.960	
VPS36	 51028	 WDR12	 55759	 0.960	
FAS	 355	 CASP10	 843	 0.960	
UBE2V1	 7335	 RIPK1	 8737	 0.960	
MRPL42	 28977	 MRPL37	 51253	 0.960	
ATG4B	 23192	 ATG3	 64422	 0.960	
VPS36	 51028	 VPS29	 51699	 0.960	
BAIAP2	 10458	 MARK2	 2011	 0.960	
DCK	 1633	 PLS3	 5358	 0.960	
POLR2J	 5439	 MED9	 55090	 0.960	
MARK3	 4140	 HDAC7	 51564	 0.960	
TRIM23	 373	 RNF126	 55658	 0.960	
MAFG	 4097	 ATF3	 467	 0.960	
ADSL	 158	 XPNPEP1	 7511	 0.960	
GTF2F2	 2963	 TCEA1	 6917	 0.960	
BIRC2	 329	 NOD2	 64127	 0.960	
GTF2B	 2959	 NCOA1	 8648	 0.960	
MRPL2	 51069	 MRPL37	 51253	 0.960	
GTF3C5	 9328	 GTF3C4	 9329	 0.960	
RPA3	 6119	 AARSD1	 80755	 0.960	
NDUFS2	 4720	 NDUFS6	 4726	 0.960	
MED28	 80306	 TRIP4	 9325	 0.960	
ABL1	 25	 CBLB	 868	 0.960	
DR1	 1810	 MBIP	 51562	 0.960	
ZPR1	 8882	 VPS4B	 9525	 0.960	
ARAF	 369	 BRAF	 673	 0.960	
DVL1	 1855	 AXIN1	 8312	 0.960	
RRN3	 54700	 POLR1B	 84172	 0.960	
TICAM1	 148022	 RNF216	 54476	 0.960	
RXRG	 6258	 AJUBA	 84962	 0.960	
TRAF1	 7185	 TRADD	 8717	 0.960	
ING4	 51147	 MEAF6	 64769	 0.960	
RNF7	 9616	 CDC34	 997	 0.960	
LMO2	 4005	 TAL1	 6886	 0.960	
NUDC	 10726	 PAPOLA	 10914	 0.960	
STN1	 79991	 MED23	 9439	 0.960	
CASP9	 842	 CASP10	 843	 0.960	
UBA6	 55236	 OGFOD1	 55239	 0.960	
NRDC	 4898	 PPP3CA	 5530	 0.960	

Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
WDR4	 10785	 UBQLN2	 29978	 0.960	
SREBF1	 6720	 MED7	 9443	 0.960	
MED28	 80306	 MED10	 84246	 0.960	
PFDN2	 5202	 PFDN4	 5203	 0.960	
TRIM54	 57159	 UCHL3	 7347	 0.959	
PIK3C3	 5289	 BECN1	 8678	 0.959	
GTF2E1	 2960	 SH3GL1	 6455	 0.959	
UBE4B	 10277	 VPS4B	 9525	 0.959	
ORC4	 5000	 ORC5	 5001	 0.959	
ANAPC1	 64682	 PTTG1	 9232	 0.959	
DERL1	 79139	 CD3D	 915	 0.959	
ATP6V1A	 523	 RAB1A	 5861	 0.959	
RUNX1	 861	 CBFB	 865	 0.959	
MAD2L1	 4085	 CDC16	 8881	 0.959	
ECHS1	 1892	 RAP1GDS1	 5910	 0.959	
POLR2J	 5439	 MED28	 80306	 0.959	
GTF2B	 2959	 POLR2H	 5437	 0.959	
NUBP2	 10101	 PSME2	 5721	 0.959	
ASF1B	 55723	 HIST1H3E	 8353	 0.959	
USP28	 57646	 BAP1	 8314	 0.959	
FBXO5	 26271	 CDC16	 8881	 0.959	
TRAIP	 10293	 TRAF5	 7188	 0.959	
TAF1	 6872	 TAF2	 6873	 0.959	
POLR3C	 10623	 GTF3C3	 9330	 0.959	
SGF29	 112869	 MBIP	 51562	 0.959	
MED28	 80306	 CCNC	 892	 0.959	
RIPK1	 8737	 RIPK2	 8767	 0.959	
PLIN3	 10226	 CTPS2	 56474	 0.959	
PQBP1	 10084	 RBMS1	 5937	 0.959	
SMARCD2	 6603	 BAZ1B	 9031	 0.959	
TAB2	 23118	 RIPK1	 8737	 0.959	
USP21	 27005	 MARK4	 57787	 0.959	
KIF3A	 11127	 KIFAP3	 22920	 0.959	
ORC5	 5001	 CDC7	 8317	 0.959	
GTF2F2	 2963	 POLR2G	 5436	 0.959	
USP28	 57646	 STAM	 8027	 0.959	
DFFA	 1676	 PFAS	 5198	 0.959	
RIPK1	 8737	 FADD	 8772	 0.959	
GOLGA2	 2801	 GORASP1	 64689	 0.959	
STX5	 6811	 GOSR1	 9527	 0.959	
RCOR1	 23186	 MTA3	 57504	 0.959	
BID	 637	 TNFRSF1A	 7132	 0.959	
ALDH7A1	 501	 PDIA4	 9601	 0.959	
DCK	 1633	 TALDO1	 6888	 0.959	
COPZ1	 22818	 COPG2	 26958	 0.959	
PARK2	 5071	 CAMK2A	 815	 0.959	
USP33	 23032	 CCP110	 9738	 0.959	
MAP2K1	 5604	 BRAF	 673	 0.959	
BCL2L11	 10018	 MCL1	 4170	 0.959	
WDR12	 55759	 TBCD	 6904	 0.959	
BID	 637	 TNFRSF10B	 8795	 0.959	
CASP8	 841	 CASP9	 842	 0.959	
ASS1	 445	 PEPD	 5184	 0.959	
UBA6	 55236	 XPNPEP1	 7511	 0.959	
PAWR	 5074	 PPM1G	 5496	 0.959	
NUDC	 10726	 VPS26A	 9559	 0.959	
UBE4B	 10277	 SBDS	 51119	 0.959	
PSMG3	 84262	 PSMG1	 8624	 0.959	
FAS	 355	 FADD	 8772	 0.959	
PAICS	 10606	 SWAP70	 23075	 0.959	
UBA6	 55236	 UCHL3	 7347	 0.959	
RUFY1	 80230	 TELO2	 9894	 0.959	
MAPK7	 5598	 SGK1	 6446	 0.959	
MED6	 10001	 STN1	 79991	 0.959	
CSNK1D	 1453	 FHL1	 2273	 0.959	
EXOC1	 55763	 EXOC4	 60412	 0.959	
WDR5	 11091	 WDR61	 80349	 0.959	
MED22	 6837	 MED7	 9443	 0.959	
STX4	 6810	 VAMP2	 6844	 0.958	
STX4	 6810	 NAPA	 8775	 0.958	
RBCK1	 10616	 USP2	 9099	 0.958	
MRPL42	 28977	 MRPL44	 65080	 0.958	
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RNF31	 55072	 TRAF1	 7185	 0.958	
NUBP2	 10101	 XPNPEP1	 7511	 0.958	
NDUFS3	 4722	 NDUFV1	 4723	 0.958	
UBE2V2	 7336	 ZPR1	 8882	 0.958	
WDR82	 80335	 KMT2D	 8085	 0.958	
HIC1	 3090	 PHF1	 5252	 0.958	
MCL1	 4170	 BID	 637	 0.958	
GSPT2	 23708	 GSPT1	 2935	 0.958	
NME1	 4830	 PLS3	 5358	 0.958	
MRPL3	 11222	 MRPL10	 124995	 0.958	
ADSS	 159	 TALDO1	 6888	 0.958	
INSR	 3643	 IRS2	 8660	 0.958	
NUBP2	 10101	 OGFOD1	 55239	 0.958	
MYO6	 4646	 TAX1BP1	 8887	 0.958	
DFFA	 1676	 PPP5C	 5536	 0.958	
TNF	 7124	 TRADD	 8717	 0.958	
ORC6	 23594	 CDC45	 8318	 0.958	
GORASP2	 26003	 ACBD3	 64746	 0.958	
UBQLN2	 29978	 USP34	 9736	 0.958	
PQBP1	 10084	 SCO2	 9997	 0.958	
ABCD1	 215	 ABCD3	 5825	 0.958	
TNFRSF1A	 7132	 RIPK2	 8767	 0.958	
EXOC8	 149371	 EXOC4	 60412	 0.958	
GABARAPL2	 11345	 ULK1	 8408	 0.958	
GTF2H1	 2965	 TCEA1	 6917	 0.958	
RCOR1	 23186	 TAL1	 6886	 0.958	
PAFAH1B2	 5049	 RAP1GDS1	 5910	 0.958	
PPP3CA	 5530	 P3H1	 64175	 0.958	
HERC2	 8924	 CCP110	 9738	 0.958	
STAT6	 6778	 NCOA1	 8648	 0.958	
MAP3K2	 10746	 MAP2K7	 5609	 0.958	
TNPO3	 23534	 IPO9	 55705	 0.958	
DR1	 1810	 IPO11	 51194	 0.958	
PNP	 4860	 RAB1A	 5861	 0.958	
E2F6	 1876	 PCGF6	 84108	 0.958	
PHLPP1	 23239	 WDR48	 57599	 0.958	
PFDN2	 5202	 PPP2CB	 5516	 0.958	
FEN1	 2237	 ELAC2	 60528	 0.958	
FKBP9	 11328	 UBA6	 55236	 0.958	
AHR	 196	 GTF2F2	 2963	 0.958	
EXOC1	 55763	 DST	 667	 0.958	
PLIN3	 10226	 SRP9	 6726	 0.957	
BAIAP2	 10458	 PAK2	 5062	 0.957	
CD2AP	 23607	 BCAR1	 9564	 0.957	
TFDP1	 7027	 PCGF6	 84108	 0.957	
NOD1	 10392	 RIPK2	 8767	 0.957	
ERCC1	 2067	 SLX4	 84464	 0.957	
STRN4	 29888	 PPP2R5C	 5527	 0.957	
SNX6	 58533	 FAM129B	 64855	 0.957	
PFDN5	 5204	 VBP1	 7411	 0.957	
TNF	 7124	 RIPK1	 8737	 0.957	
LLGL1	 3996	 PRKCI	 5584	 0.957	
SMAD7	 4092	 LEF1	 51176	 0.957	
TRAF3	 7187	 RIPK1	 8737	 0.957	
TRAF1	 7185	 RIPK1	 8737	 0.957	
RACGAP1	 29127	 KIF23	 9493	 0.957	
PLS3	 5358	 PTMS	 5763	 0.957	
GTF2H1	 2965	 XPC	 7508	 0.957	
POLR2H	 5437	 POLR3D	 661	 0.957	
ULK1	 8408	 RB1CC1	 9821	 0.957	
SMAD6	 4091	 BMPR1A	 657	 0.957	
HSPE1	 3336	 WDR1	 9948	 0.957	
TTC9C	 283237	 UBE2V2	 7336	 0.957	
MAP3K4	 4216	 MAP2K7	 5609	 0.957	
TNK2	 10188	 YES1	 7525	 0.957	
HARS	 3035	 ELAC2	 60528	 0.957	
STAM	 8027	 HGS	 9146	 0.957	
THRA	 7067	 MED12	 9968	 0.957	
TRIM37	 4591	 FXR2	 9513	 0.957	
NDUFA7	 4701	 RRBP1	 6238	 0.957	
WDR4	 10785	 P3H1	 64175	 0.957	
BAIAP2	 10458	 ALDH7A1	 501	 0.957	
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MRPL4	 51073	 MRPL1	 65008	 0.957	
VPS36	 51028	 VPS26A	 9559	 0.957	
PPP1R2	 5504	 RAP1GDS1	 5910	 0.957	
POLR2D	 5433	 MED28	 80306	 0.957	
ERCC3	 2071	 MNAT1	 4331	 0.957	
TIRAP	 114609	 IRAK4	 51135	 0.957	
MRPL37	 51253	 MRPL41	 64975	 0.957	
ERO1A	 30001	 PDIA4	 9601	 0.957	
EPOR	 2057	 INPP5D	 3635	 0.957	
SBDS	 51119	 SRPRB	 58477	 0.957	
TNFRSF1A	 7132	 RIPK1	 8737	 0.957	
SULT1A1	 6817	 TPM2	 7169	 0.957	
VAMP2	 6844	 SNAP23	 8773	 0.957	
IFIT5	 24138	 LONP1	 9361	 0.957	
CNOT7	 29883	 CDC7	 8317	 0.957	
GABARAPL2	 11345	 ATG4B	 23192	 0.957	
CCNB1	 891	 CDC25C	 995	 0.957	
CASP3	 836	 CASP10	 843	 0.957	
GORASP2	 26003	 GTF2A1	 2957	 0.957	
IKZF1	 10320	 SIN3B	 23309	 0.957	
RPRD1A	 55197	 NPLOC4	 55666	 0.957	
OSGEP	 55644	 RPRD1B	 58490	 0.957	
VPS4B	 9525	 USP34	 9736	 0.957	
MNAT1	 4331	 TRIM5	 85363	 0.957	
SMC2	 10592	 NCAPD2	 9918	 0.957	
MAP3K4	 4216	 TRAF4	 9618	 0.957	
GPS1	 2873	 IRF5	 3663	 0.957	
RIPK2	 8767	 CFLAR	 8837	 0.957	
MCM10	 55388	 CDC7	 8317	 0.956	
PHC2	 1912	 PCGF2	 7703	 0.956	
RASSF1	 11186	 RASSF5	 83593	 0.956	
MED14	 9282	 QKI	 9444	 0.956	
KIF1BP	 26128	 SH3GL1	 6455	 0.956	
DERL2	 51009	 SYVN1	 84447	 0.956	
TNFAIP3	 7128	 RIPK1	 8737	 0.956	
FADD	 8772	 CFLAR	 8837	 0.956	
MAP3K20	 51776	 RPS6KA5	 9252	 0.956	
ATG7	 10533	 TBCD	 6904	 0.956	
USP21	 27005	 UCHL3	 7347	 0.956	
PDGFRB	 5159	 SNX2	 6643	 0.956	
NUBP2	 10101	 FKBP9	 11328	 0.956	
ADSS	 159	 CHMP4A	 29082	 0.956	
GTF2F1	 2962	 TAF1	 6872	 0.956	
BCR	 613	 LRRK1	 79705	 0.956	
APC2	 10297	 ANAPC11	 51529	 0.956	
UBE2C	 11065	 ANAPC5	 51433	 0.956	
PELO	 53918	 ABCD3	 5825	 0.956	
TAB2	 23118	 RIPK2	 8767	 0.956	
STAM2	 10254	 HGS	 9146	 0.956	
PIK3CA	 5290	 ARHGEF1	 9138	 0.956	
TRIM37	 4591	 TRAF5	 7188	 0.956	
CHERP	 10523	 DHX8	 1659	 0.956	
MRPL41	 64975	 MRPL44	 65080	 0.956	
TRIM39	 56658	 USP2	 9099	 0.956	
COPE	 11316	 COPG2	 26958	 0.956	
PDCD10	 11235	 FKBP9	 11328	 0.956	
GINS3	 64785	 GINS4	 84296	 0.956	
MTPN	 136319	 RAB1A	 5861	 0.956	
ANAPC4	 29945	 MAD2L1	 4085	 0.956	
GSR	 2936	 MVD	 4597	 0.956	
SAE1	 10055	 TPD52L2	 7165	 0.956	
NDC80	 10403	 MIS12	 79003	 0.956	
MNAT1	 4331	 TRIM39	 56658	 0.956	
UBE2J1	 51465	 SYVN1	 84447	 0.956	
E2F4	 1874	 ASH2L	 9070	 0.956	
SAE1	 10055	 LPP	 4026	 0.956	
UBQLN2	 29978	 UBL7	 84993	 0.956	
POLR1A	 25885	 POLR1D	 51082	 0.956	
SLC25A10	 1468	 AMBRA1	 55626	 0.956	
SH3GLB1	 51100	 PPP2R5D	 5528	 0.956	
SNX1	 6642	 UGDH	 7358	 0.956	
SBDS	 51119	 SCO2	 9997	 0.956	
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EDC4	 23644	 NMT1	 4836	 0.956	
BID	 637	 CASP3	 836	 0.956	
INTS1	 26173	 ASUN	 55726	 0.956	
MARK2	 2011	 MARK3	 4140	 0.956	
STRN3	 29966	 PTPA	 5524	 0.956	
GTF3C2	 2976	 GTF3C4	 9329	 0.956	
PSAP	 5660	 SURF4	 6836	 0.956	
FZR1	 51343	 PTTG1	 9232	 0.956	
IDH1	 3417	 TALDO1	 6888	 0.956	
SNX6	 58533	 SNX4	 8723	 0.956	
UBE2S	 27338	 ANAPC2	 29882	 0.956	
KPNA6	 23633	 KPNA3	 3839	 0.956	
UBE2E2	 7325	 MKRN3	 7681	 0.956	
HSPA4L	 22824	 APEH	 327	 0.956	
UBAC1	 10422	 ADRM1	 11047	 0.956	
AGFG1	 3267	 LAP3	 51056	 0.956	
BIRC2	 329	 CASP9	 842	 0.956	
MRPL2	 51069	 MRPL40	 64976	 0.956	
TRIM54	 57159	 USP8	 9101	 0.956	
NACC1	 112939	 BCOR	 54880	 0.956	
ERO1A	 30001	 P3H1	 64175	 0.956	
APEH	 327	 CARS	 833	 0.956	
UBE2C	 11065	 CDC23	 8697	 0.955	
PTMS	 5763	 WDR1	 9948	 0.955	
NCOA2	 10499	 NR1I2	 8856	 0.955	
LEO1	 123169	 TCEA1	 6917	 0.955	
WDR12	 55759	 TSG101	 7251	 0.955	
IL1R1	 3554	 TOLLIP	 54472	 0.955	
BIRC3	 330	 RNF31	 55072	 0.955	
PDCD10	 11235	 PPP2R1B	 5519	 0.955	
BCAP31	 10134	 DERL1	 79139	 0.955	
ACTR3	 10096	 TPD52L2	 7165	 0.955	
ERCC1	 2067	 ERCC4	 2072	 0.955	
GABARAPL2	 11345	 ATG3	 64422	 0.955	
RBFOX2	 23543	 TOLLIP	 54472	 0.955	
MYCN	 4613	 NTRK1	 4914	 0.955	
NGFR	 4804	 TRAF3	 7187	 0.955	
WDR4	 10785	 ERO1A	 30001	 0.955	
MAP3K11	 4296	 MAP2K4	 6416	 0.955	
TROVE2	 6738	 UGP2	 7360	 0.955	
SRPRB	 58477	 SCO2	 9997	 0.955	
SMC2	 10592	 NCAPG	 64151	 0.955	
POLR2F	 5435	 MED30	 90390	 0.955	
TRIP4	 9325	 MED27	 9442	 0.955	
PTPN12	 5782	 BCAR1	 9564	 0.955	
FAS	 355	 TNF	 7124	 0.955	
LSM2	 57819	 DHX16	 8449	 0.955	
RYBP	 23429	 PCGF1	 84759	 0.955	
MED16	 10025	 STN1	 79991	 0.955	
SCP2	 6342	 SCO2	 9997	 0.955	
ERBB3	 2065	 IL6ST	 3572	 0.955	
VPS35	 55737	 SNX6	 58533	 0.955	
RBCK1	 10616	 TNF	 7124	 0.955	
TTC9C	 283237	 UBL7	 84993	 0.955	
INTS1	 26173	 INTS9	 55756	 0.955	
NUBP2	 10101	 ATP6V1F	 9296	 0.955	
STMN2	 11075	 STAM	 8027	 0.955	
TAL1	 6886	 RUNX1	 861	 0.955	
MARK2	 2011	 MARK4	 57787	 0.955	
EHD1	 10938	 API5	 8539	 0.955	
HRAS	 3265	 RIN1	 9610	 0.955	
NAGK	 55577	 BCCIP	 56647	 0.955	
BAG1	 573	 SH3GL1	 6455	 0.955	
CASP8	 841	 RIPK1	 8737	 0.955	
GSS	 2937	 PAFAH1B2	 5049	 0.955	
NUBP2	 10101	 PRDX5	 25824	 0.955	
BAIAP2	 10458	 KLC1	 3831	 0.955	
JUNB	 3726	 ATF4	 468	 0.955	
POLR3C	 10623	 POLR3D	 661	 0.955	
MED28	 80306	 MED12	 9968	 0.955	
MYO1E	 4643	 CAPNS1	 826	 0.955	
ID3	 3399	 TCF4	 6925	 0.955	
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BCAP31	 10134	 CASP8	 841	 0.955	
CAPN2	 824	 PDIA4	 9601	 0.955	
MRPL4	 51073	 MRPL24	 79590	 0.955	
BRCA2	 675	 BRCC3	 79184	 0.955	
NDUFS2	 4720	 NDUFV1	 4723	 0.955	
USP21	 27005	 TRIM54	 57159	 0.955	
PQBP1	 10084	 SRPRB	 58477	 0.955	
NUBP2	 10101	 NUDCD2	 134492	 0.955	
MECP2	 4204	 SP3	 6670	 0.955	
RLIM	 51132	 SIAH1	 6477	 0.955	
BRCC3	 79184	 SPAG9	 9043	 0.955	
NUBP2	 10101	 UBQLN2	 29978	 0.955	
CDV3	 55573	 STX7	 8417	 0.955	
TRIM54	 57159	 JOSD1	 9929	 0.955	
HARS	 3035	 SHMT1	 6470	 0.955	
WASHC4	 23325	 CD2AP	 23607	 0.955	
EIF4E	 1977	 ASS1	 445	 0.955	
PBRM1	 55193	 CHD7	 55636	 0.955	
PARD6A	 50855	 RPAP3	 79657	 0.955	
AGFG1	 3267	 P3H1	 64175	 0.955	
UBE2V1	 7335	 ATP6V1F	 9296	 0.955	
ASUN	 55726	 INTS3	 65123	 0.955	
TDP2	 51567	 TRAF3	 7187	 0.955	
SARS	 6301	 ACBD3	 64746	 0.955	
AP1M2	 10053	 LOXL4	 84171	 0.955	
CFLAR	 8837	 DEDD	 9191	 0.955	
PIK3CA	 5290	 IRS2	 8660	 0.954	
SEC24A	 10802	 SEC24C	 9632	 0.954	
TIMM44	 10469	 SBDS	 51119	 0.954	
MAP4K1	 11184	 GRAP2	 9402	 0.954	
BAK1	 578	 BCL2L1	 598	 0.954	
UBQLN2	 29978	 STAM	 8027	 0.954	
TNF	 7124	 SHARPIN	 81858	 0.954	
VAMP2	 6844	 VAMP8	 8673	 0.954	
CHORDC1	 26973	 NAGK	 55577	 0.954	
FAS	 355	 TNFRSF1A	 7132	 0.954	
PJA1	 64219	 UCHL3	 7347	 0.954	
FGFR1OP2	 26127	 STRIP1	 85369	 0.954	
H3F3A	 3020	 SNX6	 58533	 0.954	
AMBRA1	 55626	 RPTOR	 57521	 0.954	
TGFBR1	 7046	 CD44	 960	 0.954	
BPTF	 2186	 SMARCA1	 6594	 0.954	
GTF2B	 2959	 ATF4	 468	 0.954	
RAB11A	 8766	 RAB11B	 9230	 0.954	
FLOT1	 10211	 FLOT2	 2319	 0.954	
SEPT9	 10801	 SUCLG2	 8801	 0.954	
PRDX5	 25824	 IGBP1	 3476	 0.954	
RELB	 5971	 BCL3	 602	 0.954	
UGP2	 7360	 ZYX	 7791	 0.954	
ZMYND8	 23613	 INTS3	 65123	 0.954	
LEO1	 123169	 CCNT1	 904	 0.954	
PDLIM5	 10611	 NPLOC4	 55666	 0.954	
HK1	 3098	 GTF3C4	 9329	 0.954	
SCFD1	 23256	 MRPL13	 28998	 0.954	
ANAPC5	 51433	 TRIM33	 51592	 0.954	
TRIP4	 9325	 MED17	 9440	 0.954	
BZW2	 28969	 PFAS	 5198	 0.954	
MED15	 51586	 QKI	 9444	 0.954	
AMPH	 273	 ITSN1	 6453	 0.954	
CASP2	 835	 CASP8	 841	 0.954	
ECHS1	 1892	 GINS3	 64785	 0.954	
NUBP2	 10101	 PLIN3	 10226	 0.954	
RDX	 5962	 SNX2	 6643	 0.954	
CRKL	 1399	 EPOR	 2057	 0.954	
DAPK1	 1612	 FADD	 8772	 0.954	
OPTN	 10133	 TRAF3	 7187	 0.954	
MRPS28	 28957	 MRPL42	 28977	 0.954	
TTC9C	 283237	 UBE2V1	 7335	 0.954	
NDUFA7	 4701	 VDAC3	 7419	 0.954	
TES	 26136	 ZYX	 7791	 0.954	
HSPBP1	 23640	 ERO1A	 30001	 0.954	
PPP1R12A	 4659	 P3H1	 64175	 0.954	
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Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
RNF38	 152006	 RNF114	 55905	 0.954	
CEBPD	 1052	 JUNB	 3726	 0.954	
SH3GL1	 6455	 CALR	 811	 0.954	
SCAF4	 57466	 VAPB	 9217	 0.954	
MRPL2	 51069	 MRPL14	 64928	 0.954	
WDR5	 11091	 WDR82	 80335	 0.954	
SRGAP2	 23380	 EXOC1	 55763	 0.954	
UCHL3	 7347	 ATP6V1F	 9296	 0.954	
RPRD1A	 55197	 ANKMY2	 57037	 0.954	
XIAP	 331	 BIRC5	 332	 0.954	
HYOU1	 10525	 BCAR1	 9564	 0.954	
IRF7	 3665	 TNFAIP3	 7128	 0.954	
RELB	 5971	 DPF2	 5977	 0.954	
NDC80	 10403	 KNL1	 57082	 0.954	
BIRC3	 330	 CASP9	 842	 0.954	
VPS4B	 9525	 VPS26A	 9559	 0.954	
PARD6A	 50855	 PARD3	 56288	 0.954	
USP28	 57646	 CLSPN	 63967	 0.954	
HSPE1	 3336	 IDH1	 3417	 0.954	
USP28	 57646	 USP5	 8078	 0.954	
VDAC3	 7419	 VAPA	 9218	 0.954	
MTPN	 136319	 ATP6V1A	 523	 0.953	
ATG7	 10533	 MAT2B	 27430	 0.953	
BRAF	 673	 BRAP	 8315	 0.953	
MRPL9	 65005	 MRPL19	 9801	 0.953	
TRIM37	 4591	 NGFR	 4804	 0.953	
RDX	 5962	 ANP32E	 81611	 0.953	
ERLIN2	 11160	 SYVN1	 84447	 0.953	
RNF38	 152006	 DZIP3	 9666	 0.953	
WDR4	 10785	 OGT	 8473	 0.953	
STAM2	 10254	 USP8	 9101	 0.953	
TGFBR1	 7046	 ARHGEF6	 9459	 0.953	
CEBPD	 1052	 GATA1	 2623	 0.953	
ATG7	 10533	 SNX1	 6642	 0.953	
HARS	 3035	 TTC1	 7265	 0.953	
PPP2R5D	 5528	 PPFIA1	 8500	 0.953	
RBCK1	 10616	 SHARPIN	 81858	 0.953	
GTF2E1	 2960	 SH3GLB2	 56904	 0.953	
PQBP1	 10084	 VDAC3	 7419	 0.953	
STAM	 8027	 USP8	 9101	 0.953	
SEC24A	 10802	 DSTN	 11034	 0.953	
SEC24A	 10802	 UBE2B	 7320	 0.953	
USP33	 23032	 NEURL4	 84461	 0.953	
TPRKB	 51002	 IPO11	 51194	 0.953	
CPSF1	 29894	 FIP1L1	 81608	 0.953	
MRPS28	 28957	 NDUFA7	 4701	 0.953	
PPP1R12A	 4659	 PFDN5	 5204	 0.953	
SATB1	 6304	 TAL1	 6886	 0.953	
DCK	 1633	 CHMP4A	 29082	 0.953	
THRA	 7067	 MED25	 81857	 0.953	
UBE3A	 7337	 HERC2	 8924	 0.953	
LATS2	 26524	 MOB1A	 55233	 0.953	
PNKP	 11284	 LIG3	 3980	 0.953	
DMWD	 1762	 PHLPP1	 23239	 0.953	
MNAT1	 4331	 MTA1	 9112	 0.953	
KMT2A	 4297	 ASH2L	 9070	 0.953	
XIAP	 331	 RIPK1	 8737	 0.953	
PARD6A	 50855	 PRKCZ	 5590	 0.953	
INTS6	 26512	 POLR2G	 5436	 0.953	
ERP44	 23071	 PFAS	 5198	 0.953	
MNAT1	 4331	 MKRN3	 7681	 0.953	
KAT6A	 7994	 RUNX1	 861	 0.953	
PLIN3	 10226	 NPLOC4	 55666	 0.953	
ID1	 3397	 TCF4	 6925	 0.953	
DVL1	 1855	 DVL3	 1857	 0.953	
SIN3B	 23309	 REST	 5978	 0.953	
BID	 637	 CASP8	 841	 0.953	
IRS1	 3667	 PLCG2	 5336	 0.953	
EPN1	 29924	 EHD2	 30846	 0.953	
MAP1S	 55201	 RASSF5	 83593	 0.953	
NOD2	 64127	 SHARPIN	 81858	 0.953	
TNFRSF1A	 7132	 BCL10	 8915	 0.953	

Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
FZR1	 51343	 CCNA1	 8900	 0.953	
AMPH	 273	 ITSN2	 50618	 0.953	
ARR3	 407	 STAM	 8027	 0.953	
SAE1	 10055	 OSGEP	 55644	 0.953	
BIRC3	 330	 TNFRSF1A	 7132	 0.953	
UBR1	 197131	 ATP6V1A	 523	 0.953	
PXN	 5829	 BCAR1	 9564	 0.953	
MRPL37	 51253	 MRPL24	 79590	 0.953	
FBXO5	 26271	 ANAPC4	 29945	 0.953	
TWF2	 11344	 CAPZA2	 830	 0.953	
GOT1	 2805	 IDH1	 3417	 0.953	
VPS36	 51028	 ACBD3	 64746	 0.953	
PIH1D1	 55011	 TELO2	 9894	 0.953	
SHMT1	 6470	 TTC1	 7265	 0.953	
AGFG1	 3267	 SH3GLB1	 51100	 0.952	
PDCD10	 11235	 PFAS	 5198	 0.952	
PDLIM5	 10611	 IPO11	 51194	 0.952	
SHC1	 6464	 CBLB	 868	 0.952	
ZWINT	 11130	 MIS12	 79003	 0.952	
GTF2F2	 2963	 MED29	 55588	 0.952	
PACSIN2	 11252	 DNM1	 1759	 0.952	
USP4	 7375	 BRAP	 8315	 0.952	
KLC1	 3831	 TLE3	 7090	 0.952	
BRCA2	 675	 BRE	 9577	 0.952	
SULT1A1	 6817	 UCHL3	 7347	 0.952	
AUP1	 550	 SEL1L	 6400	 0.952	
EXOSC6	 118460	 EXOSC1	 51013	 0.952	
PPP5C	 5536	 RAP1GDS1	 5910	 0.952	
WDR4	 10785	 NPLOC4	 55666	 0.952	
OPTN	 10133	 TNF	 7124	 0.952	
PAK4	 10298	 BAIAP2	 10458	 0.952	
C11orf58	 10944	 SNCAIP	 9627	 0.952	
GDI2	 2665	 RAB11A	 8766	 0.952	
FKBP9	 11328	 LIMD1	 8994	 0.952	
TPM2	 7169	 TPM3	 7170	 0.952	
HARS	 3035	 XPO5	 57510	 0.952	
TOM1L2	 146691	 SULT1A1	 6817	 0.952	
MCL1	 4170	 BAK1	 578	 0.952	
LATS2	 26524	 SNAI1	 6615	 0.952	
PFAS	 5198	 RAP1GDS1	 5910	 0.952	
POLR2D	 5433	 RECQL5	 9400	 0.952	
NUBP2	 10101	 UBE2V2	 7336	 0.952	
GTF2E1	 2960	 SARS	 6301	 0.952	
SHMT2	 6472	 SNX1	 6642	 0.952	
BID	 637	 CASP10	 843	 0.952	
HARS	 3035	 PFDN1	 5201	 0.952	
TCEA1	 6917	 CTR9	 9646	 0.952	
POLR2G	 5436	 INTS3	 65123	 0.952	
CRKL	 1399	 BCAR1	 9564	 0.952	
AKAP11	 11215	 PRKAR1A	 5573	 0.952	
DMAP1	 55929	 SMARCAD1	 56916	 0.952	
IPO11	 51194	 CALU	 813	 0.952	
KDM6A	 7403	 KMT2D	 8085	 0.952	
KAT6A	 7994	 ING5	 84289	 0.952	
PPP2R5D	 5528	 RANGAP1	 5905	 0.952	
NDUFV1	 4723	 NDUFV2	 4729	 0.952	
MAPK8	 5599	 BID	 637	 0.952	
SCP2	 6342	 VDAC3	 7419	 0.952	
MRPL2	 51069	 MRPL24	 79590	 0.952	
FKBP9	 11328	 UBR7	 55148	 0.952	
RBCK1	 10616	 RNF31	 55072	 0.952	
NDC80	 10403	 NSL1	 25936	 0.952	
MARK2	 2011	 MAP3K3	 4215	 0.952	
MEAF6	 64769	 KAT6A	 7994	 0.952	
GGA2	 23062	 IGF2R	 3482	 0.952	
TOMM40	 10452	 SBDS	 51119	 0.952	
PRKCI	 5584	 PARD6B	 84612	 0.952	
MRPS18B	 28973	 MRPS35	 60488	 0.952	
ANAPC5	 51433	 SMARCAD1	 56916	 0.952	
FAS	 355	 CAV1	 857	 0.952	
TRAF1	 7185	 MAP3K14	 9020	 0.952	
CRKL	 1399	 ERBB3	 2065	 0.952	
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Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
BRD7	 29117	 SMARCD1	 6602	 0.952	
MAP2K6	 5608	 MAP2K4	 6416	 0.952	
APEH	 327	 SHMT1	 6470	 0.952	
IRF7	 3665	 FADD	 8772	 0.952	
EPOR	 2057	 IRS2	 8660	 0.952	
BCL2L1	 598	 BID	 637	 0.952	
BIRC5	 332	 DIABLO	 56616	 0.952	
NPHP1	 4867	 BCAR1	 9564	 0.952	
NFYC	 4802	 TAF6	 6878	 0.952	
GTF2B	 2959	 NCOR1	 9611	 0.952	
APC2	 10297	 CDC16	 8881	 0.952	
MCRS1	 10445	 NFRKB	 4798	 0.952	
GCDH	 2639	 NOS3	 4846	 0.952	
GSPT1	 2935	 SNX2	 6643	 0.952	
LATS2	 26524	 LATS1	 9113	 0.952	
TNK2	 10188	 SIAH2	 6478	 0.951	
MED29	 55588	 MED28	 80306	 0.951	
SMAD5	 4090	 RUNX3	 864	 0.951	
WAS	 7454	 WIPF1	 7456	 0.951	
GTF2F2	 2963	 POLR2E	 5434	 0.951	
TRIP6	 7205	 BCAR1	 9564	 0.951	
STAG1	 10274	 STAG2	 10735	 0.951	
TBCB	 1155	 MYO1E	 4643	 0.951	
USP28	 57646	 PJA1	 64219	 0.951	
RIPK1	 8737	 TNFRSF10B	 8795	 0.951	
DNM1L	 10059	 FIS1	 51024	 0.951	
RAP1A	 5906	 RHEB	 6009	 0.951	
GTF2A1	 2957	 TAF6	 6878	 0.951	
IKZF1	 10320	 CHD3	 1107	 0.951	
ERCC2	 2068	 GTF2H1	 2965	 0.951	
CASP10	 843	 DEDD	 9191	 0.951	
TNFRSF10B	 8795	 TNFRSF10A	 8797	 0.951	
UFM1	 51569	 ZPR1	 8882	 0.951	
NUBP2	 10101	 TWF2	 11344	 0.951	
USF1	 7391	 ASH2L	 9070	 0.951	
ANXA6	 309	 THOP1	 7064	 0.951	
IDH1	 3417	 EFHD2	 79180	 0.951	
FANCC	 2176	 HES1	 3280	 0.951	
NUBP2	 10101	 SEC24A	 10802	 0.951	
MAST1	 22983	 LONP1	 9361	 0.951	
TXNDC5	 81567	 BZW1	 9689	 0.951	
HRAS	 3265	 MAP2K1	 5604	 0.951	
ME1	 4199	 TBCD	 6904	 0.951	
RABGAP1	 23637	 RAB7A	 7879	 0.951	
KLC2	 64837	 KLC4	 89953	 0.951	
COPE	 11316	 ARCN1	 372	 0.951	
UFD1L	 7353	 USP13	 8975	 0.951	
ECHS1	 1892	 PFAS	 5198	 0.951	
H2AFZ	 3015	 DMAP1	 55929	 0.951	
MED16	 10025	 THRA	 7067	 0.951	
LPP	 4026	 IPO11	 51194	 0.951	
STAT3	 6774	 CD44	 960	 0.951	
VPS4A	 27183	 CHMP4A	 29082	 0.951	
ERCC1	 2067	 TAF6	 6878	 0.951	
DIAPH1	 1729	 COPZ1	 22818	 0.951	
RAB1B	 81876	 RAB11B	 9230	 0.951	
POLR2D	 5433	 INTS3	 65123	 0.951	
AP2B1	 163	 CLINT1	 9685	 0.951	
ANAPC10	 10393	 UBE2C	 11065	 0.951	
NUBP2	 10101	 API5	 8539	 0.951	
PCGF3	 10336	 BMI1	 648	 0.951	
UBE2D4	 51619	 RNF7	 9616	 0.951	
THOC3	 84321	 THOC1	 9984	 0.951	
KIF1BP	 26128	 SH3GLB1	 51100	 0.951	
MRPS28	 28957	 MRPL41	 64975	 0.951	
MRPS35	 60488	 MRPS5	 64969	 0.951	
HARS	 3035	 ACBD3	 64746	 0.951	
SEPT9	 10801	 SEPT11	 55752	 0.951	
CYLD	 1540	 USP13	 8975	 0.951	
AP2A1	 160	 AMPH	 273	 0.951	
NDC80	 10403	 AURKB	 9212	 0.951	
PPP3CA	 5530	 VBP1	 7411	 0.951	

Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
SOCS1	 8651	 IRS2	 8660	 0.951	
TRAF1	 7185	 CFLAR	 8837	 0.951	
ATP6V1F	 9296	 VPS26A	 9559	 0.950	
VDAC3	 7419	 VAPB	 9217	 0.950	
CSNK1D	 1453	 DVL1	 1855	 0.950	
FBXO5	 26271	 ANAPC5	 51433	 0.950	
TRIM33	 51592	 CDC16	 8881	 0.950	
RAB1A	 5861	 RAB11A	 8766	 0.950	
NUBP2	 10101	 UBE2R2	 54926	 0.950	
TRIM33	 51592	 CDC23	 8697	 0.950	
YAF2	 10138	 BCOR	 54880	 0.950	
BACH1	 571	 MAFK	 7975	 0.950	
GTF2E1	 2960	 TCEA1	 6917	 0.950	
MYD88	 4615	 TRAF3	 7187	 0.950	
MCRS1	 10445	 TERT	 7015	 0.950	
HTRA2	 27429	 BIRC3	 330	 0.950	
TAF2	 6873	 TAF6	 6878	 0.950	
GSS	 2937	 ASNS	 440	 0.950	
TRIM33	 51592	 ANAPC1	 64682	 0.950	
GEMIN5	 25929	 SRP9	 6726	 0.950	
CBLC	 23624	 MET	 4233	 0.950	
OSGEP	 55644	 BAG1	 573	 0.950	
RICTOR	 253260	 MLST8	 64223	 0.950	
SUGP1	 57794	 SNX3	 8724	 0.950	
ARPC5	 10092	 ARPC3	 10094	 0.950	
LSM4	 25804	 LSM3	 27258	 0.950	
NGFR	 4804	 TRAF5	 7188	 0.950	
UBE2D4	 51619	 TRIM25	 7706	 0.950	
KIF1BP	 26128	 OSGEP	 55644	 0.950	
NIF3L1	 60491	 RPA3	 6119	 0.950	
UBE2B	 7320	 ATP6V1F	 9296	 0.950	
GLRX3	 10539	 EFHD2	 79180	 0.950	
SMARCAD1	 56916	 CDC23	 8697	 0.950	
STN1	 79991	 MED17	 9440	 0.950	
PDCD10	 11235	 UBR7	 55148	 0.950	
UBE2V1	 7335	 TRIM5	 85363	 0.950	
DPY30	 84661	 ASH2L	 9070	 0.950	
NUBP2	 10101	 UBE2B	 7320	 0.950	
UBE2V1	 7335	 UCHL3	 7347	 0.950	
ATP6V1A	 523	 USP5	 8078	 0.950	
INTS1	 26173	 PPP2R1B	 5519	 0.950	
CBX1	 10951	 H3F3A	 3020	 0.950	
MRPL38	 64978	 MRPL45	 84311	 0.950	
SWAP70	 23075	 OSBP	 5007	 0.950	
QKI	 9444	 MED13	 9969	 0.950	
MKRN3	 7681	 TRIM5	 85363	 0.950	
GTF2B	 2959	 POLR2E	 5434	 0.950	
AGFG1	 3267	 LPP	 4026	 0.950	
FANCD2	 2177	 FANCL	 55120	 0.950	
PHLPP1	 23239	 USP46	 64854	 0.950	
RBCK1	 10616	 TRAF1	 7185	 0.950	
FANCC	 2176	 FANCM	 57697	 0.950	
CD2AP	 23607	 RABEP2	 79874	 0.950	
WDR4	 10785	 PPME1	 51400	 0.950	
PEX19	 5824	 ABCD3	 5825	 0.950	
POLR3H	 171568	 POLR1D	 51082	 0.950	
HCFC1	 3054	 ASH2L	 9070	 0.950	
AP1M2	 10053	 EPN1	 29924	 0.950	
POLR1A	 25885	 POLR1E	 64425	 0.950	
DDX39A	 10212	 SMS	 6611	 0.950	
ARCN1	 372	 KLC1	 3831	 0.950	
RDX	 5962	 EZR	 7430	 0.950	
KANSL1	 284058	 EXOC1	 55763	 0.950	
SAP30BP	 29115	 STRN4	 29888	 0.950	
MRPS16	 51021	 MRPS9	 64965	 0.950	
SULT1A1	 6817	 TPM4	 7171	 0.950	
PNKP	 11284	 XRCC4	 7518	 0.950	
SEC24A	 10802	 USP34	 9736	 0.950	
CHEK2	 11200	 PPP2R5C	 5527	 0.950	
NAGK	 55577	 LDHAL6B	 92483	 0.950	
H3F3A	 3020	 ASF1B	 55723	 0.950	
SULT1A1	 6817	 UBE2B	 7320	 0.950	
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Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
WDR33	 55339	 FIP1L1	 81608	 0.950	
MCM2	 4171	 MCM10	 55388	 0.950	
SNX6	 58533	 ANP32E	 81611	 0.950	
ASH2L	 9070	 KMT2B	 9757	 0.950	
RAD9A	 5883	 DNAJC7	 7266	 0.950	
BRD4	 23476	 CTDP1	 9150	 0.950	
ING3	 54556	 YEATS4	 8089	 0.950	
STN1	 79991	 MED13	 9969	 0.950	

Gene	1	 Gene	2	
SINaTRA	

Symbol	 GeneID	 Symbol	 GeneID	
STMN2	 11075	 SULT1A1	 6817	 0.950	
TAF6	 6878	 NCOR1	 9611	 0.950	
ATG4B	 23192	 AMBRA1	 55626	 0.950	
MED28	 80306	 MED25	 81857	 0.950	
USP46	 64854	 WDR20	 91833	 0.950	
HSPBP1	 23640	 OGT	 8473	 0.950	
SEC61B	 10952	 SGTA	 6449	 0.950	
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CHAPTER 5 – SYNTHETIC LETHALITY AND 
DRUG SYNERGY 

INTRODUCTION 

Drug combination therapy (DCT) has been used to treat infectious diseases and cancers 

[106,107]. In many cases, DCT involves drug synergy, where the individual components’ effects 

are magnified when co-administered. DCT offers a number of benefits compared to single-drug 

therapies, including fewer and less severe side effects [108] and increased ability to combat the 

development of drug resistance [37,106,109]. Given the rising prevalence of drug resistance in 

cancer [110] and the high cost and attrition rates in the development of new drugs [111], 

identifying novel DCTs is particularly important.  

Synthetic lethality (SL) has been suggested as a guide for identifying potential DCTs 

[21,68,112]. A gene pair is dubbed synthetic lethal when knocking out either gene causes no 

adverse effect in a cell, but knocking out both leads to cell death [22]. Although SL has been 

extensively studied in yeast [23,29], finding human synthetic lethal pairs has an extremely high 

experimental burden, especially given the potential for cell-, disease-, and tissue-specific SL 

pairs [69]; identifying all SL pairs in a single biological context would take at least 200 million 

pairwise tests. Therefore, most research to date regarding human SL has focused on 

computational models [102], including our previous work [66]. 

Although the identification of synergistic drug pairs has important therapeutic benefits, it is 

an ongoing problem in experimental biology. First, many methods for calculating synergy exist. 

Researchers may use effect-based strategies such as highest single agent or Bliss independence 

[46], or dose-effect-based strategies, such as Loewe additivity [39]. Here, we will focus on Bliss 
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independence, one of the most common measures. Drug combinations are evaluated using 

Excess Over Bliss (EOB), which is calculated using the effect of individual components. 

Even after selecting a method, there is no established method to quantitatively assess the 

significance of interactions. For example, when considering areas of potential synergy or 

antagonism using EOB, analysis still has a tendency towards qualitative observation rather than 

quantitative assessment. It is typical to describe trends towards either synergy or antagonism 

when considering EOB, rather than defining areas of specific, statistically significant synergy. 

Therefore, an Excess Over Bliss score of 0.0001 can be as indicative of synergy as a score of 

0.01 or 0.9.  

Furthermore, EOB calculation typically does not fully account for variance in either control 

or dosed experiments. Specifically, the expected effect of a drug combination is calculated using 

a probabilistic model based on the effect of each drug alone. Single-drug effects are typically 

calculated by comparing measured levels of ATP of treated samples and calculating percent 

viability of each sample based on positive and negative control. In addition, EOB itself is 

reported as a median value with some standard error. This does not allow researchers to fully 

appreciate the variance between control samples or replicates. 

Here, we develop DAVISS (Data-driven Assessment of Variability In Synergy Scores), a 

novel statistical method to measure the significance of drug synergy. We first fit dose-response 

curves to cell count data, including control wells. We use the distribution of control counts 

around the curve to generate a background distribution of EOB for comparison to our 

experimental results. We use the fitted curves to calculate the percent effect of each single-drug 

dose on cellular growth and compute EOB for each drug pair at each concentration combination. 

In order to assess the statistical significance of concentration-specific drug synergy, we perform 
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outlier testing using the control distribution; furthermore, we can also identify combination-wide 

synergy by comparing the distribution of all EOB scores for a particular drug pair to the control 

distribution. 

We apply DAVISS to test predictions of human synthetic lethality we generated using 

SINaTRA (Species-INdependent TRAnslation) [66], as described in Chapter 4. Here, we identify 

five cancer-associated genes (CSF1R, ERBB2, KIT, PTK2B, STAT5B) where all possible pairs 

are associated with high SINaTRA scores; these are predicted to be synthetic lethal. We then 

identify another cancer-associated gene (PDE10A) that has very low SINaTRA scores with these 

five genes. These are our control, non-synthetic-lethal pairs. We map each gene to drugs with 

high target specificity and test all predicted SL combinations for drug synergy in four human 

cancer cell lines, and all predicted non-SL combinations in three human cancer cell lines. 

We identify 3/10 predicted SL pairs associated with significant, consistent drug synergy 

over four cell lines (Amuvatinib/PF-431396, BLZ945/PF-431396, BLZ945/Mubritinib), 

compared to 0/5 predicted non-SL pairs in three cell lines. Our hit rate greatly exceeds the 

expected rate of SL (0.1% [77]). We also find that putative SL pairs are enriched for synergy at 

specific concentrations compared to predicted non-SL pairs. Finally, we identify three novel, 

cell-specific drug combinations: Amuvatinib/ Mubritinib and BLZ945/Mubritinib in CAL148, 

and BLZ945/PF-431396 in HS606T. These results suggest the high utility of DAVISS as a 

method of assessing the significance of drug synergy, and of SINaTRA as a viable guide for 

finding novel DCTs.  
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RESULTS 

Previous work suggests areas of possible drug synergy 
In the previous chapter, we described SINaTRA (Species-INdependent TRAnslation) [66], 

a machine-learning algorithm that allows us to predict human synthetic lethal pairs using S. 

cerevisiae experimental data and both yeast and human protein-protein interaction networks. We 

used this model to predict the likelihood of synthetic lethality for over 100 million gene pairs, 

which we reported as SINaTRA scores ranging from 0 (non-SL) to 1 (very likely SL). We 

identified 52 genes associated with cancer drugs and clustered them by SINaTRA score, and 

found that some regions of high SINaTRA score were significantly associated with a large 

number of single-drug and drug combination cancer therapies. From these results, we 

hypothesized that SINaTRA can be used to identify novel synergistic drug pairs operating 

through a mechanism of synthetic lethality. 

As a proof of concept, we selected five genes of interest (CSF1R, ERBB2, KIT, PTK2B, 

STAT5B) from a series of cancer-drug-associated, predicted human SL pairs (“original gene set”; 

see Figure 4.8 in the previous chapter [66] & Materials and Methods). These genes have 

previously been associated with cancer, either generally [113,114] or with specific subtypes 

[115-118]. The SINaTRA scores of all possible pairs of the genes of interest, as well as the 

appropriate drug combinations, are found in Table 5.1A. The associated drugs are selective 

inhibitors for all genes of interest [119-121] except PF-431396, which has a reported IC50 of 

2nM and 11nM in PTK2 and PTK2B, respectively [122]. 
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Gene 1 Drug 1 Gene 2 Drug 2 SINaTRA 

A. ERBB2 2064 Mubritinib PTK2B 2185 PF-431396 0.88 

Pr
ed

ic
te

d 
SL

 

CSF1R 1436 BLZ945 KIT 3815 Amuvatinib 0.79 

PTK2B 2185 PF-431396 STAT5B 6777 CAS285986-31-4 0.71 

ERBB2 2064 Mubritinib KIT 3815 Amuvatinib 0.7 

KIT 3815 Amuvatinib PTK2B 2185 PF-431396 0.69 

KIT 3815 Amuvatinib STAT5B 6777 CAS285986-31-4 0.68 

CSF1R 1436 BLZ945 PTK2B 2185 PF-431396 0.67 

ERBB2 2064 Mubritinib STAT5B 6777 CAS285986-31-4 0.67 

CSF1R 1436 BLZ945 ERBB2 2064 Mubritinib 0.53 

CSF1R 1436 BLZ945 STAT5B 6777 CAS 285986-31-4 0.442 

B. STAT5B 6777 CAS 285986-31-4 PDE10A 10846 PF-2545920 0.063 

Pr
ed

. n
on

-S
L CSF1R 1436 BLZ945 PDE10A 10846 PF-2545920 0.058 

ERBB2 2064 Mubritinib PDE10A 10846 PF-2545920 0.043 

PTK2B 2185 PF-431396 PDE10A 10846 PF-2545920 0.04 

KIT 3815 Amuvatinib PDE10A 10846 PF-2545920 0.038 

Table 5.1: Selected predicted SL and non-SL pairs and their drugs 
A.) All pair combinations of our genes of interest (CSF1R, ERBB2, KIT, PTK2B, STAT5B) and their associated 
drugs and SINaTRA scores. B.) Our five genes of interest and our selected negative control gene, PDE10A, with 
associated drugs and SINaTRA scores.  

Gene-drug database provides negative controls 
We found that the median SINaTRA score for all combinations of genes from the original 

set was 0.407. This is significantly higher than the median of all gene pairs in the human network 

(0.122; p<2.2e-16, Mann-Whitney U). The lowest SINaTRA score from the original gene set is 

0.12, which is in the 49.5th percentile of all scores. We concluded that any possible gene pair 

from the original set was too likely to be SL to be considered a good negative control for our 

experiments. 

Therefore, we broadened our search to the Drug-Gene Interaction Database [123,124]. We 

identified 394 cancer-therapy-associated genes (Materials and Methods) and clustered them by 

SINaTRA score. We observed that our genes of interest remain close together (Figure 5.A.1). Of 

the filtered genes, we selected PDE10A, which has a SINaTRA score of 0.063 or lower (≤23rd 
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percentile) with all of our original genes of interest, and which is selectively inhibited by PF-

2545920 [125] (Table 5.1B).  

Dose-response curves provide background information 
In order to account for experimental background, we fit drug curves using calculated 

viability and included control wells ([Drug]=0µM) (see Materials and Methods and Figures 

5.A.2-3). We found that drug curves within a cell line had a consistent starting raw count 

(median: 0.1%; Table 5.A.1). This meant that percentage inhibitions computed for drug 

combinations would not be affected by large deviations between the individual components’ “no 

drug” points. 

Simulated analysis illustrates DAVISS result output  
We manually constructed three datasets and a background distribution to illustrate the 

output of DAVISS (Materials and Methods). First, we consider the standard method of exploring 

drug synergy (Figure 5.1A), where the median EOB for all replicates of a drug combination is 

plotted as a heat map, with the dose of one drug on the x-axis, and the other on the y-axis. Drug 

interaction is assessed qualitatively, with higher scores indicating synergy and lower ones 

representing antagonism.  
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Figure 5.1: Simulated illustration of DAVISS output 
A.) Simulated antagonism (left), additivity (middle), and synergy (right) using Excess Over Bliss (EOB). Drug 
interactions are assessed visually, rather than statistically. B.) Simulated EOB for three drug combinations. The 
dark gray distribution represents the EOB distribution of control wells in all panels. A significant leftward 
divergence from the control indicates a trend towards antagonism for the combinatorial experiment (left, blue). 
Insignificantly different distributions indicate no synergy or antagonism (center, light gray). A significant rightward 
divergence from the control distribution indicates a combination-wide trend towards synergy (right, red). 
Significance is assessed using Mann-Whitney U. C.) Concentration-specific synergy tests. A higher positive value 
means more replicates are significantly synergistic (dark red), and a more negative value means more replicates are 
significantly antagonistic (dark blue). A value of 0 corresponds to no significant replicates, and is represented by 
light gray. Here, we show antagonism (left; three concentration combinations are significantly antagonistic in all 
three replicates, four combinations have two significant replicates, and 11 have one), additivity (middle; we 
consider additivity not just as no significant replicates whatsoever, but also as an equal number of significantly 
antagonistic and synergistic concentrations), and synergy (right; 10 concentration combinations with three 
significant replicates each, seven combinations with two significant replicates, and four with one significant 
replicate) assessed for individual concentrations in a drug combination. The x-axis represents the concentrations of 
Drug 1, while the y-axis represents those of Drug 2. 
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We calculate the overall synergy of a combination by testing these EOB values against a 

simulated control distribution and illustrate the potential outcomes of such  

a test in Figure 5.1B. A number of EOB scores significantly lower than the null distribution 

indicates combination-wide trend towards antagonism (Figure 5.1B, left), while high EOB scores 

indicate a trend towards synergy (Figure 5.1B, right). Insignificant divergence from the null 

indicates additivity (Figure 5.1B, center). Significance is measured using the Mann-Whitney U 

test [64]. In this work, we use the terms “general synergy” and “general antagonism” to denote 

combinations that exhibit significant synergy or antagonism according to this test. 

We can also test the significance of a particular replicate’s EOB score by comparing it to 

the null distribution, which allows us to quantitatively assess the specific drug interactions, 

providing greater depth to the EOB heat maps that are typically used to report synergy. We 

illustrate such test results in Figure 5.1C. We represent antagonism in the leftmost panel, 

additivity in the center, and synergy in the right. We use “specific synergy” and “specific 

antagonism” to denote significant results according to this test for a particular drug combination.  

Combining EOB, concentration-specific significance, and synergistic trends 
illustrates drug synergy  

In order to evaluate the synergy within each drug combination in each cell line, we can 

combine the EOB heat map, concentration-specific assessment of synergy significance, and 

combination-wide trend towards synergy (Figure 5.2).  
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Figure 5.2: Experimental examples of drug interactions 
A.) Clear synergy B.) Additivity C.) Synergy D.) Trend towards additivity (MWU), but area of significant synergy 
that could be explored (modZ) E.) Clearly significant trend synergy (MWU), while maintaining robustness to 
possible experimental error (modZ and EOB heat map) 
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In Figures 5.2A-C, we show antagonism, additivity, and synergy in three experimental 

examples. Figure 5.2A shows specific and general antagonism in  

PF-2545920/CAS 285986-31-4 in Hep-3B217; there are many replicates with specific 

antagonism (center), and the combination is also generally synergistic (right). Figure 5.2B 

illustrates additivity as shown in PF-2545920/PF-431396 in MEG01; although the EOB heat map 

(left) shows some areas of potential synergy and antagonism, there are only four significant 

replicates that are significantly antagonism (center), and the combination can be considered 

additive. Finally, we show synergy with Amuvatinib/Mubritinib in CAL148 in Figure 5.2C; 

there is both very high specific synergy (center), and a significant trend to synergy for the entire 

combination (right). 

Some examples illustrate the utility of our method. For example, in Figure 5.2D, we see a 

column of antagonism when looking at the significant synergy of Mubritinib/PF-431396 in 

Hs606T. Because of the rigid pattern, this looks like possible experimental error, perhaps due to 

a faulty multipipette at one level of dosage. However, in spite of this, our method still manages 

to pick up general synergy across the entire combination (right). 

In addition, we also show how the method can be used to inform further experiments. In 

Figure 5.2E, we see general antagonism in BLZ945/Mubritinib in Hep-3B217. However, there is 

clear synergy at one specific concentration (center); therefore, further experiments could focus 

on exploring more concentration combinations around that location to find consistent, general 

synergy.  Full data are available in the supplementary materials; Figures 5.A.4-5.A.7 are 

predicted SL pairs, while Figures 5.A.8-5.A.10 are predicted non-SL. 

We summarize the results for all combinations in all cell lines in Table 5.2. When we assess 

general synergy, we find that 3/10 predicted SL pairs exhibit only synergy or additivity, 
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compared to 0/5 non-SL pairs (non-significant; p=0.2637, one-sided Fisher’s Exact Test). When 

considering specific synergy, 2/10 predicted SL pairs exhibit only synergy or additivity in 

specific concentrations, compared to 0/5 predicted non-SL ones (non-significant; p=0.4286, one-

sided Fisher’s Exact Test). Furthermore, 4/5 predicted non-SL combinations exhibit only 

antagonism and additivity, compared to 0/10 predicted SL pairs (p=0.0037, one-sided Fisher’s 

Exact Test). Finally, we find significantly more putative SL drug combinations exhibit 

significant, specific synergy compared to putative non-SL combinations (14/40 vs. 1/15; 

p=0.0326, one-sided Fisher’s Exact Test).  

We then evaluate the concordance of general and specific synergy for each cell line and 

drug combination and find that 3/10 predicted SL pairs exhibit only concordant synergy or 

additivity, compared to 0/5 in predicted non-SL pairs (non-significant; p=0.2637, one-sided 

Fisher’s Exact Test). Furthermore, 0/10 predicted SL pairs exhibit only concordant antagonism 

or additivity, compared to 3/5 predicted non-SL pairs (p=0.0220, one-sided Fisher’s Exact Test).  

Finally, we assess each drug pair for overall synergy and find that 3/10 predicted SL drug 

pairs exhibit overall synergy compared to 0/10 predicted non-SL pairs (non-significant; 

p=0.2637, one-sided Fisher’s Exact Test). In contrast, 1/10 predicted SL pairs exhibit overall 

antagonism, compared to 3/5 predicted non-SL (p=0.0769, one-sided Fisher’s Exact Test).  
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Table 5.2: Results of statistical tests of synergy 
In “General Synergy,” cell-specific combinations are given +1 if they indicate overall synergy, -1 if they indicate 
overall antagonism, and 0 otherwise (Mann-Whitney U test). In “Specific Synergy,” cell-specific combinations are 
given +1 if there are more synergistic concentration pairs than antagonistic ones; -1 if there are more antagonistic 
ones; and 0 otherwise (modified Z score). In “Concordance,” cell-specific combinations are given +1 if it is both 
generally and specifically synergistic; -1 if it is both generally and specifically antagonistic; and 0 otherwise. A 
combination is given an overall score of +1 if all cell lines have a concordance score of +1 or 0; -1 if all cell lines 
have a concordance score of -1 or 0; and 0 otherwise.  
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DISCUSSION 

The identification of drug combination therapy is important to the treatment of cancer 

because of its ability to prevent the development of drug resistance. Synthetic lethality (SL) has 

been suggested as a method of identifying DCT in humans; however, it is rare, occurring in only 

1/1000 gene pairs [77]. Furthermore, the experimental elucidation of SL bears a high 

experimental and financial burden. Thus, in the previous chapter, we developed a computational 

model of SL by creating SINaTRA [66]. 

In this chapter, we assess the results of SINaTRA in fifteen drug pairs associated with either 

high-scoring putative SL pairs, or low-scoring predicted non-SL pairs. We test these in 3-4 cell 

lines using drugs specific for each gene (Table 5.1).  

DAVISS: Data-driven Assessment of Variability In Synergy Scores 
In order to assess the significance of each drug pair’s interaction, we develop  

a novel statistical model called DAVISS, which is based on Bliss independence and integrates 

the calculated cell viability distribution of control wells. This allows us to calculate the statistical 

significance of EOB in drug-treated samples at both specific concentrations and across an entire 

combinatorial experiment in a simple, clear manner that allows us to quantitatively assess drug 

synergy and antagonism. We also show that we can use the concordance of general and specific 

synergy scores to assess the overall synergy of each drug combination across any number of cell 

lines. Furthermore, we show that our method is robust to experimental error (Figure 5.4D), in 

addition to suggesting further areas of inquiry if the original drug concentrations missed specific 

areas of potential synergy (Figure 5.4E).  

In spite of these features, there are certain limitations to DAVISS. For example, the current 

iteration of this method necessitates the fitting of a dose-response curve. Although this is 
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beneficial in lowering the need to alter single-drug responses to avoid using negative values in 

the formula for EOB, this does mean that DAVISS requires  

a larger number of concentrations than a less statistical approach to Bliss independence. 

Furthermore, although DAVISS is highly quantitative in its assessment of both combination-

wide and specific synergy and antagonism, it still requires some qualitative interpretation in 

order to evaluate consistency and overall synergy.   

Finally, it is worth noting that our current model only accounts for variability in control 

wells when denoting the significance of a particular combination’s synergy. It may be possible to 

account for the complexity provided by the variation exhibited in the replicates of single-drug-

dosed samples; however, we believed that the marginal benefit of such an analysis would be 

slim.   

In future work, we also hope to update DAVISS for smaller numbers of concentrations and 

experiments. 

SINaTRA as a guide for predicting drug combination therapy 
Overall, we identify 3/10 predicted SL pairs associated with significant, consistent drug 

synergy over four cell lines (Amuvatinib/PF-431396, BLZ945/PF-431396, BLZ945/Mubritinib), 

compared to 0/5 predicted non-SL pairs in three cell lines. This suggests the utility of SL as a 

method of predicting cancer drug combinations (Table 5.2), as it significantly exceeds the 

expected hit rate of 0.1% (p<0.0001, one-tailed Fisher’s Exact Test).  

Although this is a promising first look at SINaTRA as a method for identifying novel drug 

combination therapies, we have only considered a small number of gene pairs and cell lines. 

Furthermore, this work has underscored the complications associated with identifying SL in 

multicellular organisms, as drug synergy is often inconsistent between cell lines. 
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In summary, we believe that SINaTRA is a viable tool for guiding the discovery of novel 

drug combination therapies for cancer; using DAVISS in conjunction with it allows for the 

rigorous assessment of synergy across combination experiments. 
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METHODS 

Previous work suggests areas of possible drug synergy 
In the previous chapter [66], we developed an interspecies model of synthetic lethality (SL) 

based on protein-protein interactions of two species. There, we predicted the SINaTRA score for 

over 100 million human gene pairs. We found that, when clustering 52 genes associated with 

cancer drugs (the “original gene set;” described in Chapter 4 of this thesis), areas of high 

SINaTRA scores were associated with high densities of known single and combination cancer 

drugs. We selected Box 2 from Figure 4.4 of the previous chapter, which contained 11 unique 

genes and was significantly enriched for cancer-drug associations (p<2.2e-16). From these, we 

selected our five genes of interest (ERBB2, PTK2B, KIT, CSF1R, STAT5B) because drugs 

inhibiting their activity had three or fewer targets according to SelleckChem.com.  

Gene-Drug Database Provides Negative Controls 
We selected all genes associated with cancer drugs from the following databases compiled 

in the Drug-Gene Interaction database (DGIdb [123,124]): Cancer Commons, CIViC, Clearity 

Foundation Clinical Trials, My Cancer Genome, TALC, and TTD. We labeled this gene list the 

“expanded gene set.” We clustered these (Figure 5.A.1) and found that our five drugs of interest 

co-localize near each other. To identify a negative control gene, we first identified all genes in 

the expanded set that had a SINaTRA score of <0.2 (~49th percentile) with all genes of interest. 

We next manually filtered these by selecting all genes associated with specific drugs (≤3 targets 

according to SelleckChem.com), then identified the gene with the lowest SINaTRA scores for all 

five of our original genes of interest. 

Cell Growth, Drug Dosing, and Measurement 
We select four cell lines for use in our experiments: CAL148, HEP-3B217, Hs606T, and 

MEG01. The density of each cell line was first optimized to ensure linear cell growth in the 
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tissue culture treated 384-well plates (Greiner Bio-One 781080) for the duration of the 

experiment.  Starting with 16,000 cells per well, the cells were 2-fold serially diluted to test 10 

different concentrations of growth in the microplate. Cell-Titer-Glo (Promega Corp.) was used to 

measure total ATP levels of the wells every 24 hours for 96 hours. Optimal cell density was 

chosen based on the linear growth of cells by graphing the total luminescence count versus time.  

Each cell line was then plated employing the Cell::Explorer automation system (under 

HEPS filtered conditions) at the optimal density into white, sterile, tissue culture treated 384 well 

plates on a Perkin Elmer Janus Automated workstation. The Janus is equipped with a 96 tip 

Modular Dispense Technology (MDT) pipetting head and it was used with sterile tips (235µL, 

Perkin Elmer 69000045) for plating 50µL of the cell solution into the microplates.  The plates 

were incubated in the Liconic STX-500 ICSA for 24 hours prior to drug addition.  

To generate a concentration response curve of each compound in the combination, the HP 

D300 Digital Dispenser was used to dispense specific amounts of the drug for  

a titration curve.  Each concentration of the drug was dispensed in triplicate by the Digital 

Dispenser using HP’s inkjet technology.   

After 48 hours of incubation with the drug, the Cell::Explorer removed the plates out of the 

incubator and placed them in the Liconic LPX 200 Hotel to let them equilibrate to room 

temperature. 25µL of Cell Titer Glo were added using the Perkin Elmer Flexdrop PLUS 

Precision Reagent Dispenser. After shaking at 600 rpm for 5 minutes, the plates were read by the 

Perkin Elmer Envision 2104 using an enhanced luminescence protocol. The viability of each 

well was then calculated utilizing the control wells in each plate.  

Calculation of drug curves 
Each drug combination was tested in triplicate over three plates. We quantile normalized 

each set of plates containing the same combination(s); therefore, if plates 1-3 contain 
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combinations of drugs A+B and drugs C+D, and plates 4-6 contain combinations of drugs A+E 

and drugs C+E, we quantile normalize plates 1-3 to each other, and plates 4-6 to each other; 

these two groups (1-3 and 4-6) are not normalized to each other. 

Therefore, we computed individual drug curves for each plate set. We began each curve 

from a concentration of 0µM. In order to plot this with drug dosage on a log scale, we replaced 

[Drug]=0µ with [Drug]min*0.1µM for each drug in each cell line. 

For the dose-response curve, we used a logistic curve following the equation: 

𝑦 =
𝑐

1 + 𝑒)�(@)@�) + 𝑦� 

where x is the log(concentration) of drug and y is the calculated viability, referred to as “cell 

count” throughout the remainder of the methods for simplicity. We bootstrapped the data 100 

times and used least-squares implemented with the SciPy package to fit the curve, beginning 

with seeds of x0=median(drug concentration), y0 = median(cell count), c=max(control cell 

counts)-min(control cell counts), and k=1.0. We then selected the curve with the lowest root 

mean squared error (RMSE) for the original data (Figure 5.A.2). In cases where the dose-

response curve ends higher than the beginning, we fit a flat line (explained in next section). All 

curves are shown in Figure 5.A.3. 

In order to measure the consistency between curve starting points, we calculated the median 

and percent difference from median for each starting value of the drug curve (where 

[Drug]=0µM). These are reported in Table 5.A.1.  

Calculation of Drug Synergy using Bliss Independence 
Drug effect is measured using percent inhibition. For each drug curve for each cell line, we 

calculate the effect of a single drug at each concentration XµM using:  
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% Inhibition =	
𝑓(𝑋𝜇𝑀)
𝑓(0𝜇𝑀) 

where f() is the function of the fitted curve, f(XµM) is cell count at a dose of XµM, and f(0µM) is 

the cell count at the highest point of the curve, where drug dose is 0µM. 

For each drug combination in each cell line, we calculated the effect of both drugs using the 

same formula; however, as the denominator, we use the mean value for f(0µM) of both drugs.  

To calculate drug synergy, we used the Bliss independence measure;[46] in particular, we 

used the excess over Bliss (EOB),  

EOB = 	𝐸+Q − (𝐸+ + 𝐸� − 𝐸+𝐸Q) 

where EA is the effect of drug A alone, EB is the effect of drug B alone, and EAB is the effect of 

both drugs in combination. Here, we measure effect as percent inhibition. An EOB > 0 implies 

synergy; EOB < 0 implies antagonism; EOB = 0 implies additivity.  

We use percent inhibition for EA and EB. Importantly, neither EA nor EB can be negative; 

this is why flat lines must be used for certain curves. 

The significance of combination-wide synergy can be calculated using null 
distributions 

When [A] and [B] = 0µM, EA = EB = 0. Therefore, when [A]=[B]= 0µM, EOB = EAB. 

Because we have 60 control wells per combination (20/plate), we are able to use them as a null 

distribution of EOB. 

In order to account for the potential non-normality of the null or experimental distributions, 

we can use the Mann-Whitney U test to compare them. The expected value of U is described as: 

𝐸 𝑈 = 	
𝑛(𝑛p
2  
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where n1 is the number of data points in the null distribution, and n2 is the number of data points 

in the combination. We describe the experimental dataset as synergistic if U>E[U] and p ≤0.05; 

it is antagonistic if U<E[U] and p<0.05. Otherwise, it is additive. 

We illustrate this principle using simulated data, where we sample 100 numbers each from 

normal distributions representing the null (µ=1.0, σ=0.0), additive (µ=0.01, σ=0.99), synergistic 

(µ=0.5, σ=1.0), and antagonistic (µ=-0.5, σ=1.0). An experimental distribution that meets the 

criteria of synergy is coloured red; those of antagonism, blue; and those of additivity, light gray.  

The significance of synergy in at particular concentrations can be calculated 
using the null distribution  

For each replicate of each drug combination, we calculated its significance using a modified 

Z score [126], such that: 

modZ =	
𝑐(𝑥" −med 𝑥 )

MAD
 

where xi is the datum, x is the data, and c=0.6745 (E(MAD)=0.6745 σ) [126], and MAD (median 

absolute deviation) is defined as: 

MAD = med( 𝑥" − med 𝑥 ) 
 

We define |modZ|≥3.5 as significant, where modZ ≥ 3.5 as significantly synergistic, and 

modZ≤3.5 as significantly antagonistic, for a given replicate. This level is chosen based on the 

suggestion of Iglewicz et al. [126]. 

We create a heat map of significance by adding one point for every dose combination 

replicate that has significant synergy, and subtracting one point for every one that has significant 

antagonism. Therefore, a dose combination with a value of +3 exhibits significant synergy at 

each replicate of the combination, while one with a value of -2 exhibits antagonism in only two 

replicates. We ensured that no single dose combination exhibits both significant synergy and 
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significant antagonism, which would lead to a nullification of significant replicates at that point 

(i.e. +1 for synergy and -1 for antagonism would lead to an overall indication of additivity).  

The combination of EOB, concentration-specific significance, and synergistic 
trends illustrates a clear picture of drug synergy experiments 

In order to assess overall synergy in each drug combination, we combine general and 

concentration-specific evaluations of synergy. In order to assess general synergy, all EOB scores 

of cell-specific combinations are tested against the null distribution using the Mann-Whitney U 

test. The combination is given +1 if we observe significant overall synergy, -1 if they indicate 

overall antagonism, and 0 otherwise.  

In order to assess specific synergy, we identify the number of drug concentration 

combinations that are significantly synergistic and antagonistic according to modZ. We evaluate 

a cell line as having significant specific synergy (+1) if there are more synergistic concentration 

pairs than antagonistic ones; antagonistic (-1) if there are more antagonistic ones than synergistic 

ones; and additive (0) otherwise (modified Z score).  

Concordance of a drug combination in a cell line is evaluated using the similarity between 

general and concentration-specific synergy. If both are +1, then the cell line/drug combination is 

given a concordance score of +1; if both are -1, then the concordance score is -1. Else, the 

concordance score is 0.  

A drug combination is given an overall score of +1 if all cell lines have a concordance score 

of +1 or 0; -1 if all cell lines have a concordance score of -1 or 0; and 0 otherwise. Therefore, a 

drug combination with an overall score of -1 is evaluated as synergistic; one with an overall 

score of -1 is evaluated as antagonistic. Otherwise, it is considered additive.  
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APPENDIX 

 

Figure 5.A.1: Cancer gene cluster 
Cluster of cancer-associated genes from DGIdb. The distances of the five original genes of interest (red arrows) are 
significantly lower than the average distance (Mann-Whitney U, p=2.07e-7) 
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Figure 5.A.2: Curve-fitting example 
In order to select the best curve fit, we ran 100 bootstraps of dose-response data (gray lines) and calculated the 
RMSE for the curve for the original data (black dots). We selected the curve with the lowest RMSE (red). 
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Figure 5.A.3: Dose-response curve fits 
Curve fitting for A.) Predicted SL combinations and B.) Predicted non-SL combinations.  
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	 Cell	Line	 Combination	Set	 Drug	 Curve	Start	(Cell	Ct)	 Median	 %	Difference	from	Median	
Pr
ed

ic
te
d	
SL
	

CAL148	

1	
Amuvatinib	 9.0E+06	

9.0E+06	
0.3%	

BLZ945	 9.0E+06	 0.4%	
Mubritinib	 9.0E+06	 0.4%	
PF-431396	 9.0E+06	 0.3%	

2	
Amuvatinib	 8.9E+06	

8.9E+06	
0.1%	

Mubritinib	 8.9E+06	 0.1%	
PF-431396	 9.1E+06	 1.6%	
STAT5	Inhibitor	 8.9E+06	 0.2%	

3	
Amuvatinib	 8.9E+06	

9.0E+06	
0.8%	

PF-431396	 9.0E+06	 0.5%	
STAT5	Inhibitor	 9.0E+06	 0.0%	

4	
BLZ945	 9.4E+06	

9.4E+06	
0.2%	

Mubritinib	 9.3E+06	 0.6%	
PF-431396	 9.4E+06	 0.2%	
STAT5	Inhibitor	 9.4E+06	 0.2%	

5	
BLZ945	 8.7E+06	

8.7E+06	
0.3%	

Mubritinib	 8.7E+06	 0.0%	
STAT5	Inhibitor	 8.6E+06	 0.2%	

HEP3B217	

1	
Amuvatinib	 7.9E+06	

7.9E+06	
0.0%	

BLZ945	 7.9E+06	 0.0%	
Mubritinib	 7.9E+06	 0.1%	
PF-431396	 7.9E+06	 0.5%	

2	
Amuvatinib	 8.4E+06	

8.4E+06	
0.1%	

Mubritinib	 8.5E+06	 0.2%	
PF-431396	 8.4E+06	 0.1%	
STAT5	Inhibitor	 8.4E+06	 0.4%	

3	 Amuvatinib	 6.2E+06	 6.2E+06	 0.1%	
PF-431396	 6.2E+06	 0.1%	

4	
BLZ945	 6.2E+06	

6.2E+06	
0.0%	

Mubritinib	 6.2E+06	 0.1%	
PF-431396	 6.2E+06	 0.0%	
STAT5	Inhibitor	 6.2E+06	 0.1%	

5	
BLZ945	 6.2E+06	

6.2E+06	
0.1%	

Mubritinib	 6.2E+06	 0.0%	
STAT5	Inhibitor	 6.2E+06	 0.0%	

HS606T	

1	
Amuvatinib	 1.5E+06	

1.5E+06	
0.5%	

BLZ945	 1.5E+06	 0.0%	
Mubritinib	 1.5E+06	 0.0%	
PF-431396	 1.5E+06	 1.1%	

2	
Amuvatinib	 1.6E+06	

1.6E+06	
0.1%	

Mubritinib	 1.6E+06	 0.1%	
PF-431396	 1.6E+06	 1.5%	
STAT5	Inhibitor	 1.6E+06	 0.1%	

3	
Amuvatinib	 2.2E+06	

2.2E+06	
0.1%	

PF-431396	 2.2E+06	 1.1%	
STAT5	Inhibitor	 2.2E+06	 0.0%	

4	
BLZ945	 1.9E+06	

1.9E+06	
0.1%	

Mubritinib	 1.9E+06	 0.1%	
PF-431396	 1.8E+06	 2.9%	
STAT5	Inhibitor	 1.9E+06	 0.1%	

5	
BLZ945	 2.1E+06	

2.1E+06	
0.0%	

Mubritinib	 2.1E+06	 0.2%	
STAT5	Inhibitor	 2.1E+06	 0.2%	

MEG01	

1	
Amuvatinib	 8.9E+06	

8.9E+06	
0.0%	

BLZ945	 8.9E+06	 0.3%	
Mubritinib	 8.7E+06	 2.3%	
PF-431396	 8.9E+06	 0.0%	

2	
Amuvatinib	 1.2E+07	

1.2E+07	
0.8%	

Mubritinib	 1.2E+07	 0.0%	
PF-431396	 1.2E+07	 0.0%	
STAT5	Inhibitor	 1.2E+07	 0.6%	

3	
Amuvatinib	 1.2E+07	

1.3E+07	
0.2%	

PF-431396	 1.3E+07	 0.2%	
STAT5	Inhibitor	 1.3E+07	 0.0%	

4	
BLZ945	 1.1E+07	

1.1E+07	
0.6%	

Mubritinib	 1.1E+07	 0.0%	
PF-431396	 1.1E+07	 0.2%	
STAT5	Inhibitor	 1.1E+07	 0.0%	

5	
BLZ945	 1.1E+07	

1.1E+07	
0.0%	

Mubritinib	 1.1E+07	 0.1%	
STAT5	Inhibitor	 1.1E+07	 0.5%	

Pr
ed

ic
te
d	
no

n-
SL
	

CAL148	

1	
Amuvatinib	 2.1E+06	

2.1E+06	
0.0%	

BLZ945	 2.1E+06	 0.1%	
PF-2545920	 2.1E+06	 1.6%	

2	
Mubritinib	 2.0E+06	

2.0E+06	
0.0%	

PF-2545920	 2.1E+06	 2.1%	
PF-431396	 2.0E+06	 2.7%	

3	 PF-2545920	 1.2E+06	 1.2E+06	 0.0%	
STAT5	Inhibitor	 1.2E+06	 0.0%	

HEP3B	

1	
Amuvatinib	 4.1E+06	

4.1E+06	
0.3%	

BLZ945	 4.1E+06	 0.0%	
PF-2545920	 4.1E+06	 0.9%	

2	
Mubritinib	 4.3E+06	

4.3E+06	
0.1%	

PF-2545920	 4.3E+06	 0.1%	
PF-431396	 4.3E+06	 0.0%	

3	 PF-2545920	 4.4E+06	 4.4E+06	 0.0%	
STAT5	Inhibitor	 4.4E+06	 0.0%	

MEG01	

1	
Amuvatinib	 4.5E+06	

4.5E+06	
0.0%	

BLZ945	 4.5E+06	 0.3%	
PF-2545920	 4.4E+06	 1.5%	

2	
Mubritinib	 4.1E+06	

4.0E+06	
1.3%	

PF-2545920	 4.0E+06	 0.0%	
PF-431396	 3.9E+06	 4.2%	

3	 PF-2545920	 3.9E+06	 3.9E+06	 0.4%	
STAT5	Inhibitor	 3.9E+06	 0.4%	

Table 5.A.1: Starting counts for drug curves 
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Figure 5.A.4: Putative SL pairs in CAL148 
10 putative SL pairs in CAL148. We observe two 
consistently, significantly synergistic drug 
combinations: amuvatinib/mubritinib and 
BLZ945/mubritinib. 
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Figure 5.A.5: Putative SL pairs in Hep-3B217 
10 putative SL pairs in Hep-3B217. We observe one 
consistently, significantly synergistic drug combination: 
mubritinib/PF-431396. We discard Amuvatinib/CAS 
285986-31-4 (row 6) due to fault in experimental setup. 
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Figure 5.A.6: Putative SL pairs in Hs606T 
10 putative SL pairs in Hs606T. We observe two 
consistently, significantly synergistic drug 
combinations: BLZ945/PF-431396 and 
BLZ945/mubritinib. 

  



 

147 

Figure 5.A.7: Putative SL pairs in MEG01 
10 putative SL pairs in MEG01. We observe two 
consistently, significantly synergistic drug combination: 
amuvatinib/PF-431396 and BLZ945/PF-431396. 
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Figure 5.A.8: Putative non-SL pairs in CAL148 
5 putative non-SL pairs in CAL148. We observe no consistently, significantly synergistic drug combinations. 
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Figure 5.A.9: Putative non-SL pairs in Hep-3B217 
5 putative non-SL pairs in Hep-3B217. We observe no consistently, significantly synergistic drug combinations. 
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Figure 5.A.10: Putative non-SL pairs in MEG01 
5 putative non-SL pairs in MEG01. We observe one consistently, significantly synergistic drug combinations: PF-
2545920/PF-431396.  
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CHAPTER 6 – DISCUSSION AND CONCLUSIONS  

Motivation 
In this work, our overarching goal was to integrate work in systems biology, genetics, and 

pharmacology in order to explore the underlying properties of biological networks and to predict 

novel combination therapies to treat cancer in humans.  

Summary 
In Chapter 1, we introduced the concepts behind systems biology, and the use of networks 

in particular. We then explored the definition of synthetic lethality and its potential applications 

to the prediction of novel cancer combination therapies. We next outline the processes for 

elucidating drug synergy and the shortcomings of these methods. We synthesize these concepts 

to outline the questions addressed in this work: can we create interspecies models of synthetic 

lethality, and can the output of such  

a model be used to successfully predict synergistic drug combinations in human cancer? 

In Chapter 2, we outline the concept of connectivity homology, a novel measure of 

relatedness between genes based on protein-protein interaction networks that is independent of 

structure, function, or genetic homology. We first illustrate the concept using toy networks, then 

show that networks evolving using preferential attachment exhibit higher connectivity homology 

than random ones. Finally, we show that orthologous and non-orthologous genes of similar 

functions in S. cerevisiae, S. pombe, and human PPI networks exhibit significantly higher 

connectivity homology.  

We use the concept of connectivity homology to demonstrate the viability of interspecies 

models of synthetic lethality in Chapter 3. We show that we can successfully predict synthetic 
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lethality from S. cerevisiae to S. pombe and M. musculus, and from S. pombe to S. cerevisiae 

using Species-INdependent TRAnslation (SINaTRA), a novel algorithm.  

We applied SINaTRA to predict synthetic lethal gene pairs in humans using S. cerevisiae 

network data in Chapter 4. We found that, when cancer-therapy-associated genes were clustered 

together, several high-SINaTRA areas were enriched for known cancer combination therapies. 

This led us to hypothesize that SINaTRA may be a good way of finding novel cancer 

combination therapies that may exude their effect through  

a synthetic lethal mechanism. 

We explored this hypothesis in Chapter 5, where we selected ten putative SL pairs and five 

putative non-SL pairs and tested them for synergy using specific drugs. We developed DAVISS 

(Data-driven Assessment of Variability In Synergy Scores), a new method of We found that 3/10 

predicted SL pairs associated with significant, consistent drug synergy over four cell lines 

(Amuvatinib/PF-431396, BLZ945/PF-431396, BLZ945/Mubritinib), compared to 0/5 predicted 

non-SL pairs in three cell lines, which greatly exceeded the expected SL hit rate of 0.1% [77]. 

Furthermore, we found that putative SL pairs are enriched for synergy at specific concentrations 

compared to predicted non-SL pairs. Finally, we identified three novel, cell-specific drug 

combinations: Amuvatinib/Mubritinib and BLZ945/Mubritinib in CAL148, and BLZ945/PF-

431396 in HS606T. 

These results suggest that the underlying structures of biological networks can be leveraged 

to better understand human systems using model organisms. Furthermore,  

an interspecies, network-based model of synthetic lethality can help to identify novel synergistic 

drug pairs to treat human cancer.  
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Limitations 
Although the results of each phase of our study are promising, they do have some 

limitations, and we will cover several of the key ones in this section.  

First and foremost, our model of synthetic lethality is based on the protein-protein 

interaction network of S. cerevisiae, a monocellular organism. Although we addressed context-

specific synthetic lethality in humans, we did not fully integrate expression data. This is in part 

because we have only a vague idea of how synthetic lethality changes between contexts, and no 

thorough study of the subject has yet occurred. 

Next, our exploration of SINaTRA as a method to guide the discovery of novel synergistic 

drug pairs is rather small. We covered relatively few pairs in a small number of cell lines, and 

our analysis was limited to drugs alone. Although the drugs we used were fairly specific for our 

genes of interest, the possibility of off-target effects does exist. In an ideal, large-scale 

exploration of the subject, we would begin our analysis first with RNAi or another specific 

method of knocking down genes to show synthetic lethality, and then utilize drugs to show that 

drug synergy may be mediated through  

a synthetic lethal mechanism.  

Finally, although DAVISS has been shown to be useful and thorough in understanding drug 

synergy, it currently requires the creation of a full drug curve in order to assess synergy. 

Furthermore, it relies on the use of Bliss independence, which has its own limitations. In future 

work, expanding DAVISS to require fewer experiments, and developing it for other methods of 

testing drug synergy would make it a highly versatile and utile methodology.  

Future directions 

In our introduction, we mentioned the importance of a feedback loop in the development of 

systems biology. Therefore, the best method of further understanding and refining SINaTRA 
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would be to conduct as many experiments as possible to validate and update the model. This, in 

turn, would help us better understand the mechanisms and connectivity patterns associated with 

synthetic lethality.  
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