
Augmented Reality Interfaces
for

Enabling Fast and Accurate Task Localization

Mengu Sukan

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
2017

© 2017
Mengu Sukan

All rights reserved

ABSTRACT

Augmented Reality Interfaces for Enabling Fast and Accurate Task Localization

Mengu Sukan

Changing viewpoints is a common technique to gain additional visual information

about the spatial relations among the objects contained within an environment. In many

cases, all of the necessary visual information is not available from a single vantage point,

due to factors such as occlusion, level of detail, and limited field of view. In certain in-

stances, strategic viewpoints may need to be visited multiple times (e.g., after each step

of an iterative process), which makes being able to transition between viewpoints pre-

cisely and with minimum effort advantageous for improved task performance (e.g., faster

completion time, fewer errors, less dependence on memory).

Many augmented reality (AR) applications are designed to make tasks easier to per-

form by supplementing a user’s first-person view with virtual instructions. For those

tasks that benefit from being seen from more than a single viewpoint, AR users typically

have to physically relocalize (i.e., move a see-through display and typically themselves

since those displays are often head-worn or hand-held) to those additional viewpoints.

However, this physical motion may be costly or difficult, due to increased distances or

obstacles in the environment.

We have developed a set of interaction techniques that enable fast and accurate task

localization in AR. Our first technique, SnapAR, allows users to take snapshots of aug-

mented scenes that can be virtually revisited at later times. The system stores still images

of scenes along with camera poses, so that augmentations remain dynamic and interac-

tive. Our prototype implementation features a set of interaction techniques specifically

designed to enable quick viewpoint switching. A formal evaluation of the capability to

manipulate virtual objects within snapshot mode showed significant savings in time spent

and gain in accuracy when compared to physically traveling between viewpoints.

For cases when a user has to physically travel to a strategic viewpoint (e.g., to perform

maintenance and repair on a large physical piece of equipment), we present ParaFrustum,

a geometric construct that represents this set of strategic viewpoints and viewing direc-

tions and establishes constraints on a range of acceptable locations for the user’s eyes and

a range of acceptable angles in which the user’s head can be oriented. Providing toler-

ance in the allowable viewing positions and directions avoids burdening the user with the

need to assume a tightly constrained 6dof pose when it is not required by the task. We

describe two visualization techniques, ParaFrustum-InSitu and ParaFrustum-HUD, that

guide a user to assume one of the poses defined by a ParaFrustum. A formal user study

corroborated that speed improvements increase with larger tolerances and reveals inter-

esting differences in participant trajectories based on the visualization technique.

When the object to be operated on is smaller and can be handheld, instead of being

large and stationary, it can be manually rotated instead of the user moving to a strategic

viewpoint. Examples of such situations include tasks inwhich one object must be oriented

relative to a second prior to assembly and tasks in which objects must be held in specific

ways to inspect them. Researchers have investigated guidancemechanisms for some 6dof

tasks, using wide–field-of-view (FOV), stereoscopic virtual and augmented reality head-

worn displays (HWDs). However, there has been relatively little work directed toward

smaller FOV lightweight monoscopic HWDs, such as Google Glass, which may remain

more comfortable and less intrusive than stereoscopic HWDs in the near future. In our

Orientation Assistance work, we have designed and implemented a novel visualization

approach and three additional visualizations representing different paradigms for guiding

unconstrained manual 3dof rotation, targeting these monoscopic HWDs. This chapter

includes our exploration of these paradigms and the results of a user study evaluating

the relative performance of the visualizations and showing the advantages of our new

approach.

In summary, we investigated ways of enabling an AR user to obtain visual information

from multiple viewpoints, both physically and virtually. In the virtual case, we showed

how one can change viewpoints precisely and with less effort. In the physical case, we

explored how we can interactively guide users to obtain strategic viewpoints, either by

moving their heads or re-orienting handheld objects. In both cases, we showed that our

techniques help users accomplish certain types of tasks more quickly and with fewer er-

rors, compared to when they have to change viewpoints following alternative, previously

suggested methods.

Table of Contents

List of Figures vi

List of Tables xiv

Acknowledgements xv

1 Introduction 1

1.1 Research Questions and Dissertation Goals 4

1.2 Contributions . 6

1.3 Structure of Dissertation . 10

2 Related Work 11

2.1 Switching Among Multiple Viewpoints 12

2.2 Presenting Multiple Viewpoints Simultaneously 15

2.3 Saving and Selecting Viewpoints . 17

2.4 Augmenting Static Images . 19

2.5 Guidance for Physically Transitioning to a Viewpoint 19

2.6 Task Assistance Using Augmented Reality 21

3 SnapAR 24

i

3.1 Introduction . 24

3.2 Related Work . 27

3.3 Interaction . 28

3.3.1 Creating and Storing Snapshots 29

3.3.2 Selecting and Viewing Snapshots 30

3.3.3 Heads-Up Display . 33

3.3.4 Manipulating Virtual Objects . 34

3.4 User Study . 36

3.4.1 Pilot Study . 37

3.4.2 Hypotheses . 41

3.4.3 Methods . 42

3.5 Results . 48

3.5.1 Completion Time . 48

3.5.2 Accuracy . 50

3.5.3 Questionnaire . 51

3.5.4 Usage Pattern Analysis . 53

3.5.5 Generalization of Findings . 55

3.6 Discussion . 56

4 ParaFrustum 58

4.1 Introduction . 59

4.2 Related Work . 64

4.2.1 Calling Attention to a 3d Target 64

ii

4.2.2 Specifying Position and Orientation Relative to a 3d Target . . . 66

4.2.3 Specifying a Constrained Set of Positions and Orientations in 3d 67

4.3 Definition and Rules . 68

4.4 ParaFrustum-InSitu . 71

4.4.1 Implementation . 74

4.5 ParaFrustum-HUD . 75

4.6 Comparison . 77

4.7 User Study . 78

4.7.1 Pilot Study . 78

4.7.2 Hypotheses . 79

4.7.3 Methods . 81

4.8 Results . 84

4.8.1 Completion Time . 85

4.8.2 Motion Analysis . 86

4.8.3 Accuracy . 88

4.8.4 Questionnaire . 90

4.9 Discussion . 93

5 Orientation Assistance 96

5.1 Introduction . 97

5.2 Related Work . 99

5.3 Visualizations . 101

5.3.1 Common Components . 101

iii

5.3.2 SingleAxis Visualization . 105

5.3.3 Euler Visualization . 107

5.3.4 Animate Visualization . 110

5.3.5 Handles Visualization . 112

5.4 User Study . 116

5.4.1 Control Condition . 117

5.4.2 Pilot Studies . 118

5.4.3 Hypotheses . 118

5.4.4 Methods . 122

5.5 Results . 124

5.5.1 Task Duration . 125

5.5.2 User Feedback . 128

5.5.3 Discussion . 132

6 Conclusions and Future Work 134

6.1 Contributions . 134

6.2 Lessons Learned . 136

6.3 Future Work . 138

6.3.1 SnapAR . 138

6.3.2 ParaFrustum . 139

6.3.3 Orientation Assistance . 140

6.4 Final Thoughts . 141

Bibliography 142

iv

Appendix 153

SnapAR Questionnaire . 154

ParaFrustum Questionnaire . 163

Orientation Assistance Questionnaire . 169

v

List of Figures

1.1 Illustration of a viewpoint in 3d computer graphics. Note that the blue pyra-

mid and the red cylinder are partially occluded by the yellow sphere.¹ 1

1.2 Examples of previous work on AR task assistance and localization. 3

a AR assistance for psychomotor phase of a procedural task using

dynamic 3D arrows and labels overlaid on a physical task object

[Henderson and Feiner 2011]. 3

b A typical localization sequence using an arrow (green) and a “rub-

berband” (red) [Henderson and Feiner 2009]. 3

1.3 Prototype SnapAR furniture layout application lets users view andmanipulate

virtual furniture in handheld AR using live and snapshot modes. 7

a Live mode . 7

b Overview mode . 7

1.4 ParaFrustum defining a range of acceptable viewing positions and orienta-

tions, as visualized by the ParaFrustum-InSitu visualization. 8

1.5 Screen capture of Handles visualizationwith persistent, clearly-visible align-

ment targets. 9

2.1 Examples of previous work on transitioning between viewpoints in VEs . . . 13

vi

a 2d illustration of a constrained 3dmotion traveling technique (cir-

cles show movable space, free of obstacles) [Elmqvist et al. 2008]. 13

b Spatial relationship among dynamic tether, virtual camera, and

avatar [Wang and Milgram 2001]. 13

2.2 Examples of interactive 3D computer graphics software with four simultane-

ous views of a 3D object in each quadrant of the screen: top, front, side, and

perspective views. 16

a Sketchpad III [Johnson 1963]. 16

b “Quad View” in Blender [Blender Online Community 2016]. . . . 16

2.3 Stimulus figure pairs used by Shepard andMetzler [1971]. (a) Identical objects

differing by a rotation in the plane of the page. (b) Identical objects differing

by a rotation in depth. (c) Mirror-image objects. 22

3.1 Prototype furniture layout application lets users view and manipulate virtual

furniture in handheld AR using live (pictured) and snapshot modes. 24

3.2 Overview mode renders available snapshots for selection. 25

3.3 Livemode. User study setup includes physical landmarks and virtual snapshot

representations. Inset shows user holding device. 29

3.4 Overview mode. Highlighted snapshot (blue) is closest to the crosshairs. . . 30

3.5 Snapshot mode. View after transitioning to selected snapshot. 31

3.6 Five pairs of physical props around a table. Props are redundantly coded using

color, symbol, and shape. 37

vii

3.7 Five imaginary routes established by connectingmatching physical props around

a table. 38

3.8 Illustration of a sample task: Protect children from train by moving stop sign

from starting position to intersection. 46

3.9 Mean completion time (in seconds) across conditions. 48

3.10 Mean alignment error (in inches) across conditions. 50

3.11 Questionnaire response histograms by condition. Median values are displayed

as diamonds. 52

4.1 ParaFrustum defining a range of acceptable viewing positions and orienta-

tions, as visualized by the ParaFrustum-InSitu visualization. 58

4.2 (a) A camera frustum defined by a look-from point and a look-at point. (b) A

ParaFrustum defined by a look-from (head) volume (a set of look-from points)

and a look-at (tail) volume (a set of look-at points). 61

4.3 ParaFrustum-HUD visualization. 62

4.4 Early concept: splayed window-frame to show an ideal viewing pose relative

to an aircraft engine for a maintenance task, (a) view from distance, (b) close-

up view, before arriving at the viewing position. 63

4.5 Sample screenshots from related work. 65

viii

4.6 2D projections of tail volume and view volume illustrating visibility rules for

satisfying ParaFrustum’s orientation constraint: (a, b) Tail volume is small

enough to fit fully within the view volume. (c, d) Tail volume is too large to

fit within the view volume. (b, d) Unacceptable because portion of tail volume

that is visible to user can be increased by rotating camera. 70

4.7 (a, b) Tightest possible constraints on orientation. Any change in orienta-

tion would result in portion of tail volume that is visible to user to decrease.

(a) View volume projection circumscribes the outline of the tail volume. (b)

Tail volume projection circumscribes the outline of the view volume. (c, d)

A fully contained tail volume is in the bottom-left corner of the viewing vol-

ume. Three alternative viewing orientations, which have the fully contained

tail volume in each of the three remaining corners of the view volume, are

shown with dashed outlines. (d) Has a smaller tail volume compared to (c),

allows for larger changes in orientation while still maintaining the tail volume

inside the view volume, and is therefore a looser orientation constraint. . . . 72

4.8 ParaFrustum-InSitu visualization. (a) Viewed from a distance, head volume is

opaque. (b) Head volume becomes more transparent as user approaches. (c)

Looking toward tail volume with eyes inside head volume, red ring and ribs

are visible. (d) Eyes have exited rear of head volume, and red ring becomes

thicker. (e) Eyes continue further forward and tail volume starts becoming

opaque. Tail volume extends beyond top and right edges of view volume,

which are highlighted in white. (f) Eyes return back into head volume and

orientation is correct, so only faint red ring remains. 73

ix

4.9 ParaFrustum-HUDvisualization. (a) Top-down perspective, height offset view,

and orientation offset indicator are combined in one visualization. (b) User has

approached head shape, which has become larger in Forward and Up radars.

(c) User intersects target shape in both Forward and Up radar. (d) User is

looking in correct direction and is inside head volume. 76

4.10 ParaFrusta, visualized using ParaFrustum-InSitu. Left-to-right, head posi-

tion has less tolerance; top-to-bottom, orientation has less tolerance. Labels

at upper left of each subimage specify levels of tolerance, and are of form

“PositionTolerance–OrientationTolerance”, where each of PositionTolerance

and OrientationTolerance is one of Loose (L), Medium (M), and Tight (T). . . 79

4.11 Participants wore a Canon HM-A1 —a stereo, video see-through HWD with

1280 × 960 resolution at 60Hz refresh rate (per eye) and 50◦ diagonal FOV—

during the study. 82

4.12 (a) A participant starts at “home” zone marked with blue tape on the floor, (b,

c) walks towards aircraft engine and approaches a ParaFrustum using one of

our visualizations and (d) presses button onWii remote when she satisfies the

constraints of the ParaFrustum. 84

4.13 TaskDuration. InSitu (left panel) vs. HUD (right panel), by position constraint

(x-axis), and orientation constraint (color). 86

4.14 Cumulative motion. InSitu (left panel) vs. HUD (right panel), by position

constraint (x-axis), and orientation constraint (color). 87

a Cumulative Distance Traveled. 87

b Cumulative Head Rotation. 87

x

4.15 Accuracy by Technique. 89

a Position accuracy by Position Constraint. 89

b Orientation accuracy by Orientation Constraint. 89

4.16 Questionnaire Results. Median values for each condition are shown as triangles. 91

4.17 Heatmaps showing a cumulative view of all participant trajectories. These are

plan views of the layout of our user study areawith the aircraft engine towards

the top and the blue home zone square towards the bottom of each subfigure.

Green isosceles triangles represent six of the possible twelve targets. Only

those targets that were on the right half of the engine are shown (the other

six targets were mirror images flipped along the y-axis ending up on the left

half of the engine). The apex of each triangle is at the center of the head

volume for that target and the base is oriented towards the tail volume. A

brighter red color for a given location indicates that more participants have

visited that location (i.e., it was along their trajectory). 95

a Using ParaFrustum-InSitu. 95

b Using ParaFrustum-HUD. 95

5.1 User’s view of a physical, handheld object and one of our visualizations, Han-

dles, providing interactive orientation assistance (photographed throughGoogle

Glass Explorer Edition). 96

5.2 Screen capture of Handles visualization, rendered on Google Glass Explorer

Edition. 102

xi

5.3 Arrow shape evolution. (a) A simple cylindrical, curved 3d arrow. (b) Re-

peating flattened 3d arrows increase amount of information encoded in ar-

row body. Walls facing towards the axis of rotation are colored differently to

help disambiguate orientation. (c) Repeating flattened 3d arrows with semi-

transparent ring to further clarify rotation axis. 103

5.4 SingleAxis. (a) The remaining rotation is represented by a cylinder showing

the axis of rotation and a set of dynamic arrows indicating the direction and

magnitude of the remaining rotation. (b) As the user follows the visualization,

the axis and arrows update to reflect the current optimal rotation from the

current pose of the object to the target pose. (c) As the user nears the target

pose, the arrows collapse into their arrowheads. 106

5.5 Euler. (a) The remaining rotation is represented by a set of three arrows

showing the axes, direction, and magnitude of the remaining rotation. (b) As

the user follows the visualization, in the order indicated by the colored num-

bered circles on the side, the arrows update to reflect the remaining rotation,

per axis, from the current pose of the object to the target pose. (c) As the user

nears the target pose, the arrows collapse into their arrowheads. If the user

rotates away from the target about a particular axis, the arrows reappear. . . 108

xii

5.6 Animate. (a) The remaining rotation is represented by an animating clone of

the virtual proxy, which rotates from the current orientation of the tracked

object, to the destination orientation. (b) As the user follows the visualization,

the looping animation will begin from the latest orientation of the tracked

object. (c) As the user nears the target pose, the frequency and speed of the

animated object will increase, until the task is complete. 111

5.7 Handles. (a) The target orientation is directly represented by a set of two

colored tori. Two colored poles extend from the center of the virtual proxy,

and the user must try to align each pole with its matching torus. A set of

arrows show the rotational path from each pole to its corresponding torus.

(b) As the user nears the target pose, the arrows update to show the current

rotational path from each pole to its corresponding torus. (c) Both handles

have been aligned, the tori turn green, and the task is complete. 113

5.8 Study participant manually orienting task object, guided by our system. . . . 116

5.9 Static. Control Condition. 118

5.10 User Study: Task duration per technique. 126

5.11 User Study: User rankings per technique. (*) denotes significance at p <

.01. Size of circle and number inside it indicate the number of participants

choosing a given rank. 129

5.12 User Study: NASA TLX ratings per technique. (*) denotes significance at p <

.01. Size of circle and number inside it indicate the number of participants

choosing a given rating. 131

xiii

List of Tables

3.1 Average number of view switches per trial by condition. 53

4.1 Accuracy by Visualization. 88

4.2 Questionnaire—Wilcoxon Signed-Rank comparisons. ∗ denotes statistical sig-

nificance at Bonferroni-corrected α = .0056 92

5.1 Task duration—Pairwise comparisons . 127

xiv

Acknowledgements

First, I would like to thank my advisor Steve Feiner for his relentless support and men-

torship throughout this journey. When Steve accepted me to join his Computer Graphics

and User Interfaces (CGUI) Lab as a PhD student, I did not have a long working history

in UI research, but he took a chance on me and trusted that my performance in his class

was a good indicator of my passion for the field and eagerness to learn. During my time

in his lab, I witnessed time and again how he tirelessly supported not only me, but all

of his students, in every imaginable way; not only by guiding our research, sharing his

incomparably deep knowledge of the field, and coaching academic writing, but also by

going to great lengths to secure our funding and caring for our general well-being. I will

endeavor to emulate his high standards and passion for excellence for the rest of my life.

Next, I would like to recognize Barbara Tversky, who provided such pivotal input

to my research for such a long time, that I consider her an unofficial second advisor. We

relied on her constantly to guide us in our designs with insights from her groundbreaking

work in cognitive science and to help us ensure that our work had a solid foundation in

cognitive principles. Barbara also supported me financially for a semester, hiring me as a

visiting researcher in her department. For all of her academic and non-academic support,

I will be forever in her debt.

xv

I would like to express my gratitude to my committee members, John Kender, Shree

Nayar, and Steve Henderson for their invaluable time and input. A lot of the ideas in my

thesis were inspired by Steve’s earlier work on augmented reality interfaces for proce-

dural tasks and we have continuously used the Rolls-Royce Dart 510 aircraft engine he

refurbished and generously donated to our lab as a prop in our demos and user studies. I

consider myself lucky to have intersected with his time at CGUI.

My fellow CGUI lab members, Carmine Elvezio, Ohan Oda, Daniel Miau, Brian Smith,

Sean White, and Lauren Wilcox, have been a great source of support and inspiration

through this entire time and I would like to express my appreciation for their camaraderie.

I especially thank Carmine for being my partner and co-author in many of the projects I

have worked on and I recognize that without his user interface design and coding exper-

tise, as well as his tireless work ethic, a lot of the work in this dissertation would simply

not be possible. I also thank Ohan for spending a substantial amount of his research time

developing the Goblin XNA framework, which provided us with the necessary infrastruc-

ture to build our projects on.

I thank the students who worked on my projects for research credit for their valuable

contributions: Semih Energin, Minhaz Palasara, Yujin Ariza, Bin Shen, Morgan Thomp-

son, Brian Wu, Nora Wixom, Rahul Tewari, and Vaibhav Malpani.

Last but not least, I am eternally grateful to my wife, Eva, and my parents, Sema and

Macit, for their unconditional love, unwavering support, and endless patience.

Research in this dissertation was supported in part by NSF Grants IIS-0905569, IIS-

0905417, IIS-0855995, IIS-1514429, and IIS-1513841, as well as generous gifts from VTT,

Canon U.S.A. Inc., Microsoft Research, and Google.

xvi

Dedicated to my wife, Eva, and my parents, Sema and Macit

Vita brevis, ars longa,
occasio praeceps,
experimentum periculosum,
iudicium difficile.

Hippocrates

xvii

Chapter 1

Introduction

Figure 1.1: Illustration of a viewpoint in 3d computer graphics. Note that the blue pyramid
and the red cylinder are partially occluded by the yellow sphere.¹

In 3d computer graphics, viewpoints are often defined by viewing and projection ma-

trices, which collectively encode the position and orientation of the user, as well as the

parameters of the camera, such as viewport dimensions, field of view, and focal length

(Figure 1.1). The 2d rendering from such a viewpoint contains visual cues that help users

understand the spatial relations among the objects contained in the environment. How-

ever, the amount of information that can be obtained from a single viewpoint may be

¹http://www.pcmag.com/encyclopedia/term/61771/viewing-frustum

1

limited. For example, objects might fall outside the viewing frustum, be occluded by oth-

ers, or be too small to be seen from a certain distance given the resolution of the rendered

image. In these situations, it is crucial for the user to be able to change their viewpoint to

obtain one or more additional views of the environment to accomplish a given task.

In the physical world, we can intuitively perform the physical motion necessary to po-

sition ourselves relative to the environment to change our viewpoint and obtain additional

visual information. Similarly, physical motion of the user’s body is a direct and natural

way to change viewpoints (also known as traveling) in immersive virtual environments

(VEs), such as a virtual reality (VR) application. This has the advantage of providing the

user with proprioceptive feedback, at the expense of requiring time and effort. Virtually

transitioning to an alternative viewpoint without a corresponding physical motion is a

well-studied alternative means of travel in VR [Bowman et al. 2005]. While these noniso-

morphic “magic” travel techniques are less natural, they allow the user to cover greater

distances quickly, and with less effort.

In Augmented Reality (AR), by definition, a user’s view of the real world is augmented

with virtual content, combining real and virtual objects interactively in a cohesivemanner

[Azuma et al. 2001]. The combined real and virtual environments can be viewed on a

display that is typically either head-worn or hand-held. In another approach, the virtual

information can be projected directly on the physical objects to be augmented. With all

these display modalities, one common thread is that virtual content is typically displayed

from the user’s natural, first-person, embedded perspective of the scene and the user has

to physically move to different viewpoints to obtain additional visual information.

Having an unobstructed view of an object from a specific angle and distance can be

2

(a) AR assistance for psychomotor phase of a procedural task using dynamic 3D arrows and
labels overlaid on a physical task object [Henderson and Feiner 2011].

(b) A typical localization sequence using an arrow (green) and a “rubberband” (red) [Henderson
and Feiner 2009].

Figure 1.2: Examples of previous work on AR task assistance and localization.

particularly important when a physical task (e.g., assembly, inspection, repair) needs to be

performed on that object. Providing instructions in AR (i.e., overlaying virtual cues and

instructions onto physical objects) has been shown to improve task performance (e.g.,

Tang et al. [2003], Robertson et al. [2008], and Henderson and Feiner [2011], Figure 1.2a)

and continues to be an active area of research. Some AR task assistance systems include

attention direction techniques to localize the user to a specific object in the environment

(e.g., Feiner et al. [1993] and Henderson and Feiner [2009], Figure 1.2b), but these local-

ization techniques focus solely on guiding the user to turn in the direction of the task

object.

In this dissertation, we present AR visualizations and user interface (UI) techniques

to help users localize quickly and accurately by:

(a) enabling the user to store and virtually revisit previously visited viewpoints,

3

(b) directing the user to physically travel to strategic viewpoints while allowing a range

of acceptable 6dof poses, and

(c) guiding the user to reorient a handheld task object in 3dof to obtain a strategic

view of that object (instead of moving relative to the object themselves).

1.1 ResearchQuestions and Dissertation Goals

While investigating how we can enable fast and accurate task localization in AR, we fo-

cused our efforts on answering the following research questions:

How can we show a user views from alternative viewpoints in AR? Since AR applications

need to interface with the physical world by definition, travel is often achieved through

physical locomotion by default. In Chapter 3, we start by exploring an alternative method

for travel in AR (i.e., virtual travel) and answer several surrounding questions in the pro-

cess: How canwe decouple the viewpoint of the real objects in the scene and the registered

virtual content from the physical camera that is controlled by the user? Before we can

change a user’s viewpoint, how do we obtain alternative views in the first place? If we

can successfully obtain and store views from alternative viewpoints, how can the user get

information on what viewpoints are available, and where they are relative to their cur-

rent (physical or virtual) viewpoint? In Chapter 4, we continue our exploration and try

to answer how we can effectively guide a user when they have to physically travel to a

strategic viewpoint (e.g., to perform a task on a physical object). Finally, in Chapter 5, we

take advantage of the fact that sometimes we need to operate on small, handheld objects

and explore how we can effectively guide users to manipulate a handheld object to view

4

that object from a strategic viewpoint.

What visual aids and UI techniques can we provide to help a user who needs to transition

to an alternative viewpoint? In Chapter 3, once we show how we can decouple the view-

point of the user from their physical camera, we try to determine how we can represent

the additional viewpoints that are available to the user. What UI techniques would be

effective to let them to choose one of those additional viewpoints and trigger a transition

to virtually visit that viewpoint? When the user has to move relative to the task object

(Chapter 4), how can we guide a user to a specific position and get them to look in a

specific direction (i.e., get them to assume a specific 6dof viewing pose, not necessarily

along a certain path)? Noting that increasing the precision required when assuming a

6dof pose will also likely increase the amount of time and effort required to assume that

pose, how can we introduce varying amounts of tolerance for position and orientation,

depending on the level of precision required by the task at hand? Suppose that the user’s

destination is not inside the viewing frustum of their display (e.g., when the destination

is outside their current field-of-view (FOV), behind the user, or closer to the user than

the near clipping plane). How can we continue to provide the user with visual feedback

in such cases? In cases where the user can reorient the task object (Chapter 5), what UI

elements provide the most effective assistance for a nontrivial rotation task? What are

the best strategies to provide real-time feedback to let the user correct their rotation path

interactively?

What are the benefits of being able to transition viewpoints in AR? For all of our work,

we strive to quantitatively measure how our UI techniques and visualizations affect user

performance (e.g., completion time and task accuracy). In addition, we collect and present

5

qualitative data on user preference to uncover if there are potential disadvantages to

switching among viewpoints or our guidancemethods (e.g., disorientation or addedwork-

load from switching).

1.2 Contributions

In answering the questions framed above, we make the following contributions:

With SnapAR, we introduce a set of interaction techniques to quickly transition among

virtual viewpoints [Sukan et al. 2012]. This is useful for tasks when strategic viewpoints

have to be revisited multiple times (e.g., when trying different furniture layouts for inte-

rior design, Figure 1.3a). SnapAR allows a user to virtually revisit one of a set of previously

saved viewpoints by simply pointing a handheld device at a 3d icon of the viewpoint em-

bedded in the environment (Figure 1.3b). To obtain a collection of strategic viewpoints, we

let the user take snapshots (photographs) of environments from strategic viewpoints us-

ing the handheld device. To accommodate snapshots that fall outside of the user’s FOV,

we developed a virtual overview mode, which mimics the motion of the user backing

away from the scene until all snapshot icons are captured in the viewing frustum. We

allow the user to manipulate virtual content from the perspective of a stored viewpoint

while virtually revisiting it. We designed and performed a formal user study that showed

participants can accomplish an AR alignment task faster and with fewer errors while us-

ing SnapAR than when using just the live AR mode. Moreover, participants preferred

manipulating virtual objects using snapshots to the live mode.

With ParaFrustum, we introduce a geometric construct that represents a set of constrained

6

(a) Live mode

(b) Overview mode

Figure 1.3: Prototype SnapAR furniture layout application lets users view and manipulate virtual
furniture in handheld AR using live and snapshot modes.

viewpoints and viewing directions [Sukan et al. 2014]. We present this construct to the user

with a set of visualizations that help guide the user to meet those constraints by providing

real-time visual feedback (Figure 1.4). This is useful for tasks in augmented or virtual

reality that require users to view a target object or location from one of a set of strategic

viewpoints to see it in context, avoid occlusions, or view it at an appropriate angle or

7

Figure 1.4: ParaFrustum defining a range of acceptable viewing positions and orientations, as
visualized by the ParaFrustum-InSitu visualization.

distance. ParaFrustum is inspired by the look-from and look-at points of a computer

graphics camera specification, which precisely delineate a location for the camera and

a direction in which it looks. We generalize this approach by defining a ParaFrustum

in terms of a look-from volume and a look-at volume, which establish constraints on a

range of acceptable locations for the user’s eyes and a range of acceptable angles in which

the user’s head can be oriented. Providing tolerance in the allowable viewing positions

and directions avoids burdening the user with the need to assume a tightly constrained

6dof pose when it is not required by the task. We developed two visualization techniques

that guide a user to assume one of the poses defined by a ParaFrustum, and measured the

performance of these techniques with a user study. The study showed that the constraints

8

of a ParaFrustum can be satisfied faster than those of a conventional camera frustum,

corroborated that these speed improvements increase with larger tolerances, and revealed

interesting differences in participant trajectories in response to the two techniques.

Figure 1.5: Screen capture of Handles visualization with persistent, clearly-visible alignment
targets.

With Orientation Guidance, we present Handles, a novel interaction and visualization

approach to provide real-time guidance for unconstrained 3d rotation of hand-held objects

(Figure 1.5) [Sukan et al. 2016]. Handles overcomes shortcomings of existing approaches

by providing persistent, clearly-visible alignment targets, and works well on lightweight,

monoscopic, small-FOV HWDs. We show that users guided by Handles performed a

nontrivial orientation task significantly faster compared to other techniques and tended to

prefer it over the other techniques. Additionally, we describe three additional orientation-

guidance approaches that are built using variants of common UI elements found in ex-

isting orientation-guidance systems (e.g., 3d arrows and animation) and detail how we

carefully fine-tuned these approaches to improve their usability. We report results and

9

analysis from a formal user study that compares these four approaches with an unaided

side-by-side representation of the static target orientation and a dynamic virtual proxy of

the tracked object, addressing speed of performance (both overall speed, and the break-

down into initial ballistic rotation and subsequent fine-tuning), preference, and task load.

1.3 Structure of Dissertation

We continue this dissertation with Chapter 2, where we provide an overview of previous

work on managing multiple viewpoints and providing task assistance in AR. In Chap-

ter 3, we describe the design, implementation, and evaluation of SnapAR, a set of inter-

action techniques that allow users of handheld AR applications to virtually revisit previ-

ously stored viewpoints without having to physically travel back. Next, in Chapter 4, we

introduce ParaFrustum, which generalizes the specification of an acceptable range of 3d

viewing positions and orientations, and detail two visualizations along with a formal eval-

uation. In Chapter 5, we recount our investigation of the usability of various visualization

techniques (e.g., arrows, animation) for a nontrivial 3d manual rotation task (rotation of a

nearly-symmetric, nearly-featureless object about an arbitrary axis) and report effective-

ness of various designs from a formal user study. Finally, in Chapter 6 we present our

conclusions and discuss possible focus areas for future research. In the Appendix, we pro-

vide copies of the questionnaires given to participants to each of the formal evaluations

described in Chapters 3–5.

10

Chapter 2

Related Work

One way to organize previous work related to transitioning among viewpoints in both AR

and VR is to partition it into five areas. In Section 2.1, we describe work that focuses on

interaction and visualization techniques for switching among multiple viewpoints. Next,

we summarize work on presenting multiple viewpoints simultaneously in Section 2.2.

Then, we look at interaction and visualization techniques for saving and selecting view-

points in Section 2.3. In Section 2.4, we summarize significant contributions that involve

augmenting static images. In Section 2.5, we review work on guiding a user to physically

transition to an alternative viewpoint. Finally, in Section 2.6, we give an outline of the

large body of work exploring task assistance using AR.

We note that transitioning among multiple viewpoints is not the only way to gain

additional visual information that may not be available from a single vantage point, due

to factors such as occlusion, level of detail, and limited field of view. Elmqvist and Tsigas

[2008] presented a taxonomy of occlusion management in visualization to uncover five

design patterns: multiple views, tour planners, virtual x-ray, projection distorters, and

volumetric probes. While we discuss examples of tour planners in Section 2.1 andmultiple

view and projection distorter designs in Section 2.2, we do not touch on volumetric probe

and virtual x-ray designs in this overview.

11

2.1 Switching Among Multiple Viewpoints

Switching viewpoints, especially as a means for locomotion, has long been an active re-

search area in immersive virtual environments (VEs). Bowman et al. [1997] conducted

some early evaluation on travel in VEs and concluded that motion techniques which in-

stantly teleport users to new locations are correlated with increased user disorientation

compared to techniques where the user moves along a path at a given velocity. It is im-

portant to note, however, that having a user move virtually in a VE without correspond-

ing physical motion has been correlated with increased discomfort (i.e., cybersickness)

for some users, especially when using wide-FOV displays [LaViola 2000]. Burtnyk et al.

[2002] described an approach they called StyleCam that lets content authors determine

strategic areas in a 3D scene where users control the virtual camera. When users reach

the edge of these interactive areas, they are automatically transitioned to the next in-

teractive area along a preset path without being overburdened with camera control in

uninteresting areas.

Elmqvist et al. [2008] evaluated a method to offload some of the cognitive effort of 3d

navigation from the users by partially constraining their movement (Figure 2.1a). Their

technique used a spring-like tether that connected the viewpoint to a pre-defined path.

This allowed the user to locally deviate from the pre-defined path as far as the virtual

spring allowed. After the user was done exploring, the spring smoothly returned the user

to the path. Compared to “free-flight” traveling techniques, they found that users achieved

significantly better results in memory recall and performance when given access to such a

guidance method. Chen et al. [2009] built on the guided tour idea by modulating variables

12

(a) 2d illustration of a constrained 3d motion
traveling technique (circles show movable space,
free of obstacles) [Elmqvist et al. 2008].

(b) Spatial relationship among dynamic tether,
virtual camera, and avatar [Wang and Milgram
2001].

Figure 2.1: Examples of previous work on transitioning between viewpoints in VEs

such as velocity and FOV to improve landmark recognition at decision points along a path

(e.g., intersections or turns). Work byWickens and Prevett [1995] showed that local guid-

ance is supported by greater egocentricism, while global awareness is supported by less

egocentricsm, by observing pilots during simulated landings using either egocentric or

exocentric viewpoints. Building on this concept, Wang and Milgram [2001] presented the

concept of “dynamic viewpoint tethering,” where the viewpoint is tethered (i.e., attached)

to an avatar controlled by the user. The length of the tether (i.e., level of egocentricity) is

adjusted automatically depending on user’s speed to find the optimum tradeoff between

13

local guidance and global awareness (Figure 2.1b).

When studying users’ preferences for the ideal visualization when searching for a

nearby point of interest on amobile device, Froehlich et al. [2008] found that users strongly

preferred applications where the viewpoint is aligned automatically to the user’s orien-

tation compared to orientation-agnostic presentations. Additionally, they reported user

preference towards an elevated perspective (as opposed to a first-person perspective),

wide FOV, and 3D visualization of their surroundings, but not necessarily realistically

textured.

As mentioned in Chapter 1, AR applications need to interface with the physical world

by definition and the viewpoint of the real objects in the scene and the registered vir-

tual content is often tightly coupled with a physical camera that is controlled by the user.

Switching viewpoints in AR requires either additional virtual content or additional phys-

ical cameras to provide context for the additional views. Grasset et al. [2006] describe AR

applications that allow natural and continuous transitions between contexts (e.g., across

space, scale, viewpoints, and representation) as having a transitional interface. Examples

of transitional interfaces in AR can be found in games. Phillips and Piekarski [2005] ex-

plored a metaphor in which players could “possess” (occupy) virtual characters, which

meant that they could quickly switch to their viewpoints without physically traveling

(by transitioning from AR to VR). Cheok et al. [2002] also featured an AR–VR transition

in a gaming context—users wearing HWDs are seamlessly transitioned to an immersive

first-person VR view of an airplane cockpit after finishing a stage that is presented in a

third-person AR view, where a small version of the virtual airplane is attached to and

controlled by the user’s handheld wand.

14

An example of a multi-camera setup in AR is provided by Veas et al. [2010], who

compared techniques that relate local and remote cameras topologically, via a tunnel, or

a via bird’s eye viewpoint, in terms of enhancing the spatial awareness of the viewer.

Mulloni et al. [2010] experimented with viewpoint switching in the context of browsing

geo-referenced information in AR on a handheld device with their zooming interfaces.

They present two zooming interfaces that enable users to smoothly zoom between the

AR view and an egocentric panoramic view and an exocentric top-down view.

2.2 Presenting Multiple Viewpoints Simultaneously

Sketchpad III [Johnson 1963] (Figure 2.2a), generally accepted as the first interactive 3D

computer graphics program, featured four simultaneous views of a 3D object in each

quadrant of the screen: top, front, side, and perspective views. This convention is still

used by 3D computer aided design software packages today (e.g., “Quad View” in Blender

[Blender Online Community 2016], Figure 2.2b). For immersive virtual worlds, Stoakley

et al. [1995] introduced the World-in-Miniature (WIM), which augments the HWD with

a hand-held miniature copy of the VE that can be used for quick object selection, manip-

ulation, and quick viewpoint switching. Pausch et al. [1995] later added an interaction to

their WIM that let users change their viewpoint by grasping and moving a camera icon

in the WIM. Viewpoint update was deferred until the user releases the camera icon, at

which point the system interpolated the user’s viewpoint to that of a doll in the minia-

ture. Lorenz et al. [2008] experimented with the idea of combining multiple perspectives

of 3D spatial environments into a single view in real-time to provide both focus and con-

15

(a) Sketchpad III [Johnson 1963].

(b) “Quad View” in Blender [Blender Online Community 2016].

Figure 2.2: Examples of interactive 3D computer graphics software with four simultaneous views
of a 3D object in each quadrant of the screen: top, front, side, and perspective views.

text within the same view by deforming the space (e.g., combining a realistic view of the

user’s vicinity with a top view of distant areas).

Veas et al. [2012] explored the concept of combining multiple perspectives into a sin-

16

gle view in outdoor AR, where the augmentations (i.e., models of surrounding buildings)

were deformed using a similar technique to the one used by Lorenz et al. Their work also

featured a multi-view technique to access a multi-camera setup to allow the user observ-

ing the site from multiple perspectives without physically moving around. Bichlmeier

et al. [2009] provided surgeons with additional perspectives using a tangible/controllable

virtual mirror in specific medical AR applications.

Girgensohn et al. [2007], Ichihara et al. [1999], and Kameda et al. [2004] developed

multi-view solutions with specific surveillance problems in mind, trying to help users

maintain spatial awareness while switching between the feeds of multiple live cameras.

Hoang and Thomas’s “augmented viewport” [Hoang and Thomas 2011] is also a multi-

viewport system for accessing live feeds from multiple cameras designed to improve ma-

nipulation precision of distant virtual objects in outdoor AR.

2.3 Saving and Selecting Viewpoints

The ability to save viewpoints to revisit them has been explored in VR. The X3D (pre-

viously VRML97) specification [Web3D Consortium 2014] defines a “viewpoint” node

that content authors use to automatically move a user’s view. Many X3D browsers (e.g.,

FreeWRL [Stewart 2014]) allow users to either jump or fly to these viewpoints by choosing

from a textual list of author-specified viewpoint descriptions. Many popular 3d mapping

(e.g., Google Earth [Google Inc 2016]) and 3d modeling software (e.g., Trimble Sketchup

[Trimble Navigation 2016]) feature similar “guided tour” facilities that allow content au-

thors to store a list of interesting views that can be viewed (“toured”) by other users.

17

Elvins et al. [1997] enhanced their VRML browser by introducing 3D thumbnails called

“worldlets” that could be interactively viewed in 3D and overlaid atop the main window

to indicate their position and orientation, in addition to being used as a bookmark for

travel like regular viewpoint nodes.

Schmalstieg et al. [1999] presented UI techniques for a virtual table based on a tracked

hand-held pen and a transparent pad. Their system featured a snapshot mode that allowed

a particular view of the scene to be locked on the pad, which could later be decoupled from

the pad and left floating in the scene at any position. By strategically placingmultiple such

snapshots in the scene, a user could inspect multiple views at once.

Hirose et al. [2006] presented the tunnel-window technique, which allowed a user

to create an arbitrary number of viewing windows at arbitrary positions inside a virtual

environment and seamlessly interact with objects through those frames for travel and

remote object manipulation.

“Photo tourism” by Snavely et al. [2006] presented an image-basedmodeling algorithm

that can calculate viewpoints from a collection of photographs of a common scene along

with a sparse 3D model of the scene. Their work featured a “photo explorer” front end

that represented viewpoints as frusta shown relative to the 3D model of the scene and let

users smoothly transition between photographs, while also enabling full 3D navigation

and exploration of the set of images using their desktop UI. Since those systems are purely

VR, however, they do not address physical objects in their environments.

18

2.4 Augmenting Static Images

Photo-based AR has been explored in industrial settings. For example, Georgel et al.

[2009a] presented an interface for visualizing a set of images embedded in CAD soft-

ware and techniques for navigating within this mixed reality environment. Siltanen and

Woodward [2006] described a desktop-based, still-image augmentation system for inte-

rior design. For view selection and virtual object manipulation, these photo-based AR

systems employ 2d GUIs.

Güven et al. [2006] and Lee et al. [2009] described AR systems that capture “frozen”

views of the real world, as seen from strategic vantage points, to create temporary snap-

shots with which users can more comfortably interact than when viewing the real world

directly.

2.5 Guidance for Physically Transitioning to a Viewpoint

There is a body of previous work exploring how to guide a user from a starting position to

a specific destination in both real and virtual environments. Darken and Peterson [2001]

and Smith and Hart [2006] presented findings on the cognitive impact of different UI

elements (e.g., map, trail, compass) during wayfinding in VEs. Modified versions of these

UI elements have also been used in AR. For example, Höllerer et al. [1999] described an

early mobile AR system that lets a user wearing a HWD view a path outdoors.

However, guiding a user to a specific viewpoint is a 6dof problem, as it requires a

user to not only be at a specific location, but also look in a specific direction. There are

many examples of techniques for getting a user to turn their head to look in a specific

19

direction. Feiner et al. [1993] featured a 3D leader line to help direct a user attention to

certain objects in a AR maintenance and repair scenario. Biocca et al. [2006] presented

Attention Funnel, a visualization technique that draws a user’s attention down a funnel

that is drawn along a curve that connects the user’s head to a target location. Tönnis

and Klinker [2006] showed that an egocentric, screen-fixed 3D arrow in AR combined

with spatialized sound cues was faster at drawing a driver’s attention than allocentric

and visual-only alternatives. Henderson [2011] discussed how an AR maintenance and

repair application may need to guide users to specific viewpoints. Similar to drawing a

user’s attention to off-screen items in 3D, there is a body of work on visualizations to

represent off-screen items in 2d (e.g., Baudisch and Rosenholtz [2003], Gustafson et al.

[2008], and Miau and Feiner [2016]).

Guiding a user to a specific 6dof pose has been explored in the context of retaking a

photograph (rephotography). Bae et al. [2010] aided users retake a historical photograph

by displaying two 2d arrows as feedback while users positioned their camera based on

continuously computing relative viewpoint difference using computer vision techniques.

Shingu et al. [2010] presented a simple sphere and cone visualization for a tracked camera

in AR to help with the task of retaking a photo in an industrial setting (e.g., for inspection

of an item before and after a process). Their visualization aimed to ensure that a predeter-

mined target region is within view and not occluded by other objects in the scene. There

was no additional feedback once the user is within the specified thresholds, but they pro-

cessed and distorted the retaken image to make it visually closer to the original photo.

Güven and Feiner [2006] let users explore sites by visualizing historic photographs along

with their calculated viewpoints registered in situ to enable users to assume the same

20

camera pose as used to take a historical photo.

2.6 Task Assistance Using Augmented Reality

Instructional manuals have long used arrows to depict rigid body transformations [Mijk-

senaar and Westendorp 1999]. This approach has been adopted in computer-based docu-

mentation systems, including ones targeting AR. For example, arrows can cyclically move

in a direction in which an object is to be translated [Feiner et al. 1993] or interactively

change in size and color to indicate direction and magnitude of a 1dof rotation needed

to align two tracked workpieces [Henderson 2011]. Ghosting is another common visu-

alization technique used in real-time AR task guidance systems to visualize workpiece

placement (e.g., [Gupta et al. 2012]). Ghosting and animation have also been used to pro-

vide visual hints on how to move (e.g., reel or shake) hand-held props to activate gestures

in an AR system [White et al. 2007]. Oda et al. [2015] used an annotation-based solution

to guide a user to match a 6dof pose specified by a remote subject matter expert.

AR interfaces have been developed to guide users in matching gestures and poses with

parts of their body. Freeman et al. [2009] assist users in learning multi-touch gestures on

a touchscreen by showing a partial shadow of the user’s hands on screen. Sodhi et al.

[2012] guide a user in translating a single hand using a 3d arrow, a 3d path, or colored

regions indicating movement direction projected directly on the user’s hand. Anderson

et al. [2013] guide a user in moving their body by displaying augmentations over a mirror

image of the user. Their visualization includes both a simple skeletal representation of the

user’s current and target poses, and a ribbon indicating the path the user should follow to

21

achieve the target pose. For rotating objects, 3d applications on desktop systems typically

use separable rotation control widgets for one or more axes (e.g., [Schmidt et al. 2008]).

Figure 2.3: Stimulus figure pairs used by Shepard and Metzler [1971]. (a) Identical objects
differing by a rotation in the plane of the page. (b) Identical objects differing by a rotation in
depth. (c) Mirror-image objects.

There is a large body of research on how quickly and accurately people can imagine

3d rotations. In their seminal work in this area, Shepard and Metzler [1971] showed sub-

jects two perspective drawings of an asymmetric 3d object and asked them to determine

whether both drawings showed the same object, only rotated (Figures 2.3a and b), or two

distinct, mirror-image objects (Figure 2.3c). Later research showed that people often spon-

22

taneously rotate a hand when solving mental rotation problems and that when they move

their hand in the most efficient direction they perform better, but when forced to move

their hand in the opposite direction they perform worse. That is, moving one’s hands in

a conceptually congruent way helps the user perform a mental transformation [Chu and

Kita 2008; Chu and Kita 2011; Wexler et al. 1998; Wohlschläger and Wohlschläger 1998].

In the following chapters, we present our contributions that build on this body of

previous work to extend the benefits of being able to change viewpoints precisely, quickly,

and with little effort to users of AR applications.

23

Chapter 3

SnapAR

3.1 Introduction

Figure 3.1: Prototype furniture layout application lets users view and manipulate virtual furniture
in handheld AR using live (pictured) and snapshot modes.

Observing an environment from different viewpoints is a common technique used to

gain additional visual information about that environment, notably the spatial relations

of the objects contained within it. Being able to control camera pose is important in many

applications in which all of the necessary visual information is not available from a sin-

gle vantage point, due to factors such as occlusion and field of view. In certain cases,

24

Figure 3.2: Overview mode renders available snapshots for selection.

viewpoints may also need to be visited multiple times. Consider, for instance, an interior

designer who is trying to arrange furniture in a room and needs to see the arrangements

from many points of view. If virtual furniture is instead being laid out in AR, as shown

in Figure 3.1, the need to view the environment from multiple viewpoints is no less com-

pelling; indeed, switching viewpoints may even be more frequent in AR, given the ease

with which the designer can swap virtual furniture in and out, in comparison with phys-

ical furniture. Examples of other relevant domains include urban design, landscaping,

architecture, disaster relief, military operations, and equipment maintenance and assem-

bly tasks. All of these domains can benefit from rapid viewpoint changes, because they

require pinpointing objects from different viewpoints. Such precision and speed is es-

pecially difficult to achieve in large and complex environments in which viewpoints are

distant and/or challenging to reach.

Changing viewpoints in an environment is a well-studied means of travel in 3d user

25

interfaces. It is generally accepted [Bowman et al. 2005] that physical motion of a user’s

body is a direct and natural way to travel in virtual environments, with the advantage of

providing the user with proprioceptive feedback. However, moving not only takes effort,

but also time, which can lead to short-term memory loss. In navigating real environ-

ments, people often use maps to avoid unnecessary movement. Nonisomorphic “magic”

techniques [Bowman et al. 2005] may be less natural, but allow users to explore greater

distances quickly with less effort. Moreover, considerable research in cognitive psychol-

ogy has shown that people are able to “jump” and reorient from viewpoint to viewpoint

in imaginary environments without smooth transitions (e.g., [Tversky 2005]). Since AR

applicationsmust interfacewith the physical world, travel is often achieved through phys-

ical locomotion by default with the same advantages and disadvantages as in VR. How-

ever, unlike in VR, AR environments are real and may have obstacles that make physical

motion even more problematic.

In this chapter, we present SnapAR, a quick viewpoint switching approach that ex-

tends the benefits of “magic” traveling techniques to AR applications. With our prototype

implementation [Sukan et al. 2012], users can use a handheld device to take snapshots

(photographs) of environments from different viewpoints, select from previously saved

snapshots to virtually revisit those viewpoints without having to physically travel back,

and even manipulate virtual content while viewing the world from the current viewpoint

or revisiting a previously saved viewpoint (Figure 3.1). In addition to a set of interaction

techniques to enable quick viewpoint switching (such as the virtual overview of snapshots

shown in Figure 3.2), we also present a formal evaluation of the capability to manipulate

virtual objects while viewing previously saved static snapshots. A within-subject user

26

study shows that participants can accomplish tasks that involve aligning a virtual object

with real objects significantly faster using SnapAR than when physically moving between

viewpoints, even in a relatively small working space and after taking into account the ad-

ditional time needed to create the necessary snapshots, and with no loss of accuracy.

Furthermore, participants overwhelmingly preferred the quick viewpoint switching ap-

proach and found it less demanding.

3.2 Related Work

The ability to save viewpoints to revisit them has been explored in VR. Elvins et al. [1997],

Schmalstieg et al. [1999], and Hirose et al. [2006] present snapshot tools that let users

manage a collection of 3d views from different viewpoints. As in our case, changes to the

VE are reflected in all views simultaneously. Since those systems are purely VR, however,

they do not address physical objects in their environments.

Switching viewpoints, especially as a means for locomotion, is an active research area

both in VR (e.g., Pausch et al. [1995]) andAR (e.g., [Cheok et al. 2002; Phillips and Piekarski

2005]). In contrast to us, Phillips and Piekarski [2005] decided against using smooth tran-

sitions in their possession metaphor between each possession command, citing delay as a

concern. We attempt to address that concern by allowing both smooth and instant tran-

sitions based on users’ comfort with their spatial orientation.

Hoang and Thomas [2011]’s “augmented viewport”, a multi-viewport system for ac-

cessing live feeds from multiple cameras, allows users precisely manipulate distant vir-

tual objects in outdoor AR. Like us, they cite providing users with novel viewpoints as

27

their main motivation; however, in addition to architectural differences, they design and

evaluate their system to improve manipulation precision, not to save time when quickly

changing viewpoints.

Our approach differs from previous work on augmenting static images (e.g., Georgel et

al. [2009a], Georgel et al. [2009b], and Siltanen andWoodward [2006]) by enabling users to

take and navigate among snapshots while immersed in the physical environment. Being

in situ gives users the freedom to obtain novel views on the fly, which may be important

for exploratory and iterative tasks such as arrangement and planning. Additionally, for

view selection and virtual object manipulation, these photo-based AR systems employ

2d GUIs, whereas our users manipulate and point a handheld device in 3d. In contrast

to previous AR systems that capture “frozen” views of the real world (e.g., [Güven et al.

2006; Lee et al. 2009]), we support quick viewpoint switching amongst a set of snapshots,

and manipulating objects within any selected snapshot.

3.3 Interaction

We build on the body of related work described above to further explore magic travel-

ing techniques in AR. We started by creating a prototype to test and demonstrate the

usefulness and efficiency of our quick viewpoint switching technique.

As we mentioned earlier, SnapAR allows users to take snapshots of the environment

from different viewpoints, select from previously saved snapshots to virtually revisit those

viewpoints without having to physically travel back, and even manipulate virtual content

while revisiting a previously saved viewpoint.

28

3.3.1 Creating and Storing Snapshots

Figure 3.3: Live mode. User study setup includes physical landmarks and virtual snapshot
representations. Inset shows user holding device.

Creating snapshots is similar to taking a still photograph. When users click a dedi-

cated button on the handheld device, the current frame of the video feed is stored as a 2d

texture. To enable overlaying the picture of the scene (from the snapshot viewpoint) with

up-to-date virtual information, the 3d position and orientation of the handheld device, as

determined by the tracking software, are also stored. To provide users with visual feed-

back of the camera position and orientation for each the snapshots, we add a virtual 3d

camera icon to the scene for each snapshot, as shown in Figure 3.3.

29

Figure 3.4: Overview mode. Highlighted snapshot (blue) is closest to the crosshairs.

3.3.2 Selecting and Viewing Snapshots

With these virtual snapshot representations attached to the ground marker array, users

are able to see the 3d locations and orientations of available snapshots when viewing the

environment through the handheld device. During preliminary testing, we noticed that a

natural way to gain an overview perspective is to take a few steps back from the ground

marker array to capture more of the environment in the viewing frustum. Although intu-

itive and effective, this method requires additional physical effort and time, both variables

that quick viewpoint switching is intended to reduce. Additionally, moving away from

the ground marker array poses a challenge to our implementation because of the negative

impact of increased distance on optical marker tracking performance.

30

Figure 3.5: Snapshot mode. View after transitioning to selected snapshot.

We address these issues by providing users with a virtual overview mode, as shown in

Figure 3.4. In the virtual overview mode, users control a virtual camera that mimics the

motion of a user walking away from the ground marker array by translating the virtual

camera back from the ground marker until all snapshot icons are captured in the viewing

frustum (while maintaining the same orientation). Since the virtual camera is no longer

co-located with the physical camera, we fade the live camera image out and show the

virtual objects (ground plane and virtual objects, including a 3d camera icon for each

virtual snapshot) against a black background. Even though the live camera feed is not

shown to users, it is still used for tracking the handheld device, so that users can move

the virtual camera by either translating or rotating the handheld device.

31

To speed the selection process, we designed the interaction so that users press a ded-

icated button to go into overview mode, align the desired camera with the crosshairs on

the screen, and release the button to be taken to the snapshot, as shown in Figure 3.5. Our

motivation for choosing this selection technique was two-fold:

1. it can be executed in one quick and fluidmotion, contributing to overall time savings

and

2. it allows the user to continue holding the device comfortably with both hands (i.e.,

less strenuously compared to holding it with a single hand) and leaving the thumbs

over buttons for further actions

To reduce the likelihood of selecting the wrong snapshot (especially in cases when

multiple snapshots project close to each other in screen space), we provide visual feedback

to users by changing the color (from red to blue) of the snapshot camera icon that is

nearest to the crosshairs in screen space.

Since our technique causes users to change viewpoints without physically moving

their heads or bodies, we strive to strike a balance between providing smooth transitions

among viewpoints and transitioning the camera at a reasonably fast pace. To calculate

a smooth path, our implementation interpolates position and orientation variables sep-

arately. An additional translation relative to the origin is applied after translating the

virtual camera towards the target snapshot to essentially turn a linear path between snap-

shots into an orbital one that rotates around the ground marker. This motion mimics a

user’s physical path around the table ground marker array. All interpolations are imple-

mented as graceful (slow-in, slow-out) transitions based on cubic interpolation.

32

Because taking a snapshot stores only a single frame of the video feed at that location,

we do not have any visual information to display to users about the background dur-

ing camera transitions. We try to build on the smooth transition concept by fading the

background image to black at the beginning of the transition and fading the background

image back in as soon as the virtual camera arrives at its destination. By introducing a

very brief time delay (.25 sec) before activating overview mode, we allow the same button

to also serve as a quick switch button if it is simply clicked instead of being held down. If

there is a snapshot icon near the crosshairs in the live mode, the quick switch functional-

ity transitions users to that snapshot; otherwise users are “beamed” (transitioned) to the

most recently used snapshot. When beaming, the only visual effect is the fading in and

out of the background images. By varying the transition times, we allow advanced users

to arrive at places more quickly, while allowing novice users to still enjoy the benefits of

smooth transitions.

3.3.3 Heads-Up Display

To address the situation in which users might lose spatial awareness when looking at one

of the snapshots and need reminding of the snapshot location in the physical space, we

added a virtual heads-up display (HUD) that includes a 2D, top-down “radar” visualization

of the locations of the snapshots (Figures 3.3–3.5, top left). In this HUD view, snapshots

and their viewing directions are projected to 2d and represented iconically. To help users

maintain spatial awareness, the HUD view shows the current location of the handheld

device, as well as the active snapshot. Since the HUD view is always oriented forward-

33

up, when a snapshot is highlighted to the right of the current camera in the HUD view,

this indicates that the view on the screen is from a snapshot that is to the right of the

user’s physical location.

3.3.4 Manipulating Virtual Objects

While exploring how we could use our quick viewpoint switching technique to view and

augment an environment from different vantage points, we realized it could be useful and

effective for situations in which users not only view the virtual content, but also manip-

ulate it. A practical example is the interior design case mentioned in Section 3.1. After

visually evaluating several pieces of virtual furniture from various locations, a designer

might wish to try other arrangements and orientations of furniture. To do so, the designer

would need to manipulate the furniture while viewing scenes from the different vantage

points.

For manipulation, we wanted to maintain some consistency with how users select

snapshots to view. Similar to the snapshot selection technique, there is a dedicated but-

ton on the handheld device for initiating the virtual object manipulation mode. When

users press the manipulation button, the system stores the handheld device’s pose matrix

and virtual object’s pose matrix relative to the ground marker as Dinitial and Oinitial,

respectively. As long as users hold down the manipulation button, the relative transform

between the handheld device’s active pose Dcurrent and Dinitial is added to Oinitial.

This technique essentially lets the virtual object mimic the motion of the handheld de-

vice. Consequently, when users want to translate the virtual object by some amount and

34

then rotate it by some other amount, they simply press the manipulate button to “grab”

the virtual object, translate and rotate the handheld device in the desired direction by

those same amounts, and release the virtual object by releasing the button.

Similar to the motivation for choosing our selection technique, we preferred this ma-

nipulation technique because it can be quickly executed and allows both the user to hold-

ing the device comfortably with both hands. In the manipulation context, establishing

a grabbing metaphor and letting users move a tangible object such as the handheld de-

vice has the added benefit that it does not conflict with the notion that the virtual object

being manipulated has a meaning within and a connection to the physical environment

surrounding the user.

Having the virtual object mimic the motion of the handheld device has certain draw-

backs in AR, because the screen and camera alsomove alongwith the device. For example,

when rotating the handheld device, the camera will eventually point away from the lo-

cation of the virtual object. However, since our grabbing metaphor is triggered with a

button press, a user can easily release (i.e., declutch) the virtual object by releasing the ro-

tation button before the object gets out of view, rotate the device in the opposite direction,

and grab the object again by pressing the button. During translation, rigidly attaching the

virtual object to the handheld device hinders the user from obtaining depth information

due to motion parallax, which could be a disadvantage for tasks where depth plays an

important role.

Giving users 6dof control of a virtual object may be useful in certain cases, but for our

prototype virtual furniture placement application, shown in Figures 3.1-3.2, we found it

helpful to constrain the motion of the virtual object by disallowing translation along the

35

up-axis and allowing rotation only about the up-axis (yaw). Thus, the virtual object cannot

float in the air or be rotated around any other axis. In the present version, translation was

decoupled from rotation by providing separate buttons for each transformation.

Manipulation is performed the same way in both live mode and snapshot mode. How-

ever, there is an interesting difference: While the grabbed virtual object moves with the

handheld device in both modes, the background image remains static in snapshot mode,

rather than updating continuously from the camera feed in live mode. Our formal evalua-

tion described in the next section showed that this mismatch between the static snapshot

background and the dynamic motion of the handheld device and virtual objects during

manipulation did not affect task performance negatively. We discuss advantages and dis-

advantages of viewing virtual content on a static image of the scene in Section 3.6.

3.4 User Study

We designed a user study to compare physically walking to new viewing locations (our

control condition, Walk) and switching viewpoints virtually in hand-held AR using the

quick viewpoint switching technique (the Snap condition). Prior to conducting the formal

user study, we performed an informal pilot study with our lab members and nine com-

pensated students to confirm our design, formulate our hypotheses, and test our study

procedure.

36

Figure 3.6: Five pairs of physical props around a table. Props are redundantly coded using color,
symbol, and shape.

3.4.1 Pilot Study

Nine participants (3 female; ages 19–29, X̄ = 24.8) were first recruited for a pilot study

designed to finalize the design of our approach and of the experiment, and elicit feedback

about the usability of our technique. The participants were recruited by mass email to

Computer Science students at our university and by flyers distributed throughout cam-

pus, and paid $15 for participating. All participants in the pilot study reported using a

computer multiple times per day, and all passed the Ishihara Color Test.

The participants’ task was to visually align a virtual object at the exact point of inter-

section of two imaginary lines. Five imaginary lines were defined by placing matching

pairs of physical props along the edges of a 6’ wide× 4’ deep table, as shown in Figure 3.6.

37

We picked a relatively small work area to test whether our interface can perform better

than walking even when the physical distance to be traveled is short. The maximum

walking distance between viewpoint pairings was 56 ′′ + 34 ′′ = 90 ′′ and the minimum

walking distance was 16 ′′ + 20 ′′ = 36 ′′ (Figure 3.7).

Legend
: Route : Intersection : Strategic Viewpoint

56 in

16 in

20 in 34 in

W
al
l

Wall

Figure 3.7: Five imaginary routes established by connecting matching physical props around a
table.

We chose this task because visual alignment greatly benefits from strategic view-

points. One plausible and common strategy to confirm that a movable object is placed

on a straight line that connects two stationary reference objects is to move to and view

the scene from a location that is collinear with the reference objects. Once the viewer is in

such a collinear position, the task of aligning is reduced to a one-dimensional translation

38

problem in the direction perpendicular to the original path. Because alignment needs to

be done for each imaginary line, it requires checking two viewpoints. To make the sit-

uation more natural, we compared two kinds of alignment tasks, along orthogonal axes

(Ortho intersection type) and along oblique axes (Obliqe intersection type).

To measure the efficiency of our user interface in selecting from several available

strategic viewpoints, we placed three pairs of reference points along the long edge of a

table and two pairs along the short edge, providing a total of five strategic viewpoints from

which to choose. The physical reference points on the table were labeled using letters (A,

B, C) and numbers (1, 2), and the virtual object to align was an abstract multicolored col-

umn. This resulted in sample tasks such as lining up the virtual object with the imaginary

lines for B and 2. In addition, the alignment task included a 1d rotational component.

Participants were asked to rotate the alignable object around its up axis (perpendicular

to the table) until the color on the face of the object visible from the current viewpoint

matched the color of the pair of physical objects associated with that viewpoint.

Our pilot study was blocked by condition, with a break between blocks. Each block

consisted of two consecutive randomized sequences of the six possible intersections re-

sulting in 12 trials per block. Learning and fatigue effects were controlled by counterbal-

ancing the starting condition.

We computed a 2 (Travel Condition) × 6 (Intersection Location) repeated-measures

ANOVAon the completion times. Travel condition had no significant effect on completion

time (F (1, 8) = 1.26, p = .294). Intersection Location was significant as a main effect at

α = .05 (F (5, 40) = 5.303, p < .001). Looking further into the data, we noticed that we

could simplify our study design by splitting our six intersections into two groups: ones

39

with orthogonal angles that are easier to align and ones with oblique angles that are more

difficult (see Figure 3.7).

An analysis of alignment error (defined as the distance between the alignable vir-

tual object at the time users submitted their answer and the true intersection position),

revealed that on several occasions users positioned their alignable object at the wrong

intersection. This led us to rethink the way we presented tasks to our users. We hypoth-

esized that users may have been confused by the tasks because they had no recognizable

meaning. This led us to develop the “protect the living creature from the vehicle” back-

story that we would use in our formal study. Additionally, we explained the task more

thoroughly before each trial. We added a live task preview screen before each trial that

showed users the starting position and end goal position of the alignable object, as well

as overlays of the lines that make up the intersection that is their objective.

A few pilot participants noted that the rotational subtask was confusing, that they

had a hard time understanding the exact orientation of the virtual alignable object on the

small screen of the handheld device. Based on this feedback, we excluded the rotational

subtask from our final study.

The qualitative feedback from the pilot study revealed strong user preference for Snap

compared to Walk, with all but one participant preferring Snap. One participant was

concerned that the snapshot cameras “would be difficult / confusing to navigate, but ac-

tually this method was very user friendly”. Another participant responded similarly: “I

like [the Snap] approach better overall, although the learning curve was steeper.” A dif-

ferent participant noted that “I was surprised that I preferred the Snap method. When

both methods were being described and shown to me, I thought Walk seemed very sim-

40

ple and Snap was overly complicated. But when actually performing the tasks, Snap was

significantly simpler to operate.” Based on the feedback that the Snap condition appeared

complicated, we adjusted the introductory text, and reduced the number of buttons nec-

essary to operate the Snap mode from 6 to 3.

3.4.2 Hypotheses

Based on an analysis from our pilot study, we formulated the following five hypotheses:

H1. Snap will have a faster completion time.

H2. Snap will have improved accuracy.

H3. Ortho intersections will be faster and more accurate than Oblique intersections.

H4. Snap will be preferred over Walk.

H5. Participants will report less physical exertion for Snap in the post-study questionnaire.

Rationale

H1, H4, H5: Because people are able to reorient quickly to new viewpoints without

smoothly transitioning to them and because Snap saves time and effort by eliminating the

need to walk to new viewpoints. Therefore, we expected that participants would perform

faster using Snap, prefer using Snap, and report less physical exertion in the post-study

questionnaire.

H2: Because the still images of the scene stored as snapshots in Snap are sufficient to

perform the task and immune to variability due to human error (e.g., hand tremor), we

predicted that participants would be more accurate using Snap.

41

H3: It is well known that perception and judgment are superior at recognizing or-

thogonal axes, rather than oblique ones, and that perception and memory are system-

atically distorted toward encoding spatial relationships as orthogonal, even when they

are not (e.g., Howard and Templeton [1966] and Tversky [1981]). Therefore, we expected

Obliqe intersections to require more repetition than Ortho ones, which would mean

more intuitive, faster view switching should have a pronounced effect on task completion

time.

3.4.3 Methods

Participants

To test these hypotheses, we recruited 21 participants (8 female; ages 19–40, X̄ = 23.6)

from the same target population as that of our pilot study (protocol: IRB-AAAF2995).

None of the study participants had taken part in the pilot study or had any prior experi-

ence with the experimental technique. All but two participants used a computer multiple

times per day. Ten participants identified themselves as having some familiarity with AR.

Three participants reported playing video games daily, nine reported playing weekly, six

reported playing monthly, and two reported never playing video games. Two partici-

pants failed the Ishihara Color Test, but were retained because they reported being able

to distinguish references using the redundant cues. Each participant experienced both

conditions, as described in the Design subsection below.

42

Equipment

Hardware. Our initial prototype runs on a Sony VAIO UX-VGN-380N Ultra Mobile PC

(UMPC), which is a 1.2 lb., 5.9 ′′(W) × 3.7 ′′(H) × 1.3 ′′(D) hand-held device with a 4.5 ′′

diagonal LCD screen and an integral camera in the back of the device. The UMPC runs

Windows XP on a 1.33 GHz Core Solo CPU with 1 GB memory, and an Intel 945GMS

graphics chip. Setting the backbuffer to SVGA resolution (800×600) and camera to 640×

480 resolution, our application performed at 20–25 frames per second (fps). To improve

performance, we reduced the camera resolution to 320×240, while leaving the backbuffer

at SVGA resolution. This sped up the tracking process considerably, letting us achieve 45–

50 fps. Since we were able to control the lighting in our lab (we used two softbox lights),

we conducted our user study at the lower resolution camera setting, achieving smooth

rendering and animation.

After performing our study, we ported our application to a Samsung Series 7 XE700T1A

Slate PC (shown in Figures 3.1 and 3.2), which is a 1.9 lb., 11.7 ′′(W)× 7.2 ′′(H)× 0.5 ′′(D)

hand-held device with a 11.6 ′′ diagonal LCD screen and an integral camera in the back

of the device. The Slate PC runs Windows 8 on a dual-core 1.6 GHz Intel Core i5-2467M

CPU with 4 GB memory, and an Intel HD3000 graphics chip.

Software. Our implementation is developed using Goblin XNA [Oda and Feiner 2014],

a managed, DirectX-based framework for constructing AR applications, built on top of

Microsoft XNA Game Studio 4.0. 6DOF position and orientation tracking is provided by

the ALVAR [VTT 2011] optical tracking library, using a ground marker array containing

one or more optical fiducial markers. However, our quick viewpoint switching technique

43

could also be used on other devices (e.g., a head-worn display or smartphone) or with

other tracking technologies.

Design

We designed a within-subject, repeated-measures experiment consisting of two travel

conditions (Snap, Walk) and randomized iterations of the virtual object alignment task.

The experiment was blocked by condition with a break between blocks. To help our

participants understand and remember the task, we introduced a background story that

the imaginary lines represent paths of vehicles and animals: the three pairs along the

long edge were labeled with signs bearing symbols of living creatures (children, duck,

and horse) and the two pairs along the short edge were labeled with signs with symbols

of vehicles (car and train).

Each trial was defined as a combination of one of the three living creatures and one

of the two vehicle types, resulting in six possible intersections to which the stop sign

could be aligned. Each block consisted of two consecutive randomized sequences of the

six possible intersections resulting in 12 trials per block. Learning effects were controlled

by counterbalancing the start condition.

Before starting the experiment, participants signed consent forms and were screened

for color blindness using the Ishihara Color Test. Afterwards, participants were shown

slides with instructions for the experiment and for operating the handheld device to ac-

complish certain tasks, such as moving the virtual stop sign or switching to a particular

view. Participants were told to work as quickly and accurately as possible. Participants

were then given six practice trials to acclimate them to the handheld device and its func-

44

tionality. When participants began the timed portion of the following 12-trial block, the

software recorded key presses, device motion, and virtual object motion. The handheld

device’s position and orientation relative to the ground marker array and the position of

the virtual object was sampled every 100ms and recorded for post-hoc analysis of user

movement and interaction. When the participant pressed the button on the handheld de-

vice labeled “Next”, completion time and alignment error were recorded before moving

on to the next trial.

After the first block, participants completed brief evaluations that requested qualita-

tive feedback on the experience. After a five-minute break, the experimenter instructed

participants for the other condition. Participants were given six practice trials for that

condition, and then proceeded to complete 12 timed trials for the condition, followed by

a second brief evaluation, including questions requesting rankings of the two conditions.

For the Snap condition, participants were shown how to take snapshots and change

among them as part of the description of that technique. They practiced taking snapshots

during the untimed practice block for the Snap condition, and then took a new set of

snapshots, one for each of the five living-creature and vehicle paths, for use in the timed

Snap condition block.

Procedure

For ease of recognition and differentiation, we redundantly encoded the signs for each

pair of physical reference points using a unique color and shape. A participant’s task was

essentially to “make way for ducklings” [McCloskey 1941]; that is, to make sure that the

vehicles did not collide with the living creatures. The horse and children cross the table

45

diagonally, resulting in oblique angles, as opposed to the duck, which makes orthogonal

angles with the car and train, which cross the table horizontally.

Objective:

1. Start

2. Finish

Figure 3.8: Illustration of a sample task: Protect children from train by moving stop sign from
starting position to intersection.

At the beginning of each trial in the study, a participant was shown two symbols:

one of a living creature, together with one of a vehicle. Participants were told that they

needed to ensure the safe crossing of the living creature by placing a virtual stop sign

at the exact intersection of the two paths (e.g., protect the children from the train), as

shown in Figures 3.7 and 3.8. Completing this task successfully requires participants to

travel to a strategic location collinear with the first path, move the virtual stop sign to be

aligned with the path, travel to a second strategic location on the adjacent side of the table

46

collinear with the second path, move the virtual stop sign to be aligned with the second

path, and repeat traveling between these strategic viewpoints as necessary to fine-tune

the alignment of the stop sign.

We took several steps to ensure that alignment could not be achieved from a single

viewpoint (e.g., by using other external references in the scene). To avoid giving users

straight lines that could be used as guides for aligning, we varied the sizes, positions, and

orientations of the markers in the array placed on our table (Figure 3.6). In addition, we

rendered a solid virtual rectangle over the array to obscure it and separated the task area

from the rest of the lab by placing solid white cardboard walls and black curtains on two

sides of the table (Figures 3.3,3.5,3.6) to ensure that a user viewing the virtual objects on

the display could not align it using any real artifacts except for the physical props that

define the routes. We also drew crosshairs on the screen to aid with alignment, making it

even more advantageous to look through the device when aligning. Careful examination

by pilot study participants and us found no loopholes.

Note that themovement operation afforded full 2dmotion of the stop sign on the plane

of the table, so that moving the stop sign to align it with one pair of physical objects could

bring it out of alignment with the other pair of physical objects, requiring that at least one

vantage point be revisited. We intentionally did not provide a 1d translation command in

order to make this task more similar to one involving aesthetic judgment from multiple

vantage points, in which the vantage points would typically be revisited, but with an

objective quantitative measure of accuracy.

47

3.5 Results

As a first step, we looked for potential outliers in our data. One of our participants re-

ported on one occasion making a mistake and submitting his alignment by pressing the

wrong button. Several other data points looked suspicious because they were extremely

short (0.9 and 9 secs) and did not involve any virtual object movement. One participant

reported the disappearance of the virtual stop sign, presumably a tracking error. These

outliers, which accounted for 1.04% (1.66% of Snap; 0.42% of Walk) of all calculated

completion times across 2 conditions × 12 trials, were removed from further analyses.

Hypotheses were then evaluated for significance with a Bonferroni-corrected α of .01

(.05/5).

3.5.1 Completion Time

Se
co
nd

s

37.7

72.8

33.9 42.0

0
10
20
30
40
50
60
70
80
90

Mean Completion Time
(With 95% Confidence Interval)

WALK SNAP WALK SNAP

ORTHO OBLIQUE

Figure 3.9: Mean completion time (in seconds) across conditions.

Weperformed a 2 (Travel Condition)× 2 (Intersection Type) repeated-measuresANOVA

on completion times, with participants as the random variable. Results from the ANOVA

48

showed that Travel Condition was a significant main effect, F (1, 20) = 21.99, p < .001,

at α = .01. Our users completed the alignment task significantly faster switching view-

points via Snap (39.30 secs, excluding time to create snapshots) than Walk (61.04 secs),

validating H1. Mean completion times for each condition are depicted in Figure 3.9.

It might seem unfair to compare completion times between Snap and Walk without

taking into account the time to create the snapshots, because snapshot creation is a nec-

essary preceding step to using the snapshots in the Snap condition. Creating snapshots

can be seen as akin to automating a manual process. When one automates a task, it usu-

ally takes longer than just performing the task manually. Automating the task becomes

a sunk cost. The return on investment comes when one can reuse that automation and

amortize the sunk cost across many uses. The same is true for snapshots. Participants

took 54.15 secs on average to create the five snapshots required for the task (10.83 secs

per snapshot). The two snapshots along the short edge (SE) of the table were needed in

six trials each and the three snapshots along the long edge (LE) of the table were needed

in four trials each. When amortized across uses, the cost of creating a snapshot was 1.81

secs for a SE snapshot and 2.71 secs for a LE snapshot. Since each of the 12 trials required

one LE and one SE snapshot, the total amortized cost of creating snapshots amounted to

4.51 secs per trial. Taking this additional time into account, Snap was still significantly

faster (p < .001) than Walk (17.23 secs or 28.2%). Obviously, the return on investment

in creating the snapshots would scale up with the number of uses for each snapshot, as

well as the amount of walking required between snapshots.

Our other main effect, Intersection Type, was also significant, F (1, 20) = 125.70, p <

.001, at α = .01. Obliqe intersections took significantly longer on average (57.49 secs)

49

than Ortho intersections (35.72 secs), validating the first half of H3.

Finally, our analysis revealed a significant interaction between Travel Condition and

Intersection Type, F (1, 20) = 48.27, p < .001, at α = .01. It turned out that the time

savings from traveling via Snap add up to a much larger impact for Obliqe than for

Ortho intersection, presumably because the alignment task requires more repetition for

Obliqe intersections.

3.5.2 Accuracy

(With 95% Confidence Interval)
Mean Alignment Error

0.41

0.70

0.38
0.55

0.0

0.2

0.4

0.6

0.8

1.0

ORTHO

In
ch
es

OBLIQUE

WALK SNAP WALK SNAP

Figure 3.10: Mean alignment error (in inches) across conditions.

Weperformed a 2 (Travel Condition)× 2 (Intersection Type) repeated-measuresANOVA

on alignment errors, as defined in Section 4.2. Results were very similar to those for

our previous dependent variable, completion time. Travel Condition was just above our

Bonferroni-adjusted α = .01, F (1, 20) = 6.50, p = .019. Our users made smaller align-

ment errors when switching viewpoints via Snap (0.49 inches) than Walk (0.60 inches),

50

supporting, but not confirmingH2. Mean alignment errors for each condition are depicted

in Figure 3.10.

Our othermain effect, Intersection Type, was significant,F (1, 20) = 122.98, p < .001,

at α = .01. Participants made significantly less alignment error at Ortho intersections

(0.40 inches) than at Obliqe intersections (0.62 inches) validating the second half of H3.

Finally, our analysis revealed a significant interaction between Travel Condition and

Intersection Type, F (1, 20) = 15.89, p = .001, at α = .01. It seems that the ease and

speed of travel via Snap allowed users to iterate many more times when completing an

Obliqe task, resulting in less error. For Ortho, the impact is not as pronounced, prob-

ably because fewer repetitions are enough to achieve high accuracy.

3.5.3 Questionnaire

After each block, participants completed an unweighted NASA TLX [Hart and Staveland

1988] questionnaire comprising six seven-point Likert-scale questions (1 = most posi-

tive, 7 = most negative) to evaluate mental demand, physical demand, temporal demand,

performance, effort, and frustration. Additionally, they were asked two ranking ques-

tions, first to rank the conditions based on preference for use and second, least overall

demand (mental, physical, and temporal). Their responses were analyzed for significance

with post-hoc Wilcoxon Signed-Rank comparisons with Bonferroni correction for 8 tests

(α = .05/8 = .006).

Participants reported perceiving a reduction in mental and temporal demand, as well

as an increase in performance using Snap compared toWalk. However, these effects were

51

SNAP WALK
SNAP (Median) WALK (Median)

0

2

4

6

8

10

12

1
very
low

2 3 4 5 6 7
very
high

Re
sp
on

se
Co

un
t

Physical Demand

0

2

4

6

8

10

12

1
very
low

2 3 4 5 6 7
very
high

Re
sp
on

se
Co

un
t

Mental Demand

0

2

4

6

8

10

12

1
very
low

2 3 4 5 6 7
very
high

Re
sp
on

se
Co

un
t

Temporal Demand

0

2

4

6

8

10

12

1
perfect

2 3 4 5 6 7
failure

Re
sp
on

se
Co

un
t

Performance

0

2

4

6

8

10

12

1
very
low

2 3 4 5 6 7
very
high

Re
sp
on

se
Co

un
t

Effort

0

2

4

6

8

10

12

1
very
low

2 3 4 5 6 7
very
high

Re
sp
on

se
Co

un
t

Frustration

Figure 3.11: Questionnaire response histograms by condition. Median values are displayed as
diamonds.

not significant (mental demandZ = −1.358, p = .174; temporal demandZ = −1.536, p =

.124; and performance Z = −1.658, p = .097). Participants also reported perceiving

a reduction in physical demand, effort, and frustration when using Snap compared to

52

Walk. These effects were significant, validating H4 (physical demand Z = −3.598, p <

.001; perceived effort Z = −3.094, p = .002; frustration Z = −2.842, p = .004). Raw

response data from all 21 participants for significant effects are presented in Figure 3.11.

When asked to rank the conditions based on preference for use, a significant propor-

tion of participants (19 of 21) ranked Snap first (Z = −3.710, p < .001), validating H4.

When asked which form of travel was overall less demanding (mental, physical, and tem-

poral), the proportion of participants who ranked Snap first (17 of 21) was also significant

(Z = −2.837, p = .005), which was consistent with H4 and H5.

3.5.4 Usage Pattern Analysis

To delve deeper into the usage patterns of our quick snapshot switching technique, we

developed an analysis tool to process, analyze, and visualize the log data captured by the

handheld device participants used.

Walk Snap Total

Ortho 2.5 6.5 4.0

Obliqe 6.0 8.9 7.5

Total 4.9 8.1

Table 3.1: Average number of view switches per trial by condition.

This analysis tool revealed that in the Walk condition, participants switched view-

points on average 4.9 times per trial, whereas in the Snap condition, participants switched

their views, albeit virtually, on average 8.1 times per trial (Table 3.1). This ease of switch-

53

ing also comes at a slight cost; that is, participants traveled to incorrect snapshots 0.7

times per trial on average when using Snap, presumably because they were confused

about which snapshot to select using the interface. When we subtract these 0.7 spurious

switches, we are left with 8.1− 0.7 = 7.4 useful switches per trial.

When we looked at the effect of task difficulty on switching behavior, we noticed

that people switched considerably more when working on Obliqe than on Ortho. For

example, in Walk, they only switched 2.5 times on average when working on Ortho.

Considering that a round trip counts as 2 switches, this means that they felt that an ex-

tra iteration is necessary only a quarter of the time. The simplicity of the task combined

with the short distance required to travel explains why Snap does not show a significant

improvement in task completion time for Ortho. Additionally, finding more frequent

viewpoint switches for Snap thanWalk suggests that participants prefer to switch view-

points frequently, but don’t do so because of the effort of walking.

We also wanted to analyze our log data to understand howmuch time our participants

spent on each sub-task (i.e., walking, manipulating, and selecting a snapshot). In the

Snap condition, we were able to calculate sub-task timings solely based on button clicks,

since all travel was done virtually. However, we needed to analyze our optical tracking

data using some heuristics to decide when a participant was traveling vs. working on

manipulation. We defined five 15′′ wide rectangular volumes with sufficient height and

depth centered at the strategic viewpoints shown in Figure 3.7 (i.e., it does not matter

how tall participants are or how close they stood to the table when aligning, only if they

were collinear with the route required for alignment). When the tracking data showed

that the UMPC was within one of the two volumes relevant to a given task, we labeled

54

the participant to be in the “work zone”, equivalent to looking a snapshot in the Snap

condition, for that point in time.

First, the data showed that it took our participants on average 3.1 secs each time they

walked from one work zone to another in the Walk condition (the average for children–

car was 4.0 secs and for horse–train was 2.5 secs). In the Snap condition, the average time

spent in virtual overview mode to select a snapshot from the five available snapshots was

2.5 secs. One important note is that after participants selected the second snapshot for

the task using the virtual overview mode, they simply used the quick switch functionality

(Section 3.3.2) to alternate between the two most recently used snapshots.

3.5.5 Generalization of Findings

We can generalize our findings by making the following statement: Whenever tC,i <

(tT,i − tS,i)× ri, where tC,i is the time to create a snapshot i, tT,i is the time to physically

travel to snapshot i’s location, tS,i is the time to select and virtually revisit snapshot i,

and ri is the number of repeated visits to snapshot i, then using snapshots will result in

time savings. Looking at it another way, we can solve for ri, and say that whenever ri >

tC,i

(tT,i−tS,i)
, we should use snapshots. As an example, let us take the case when a participant

in our study stands at the viewpoint for children and wants to get to the viewpoint for

car. We have the time to create a snapshot tC,car = 10.8 secs (recalling that it took

our participants 54.0 secs to create five snapshots). Our empirical data showed that the

average time to travel from child to car, tT,car, was 4.0 secs, and the average time to select

a snapshot, tS,car, was 2.5 secs. Plugging all those values into our equation, we get the

55

minimum number of repeated visits rcar > 10.8
4.0−2.5

= 7.2.

Of course, this number depends on the actual distance between viewpoints, which is

relatively short in our case (90′′) and also does not take into account the quick switch

functionality to jump between recently used snapshots. Since each snapshot was needed

in 4–6 trials and our users switched their view usefully 7.4 times per trial (i.e., 3.7 per

snapshot), our expected number of repeated visits per snapshot ri for the study comes

out to be between 14.8 (= 3.7× 4) and 22.2 (= 3.7× 6) (i.e., > 7.2), which successfully

predicts the significant time savings we observed in our data, even over such a short

distance.

3.6 Discussion

Participants were able to align virtual objects faster in quick viewpoint switching mode

(Snap), despite the added mental effort from the elimination of continuous transition be-

tween viewpoints than when physically moving between locations (Walk). While the

time savings from not having to physically move from one place to another may be obvi-

ous, the addedmental demand of choosing a snapshot and reorientingwithout movement,

as well as the more complex interface with more opportunity for error, did not wipe out

the time savings even when the required distance to travel was relatively short. It is not

hard to imagine that the time and effort savings would scale up as the distance traveled

increases for room-size and larger environments.

The advantage of Snap was observed mainly for the Obliqe tasks. With a distance

that can be traversed in a few seconds and a task that only needs little over one round

56

trip on average, there was little room for improvement in terms of time and error for Or-

tho in our study. The Obliqe task is more typical of real world tasks either arranging

or checking alignments of multiple objects where the environment controls the viewing

angles and multiple objects have to be checked and/or arranged (e.g., surveying, arrang-

ing furniture). Encouragingly, participants preferred Snap by an overwhelming majority

and a statistically significant number of participants selected the Snap condition as less

demanding than Walk.

In Section 3.3.4, we mentioned a few drawbacks of the grabbing metaphor for object

manipulation in handheld AR. Once we ported our application to an 11.6′′ multitouch-

capable Slate PC after our study, we experimented with conventional touch-based con-

trols, such as tapping on a snapshot icon to select it, or translating a virtual object by

dragging a finger across the screen. While touch-based controls don’t suffer from the

same problems (e.g., the virtual object getting out of view while rotating), there were new

challenges, such as fatigue due to holding the Slate PC using a single hand to allow the

other hand to operate the touch controls. Based on our experience, we believe that these

alternative manipulation methods could have been used in the study without diminishing

the benefit gained from quick viewpoint switching.

57

Chapter 4

ParaFrustum

Figure 4.1: ParaFrustum defining a range of acceptable viewing positions and orientations, as
visualized by the ParaFrustum-InSitu visualization.

In SnapAR, we focused on a user transitioning from their first-person perspective to

other first-person perspectives. To save users time and effort, and enable them to travel to

perspectives that might be physically difficult or impossible to get to, we provided them

with UI techniques and visualizations to render these transitions and resulting perspec-

tives virtually. In contrast, there are other situations in which it is desirable to physically

58

travel to a different perspective than one’s current perspective. Consider, for example, a

maintenance/assembly task, where a technician needs to interact sequentially with parts

of a larger system. There are many cases where the technician must also have an appro-

priate view of that object to perform a task, requiring angle and position constraints. In

this work, we make the following contributions:

We introduce the ParaFrustum, which generalizes the specification of a permissible

head pose by using two volumes of points that together constrain the sets of acceptable

3d viewing positions and orientations (Figure 4.1).

We describe two different visualization techniques that communicate information

about the acceptable positions and orientations, and are designed to interactively guide a

user to assume a position and orientation satisfying those constraints.

We present the results of a user study that explores the time and trajectories that users

take to reach an acceptable position and orientation using examples of these visualizations

that express varying levels of tightness in position and orientation.

4.1 Introduction

When coordinating action with something or someone in the world, such as repairing

equipment or sighting a distant object, it can be important to be in the right place and to

orient one’s body and head in the correct direction. Some tasks require that users view a

domain object or location from a precise position and orientation, while others are more

flexible, allowing many possible positions and orientations. Using language to commu-

nicate spatial location is not straightforward, as everyday spatial language is not precise

59

(e.g., Clark [1996] and Levelt [1989]). Demonstrating a correct position and orientation

may also be problematic, as the user and the helper cannot occupy the same 6dof pose at

the same time. In addition, these solutions require co-location of both participants.

How might this range of possible head poses be represented and communicated to

a user? Choosing just one allowable head pose from the set may suffice in some cases.

However, requiring that the user assume an overly specific head pose, when othersmay be

just as good, may take longer and be more difficult than necessary. Furthermore, there are

tasks in which the most comfortable head position and orientation will differ depending

upon the user’s height, which may not be known in advance. Therefore, we are interested

in exploring how to effectively encode a parameterized set of acceptable head poses and

present them to a user.

To address this problem, we introduce the ParaFrustum, which loosens the constraints

imposed by a conventional computer graphics camera specification. We use the prefix

“para” to mean “going beyond” a frustum. A virtual camera in 3d computer graphics can

be defined in part by using a look-from point (center of projection) and a look-at point

to determine the precise position and orientation (not counting roll) of a camera frus-

tum (Figure 4.2a). In contrast, a ParaFrustum generalizes the concept of a single position

and orientation to a set of acceptable positions and orientations (not counting roll) for

a frustum. It does this by replacing the look-from point with a look-from volume (the

head volume) and the look-at point with a look-at volume (the tail volume) (Figure 4.2b).

The user must place their eyes within the head volume, and orient their head to look in a

direction determined by the tail volume. While these volumes may be of arbitrary shape

in general, our current implementation uses ellipsoids.

60

Look-from  
(Head)
Volume

Look-at
(Tail)
Volume

Look-from
Point

Look-at
Point

Camera
Frustum

(a) (b)

Figure 4.2: (a) A camera frustum defined by a look-from point and a look-at point. (b) A
ParaFrustum defined by a look-from (head) volume (a set of look-from points) and a look-at
(tail) volume (a set of look-at points).

Weassume that the user is ultimately viewing the task domainwithinwhich a ParaFrus-

tum resides through one (monoscopic) or two (stereoscopic) display frusta. Each display

frustum corresponds to a virtual or real camera frustum—a truncated pyramid whose po-

sition and orientation are controlled by the user (e.g., by head motion or hand motion for

a head-worn or hand-held display). We define a set of rules, discussed later, that express

how the display frusta should be positioned and oriented relative to the ParaFrustum to

satisfy its constraints.

To communicate the valid poses allowed by a ParaFrustum and assist a user in assum-

ing one of them, we created two visualization techniques intended for use in AR or VR.

One visualization, ParaFrustum-InSitu, superimposes in the world coordinate system the

head and tail volumes, wrapped by a convex hull, as shown in Figure 4.1. It signals posi-

tion, orientation, and height information to the user, encompassing the user’s eyes, in the

process of achieving an acceptable position, orientation, and height. The other visualiza-

tion, ParaFrustum-HUD, superimposes in the coordinate system of the user’s head a HUD

(head up display) composed of a set of three dials that signal the user’s position and orien-

61

Figure 4.3: ParaFrustum-HUD visualization.

tation relative to the poses encoded by the ParaFrustum, providing continuous feedback to

users to guide them as they approach the target (Figure 4.3). Thus, ParaFrustum-InSitu is

part of the viewer’s world, whereas ParaFrustum-HUD is analogous to a set of diagrams or

the dials in a cockpit. ParaFrustum-InSitu integrates the information needed to assume an

appropriate head pose, yet presents an unfamiliar way of navigating. ParaFrustum-HUD

separates the needed information, allowing users to satisfy constraints in sequence, with

some of the familiarity of a videogame HUD.

62

(a) (b)
Figure 4.4: Early concept: splayed window-frame to show an ideal viewing pose relative to an
aircraft engine for a maintenance task, (a) view from distance, (b) close-up view, before arriving
at the viewing position.

ParaFrustum was the result of a collaborative project with Carmine Elvezio and Ohan

Oda. I made the following contributions to the project: Inspired by Henderson’s “View-

pose Management” concept [Henderson 2011], I brought up the need for a visualization

to help guide users to physically assume a viewing pose and implemented our first pro-

totypes: a virtual window frame to look through (Figure 4.4) and a virtual mask to place

one’s head into [Oda et al. 2013]. After extensive piloting and discussions, we recog-

nized the need to allow for tolerance in the underlying representation. To address this, I

designed and implemented the generalized ParaFrustum, based on convex hull and CSG

operations. Drawing inspiration from our overview visualization in SnapAR, I conceived,

designed, and implemented the HUD visualization that features two radar views from

non–first-person perspectives. Finally, I helped design the user study, formulate the hy-

potheses, and took over the responsibility for conducting the quantitative and statistical

analyses and plotting the results.

63

4.2 Related Work

4.2.1 Calling Attention to a 3d Target

There has been much previous work on how to call a user’s attention to a target in a 3d

environment, whether real or virtual, when viewed with a 6DoF-tracked display. Perhaps

the simplest is highlighting. However, highlighting by itself does not work when the

target is occluded or offscreen. One approach to signaling objects that are hard to see

uses a leader line anchored onscreen on one end, with the other end terminating on an

onscreen target; in the case of an offscreen target, the line is clipped at the screen edge

in the direction of the target [Feiner et al. 1993]. The user can then “follow the leader,”

turning the tracked display toward the clipped portion of the line to bring the target

onscreen.

An alternative approach minimizes the portion of the screen devoted to directing the

user’s attention by using a small conical pointer anchored at its base in the bottom portion

of the screen of a head-worn display [Feiner et al. 1997]. Its tip points directly toward an

onscreen object, left or right to offscreen objects in front of the user, and down to offscreen

objects behind the user. The attention funnel [Biocca et al. 2006] (Figure 4.5a) replaces the

simple geometry used in these techniques with a carefully designed set of components

that attract the user’s attention toward the target, using a funnel-shaped, high-frequency

pattern of lines to mark the path toward the object.

There is also a class of visualizations intended to provide situational awareness, such as

so-called “radar views” that are often used in the “heads-up displays” overlaid on a first-

person view in games, like the one we implemented for SnapAR (Section 3.3.3). These

64

The integration of audio with visual cues helps draw
attention even when vision is not directed to the screen. Of
course, these systems work within the confines of a very
limited amount of screen real estate; an area most users can
scan very quickly. The audio cue often initiates the
attention process, requiring completion using visual
scanning.

Spatial Cueing in Augmented Reality
In mobile AR environments, the volume of information is
large and omnidirectional. AR environments have the
capacity to display a large amount of informational cues to
physical objects in the environment.

Most current AR systems adopt WIMP cursor techniques or
visual highlighting to direct attention to an object (e.g., [5,
17]). Recently, Chia-Hsun and colleagues [3] proposed
projecting light into the environment. Other techniques

involve adding virtual quasi-architectural signage or virtual
objects such as arrows or lines to the environment [23].

Spatial cueing techniques used in interpersonal
communication [4], WIMP interfaces, and architectural
environments are not easily transferred to AR systems.
Almost all of these techniques assume that the user is
looking in the direction of the cued object or that the user
has the time or attentional capacity to search for a
highlighted object. Multimodal cues such as audio can be
used to cue the user to perform a search, but the cue
provides limited spatial information and must compete with
other sound sources in environment. Spatialized audio [2]
can be used on its own to direct attention but the resolution
may not be adequate for some applications, especially in
noisy environments.

THE OMNIDIRECTIONAL ATTENTION FUNNEL.
Interface design in a mobile AR system presents two basic
challenges in managing and augmenting attention of the
user:

(1) Omnidirectional cueing. To quickly and successfully
cue visual attention to any physical or virtual object in 4ʌ
steradians as needed.

(2) Minimal attention demands. Minimize mental workload
and attention demands during search or interference with
attention to tasks, objects, or navigation in the physical
environment.

The Omnidirectional Attention Funnel is an AR display
technique for rapidly guiding visual attention to any
location in physical or virtual space. The basic components
of the attention funnel are illustrated in Figure 1. The most
visible component is the set of dynamic 3D virtual objects
linking the view of the user directly to the virtual or
physical object.

The attention funnel visually links a head-centered
coordinate space directly to an object-centered coordinate
space, funneling focal spatial attention of the user to the
cued object. The attention funnel takes advantage of spatial
cueing techniques impossible in the real world, and AR’s
ability to dynamically overlay 3D virtual information onto
the physical environment. Like many AR components, the
AR funnel paradigm consists of: (1) a display technique, the
attention funnel, combined with (2) methods for tracking
and detecting the location of objects to be cued.

Components of the Attention Funnel
The attention funnel has been realized as an interface
widget in an augmented reality development environment.
The attention funnel interface component (arwattention)
and is one component in a planned set of user interface
widgets being designed for mobile AR applications. These
components are being built and tested as extensions of the
ImageTclAR augmented reality development environment
[20]. The arwattention widget provides a mechanism for

Figure 1. The attention funnel links the head of the
viewer directly to an object anywhere around the body.

Figure 2. Three basic patterns are used to construct a
funnel: (A) the head centered plane includes a bore sight
to mark the center of the pattern from the user’s
viewpoint, (B) funnel planes, added in a fixed pattern
(approximately every 0.2 meters) between the user and
the object, and (C) the object marker pattern that
includes a red cross hairs marking the approximate
center of the object.

CHI 2006 Proceedings • Selecting and Tracking April 22-27, 2006 • Montréal, Québec, Canada

1117

(a) Attention Funnel, Biocca et al. (CHI ’06) (b) Rephotography, Bae et al. (ACM TOG ’10)

6 • Soonmin Bae et al.

 0. Register the reference camera
 1. Robust estimation starts. Estimate correspondences.
 2. Estimate camera pose.
 3. Estimate the scale of the translation.
 4. Check if the robust estimation result passes sanity testing.
 If yes, proceed to the next step. Otherwise repeat from Step 1.
 5. Visualize the direction to move. The robust estimation ends.
 6. Multi-threading starts. Thread A repeats robust estimation
 from Step 1, while Thread B performs a lightweight estimation.
 7. Thread B tracks inliers found in Step 2 and estimates camera
 pose using only one iteration.
 8. Estimate the scale of the translation.
 9. Check if the lightweight estimation result passes sanity testing.
 If yes, proceed to the next step. Otherwise repeat from Step 7.
10. Visualize the direction to move.
11. Repeat from Step 7 until Thread A finishes Step 5 and updates
 the set of inliers.

Fig. 8. The flow chart of our interleaved scheme.

not affect the user performance or resulting rephotograph quality.
Our interleaved version operates as in Figure 8.

4.3.1 Sanity Testing. For each resulting pose, we perform three
sanity tests to make sure our visualization is reliable. We compare
the 3D structure reconstructed from each frame with our initial 3D
reconstruction from the first two images. We measure the 3D error
of all points and ignore the pose estimation if the median of the 3D
error is more than 10 %. Typically, the median error is less than
5 %.
In addition, we check if the current camera pose result is con-

sistent with previous ones. We found that a simple filter works, al-
though the Kalman filter [Kalman 1960] would likely generate a
good result as well. We measure the mean and the standard devia-
tion of the camera locations at the previous ten frames and confirm
that the current estimated camera location is within 4 standard de-
viations from the mean. We assume the camera motion is smooth
and the pose variation is small. The above two tests typically detect
a wrong answer roughly once in 100 frames.
Finally, we test for a structure degeneracy caused when all the

inliers come from one single plane in the scene. We find the best-
fitting homography using RANSAC with 1.5 pixel average map-
ping errors within 500 iterations. If the number of homography in-
liers is more than 70 % of the epipolar geometry inliers, we ignore
the pose estimation result. Since we use a large-enough baseline,
this error does not occur frequently.
When our estimation result fails to pass the above tests, we sim-

ply do not update the visualization. Since wrong answers do not
occur often, this does not affect the user experience significantly.

4.4 Scale Estimation
After relative pose is computed, a problem remains: the scale of the
translation between the current frame and the first frame is ambigu-
ous. We therefore scale it to maintain consistency between itera-
tions. In the initial calibration step, we reconstructed a 3D structure
between the first and second frames using triangulation. In a subse-
quent iteration n, we reconstruct 3D structure between the first and
nth frames. The scale between these two reconstructions should be
different by a constant factor. We can make the scales consistent by
estimating the scale factor that causes the distance between the first

camera and the 3D scene to be equivalent between the two recon-
structions. To do so, we place the first camera at the origin for both
reconstructions. We then compute the median ratio of distance to
the origin for each 3D point in the first reconstruction and the nth
reconstruction. Finally, we multiply the length of the translation
vector by this ratio, which makes the length of our arrow visualiza-
tion meaningful and consistent across frames.

4.5 Rotation Stabilization
We also use the result of relative pose estimation to rotationally
stabilize the current frame before displaying it. Since users find it
challenging to simultaneously follow instructions suggesting both
translational and rotational motions, we instead only communicate
translation to the user. We automatically compute the best camera
rotation between the current and reference views, and apply this
rotation as a warp before displaying the current frame. This rota-
tion alignment allows the user to focus on translating the camera in
the right direction without striving to hold the camera in the right
orientation.
The effect of a 3D camera rotation and zoom can be described

with an infinite homography [Hartley and Zisserman 2000]. The
infinite homography is a subclass of the general homography, as it
is restricted to rigid camera rotations and zooms. We use the algo-
rithm of Brown et al. [2007] to compute the infinite homography
that fits all the epipolar geometry inliers with the least squared er-
ror.

5. VISUALIZATION

Fig. 9. A screen capture of our visualization, including our primary visu-
alization of two 2D arrows, as well as an edge visualization. The upper left
view shows the suggested motion direction from the top while the lower
left view is perpendicular to the optical axis. The edge visualization shows
a linear blend of the edges of the reference image and the current scene af-
ter rotation stabilization. The alignment of the edges can be used to evaluate
whether the user has reached the desired viewpoint.

Comparing the reference and current image side by side does not
provide precise information about viewpoint difference. In our pilot
user study, we provided a linear-blend of the reference and current
image, and users could not estimate the desired viewpoint by ex-
amining the pixel difference. In a subsequent test, we showed the
relative pose information in 3D (See Figure 11(a)). Still we found
that it was hard for users to interpret 3D information. In our final
visualization design, we visualize the relative camera pose in two
2D planes: one is the direction seen from the top view and the other

ACM Transactions on Graphics, Vol. 29, No. 3, Article 24, Publication date: June 2010.

(c) Situated Media, Güven et al. (3DUI ’06)

FlyAbout [11] uses spatially indexed panoramic video to create
interactive applications for VR. The system uses a moving 360°
camera to capture panoramic video. Unlike traditional video ap-
plications, FlyAbout enables users to interactively replay the
captured video, and navigate to interesting objects and locations
through spatial indexing.

Our system differs from these applications by using AR and
VR as the presentation medium instead of video. Integrating in-
formation with the physical world not only provides information
in context [18], but also makes it possible to interact with the
user’s surroundings as part of the application.

Stoev and colleagues [20] present a toolset for visualizing his-
torical events. Using table-top VR, they make it possible to view
a scene from different view points, to watch events happening at
different times, and to interactively view more than one event and
location of interest. They use the 1525 Peasant War in Germany
as an application scenario, and display historical data describing
the peasants’ migrations and battles. While this system can be
used to get a better understanding of the events that took place in
the past, the material presented is limited to textual information
that the user encounters as they navigate within the virtual envi-
ronment to explore the historical scene. In contrast, our system
uses 3D media augmentations and animations, presented through
AR and VR, to visualize past events.

The situated documentaries of Höllerer and colleagues [10] use
AR to provide the illusion of traveling back in time. For example,
3D models of buildings that no longer exist are overlaid in situ to
provide mobile users with an understanding of how their sur-
roundings looked in the past. Our work on the MARS Authoring
Tool [8, 9] provides end-user authoring facilities for situated
documentaries, which we have applied to create hypermedia sto-
ries about the history of the Columbia campus. Similarly, LIFE-
PLUS [23] is a mobile AR tour guide application that offers per-
sonalized guided tours of historic Pompeii; in addition to story-
telling capabilities, it also uses AR to virtually reconstruct ruins.

The work we describe in this paper takes a different approach
from these projects. Instead of vicariously traveling back in time,
we provide augmentations that are designed to help users browse
through and gain a better understanding of past events. Users can
not only explore historic images using our interactive timelines,
but can view visualizations of events that took place at the site.

Another approach to enabling users to experience scenes from
the past as they explore their surroundings relies on mounted
telescope-like devices such as the AR Telescope [3], Telescope

[15] and Augurscope [16]. The techniques we describe here could
also work with these systems.

Shiaw and colleagues developed the 3D Vase Museum [17], in
which a virtual collection of vases is positioned in a grid on the
floor of a virtual museum, organized by year in one dimension
and historical type in the other. While this work also addresses 2D
browsing in the context of a 3D environment, it differs from ours
in that a vase is not displayed in situ (e.g., at the location at which
it was excavated), but rather at an arbitrary location that corre-
sponds to its classification.

3 AUGMENTING THE ENVIRONMENT WITH SITU-
ATED MEDIA

We use the term situated media to refer to multimedia and hy-
permedia that are embedded in the environment. In this section,
we present an interactive augmentation technique, shown in Fig-
ure 1, which uses situated media. Our goal is to carefully register
and superimpose a set of images on the user’s view of real or
virtual objects, such as a 3D model of an historic site. These aug-
mentations can act as background references, provide additional
detail not present in the original model, or depict scenes from
important events that took place at the site. Using different im-
ages of the same site, this technique can also be used to give the
illusion of a dynamically changing model and textures.

3.1 Virtual Field of View (FOV)
By using computer-vision techniques [12], it is possible to es-

timate the 3D location and orientation of the camera that captured
an image. Using this information, an image can be transformed
into an augmenting picture that is located in the real or virtual
world relative to the objects it depicts. Furthermore, if the camera
position for each augmenting picture were calculated and marked,
the user could be requested to align their sight to experience an
enhanced overlay, either through physical movement (in AR) or
through virtual or physical movement (in VR).

To accomplish this, we present the Virtual Field of View (FOV)
visual aid for an augmenting picture. The Virtual FOV comprises
a semi-transparent pyramid whose apex emerges from the com-
puted 3D viewpoint and extends towards the augmenting picture
of interest that serves as its base. In other words, the Virtual FOV
simulates the photographer’s field of view (assuming a simplified
pinhole camera model and that the apex emanates from a point
midway between the viewer’s eyes). Figure 2 shows a Virtual
FOV along with its associated augmenting picture.

It is possible to place an augmenting picture anywhere in the
Virtual FOV pyramid (with the correct scale) between the apex
and the real world objects it depicts. However, the closer the im-
age is placed to the apex, the more it will appear to float when
viewed in stereo or from any position other than the apex. To
improve the appearance, we choose a key object (in Figure 2, the
central column), whose dimensions we measure in the picture as
well as in the real world (using the high-resolution 3D point cloud
described in Section 3.2), to yield a scale factor and the distance
at which the picture should be placed from the apex. (This tech-
nique is intended for images that depict a collection of objects
that have relatively little depth compared to the distance from the
viewer to those objects.) Our world-stabilized placement strategy
therefore makes it possible to view adequately registered images
without having to stand exactly at the apex, and the closer the
user approaches to the apex, the better the registration becomes.
In cases such as Figure 2, the user can be up to a few meters away
from the apex before the augmenting picture loses its enhanced
overlay appearance.

Figure 2. Virtual Field of View (FOV).

112
Proceedings of the 2006 IEEE Symposium on 3D User Interfaces (3DUI’06)
1-4244-0225-5/06 $20.00 © 2006 IEEE

(d) Camera Pose Navigation, Shingu et al. (ISMAR ’10)

Figure 4.5: Sample screenshots from related work.

“radar views” often feature a small circle representing an area around the user located

at the center, as seen in an overhead plan view, overlaid by a shaded sector of the circle

representing the user’s field of view. If a representation of the target is shown in the circle

(or marked on the circumference for targets outside the circle), the radar view can guide

the user toward the target, by showing the change in position to reach it and orientation

to see it. If the altitude of the target is also important, a second radar view can show a

side elevation view centered about the user.

65

4.2.2 Specifying Position and Orientation Relative to a 3d Target

While the techniques mentioned above direct the user’s attention to a target, they do

not specify how the user should be positioned and oriented relative to that target. One

way to do this uses the familiar geometric representation of a camera as a pyramidal

frustum, with a center of projection at the pyramid apex (the look-from point) and a base

delineating the target, with a look-at point at the center of the base. Snavely et al. [2006]

visualize a set of such pyramids, each representing a photograph from which the frustum

is derived by the system. The set is displayed at their positions and orientations in a 3d

desktop UI, from which the user can choose one to view its photograph.

Güven and Feiner [2006] describe an outdoor AR system in which a line-drawn pyra-

mid view volume is erected over a photograph texture-mapped onto its base and located

at the approximate position and orientation from which the photograph was taken, de-

rived from an analysis of the photograph (Figure 4.5c). When users position their heads

at the pyramid apex, they can view the image registered with the real world.

Bae et al. [2010] use an alternative approach to guide the user to a desired position and

orientation for rephotography (the process of taking a photograph at the same location

and orientation as a previous reference photograph). Their system interactively analyzes

the current view seen by a camera and, if the camera captures a view sufficiently similar

to the reference photograph, the system determines how the camera should be translated

to bring it to the correct location. As shown in Figure 4.5b, they present the photographer

with an interface showing two views of a camera: An overhead plan view of the camera

facing forward is overlaid with a 2d arrow showing the direction parallel to the ground

66

in which to move the camera. This is complemented with a rear elevation of the camera

as seen from the back, overlaid with a 2d arrow showing the direction in the plane of the

camera back in which tomove the camera. Finally, the view seen by the camera is overlaid

with the edges of the reference view to allow the user to adjust the camera orientation.

4.2.3 Specifying a Constrained Set of Positions and Orientations in 3d

The problem we address here differs from that of the work discussed above, in that we

do not want to restrict the user to a specific position and orientation, but instead allow

a range of possible positions and orientations. Research on automated cinematography

(e.g., [Friedman and Feldman 2006; Burtnyk et al. 2002]) has addressed ways of expressing

and resolving general constraints on camera specifications; however, this work was not

directed toward helping a user to physically realize an acceptable camera pose. The most

relevant previous work that we know of is by Shingu et al. [2010], who created an AR

visualization to assist with a rephotography task in an industrial setting for inspecting an

item before and after a process. A red sphere is positioned around a target of interest and

a cone whose apex is at the center of the sphere protrudes from the sphere (Figure 4.5d).

The sphere encloses what must be visible and the cone constrains the angle from which

it must be viewed. The cone disappears when the camera’s viewpoint is inside, and the

sphere turns green when it is fully inside the camera frustum, together indicating that an

acceptable camera position and orientation have been achieved.

ParaFrustum provides a significant advance over this previous work. ParaFrustum

supports a much wider range of shapes and relative sizes of the volumes containing the

67

look-from and look-at points, makes it possible to constrain the maximum distance the

camera can be from the target, and is complemented by a set of visualizations to assist

in realizing an acceptable pose that are better suited to the more general geometry of

ParaFrustum. ParaFrustum makes a clear distinction between look-from and look-at vol-

umes, allowing the look-at volume to constrain only orientation. In contrast, the sphere of

Shingu et al. serves double duty: a look-at volume and an implicit bound on how close the

user can get to the sphere. While Shingu et al. do not impose a bound on how far the user

can get, providing one by putting a base on the cone would still not produce ParaFrus-

tum’s explicit visible head volume, which we use in our visualizations as a target at which

users can aim. Because ParaFrustum’s tail volume can be asymmetric, it better supports

situations in which more leeway is needed in one axis than another. ParaFrustum’s rules

also allow partial visibility of the tail volume, and explicitly support stereo. Furthermore,

the performance of ParaFrustum and its visualizations has been validated in a formal user

study investigating a range of sizes and shapes for the head and tail volumes.

4.3 Definition and Rules

The ParaFrustum head volume defines the set of acceptable viewing positions, while the

ParaFrustum tail volume defines the set of endpoints for a bundle of viewing vectors that

originate in the head end. The head and tail volumes can be thought of as being wrapped

by a convex hull that includes all directed lines between any point in the head volume

and any point in the tail volume.

We define the set of acceptable viewing locations for the ParaFrustum to require that

68

the center(s) of projection of the display device’s camera frusta (one for a monoscopic

camera, two for a stereoscopic camera pair) be fully contained by the head volume. In

addition to defining the set of allowable eye positions, the head volume presents a target

toward which the user can travel when first approaching the ParaFrustum, as we will

describe later.

To define the set of acceptable viewing orientations, we attempt to maximize the por-

tion of the tail volume that is visible to the user. We determine this relative to the in-

tersection of the two display/camera frusta for stereo (the single display/camera frustum

for mono), which we will call the view volume. As seen from a location within the head

volume, the tail volume may either fit fully within the view volume or may exceed it (Fig-

ure 4.6). If the tail volume is able to fit fully, then the head orientation will be considered

to be correct when it fits. On the other hand, the tail volume may extend past one or more

of the left, right, top, or bottom of the view volume. If the tail volume extends past only

one of the left and right sides, and/or only one of the top and bottom, the orientation will

not be considered correct. The rationale is that in these cases, the user should change

their orientation so that tail volume either no longer extends past either one of that pair

of sides (fits fully inside the pair) or extends past both sides of that pair.

We note that it is possible to choose pathological combinations of head and tail vol-

umes that make it impossible to establish an acceptable viewing position or orientation

under these criteria. For instance, when an ellipsoidal head volume is just big enough to

barely contain both eyes of the user at the same time, the tail volume can be positioned

in a way that the user would not be able fit it in their viewing frustum without turning.

However, since the eyes are tightly constrained by the small head volume, turning even

69

✓ ✕

Tail Volume Visibility

Acceptable Unacceptable

View Volume

Tail
Volume

Tail
Volume

View Volume

Tail
Volume

View Volume

Tail
Volume

View Volume

✓ ✕
Acceptable Unacceptable

(a) (b)

(c) (d)

Figure 4.6: 2D projections of tail volume and view volume illustrating visibility rules for satisfying
ParaFrustum’s orientation constraint: (a, b) Tail volume is small enough to fit fully within the
view volume. (c, d) Tail volume is too large to fit within the view volume. (b, d) Unacceptable
because portion of tail volume that is visible to user can be increased by rotating camera.

slightly could make one or both eyes leave the head volume, making satisfying the ori-

entation constraint impossible without breaking the position constraint in the process.

Nonetheless, we have found it easy in practice to select head and tail volumes that estab-

70

lish constraints that are satisfiable and make sense for realistic viewing tasks.

It is easy to understand that, in general, smaller head volumes impose tighter con-

straints on viewing location, while larger head volumes impose looser constraints. The

impact of tail volume size is less obvious. Under the definition of acceptable viewing

orientation that we use, the tightest constraint on orientation would be imposed by a

tail volume that just fits the view volume; for example, this could be an ellipsoid whose

projection is circumscribed by the outline of the view volume (Figure 4.7a), or whose pro-

jection circumscribes the outline of the view volume (Figure 4.7b). As a tail volume that

can be contained by the view volume shrinks in size, the orientation constraint it imposes

becomes looser, until the tail volume becomes a point, providing horizontal and verti-

cal leeway corresponding to the horizontal and vertical field of view of the view volume

(Figure 4.7c,d). In contrast, as a tail volume whose projection circumscribes the outline

of the volume grows in size, it also provides successively more leeway, which can range

beyond the horizontal and vertical field of view of the view volume. Note that alternatives

to these rules are possible. For example, the tail volume could define a set of points that

need only intersect with the view volume or with the view volume’s center axis, so that

larger tail volumes always result in looser orientation constraints.

4.4 ParaFrustum-InSitu

ParaFrustum-InSitu (InSitu) includes a number of visual aids to assist the user in assuming

an acceptable pose. As shown in Figure 4.8a, the head volume is visible only from outside

the shape and the tail volume is rendered as a thin red outline. The head and tail volumes

71

Containing Tail
Volume

Orientation 
Alt. 1

View Volume

Tail Volume vs.
Orientation Tolerance

(a)

Tail
Volume

Orientation 
 Alt. 3

Orientation 
Alt. 2

Tail
Volume

Orientation 
Alternative 3

Orientation 
Alternative 2

Orientation 
Alternative 1

(b)

(c) (d)

View Volume

Contained Tail
Volume

View 
Volume

View 
Volume

Figure 4.7: (a, b) Tightest possible constraints on orientation. Any change in orientation
would result in portion of tail volume that is visible to user to decrease. (a) View volume
projection circumscribes the outline of the tail volume. (b) Tail volume projection circumscribes
the outline of the view volume. (c, d) A fully contained tail volume is in the bottom-left corner
of the viewing volume. Three alternative viewing orientations, which have the fully contained
tail volume in each of the three remaining corners of the view volume, are shown with dashed
outlines. (d) Has a smaller tail volume compared to (c), allows for larger changes in orientation
while still maintaining the tail volume inside the view volume, and is therefore a looser orientation
constraint.

are wrapped by a convex hull that is displayed as a series of ribs extending from the

head to the tail. As the user approaches the head volume, the head volume becomes

more transparent (Figure 4.8b), until a maximum transparency value is reached. Since the

head volume is completely invisible from within, we limit the maximum transparency on

approach in order to display a discrete jump in color to full transparency when breaching

the shell of the head volume (Figure 4.8c). The tail now appear as a faint red ring (defined

72

Figure 4.8: ParaFrustum-InSitu visualization. (a) Viewed from a distance, head volume is
opaque. (b) Head volume becomes more transparent as user approaches. (c) Looking toward
tail volume with eyes inside head volume, red ring and ribs are visible. (d) Eyes have exited rear
of head volume, and red ring becomes thicker. (e) Eyes continue further forward and tail volume
starts becoming opaque. Tail volume extends beyond top and right edges of view volume, which
are highlighted in white. (f) Eyes return back into head volume and orientation is correct, so
only faint red ring remains.

by the contour of the tail volume, as viewed from the current perspective).

Inspired by the use of transparency to indicate whether objects are behind, inside or

in front of the “Silk Cursor” [Zhai et al. 1994], InSitu’s tail shape quickly transitions first

to a thicker elliptical ring around the limb of the volume (Figure 4.8d) and then to a nearly

opaque ellipsoid (Figure 4.8e), when the user moves forward, exits the head volume, and

enters the hull proper. This is done towarn the user that they have exited the head volume,

(which cannot be seen from inside the ParaFrustum, when looking in the correct general

direction). If the user returns back into the head volume, the tail volume returns to its

previous shading (i.e., faint ring). Once the user assumes an acceptable pose, the ribs

will shrink until they are completely invisible, and only the light red ring around the tail

volume is visible (Figure 4.8f).

73

Recall that if the tail volume extends past only one of the left and right sides, and/or

only one of the top and bottom of the view volume, the user might be able to change their

head orientation to make the tail volume fit. In this case, the system shows the offending

side(s) of the view volume by highlighting them with a thick white line, as shown at the

top and right of Figure 4.8e. If that happens, the user can turn their head in the direction

of the line(s) to try to make the tail volume fit completely inside the view volume. If it

does not fit, then the tail shape will be cut by both the left and right sides, or both the top

and bottom. When this occurs, the thick white line(s) and ribs connecting the ellipsoids

disappear, meaning that an acceptable head pose has been achieved.

4.4.1 Implementation

The mesh utilized in the InSitu visualization is generated by passing the meshes for the

head and tail volumes to a convex hull library [Sehnal and Campbell 2014] to generate a

convex hull wrapping the two end shapes. Once the hull is generated, the two end shapes

are subtracted from it using a constructive solid geometry library [Perry and Wallace

2014]. The remaining part of the hull, which does not include the head and tail shapes,

is rendered with a shader that applies a sinusoidal function to the alpha value of the

hull material’s diffuse property to display the ribs that connect the head volume to the

tail volume. Finally, the two original end shapes are placed back in the visualization to

render the head and tail volumes. In our current implementation, ParaFrusta are built

with ellipsoid head and tail volumes, but this process can support arbitrary convex head

and tail volumes.

74

While InSitu uses each visible component for the purpose of visualizing some ele-

ment of the user’s current deviation from an acceptable pose, we recognize that it can

potentially obstruct important physical objects in the real world. We have attempted to

mitigate this by making the visualization at least partially transparent at all times using a

dynamic alpha value between 0.0 (i.e., full transparent, not rendered) when the user is in

an acceptable pose and 0.8 (i.e., nearly opaque, but still 20% transparent) when the user’s

head position is in an incorrect pose and beyond a threshold set to 20cm heuristically for

our test cases. With a dynamically adjusted alpha value based on the distance from an

acceptable position, there is always an indication of (a) InSitu’s presence when the user

is not in an acceptable pose and (b) the amount of correction needed to arrive at an ac-

ceptable pose, so that the user is always aware of the constraints on pose and can make

refinements as needed.

4.5 ParaFrustum-HUD

ParaFrustum-HUD (HUD) uses a system of multiple 2d circular dials, similar to those used

in game head-up displays. Three dials were displayed in the user’s field of view, as seen

in Figure 4.9a. The lower left dial (the “Forward” radar view) indicates the user’s position

and heading by a top-down orthographic plan view of a mannequin head model and the

ParaFrustum head volume, showing the disparity between the heading of the operator

and the desired heading. The lower right dial (the “Up” radar) shows an orthographic

side elevation view indicating the vertical height of the user’s head and the ParaFrustum

head volume, information that was not needed in some cases. The middle dial shows the

75

(a) (b)

(c) (d)
Figure 4.9: ParaFrustum-HUD visualization. (a) Top-down perspective, height offset view, and
orientation offset indicator are combined in one visualization. (b) User has approached head
shape, which has become larger in Forward and Up radars. (c) User intersects target shape in
both Forward and Up radar. (d) User is looking in correct direction and is inside head volume.

user’s offset from the final orientation in yaw and pitch, displaying an arrowhead in the

direction in which the user must look.

As the user moves closer to the head volume, the scale enlarges (Figure 4.9b). The

correct position has been achieved when the projected head volume surrounds the centers

of both the Forward and Up radar views, causing themannequin heads and projected head

volumes to turn red (Figure 4.9c). When the user is looking in an acceptable direction,

the middle dial disappears (Figure 4.9d) and will become visible again only if the user’s

orientation is no longer acceptable.

Unlike InSitu, HUD also works when the head is tracked, but the display is not (e.g.,

76

handheld). Although the user/operator could attempt to integrate the information from

all three dials in moving toward the target, visually monitoring three changing objects

is challenging (e.g., [Franconeri et al. 2010]). Another strategy that users could use is to

follow each dial in a natural sequence, adjusting to each one in turn. The lower left dial

could guide users to the right location outside the engine, simply by walking along a path

that aligned the nose with the desired orientation. Once in position, users could orient

their heads, following the direction indicated in the upper dial. Applying this strategy

predicts that users would walk a straight line, then turn and walk straight again.

4.6 Comparison

The dials in HUD are essentially a changing diagram or visualization of the environment

superimposed on the user/operator’s field of view (in stereo, at a set offset from the user),

rather than an integral part of the environment. In contrast, InSitu is part of the user’s

environment. It is a 3d enclosure that the operator/user must enter. This is a task that

people accomplish with exquisite accuracy (e.g., Franchak et al. [2012]). In addition, In-

Situ combines and integrates the information that is presented in three separate dials for

HUD. Using InSitu, users can anticipate the entire sequence of movements needed: the

trajectory from the start point to the viewing point and the viewing angle and height.

Considerable research has shown that people make anticipatory movements of the body,

head, and eyes; that is, they are preparing the next set of movements as they enact the

current set (e.g., Bouisset and Zattara [1981], Grasso et al. [1996], Grasso et al. [1998], and

Mennie et al. [2007]). Due to anticipation, walkers using InSitu are expected to take a

77

curved path toward a target. In the present case, walking a curved path toward the posi-

tion outside the engine would keep the expected position quite central in users’ fields of

view, as well as allow users to anticipate the position, orientation, and height of the body

and head as they reach the viewing point.

In contrast, the straight/turn path that seems optimal for HUDwould not keep the ex-

pected viewing position in the users’ field of view on many occasions. However, because

users’ movements are guided wholly by the dials, keeping the expected viewing point in

the field of view would not necessarily be helpful.

4.7 User Study

We conducted a formal user study to compare the performance of our two visualizations,

InSitu vs. HUD, for guiding users to a set of ParaFrusta with varying the amount of

tolerance allowed for both position and orientation. Prior to conducting the formal user

study, we performed an informal pilot study with our lab members and four compensated

students to confirm our design, formulate our hypotheses, and test our study procedure.

4.7.1 Pilot Study

For our pilot study, we defined a set of seven ParaFrusta, representing a range of ParaFrus-

tum position and orientation tolerances. Based on the results, we increased the number

of trials for the formal study and adjusted the placement of ParaFrusta locations to stan-

dardize the distance the user has to traverse to arrive at a target location when starting

from a “home” position. Additionally, the number of ParaFrusta shapes was increased

78

Figure 4.10: ParaFrusta, visualized using ParaFrustum-InSitu. Left-to-right, head position has
less tolerance; top-to-bottom, orientation has less tolerance. Labels at upper left of each
subimage specify levels of tolerance, and are of form “PositionTolerance–OrientationTolerance”,
where each of PositionTolerance and OrientationTolerance is one of Loose (L), Medium (M),
and Tight (T).

from seven to nine, as shown in Figure 4.10, to collect data for all possible combinations

of three levels of tolerances—categorized as loose (L), medium (M), and tight (T)—for both

position and orientation.

4.7.2 Hypotheses

The following four hypotheses followed from our analysis and pilot study:

H1. InSitu will lead to faster task accomplishment than HUD.

H2. HUD will increase variability in position and orientation.

79

H3. Both InSitu and HUD will take longer for tighter constraints than looser ones.

H4. Participants will prefer InSitu over HUD.

Rationale

H1: The InSitu condition should lead to faster accomplishment of the task than HUD,

because the InSitu visualization is embedded in the surrounding world and thus allows

an integrated set of anticipatory actions that people perform well naturally [Franchak et

al. 2012].

H2: Due to the difficulty of integrating information from multiple indicators, partic-

ipants in the HUD condition are expected to follow one indicator at a time sequentially,

leading to increased time and variability in position and orientation, because following

a single indicator at a time may lead to misalignment on the other indicators. On the

other hand, InSitu provides integrated information and allows participants to enact an

integrated anticipatory curved trajectory.

H3: Both InSitu and HUD conditions should take longer for tighter constraints than

looser ones; in general, this would predict that it should be faster to assume a pose spec-

ified by a less constrained ParaFrustum than by a precise frustum.

H4: We anticipated that participants will prefer InSitu over HUD, for the same reasons

provided for H1.

80

4.7.3 Methods

Participants

The participants were 18 students (3 female; ages 19–33, X̄ = 24) at our institution (pro-

tocol: IRB-AAAK6054). They were recruited from lists, email, and websites and each was

paid $15 for their participation. All participants used computers on a daily basis and two

had experience with AR, though not with the current systems. The experiment took ap-

proximately 1 hour.

Equipment

Participants wore a Canon HM-A1 stereo video–see-through HWD (Figure 4.11), tracked

by a 12-camera NaturalPoint Optitrack S250E tracking system, and interacted with an

application written using Goblin XNA [Oda and Feiner 2014], running on a computer

powered by an Intel i7-3770k with 16GB of RAM and using a Nvidia GeForce GTX 780.

We positioned the target poses (volumes) around an aircraft engine, looking at various

portions of the engine. Participants held a NintendoWii remote in their hand and pressed

its “A” button to interact with the system.

To minimize the stress placed on the user during the study, we automatically adjusted

the height of each target so it would match the user’s recorded height. While real world

tasks will often require that users assume potentially uncomfortable poses, we decided to

eliminate this potential confound.

81

Figure 4.11: Participants wore a Canon HM-A1 —a stereo, video see-through HWD with
1280× 960 resolution at 60Hz refresh rate (per eye) and 50◦ diagonal FOV— during the study.

Design

There were 2 within-subject visualization conditions (InSitu and HUD) × 6 target posi-

tions per condition × 9 head–tail shape combinations per target position = 108 timed

trials. Trials were blocked by visualization and randomized by position and shape com-

bination. Each block also included an initial nine practice trials. Half the participants

experienced InSitu first and half HUD.

In each block, the visualizations were placed at one of three distances from the home

position. Each distance was represented by two possible symmetric locations around the

engine, and each position had two unique orientations, yielding 12 possible targets. Fig-

ure 4.17 uses a plan view of the layout to show for both visualization conditions the three

target positions on the right side of the engine in each row, with their two unique orien-

82

tations (shown as green isosceles triangles with the apex at the center of the head volume

and the base oriented towards the tail volume) in each column. The nine head–tail shape

combinations prepared during the pilot study were all utilized for both visualizations.

Each of the nine unique combinations was placed at all six target positions, and randomly

set at one of two possible viewing angles for each position.

Procedure

Participants were welcomed and given the Stereo Optical Co. Inc. Stereo Fly Test to

screen for stereo vision. All participants successfully complete the test. They were then

introduced to the task, and given exact instructions for playing the part of a technician

taking snapshots of the engine. At the beginning of each condition, the participants were

allowed to explore the visualizations and position and orientation tolerances they were

expected to encounter in the experiment proper. Before starting the practice trials, par-

ticipants were given an explanation of the study, the details of each visualization, and

their role in the study, by the study coordinator. Participants were given a small break in

between conditions.

At the start of each trial, the participant was asked to enter a home zone marked

on the floor and to look towards the engine (Figure 4.12a). The participant was then

presented with a ParaFrustum visualization and asked to assume a pose that it allowed.

The participant then proceeded to walk toward the engine (Figures 4.12b and c). Once

the participant found a pose they believe to satisfy the visualization, they pressed the “A”

button on the Wii remote to “take a photo” and lock in their answer (Figure 4.12d). Head

position and orientation were recorded continuously throughout each trial, and the offset

83

in head position and orientation were also recorded when the “A” button was pressed.

a b

c d

Figure 4.12: (a) A participant starts at “home” zone marked with blue tape on the floor, (b,
c) walks towards aircraft engine and approaches a ParaFrustum using one of our visualizations
and (d) presses button on Wii remote when she satisfies the constraints of the ParaFrustum.

Participants completed a four-part questionnaire during and after the study, asking

them to assess both InSitu (denoted as “X”) and HUD (denoted as “Y”). The questionnaire

included both an unweighted NASA TLX and questions asking participants to assess the

ease, accuracy, and speed of the techniques using seven-point Likert scales (1 = worst, 7

= best).

4.8 Results

We began by eliminating outliers in the data. Several participants took as many as three

minutes on trials where median completion times were 6.08 and 9.51 seconds for InSitu

and HUD, respectively. Scrutinizing the data revealed that these were a small number of

84

cases where users were so tightly constrained that it was nearly impossible for them to get

their head into an acceptable pose even after the height adjustment. We labeled records as

outliers using a conservative version of Tukey’s outlier filter—the “outside fence” [Tukey

1977], using three times the interquartile range to determine the cutoff points per 2 (Visu-

alization Condition)× 9 (Constraint Type) conditions, which we expected to have signif-

icant effect on completion time. These outliers, which accounted for 3.14% (3.09% InSitu,

3.19% HUD) of all users across 2 conditions × 54 trials, were removed from further anal-

yses. Hypotheses were then evaluated for significance with a Bonferroni-corrected α of

.0125 (.05/4).

4.8.1 Completion Time

We performed a 2 (Visualization Condition) × 9 (Constraint Type) × 6 (Target position)

repeated-measures ANOVA on completion times, with participants as the random vari-

able using the R Statistical package [R Core Team 2015]. Results from the ANOVA showed

that Visualization Condition was a significant main effect, F (1, 3) = 40.509, p < .008,

at α = .0125. Participants found an acceptable viewpoint significantly faster using In-

Situ (7.20 secs) than HUD (12.50 secs), validating H1. Mean completion times for each

condition are depicted in Figure 4.13.

The effect of Constraint Type, was also significant, F (8, 24) = 32.044, p < .001,

at α = .0125. The most constrained shape T–T took significantly longer on average

(21.93 secs) than the rest of the constraints, which have a combined mean time of (8.34

secs), validating H3. There were no effects of target position, nor of any 2-way or 3-way

85

interactions.

Figure 4.13: Task Duration. InSitu (left panel) vs. HUD (right panel), by position constraint
(x-axis), and orientation constraint (color).

4.8.2 Motion Analysis

The greater cumulative head rotation and total distance traveled for HUD over InSitu

(Figure 4.14a–b), and the increased positional variability for HUD over InSitu, along with

the more uniformly curved trajectories of InSitu relative to HUD (Figure 4.17) support H2.

86

(a) Cumulative Distance Traveled.

(b) Cumulative Head Rotation.

Figure 4.14: Cumulative motion. InSitu (left panel) vs. HUD (right panel), by position con-
straint (x-axis), and orientation constraint (color).

87

4.8.3 Accuracy

We performed binary accuracy checks for the user’s head position and orientation at the

time they indicated that they satisfied the constraint on each trial. Overall, users per-

formed very well in terms of both position and orientation accuracy across visualization

conditions (Table 4.1).

Position Orientation

Visualization Accuracy Accuracy

InSitu 96.85% 99.10%

HUD 97.51% 97.28%

Table 4.1: Accuracy by Visualization.

APearson’s Chi-squared test revealed that there was no significant difference between

visualizations for position accuracy (χ2
(1,N=1876) = 1.629, p = .2018), but InSitu is signif-

icantly more accurate for orientation (χ2
(1,N=1876) = 7.2472, p < .01). Not surprisingly,

constraint type had a significant impact on accuracy; that is, users made more mistakes

when the constraints were tighter both for position (χ2
(1,N=1876) = 40.1464, p < .001)

and for orientation (χ2
(1,N=1876) = 26.114, p < .001) (Figure 4.15).

88

(a) Position accuracy by Position Constraint.

(b) Orientation accuracy by Orientation Constraint.

Figure 4.15: Accuracy by Technique.

89

4.8.4 Questionnaire

After each block, participants completed a questionnaire comprising nine seven-point

Likert-scale questions that included an unweighted NASATLX plus three additional ques-

tions to evaluate mental demand,physical demand, pace (hurried/rushed or not), per-

ceived success, perceived workload, stress, ease, speed, and accuracy. Their responses

were analyzed for significance with post-hoc Wilcoxon Signed-Rank comparisons with

Bonferroni correction for 9 tests (α = .05/9 = .0056).

The results of the survey showed that participants generally found InSitu less demand-

ing than HUD, both mentally and physically, while perceiving it to be easier, less stressful,

and faster (Figure 4.16). Ease was the only pairwise difference that was statistically signif-

icant (Table 4.2) at our Bonferroni-corrected α = .0056. Fourteen out of 18 participants

preferred InSitu over HUD, supporting H4.

90

HUD InSitu
HUD (Median) InSitu (Median)

0

2

4

6

8

10

1
very low

2 3 4 5 6 7
very high

Re
sp
on

se
Co

un
t

Mental Demand

0

2

4

6

8

10

1
very
easy

2 3 4 5 6 7
very
hard

Re
sp
on

se
Co

un
t

Ease

0

2

4

6

8

10

1
very low

2 3 4 5 6 7
very high

Re
sp
on

se
Co

un
t

Physical Demand

0

2

4

6

8

10

1
slow

2 3 4 5 6 7
fast

Re
sp
on

se
Co

un
t

Speed

0

2

4

6

8

10

1
not

rushed

2 3 4 5 6 7
rushed

Re
sp
on

se
Co

un
t

Pace

0

2

4

6

8

10

1
very low

2 3 4 5 6 7
very high

Re
sp
on

se
Co

un
t

Stress

0

2

4

6

8

10

1
not

accurate

2 3 4 5 6 7
very

accurate

Re
sp
on

se
Co

un
t

Accuracy

0

2

4

6

8

10

1
not very
hard

2 3 4 5 6 7
very
hard

Re
sp
on

se
Co

un
t

Perceived Workload

0

2

4

6

8

10

1
perfect

2 3 4 5 6 7
failure

Re
sp
on

se
Co

un
t

Perceived Success

Figure 4.16: Questionnaire Results. Median values for each condition are shown as triangles.

91

Dimension Z-value p-value (two-tailed)

Mental Demand −2.017 0.0434

Physical Demand −2.275 0.0232

Pace −2.045 0.0414

Ease∗ −2.840 0.0045∗

Speed −2.201 0.0278

Perceived Success −0.706 0.4777

Perceived Workload −1.525 0.1260

Accuracy −0.078 0.9362

Stress −2.471 0.0135

Table 4.2: Questionnaire—Wilcoxon Signed-Rank comparisons. ∗ denotes statistical significance
at Bonferroni-corrected α = .0056

92

4.9 Discussion

Our post-hoc analysis revealed differences in the speed and shapes of trajectories associ-

ated with the two visualizations. Figure 4.17 shows a cumulative view of all participant

trajectories as heat maps for both InSitu (Figure 4.17a, top) and HUD (Figure 4.17b, bot-

tom). These are plan views of the layout of our user study area with the aircraft engine

towards the top and the blue home zone square towards the bottom of each subfigure.

Green isosceles triangles represent six of the possible twelve targets. Only those targets

that were on the right half of the engine are shown (the other six targets were mirror

images flipped along the y-axis ending up on the left half of the engine). The apex of each

triangle is at the center of the head volume for that target and the base is oriented towards

the tail volume. A brighter red color for a given location indicates that more participants

have visited that location (i.e., that location was along their trajectory).

Visual inspection of trajectories indicates less variability in position and orientation

for InSitu compared to HUD, supporting H2. The significant increase in cumulative mo-

tion and orientation for HUD, especially in tightly constrained situations (Figure 4.14b–c),

suggests increased cognitive load for users as predicted by Franconeri et al. [2010]. We

speculate that the increased variability and unnecessary motion is due to HUD requiring

the users to (1) transform the mediated information into their own frame of reference and

(2) integrate information from multiple sources, whereas InSitu presents an integrated

visualization embedded directly in the environment. Notably, users corroborated this

increased load in the questionnaire.

We acknowledge that ParaFrustum is not fully general. For example, it does not in-

93

dependently constrain head roll independent of head position and does not account for

eye gaze in addition to head orientation. Furthermore, it does not account for situations

in which different points within a single head volume should be associated with different

tail volumes. However, we believe that it can represent a large family of useful viewing

constraints, making it possible to communicate to a user how to assume an acceptable

pose more quickly than existing approaches, potentially speeding up a number of tasks.

94

(a) Using ParaFrustum-InSitu.

(b) Using ParaFrustum-HUD.

Figure 4.17: Heat maps showing a cumulative view of all participant trajectories. These are plan
views of the layout of our user study area with the aircraft engine towards the top and the blue
home zone square towards the bottom of each subfigure. Green isosceles triangles represent
six of the possible twelve targets. Only those targets that were on the right half of the engine
are shown (the other six targets were mirror images flipped along the y-axis ending up on the
left half of the engine). The apex of each triangle is at the center of the head volume for that
target and the base is oriented towards the tail volume. A brighter red color for a given location
indicates that more participants have visited that location (i.e., it was along their trajectory).

95

Chapter 5

Orientation Assistance

Figure 5.1: User’s view of a physical, handheld object and one of our visualizations, Han-
dles, providing interactive orientation assistance (photographed through Google Glass Explorer
Edition).

In ParaFrustum, we explored how to provide AR guidance when a user has to phys-

ically travel to a strategic viewpoint (e.g., to perform maintenance and repair on a large

physical piece of equipment). When the object to be operated on is smaller and can be

handheld, instead of being large and stationary, it can be manually rotated instead of the

user moving to a strategic viewpoint. Examples of such situations include tasks in which

one object must be oriented relative to a second prior to assembly and tasks in which

objects must be held in specific ways to inspect them.

96

In this chapter, we describe a novel 3d visualization approach, Handles (Figure 5.1),

and contrast it to three additional visualizations representing different paradigms for

guiding unconstrained manual 3dof rotation. All of our designs in this chapter target

smaller FOV, lightweight, monoscopic HWDs, such as Google Glass, which tend to be

more comfortable and less intrusive than current generation stereoscopic, larger FOV,

see-through HWDs. We conclude with results of a user study evaluating the relative per-

formance of the visualizations and showing the advantages of our new approach.

5.1 Introduction

Many physical tasks require people to hold objects in specific orientations. In some cases,

rotation tasks are simplified due to implicit physical constraints (e.g., a knob with discrete

steps). However, numerous real-world situations, such as inspecting objects visually or

attaching one part to another, require unconstrained manual 3dof rotation. Further, there

are scenarios in which task objects or external references for alignment can be ambigu-

ous; for example, a task object may be symmetric visually, but contain internal sensors,

or a hand-held medical imaging device may need to be aligned with internal organs that

are not seen directly. In these situations, providing guidance for rotating an object be-

comes a question of either conveying direction and magnitude explicitly, or annotating

the environment to provide additional context for alignment.

Manuals, whether physical or virtual, often show different views of task objects and

use annotations (e.g., connectors and arrows) to illustrate the required action [Mijksenaar

and Westendorp 1999]. However, these can be difficult to integrate, especially for com-

97

plex, self-similar, or symmetric shapes, as mentioned above. Systems that present virtual

instructions on an HWD have been shown to help in transforming a rigid object to a pre-

determined position and orientation [Henderson 2011]. Such systems commonly employ

basic virtual 3d UI elements such as arrows, animations, or clones of task objects as vi-

sual hints that guide users when performing manual operations (e.g., Feiner et al. [1993],

Robertson et al. [2008], Miller et al. [2012], Gupta et al. [2012], Oda et al. [2015], and Mohr

et al. [2015]). For example, based on this work, we can expect arrows to be suitable for

showing a path of movement for a task object or body part. However, displaying paths as

3d arrows can be ambiguous for certain geometric projections, especially when viewed

on monoscopic displays.

Even though these basic 3d UI elements have long been used in task guidance systems,

we are not aware of any principled exploration of their effectiveness for real-time task

assistance. In this chapter, we begin to address this gap by presenting the design and

comparative evaluation of a set of UI elements for a nontrivial rotation task, measuring

their usability and effectiveness, and attempting to explain their relative effectiveness and

trade-offs using cognitive science.

Three of the visualizations described in this chapter, SingleAxis (Section 5.3.2), Euler

(Section 5.3.3), and Animate (Section 5.3.4), are refinements of visualizations we proposed

in an earlier poster [Elvezio et al. 2015]. As described in detail in their respective sections,

to increase their usability, we carefully fine-tuned the parameters and visual appearance

of these visualizations based on extensive pilot testing conducted in our lab [Sukan et al.

2016]. While our fourth visualization, Handles (Section 5.3.5), shares the same underly-

ing principle as the 2-Point visualization from our earlier work, it is a complete redesign

98

from the ground up, including its underlying logic, as well as its visual manifestation

[Sukan et al. 2016].

OrientAssist was the result of a collaborative project with Carmine Elvezio. I made

the following contributions to the project: With Carmine’s input, I conceived, designed,

and implemented the Handles visualization, including its handles, tori, the heuristic for

torus placement, and the “cookie-crumb” arrows (Figure 5.2). Similarly, I also designed

and implemented the visual and interactive elements of the other three visualizations,

such as the dynamically-sized, redundantly encoded arrows, described in Section 5.3.1. In

addition, I provided Carmine with design input and coding support while he developed a

Unity/C# framework [Elvezio et al. 2016] that established an interface and delivered a set

of management scripts for building hierarchies of visualizations, which in turn allowed

us to re-use and combine visual elements to prototype and iterate on our final visualiza-

tions. Finally, I helped design the user study, formulate the hypotheses, and took over

the responsibility for conducting the quantitative and statistical analyses and plotting the

results.

5.2 Related Work

In this chapter, we focus on a specific subtask—manual orientation of hand-held objects—

and aim to improve upon existing techniques by providing users with continuous feed-

back designed to reduce cognitive load, facilitate corrective action, and provide confirma-

tion once the target orientation is reached.

Unlike 3d applications on desktop systems (e.g., Schmidt et al. [2008]), our techniques

99

visualize the remaining rotation between a tracked object’s current orientation and a tar-

get orientation. Further, we assume that our user is holding the tracked object with an

unconstrained hand and cannot precisely manipulate the object to rotate only about a

given axis as can be done with a desktop widget.

AR interfaces that guide users in matching gestures and poses (e.g., Freeman et al.

[2009], Sodhi et al. [2012], and Anderson et al. [2013]) typically focus on hand and body

manipulation directly, whereas our techniques focus on guiding users in rotating a hand-

held shape to a target orientation, allowing them to use their hands freely as they hold

the tracked object.

Oda et al. [2015] used an annotation-based solution to guide a user to manipulate a

physical object to match a 6dof pose specified by a remote subject matter expert (SME).

The 6dof pose of a manipulatable object was constrained by the physical properties of

a fixture on which the user placed the object. Two types of orientation guidance were

presented. In both, annotations on the manipulatable object and on the fixture provided a

complete 6dof specification for how the manipulatable object should rest on the fixture.

In one technique, the user’s view of the environment was augmented with a replica of

the virtual representation of the manipulatable object that animated in conjunction with

the remote SME’s control of the manipulatable object’s replica in their VE. In their work,

unlikewhatwe present in this chapter, rotation guidancewas handled completely through

matching annotations, with no additional UI elements for rotation guidance.

The large body of research on mental rotation (e.g., [Shepard and Metzler 1971; Chu

and Kita 2008; Chu and Kita 2011; Wexler et al. 1998; Wohlschläger and Wohlschläger

1998]) inspired the design of the nontrivial rotation task (rotation of a nearly-symmetric,

100

nearly-featureless object about an arbitrary axis) underlying our user study described in

Section 5.4.

5.3 Visualizations

While our visualizations are device-agnostic (i.e., can be rendered on various screen sizes

and modalities—head-worn, hand-held, or desktop; monoscopic or stereoscopic), we de-

veloped and tested them on Google Glass Explorer Edition. Figure 5.1 shows a user’s view

of a physical, handheld object and one of our visualizations, Handles, providing inter-

active orientation assistance photographed through Google Glass’ see-through display.

Notice how the small, off-center FOV, which is typical of this class of HWDs, means that

only a little portion of a relatively small handheld object could be overlaid with virtual

annotations at a given time.

5.3.1 Common Components

Virtual Proxy

Instead of overlaying virtual instructions directly onto the physical object, which the user

could only see through a tiny, monocular “window”, we include a virtual proxy of the

handheld object in all of our visualizations, so that annotations can be rendered and reg-

istered relative to it instead of the real object (Figure 5.2). We update the orientation of this

virtual proxy in real-time as the user manipulated the handheld object, which is tracked

using an external camera. The virtual proxy also serves a secondary purpose: we change

its color from its default color (white) to green to function as a discrete indicator to signal

101

Figure 5.2: Screen capture of Handles visualization, rendered on Google Glass Explorer Edi-
tion.

when the physical handheld object is within a certain threshold of its target orientation.

This proved to be particularly important in the user study we conducted, and allowed us

to indicate to participants that they have followed the instructions correctly and canmove

on to the next trial.

In some of our early prototypes, we also tracked the user’s head. The visualizations

that we describe in this chapter were developed and tested without head tracking. In

early testing, we discovered that head tracking unnecessarily burdened us with keeping

our head orientationwithin a narrow range for an extended period of time, as the graphics

would fall outside of the narrow FOV evenwith relatively small headmovements. Instead,

we render the visualizations from the perspective of a stationary virtual camera located

near the head of the user, who is assumed to be sitting in place, as we ensured in our user

study (Section 5.4.4).

102

(a) (b) (c)
Figure 5.3: Arrow shape evolution. (a) A simple cylindrical, curved 3d arrow. (b) Repeating
flattened 3d arrows increase amount of information encoded in arrow body. Walls facing towards
the axis of rotation are colored differently to help disambiguate orientation. (c) Repeating
flattened 3d arrows with semi-transparent ring to further clarify rotation axis.

Arrows

A number of our visualizations incorporate curved 3d arrows to communicate 3d rota-

tions, whose design evolved as we prototyped and tested our visualizations. Initially, we

used simple 3d cylindrical arrows (Figure 5.3a), with a cone for the arrow head and a

curved cylinder for the body. During pilot studies, we noticed that the rotation axis im-

plied by these arrows was often difficult to judge, especially when the magnitude of the

arrow spanned less than 45◦. To improve perceptibility, we switch to a flat, curved 3d

arrow that has an extruded triangle for its head and an extruded rectangle for its body,

which is essentially a curved version of commonly encountered 2d arrows, slightly thick-

ened. This allows us to provide more visual information about the implied rotation axis

by increasing the width of the arrow. To further disambiguate the implied rotation axis,

we apply a different color to the walls of the arrow that face towards the rotation axis,

as opposed to ones that face away from the rotation axis. The head of a flat 3d arrow

can become indistinguishable from its body when the user is viewing the arrow from the

side. Therefore, we make the arrow head into a pyramid with a single point at the tip

103

and base that is wider than the cross-section of the body, to ensure that the head was

distinguishable even when viewed from the side.

Even when the axis of rotation is clear, another issue we encounter is that in order

to understand the direction of rotation, users have to constantly keep track of where the

arrow head is. This problem is compounded when it is occluded by another object in the

scene. To increase the amount of information encoded in the arrow body, we break the

single curved arrow into smaller ones along the same curve, analogous to a dashed line

(Figure 5.3b).

Changing the length of the arrow body to represent the magnitude of remaining ro-

tation creates several issues. First, when the amount of the remaining rotation becomes

small (i.e., the task is near completion), the amount of visual information available to the

user is also lessened. This is counterproductive, since the user still needs asmuch informa-

tion as possible to complete the fine-tuning stage. To address this problem, we add a ring

(an extruded annulus) that contains the repeating arrows and does not disappear based on

the magnitude of the remaining rotation. The ring is semi-transparent and has the same

hue as the arrow (Figure 5.3c). We note that there is a trade-off here between cluttering

the scene, especially when multiple arrows are present, and not providing enough infor-

mation; however, based on our testing, we believe the ring to be worth the visual space

it occupies.

Another problem we face with dynamically sized arrows is in their implementation,

where we decided not to recalculate the positions of vertices and modify the vertex buffer

in each frame. Instead, we leave the full arrow geometry (i.e., 360◦, the end of the body

touching the tip of the head) untouched and implement a custom pixel shader that takes

104

the remaining angle as a parameter and paints only those pixels that are within that angle

of the tip.

5.3.2 SingleAxis Visualization

SingleAxis is inspired by Euler’s rotation theorem [Euler 1775], which dictates that any

sequence of one or more rotations of a rigid body in 3d space is equivalent to an optimal

rotation about a single axis. (Note that this axis is the unique single axis about which the

differential rotation can be performed and therefore cannot, in general, be aligned with a

major axis of the shape.)

In this visualization, a ring with small repeating dynamic rectangular 3d arrows is

rendered around the virtual proxy, perpendicular to the axis of optimal rotation. In addi-

tion, a large cylinder, tied to the axis of optimal rotation, pierces the center of the virtual

proxy. As the user rotates the tracked object, the axis and ring update to reflect the new

axis and direction for a rotation from the tracked object’s current orientation to the target

orientation (relative to the world). As the magnitude of rotation gets smaller, the number

of arrows decreases (where a single arrow will collapse from head to tail as it disappears),

starting from the arrow furthest from the camera, and ending at the arrow closest to the

camera (Figure 5.4).

During pilot studies, we observed that while the visualization worked quite well for

large ballistic rotations, it became difficult for users tomanage as the tracked object neared

the target orientation (i.e., the fine-tuning stage). This is due to the rotational error be-

tween the current and target orientations changing drastically in direction, even from

105

(a)

(b)

(c)

Figure 5.4: SingleAxis. (a) The remaining rotation is represented by a cylinder showing the
axis of rotation and a set of dynamic arrows indicating the direction and magnitude of the
remaining rotation. (b) As the user follows the visualization, the axis and arrows update to
reflect the current optimal rotation from the current pose of the object to the target pose. (c)
As the user nears the target pose, the arrows collapse into their arrowheads.

106

small adjustments made by the user. Visually, this results in the axis and ring swinging

wildly around, making it difficult for users to understand how to execute the remaining

rotation. To address this issue, we piloted a version of SingleAxis that applied motion

smoothing to the cylinder that represents the axis. Surprisingly, we found that smooth-

ing negatively impacted user performance, especially during fine-tuning, where subtle

changes to the rotation axis were not immediately represented. As users frequently devi-

ate from the instructed axis during fine-tuning, the smoothed instructions would usually

lag behind the user. Thus, we decided not to smooth the visualization during the user

study described below.

In another design iteration, we displayed a static version of the original optimal axis of

rotation. When the user deviated from this optimal axis, instead of showing the updated

axis for the remaining rotation, we displayed a set of arrows that highlighted how to bring

their current axis of rotation back to line up with the original. However, this solution was

also disliked by pilot users, who now had to mentally resolve two separate rotations,

instead of focusing on the single remaining rotation of the original version.

5.3.3 Euler Visualization

Another common way to describe an orientation in 3d space is Euler angles: a sequence

of three elemental rotations (rotations about the three axes of an object’s local coordinate

system). Many objects are easily understood in terms of a particular coordinate system,

whose axes can be chosen for the rotations. For the object shown in Figures 5.1 and 5.4–

5.9, we use axes perpendicular to the faces of the cubes that make up the object, which

107

(a)

(b)

(c)

Figure 5.5: Euler. (a) The remaining rotation is represented by a set of three arrows showing
the axes, direction, and magnitude of the remaining rotation. (b) As the user follows the
visualization, in the order indicated by the colored numbered circles on the side, the arrows
update to reflect the remaining rotation, per axis, from the current pose of the object to the
target pose. (c) As the user nears the target pose, the arrows collapse into their arrowheads. If
the user rotates away from the target about a particular axis, the arrows reappear.

108

naturally serve as a set of orthogonal axes. Because this visualization decomposes the

rotation into three steps, each associated with an easily recognizable axis, it might be

easier to enact, especially by people with lower spatial ability (e.g., [Voyer et al. 1995]).

In our early designs, the axes of rotation were described by three cylindrical arrows,

color-coded to represent the intended order of rotation based on the decomposition of the

quaternion representing the remaining rotation [Elvezio et al. 2015]. When pilot-testing

this technique, we discovered that it was often difficult for participants to determine the

direction of rotation about each axis, due to the fact that the user needed to search the

cylinder that formed the shaft of the arrow for the arrow head. Additionally, it was possi-

ble that the virtual proxy itself would obscure the arrowhead, leading to situations where,

with an untracked HWD such as Google Glass, it would be impossible to see the direction

of the particular arrow without some initial trial and error.

To alleviate this, we use the improved components of Section 5.3.1 to introduce a num-

ber of new features. Instead of a single arrow per axis, we render a set of smaller arrows

in a ring perpendicular to a particular principle axis (Figure 5.5). The smaller arrows dis-

appear smoothly as described above. In addition, the front of the path is always anchored

at the point on the ring closest to the virtual camera. The combination of these changes

makes immediately clear, at all times, the intended direction of rotation per axis. Finally,

upon nearing the completion threshold for a particular axis, the ring will disappear. It

will return if the user breaks from the target orientation about a particular axis.

Since a sequence of 3d rotations is, in general, not commutative, there is a defined

order for the axes about which the user should rotate the object when following the in-

structions. To remove the requirement that the user memorize the axis order, imposed in

109

our previous work [Elvezio et al. 2015], we render three large icons on the screen showing

the rotation order, represented by number and color.

5.3.4 Animate Visualization

Animation is a visualization technique frequently used to communicate motion or action.

In our early testing, it quickly became clear that animating the virtual proxy from its

tracked (i.e., current) orientation to the target orientation is not ideal because the user

has to wait until the animation finished and rewound to get feedback on current orien-

tation. To provide feedback on both current orientation and desired motion simultane-

ously, our Animate visualization (Figure 5.6) adds a second, animating copy of the virtual

proxy to the scene. We also quickly noted that the placement of this animating copy has

a significant impact on user performance. Initially, since our task is rotation-only, the

animating copy overlapped with the virtual proxy, which makes it difficult to distinguish

one from the other. In our following iterations, we tried rendering the animating copy

and the virtual proxy side-by-side, similar to our earlier work [Elvezio et al. 2015]. This

proved to be suboptimal, especially in the fine-tuning stage, because it requires users to

detect differences between two objects that have similar orientations, but are spatially set

apart. Going back to a co-located design, we address the occlusion and disambiguation

issues caused by overlapping, by modifying the transparency of the animating replica

to 50% and changing its outline from solid black lines to dashed grey lines (Figure 5.6).

This faded visual is known as ghosting, an illustrative technique used in comics [McCloud

1994] where an object is rendered as semitransparent to represent its past or future state,

110

(a)

(b)

(c)

Figure 5.6: Animate. (a) The remaining rotation is represented by an animating clone of the
virtual proxy, which rotates from the current orientation of the tracked object, to the destination
orientation. (b) As the user follows the visualization, the looping animation will begin from the
latest orientation of the tracked object. (c) As the user nears the target pose, the frequency
and speed of the animated object will increase, until the task is complete.

111

and in previous visualizations (e.g., White et al. [2007] and Gupta et al. [2012]).

Another subtle, yet important, design decision is the timing and speed of the anima-

tion. We want to provide users with continuous feedback, so it is a natural decision to

repeat the animation once the animating copy arrives at the target orientation by rewind-

ing the animating copy to the tracked object’s current orientation. We use an ease-in,

ease-out interpolator to make the beginning and end of the animation less visually jar-

ring and abrupt for the user. Setting the duration of each animation cycle to a constant

value does not make much sense, since that would require the animating copy to move

more slowly as the tracked object nears its target, which pilot users found frustrating.

Specifying the speed of the animation turned out to be a better idea and we found a

rotational speed of 90◦ per second to be comfortable based on pilot tests. This ensures

that when the tracked object is near its target orientation, the animation takes less time

and therefore repeats more frequently. However, when the frequency gets too high, it

might become less helpful because it is hard to distinguish between the animation pro-

gressing forward and rewinding back to the current orientation. To address that issue,

we introduce a 0.5 second gap between animations. Finally, we clamp the total animation

duration to be between 0.2 and 2 seconds.

5.3.5 Handles Visualization

The Handles visualization (Figure 5.7) builds on the key insight that orientation in 3d

space is commonly parametrized by two different directions (e.g., virtual cameras in com-

puter graphics are often defined by specifying a non-collinear pair of vectors: look-at and

112

(a)

(b)

(c)

Figure 5.7: Handles. (a) The target orientation is directly represented by a set of two colored
tori. Two colored poles extend from the center of the virtual proxy, and the user must try to
align each pole with its matching torus. A set of arrows show the rotational path from each
pole to its corresponding torus. (b) As the user nears the target pose, the arrows update to
show the current rotational path from each pole to its corresponding torus. (c) Both handles
have been aligned, the tori turn green, and the task is complete.

113

up). In Handles, these non-collinear directions are represented by poles extending from

the center of the virtual proxy, which look like physical handles. Each pole’s target orien-

tation is represented as a torus whose hole is just wide enough for its pole to go through.

These tori are persistently placed in direct view of the user to avoid occlusion. Addition-

ally, each pole is connected to its corresponding torus by a set of color-coded arrows to

indicate the direction of rotation necessary to achieve the target orientation (Figure 5.7).

The 2-Point visualization, developed in our earlier work [Elvezio et al. 2015], requires

the user to align a pair of points attached to the virtual proxy, represented by cones, with a

pair of corresponding points that are fixed in space, represented by target spheres. When

piloting an implementation of 2-Point, we found that it had shortcomings that severely

limited its effectiveness. Users often tried to translate the shape so that a cone/sphere

pair would align, even after being instructed that translation was not being tracked. The

locations of the target spheres depended on the specific task in a seemingly arbitrary way.

Additionally, users complained that the cones and spheres were too small, making it dif-

ficult to distinguish which way the cones were pointing, and the enveloping sphere made

it difficult to see the cones and the virtual representation of the main object contained

within.

Since we want to make the poles look like physical handles that are rigidly attached

to the virtual proxy, we add a spherical knob to the end of each pole to (a) bolster the

metaphor that the poles are handles that can be grabbed and moved, and (b) provide oc-

clusion and perspective depth cues, which could be especially beneficial when the handles

are near their targets (i.e., during the fine-tuning stage, which is an issue mentioned dur-

ing pilot tests).

114

An important design question is where to attach handles to the virtual proxy. Initially,

we attached them along the major axes of the shape, but for certain target orientations,

this causes the tori to face away from the user, possibly occluded by the virtual proxy.

Since the visibility of the tori is crucial for this task, especially in the fine-tuning stage,

we want to guarantee that they are always front and center and clearly visible to the user.

To that end, we developed a heuristic in which we start with a vector connecting the

centroid of the virtual proxy to the center of projection of the virtual camera, rotate it

30◦ about the virtual camera’s up-vector (clockwise for the first torus, counterclockwise

for the second), and pick the intersection of that rotated vector with a spherical hull that

contained the virtual proxy (to ensure that the virtual proxy would never touch or occlude

the tori in any orientation). Since we have a stationary virtual camera pointed directly

at the virtual proxy, this heuristic gives us two locations that are projected to lie on the

horizontal centerline of the screen. Picking where the tori end up first means that the

poles would have to be attached in different orientations relative to the virtual proxy for

each new target pose, which is calculated during initialization by applying the inverse of

the rotation between the current orientation to the target orientation, to the tori positions.

To provide users with a sense of which direction to move the object, we add arrows

that connect each handle to its corresponding torus. Initially, we used the same curved

arrows that we used in other visualizations, which depicted the shortest path along the

sphere from handle location to torus location. During pilot tests, we noticed users getting

frustrated when following the shortest rotation between one of the handles and its torus

worsened the alignment between the other handle and its torus. To alleviate this frus-

tration, we replaced the arrows that traced the shortest path for each individual handle

115

with “cookie-crumb” arrows that trace the ideal path of the handles when both of them

are moved towards their target simultaneously (i.e., by following the single-axis optimal

rotation from the current orientation to the target orientation). Similar to our other visu-

alizations, the trail of arrows gets shorter as the user rotates the object and the remaining

angle gets smaller.

To provide visual feedback for when the alignment is complete, we rely on color.

Specifically, when a handle enters its corresponding torus, that torus turns green to in-

dicate proper alignment for that pair. Once one of the handle–torus pairs is aligned, the

user needs to bring the second handle into its corresponding torus while holding the first

handle in place, which can be achieved by executing a 1dof rotation (Figure 5.7b–c).

5.4 User Study

Figure 5.8: Study participant manually orienting task object, guided by our system.

We conducted a formal user study to compare the performance of our new techniques,

116

in addition to a control condition described below. For our task object, we created an ab-

stract object similar to those used by Shepard and Metzler [1971] in research on mental

rotation. Our object consists of ten 1.75-inch wooden cubes attached face-to-face to form

a rigid structure with three right-angled “elbows” (Figure 5.8). This type of object is es-

pecially suited for rotation tasks because (a) it cannot be transformed into itself by any

reflection or rotation (short of 360◦) and (b) cognitive science research has shown that it

is difficult to mentally rotate [Shepard and Metzler 1971; Vandenberg and Kuse 1978].

We required that the accuracy with which the participant performed each trial be as

close to the correct pose as possible for the trial to end; therefore, we compared only

time, not accuracy. We settled on a threshold of 8◦ by incrementally loosening a tighter

threshold until pilot users were able to satisfy it consistently. Tighter constraints were

especially difficult for visualizations that provide little or no feedback during fine-tuning

(e.g., our control condition, Static, described in the following section).

5.4.1 Control Condition

To determine the effectiveness of the techniques described above, with respect to a sim-

ple baseline, we developed a fifth technique, Static, which shows only the static target

orientation next to an updating representation of the virtual proxy’s current orientation

(Figure 5.9). The virtual proxy updates as the user rotated the shape. When the target

orientation is achieved, the virtual proxy turns green. This provides a simple control con-

dition to use in the user study described below.

117

Figure 5.9: Static. Control Condition.

5.4.2 Pilot Studies

Pilot studies were instrumental in guiding the evolution of the techniques, as described

above, and helped us refine study parameters. In particular, Handles is designed to over-

come specific shortcomings of existing techniques by providing a persistent target and

ensuring high visibility of landmarks and targets.

5.4.3 Hypotheses

Based on an analysis of the tasks and extensive design iterations informed by and tested

in pilot studies, we formulated the following five hypotheses:

H1. Handles will be the fastest technique.

H2. Handles will be the preferred technique.

H3. SingleAxis and Static will be less preferred compared to Handles, Animate, and

Euler.

118

H4. Handles will be fastest for fine-tuning.

H5. Euler will be preferred by users with low spatial ability.

Rationale

H1: In presenting the rotation instruction, Handles is the only visualization that presents

both a persistent view of the target orientation (relative to the world coordinate system)

and a view of the optimal transformation needed to get to the target orientation from

the tracked object’s current pose. Animate shows the latter transformation, but to avoid

cluttering the virtual scene with a third model of the virtual proxy, does not always show

the target pose (besides the pause at the end of the animation loop). As a result, it is

possible that the user will need to wait for a certain amount of time to comprehend the

rotation instruction. SingleAxis also shows the optimal path, but during pilot testing

we found that due to limitations inherent to the small monoscopic display, it could be

difficult to disambiguate certain rotation instructions, leading to situations where users

would lose time trying to understand the direction of the instruction. Euler is similar to

SingleAxis, but breaks the transformation into three steps, further lengthening total trial

time. Last, during pilot testing, we found that showing the target orientation at all times

(and ensuring that the tori are placed at consistent locations relative to the user’s line of

sight), allowed the user to associate the destination target with a consistent position in

the real world. In consideration of all four points above, we hypothesize that Handles

will be the fastest condition in total completion time.

H2: Since the core components in Handles, the poles and tori, allow a user to easily

determine the target orientation, and the connecting arrows show the remaining rota-

119

tion, the user should be able to determine their next action by a short glance. A user

may need to watch a few cycles of Animate to completely understand the rotation in-

struction, potentially waiting for the animation to loop back to the beginning to follow

along. SingleAxis should work well with ballistic movements, but due to potentially rad-

ical motions of the axis in the fine-tuning stage, users may become frustrated as they try

to complete a small rotation. Euler works consistently throughout a rotation task, but

the required axis completion order makes acceleration difficult; thus, more skilled users

could potentially be limited in performance. Consequently, we believe Handles would

be the preferred condition.

H3: As the tracked object nears the target orientation, the axis-cylinder is highly sen-

sitive to small movements that change the rotation axis. If the user is only a few degrees

from the angular completion threshold, but drifts slightly in following the rotation in-

struction, it is possible that they stop progressing towards the goal as they try to adjust

to the new rotation axis. As a result, users could potentially become confused and frus-

trated. Secondly, since Static provides no instruction (other than a visualization of the

target orientation), users may struggle trying to match the pose in the given threshold,

when fine-tuning. As the target object is positionally offset from the virtual proxy, and

rendered on a small display, it may be difficult to discern the exact orientation differ-

ence between the tracked and target objects. As a result, we expect users will rate either

SingleAxis or Static as least preferred.

H4: In the fine-tuning stage, the remaining rotation is within 16◦ of the tracked ob-

ject’s current orientation, which for many of the visualizations may result in a very small

or slight change. As explained in the rationale for H1, H2, and H3, Handles always

120

shows both the target orientation and the remaining rotation. This gives users two forms

of feedback to use in the fine-tuning stage. If one is not clear, the other may still provide

enough information to discern the correct instruction. Animate shows the exact motion

needed to complete the task, but as the animated object is overlaid on the virtual proxy,

and rendered on a small display, it is possible that a user simply may not be able to see

the animated object clearly enough to discern the proper action. SingleAxis has the is-

sue of the fast-moving rotation axis cylinder, as described in H3. This makes completing

the fine-tuning task potentially difficult. Euler shows the remaining rotation per axis

clearly, but since breaking the completion status of a particular axis may require that a

user recomplete it before continuing, it is possible that users spend a nontrivial amount

of time in fine-tuning dealing with previously completed axes.

H5: Each of the visualizations require that a user be able to mentally map the in-

struction to a motor action in rotating the tracked object. For SingleAxis, Animate, and

Handles, the instructed action may be a rotation about an axis that does not line up with

a natural axis of the held object, and that may require an unintuitive motion. Euler in-

structs the user by presenting the rotation guidance through a set of three transformations

about axes fixed to the virtual proxy. This allows the user to focus on one axis per motion,

potentially rotating the shape to a more easily manipulated orientation before beginning.

As Euler does not require the user to map the rotation axis to one not attached to the

tracked object, we expect that users with low spatial ability who may struggle with this

particular mapping to prefer Euler.

121

5.4.4 Methods

Participants

We recruited 17 participants from our institution (9 female; ages 19–32, X̄ = 23), through

email and posted flyers (protocol: IRB-AAAN4100). Participants attended a single-session

experiment. Five participants had previous experience with AR, and none had any famil-

iarity with our techniques.

Equipment

Participants wore a Google Glass Explorer Edition running Unity Remote 4. This Android

app allows Glass to display visual output provided through USB 2.0 from our software

running in Unity 3d 5.3.3 [Unity Technologies 2016] on a computer powered by an Intel

i7-3770k with 16GB of RAM and an Nvidia GeForce GTX 780. (Our software can also run

in Unity directly on Glass, but causes it to overheat too quickly to complete the study.) The

object held by the user was tracked using a Logitech c920 camera (visible at the right of

Figure 5.8), using tracking software in the Canon MREAL Platform, running on the same

computer. The Logitech camera tracked both the held object and a fiducial array on the ta-

ble where the user was seated, in order to ground the environment. The software running

on Google Glass communicated to the MREAL Platform tracking application through a

Unity application server, which ran on the same computer as the MREAL Platform soft-

ware. Additionally, a foot-pedal was placed under the participant’s table, and operated

by them to progress through the study.

122

Design

Since it was possible that certain rotations would be easier to maneuver than others, de-

pending on how the participant was holding the tracked object, the user study was de-

signed to select from one of four possible rotations (80◦, 100◦, 120◦, 140◦) that would build

on the target orientation in the preceding trial. There were an equal number of each of

the possible rotation magnitudes across a single condition. Each trial would also generate

a random rotation axis.

Trials were blocked by technique and randomized by rotation axis. Each block in-

cluded four practice trials and 16 timed trials. The presentation order of the techniques

was counterbalanced across participants to minimize bias due to learning.

Procedure

Participants were welcomed by the study coordinators and given the PseudoIsochromatic

Plate (PIP) Color vision test to screen for color blindness, the Stereo Optical Co. Inc. Stereo

Fly Test (SFT) to screen for stereo vision, and the Vandenberg and Kuse [1978] Mental

Rotation Test (MRT) to screen for spatial ability. All participants passed the PIP test. 12

participants passed the SFT, four had weak stereo vision, and one failed the test.

After completing the tests, the participant was seated in a chair pushed up to a table

and instructed to rest their elbows on a gel wrist pad (Figure 5.8) while holding the task

object with both hands. These constraints ensured that their view of the virtual proxy was

consistent with their view of the physical object. The participant was then introduced to

the study and given an explanation of each of the techniques, with a small hands-on

123

demonstration session for each technique (consisting of two practice rotations using the

technique). Before the first condition, the participant was given a detailed explanation of

each interaction technique.

At the start of each trial, the participant was shown the virtual proxy of the tracked

object and the visual components of the current technique. The participant was instructed

to match the 3dof pose demonstrated using the current technique. The participant was

also instructed to press a button on a foot-pedal controller when the virtual proxy turned

green, indicating that the target orientation had been met. The system prevented the

participant from completing the trial by pressing the button if the tracked object had not

yet entered the acceptable range for the trial (as explained in Section 5.4). Once the trial

was complete, the participant was instructed to hold their pose for 1.5 seconds as they

entered the next trial. Throughout the study, the positions and orientations of the tracked

object were recorded.

Participants were asked to complete a three-part questionnaire before, during, and

after the study, assessing the five techniques. The questionnaire included an unweighted

NASA TLX, a request to rank the techniques from 1 (“Most Preferred”) to 5 (“Least Pre-

ferred”), and room for free-form comments.

5.5 Results

Each participant completed a total of 80 timed trials (5 conditions × 16 timed trials). We

evaluated our hypotheses for significance using a Bonferroni-corrected α of .01 (.05/5).

124

5.5.1 Task Duration

Outliers

We identified outliers in terms of task duration using Tukey’s outlier filter [Tukey 1977].

We chose a standard threshold (1.5 times interquartile range per user per condition), re-

sulting in 5.0% (68 of 1,360 trials: 13 Animate, 13 Euler, 16 SingleAxis, 15 Static, and

11 Handles) of our collected data being excluded from the rest of our analysis. Outliers

resulted from occasional unstable tracking, connectivity issues, overheated HWD, or ex-

ternal issues (ringing cellphone, loose contact lens); in a few cases, users could not figure

out the right answer and opted out, especially for Static.

Analysis

Our task completion metric is similar to reaction time (RT) data commonly analyzed in

psychology experiments, in that we measure the time it takes users to react in response

to a visual stimulus. Traditional analysis of variance (ANOVA) methods are generally not

well-suited to RT data [Whelan 2008], because RT distributions are typically not Gaussian:

they often have a long tail on the right, presumably due to confounding factors such as

fatigue and external distractions. Before we began our analysis, we quickly confirmed

that our task-completion data exhibited similar non-normality by fitting a linear model

and visually inspecting the residual plots, which in fact showed obvious deviations from

normality.

One widely adopted method for analyzing such heavily skewed RT data is to trans-

form it into a reaction rate (analogous to speed) by taking the reciprocal (1/x) and then

125

EU
LE
R

ST
AT
IC

SIN
GL
EA
XIS

AN
IM
AT
E

HA
ND
LE
S

0

5

10

15

20

25

D
ur
at
io
n
(s
ec
on
ds
) Fine-tuning

Ballistic

Task Duration

Figure 5.10: User Study: Task duration per technique.

fit it with a linear-mixed-effects (LME) model to identify significant effects by adding and

removing factors [Baayen and Milin 2015]. Using R [R Core Team 2015] and its lme4

package [Bates et al. 2015], we fit an LME model to our task-duration variable as a func-

tion of visualization condition (fixed effect) and participant (random effect). Compared

to a base model with a random slope and participant as a random effect, a Kenward–

Roger corrected F-test showed that visualization condition was significant as a fixed effect

(F(1,271) = 119.16, p < .001) (Figure 5.10). A pairwise least-squares means comparison

revealed that our participants were fastest using Handles, followed by Animate, Sin-

gleAxis, Static, and Euler, in that order, where all pairwise differences were statistically

significant (Table 5.1). These findings validated H1.

126

Pairwise Comparison t-statistic p-value

Handles vs. Animate t(1,271) = 3.67 p < .001

Animate vs. SingleAxis t(1,271) = 4.98 p < .001

SingleAxis vs. Static t(1,271) = 4.49 p < .001

Static vs. Euler t(1,271) = 6.34 p < .001

Table 5.1: Task duration—Pairwise comparisons

Ballistic Approach vs. Fine-Tuning

In H4, we hypothesized that Handles would lead to faster task completion times com-

pared to other techniques. Subdividing performance into a ballistic phase, followed by a

visual feedback phase for “fine tuning” [Gan and Hoffmann 1988], we believed Handles

would be faster because of its emphasis on providing visible, persistent feedback to help

facilitate fine-tuning. In contrast to other techniques that rely on displaying the differ-

ence between current and target orientation, in Handles the difference between current

orientation and target orientation is small during fine-tuning.

To confirm this part of our hypothesis, we separated the overall completion time into

two subtasks, as shown in Figure 5.10: ballistic approach and fine-tuning, following a

simple distance thresholding heuristic. We counted the amount of time for each trial

that was spent where the user-tracked object was more than a certain threshold away

from the target orientation as ballistic approach and the rest of the time (i.e., when the

tracked object’s orientation was within that threshold) as fine-tuning. We chose 16◦ as our

threshold for this analysis, which we arrived at by doubling our completion acceptance

threshold of 8◦.

127

Similar to how we analyzed overall task duration, we fitted two separate LME models

to model reciprocals of ballistic and fine-tuning durations (i.e., ballistic and fine-tuning

rates) as a function of visualization condition (fixed effect) and participant (random effect).

Ballistic Approach: For the ballistic approach, compared to a basemodel with a random

slope and participant as a random effect, a Kenward–Roger corrected F-test showed that

visualization condition was significant as a fixed effect (F(1,271) = 111.73, p < .001). A

pairwise least-squares means comparison revealed that there were significant differences

between all pairs except Handles–Animate at p < .01. In other words, Handles and

Animate were fastest, followed by SingleAxis, Static, and Euler, in that order.

Fine-Tuning: For fine-tuning, compared to a base model with a random slope and par-

ticipant as a random effect, a Kenward–Roger corrected F-test showed that visualization

condition was significant as a fixed effect (F(1,271) = 31.13, p < .001). A pairwise least-

squares means comparison revealed that there were significant differences between all

pairs except Animate–SingleAxis, Animate–Euler, and Static–Euler at p < .01. In

other words, Handles was fastest for fine-tuning, followed by Animate and SingleAxis,

followed by Static and Euler, which confirms H4.

5.5.2 User Feedback

Technique Rankings

A majority of participants (9, 53%) ranked Handles as their most preferred condition

(Figure 5.11), supporting H2. Three participants (18%) chose Animate and Euler each,

two participants (12%) chose Static, and none chose SingleAxis as their favorite. On the

128

(*)

(*)

7 4

6 4

4 8

7 4

9

SINGLEAXIS

EULER

STATIC

ANIMATE

HANDLES

1 2 3 4 5

Rank

User Rankings

(1 = Most Preferred, 5 = Least Preferred)

Figure 5.11: User Study: User rankings per technique. (*) denotes significance at p < .01. Size
of circle and number inside it indicate the number of participants choosing a given rank.

opposite end of the spectrum, SingleAxis was chosen as the least favorite 8 times (53%),

followed by Euler with four times (24%). On average, Handles was ranked highest,

followed by Animate, SingleAxis, Static, and Euler. A Friedman test confirmed that

our participants’ differential preference between techniques was statistically significant,

χ2
(4) = 17.459, p < .01.

In H2, we hypothesized that Handles would be the most preferred technique. A post-

hoc pairwise comparison using Nemenyi’s procedure showed that the only statistically

significant difference in rankings was between Handles vs. SingleAxis, p < .01. The

differences between Handles vs. Euler and Animate vs. SingleAxis were nearly sig-

nificant (p = .039 and p = .052, respectively), but above our Bonferroni-adjusted α of

.01, supporting but not confirming H2.

129

Qualitative user feedback highlighted instances where participants found Handles to

be generally more preferred for fine-tuning (e.g., “Handles was very accurate and didn’t

have changing parameters,” “Handles was the best for putting the object in the exact

position that the program wanted,” “Handles is the best because it really helps with the

small movements”).

On the opposite end of the spectrum, SingleAxis was generally rated as least pre-

ferred and participants reported frustration during fine-tuning (e.g., “SingleAxis was

frustrating, since the bar seemed to move very erratically with small movements, so it

took a lot of concentration to do the fine movements near the target”). While the first

part of H3 (i.e., SingleAxis would be less preferred compared to Handles, Animate, and

Euler) was supported in our data, it was not confirmed because not all pairwise differ-

ences had p < .01.

In H3, we also hypothesized that Static would be less preferred compared to Han-

dles, Animate, and Euler. Surprisingly, Static was generally ranked higher than Euler

in terms of overall preference, which meant that the second part of H3 should be rejected.

Four participants (24%) ranked Euler as their least preferred technique and another six

(35%) participants ranked it as their second least preferred.

In H5, we hypothesized that Eulerwould be preferred by participants with low spatial

ability. The three users who ranked it as their most preferred technique had either above

or close to average MRT scores of 8, 12, 14 (out of 20), failing to support H5.

To understand why many users found Euler challenging, we examined the question-

naire comments from participants who did not prefer Euler. Common themes were that

the need to perform three sequential rotations along the major axes of the tracked object

130

4 6 4

4 5

4

6 4 4

5 7

4 6

4 5

4 4

6 6

7 7

6 4 4

6 4

4 6

6 5

7

4 7

4 4 5

6 4

4 5

8 4

5 4

6 6

4 5 4

9 5

7 7

5 6

8 4

6 4

5 5 4

6

Effort
(*)

Frustration
(*)

Mental
Demand

Performance
(*)

Physical
Demand (*)

Temporal
Demand

SINGLEAXIS

EULER

STATIC

ANIMATE

HANDLES

SINGLEAXIS

EULER

STATIC

ANIMATE

HANDLES

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Rating

NASA TLX Ratings

(1 = Best, 7 = Worst)

Figure 5.12: User Study: NASA TLX ratings per technique. (*) denotes significance at p < .01.
Size of circle and number inside it indicate the number of participants choosing a given rating.

was onerous and having to track three arrows at once was challenging (e.g., “in align-

ing one axis, the other pre-aligned axes may drift and cause some confusion,” “Too many

rings, and too many changing rotations,” “Holding the rotation in one axis constant while

rotating the others was challenging. Also, following the order of rotation was not instinc-

tual.”).

NASA TLX

When we analyzed the results from the unweighted NASA TLX questionnaire (Figure

5.12), a Friedman test confirmed that technique was a significant factor for Mental De-

mand, Physical Demand, Effort, and Frustration at p < .01. (The p values for Temporal

131

Demand and Performance were .081 and .051, respectively.)

Post-hoc pairwise comparison using Nemenyi’s procedure indicated that SingleAxis

was rated as being significantly more mentally demanding compared to both Handles

and Animate (p < .01). Handles was perceived to require less effort than both Static

and SingleAxis, but the p values for the pairwise comparisonswere just above our Bonferroni-

adjusted α (p = .017 in both cases). Similarly, Handles was rated as less frustrating com-

pared to SingleAxis and Euler, but that difference was also not significant (p = .028 and

p = .045, respectively). There were no significant pairwise differences for Physical De-

mand.

5.5.3 Discussion

Animate and Static include a representation of the object in the desired orientation, en-

couraging comparison of the current orientation of the object with the desired orientation.

In contrast, SingleAxis, Euler, and Handles provide virtual annotations as guidance

(e.g., arrows, handles, and tori), requiring the user to attend only to those and shifting the

task from spatial transformation to perceptual tracking. Despite this shift away from spa-

tial thinking, Handles still provides a spatial representation of the final pose via its tori,

which might explain why users were able to perform both ballistic and fine-tuning move-

ments quickly. This was highlighted by several participants in their qualitative feedback

(e.g., “Having the poles as a guide really helps. Don’t have to think, can just get by with

spatial intuition,” “I just thought about how to put the sticks to the ring,” “The two guides

were very useful in determining the target position,” “With Handles, I did not have to

132

observe the orientation of the object I was holding to solve the trial”).

133

Chapter 6

Conclusions and Future Work

6.1 Contributions

People often need to perform spatial tasks that require switching viewpoints. Switching

viewpoints in real or AR environments can be time-consuming and effortful. Moreover,

people do not necessarily need continuous movement between viewpoints to maintain

orientation (e.g., [Tversky 2005]).

With SnapAR, we developed and tested a set of interaction techniques for quickly and

intuitively switching among viewpoints by using snapshots taken by a tracked camera

in AR and manipulating virtual objects within those snapshots. We integrated our tech-

niques into a prototype application for arranging virtual furniture in AR. We designed a

representative measurable alignment task and ran a counterbalanced, within-subject user

study to compare the performance and evaluation of switching viewpoints virtually ver-

sus physically by walking to a new location. The results of the experiment confirmed that

quick virtual viewpoint switching was faster and more accurate for alignment activities

than physical viewpoint switching, even when accounting for the overhead of making

snapshots. The time savings and reduction in error were more pronounced for more dif-

ficult (i.e., non-orthogonal) alignment tasks. In addition, virtual viewpoint switching was

134

overwhelmingly preferred by participants, and regarded as less demanding than phys-

ically walking to and using live views. We are encouraged by the positive results and

plan to apply this technique to other AR domains involving more complex navigation

and manipulation tasks.

We have presented ParaFrustum, a geometric construct that generalizes a computer

graphics camera frustum to make it possible to represent a range of positions and ori-

entations associated with acceptable views of a task. We developed two visualizations

that can communicate to a user how to achieve one of the views encoded by a ParaFrus-

tum. A user study showed that visualizations of more loosely constrained ParaFrusta can

guide a user to an acceptable pose significantly more quickly than visualizations of more

tightly constrained ParaFrusta, providing a potential advantage for tasks that can be per-

formed from a range of acceptable positions and orientations. The study showed faster

performance with less head rotation and shorter and more direct trajectories with InSitu.

Participants also preferred InSitu.

We have described one new visualization (Handles) and three visualizations that im-

prove upon existing approaches for guiding a user in rotating an object to match a speci-

fied 3dof orientation. In addition, we have presented the results of a user study compar-

ing the effectiveness of these visualizations, when viewed on Google Glass, a small FOV,

monoscopic, off-center HWD. Our study found that Handles was significantly faster

than and trended toward being preferred over the other techniques.

135

6.2 Lessons Learned

In this section, we present several lessons we have learned along the way as we developed

and evaluated our AR localization techniques.

Carefully designed transitional interfaces can provide users with practical benefits, such

as improved task performance and reduced error, without increasing cognitive load. Transi-

tional interfaces [Grasset et al. 2006] had been explored in a limited scope before, namely

games [Phillips and Piekarski 2005; Cheok et al. 2002] and navigation [Mulloni et al. 2010].

During our initial development of SnapAR (Chapter 3), we argued that nonisomorphic

“magic” travel techniques should enable users of a handheld AR application to save time

and effort when switching viewpoints, however, we were not sure if the gains would

be negated by increased cognitive load and decreased spatial awareness. The qualitative

and quantitative feedback from our user study (Section 3.4) showed that users saved time,

made fewer errors, and preferred using our transitional interface to switch viewpoints and

manipulate virtual content from those viewpoints. This observation suggests that, for ap-

plicable tasks and scenarios, AR developers can break from tightly coupling the user’s

viewpoint to the physical display controlled by the user (i.e., head-worn or handheld) and

consider transitional AR interfaces.

When guiding users to follow an action, UI elements that are embedded in the scene

and provide real-time feedback seem to be preferred. We hypothesize that embedded UI

elements allow users to leverage the spatial context from their surroundings to perform

an integrated set of anticipatory actions. For example, in SnapAR, we displayed each

stored snapshot as a virtual 3d camera icon in the scene, representing the 6dof pose of

136

the handheld device when the snapshot was created (Section 3.3.1). This allowed users

to point their handheld device in the direction they wanted to travel to, maintaining and

reinforcing their mental model of how the snapshots are connected to the rest of the scene

spatially. Similarly, our embedded ParaFrustum-InSitu visualization (Section 4.4) allowed

users to save time and effort by following a curved path because they could easily antic-

ipate their target orientation. The importance of real-time feedback became especially

apparent in Orientation Assistance, when we noticed that applying smoothing to a crit-

ical UI element negatively impacted user performance (Section 5.3.2). While smoothing

can be useful in avoiding jarring, unexpected changes, tasks that require precision like

the ones we explored in this dissertation (e.g., the fine-tuning stage of an alignment task)

seem to benefit greatly from users being able to perceive the impact of their movements

immediately, so that they can continuously make subtle adjustments as they approach

their target.

Small FOV, lightweight, monoscopic HWDs can have useful applications in interactive

task assistance. AR task assistance applications typically rely on projectors or wide–field-

of-view (FOV), stereoscopic HWDs to display instructions registered to physical task ob-

jects. In Chapter 5, we showed that smaller FOV, lightweight monoscopic HWDs, such as

Google Glass, can also be successfully used for interactive task assistance. We believe that

the key insight here is to include an interactive virtual proxy of the task object to show

the instructions relative to, instead of attempting to overlay instructions on the physical

task object seen through the narrow FOV.

137

6.3 Future Work

6.3.1 SnapAR

Although we were satisfied with the performance of our manipulation method within our

prototype SnapAR applications, there are some limitations to the present system. Even

though rotation and translation by amounts larger than users’ range of motion can be ac-

complished by successively clutching and declutching, these controls may not appropriate

for spaces larger than a tabletop or a small room. In larger settings, it may be worthwhile

to explore nonisomorphic controls to allow users to move virtual objects over large dis-

tances. The manipulation mechanism used in our study implementation works under the

assumption that there is a single virtual object to be manipulated. In contrast, one of our

furniture layout prototypes supports object selection.

When users revisit snapshots, the state of the physical environment is presented as the

static image captured by the snapshot. This may be a disadvantage for some AR applica-

tions that require up-to-date information about the physical world, but it can be sufficient

for many other AR applications; for example, ones in which the environment is changed

only by users, as presented in this paper. In some cases, viewing virtual content on a

static image of the scene can be an advantage. By freezing the scene, we can ensure that

multiple objects being compared in that context are compared in identical circumstances.

For example, if we could properly render virtual furniture based on the time of day, we

could capture a set of views at a particular time and then add the furniture to those views.

This would avoid the problem caused by lighting conditions that change over time.

138

6.3.2 ParaFrustum

Authoring is an important area for future work. Authoring for a specific user and task

could be accomplished pragmatically by collecting and processing 6DoF head pose data

while the user assumes good (and bad) views for the task. An alternative approach

could involve automated analysis of the task and environment to determine head poses

that meet constraints on visibility and legibility, as well as user-specific constraints on

height, reach, grasp, and general comfort (e.g., as computed by tools such as Siemens PLM

Jack). In some cases, a ParaFrustum could be parameterized on user height by pivoting

a head volume about a tail volume or changing the ParaFrustum’s height. A generalized

ParaFrustum might also be constructed using the union of the head volumes of more spe-

cific ParaFrusta, when the increased size does not cause problems (e.g., when the larger

head volume accommodates taller users, but can be ignored by shorter ones).

While our current implementation uses ellipsoids for head and tail volumes, these

volumes may be of arbitrary shape in general. One possible improvement would be to

implement ParaFrusta that are based on convex superellipsoids, which include the cube,

rounded cube, cylinder, and sphere as special cases.

While our current implementation handles convex head and tail volumes, concave

volumes would provide better support for complex viewing constraints (e.g., to rule out

points from which important objects are obscured). Concave volumes could be wrapped

by a ParaFrustum’s convex hull; however, the containment evaluation and user feedback

employed in our visualizationswould need to change. For example, after exiting a concave

head volume, additional portions of it might still lie between the user’s head and the tail

139

volume. Therefore, the visualization would need to determine which way to guide the

user to reenter the head volume, while minimizing obscuration of the tail volume.

6.3.3 Orientation Assistance

While the visualizations were designed with small-FOVmonoscopic HWDs in mind, they

should also work well with wider-FOV stereoscopic HWDs. On a stereoscopic AR dis-

play, the virtual proxy could be eliminated and our visualizations could be registered with

and rendered directly on the user’s view of the task object. However, it is possible that

relative performance among the visualizations may change with increased FOV and stere-

oscopy; for example, Euler might perform better relative to some of the other techniques,

when not confined to a small monoscopic display. Further, using tracked, registered AR

on a wider-FOV display might also result in different relative performance across the

techniques. Thus, we believe it will be useful to run new studies to assess the relative

performance of the techniques when used with different display technologies.

Our current version of Euler would be problematic for users with red–green color-

blindness (we note that all of our study participants passed the PIP test). It would be a

nice usability improvement to build in color profiles that could be applied to accommodate

users with color-vision deficiencies.

While this work focused on unconstrained 3dof rotation, it is possible that a number

of the visualizations may work when completing 6dof transformation tasks. Similarly,

looking at specific types of constrained rotations (e.g., camera-plane vs. horizontal or

vertical planes; or roll vs. pitch or yaw) could reveal interesting differences between tech-

140

niques. Thus, it would be interesting to explore how our visualizations may be modified

or combined with other visualizations to support translation and constrained rotations,

allowing them to address a full range of rigid-body transformations.

6.4 Final Thoughts

With the recent arrival of affordable, consumer-oriented HWDs for VR and the imminent

introduction of handheld or head-worn consumer devices tailored for AR, we believe that

it is more important than ever for UI designers and 3d interactive content developers to

have a toolbox of visualizations for common subtasks (e.g., attention direction, virtual

travel, localization) that have been designed and tested following cognitive principles. In

this dissertation, we have focused our efforts developing a set of such visualizations that

are designed to help users access strategic viewpoints quickly and accurately. While we

recognize that our visualizations are not an exhaustive set of all useful visualizations in

this domain, we hope that by presenting our exploration of the design space, describing

the trade-offs, and providing a detailed account of our evaluations, we can help future

researchers and designers to build on our work to fill this toolboxwithmore visualizations

for more efficient, effective, safe, and enjoyable AR interfaces in the future.

141

Bibliography

Anderson, F., Grossman, T., Matejka, J., and Fitzmaurice, G. (2013). “YouMove: Enhancing
Movement Training with an Augmented Reality Mirror.” In: Proc. ACM UIST, pp. 311–
320.
url: http://doi.acm.org/10.1145/2501988.2502045.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and MacIntyre, B. (2001). “Recent
Advances in Augmented Reality.” In: IEEE Computer Graphics and Applications 21.6,
pp. 34–47.

Baayen, R. H. and Milin, P. (2015). “Analyzing Reaction Times.” In: International Journal
of Psychological Research 3.2, pp. 12–28.

Bae, S., Agarwala, A., and Durand, F. (2010). “Computational Rephotography.” In: ACM
Trans. Graph. 29.3, 24:1–24:15.
url: http://doi.acm.org/10.1145/1805964.1805968.

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). “Fitting Linear Mixed-Effects
Models Using lme4.” In: Journal of Statistical Software 67.1, pp. 1–48.

Baudisch, P. and Rosenholtz, R. (2003). “Halo: A Technique for Visualizing Off-Screen
Objects.” In: Proc. SIGCHI, pp. 481–488.
url: http://doi.acm.org/10.1145/642611.642695.

Bichlmeier, C., Heining, S. M., Feuerstein, M., and Navab, N. (2009). “The Virtual Mirror:
A New Interaction Paradigm for Augmented Reality Environments.” In: IEEE Transac-
tions on Medical Imaging 28.9, pp. 1498–1510.
url: http://dx.doi.org/10.1109/TMI.2009.2018622.

Biocca, F., Tang, A., Owen, C., and Xiao, F. (2006). “Attention Funnel: Omnidirectional 3D
Cursor for Mobile Augmented Reality Platforms.” In: Proc. SIGCHI, pp. 1115–1122.
url: http://doi.acm.org/10.1145/1124772.1124939.

142

http://doi.acm.org/10.1145/2501988.2502045
http://doi.acm.org/10.1145/1805964.1805968
http://doi.acm.org/10.1145/642611.642695
http://dx.doi.org/10.1109/TMI.2009.2018622
http://doi.acm.org/10.1145/1124772.1124939

BlenderOnline Community (2016). Blender - a 3DModeling and Rendering Package. Blender
Institute, Amsterdam: Blender Foundation.
url: http://www.blender.org.

Bouisset, S. and Zattara, M. (1981). “A Sequence of Postural Movements Precedes Volun-
tary Movement.” In: Neuroscience Letters 22.3, pp. 263–270.
url: http://www.sciencedirect.com/science/article/pii/0304394081901178.

Bowman, D., Koller, D., and Hodges, L. (1997). “Travel in Immersive Virtual Environments:
An Evaluation of Viewpoint Motion Control Techniques.” In: Proc. IEEE VR, pp. 45–52.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
583043.

Bowman, D., Kruijff, E., LaViola, J., and Poupyrev, I. (2005). 3D User Interfaces: Theory and
Practice. Addison-Wesley.

Burtnyk, N., Khan, A., Fitzmaurice, G., Balakrishnan, R., and Kurtenbach, G. (2002). “Style-
cam: Interactive Stylized 3d Navigation Using Integrated Spatial & Temporal Con-
trols.” In: Proc. ACM UIST, pp. 101–110.
url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.5382.

Chen, B., Neubert, B., Ofek, E., Deussen, O., and Cohen, M. F. (2009). “Integrated Videos
and Maps for Driving Directions.” In: Proc. ACM UIST, pp. 223–232.
url: http://portal.acm.org/citation.cfm?id=1622176.1622218.

Cheok, A. D., Yang, X., Ying, Z. Z., Billinghurst, M., and Kato, H. (2002). “Touch-Space:
Mixed Reality Game Space Based on Ubiquitous, Tangible, and Social Computing.” In:
Personal Ubiquitous Comput. 6 (5-6), pp. 430–442.
url: http://portal.acm.org.ezproxy.cul.columbia.edu/citation.cfm?id=
592615.

Chu, M. and Kita, S. (2008). “Spontaneous Gestures during Mental Rotation Tasks: In-
sights into the Microdevelopment of the Motor Strategy.” In: Journal of Experimental
Psychology: General 137.4, p. 706.

Chu, M. and Kita, S. (2011). “The Nature of Gestures’ Beneficial Role in Spatial Problem
Solving.” In: Journal of Experimental Psychology: General 140.1, p. 102.

Clark, H. H. (1996). Using Language. Cambridge University Press.
url: http://psycnet.apa.org/doi/10.2277/0521561582.

143

http://www.blender.org
http://www.sciencedirect.com/science/article/pii/0304394081901178
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=583043
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=583043
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.5382
http://portal.acm.org/citation.cfm?id=1622176.1622218
http://portal.acm.org.ezproxy.cul.columbia.edu/citation.cfm?id=592615
http://portal.acm.org.ezproxy.cul.columbia.edu/citation.cfm?id=592615
http://psycnet.apa.org/doi/10.2277/0521561582

Darken, R. P. and Peterson, B. (2001). “Spatial Orientation, Wayfinding, and Representa-
tion.” In: In K. M. Stanney (ed.), Handbook of Virtual Environments: Design, Implemen-
tation, and Applications, pp. 493–518.
url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.4619.

Elmqvist, N. and Tsigas, P. (2008). “A Taxonomy of 3d Occlusion Management for Visual-
ization.” In: IEEE Transactions on Visualization and Computer Graphics 14.5, pp. 1095–
1109.
url: http://portal.acm.org/citation.cfm?id=1446259.

Elmqvist, N., Tudoreanu, M. E., and Tsigas, P. (2008). “Evaluating Motion Constraints for
3D Wayfinding in Immersive and Desktop Virtual Environments.” In: Proc. SIGCHI,
pp. 1769–1778.
url: http://portal.acm.org/citation.cfm?id=1357330.

Elvezio, C., Sukan, M., Feiner, S., and Tversky, B. (2015). “[POSTER] Interactive Visual-
izations for Monoscopic Eyewear to Assist in Manually Orienting Objects in 3D.” In:
Proc. IEEE ISMAR, pp. 180–181.

Elvezio, C., Sukan, M., and Feiner, S. K. (2016). “A Framework to Facilitate Reusable,
Modular Widget Design\\for Real-Time Interactive Systems.” In: Proc. IEEE SEARIS.
Greenville, SC, USA.

Elvins, T. T., Nadeau, D. R., and Kirsh, D. (1997). “Worldlets-3DThumbnails forWayfinding
in Virtual Environments.” In: Proc. ACM UIST, pp. 21–30.
url: http://doi.acm.org/10.1145/263407.263504.

Euler, L. (1775). “Formulae Generales pro TranslationeQuacunque Corporum Rigidorum.”
In: Novi Acad. Sci. Petrop 20, pp. 189–207.

Feiner, S., MacIntyre, B., Höllerer, T., and Webster, A. (1997). “A Touring Machine: Proto-
typing 3D Mobile Augmented Reality Systems for Exploring the Urban Environment.”
In: Proc. IEEE ISWC. ISWC ’97, pp. 74–81.
url: http : / / dl . acm . org / citation . cfm ? id = 851036 . 856454 (visited on
03/29/2014).

Feiner, S., Macintyre, B., and Seligmann, D. (1993). “Knowledge-BasedAugmented Reality.”
In: Commun. ACM 36.7, pp. 53–62.
url: http://doi.acm.org/10.1145/159544.159587.

Franchak, J. M., Celano, E. C., and Adolph, K. E. (2012). “Perception of Passage through
Openings Depends on the Size of the Body in Motion.” In: Experimental Brain Research

144

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.4619
http://portal.acm.org/citation.cfm?id=1446259
http://portal.acm.org/citation.cfm?id=1357330
http://doi.acm.org/10.1145/263407.263504
http://dl.acm.org/citation.cfm?id=851036.856454
http://doi.acm.org/10.1145/159544.159587

223.2, pp. 301–310. PMID: 22990292.

Franconeri, S., Jonathan, S., and Scimeca, J. (2010). “Tracking Multiple Objects Is Limited
Only by Object Spacing, Not by Speed, Time, or Capacity.” In: Psychological Science
21.7, pp. 920–925. PMID: 20534781.

Freeman, D., Benko, H., Morris, M. R., and Wigdor, D. (2009). “ShadowGuides: Visualiza-
tions for In-Situ Learning of Multi-Touch and Whole-Hand Gestures.” In: Proc. ACM
ITS, pp. 165–172.
url: http://doi.acm.org/10.1145/1731903.1731935.

Friedman, D. and Feldman, Y. A. (2006). “Automated Cinematic Reasoning about Camera
Behavior.” In: Expert Systems with Applications 30.4, pp. 694–704.
url: http://www.sciencedirect.com/science/article/pii/S0957417405001648
(visited on 03/29/2014).

Froehlich, P., Obernberger, G., Simon, R., and Reichl, P. (2008). “Exploring theDesign Space
of Smart Horizons.” In: Proc. ACM MobileCHI, pp. 363–366.
url: http://doi.acm.org/10.1145/1409240.1409289.

Gan, K.-C. and Hoffmann, E. R. (1988). “Geometrical Conditions for Ballistic and Visually
Controlled Movements.” In: Ergonomics 31.5, pp. 829–839. pmid: 3402428.
url: http://dx.doi.org/10.1080/00140138808966724.

Georgel, P., Benhimane, S., Sotke, J., and Navab, N. (2009a). “Photo-Based Industrial Aug-
mented Reality Application Using a Single Keyframe Registration Procedure.” In: Proc.
IEEE ISMAR, pp. 187–188.
url: http://dx.doi.org/10.1109/ISMAR.2009.5336468.

Georgel, P., Schroeder, P., and Navab, N. (2009b). “Navigation Tools for Viewing Aug-
mented CAD Models.” In: IEEE CG&A 29.6, pp. 65–73.
url: http://ieeexplore.ieee.org/xpl/downloadCitations (visited on 05/31/2010).

Girgensohn, A., Shipman, F., Turner, T., and Wilcox, L. (2007). “Effects of Presenting Ge-
ographic Context on Tracking Activity between Cameras.” In: Proc. SIGCHI, pp. 1167–
1176.
url: http://doi.acm.org/10.1145/1240624.1240801.

Google Inc (2016). Google Earth. Version 7.1.7.
url: https://www.google.com/earth/.

145

http://www.ncbi.nlm.nih.gov/pubmed/22990292
http://www.ncbi.nlm.nih.gov/pubmed/20534781
http://doi.acm.org/10.1145/1731903.1731935
http://www.sciencedirect.com/science/article/pii/S0957417405001648
http://doi.acm.org/10.1145/1409240.1409289
3402428
http://dx.doi.org/10.1080/00140138808966724
http://dx.doi.org/10.1109/ISMAR.2009.5336468
http://ieeexplore.ieee.org/xpl/downloadCitations
http://doi.acm.org/10.1145/1240624.1240801
https://www.google.com/earth/

Grasset, R., Looser, J., and Billinghurst, M. (2006). “Transitional Interface: Concept, Issues
and Framework.” In: Proc. IEEE ISMAR, pp. 231–232.
url: http://dx.doi.org/10.1109/ISMAR.2006.297819.

Grasso, R., Glasauer, S., Takei, Y., and Berthoz, A. (1996). “The Predictive Brain: Anticipa-
tory Control of Head Direction for the Steering of Locomotion.” In: Neuroreport 7.6,
pp. 1170–1174. PMID: 8817526.

Grasso, R., Prévost, P., Ivanenko, Y. P., and Berthoz, A. (1998). “Eye-Head Coordination
for the Steering of Locomotion in Humans: An Anticipatory Synergy.” In:Neuroscience
Letters 253.2, pp. 115–118. PMID: 9774163.

Gupta, A., Fox, D., Curless, B., and Cohen, M. (2012). “DuploTrack: A Real-Time System
for Authoring and Guiding Duplo Block Assembly.” In: Proc. ACM UIST, pp. 389–402.
url: http://doi.acm.org/10.1145/2380116.2380167.

Gustafson, S., Baudisch, P., Gutwin, C., and Irani, P. (2008). “Wedge: Clutter-Free Visual-
ization of Off-Screen Locations.” In: Proc. SIGCHI, pp. 787–796.
url: http://doi.acm.org/10.1145/1357054.1357179.

Güven, S., Feiner, S., and Oda, O. (2006). “Mobile Augmented Reality Interaction Tech-
niques for Authoring Situated Media on-Site.” In: Proc. IEEE ISMAR, pp. 235–236.
url: http://dl.acm.org/citation.cfm?id=1514243.

Güven, S. and Feiner, S. (2006). “Interaction Techniques for ExploringHistoric Sites through
Situated Media.” In: Proc. IEEE 3DUI, pp. 111–118.
url: http://portal.acm.org/citation.cfm?id=1134820.1130540.

Hart, S. G. and Staveland, L. E. (1988). “Development of NASA-TLX (Task Load Index): Re-
sults of empirical and theoretical research.” In:Advances in psychology 52, pp. 139–183.

Henderson, S. J. (2011). “Augmented Reality Interfaces for Procedural Tasks.” Ph.D. Columbia
University, New York: Dept. of Computer Science. 189 pp.
url: http://search.proquest.com.ezproxy.cul.columbia.edu/pqdtft/
docview/867426891/abstract/1431E2727573F4149B0/9?accountid=10226.

Henderson, S. J. and Feiner, S. (2009). “Evaluating the Benefits of Augmented Reality for
Task Localization in Maintenance of an Armored Personnel Carrier Turret.” In: Pro-
ceedings of the 2009 8th IEEE International Symposium onMixed and Augmented Reality.
ISMAR ’09. Washington, DC, USA: IEEE Computer Society, pp. 135–144.
url: http://dx.doi.org/10.1109/ISMAR.2009.5336486 (visited on 12/04/2013).

146

http://dx.doi.org/10.1109/ISMAR.2006.297819
http://www.ncbi.nlm.nih.gov/pubmed/8817526
http://www.ncbi.nlm.nih.gov/pubmed/9774163
http://doi.acm.org/10.1145/2380116.2380167
http://doi.acm.org/10.1145/1357054.1357179
http://dl.acm.org/citation.cfm?id=1514243
http://portal.acm.org/citation.cfm?id=1134820.1130540
http://search.proquest.com.ezproxy.cul.columbia.edu/pqdtft/docview/867426891/abstract/1431E2727573F4149B0/9?accountid=10226
http://search.proquest.com.ezproxy.cul.columbia.edu/pqdtft/docview/867426891/abstract/1431E2727573F4149B0/9?accountid=10226
http://dx.doi.org/10.1109/ISMAR.2009.5336486

Henderson, S. J. and Feiner, S. K. (2011). “Augmented Reality in the Psychomotor Phase
of a Procedural Task.” In: Proc. IEEE ISMAR. Los Alamitos, CA, USA, pp. 191–200.

Hirose, K., Ogawa, T., Kiyokawa, K., and Takemura, H. (2006). “Interactive Reconfiguration
Techniques of Reference Frame Hierarchy in the Multi-Viewport Interface.” In: Proc.
IEEE 3DUI, pp. 73–80.
url: http://dx.doi.org/10.1109/VR.2006.89.

Hoang, T. N. and Thomas, B. H. (2011). “Multiple Camera Augmented Viewport: An In-
vestigation of Camera Position, Visualizations, and the Effects of Sensor Errors and
Head Movement.” In: Proc. ACM ICAT, pp. 33–40.
url: http://arrow.unisa.edu.au:8081/1959.8/122082.

Höllerer, T., Feiner, S., Terauchi, T., Rashid, G., and Hallaway, D. (1999). “Exploring MARS:
Developing Indoor and Outdoor User Interfaces to a Mobile Augmented Reality Sys-
tem.” In: Computers and Graphics 23, pp. 779–785.
url: http://dx.doi.org/10.1016/S0097-8493(99)00103-X.

Howard, I. P. and Templeton, W. B. (1966). Human Spatial Orientation. Wiley. 568 pp.
url: http://psycnet.apa.org/psycinfo/1966-11614-000.

Ichihara, E., Takao, H., and Ohta, Y. (1999). “NaviView: Bird’s-Eye View for Highway
Drivers Using Roadside Cameras.” In: Proc. IEEE ICMCS, pp. 559–565.
url: http://portal.acm.org.ezproxy.cul.columbia.edu/citation.cfm?id=
839287.841934.

Johnson, T. E. (1963). “Sketchpad III: A Computer Program for Drawing in Three Dimen-
sions.” In: Proc. Spring Joint Computer Conf. Pp. 347–353.
url: http://doi.acm.org/10.1145/1461551.1461592.

Kameda, Y., Takemasa, T., and Ohta, Y. (2004). “Outdoor See-through Vision Utilizing
Surveillance Cameras.” In: Proc. IEEE ISMAR, pp. 151–160.
url: http://portal.acm.org/citation.cfm?id=1033712.

LaViola Jr., J. J. (2000). “ADiscussion of Cybersickness in Virtual Environments.” In: SIGCHI
Bull. 32.1, pp. 47–56.
url: http://doi.acm.org/10.1145/333329.333344 (visited on 01/16/2017).

Lee, G. A., Yang, U., Kim, Y., Jo, D., Kim, K.-H., Kim, J. H., and Choi, J. S. (2009). “Freeze-
Set-Go Interaction Method for Handheld Mobile Augmented Reality Environments.”
In: Proc. ACM VRST, pp. 143–146.
url: http://doi.acm.org/10.1145/1643928.1643961.

147

http://dx.doi.org/10.1109/VR.2006.89
http://arrow.unisa.edu.au:8081/1959.8/122082
http://dx.doi.org/10.1016/S0097-8493(99)00103-X
http://psycnet.apa.org/psycinfo/1966-11614-000
http://portal.acm.org.ezproxy.cul.columbia.edu/citation.cfm?id=839287.841934
http://portal.acm.org.ezproxy.cul.columbia.edu/citation.cfm?id=839287.841934
http://doi.acm.org/10.1145/1461551.1461592
http://portal.acm.org/citation.cfm?id=1033712
http://doi.acm.org/10.1145/333329.333344
http://doi.acm.org/10.1145/1643928.1643961

Levelt, W. J. M. (1989). Speaking: From Intention to Articulation. MIT Press. 588 pp.
url: http://psycnet.apa.org/psycinfo/1989-97544-000.

Lorenz, H., Trapp, M., Jobst, M., and Döllner, J. (2008). “Interactive Multi-Perspective
Views of Virtual 3D Landscape and City Models.” In: 11th AGILE Intl. Conf. on GI Sci-
ence. Ed. by Bernard, L., Friis-Christensen, A., and Pundt, H., pp. 301–321.
url: http://link.springer.com/chapter/10.1007%2F978-3-540-78946-
8_16.

McCloskey, R. (1941).MakeWay for Ducklings. OCLC: 192241. NewYork:TheViking Press.

McCloud, S. (1994). Understanding Comics: The Invisible Art. William Morrow Paperbacks.
224 pp.

Mennie, N., Hayhoe, M., and Sullivan, B. (2007). “Look-Ahead Fixations: Anticipatory
Eye Movements in Natural Tasks.” In: Experimental Brain Research 179.3, pp. 427–442.
PMID: 17171337.

Miau, D. and Feiner, S. (2016). “Personalized Compass: A Demonstration of a Compact
Visualization for Direction and Location.” In: Proc. SIGCHI. ACM, pp. 3731–3734.

Mijksenaar, P. and Westendorp, P. (1999). Open Here: The Art of Instructional Design. Joost
Elffers Books. 148 pp.

Miller, A., White, B., Charbonneau, E., Kanzler, Z., and LaViola Jr., J. J. (2012). “Interactive
3D Model Acquisition and Tracking of Building Block Structures.” In: IEEE Transac-
tions on Visualization and Computer Graphics 18.4, pp. 651–659.

Mohr, P., Kerbl, B., Donoser, M., Schmalstieg, D., and Kalkofen, D. (2015). “Retargeting
Technical Documentation to Augmented Reality.” In: Proc. ACM CHI, pp. 3337–3346.

Mulloni, A., Dünser, A., and Schmalstieg, D. (2010). “Zooming Interfaces for Augmented
Reality Browsers.” In: Proc. MobileHCI, pp. 161–170.
url: http://doi.acm.org/10.1145/1851600.1851629.

Oda, O., Elvezio, C., Sukan, M., Feiner, S., and Tversky, B. (2015). “Virtual Replicas for
Remote Assistance in Virtual and Augmented Reality.” In: Proc. ACM UIST, pp. 405–

148

http://psycnet.apa.org/psycinfo/1989-97544-000
http://link.springer.com/chapter/10.1007%2F978-3-540-78946-8_16
http://link.springer.com/chapter/10.1007%2F978-3-540-78946-8_16
http://www.ncbi.nlm.nih.gov/pubmed/17171337
http://doi.acm.org/10.1145/1851600.1851629

415.
url: http://doi.acm.org/10.1145/2807442.2807497.

Oda, O. and Feiner, S. (2014). Goblin XNA Framework.
url: http://goblinxna.codeplex.com/ (visited on 04/16/2014).

Oda, O., Sukan, M., Feiner, S., and Tversky, B. (2013). “Poster: 3D referencing for remote
task assistance in augmented reality.” In: 3D User Interfaces (3DUI), 2013 IEEE Sympo-
sium on. IEEE, pp. 179–180.

Pausch, R., Burnette, T., Brockway, D., and Weiblen, M. E. (1995). “Navigation and Loco-
motion in Virtual Worlds via Flight into Hand-Held Miniatures.” In: Proc. ACM SIG-
GRAPH, pp. 399–400.
url: http://doi.acm.org/10.1145/218380.218495.

Perry, A. and Wallace, E. (2014). Constructive Solid Geometry (CSG) for Unity in C#.
url: https://github.com/omgwtfgames/csg.cs (visited on 04/16/2014).

Phillips, K. and Piekarski, W. (2005). “Possession Techniques for Interaction in Real-Time
Strategy Augmented Reality Games.” In: Proc. ACM ACE, p. 10.
url: http://portal.acm.org/citation.cfm?id=1178584.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing.
url: http://www.R-project.org/.

Robertson, C. M., MacIntyre, B., and Walker, B. N. (2008). “An Evaluation of Graphical
Context When the Graphics Are Outside of the Task Area.” In: Proc. IEEE ISMAR,
pp. 73–76.
url: http://dx.doi.org/10.1109/ISMAR.2008.4637328.

Schmalstieg, D., Encarnação, L. M., and Szalavári, Z. (1999). “Using Transparent Props for
Interaction with the Virtual Table.” In: Proc. ACM I3D, pp. 147–153.
url: http://portal.acm.org/citation.cfm?id=300523.300542.

Schmidt, R., Singh, K., and Balakrishnan, R. (2008). “Sketching and Composing Widgets
for 3D Manipulation.” In: Computer Graphics Forum 27.2, pp. 301–310.
url: http://dx.doi.org/10.1111/j.1467-8659.2008.01127.x.

Sehnal, D. and Campbell, M. (2014). MIConvexHull Library.
url: http://miconvexhull.codeplex.com/ (visited on 04/16/2014).

149

http://doi.acm.org/10.1145/2807442.2807497
http://goblinxna.codeplex.com/
http://doi.acm.org/10.1145/218380.218495
https://github.com/omgwtfgames/csg.cs
http://portal.acm.org/citation.cfm?id=1178584
http://www.R-project.org/
http://dx.doi.org/10.1109/ISMAR.2008.4637328
http://portal.acm.org/citation.cfm?id=300523.300542
http://dx.doi.org/10.1111/j.1467-8659.2008.01127.x
http://miconvexhull.codeplex.com/

Shepard, R. N. and Metzler, J. (1971). “Mental Rotation of Three-Dimensional Objects.” In:
Science 171.3972, pp. 701–703.
url: http://www.sciencemag.org/content/171/3972/701.abstract.

Shingu, J., Rieffel, E., Kimber, D., Vaughan, J., Qvarfordt, P., and Tuite, K. (2010). “Camera
Pose Navigation Using Augmented Reality.” In: Proc. IEEE ISMAR, pp. 271–272.
url: http://dx.doi.org/10.1109/ISMAR.2010.5643602.

Siltanen, S. andWoodward, C. (2006). “Augmented Interiors with Digital Camera Images.”
In: Proc. IEEE AUIC, pp. 33–36.
url: http://dl.acm.org/citation.cfm?id=1151758.1151761.

Smith, S. P. and Hart, J. (2006). “Evaluating Distributed Cognitive Resources for Wayfind-
ing in a Desktop Virtual Environment.” In: Proc. IEEE VR, p. 115.
url: http://portal.acm.org/citation.cfm?id=1130523.

Snavely, N., Seitz, S. M., and Szeliski, R. (2006). “Photo Tourism: Exploring Photo Collec-
tions in 3D.” In: ACM TOG. SIGGRAPH ’06 25.3, pp. 835–846.
url: http://dl.acm.org/citation.cfm?id=1141964.

Sodhi, R., Benko, H., andWilson, A. (2012). “LightGuide: Projected Visualizations for Hand
Movement Guidance.” In: Proc. SIGCHI, pp. 179–188.
url: http://doi.acm.org/10.1145/2207676.2207702.

Stewart, J. A. (2014). FreeWRL, an Open Source X3D/VRML Viewer.
url: http://freewrl.sourceforge.net (visited on 01/09/2014).

Stoakley, R., Conway, M. J., and Pausch, R. (1995). “Virtual Reality on a WIM: Interactive
Worlds in Miniature.” In: Proc. SIGCHI, pp. 265–272.
url: http://dx.doi.org/10.1145/223904.223938.

Sukan, M., Feiner, S., Tversky, B., and Energin, S. (2012). “Quick Viewpoint Switching for
Manipulating Virtual Objects in Hand-Held Augmented Reality Using Stored Snap-
shots.” In: Proc. IEEE ISMAR, pp. 217–226.
url: http://dx.doi.org/10.1109/ISMAR.2012.6402560.

Sukan, M., Elvezio, C., Feiner, S., and Tversky, B. (2016). “Providing Assistance for Orient-
ing 3D Objects Using Monocular Eyewear.” In: Proc. ACM SUI, pp. 89–98.
url: http://doi.acm.org/10.1145/2983310.2985764.

Sukan, M., Elvezio, C., Oda, O., Feiner, S., and Tversky, B. (2014). “ParaFrustum: Visual-
ization Techniques for Guiding a User to a Constrained Set of Viewing Positions and
Orientations.” In: Proc. ACM UIST, pp. 331–340.
url: http://doi.acm.org/10.1145/2642918.2647417.

150

http://www.sciencemag.org/content/171/3972/701.abstract
http://dx.doi.org/10.1109/ISMAR.2010.5643602
http://dl.acm.org/citation.cfm?id=1151758.1151761
http://portal.acm.org/citation.cfm?id=1130523
http://dl.acm.org/citation.cfm?id=1141964
http://doi.acm.org/10.1145/2207676.2207702
http://freewrl.sourceforge.net
http://dx.doi.org/10.1145/223904.223938
http://dx.doi.org/10.1109/ISMAR.2012.6402560
http://doi.acm.org/10.1145/2983310.2985764
http://doi.acm.org/10.1145/2642918.2647417

Tang, A., Owen, C., Biocca, F., and Mou, W. (2003). “Comparative Effectiveness of Aug-
mented Reality in Object Assembly.” In: Proc. SIGCHI, pp. 73–80.
url: http://doi.acm.org/10.1145/642611.642626.

Tönnis, M. and Klinker, G. (2006). “Effective Control of a Car Driver’s Attention for Visual
and Acoustic Guidance towards the Direction of Imminent Dangers.” In: Proc. IEEE
ISMAR, pp. 13–22.
url: http://portal.acm.org/citation.cfm?id=1514211.

Trimble Navigation (2016). SketchUp. Version 17.1.174.
url: http://www.sketchup.com/.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.
url: http://www.getcited.org/pub/101667026.

Tversky, B. (1981). “Distortions inMemory forMaps.” In:Cognitive Psychology 13.3, pp. 407–
433.
url: http://www.scopus.com/inward/record.url?eid=2-s2.0-0001174077&
partnerID=40&md5=6b374f2960433b9d447704404d995c71.

Tversky, B. (2005). “Visuospatial Reasoning.” In: The Cambridge Handbook of Thinking and
Reasoning. Ed. by Holyoak, K. J. and Morrison, R. G. Cambridge University Press.

Unity Technologies (2016). Unity. Version 5.5.
url: http://unity3d.com.

Vandenberg, S. G. and Kuse, A. R. (1978). “Mental Rotations, a Group Test of Three-
Dimensional Spatial Visualization.” In: Perceptual and motor skills 47.2, pp. 599–604.

Veas, E., Grasset, R., Kruijff, E., and Schmalstieg, D. (2012). “Extended Overview Tech-
niques for Outdoor Augmented Reality.” In: IEEE TVCG 18.4, pp. 565–572.
url: http://dx.doi.org/10.1109/TVCG.2012.44.

Veas, E., Mulloni, A., Kruijff, E., Regenbrecht, H., and Schmalstieg, D. (2010). “Techniques
for View Transition in Multi-Camera Outdoor Environments.” In: Proc. GI, pp. 193–
200.
url: http://dl.acm.org/citation.cfm?id=1839214.1839248.

Voyer, D., Voyer, S., and Bryden, M. P. (1995). “Magnitude of Sex Differences in Spatial
Abilities: A Meta-Analysis and Consideration of Critical Variables.” In: Psychological
Bulletin 117.2, pp. 250–270. pmid: 7724690.

151

http://doi.acm.org/10.1145/642611.642626
http://portal.acm.org/citation.cfm?id=1514211
http://www.sketchup.com/
http://www.getcited.org/pub/101667026
http://www.scopus.com/inward/record.url?eid=2-s2.0-0001174077&partnerID=40&md5=6b374f2960433b9d447704404d995c71
http://www.scopus.com/inward/record.url?eid=2-s2.0-0001174077&partnerID=40&md5=6b374f2960433b9d447704404d995c71
http://unity3d.com
http://dx.doi.org/10.1109/TVCG.2012.44
http://dl.acm.org/citation.cfm?id=1839214.1839248
7724690

VTT (2011). ALVAR Tracking Subroutines Library.
url: http://www.vtt.fi/multimedia/alvar.html (visited on 11/26/2011).

Wang,W. andMilgram, P. (2001). “Dynamic Viewpoint Tethering for Navigation in Large-
Scale Virtual Environments.” In: Proc. HFES. Vol. 45, pp. 1862–1866.
url: http://dx.doi.org/10.1177/154193120104502702.

Web3D Consortium (2014). X3D Specification.
url: http://www.web3d.org/x3d/specifications/ (visited on 01/09/2014).

Wexler, M., Kosslyn, S. M., and Berthoz, A. (1998). “Motor Processes in Mental Rotation.”
In: Cognition 68.1, pp. 77–94.

Whelan, R. (2008). “Effective Analysis of Reaction Time Data.” In:The Psychological Record
58.3, p. 475.

White, S., Lister, L., and Feiner, S. (2007). “Visual Hints for Tangible Gestures in Aug-
mented Reality.” In: Proc. IEEE ISMAR, pp. 47–50.

Wickens, C. D. and Prevett, T. T. (1995). “Exploring the Dimensions of Egocentricity
in Aircraft Navigation Displays.” In: Journal of Experimental Psychology: Applied 1.2,
pp. 110–135.
url: http://dx.doi.org/10.1037/1076-898X.1.2.110.

Wohlschläger, A. and Wohlschläger, A. (1998). “Mental and Manual Rotation.” In: Journal
of Experimental Psychology: Human Perception and Performance 24.2, p. 397.

Zhai, S., Buxton, W., and Milgram, P. (1994). “The “Silk Cursor”: Investigating Trans-
parency for 3D Target Acquisition.” In: Proc. ACM CHI, pp. 459–464.
url: http://dx.doi.org/10.1145/191666.191822.

152

http://www.vtt.fi/multimedia/alvar.html
http://dx.doi.org/10.1177/154193120104502702
http://www.web3d.org/x3d/specifications/
http://dx.doi.org/10.1037/1076-898X.1.2.110
http://dx.doi.org/10.1145/191666.191822

Appendix

153

SnapARQuestionnaire

154

Comparative Study of Hand-Held Augmented Reality User Interface Methods

Participant ID: _____________
IRB Protocol: IRB-AAAF2995
Principal Investigator: Steven Feiner (skf1)
Co-Investigator: Mengu Sukan (ms3774)

User Experience Survey

Date:

Age: Gender: F / M

I use a computer… never
 monthly

weekly
daily
multiple times per day

I am familiar with Augmented Reality no
 yes

I play computer games… never
 monthly
 weekly
 daily
 multiple times per day

For each question, we would appreciate any additional comments you have in the
“Comments” section.

COLUMBIA UNIVERSITY
INSTITUTIONAL REVIEW BOARD

IRB# AAAF2995 Approval Date: 05/20/11
IRB Initials: gg Expiration Date: 05/19/12

155

PART I—Rating Methods. For the following questions, please circle a number from 1
through 7 to describe your experience using each method.

A:

Mental Demand: How mentally demanding was the task?

 Very Low Very High
 1 2 3 4 5 6 7

Physical Demand: How physically demanding was the task?

 Very Low Very High
 1 2 3 4 5 6 7

Temporal Demand: How hurried or rushed was the pace of the task?

 Very Low Very High
 1 2 3 4 5 6 7

Performance: How successful were you in accomplishing what you were asked to do?

 Perfect Failure
 1 2 3 4 5 6 7

Effort: How hard did you have to work to accomplish your level of performance?

 Very Low Very High
 1 2 3 4 5 6 7

Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

 Very Low Very High
 1 2 3 4 5 6 7

Comments:

156

B:

Mental Demand: How mentally demanding was the task?

 Very Low Very High
 1 2 3 4 5 6 7

Physical Demand: How physically demanding was the task?

 Very Low Very High
 1 2 3 4 5 6 7

Temporal Demand: How hurried or rushed was the pace of the task?

 Very Low Very High
 1 2 3 4 5 6 7

Performance: How successful were you in accomplishing what you were asked to do?

 Perfect Failure
 1 2 3 4 5 6 7

Effort: How hard did you have to work to accomplish your level of performance?

 Very Low Very High
 1 2 3 4 5 6 7

Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

 Very Low Very High
 1 2 3 4 5 6 7

Comments:

157

C:

Mental Demand: How mentally demanding was the task?

 Very Low Very High
 1 2 3 4 5 6 7

Physical Demand: How physically demanding was the task?

 Very Low Very High
 1 2 3 4 5 6 7

Temporal Demand: How hurried or rushed was the pace of the task?

 Very Low Very High
 1 2 3 4 5 6 7

Performance: How successful were you in accomplishing what you were asked to do?

 Perfect Failure
 1 2 3 4 5 6 7

Effort: How hard did you have to work to accomplish your level of performance?

 Very Low Very High
 1 2 3 4 5 6 7

Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

 Very Low Very High
 1 2 3 4 5 6 7

Comments:

158

D:

Mental Demand: How mentally demanding was the task?

 Very Low Very High
 1 2 3 4 5 6 7

Physical Demand: How physically demanding was the task?

 Very Low Very High
 1 2 3 4 5 6 7

Temporal Demand: How hurried or rushed was the pace of the task?

 Very Low Very High
 1 2 3 4 5 6 7

Performance: How successful were you in accomplishing what you were asked to do?

 Perfect Failure
 1 2 3 4 5 6 7

Effort: How hard did you have to work to accomplish your level of performance?

 Very Low Very High
 1 2 3 4 5 6 7

Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

 Very Low Very High
 1 2 3 4 5 6 7

Comments:

159

PART II—Ranking Methods. In the following questions, please place a 1 through 4
next to each choice. If you feel that multiple methods performed roughly the same, then
give them the same ranking.

Rank the methods by how much you would prefer using them, from 1 (most prefer) to 4
(least prefer).

 ___ A

___ B

___ C

___ D

Comments:

160

Rank the methods by how demanding (mentally demanding + physically demanding +
temporally demanding) you thought they were, from 1 (least demanding) to 4 (most
demanding).

 ___ A

___ B

___ C

___ D

Comments:

161

Please provide any additional comments about or reactions to any of the methods:

162

ParaFrustumQuestionnaire

163

ParaFrustum Study
* Required

Participant ID (Ask the study coordinator) *

Age *

Gender *

 Female

 Male

Height in centimeters *
(Conversion Table: http://www.albireo.ch/bodyconverter/table.htm)

I use a computer... *

 Never

 Monthly

 Weekly

 Daily

 Multiple times per day

I have experience using Augmented Reality systems *

 No

 Yes

If you answered "Yes" to the previous question, please explain your experience.

Part 1: X
For the following questions, please choose a number from 1 through 7 to
describe your experience with technique X.

Edit this form

164

For each question, we would appreciate any additional comments you have in the "Comments"

section.

How mentally demanding was the task? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

X

How physically demanding was the task? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

X

How hurried or rushed was the pace of the task? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

X

How successful were you in accomplishing what you were asked to do? *

1 (Perfect) 2 3 4 5 6 7 (Failure)

X

How hard did you have to work to accomplish your level of performance? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

X

How insecure, discouraged, irritated, stressed and annoyed were you? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

X

How easy was this technique for getting your head into a speci�c pose? *

1 (Very

Easy)
2 3 4 5 6

7 (Very

Hard)

165

X

How fast was this technique for getting your head into a speci�c pose? *

1 (Slow) 2 3 4 5 6 7 (Fast)

X

How accurate was this technique for getting your head into a speci�c pose? *

1 (Not

Accurate)
2 3 4 5 6

7 (Very

Accurate)

X

Please provide any additional comments about or reactions to techniques X. *

Part 2: Y

For the following questions, please choose a number from 1 through 7 to

describe your experience with technique Y.

For each question, we would appreciate any additional comments you have in the "Comments"

section.

How mentally demanding was the task? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

Y

How physically demanding was the task? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

Y

How hurried or rushed was the pace of the task? *

166

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

Y

How successful were you in accomplishing what you were asked to do? *

1 (Perfect) 2 3 4 5 6 7 (Failure)

Y

How hard did you have to work to accomplish your level of performance? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

Y

How insecure, discouraged, irritated, stressed and annoyed were you? *

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

Y

How easy was this technique for getting your head into a speci�c pose? *

1 (Very

Easy)
2 3 4 5 6

7 (Very

Hard)

Y

How fast was this technique for getting your head into a speci�c pose? *

1 (Slow) 2 3 4 5 6 7 (Fast)

Y

How accurate was this technique for getting your head into a speci�c pose? *

1 (Not

Accurate)
2 3 4 5 6

7 (Very

Accurate)

Y

167

Powered by

Please provide any additional comments about or reactions to any of the techniques. *

Part 3: X & Y
Please tell us which one you prefer.

For each question, we would appreciate any additional comments you have in the "Comments"
section.

Which technique do you prefer for getting your head into a speci�c pose? *

 X

 Y

Please provide any additional comments about or reactions to any of the techniques.

100%: You made it.

This form was created outside of your domain.

Report Abuse ­ Terms of Service ­ Additional Terms

Submit

Never submit passwords through Google Forms.

168

Orientation AssistanceQuestionnaire

169

Demographic Information
Comparative Study of Task Assistance using Lightweight Mobile Computers

* Required

Female

Male

Never

Monthly

Weekly

Participant ID (Ask the study coordinator) *

Your answer

Age *

Your answer

Gender *

I use a computer... *

170

Weekly

Daily

Multiple times per day

No

Yes

Page 1 of 1

Never submit passwords through Google Forms.

This form was created inside of LionMail. Report Abuse - Terms of Service - Additional Terms

I have experience using Augmented Reality systems *

If you answered "Yes" to the previous question, please explain your
experience.

Your answer

SUBMIT

 Forms

171

Condition Evaluation
Comparative Study of Task Assistance using Lightweight Mobile Computers

* Required

S

T

A

Participant ID *

Your answer

Conditions

Which condition did you just complete? *

172

A

O

E

Mental Demand *
How mentally demanding was the task?

1 (Very
Low) 2 3 4 5 6 7 (Very

High)

Mental
Demand
Mental
Demand

Physical Demand *
How physically demanding was the task?

1 (Very
Low) 2 3 4 5 6 7 (Very

High)

Physical
Demand
Physical
Demand

Temporal Demand *
How hurried or rushed was the pace of the task?

1 (Very
Low) 2 3 4 5 6 7 (Very

High)

Temporal
Demand
Temporal
Demand

Performance *
How successful were you in accomplishing what you were asked to do?

1 (Perfect) 2 3 4 5 6 7 (Failure)

PerformancePerformance 173

Page 1 of 1

Never submit passwords through Google Forms.

This form was created inside of LionMail. Report Abuse - Terms of Service - Additional Terms

Effort *

How hard did you have to work to accomplish your level of performance?

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

EffortEffort

Frustration *

How insecure, discouraged, irritated, stressed and annoyed were you?

1 (Very

Low)
2 3 4 5 6

7 (Very

High)

FrustrationFrustration

Please provide any additional comments about or reactions to the

condition you have just completed. *

Your answer

SUBMIT

Forms

174

Study Wrap-up
Comparative Study of Task Assistance using Lightweight Mobile Computers

* Required

Participant ID *

Your answer

Conditions

Please rank the conditions from 1 (most preferred) to 5 (least
preferred) *

1 (most
preferred) 2 3 4 5 (least

preferred)

SS
175

Page 1 of 1

Never submit passwords through Google Forms.

This form was created inside of LionMail. Report Abuse - Terms of Service - Additional Terms

T

A

O

E

T

A

O

E

Please explain why you chose your rankings.

Your answer

SUBMIT

Forms

176

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Research Questions and Dissertation Goals
	Contributions
	Structure of Dissertation

	Related Work
	Switching Among Multiple Viewpoints
	Presenting Multiple Viewpoints Simultaneously
	Saving and Selecting Viewpoints
	Augmenting Static Images
	Guidance for Physically Transitioning to a Viewpoint
	Task Assistance Using Augmented Reality

	SnapAR
	Introduction
	Related Work
	Interaction
	Creating and Storing Snapshots
	Selecting and Viewing Snapshots
	Heads-Up Display
	Manipulating Virtual Objects

	User Study
	Pilot Study
	Hypotheses
	Methods

	Results
	Completion Time
	Accuracy
	Questionnaire
	Usage Pattern Analysis
	Generalization of Findings

	Discussion

	ParaFrustum
	Introduction
	Related Work
	Calling Attention to a 3d Target
	Specifying Position and Orientation Relative to a 3d Target
	Specifying a Constrained Set of Positions and Orientations in 3d

	Definition and Rules
	ParaFrustum-InSitu
	Implementation

	ParaFrustum-HUD
	Comparison
	User Study
	Pilot Study
	Hypotheses
	Methods

	Results
	Completion Time
	Motion Analysis
	Accuracy
	Questionnaire

	Discussion

	Orientation Assistance
	Introduction
	Related Work
	Visualizations
	Common Components
	SingleAxis Visualization
	Euler Visualization
	Animate Visualization
	Handles Visualization

	User Study
	Control Condition
	Pilot Studies
	Hypotheses
	Methods

	Results
	Task Duration
	User Feedback
	Discussion

	Conclusions and Future Work
	Contributions
	Lessons Learned
	Future Work
	SnapAR
	ParaFrustum
	Orientation Assistance

	Final Thoughts

	Bibliography
	Appendix
	SnapAR Questionnaire
	ParaFrustum Questionnaire
	Orientation Assistance Questionnaire

