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Abstract 

Defining Protein Synthesis: New Technologies to Elucidate Translational Control 

Nicholas J. Hornstein 

 

Protein translation has emerged as an important mediator of cellular activity. Here, we 

discuss efforts to develop and apply new technologies designed to gain insights into translational 

control. We begin with the application of ribosome profiling to a RiboTag Glioma mouse model 

which enables translational profiling of transformed cellular populations. This approach 

demonstrates a number of abnormalities of translation in transformed cells. We go on to report 

the development of an inexpensive and rapid library preparation methodology which enables 

high-throughput sequencing of ribosome-protected footprints from small amounts of input 

material. We apply this technique to a CAMKII RiboTag mouse model to make new insights into 

cell-type specific translation. Finally, we describe efforts to investigate translation regulatory 

networks through the development of a technique which couples large-scale perturbation with a 

genome-wide readout of translation.  

 Molecular dissection of tissues through the ectopic expression of modified ribosomal 

proteins commonly relies on tissue-specific genes which act as drivers. In the case of glioma, a 

gene specific to transformed tissue, but not expressed in normal brain tissue, has not been 

identified. Chapter 2 focuses on efforts to bypass this through the development of a RiboTag 

Glioma mouse model which allows for concurrent transformation and the expression of an 

epitope-tagged ribosomal protein in virally infected cells. This model made possible the isolation 

of translating mRNA from transformed cellular populations and was used to demonstrate the 

existence of a number of translational abnormalities in transformed cells.  



 

 

 Conventional ribosome profiling is a powerful tool which allows for the identification of 

ribosome-protected mRNA footprints. However, it is time-consuming, expensive, and difficult to 

implement. Based on our experiences with conventional ribosome profiling, we sought to 

develop a method which could decrease the overall number of enzymatic reactions and 

purification steps, thereby reducing the time and cost associated with the procedure; these efforts 

are discussed in Chapter 3. Utilizing a ligation-free library preparation process, which 

incorporates poly(A)-polymerase, template switching and bead-based purification, we reduced 

the time, costs and input requirements required to generate a ribosome profiling library while 

maintaining high library complexity. We applied our ligation-free ribosome profiling technique 

to a CAMKII RiboTag mouse model which enabled us to identify patterns of cell-type specific 

translation and the effects of mTOR inhibition in CAMKII-expressing excitatory neurons.    

 Regulation of protein expression is an essential and highly complex cellular activity. 

Aberrations of translational control are central to a host of pathologies and have direct clinical 

relevance. However, our knowledge of the networks which control translation is limited. Chapter 

4 details our efforts to develop a highly-scalable technology which enables the identification of 

gene-specific translational alteration in response to perturbation. Coupled with a large-scale 

perturbation screen, this technique could lead to the generation of a network for translational 

control, similar to efforts previously undertaken to understand transcriptional control. By 

combining the recently developed PLATE-Seq method, which utilizes unique barcode identifiers 

and pooled library construction, with a technique for the identification and isolation of ribosome 

associated mRNA, we are able to rapidly and inexpensively determine genome-wide 

translational states in a highly scalable format.   
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CHAPTER 1 

Introduction: The Ribosome in Health and Disease, A History 

 

1.1 The Ribosome and Physiology 

An Introduction to the Ribosome 

Encompassing the lion’s share of cellular energy use, protein production is critical for 

cell function, identity, and survival. The process by which protein production occurs is known as 

translation. First studied in the early 19
th

 century, research into translation was prodigious 

through to the early 2000’s. However, a lack of technology made it difficult to assess the detailed 

determinants of translational control on a genome-wide level.  A steady series of observations 

beginning with the discovery of the start codon and existence of reading frames in 1969 by Joan 

Steitz have evolved to demonstrate that translation is a highly dynamic, selective process able to 

promote responses essential to cellular survival and integrity (Steitz 1969). While transcription is 

able to produce an astoundingly complex program of gene expression via control by master 

regulators and alternative splicing, it does so at the cost of alacrity. Many threats to cellular 

survival, such as heat, nutrient deprivation, viral infection or hypoxia, are so potently disruptive 

to cellular function that without a rapid shift of protein production, cellular viability would be 

compromised. In the case of nutrient deprivation, either by decreased energy or amino acid 

availability, the primary response –decreasing overall protein production—can reduce cellular 

ATP utilization by as much as 50%, conserving energy for other critical tasks (Rolfe and Brown 

1997). However, there are a number of genes which resist translational inhibition during time of 

increased cellular stress, through a variety of mechanisms, including upstream open reading 
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frames or decreased reliance on ribosomal initiating proteins (Holcik et al. 2000, Richter et al. 

2010, Spriggs et al. 2010). This ability to selectively enhance the production of proteins with 

protective functions is critical to translation’s role as a rapid responder to both exogenous and 

endogenous stressors. 

The mechanisms by which translational control is achieved are, in part, related to the 

structural composition of genes. In mammalian systems, the coding region (CDS) is typically 

flanked upstream and downstream by non-coding leader regions known as the 5’ and 3’ 

untranslated regions (UTRs) (Figure 1.1). While the effects of UTR sequence content on CDS 

translation have been quantified on a gene-by-gene basis, their role in translational control is still 

poorly understood. Recent work has identified several interesting trends regarding translational 

control of the CDS due to sequence content in the UTR. While alternative isoforms in rare cases 

can account for up to two orders of magnitude of translational control, other general trends have 

emerged such as a relationship between transcript’s 3’-UTR length or GC content affecting 

overall CDS translation rate (Floor et al. 2015).   

Much of what we know about translation has built on work by Sydney Brenner, Francis 

Crick, Leslie Barnett and R.J. Watts-Tobin which demonstrated the three-base periodicity of the 

genetic code. Published in 1961, the Crick-Brenner experiment, as it came to be known, showed 

that proflvain-induced insertions or deletions only made the T4 bacteriophage gene rIIB non-

functional if one, two, or four bases were removed or inserted (Crick et al. 1961). Furthermore, 

they found that non-functional mutants could be rescued by further mutations which brought the 

number of inserted or deleted bases to either zero or a multiple of three. Based on these 

experiments they inferred that the genetic code was comprised of a three-base DNA codon which 

corresponded to individual amino acids. Due to the 4-nucleotide genetic sequence and existence 



 

3 

 

of 20 amino acids, it was inferred that there could be 64 possible codon sequences which allowed 

for redundancy. Knowledge of codons allowed later researchers the ability to associate specific 

nucleotide sequences with amino acids, as well as the start and stop codons.    

Beyond genetic structure, the most important mediator of translation is the ribosome 

itself. Consisting of almost 100 proteins, co-factors and rRNA, the assembled ribosome requires 

an enormous investment of cellular resources to produce and is amongst the most highly 

evolutionarily conserved sets of proteins in cells (Fox 2010).  Due to its large number of 

constituent proteins, multiple possible phosphorylation states, association with rRNA and highly 

energetic function, the ribosome has proven challenging to decode and define. Visualization of 

the ribosome with cryo-electron microscopy (cryo-EM) by Joachim Frank in 1995 revealed 

important ribosomal structures such as the bifurcating ribosomal tunnel (Frank et al. 1995). A 

sub 10-Å resolution X-ray crystal structure for the ribosome was obtained by Thomas Steitz as 

recently as 1998, clarifying the structure of the ribosome and identifying the location of its 

peptidyl transferase, leading to the 2009 Nobel Prize in Chemistry (Ban et al. 1998). More 

recently, cryo-EM work, again performed by Joachim Frank, allowed a visualization of the 

ribosomes structure while actively producing poly-peptides (Valle et al. 2003). These structural 

studies, combined with previous work by Peter Moore, created a clear picture of the constructed 

ribosome and its constituent elements (Moore et al. 1968). In the course of understanding the 

ribosome’s function and regulation, it is important to introduce some key proteins which 

comprise it.  
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Translation Initiation and Elongation 

The two major constituents of the Eukaryotic ribosome, the 40S and 60S subunits, 

associate with mRNA to form the active 80S complex (Figure 1.1). Of the three main functions 

of the ribosome during translation—initiation, elongation and termination—ribosomal initiation 

has been largely accepted, under most circumstances, as the rate limiting step of protein 

production (Jackson et al. 2010).   Cap-dependent ribosomal translation initiation, the dominant 

form of initiation, begins with the recognition of the m
7
Gppp cap by eIF4E as part of the EIF4F 

complex. Since m
7
Gppp modification is one of the earliest steps of post-transcriptional 

modification, this allows for the efficient translation of mature mRNAs (Furuichi and Shatkin 

2000).  In mammalian systems, eIF4E complexes two additional proteins, eIF4A, a RNA 

helicase, and eIF4G, a scaffold protein, to serve as the basis for the eIF4F complex. Due to this 

complex’s involvement in the critical step of 5’ cap recognition, it is a key target of endogenous 

and exogenous translation inhibition. A classic and physiologically significant form of cap-

mediated inhibition is caused by competition between the eIF4E binding proteins, 4EBPs, and 

eIF4G, which shares a structural similarity to the 4EBPs. Under normal conditions, 4EBPs are 

heavily phosphorylated and have a low affinity for eIF4E, allowing for eIF4E’s normal 

association with the eIF4F complex, and by extension, cap-dependent translation (Pause et al. 

1994). However, cellular stress responses lead to the dephosphorylation of 4EBPs, increasing 

their affinity for eIF4E and greatly diminishing cap-dependent translation as a result.  

Beyond eIF4F, ribosomal initiation requires assembly of the ternary complex; an 

additional member of the pre-initiation complex. Consisting of a methionine charged tRNA 

capable of recognizing the AUG-start codon, as well as eIF2, an elongation protein involved in 

ribosomal translocation, and charged with a GTP molecule, the ternary complex can be regulated 
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via the phosphorylation state of eIF2 in a fashion similar to the regulation of eIF4E. During 

stress response, phosphorylation of the α-subunit of eIF2 leads to a reduced rate of GDP-GTP 

exchange, reducing overall formation of the ternary complex and by extension, translation 

initiation (Clemens 2004).   Proper formation of eIF4F and the tertiary complex allows for 

recruitment of several other proteins, and most importantly, the 40S ribosomal subunit. This 

assembly of proteins, the pre-initiation complex, is then able to scan the mRNA beginning at its 

bound m
7
Gppp cap until an AUG start-site is located and the 60S subunit is recruited to begin 

the process of polypeptide elongation.  

The process of poly-peptide synthesis, although not the rate-limiting step during normal 

cap-dependent protein translation, can also exert some effect on specific protein synthesis rates, 

especially in extreme conditions. Following the introduction of methionine and the formation of 

the complete 80s ribosome, elongation occurs in a start-stop motion where charged tRNAs are 

able to introduce necessary amino acids and catalyze peptide bonds (Wolin and Walter 1988). 

While this occurs rapidly, specific amino acids such as proline and regions of mRNA with 

complex secondary structures have been shown to reduce elongation rates, leading to ribosome 

stalling (Peil et al. 2013). Altered elongation rates can also be achieved by modulating the 

phosphorylation states of ribosomal proteins, such as eEF2. Necessary for GTP-dependent 

ribosomal translocation, eEF2 is targeted by multiple growth-related regulatory pathways and 

has reduced ribosomal binding capacity and functionality in its de-phosphorylated state, which is 

observed in the presence of cellular stressors such as hypoxia and nutrient starvation (Leprivier 

et al. 2013).  Elongation rates can also be controlled by proteins extrinsic to the ribosome. 

Chaperone proteins, which aid in the proper folding of elongating polypeptide chains, rest at the 

exit tunnel of the ribosome and can exert a negative effect on protein synthesis in their absence 
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(Liu and Qian 2014). These processes demonstrate the highly complex state of ribosomal 

elongation. However, except in states of extreme nutrient deprivation, ribosomal initiation 

remains the rate-limiting step of protein synthesis (Shah et al. 2013). 

 

Mechanisms of Translational Control 

Although multiple regulatory pathways affecting translation have had specific 

downstream effectors identified, the best understood with an established cis-regulatory element 

is the mechanistic target of Rapamycin (mTOR). mTOR exists as two structurally distinct 

serine/threonine kinases. While mTORC1 affects growth, proliferation, protein synthesis, and 

metabolism, mTORC2 interacts with major regulators of cellular survival such as AKT (Oh and 

Jacinto 2011, Laplante and Sabatini 2012). Enhanced by extracellular growth factors and 

nutrients, mTORC1 has a hand in indirectly controlling the activity of many of the essential 

targets of protein synthesis, including eIF4A helicase, the cap-binding proteins eIF4E and eIF4G. 

In the case of eIF4A, mTORC1 activates S6 kinase leading to phosphorylation and proteasome 

degradation of the eIF4A binding protein PDCD4, and increased activity of the eIF4A helicase 

(Dorrello et al. 2006). Enhanced eIF4E activity is achieved in a similar manner; phosphorylation 

of eIF4E binding-proteins (4EBPs) by mTORC1 reduces their binding affinity for eIF4E and 

enhances cap-dependent translation. Although these alterations occur in a cell-wide manner, the 

effects of mTORC1 inhibition, either by pharmacologic means or nutrient starvation, are 

observed in only a small subset of genes (Avni et al. 1997). These genes include ribosomal 

proteins, metabolism-related proteins and translation-related proteins (Thoreen et al. 2012).  

Surprisingly, the set of genes experimentally identified to have reduced levels of translation due 

to mTOR inhibition share a common 5’ motif. The Terminal Oligo-Pyrimidine (TOP) motif, a 
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stretch of 4-14 pyrimidines at the start of an mRNA, serves as a CIS-acting factor which allows 

for these genes to be translationally controlled in a mTOR-dependent manner.   Although the list 

of TOP-motif containing genes is small, their regulation has an outsize effect on cellular energy 

utilization due to the inclusion of genes involved in ribosome biogenesis and translation.  

Beyond the mTOR pathway, a vast network of kinases and phosphatases affects every 

stage of protein synthesis, although the downstream CIS-acting factors in many cases have not 

yet been identified (Figure 1.2).  A large number of these pathways act on the previously 

described ternary complex molecule eIF2. eIF2 activity is altered via phosphorylation state 

during nutrient deprivation, viral infection, iron deficiency, and endoplasmic reticulum stress by 

the respective protein kinases GCN2, PKR, HRI and PERK. Each of these protein kinases 

operates independently, and is controlled by a separate regulatory network, making eIF2 a 

central node for the integration of information regarding these cellular stressors.  A key example 

of the adaptive function of eIF2 is its ability to induce preferential translation of ATF4, a master-

regulator of stress-response, during periods of relative global translational repression. (B’chir et 

al. 2013).  eIF2 is not alone in serving as an essential integrator of stress-response signals. eIF4, 

a molecule highly regulated by mTORC1, is also a target of the protein kinases MNK1 and 

MNK2. Receiving upstream signals from the MAPK-ERK pathway and the RAS-RAF pathway, 

MNK1/2 is able to phosphorylate Ser209 on eIF4E, increasing the selective translation of 

survival-related genes (Wendel et al. 2007).  

Translational control can also be affected at the level of transcription. Activity of the 

transcription factor MYC, normally inhibited by p53 which is in turn inhibited by MDM2, leads 

to increased mRNA levels of eIF4E, eIF4A, and eIF4G (Pelletier et al. 2015). In turn, both MYC 

and MDM2 appear to be eIF4E-sensitive mRNAs, indicating a positive-feedforward loop exists 
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between these regulatory elements (Lin et al. 2008). Due to MYC and MDMs association with 

oncogenesis and heightened translation, these targets and effectors are crucial to translational 

control and illustrate the highly complex, specific and interconnected nature of translational 

regulation.  

As evidenced by the various mechanisms described in the previous section, rapid 

translational control targeting translation initiation and elongation is most commonly achieved 

via protein kinases and phosphatases. The rapid rate of translational reprogramming during states 

of cellular stress is in part due to the fact that downstream macromolecules do not require 

degradation to suppress their effects. In lieu of proteolytic degradation, many of the molecules 

involved in translational control exhibit altered levels of activity in alternative phosphorylation 

states. The kinases and phosphatases which exert their effects on the ribosomal proteins involved 

in translation are downstream effectors of a number of regulatory networks including mTOR, 

MAPK-ERK, and RAS-RAF. Serving as a point of convergence for these pathways, translation 

integrates a vast amount of information from a wide-range of intracellular and extracellular 

conditions. Dysregulation of the networks controlling translation is a common hallmark of 

pathologies involving aberrant cellular proliferation, growth and protein expression. However, 

translation’s central role, downstream action, and multiple interacting proteins also make it a 

promising therapeutic target in these diseases.  

 

1.2 The Ribosome and Pathology 

The Ribosome in Human Disease 

Due to translation’s outsize use of cellular resources and role in determining cellular 

function, it is no surprise that it serves as a point of convergence for several regulatory pathways. 
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The ability to quickly integrate a vast amount of information from intracellular and extracellular 

conditions into an altered program of protein expression makes translation a key effector of 

stress response. However, the importance of protein expression, coupled with the complex nature 

of the regulatory networks controlling it, and the action of translation itself, make translation into 

an opportune target for factors aiming to disrupt cellular function and the source of a large 

number of pathologies.  

Proper functioning of ribosomal translation is critical to cellular function; exploring the 

role of translation as both a cause of, and in response to, pathologies serves to highlight this fact. 

It took only 90 years from when Friedrich Loeffler first described Klebs-Lӧffler bacillus in 1884 

to advance our understanding of translation to a point where the protein responsible for causing 

Diptheria and its molecular mechanism could be understood (Loeffler, F. 1884. Mitt. 

Gesundheitamte 2:421-99).  Fragment A, of the Diptheria-causing A-B toxin, acts via ADP-

ribosylation of eEF2, rapidly depleting intracellular stores of functional eEF2 and inhibiting 

cellular protein synthesis (Jorgensen et al. 2005). This minor alteration of a single ribosomal 

protein destroys the ribosome’s ability to catalyze ribosomal elongation, halting cellular protein 

synthesis, rapidly resulting in cell death. Due to A-B toxins predilection for the upper respiratory 

tract, this effect is thankfully not wide-spread, however several other organisms have 

independently developed toxins that act in the same fashion, such as those responsible for 

Whooping Cough, Cholera, and Pneumonia.  

While the ribosome is an effective target for exogenous toxins, it also serves as a key 

component of the innate immune system’s response to viral infection. Relying on the host’s 

ribosomal machinery in order to engage in replication and maintain an infection, viruses are 

highly dependent on active translation. As mentioned previously, the innate immune system has 
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the capability to signal through PKR, leading to decreased phosphorylation of EF2 and reduced 

ternary complex formation. Although this response is variable based on the type and severity of 

infection, reactive modifications to EF2, along with several other intracellular responses, greatly 

abrogates ribosomal function in as little as 30 minutes (de Nadal et al. 2011). This rapid and 

efficient reduction of ribosome function, once again mediated by a single key factor, is critical to 

inhibiting the propagation of viral infections.  

Beyond exogenous and endogenous perturbations, the ribosomal machinery is also 

susceptible to germline mutations. Although homozygous perturbations to ribosomal proteins 

commonly results in perinatal lethality, haploinsufficiency results in a number of diseases, 

summarized in (Bhat et al. 2015, Farley and Baserga 2016) (Table 1.1). Defined as 

ribosomopathies, these diseases display a wide-range of symptoms but one commonality is clear; 

aberrations in the expression of ribosomal proteins result in a heightened risk of cancer. While in 

many cases mutation of ribosomal proteins does not directly induce oncogenesis, attempts to 

rescue normal expression of ribosomal proteins by upstream pathways controlling translational 

result in a landscape ripe for malignant transformation. Although germline genetic mutations 

involving core ribosomal machinery are extremely rare in the general population, alterations in 

the expression of these same proteins and the upstream mediators of their function are among the 

most common hallmarks of transformed cells.  

First recognized in 1896 when hypertrophic nuclei were observed in malignant cells, 

dysregulation of translation has a long association with cancer (Pianese 1896). While increased 

growth and cellular division are common among cancers, the means by which the translational 

landscape is altered to produce these phenotypes is highly variable but commonly converge on 

translation. Broadly, inciting events directly related to translation that lead to enhanced anabolic 
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activity can be separated into three main groups. The first, constitutively activating cell-surface 

tyrosine kinases normally responsive to growth factors, such as PDGF, can addict cells to 

increased protein synthesis. Activated growth factor receptors, such as EGFR or PDGFR are 

commonly associated with several tumor types, such as Wilm’s tumor of the kidney or glial 

tumors of the brain (Ghanem et al. 2010).  

Bypassing surface receptors entirely, activity of growth-signaling pathways can 

additionally be enhanced via removal of downstream tumors suppressors such as the TSC1 and 

TSC2 proteins.  Deletion of either TSC1 or TSC2 hyper-activates mTORC1, decreasing eIF4E 

binding by 4EBP and leads to development of Tuberous Sclerosis with 100% penetrance. 

Individuals afflicted with Tuberous Sclerosis experience hundreds of benign tumors in their 

lifetimes, including harmatomas, angiofibromas, and harmaoblastomas of the heart, eyes, kidney, 

nervous system and skin (van Slegtenhorst et al. 1997). Tuberous Sclerosis illustrates the 

extremely deleterious effects of dysregulating a single gene involved in the pathways controlling 

translational initiation. Mutations of RAS, PTEN and PI3k similarly result in enhanced 

ribosomal initiation and are associated with their own clinical symptoms and cancers 

(Mulholland et al. 2012).  

Finally, altered expression or activation of many of the key proteins involved in 

ribosomal initiation can directly promote malignant transformation.  Overexpression of eIF4E, 

for example, has been shown to induce transformation in a variety of primary human cells, and 

subsequent reduction of eIF4E expression can lead to a reversal of transformation (Lazaris-

Karatzas et al. 1990, Ruggero et al. 2004, Larsson et al. 2007). Clinically, eIF4E has been found 

to be increased 3 to 10 fold in cancers of the blood, brain, lung, prostate, head and neck, bladder, 

colon and breast and is generally associated with decreased survival (Meric-Bernstam 2008).  
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The clinical significance of increased activity of core ribosomal proteins is not restricted to 

eIF4E, but is also observed with eEF2, pEBP1 and pS6, leading to their use as markers of overall 

survival, progression, and recurrence in multiple forms of cancer.   While phosphorylation of 

some proteins, like pS6, do not seem to directly affect translation, their prognostic value is due to 

their correlation with increased mTOR network activity and overall cellular translational output.  

One particularly interesting neural ribosomopathy is leukoencephalophathy with 

vanishing white matter syndrome. The mutation or loss of any one of 5 genes encoding the 

translation initiation factor EIF-2B can lead to profound neurodegeneration resulting in 

cerebellar ataxia, spasticity, optic atrophy, epilepsy, and eventual death. Although poorly 

understood, these gross neurologic consequences are due to the improper functioning of a single 

initiation factor leading to loss of white matter and the appearance of foamy oligodendrocytes 

with irregular mitochondria and high rates of apoptosis.  

  
 

Development of Therapeutics Targeting Translation 

Existing as a mediator of growth factor signaling and controlling the phosphorylation 

states of many key ribosomal proteins, the mTOR pathway has become an extremely promising 

target for anti-cancer therapies. Altering translational control through the actions of protein 

kinases and phosphatases, the mTOR pathway has a number of targetable candidates. Discovered 

in 1975 and originally intended as an antifungal agent, Rapamycin led to the discovery of 

mTOR, originally dubbed “Mammalian Target Of Rapamycin” (Sehgal et al. 1975). As soon as 

1981, prior to the discovery of Rapamycin’s cellular target, it was established to have anti-cancer 

activity in cell-line screens (Douros and Suffness 1981).   By 2007 however, only a single mTOR 

inhibitor (Temsirolimus— a water soluble form of rapamycin) had been approved by the FDA as 
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an anti-cancer agent, while many another therapeutics targeting mTOR had failed to achieve 

significant results in clinical trials. The failure of these first-generation mTOR inhibitors has 

been attributed to several reasons. Firstly, the biologic kinetics of rapamycin and early mTOR 

inhibitors was extremely poor; its ability to inhibit mTOR function is only partial due to its 

allosteric mechanism of action and mTORC1 specificity (Brachmann et al. 2009). Furthermore, 

the concentrations required for clinically significant anti-mTOR activity is associated with a poor 

side-effect profile, including immunosuppression. Finally, and arguably most concerning, due to 

mTOR’s central role in mediating anabolic signaling and complex interaction with multiple 

convergent pathways, mTOR inhibition could be rescued by upregulating the activity of parallel 

or upstream pathways, such as AKT or PI3K, or by reducing the function of endogenous mTOR 

inhibitors such as the TSC complex.   

  Although results from first generation mTOR inhibitors have been disappointing, they 

have not lessened interest in leveraging mTOR or translation initiation as therapeutic anti-cancer 

targets. At current, there are over 200 ongoing clinical trials involving the use of second 

generation mTOR inhibitors.  Whereas the original mTOR inhibitors attenuated mTOR function 

by allosterically inhibiting mTORC1, second generation compounds target the active site of both 

mTORC1 and mTORC2—fully inhibiting mTOR function. Furthermore, to reduce resistance via 

increased AKT or PI3K activity, drugs have been developed which act as dual PI3K-mTOR and 

AKT-mTOR inhibitors. These drugs are currently in clinic trials and are showing promising 

results (Bhat et al. 2015). Of the most exciting second-generation inhibitors to be developed are 

those that target translational initiation directly. These second-generation drugs achieve mTOR 

inhibition in a variety of ways, including inhibiting the formation of the ternary complex, halting 

the helicase activity of eIF4A and reducing the interaction between eIF4E and eIF4G (mimicking 
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cellular methods of translational control). While these drugs have been surprisingly effective in 

cell-line and animal studies, it remains to be seen how they will fare in clinical trials. In any 

event, their existence alone heralds a remarkable understanding of the complex network 

controlling translation, as well as translation’s central role in a host of pathologies.  

 

1.3 A History of Translation’s Study 

Early Insights Propel a Nascent Field 

 

Major advances in our understanding of how translational control is encoded and 

achieved by cells have regularly followed the development of new technologies which allow for 

an improved or wholly unique set of observations to be generated. These watershed technologic 

innovations have in some cases been engineered specifically for the study of translation, while 

others were cleverly adapted. Regardless, innovations such as the identification of the ribosomal 

start sequence, the first application of micro-arrays to generate a genome-wide translation 

measurement, and the development of ribosome profiling have been followed by an explosion in 

literature advancing our understanding of translational control. A clearer understanding of the 

technologies which have evolved into those currently used to study translation highlight the 

importance and necessity of further technology developments required to improve upon those 

currently available and to promote a deeper understanding of translational control’s physiologic 

function and role in pathologic states.     

While the ribosome had been first observed in the mid-1950s by George Emil Parade 

(winning the Nobel Prize in 1974), the means by which ribosomal initiation occurred remained 

unclear (Sabatini et al. 1966). Based on observations by Mituru Takanami in 1965 that regions of 

bacteriophage RNA were protected from enzymatic digestion due to association with the 
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sterically protective ribosome, Joan Steitz developed a process by which she was able to isolate 

fragments of RNA which were actively undergoing translation (Takanami et al. 1965). By first 

digesting ribosome associated-RNA with pancreatic ribonuclease, and then subjecting her 

sample to centrifugation in a sucrose gradient, Dr. Steitz was able to isolate portions of RNA 

which were spared from RNAse degradation (Steitz 1969). Combining this with “cutting-edge” 

cellulose acetate and DEAE chromatography developed by the Sanger group, a set of sequences 

could be established for the location of polypeptide chain initiation within bacteriophages 

(Sanger et al. 1965). While knowledge of the AUG initiation codon had been known for several 

years, the ribosome’s ability to initiate protein synthesis internally, and simultaneously, was not. 

Furthermore, the combination of ribonuclease digestion, sucrose gradation and application of 

“state-of-the-art” sequencing, is one that has played out multiple times in the course of 

developing technologies to interrogate translation (Figure 1.3).  

The invention of dideoxy chain-termination sequencing, conventionally known as Sanger 

Sequencing, in 1977 not only lead to Sanger’s second Nobel Prize in Chemistry, but also set the 

stage for refinement of sequencing capabilities and sequencing of the human genome (Sanger et 

al. 1977).  While early RNA sequencing methodologies had been established by Robert Holley 

and Sanger in the 1960’s and 1970’s, the human genome project served as a major step forward 

in the application of genomics and highlighted the importance of genes in health and disease, as 

well as their highly interconnected nature (Lander et al. 2001). Research groups were spurred to 

begin decoding the role of transcription in human physiology and disease. The independent 

discoveries of reverse transcriptase by Howard Termin and David Baltimore in 1970 allowed for 

the use of sequencing technologies developed for DNA to be utilized with RNA samples, greatly 

aiding RNA  sequencing efforts (Temin and Mizutani 1970).   
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Genome-Wide Measurements 

 

In order to apply translation-wide measurements on a genome wide scale, developments 

were first required which would allow for a complete transcriptome to be characterized. The 

combination of reverse transcription with computerized image processing and hybridization 

arrays by Floyd Taub attempted to fill this void in 1983 (Taub et al. 1983).  Dubbed a DNA-

Microarray, this paradigm was able to rapidly generate a measurement of mRNA transcript 

levels by relying on digital image analysis. While this technique was limited by the requirement 

for pre-existing capture probes, it enabled researchers to ask questions regarding the means by 

which translation is controlled on a genome-wide scale. In 1999 David Morris led a group which 

explored translation’s role in overall protein expression. Using a sucrose gradient method similar 

to Joan Steitz, fibroblast cells were mitogenically stimulated and their ribosome-bound mRNAs 

were separated into lowly and highly translated groups based on their level of sedimentation in 

the sucrose gradient. Application of reverse transcription allowed for the use of a 1,200 gene 

microarray and the discovery that mitogenic stimulation altered the translational expression of 

only a small fraction (1%) of genes—one of the first instances of translation’s tightly controlled 

nature (Zong et al. 1999).  

This method of fractionation, followed by microarray analysis, was repeated to explore 

the role of translation in several contexts; such as in T-Cell differentiation, glucose starvation, 

and fMR1 knockout (Mikulits et al. 2000; Brown et al. 2001; Kuhn et al. 2001). Of particular 

note were experiments performed by Yoav Arava and Patrick Brown, who utilized the previously 

described paradigm but took great efforts to separate their sucrose gradients into as many as 14 

fractions. This work led to insights regarding ribosome density and ORF size, and provided 
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additional evidence that initiation was the rate limiting step for protein production (Arava et al. 

2003). Later experiments by the same group saw the creation of the first ribosome density maps 

for several ribosome bound mRNAs (Arava et al. 2005).  Combining their established 

fractionation method with oligonucleotide probes complementary to small regions of a specific 

mRNAs, Arava obtained a clear picture of the location of translating ribosomes on mRNA. This 

work cemented ribosomal initiation as the rate-limiting step of translation, demonstrated the 

highly processive nature of translation and began to associate sequence-specific elements of 

mRNAs to their level of translation control.  

Microarrays have also been leveraged in Ribosome Affinity Purification (RAP) 

experiments which utilize genetically modified ribosomal proteins as targets for 

immunoprecipitation (Zanetti et al. 2005). Introduction of immunoprecipitable targets to core 

ribosomal proteins such as EGFP to RPL10a, as in Translating Ribosome Affinity Purification 

(TRAP), allows for the effective selection of mRNAs undergoing translation from a cellular 

homogenate (Heiman et al. 2008). A powerful application of this technology is the performance 

of cell-type specific translational measurements. Cell-type specific promoters induce expression 

of tagged non-native ribosomal proteins which allows for the purification of translating mRNAs 

from specific cells of interest in transgenic animals and cell-lines. These immunoprecipitated 

mRNAs can then be applied to a microarray in order to determine the relative translation of 

transcripts within specific cell types. However due to the lossy nature of immunoprecipitation, 

these techniques require large amounts of starting material to be used. Furthermore, due to the 

genetic construct used in many forms of RAP, including TRAP, the native ribosomal protein 

continues to be expressed alongside the modified protein, complicating quantification of 

translation.    
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Next Generation Sequencing 

 

 Microarray analysis of polysome fractionation yielded a number of insights regarding 

translational control, but suffered from a number of limitations inherent to the technology. While 

there were some quantification issues arising from an inability to resolve heavy polysome 

fractions and determine the number of ribosomes bound to mRNA in them, the key drawback of 

polysome fractionation as a technique was an inability to determine ribosomal position. 

Knowledge of the translating or scanning ribosomes position is essential to determine if a 

ribosome is located in the protein coding region, stalled, or contained within an upstream open 

reading frame (uORF).  In 2009, building on the original experimental paradigm designed by 

Joan Steitz in 1969, Nick Ingolia, in the lab of Jonathan Weissman, developed a library 

preparation scheme which allowed for the sequencing of ribosome protected footprints and made 

genome-wide analysis of translation with positional information possible (Ingolia et al. 2009). 

Dubbed ribosome-profiling, the library preparation scheme began following sucrose-fraction 

isolation of mRNA fragments protected from RNAse digestion by their active association with 

ribosomes. Incorporation of adapters necessary for PCR and Illumina sequencing to take place 

was difficult due to the short nature of these fragments and their lack of a conserved region, such 

as the Poly-A tail which exists on undigested mRNAs. In the original paper unveiling the 

ribosome profiling technique, this difficulty was overcome by use of a poly(A) polymerase 

which generated a 3’ tail of adenosine nucleotides, mimicking the function of the poly-A tail in 

library construction. However, this method was abandoned following its initial demonstration 

and inter-molecular ligation was used in its place to incorporate the 3’ adapter in future ribosome 

profiling experiments (Ingolia et al. 2012). In both library preparation schemes, reverse 
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transcription, circularization and a moderately high number of cycles of PCR were then required 

to generate sequencable libraries. Ribosome profiling allowed for several important advances in 

comparison to the experiments performed by Yoav Arava. Whereas Arava was able to determine 

the number of ribosomes associated with mRNA, but not their position, ribosome profiling 

allows for the genome-wide identification of ribosomal location with nucleotide resolution based 

on sequence information derived from the ribosome footprint. This positional information can be 

used to make important observations regarding ribosomal occupancy in the 5’ and 3’ 

untranslated regions, allowing discrimination of ribosomes translating protein-coding regions 

versus upstream open-reading frames and non-canonical start-sites. Furthermore, the effects of 

mRNA composition and the frequency of translational pausing can additionally be studied with 

the application of ribosome profiling. Quantitatively, ribosome profiling also bypasses 

inaccuracies associated with the analysis of heavy polysome fractions (due resolution 

limitations). The development of a tool able to interrogate translation on a genome-wide scale, 

with single nucleotide resolution, has allowed for a resurgence of research into translation. 

Spanning fifty years of research, the developments made in technology that have allowed our 

understanding of the complex elements by which translation is controlled is staggering. 

However, several major limitations exist which obfuscate a clear picture of translational control. 

As will be discussed, new technologies will need to be developed and refined in order to have a 

more accurate understanding of the elements involved in the normal physiology and pathology of 

translation.  

 

1.4 Necessity for Improved Tools 
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New Technologies Required For Further Understanding of Translation 

 

Utilizing a myriad of tools, the importance of translational control to normal physiology 

and pathologic states has been well established. However, many of the technologies currently 

utilized in the study of translation suffer from drawbacks which limit their utility, especially 

when used to explore questions from a systems-biology approach. Due to the high-level of 

heterogeneity between cell-types, cell-type specific translational measurements are critical in 

accurately determining cellular translational landscapes. Currently established RAP technologies 

such as BAC-TRAP and the RiboTag system have been successfully used to perform cell-type 

specific polysome fractionation with micro-array quantification. However, these techniques do 

not provide ribosome positional information, or yield a direct quantification of ribosome density. 

As an additional concern, in the case of BAC-TRAP specifically, the native ribosomal protein 

continues to be expressed in conjunction with the epitope-modified version, complicating 

translational analysis. Finally, while these systems excel in labeling ribosomes from cell types of 

interest that have well characterized cell-type-specific marker genes (which can be used to drive 

modified ribosome expression), they are difficult to apply to cellular populations which may not 

have globally unique gene expression.  

Ribosome profiling also suffers from several drawbacks. The original ribosome profiling 

studies were performed using large amounts of material derived from yeast. While this source of 

material is effectively unlimited, experiments designed to uncover translation’s role in diseases 

which rely on patient’s clinical samples or animal-derived samples do not have the same 

flexibility. Additionally, due to the number of independent enzymatic reactions, gel-purifications 

and precipitations required, ribosome profiling as described by Ignolia requires about two-weeks 

of hands on time to perform, several hundred dollars per sample in reagents, and at least 50 
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nanograms of input material. The development of a ribosome profiling technique which lowered 

input requirements as well as reduced the time, effort and costs associated with ribosome 

profiling would greatly aid investigators interested in studying translation.  

Finally, the study of translation has been hampered by an inability to perform 

measurements on a large-scale. The development of a technique amenable to high-throughput 

measurements would allow for previously impossible systems biology approaches to 

understanding translation. For example, although it is known that kinases play a major role in 

cell signaling and translational regulation, and respond to a wide-variety of intra and 

extracellular perturbations, there has yet to be a systematic effort to characterize their 

translational effects. This is, in part, due to the staggering effort which would be required for 

such a project—using conventional ribosome profiling techniques, a study of the 500 human 

protein kinases in several cellular states would require tens-of-thousands of man-hours. A high-

throughput translational measurement technique however would make it possible to determine 

the effects of each protein kinase in multiple physiologic states for a fraction of the time and 

cost. Due to their central role in a variety of diseases, such as cancer, as well as their inherent 

druggability, such a study could yield important clinical insights.  An addition application of 

high-throughput translational screening could be in drug development. The ability to perform 

screens of compounds targeting translation and rapidly quantitate their effects could be a boon 

for the development of new therapeutics. Finally, low-cost, high-throughput translational 

measurements could also aid in the clinical monitoring of patients undergoing chemotherapy 

targeting translation and serve as an early warning monitor for the occurrence of resistance.  

It is the role of this dissertation to describe several works which attempt to address the 

current limitations of technologies interrogating protein synthesis and apply them to develop new 
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insights into translational control. In Chapter 2 I discuss efforts to translationally profile tumor-

specific cells which required the generation of an animal model which expressed modified 

ribosomal protein only in transformed cells and the first application of ribosome profiling in 

tissue. Chapter 3 attempts to address some of the downsides of conventional ribosome profiling 

through development of a ligation-free approach which utilizes poly-adenylation and template 

switching to decrease input requirements, cost, and time associated with generating ribosome 

profiling data. Finally, Chapter 4 focuses on the development of an experimental procedure 

relying on ribosomal immunoprecipitation and pooled library generation designed to generate 

translational data in a high-throughput, rapid, and inexpensive manner. I hope to demonstrate 

that these technologies, as well as the insights we’ve gained from their application, have helped 

to advance our understanding of translation and our future ability to interrogate it.  
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Figure 1.1 Eukaryotic Translation Initiation 

Initiation of translation may occur following preassembly of the ternary and eIF4F complexes. 

The ternary complex, in conjunction with the 40S ribosomal subunit, form the 43S subunit. 

Working in concert with eIF4F the 43S subunit begins the process of translational scanning in 

the 5’-untranslated region (UTR). Once a AUG start codon is located, the 60S subunit binds and 

begins translation of the protein coding region (CDS).  
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Figure 1.2 Mechanisms Affecting Translation 

Multiple pathways converge on translation and affect translation initiation. RAS/RAF, PI3K, 

mTOR and MNK can affect translation in response to intracellular and extracellular states. Red-

colored proteins represent inhibitors of translation initiation.   
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Figure 1.3 Footprint Isolation Experiments 

Originally utilized in the 1960’s this experimental paradigm has been leveraged successfully for 

decades in order to yield further insights into mechanisms of translational control. Due to the 

protective effect of ribosomal binding, fragments of mRNA being actively scanned or translated 
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by the ribosome can be recovered following digestion of non-bound mRNA with an RNAse. 

Sucrose fractionation of digested material allows for the recovery of footprints. Sucrose 

fractionation can also be performed on un-digested material to yield information regarding the 

number of ribosomes bound to groups of mRNAs. Following fractionation, footprints can be 

prepared and quantified. Multiple techniques have been used to quantify ribosomal footprints 

and polysome fractions including sanger sequencing, micro-arrays, and next-generation 

sequencing.    

 

 

 

Table 1.1 Ribasomopathies and Associated Cancers 

Disease Genetic Defects Associated Cancers Clinical Features 

Diamond-Blackfan 

Anemia 

RPL5, RPL11, 

RPL36, RPS19, 

RPS24, RPS17, 

RPL35A, RPS7, 

RPS15, RPS27A 

Osteosarcoma 

MDS 

Macrocytic Anemia 

Craniofacial defects 

Growth retardation 

Thumb abnormalities 

X-linked Dyskeratosis DKC1 AML 

Head/Neck Tumors 

Oral leukoplakia 

Cytopenia 

Hyperpigmentation 

Nail dystrophy 

5q-Syndrome RPS14 AML Macrocytic anemia 

Schwachman-

Diamond Syndrome 

SBDS AML 

MDS 

Neutropenia 

Pancreatic insufficiency 

Growth retardation 

Cartilage-Hair 

Hypoplasia 

RMRP Non-Hodgkin 

Lymphoma 

Basal Cell Carcinoma 

Hypoplastic anemia 

Growth retardation 

Hypoplastic hair 

Bownen-Conradi 

Syndrome 

EMG1 N/A Fatal in infancy 

Growth retardation 
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Chapter 2 

Ribosome Profiling Reveals Cell Type-Specific Translation in Brain 

Tumors 

 

 
 

2.1 Background 

 

Abstract 

 

Transformation of cellular populations is driven by a variety of molecular factors. In 

cancers generally, and glioma specifically, many of the inciting mutations ultimately affect 

regulation of protein synthesis. Assessing the translational landscape of gliomas presents a 

unique scientific challenge as gliomas are heterogeneously composed of multiple cell types 

recruited by transformed cells into a solid tumor which generates a specialized 

microenvironment within the brain. In this chapter, I discuss studies undertaken in order to better 

understand translational regulation in the transformed cells of gliomas. In order to achieve this 

goal, we developed a tumor-specific ribosome tagging system in the form of a RiboTag glioma 

mouse model which enabled cell type-specific, genome-wide ribosome profiling of tumors. 

Furthermore, these studies enabled the application of ribosome profiling to tissue samples. 

Translational profiling of transformed cells in glioma has been a difficult task due to a lack of a 

glioma-specific gene which is not naturally expressed in the brain. To bypass this, we developed 

the RiboTag mouse model which was generated by crossing a mouse containing floxed Trp53 

alleles with a mouse designed to express HA-tagged Rpl22 following the action of Cre-

recombinase. Transformation of glial progenitor cells and cell-type specific activation of 

RiboTag expression is achieved with a PDGF-B expressing Cre-recombinant retrovirus which 
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simultaneously removes native exons of Trp53 and Rpl22 while inducing HA tagged Rpl22 

expression. Surprisingly, while we found that tumor-specific genes have high levels of 

translation, their overall translation efficiency is low compared to normal brain. Furthermore, we 

found that the presence of upstream annotated start codons in the 5’ leader sequence of genes 

with 5’ ribosomal density was associated with altered ribosomal density in the CDS of genes, 

leading to differential translation in glioma compared to normal brain.  

 

Introduction 

Gliomas are devastating neural malignancies that cause significant morbidity and 

mortality. Although there will be 20,000 predicted cases of glioma in the United States this year 

alone, clinical outcomes for the disease have not changed significantly in the past 30 years.  

Recent efforts by The Cancer Genome Atlas (TCGA) have utilized gene expression profiles of 

glioblastomas (GBM) to identify four subtypes of gliomas—Proenueral, Neural, Classical and 

Mesenchymal (Verhaak et al. 2010). Many of the hallmarks of gliomas reside in mutations and 

deletions of molecules which converge on translation—these include effectors of mTOR and 

AKT as well as additional mitogenic pathways (Fan et al. 2007; Helmy et al. 2012; Jiang and 

Liu, 2009; Parsa and Holland, 2004; Rajasekhar et al. 2003; Takeuchi et al. 2005). However, 

although mutations in these pathways are identified in a high percentage of human tumors, very 

little is known regarding translational regulation in gliomas.   

 Existing as both a clinical and scientific challenge, gliomas are diffusively infiltrative 

into surrounding brain tissue. While techniques exist which allow for physical separation of 

cells, the dynamic and rapidly responsive process of translation could be perturbed by 

dissociation. Furthermore, dissociation of transformed cells from cellular populations recruited to 
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the tumor would be a challenging endeavor.  Efforts have been made to characterize tumor-

specific translation, but the approaches employed suffer from a number of drawbacks (Doyle et 

al. 2008; Heiman et al. 2008; Sanz et al. 2009). Attempts to quantify cell-type specific translation 

have used intact, ribosome-bound RNA to measure translational output. As a result, these studies 

have lacked important information regarding ribosomal positioning, making it impossible to 

determine whether increased ribosomal density is relegated to the coding region without 

additional experiments.  Furthermore, the quantification of translation in these studies has been 

complicated by the presence of the native version of the tagged “cell-specific” ribosomal protein. 

However, the most concerning feature of previous efforts to quantify translation in glioma is the 

lack of a glioma-specific marker. While genes like OLIG2 have been previously used to drive 

expression of modified ribosomal proteins used for the molecular identification of ribosomes 

derived from cells-of-interest, OLIG2 is normally expressed in glial progenitor cells and mature 

olgiodendrocytes, obfuscating the translational profile of the intended cellular population. In 

order to accurately quantify translation in the transformed cells of glioma, a new method which 

enables the identification and isolation of ribosomes derived from these specific cellular 

populations is necessary.  

Representing a unique opportunity to study a clinical disease progenitors, a recently 

developed animal model recapitulates many of the genetic and morphologic features seen in 

Proneural GBMs (Lei et al. 2011; Liu et al. 2011). We have utilized this mouse-model in 

conjunction with a recently emerged experimental paradigm which allows for molecular 

dissection of translating ribosomes from heterogeneous tissue through immunoprecipitation of 

epitope-tagged ribosomes expressed in a cell-type specific manner (Heiman et al. 2008; Sanz et 

al. 2009). Here, we retrovirally deliver Cre recombinase and PDGF-B to adult mouse brains 
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which genetically harbor floxed Rpl22 and Trp53 alleles. Via the action of cre-recombinase, the 

fourth exon of Rpl22 and the seventh exon of Trp53 are removed, inducing the expression of 

HA-tagged Rpl22 and destroying Trp53 activity. Theoretically, this restricts expression of HA-

tagged Rpl22 to transformed cells descendent from the originally infected cells and creates a 

transformation-specific epitope to isolate ribosome bound RNA from homogenized tissue.  In 

order to address these concerns related to the accurate quantification of translation, we have 

applied ribosome profiling, which allows for a genome-wide analysis of protein synthesis and 

ribosome positioning, to a mouse model which expresses only the non-native version of the 

tagged protein in cells of interest (Ignolia et al. 2009). Ribosome profiling relies on deep 

sequencing of ribosome-protected mRNA footprints and has been previously used to investigate 

a wide variety of scientific questions, including non-canonical translation yeast, and metastasis 

and invasion in cancer cell lines (Brar et al. 2012; Hsieh et al. 2012).  

 This chapter describes a strategy for cell type-specific translation measurements through 

the combination of the tissue specific RiboTag systems with ribosome profiling. We utilized 

these tools to gain genome-wide ribosomal positioning and translation information, identify 

genes selectively translated by transformed cells, and demonstrate the role of non-CDS 

sequences in controlling the translation of genes.  

 

2.2 Results 

RiboTag Glioma Model Enables Tumor-Specific Ribosome Profiling  

Translational profiling of transformed cellular populations in glioma is a challenging 

endeavor. Glioma’s are known to be diffusively infiltrative, and recruit a number of non-

transformed cellular populations into a highly heterogeneous tumor. Although dissociation of 
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transformed cellular populations is theoretically possible, these manipulations may alter the 

rapidly responsive translational network. One approach to cell-type specific profiling is the use 

of molecularly modified ribosomes. However, the specificity of genetic modification relies on 

the existence of cell type-specific promoters to drive the expression of epitope-tagged ribosomal 

proteins. In the case of glioma, an exclusive promoter has not been identified, making this a poor 

approach to characterizing transformed cells in this disease. Previously, OLIG2 was used as a 

‘glioma specific’ promoter with the bacTRAP system (Helmy et al. 2012). While this marker is 

highly expressed in transformed tissue, several studies have demonstrated that OLIG2 is also 

highly expressed in untransformed glial progenitors, mature oligodendrocytes and reactive cells 

recruited to the tumor (Assanah et al. 2006).  Due to the lack of a tumor-specific promoter, we 

developed an alternative methodology which leverages retroviral delivery of Cre recombinase to 

activate RiboTag expression only in cells exposed to transforming conditions—loss of Trp53 

function and expression of PDGF-B. The ability to both induce transformation and ribosomal 

labelling in a specific cellular population is achieved by the dual action of Cre recombinase and 

viral expression of PDGF-B. 

 The RiboTag mouse is genetically modified such that exon 4 of a core ribosomal protein, 

Rpl22, is flanked by loxP sites followed by an additional copy of Rpl22’s fourth exon with a HA-

tag appended (Figure 2.1A)(Sanz et al. 2009). The RiboTag mouse was crossed with a mouse 

harboring loxP sites surrounding exon 7 of Trp53 to generate a hybrid animal homozygous for 

both alleles (Chen et al. 2005). Cellular transformation is induced in infected cells by stereotactic 

injection of a replication-incompetent retrovirus expressing platelet-derived growth factor 

(PDGF-B) and Cre recombinase. Following viral injection, a small population of glial progenitor 

cells located in subcortical white matter is selectively infected, simultaneously deleting Trp53 
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and inducing expression of HA-tagged ribosomes. Descendants of the originally infected cells 

retain these genetic alterations and form fatal brain tumors within 30 days.  

 Similar to gliomas in human patients, the transformed cells in the RiboTag glioma model 

are highly infiltrative and intermingle with surrounding brain tissue surrounding the injection 

site. Although multiple cell types, including astrocytes, microglia, neuron, and recruited OLIG2-

expressing progenitors exist within the tumor, they lack RiboTag expression. In order to 

demonstrate the compositional heterogeneity of our RiboTag glioma tumor model, in addition to 

the specificity of HA tagging, we performed immunofluorescence to stain for canonical marker 

proteins (Figure 2.1B). HA-staining was highly associated with tumor markers such as OLIG2 

and PDGFRA while HA-staining was not observed to co-localize with canonical cellular markers 

such as GFAP, CD44, RBFOX3 and AIF1.  

 In order to determine the translational landscape of transformed cells, we first generated 

tumors in three mice. Brains were isolated, homogenized and material was divided into a portion 

destined for homogenate RNA-sequencing and the remainder used to generate ribosome 

profiling libraries. In order to generate ribosome profiling libraries, cellular lysates were digested 

with RNase I and monosomes were isolated via sucrose gradient fractionation. Following 

monosome isolation, half the material underwent immunoprecipitation to select for tumor-

specific HA-tagged ribosomes (in order to generate a tumor-cell type specific ribosome footprint 

library), and the remainder was used to generate homogenate ribosome footprint library (Figure 

3.1A). We utilized the ribosome’s periodic 3-nucleotide codon periodicity in order to 

demonstrate libraries generated from immunoprecipitated material contain footprints. 

Calculation of the power spectrum of the 5’-end mapping position for each footprint relative to 
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the annotated start codon generated a power spectrum with a peak at 0.33/nucleotide, consistent 

with the anticipated three-base periodicity of ribosomal footprints (Figure 2.1D).  

 Specificity of the RiboTag model was assessed by calculating enrichment scores of the 

three tumor samples and examining a variety of tumor and neural lineage markers (Bedard et al. 

2007; Cahoy et al. 2008; Lei et al. 2011; Verhaak et al. 2010). Enrichment scores were defined 

for each gene as the ratio of CDS counts from ribosome profiling libraries, divided by the CDS 

counts obtained from a sample’s homogenate. In agreement with immunofluorescent 

observations, markers of transformed OPCs and Proneural glioma cells were enriched in libraries 

generated from immunoprecipitated footprints, while other neural cellular makers were depleted 

(Figure 2.1E).  

 

Translational Pathways Dysregulated in Tumor Cells 

 Using ribosome density per gene, we sought to identify biological pathways which were 

altered in transformed cells. We utilized our three RiboTag immunoprecipitated ribosome 

profiling libraries and compared them to libraries generated from normal un-infected brains to 

generate a list of genes with statistically differential translation rates (P< 0.05) between the two 

groups. Differential translation of a gene between these two groups could occur due to 

compositional differences, transcriptional regulation changes or alterations at the level of 

translational regulation. This information was utilized by iPAGE, an information theory-based 

algorithm, in order to determine which gene ontologies were enriched within the tumor-

associated libraries (Figure 2.2A)(Goodarzi et al. 2009). Our results, demonstrated in figure 

2.2A, associates “Synapse” and “Cation Channel Activity” with increased translation in the 

normal brain samples, while “DNA Replication” and “Cell Division” ontologies were enriched 
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in the RiboTag enriched samples. The former ontologies may be related to the large number of 

neurons in normal cortex, while the latter highly translated ontologies would be anticipated in 

rapidly dividing transformed cells. Additionally, we identified “Structural Components of the 

Ribosome” to be highly translated in the RiboTag enriched samples, highlighting global 

upregulation of protein synthesis within the tumor.   

 We also sought to determine the translational status of cells in the tumor 

microenvironment which were not directly descendent from the inciting retro-virally infected 

cells. Similar to the previous comparison, we performed differential translation rate analysis 

between the RiboTag enriched ribosome profiling libraries and compared them to ribosome 

profiling libraries generated from the homogenate tumor-containing brains from which they were 

derived. From this list, we identified genes which were depleted by RiboTag 

immunoprecipitation, reasoning that these genes would be upregulated in cells which did not 

arise from the retrovirus-infected cells. There were roughly 100 genes which had higher 

translation rates in the tumor homogenate, but were expressed mainly in tumor-associated cells. 

These genes had a wide range of both positive and negative translation efficiencies (the ratio of 

ribosome footprints for a given gene divided by homogenate mRNA abundance for that same 

gene). Of those genes, 14 did not have significantly different levels of RNA abundance, 

highlighting alterations primarily at the level of translation. Furthermore, 13 of the 14 genes had 

positive-fold changes in translation efficiency.  

 

Translation Efficiency Reduced in Transformed Cells  

 In order to explore the role of translational regulation in tumor-associated cells, we 

calculated mean translation efficiencies from all three mice for genes that were enriched or 
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depleted by RiboTag (Figure 2.3A). The distribution of translation efficiencies is broad, 

highlighting the large dynamic range of translational control and its importance in determining 

protein output—a finding reflected in other mammalian cell types (Ignolia et al. 2011). 

Comparing the distribution of enriched and depleted genes we were surprised to find that the 

median translation efficiency of depleted genes was ~25% higher than enriched genes and that 

there was a significant difference in their translation efficiency distributions (p = 2x10
-7

, two-

sample KS-test). In order to determine if this was a tumor-specific phenomenon, we generated 

ribosome profiling libraries from three normal brains. We found that the translation efficiency 

distributions of genes enriched or depleted in the RiboTag samples were not significantly 

different in normal brain (Figure 2.3B).  Additionally, comparing the normal brain and tumor 

homogenate samples demonstrated that >88% of RiboTag-enriched genes had lower translation 

efficiencies in the tumor homogenate (Figure 2.3C). These results could be explained by global 

differences in the translational state of transformed cells.  

 

Sequence-Dependent Regulation of 5’-Leader Ribosomal Density 

 Based on libraries generated from RiboTag immunoprecipitation, we found ribosomal 

density in the 5’-leader sequences of hundreds of genes. Although annotated as non-coding, 

ribosomal density in 5’-UTRs has been implicated in several forms of translational control and 

may have a role in transformed tumor cells (Barbosa et al. 2013; Somers et al. 2013). Previous 

studies in yeast implied that upstream AUG start codons (uAUGs) in the 5’-UTR can interfere 

with translation initiation in the downstream CDS by recruiting ribosomes to the 5’-region 

(Arribere and Gilbert, 2013; Brar et al. 2012). In order to determine if 5’-leader density and 

sequence content were related to CDS translation, we determined the presence or absence of 
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non-canonical uAUG in genes with 5’-leader ribosomal density. Figure 2.4A demonstrates these 

results; CDS translation efficiency distributions are plotted for genes with 5’-leader density in 

the RiboTag profile and separated into sets of genes which either contain or lack uAUG. Within 

the RiboTag enriched samples, we found that genes without uAUG were translated ~ two-times 

more efficiently than genes with uAUG (p=4.1x10
-13

, two-sample KS-test). This trend was also 

observed in normal brain tissue (Figure 2.4B). 

 After identifying the significant differences in translation efficiency between genes 

containing 5’-leader ribosomal occupancy and either containing or lacking uAUG, we sought to 

determine if 5’-leader efficiency was differentially regulated in our glioma model. We calculated 

the 5’-leader efficiency for RiboTag and homogenate profiles (see methods). While we 

previously found that the translation efficiency of the CDS was broadly reduced in tumor 

compared to normal brain for RiboTag-enriched genes, the 5’-leader efficiency was not as 

severely affected (~90% reduction compared to ~60%). This difference is illustrated in Figure 

2.4C where histograms of the ratio of the 5’-leader efficiency fold-change relative to the CDS 

translation efficiency fold-change for transcripts containing or lacking uAUGs for RiboTag-

enriched genes with 5’-leader density. While uAUG-containing transcripts have relatively 

similar 5’-leader and CDS translation efficiency fold-changes compared to normal brain, 73% of 

transcripts lacking uAUG have their ratio of 5’-leader and CDS fold-changes greater than one. 

The difference in these distributions is statistically significant (p=0.01, two-sample KS-test) and 

can be improved upon by the inclusion of genes with 5’-leader density identified by the three 

RiboTag mice (p=4.5x10
-16

, two-sample KS-test). A possible interpretation of these results is 

that translation initiation on non-AUG start codons and canonical initiation are regulated by 

different factors which are differentially regulated in transformed cells as compared to normal 



 

37 

 

brain. While examples of non-AUG translation have previously been reported, the mechanism by 

which this is achieved remains unclear (Chang et al. 2004).  

 

2.3 Discussion 

 Translational profiling of cell types within the brain represents a unique challenge. 

Compositionally heterogeneous, and highly interconnected, efforts to dissociate and 

independently profile neural cell-types are limited by the availability of cell-type specific 

markers and translation’s rapidly responsive and dynamic nature. However, the importance of 

understanding translational control in the brain, and specifically, in glioma, has led us to develop 

molecular and analytical tools required to bypass this challenge and others specific to glioma. 

Here, we have combined a proneural glioma model with the RiboTag system and used ribosome 

profiling to generate a comprehensive and qualitative picture of translation in glioma.  

 Recapitulating the human disease of glioma, our model identified several gene ontologies 

differentially translationally upregulated. These included pathways related to cell adhesion and 

the extracellular matrix known to play a role in tumor cell invasion. We also identified global 

alterations in the translation efficiency of tumor-related genes. Globally, the translation 

efficiency of cells which descended from the retrovirus-infected lineage was lower than genes 

expressed in other CNS lineages. This result was surprising due to the high total translational 

output of the tumor as compared to the rest of the brain. Additionally, while ribosomal 

components seemed to be upregulated in the RiboTag profile, they were almost universally 

translated more efficiently in normal brain. One possible explanation could be that while 

translational capacity in glioma is globally increased, the translational machinery may still be 

saturated by even greater increases in mRNA production. An additional explanation could be that 
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tight translational control promotes an immature cellular state, as has been previously 

demonstrated (Signer et al. 2014; Tahmmasebi et al. 2014).  

 Beyond global translational changes, we also identified widespread 5’-leader ribosomal 

density in both tumor and normal brain profiles. While 5’-leader ribosomal density has been 

previously observed, its effect on protein production is poorly understood. The presence of 5’-

leader ribosomal density may not represent actively translating ribosomes but could affect the 

stability of mRNA or translation occurring in the downstream CDS. Alternatively, 5’-leader 

ribosomes may be actively engaged in the translation of upstream open reading frames (uORFs) 

generating small peptides, fusion proteins or full-length proteins from unannotated ORFs.  

 We found that the effects of 5’-leader ribosomal density were strongly dependent on 

sequence content. Genes containing uAUG in the 5’-leader sequence were found to have lower 

CDS translation efficiencies as genes lacking a uAUG. Furthermore, in comparing this effect 

between normal brain and tumor, we found that the fold-change in 5’leader and CDS translation 

efficiencies greatly diverged for genes lacking uAUG—while CDS translation efficiencies were 

globally lower in the tumor, 5’-leader translation efficiency was not as greatly reduced. This 

indicates that the process of inducing ribosomal formation in the 5’-leader must be regulated by 

alternative pathways which are differentially regulated in tumor as compared to normal brain.  

 

2.4 Conclusion  

 Cell-type specific ribosome profiling through the use of the RiboTag system has emerged 

as a powerful tool necessary to study complex and highly heterogeneous tissues such as brain 

tumors.  The altered translational landscape which we’ve identified in our Proneural glioma 

model highlights the importance of translational regulation and raises the possibility that 
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targeting translation machinery may be an effective therapeutic approach for anti-cancer 

therapies. We hope that the tools described here will be effective in assessing new therapeutic 

strategies targeting protein translation.  
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Figure 2.1 RiboTag Mouse Glioma Model and Cell Type-Specific Ribosome Profiling  

A, Schematic of the RiboTag glioma mouse model and experimental workflow. Cells infected by 

a retrovirus that expresses Cre recombinase and PDGF-B express the RiboTag (Rpl22-HA) and 

harbor a transforming genetic lesion- loss of Trp53. Polysomes are extracted from homogenate 

tumor tissue. Poly(A) RNA is selected from a portion of this for RNA-Seq. The remaining 

polysomes are digested to monosomes and purified on a sucrose gradient. The purified 

monosome sample is split in half. One half is converted into a ribosome profiling library. HA-

tagged (RiboTag) monosomes originating from the transformed cells are immunoprecipitated 

from the other half and converted into a ribosome profiling library. Translation rates from the 

homogenate and RiboTag ribosome profiles are compared to identify genes that are enriched or 

depleted in the transformed population. B, Immunofluorescence staining of tissue sections from 
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an end-stage RiboTag glioma mouse showing the diversity of cell types present in the tumor. 

Cells expressing HA (the RiboTag epitope) overlap significantly with OLIG2- and PDGFRA-

expressing cells. However, there is essentially no overlap between cells expressing HA and cells 

expressing GFAP (astrocytes), RBFOX3 (neurons), AIF1 (microglia), or CD44 (reactive 

astrocytes).  C, Survival curves for Trp53
flox/flox

 and wildtype mice after injection with PDGF-B-

IRES-Cre virus indicating a median survival time of 47+/-7 days post injection for our mouse 

glioma model. D, Power spectrum of the 5’-end read positions along CDSs for the first 500 bases 

of the CDS for all genes with a CDS length of at least 500 bases. This power spectrum was 

computed from the RiboTag profile of Mouse A, demonstrating that RiboTag 

immunoprecipitation preserves the expected three-base periodicity arising from codons as 

indicated by the clear peak at a frequency of ~0.33 nt
-1

. E) Heat map displaying the translation 

rate enrichment scores (plotted as score-1 where a score >1 indicates enrichment in the RiboTag 

profile and a score <1 indicates depletion) for several canonical markers of different cell types 

across three mice. The enrichment score is calculated by dividing the translation rate in the 

RiboTag profile by that in the homogenate profile. 
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Figure 2.2 Differential Translation Rate Analysis.  

A, Information theory-based iPAGE analysis of over- and under-represented gene ontologies in 

genes with statistically significant (p<0.05) high and low translation rate fold-changes indicating 

high translational output in the RiboTag sample and normal brain, respectively. Chromatin, DNA 

replication, cell division, and ribosomal pathways are over-represented among genes highly 

translated in the RiboTag sample, whereas coated pit, synapse, and cation channel activity 
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pathways are over-represented in the normal brain profile. B, Heat map displaying the translation 

rate fold-change and translation efficiency fold-change from differential translation rate analysis 

between the tumor homogenate and normal brain ribosome profiles. The genes in this heat map 

show statistically significant increased translation in the tumor homogenate relative to normal 

brain but are consistently depleted in the RiboTag profile, indicating expression in tumor 

associated cells. A subset of these genes, all but one of which exhibited higher translation 

efficiency in tumor tissue, was not found to have a statistically significant change in RNA 

abundance. C, Gene ontology analysis of upregulated, depleted genes from B with heat map of 

the odds ratio. Pathways in red and blue indicate overlap with Mesenchymal and Classical 

glioblastoma pathways, respectively. Pathways in purple indicate overlap with both 

Mesenchymal and Classical pathways. 
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Figure 2.3 Translation Efficiency Analysis.  

A, Histograms of the mean translation efficiency for genes that are either enriched (red) or 

depleted (green) computed from ribosome profiles and RNA-Seq of the homogenate murine 

tumor samples. The tumor-specific, RiboTag-enriched genes show a statistically significant 

tendency towards lower translation efficiency. B, Histograms of the mean translation efficiency 

for genes that are either enriched (red) or depleted (green) computed from the ribosome profiles 

and RNA-Seq of the murine normal brain samples. There is no statistically significant difference 

between the two gene sets in normal brain. C, Histogram of the translation efficiency fold-
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change between tumor homogenate and normal brain for the RiboTag-enriched and RiboTag-

depleted genes showing that ~90% of RiboTag-enriched genes are translationally downregulated 

in the murine tumors.   
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Figure 2.4 Analysis of Non-canonical Translation. 

A, Histograms of the translation efficiency of genes with 5’-leader density across all three 

RiboTag profiles that either contain (red) or lack (green) uAUG. B, Histograms of the translation 

efficiency of genes with 5’-leader density across all three normal brain profiles that either 

contain (red) or lack (green) uAUG. C, Histogram of the ratio of 5’-leader efficiency fold-change 

to CDS translation efficiency fold-change for genes with 5’-leader density in all three RiboTag 

mice and either contain (red) or lack (green) uAUG. Fold-change in 5’-leader and CDS 

translation efficiencies are calculated between the tumor homogenate and normal brain samples. 
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Table 2.1 RiboTag-Enriched Genes with Higher Translation Rates in Tumor vs. Normal 

Adam9 Frmd8 Myo9b Rpl7a 

Aebp1 Gng5 Nasp Rps12 

Afap1l2 Gsx1 Nav2 Rps2 

Aldh1a3 H2afy2 Nhsl1 Rps29 

Arfgap3 Igf2bp2 Notch1 Rps9 

Atp5g2 Igfbp3 Pde8a Rrm2 

Bag3 Incenp Pdlim4 Sall3 

Birc5 Jam3 Pdlim5 Sapcd2 

Ccnd1 Kdm6b Plk1 Scrg1 

Cd276 Kif20a Plxnb3 Socs3 

Cdkn2a Kif2c Pnlip Spc24 

Ckap2l Klf3 Ppfibp1 Spry2 

Col11a1 Knstrn Ppp1r18 Spry4 

Creb5 Lima1 Prdx4 Sulf2 

Cspg4 Lix1l Qpct Tagln2 

Dcps Lmnb1 Rbmx Tk1 

Dnmt1 Lnx1 Rcc1 Tmpo 

Epn2 Matn4 Rhoc Trib2 

Ezh2 Mcm10 Rpl18 Trim25 

Fam101a Mcm2 Rpl18a Tubb2b 

Fam64a Metrn Rpl19 Tubb6 

Fam83d Midn Rpl21 Vim 

Fbl Morc4 Rpl27a Ybx1 

Fbn2 Moxd1 Rpl28 Zfp488 

Fgfrl1 Mpzl1 Rpl35a  
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Table 2.2 RiboTag-Depleted Genes with Higher Translation Rates in Tumor vs. Normal 

Abca1 Col6a3 Itgam Postn 

Abcc1 Cpne3 Itgb2 Prc1 

Abcg2 Ctsc Kdr Psmb8 

Acan Ctss Klhl5 Ptpn12 

Aldh1a2 Dcn Lama4 Ptprb 

Anxa2 Dock1 Lamb1 Rrbp1 

Aspm Ecm1 Lgals3bp S100a6 

B2m Ednrb Lig1 Scpep1 

C1qtnf6 Eltd1 Lmf2 Sec61a1 

Cad Emp1 Lrg1 Serpine1 

Cd248 Enpp1 Lum Serpinf1 

Cd74 Ercc6l Lyn Slc16a3 

Cd93 Esam Lyz2 Smc4 

Cd97 Fancd2 Mmp2 Snx9 

Cdca8 Fat1 Mmp9 Spp1 

Cdh5 Flna Mpeg1 Stab1 

Chst11 Fn1 Mtap Syde1 

Clic1 Gene Ncapd3 Thbs1 

Col15a1 Gnb2l1 Nid2 Thbs2 

Col19a1 Gnb4 Nup188 Tm4sf1 

Col3a1 Gpr56 Nup205 Tnc 

Col4a1 Grn Nup93 Top2a 

Col4a2 Igfbp7 Pdgfrb Usp24 

Col5a2 Itga1 Pglyrp1 Vwf 

Col5a3 Itga7 Plau Zfp191 
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CHAPTER 3 

Ligation-Free Ribosome Profiling of Cell Type-Specific Translation 

in the Brain 

 

 

 
3.1 Background 

 

Abstract 

 

Ribosome profiling has emerged as a powerful tool for genome-wide measurements of 

translation, but library construction requires multiple ligation steps and remains cumbersome 

relative to more conventional deep sequencing experiments. In this chapter, I discuss a new, 

ligation-free approach to ribosome profiling that does not require ligation.  Highlighting this 

approaches benefits, library construction for ligation-free ribosome profiling can be completed in 

one day with as little as 1 ng of purified RNA footprints. Ligation-free ribosome profiling was 

applied to mouse brain tissue to identify new patterns of cell type-specific translation and tested 

its ability to identify translational targets of mTOR signaling in the brain. 

 

Introduction 

 

Ribosome profiling allows genome-wide measurements of ribosomal occupancy with 

single nucleotide resolution (Ingolia, 2009). Using deep sequencing as a readout for protein 

synthesis, the technique has enabled the discovery of previously unannotated open reading 

frames (ORFs) (Ingolia, 2009;Ingolia, 2011;Brar, 2012;Calviello, 2016) and provided new 

insights into the mechanisms of translation initiation and elongation (Lareau, 2014), localized 

translation (Jan, 2014), and the signaling pathways underlying translational control (Thoreen, 

2012;Hsieh, 2012). In addition, ribosome profiling has been applied in many cellular contexts 
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including yeast (Ingolia, 2009), bacteria (Oh, 2011), primary mammalian cells (Ingolia, 2011), 

and complex tissues (Gonzalez, 2014) to assess the role of translational control in basic 

physiological processes and its dysregulation in diseases like cancer.  

While ribosome profiling is widely used, the library preparation procedure is relatively 

complex (Ingolia, 2012). Most protocols involve nuclease footprinting of polysomal RNA 

followed by purification of ribosome-bound mRNA footprints using a sucrose gradient, sucrose 

cushion, or gel filtration column.  After isolation of mRNA footprints by gel electrophoresis, one 

of multiple library preparation schemes is used to attach universal sequence adapters to the 

mRNA or cDNA footprints using either single-stranded intermolecular ligation (Guo, 

2010;Weinberg, 201682) and/or intramolecular circularization (Ingolia, 2009;Ingolia, 2012) 

(Figure 3.1A). Because these protocols often involve multiple ligation, gel purification, and 

nucleic acid precipitation steps, library preparation alone typically takes several days (Ingolia, 

2012).  Here, we report a new approach to library construction for ribosome profiling that 

eliminates ligation and requires only one initial gel purification step to isolate RNA footprints 

(Figure 3.1A). The procedure, which is based on template-switching (Luo, 1990;Zhu, 2001), is 

highly sensitive and requires only ~1 ng of gel-purified RNA footprints.  Following footprint 

isolation, library construction for ligation-free ribosome profiling can be completed in one day. 

In addition to characterizing the performance of ligation-free ribosome profiling, we 

applied our technique to assess cell type-specific translational regulation in the murine brain. The 

brain harbors a broad diversity of cell types including astrocytes, oligodendrocytes, microglia, 

glial progenitors, endothelial cells, and many different types of neurons that likely control 

translation through different signaling pathways. In addition, many neuron-specific transcripts 

are translated locally in dendrites, and translational control has been shown to play a key role in 
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memory (Cho, 2015;Kelleher, 2004;Kandel, 2001;Davis, 1984). We took advantage of a recently 

reported database of neural cell-specific gene expression (Zhang, 2014) to identify patterns that 

indicate cell type-specific regulation of translation. As an orthogonal validation for neuron-

specific genes, we used the RiboTag system (Sanz, 2009) to purify and identify actively 

translated transcripts from excitatory neurons in the cortex of Camk2a-Cre/RiboTag mice. 

Finally, we used our technique to identify the genes controlled by mTOR signaling in the brain 

by conducting ribosome profiling on the brains of mice treated with AZD-8055, an ATP-

competitive inhibitor of mTOR that crosses the blood-brain barrier (Chresta, 2010;Pike, 2013). 

 

3.2 Results 

 

A Ligation-Free Protocol for Ribosome Profiling 

 

Ribosome profiling is more complicated than conventional RNA-Seq because the 

ribosome-protected mRNA footprints are short (~30 nucleotides) and lack poly(A) tails, which 

are often used as handles for either isolation or reverse transcription of eukaryotic mRNA. 

Previously established protocols for ribosome profiling address this problem by single-stranded 

ligation of a universal adapter to the 3’-end of mRNA footprints to facilitate reverse 

transcription, which incorporates a longer adapter into the 5’-end of the resulting cDNA (Ingolia 

et al. 2012). Intramolecular ligation (circularization) of the cDNA effectively attaches a universal 

adapter to the 3’-end of the cDNA to enable PCR enrichment of the library (Ingolia et al. 2012). 

Alternatively, a second ligation reaction can be used to attach an adapter to the 3’-end of the 

cDNA. These ligation reactions are notoriously inefficient and require excess adapter which is 

typically removed by gel purification and subsequent overnight precipitation of the product 

(Ingolia et al. 2012). These multi-step procedures and intermediate purification steps require 
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multiple work days, are intrinsically lossy, and therefore require relatively high input (Ingolia et 

al. 2012).  

To address these issues, we have applied the template switching approach to library 

construction that has been successfully implemented in other low-input RNA sequencing 

protocols such as single cell RNA-Seq (Islam et al. 2011;Ramskold et al. 2012;Picelli et al. 

2014). Specifically, we have adapted a newly developed version of the SMARTer library 

construction technology (Clontech) for ribosome profiling (Figure 3.1A).  We first polyadenylate 

dephosphorylated RNA footprints using RNA poly(A) polymerase, similar to the earliest 

reported protocol for ribosome profiling (Ingolia et al. 2009). We then reverse transcribe the 

polyadenylated footprints using an enzyme with template-switching activity.  In a template 

switching reaction, the reverse transcriptase (RT) first extends a primer (in this case oligo(dT) 

linked to a universal sequence on its 5’-end) to produce cDNA. Once the RT reaches the end of 

the RNA template, the terminal transferase activity intrinsic to the RT adds a low complexity 

sequence to the 3’-end of the cDNA in a non-template directed fashion. The reaction is carried 

out in the presence of a second universal sequence adapter that is 3’-terminated with a low-

complexity sequence, which hybridizes to the tail added to the cDNA by the RT. Upon 

hybridization of this second sequence adapter, the RT switches templates and copies the second 

adapter onto the 3’-end of the cDNA. As a result, both 5’ and 3’ universal adapters are 

simultaneously added to the cDNA in a single reaction without single-stranded ligation or 

intermediate purification steps. We then deplete the resulting product of rRNA using 

complementary oligonucleotides (Ingolia et al. 2012) and enrich the deep sequencing library by 

PCR. 

 



 

53 

 

Comparison of Ligation-Free and Conventional Ribosome Profiling 

 

We used ligation-free ribosome profiling to measure genome-wide translation in the 

forebrains of adult mice. Unlike fragments generated in RNA-Seq, ribosome footprints map to 

the transcriptome with a three-nucleotide periodicity due to the characteristic translocation 

interval of the ribosome as it translates codons (Ingolia et al. 2009). To verify that the RNA 

libraries generated using our technique originate from ribosome footprints, we computed the 

power spectrum of the 5’ mapping positions of RNA fragments (Figure 3.1B). As expected, the 

data are highly periodic with a characteristic frequency of ~0.33 nucleotides
-1

, similar to what 

has been observed for conventional ribosome profiling (Ingolia et al. 2009). In addition to three-

nucleotide periodicity, ribosome profiling also exhibits a characteristic gene body distribution. 

The majority of reads are expected to map to the coding sequences (CDS) of transcripts, whereas 

relatively few should map to the untranslated regions (UTRs)(Ingolia et al. 2009). Many genes 

have been shown to contain unannotated upstream ORFs (uORFs), and so we also expect that 

more reads will map to the 5’-UTRs than the 3’-UTRs, as 3’-UTRs are largely depleted of 

ribosomes. As shown in Figure 3.1C, ligation-free ribosome profiling reads map to the 

transcriptome with the expected gene body distribution.  

To further validate the technique, we compared these results to our previously reported 

mouse forebrain data that we generated using conventional ribosome profiling (Gonzalez et al. 

2014). Figure 3.1D shows that the ribosome footprint counts for each gene across the two data 

sets are highly correlated.  We also compared the gene detection efficiency, saturation properties, 

and library complexities of the two data sets. We note that in our previously reported experiment 

with conventional ribosome profiling, we used more input monosomal RNA for library 

construction than in the current experiment with ligation-free ribosome profiling.  In Figures 
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3.1E and 3.1F, we use downsampling analysis to show that the two data sets are quite similar in 

terms of both the number of genes detected and number of unique ribosome footprints detected, 

respectively, at a given sequencing depth. These results imply that the library complexities 

produced by the two protocols are highly comparable.  

In order to determine the sensitivity of both conventional and ligation free ribosome 

profiling, we generated libraries from a defined 34-base RNA oligonucleotide at five input levels 

ranging from 0.01 to 100 ng.   We constructed Illumina libraries from each dilution using the 

convention ribosome profiling protocol described by Ingolia et al (Ingolia et al. 2012) and the 

ligation-free protocol described here. We then assessed our yield for each dilution using an 

Agilent Bioanalyzer (Figure 3.6). We found that the ligation-free method is more sensitive and 

able to generate detectable libraries from less than 1 ng of input. For both methods we were able 

to generate quantifiable libraries, however, we were only able to generate libraries at 10 and 100 

ng of input when using conventional protocol with nine PCR cycles. In contrast, we were able to 

generate detectable libraries at all concentrations tested when using the ligation-free protocol 

with nine PCR cycles. We note that the 10 and 100 ng input libraries made with the ligation-free 

protocol exhibit over-amplification as evidenced by a broader product length distribution at 

higher-than-expected molecular weights. To directly compare all of the samples, we kept the 

number of PCR cycles constant and note that lower cycle numbers could be used to avoid over-

amplification of higher input libraries with the ligation-free protocol. In addition, we note higher 

cycle numbers may result in sufficient library yields for the conventional protocol at lower 

concentrations, although this could result in increased amplification bias.  
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Cell Type-Specific Translation in the Brain 

 

One of the key metrics obtainable from ribosome profiling experiments is the translation 

efficiency (TE), which can be computed for each gene as the ratio of its ribosome footprint 

density to its expression level measured by RNA-Seq (Ingolia et al. 2009). TE is proportional to 

the number of ribosomes per transcript averaged over all copies of a given gene.   

We used ligation-free ribosome profiling and RNA-Seq to measure TE in the brain of an 

adult mouse, a complex tissue comprised of many different cell types. Both ribosome footprint 

densities and expression levels are complicated by cellular composition. This is also true to a 

large extent for TE, however, because TE is a ratio, the TE measured in homogenized tissue for a 

cell type-specific gene is accurate for both the tissue and the specific cell type that expresses the 

gene. Figure 3.2A shows the broad distribution of TEs for genes expressed in the brain of an 

adult mouse. While this result implies that there is a great deal of translational regulation in the 

brain, it tells us nothing about the contributions of different cell types.  

We validated our TE measurements by performing qPCR on a set of highly translated 

(Syt1, Snap25) and lowly translated (Trpv6, Tgfb1, Pkd1) genes based on our ribosome profiling 

data. We first used sucrose gradient fractionation to separate mRNAs based on the number of 

bound ribosomes and collected fractions. We then used qPCR to assess the relative abundance of 

each gene in each fraction (Figure 3.7). There are several complications associated with directly 

comparing qPCR data obtained from polysome profiles and ribosome profiling data. While the 

majority of transcripts for a highly-translated gene may appear in polysomes with more than five 

ribosomes per transcript, resolution constraints make it difficult to accurately measure the 

number of bound ribosomes for each fraction, particularly for heavier polysomes. Furthermore, 

calculating TE based on log ratios without correcting for cytosolic mRNA levels has been 



 

56 

 

previously shown to produce an inaccurate estimation of TE (Larsson et al. 2010). While it is 

difficult to quantitatively compare TE calculated from next-generation sequencing to that 

obtained from qPCR, we found that the highly translated genes probed are clearly shifted to 

heavier polysomes compared to the lowly translated genes probed. For example, we found that 

the maximum abundance of the highly translated genes Syt1 and Snap25 were in the seventh and 

ninth polysome fractions (greater than five ribosomes per transcript), respectively (Figure 3.7). 

However, the maximum abundances of Trpv6, Tgfb1, and Pkd1, all of which are lowly 

translated, were in the fourth and fifth fractions (two or three ribosomes per transcript). 

We also compared our ligation-free ribosome profiling and RNA-Seq data with a 

previously published whole-brain mass-spectrometry data-set obtained from a mouse of similar 

genetic background and age (Sharma et al. 2015). We found that our ribosome profiling data was 

better correlated with protein abundance in the brain than our corresponding RNA-Seq 

measurements (Figure 3.8). Hence, some of the difference in the explained variance may be 

attributable to the contribution of translation regulation on protein expression. This result is 

consistent with previously published observations in yeast in which mass spectrometry, RNA-

Seq, and ribosome profiling were compared (Ingolia et al. 2009).  

A recent study by Zhang and colleagues produced RNA-Seq expression profiles from 

seven different cell types in the brain by sorting or immune-panning, including astrocytes, 

neurons, oligodendrocyte progenitor cells (OPCs), newly formed oligodendrocytes, myelinating 

oligodendrocytes, microglia, and endothelial cells (Zhang et al. 2014). We used this data set to 

compute cell-type enrichment scores proportional to the specificity with which each gene is 

expressed in each cell type (see Methods). We then divided the transcriptome into ten gene sets 

evenly binned by TE and conducted gene set enrichment analysis (GSEA) against rank-ordered 
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lists of cell-type enrichment scores for each cell type (Subramanian et al. 2005). This analysis 

allowed us to systematically associate genes with varying degrees of cell type specificity and TE. 

The normalized enrichment score (NES) for each GSEA is shown in the heatmap in Figure 3.2B 

(with bin-by-bin and cell type-by-cell type statistical analysis in Figure 3.9), which reveals 

several interesting patterns. First, we found that microglial genes generally exhibit low TEs. 

Because we are studying the brains of healthy mice, these microglia are presumably not in an 

activated state. Previous studies have shown that protein synthesis-associated pathways are 

upregulated in microglia in certain disease contexts (Chiu et al. 2013), and so these results could 

be dependent on genotype or other activating conditions such as injury or an inflammatory 

stimulus. Conversely, neurons, when considered as a broad group, exhibit the highest degree of 

variation in TE among their cell type-specific genes. As shown in Figure 3.2B, most neuronal 

genes are either very highly or very lowly translated, suggesting that neuronal genes are under a 

relatively high degree of translational regulation in comparison to other cell types in the brain.  

Translational control is well-known to play an important role in neuronal function and 

memory formation. Structurally, neurons are highly complex cells that make extensive use of 

local translation to efficiently modulate protein expression far from the soma (Steward et al. 

2001). To validate our observation that neuronal genes are highly translationally regulated, we 

used the RiboTag system to isolate polysomal mRNAs from a specific neuronal subtype, namely 

excitatory neurons that express Camk2a. As shown in Figure 3.2C, the RiboTag mouse harbors a 

modified ribosomal protein L22 (Rpl22) gene with a floxed terminal exon followed by a second 

copy of the terminal exon with a triple hemagluttinin tag (HA-tag)(Sanz et al. 2009). We crossed 

the RiboTag mouse with a mouse that expresses Cre recombinase under the control of the 

Camk2a promoter to produce mice which express HA-tagged ribosomes in Camk2a-expressing 
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cells. Figure 3.2D shows that, as expected, the HA-tag is expressed exclusively in neurons, 

marked here by the pan-neuronal marker NeuN (Rbfox3). Hence, we can isolate polysomes from 

homogenized brain tissue of Camk2a-RiboTag mice and purify mRNA-ribosome complexes that 

originate from Camk2a-expressing neurons by immunoprecipitation (IP) of the HA-tag (Figure 

3.2C). We obtained RNA-Seq expression profiles from both homogenized brain tissue and 

immunoprecipitated polysomes of two Camk2a-RiboTag mice. We compared the expression 

levels of each gene in the immunoprecipitated and homogenate profiles and observed that 

canonical markers of excitatory neurons were enriched by IP, whereas markers of other cell 

types in the brain, including inhibitory neurons, were depleted by IP (Figure 3.2E). We then 

repeated the GSEA described above with TE gene sets and genes rank-ordered based on their 

enrichment by RiboTag IP. This analysis recapitulated the results found for neuronal genes 

derived from purified neurons in that genes specific to Camk2a-expressing neurons, and not just 

neurons in general, appear highly translationally regulated (Figure 3.2B). A subset of genes 

expressed in these neurons exhibit relatively high TE, while the remaining exhibit relatively low 

TE. Not only do these results provide an orthogonal validation of our GSEA based on pan-

neuronal gene expression, they also show that the pattern holds for a specific subtype of 

excitatory neurons in the cerebral cortex. 

Finally, these data reveal a simple developmental trend in the oligodendrocyte lineage. 

Oligodendrocytes, which are primarily responsible for enwrapping neuronal axons with myelin 

sheaths, are a unique cell type in that their progenitor cells (OPCs) are widely distributed in the 

adult brain, where they actively proliferate and differentiate to generate new myelinating 

oligodendrocytes. Hence, we can detect gene expression and translation from different stages of 

oligodendrocyte development within homogenized brain tissue. Based on our analysis, OPC-
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specific genes are translated more efficiently than those of either newly formed or mature, 

myelinating oligodendrocytes, which exhibit the lowest TE of the three. As shown in our 

statistical analysis in Figure 3.9, the comparison between OPCs and myelinating 

oligodendrocytes is very significant for highly translated genes as is the comparison between 

newly formed oligodendrocytes and myelinating oligodendrocytes. While one might expect 

myelinating oligodendrocytes to be less translationally active in comparison to OPCs because 

they are post-mitotic, their primary role in the brain is to produce large amounts of myelin, which 

is comprised mainly of proteins and lipids. Nonetheless, we found that most myelin genes have 

low TE compared to the overall median in the brain (log2(TE) = -0.02) including Mog (-0.15), 

Mbp (-0.51), Mobp (-1.42), and Mag (-0.28) with the exception of the transmembrane protein 

Plp1, which has a TE of 1.02. Hence, despite the importance of protein synthesis to the function 

of myelinating oligodendrocytes, translation of oligodendrocyte-specific genes is relatively 

inefficient. 

We used gene ontologies (GOs) to further refine these insights into cell type-specific 

translation. In Figure 3.3, we used GSEA to identify GOs that were strongly associated with cell 

type-specific genes from each of six cell types in the brain. We then produced heat maps 

indicating the median TE of each GO. Figure 3.3 contains many of the qualitative patterns found 

in Figure 3.2B, with neuronal GOs exhibiting a broad range of TEs and microglial and 

oligodendrocyte GOs exhibiting relatively low TEs. In addition, this analysis reveals some of the 

gene functions associated with the highly translated and lowly translated neuronal genes. For 

example, genes associated with synaptic function, particularly those that are released by neurons 

in a synapse, are generally highly translated.  Conversely, sodium, potassium, and most 

particularly, calcium channels exhibit much lower TEs. 



 

60 

 

 

uORFs and 5’-UTRs in the Brain 
 

One of the most intriguing findings of ribosome profiling studies in eukaryotes is the 

prevalence of unannotated upstream open reading frames (uORFs) which manifest as ribosomal 

density in the 5’-UTRs of mRNAs(Ingolia et al. 2009;Brar et al. 2012;Calviello et al. 

2016;Ingolia et al. 2011). Recent studies have further refined these observations using 

computational methods to infer which instances of 5’-UTR density actually represent active 

uORF translation and correlate with direct observations of specific peptides in mass spectrometry 

(Calviello et al. 2016). Using our mouse brain dataset produced with ligation-free ribosome 

profiling, we have investigated the 5’-UTR ribosomal density among cell type-specific genes. 

Figure 3.4A shows that we detect 5’-UTR ribosomal density in a consistent fraction of genes 

across all cell type-specific gene sets. Previous studies using conventional ribosome profiling 

have shown that 5’-UTR ribosomal density is associated with different levels of CDS translation 

depending on sequence context (Brar et al. 2012;Arribere et al. 2013;Gonzalez et al. 2014). 

Specifically, 5’-UTRs that harbor ribosome density but do not contain AUG sequences are 

associated with genes with higher TE in the annotated CDS, suggesting a potential regulatory 

role for upstream ribosomal density. Figure 3.4B shows that this general trend is borne out across 

all of our cell type-specific gene sets. 

We also sought to determine how more general features of the 5’-UTR affect translation 

efficiency of the corresponding CDS in the brain. Figure 3.4C contains a heat map that 

simultaneously displays the relationships between CDS TE and both the length and GC-content 

of the 5’-UTR across the transcriptome. Figures 3.4D and 3.4E display these relationships 

independently. In general, longer 5’-UTRs are associated with low TE and both high and low 
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GC-content are associated with low TE. Previous studies have shown that genes with highly 

structured 5’-UTRs are less abundant at the protein level in yeast (Dvir et al. 2013) which is 

consistent with the reduced TE associated with long, GC-rich 5’-UTRs observed here.  

 

Translational Targets of mTOR in the Brain 
 

A common application of ribosome profiling is the identification of translational 

alterations in response to perturbations such as drug treatment or stress. Cells have evolved 

elegant mechanisms for regulating the translation of specific genes, often through the interaction 

of signaling molecules with translation factors that control TE through specific cis-regulatory 

elements in mRNA. We sought to further test the efficacy of our ligation-free ribosome profiling 

method in the context of this important application by identifying the translational targets of 

mTOR signaling in the brain. 

mTOR plays a crucial role in the translational control of ribosomal proteins and protein 

factors involved in translation initiation and elongation (Meyuhas et al. 2000). Many of these 

genes contain a terminal oligopyrimidine or TOP motif in their 5’-UTRs through which 

translational control is thought to be mediated (Meyuhas et al. 2000). Multiple studies have used 

ribosome profiling to show that mTOR inhibition causes a coherent decrease in the TEs of the 

TOP motif-containing genes in cell culture (Hsieh et al. 2012;Thoreen et al. 2012). mTOR is an 

important drug target in multiple neurological disorders (Wong et al. 2013). For example, 

rapalog inhibitors of mTOR have been shown to mitigate seizures in certain contexts (Wong et 

al. 2013).  We sought to determine whether mTOR controls the same set of target genes in brain. 

We treated mice for one hour with AZD-8055, an ATP-competitive inhibitor of mTOR 

that has been shown to cross the blood-brain barrier (Chresta et al. 2010;Pike et al. 2013). We 
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used a competitive inhibitor because previous work has shown that allosteric mTOR inhibitors 

like rapamycin do not induce the same level of translational alterations as competitive inhibitors 

(Hsieh et al. 2012). This is, in part, because allosteric compounds do not fully inhibit 4E-BP 

phosphorylation, which is thought to be the primary mediator of translational control through 

which mTOR acts (Thoreen et al. 2012). Figure 3.5A shows the effects of AZD-8055 on the 

phosphorylation of Rps6, which is phosphorylated by the protein kinase Rps6kb1 (i.e. p70S6K) 

that is activated by mTOR.  As expected, Rps6 phosphorylation is clearly detectable in the brain, 

particularly in neurons, in an untreated mouse, but becomes undetectable in a mouse treated with 

AZD-8055 based on both immunofluorescence (Figure 3.5, A) and Western blot analysis (Figure 

3.10). 

We used ligation-free ribosome profiling to compare genome-wide TEs in mice treated 

with AZD-8055 and vehicle-treated mice. We then conducted a differential TE analysis 

comparing the treated and untreated conditions to identify genes with significant translational 

alterations (see Methods). Figure 3.5B shows that overall, the amplitude of the observed 

alterations in TE are much larger than those found at the level of transcription alone. In addition, 

Figure 3.5B shows that all of the canonical TOP motif-containing genes exhibit reduced TE in 

the brains of mice treated with the mTOR inhibitor AZD-8055. Furthermore, most of these TE 

changes are highly significant based on our differential translation analysis (Figure 3.5, C). 

Overall, we found 37 genes with significant TE reduction after treatment and fold-change 

amplitudes greater than two. Of these 37 genes, 25 were in the list of canonical TOP motif-

containing genes (Thoreen et al. 2012). Of the remaining 12 genes, all but one are ribosomal 

proteins and all 12 genes clearly contain TOP motifs. Not only do these results further validate 

our ligation-free ribosome profiling technique, they also demonstrate rapid and widespread 
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translational control of the TOP motif-containing genes by mTOR in the brain only one hour 

following administration of an inhibitor.  

 

3.3 Discussion 

We have demonstrated a new approach to library construction for ribosome profiling and 

used it to show new cell type-specific patterns of protein synthesis in the brain. Through the use 

of template-switching, we bypassed several inefficient and time-consuming steps associated with 

conventional ribosome profiling such as ligation, and eliminated almost all gel purification steps.  

Using ligation-free ribosome profiling, we can construct libraries from as little as 1 ng of purified 

RNA footprints, and the resulting library complexity and gene detection efficiency is comparable 

to that of conventional ribosome profiling.  Furthermore, due to the elimination of several 

enzymatic and precipitation steps, the amount of time required to perform library construction 

with ligation-free ribosome profiling is as little as one day following isolation of RNA footprints.   

Although ligation-free ribosome profiling offers the advantages described above, 

conventional ribosome profiling has some advantages in terms of resolving ribosome footprints. 

Both the 3’- and 5’-ends of ligation-free ribosome profiling reads are associated with low 

complexity sequences. Specifically, the 3’-end is poly(dA) and the 5’-end is another low 

complexity sequence. This complicates precise determination of the ribosome footprint insert 

sequence- a problem that is resolved by ligation of specific sequence adapters in the conventional 

library construction protocol. Nonetheless, for the purposes of measuring translation efficiency 

and other metrics presented here, this shortcoming does not pose a major issue.  

Using ligation-free ribosome profiling, we have shown that genes expressed in specific 

cell types exhibit distinct distributions of translation efficiency in the brain. Interestingly, most 
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neuron-specific genes have either relatively high or low translation, implying that they are under 

a high level of translational regulation. We validated these findings in Camk2a-expressing 

neurons using the RiboTag system, which allows isolation of polysomal mRNA from specific 

cell types. At the level of gene ontologies, neuron-specific genes involved in synaptic function 

are efficiently translated as a group compared to, for example, neuron-specific ion channels. We 

also found that genes associated with three stages of oligodendrocyte differentiation exhibited 

different translation efficiencies. OPC-specific genes were translated more efficiently than genes 

specific to newly formed oligodendrocytes, while fully differentiated, myelinating 

oligodendrocyte-specific genes had the lowest translation efficiency of the three stages.  We have 

also determined the relationship between CDS translation efficiency and the GC-content and 

length of 5’-UTR sequences in the brain. In general, long, GC-rich 5’-UTRs are associated with 

low translation efficiency, consistent with the notion that genes containing highly structured 5’-

UTRs are lowly translated. Finally, we observed widespread translational repression of genes 

containing the TOP-motif in response to mTOR inhibition.  Our treatment window was just one 

hour, suggesting that these alterations comprise the earliest effects of competitive mTOR 

inhibition in the brain. 

 

3.4 Conclusion 

Taken together, the above results provide convincing evidence that ligation-free ribosome 

profiling allows rapid and quantitative translational profiling, even in complex tissues like the 

mammalian brain. We anticipate that the simplified procedure described here will expand the use 

of ribosome profiling, and may enable new, low-input or larger-scale applications. 
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Figure 3.1 Comparison of Ligation-Free Ribosome Profiling to Conventional Methods  

A, Schematic of the steps involved in conventional ribosome profiling and ligation-free ribosome 

profiling. B, The power spectrum of 5’ mapping positions from CDS reads resulting from 

ligation-free ribosome profiling method shows clear three-base periodicity that is characteristic 

of ribosome profiling libraries and reflects the single-codon translocation of the ribosome. C, 

Gene body distribution of mapped reads from ligation-free ribosome profiling show strong 
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preference for coding-sequence, an additional property inherent to ribosome profiling libraries. D, 

Comparison of the number of uniquely mapped reads per gene in libraries generated with 

footprints from mouse-forebrains prepared with conventional ribosome profiling strategy and the 

ligation-free method; the Pearson correlation r = 0.97 indicates a concordance between the two 

methods. E, Saturation analysis showing the number of unique genes detected following 

downsampling of ligation-free ribosome profiling and conventional ribosome profiling. F, 

Saturation analysis showing the number of unique footprints detected following downsampling 

of ligation-free ribosome profiling and conventional ribosome profiling. 
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Figure 3.2 Unique Patterns in the Translation Efficiency of Cell Type-Specific Genes in the 

Brain  

A, Histogram showing the broad range of translation efficiencies (TEs) across genes expressed in 

the mouse brain based on ligation-free ribosome profiling. B, TEs measured in two different 

mouse brains with ligation-free ribosome profiling were combined with cell type-specific RNA-

Seq data to systematically associate cell type-specific gene expression and TE. We used gene set 

enrichment analysis (GSEA) to associate gene sets assembled from genes with similar TEs with 

a ranked list of all genes order by cell type-specificity for each cell type in the brain. The 

resulting heatmaps show the enrichment of genes with different TEs in cell type-specific genes 

for each cell type. Cell type specific genes were identified using either RNA-Seq data from 

sorted populations or RiboTag RNA-Seq data (for Camk2a-expressing neurons). C, A schematic 

of the RiboTag mouse model shows how the Camk2a-RiboTag mouse was generated. This 
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provides an orthogonal means of identifying neuron-specific genes that are actively translated. D, 

Fluorescence imaging shows that Rpl22-HA (from the RiboTag allele) expression is specific to 

Rbfox3+ (NeuN+) cells (a pan-neuronal marker). E, Heatmap of the RiboTag enrichment scores 

following immunoprecipitation of polysomes from Camk2a-RiboTag mouse brains demonstrates 

strong enrichment of genes specific to excitatory neurons and depletion of genes specific to other 

cell types in the brain in two different mouse brains.  
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Figure 3.3 Cell-Type Specific Gene Ontologies Recapitulate Global Translation Efficiency 

Trends  

We used GSEA to identify gene ontologies enriched in cell type-specific genes. An enrichment 

score was calculated for all genes in each cell-type based on RNA-Seq data from sorted neural 

cell types. This information was placed into six different rank lists, one for each cell type. A gene 

ontology was defined as being cell-type specific if it had a NES score for a cell-type that was at 

least three units greater than the next highest NES score. Ligation-free ribosome profiling 

datasets from two mouse brains were averaged and used to calculate the median translation 

efficiency for each ontology. Highly enriched ontologies and their median translation efficiencies 

in descending order are displayed in the heatmaps.    
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Figure 3.4 Features of 5' UTRs are Associated With CDS Translation 

 A, The percentage of cell-type specific genes with at least one ribosome footprint mapping to 

their 5'UTR is plotted alongside with the percentage of cell-type specific genes with 5'UTR 

ribosomal density and also containing a uAUG sequence. These values are highly consistent 

across cell types. B, Genes containing a uAUG and 5'UTR ribosomal density had lower CDS TE 

compared to genes without a uAUG. This effect was consistent across multiple cell types and 

was significant for myelinating, microglial, and endothelial cells. Furthermore, this effect was 

seen regardless of cell-type specificity. C, Heatmap showing the relationship between 5’ UTR 

GC content, 5’UTR length and CDS TE. Very high and very low GC content are associated with 

lower median TE. As the length of the 5’UTR increases, the median TE of the CDS decreases. * 

represents at p ≤ .05, ** represents p ≤ 0.01 and *** represents P ≤ 0.001. D, The relationships 

between 5’UTR length and GC content are independently plotted against median TE for each 

length or GC-content bin. Significance is denoted the same as in Fig. 3.4c.  
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Figure 3.5 mTOR Controls TOP-Motif Containing Genes in the Brain 

A, Treatment for one hour with AZD-8055 was sufficient to drastically decrease levels of 

phosphorylated Rps6 in mouse brains. HA-staining indicates the presence of HA-tagged Rpl22 

(RiboTag) in cells expressing Camk2a. B, Comparison of RNA and TE fold-changes between 

AZD-8055-treated and untreated mice. TE exhibits larger amplitude changes that RNA levels in 

response to mTOR inhibition in the brain. The TE of TOP-motif containing genes are greatly 

reduced. C, Genes with significant differential translation efficiency were identified with 
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RiboDiff and genes with significant differential RNA expression were identified with DESeq2. 

The Venn diagram shows the overlap between genes with significant translational reduction after 

AZD-8055 treatment, ribosomal proteins, and TOP-motif containing genes. 

 

 

Figure 3.6 Sensitivity of Conventional and Ligation-Free Strategies 

Ligation-free and conventional libraries were generated from a serially diluted 34-base RNA 

oligonucleotide and analyzed via Bioanalyzer following an equal number of PCR cycles for each 

library. All ligation-free library preparations except for the 0.01 ng sample were loaded onto the 

Bioanalyzer at a 1:10 dilution to avoid saturating the detector at high concentrations. Detectable 

libraries were successfully generated for all concentrations using the ligation-free method, but 

could only be generated using conventional methods for the 100 and 10 ng inputs.  
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Figure 3.7 Highly Translated Genes are Shifted to Heavier Polysomes 

qPCR was performed with 5 probes on fractions isolated from a polysome profile from left 

frontal lobe brain tissue. A, Genes found to be highly translated in ribosome profiling data, Snap-

25 and Syt1, were found to be shifted to heavier polysomes; fractions 8 and 9. Genes found to be 

lowly translated, Tgfb1, Trpv6, and Pkd-1 were found to be most concentrated in lighter 

polysomes, fractions 4 and 5. B, The polysome profile denotes from which portion of the profile 

fractions were obtained.  
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Figure 3.8 Comparison of Ligation-Free Ribosome Profiling and RNA-Seq to Protein 

Abundances Measured by Mass Spectrometry 

RNA-Seq and ligation-free ribosome profiling data from this experiment were plotted against 

proteomics data from a mouse of the same age and similar background. A, RNA-Seq data plotted 

against whole brain mass spectrometry protein abundance are correlated with r = 0.52 and r
2
 = 

0.27. B, Ligation-free ribosome profiling data plotted against whole brain mass spectrometry 

protein abundance are better correlated than in a. with r = 0.60 and r
2
 = 0.36.  
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Figure 3.9 Statistics for Cell-Type Specific Translation 

FDR-corrected p-values for pairwise comparisons of each cell type at each TE bin for the 

heatmaps shown in Figure 3.2B computed by GSEA. 
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Figure 3.10 Western Blot Analysis of AZD-Treated Mouse Brain  

We sacrificed mice one hour after oral administration of AZD-8055 and performed Western blot 

analysis on homogenized brain tissue. Administration of AZD-8055 in a Camk2a-RiboTag 

mouse decreases mTOR activity as detected by phosphorylation of Rps6. Phosphorylated Rps6 

levels were compared to Rps6 and β-actin levels for vehicle, 20 mg/kg AZD-8055, and 100 

mg/kg AZD-8055 treatments (long exposure=LE). 
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CHAPTER 4 
 

RiboPLATE-Seq: High Throughput Translational Profiling 
 

 

 

4.1 Background 

 

Abstract 

 

In cellular systems, protein expression is often dynamically regulated by translation. As 

the final arbiter of what proteins are expressed, translational control is achieved through the 

action of a complex network of protein kinases responsive to a host of intra-cellular and extra-

cellular conditions. While previous experiments have demonstrated the effects of a handful of 

protein kinases on gene-specific translational control, to date, there has not been an un-biased 

and systematic effort to generate a network of translational control. Application of systems 

biology to similar scientific questions has yielded a number of important insights, such as in the 

study of transcriptional control where large-scale perturbation studies have allowed for the 

development of transcription factor networks. In order to assess translation in a similar manner, a 

technology designed to measure cellular translation states on a genome-wide scale and in the 

context of large-scale perturbation studies is required. In this chapter I discuss the development 

of a technique which enables the parallel measurements of translation across a large number of 

independent samples following compound-induced perturbation. This technology was applied to 

determine the effects of protein kinase inhibitors in addition to compounds targeting upstream 

effectors of translation.  Our findings demonstrate that translational responses to perturbation can 

be rapidly assayed in a high-throughput format, facilitating a systems-biology approach to 

studying translation.  
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Introduction  

 

In order to maintain their function, cells are often required to respond to physiologic 

stressors by altering protein expression. Although transcription-level changes can be used to 

modulate protein output, more rapid alterations can be achieved by adjusting the translation 

efficiency of specific genes (Andreev et al. 2015). However, in contrast to transcription, the 

regulatory networks which control translation are poorly understood. It has been demonstrated 

that translational control can be achieved through the action of protein kinases which can signal 

to factors that directly interact with cis-regulatory elements of mRNA. However, technologies 

which could be employed to catalog the genome-wide translational effects of the 500 member 

family of protein kinases are limited. While there has been recent success in developing genome-

wide transcriptional networks based on large numbers of single-gene knockout experiments, 

these perturbation-based approaches have not been applied towards the development of a gene-

specific translational network, in part, due to technological limitations (Kemmeren 2014).  

Recent advances, such as ribosome profiling, have enabled new insights to be made into 

translational control but due to high cost and hand-on time, lack the throughput to be utilized in 

large-scale studies (Ignolia et al. 2009). Although improvements to ribosome profiling, like the 

recently reported ligation-free approach, have increased the sensitivity and reduced the time and 

cost necessary to generate translational data, these techniques are still insufficient for 

applications demanding hundreds of independent experiments (Hornstein et al. 2016). Due to the 

importance of translation to human physiology and disease, as well as the targetable nature of 

protein kinases, a high-throughput technology is necessary to understand the role of translational 

control on a gene-specific level.   
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High-throughput measurement of translational states is a challenging endeavor for several 

reasons. Cost, effort and time all scale proportionately with the number of libraries generated in 

conventional library construction strategies. In applications demanding large numbers of 

samples, these factors can quickly overwhelm both capacity and budget. Additionally, specific to 

the case of quantifying translation, a means of identifying and isolating translating mRNA from 

the total pool of both translated and un-translated mRNA is required.    

In order to address difficulties associated with the generation of large numbers of 

sequencing libraries we employed a soon to be reported highly multiplexed library preparation 

strategy, Pooled Library Amplification for Transcriptome Expression (PLATE-Seq), to 

inexpensively and rapidly generate sequencing libraries. PLATE-Seq allows for multiplexed 

library preparation due to the addition of unique well-specific barcodes during reverse 

transcription, followed by pooling in later library preparation steps. These methods greatly 

reduce the cost and effort associated with large-scale library preparation.  

In conventional ribosome profiling and previous polysome profiling experiments, 

ribosome-associated mRNAs were isolated by sucrose fractionation. However, sucrose 

fractionation is a time-consuming and difficult process which inherently limits that number of 

samples which can be processed due to rotor capacity. We chose to bypass sucrose fractionation 

and utilized immunoprecipictation of ribosomal RNA (rRNA) to enrich for ribosome-associated 

materials. Libraries were generated from samples enriched in ribosome-associated mRNAs, as 

well as the homogenate they were derived from so that changes at the level of translation could 

be assessed.  

In order to test the ability for this technique (Ribo-PLATE-Seq) to detect differentially 

translationally regulated genes, we chose to apply a panel of four compounds, two of which are 
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known to decrease the translation of the well-characterized terminal oligo-pyrimidine (TOP) 

motif containing family of genes.  We performed a drug-perturbation assay on 96 independent 

samples with 6 replicates for each drug and 72 control replicates. The compounds we used were 

comprised of two which were known to repress translation of TOP-motif containing gene, one 

known not to affect translation of TOP-motif containing genes, and a final compound which has 

not had its translational targets assessed in a genome-wide manner, but has been shown to affect 

the phosphorylation of eIF4B and S6, two known markers of cap-dependent translation. After 

generating libraries from these samples and sequencing, a process which is now automated, we 

found that we were able to detect translational perturbations induced by the two compounds 

known to repress translation of the TOP-motif containing genes, as well as the third compound 

which had been shown to affect cap-dependent translation. 

 

 

4.2 Results 

High-Throughput Library Construction 

 Large-scale application of translational profiling technologies have been hampered by 

two main limitations. The first is due to an inability to generate multiple ribosome profiling 

libraries in parallel; library preparation protocols are generally expensive and time-consuming 

and costs scale linearly with increased sample number. Additionally, ribosome-associated 

mRNA identification and isolation has conventionally been achieved by use of sucrose 

fractionation. This method is not amenable to processing more than several samples at a time and 

severely limits the throughput of approaches designed to study translation. In order to achieve 

the high-throughput necessary to perform large-scale genomic assays, we have utilized an 
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enhanced library preparation process amenable to sample pooling and an alternative method to 

enrich for ribosome-bound mRNAs.   

 A high-throughput library preparation method for the generation of RNA-Sequencing 

libraries known as PLATE-Seq was recently developed by members of the Sims and Califano 

labs. Key to PLATE-Seq is the incorporation of unique sample-specific barcodes during reverse 

transcription. By adding a unique identifier to libraries generated from individual samples, all 

steps following reverse transcription can be performed on a pooled library—greatly decreasing 

the hands-on time and cost associated with large numbers of library preparations. Figure 4.1A 

illustrates the PLATE-Seq workflow used to measure RNA abundance. Briefly, following cell 

lysis, samples are transferred to a new multi-well plate with oligo(dT) covalently bound to its 

surface. Following washing and elution, mRNAs are transferred to a third multi-well plate where 

reverse transcription is performed with barcoded, adapter-linked oligo(dT) primers. Reverse 

transcription is followed by exonuclease digestion of single-stranded reverse transcription 

primers. cDNA products from reverse transcription are then pooled and second-strand synthesis 

performed with Klenow Large Fragment with adapter-linked random primers. Klenow large 

fragment’s lack of strand-displacement activity yields, at most, a single second-strand synthesis 

product which contains a sample barcode as well as 5’ and 3’ PCR adapters (Figure 4.1B). The 

pooled second-strand synthesis products are enriched in a single PCR reaction and the resultant 

library sequenced at 2-4 million reads per sample.   

 The performance of PLATE-Seq was characterized in a fully automated 96-well screen 

profiling the effects of seven small-molecule perturbations in the BT20 breast cancer cell line. 

Due to the high-capacity of the system, 12 replicates were generated per condition. PLATE-Seq 

was compared against the Illumina TruSeq protocol which utilizes a conventional RNA-Seq 
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library preparation scheme. Due to the input requirements of TruSeq, pooling of material from 

replicate wells was necessary to generate enough material for library generation. Figures 4.2A 

shows the distribution of unique genes detected and uniquely mapped reads generated from 

PLATE-Seq and TruSeq preparation methods. Figures 4.2B show the saturation profile of the 

aggregate PLATE-Seq data pools as compared to the TruSeq replicate pools. Greater than 75% 

of the genes detected in the TruSeq replicate pool were detected in the six-well PLATE-Seq data 

pool, although 6-fold fewer reads were required to achieve these results.  

 A critical application of perturbation studies is the identification of differentially 

expressed genes. We sought to determine the similarity between differentially expressed genes 

identified by PLATE-Seq and TruSeq library preparation methods. DESeq2 was used to identify 

differentially expressed genes between control replicates generated from PLATE-Seq and 

compound treated conditions from both library preparation strategies.  Figure 4.3 shows the set 

of differentially expressed genes (P < 0.05) identified in both library preparation strategies and 

projected as a matrix of fold-changes using multidimensional scaling. There was strong overlap 

of individual drug replicates regardless of the library preparation methodology. Furthermore, 

drugs with similar mechanisms of action, such as the topoisomerase II inhibitors Idarubicin and 

Mitoxantrone clustered similarly. These results show that PLATE-Seq and conventional RNA-

Seq library preparation methodologies generate comparable gene expression results for the same 

or similar drugs.   

 

Immunoprecipitation of Ribosome-Bound mRNA 

 Isolation of ribosome-associated mRNAs is a critical step in obtaining information 

regarding cellular translational state. In ribosome profiling, this process is performed by sucrose 
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fractionation following RNase digestion. However, fractionation is a time-consuming process 

and is inherently limited by the number of samples able to fit in an ultracentrifugation rotor. 

Furthermore, removal of ribosomal footprints from fractionated material requires several 

additional steps such as gel-purification which are not amenable to high-throughput applications. 

Bypassing the complicated step of sucrose fractionation, we enrich for ribosome-associated 

mRNAs through an immunoprecipitation assay (Figure 4.4).  Our experimental paradigm begins 

following a perturbation screen performed in multi-well plates where samples are lysed in a 

buffer containing magnesium and cycloheximide designed to preserve the ribosome-mRNA 

interaction and halt elongation. Lysates are then divided between two plates, with one subjected 

to PLATE-Seq without modification and the other undergoing pan-ribosomal 

immunoprecipitation followed by PLATE-Seq. The process of RiboPLATE-Seq begins with 

pan-ribosomal immunoprecipitation and is performed by exposing lysate in a multi-well plate to 

biotinylated antibody targeting y10b, an rRNA component of the 60S subunit (Figure 4.5A). 

Following exposure, streptavidin coated magnetic beads are used to capture the mRNA-

ribosome-antibody hybrid. Free mRNA is removed by multiple washes and elution of ribosome-

associated mRNA achieved by gentle disruption of the ribosome-mRNA interaction.  

In order to test and improve the efficiency of our immunoprecipitation we developed a 

qPCR-based assay designed to measure the enrichment of ribosome-associated mRNA. In order 

to determine the depletion of non-ribosome-bound material following immunoprecipitation we 

added a set of mRNAs unbound to ribosomes (ERCC) to fresh cellular lysate.  Following 

immunoprecipitation, we performed reverse transcription of eluted material using random 

primers. cDNA was also generated from reserved cellular lysate unexposed to antibody or beads.  

The gene B2M was chosen to serve as an indicator of enrichment of ribosome-associated 
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mRNAs due to its known average level of association with ribosomes determined from previous 

ribosome profiling experiments. qPCR was used to quantify the amounts of B2M and ERCC 

found in cDNA generated from both the lysate and the eluent following immunoprecipitation 

(Figure 4.5B).  Based on these results, we calculated a depletion of ERCC transcripts of ~ eight-

fold.    

 

High-Throughput Identification of Translation Targets  

 We treated WI-38’s, a cell line derived from human lung fibroblasts, with a panel of four 

drugs to test the ability of Ribo-Plate-Seq to identify differentially translated genes. Several of 

the drugs chosen, AZD8055, PP242, and MNK-I1 have been previously investigated with 

ribosome profiling; AZD8055 and PP242 are known to repress translation of Terminal 

Oligopyrimidine-motif containing transcripts (TOP) while MNK-I1 does not significantly affect 

their transcription or translation. (Figure 4.6) (Hsieh et al. 2012; Hornstein et al. 

2016;Unpublished Sims Lab Data). BKM120 has not been investigated with ribosome profiling, 

but has been shown to decrease phosphorylation of key-markers of cap-dependent translation 

including S6 and eIF4B (Serra et al. 2013). Based on these previous observations, we anticipated 

that we would detect AZD8055, PP242, and BKM120 significantly decreased the translation 

efficiency of TOP-motif containing genes, while MNK-I1 would not significantly alter the 

transcription of translation of TOP-motif containing genes. In order to assess the level of 

depletion of mRNAs not associated with ribosomes in our immunoprecipitated samples, we 

added ERCC spike-in to half our samples. The experiment was carried out in a 96-well plate 

with 6 replicates for each drug treatment.  Following footprint isolation and library generation, 

we sequenced the Ribo-PLATE-Seq and PLATE-Seq libraries on the Illumina NextSeq platform 
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to an average depth of 750,000 and 1,000,000 pass filtered reads, respectively.  We quantified 

the total amount of ERCC detected in all samples and compared the ratio of ERCC detected in 

Ribo-PLATE-Seq with the amount detected in the PLATE-Seq library generated from the same 

material (Figure 4.7A). Our depletion of ERCC was ~8-fold, similar to the level of depletion we 

calculated based on our preliminary qPCR experiments.  

 In order to determine translationally altered drug targets, we utilized a statistical package, 

Analysis of Translational Activity (anota), specifically designed to detect differential translation 

in perturbation studies. Differing from many other statistical tools used to quantify differential 

translation, anota takes into account the spurious correlation created when comparing mRNA 

pools to translationally active mRNA on a log scale by performing regression analysis between 

translationally active mRNA levels and total mRNA levels. Furthermore, by applying linear 

regression to genes individually, it is better able to statistically handle the drop-out of genes seen 

between samples in Ribo-PLATE-Seq.  Using anota to calculate changes in total mRNA, 

ribosome-bound mRNA and translation efficiency between control and drug-treated samples, we 

found that as expected, AZD8055, PP242, and BKM120 treated samples showed significantly 

reduced ribosome-bound mRNA of TOP-motif containing genes, but did not have a significant 

change in their total mRNA levels (Figure 4.7B). MNK-I1 did not show significant alteration of 

either ribosome-bound mRNA or total mRNA for TOP genes.  These results were in agreement 

with previously performed ribosome profiling experiments involving MNK-I1, AZD8055 and 

PP242, as well as molecular observations for BKM120 which had not been investigated with 

ribosome profiling.  

   

4.3 Discussion 



 

86 

 

 In this chapter we have demonstrated a new approach to determining cellular translational 

states in a low-cost, high-throughput and highly scalable platform. This approach relies on a 

multiplexed barcoding library generation scheme and pan-ribosomal immunoprecipitation of 

ribosome-associated mRNAs. Using this strategy we generated translational data from 96 

independent samples after applying a four-compound panel comprised of drugs known to target 

key translational mediators and previously investigated with traditional ribosome profiling. We 

identified differentially translated genes based on anota analysis and found that we were able to 

detect a significant decrease in translation of the TOP-motif containing family of genes for all 

compounds which have been previously shown to decrease their translation.  

 While Ribo-PLATE-Seq offers several advantages to traditional ribosome profiling, it is 

important to recognize its limitations. Because traditional ribosome profiling libraries are 

generated from ribosomal footprints, the data generated produce measurements that contain 

information of the direct genomic position of the ribosome at the time of cellular lysis, as well as 

a more accurate quantification of the translation efficiency of a gene. However, in the context of 

perturbation studies, we have demonstrated that Ribo-PLATE-Seq is able to accurately detect 

previously identified translational alteration for a greatly reduced cost and time investment as 

compared to traditional ribosome profiling methods.    

  

4.4 Conclusion 

 Based on the above results, we have demonstrated that Ribo-PLATE-Seq can accurately 

identify translational perturbations in a genome-wide, inexpensive, and high-throughput manner. 

We hope that this high-throughput platform will further enable the study of functional genomics 

and allow for large-scale systems-biology approaches to translational regulation.    
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Figure 4.1 Overview PLATE-Seq 

A, Following lysis of samples in a multi-well plate, oligo(dT)-coated capture plates are used to 

purify mRNA from lysate. Following elution from the capture plate, mRNA are transferred to a 

new plate and reverse transcription performed with barcoded adapter-linked oligo(dT) primers 

unique to each well. Following reverse transcription, ExoI digestion of free ssDNA primers is 

necessary to reduce cross-talk between sample wells. Samples are then pooled into a single tube 

allowing for the remaining second-strand synthesis, PCR enrichment and cleanup steps to occur 

on the pooled samples. B, A schematic showing the molecular steps of library construction.  
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Figure 4.2 Comparison of PLATE-Seq and TruSeq Library Preparations 

A, Comparison of the number of unique genes detected when using PLATE-Seq and TRuSeq 

library preparation methods. B, Downsampling analysis demonstrates the number of unique 

genes detected as a function of reads sampled for TruSeq and PLATE-Seq library preparation 

methods. Although libraries generated by PLATE-Seq were sequenced to a fraction of the depth 

of the TruSeq libraries, ~75% of the genes identified by TruSeq were detected by PLATE-Seq. 
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Figure 4.3 Differentially Expressed Genes Detected By PLATE-Seq and TruSeq 

MDS clustering of differentially expressed genes identified by PLATE-Seq and TruSeq show 

that both methods identify similar sets of genes for the same or closely related compounds.  
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Figure 4.4 Overview Ribo-PLATE-Seq 

A workflow overviews the process of generating Ribo-PLATE-Seq and PLATE-Seq sequencing 

libraries. The main modifications include altering the cellular lysis before to maintain the 

ribosome-mRNA interaction at the time of lysis, and performing a pan-ribosomal 

immunoprecipitation on at least half of the lysate.   
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Figure 4.5 Ribo-PLATE-Seq Immunoprecipitation 

A, Demonstration of the immunoprecipitation of ribosome-associated mRNAs. Cells are lysed in 

a buffer containing cycloheximide and magnesium which maintains the mRNA-ribosome 

interaction. Lysates are then exposed to biotinylated antibody targeting the ribosomal RNA y10b. 

Following incubation, magnetic streptavidin coated beads bind the mRNA-ribosome-antibody 

complex through washing steps until the mRNA-ribosome interaction is gently disrupted with 

the addition of EDTA. B, Preliminary qPCR experiments designed to test the performance of 
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ribosome bound immunoprecipitation. ERCC, a set of known non-ribosome associated mRNAs, 

was added to cellular lysates and immunoprecipitation carried out. qPCR was performed with 

primers against ERCC and B2M, a gene previously identified to be translated at an average level. 

Following IP, ~2% of ERCC remained in the eluent as compared to the original lysate, and 

~18% B2M remained. Based on this, we calculated a 8-fold relative enrichment of ribosome-

associated transcripts.     
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Figure 4.6 Molecular Targets of Compounds Profiled 

A, Overview of molecular pathways converging on translational machinery displays the 

molecular targets of the 4-compound panel used to test for differential translation using Ribo-

PLATE-Seq. AZD8055 and PP242 directly target the mTOR complex, reducing translation of 

TOP-motif containing transcripts. BKM120 is a potent PI3K inhibitor and has similarly been 

shown at affect the translation of TOP-motif containing transcripts. Although MNK-1 targets 

eIF4E and by extension eIF4G, MNK-1I has not been shown to affect the translation of TOP-

motif containing transcripts.    
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Figure 4.7 Ribo-PLATE-Seq ERCC Depletion and Detection of TOP-Motif Containing 

Genes 

A, Sequencing libraries were generated from samples with and without ribosomal 

immunoprecipitation. ERCC was included in half of sample wells to serve as a metric for non-

ribosome associated mRNA depletion. Comparing libraries generated from samples containing 

ERCC spike-in, ERCC was depleted in libraries generated from immunoprecipitated material by 

an average of ~8-fold. B, AZD8055, PP242, and BKM120 have been previously shown to 

decrease the translation of TOP-motif containing genes. Based on differential expression analysis 

performed with anota between treated and untreated samples, we detected a significant decrease 

in the translation of TOP-motif containing genes following administration of AZD8055, PP242 

and BKM120, but not for MNK-I1 which has not been previously shown to affect the translation 

of TOP genes.  
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Chapter 5 
 

Conclusions and Future Directions 
 

 

 

5.1 Conclusions  

 In this work we’ve discussed three recent technology development efforts and applied 

them to make new insights into translation. Chapter 2 focused on the generation of a mouse 

model of glioma which allowed for the profiling of transformed cellular populations lacking 

conventional cellular markers. We used this system to discover translational alterations in glioma 

by application of conventional ribosome profiling. These efforts demonstrated that the 

translational landscape of glioma is vastly different as compared to un-transformed cells, as well 

as the role of the 5’ untranslated regions in translation control. Furthermore, we demonstrated 

that ribosome profiling, after some modifications, could be utilized in mammalian tissue. 

Stemming from experiences we had in generating translational data for the work discussed in 

Chapter 2, we sought to develop a technique which would reduce the time, input requirements 

and cost associated with ribosome profiling. Chapter 3 revolved around these efforts which 

emerged as ligation-free ribosome profiling, a technique which reduces the generation of 

ribosome profiling libraries to a single day, with input requirements as low as 1ng and greatly 

reduced cost as compared to conventional ribosome profiling. This technique was used to 

investigate cell-type specific translation in the brain and to identify translational targets of 

mTOR inhibition in excitatory neurons. Finally, Chapter 4 focused on the development of a 

technique designed to rapidly obtain translational data from perturbation studies in a high-
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throughput manner in less than 24 hours for ~ 20 dollars a sample. As a cohesive work, these 

efforts demonstrate a series of improvements to the technology currently used to assay 

translation and the generation of new insights into translational control.  

 

Global Translational Perturbations in Glioma 

 Application of ribosome profiling to the specific population of transformed cells in our 

glioma mouse model demonstrated a number of interesting findings. Due to the large increase in 

translation observed in many cancers, we were surprised to find that there was a global reduction 

in translation efficiency in transformed cells in our glioma model. Agreeing with conventional 

wisdom, although translation efficiency was reduced, global translation was increased, as 

evidenced by translational upregulation of key ribosomal proteins. This mismatch between 

translation efficiency and translation could be explained in several ways. Firstly, while ribosomal 

machinery and activity may be increased in glioma, greatly enhanced production of mRNA may 

overwhelm the translational machinery, resulting in a lower than expected translation efficiency. 

Another possible explanation is that immature cellular states may be aided and maintained by 

reduced translation efficiency. Regardless of the cause, our results regarding the altered 

translation state of glioma highlight the striking manner in which translation is altered in the 

disease and represent a promising therapeutic target. Based on our animal model’s ability to 

accurately recapitulate proneural glioma, we hope that it will be continued to be utilized in 

efforts designed to test new anti-glioma therapeutics targeting translation such as newly 

developed non-allosteric mTOR inhibitors.  

 

Ligation Free Ribosome Profiling and Cell-Type Specific Translation 
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 Attempting to improve on the previously reported technique of ribosome profiling, we 

developed a new ligation-free approach which took advantage of an engineered RNA poly(A) 

polymerase and M-MulV reverse transcriptase’s template switching activity. Incorporating these 

features into our library preparation scheme, we were able to avoid a number of expensive 

enzymatic and time-consuming purification steps, reducing the overall preparation time for 

ribosome profiling from two weeks to as a little as a day. Furthermore, these changes greatly 

decreased the input requirements of the technique, allowing successful generation of libraries 

from as little as 1 ng of input. Based on down-sampling analysis of libraries generated with 

similar amounts of mouse brain material using both conventional and ligation-free methods we 

also found that the ligation-free method detected a higher number of unique genes and a much 

higher number of unique footprints, indicative of higher library complexity. Using a CAMKII 

RiboTag mouse, we obtained translational profiling data from several mouse brains using this 

method and were able to demonstrate translational trends between different neural cell-types.  

We found that neuron-specific genes appeared to be split among populations with very high and 

very low translation efficiency, indicating strict translational control may be important for the 

function of these cells. Alterations in the translation of maturing oligodendrocytes was also 

interesting; oligodendrocyte progenitor-specific genes appeared to have high translation 

efficiency, while new oligodendrocytes specific genes had moderate translation efficiency, and 

myelinating oligodendrocytes appeared to be associated with low translation efficiency. We also 

found microglia-specific genes to have low translation efficiency in brain tissue from an animal 

without infection or disease burden. These results, which were recapitulated in separate animals, 

indicate that translational control may be an important feature of cellular identity.  
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Based on results we obtained when previously studying the relationship between CDS 

ribosomal density and the existence of upstream AUG in genes with and without 5’UTR density, 

we sought to see if this effect existed in cell-type specific genes as well. We found that while the 

proportion of genes with and without 5’UTR density did not drastically change between cell-

type, genes containing a uAUG and 5'UTR ribosomal density had lower CDS translation 

efficiency compared to genes without a uAUG. This effect was consistent across multiple cell 

types and was significant for myelinating, microglial, and endothelial cells, although the effect 

was seen regardless of cell-type. We also identified a relationship between 5’UTR length, GC-

fraction in the 5’UTR and translation efficiency where longer 5’UTRs with very high or very 

low GC content greatly diminished the translation efficiency of the CDS. 

Additionally, we used our ligation free ribosome profiling data obtained from AZD8055 

treated and untreated CAMKII RiboTag mice to demonstrate our ability to detect excitatory 

neuron-specific translational changes following mTOR inhibition in a perturbation assay. We 

believe that these results, combined with the reduced cost, time and effort associated with 

ligation-free ribosome profiling will lead to its continued use in the scientific community.  

 

High-Throughput Translational Assaying 

 Translational control has emerged as an important regulator of cellular activity. However, 

determining translational output by genomic or proteomic methods have been expensive 

endeavors due to the lack of throughput of these systems.  While recent advances in ribosome 

profiling library preparation methods, such as ligation-free ribosome profiling, have reduced the 

effort and input requirements of generating translational measurements, functional genomics 

applications are still limited. The development of a technique able to perform high-throughput 
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translational profiling of independent samples would greatly aid in our ability to dissect 

molecular regulators of translational control through application of large-scale perturbation 

studies. Such a technique would be crucial, as current technologies are impractical for 

individually studying the large number of potential translational mediators, such as the 500-

member family of protein kinases. In Chapter 4 we explored the development of an experimental 

technique able to obtain translational data from large number of independent samples while 

minimizing investments of time and cost. High-throughput translational control assays are 

hampered by two main issues; the lack of a method for rapid and scalable isolation of ribosome-

associated mRNAs, and the directly scaling time and cost associated with the preparation of 

large numbers of sequencing libraries. We have addressed the latter issue by the application of a 

recently developed technique, PLATE-Seq. PLATE-Seq introduces sample-specific barcodes 

during reverse transcription which allows for sample pooling in later steps and can generate large 

numbers of samples in a single day for a cost under 20 dollars per sample. Bypassing sucrose 

fractionation, we isolated ribosome associated mRNAs through immunoprecipitation of the 

ribosome-mRNA complex by targeting a ribosomal RNA found in the 60S subunit followed by 

gentle dissociation of mRNA from the ribosome. Based on preliminary experiments, we found 

that the immunoprecipitation method employed had an 8-fold enrichment of ribosome-associated 

mRNAs.  As a test of RiboPLATE-Seq’s ability to detect translationally altered genes due to 

perturbation, we assessed a four-panel compound screen with RiboPLATE-Seq. We were able to 

recapitulate known translational targets previously identified by ribosome profiling for several 

compounds, as well as characterize translational targets of a compound not previously 

interrogated with ribosome profiling which were in agreement with its known molecular effects. 
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Based on these results we believe that RiboPLATE-Seq represents a promising new technology 

which will be used to uncover mechanisms of translational control.  

 

 

5.2 Future Directions 

 In Chapter 2 we obtained some interesting results regarding the decrease of translation 

efficiency in the transformed cells of a glioma mouse model. While we are uncertain of the 

underlying cause of this decrease, it may indicate that the translational machinery in this 

population of transformed cells is unable to keep up with increases in transcriptional activity. It 

has been speculated, and in some cases, demonstrated that targeting translational machinery is an 

effective anti-cancer therapy. The results we’ve obtained support this hypothesis; testing the 

effects of known mTOR or PI3K inhibitors in the animal model we’ve generated would directly 

demonstrate the effects of translation inhibition in transformed glioma cells. Additionally, based 

on observations regarding ribosomal density in the 5’-leader region and in the CDS of both 

transformed and non-transformed cells, we hypothesized that ribosome density in the 5’-leader 

and the CDS are regulated by alternative pathways which are differentially regulated in tumor as 

compared to normal brain. In the future, it will be important to determine the role of this 

alternative pathway in translational control, and how its perturbation in transformed cells affects 

the overall disease. 

 While we demonstrated that ligation-free ribosome profiling was able to generate higher-

complexity libraries with decreased input requirements, cost and time investment, compared to 

conventional ribosome profiling, there are still improvements which could be made. Specifically, 

we’ve found that the existence of difficult to purify byproduct of our library generation process 
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complicates efficient sequencing of these libraries. We believe that this contaminant is, in part, 

due to the large amount of rRNA which is not removed during our ribosomal RNA depletion. In 

order to address this issue, it will be important to test additional rRNA purification methods, 

such as removal of rRNA with RNA-based probes earlier in the library generation process. 

Additionally, we could alter our PCR-protocol to increase the ratio of product to contaminant. 

Improvements aside, we have transitioned from conventional ribosome profiling in the Sims lab 

and are currently using ligation-free ribosome profiling to obtain translational information for 

multiple projects. 

 The results we’ve obtained with our application of ligation-free ribosome profiling in 

Chapter 3 demonstrated that translation is controlled in a cell-type specific manner. However, the 

means by which cellular populations are able to independently control their translation is unclear.  

Further studies will be required in order to elucidate both the effects of tight-translational control 

and the means by which it is achieved.  Additionally, we explored the rapid effects of AZD8055, 

a potent mTOR inhibitor, on CAMKII-expressing excitatory neurons. While we demonstrated 

that AZD8055 decreases translation of TOP-motif containing genes, a known effect of mTOR 

inhibitors, we did not see evidence of neuron-specific translational changes in response to mTOR 

inhibition. Due to mTOR inhibitors clinical use as an anti-seizure medication in patients with 

neural malignancies, we had hypothesized that excitatory neurons would have specific changes 

related to this anti-seizure effect. One possible explanation for why we didn’t observe these 

changes may be the minimal treatment time of one hour that was used. In the future, we hope to 

repeat this experiment with an increased treatment window which may allow us to observe 

additional excitatory neuron-specific translational changes.    
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 Chapter 4 focused on the development of a new tool able to rapidly and inexpensively 

obtain translational data from large numbers of samples. Work is ongoing to develop this 

technique and increase its accuracy and sensitivity. Generating sequencing libraries from 

immunoprecipitated material derived from small numbers of cells is a challenging endeavor.  

One issue that complicated our current analysis was the low complexity of RiboPLATE-Seq 

libraries. This issue lead caused a large amount of drop-out between samples and reduced the 

detection of unique genes in the RiboPLATE-Seq library as compared to the PLATE-Seq library. 

We hope to improve by increasing the ratio of lysate which is used to prepare the RiboPLATE-

Seq and PLATE-Seq libraries. Additionally, the RiboPLATE-Seq library generation process was 

technically challenging due to the large number of immunoprecipitations required, leading to 

variance between samples. To reduce technical variability and decrease the effort associated with 

this protocol, we designed an automated immunoprecipitation work-flow on the Biomek4000 

platform.  Using this system we are interested in addressing questions of how translational 

control is achieved in cellular systems. Small scale studies have previously demonstrated that 

protein kinases, like mTOR, affect the translation efficiency of specific genes through linear 

sequence motifs. Due to constraints imposed by traditional ribosome profiling and related 

techniques designed to measure translation, the vast majority of the 500 known protein kinases 

have not been investigated. Coupling RiboPLATE-Seq with a kinome-wide siRNA knock-down 

screen would allow for the identification of translation targets of each kinase and the 

development of a regulatory network for protein synthesis. Furthermore, this data could be used 

to identify linear and structural sequence motifs associated with the targets of each protein 

kinase, leading to elucidation of each protein kinase’s cis-regulatory element. Not only could 

these results shed light on the complicated mechanisms of translational control, but the highly 
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targetable nature of protein kinases raises the potential for the development of clinically-relevant 

solutions to diseases where translational aberration is a key feature.   

As a final thought, in the preceding chapters we have discussed the development of a 

number of technologies which allowed us to investigate translational control and cell-type 

specific translation. As is the case for any new technology, the overall impact of these 

developments can only fully be assessed based on their acceptance and future implementation. 

To that end, we have strived to develop tools which have either made unanswerable scientific 

questions possible, or greatly enhanced the utility of a previously existing experimental 

paradigm. We hope that, going forward, these tools will continue to be used to develop a deeper 

understanding of protein synthesis and translational control.   
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Chapter 6 
 

Materials and Methods 

 

 

 

6.1 Molecular Biology  

 

Tissue processing for RNA 

 

Snap frozen tissue samples (5mg) were homogenized at 4°C with a Dounce homogenizer 

in 1mL of polysome lysis buffer (20 mM Tris-HCl pH 7.5, 250 mM NaCl, 15 mM MgCl2,1mM 

DTT, 0.5% Triton X-100, 0.024 U/ml TurboDNase, 0.48 U/mL RNasin, and 0.1 mg/ml 

cycloheximide). Homogenates were centrifuged for 10 min at 4°C, 14,000 x g. The supernatant 

was removed and used for the isolation of ribosome footprints, total RNA, and polysome 

immunoprecipitation (IP). SUPERase-In (0.24U/mL) was added to the lysate used for polysome 

IP to prevent RNA degradation. Total RNA from homogenates was purified using the RNeasy 

Mini Kit (Qiagen), and RNA integrity was assessed using a Bioanalyzer (Agilent). 

 

Ribosomal Footprint Isolation and Immunoprecipitation (Glioma Studies) 

 

Mouse tissue lysates were digested for 45 minutes at room temperature with RNase I. 

Monosomes were isolated using sucrose density gradient fractionation. The monosome fraction 

was split into two samples. RNA from the first sample was extracted with phenol chloroform and 

used for further purification of ribosomal footprints. HA-tagged monosomes were 

immunoprecipitated from the second sample to obtain cell type-specific ribosomal footprints 

(Figure 2.1A). 

For ribosomal immunoprecipitation, we coupled 30 uL of mouse monoclonal anti-HA 

antibody (HA.11, ascites fluid, Covance) to 300 uL of Protein G-coated Dynabeads (30 mg/mL, 



 

105 

 

Life Technologies) for 1 hour in citrate-phosphate buffer (24 mM citric acid, 52 mM dibasic 

sodium phosphate, pH 5.0). Beads were washed once in citrate-phosphate buffer and three times 

in polysome lysis buffer. Beads were added to the lysates and incubated with rotation at 4
o
C 

overnight. Beads were then washed four times with 500 uL of polysome lysis buffer. Ribosomes 

and footprints were released from the beads using EDTA. Beads were incubated with 140 uL of 

ribosome release buffer (20 mM Tris-HCl pH 7.3, 250 mM NaCl, 0.5% Triton X-100, 50 mM 

EDTA) for 5 minutes and the supernatant was set aside on ice. This was repeated three more 

times. The pooled supernatants were then extracted with phenol-chloroform to yield footprints 

and digested rRNA fragments. 

Ribosome footprint isolation of human glioma and non-neoplastic brain tissue was 

accomplished as described above for the murine specimens without immunoprecipitation. 

 

Polysome Immunoprecipitation (CAMKII Experiments) 

 

100µL of lysate was used as the input, from which RNA was extracted using the RNeasy 

Mini Kit (Qiagen).  The remaining lysate was used for indirect IP of polysomes. We coupled 15 

µL of mouse monoclonal anti-HA.11 (ascites, Biolegend) to lysate with rotation at 4°C for 4 

hours. We used 150 µL of protein G-coated Dynabeads (30 mg/mL, Life Technologies) and 

washed them with 600 µL polysome lysis buffer three times. The conjugated lysate was then 

added to protein G-coated Dynabeads and incubated with rotation at 4°C overnight. Beads were 

then washed three times with 500 µL of polysome lysis buffer. RNA was extracted from 

magnetic beads with polysome release buffer (20 mM Tris-HCl pH 7.3, 250 mM NaCl, 0.5% 

Triton X-100, 50 mM EDTA) four times for 5 min each (140µL x 4). RNA from the pooled 
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supernatants (560µL) was then extracted with the RNeasy Mini Kit (Qiagen) and RNA integrity 

was assessed using a Bioanalyzer (Agilent). 

 

Ribosome Profiling and RNA Sequencing Libraries (Glioma Experiments) 

 

Ribosomal footprints were size selected as described previously (Ingolia et al. 2012) and 

sequencing libraries constructed. We note that, while the exact adapter scheme reported 

previously was used to construct ribosome profiling libraries for Tumor Mouse A and Normal 

Mouse A, a different reverse primer was used for amplification of all other ribosome profiling 

libraries (Ingolia et al. 2012). In particular, we used the following reverse primer that places the 

barcode sequence for demultiplexing at the 3’-end of the linker sequence appended to each RNA 

footprint during single-stranded ligation: 

5’-CAAGCAGAAGACGGCATACGAGATNNNNNNATTGATGGTGCCTACAG-3’ 

where NNNNNN represents the barcode sequences used previously(Ingolia et al. 2012). 

Ribosome profiling libraries were sequenced using the Illumina HiSeq 2000 system at the 

Columbia Sulzberger Genome Center. Total RNA for each sample was also provided to the 

Columbia Sulzberger Geneome Center for poly(A)-selection and RNA-Seq using the Illumina 

TruSeq kit. We note that a total of ten RNA expression profiles were obtained for deconvolution 

analysis from ten different mice with PDGF-driven, end-stage tumors. Five of these mice were 

homozygous for both the RiboTag and Trp53
flox/flox

. The other five mice were homozygous for 

Trp53
flox/flox

 and did not harbor the RiboTag allele.  Ribosome profiling and RNA-Seq libraries 

for the five human tissue specimens was accomplished using the same procedure. 
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RNA sequencing libraries (CAMKII Experiments) 

 

RNA samples were provided to the Columbia Sulzberger Genome Center for poly(A)-

selection and RNA-Seq using the Illumina TruSeq kit. There were a total of four RNASeq 

libraries generated for AZD-treated and vehicle control mice. RNASeq libraries were generated 

from matched samples used in ligation-free ribosome profiling experiments.  Four additional 

libraries were sequenced from non-Ribosome Profiling matched samples; two total input samples 

and two matched HA-IP samples.  

 

Polysome Profiling and Quantitative PCR Validation 

 

The left frontal lobe, contralateral to the portion used to generate a ligation-free ribosome 

profiling library, was conserved and used to generate qPCR data from polysome profiles. The 

tissue sample was lysed with a Dounce homogenizer, as previously described, and fractionated 

with a 15-50% sucrose gradient at 37,000 RPM for 3.5 hours. Polysome profiles were obtained 

and RNA was extracted from fractions using an RNA Clean and Concentrator columns (Zymo).   

cDNA was generated with a high-capacity RNA to cDNA kit (Life Technologies). qPCR was 

performed on each fraction with five probes representing genes with either high or low TE as 

found by ribosome profiling; SYT1  (Mm00436858_m1), SNAP25 (Mm01276449_m1), TGFB1 

(Mm01178820_m1), PKD1 (Mm00465434_m1), and TRPV6 (Mm00499069_m1) 

(ThermoFisher). TaqMan Universal Master Mix (Life Technologies) was used to setup qPCR 

reactions and a Bio-Rad CFX-96 was used to amplify and read plates. All experiments were 

performed in triplicate. CQ was determined for each sample and an average CQ number was 

calculated for each set of triplicates. CQ numbers were converted as follows and the highest 

value for each gene normalized to one.  
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= 21−𝐶𝑄 

These values were then plotted according to the polysome peak from which they they were 

obtained.  

 

Ribosome Profiling Sensitivity Measurement 

 

A 34-base RNA oligo, ‘AUGUACACGGAGUCGAGCUCAACCCGCAACGCGA 

[Phos]’, was purchased from Sigma and used to generate conventional and ligation-free 

ribosome profiling libraries. Conventional libraries were generated using the protocol described 

in Ingolia et al using the primers described in Gonzalez et al (Ignolia et al. 2012; Gonzalez et al. 

2014). The template oligo was serially diluted to the following concentrations; 100 ng, 10 ng, 1 

ng, 0.1 ng and 0.01 ng. Following dephosphorylation, both conventional and ligation-free 

construction schemes were used to attempt to generate libraries at each concentration.   For the 

final PCR step for all libraries in both protocols, PCR was restricted to 9 cycles with 90% of the 

remaining material. Samples were diluted as necessary and assessed with a High-Sensitivity 

DNA Bioanalyzer Chip (Agilent).  

 

Poly-A Tailing of Size Selected Fragments 

 

Ribosomal footprints were isolated with a sucrose cushion, size-selected and 

dephosphorylated as previously described (Ingolia et al. 2011;Ingolia et al. 2012). Following 

dephosphorylation of size-selected footprints, we determined the concentration of input material 

using a Bioanalyzer (RNA 6000 Pico Chip, Agilent Technologies).  We found that quantification 

with a Bioanalyzer was more accurate than with a RNA Qubit or Nanodrop, due to the presence 

of Glycoblue (Ambion) as a precipitant. We used a newly developed kit for small RNA library 
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construction (SMARTer® smRNA-Seq Kit for Illumina®, Clontech Cat. No. 635030) to 

generate ligation-free ribosome profiling libraries. Between 1ng and 5ng of size-selected material 

were used as input and diluted with water to a total volume of 7 µL. Ensuring that reagents 

remained on ice, Polyadenylation mix was prepared by combining 7 µL of RNA input with 2.5 

µL of Mix 1 which includes poly(A) polymerase. After adding the Polyadenylation mix, samples 

were incubated for 5 minutes at 16°C. Following incubation, samples were immediately placed 

on ice to ensure the Poly-A Tailing reaction did not continue.  

 

Reverse Transcription and Template Switching 

 

Proceeding from the previous step within 5 minutes, samples were allowed to cool for 1 

minute in ice. 1 uL of 3’ smRNA dT Primer was added to each tube and mixed by pipetting. 

Samples were incubated for 3 minutes at 72°C and then transferred to ice for 2 minutes. During 

this incubation step, Reverse Transcription Master Mix was prepared. Reverse Transcription 

Master Mix consisted of 6.5 µL smRNA Mix 2, 0.5uL RNase Inhibitor, and 2 µL PrimeScript 

RT. 9 µL Reverse Transcription Master Mix was added to each sample and mixed by pipetting.  

Samples were placed in a thermocycler pre-heated to 42°C and incubated at 42°C for one hour 

followed by ten minute incubation at 70°C to heat inactivate the enzyme.  

 

Ribosomal RNA Depletion  

 

Ribosomal RNA (rRNA) was depleted from samples with a Subtraction Oligo Pool as 

described previously (Ingolia et al. 2012). Briefly, the Subtraction Oligo Pool consists of several 

dozen short biotinylated oligos complementary to rRNA fragments that commonly contaminate 

mammalian ribosome profiling libraries. Following hybridization, the oligos are removed with 

magnetic streptavidin beads. 10 µL of the previous reverse transcription reaction was combined 
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with 2 µL of the Subtraction Oligo Pool and mixed. The mixture was heated to 100°C for 90 

seconds in a thermocycler. Following heating, the mixture was placed into a 100°C heatblock 

and allowed to cool to 37°C. Upon reaching 37°C, the mixture was removed from the heatblock 

and incubated for 15 minutes at 37°C in a thermocycler. While the depletion mixture incubated, 

37.5 µL myOne Strepavidin C1 DynaBeads (Invitrogen) were prepared for each sample. 

Streptavidin beads were washed 3 times with an equal volume of 1X Polysome Buffer. 

Following the final wash, beads were split into 25 µL and 12.5 µL aliquots. After removing the 

polysome buffer from the 25 µL aliquot of beads, the depletion mixture was added to the beads 

and the resulting mixture was incubated for 15 minutes at 37°C. The depletion mixture was then 

recovered from the beads using a magnet and added to the second, 12.5 µL aliquot of beads. The 

resulting mixture was incubated for 15 minutes at 37°C. Ensuring no beads were carried over, 

the depleted RT reaction was then recovered using a magnet. 

 

PCR Library Amplification 

 

The SeqAmp DNA Polymerase included in the SMARTer® smRNA-Seq Kit (Clontech) 

was used to amplify cDNA from the depleted RT reactions. For the experiments reported, we 

used the Low-Throughput primer set (Clontech Cat. No. 634844), but have also had success 

using Clontech’s High-Throughput primers (included in the SMARTer® smRNA-Seq Kit). PCR 

reactions were incubated for one minute at 98°C followed by 12 cycles of a two-step protocol of 

98°C for ten seconds, and 68°C for ten seconds.    

 

Purification of Libraries 

 

Purification is necessary due to the presence of primers and other contaminants from 

upstream reactions. Furthermore, it is critical to ensure reduction of a non-product secondary 
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peak ~ 25 nucleotides smaller than the product peak. The secondary peak increases linearly with 

PCR cycle number and is inversely related to total input used. Because the secondary peak is 

similar to the expected peak-size from ribosome profiling and can interfere with sequencing, it is 

essential to ensure that it is at least less than half the size of the product-peak. We performed two 

rounds of purification with AMPure XP beads (Beckman Coulter) at a 1.8X and 1.2X ratio (due 

to differences in product size, the ratio must be altered when used with the High-Throughput 

primer set).   

 

Validation of Ribosome Profiling Libraries 

 

We used the Qubit dsDNA High-Sensitivity kit (Life Technologies) to quantify libraries 

prior to pooling. Libraries were evaluated for the presence of primer and secondary peak with the 

High-Sensitivity Bioanalyzer DNA chip (Agilent Technologies). In order to fully remove 

primers and to reduce the contribution of the aforementioned no-insert secondary peak, some 

libraries require an additional round of 1.2X or 1.0X AMPure XP bead cleanup. Sequencing was 

performed on a NextSeq 500 desktop sequencer with a 75 cycle high-output kit (Illumina).  We 

obtained between 20 and 50 million demultiplexed, pass-filtered, single-end reads for each 

sample. 

 

qPCR Enrichment Experiments (High-Throughput) 

Cell culture media was removed from 10-cm 75% confluent dishes of WI-38 cells and 

plates were wash with cold PBS supplemented with .1mg/ml cycloheximide. One mL of cold 

polysome lysis buffer (20 mM Tris-HCl pH 7.5, 250 mM NaCl, 15 mM MgCl2, 1mM DTT, .5% 

Triton X-100, .1mg/mL cycloheximide, .5 U/mL SUPERaseIN) was added to the dish and 

passed through a 23-gauge needle. Following clarification, 2uL of 1:100 ERCC was added to the 
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cell lysate. 50uL cell lysate was placed in an Eppendorf tube and allowed to rotate at 4C for 4 

hours. 1uL biotinylated y10b antibody (Invitrogen) was added to an additional 50uL cell lysate 

and incubated with rotation for 4 hours at 4C. Following incubation, 5uL washed streptavidin 

coated dynabeads (Invitrogen) were added to the lysate containing antibody and allowed to 

incubate for an additional hour. mRNA was eluted from magnetic dynabeads following three 

washes with polysome wash buffer (20 mM Tris-HCl pH 7.5, 250 mM NaCl, 15 mM MgCl2, 

1mM DTT) and a final elution wash with ribosome release buffer (20 mM Tris-HCl pH 7.3, 250 

mM NaCl, 0.5% Triton X-100, 50 mM EDTA). mRNA was purified from the eluent and the 

additional lysate with the RNAEasy Kit (Qiagen). We generated cDNA via second-strand 

synthesis with the Applied Biosystems high-capacity RNA to cDNA synthesis kit. We quantified 

the amounts of ERCC and B2M remaining in both the immunoprecipitated eluent, as well as the 

undisturbed lysate with TaqMan qPCR probes from ThermoFisher (Hs00984230_m1, 

Ac03460023_a1).   These experiments were repeated in triplicate.    

     

Compound Administration (High-Throughput) 

WI-38 human fibroblast cells were seeded on a 96-well plate at a density of 3,000 cells 

per well in 60uL cell culture media per well (DulBecco’s Modified Eagle Medium supplemented 

with 10% FBS) 36 hours prior to the start of compound administration (doubling time t=24 

hours). Stock solutions of AZD8055, PP242, BKM120 and MNK-I1 were prepared in DMSO so 

that 1 uL of DMSO was added to each experimental well and 1 uL pure DMSO added to control 

wells. AZD8055, PP242, BKM120 and MNK-I1 were administered to a final concentration of 

50nM, .625nM, 100nM and 1uM, respectively. Two hours following compound administration, 

cell lysis and immunoprecipitation of ribosome bound mRNA began.  
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Immunoprecipitation of Ribosome Bound mRNA (High-Throughput) 

Following treatment, cell culture media was removed and cells were gently washed 1x 

with cold PBS supplemented with .1mg/ml cycloheximide. All wells received 30 uL of cold 

polysome lysis buffer (20 mM Tris-HCl pH 7.5, 250 mM NaCl, 15 mM MgCl2,1mM DTT) 

supplemented with 0.5% Triton X-100, 0.48 U/mL RNasin, and 0.1 mg/ml cycloheximide and 

pipetted up and down ~5 times. Additionally, every other sample column received 1uL of 1:5000 

ERCC spike-in (Life Technologies 4456740). Cells remained at RT for 5 minutes and were then 

placed on ice. The plate was spun down to remove bubbles at 1400 rpm for 5 minutes. 10 uL 

from each well was removed and added to a second plate to be used for Plate-Seq. 10 uL of 2X 

TCL buffer was then added to each of the Plate-Seq wells. .6 uL SUPERASE-in (Life 

Technologies AM2696) and .6uL y12b-biotinylated antibody (Thermofisher MA516060) was 

added to each well, the wells sealed, and incubated for 4 hours at 4C while gently shaking. 

Following 4 hour incubation, 4 uL of washed streptavidin beads (re-suspended in an equal 

volume of polysome lysis buffer) were added to each well and allowed to incubate for 1 hour at 

4C with gentle shaking. Following 1 hour incubation, samples were placed on a bead magnet and 

washed 3 times with polysome buffer supplemented with .05% Triton X-100 and .1 mg/ml 

cycloheximide. Following the final wash, 15 uL ribosome release buffer (20 mM Tris-HCl pH 

7.3, 250 mM NaCl, 0.5% Triton X-100, 50 mM EDTA) was added to each well and allowed to 

incubate for 15 minutes. Beads were removed by plate-magnet and the supernatant added to 15 

uL of TCL buffer.   

 

 

6.2 Computational 
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Bioinformatic Analysis of Ligation-free Ribosome Profiling  

 

Each read contains a G-rich region from terminal transferase activity, followed by a 

ribosome footprint and a poly-A tail. The first 5 and last 20 bases of each read were removed 

with fastx_trimmer from the FASTX Toolkit. Because the Poly-A tail can appear at different 

points in the read, stretches of ‘AAAAAAAA’ at the 3’ end of reads were removed with 

fastx_clipper; reads shorter than 15 bases after trimming and clipping were discarded.   

Contaminating rRNA reads were removed by mapping all reads to a rRNA reference library with 

Bowtie2, allowing for 1 error and outputting reads which did not align (Ingolia et al. 2012). 

Reads which did not map to the rRNA reference were aligned to the genome and transcriptome 

with Tophat2 without looking for novel junctions. Following mapping, read counting was 

performed with HTSeq set in interstrict mode.  

 

Bioinformatic Analysis of Traditional Ribosome Profiling Data 

 

Following Illumina sequencing of our ribosome profiling libraries, we first demultiplexed 

our raw data using a barcode that was attached to the sequencing template during PCR 

amplification. The 3’-adapter sequence (CTGTAGGCACCAT) was clipped from each read 

using fastx_clipper. We discarded all reads that did not contain the adapter sequence or that were 

shorter than 25 bases after adapter clipping. We then used Bowtie 2 to map the clipped reads to a 

mouse rRNA reference and discarded any reads that mapped to rRNA(Langmead and Salzberg, 

2012). The remaining reads were then mapped to either the mouse (Illumina iGenomes mm10 

reference) or human (Illumina iGenomes hg19 reference) transcriptomes using Tophat 2(Kim et 

al. 2013). We did not attempt to detect novel junctions and obtained ~0.5-11M uniquely mapped 

reads per mouse sample and ~4-24M uniquely mapped reads per human sample. We used HTSeq 
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to compute read counts for reads that mapped uniquely to the mouse or human transcriptome in 

the CDS, 5’-leader (5’-UTR), 3’-UTR, and complete exonic sequence of each gene. 

 

Bioinformatic Analysis of RNA-Seq Data 

 

For RNA-Seq, we received fastq files containing demultiplexed, single-end 100 base 

reads for each sample from the Columbia Sulzberger Genome Center. We used Tophat 2 to map 

the reads to the mouse (Illumina iGenomes mm10 reference) or human (Illumina iGenomes hg19 

reference) transcriptomes and did not attempt to detect novel junctions, obtaining ~30 million 

reads per sample. We used HTSeq to compute read counts for reads that uniquely mapped to the 

transcriptome for each gene. 

 

Calculation of Unique Fragments 

 

The number of unique fragments was calculated for both methods of ribosome profiling 

with Picard Tools downloaded from the Broad Institute. Picard Tools was used in 

MarkDuplicates mode and was run files downsampled from the original .bam file output from 

TopHat that was previously generated for each sample.  Downsampling was performed with 

fastq-sample from the fastq-tools suite. Following sorting and indexing with SamTools, the 

number of unique fragments was determined with Picard Tools. 

 

Analysis of Translational Activity and RiboTag Enrichment 

 

To analyze differential translation efficiency between the control and AZD-treated 

samples, we used the recently reported RiboDiff algorithm with the CDS-mapping RNA-Seq and 

ribosome profiling reads as input (Zong et al. 2015).  RiboTag enrichment scores were calculated 

from two RiboTag IP experiments and two homogenate experiments. RiboTag enrichment scores 
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were calculated for each gene by first normalizing counts found in RiboTag and homogenate 

samples by size factors generated from DESeq2.  Following normalization, enrichment scores 

were calculated by dividing normalized RiboTag counts by normalized homogenate counts.  

Translation efficiency was also calculated on a per-sample basis by normalizing ribosome 

profiling and RNA-Seq counts by size factors from DESeq2 and dividing ribosome profiling 

counts by RNA-Seq counts. We thresholded downstream analyses by removing genes that had 

less than 37 counts in ribosome profiling and RNASeq data. When the TE of both samples in a 

group was used, the threshold was increased to 75 counts.  

 

Cell Type-Specific Specific Lists 

 

We used an RNA-Seq database generated from purified representative cell type 

populations in order to generate rank-lists of cell type-specific genes (Zhang et al. 2014). We 

created seven cell type-specific enrichment rank lists, one for each of the 7 representative cell 

types in the database. Enrichment scores for each cell type were calculated for every gene. These 

scores E were calculated for each gene i in each cell type j were computed from their cell type-

specific RNA expression levels FPKMij using the following equation:  

 

𝐸 =
𝐹𝑃𝐾𝑀𝑖𝑗

∑ 𝐹𝑃𝐾𝑀𝑖𝑘𝑘
−
1

2
 

 

This resulted in seven cell type-specific enrichment scores between -0.5 and 0.5 for each 

gene. This value was later recalculated without including Newly Formed Oligodendrocytes as a 

cell type (in order to improve enrichment among the remaining cell-types due to significant 
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overlap between myelinating and newly formed oligodendrocytes). These cell-type enrichment 

rank-lists were later used in Gene Set Enrichment Analysis (GSEA) and to define which genes 

were most associated with specific cell-types. Cell-type specific genes were defined as having an 

enrichment score greater than 0.2.  

 

Gene Set Enrichment Analysis 

 

In order to determine the role of translational regulation in cell-type specific genes, we 

performed a Gene Set Enrichment Analysis (GSEA) with GSEA software downloaded from the 

Broad Institute (Subramanian et al. 2005). In all instances of GSEA we performed a “Classic” 

GSEA analysis in pre-ranked mode. Gene sets were constructed from previously calculated and 

thresholded TE values for each sample individually and for combined samples as described 

above. Between 10,201 and 9,904 genes (difference due to previously mentioned thresholding) 

were ranked based on their TE calculated from untreated RiboTag brains into bins. Equal sized 

bins spanning 0.75 TE units were constructed around the median and populated with genes based 

on their TE rank. This was then used as the gene set input for GSEA for each sample.  

Cell type-specific enrichment scores, which are described above, were ranked and used to 

determine if cell type-specific genes were enriched in TE bins. Input to GSEA was a gene-set 

composed of TE values for a given sample (described above), and a rank-list composed the 

enrichment scores of a single cell-type. GSEA was then repeated for gene-set with every cell 

type rank-list. Normalized Enrichment Scores (NES) were generated from the GSEA software 

and then used to generate figures. The statistical significance of differences in TE between cell-

types was calculated using GSEA. The enrichment scores previously calculated for each cell type 

were used to generate a new comparison score for each gene i in each cell type k and j. 
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𝐸𝑠 =
𝐸𝑖𝑘
𝐸𝑖𝑗

 

Rank-lists were then generated for each pairwise combination of cell-types composed of 

calculated comparison scores for each gene. GSEA was run with the same settings as before 

using the previously generated gene sets based on TE scores.  

 

Gene Ontology Analysis (CAMKII Experiments) 

 

As a secondary means of displaying the cell type-specific translational landscapes we 

observed, we generated lists of cell type-specific gene ontologies. In order to calculate the 

enrichment of cell type-specific genes in gene ontologies, a list of 1,400 gene ontologies taken 

from the iPAGE database was used to create gene-sets where each set was a single ontology 

(Goodarzi et al. 2009).  NES for the enrichment of cell-type specific genes in individual 

ontologies were produced using this gene-set in conjunction with previously generated rank-lists 

comprised of enrichment scores (one for each cell-type). A gene ontology was defined as being 

enriched in an individual cell type if the NES for that cell-type was at least three units higher 

than the next highest NES for that gene ontology. Median TE was calculated for genes within 

enriched ontologies and plotted.  

 

Gene Ontology Analysis (Glioma Experiments) 

 

Mutual information-based gene ontology analysis was carried out using the differential 

translation rate analysis between RiboTag and normal brain profiles with iPAGE(Goodarzi et al. 

2009). Gene identification names from the mm10 reference transcriptome annotation were 

converted to RefSeq identifiers using Babelomics and filtered based on the annotation provided 
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by iPAGE. We then used log2-transformed fold-change obtained from DESeq for each 

statistically significant differentially expressed gene (p < 0.05) between the RiboTag profiles and 

the normal brain profiles as input for iPAGE to obtain over- and under-represented gene 

ontologies across nine bins of translation rate fold-change. 

We identified ~100 genes from our differential translation rate analysis between the 

homogenate and normal brain profiles with both a significantly higher translation rate in the 

tumor compared to normal brain and on the consensus list of RiboTag-depleted genes. This list 

was too short to allow iPAGE analysis, and so we identified enriched gene ontologies using 

Fisher’s Exact Test as implemented in FuncAssociate 2.0(Berriz et al. 2009). 

 

5’ UTR Analysis 

 

The number of ribosome profiling and RNA-Seq reads mapped to the 5’UTR were 

counted with HTSeq-counts set in region-interstrict mode for each matched sample.  Cell-type 

specific genes were defined for this analysis as having a previously calculated enrichment value 

greater than .2. The fraction of cell-type specific genes with 5’ UTR ribosomal density was 

calculated as the percentage of cell-type specific genes with at least 1 ribosomal footprints in the 

5’ UTR region. Upstream AUG sequences were identified with a custom python script and 

defined as any AUG sequence found within the 5'UTR region of a gene in genes with 5’UTR 

density. Median TE was calculated for cell-type specific genes as well as for the subgroups of 

cell-type specific genes with 5' UTR density and containing uAUG and genes containing 5'UTR 

density without uAUG. The weighted average of 5’UTR length for each gene was calculated 

using isoform abundance information from Cufflinks. Cufflinks was quantitated against a 

reference transcript annotation and otherwise run with default settings. GC content of 5’UTRs 
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was calculated in the same manner using isoform abundance information from Cufflinks. Genes 

were sorted into bins defined by GC content and length, and median TE was calculated. The 

significance of the change in TE due to 5’ UTR GC content and 5’ UTR length was calculated 

using the Mann-Whitney U test. 

 

Analysis of Translational Activity, Enrichment, and Differential Translation Rate (Glioma 

Experiments) 

 

For each gene, we divided the CDS read counts determined above by CDS length and 

total number of uniquely mapped reads in the sample to determine the CDS ribosome footprint 

density which we refer to as the translation rate. Similarly, we computed the 5’-leader ribosome 

footprint density by dividing the 5’-leader read counts determined above by 5’-leader length and 

total number of uniquely mapped reads in each sample. 

To calculate the enrichment scores for each gene, we divided the translation rate 

measured from each RiboTag ribosome profile by the translation rate measured from the 

corresponding homogenate ribosome profile. An enrichment score greater than one indicates that 

the gene is biased towards translation in the transformed cells. We generated a consensus list of 

enriched genes based on the criteria that the enrichment score is greater than one in all three 

biological replicates and that the number of uniquely mapped CDS reads in each mouse is 

greater than ten in the RiboTag ribosome profile. Similarly, we placed genes with enrichment 

scores less than one and with greater than ten CDS reads in the homogenate ribosome profile in 

all three biological replicates in the consensus list of depleted genes. 

We calculated translation efficiency for a given gene by dividing its translation rate by 

the RNA read density (number of reads uniquely mapping to the complete exonic sequence for 

each gene divided by transcript length and total number of uniquely mapped reads from a 
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sample). Both the differential translation rate and RNA expression analyses were carried out 

using DESeq(Anders and Huber, 2010) based on the uniquely mapped, CDS ribosome footprint 

counts and the uniquely mapped exonic RNA counts for each gene computed using HTSeq. 

For the human ribosome profiling translation rate analysis depicted in Figure 2.4D, we 

show genes for which we measured at least at 2-fold increase in translation rate in the tumor 

tissue compared to normal brain for all possible pairwise comparisons of tumor and normal brain 

specimens. 

 

 

6.3 Mouse Models and Tissue Handling 

 

 

Camk2a-RiboTag Mouse Model 

 

Camk2a-cre mice (JAX ID 005359) have the mouse calcium/calmodulin-dependent 

protein kinase II alpha (Camk2a) promoter driving Cre recombinase expression in the forebrain, 

specifically in principal excitatory neurons. Camk2a-cre mice were crossed to RiboTag mice 

(JAX ID 011029) which contain a conditional knock-in allele where exon 4 of the ribosomal 

protein L22 (Rpl22) is flanked by loxP sites, followed by an identical exon tagged with three 

repeated hemagglutinin epitope coding sequences (HA-tag). The resulting Camk2a-cre-RiboTag 

cross expresses the HA-tagged Rpl22 protein in principal excitatory neurons. Camk2a-cre 

heterozygotes were crossed to homozygous RiboTag mice and genotyped with the following 

primers for Cre: GCG GTC TGG CAG TAA AAA CTA TC (transgene), GTG AAA CAG CAT 

TGC TGT CAC TT (transgene), CTA GGC CAC AGA ATT GAA AGA TCT (internal positive 

control forward), GTA GGT GGA AAT TCT AGC ATC ATC C (internal positive control 
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reverse), and the following primers for RiboTag: GGG AGG CTT GCT GGA TAT G (forward), 

TTT CCA GAC ACA GGC TAA GTA CAC (reverse).  

Previous reports have shown that recombination with the Camk2a promoter-driven cre 

begins during the third postnatal week and is completed by the fourth postnatal week, therefore 

we chose to use mice that were three months old for all experiments.  

 

AZD Drug Delivery and Tissue Collection 

 

AZD-8055 (Selleckchem) was dissolved in Captisol and diluted to a final Captisol 

concentration of 30% (w/v). A single dose of AZD-8055 was administered by oral gavage 

(100mg/kg). Vehicle consisted of 30% captisol and was also delivered by oral gavage. Camk2a-

cre-RiboTag mice were sacrificed 1 hour after AZD-8055 or vehicle administration, two mice 

were used per condition. Cervical dislocation was performed and the right frontal lobe of the 

brain was collected and snap-frozen in liquid nitrogen prior to polysome extraction. The 

remaining brain lobes were fixed in 4% PFA for 48 hours and embedded in paraffin for 

histological analysis.  

 

Ribotag Mouse Glioma Model 

 

For experimental induction of murine glioma, transgenic C57BL/6 mice carrying loxP 

recognition sites at exon 7 of Trp53 were crossed with RiboTag mice (JAX ID 011029), which 

carry the HA-affinity tag adjacent to the ribosomal protein Rpl22, separated from the natively 

expressed terminal exon by loxP recognition sites. Hence, the tagged version of Rpl22 is only 

expressed following Cre-mediated recombination. These mice were bred to Trp53
flox/flox

 and 

RiboTag homozygosity. Proneural gliomas were induced de novo by stereotactic injection into 

subcortical white matter of the right frontal lobe of ~5x10
4
 replication incompetent, retroviral 
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particles expressing human platelet-derived growth factor (PDGF-B) and Cre recombinase, as 

described previously(Lei et al. 2011). Two of the three mice in which tumors were induced were 

43 days old and the third mouse was 64 days old. Age-matched control mice were injected with 

an equal volume of serum-free media. Mice were monitored for tumor morbidity by behavior 

and weight, and sacrificed at 30 days according to Columbia University IACUC protocol #AC-

AAAF1710. At this time point, all three mice exhibited symptoms of tumor morbidity and 

tumors were clearly visible upon removal of the brain. The survival curve in Figure 2.1 indicates 

a median survival time of 47+/-7 days post injection, and so we sacrificed the animals at 30 days 

post injection to avoid death due to tumor morbidity at an uncontrolled time so that we could 

harvest fresh polysomal RNA from the tumor tissue. The right frontal lobe tissue (containing the 

injection site) and distal tissue from the contralateral hemisphere were snap-frozen in liquid 

nitrogen immediately following sacrifice. Tissue immediately adjacent to the experimental 

sample, containing tumor, was fixed in 4% paraformaldehyde (PFA) for 48 hours prior to 

immunofluorescence. The survival curves depicted in Figure 2.1C were generated by injecting 

nine Trp53
flox/flox

 mice and eleven wildtype C57BL/6 mice (all 6-8 weeks old) with 5x10
4
 viral 

particles expressing PDGF-B and Cre recombinase(Lei et al. 2011).  We note that we have 

previously reported the use of this specific initiating alteration in conjunction with PDGF-B 

overexpression (Sonabend et al. 2014).  

 

Human Brain Tumor and Non-Neoplatic Brain Tissue Specimens 

 

The five adult patients included in chapter 2 presented for surgical resection of either 

malignant glioma or of non-neoplastic brain tissue to relieve epilepsy symptoms.  The three 
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epilepsy patients had no oncological history.  Resected tissue specimens were snap-frozen with 

liquid nitrogen in the operating room to maximize RNA preservation. 

 

 

6.4 Blotting and Immunofluorescence 

 

Immunofluorescence (CAMKII Experiments) 

 

Fixed brains were embedded in paraffin and tissue sections (5µm) were used for staining. 

To remove excess paraffin, slides were immersed in xylene then rehydrated by incubation in 

100%, 95%, and 75% ethanol. Slides were washed in PBS then water. For antigen retrieval 

10mM citrate buffer (pH 6.0) was heated and slides were immersed for 20 minutes, followed by 

PBS washes. Sections were then permeabilized with 0.5% Triton-X100 in PBS for 15 minutes, 

blocked in 5% goat serum for 1 hour and incubated with primary antibodies overnight at 4°C. 

Sections were washed three times in PBS and incubated with AlexaFluor-conjugated secondary 

antibodies (1:1000, Invitrogen) for one hour at room temperature and counter stained with DAPI. 

Stained tissue sections were imaged using a Nikon TE2000 epifluorescence microscope.  

 

Immunofluorescence (Glioma Experiments) 

 

At 28 days post injection, mouse brains were fixed in 4% PFA for 48 hours. Brains were 

then cryoprotected in 30% sucrose for four days and then stored in OCT at -80
o
C. Cyrosections 

(10 um) were fixed in 4% PFA for 10 minutes at room temperature, washed in PBS, blocked 

with 5% horse serum (Sigma) for 30 minutes, and then labeled with primary antibodies overnight 

at 4
o
C. Sections were then washed three times with PBS and incubated with AlexaFluor-

conjugated secondary antibodies (1:1000, Invitrogen) for one hour at room temperature and 

counter-stained with DAPI. 
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Antibodies (CAMKII Experiments) 

 

The following primary antibodies were used for immunofluorescence and western 

blotting: mouse monoclonal anti-HA.11 ascites (1:500, Biolegend01515), rabbit anti-pS6 

S240/244 (1:500, Cell Signaling15), rabbit anti-NeuN (1:500, Cell Signaling943), rabbit anti-pS6 

S235/236 (1:1000, Cell Signaling)11), rabbit anti-S6 (1:1000, Cell Signaling17), rabbit anti-β-

Actin (1:1000, Cell Signaling970S). The following secondary antibodies were used for 

immunofluorescence and western blotting: goat anti-rabbit Alexa 488 (1:1000, Invitrogen 

#A11008), and goat anti-mouse Alexa 568 (1:1000, Invitrogen #A11031). 

 

Antibodies (Glioma Experiments) 

 

The following primary antibodies were used: mouse anti-HA (1:1000, Covance), rabbit 

anti-PDGFRB (1:500, Cell Signaling), rabbit anti-OLIG2 (1:100, Millipore), rabbit anti-GFAP 

(1:500, Dako), rabbit anti-RBFOX3 (1:1000, Millipore), rat anti-CD44 (1:150, Calbiochem), and 

rabbit anti-AIF1 (1:1000, Wako). 

 

Western blot analysis 

 

Tissue was collected one hour after vehicle or AZD-8055 administration (20mg/kg or 

100mg/kg AZD-8055). The right frontal brain lobe was lysed from male mice that were 12 

weeks old. Tissue was lysed in 1 mL cell extraction buffer (Invitrogen #FNN10011) 

supplemented with protease (Sigma #P7626) and phosphatase inhibitors (Sigma#P5726, #P0044) 

with a Dounce homogenizer. Lysate was centrifuged and the supernatant was collected for total 

protein quantification. 30 ng of total protein was loaded to a NuPAGE 4-12% Bis-Tris gel and 

subject to gel electrophoresis according to the manufacturer’s instructions (Invitrogen 
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#NP0321BOX). Bands were detected by fluorescent imaging using the Typhoon imaging 

system. 

 

Microscopy 

 

Stained tissue sections were imaged using a Nikon TE2000 epifluorescence microscope 

equipped with Metamorph software (Molecular Devices). Micrographs were merged using 

Metamorph and ImageJ. Immunofluorescence images of the RiboTag cell line were obtained 

using a Nikon Ti-U epifluorescence microscope equipped with an EM-CCD camera (Andor 

iXon) and a 532 nm diode-pumped solid state laser. 
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